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Le réchauffement climatique est une menace pour tous les écosystémes terrestres et océaniques et pour
I’adaptation de I’homme a son milieu. Selon la derniere évaluation du Groupe d’experts intergouvernemen-
tal sur I’évolution du climat (GIEC), la température moyenne de la surface de la terre a augmenté d’environ 0.9
°C entre 1901 et 2012 (Stocker, 2014). Le réchauffement climatique est principalement dii aux émissions de gaz
a effet de serre, spécialement le dioxyde de carbone, le méthane et le protoxyde d’azote. La concentration du
dioxyde de carbone a augmenté de 45% depuis la période pré-industrielle en conséquence des activités humaines
qui déséquilibrent le cycle global du carbone (Harris, 2010).

Le sol est un réservoir majeur de carbone et joue un role essentiel dans le systéme climatique.

Le cycle du carbone est largement décrit : sa bonne compréhension constitue la contribution premiere du travail
du GIEC. Une description est fournie par Ciais et al. (2014) (Figure 1).
En résumé, 1’océan reste le plus grand réservoir de carbone avec environ 900 PgC pour I’océan en surface et 39 000
PgC pour I’océan profond, 1I’atmosphere contient actuellement 828 PgC selon Prather et al. (2012) (environ 590
PgC en période pré-industrielle). La végétation piege entre 450 et 650 PgC (Prentice et al., 2001) et le sol contient
entre 1500 et 2400 PgC sous forme de matieres organiques(Batjes, 1996).

80=60+20
784=607 +17.7

Ocean-amosphere
gasexchange

Figure 1: Le cycle global du carbone. Les fleches rouges représentent les flux anthropiques et celles représentent les
flux naturels (Ciais et al., 2014).

En outre, Batjes (1996) souligne le manque de connaissances en ce qui concerne le carbone du sol profond, vu
que peu d’échantillons ont été prélevés dans les niveaux profonds du sol. Par ailleurs, Batjes (1996) met en évidence
que la difficulté de I’estimation globale du réservoir de carbone du sol provient d’une part de la confusion des effets
du climat, de la végétation et de I’'usage de sol et d’autre part de lacunes dans les données pour représenter tous les
types de sols et les conditions climatiques et environnementales. De plus, une étude récente de Tifafi et al. (2018),
basée sur trois base de données mondiales, montre une grande différence dans les estimations régionales et globales
des stocks de carbone dans le sol (Figure 2). Le stock total du carbone de sol est estimé a environ 3 400 PgC par
SoilGrids, alors qu’il est d’environ 2 500 PgC selon la base de données harmonisée des sols du monde (HWSD).
Toutefois, le carbone du sol est un réservoir beaucoup plus grand que I’atmosphere et, avec la végétation, constitue
le seul réservoir sur lequel I’homme peut intervenir afin d’augmenter sa capacité de stocker plus de carbone, et ainsi

piéger une partie du CO, dérivé des combustibles fossiles émis.

Les sols contribuent le plus aux échanges de carbone avec I’atmospheére.
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Figure 2: Stock de carbone total (kg C m~2) sur la couche supérieure (0,1 m) par latitude et pour les différentes
bases de données (Tifafi et al., 2018).

Le cycle du carbone est un systeme dynamique échangeant des flux de carbone d’un réservoir a I’autre. La
perturbation anthropique du cycle global du carbone entraine une augmentation des émissions de carbone vers
I’atmosphere. Les responsables principaux en sont les combustibles, la production de ciment (émission de 7.8
=+ 0.6 PgC par an) et le changement d’usage des sols (émission de 1.1 £ 0.8 PgC par an). La végétation piege
approximativement 108.9 PgC par an de carbone atmosphérique via la photosynthese, dont 14.1 PgC sont d’origine
anthropique. Une partie de ce carbone est intégrée dans le sol via les racines des plantes et les feuilles mortes tandis
que ’autre partie est renvoyée dans I’atmosphere via la respiration des plantes (107.2 PgC par an). L’échange
net entre biosphére et atmosphere (60 PgC par an, dont 49.4 PgC par an entre atmosphere et le sol) reste le plus

important dans le cycle du carbone global.
Les sols ont un role dans la lutte contre le réchauffement climatique

Le rapport du GIEC 2013 souligne le role clé des sols pour I’atténuation et ’adaptation aux changements
climatiques : les échanges nets en carbone les plus importants se produisent entre les sols et I’atmosphere. En outre,
I’impact des changements d’usage de terre a été souligné dans une étude réalisée par Deng et al. (2016). Cette
méta-analyse basée sur 103 publications récentes de 160 sites dans 29 pays différents a montré que le stock de
carbone dans le sol augmente significativement apres la conversion de terres agricoles en prairies (0.30 Mg par
hectare et par an) et de foréts en prairies (0.68 Mg par hectare et par an), mais diminue de maniere significative
apres la conversion de prairies en terres agricoles (0.89 Mg par hectare et par an) et des foréts en terres agricoles
(1.74 Mg par hectare et par an).

Le réchauffement climatique peut étre atténué grace a la gestion des terres cultivées, la gestion des paturages et
la restauration des sols organiques. Des stratégies de pratiques agricoles et de conservation des foréts stimulent
I’augmentation de I’absorption du carbone par les sols et permettent de mieux assurer la sécurité alimentaire en
préservant la fertilité du sol. A cet égard,une meilleure compréhension du carbone de sol est a I’ordre du jour
suite au rapport du GIEC 2013 ou, pour la premiére fois, les sols sont considérés comme 1’un des leviers possibles
d’atténuation des changements climatiques. Dans ce contexte, nous pouvons souligner I’initiative «4 pour mille»
https://www.4p1000.org qui vise a augmenter la séquestration mondiale du carbone, pour les premiers 40 cm du
sol, d’un pourcentage de 0.4% par an, afin d’atténuer les problemes mondiaux liés au changement climatique, a
I’insécurité alimentaire et a la pollution de 1’environnement (Lal, 2016). Pour distinguer entre séquestration et
stockage, il est communément établi que la séquestration doit étre durable (au moins 100 ans, comme recommandé

par le protocole de Kyoto), alors que le stockage peut étre a court terme ou a long terme.
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La représentation actuelle de la dynamique du carbone du sol par les modéles mécanistes n’est pas en-

tierement satisfaisante

Plusieurs modeles mécanistes ont été proposés pour exprimer la variation du carbone du sol en fonction de la
profondeur. Cependant, un effort pour mieux représenter les simulations de la dynamique du carbone du sol est
nécessaire, d’autant plus que la vision des processus physiques est incomplete. Les modeles de carbone du sol les

plus utilisés sont:
1. le modele de RothC (Coleman et al., 1997) qui intégre également un modele simple eau/sol,

2. le modele CENTURY (Parton et al., 1987) qui inclut des modules plus complexes pour la croissance des

plantes, la gestion des opérations, etc.

Le modele RothC simule que les 30 premiers centimetres du sol et le modele CENTURY simule les premiers 20
centimetres (Falloon and Smith, 2010). Le calibrage du modele mécaniste pour les premiers centimétres montre la
nécessité d’intégrer le carbone du sol profond, vu que le carbone stable et résistant des horizons profonds interagit
avec les niveaux de surface et contribue alors au cycle mondial du carbone et aux émissions de CO; par suite des
changements globaux du climat et des pratiques d’usage de sol. Les différences entre les modeles de carbone du
sol incluent dans les modeles du systeme de la terre sont principalement dues aux différences entre la production
primaire net (PPN) et la paramétrisation des sous-modeles de composition de la matiere organique du sol. La
limitation de la modélisation mécaniste de la dynamique du carbone du sol provient aussi du fait que ces modeles
sont paramétrés sous des conditions climatiques et environnementales spécifiques. Cet apercu sur les modeles
mécanistes de la dynamique du carbone du sol souligne I’importance de prendre en compte le carbone total des
sols et d’étendre les conceptualisations des processus a toutes les échelles de temps et d’espace. De plus, il existe
de grandes incertitudes quant aux processus qui ralentissent la minéralisation et protegent la matieére organique du
sol. Parmi ces processus, on peut distinguer: I’inaccessibilité spatiale contre les micro-organismes et les enzymes,
I’hydrophobicité, I’encapsulation dans les macromolécules organiques, la récalcitrance de la litiere, les interactions
entre la matiere organique et les minéraux, etc. Jusqu’a présent, le principal défi reste d’exprimer ces nouveaux
concepts de stabilisation / déstabilisation par des équations différentielles afin de les incorporer dans la modélisation
mécaniste. En outre, la majorité des modeles mécanistes du carbone du sol sous-estime la quantité du carbone du
sol puisque le carbone profond n’est pas pris en compte dans les bilans du carbone (Houghton, 1995).

Les isotopes du carbone permettent de valider la représentation de la dynamique du carbone dans le sol

La meilleure facon d’évaluer la performance des modeles mécanistes de la dynamique du carbone du sol est
de les comparer avec les données empiriques. Ainsi, une comparaison directe entre les résultats du terrain, du
laboratoire, des données et des sorties du modele mécaniste peut Etre établie. Pour représenter la matieére organique,
la spécifier, la suivre et donner une cinétique aux processus, des mesures de la matiere organique a plusieurs
profondeurs sont nécessaires. Tout d’abord, la quantité du carbone dans le sol peut étre définie par les données de
teneur en carbone produites par le laboratoire analysant des échantillons prélevés du terrain. Ensuite, il existe des
méthodes de tracage isotopique comme les traceurs '3C et “C pour quantifier le temps de résidence de la matiere
organique du sol, allant de quelques jours jusqu’a plusieurs milliers d’années. La premiere technique de tragage
est fondée sur la surveillance d’abondance du '3C en cas de changement de végétation (des plantes de type C3 en
C4 ou vice versa). Malheureusement, les données disponibles a partir de cette technique ne sont pas en nombre
suffisant pour 1’évaluation du modele parce qu’un changement de type de photosynthese de la végétation est exigé.
La deuxieme technique, la datation au radiocarbone, est plus puissante. Effectivement, le sol est un témoin des

variations des concentrations du radiocarbone de 1’atmosphere, en particulier la variation due aux essais nucléaires
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Figure 3: La quantité du '“C de I’année x mesurée en 2018, pour tout matériau atmosphérique. Le sol reproduit
la variation du radiocarbone atmosphérique dans le cadre du réservoir de radiocarbone mais, en mélangeant des
matieres organiques de plusieurs périodes, le signal atmosphérique est fortement atténué dans le sol.

atmosphériques (Figure 3). Le contenu du radiocarbone '“C de 1’atmosphére a doublé en 1962 par rapport 4 son
niveau naturel, égal au contenu du radiocarbone de 1’atmosphere dans 1’hémisphere nord en 1950.

La modélisation statistique est une alternative pour mieux représenter les incertitudes sur la dynamique
du carbone des sols

En fait, I’intégration des nouveaux concepts de protection de la matiere organique dans les modeles mécanistes,
la prise en compte de ce qui se passe dans les couches profondes du sol et I’extension de la conceptualisation des
processus a toutes les échelles de temps et d’espace, nécessitent un travail de développement intensif. L’écriture
de cette formalisation mathématique détaillée des processus physiques restant encore largement hors de portée
aujourd’hui, notre proposition est de construire un modele statistique qui décrive la dynamique du carbone dans la
sol en se fondant sur des données empiriques du radiocarbone et des teneurs en carbone échantillonnées a différentes

profondeurs pour des sites répartis sur tout le globe terrestre.

Le modele statistique a 1’avantage d’échapper a la difficulté d’exprimer tous les processus mécanistes qui
contrdlent la dynamique du carbone dans le sol. Il permet également de représenter les incertitudes. On propose ici
une méta-analyse statistique pour mieux comprendre la dynamique du radiocarbone ainsi que celle des teneurs du
carbone. Cette méta-analyse est basée sur 343 sites collectés a partir de 86 articles publiés dans la littérature de
pédologie/archéologie et paléoclimatologie. Le pergélisol et I’histosol ont été omis, notre étude porte donc seulement
sur les sols minéraux. De plus, pour chaque site, on dispose des informations climatiques (température, précipitation,
etc.) géographiques (longitude, latitude, altitude) et environnementales (type de sol et type d’écosystéme). La base
de données renferme 17 différents types de sol et 9 types d’écosysteme (végétation + usage du sol (naturel versus
cultivé)). Afin d’améliorer le plan expérimental, certains types de sol partageant des méme propriété physiques ont
été fusionnés ensemble. L’analyse statistique est mené finalement sur 9 types de sol et 6 types d’écosysteme.

Le modele statistique que 1’on propose ici est inspiré du modele statistique décrit par Mathieu et al. (2015) afin
de représenter les variations du radiocarbone en fonction de la profondeur. Ce modele statistique est caractérisé
par une structure hiérarchique non linéaire a effets aléatoires. Afin d’intégrer les informations climatiques et
environnementales, les effets aléatoires on été reliés par des liens linéaires aux facteurs qui peuvent potentiellement
impacter la matiere organique du sol. Dans cette étude, on considere 9 variables climatiques et environnementales
parmi 33 variables possibles. Par exemple, les températures enregistrées pour tous les 12 mois d’années seront
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résumées par la température annuelle moyenne et 1’écart saisonnier de la température entre le mois le plus chaud
et le plus froid. Les 9 variables explicatives ont été choisies de maniere a réduire le probleme de multicolinéarité
que I’on peut rencontrer dans ces cas. En fait, quelque soit I’ensemble explicatif retenu, on ne peut pas échapper a
I’association naturelle qui existe entre climat, type de végétation et type de sol.

Le premier défi de ma these est d’apporter des réponses aux questions des scientifiques du sol et de leur rendre
la vision de la dynamique du carbone dans le sol plus claire. En fait, notre analyse statistique servi, dans un
premier temps, a proposer une structure de modele qui réalise un bon ajustement des données empiriques et qui
nous permette de générer un profil du carbone pour des endroits du globe ot aucune donnée n’a été observée. Les
scientifiques du sol cherchaient a identifier les facteurs climatiques et environnementaux dont les effets controlent la
dynamique du carbone dans le sol et a distinguer si ces facteurs impactent le carbone en surface et en profondeur de
la méme fagon. Pour répondre a cette question, plusieurs méthodes bayésiennes de sélection de variables numériques
et catégorielles ont été explorées afin de quantifier numériquement et d’une maniere probabiliste les effets des

facteurs climatiques et environnementaux.

Description de la base de données

La base de données utilisée pour notre méta-analyse est détaillée dans le premier chapitre du manuscrit. A
I’origine, les données de 343 sites ont été collectées a partir de 85 articles de la littérature des sciences du sol,
I’archéologie et la paléoclimatologie. Notre étude statistique est focalisée sur les sols minéraux. La répartition

géographique des sites est donnée a la Figure 4:

Figure 4: Localisation des sites étudiés (points bleus). La distribution spatiale des sites est plutdt hétérogeéne, avec
un manque évident de données dans les zones extra-tropicales, en Afrique et en Russie.

Pour chaque profil, des informations géographiques (latitude, longitude et latitude), climatiques (tempéra-
ture mensuelle, précipitations mensuelles, indice d’aridité, teneur en 14 de I’atmosphere au cours de I’année de
prélevement, etc.) et environnementales (type d’écosysteme et type de sol) ont été renseignées. Des mesures du
radiocarbone et de la teneur en carbone ont été prises a différentes profondeurs.

Un nettoyage de la base de données a été effectué afin d’éliminer certains profils. Par exemple, on a éliminé les
mesures réalisées sur les niveaux de litieres et les profils dont les mesures ont été faites sur des molécules spécifiques
ou des fractions granulométriques, densimétriques...non représentatives de la totalité de la matiere organique du sol,
etc.
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Les facteurs climatiques et environnementaux potentiellement explicatifs de la dynamique, pris en compte dans
cette méta-analyse statistique, ont été choisis en tenant compte des avis des experts et de facon a minimiser le
probléme de multicolinéarité. Cependant, on ne peut éviter qu’une dépendance naturelle existe entre les facteurs
climatiques et environnementaux. Par exemple, au lieu de considérer les températures mensuelles, on a résumé cette
information par la température moyenne annuelle et I’écart saisonnier de températures entre le mois le plus chaud et
le mois le plus froid.

Les facteurs climatiques et environnementaux utilisés pour notre étude statistique sont résumés dans la Table 1:

| Variables explicatives | Abréviation | Variables explicatives | Abréviation I
Type d’ecosysteme Land Type de sol Soil
Précipitation annuelle moyenne MAP indice d’aridité Al
Température annuelle moyenne MAT Décalage saisonnier de température Dif T
Précipitation mensuelle minimale min_P FYC atmosphérique de I’année d’échantillonnage FYCatm

Table 1: Facteurs climatiques et environnementaux explicatives potentiellement explicatifs de la dynamique du
radiocarbone et de la teneur en carbone dans le sol. Le F'4C atmosphérique de I’année d’échantillonage est mis en
évidence en italique gras car il n’affecte que la dynamique du radiocarbone de sol.

Certains types de sols et d’écosystemes sont regroupés afin de rendre le plan expérimental le moins déséquili-

bré possible. Un déséquilibre important de la base de données risque en effet de diminuer la précision de 1’estimation.

Le chapitre de description de la base de données inclut aussi une discussion sur la répartition des profils du
carbone des sols selon les différentes zones climatiques définies d’apres la classification de Koppen. La base de
données fournit une représentativité homogene du climat intermédiaire, tropical, chaud, tempéré et neigeux, en

laissant de coté les climats extrémes, aride et polaire (Figure 5).

World Map of Képpen-Geiger Climate Classification

latitude
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|

Main climate
—  A:equatorial
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T T T T T T T
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Figure 5: Superposition des sites sur la carte de classification climatique Koppen-Geiger. La "classification
climatique de Koppen" est fondée sur 1’analyse climatique de la période allant de 1951 & 2000. Elle divise
les climats en cinq groupes climatiques principaux, chaque groupe étant divisé en fonction des précipitations
saisonnieres et des régimes de température. Les cinq groupes principaux sont A (équatorial), B (aride), C (tempéré
chaud), D (neige) et E (polaire). Tous les climats, a I’exception de ceux du groupe E, sont ensuite déclinés en
sous-groupés associés a des régimes saisonniers spécifiques de précipitations (représenté par la deuxieme lettre). Par
exemple, Af indique un climat de forét tropicale humide. Le systéme assigne un sous-groupe de température pour
tous les groupes, sauf ceux du groupe A, indiqué par une troisieme lettre pour les climats B, C et D et une seconde
lettre pour les climats E. Par exemple, Cfb indique un climat océanique avec des étés chauds comme indiqué par la
derniere lettre b. Les climats sont classés en fonction de criteres spécifiques propres a chaque type de climat.

La mauvaise répartition des années d’échantillonnage pour les sites avant la période de la bombe nucléaire (79%
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des profils échantillonnés dans les années 1990) implique que la basse de données n’est pas représentative de la plage
de variation du F'“C atmosphérique surtout par rapport aux variations dues aux essais nucléaires atmosphériques.
Le nombre de mesures de radiocarbone et de la teneur en carbone varie entre 3 et 73 pour les profils échantillonnés.
La majorité des profils de la base de données ont des enregistrements qui varient entre 4 et 10 observations. Ce
nombre est satisfaisant pour avoir une idée sur la structure des profils du radiocarbone et de la teneur en carbone.
Une large variation naturelle est observée pour les teneurs en carbone en surface. Cette large variation est en
accord avec la base de données mondiale sur le carbone du sol "SoilGrids".

Recherche stochastique de sélection de variables mixtes: application aux variables latentes du modéle
hiérarchique de la dynamique du carbone des sols

Le deuxiéme chapitre du manuscrit est présenté sous forme d’un article publié€ le 13 septembre 2018 dans le
Journal de la Société Francaise de Statistique (SFDS). Dans cet article, nous proposons une approche statistique
bayésienne de sélection de variables pour mieux cerner la dynamique du carbone des sols en examinant la variation
en profondeur du radiocarbone pour 159 profils sous différentes conditions de climat (température annuelle moyenne,
précipitation annuelle moyenne, indice d’aridité, latitude, décalage saisonnier de température, F'“C atmosphérique)
et d’environnement (type de sol, type d’écosysteme). Le modele statistique utilisé dans cet article est inspiré du
modele statistique proposé par Mathieu et al. (2015).

Le modele hiérarchique non linéaire a variance homogene d’occurrence locale des mesures (Figure 6), s’écrit de
la fagon hiérarchique suivante: pour un site s € [1: S], et pour une mesure m; € [1 : m;,], on modélise I’évolution du
F'4C du sol noté par y(s,x) en fonction de la profondeur x par:

X

¢3(s)

04(s)
y(s,x>=¢1<s>+(¢z<s>—¢1<s>>exp—( ) Fe(sx) (s.) ~ N(0,0?)

 ¢1: F'C en grande profondeur.

L]

0r: F'C en surface.
e (3: distance relative au point d’inflexion de la courbe.
* @4: décroissance plus ou moins forte.

Les variables latentes @1, ¢, @3 et @4(s) sont reliées linéairement aux variables potentiellement explicatives de la
dynamique du radiocarbone: température annuelle moyenne, précipitation annuelle moyenne, F'“C atmosphérique,

indice d’aridité, décalage saisonnier de température, latitude, type de sol et type d’écosysteme.

¢i=XBi+E Ei~N(0,071) i=122
log(¢;) =XB;+E; E;~N(0,6*1) i=3,4
Bi = (Bi1,...,Bir) €RP, oli=1,2,3, 4, est le vecteur des effets de régression relative a la variable latente i,

E; € R” représente I’effet aléatoire désignant la variabilité inter-sites et X € Ms p(R)) est la matrice de design

construite en considérant un contraste traitement.
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Figure 6: Profil statistique du F'“C en fonction de la profondeur.

La recherche stochastique de sélection de variables (SSVS) est appliquée au niveau des variables latentes du
modele hiérarchique. Cette approche nous permet d’avoir un jugement probabiliste sur la contribution conjointe du
type de sol, du climat et de 1’usage du sol a la dynamique verticale du carbone dans le sol. En fait, pour chaque
variable explicative, un indicateur binaire / est associé permettant d’indiquer si cette variable est significative
(I = 1) ou non (I = 0). Ainsi, une probabilité d’inclusion a posteriori est calculée a partir des itérations MCMC
correspondant a . Cette technique a été modifiée pour prendre en compte la sélection des variables explicatives
qualitatives. Autrement dit, on affecte la méme probabilité d’inclusion a priori pour toutes les modalités au sein de

la méme variable catégorielle. Le SSVS a été codé sous JAGS.

Nous discutons également de la performance pratique et des limitations de SSVS en présence de variables

catégorielles et de la colinéarité entre certaines variables

En premier lieu, la performance du SSVS a été testée sur des données artificielles générées selon la structure
du modele statistique proposé pour les profils F4C. Les résultats sur les données artificielles montrent que: 1- la
présence de collinéarité augmente le taux de fausse détection du SSVS au niveau des variables latentes, 2- le SSVS
peut ne pas détecter 1’effet de certaines variables catégorielles significatives. Une analyse de sensibilité sur le choix
de la probabilité d’inclusion a priori et sur la variance du prior Spike and slab sur les effets de régression a été

également réalisée dans cet article.

Les meilleurs sous-modeles pour les variables latentes sont résumés dans la table 2:

Variables latentes variables explicatives sélectionnées
type d’€écosysteme, type de sol, température annuelle moyenne,
décalage saisonnier de température
type d’écosysteme, F14C atmosphérique, température annuelle moyenne,
décalage saisonnier de température, indice d’aridité
type d’écosysteme, type de sol, F17C atmosphérique
la profondeur d’incorporation F'“C (¢3) température annuelle moyenne, précipitation annuelle moyenne,
indice d’aridité, latitude, décalage saisonnier de température
type d’écosysteme, latitude, FT*C atmosphérique,
température annuelle annuelle

FYCen profondeur ()

F4C en surface (¢»)

Forme du profil F14C (¢4)

Table 2: Les facteurs climatiques et environnementaux sélectionnés pour les variables latentes du modele hiérar-
chique @1, @2, 93 et ¢4. Pour la troisieme couche latente ¢3, toutes les variables explicatives ont été sélectionnées.

Les sous-modeles incluent toutes les variables explicatives détectées par le SSVS avec des probabilités
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d’inclusion a posteriori au moins égales a 0.5 (Figure 7). De plus, pour étre siir que les variables catégorielles
non détectées par le SSVS ne sont pas des fausses négatives, on a ajouté les variables catégorielles non détectées

d’une maniere successive afin de voir si une amélioration du critere DIC (Deviance Information Criterion) peut étre
établie.
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Figure 7: Probabilités d’inclusion a posteriori pour toutes les variables explicatives obtenues en appliquant la SSVS

2 aux profils F!4C de la base de données. La taille des points dépend de I'importance de la probabilité d’inclusion a
posteriori.

Exploration de trois méthodes bayésiennes de sélection de variables catégorielles et leurs codages sous
JAGS

Le troisieme chapitre de la these est présenté sous la forme d’un article, soumis le 15 aoit au journal Bayesian
Analysis.

Le SSVS exploré dans le chapitre précédent peut conduire a faux négatifs pour certaines variables explicatives
catégorielles. Afin de résoudre ce probleme, un intérét particulier a été porté a I’exploitation d’autres méthodes
bayésiennes de sélection appropriées aux variables catégorielles.

Ce chapitre présente donc trois approches bayésiennes de sélection appropriées aux variables catégorielles.
Parmi ces approches, le Bayesian Sparse Group Selection (BSGS) et le Bayesian Effect Fusion (BEF) permettent

d’aller au-dela de la simple sélection des variables catégorielles. Le BEF peut étre utilisé afin de fusionner les

29



modalités ayant le méme effet au sein de chaque facteur et le BSGS nous permet d’établir un jugement probabiliste
sur I'inclusion des effets des différentes modalités relatives au méme groupe. Pour la derniére approche, le Bayesian
Group Lasso with Spike and Slab (BGL-SS), I’estimateur a posteriori de la médiane présente une excellente
performance, a la fois pour estimer et pour sélectionner les effets de régression. Notre objectif est d’appliquer
ces techniques de sélection sur la couche latente du modele non linéaire hiérarchique afin d’identifier les facteurs

climatiques et environnementaux significatifs.

Plusieurs méthodes de sélection bayésienne ont été proposées dans la littérature afin de choisir le meilleur
sous-modele. On peut distinguer par exemple le Stochastic Search Variable Selection (SSVS) proposé par George
and McCulloch (1993), la méthode de Kuo and Mallick (1998) ainsi que le Gibbs Variable Selection suggéré par
Dellaportas and Ntzoufras (1997). Cependant, ces techniques capturent seulement les effets de régression relatifs a
chaque variable continue et non pas les effets d’un regroupement des modalités associées aux variables catégorielles.
Ici, on s’intéresse aux méthodes de sélection appropriées aux variables catégorielles qui exigent 1’introduction

de variables fictives (dummy variables) dans le modele. Considérons d’abord le modele d’analyse de la variance

suivant:
G
Y=1u+Y X,B+e, €~N(0,0°) (1)
g=1
(Y1,...,Y,) est le vecteur réponse , G est le nombre de variables catégorielles et u représente la constante associée

au vecteur unitaire 1. Chaque variable catégorielle g renferme C, modalités telles que ZZGZI C; = p. B est le vecteur
des effets de taille (Cy x 1) relatif au facteur g. X, est la matrice de design de taille (n x C,) définie avec un contraste
traitement et € représente ’erreur.

Dans cet article, on présente et discute la performance de ces trois techniques de sélection appropriées aux variables
catégorielles: Bayesian Sparse Group Selection proposé par Chen et al. (2016), Bayesian Group Lasso with Spike
and Slab suggéré par Xu et al. (2015) et le Bayesian Effect Fusion using model-based clustering défini par Malsiner-
Walli et al. (2017).

Spécification des priors:

* Bayesian Group Lasso with Spike and Slab (BGL-SS):

Belte, 0% ~ (1 = Tg) Ny, (0,67 T I, ) + g 80 (Be)
mg+1 12)

2 2
Tg ~ Ber(py)
A~ Gla,b)

2
T, ~ G(

)

Le BGL-SS est une technique qui permet d’estimer et de sélectionner les effets de régression simultanément.
La formulation bayésienne du Lasso a été justifiée par Kyung (2010). Kyung et al. (2010) ont montré que
le prior double exponentielle proposé par Tibshirani (1996) peut étre écrit sous forme de la convolution
d’une distribution gaussienne sur 3, avec un prior Gamma sur son paramétre d’échelle 7,. Pour rendre le
modele plus sparse, Xu et al. (2015) ont considéré une loi de mélange entre une gaussienne et une masse
de Dirac a 0 (pour avoir des effets qui valent exactement 0). Le résultat de la sélection est sensible au choix
du paramétre de pénalité. Une petite valeur de A tend souvent a préféré le modele nul. Une valeur de 0.5
pour pg g = 1,...,G est un choix raisonnable pour faire de la sélection. La régle de décision est basée sur

I’estimation a posteriori de la médiane.
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* Bayesian Sparse Group Selection (BSGS):

Vv, ~ Ber(p,)
Aig| Vg ~ (1= Vg) 8o+ VgBer(pig) 3)
Big|Aigve ~ (1= AigVg) 8o + AigVigN (0, leg)

Le BSGS consiste a définir deux indicateurs binaires imbriqués v, (1: facteur g est sélectionné, 0: sinon) et
Aig (1: la modalité 1 du facteur g est sélectionnée, 0: sinon). De plus, si le facteur g n’est pas sélectionné dans
le modele (vg = 0), on affecte des indicateurs nuls pour toutes ces modalités. On peut poser p; = p;, = 0.5,
ainsi, tous les sous-modeles sont équiprobables. dy est une masse de Dirac en 0. Le choix de 7;, a un effet
important sur la sélection: par exemple une grande valeur de 7, pour [ = 1,...,C, diminue a posteriori la
probabilité que le facteur g soit séléctionné. Cette technique nous permet d’avoir un jugement probabiliste
non pas seulement sur I’inclusion des variables catégorielles dans le modele mais aussi sur les effets des

modalités au sein d’'un méme groupe.

» Bayesian Effet Fusion using model-based clustering (BEF):

Cg
P(Bgt) = Y., VerN (Botl b, W)
1=0
Vv~ Dircg+1 (eo) pour [=0,... ,Cg 4
Uo=0
My ~N(mg,My) pour 1=1,...,C,

Cette approche est originale du fait qu’elle permet, non seulement de sélectionner les variables catégorielles
significatives pour le modele, mais aussi de fusionner les modalités au sein du méme groupe ayant le méme
effet sur la variable réponse. Des détails supplémentaires sur le choix des hyperparametres sont donnés
dans I’article de Malsiner (2017). La regle de décision consiste a fusionner les modalités appartenant au
méme groupe de classification. Une variable catégorielle est éliminée du modele si toutes ses modalités sont

fusionnées avec la modalité de référence.

Les performances de sélection et I’analyse de sensibilité du réglage des hyperparametres pour la spécification
des priors ont été testées pour les trois approches de sélection dans une étude de simulation. Dans cet article,
nous présentons également, en détail, la mise en ceuvre des codes sous JAGS pour les trois méthodes de sélection

bayésiennes.
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Table 3: Comparaison de BGL-SS, BAGS et BEF, trois méthodes bayésiennes récentes appropriées aux variables catégorielles: quoi, comment et pour quoi faire?

Meéthodes bayéseinnes de sélection
BGL-SS | BSGS | BEF

pour quoi faire ?

Sélection des variables catégorielles
Sélection des modalités
Fusion des modalités

Critere de sélection

probabilité d’inclusion a posteriori
médiane a posteriori des effets de régression
probabilité de fusion a posteriori

Spécificité de la méthode

un nombre important de variables catégorielles et de modalités
prédicteurs avec un nombre important d’effets nuls
Rééquilibre du plan expérimental

Elimination totale de certaines modalités

Simplicité de la technique de sélection

Nécessite peu d’hyperparametres a régler

jugement probabiliste sur la contribution des modalités

Non sensibilité a la probabilité d’inclusion a priori

NN A R NEN R YR N
TN X XN X X XX X X NS
N R N NN ENE N ENE N

<

<
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Applications des approches statistiques a la base de données

Le chapitre 4 de ma these est une application des techniques de sélection, détaillées dans les chapitres 2 et 3, sur
les profils du radiocarbone et des teneurs en carbone de ma base de données.

Ce chapitre est composé de trois parties: la premiere partie compare toutes les méthodes bayésiennes de sélection
introduites dans les chapitres précédents, la deuxieéme partie met en oeuvre I’interprétation physique des facteurs
climatiques et environnementaux détectés comme significatifs, et finalement la troisieme partie étudie le modele

statistique dans le cadre du changement global du climat et d’usage des sols.

En premier lieu, ce chapitre décrit les structures des modeles statistiques des profils du radiocarbone et des
teneurs en carbone indépendamment. Une modification du modele statistique des profils du F!4C est mise en
oeuvre par rapport au modele statistique publié¢ dans le journal SFDS. Par exemple, la latitude ne fait plus partie des

variables explicatives et une loi normale tronquée est proposée pour modéliser la réponse F!4C.
Les meilleurs sous-modeéles identifiés pour les profils de F'“C et des teneurs en carbone
Les méthodes bayésiennes de sélection ont été comparées entre elles en se fondant sur des critéres bayésiens de

comparaison de modeles comme le DIC, I’erreur relative sur les sites de validation (cross-validation), etc. Les deux

meilleurs sous-modeles obtenus apreés comparaison, sont résumés dans les tableaux suivants:

l variables latentes [ meilleur sous-ensemble de prédicteurs ‘

type d’écosysteme (Land)
FC profond (¢;) type de sol (Soil)
température annuelle moyenne (MAT)
type d’écosysteme (Land)
type de sol (Soil)
FC en surface (¢) précipitation annuelle moyenne (MAP)
indice d’aridité (AI)
décalage de température saisonnier (Dif_T)
type d’écosysteme (Land)
type de sol (Soil)
température annuelle moyenne (MAT)
Incorporation du F'4C en profondeur (¢3) précipitation annuelle moyenne (MAP)
indice d’aridité (AI)
précipitation mensuelle minimale (min_P)
décalage saisonnier de température (Dif_T)

Variables latentes \ meilleur sous-ensemble de prédicteurs ‘

type d’écosysteme (Land)
type de sol (Soil)
type d’écosysteme (Land)
type de sol (Soil)
précipitaion annuelle moyenne (MAP)
température annuelle moyenne (MAT)
type d’écosysteme (Land)
type de sol (Sol)
précipitation annuelle moyenne (MAP)
décalage saisonnier de température (Dif_T)

Teneur en carbone profond (®; )

Teneur en carbone en surface (@;)

Incorporation du teneur en carbone (@s)

Pour les profils F'4C, le meilleur sous-ensemble de facteurs climatiques et environnementaux est identifié par le
Bayesian Group Lasso en se basant sur la probabilité d’inclusion a posteriori. En ce qui concerne les profils des
teneurs en carbone, le meilleur sous-modele est identifié & partir du Bayesian Effect Fusion, en se basant sur la

probabilité de fusion a posteriori et la médiane des effets de régression.
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Interprétations physiques des facteurs climatiques et environnementaux détectés comme significatifs

La deuxieme partie de ce chapitre apporte une interprétation physique des facteurs climatiques et environnemen-

taux détectés comme significatifs pour la dynamique du radiocarbone et des teneurs en carbone séparément.

Le radiocarbone atmosphérique, qui aurait dfi ressortir parmi les variables explicatives du radiocarbone en sur-
face selon les avis des experts, n’a pas été détecté comme significatif. Ce résultat peut étre 1ié a la sur-représentation

des profils échantillonnés en 1990 dans la base de données.

D’autre part, la température annuelle moyenne est détectée comme significative pour la teneur en carbone en
surface, le F'“C profond et I’incorporation du F!4C en profondeur. Notre étude est en accord avec le résultat de
Fang et al. (2005) qui montre que la matiere organique non labile est plus sensible a la température que la matiere

organique labile.

Les précipitations annuelles moyennes influencent la signature en '“C et la teneur en carbone en surface ainsi
que I’incorporation de ces deux quantités en profondeur. Ces résultats peuvent étre liés a la fois a la dilution des
composantes des couches superficielles des sols par les composés organiques récemment introduits dans le sol
(augmentation de la production primaire résultant de I’augmentation de la MAP) et au priming effect qui entraine

une perte des anciens composés organiques du sol.
D’autres interprétations physiques portent sur 1’indice d’aridité et le décalage saisonnier de température .

Une surestimation des variables latentes correspondant a 1’incorporation du radiocarbone et des teneurs en
carbone en profondeur est identifiée. Cette mauvaise estimation, loin des valeurs qu’on peut avoir en réalité, peut
étre expliquée par la complexité du modele et au lien non linéaire entre ces variables latentes et les réponses du

radiocarbone et de la teneur en carbone.

Le résultat de la fusion des types de sol pour le radiocarbone en surface et pour celui en profondeur souligne que
le profil de '“C est davantage dominé par le climat/la végétation et la texture du sol pour les premiers centimétres du

sol et par la teneur en argile pour les couches les plus profondes.
Prédictions du modeéle statistique dans un contexte de changements globaux

L’avantage du modele statistique est d’étre utilisé pour prédire des profils en FC et des teneurs en carbone dans
des endroits ou aucune donnée n’est disponible. Ici, en particulier on a essayé de prédire les profils du radiocarbone
et de la teneur en carbone dans le cas de la conversion des forét équatoriales en terres cultivées. Cette étude se
base sur neuf profils localisés au Brésil. Une augmentation significative du radiocarbone en profondeur de 0.45 a
0.58, est observée pour les couches profondes. Autrement dit, le temps de résidence du carbone dans les couches
profondes est plus long pour la forét tropicale humide que pour les terres cultivées. Mais aucun changement n’est
révélé pour la teneur en carbone en profondeur. Ces résultats sont conformes a ceux de Balesdent et al. (2018) qui
montrent que 1’utilisation des sols pour les cultures réduit 1’incorporation de carbone dans la couche superficielle du
sol, mais pas dans les couches plus profondes. Nos résultats ajoutent d’autres éléments a la discussion de Balesdent
et al. (2018), allant au-dela du fait que la matiére organique de nos sols actuels est I’héritage de sa gestion par

plusieurs générations d’agriculteurs.

Par ailleurs, cette partie contient aussi une étude sur le reboisement des terres cultivées et prairies dans les
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régions tempérés. Les résultats montrent que le reboisement des terres cultivées et des prairies tempérées entraine

une augmentation des stocks de carbone a court et a long terme.

Une étude aussi a été faite pour étudier I’augmentation de la température de 1, 1.5 et 2 °C sur la dynamique des

profils du radiocarbone et celle de la teneur en carbone.
Conclusion et perspectives

Le dernier chapitre de ma thése se divise en deux parties: la premiere résume bricvement les points principaux
de la these partant du défi scientifique du départ et la mauvaise compréhension de la dynamique du carbone dans le

sol jusqu’a I’avantage de la modélisation statistique.

La deuxieme partie souligne les propositions et possibilités qui peuvent étre examinées afin d’améliorer la

structure du modele statistique et d’optimiser les perspectives d’utilisation du modele statistique.

Afin d’améliorer I’expression des incertitudes du modele statistique, j’ai proposé un modele de processus
gaussien bivarié pour une modélisation conjointe du radiocarbone et de la teneur en carbone. En effet, notre modele
statistique ne prend pas en compte la dépendance entre les différentes mesures au sein d’un méme site entre ces
deux éléments. De plus, une visualisation de la variation du radiocarbone en fonction de la variation de la teneur en

carbone met en évidence la présence d’une corrélation positive entre les deux réponses.

En ce qui concerne I’amélioration de la base de données, lors de 1’analyse statistique, certains profils sortent
nettement hors de la tendance générale. Ces horsains incluent notamment certains profils au Royaume-Uni sous un
climat tres humide. Ces profils ont probablement biaisé la sélection des variables et trés probablement 1I’ampleur des
diverses estimations. Une deuxieme série d’évaluations peut étre réalisée sans ces profils aberrants pour obtenir un

modele statistique qui mettrait mieux en lumiere la tendance générale.

Un autre défi consistera a améliorer la base de données actuelle. Comme nous 1’avions noté dans le chapitre 2,
la base de données est loin d’étre parfaite. Par exemple, nous n’avons pas le méme nombre de profils par type de
sol et d’écosysteme. 37% des profils de la base de données sont des foréts, alors que seulement 8% sont définis
comme des prairies cultivées. Méme pour le type de sol, 9% des profils de la base de données sont définis en tant
qu’Andosols et 7% en tant que Régosols / Arénosol / Leptosol. Cependant, seulement 1% de la superficie terrestre
continentale de la planete est occupée par des Andosols et 22% par des Regosols / Arenosol / Leptosol. De plus,
étant donné que le type de sol et I’écosysteme sont associés, il pourrait également étre intéressant de diviser Gleysol
en deux catégories: les gleysols tropicaux et les gleysols boréaux. Certaines de leurs caractéristiques sont similaires
car elles portent le méme nom, mais d’autres, en particulier les interactions avec la végétation, sont différentes.
L’augmentation du nombre de profils par catégorie de sol et d’écosysteme (utilisation des sols + végétation) n’est
toutefois pas le seul point important; il faut également tenir compte de plusieurs caractéristiques cruciales, telles
que: 1’occupation totale de la surface terrestre continentale par le sol et la couverture végétale, et I’association entre
le sol, la couverture végétale et les conditions climatiques. De plus, la base de données actuelle ne contient pas de
profils de classes climatiques arides et hyper-arides. C’est un manque crucial, en particulier pour I’utilisation du
modele en mode de prévision dans ces régions particulierement vulnérables aux changements climatiques. Comme
indiqué dans la description de la base de données, la répartition non homogene des années d’échantillonnage dans la
base de données empéche une bonne représentation du profil F!“C, notamment pour la variable latente qui donne la
profondeur d’incorporation.. Un autre point a améliorer dans la base de données est donc la distribution des profils
par année d’échantillonnage. Dans la base de données actuelle, 53% des profils sont échantillonnés 1990 et 2000.

En conséquence, le radiocarbone atmosphérique lié aux essais nucléaires au début des années 1960 n’ a pas été
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détecté comme significatif pour le F'“C en surface ni pour I’incorporation du F'4C en profondeur. Alors, pourquoi
ne pas envisager 1’analyse d’échantillons d’archives, comme ceux de Rothamsted? Cette collection d’échantillons a
été créée par Lowes et Gilbert en 1843. Plusieurs milliers de sols recueillis dans les années 1920-1950 sont stockés

dans le référentiel. Environ 1200 cultures et 200 échantillons de sol sont ajoutés chaque année aux archives.

L’extrapolation du modele statistique bayésien développé pour la teneur en carbone des sols est utile pour
obtenir une estimation globale (ou régionale) du stock de carbone des sols. Les modeles statistiques bayésiens
pour la dynamique de la teneur en carbone et du radiocarbone nous permettent de prédire les profils du contenu
en carbone et en carbone d’un nouveau site, en connaissant les informations climatiques et environnementales
correspondantes. Comme aucune mesure n’est fournie pour ce site, les intervalles de crédibilité des parametres
inconnus du modele seront plus larges que ceux observés pour les sites échantillonnés. En premier lieu, les profils
prédits, lors du changement d’utilisation des sols ou des conditions climatiques, sont obtenus sans tenir compte
des mesures observées (chapitre 5.5.2, section 5.5). Cela signifie que le site est considéré comme, un nouveau
site véritable. Ainsi, de nouvelles variables latentes sont générées pour les modeles statistiques des profils F'“C
et de la teneur en carbone. Ces considérations suscitent la question suivante: comment prédire le profil F'4C et
de la teneur en carbone en fonction de 1’évolution des conditions climatiques ou environnementales, en tenant
compte des mesures déja observées pour le site correspondant? Nous pouvons ajouter aux variables latentes
actuelles et estimées, dans les conditions climatiques et environnementales actuelles des sites, le changement
d’effet résultant du remplacement d’une forét par une terre cultivée ou de 1’augmentation de la température de

1 °C. En revanche, suivre cette proposition ne garantit pas la contrainte de positivité des variables latentes du modele.

En second lieu, on peut se demander comment extrapoler le modele statistique bayésien pour avoir un profil
prédit de la teneur en carbone et du radiocarbone au niveau régional ou mondial. Avec une base de données plus
complete et un dispositif expérimental plus équilibré, d’autres portes s’ouvrent. Il devient alors possible d’appliquer
le modele statistique congu sur I’ensemble de la base de données a des modeles pour chaque type de sol et chaque
zone climatique. Cela augmenterait la puissance de projection de I’étude. Cela permettrait de mieux déchiffrer
I’impact du changement d’affectation des sols en fonction du type de sol et de mieux prédire I’impact du réchauffe-
ment climatique actuel selon les régions du monde. Se relier a un systéme d’information géographique (SIG) est
également possible. On parle ici d’extrapolation a 3 dimensions: longitude, latitude et profondeur. La cartographie
numérique des sols (DSM) utilisant des modeles spatiaux d’informations contextuelles de 1’apprentissage profond
(deep learning), est trés populaire, et a déja été utilisée pour générer des cartes (McBratney et al., 2003). En effet, il
existe des méthodes d’apprentissage approfondi, telles que les réseaux de neurones a convolution, qui développent
I’approche DSM classique en incluant des informations sur la proximité d’un site. Chaque site est caractérisé par
des covariables climatiques et environnementales avec une matrice tridimensionnelle pour la largeur, la longueur en
pixels d’une fenétre centrée en un point (coordonnées du site) et en connaissant les covariables. L’ apprentissage
multitache peut gérer la notion de profondeur en fournissant des prédictions, couche par couche. La possibilité
d’extrapoler le modele statistique serait tres utile car I’optimisation de la conception de 1’échantillonnage prend

beaucoup de temps et est également coliteuse (acquisition de données et traitement des échantillons en laboratoire).

En outre, les approches de sélection bayésiennes peuvent aider a mieux comprendre les résultats du modele
mécaniste pour la dynamique du carbone des sols. Le coefficient de diffusion, qui traduit la bioturbation du
sol, et le coefficient d’advection, lié a la diminution de la motilation, sont traités comme des constantes dans les
modeles mécanistes développés pour la dynamique du carbone. Cependant, en réalité, ces coefficients ne sont pas
constants et varient avec la profondeur. Un défi consisterait a transformer ces coefficients constants en fonctions, par
exemple de type exponentielles décroissantes, de la profondeur. Les méthodes bayésienne de sélection explorées
peuvent alors étre utilisées pour définir les facteurs climatiques et environnementaux significatifs au sein de modeles

statistico-mécanistes.
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Introduction

Global warming is threatening the survival of human life and all life on earth. According to the latest assessment
of the Intergovernmental Panel on Climate Change (IPCC) (Stocker et al., 2013), the average surface temperature of
the planet has increased by nearly 0.9°C between 1901 and 2012. Global warming is mainly due to greenhouse gas
emissions, in particular carbon dioxide, methane and nitrogen protoxide. The concentration of carbon dioxide has
increased by 45% since the pre-industrial era (Harris, 2010) as a consequence of human activities that unbalance the

global carbon cycle.
1.1- Soil plays a major role in the climate system

Soils are a major reservoir of carbon but its extent is not precisely assessed
The global carbon cycle has been extensively described and is a key factor in IPCC assessments. A comprehensive
description is provided by Ciais et al. (2014) and is illustrated in Figure 1.1. In short, the ocean remains the largest
carbon reservoir with 900 PgC for surface ocean ' and 39,000 PgC for deep ocean, the atmosphere contains at
present 828 PgC according to Prather et al. (2012) (about 590 PgC in pre-industrial times). The vegetation trap
between 450 and 650 PgC (Prentice et al., 2001) and the soilcontains between 1500 and 2400 PgC in the form of
organic matter (Batjes, 1996). As indicated by this large range used by the IPCC consortium, the extent of soil

organic carbon is still poorly understood.
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Figure 1.1: The global carbon cycle. Red arrows represent anthropogenic fluxes and black arrows represent natural
fluxes in PgC yr~! (Ciais et al., 2014).

Batjes (1996) underlined that the amount of deep soil carbon in particular is poorly known as few samples have

been taken from the deeper layers.

Moreover, Batjes (1996) highlighted that the complexity of achieving a global estimation of the soil carbon
pool stems from confounding the effects of climate, vegetation and land use on the one side and the lack of data
for all soil types and climatic conditions on the other. In addition, a recent study by Tifafi et al. (2018) showed a
great difference in regional and global soil carbon stock estimations based on a comparison between three global
databases: the SoilGrids, the Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon

! A Petagram (Pg) is 10 tons, i.e. 10'2 kg. It is also equivalent to 10'> grams.
g g g q gl
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Database (NCSCD) (Figure 1.2). The total soil carbon stock is estimated around 3400 PgC by SoilGrids, while it is
about 2500 PgC according to the Harmonized World Soil Database.
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Figure 1.2: The total carbon stock (kg C m~2) on the (0, 1 m) upper layer per latitude and for the different databases
(Tifafi et al., 2018).

Whatever the precise figures, this reservoir is much larger than the one of the atmosphere and, with vegetation,
is the only one that we can manage: increasing its capacity to stock more carbon would thus trap some of the
fuel-derived CO, emitted.

Soils contribute the most to carbon exchanges with the atmosphere
The carbon cycle is a dynamic system with carbon fluxes from one reservoir to another. These fluxes are illustrated
by arrows in Figure 1.1. Anthropogenic disturbance of the global cycle results from the increase in carbon fluxes
to the atmosphere, mostly fossil fuels and cement production (emission of 7.8 4 0.6 PgC yr~!) and by land use
change (emission of 1.140.8 PgC yr~!). Vegetation traps approximately 123 PgC yr—! of the atmospheric carbon
via gross photosynthesis, of which 14.1 PgC yr~! is from anthropogenic origin. Part of this carbon is introduced
into the soil via plant roots and dead leaves while the other part is returned to the atmosphere via plant respiration :
107.2 PgC yr~!. The net exchange between biosphere and atmosphere (60 PgC yr~!, of which 49.4 PgC yr~! for

soil-atmosphere) is the largest exchange in the global carbon cycle.

Soil could help mitigate climate warming
As soil is a major reservoir of carbon and as net exchanges between soil and atmosphere are substantial, the IPCC
(2013) highlighted the key role of soils as a part of climate change mitigation and adaptation.

The impact of land use changes was underlined in a study conducted by Deng et al. (2016). This meta anal-
ysis based on 103 recent publications for 160 sites in 29 different countries, showed that the soil carbon stock
increases significantly after conversion from farmland to grassland (0.30 Mg ha~'yr—!) and forest to grassland
(0.68 Mg ha~'yr1), but declines significantly after conversion from grassland to farmland (0.89 Mg ha~'yr~!) and
from forest to farmland (1.74 Mg ha~'yr=1).

The mitigation options are based on cropland management, grazing land management, and restoration of
organic soils. These policies on agricultural practices and forest conservation, proposed to increase the soil carbon
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uptake, have the advantage to better ensuring food security by preserving soil fertility. In that respect, a better
understanding of the significance of the soil carbon pool was reached after the 2013 IPCC report as for the first time
soils were considered as one of the resources for climate change mitigation. It is also worth mentioning the “Four
per Thousand” initiative (https://www.4p1000.org) which aims at increasing the world soil carbon sequestration to a
40 cm depth at the rate of 0.4% per year in order to mitigate the global issues of climate change, food insecurity, and
environmental pollution (Lal, 2016). To distinguish between sequestration and storage, it is commonly established
that sequestration should be sustainable (at least 100 years, as recommended by the Kyoto protocol), whereas

storage may be either short-term or long-term.

The large capacity of carbon exchanges with the atmosphere, the huge uncertainties about the response in
soil carbon to global changes in climate and land use practices (positive or negative feedback) and lastly
the fact that soil carbon is the only pool that humans can manage. All these factors show the crucial global

interest of better understanding the fate of soil carbon.

1.2- The current representation of soil carbon dynamics in Land Surface Models is not entirely satisfac-

tory

Current representations of mechanistic models for soil carbon dynamics

Several mechanistic models have been proposed to express the variation of soil carbon with depth. In these models,
the representation of the physical processes at work is incomplete, however. Further research is therefore required
to improve the simulation of soil carbon dynamics. The most widely used soil carbon models are included in the
RothC Model (Coleman et al., 1997) which also incorporates a simple soil water model, and the CENTURY model
system (Parton et al., 1987) which includes more complex models for plant growth, management operations, etc.
The RothC model simulates profiles for the top 30cm of soil while the CENTURY model simulates profiles for the
top 20cm (Falloon and Smith, 2010). Most mechanistic models are calibrated for the top centimeters but there is
a need to include deep soil carbon into models, particularly since this stable carbon can be reintegrated into the
global carbon cycle thanks to changes in climate and land use practices. In addition, a study done by Todd-Brown
et al. (2013) shows that the majority of Earth System Models (ESMs) cannot reproduce grid-scale variation in soil
carbon and may be missing key processes. Differences across soil carbon models included in ESMs are primarily
due to differences in the estimation of Net Primary Product (NPP) and the parametrization of soil decomposition
sub-models. The weakness and the limitation of soil carbon dynamics models comes also from the fact that these
models are parametrized under specific management and climatic conditions. Furthermore, ESMs seldom consider
depth carbon and even when they do so, discretization does not consider the changes in physical conditions and
superposition results of box model layers. This overview of mechanistic models for soil carbon dynamics points out
the importance of considering the total carbon of soils and of extending conceptualizations of processes to all scales
of time and space.

Newly revealed processes and deep carbon are missing
In addition, there are large uncertainties about the processes that slow down mineralization and protect the organic
matter in soil. Among these processes, one can distinguish: spatial inaccessibility to microorganisms and enzymes,
hydrophobicity, encapsulation in organic macromolecules, litter resistance, organic matter-mineral interactions, etc.
Until now, a major challenge has been to prioritize the role and impact of the stabilization process on soil carbon
models (Paul, 2016). It will be a great challenge to express the new concepts of soil carbon stabilization/destabiliza-
tion by differential equations in order to incorporate them into mechanistic modeling. Furthermore, the majority of

soil carbon mechanistic models underestimate the amount of soil carbon since deep carbon is not considered in the
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C-budgets Houghton (1995).

The incomplete view of the physical protection processes, the disregard of deep soil carbon layers and the
parametrization of mechanistic models under specific management and climatic conditions highlight the

need to better represent physically the simulation of soil carbon dynamics

Carbon isotopes provide clues to validate the representation of soil carbon dynamics
The best way to evaluate the performance of mechanistic soil carbon dynamics models is to compare them with
data. This allows a direct comparison between field, lab, data and model outputs. In order to represent the organic
matter, to specify it, to monitor processes and establish their kinetics, sample measurements of organic matter at
several depths are needed. First, the amount of soil carbon can be defined by the carbon content produced by the
lab analysis of measured samples. Secondly, there exist isotopic tracers methods using '3C and '“C to quantify the
residence time of the natural organic matter in the soil for a few days to several thousand years.

The first tracing technique is based on monitoring the abundance of '3C in the event of vegetation changes
(from plant C3 to C4 or vice versa). Unfortunately, the data available for this technique are not sufficient for model
evaluation and the technique requires a change in the type of photosynthesis performed by the vegetation.

The second technique, radiocarbon dating, is more powerful. The mean residence time of organic matter can be
determined since the radiocarbon is characterized by its radioactive decay with a half-life of about 5730 years. In
addition, the soil is considered as the memory of remarkable variations in radiocarbon activity, in particular the
bomb peak due to atmospheric nuclear testing (Figure 1.3). The '“C contents of the atmosphere doubled in 1962

compared to their natural level taken equal to the content of the atmosphere in the Northern hemisphere in 1950.
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Figure 1.3: Amount of F'4C of the year x measured in 2018, for any atmospheric material. The soil reproduces
the variation in atmospheric radiocarbon as part of the radiocarbon reservoir but, by mixing organic material from
several periods, the atmospheric signal is greatly smoothed in soil.
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1.3- A statistical approach is an alternative to better represent uncertainties on soil carbon dynamics

In fact, integrating the new concepts of soil carbon protection into mechanistic models, considering what
takes place in deep soil layers, and extending the conceptualization of processes to all scales of time and space,
requires intensive development work. For that reason, a statistical approach based on observed empirical soil
carbon data is useful in order to understand soil carbon dynamics, represent the different sources of uncertainties
and provide answers about soil carbon behavior for the near future. The first attempt at the statistical modeling
of soil carbon dynamics was made by Mathieu et al. (2015). Their proposed statistical approach was based on
a world wide meta-analysis of 122 soil radiocarbon profiles collected from 87 articles in the soil science and
archeology/paleoclimatology literature under different climatic and environmental conditions. The unknown model
parameters were estimated relying on frequentist statistical inference. The study also sought to identify the effect of
climatic and environmental factors on soil carbon dynamics. The analysis done by Mathieu et al. (2015) showed
that the age of topsoil carbon was primarily affected by the climate and vegetation. In contrast, the results obtained
on deep soil proved that the carbon content was impacted more by soil taxa than by climate. Moreover, they argued
that the dependence on soil type points out the effect of other pedologic traits such as clay content and mineralogy.
However, their interpretation was based on an expert analysis of the predictive results obtained without considering

any statistical selection procedure to assess confidence about these judgements.

1.4- Contribution of my research work The crucial aim of my research is to improve the statistical model
proposed by Mathieu et al. (2015) in order to better express the soil carbon dynamics, using Bayesian inference for
estimation. This inference has the advantage of taking into account the uncertainties on the unknowns and made it
possible to integrate into the statistical model the knowledge on soil carbon dynamics given by soil science experts
(see Appendix 7.2 for further details). A subsequent goal was to put into practice a Bayesian selection approach
in order to assign a probabilistic judgment and numerically quantify the respective contributions of climatic and
environmental factors such as: land use, soil type, temperature, precipitation, aridity index, etc. on soil carbon
dynamics. A particular concern is to predict the gain or loss of soil carbon by computing the carbon stock and
residence time when changes in temperature or land use occur. Moreover, it will be useful to know which type
of land use conversion can sequestrate more soil carbon and predict the soil carbon response if the temperature
increases by 1.5°C or 2°C. Finally, we propose a Gaussian Bayesian model that considers jointly the soil carbon
content and radiocarbon activity. This model takes into account, on the one hand, the correlation between soil
carbon content and radiocarbon, and on the other, hand the correlation between depth measurements. This model
is constructed in such a way as to provide information on soil carbon at deep layers. Our study will be useful to
have an overview of the behavior of soil carbon dynamics in a context of global warming and will help make some

decisions concerning land use practices.

The statistical modeling of soil carbon dynamics has several important advantages: a better representation of
uncertainties on soil carbon dynamics, the presence of various tools that numerically quantify quantities of

interest for soil scientists, and faster responses to the issues of today and the near future.

The manuscript is organized as follows: in the first chapter we detail the soil carbon database used for the study.
We illustrate the heterogeneity of data sources, the available climatic and environmental information and the variety
of sample sizes between different sites. The second chapter is an article published in the Société Francgaise de
Statistique SFdS journal in which we discuss the statistical model used on radiocarbon data. This chapter underlines
the performance of Stochastic Search Variable Selection (SSVS) which is a Bayesian selection approach used as a

first attempt to numerically quantify the climatic and environmental factors. The results obtained on artificial data
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show that SSVS can misrepresent some significant categorical explanatory covariates such as soil type and land use.

However, a cross validation test on real radiocarbon data, conducted on the statistical model including all climatic
and environmental factors and the SSVS model, showed that the latter achieves a better prediction and adjustment
level. Chapter 3 is motivated by the results obtained on the SSVS approach. It gives an overview of three recent
Bayesian selection methods appropriate for categorical potential predictors: Bayesian Sparse Group Selection,
Bayesian Group Lasso based on spike and slab priors and Bayesian effect fusion using model-based clustering.
In this chapter, these three methods are applied on a simple regression model in order to better understand the
functions and the characteristic features of each of the prior specifications. This chapter also includes a tutorial
on these three Bayesian selection methods using Just Another Gibbs Sampler (JAGS) for Markov chain Monte
Carlo (MCMC) simulations and the fourth chapter applies the Bayesian Selection methods to soil radiocarbon
and soil carbon content dynamics. Chapter 4 intends to propose possible physical interpretation of the selected
climatic and environmental factors that explain the shape of radiocarbon and carbon content profiles. These variables
are the ones selected by the best subset by the Bayesian selection. It also provides a synthetic view of profiles
shape under different climate. The predictive capacity of the model is also tested under two scenarios of land use
change (deforestation in equatorial region, agricultural decline and reforestation in temperate region) and under 3
scenarios of global warming. The manuscript ends by a conclusion of my thesis work and with some propositions

and perspectives in order to improve the soil carbon statistical modeling and the database.
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2.1 Soil carbon profiles database

The description of the soil carbon database will mostly focus on what relates to radiocarbon data. Additional

information, specific to carbon content will be provided at the end of the different sections if needed.

2.1.1 Original database

The database of 343 soil carbon profiles was collected from 85 articles in the soil science and archeology/pale-

Chapter 2

oclimatology literature (Appendix 7.3). Permafrost and histosol were omitted from our survey, which focuses
exclusively on mineral soil. Carbon in mineral forms is not considered, neither in this study nor in the database. So,
in the rest of the document, "carbon" will be used for "organic carbon". The worldwide distribution of the 343 sites

is illustrated in Figure 2.1:

I T T T I I T
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Figure 2.1: Geographical locations of studied sites are represented in blue dots. The spatial distribution of sites is
very heterogeneous, with a lack of data in extra-tropical zones, Africa and Russia.

For each site, we collected the following information:

* Geographical coordinates: latitude and longitude (in decimal degrees), altitude (m). If not reported, the latitude,
longitude, and altitude were determined from the site name with topocoding (http://www.topocoding.com).

¢ Climatic conditions: mean annual and monthly precipitation (mm), mean annual and monthly temperature
(°C), aridity index. When not reported, the location coordinates were used to extract climatic values from
the Climatic Research Unit (CRU) database (http://www.cru.uea.ac.uk/; New et al. (2002)). The mean
annual aridity index, defined by the United Nations Environment Programme (UNEP) as the ratio of annual
precipitation to annual potential evaporation, was obtained from the Food and Agriculture Organization of the
United Nations (FAO) 10-minute mean climate grids for global land areas for the period 1950-2000 (Zomer
et al., 2006) (Zomer et al., 2008). The index characterizes aridity for values < 0.5, according to FAO.

* Soil type: as reported in the article, either according to the key FAO soil units http://www.fao.org/soils-
portal/soil-survey/soil-classification/fao-legend/key-to-the-fao-soil-units/, the United States Department of
Agriculture (USDA) https://www.nrcs.usda.gov or local classification. The descriptions were then assigned
to large groups of soil types according to the World Reference Base (WRB) classification (Deckers and
Nachtergaele, 1998).

* Land-use is reported as "natural” or "cultivated".
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* Vegetation is heterogeneously reported: from vague information (e.g. "natural vegetation"), to very detailed
information (including precision at the species level). In most cases, the main type of ecosystem (forest, field,

grassland, savanna, desert) is also indicated.
* Soil levels: they are reported as upper and lower depths (cm) of the sampling slice.

* The soil fraction on which 'C and organic carbon content were measured. It includes bulk, density fraction,

particle size fraction, molecular fraction, even the specific molecule.
¢ Soil horizon (i.e. L for litter, O horizon, A, B, etc.) if available.

» Based on the soil horizon designation or designated as such in the article, paleosols are also specified.

Radiocarbon activity provided for different sampling levels. Various units are used: yr BP, pMC, F!4C , AlC
(see Appendix 7.1). All values are reported as such and translated into F'4C.

Soil organic carbon content provided for different sampling levels, as organic carbon concentration and/or as
stock depending on what is available in the article. Soil organic carbon concentration is given as %wt or g/kg

or derived unit. Soil organic carbon stock is expressed as kg/ha and derived unit.

Bulk density is seldom available and if so, is given either for different depths or as the mean value whatever
the depth.

Other information such as clay content, granulometry, pH, soil texture are also reported when available (a few

cases only).

2.1.2 Processed database

In order to focus on soil organic carbon in general and not on the specific aspect of dynamics, we removed the sites

with the following features:

1. Soil levels corresponding to a "paleosol” (244 levels from 51 profiles) were removed since they no longer

have any carbon exchange with the atmosphere.
2. Levels above the horizon O (soil litter) are not considered.

3. Some studies were carried out on specific molecules or granulometric fractions that are not representative of
all soil organic matter. We only kept data obtained on a "bulk", "bulk after HC1" and a "bulk after concentrated
HCI". These three supports provide a more correct overall picture of the total soil organic matter (152 profiles

were removed).
4. Sites with overlapping layers were removed (this concerned two sites).

5. Thirty-four profiles with less than three observations were removed to ensure a good estimation and prediction
for statistical inference for both soil radiocarbon and soil carbon content dynamics. In fact, four and three
unknown parameters have to be estimated for the '%C and organic carbon statistical models, respectively.

Three observations is thus the minimum required number.

6. Profiles with an unknown soil type, land use or vegetation cover were removed: this concerned 8 profiles with

unknown soil type and 32 profiles with unknown land use type.

7. Six profiles showing odd patterns of organic carbon distribution were removed from the carbon content

dynamics modeling (but kept for '%C modeling).
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After data cleaning, only 131 profiles of soil radiocarbon and 125 profiles of soil carbon content remained for the

statistical modeling.
Note on carbon content

To predict soil carbon profiles, we decided to work on soil carbon concentration (e.g. %wt) rather the soil carbon
stock (e.g. g/mz), since concentration is measured, while the soil carbon stock is calculated based on soil carbon
concentration and on soil bulk density. However, bulk density is rarely or never provided in the articles used to
build the database. Therefore, a pedotransfer function was used to predict the bulk density in the database, in order
to complete the datasets. Alexander (1980) provided the most generic equation, where bulk density was derived
from carbon concentration. But Alexander’s equation is much too generic and does not account for soil type nor
agro-pedo-climatic conditions, thus resulting in major uncertainties (Tifafi et al., 2018). Hence, although carbon
stock is more relevant for agronomical and climatic purposes, in view of the fact that it would greatly increase
the uncertainties compared to carbon concentration, it was decided to establish the statistical model on the carbon

concentration profiles. A second step will be to extend to carbon stock, from the modeled profile.

2.1.3 Potential explanatory covariates affecting soil carbon dynamics

The behavior of soil carbon was investigated by modeling the dynamics of soil radiocarbon and of carbon content.

Numerical (temperature, precipitation, etc.) and categorical (soil type, ecosystem type) predictors were considered
for the meta-analysis. Explanatory covariates such as clay content, pH and granulometric information are not
considered in this study since this information was seldom available.

The geographical information such as latitude, longitude and altitude are not considered in the statistical study since
they do not impact the soil carbon dynamics. They are reflected in climatic parameters, such as temperature and to a

lesser extent in "ecosystem".

2.1.3.1 Potential climatic numerical predictors

Climatic information is of prime importance to specify soil carbon dynamics. Statistically, taking all the monthly
records of temperature and precipitation parameters (33 variables) into consideration would decrease the estimation
and prediction performances of the linear model by increasing the variance of the estimated coefficients and making
the model very sensitive to minor changes. In addition, it may enhance multicollinearity problems (Figure 2.2). For
these reasons, in a first step, the number of predictors was reduced from 33 to 9. To select the potential climate
predictors in this first step, we summarize information given by the monthly temperature and precipitation by

considering:

* the extremes of temperature and precipitation regimes: minimum and maximum monthly precipitation (min_P

and max_P, respectively), minimum monthly temperature (min_T and max_T, respectively),
 the mean annual temperature and precipitation (MAT and MAP, respectively),
¢ the seasonal shift between the warmest and coldest months (Dif _T),
* the seasonal shift between the wettest and the driest months (Dif_P),

¢ the aridity index (AI).
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Figure 2.2: Correlation matrix corresponding to the original climatic numerical covariates for soil F'“C profiles.
The yellow stars highlight a strong collinearity between covariates. The more the correlation tends to -1 (dark
blue) or +1 (dark red), the stronger the relationship between the two covariates. Both minimum and maximum
temperatures are strongly correlated with the mean annual temperature, with Pearson Correlations (PC) of 0.94 and
0.82 respectively. The maximum precipitation and the seasonal shift precipitation are highly correlated with one
another (PC = 0.99) and both are correlated with the mean annual precipitation (PC = 0.86 and 0.81 respectively).

Dif_T
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Figure 2.3: Correlation matrix after removing the strongly correlated covariates based on the F!“C profiles.

To overcome the multicollinearity problem, the five climatic predictors chosen for the statistical modeling
according to the Pearson correlation criterion are the following : MAT, MAP, min_P, Al and Dif_T (Figure
2.3).

2.1.3.2 Atmospheric '“C concentration of the sampling year

Due to variation in the atmospheric '4C content that derives from the bomb-peak (see Appendix 7.1), the representa-
tion of the soil radiocarbon dynamics is also affected by the atmospheric radiocarbon of the sampling year denoted
by F'%Catm. This covariate is logically not used to express carbon content profiles.

2.1.3.3 Potential environmental categorical predictors : ecosystem and soil type

Soil type will be hereafter expressed according to its assignment to the large WRB group of soils. The remaining
131 profiles for radiocarbon statistical modeling were divided into 17 different soil types and 9 ecosystem types
(vegetation + land use). To improve the balance of the experimental design and reduce the number of parameters,
some soil types were grouped according to some shared physical properties, based on expert advice (see Table 2.1,
Figure 2.4):
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* Regosol-Arenosol, Arenosol and Leptosol were grouped together, as they share a lack of significant soil

horizon.

» Kastozem and Phaeozem were pooled into Chernozem, as they are all humus-rich soils, at least for their

surface layers.
* Fluvisol was merged with Cambisol, as they are often found in conjunction.

* Nitisol was merged with Ferralsol as they both contain a high amount of iron oxides that interact with organic
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compounds.

¢ Lastly, Plinthosol and Planosol were grouped with Gleysol as they are all susceptible to waterlogging and
drought/frost stress.

l WRB soil type group | profiles nb | merged WRB soil type group short name profiles nb
Arenosol 3
Regosol-Arenosol 1 "Areno-Regosol-like" Areno-Regosol 7
Leptosol 3
Chernozem 16
Kastanozem 1 "Chernozem-like" Chernozem 19
Phaeozem 2
CF;umV];issoél 115 "Cambisol-like" Cambisol 16
Gleysol 7
Planosol 1 "Gleysol-like" Gleysol 9
Plinthosol 1
Flj;;f]g(l)l 14: "Ferralsol-like" Ferralsol 18
Luvisol 27 Luvisol Luvisol 27
Podzol 16 Podzol Podzol 16
Vertisol 7 Vertisol Vertisol 7
Andosol 12 Andosol Andosol 12

Table 2.1: Merging of WRB soil type groups for soil radiocarbon profiles according to expert advice. For ease of
reference, we will hereafter use the soil type group "short name" (e.g. Chernozem) to refer to the concatenation of
the merged groups (e.g. Chernozem, Kastanozem, Phaeozem).

We grouped "land use" and "vegetation" into a single term, "ecosystem" that combines the two types of
information. We identified 9 categories that we further merged into 6 groups (Table 2.2) : field, forest (forest,
natural-forest), cultivated-forest, natural-grassland, cultivated- grassland and undefined natural (natural + natural-
desert + natural-savanna) (see Table 2.2, Figure 2.4). The aggregation of ecosystem type was done in order to
include the anthropogenic impact. In order to avoid categories with a small number of observations and to increase

the prediction power of the statistical model, we created a group called "others" (Table 2.2).

| ecosystem database [ profiles nbr [ short name for the merged ecosystem [ profiles nbr ‘

forest 7 49
natural-forest 42 natural forest
cultivated-forest 10 cultivated forest 10
natural 8 13
others
natural-savanna
natural-desert 1
natural-grassland 33 natural-grassland 33
cultivated-grassland 8 cultivated-grassland 8
field 18 field 18

Table 2.2: Ecosystem aggregated types for soil radiocarbon profiles according to expert advice.
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Figure 2.4: Graphical distribution of the 131 soil radiocarbon profiles before (left panels) and after (right panels) the
merging of original ecosystem and soil type groups.

Note on carbon content

Note that the 6 profiles that differentiate between the 131 profiles for F'4C modeling and the 125 profiles from

organic carbon, are balanced as in Table 2.3:

| nb of profiles | soil type

| | nb of profiles | ecosystem type |

2 Chernozem 4 natural-forest
2 Gleysol
1 others
1 Ferralsol | field
1 Luvisol

Table 2.3: The categories of soil and ecosystem types for the six profiles removed for the soil carbon content
statistical modeling.

Removing six profiles does not impact the experimental design shown in Figure 2.4. Four of the six removed
profiles belong to the "natural-forest” ecosystem which includes the largest number of profiles. The same can
be said for the soil type representativeness as we only removed one profile out of 18 Ferralsols and 27 Luvisols
and 2 profiles out of 19 Chernozems. Only the removal of two profiles out of the nine Gleysols might affect the
representativeness of the Gleysol category slightly.
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2.1.4 Final selected climatic and environmental potential predictors for the soil carbon
dynamics

The final climatic and environmental predictors used for the statistical meta-analysis are summarized in Table 2.4:

| Potential covariates | Abbreviation | Potential covariates | Abbreviation |
ecosystem type Land soil type Soil
mean annual precipitation MAP aridity index Al
mean annual temperature MAT seasonal temperature shift Dif T
minimum precipitation min_P atmospheric F'C of the sampling year |  F'*Catm

Table 2.4: The potential explanatory climatic and environmental covariates that may impact soil radiocarbon carbon
dynamics as well as soil carbon content dynamics. Atmospheric radiocarbon is highlighted in bold italics since it
only impacts the radiocarbon soil dynamics.

2.1.5 Database evaluation

After the global presentation of the database, this section describes in greater detail how the design of the database

can impact the performance of the statistical meta-analysis.

2.1.5.1 World climatic zones and distribution of the profiles

The representativeness of the database from the point of view of worldwide climatic diversity is illustrated by the
superimposition of the profile locations on the Koppen-Geiger climate map (Kottek et al., 2006) (Figure 2.5) and by
the cumulative charts of the number of profiles according to climatic parameters (Figure 2.6).

World Map of K6ppen-Geiger Climate Classification
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Figure 2.5: Superimposition of site locations on the Koppen-Geiger climate classification. The "Koppen climate
classification" is based on the 50-year period 1951-2000. It divides climates into five main climate groups, with
each group being divided based on seasonal precipitation and temperature patterns. The five main groups are A
(equatorial), B (arid), C (warm temperate), D (snow), and E (polar). All climates except for those in the E group
are assigned to a seasonal precipitation subgroup (represented by a second letter). For example, Af indicates a
tropical rainforest climate. The system assigns a temperature subgroup for all groups other than those in the A
group, indicated by a third letter for climates in B, C, and D, and a second letter for climates in E. For example, Cfb
indicates an oceanic climate with warm summers as indicated by the ending b. Climates are classified based on
specific criteria unique to each climate type.
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Koppen published his first climate classification in 1884 (Koppen, 1884) and later improved it (e.g. Koppen
(1936); Geiger (1954)) to achieve the Koppen-Geiger climate classification. It has since been regularly updated.
Kottek provided the latest version in 2006 (Kottek et al., 2006) for the second part of the 20" century. The
classification is based on the division of earth climates into 5 main climate groups: equatorial (Figure 2.5: acronym
beginning with A, red-derived zones), arid (B, yellowish), warm temperate (C, green), snow (D, blue), polar (E,
gray). The main groups are then subdivided into subgroups (29 in total). The definition of climatic groups is
provided in Kottek et al. (2006), table 1 and the first subdivision is reproduced as follows (Table 2.5):

Type Description Criterion profiles nb
A Equatorial climates T,.n > 18°C 20
Af Equatorial rainforest, fully humid P = 60mm 0

Am Equatorial monsoon MAP > 25 (100 — Pmin) 10
As Equatorial savannah with dry summer P,,;, < 60mm in summer 4
Aw Equatorial savannah with dry winter P,.in < 60mm in winter 6
B Arid climates Pann < 10 P;;, 1
BS Steppe climate Pum > 5Py, 1

BW Desert climate Py <5Py, 0
C Warm temperate climates -3°C < Tmin < +18°C 70

Warm temperate climate Psnin < Pwmin
Cs with dry summer Pwiax = 3 Psmin 5
Psmin < 40 mm
Cw Warm temperate climate Psinin = Pwmin 18
with dry winter Psimax = 10 Pwin
Cf  Warm temperate climate, fully humid neither Cs nor Cw 47
D Snow climates T,in <-3°C 38
Psmin < Pwmin
Ds Snow climate with dry summer Pwiax = 3 Psuin 15
Pgnin < 40 mm
Df Snow climate, fully humid neither Ds or Dw 19
E Polar climates Tax < 10°C 2
ET Tundra climate 0°C < T)ax < 10°C 2
EF Frost climate Thax < 0°C 0

Table 2.5: Description of the Koppen-Geiger classification (1st and 2nd letter description only) and number of
radiocarbon profiles selected from the database that correspond to the different subgroups (last column). P, (Pax)
and T,,i, (Tinay) are for the minimum (maximum) monthly precipitation and temperature, P, is for the MAP, S and
W subscripts are for summer and winter respectively. Py, = 2% MAT + a, with a = 0 if at least 2/3 of MAP occurs
in winter, a = 28 if at least 2/3 of MAP occurs in summer and a = 14 otherwise. The calculation key implies that
the polar climates (E) have to be determined first, followed by the arid climates (B) and subsequent differentiations
into the equatorial climates (A) and the warm temperate and snow climates (C) and (D), respectively.

Examination of the database shows that 20 of the selected profiles belong to "equatorial climates", 1 to "arid
climates”, 70 to "warm temperate climates", 38 to "snow climates" and 2 to "polar climates (Table 2.5). At the
first order, this results in a homogeneous representativeness of intermediate climate types, i.e. tropical, warm
temperate and snow climates, leaving out extreme climates. "Arid climate" is represented by only one profile from
the Sonora Desert, AZ, USA) and "polar climate" by two Italian mountain profiles. Warm temperate climates
are overrepresented, and this tendency is even stronger when compared with the land surface ratio they occupy
(Figure 2.5). This is due to the fact that most agronomical studies have traditionally been performed in temperate
regions, while investigations in other regions are a recent phenomenon. At the second order, however, not all sub
climates are present in the database. Some sub-climates are overrepresented. So, whereas equatorial climates
are well balanced between "monsoon" and "savannah climates", "rainforest climate" is not represented. The high
weight of "fully humid warm temperate climates" is in line with the respective weight of the "dry season" and "fully

humid" within this type of climate. The imbalance is rather between Cs and Cw where one would have expected an
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equivalent weight, whereas in fact Cw are three to four times more abundant than Cs in the database. The same

applies for snow climates, with an overrepresentation of the "snow climate with dry summer".
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Figure 2.6: The cumulative number of F'%C profiles for the following six numerical climatic covariates: mean
annual temperature (panel a), seasonal shift of temperature (panel b), minimal temperature (panel ¢), mean annual
precipitation (panel d), minimal precipitation (panel e) and aridity index (panel f).

Analysis of the annual climatic parameters (mean annual temperature, mean annual precipitation and aridity

index) is shown in Figure 2.6. The database provides a relatively homogeneous representation of both mean

annual temperatures within the [1;28°C] range and mean annual precipitation within the [100;1800mm)]

range, including also a dozen profiles from 2000 to 4000mm a year. The aridity index shows a similar representa-
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tiveness with most of the profiles regularly distributed in the [0.15;2] range, i.e. from very arid to humid zones, and

including 7 profiles above 2.

Temperature seasonal shifts vary from a few °C to more than 35°C (Figure 2.6, panel b), covering the wide range
of climates from tropical to continental. The profile distribution within this range is less continuous than for annual
parameters, and rather patchy. Nevertheless, the [2; 38°C] range of seasonal shift is homogeneously swept.

Briefly, our database will allow the statistical model to predict soil profiles under equatorial, warm temperate
and snow climates but precludes using the model in extreme conditions such as arid climates, polar climates

and very wet regions.

2.1.5.2 Soil type diversity and distribution of profiles

The database offers a good representativeness of the land coverage diversity. As shown in table 6, the 17 soil types
from the database represent about 71% of the land coverage. However, the distribution between the 17 categories
(or between the 9 merged groups of soil types) is unbalanced. So with 12 profiles Andosol, which only represents
1% of total land area on Earth will be much better constrained than areno-regosol represented by only 7 profiles but

covering 22% of land area. The difference in representativeness is not that large for the other soil types.

WRB soil type % of the total | merged WRB group | % of the total nb of F14C profiles
land area of soil type land area
Arenosol 7 Areno-
Regosol-Arenosol 2 Regosol 22 7
Leptosol 13
g;“mvgf;}l 2128 Cambisol 14.8 16
FI:rlrt;Sl(s)cl)l ! 66 Ferralsol 7.6 18
Gleysol 5.7
Planosol 1.0 Gleysol 7.2 9
Plinthosol 0.5
Chernozem 1.8
Kastanozem 3.7 Chernozem 7 19
Phaeozem 1.5
Luvisol 5 Luvisol 5 27
Podzol 4 Podzol 4 16
Vertisol 2.7(%)-2(M) Vertisol 2.7(%)-2(M) 7
Andosol 1 Andosol 1 12

Table 2.6: Percentage of the total continental land area on Earth by soil types (first two columns) and by merged
groups of soil type (columns 3 and 4). The last column gives the number of profiles by merged group. Note for
Vertisol: the total land area differs according to the classification, values according to the FAO [*] and USDA [1]
classifications are provided Source : https ://www.britannica.com

2.1.5.3 Ecosystem diversity and distribution of profiles

The database offers a correct representativeness of ecosystems (Table 2.2). Each of the 6 selected categories is
represented by 8 to 49 profiles, i.e. by 6 to 37% of the available profiles. However, it remains unbalanced with a
high weight (45% of the selected database) of forests, mostly natural forests, whereas grasslands account for 31%

leaving the remaining 24% for both fields and other types of ecosystems.
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2.1.5.4 Sampling year and distribution of profiles

The distribution of sampling years over the last 60 years is poor in the database, with most of the profiles of the

database sampled in the 1990s (79% - Figure 2.7). This means that the evolution of the bomb peak record by soil

over the years is badly represented. An evolution of the F'C profile is expected according to the sampling year.

Incorporation of the bomb peak, which can be more or less fast, is expected to be recorded by the upper layers of
soil. The incorporation rate and the incorporation depth that should differ from one profile to another might not be

captured in our dataset.

Because of the overrepresentation of the 1990s, we might not be able to perfectly mimic '4C profiles. Profiles
from the early 1960s with the highest expected F'C for the upper levels are scarce, as are profiles prior to the
bomb peak. Atmospheric F!*C, which refers to the sampling year, will likely not consider the real variation of
atmospheric radiocarbon with time. Nevertheless, as F'“C is only a way to represent the carbon dynamics but does
not impact it, this database unbalanced will not impair our definition of the impact factors nor the evaluation of their

impact magnitude.
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Figure 2.7: Distribution of profiles according to the sampling year (grouped by decade). The majority of the F'4C
profiles were sampled between 1990 and 2000. Only two profiles were collected before the "bomb peak".

In contrast, the misrepresentation of the sampling years will not affect the soil carbon content statistical modeling.

2.1.5.5 Variation in the number of observations per profile

Each of the F'%C and carbon content measurements corresponds to a specific level characterized by an upper and a

lower level depth.
The number of observations per profile is sufficient to assess the profile shape

The number and the distribution of observations within the profile are very heterogeneous (Figure 2.8). Their
number varies from 3 to 73 observations. For example, an Indian Luvisol profile under a cultivated field sampled by
Becker-Heidmann and Scharpenseel (1989) at a constant 2cm sampling step to 158 cm depth (Figure 2.9, top panel
b), yielded 73 observations whereas 31 profiles have only 3 sampled layers of different thickness. The majority of
the soil carbon profiles correspond to a number of measurements between 4 and 10 observations. Four observations
are sufficient to constrain the F'“C profile shape. The distribution of the number of observations between the profiles
remains similar if we look at the level of the type of soil or type of ecosystem (Tables 2.7 and 2.8 respectively). All
the categories mainly contain profiles with 4 to 10 observations.
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Figure 2.8: Distribution of F'“C profiles according to the number of measurements. Most sites have between 3 and
10 measurements.

| Soil types | 3 | [4;10[ | [10;30[ | [30;60[ | [60;73[ |

Andosol 3 5 1 2 1
Arenosol/regosol | 1 3 3 0 0
Cambisol 8 7 1 0 0
Luvisol 7 17 2 1 0
Ferralsol 3 9 6 0 0
Chernozem 4 11 4 0 0
Podzol 4 9 1 1 1
Vertisol 1 5 1 0 0
Gleysol 0 7 1 1 0

Table 2.7: Number of F'“C profiles according to the number of measurements for each aggregated soil type.

[ ecosystem type | 3 | 1410[ | [10;30[ | [30;60[ | [60;73[ ]

cultivated-field 10 8 0 0 0
cultivated-forest 5 4 1 0 0
cultivated-grassland | 0 6 1 1 0
natural-forest 8 29 8 3 1
natural-grassland 7 20 6 0 0
others 1 6 4 1 1

Table 2.8: Number of F'“C profiles according to the number of measurements for each aggregated ecosystem.

4 to 10 observations avoids giving too much weight to particular points without losing the specific struc-
ture of the profiles

The sampling can be either continuous, i.e. all the profile is sampled through several successive layers (Figure
2.9 and c) or discontinuous, i.e. some slices here and there in the profile (Figure 2.9). The sampling step can differ
for F'%C and for carbon content. For example, a 2cm step for F'“C (Figure 2.9 top panels) and a 40cm step for
carbon content (Figure 2.9, bottom panels). In such a case, because the database was primarily designed to gather
F'C data, the levels are those defined by the F 14C data distribution. So, the measured carbon content value for the
large carbon content layer is repeated for all the small F'4C levels included in it. Otherwise, when the F'4C layer is
larger than the one for the carbon content, a mean value of carbon content is reported as carbon content in the F' l4c
layer. This choice, dictated by the structure of the database, in the case of different sampling steps between
F'“C and carbon content profiles, may bias the original signal. Fortunately, this only concerns 9 profiles from
the database.
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Figure 2.9: The F'4C (upper panels) and carbon content (lower panels) profiles for three profiles from the database:
discontinuously sampled (panels a), continuously sampled (panels b and c) with a different (panels b) and the same
(panels ¢) sampling step for both F'4C and carbon content (panels c). The black lines refer to the soil layer from
which the radiocarbon and carbon content were sampled. The blue points indicate the mean level corresponding to
the sampled soil layers.

2.1.5.6 Large variation of the topsoil carbon content

The large variability of carbon content in the database is in agreement with the known variability worldwide

The profiles in the database show a wide range of carbon concentrations, taken as a whole or within a same
soil type, whatever the depth. Such a variability within the same soil type is in agreement with worldwide surveys.
Tifafi et al. (2018) showed that besides the differences between the different worldwide datasets that can be linked
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to methodological issues; there remains a large variability that represents natural diversity of soil worldwide. The
SoilGrids database (Hengl et al., 2014) (Figure 2.11) highlights a similar variability with a stock ranging from
0 to 560 g/kg and 0 to 500 g/kg for the topsoils of Gleysol and Cambisol respectively. This shows that even if
unbalanced, our database captures most of the natural variability of soil, at least from a soil carbon concentration
point of view.

Soil type can explain part of the variability of carbon concentration (Figure 2.10). Andosol, for both topsoil
and deepsoil, shows the highest concentration of soil carbon. Beyond this observation, there remain some trends
between soil types for topsoil carbon content. For instance, Cambisol, Gleysol then Podzol appear to have a higher
carbon content than the other types of soil. The pattern for deepsoil carbon content is less clear. Nonetheless,
following Andosol, Ferralsol shows a higher carbon content than other soil types. This general relationship between
general carbon content in the top layers and in depth with soil type should be captured by modeling. Besides soil
type, climate and the associated vegetation can explain part of the variability of carbon concentrations. Gleysols
cover 7.2% of the total land surface; they are found in polar regions, the tropics and subtropics, and can be either
natural or cultivated. With such a large distribution worldwide, considerable variability is unsurprising. Apart from
Gleysols, a distribution trend appears within the soil types with the highest content in Andosol and the lowest in
Vertisol (Figure 2.10 upper panel). The high carbon content observed for Andosol is in agreement with the fact that
Andosol contains nanominerals of the allophane type that stabilize large amounts of organic matter (Basile-Doelsch
et al., 2005). For deep soil, Andosol shows the highest carbon content for the same reason as for topsoil (Figure
2.10, lower panel). Except for Andosol, the carbon content value and variability amongst soil types is much smaller
(Figure 2.10, lower panel).

200 -

e

andosol arenosol/regosolcambisol  chernoze: ferralsol gleysol  luvisol podzol vertisol

Topsoil carbon content (0-5cm)

40 4

Deep carbon content (> 80cm)

204

andosol arenosol/regosol cambisol — chernoze ferralsol gleysol  luvisol podzol  vertisol

Figure 2.10: The carbon content variations (g/kg) according to the soil type for the top (between 0 and 5 cm) (top
panel) and deep soil (greater than 80 cm) layers (bottom panel) obtained on the 125 profiles selected for modeling
carbon content dynamics. These Box plots underline quartiles: the extreme of the lower whisker, the lower hinge,
the median, the upper hinge and the extreme of the upper whisker.
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Figure 2.11: The variation in topsoil carbon content (g/kg) recorded among the different soil types (FAO classifica-
tion) according to the SoilGrids database (http://www.isric.org/explore/soilgrids).

2.2 The take-home messages of the database

As a conclusion regarding the handling of the database:

1. The multicollinearity problem is handled by choosing the five most uncorrelated covariates among the
potential 33 numerical climate covariates. The selected climatic factors are: mean annual temperature, mean
annual precipitation, seasonal shift between the warmest and coldest months, lowest monthly precipitation

and aridity index.

2. The strongly unbalanced experimental design of soil and ecosystem type is improved by merging the soil
types and ecosystem types that share similar features according to soil scientists expertise. This has the effect
of increasing the number of observations per category and thus increasing the accuracy of the estimators (see
Appendix 7.3). A considerable improvement is ensured for the design of the soil types and to a lesser extent

for the design of the ecosystem types.

3. The database provides a homogeneous representativeness of intermediate climates, i.e. tropical, warm
temperate and snow climates, leaving out extreme climates (arid and polar). Ranges of mean annual

temperature, mean annual precipitation and seasonal shift are wide and homogeneously swept.

4. The poor distribution of the sampling years for sites before the nuclear bomb period (79% profiles sampled in
the 1990s) will not be representative of the range of variation of the F'C for the upper levels as widely as

expected in Earth surface.

5. The radiocarbon and carbon content measurements vary between 3 and 73 observations for the sampled sites.
The number of observations per profile is mainly from 4 to 10. This is sufficient to adjust the profile shape
(4 parameters, see later on). Furthermore, 4 to 10 observations avoids giving too much weight to particular

points without losing the specific structure of the profiles.

The topsoil carbon content varies widely according to the soil type. This large variation is in agreement with the

worldwide soil carbon database "SoilGrids".
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CHAPTER

STOCHASTIC SEARCH VARIABLE
SELECTION OF MIXED COVARIATES
FROM A LATENT LAYER: APPLICATION
TO HIERARCHICAL MODELING OF SOIL
CARBON DYNAMICS

This chapter introduces a published article on the 13" of September 2018 in the "Journal de la Société Francaise de
Statistique".
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Bayesian selection of mixed covariates from a
latent layer: application to hierarchical modeling of
soil carbon dynamics

Titre: Sélection bayésienne de covariables mixtes sur la couche latente d’un modele hiérarchique :
application a la dynamique de carbone dans le sol

Rana Jreich'2, Christine Hatte', Jérome Balesdent® and Eric Parent?

Abstract: Soil carbon is important not only to ensure food security via soil fertility, but also to potentially mitigate
global warming via increasing soil carbon sequestration. There is an urgent need to understand the response of the soil
carbon pool to climate change and agricultural practices. Biophysical models have been developed to study Soil Or-
ganic Matter (SOM) for some decades. However, there still remains considerable uncertainty about the mechanisms
that affect SOM dynamics from the microbial level to global scales. In this paper, we propose a statistical Bayesian
selection approach to study which forcing conditions influence soil carbon dynamics by looking at the depth distribu-
tion of radiocarbon content for 159 profiles under different conditions of climate (temperature, precipitation, etc.) and
environment (soil type, land-use). Stochastic Search Variable Selection (SSVS) is here applied to latent variables in
a hierarchical Bayesian model. The model describes variations of radiocarbon content as a function of depth and po-
tential covariates such as climatic and environmental factors. SSVS provides a probabilistic judgment about the joint
contribution of soil type, climate and land use on soil carbon dynamics. We also discuss the practical performance
and limitations of SSVS in presence of categorical covariates and collinearity between covariates in the latent layers
of the model.
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Résumé : Le carbone du sol est important non seulement pour assurer la sécurité alimentaire en maintenant la fertilité
des sols, mais aussi pour limiter le réchauffement climatique en augmentant la séquestration du carbone dans le sol.
I1 est urgent de comprendre la réaction du carbone du sol face au réchauffement climatique et au changement des
pratiques agricoles. Des modeles bio-physiques ont été développés depuis quelques décennies pour étudier la matiere
organique du sol (SOM). Cependant, il existe encore une forte incertitude sur les mécanismes contrdlant la dynamique
de la SOM, du niveau microbien aux échelles globales. Dans cet article, nous proposons une approche statistique
bayésienne de sélection de variables pour mieux cerner la dynamique du carbone du sol en examinant la variation en
profondeur du radiocarbone pour 159 profils sous différentes conditions de climat (température, précipitations, ...) et
d’environnement (type de sol, type d’usage du sol, ...). La recherche stochastique de sélection de variables (SSVS)
est appliquée au niveau des variables latentes d’'un modele bayésien hiérarchique. Ce modele décrit la variation du
radiocarbone en fonction de la profondeur et en tenant compte des covariables explicatives potentielles tels que
les facteurs climatiques et environnementaux. Cette approche nous permet d’avoir un jugement probabiliste sur la
contribution conjointe du type de sol, du climat et de ’'usage du sol a la dynamique verticale du carbone dans le
sol. Nous discutons également de la performance pratique et des limitations de SSVS en présence de covariables
catégorielles et de la colinéarité entre certaines covariables quand elles interviennent au niveau d’une couche latente
d’un modele bayésien hiérarchique.
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1. Introduction

A significant current issue when trying to predict our planet’s future is to understand the feed-
back effects between climate evolution and the future soil carbon balance. Soil constitutes the
largest carbon pool in interaction with atmospheric carbon, containing 2000 to 2400 Gt of or-
ganic carbon in the first meter, i.e. at least the equivalent of 250 years of current fossil carbon
emissions that are estimated at 10+0.6 Gt/year (Stocker, 2014).

The stock of soil organic matter (SOM) has been defined as a balance between input of organic
matter through vegetation and loss through microbial decomposition. A large variation in the
soil organic carbon (SOC) stock amongst soil types and land use has been shown, ranging from
2 kg/m? for arenosols to more than 10 kg/m? for podzols (Batjes, 1996). Regarding land use,
Martin et al. (2011) show that relationships between soil organic carbon stocks and pedo-climate
depend on the type of land use and that they differ between forest and cultivated soil.

The global analyses carried out by Carvalhais et al. (2014) and He et al. (2016) point out the
lack of knowledge of carbon residence time in soil and an increasing concern about the impor-
tance of climate factors in the variability of carbon storage. For instance, a temperature increase
may clearly impact the activity of soil microorganisms and the subsequent organic carbon se-
questration by soils. Moreover SOM evolution plays a key role in the CO, atmospheric content
since the soil is a crucial pool for CO, emission or sequestration. No consensus has been reached,
however, on the relative importance of the various climatic factors that affect SOM dynamics,
such as temperature, precipitation, aridity, moisture, etc.

In fact, several questions remain unclear for soil scientists: Could soil capacity be durably
increased to sequestrate more carbon by changing land use? What quantitative changes in SOM
occur when modifying agricultural practices? Will that change the soil carbon stock/the organic
matter residence time? What is the contribution of each climatic or environmental factor to soil
carbon? Is the potential increment of the soil carbon stock to be considered as sustainable ?
These questions highlight the importance of assessing the uncertainties as well as understanding
the complex mechanisms of soil carbon dynamics. To investigate this point through data collec-
tion, in addition to soil carbon concentration, F'*C measurements are also taken into account to
describe SOM dynamics on the grounds that radiocarbon content can be considered as a clock
that registers SOC residence time (Scharpenseel, 1971).

A worldwide meta-analysis of radiocarbon profiles is described in Mathieu et al. (2015). In
their study, a hierarchical non linear model is designed under the frequentist paradigm with in-
ference performed by the "Expectation-Maximization" algorithm. The radiocarbon dynamics is
parameterized as a smooth function of depth with random effects taking into account potentially
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explanatory climatic and environmental factors. Once calibrated, the model is used for statisti-
cal prediction along various typical scenarios of (modified) forcing conditions; according to an
expert interpretation of their predictive results, deep soil carbon dynamics is driven more by
soil type than by climate. Although such a result was based on a statistical model with unknown
parameters, there was no direct probabilistic judgment to assess the strength of their claim.

Our aim in this article is to scrutinize this claim more closely and check the robustness of the
statistical model in view of the many uncertainties: how confident can we be in the effective roles
of environmental covariates and climatic factors for the phenomenon under study? What are the
respective contributions of signal and noise in what we see? In this paper, we revisit Mathieu’s
approach under the Bayesian paradigm since Bayesian inference has the advantage of express-
ing the uncertainties on the unknowns throughout the statistical analysis. We re-parametrize the
model to obtain more directly interpretable parameters, change the error term structure to clarify
the different sources of uncertainties, and weight the influence of the climatic and environmental
drivers for prediction.

A Bayesian selection approach is hereby used in order to quantify the contribution of climatic and
environmental factors to soil carbon dynamics. Several Bayesian selection approaches for linear
models have been developed in the literature such as: Variable Selection for Regression Models
(VSRM) (Kuo and Mallick, 1998), Gibbs Variable Selection (GVS) (Dellaportas and Ntzoufras,
1997) and Stochastic Search Variable Selection (SSVS) (George and McCulloch, 1993).

These methods were applied within the framework of the linear model, where y; is the outcome
response for individual i (i = 1,...,n) predicted by p potential explanatory covariates x;; for
j=1,...,p. The intercept is expressed by ¢ and the measurement error by e;.

P
Vi = 0o+ Z iji,j+ei e; NN(O,GZ),
j=1
with N(u, 0?) referring to the Normal distribution with mean u and variance 6. In frequentist
selection methods, each variable combination corresponds to a different model, so the variable
selection chooses among all possible models the best sub-model based on criteria for model
selection such as: AIC, BIC and Mallows’s C,. For a large number of covariates p, it is not
computationally achievable to consider all 2? possible sub-models.

The idea of Bayesian variable selection is to define a binary variable /; which indicates whether
a covariate x; is influential (/; # 0) or not influential (/; = 0) for the response y. /; is generated
from a Bernoulli prior.

The VSRM and GVS selection methods set 6; = I; x ;. For VSRM, I; and f3; are considered
as independent and f3; is sampled from a vague normal prior (Kuo and Mallick, 1998). For
GVS, B; is sampled from a conditional prior that depends on /; such as a Gaussian mixture
prior: P(B;11;) = (1 —1;)N(u,S?) +1;N(0,7?), where i, S* and 72 are hyperparameters chosen
to ensure good mixing of the Monte Carlo Markov Chains (MCMC) (Dellaportas and Ntzoufras,
1997). Therefore, these two Bayesian selection methods enable the best sub-model to be selected
by affecting null regression coefficients (/; = 0 = 6; = 0) for the non influential predictors.
SSVS considers a "slab and spike" prior which depends on /; for the regression coefficients
B, with a spike around 0, and a flat slab elsewhere. Then if /; is null, we assign a value close
to 0 for 6;, which means that the corresponding covariate x; has no effect on response y. This
method was chosen for the present study. The major difference between the scope of the original
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SSVS and our specific case is that George and McCulloch (1993) designed the method to select
explanatory covariates directly linked to observed data whereas we will specify its use on latent
layers. Furthermore, we will evaluate the ability of SSVS to handle categorical covariates which
are more the rule than the exception when dealing with environmental data.

The paper is organized as follows: Section 2 describes the soil database and model structure,
and introduces the Bayesian variable selection to be applied to the latent variables of our non
linear multivariate hierarchical model. Section 3 focuses on SSVS: first, its performances and
limitations are exemplified on three sets of artificial data for a simple linear model with indepen-
dent quantitative covariates, correlated quantitative covariates and independent mixed covariates.
Then, SSVS is applied to the entire real data with the complex hierarchical model. Section 4
compares the result of the Bayesian selection model (SSVS) to that of a model including all
covariates via cross validation. In addition, this section highlights the challenges encountered by
applying SSVS and suggests how to set up solutions and extensions for this approach. The final
section briefly sums up our findings concerning the applicability of SSVS in our case study.

2. Materials and Methods

2.1. Data

50
I

-150 -100 -50 0 50 100 150

FIGURE 1. Geographical locations of soil F'C sites.

Out of the 344 profiles extracted from 87 articles in the soil science and archeology/paleoclimatology
literature that constitute a database of available radiocarbon profiles of soil organic carbon (Math-
ieu et al., 2015), we selected 159 profiles from 50 articles. Several units are used to report ra-
diocarbon concentration. We chose here the F'“C unit as recommended by (Reimer, 2004) for
environmental samples. F'C is a normalized radiocarbon concentration by reference to the at-
mospheric radiocarbon content in 1950. For a given site, each record of radiocarbon is given for
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a soil layer characterized by the depths of its top and bottom levels. Such a preliminary data
cleaning was based on the following criteria: i-) the radiocarbon data must have been acquired
on bulk organic carbon (not on specific fraction, nor specific molecule), ii-) sites must contain
more than 3 observations. Figure 1 shows the site locations where radiocarbon data at various
depths were collected. The number of observations varied from one site to another (from 3 to
88 measurements per site). For each of the 159 profiles, the following information of interest is
provided: sampling year, location, climate, soil type, land use, organic carbon content and radio-
carbon. Soil texture is not considered as it is poorly recorded in many articles from the literature.
More details on the database can be found in (Mathieu et al., 2015). In this study, the potential
climatic and environmental explanatory covariates are as follows:

* Mean annual precipitation (MAP), mean annual temperature (MAT), aridity index (Al),
and absolute shift between July and January temperatures (AT) are included as representa-
tive of the average climate and seasonality of the site. The aridity index, defined by UNEP
as the ratio of annual precipitation to annual potential evaporation, was obtained from the
FAO 10-minute mean climate grids for global land areas for the period 1950-2000 (Tra-
bacco and Zomer, 2009).

¢ Latitude (Lat).
e The atmospheric radiocarbon of the sampling year (1“Catm).
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* Soil type with 13 different categories ordered alphabetically: andosol, arenosol, cambisol,
chernozem, ferralsol, fluvisol, gleysol, kastanozem, luvisol, nitisol, phacozem, podzol,
vertisol. We pooled phacozem and kastanozem soil types into chernozem due to simi-
lar characteristics, as they are poorly present in the database. Hereafter, soil type will be
considered as a categorical variable with 11 levels.

* Vegetation and land use were combined to form a new factor dubbed "ecosystem", with
originally 9 categories distinguished as follows: cultivated-field, cultivated-forest, cultivated-
grassland, forest, natural, natural-desert, natural-forest, natural-grassland and natural-savanna.
We pooled natural-desert into the "natural" ecosystem. Ecosystem will therefore be con-
sidered as a categorical variable with 8 levels.

Among the 159 profiles collected, 55 with missing climatic or environmental covariates were
removed from the database. After previous data cleaning, the dataset finally includes 104 sites

TABLE 1. Contingency table of pairwise combinations of levels between soil type and ecosystem. Abbreviation "C"
in column names refers to Cultivated and "N" to Natural.

C-Field | C-Forest | C-Grassland | Forest | Natural | N-forest | N-Grassland | N-Savanna | Total
Andosol 0 2 1 0 1 4 0 0 8
Arenosol 0 2 0 0 1 0 0 1 4
Cambisol 2 0 0 1 0 4 2 0 9
Chernozem 2 0 0 0 0 0 11 0 13
Ferralsol 0 0 0 1 0 9 1 2 13
Fluvisol 2 0 0 2 0 0 0 0 4
Gleysol 2 1 0 0 1 0 0 0 4
Luvisol 4 0 2 3 0 7 11 0 27
Nitisol 1 0 0 0 0 4 0 0 5
Podzol 0 3 1 0 0 6 1 0 11
Vertisol 3 0 3 0 0 0 0 0 6
Total 16 8 7 7 3 34 26 3 104
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and 951 records. The dataset results from an observational study, which may lead to some con-
fusion due to the spurious association between the correlated and/or the poorly contrasted co-
variates. The very small number of observations for pairwise- combinations of factors (even a
null number for many of them) rules out the possibility of including interactions between soil
type and ecosystem in the model (see Table 1). In addition, we anticipate a poor precision of the
estimates of the effects of categorical covariates since their design matrix, shown by Table 1, is
unfortunately very strongly unbalanced.

To illustrate the composition of the dataset, the boxplots in Figure 2 show the average F'‘C
variation versus the mean levels of non overlapping soil layers, for the most frequent types of
profiles collected. This figure only shows average profiles for some specific combinations and
prevents any strict interpretation as the number of observations differs from top to depth, and as
soil horizon width differs from one profile to another (we do not expect the intensity of processes
to be the same at the same depth between two profiles). Figure 2 shows as expected that the
radiocarbon decreases with depth: with higher input, topsoil OM is more rapidly renewed (and
thus shows a younger age) than deep soil OM.

2.2. A multivariate hierarchical non linear model

The statistical model structure that mimics (eqs 1 and 2) variations of F'4C with depth along
a profile within a given site is similar to the one considered in Mathieu et al. (2015). It differs
only in the homogeneous variance for the measurement error and in the unit chosen to report
radiocarbon concentration.

Let S = 104 be the total number of carbon soil profiles under study. We note m; the number of
measurements available for site s. Therefore, for each site s € {1 : S} and each depth x € {1 : m,},
the F'%C content experimental record y(s,x) is modeled by:

¥(s.2) =g(¢<s>,x) Fe(s), e(s,x) ~N(0,07) M

(06).7) = 016) + (0a(5) - ey [— (55 W] @

As indicated in Fig 3, the structure of the previous statistical model is interpreted:
— ¢ represents F'“C in deep soil,

— ¢ refers to the topsoil F1“C,

— ¢5 is related to the depth at half maximum of the F'4C peak,

— ¢y describes the more or less rapid decrease of F'“C.

The & terms represent the within-site discrepancies between the observed and the adjusted F'“C
profiles.
To express the variability between the different sites, a linear link is considered between each of
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FIGURE 2. The variation of radiocarbon versus depth is represented on boxplots for the most frequent combinations
of ecosystem and soil types. Natural-grassland / chernozem (11 profiles), Natural-grassland / luvisol (11 profiles),
Natural-forest / luvisol (9 profiles), Natural-forest / podzol (6 profiles), Cultivated-field / luvisol (4 profiles)
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FIGURE 3. Statistical profile of soil F**C versus depth obtained from Eq. 2.

the four latent variables ¢ (s), 92(s), ¢3(s), @4(s) and the explanatory climatic and environmen-
tal variables. We assume that the latent variables are a priori independent with a design matrix
X € Mp4(R) defined using a treatment contrast (one level for each categorical covariate is con-
sidered as a baseline), as a solution for the redundancy problem due to the presence of categorical
variables (soil type and land use) in the linear layer models (without interactions). To be more
specific, X is the design matrix with the following form:

YCatm(1) MAT(1) ... AT(1)
X = 13;7[, 18.60 14Ca}m(s) MA;l“(s) Af(s)
14Ca£m(5) MA’.F(S) AT.(S)

As a first trial, the four latent variables were estimated after a least square optimization to ad-
just (for each site independently) the curve of Fig 3 to the observations. The estimated variables
¢1,0-,03 and ¢, were linked to X by four regressions in order to have a preliminary estimation
of the regression effects. The diagnostic plots for the linear model led us to perform logarith-
mic transformations of @3 and ¢4 in order to provide a better agreement with the homogeneous
variance hypothesis.

¢ =XBi+E, Ei~Ns0,6°1) i=1,2 3)
log(¢;)) = XBi+ Ei, E;~Ns(0,621) i=34 4)
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Bi = (Bi1,-..,Bir)’ € RP, where i = 1,2,3,4, represents the fixed covariate effect relative to
each latent variable, and E; € R” the corresponding centered random effect. ¢; and E; are defined
as the following vectors: ¢; = (¢9;(1),¢;(2),...¢:(S))" and E; = (E;(1),E;(2),...,Ei(S))". In this
case study, the number of columns P in the design matrix X is equal to 23 (P =1+ (11—1)+
(8 —1)+6). In fact, "1 + (11-1) + (8-1)" is the dimension of the two-way explanatory subspace
spanned by the categorical factors "Soil type " and "Ecosystem" that includes the constant. 6 is
the number of quantitative regressors. The quantitative regressors in X are normalized to allow
comparison of their effects in a rescaled unit. Due to the presence of dummy variables generated
by the two categorical factors, the number of columns of the design matrix (23) is greater than
the number of explanatory covariates (6+2).

Bayesian selection model: The variable selection procedure is expected to reveal the most in-
fluential explanatory variables for the assemblage of the four latent sub-models given with 2
categorical covariates and 6 quantitative ones by equation 3. The idea is to consider a "slab and
spike" prior (Dellaportas et al., 2000) for each f; parameter, with a spike centered at 0, and a
flat slab elsewhere. Each combination of included variables corresponds to a different model, so
variable selection amounts to choosing among all possible 2° sub-models if the model consid-
ered were a simple linear model with P regressors. For a large number of covariates P , it would
be therefore not feasible to consider each possible model separately. In our case, it may seem
at first glance that P = 8, leading to only 28 = 256 sub-models for each of latent model given
by Egs.3 and 4. Hence the idea of a Bayesian variable selection, where we consider a stochastic
exploration of this immense combinatorial set of possible models (O’Hara et al., 2009).

In this article, we concentrate on the Stochastic Search Variable Selection introduced by George
and McCulloch (1993). This approach is applied to the latent layers ¢, ¢, ¢3 and ¢4, in presence
of categorical covariates.

For the selection procedure, we need to define an indicator variable /;; where i =1,2,3,4 and j =
1,...,P as follows:

I 1 if variable X; has an effect on ¢;
Y10 otherwise

The mixture prior for f;; depends on /;;:

P(Byjltij) = (1= Lj)N(0,75) +1;;N(0,¢}7) )
where i = 1,2,3,4and j = 1,...,P. Based on this Gaussian mixture, 7;; must be small, in order
to sample f3;; around O in situations when variable X; is not influential, but not strictly restricted
to zero, though, otherwise the Gibbs sampler will rarely be able to flip from /;; = 0 to visit /;; = 1.
Furthermore, ¢;; must be large enough for f3; to be given a flat prior when X; is needed in the
model. A semi-automatic approach to selecting 7;; and ¢;; was proposed by George and McCul-
loch (1993) considering the interaction point and relative heights at 0 of the marginal densities.
They recommended "good" choices for the couple (Gﬁij /Tij.cij), where op, is the observed stan-

dard error associated with the least squares estimate ﬁA, ;. However, a more appropriate prior for
B suggested later is the hyper-g prior proposed by Liang et al. (2008) based on the g-prior in-
troduced by Zellner (1986). This extension of the g-prior has been widely studied and widely
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used in a regression context. The specification of g is mostly based on a model selection criterion
such as the Akaike Information Criterion (AIC, see Burnham et al. (2011)), the Bayesian infor-
mation criterion (BIC, see Bhat and Kumar, 2010), the Deviance Information Criterion (DIC,
see Spiegelhalter et al., 2002), etc. Here, the 8 prior can be understood as a mixture of spike
and slab of g-priors. In order to specify g and to ensure a reasonable order of magnitude for
B, the hierarchical model without the selection step is first adjusted with a hyper-g prior (with
a vague uniform prior at the upper level of the hierarchy). The value of g will be fixed as the
posterior mean of this preliminary estimation and used afterwards for the Bayesian selection ap-
proach. In that respect, when ;  is equal to 1, B; ; will be generated from the following g-prior
N(0,gi07(X'X )7 ) to be considered as the slab prior. In contrast, according to the concept of
the splke prior, Wthh should be more centered at 0, the f3; ; corresponding to /; ; = 0, will be
generated from a g-prior, where the variance is much smaller N(0, (1/c) * g;o?(X'X );Jl) The
hyperparameter c is specified by the user based on a model comparison with different values of ¢
according to the previously cited selection model criteria or to a cross validation study. A hyper
prior can also be proposed for ¢ (uniform prior).
The model for Bayesian selection of variables can be finally summed up as follows:

* Likelihood:
for each site s € {1 : S} and each depth x € {1 : my}:

¥(5,%) ~ N(g(9(s5),x),6%)  with ¢(s) = ($1(s),92(s), $3(5), 9a(s))

e Latent variables:

¢; ~ Ns(XBi,021) i=1,2
log(@;) ~ Ns(XBi,61) i=3,4
with ¢i = (¢1:i7 . '7¢S,i7' . '7¢S,i), ¢i S RP.

¢ Priors:

* 1/62 ~ G(0.001,0.001)

* 1/06? ~ G(0.001,0.001) fori=1,2,3and 4
G(, ) refers to the gamma distribution.

* An intercept is always included and common across all sub-models, for j = 1,2,3,4
Bj1 ~ N(0,10000)

* for quantitative covariates j =2,...,K
* Bijlh;~ (1—1;)*N(0, M)%—IU*N(O g102(X’
* Bajllzj ~ (1 —1hj)*N(O, (
* Bsjllsj~ (1—13) «N(0 g“”iﬂwa, «N(
) * (

* Bajllaj~ (1—Lyj

ngZ(XX)”)—i—IQJ*N

X)
078262( X);
0,£305 (X'X);,
N0, EE XN 4 1y 4 N(0,0403(X'X)
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For j=2,...,Kandi=1,2,3,4:
Lij~ % (pij=p) with ZB(.) the Bernoulli distribution (6)

i.e. all models are a priori equiprobable.

* For the categorical covariates numbered j = K+ 1,..., P, with covariate C; having
n; levels, the algorithm ensures that the n; modalities are either taken or dropped all
together during Monte Carlo Markov Chain (MCMC) iteration:

e foreachlevel s=1,...,n;:
2(X'x)7} _
* Bislic;i ~ (1 —1Ic; 1) *N(O, %) +lc; 1 *N(O’glalz(X/X)j_Jl‘)
2(x'x); ! _
o Basllc,a ~ (1—Ie,2) * N (0, 2250ty 1 g 5 4N (0, 8202 (X'X) 1)
8305 (X'X) ;]

* Basllc, 3 ~ (1—1Ic,3) *N(0, L)+ 1,3 %N(0,8305 (X'X) )

3

2 X/X fl_ B
o Busllc,a ~ (1—Ie,a) * N(O, “% 50ty | g 4 4N (0, g402(X'X); 1)

For j=k+1,...,Pandi=1,2,3,4:

Ic;i~ %(pc;i = p)

All levels of a categorical factor therefore receive the same prior selection probability,
but more informative priors can be designed, if prior expertise is available to tune the
respective importance of the explanatory variables.

The calculation of the posterior distributions of the parameters is based on MCMC algorithms
such as the Metropolis-Hastings and Gibbs Sampler (Dellaportas et al., 2000). The SSVS is
easily implemented in JAGS (Just Another Gibbs Sampler), as exemplified in Ntzoufras et al.
(2002, pp.13-17).

3. Results and Discussion
3.1. Performing SSVS on artificial data

In this section, we illustrate the performance of SSVS on latent layers for artificial data generated
according to the non linear multivariate statistical structure model (1)+(2)+(5)+(6) when:

1. all independent covariates are quantitative;
2. all covariates are quantitative, and some of them are correlated;
3. the covariates are mixed: some are quantitative and the others are categorical.

The purpose of this artificial data generation is to understand and study the challenges in the
application of SSVS when the selection aims at hidden sub-models and the model structure is
more complex than a simple univariate regression.
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SSVS on latent layer models with independent quantitative covariates:

e Example 1: The artificial dataset mimics the real one by taking the same number of sites
(104 sites) and depth measurements (951 records). In this example, 6 quantitative (contin-
uous) predictors are considered. The predictors are generated as independent standard nor-
mal vectors, X,...,Xe iid N1p4(0, 1), so that they are practically uncorrelated. The regres-
sion effects are set to f; = (0,1,0,1,0,1), 5, =(0,0,1,1,0,0),83 =(1,0.8,0,0.7,0, 1) and
Bs = (1,0,0,1,0.8,0.8) with standard deviations 6 = 6, = 63 = 04 = 0.1 and o = 0.1.
The intercept is equal to 1 and will always be kept in the proposals of the latent layer
models.

SSVS on latent layers with correlated quantitative covariates:

* As shown in Fig 8, for the real case, covariates may be correlated. Example 2 is designed
to illustrate how SSVS reacts in the presence of high collinearity. The only difference with
example 1 is that the matrix design X contains 2 correlated explanatory variables. X5 and
X¢ are defined as follows:

X5:2><X3
Xe=X+15x%x2Z, ZNN(O,l)

SSVS on latent layers with mixed covariates:

e Example 3 introduces categorical variables: this time, the latent linear models ¢y, ¢, @3
and ¢4 contain 6 quantitative (Xi,...,Xg) covariates and 2 qualitative factors (F; and F,)
with respectively 8 and 11 levels. Contrast-sum coding was considered to remain co-
herent with the presence of quantitative covariates. Regression effects were set to ff; =
(1,0,0,1,0,1,0,1), B = (0,1,0,0,1,1,0,0), B3 = (1,1,1,0.8,0,0.7,0,1) and B4 =
(0,0,1,0,0,1,0.8,0.8). 0 and 1 are the index vectors of length 7 or 10 with 0 and 1’s corre-
sponding to categorical covariates (position 2 and 3 of the regression coefficients vector).
The first position in B, B>, B3 and B4 is always equal to 1 and refers to the intercept. o, i
=1,2,3,4 and o are fixed as in Example 1. Similar to real data, the experimental design of
artificial data is strongly unbalanced.

3.1.1. Sensitivity analysis of the prior for SSVS latent layers on independent quantitative
covariates

In order to suggest reasonable values of g;,g2,23 and g4 for the spike and slab g-priors on
the regression effect parameters, the inference of the linear model with a vague uniform prior
(gi ~ U(10,1000), i = 1,2,3,4) on g was run. The posterior means of gi,g2,¢3 and g4 were
plugged into the SSVS model.

The prior inclusion probability was fixed to 0.5 in the paper of George and McCulloch (1993).
This choice is common for Bayesian selection models since it ensures for all explanatory covari-
ates the same probability of being included in the model. Yet, this prior is informative and favors
sub-models with half of the covariates included. For the purpose of studying the impact of the
inclusion probability p on the selection results, the SSVS was tested under three different prior
specifications:
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TABLE 2. The DIC for three proposed priors on probability selection: I1- p is fixed at 0, 2- a Beta prior on p B(2,2)
3- a uniform prior on p U(0,1) . Models with smaller DIC should be preferred to models with larger DIC.
5[]

fixed to 0.5 -1511
beta prior -1515
uniform prior | -1512

TABLE 3. The posterior inclusion probability for the most frequent models among the 3000 MCM(C iterations for
1,02, 03 and ¢4 latent linear models. The three proposed priors succeed in identifying correctly the best sub-models.

| Most frequent model | False detection | p=0.5 | beta prior | uniform prior |

X2, X1, Xq 0 0.73 0.66 0.63
X3, X4 0 0.44 0.46 0.48
X1,X2,X4,Xe 0 0.78 0.61 0.52
Xi1.X4.X5,Xe 0 0.72 0.53 0.4

1. pis fixed to 0.5 for all covariates,
2. a Beta distribution prior on p (p ~ B(2,2)),
3. auniform distribution prior on p (p ~ U (0, 1)).

For these three tested models, the ¢;(i = 1,2,3,4) were fixed to 100 for the four latent linear
models. According to the Deviance Information Criterion (DIC) easily provided by JAGS, the
SSVS with a beta prior on p is preferred (see Table 2)

For a linear model with a large number of covariates, a uniform inclusion probability of 0.5
may bias the best sub-model by being too complex since it favors the sub-models with half of
the covariates selected. Figure 4 gives the total number of selected covariates identified among
MCMC iterations for the third latent linear model that involves 6 covariates. This result highlights
that the choice of 0.5 promotes the selection of sub-models with 3 covariates. The Beta and
Uniform distributions prior increase the probability selection of sub-models with more than half
the number of total covariates.

According to the result obtained, a prior Beta distribution will be proposed on the inclusion
probability p for the further SSVS models.

prior

Mos

M beta

IIII M unif
= __
3 4 5 ¢

6

2000

1500 1

count

1000 1

500 1

FIGURE 4. The number of selected covariates identified among the MCMC iterations (nb of iterations = 3000) for
the third latent variables (¢3) for the three proposed priors for the probability selection p.
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TABLE 4. SSVS evaluation for artificial data including only independent quantitative covariates. Panels a, b, ¢, d
are the results obtained for @1, ¢, 03 and ¢4 latent layers, respectively. Rows give the three most visited sub-models.
Columns correspond to the different tested priors. F.C. (False Choice) sums up both false inclusion and false
exclusion. Prob. is the probability appearance of model subsets throughout iterations. The best sub-models detected
by the SSVS with the three proposed values of ¢ do not contain any false detection.

c=10 ¢ =100 c=1000 [ ¢=5000
Prob | EC | Prob | EC | Prob | EC | Prob | FC
[ 031 ] - [066[ - 08T [ - [084] -

013 | X3 | 009 | X3 | 006 | X; | 0.06 | X3
012 | X5 | 008 | X; | 005 | X5 | 0.04 | X5

c=10 c¢=100 ¢ =1000 ¢ =5000
Prob [ FC | Prob | FC | Prob | FEC | Prob | EC
b)| 0.30 - 0.46 - 0.40 - 0.39 -

010 | X, | 017 | X, | 025 | X, | 028 | X»
008 | X; | 006 | X¢ | 008 | X¢ | 007 | X¢

c=10 ¢ =100 ¢ = 1000 ¢ =5000
Prob [ FC Prob | E.C | Prob | EC | Prob | F.C
c)| 0.33 0.61 - 0.72 - 0.74 -

023 | X3,Xs | 016 | X5 | 013 | X5 | 0.12 | X5
021 | X3 | 014 | X3 [ 010 ] X3 | 011 | X3

c=10 c=100 ¢ = 1000 ¢ =5000
Prob ‘ F.C Prob | EC | Prob | FC | Prob | EC
d)[ 0.29 - 0.53 - 0.58 - 0.59 -

025 | Xo0,X3 | 018 | X» | 017 | X, | 018 | X»
021 | X, | 017 | X3 | 016 | X3 | 015 | X3

3.1.2. Sensitivity analysis prior for SSVS latent layers on independent quantitative covariates

In this section, we test the "best" choice of the hyperparameter ¢ for the 8 prior specification.
We consider the following values of ¢: 10, 100, 1000 and 5000. The MCMC is run for 30,000
iterations after a burn-in of 10,000 iterations. In addition, a Beta prior B(2,2) is proposed for
the inclusion probability p. The four panels in Table 4 show, for Example 1 of artificial data, the
SSVS performance under different priors on f, B, B3 and f4. These tables show the three most
frequent models with the false inclusion (False positive) or exclusion (False negative) rates of
predictors.

For the different spike and slab priors, SSVS performs extremely well for ¢; = 10, 100 and
1000 (i=1,2,3,4) since the best sub-models identified for each of the four latent layers contain

TABLE 5. Comparison between the three SSVS models with different values of ¢ according to the DIC criterion. The
best model is identified by the lowest DIC estimation.

10 -1513
100 | -1515
1000 | -1523
5000 | -1520
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no false detections (see the first line of the panels a), b), ¢) and d)). The best sub-models do
not contain any false choice. As expected, as the value of ¢ increases, the posterior distribution
becomes more peaked, which can be explained by the increase in probability appearance along
these settings. In fact, the probability of the most visited model increases with higher values of
¢ (see the probability values in the first row of the previous four tables). For example, in Table
2—(d), the best sub-model under ¢ = 10 is visited 870 times throughout 30, 000 iterations, while
the best sub-model under ¢ = 5000 is visited 1770 times. The SSVS with ¢ = 1000 is identified
as the best according to the DIC estimations. Moreover, a vague uniform prior can be proposed
on parameter ¢ in order to have a better estimation. Generally speaking, SSVS performs well on
latent layer models with independent quantitative covariates.

3.1.3. The presence of collinearity increases false detection on SSVS in the latent layer

George and McCulloch (1993) showed that collinearity may reduce the efficiency of SSVS by
increasing the number of promising models in a linear model framework. Collinearity between
some covariates in a latent layer model can also increase the rate of false positives/negatives es-
pecially when one of the correlated covariates is influential but the other is not. The SSVS model
is now considered with a Beta prior on the probability selection p (p ~ B(2,2)) and a vague
uniform prior on ¢ (U(5,1000)).

Figure 5 illustrates how correlated covariates restrict SSVS performances. The SSVS model
provides a probability judgment about the most frequent explanatory covariates combination. In
addition to that, the SSVS also provides a probability judgment about the inclusion of each of the
explanatory covariates on the different sub-models identified throughout MCMC iterations. Here,
the Posterior Inclusion Probabilities (PIP) for each covariate separately are illustrated in Fig.5. In
the first and third panels, the selected covariates correctly specify the influential covariates taken
a priori into account to generate artificial data. Outputting, both X3 and X5 as non influential, and
X, and X as influential for ¢; was expected since the correlated covariates were a priori both
influential/not influential at the same time. With regard to the second panel, ¢, was generated
taking into account X3, while X5 is omitted a priori. Therefore as X5 is correlated with X3, SSVS
misleads and selects X5. Likewise, X, and X3 were not taken into account when generating ¢.
As a result, two false choices are reported, the exclusion of Xs and the inclusion of X5.

3.1.4. SSVS performance within latent layer mixed covariates (quantitative and qualitative)

The algorithm for mixed covariates was developed to give the same inclusion probability to
all levels of the same categorical covariate. The results obtained in Example 3 highlight some
limitations of SSVS with regards to the presence of categorical covariates in the latent layer.
It can be clearly seen that SSVS may fail to detect some influential explanatory categorical
covariates. However, SSVS does not seem to induce false choice inclusion. In our case study, it
considers a categorical covariate as influential only if it is actually influential: it can miss some
of them but does not induce false positives.

The new dummy covariates needed to handle the presence of categorical covariates F; (8 levels)
and F, (11 levels) strongly increase the dimensions of the space of competing models to be
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FIGURE 5. SSVS evaluation for artificial data including both independent and correlated quantitative covariates.
Panels a, b, ¢, d give the results obtained for the Posterior Inclusion Probability (PIP) separately for each covariate
throughout the sub-models identified by the MCMC iterations for the four latent layers. A PIP higher than 0.5 indi-
cates a strong probability of inclusion of the relative covariate in the best sub-model. The title of each graph reflects
the true value of the regression coefficients from which artificial data were generated: e.g. in Example 2, X5 was
correlated with X3, and Xe with X». The red circle reflects false detection, for example false inclusion for Xs and X
respectively in the ¢y and ¢y latent models.

stochastically explored. The selection results summarized in Table 6 were obtained after applying
the SSVS algorithm on the artificial data generated as Example 3:

TABLE 6. The selection results obtained by applying the SSVS on latent layers with mixed explanatory covariates.
For each latent layer, the real model from which the data was generated, the best sub-model detected with the
highest frequency of appearance throughout MCMC iterations and the false negative detections are given.

| latent layers | real model | best model detected by SSVS I false negative | probability appearance
P Fi,F,X5,X4,X5 Fi,F,X5,X4,X5 0 0.765
(133 Fl.F,X1,X2,X3 F,F,X1,X2,X3 0 0.223
93 P, X1,X,X5,Xg X1,X2,X5,Xg ') 0.882
(N F,X4,X5,Xe X4,X5,X6 P 0.695

Results displayed in Table 6 show that SSVS is able to identify the influential quantitative

covariates (Xj,...,Xs) (0 false detection for quantitative covariates). Moreover, for the first and
the second latent layers ¢; and ¢, the best sub-models detected by the SSVS are correct with
null false detections. In contrast, for ¢3 and ¢4, the categorical covariates F and F, are detected
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as false negative detections respectively for @3 and ¢4 linear models. These results highlight a
limitation of SSVS related to the presence of categorical covariates in latent layers. It is clear that
SSVS fails to detect some influential explanatory categorical covariates. However, SSVS does
not induce false choice inclusion in this case study. In other words, it considers a categorical
covariate as influential only if it is actually influential.

Such avoidance of false choice inclusion might stem from the fact that SSVS with even prior
weights tends to dampen the selection probability of a categorical covariate with a big num-
ber of modalities. In fact, the prior distribution of B, € R when covariate k is selected (i.e.
I = 1) is proportional to W. Consequently, when M becomes large, the prior distri-
bution P(f|lx = 1) will vanish to 0. For that reason, SSVS may seem to be reluctant to select a
categorical covariate with a high number of levels.

3.1.5. Variance sensitivity analysis for SSVS

As mentioned above, George and McCulloch (1993) designed and applied SSVS to detect ex-
planatory covariates directly linked to the observed response whereas we applied it to covariates
buried in latent layers in the framework of a hierarchical Bayesian model. To complete the as-
sessment in our specific case, we evaluated the sensitivity of SSVS to the variance within the
latent layer.

Overall, sensitivity variance analyses highlight that an increase in variability between sites (ex-
pressed by the 07,0,,03 and o4 of the latent layer models) does decrease SSVS robustness to
select the best subset of covariates.

In our specific case, two sources of variability are to be distinguished: variability between sites
expressed by 01, 02, 03 and 04 and variability within the same site expressed by o. In order to test
SSVS sensitivity to intersite variability changes, we simplified the proposed statistical model by
fixing @2, ¢3 and ¢,. SSVS was applied only on ¢, which has a linear effect on the F '“C response.
We tested SSVS for four different values of o; = (0.01,0.1,2.5,3). Figure 6 shows the posterior
inclusion probability for one of the considered covariates "X,", for different o] settings. Figure
6 clearly illustrates the impact of o7 on the posterior inclusion probability (PIP): the more o
increases, the more PIP decreases. It even reaches a PIP close to 0.5 for o; = 3, leading to a
potential false choice (exclusion) of an important variable.

3.2. SSVS on observed radiocarbon profiles
3.2.1. Application of SSVS on soil F'*C profiles

The aim of this section is to highlight the contribution of SSVS to understanding which climatic
and environmental factors are likely to control soil carbon dynamics. Based on the results ob-
tained on artificial data, it can be claimed that the presence of categorical covariates in the model
can produce false exclusions of some of the influential categorical covariates. In addition, the
correlation between some covariates such as temperature and latitude, may yield false detection,
especially if they do not have the same effect on latent layers as we showed in subsection 3.1.3.
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FIGURE 6. Posterior inclusion probability in relation with 6| value. The illustration here is for X, included as a
descriptor of the ¢ latent layer model, ¢; for i = 2,3.4 being fixed. The posterior inclusion probability decreases
versus increasing values of 61. The green dashed line represents the decision-making rule: for a posterior inclusion
probability higher than 0.5, the relative predictor is considered as influential.

Choice of c for regression effects prior

The SSVS was applied on real data by considering a beta prior B(2,2) on inclusion probability
with different values of c: 10, 100, 1000 and 5000. Furthermore, the model with uniform prior
U(10,10,000) on ¢;(i =1,...,4) was also tested.

TABLE 7. The DIC comparisons for five SSVS models under different prior specifications for c; (i =1, 2, 3, 4). The
table also summarizes the DIC for the full model containing all explanatory covariates.

| SSVSmodels | DIC |

;=10 -1869

c; =100 -1806

c¢; = 1000 -1890

¢; = 5000 -1855
Uniform prior on ¢; | -1860
Full model -1726

All SSVS models returned a better adjustment than the full model, according to the DIC cri-

terion. The best model is identified by the lowest value of DIC. The SSVS model on radiocarbon
profiles will thus be established with ¢; equal to 1000 fori=1,... 4.
To investigate the predictive power of the SSVS models, a cross validation procedure was con-
ducted. SSVS models were adjusted on the same learning sets (70% of studied sites) and 30% of
data were used as validation sets. The average Posterior Relative Errors (PRE) for all sites under
the different depth measurements are summarized in the following Table 8. Here, the difference
of the PRE among the SSVS models is very small. According to the results on Tables 7 and 8,
hyperparameter c is to be fixed to 1000.
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TABLE 8. Posterior Relative Error (PRE) computed for all sites and for all depth measurements throughout MCMC
iterations. The PRE difference between the models is very small. The best model has the lowest PRE on the

validation sets.

SSVS models | Posterior Relative Error on learning sets | Posterior Relative Error on validation sets
ci=10 0.225 0.406
¢i =100 0.230 0.402
¢i = 1000 0.234 0.413
c¢; = 5000 0.238 0.416
uniform prior on ¢; 0.235 0.417

Results of Posterior Inclusion Probability (PIP) for covariates among the sub-models iden-
tified by MCMC simulations
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FIGURE 7. Posterior inclusion probabilities for all explanatory covariates obtained by applying the SSVS to the
entire real database. The size of points depends on the importance of the posterior inclusion probability.

Panels 1, 2, 3 and 4 of Fig 7, show the Posterior Inclusion Probabilities (PIP) for each cate-
gorical covariate throughout the different sub-models visited by the Markov chains. According
to the selection results obtained on artificial data with mixed covariates in subsection 3.1.4, the
SSVS provides a good performance on quantitative covariates (no false detection). However, it
can miss some significant categorical covariates. Panels 1 and 2 indicate that the seasonal shift
and the temperature are included with probabilities 90% and 73% respectively throughout the
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visited sub-models for ¢; and ¢». ¢; and ¢ are respectively related to the deep and topsoil F'4C.
All explanatory covariates are selected for ¢s in its latent model. All the categorical covariates
(land use or soil type) selected with a probability higher than 0.5 are included in the best sub-
model. So, land use is very surely included in the best sub-models of ¢y, ¢35, ¢4 and soil type
in the ¢3 best sub-models. In contrast, every categorical covariate not selected (PIP smaller than
0.5), may be significant for the model since the SSVS approach can yield negative false detection
for categorical covariates. For example, soil type is a priori not included in the best sub-model of
¢ but might still be significant to explain deep soil radiocarbon.

Moreover, a posterior probabilistic beliefs on the association of explanatory covariates is pro-
vided by looking at the most frequent covariate combinations throughout the MCMC iterations
(see Table 9).

Results of 2 most frequent combinations of covariates identified by Stochastic Search Vari-
able Selection

TABLE 9. High 2 frequency models (Modell and Model2) for each of the latent linear models. It represents the 2
most frequent combinations of explanatory covariates among all the MCMC iterations. The linear models with all
explanatory covariates are identified for ¢, ¢3 and @g.

’ Latent linear model ‘ High frequency model ‘ frequency (n.iter = 180,000)
()] Modell: land use, temperature and seasonal shift 12,549
Model2: land use, seasonal shift 10,822
(023 Modell: all covariates 6,606
Model2: seasonal shift 4,272
03 Modell: all covariates 36,819
Model2: all covariates except land use 12,587
N Modell: all covariates 14,782
Model2: land use, F' l4c atmospheric, latitude 7,336

According to the Table 9, the frequency visits to the best sub-models are very small with re-
spect to the total number of iterations (180,000) and maybe not all the sub-models are explored
by the MCMC. Moreover, the full models are detected as the best sub-models for three of the la-
tent layers ¢,, ¢3 and ¢4. However, the covariates Posterior Inclusion Probabilities (PIP) highlight
that the best model chosen should contain the covariates with a PIP higher than 0.5. Furthermore,
for more detailed investigations, the unknown parameters of the statistical radiocarbon model are
re-estimated, taking into account all the covariates for which the PIP is higher than 0.5 (see Fig.
7). In addition, as the SSVS may miss the inclusion of some influential categorical covariates,
one may wonder whether the soil type has really no effect on the ¢, latent linear linear model
or whether it is perhaps simply not detected by the SSVS model. The answer to this question is
reported in the following table.
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Comparison of DIC for 5 sub-models taking into account for some sub-models the draw-
back of SSVS when categorical covariates are present in the model

TABLE 10. Model* contains the explanatory covariates with a PIP higher than 0.5. To investigate whether a non
selected categorical covariate is significant, we add respectively to Model*, the non included categorical covariates
(land use or ,soil type) identified with a PIP smaller than 0.5. The Table displays the DIC criteria comparisons
between the different models.

’ Models ‘ DIC ‘
Most frequent model (denoted Modell for each of latent layers in Table 9) -1703
Model* = the model adjusted on the covariates where their PIP are higher than 0.5 (see Fig.7) | -1837
Model* + considering the soil type for ¢, -1897
Model* + considering the soil type for ¢; and ¢ -1890
Model* + considering the land use for ¢, and soil type for ¢ -1968
Model* + considering the soil type for ¢; and land use for ¢, and ¢4 -1879

The DIC comparison in Table 10, shows that the best model is the one that includes both PIP>
0.5 detected explanatory covariates, i.e. "soil type" for deep soil radiocarbon (¢;) and "land use"
for topsoil radiocarbon (¢,) (DIC = -1968). In addition, this result highlights that the SSVS is
misleading in that it detects two significant categorical covariates (2 false negatives). The final
selection of covariates for the radiocarbon model is summed up in Table 11.

Chapter 3

Selection results for the best sub-model: the climatic and environmental factors that affect
soil radiocarbon dynamics

TABLE 11. The final selected covariates for each of the four latent layer models ¢y, ¢, 93 and ¢4. For the third
latent layer ¢3 all explanatory covariates are selected. Furthermore, for ¢ and @4 four covariates are identified
among 8 as significant while 5 covariates are detected for ¢, as influential towards the 8 potential climatic and
environmental factors.

’ Best model ‘ final selected covariates ‘
o land use, soil type, temperature, seasonal shift
(033 land use, atmospheric F'4C , temperature, seasonal shift and aridity
(03} land use, soil type, atmospheric F!4C, temperature, aridity, precipitation, latitude and seasonal shift
N land use, latitude, atmospheric F 14¢c , temperature

A further point is the correlation among covariates. For example, temperature and seasonal
shift are positively correlated (see Fig.8). This could suggest that temperature may not be really
influential for ¢, as its inclusion may be the result of its correlation with the highly influential
covariate "seasonal shift". However, if we take a look at the second panel of Fig 7, we can see
that seasonal shift has an effect on ¢», which is not the case for temperature, indicating that the
correlation between temperature and seasonal shift does not seem to affect SSVS performance
that much.
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FIGURE 8. Correlation matrix of the six quantitative explanatory covariates. The darker the color (red or blue), the
stronger the correlation between the variables (positive or negative)

Posterior Predictive Checking

To build additional confidence in our selected model, a predictive posterior check is useful.
It compares data replications y™” according to the SSVS model (¢ = 1000 and p ~ Beta(2,2))
governed by parameter 6, with the observed data y. The behavior of a model with regard to a
feature of interest is quantified by a discrepancy measure 7' (y, 0). Here, the T'(y, 0) quantity is
the average of the squared difference between y and the non linear predicted mean g(6), where
0 = (B, B2, B3, B4, 01,02,03,04). After computing T(y,0) and T(y"”, 8), a posterior predictive
p-value is defined as Pr[T(y"?,0) > T(y,0)|y] (Gelman et al., 2013). The posterior predictive
p-value is not as strictly used as in the classic procedure comparing a statistic with some Type
1 error. Gelman et al. (2013) interpret the posterior predictive p-value as the proportion of data
replications according to the proposed model 7'(y, 0) that exceeds 7'(y"”, 6). A model is rejected
if the Bayesian p-value is rather small. In our case, the posterior predictive p-value is equal to
0.47! (see Fig.9)

T(y-rep.theta)

4 2 0 2 4 6
T(y,theta)

FIGURE 9. The discrepancy measures T(X,y"™P,0) calculated on replicated data and parameters model 0 versus
T(X,y,0) calculate on real data and 6. The estimated Bayesian p-value is equal to 0.47.
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Better understanding of the climatic and environmental factors that affect soil radiocarbon

dynamics

Besides detecting whether a covariate has an influence or not on ¢y, ¢, ¢3 and @4 , quantifying
the effect of each influential covariate is also of interest. For example, it would be useful to know
what happens to @; (representing radiocarbon content in deep soil) if there is a strong rise in
temperature due to global warming. The answer to this question is given by the posterior dis-
tribution of regression coefficients B, B>, B3 and B4 corresponding to the significant explanatory

covariates (see Fig.10 and 11).
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FIGURE 10. The posterior distribution of the regression effects corresponding to the significant numerical covariates
for the deep soil radiocarbon (@) latent model: mean annual temperature and seasonal shift.

TABLE 12. The significant explanatory numerical covariates for deep radiocarbon with their posterior mean
estimations and their posterior probabilities of the sign of their relative effects throughout MCMC iterations.

Covariates | posterior probability (to be + or -) | posterior mean estimation
mean annual temperature 0.99 (+) +0.12
seasonal shift 0.80 (-) -0.03

atmospheric radiocarbon seasonal shift
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FIGURE 11. The posterior distribution of the regression effects corresponding to the significant numerical covariates
for topsoil radiocarbon latent model (¢,): atmospheric radiocarbon, seasonal shift, aridity index and mean annual

temperature.
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TABLE 13. The significant explanatory numerical covariates for topsoil radiocarbon with their posterior mean
estimations and their posterior probabilities of the sign of their relative effects throughout MCMC iterations.

| Covariates | posterior probability (to be + or -) | posterior mean estimation
atmospheric radiocarbon 0.86 (-) -0.018
seasonal shift 0.95 (-) -0.028
mean annual temperature 0.70 (-) -0.011
aridity index 0.92 (+) +0.017

151

Interpreting the posterior effect of radiocarbon profiles is not straightforward because of the
very high variability of atmospheric radiocarbon concentration with time. A massive change
occurred in the 1960s with atmospheric tests of nuclear weapons that doubled the radiocarbon
concentration in the atmosphere, leading to a so-called "radiocarbon bomb peak" (see panel a of
Fig. 12). Topsoil already incorporates peak-bomb-derived radiocarbon whereas deep soil is still
free of radiocarbon enriched components (see panel b of Fig.12). The interpretation of radiocar-
bon changes differs greatly, therefore, depending on whether it is related to top soil or to deep

natural “C (F“Cl« to< 1) bomblderived-“c
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FIGURE 12. The first graph a shows the variation of the atmospheric F ¢ concentration over time. The soil was
affected specially by above-ground nuclear testing from about 1950 until 1963. Panel b highlights the variation of
radiocarbon amount between deep and topsoil. The last 2 panels ¢ and d show the impact of physical processes on
deep and topsoil radiocarbon. Furthermore, all panels provide an indication on age distribution since the radiocarbon
is an indicator of the mean residence time of soil carbon.
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soil.

An increase in microbial activity that leads to higher mineralization will result in a weaker weight
of older components relative to newly input ones in the age distribution of the mixture of soil
components within the same soil layer (panel ¢ in Fig.12). This will result in an increase of ra-
diocarbon in deep soil but a decrease in topsoil radiocarbon where the weight of the peak-bomb
derived components decreases due to a higher mineralization (panel c in Fig.12). We face the
opposite effect in the case of processes that will enhance the organic matter stabilization and will
better preserve old material (panel d in Fig.12).

Keeping in mind that point, our results for the deep soil highlight a positive posterior effect of
mean annual temperature and a negative posterior effect of seasonal shift. In practice, an in-
crease of 1°C in the mean annual temperature will result in an increase of radiocarbon of 0.12
and an increase of 1°C between the highest and the lowest monthly temperature will result in
a decrease of radiocarbon by 0.03. This increase of deep soil radiocarbon with temperature is
in agreement with a higher mineralization associated to an enhancement of microbial activity
under higher temperature. Likewise the decrease of radiocarbon with seasonality matches what
is known about the impact of seasonality on soil dynamics with much younger soils, i.e. with a
higher turnover under the tropics than in boreal, i.e. continental areas, where soil shows a much
lower turnover and thus yields much lower radiocarbon.

Topsoil is negatively impacted by atmospheric radiocarbon, seasonal shift and mean annual tem-
perature and positively impacted by aridity. Most of the profiles included in the database were
sampled posteriorly to the 1960s, i.e. for years during the bomb peak decrease with an overrep-
resentation of the 1990s. The bomb peak gradually penetrates into soil layers with a time lag
that depends of the mean residence time of components in the different layers. With a mean
residence time of 100 yrs, the maximum of F'*C will be in the early 2000’s. Thus, the nega-
tive impact of the atmospheric F'C reflects the fact that an increase in the atmospheric F'“C
means that sampling was made some years before, when the bomb peak had not yet reached its
maximum in soil. The dilution effect of bomb-peak derived components is thus higher, yielding
a lower (closer to 1) mean radiocarbon. However, this effect remains very low (-0.01 decrease
of topsoil radiocarbon associated to an increase of atmospheric radiocarbon by 1) reflecting the
dilution effect of the bomb-peak and the disequilibrium of the database in which sites sampled
in the 1990s are overrepresented. Negative impacts of seasonal shift and mean annual tempera-
ture by -0.02 and -0.01 respectively are the counterpart for topsoil of what is observed for deep
soil. An higher mineralization for the mean annual temperature, leading for an higher loss of
bomb-derived organic matter and a better preservation for seasonal shift yielding for a relative
gain of the oldest components. It is noteworthy that impacts for topsoil appear much smaller
than for deep soil. This result is counter-intuitive and no reason for that can be advanced. The
positive impact of aridity is in agreement with a well-known low microbial efficiency in arid
environments compared to humid ones. An increase in aridity results in a better preservation of
the bomb-peak derived components and thus to an increase in the topsoil radiocarbon. The effect
of aridity remains very low at +0.01.

A large difference exists between the magnitudes of the posterior estimation of the influential
covariates of the latent variable for topsoil and deep soil. While an explanation stemming from
the database disequilibrium can be put forward to explain the low magnitude of atmospheric
radiocarbon, no clear evidence can be provided for the other covariates.
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4. Extensions and challenges

Database: To better predict the evolution of soil carbon dynamics with climate change and land
use change practices, there is a need to collect more data for the type of soil (arenosol, fluvisol
and gleysol) and ecosystem (natural/savanna, cultivated/grassland and forest) about which we
do not have much information. In this study, the experimental design was strongly unbalanced,
which affects the precision when estimating the quantities of interest: ¢y, ¢, @3 and @4. Further-
more, optimization of the experimental design should take into account the type of contrast used
to solve the redundancy of the model caused by the presence of categorical explanatory covari-
ates. An interesting new track will be to know where to take new samples and for which climatic
and environmental conditions in order to improve the overall estimation. Another issue associ-
ated with data is correlation. Some of the explanatory covariates are naturally correlated (see
Figure 8).

For example, the aridity index (Al) is proportional to the mean annual precipitation (MAP) by
definition (see eq. 4) since:

_ MAP

Al =
ET,

ET, : potential evapotranspiration rates

SSVS is sensitive to the presence of correlated covariates as already seen in Section 3.1.3 (see
Fig 8). More investigation can be done considering other Bayesian predictive criteria for model
selection according to the paper by Piironen and Vehtari (2017).

Improving the Bayesian selection model. The test carried out on artificial data shows that
SSVS does not always detect influential categorical explanatory covariates. This issue could
be thoroughly explored using the Bayesian effect fusion approach introduced by Pauger and
Wagner (2017). They proposed a Bayesian approach for a sparse representation of the effect of
a categorical predictor in linear models. The originality of their work is that it not only allows
selection of categorical covariates but also induces fusion among the categorical covariate levels
which have essentially the same effect on the response. Besides this approach, Bayesian variable
selection for group Lasso presented in the paper by Xu et al. (2015) selects variables both at the
group level and also within a group. Revisiting the traditional Bayesian approach to the group
Lasso problem, they developed a Bayesian group Lasso model with spike and slab priors for
problems that also require selection of categorical explanatory variables.

5. Conclusion

In this paper, we have discussed the performance and limitations of SSVS on latent layers in the
framework of a hierarchical Bayesian model applied to soil radiocarbon. The results on artificial
data show that collinearity may lead to false inclusion or exclusion in the best sub-model selected.
Besides collinearity, if variability on the latent model response is high, the posterior inclusion
probability may blur the effect of influential explanatory covariates as exemplified in Section
3.1.5. Furthermore, SSVS is not always able to select the influential categorical covariates, but at
least does not seem to consider a covariate as influential unless it is indeed the case. Despite the
complexity of SSVS compared to the full model, we show that the Bayesian selection approach
has a better adjustment and prediction level in our case study. Finally, the application of SSVS to
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soil F'*C profiles highlighted the influence of soil types on soil carbon dynamics by impacting
deep soil F!C, topsoil F'“C and F'“C incorporation. Our results also indicate that temperature
affects deep soil F'“C more than topsoil.
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Note: In figure 5 of the article, the vector f3 at the top of the third panel should be 33 = (1,0.8,0,0.7,0,1)
instead of 83 = (0,0.8,0,0.7,0,1)
Rectified references:

e Burnham, K. P, Anderson, D. R., and Huyvaert, K. P. (2011). Aic model selection and multimodel inference in
behavioral ecology: some background, observations, and comparisons. Behavioral Ecology and Sociobiology,
65(1):23-35.

e Martin, W., Smith3, M., Jolivet, B., and Arrouays (2011). Spatial distribution of soil organic carbons stocks

in France.
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CHAPTER

BAYESIAN SELECTION APPROACHES FOR
CATEGORICAL PREDICTORS USING
JAGS

This chapter introduces a submitted paper, it is for this reason that it will not be available in this manuscript.
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In Chapter 3, the performance of the Stochastic Search Variable Selection (SSVS), originally built to select the
significant numerical predictors, was adapted to the hierarchical non linear model with latent variables proposed for
modeling soil radiocarbon dynamics. The SSVS had to be modified to handle the presence of categorical predictors
such as the soil type and the ecosystem type of the sampled profile. In addition, the results obtained on artificial data
generated according to the proposed statistical model highlighted that the detection of some significant categorical
predictors can be misleading with SSVS. Further investigation done on the real data indicated that the prediction
and model fitting were better after the inclusion of some categorical predictors detected as non significant by the
SSVS. The results of the SSVS on the soil radiocarbon dynamics, published in the SFDS journal (see Chapter 3),
gave rise to new questions: How can Bayesian selection methods handle the presence of categorical predictors?
What are the Bayesian selection methods appropriate for categorical predictors that already exist in the literature?
Which Bayesian selection methods to choose?

These questions led to the submission of the second article "Bayesian selection approaches for categorical predictors
using JAGS" from which Chapter 4 derived. Three Bayesian Selection approaches appropriate for categorical
predictors: Bayesian Group Lasso with Spike and Slab, Bayesian Sparse Group Selection and Bayesian Effect
Fusion were tested on a simple linear model with categorical predictors in order to highlight the prior specifications

for each Bayesian Selection method rather than the complexity of the statistical model.

In this chapter, we now test the performance of the Stochastic Search Variable Selection, introduced in Chapter
3, for the numerical predictors (mean annual temperature, aridity index, etc.) and the three Bayesian selection
approaches explored in Chapter 4 for the categorical predictors (soil type and ecosystem type) on the latent layers
within the framework of a non linear hierarchical model. Here, it should be pointed out that the framework of the

application becomes more complex.

This chapter will be organized as follows: Section 5.1 recaps the structure of the statistical model proposed for
the soil radiocarbon dynamics and the climatic and environmental factors considered for this statistical analysis. It
also introduces the structure of the statistical model for soil carbon content modeling and the potential climatic and
environmental factors. Section 5.2 will explore the Bayesian Full model, in which all the explanatory predictors are
included, and the implementation of Bayesian Selection approaches previously introduced in the manuscript. This
section will be divided into two parts: the first part applies these methods to the soil radiocarbon dynamics and
the second one will address the application of these methods to the soil carbon content dynamics. Following this
outline, all the Bayesian methods are then compared with respect to both soil radiocarbon and soil carbon content

dynamics based on the Bayesian selection criteria for model comparisons.

After choosing the best subset of climatic and environmental factors for soil radiocarbon and soil carbon content

dynamics, Section 5.3 will touch on the physical interpretation of the selected climatic and environmental factors.

This section will also comment on the expectations of soil scientists versus the selected and the non selected climatic

and environmental predictors.

Finally, Section 5.5 will underline the predictive model applications in a context of global climatic and land use

changes.
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Chapter 5

5.1 Recap of soil carbon database and statistical modeling

5.1.1 Recap of the statistical model and the potential explanatory predictors for soil ra-
diocarbon dynamics

A - The structure of the statistical model for soil radiocarbon response

As presented in Chapter 3, for each site s € {1 : S} and each depth x € {1 : m,}, where m; is the number of
measurements available for site s, the F'“C content experimental record is modeled by:

FHC(s,) = 91(5) + (92(5) — 91 (5)) exp (‘ ) ) " e N0 G
* ¢1: deep radiocarbon;
* ¢ topsoil radiocarbon;
e @3: is related to the inflection point of the curve;
* ¢4: describes the more or less rapid decrease of F l4c,
o ¢2

00 02

H
i
50 t
H
i
i

3
100

depth [cm]

150
200

250

Figure 5.1: Statistical profile of soil F'“C versus depth obtained from Equation 5.1.

B - The potential climatic and environmental predictors for soil radiocarbon dynamics

In Chapter 3, the latitude was considered as a potential explanatory predictor for soil radiocarbon dynamics.
Latitude was initially included in the statistical model, since the soil carbon varies widely across different latitudes.
However, on further consideration, we decided to remove latitude from the statistical model, since the variation in
soil radiocarbon is not directly affected by the latitude beyond the relationship (correlation) of the latitude with the
temperature.

Thus, the six climatic factors listed in Figure 5.2 were chosen in order to reduce the multicollinearity problem
(section 2.1.3.1 of Chapter 2).
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 Climatic factors
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mean annual temperature
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Figure 5.2: The climatic and environmental factors that potentially impact soil radiocarbon dynamics.

As stated in Chapter 3, the integration of climatic and environmental factors is done by considering a hierarchical
model with latent layers. A linear model is used to link the potential explanatory predictors and the latent layers
(Equation 5.2):

0, =XBi+¢& &~Ns(0,62+I) i=12734 (5.2)

where, ¢; = (¢:(1),...,9i(s),....0:(S)), B € R, & = (&:(1),...,&(s),...,&(S)) 0 is the vector of 0 components
and I € Ms s(R) is the identity matrix.

To handle the presence of categorical predictors in the latent linear models, a treatment contrast is used to build the
design matrix X € Ms p(R) (S =131, P =20).
Here, six numerical predictors and two categorical predictors with six and nine levels respectively are included in

the latent layer models. The category having the largest number of observations is chosen as the baseline level.

Thus, "natural-forest" (37% of the total number of profiles) and "Luvisol" (27% of the total number of profiles)
were chosen as the baseline levels respectively for the ecosystem and soil type (see Figure 2.4 in Chapter 2).

The abbreviations of the potential climatic and environmental factors are recalled in Table 5.1.

| Potential covariates | Abbreviation | Potential covariates | Abbreviation |
ecosystem type Land soil type Soil
mean annual precipitation MAP aridity index Al
mean annual temperature MAT seasonal temperature shift Dif T
minimum precipitation min_P atmospheric F!4C of the sampling year |  F'*Catm

Table 5.1: Abbreviations of the climatic and environmental predictors considered for soil radiocarbon modeling.

5.1.2 The structure of the statistical model for soil carbon content dynamics

According to the observed profiles of soil carbon dynamics (Figure 5.3), we proposed for each site s € {1 : S} and
each depth z € {1 : m,}. The structure of the statical model for soil carbon content dynamics is given by:

C(s.x) = @1 (5) + (02(s) — 1 (5)) * exp (-@L(s)) +e &~N(0,02) (5.3)

o =X"n+¢e & ~N(0,5d”) for i=1,273 (5.4)

where, fori=1,2, 3, o € RS and & € RS X* € Mg »(R), with P’ = 19, is the design matrix constructed using
treatment contrast. The climatic and environmental predictors considered for modeling the soil carbon content

dynamics are recalled in Table 5.2:
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Potential covariates | Abbreviation Potential covariates | Abbreviation |
ecosystem type Land soil type Soil
mean annual precipitation MAP aridity index Al
mean annual temperature MAT seasonal temperature shift Dif T
minimum precipitation min_P

Table 5.2: Abbreviation of the eight climatic and environmental predictors considered for soil carbon content

modeling.
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Figure 5.3: The left panel shows the real variation of the carbon content with depth for all studied sites. The right
panel underlines the structure of the statistical model proposed according to the left panel. @; defines the deep soil
carbon content, @, represents the topsoil soil carbon content and @3 is related to the point from which the curve

changes decay rate.

5.1.3 Depth modeling for both radiocarbon and soil carbon content vertical dynamics

For each profile in the database, the measurements of radiocarbon and soil carbon content were taken from soil
layers characterized by upper and lower levels. The question was which depth level to take for the statistical
modeling: upper, lower, mean or median levels?

For our statistical analysis, we chose to use the mean depth level of the corresponding soil layer. In fact, for the deep
layers, it is preferable to measure radiocarbon or soil carbon content at a depth tending towards the lower level since
the deep layers are characterized by a low value of F'C (before the nuclear bomb peak) and soil carbon content. In
contrast, for the topsoil layers, we do not know exactly which depth level the measurement taken corresponds to. In
fact, the topsoil carbon is much more sensitive to external factors such as the Net Primary Production (NPP) and the
climatic conditions than the deep layers. In addition, a soil layer integrates more '“C for the levels corresponding
to the nuclear bomb peak than the levels corresponding to the period after the peak. Some soil layers will also be
characterized by an upper level rich in soil carbon content and poor in radiocarbon which is the opposite of the
behavior observed at the lower level. For these reasons, we chose the mean level as a good compromise to represent

the measurements of radiocarbon and carbon content.

In Figure 5.4, we display a F'“C profile sampled in 1986 by Becker-Heidmann et al. (2002) under a cultivated
field and a Vertisol soil type. This site was characterized by a 2cm-step F'“C measurement to 36cm depth, then a
4cm-step (first panel). In order to study the impact of level thickness on the statistical modeling, we averaged the
original data to double the sampling step, i.e. 8 and 12 cm (second panel) to reach a 48cm-step sampling (third
panel). The blue curve represents the fitted statistical model proposed for soil radiocarbon dynamics, based on an
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optimization algorithm.

For example, when increasing the level thickness from 2 cm to 4cm and 48cm, the topsoil and deep estimated
F%C values, given by the blue curve, remain almost identical. On the other hand, when the level thickness strongly
increases from 2cm to 48cm, the curve shape will miss some features such as the increase in the soil radiocarbon
observed after the first measures collected (Figure 5.4, first and second panels).

Flic Fc F'c

00 02 04 06 08 10 12 00 02 04 06 08 10 12 00 02 04 06 08 10 12
o

0-

50+

50- 50-

Depth (cm)
8
Depth (cm)
Depth (cm)

g

150+

150

200- * 200-

Figure 5.4: Comparison of the same F'“C profile with different values of layer thickness (2cm-step F'“C measure-
ment to 36 cm depth, then a 4 cm-step (first panel), 8 and 12 cm (second panel) and 48 cm-step sampling(third
panel)) where the sample was collected in 1986 by Becker-Heidmann et al. (2002) under a cultivated field (Vertisol).

5.2 Bayesian modeling and Bayesian selection methods

5.2.1 Application to soil radiocarbon dynamics

5.2.1.1 Full Bayesian model

5.2.1.1.1 Full Bayesian model specification and constraints

After thorough deliberation on the statistical Bayesian model proposed in Chapter 3, the following constraints were

added to the Bayesian model likelihood and latent variables:

The constraints of the Full Bayesian model

1. The unit F'4C used to express the soil radiocarbon always has a positive value. To ensure the generation of
positive values for the soil radiocarbon response, two solutions can be tailored:

v Assuming a Normal distribution for the logarithm transformation of the response F'“C. The logarithm

transformation can be applied since the unit F'%C has a positive value and cannot be equal to 0.

v" Considering a Normal distribution truncated at 0 to model soil radiocarbon.
2. According to the interpretations of ¢, ¢, ¢3 and @4, these four latent variables should always be positive:

(a) Assuming a Normal distribution truncated at zero for the first three latent variables @1, ¢ and ¢3. These
three latent variables have a physical interpretation. The truncated Normal was favored in order to
interpret directly the effect of climatic and environmental factors on these latent variables.
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(b) A logarithm transformation is used to model the fourth latent variable, ¢4.

For the Bayesian inference, with no prior information about the precision of the parameters, the scale and the
hyperparameter shape of the Gamma distribution must be chosen so as to give a very disperse prior. The most widely
used parametrization of the Gamma distribution is to have the same number in both hyperparameter positions. Thus,
by choosing 0.001 for both hyperparameters, the precision has a mean 1 and a large variance of 1000.

For the regression effects for latent linear models, we assumed Zellner’s g priors. In fact, Zellner’s g prior (Zellner,
1986) is based on the idea that the regression effect estimation should be invariant to changes in the scale of the
regressors. Some linear algebra shows that this condition is satisfied if the mean and the variance of the Normal
distribution prior on the regression effect B are equal to 0 and k(X’X)~! respectively. A popular specification is to
set k = go? for positive values of g. The choice of g can be based on many popular model selection criteria, such as
the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and others. However, assuming a
prior on g has the advantage of avoiding paradoxes such as "Bartlett’s Paradox" and the "Information Paradox".
Briefly, "Bartlett’s Paradox" states that the null model would always be preferred to any other model when g— co.
On the other hand, when the coefficient of determination R? — 1, the Bayes factor converges to a constant instead
of going to oo as we consider that the datasets fit the model better. This problem is called the "Information Paradox".
For the Full Bayesian model, we consider a vague Uniform prior on g, assigning the same weight to all possible

values of g.

FULL BAYESIAN MODEL FOR SOIL RADIOCARBON MODELING

¢ Likelihood:

for each site s € {1: S} (S = 131) and each depth x € {1 : my}, the likelihood is written as:

- FYC(s,x) ~ Ny (g(¢(s),x),0?) (truncated Normal distribution)

or

— log (F™C(s,x)) ~ N (log(g(¢(s),x)),0?) (logarithm transformation)

where, g(¢(s),x) = ¢1(s) + (92(s) — @1 (s)) * exp <_ ¢3)ES)

¢ Latent variables:

for each site s, the linear latent models are defined as:

¢i(s) ~ Ny (X[s,]xBi,07) i=1,2,3
10g(94(s)) ~ N (X[s,] * s, 0%)

¢ Priors:

- 1/06% ~ Gamma(0.001,0.001)
fori=1,2,3,4,P=20and S = 131:

- 1/06? ~ Gamma(0.001,0.001)
- Bi ~N(0,g;63(X'X)"") where 0 € R” and X € My p(R)
— gi ~Uniform(5,5000)
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Compared to the soil radiocarbon statistical model published in the SFDS journal, three changes were
introduced: 1- the statistical analysis is applied on a new version of the database which contains 131 profiles
instead of 104 (27 profiles have been added to the database of Chapter 3) 2- the positivity constraint has
been added to ensure the generation of positive values for the responses F'“C, 3- the latitude is no longer
considered as a significant predictor since it is linked to the temperature and does not influence the soil
radiocarbon response directly, 4- Normal distributions truncated at zero are proposed for the first three latent
variables (@1, ¢, and ¢3) in order to ensure the generation of positive values and to have a direct physical
interpretation of the regression effects of climatic and environmental predictors.

5.2.1.1.2 Results of the Full Bayesian model

All models are wrong, but some are useful (Box, 1976). Bayesian model checking and model selection criteria
cannot tell us which model is true, but can tell us how well each model fits the data. One can distinguish among the
following criteria: the Deviance Information Criterion (DIC), the p-value of the Posterior Predictive Check (P.P.C),
the error on the validation sets of k-fold Cross Validation (C.V) and the Coverage of Bayesian credible intervals on
validation sets (more details are given in Appendix 7.2.1).

The full Bayesian model was tested under two scenarios: 1- a Normal distribution truncated at 0 was used to model
the F'“C response (additive model), 2- a log transformation was applied to the F'“C response (multiplicative model).
Before testing the Full Bayesian model under these two scenarios, a preliminary study was done. We estimated
the latent variables @p, ¢»,#3 and ¢4 of the non linear mean structure by minimizing the square error between the
real observations and the replicates generated according to the statistical model. For each site and each depth, the

residuals between the F'“C observations and the estimated non linear means are plotted in Figure 5.5.

02 04

Residual
0.2

0.6
|
0

(¢} 200 400 600 800 1000 1200

Fitted values

Figure 5.5: Residuals versus fitted values for all F'“C profiles and all depth measurements. Positive values for the
residual mean that the prediction is too low, and negative values mean that the prediction is too high; 0 means that
the estimation was exactly correct.

Figure 5.5 shows that the variance of the residuals is homogeneous throughout the dataset. This result favors the
scenario of considering an additive model with a truncated Normal distribution on the radiocarbon observations.
After testing the Full model under both of these scenarios, this was confirmed and a better data fitting is observed
under an additive model (Table 5.3).

| Models | DIC | p-value (PP.C) |
additive model (truncated Normal distribution) | -2324 0.58
multiplicative model (log transformation) -1371 0.71

Table 5.3: Deviance Information Criterion (DIC) comparison between the Full additive model and the multiplicative
Full model. The model with the lowest DIC is preferred to models with larger DIC.
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Chapter 5

The test quantity 7' (y, 6) used to compute the p-value of the Posterior Predictive Check (P.P.C) is equal to the
mean of the difference between the real radiocarbon observation and the non linear mean obtained according to the
latent variables (51, gﬁg, #3 and ¢4 sampled from their posterior distributions. A better agreement between the model

and the dataset was achieved under the additive model (0.58 p-value closer to 0.5 and farther from 1).

Based on the Deviance Information Criterion and the p-value of the Posterior Predictive Check criterion, an

additive model with a truncated Normal distribution on F'4C was chosen for soil radiocarbon modeling.

5.2.1.2 Bayesian Group Lasso with Spike and Slab prior
5.2.1.2.1 BGL-SS model specification and choice of hyperparameters

As stated in Chapter 4, the Bayesian Group Lasso with Spike and Slab prior (BGL-SS) is the simplest Bayesian
selection approach used for both categorical and numerical predictors. Furthermore, this Bayesian selection method
requires few hyperparameters to tune. Within the framework of the non linear hierarchical model, the BGL-SS was
been applied to the latent linear models for @1, ¢, ¢3 and @4. Thus, the BGL-SS model is specified as follows:

BAYESIAN GROUP LASSO WITH SPIKE AND SLAB PRIOR

¢ Likelihood:
for each site s € {1: S} (S = 131) and each depth x € {1 : m,}, the likelihood is written as:

- FYC(s,x) ~ Ny (8(¢(s),x),0?)

where, 8(6(5),) = 91(5) + (9a(s) ~ 01(5)) wexp (5 )

¢ Latent variables:

for each site s, the linear models are defined us:

¢i(s) ~ Ny (X[s,]%Bi,07) i=1,2,3
lo§(¢4(s)) NN(X[S’] *ﬁ4’64%)

¢ Priors:

- 1/6? ~ Gamma(0.001,0.001)

— for the fourth latent variable ¢4, we propose a vague Normal prior:
Bs ~ Np(0,100 % I) where 0 € R, I € Mpp(R) and P = 20

— Intercepts:

Boi~N(0,1)fori=1,2
Bos ~ N(0,1000)

- fori=1,2,3,4:
1/6? ~ Gamma(0.001,0.001)

100



¢ Priors:

— Here, the eight potential predictors are divided into six numerical covariates and two categorical
ones. my is defined as follows:

C, the number of levels (without the baseline) for categorical predictors
e =
¢ 1 for the numerical covariates

- forg=1,...,8andi=1,2,3:

Big ~ (1 — ;. g) N, (0, Gl?'ci%glmg) + 7 ¢80 (Big)

mg+1 l_,z)

2
Ti,gNGamma( —.

A} ~ Gamma(0.001,0.001)
T ¢ ~ Bernoulli(p; 4)

Pig ~ Beta(2,2)

Choice of hyperparameters

* Shrinkage parameter (1): Bayesian inference has the advantage of considering the shrinkage coefficient
as a parameter and of suggesting a prior distribution. Bayesian inference helps us to save time since we do
not have to apply a cross validation to choose, among several proposed values, the best shrinkage parameter
value. We assume a vague Gamma prior of a mean equal to 1 and a variance of 1000.

* Prior inclusion probability: Chapter 4 showed, on a simulated study, that the BGL-SS is not sensitive to the
prior inclusion probability. Thus, we considered a Beta distribution with both hyperparameters equal to 2 on
the prior inclusion probability (Figure 5.6):
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Figure 5.6: Beta distribution density for various choices of the two hyperparameters. Beta(2,2) used as a prior
distribution for inclusion probability is highlighted in orange.

5.2.1.2.2 Selection results of Bayesian Group Lasso with Spike and Slab prior

Model selection criteria
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For BGL-SS, there are two feasible criteria for selecting the best subset of explanatory predictors:

1. The posterior median estimation of regression effects: Xu ct al. (2015) showed that the sub-model selected
according to the posterior median estimation of regression effects has an excellent performance for both

variable selection and estimation (Table 5.4).

’ Latent variables \ Physical interpretation Best subset of predictors
o deep radiocarbon MAT
(053 topsoil radiocarbon Land, Soil, Dif T, MAP
03 radiocarbon incorporation | Land, soil, Dif_T, MAP, Al, MAT

Table 5.4: The best subsets of climatic and environmental predictors for latent linear models of ¢;, ¢, and ¢3 chosen
according to the posterior median estimation of regression effects.

2. The Posterior Inclusion Probability (P.I.P): Barbieri et al. (2004) showed that, for a linear model, the
optimal predictive model is often the median probability model, which is defined as the model consisting of

predictors which have overall posterior probabilities greater than or equal to 1/2 of being in a model (Table
5.5).

| Latent variables | Physical interpretation | Best subset of predictors | PIP*100 |

MAT 61

01 deep F'“C Land 53
Soil 51
Soil 100

MAP 78

0 topsoil F14C Dif T 60
Land 56

Al 53

Soil 97

Al 94

MAP 84

03] F4C incorporation Land 82
Dif_T 72

MAT 69

min_P 55

Table 5.5: The best subsets of climatic and environmental predictors for latent layers ¢, ¢» and ¢3 chosen according
to the Posterior inclusion Probability (PIP). The significant predictors are detected with a PIP at least equal to 0.5.
The predictors highlighted in blue were the ones detected in addition to those identified by the posterior median
estimation of regression effects. The predictors are ordered according to the PIP.

According to Table 5.5, the Aridity Index (AI) and the minimum precipitation (min_P) were included, in the ¢, and
¢3 latent linear models respectively, in addition to the predictors identified for ¢, and ¢5 in Table 5.4. The inclusion
of the Aridity Index with a rather small PIP (PIP = 53) can be explained by the correlation between this predictor
and the Mean Annual Precipitation (MAP) detected as significant (Figure 2.3 in Chapter 2) with both selection
criteria (Pearson correlation, P.C(ALLMAT) = 0.66). The inclusion of the minimum precipitation (min_P) with a PIP
equal to 55 can also be explained by the positive relationship existing between this predictor and the Aridity Index
(P.C(min_P,AI) = 0.67).

The model selected according to the posterior median estimation of regression effects will be more robust to the
collinearity problem than the sub-model selected according to the posterior inclusion probabilities of predictors.
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Comparison of '""Best BGL-SS sub-models"

Two sub-models are in competition, the one obtained using median probability criteria (Table 5.4) and the one
using PIP criteria (Table 5.5). Which one to choose? In light of the Bayesian model checking and the comparison
of the model criteria presented in the previous section, the most parsimonious model was chosen. The DIC was
computed by testing the hierarchical non linear model (without the selection step) and considering only the predictors
detected as significant with each of the BGL-SS selection criteria. The aim of this step is to readjust the estimation
of regression effects by removing the predictors detected as non significant.

According to the DIC criterion, the model that best fits the dataset is the posterior median model including predictors
with Posterior inclusion Probabilities (PIP) at least equal to 0.5 (the lowest recorded DIC is -2356). The Cross
Validation (C.V), obtained by splitting the data into (k = 5) groups, showed no important difference between the
Relative Error (R.E) computed for the sub-model selected according to the posterior median estimation of the
regression effects and the Relative Error (R.E) for the model selected based on the posterior inclusion probabilities

for predictors. We chose the PIP model since it has a better adjustment of data (Table 5.6).

R.E on validation sets | R.E on learning sets | Posterior coverage
Models DIC | p-value of PP.C 5-fold C.V(%) 5-fold C.V on validation sets(%)
Median model | -2340 0.568 36.22 11.89 95.5
PIP model -2356 0.566 36.87 11.62 95.1

Table 5.6: Bayesian criteria comparison for the posterior median model and the model selected according to the
posterior inclusion probabilities of predictors. The model with the lowest Deviance Information Criterion (DIC) is
preferred to models with higher DIC. The model with a p-value of the Posterior Predictive Check (P.P.C) close to
0.5 is preferred to models with p-values close to 0 or 1. R.E refers to the Relative Error computed for both learning
and validation sets.

For Bayesian Group Lasso with Spike and Slab prior, we selected the sub-model according to the Posterior
Inclusion probability in Table 5.5, as it shows a better prediction power than the model selected based on the

posterior median estimation of regression effects.

5.2.1.3 Bayesian Sparse Group Selection
5.2.1.3.1 BSGS model specification and choice of hyperparameters

After identifying that the soil type influences the topsoil radiocarbon dynamics by applying the Bayesian Group

Lasso with Spike and Slab prior, soil scientists may wonder:

Which are the levels with significant contributions (non null effects) within the soil type that affect the
topsoil radiocarbon?

The Bayesian Sparse Group Selection is constructed to handle the presence of categorical predictors in the linear
model and to answer this type of question. This method performs better than the Sparse Group Lasso with Spike
and Slab prior in terms of selecting the active predictors as well as identifying the active levels within the selected
predictors (Chapter 4). The Bayesian Sparse Group Selection model will be applied on the latent linear models
within the framework of the hierarchical non linear model proposed for soil radiocarbon dynamics. For the prior

specifications, the hyperparameters are chosen as follows:

¢ Prior inclusion probability: we propose a Beta distribution, with both hyperparameters equal to 2, on prior
probability for predictors and levels inclusion. This induces a distribution for the number of included variables
which has a heavier tail than the binomial distribution, allowing the model to learn about the degree of

sparsity.
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Chapter 5

* The variance hyperparameter of Normal distribution for regression effects: Zellner’s g prior is proposed
on the regression effect when the relative predictor is selected. The g7, fori=1, 2, 3, 4 represents the posterior
mean estimation of g; obtained from the Bayesian Full model (including all predictors). This choice was

made to allow plausible values for regression effects.

BAYESIAN SPARSE GROUP SELECTION

¢ Likelihood:

for each site s € {1: S} (S = 131) and each depth x € {1 : m,}, the likelihood is written as:
- F14C(s,x) ~ N+ (g((P(S),X),GZ)

where, g(0(5).3) = 01(5) + (9a(5) — 01 () xexp (525 )™

¢ Latent variables:

for each site s, the linear models are defined us:

¢i(s) ~ Ny (X[s,] % Bi,07) i=1,2,3
lOg(¢4(s)) NN(X[S’] *ﬁ4’64%)

e Priors:

- 1/06? ~ Gamma(0.001,0.001)

fori=1, 2,3, 4:
- 1/06? ~ Gamma(0.001,0.001)

— for the fourth latent variable ¢4:
Baj~N(0,g507(XjX;)") forj=1,...,Pand P=20

— Intercepts, fori=1, 2, 3:
Boi ~ N(0,g7 07 (X5X0) ")

— for the two categorical predictors g = 1, 2 and for the latent layeri =1, 2, 3:

+ binary indicator for categorical predictor inclusion:
Vg(i) ~ Ber(pﬂredictor(i))
+ binary indicator for level inclusion:
Mag(@)1Ve(D) ~ (1= V(i) + Ve (D) Ber(prever (i)
+ predictor prior inclusion probability:
Ppredictor(i) ~ Beta(2,2)
+ level prior inclusion probability:
Piever (i) ~ Beta(2,2)
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¢ Priors:

— regression effect of level 1 within the categorical predictor g:

Big (i) Aug () Vg () ~ (1= Aug (i) S0 + Asg (i) Ve ()N (0, g7 07 (Xg X))

» for the six numerical covariates, we used the Bayesian selection method of Kuo and Mallick (1998)
. This approach is based on the Stochastic Search Variable Selection introduced by George and
McCulloch (1993). The spike and slab prior proposed on regression effects is replaced by a mixture

model between a mass point at 0 (Dirac distribution) and a Normal distribution.

— regression effect for numerical predictor n = 1...,6:
Bu(@) ~ (1= va(i)) * 8o+ va(i)N(0, g7 67 (X, X))
— binary indicator for numerical predictor n:

Vn(i) ~ Ber(pprediclor(i))

5.2.1.3.2 Selection results of Bayesian Sparse Group Selection

Best subset of predictors selected

The best sub-model chosen according to the Posterior Inclusion Probability is summarized in Table 5.7:

| Latent variables | Physical interpretation | Best subset of predictors | PIP*100

Land 80
Soil 51
01 deep F'4C MAT 85
MAP 54
Dif_T 52 "
Land 82 5
0 topsoil F4C Soil 87 =
Dif T 73 =
Land 73 o
03 F'C incorporation 13[([)&) Z;
Al 77

Table 5.7: The best subsets of climatic and environmental predictors for latent linear models for ¢y, ¢» and @3 chosen
according to the Posterior inclusion Probability (PIP). The significant predictors are detected with a PIP at least
equal to 0.5.

Identification of the active levels within the selected categorical predictors

The active levels are detected with a posterior inclusion probability at least equal to 0.5. In Figure 5.7, the
results of the Posterior Inclusion probability (PIP) obtained within the influential categorical predictors are presented
as bars versus the real variation for deep and topsoil radiocarbon according to ecosystem and soil type shown as

boxplots.
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Figure 5.7: A comparison between the Posterior Inclusion Probability (given in %) for levels within the significant
categorical predictors versus the real variation of radiocarbon. The green bars correspond to a Posterior Inclusion
Probabilities at least equal to 0.5 (active levels) while the red ones underline the non active levels (PIP < 0.5). The
yellow stars in the box-plots indicate the level detected as active by the Bayesian Sparse Group Selection. The
boxplots for deep radiocarbon (@) are obtained based on the profiles of the database where the depth is greater than
100 cm. In contrast, the boxplots corresponding to the topsoil radiocarbon (¢,) are plotted based on the profiles of
the database where the depth is smaller than 10 cm. Luvisol and the natural forest are the baseline levels for soil
type and ecosystem type respectively.

For soil type, the Bayesian Sparse Group Selection detects Andosol and Vertisol with a Posterior Inclusion
Portability (PIP) of 50% and 81% respectively. The boxplots of the real variation of the radiocarbon at the
top and deep soil show a different behavior of Andosol and Vertisol compared to the other soil types. For
ecosystem type, field and the cultivated-forest were selected with 66% and 54% for deep radiocarbone. Add

to that, the only significant effect within ecosystem type was underlined by the cultivated-grassland with
79%.

5.2.1.4 Bayesian Effect Fusion using model-based clustering
5.2.1.4.1 BEF model specification and choice of hyperparameters

Bayesian Effect Fusion is a helpful method not only for selecting categorical predictors but also for merging levels

within the same predictor having the same effect on the response. This method provides answers to the following
question of soil scientists:

Which soil/ecosystem types have the same influence on the soil carbon behavior? Can we consider another
grouping for soil/ecosystem predictors?

However, the selection performance of this approach is sensitive to the choice of some hyperparameters for the
prior specifications.

Choice of hyperparameters

» Hyperparameter vector ¢, for Dirichlet distribution: based on the results obtained in the simulated study
in Chapter 4, we fixed all components of the hyperparameter vector e for the Dirichlet distribution to 0.1.
This value showed a good compromise for merging levels.

* Variance hyperparameter for the Gaussian mixture distributions: a sensitivity analysis was conducted
to choose the hyperparameter k of the variance parameter. The selection and fusion BEF performances were
tested for k = 10, 50 and 100.

* Prior inclusion probability: As with the previous two selection approaches, a Beta(2,2) distribution is
proposed on prior inclusion probability.
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Chapter 5

The BEF model for the soil radiocarbon dynamics is written as follows:

BAYESIAN EFFECT FUSION MODEL-BASED CLUSTERING

¢ Likelihood:

for each site s € {1: S} (S = 131) and each depth x € {1 : m,}, the likelihood is written as:
- FYC(s,x) ~ N; (8(9(s),x),07)

where, 8(6(5),) = 91(5) + (9a(s) ~ 01(5)) wexp (5 )

¢ Latent variables:

for each site s, the linear models are defined us:

¢i(s) ~ Ny (X[s,] % Bi,07) i=1,2,3
log(94(s)) ~ N (X[s,] * B, 0F)

¢ Priors:

* 1/6% ~ Gamma(0.001,0.001)

fori=1,2,3,4:

s 1/0? ~ Gamma(0.001,0.001)

e for the fourth latent variable ¢:
Baj~ N(0,g;07(X;X;)~") forj=1,...,Pand P=20

¢ Intercepts, for i= 1, 2, 3:
Bo.i ~N(0,g; 07 (XpXo0) ")

» for the latent variable ¢; i = 1, 2, 3 and the categorical covariate X, g = 1, 2 with C; and C; levels

respectively:

— Barli) = X, ViGN (11(0), W (i) + Vog (i) 8

— Vvi(i) ~ Dirichleic,1(eo) where ey € RS !

* Vog(i) =0
# Vi(§) ~ N(mg (i), M (i)

# Wi = V(i) /e where V(i) = w7 1%, (B (1) — B (1)) and By (i) = & 2%, B (i)

108



* k and e highlighted in blue need to be tuned by the user. m, (i) and M, (i) are specified according to
the suggestions of Malsiner-Walli et al. (2018).

¢ Like the BSGS, the selection of numerical predictors is based on Kuo and Mallick (1998) approach.
Fori=1,2,3andn=1,...,6:

— regression effect for the numerical predictor n:
Bul@) ~ (1= va(i)) * 8o+ va ()N (0, g7 67 (X, X))
— binary indicator for the numerical predictor n:

Vn(i) ~ Ber(ppredictor(i))

5.2.1.4.2 Selection results of Bayesian Effect Fusion model-based clustering

Results of the sensitivity analysis of the variance parameters

The Bayesian Effect Fusion was tested with three different values of k for the Gaussian mixture distribution

variances: k = 10, 50 and 100. Two levels within the same categorical predictor are fused if their Posterior Fusion
Probability (PFP) is at least equal to 0.5. Furthermore, a given level is fused to the baseline if the estimation of its
Posterior Median Regression Effect (PMRE) estimation is exactly equal to 0. The best sub-models are identified
based on both Posterior Fusion effect and Posterior Median Regression Effect.
For these three values, one sub-model is identified (Table 5.8). The lowest DIC was recorded for the BEF with k
equal to 50. However, the difference in the DIC between the BEF with k = 10 (DIC = -2354) and k = 50 (DIC =
-2363) is slight. A difficulty of convergence is detected for the BEF with k = 100. Even when increasing the number
of iterations, there are still some parameters that do not converge according to the potential scale reduction factor
defined by Gelman et al. (1992).

latent variables k=10 k=50 k=100

selected predictors | DIC | R | selected predictors | DIC | R | selected predictors | DIC | R

MAT MAT MAT

o Soil Soil Soil

Land Land Land

Land Land Land
9 Soil 2354 | v Soil -2363 v Soil -2336 | X

MAP MAP MAP

Al Al Al
9 Land Land Land
Soil Soil Soil

Table 5.8: The same sub-set of predictors is identified under the three choices of k values. The sub-model
identification is based on the Posterior Fusion Probability (PFP) and the Posterior Median Regression Effect
(PMRE). The Deviance Information Criterion for model fitting is given in the DIC column. The column named "R"
indicates Gelman & Rubin’s potential scale reduction factor for model convergence. The check-mark underlines
that the convergence has been achieved while the Xmark indicates a poor model convergence.

Results of fusion of levels within the significant categorical predictors

1. Results of fusion of levels within the ecosystem type

The clustering of the levels of the ecosystem type identified according to the PFP and the PMRE are
represented as pie charts versus the observed variation of the radiocarbon F!4C according to the ecosystem

type illustrated by boxplots (Figure 5.8).
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Figure 5.8: The fusion of levels for ecosystem type for the deep radiocarbon (¢), topsoil F*C (¢) and the F'*C
incorporation (¢3) are represented by pie charts. The actual variation of the topsoil and deep radiocarbon according

to the ecosystem type are illustrated by boxplots. The boxplot or piechart parts of ecosystem categories having the
same color belong to the same cluster.

2. Results of fusion of levels within the soil type
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The clustering of the levels of the soil type identified according to the PFP and the PMRE are represented

as pie charts versus the observed variation of the radiocarbon F“C according to the soil type illustrated by
boxplots (Figure 5.9).
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Figure 5.9: The fusion of levels for soil type for the deep radiocarbon (¢;), topsoil F'“C (¢») and the F'“C
incorporation (¢@3) are represented by pie charts. The real variation of the topsoil and deep radiocarbon according

to the soil type are illustrated by boxplots. The boxplot or piechart parts of soil categories having the same color
belong to the same cluster.

The same sub-model was identified under three different choices of Gaussian mixture hyperparameters
variances k = 10, 50 and 100. The same clustering of levels of ecosystem types is obtained under the three

values of k. However, the clustering of soil type levels differs from one value of k to another, the lowest DIC
criterion was obtained with k = 10.
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5.2.1.5 Comparison of the Bayesian selection models: Bayesian Group Lasso with Spike and Slab, Bayesian

Sparse group Selection and Bayesian Effect Fusion model-based clustering

Models DIC p-value | R.E on validation sets | R.E on learning sets | Posterior coverage
P.P.C 5-fold C.V (%) 5-fold C.V (%) on validation sets
BGL-SS (PIP model) | -2355 0.56 36.87 11.62 0.951
BSGS -2251 0.51 36.21 11.65 0.961
BEF -2205 0.51 35.88 11.63 0.960
Full model -2324 | 0.58 37.12 15.24 0.951

Table 5.9: Comparison of the Full Bayesian model and the sub-models identified by the Bayesian selection
approaches for soil radiocarbon dynamics using the Bayesian selection criteria. The model with the lowest Deviance
Information Criterion (DIC) is preferred to models with a higher DIC. A p-value of the Posterior Predictive Check
(PP.C) close to 0.5 indicates a good model fitting. The model having the smallest Relative Error (R.E) on validation
sets has the best predictive power. The posterior coverage of the credible intervals on the validation sets should be
around 95%.

According to Table 5.9, the sub-model, identified by the BGL-SS based on the PIP , gives the best fit of the data
(DIC = -2355). Among the sub-models, the difference in Relative Errors (R.E) for the three Bayesian selection
methods, calculated for the validations sets, is negligible. Thus, the best sub-model is identified by the Bayesian

Group lasso with Spike and Slab and according to the Posterior Inclusion Probability selection criterion.

Recap of the sub-model selected by the BGL-SS according to the Posterior Inclusion Probability

| Latent variables | Best subsets of predictors ]

ecosystem type (Land)
Deep F'“C (¢1) soil type (Soil)
Mean Annual Temperature (MAT)
ecosystem type (Land)
soil type (Soil)

Topsoil FC (¢,) Mean Annual Precipitation (MAP)
Aridity Index (AI)
seasonal temperature shift (Dif_T)
ecosystem type (Land)
soil type (Soil)

Mean Annual Temperature (MAT)
FC incorporation (¢3) | Mean Annual Precipitation (MAP)
Aridity Index (AI)
minimum precipitation (min_P)
seasonal temperature shift (Dif_T)

w
S
D
~—
=
o]
=
@)

Predictors | ¢; | PIP¥100(g;) | PM.EE | ¢, | PIP¥100 (¢2) | PM.EE | ¢3 | PIP¥100 (¢3) | PM.E.E
Sol 51 - 100 - 97 -
Land 53 - 56 - 82 -
MAT 61 +0.037 | E3 47 +0.001 69 +7.16
Dif T |E3 44 -0.004 60 -0.012 72 +6.28
MAP [X| 46 +0.009 78 +0.028 84 +14.69
min_P | E3 42 +0.002 | E3 45 -0.001 55 +0.26

F'%Catm | E3 40 -0.004 | E3 49 -0.006 | E3 45 -0.05
Al [X] 42 -0.003 54 -0.008 94 -19.15

* PM.E.E: Posterior Mean Effect Estimation
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5.2.2 Application to soil carbon content dynamics

5.2.2.1 Full Bayesian model

5.2.2.1.1 Full Bayesian model and constraints

As for soil radiocarbon modeling, there are also constraints for soil carbon content:

1. The soil carbon content reported in g/kg is always positive. Thus, using a Normal truncated distribution or a

logarithm transformation of the soil carbon content is recommended.

2. The latent variables w;, @, and s should have positive values in accordance with their physical interpreta-

tions.

For the Bayesian inference, we consider a vague Gamma prior on the precision parameters 1/ 63 and 1/ sdi2 for
i =1,2,3, where both hyperparameters are equal to 0.001. With regard to regression effects, we propose a Zellner’s
g prior under a vague Uniform prior on g. The Full Bayesian model for soil carbon content dynamics is written as

follows:

FULL BAYESTAN MODEL FOR SOIL CARBON CONTENT DYNAMICS

* Likelihood: for each site s € {1: S} (S = 125) and each depth x € {1 : m,}, the likelihood is written

as:

- C(s,x) ~ Ny (f(o(s),x),0?) (truncated normal distribution) or

— log(C(s,x)) ~ N (log(f(®(s),x)),072) (logarithm transformation)

where, f((s),x) = @i (s) + (02(s) — 01 (s)) *exp (_ﬁ@))

¢ Latent variables:

for each site s, the linear models are defined as:

@i(s) ~ Ny (X*[s,] % Bi,sd?)  i=1,2,3

¢ Priors:

- 1/6? ~ Gamma(0.001,0.001)

fori=1,2,3,4,P’=19and S = 125:
- 1/sd? ~ Gamma(0.001,0.001)

- Bi~ N(O,gisdf(X*,X*)_l) where 0 € R” and X € M p(R)

- gi ~ Uniform(5,10000) (vague prior)

5.2.2.1.2 Results of the Full Bayesian carbon content dynamics model

In order to decide how to model the response of soil carbon contents, the additive model with truncated Normal
distribution was tested against the multiplicative model with the log transformation. The Deviance Information
Criterion (DIC) and the Posterior Predictive Check (P.P.C) for both models are given in Table 5.10:
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| Models | DIC | p-value of P.P.C |

additive model (truncated Normal distribution) | 7258 0.93
multiplicative model (log transformation) 2243 0.79

Table 5.10: DIC comparison between the full additive model and the multiplicative full model. The model with the
lowest DIC is preferred to models with a larger DIC. The p-value of the Posterior Predictive Check is calculated
according to the statistical quantity 7(C,®) = E(C — f(®,depth)) where f is the non linear deterministic form
used to model soil carbon content and C is the soil carbon content response.

The multiplicative model has the lowest Deviance information criterion (DIC = 2243). The p-value of the
Posterior Predictive Check for the additive model shows that this model provides a very bad fit (p-value = 0.93).
This result is in agreement with the first attempt at latent variables estimation using in optimization algorithm. In
fact, the assumption of homogeneity of errors variance for an additive model was not satisfied. The residual plot is

illustrated in Figure 5.10 :

Residual

-150
1

I I I I I I I
0 200 400 600 800 1000 1200

Fitted values

Figure 5.10: Residuals versus fitted values for soil carbon content model. Positive values for the residual mean the
prediction was too low, and negative values mean the prediction was too high; 0 means the estimation was exactly
correct.

In general, the posterior predictive p-value does not have a uniform distribution, under the null hypothesis that the

set of parameters estimated by the model is true, but instead tends to have a distribution that clusters near 0.5. Here,
the posterior predictive p-value of 0.79 highlights an overestimation of the data by the proposed statistical model.
Particularly, a large uncertainty of some profiles is observed for the topsoil carbon content according to the prediction
bands obtained by the statistical model. In fact, for the top 10 centimeters, the observed soil carbon content varies
between 3 and 467 g/kg. This large uncertainty is also observed when linking the estimated ¢,, obtained by the
optimization algorithm (before applying the Bayesian inference), with the climatic and environmental predictors.
The estimated standard deviation is 61.2 g/kg (using the Im function in R).
Furthermore, the topsoil carbon content variation is not only large for the overall profiles of the database but also
very large according to the corresponding soil type. The lack of soil expert’s information about the topsoil carbon
content variation and the large natural variation of topsoil carbon content according to soil type available in the
SoilGrids database does not help us to better represent the uncertainties on the topsoil (see Subsection 2.1.5.6 in
Chapter 2).
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Chapter 5

5.2.2.2 Bayesian Group Lasso with Spike and Slab prior
5.2.2.2.1 BGL-SS model specification and choice of hyperparameters

For the Bayesian Group Lasso with Spike and Slab (BGL-SS), we followed the same concept of prior specification
of the BGL-SS used for the soil radiocarbon dynamics. Thus, a Beta prior is proposed for the prior inclusion

probability with both hyperparameters equal to 2.

5.2.2.2.2 BGL-SS selection results

Best sub-models selection criteria

Two Bayesian selection criteria can be used to choose the best sub-predictors for soil carbon content dynamics.
We recall that the first criterion is based on choosing the sub-model according to the posterior median regression
effect estimation while the second criterion consists in including in the model all the predictors with a Posterior
Inclusion probability (PIP) at least equal to 0.5. The BGL-SS selection results, in latent linear models, for both

Bayesian selection criteria are summarized in Table 5.11:

Latent variables | Physical interpretation Median mo.d cl PIP mpdel

best sub-predictors | best sub-predictors | PIP

Land Land 71

Soil Soil 71

@1 Deep € MAP MAP 63
Al 50
Soil Soil 100
[0)) Topsoil C MAT MAT 100
Dif T Dif T 70
Soil Soil 100

w3 C incorporation Dif T Dif T 62
MAP map 56

Table 5.11: The best sub-predictors detected according to the two Bayesian selection criteria used for the Bayesian
Group Lasso with Spike and Slab prior. The sub-predictors selected according to the posterior median estimation of
regression effects are indicated in the column called "Median model". The sub predictors detected according to the
Posterior inclusion Probability (PIP) are represented in the column called "PIP model". This column also contains
the PIP for the significant predictors. The symbol C in the second column refers to the carbon content.

Readjustment and best sub-models comparison

In order to better estimate the regression effects, the best sub-models based on the posterior median estimation
of regression effects and the posterior inclusion probability were readjusted by removing the redundant predictors.

The Deviance Information Criterion, for both sub-models, is given in Table 5.12.

’ Best sub-models \ DIC ‘

Median model 2072
PIP model 2078

Table 5.12: The Deviance Information Criterion (DIC) for the two sub-models detected by the Bayesian Group
Lasso with Spike and Slab. The Median model is based on the posterior median estimation of regression effects
while the PIP model is based on the Posterior Inclusion Probability (PIP) for predictors.

According to Table 5.12, the best model chosen with respect to the lowest DIC is the Median model (DIC =

2072). Furthermore, the two sub-models can be considered as a step of Stepwise regression. In fact, the only

116



difference between the two sub-models is that the PIP model considers, in addition, the Aridity Index (Al) as a

significant predictor for the @; latent linear model with a Posterior Inclusion Probability equal to the selection

threshold 0.5. An increase in DIC is observed for the PIP model after adding the Aridity Index (AI) (DIC = 2078).

Thus, the final sub-model kept is the Median model.

5.2.2.3 Bayesian Sparse Group Selection
5.2.2.3.1 BSGS model specification and choice of hyperparameters

The Bayesian Sparse Group Selection (BSGS) model has the same structure as the BSGS proposed for the soil
radiocarbon modeling with the exception that for the soil carbon content three latent variables are defined instead
of four. This approach provides a probabilistic judgment about the inclusion of categorical predictors as well as
levels. The Bayesian method of Kuo and Mallick (1998) was used to select the numerical predictors. For the
prior specification, a Beta distribution with both hyperparameters equal to 2 was considered for the prior inclusion
probability for categorical predictors as well as for levels. If the categorical predictor is significant, the regression
effect is generated from a Zellner’s g prior where the g value for each latent linear model is replaced by the posterior

mean estimation of g obtained from the Full Bayesian model.

5.2.2.3.2 BSGS selection results

The best sub-model identified by the BSGS

In the best sub-model, all the predictors have a Posterior Inclusion Probabilities (PIP) at least equal to 0.5. The
best sub-predictors for each latent linear model are summarized in Table 5.13.

Latent variables Physical interpretation Best sub-predictors \ PIP > 0.5 (%) \

Land 82

(o)) Deep carbon content SZil gi’
Dif T 60

Land 100

Soil 100

) Topsoil carbon content MAT 100
MAP 64

min_P 58

Al 56

Land 100

Soil 100

MAT 60

(3} Carbon content incorporation MAP 76
min_P 62

Al 62

Dif T 82

Table 5.13: The best sub-predictors for each latent linear model identified according to the Posterior Inclusion
Probability (PIP). A predictor is considered as significant if its PIP is at least equal to 0.5.

The active levels identified within the significant categorical predictors

The Posterior Inclusion Probability of levels within the significant categorical predictors are illustrated by

histograms in Figure 5.11.
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Figure 5.11: The barcharts (right panels) illustrate the Posterior Inclusion Probability (PIP) for soil and ecosystem
type in the @; and @, latent linear models. The box-plots (left panels) illustrate the real variation of deep and topsoil
soil carbon content according to soil and ecosystem types respectively. The yellow stars indicate the levels detected

as active by the Bayesian Sparse Group Selection. Luvisol and natural-forest are the baseline for the soil type and
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5.2.2.4 Bayesian Effect Fusion model-based clustering
5.2.2.4.1 BEF model specification and choice of hyperparameters

Bayesian Effect Fusion is sensitive to the choice of hyperparameters as seen in Chapter 4. Here, we fixed all the
components of the vector eq for the Dirichlet distribution to 0.1. The BEF was tested under three different values of
k=10,100 and 120.

5.2.2.4.2 BEF selection results

The results of the sensitivity analysis are summarized in Table 5.14.

latent variables k=10 k=350 k=100
selected predictors | DIC | R | selected predictors | DIC | R | selected predictors | DIC | R
) Soil Soil Soil
Land Land Land
Land Land Land
Soil Soil Soil
) MAT 2051 | v MAT 2045 | v MAT 2053 | v
MAP MAP
Land Land Tand
Soil Soil Soil
= MAP MAP MAP
Dif T Dif T Dif T
Al

Table 5.14: The best sub-set of predictors is identified for each choice of k. The Deviance Information Criterion
for model fitting is given in the column DIC. The column named "R" indicates Gelman & Rubin’s convergence.
The check-mark underlines that convergence has been achieved while the Xmark indicates a difficulty in achieving
model convergence. The blue Xmark indicates a poor convergence.

| Fusion models | DIC | p-value (P.P.C) | "
Model with k = 10, 100 | 2057 0.81 5
Model with k = 50 2076 0.81 e

=

Q

Results of fusion levels with the significant categorical predictors

Results for levels of ecosystem type

Ecosytem type Ecosytem type Ecosytem type
Deep carbon content Deep carbon content Deep carbon content
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Ecosytem type
Topsoil carbon content

Ecosytem type
Topsoil carbon content

Ecosytem type
Topsoil carbon content

Ecosytem type
Carbon content incorporation

k=10, 50, 100

Figure 5.12: The results of the ecosystem type levels fusion for each of the three latent variables @; (deep carbon content), @,
(topsoil carbon content) and @s (carbon content incorporation). The fusion of levels is based on the Posterior Fusion probability
(PFP) for pairs of levels and the posterior median for regression effects. Two levels are fused together if their PFP is at least

equal to 50%.

2- Results for levels of soil type

Soil type

Soil type
Deep carbon content

Soil type
Deep carbon content

Deep carbon content

Soil type
Topsoil carbon content
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Soil type
Carbon content incorporation

Y k=10,50,100 5 |

Figure 5.13: The results of the soil type levels fusion for each of the three latent variables @; (deep carbon content),
, (topsoil carbon content) and @3 (carbon content incorporation). The fusion of levels is based on the Posterior
Fusion probability (PFP) for pairs of levels and the posterior median for regression effects. Two levels are fused
together if their PFP is at least equal to 50%.

For the topsoil radiocarbon, the same clusters are identified under the different values of k = 10, 50 and 100
(Figure 5.13).

5.2.2.5 Comparison of the Bayesian selection methods for soil carbon content dynamics

Median R.E on learning sets | Median R.E on validation sets | Posterior coverage

Models DIC | PPC 5-fold C.V (%) 5-fold C.V (%) on validation sets
BGL-SS (posterior median) | 2072 | 0.77 61 167 0.97
BSGS 2083 | 0.80 76 171 0.98
BEF 2057 | 0.81 76 170 0.98
Full model 2091 | 0.79 67 145 0.95

Table 5.15: Comparison of the Full Bayesian model and the sub-models identified by the Bayesian selection
approaches for soil carbon content dynamics using the Bayesian selection criteria. The model with the lowest
Deviance Information Criterion (DIC) is preferred to models with a higher DIC. A p-value of the Posterior Predictive
Check (P.P.C) close to 0.5 indicates a good model fitting. The model having the smallest Relative Error (R.E) on
validation sets has the best predictive power. The posterior coverage of the credible intervals on the validation sets
should be around 95%.
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For each profile and at each depth, the sum of the Relative Error (R.E), which compares the absolute error relative
to the observed value, was computed. In order to obtain an estimation for the overall profiles, we computed the
median of the Relative Errors for all studied sites. Here, the Relative Error exceeds 100%. Theoretically, the relative
error can be any size at all, including more than 100%. For example, if we expect a soil carbon content to be 5 g/kg
but it was measured as 15 g/kg, this gives a Relative Error of 200%. This result was expected since the posterior
predictive p-value was higher than 0.5.

Better adjustment is noted for the Bayesian Effect Fusion model-based clustering (BEF) (the lowest DIC
recorded: 2057). However, the best prediction indicated by the lowest Median Relative Error on the validations sets
is obtained with the Full Bayesian model.

Recap of the sub-model selected by Bayesian Effect Fusion
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Latent variables | Best subsets of predictors |

ecosystem type (Land)
soil type (Soil)

ecosystem type (Land)
soil type (Soil)

Mean Annual Precipitation (MAP)
Mean Annual Temperature (MAT)
ecosystem type (Land)
soil type (Sol)

Mean Annual Precipitation (MAP)
seasonal shift (Dif_T)

Deep carbon content (@)

Topsoil carbon content (@,)

carbon content incorporation (@3)

Predictors | @; | PIP*100 (@) | PM.EE | @ | PIP¥100 (@) | PM.EE | @3 | PIP¥100 (3) | PM.EEE

Sol - - - - - -
Land - - - - - -
MAT [X] 24 -0.05 100 -64.96 | E4 47 +1.51
Dif T [X] 24 +0.06 | E3 31 -0.85 67 -6.01
MAP X 21 +0.03 | E3 50 +8.50 62 +5.55
min_P | E3 26 +0.12 | E3 38 +3.68 | K3 41 -1.11

Al (X 27 -0.03 | E3 38 -4.18 | E3 49 273

* PM.E.E: Posterior Mean Effect Estimation
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5.3 Physical interpretations of climatic and environmental predictors se-

lected as significant

5.3.1 Atmospheric F'“C of the sampling year (F'“Catm)

Atmospheric F'“C of the sampling year was not selected as an influential predictor for any of the latent

variables. Atmospheric radiocarbon only makes sense for the modeling of the F'4C profile. It is not
considered in the soil carbon content dynamics statistical study.

The atmospheric “C concentration has not always been constant with time. In addition to the natural variation
of the atmospheric F!'“C, two anthropogenic activities disrupted the '4C cycle. The first change in the ratio of the
atmospheric concentrations (decrease in the atmospheric F'C) was caused by the admixture of large amounts of
fossil-fuel which does not contain C. Added to that, in the late 1950s and early 1960s, the atmospheric radiocarbon
increased due to the massive introduction of 'C from atmospheric nuclear testing (Hua et al., 2013). Other earth
carbon reservoirs such as vegetation and soil, have undergone similar 'C anthropogenic changes. For example, a
profile sampled in 1965 is richer in topsoil radiocarbon than a profile sampled in 1990.

« Impact of the sampling year of the atmospheric F'“C (F'“Catm)

The Posterior Inclusion Probability of the atmospheric F'*C predictor, for topsoil F'C (¢,), is estimated
at 49%. Even very close to the selection threshold (PIP = 50%), the atmospheric F 14C is not detected as a
significant predictor to explain the topsoil F'“C. This was highly unexpected.

However, on returning to the original data from the database, we do indeed not see any clear relationship
between topsoil F'“C and atmospheric F'“C (Figure 5.14). This non-selection of F'4Catm can be explained
by the bias that derived from the database concerning the sampling year of the profiles. In fact, 53% of the
profiles were sampled in the nineties (see Figure 2.7 in Chapter 2). The database is unbalanced with respect

to the number of profiles sampled before and after the influence of bomb '“C.

1.3- ¢
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1.1- 33‘: R | .
#.., . .h: Sampling year
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L g o °
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10 12 14 16

Atmospheric-FMC

Figure 5.14: Distribution of the topsoil (less than 10 cm depth) F'“C from the database versus the atmospheric F'“C.
Colors highlight sampling years grouped into four periods.: before 1980, [1980-1990], [1990-2000] and after 2000.
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Chapter 5

The non detection of atmospheric radiocarbon as an influential predictor, for the topsoil radiocarbon, is due
to a poor representation of the potential sampling years in the database, resulting in an overrepresentation of
profiles collected in the 1990s.

5.3.2 Mean Annual Temperature (MAT)

Mean Annual Temperature (MAT) was selected as an influential predictor for deep F'4C (¢;) and F'4C

incorporation depth (¢3) of the F!“C profile and for the topsoil (@,) of the carbon content profile

It is globally assumed that a cooler temperature is associated with slower decomposition and increases the
mean residence time of soil carbon. The smallest change in the soil carbon content may have a large impact on
the concentration of CO; in the atmosphere (Trumbore et al., 1996). The modalities of temperature impact on the
decomposition rate of soil organic matter remain an interesting topic of discussion. A study done by Giardina and
Ryan (2000) suggested that the recalcitrant carbon is not sensitive to temperature variation. In contrast, Fierer et al.
(2005) suggested that the non-labile organic matter is more sensitive to temperature than the labile pool. Fang
et al. (2005), on incubated soils under changing temperature, found similar results. Likewise, Lefevre et al. (2014)
highlighted, on long-term (to 79 years) bare fallow experiments, a strong relationship between the residence time
of carbon organic matter and the temperature sensitivity of its mineralization: the more stable the organic matter,
the more sensitive to temperature the organic matter will be. And finally, Conen et al. (2006) pointed out that

recalcitrant and labile pools have a similar temperature sensitivity.

A recent study done by Yan et al. (2017) also took a position in this debate, pointing out different fates between
top and deep soil. This study was based on a sequential temperature (8°C to 28°C) changing method applied on
cultivated fields in China. Results showed that the average SOC decomposition rate was 59% to 282% higher in the
topsoil than in the subsoil layer. In contrast, the temperature sensitivity values in the topsoil layer were significantly

lower than those in the subsoil layer.

The increasing temperature in humid climates increases both plant growth and decomposition of soil organic
matter. However, the relative increase in the decomposition rate of organic matter remains greater than the net
primary production (Oades, 1988). In a laboratory study, Hagerty et al. (2014) showed that the microbial turnover
accelerates with temperature while the growth efficiency is not sensitive to temperature changes.

It is certain that in order to extract the sole effect of temperature on soil carbon content and dynamics, it would be
necessary to work with several temperatures on the same environmental conditions (soil type, ecosystem, vegetation
cover, etc.) which was not always applicable for the studies carried out. Several parameters influencing soil carbon
are thus mixed and it is difficult to deconvolve the signal. Furthermore, the sensitivity of soil carbon content to
temperature is often studied by confronting soil carbon results with Mean Annual temperature (MAT) or the seasonal
shift of temperature not immediate temperature (Smith et al., 2008).

In this debate, the statistical results obtained on our meta-analysis of radiocarbon and soil carbon con-

tent can provide elements for decision making
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5.3.2.1 Impact of the Mean Annual Temperature (MAT) on the mean residence time (F 140

« Impact of the Mean Annual Temperature (MAT) on the topsoil and deep F'“C

The Mean Annual Temperature (MAT) is detected as significant with a posterior inclusion probability of
61% for the deep radiocarbon activity, whereas it is not detected as an influential predictor for the topsoil
radiocarbon (Table 5.5). Nevertheless, the MAT for the topsoil radiocarbon was associated to a PIP of 47%,
which is not very far from the selection threshold of 50%.

For deep soil, the posterior mean estimation of the effect of the MAT is estimated at 0.03 (with 91% of
chance of being positive). In other words, an increment of 1°C in the MAT will result on average in an
increase of the deep F'“C of 0.03 (standard deviation of 0.03). For example, let us assume that F'4C = 0.3
(*C age of about 9670 yr BP) is the deep soil radiocarbon measurement under a given soil type and land
vegetation cover. An increment of 1° C would increase, on average, the F l4c by 0.33, i.e. will resultin a
decrease of the mean '“C age from 9670 yr BP to 8910 yr BP (more details about the link between F'“C and
14C age are given in Appendix 7.1.

This unexpected result, i.e. MAT as a significant predictor for deep soil but not for topsoil, is confirmed
by the database analysis. The confrontation of topsoil and deep soil F!'“C with Mean Annual Temperature
(Figure 5.15) highlights a positive trend between F'4C and MAT for deep soil whereas no clear signal can be
discerned for topsoil. A younger soil radiocarbon is indeed recorded for higher MAT (Figure 5.15b) for the
deep soil F4C, i.e. for depth at least equal to 100 cm. In contrast, for the topsoil (depth not exceeding 10 cm)
only a minor change in soil F!'“C is observed with an increase in MAT (Figure 5.15a).
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Figure 5.15: Topsoil (depth < 10 cm, panel a) and deep (depth > 100 cm, panel b) F'*C from the database versus
the Mean Annual Temperature (MAT) for the database radiocarbon profiles.

In panel b of Figure 5.15, the set of points, framed by a green circle, shows a different fate to that of the
global trend. All the particular values of F'%C measurements correspond to a Luvisol profile from the same
site sampled in Germany under the Wohldorf forest (Becker-Heidmann and Scharpenseel, 1986). This profile
shows a surprising level between 100 and 112 cm depth with high F'%C values that do not fit with the general
trend of the profile. The authors attributed this feature to the percolation of young organic carbon from the
top that stops its course at the boundary between B and C horizons. The same feature is found at the A/B
boundary as well but as it is higher in the profile, it does not have the same impact. As Becker-Heidmann and

Scharpenseel (1986) sampled soil profiles at a very high resolution (typically a 2 cm step), this very particular
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feature is overrepresented in our database but as the selection approach deals with profile shape and not with
the individual points, the impact of their presence in the final result is not that high. Nevertheless, this profile
might have biased the evaluation of the impact of the MAT predictor, which might have been a bit higher than
the current 0.03 4= 0.03 F'4C unit/°C without the German forest deep points.

Impact of the Mean Annual Temperature (MAT) on F '“C incorporation depth

MAT was detected as significant for F'“C incorporation (¢3) with a posterior inclusion probability of 69%.
The posterior mean of the effect of the MAT, expressed in cm, is estimated at -6 cm with 10 cm of standard
deviation (74% chance of having a negative effect). The signal of -6+10 cm/°C is not that clear but it might
be the expression of the loss of some decades old organic carbon (high F'*C as marked by the bomb peak) at
constant depth (Figure 5.16, 20 cm deep, F 14¢ shifts from 0.59 to 0.43).
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Figure 5.16: The impact of the increment of 1°C in the Mean Annual Temperature (MAT) on the deep F l4c (1)
and the F'*C incorporation (¢3). The profile is plotted for ¢; = 0.3,¢, = 1.1, ¢3 = 20 and ¢4 = 2 . The modified
profile is given in the blue curve.

5.3.2.2 Impact of the Mean Annual Temperature (MAT) on the topsoil organic carbon content

According to the best sub-model identified by the Bayesian Effect Fusion on the soil carbon content profile, the MAT
predictor was considered as significant only for the topsoil carbon content. This selection is associated to a
PIP of 100%. The posterior mean effect of the MAT is estimated at -63 g/kg with 15 g/kg of standard deviation
(100% chance of having positive values). This means that an increment of 1°C in the MAT decreases, on average,
the topsoil carbon content by 63 g/kg. This observation can be linked to a higher vegetation primary production
under higher temperature, considering the MAT range of the database that excludes extreme climates such as desert.

The higher primary production should increase the carbon input to the soil.

In conclusion, an increase in MAT by 1 °C might lead to i— a significant decrease in the topsoil carbon
content without affecting the F'“C and thus the mean residence time, ii- a highly likely increase in deep
soil F'4C reflecting a lower mean residence time and thus more rapid organic matter turnover under higher
temperature, iii- a likely loss of some decades old organic carbon at mid-depth. So an increase in MAT has
an impact on both the short-term as it results in a decrease of topsoil carbon content and the long-term as
highlighted by the change in the mean residence time (loss of centennial to millennial carbon in depth and
loss of decadal carbon at mid-depth).

126



5.3.3 Mean Annual Precipitation (MAP)

RENILE

Mean Annual Precipitation (MAP) was selected as an influential predictor for topsoil (¢,) and incorporation
depth (¢3) of the F'“C profile and for the topsoil (@w,) and incorporation depth (@s) of the carbon content
profile.

Precipitation was identified as a possible key driver for soil radiocarbon and carbon dynamics, because it can
translocate fresh, young organic carbon from the surface to the subsoil. Deng et al. (2016), based on a three year
field experiment in subtropical forests in China, showed that an increase in precipitation results in a slight increase
in soil respiration. This result may, however, be specific to forests since they are characterized by quite low soil
moisture (Zhou et al., 2006). However, Han et al. (2018) showed that soil organic carbon stocks significantly
increase along precipitation gradient in all vegetation types except woodland.

Indeed, an increase in precipitation is generally associated with high vegetation growth rates and therefore high

inputs of organic carbon into soil (Liu et al., 2011; Wang et al., 2010).

5.3.3.1 Impact of the Mean Annual Precipitation (MAP) on the mean residence time (F 140

« Impact of the Mean Annual Precipitation (MAP) on the topsoil F!4C

Mean Annual Precipitation (MAP) was detected as an influential predictor for the topsoil F'“C with a
posterior inclusion probability of 78%. The posterior mean estimation of the effect of MAP is estimated
at + 0.002 (standard deviation of 0.02) with 53% chance of having a positive effect (Figure 5.17). +0.002
+ 0.02 F'%C unit/mm means that MAP effectively impacts topsoil F'“C but it might sometimes be towards
more negative values and sometimes towards more positive values. The impact of MAP is either not clear in

reality, or not clearly expressed in the database or not captured by the mathematical approach.
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Figure 5.17: Histogram of the posterior distribution of the Mean Annual Precipitation (MAP) effect on the topsoil
radiocarbon (¢,).

More in-depth analysis of the database underlines that recorded topsoil F'4C, sampled from a depth not
exceeding 10 cm, shows a general positive trend with MAP (Figure 5.18). This trend may not have been
detected as clearly as it should have been by our mathematical approach due to the series of values belonging
to 7 profiles at 1600 mm of MAP (red circle in Figure 5.18). These values of the 7 profiles correspond to
the same site located at the Moor House Nature Reserve (MHNR) in the United Kingdom (UK) (Bol et al.,
1996; Huang et al., 1996, 1999). Moor house Nature Reserve Habitats include exposed summits, extensive

blanket peatlands, upland grasslands, pastures, hay meadows and deciduous woodland. Analysis of the soil
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map (https://catalogue.ceh.ac.uk/maps#layers/b36357bd-988c-41fa-a3a8-3b2 1cef5Sf0b6) shows that most
soil types are blanket bog associated to some peaty Gley and peaty Podzol. The "peaty" qualifier was not
detected at the first reading of the database but here clearly shows that it is the main feature of the soil. As we
wished to focus on mineral soil, excluding peat and permafrost, we should have removed the profiles from
this reserve for our study.
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Figure 5.18: Distribution of the topsoil radiocarbon (less than 10 cm depth) F!'“C from the database versus the Mean
Annual Precipitation (MAP).

To illustrate the impact of MAP on topsoil F'“C, let us assume a topsoil F'4C equal to 1.1. An increment
of 1 mm in the MAP leads to an increase, on average, of 0.002 F'%C unit, shifting the topsoil F'4C from 1.1
to 1.102 (Figure 5.19). This might correspond either to a higher input of fresh organic matter (F'C of ca.
1.15 in the 1990s) as a result of a positive impact of MAP on vegetation NPP or to a slight increase in the
mineralization of the oldest compound of the topsoil, the two not being exclusive.

Impact of the Mean Annual Precipitation (MAP) on the F'4C incorporation depth

The MAP is a significant predictor for F'“C incorporation (¢3) with a posterior inclusion probability of
84%. The posterior mean estimation of the effect of the MAP is 28 ¢m (standard deviation of 10 cm) with a
99% probability of being positive.

Based on the results provided by the statistical model, we found that the MAP on the F'“C incorporation
(¢3) is highly overestimated. It does not make sense for a | mm increment in the MAP to increase the depth
corresponding to half F'%C topsoil by 28 cm. Nevertheless, this can be interpreted as the injection of young
carbon in depth.
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Figure 5.19: The impact of an increment of 1 mm in the Mean Annual Precipitation (MAP) on the topsoil F l4c ()
and the F'*C incorporation (¢3). The profile is plotted for ¢; (deep F'*C) = 0.3, ¢» (topsoil F'*C) = 1.1, ¢3 (the
distance corresponds to half of the topsoil F'4C amount) = 20 and ¢, = 2. The modified profile is shown in blue.

5.3.3.2 Impact of the Mean Annual Precipitation (MAP) on Soil carbon content

e Impact of the Mean Annual Precipitation (MAP) on the Topsoil carbon content

There is a 52% chance that the MAP will affect the topsoil carbon content (@,). The posterior mean effect
of MAP, on the topsoil carbon content, is estimated to 11 kg/g with 10 kg/g of standard error and 88% chance
of being positive. Thus, a I mm increment in MAP, on average and over all vegetation and soil types, might
result in increasing the topsoil carbon content by 11 kg/g. The combination of this result and the previous
one obtained on the topsoil F'“C tends to favor the assumption of a higher input of fresh organic carbon due
to higher vegetation NPP. However, this does not exclude the second one, i.e. an enhanced degradation of
the oldest components of the topsoil that can be compared to the concept of the priming effect (Fontaine
et al., 2003). In fact, input in fresh carbon can result in an increase of soil carbon content, an apparent shift of
topsoil F'4C towards this new pool F'4C and a priming effect resulting in the loss of old organic matter, thus

maintaining a positive total budget of the carbon stock and enhancing the decrease of topsoil F'C.

Chapter 5

Impact of the Mean Annual Precipitation (MAP) on the incorporation depth

There is a 62% chance that the MAP affects the carbon content incorporation depth (@3). The mean posterior
effect of MAP, on the soil carbon content incorporation, is estimated at 76 cm. As for F 14C  this value does
not reflect what happens in reality and a very poor estimation is reported for the regression effects of the soil

carbon content incorporation.

Based on the mathematical approach, Mean Annual Precipitation (MAP) is an influential predictor on
soil carbon dynamics for both carbon content and F'“C. It leads to an increase in the soil carbon content
associated to a tiny decrease of topsoil F'4C. This result can be related to both the dilution of topsoil
components by the newly added compounds (increase of vegetation production as a result of enhanced MAP)
and to the priming effect that results in a loss of old soil compounds. MAP also impacts the profile shape
of both carbon content and F'C by increasing the depth of incorporation. The estimation of the effect is

however not realistic.
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5.3.4 Aridity Index (AI)

Reminder

Aridity Index (AI) was selected as an influential predictor for topsoil (¢) and incorporation depth (¢3) of

the F'4C profile and for none of the latent variables of the carbon content profile.

Aridity influences soil carbon inputs by affecting the production of above (loss of plant cover) and below ground
plant biomass, water infiltration, microbial biomass and mineralization processes and thus the biogeochemical cycle
of nutrients (Ren et al., 2018). A study done by Maestre et al. (2015) showed that the diversity and abundance of
soil bacteria and fungi are reduced as aridity increases in global drylands. A recent study by Jones et al. (2018), to
investigate the response of soil microbial communities to water and carbon availability across an aridity gradient
(semi-arid, arid and hyper arid) within the Atacama, showed that even under hyper arid conditions, very low levels
of microbial activity and carbon turnover occur. This result is in line with the one obtained by Rabbi et al. (2015)
who showed that aridity has a strong negative influence on the soil organic carbon stock, based on a Structural
Equation modeling applied to 1482 sites surveyed across the major agricultural region in Eastern Australia (Al
varies from less than 0.07 (Eastern Australia coast) to more than 0.65 (moving away from the Eastern Australia

coast)).

5.3.4.1 Impact of Aridity Index (AI) on topsoil F'“C

The Aridity Index (AI) is detected as influential for topsoil F'“C with a posterior inclusion probability of 53%.
The impact of the Al obtained by the posterior mean is estimated at -0.029+0.022 with a 91% probability of
being negative. In that respect, the increase of 0.1 of Al leads to a F'“C decrease of 0.0029. In other words, the
increase of 0.1 in Al will lead to a higher mean residence time of soil organic matter. Therefore, this result does not
make sense since we expected that topsoil radiocarbon in the humid regions to be characterized by a higher F'4C

value (fresh carbon input) than in the arid regions.

To investigate this point further, we plotted the distribution of topsoil F'C (depth higher than 10 cm) according
to the aridity index for all 131 profiles (Figure 5.20). This figure underlines a visually distinguishable increasing
trend of the topsoil F!'“C with the increment in the Al up to a value of 3. In contrast, the green circle highlights
a weird behavior of some points with a higher Aridity Index (Al = 4.223). A closer look at the database profiles
shows that these points belong to the same 7 sites from Moor House Nature Reserve, that we already pointed out as
not real mineral soils. They are further characterized by a very wet climate (MAP of 1665 mm) without efficient
evaporation. They thus appear to undergo an equatorial monsoon climate whereas they are in a temperate region.
This explains why the effect of the Aridity Index has a negative impact on the topsoil F'C instead of being positive.
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Figure 5.20: Distribution of topsoil radiocarbon from the 131 database profiles where the depth does not exceed 10
cm according to the Aridity Index (AI). The boundaries that define various degrees of aridity and the approximate
areas involved are given in the table on the right. The more Al tends to 0, the more arid the area is. In contrast an Al
higher than 0.65 refers to a humid zone.

5.3.4.2 Impact of Aridity Index (AI) on F'“C incorporation depth

The aridity index was detected as significant for the F'4C incorporation depth with a posterior inclusion
probability of 94%. The mean posterior effect is estimated at -16 cm with 9 cm of standard deviation (97% chance
of having a negative effect). Thus, an increment of 0.1 in AI will decrease the F'“C incorporation depth by 1.6 cm.

Although more reasonable in extent, a physical interpretation of this parameter is not evident.

Aridity index is detected as significant only for the topsoil F'“C and F'“C incorporation depth. AI was
expected to have a positive impact on topsoil F'4C instead of having a negative impact. This result is due to
7 particular sites, all from the Moor House Nature Reserve in the United Kingdom that have a distinctive
behaviour characterized by a very high AI and lower topsoil F'4C measurements compared with the other
sites in the database.

5.3.5 Seasonal temperature shift (Dif_T)

Reminder

Seasonal temperature shift (Dif_T) was selected as an influential predictor for topsoil (¢) and incorporation
depth (¢3) of the F'C profile and for the incorporation depth (@s) of the carbon content profile.

The greater the seasonal temperature shift, the greater the discrepancy between the summer and winter month
temperatures. During the winter period characterized by a low temperature, which reduces the soil moisture due to
freezing and removes water from the liquid phase, the decomposition rate of the soil organic matter slows down. In
contrast, during the summer period characterized by a high temperature, microorganisms activity is favored and
mobilizes the degradation of the soil organic matter protected during the winter period (Naganawa et al., 1989;
Anderson, 1973). The question that remains is, in the long-term, what will be the most important seasons? which
season will impose its fingerprint on the soil carbon dynamics? Very few studies deal with that aspect in the

literature.
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Chapter 5

5.3.5.1 Impact of seasonal temperature shift (Dif_T) on topsoil F'“C

The seasonal temperature shift was detected as an influential predictor for the topsoil F'4C with a posterior
inclusion probability of 60%. The posterior effect regression of Dif_T is estimated at -0.037 (standard deviation
of 0.01) with a 99% probability of having a negative effect. For example, an increment of 1°C in seasonal shift
between the warmest and coldest months, for a radiocarbon topsoil profile of 1.1, will increase the mean '“C

age of soil organic carbon, i.e. contributing to a higher mean residence time.

Except for the profiles from the same English site in a peat-derived environment (green circle in Figure 5.21),
a closer look at the database also shows a general trend of topsoil (less than 10 cm depth) F!4C decreasing while
continentality, i.e. Dif_T, increases. It is thus likely that the evaluation of the impact of this predictor and more
likely of the associated deviation are biased by the presence of these 7 sites. A clearer signal might be obtained
from a second evaluation of the database excluding these 7 profiles.
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Figure 5.21: Distribution of the topsoil (less than 10 cm depth) F'“C from the database profiles versus the seasonal
shift (temperature difference between the hottest and the coldest month of the year). The green circle highlights the
specific UK sites from the Moor House Nature Reserve "British profiles".

5.3.5.2 Impact of seasonal temperature shift (Dif_T) on F'“C incorporation depth

The seasonal temperature shift was detected as influential for the F'“C incorporation depth with a posterior
inclusion probability of 72%. The posterior mean effect is estimated at 6 cm with 7cm of standard deviation (83%
chance of having a positive effect). Thus, an increment of the shift between the warmest and coldest months of 1°C

increases the depth incorporation, which corresponds to half of the topsoil radiocarbon activity, by 6 cm.

5.3.5.3 Impact of seasonal temperature shift (Dif_T) on carbon content incorporation depth

The seasonal temperature shift (Dif_T) was detected as significant for carbon content incorporation depth
(ws3) with a posterior inclusion probability of 68%. The posterior mean effect is estimated at -9 cm with Scm of
standard deviation and a 96% chance of having a negative effect.

Our mathematical approach provides decision-making elements in the debate on the impact of the temperature
seasonality on soil organic carbon dynamics. Even if evaluation of the impact extent is hampered by the
British profiles, there is a trend towards a positive impact on the mean residence time: the higher the
continentality, the higher the residence time.
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5.3.6 Minimum monthly precipitation (min_P)

The minimum monthly precipitation (min_P) was selected as an influential predictor only for incorporation

depth (¢3) of the F'C profile and for none of the latent variables of the carbon content profile.

5.3.6.1 Impact of the Minimum monthly precipitation (min_P) on F'“C incorporation depth

The minimum monthly temperature was detected as influential for the F!“C incorporation depth with a
posterior inclusion probability of 55%. The posterior mean effect is estimated at -4cm with 7cm of standard
deviation (70% chance of having a negative effect). Thus an increment of 1 mm in the minimum monthly
precipitation decreases the F'“C incorporation depth by 4 cm. At a constant level, F'“C thus decreases with the
temperature increases, reflecting the loss of '“C enriched components, maybe some decades old compounds whose

carbon derives from the nuclear bomb peak.

Soil radiocarbon and soil carbon content incorporation (¢3 and ®3)

The estimation of regression effects corresponding to ¢3 (the F'“C incorporation depth) and the s (the
soil carbon content incorporation depth) indicates a poor estimation of what can happen in reality. This
bad estimation can be explained by the non linear link between these latent variables, ¢3 and @s , and the

responses of F4C and soil carbon content respectively.

5.3.7 Soil type (Soil)

Soil type was identified as influential for all latent variables for both F'4C profile and carbon content profiles

Many soils are marked by climate and type of vegetation (Legros, 2007). For example, Gleysols and Podzols are
characteristic of cold regions. Cambisols, Luvisols and Podzols are conditioned by temperate climates (Spaargaren,
2001). Ferralsols and Plinthosols are tropical soils with forest cover. In addition, Chernozem, Kastanozems and
Phaeozems are associated to steppe and grassland vegetation cover (http://www.isric.org), under climatic regimes that
range from cool temperate to warm Mediterranean (https://www.britannica.com). Various soil physical and chemical
properties such as the clay content are reported to control the organic matter decomposition rates (Balesdent et al.,
2000). The clay and silt content is assumed to be positively correlated with the soil organic carbon (Paul et al., 2008).

5.3.7.1 Impact of soil type on mean residence time (F'“C)

« Impact of soil type on deep F'4C

Jobbagy and Jackson (2000) underline that 56% of soil carbon globally can be found below 1 meter. The soil
type was detected as influential for the deep radiocarbon response with posterior inclusion probabili-
ties of 51%. The fusion of the levels by soil type obtained by the BEF (with k = 50) discriminates between
the levels (see colors in Figure 5.22 and major lines in Table 5.16) and proposes a clustering that outputs 4

different groups.

Recap of the result of levels fusion for soil type for the deep F'‘C
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Figure 5.22: Distribution of deep F'“C (at least 100 cm of depth) according to the soil type. The boxplots of soil
categories having the same color belong to the same cluster.

The BEF approach to deep soil F'C roughly follows the distribution of deep soil F'4C from the database
(Figure 5.22 and last column of Table 5.16). Indeed, clusters 1 (blue in Figure 5.22) and 4 (orange) are
associated to the lowest recorded F'“C whereas clusters 2 (purple) and 3 (green) are associated to the highest
values. The distinction between clusters 2 and 3 can be justified by the range of the associated quantiles.
However, the grouping of Andosol and Chernozem (blue), or the exclusion of Gleysol (orange), cannot be
explained only by the F!'“C values in themselves.

The BEF approach to deep soil 7'“C rather reflects the mineralogical properties of deep horizons, as
already mentioned by Mathieu et al. (2015). It is, indeed, interesting to confront the fusion result with the
clay property of the soil type (Table 5.16).

Thus, BEF combines Chernozem and Andosol (cluster 1, blue boxplots in Figure 5.22) both of them being rich
in clay and particularly in high activity clay (Table 5.16). However, according to clay amount (see Table 5.16),
Vertisol should have been classified within the same group. Vertisol and Chernozem both contain high-activity
smectite clays in combination with exchangeable calcium saturation, that contributes to stabilizing carbon
(Litzow et al., 2006). Moreover, as well as Chernozem and Andosol that stabilize soil organic matter and
consequently show low F'4C, Vertisol should also have shown low F'*C and that is not the case (Figure 5.22
and Table 5.16). The small number of Vertisol profiles, only 5 with data below 100cm, may be the reason for
the misattribution of this type of soil.

The second cluster groups Podzol and Ferralsol (cluster 2, purple boxplot in Figure 5.22) (if we exclude
Vertisol). This cluster of soil types is identified by a low activity clay, in varying amount (Table 5.16). Here
also, based on the mineralogical properties, Vertisol should not have been merged in this cluster.

The third cluster (green boxplots in Figure 5.22) contains the Arenosol/Regosol group, the Cambisol group
and Luvisol. The clay amount recorded for Arenosol/Regosol in Table 5.16 corresponds only to the Arenosol

soil type. This cluster is characterized by a low amount of clay, of rather medium activity type.

The final cluster (orange boxplot in Figure 5.22) corresponds to Gleysol only which is characterized by an
undefined amount of clay. It is not clear why Gleysol has not been merged in another cluster: cluster 1 with
which it shares the low value of F'“C, cluster 3 with which it shares the low activity type of clay.
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Cluster Merged WRB group WRB soil type Amount of clay Type of clay Medla;gzep soil | [25% q; 75% ql
Andosol (12) Andosol (12) High Very high activity 0.09 [0.07;0.13]
| (blue) Chernozem (19) Chernozem (16)
Kastanozem (1) Medium High activity 0.29 [0.24,0.42]
Phaeozem (2)
Vertisol (7) Vertisol (7) High High activity 0.56 [0.37;0.65]
2 (purple) Podzol (16) Podzol (16) Very Low Low activity 0.67 [0.57;0.75]
Ferralsol (18) Ferralsol (14) Medium to high |  Low activity 0.59 [0.51;0.68]
Nitisol (4) ) T
Arenosol (3)
Arenosol/Regosol (7) | Regosol-Arenosol(1) Low Very low activity 0.75 [;0.73, 0.77]
Leptosol (3)
3 (green) , Cambisol (15) . . _
Cambisol (15) Fluvisol (1) Low medium activity 0.65 [0.61;0.70]
Luvisol (27) Luvisol (27) Low Medium activity 0.60 [0.54;0.67]
Gleysol (7)
4 (orange) Gleysol Planasol (1) Undefined Low activity 0.19 [0.17;0.22]
Plinthosol (1)

Table 5.16: Amount and type of clay generally observed in the soil types from the database. Types of soil are ranked according to the result of Bayesian Effect Fusion of soil type
levels for deep soil radiocarbon activity (¢;). Cluster number and color are the ones used in Figure 5.22. The number of profiles associated to each type of soil and each group of
type of soils are provided in brackets. Column six refers to the median value of deep (higher than 100 cm deep) soil F'“C from the database (line inside rectangle in Figure
5.22). The last column refers to 25% and 75% quantiles (q= quantile) (the upper and lower rectangle bounds in Figure 5.22) * The result of the clay amount and the type of clay

corresponds to Arenosol soil type, only.
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« Impact of soil type on topsoil F'“C

According to the posterior inclusion probabilities, the soil type has a higher posterior probability of af-
fecting the topsoil F 14C (100%) than the deep one (51%). The fusion of the soil type levels for topsoil

F%C proposes 5 different groups. The clusters for topsoil are completely different from those for deep soils.

Recap of the result of levels fusion by soil type for the topsoil radiocarbon
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Figure 5.23: Distribution of the topsoil F'“C (less than 10 cm of depth) according to the soil type. The boxplots of
soil categories having the same color belong to the same cluster.

Based on F!4C values from the database, clusters 1 and 2 on the one hand and 3 and 5 on the other hand show
a similar F'4C distribution around 1.09 and 1 respectively, whereas the fourth cluster shows quite different
behavior with F'4C around 0.75.

The first cluster grouping Andosol and Arenosol/Regosol (Figure 5.23 - blue boxplots) characterizes soils
conditioned by parent material: Andosol rapidly develops on weathering pyroclastic deposits and on volcanic
material and Arenosol is a sandy soil. The second cluster is formed from Cambisol, Ferralsol and Gleysol
(Figure 5.23, green boxplots). Cambisols in the humid tropics are predominant at medium altitudes in hilly
and mountain regions but also in deposition areas and in eroding lands at lower altitude where they occur
alongside genetically mature residual soils (e.g. Acrisols or Ferralsols). Likewise Ferralsol mostly develops in
tropical climate zones on old parental material. Gleysol shows two geographical distributions: polar regions
and tropical and subtropical regions. It seems then that clustering mostly accounts, here, for gleysol from
tropical zones.

Chernozem and Podzol are associated in a third cluster (Figure 5.23, orange boxplots). They share the proper-
ties of having a characteristic surface layer rich in humus and being mostly associated to grass vegetation. In
addition, both Chernozem and Podzols are found in cold regions.

Vertisol constitutes a single group, the fourth cluster (Figure 5.23, red boxplot) characterized by cracking clay
soils extending downward from the land surface and by evidence of strong vertical mixing of soil particles
over successive wet and dry periods.

The last cluster (Figure 5.23, purple boxplot) contains Luvisol only. Luvisol is distinguished from the other
soil types by having a subsurface horizon which has a distinctly higher clay content than the overlying horizon.
Added to that, Luvisols are distinguished by a temperate climate under grassland vegetation.

It seems that the clustering operated by BEF to express the topsoil F'“C latent variable illustrates the
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textural quality of the soil profile and the difference between the surface layer and the remaining part
of the profile.

« Impact of soil type on F'“C incorporation depth

The soil type was detected as significant for F4C incorporation depth with 97% of posterior inclusion
probability. The Bayesian Effect fusion identified 6 different clusters of soil types (Figure 5.24). However, we
do not have a clear idea about the criteria that explain why the soil types were split into 6 different clusters.

Recap of the result of levels fusion by soil type for F'“C incorporation depth

Soil type

Radiocarbon incorporation

Figure 5.24: The fusion of levels for soil type for the F'“C incorporation depth (¢3) according to the Bayesian Effect
Method with k = 10. Pie slices of soil categories having the same color belong to the same cluster.

The result of fusion of soil types for both topsoil F'4C and deep F'“C layers underlines that the F'%C
is more dominated by the climate/vegetation and soil texture at the topsoil and by clay content for
deeper layers.

5.3.7.2 Impact of soil type on carbon content

The soil type was detected as significant for all latent variables, ®;, ®, and s, of the soil carbon content
profile by the Bayesian Effect Fusion selection method. However, based on Figure 5.25 and Figure 5.26, no clear
physical interpretations can be proposed for the different clusters of fused soil types identified.
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Figure 5.25: Distribution of both topsoil (panel a) and deep soil carbon content (panel b) (depth < 10 cm and depth

> 100 cm) according to the soil type is illustrated by boxplots. The boxplots of soil categories having the same
color belong to the same cluster.
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Figure 5.26: The results of the soil type levels fusion for the carbon content incorporation depth (®3)) obtained by
the BEF. The same fusion of levels was identified under k = 10, 50 and 100. Pie slices of soil categories having the
same color belong to the same cluster.

We have not identified physical interpretations for the results of fusion of ecosystem types for both topsoil
and deep soil carbon content layers.

5.3.8 Ecosystem type (land)

Ecosystem was identified as influential for all latent variables for both F!'4C profile and carbon content

profile

5.3.8.1 Impact of ecosystem type on mean residence time (F'C)

« Impact of ecosystem type on topsoil and deep F'4C

Summing vegetation and land use, ecosystem type was detected as significant for both topsoil and deep
F4C with the following posterior inclusion probabilities: 53% and 56%. In both cases, the levels fusion of
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ecosystem type singles out only two clusters: field as cluster 1 and the remaining ecosystem types for cluster
2 for the deep soil; cultivated grassland as cluster 1 and the remaining ones as cluster 2 for top soil (Figure
5.27).

There is no clear apparent distinction between the two clusters based on F'*C from the database. For deep
soil, one can guess a trend toward higher F'4C values associated to cluster 1 (field) by comparison with
cluster 2 (all other types of ecosystem) (Figure 5.27, panel b). However, it is well known that cultivation
impacts soil organic matter by accelerating soil organic carbon mineralization and reducing the input of fresh
plant—derived organic matter to all layers. This results in a reduced mean residence time of soil compounds
and reduced renewal of the organic pool in all horizons. This might be the reason why "field" is considered
differently from other ecosystem types for deep soil but does not explain why it was not distinguished for the
topsoil.

We could not find any clear reason why cultivated grassland (mostly pasture) appears in a separate cluster for

topsoil.
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Figure 5.27: Distribution of both topsoil F'4C (panel a) and deep F'“C (panel b) (depth lower than 10 cm and depth
higher than 100 cm, respectively) according to the ecosystem type. The boxplots of soil categories having the same
color belong to the same cluster.

« Impact of ecosystem type on F'C incorporation depth

The ecosystem type was detected as significant with the Bayesian Effect fusion since not all its levels are
merged. However, it is difficult to interpret the result of levels fusion for soil type according to the posterior
fusion probability (Figure 5.28). Here, we cannot say that the fusion result distinguished the natural ecosystem
from the cultivated one, since field belongs to the cluster where natural ecosystems dominate.
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Figure 5.28: The fusion of levels of ecosystem type for the F'*C incorporation depth (¢3). The slices of ecosystem
categories having the same color belong to the same cluster. The fusion of ecosystem levels is the same for k = 10
and 50.

5.3.8.2 Impact of ecosystem type on soil carbon content

e Impact of ecosystem type on topsoil and deep soil carbon content

Ecosystem type was detected as significant for both topsoil and deep carbon content. The levels fusion
of ecosystem types highlights four clusters for both top and deep soil (Figure 5.29). For topsoil, the clusters
are as follows: 1- field and "others", 2- natural forest, 3- natural grassland, 4- cultivated forest and cultivated
grassland. For Deep soil, the clusters are as follows: 1- field, 2- "others" and natural forest, 3- natural
grassland, 4- cultivated forest and cultivated grassland. The only difference is that the category “others”,
grouping 13 profiles of the database, is merged with natural forest for the deep soil carbon content, and with
cropland for the topsoil carbon content.
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Topsoil carbon content (g/kg)
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Figure 5.29: Distribution of both topsoil (panel a) and deep soil carbon content (panel b) (depth < 10 cm and depth
> 100 cm) according to the ecosystem type is illustrated by boxplots. The boxplots of soil categories having the
same color belong to the same cluster

The soil carbon content varies among the different types of vegetation cover (forest, grassland, etc.) and the
land use practices (natural or cultivated). For example, forest tends to have the largest input of vegetation
carbon. The average Net Primary Production (NPP) varies from 2200 tons per km? /yr for tropical rainforest
to 800 tons per km? /yr for boreal forest (Jackson et al., 1997). Tropical rainforest and boreal forest occupy
respectively, 11% and 22% of the percentage of earth’s land surface. In addition, forests are characterized
by the most recalcitrant carbon and a lower decomposition rate especially for forest with long roots. The
smallest input of NPP corresponds to cropland where the carbon inputs are among the most labile as a result
of biomass removal in the harvest products and the land use practices than can open aggregates to weathering
and microbial breakdown. Soil under forest has significantly higher values of soil organic carbon (59.35
Mg/ha) than pasture (42.48 Mg/ha) and arable land (23.63 Mg hal) (Ali et al., 2017).

Here, we can interpret the classification according to the different Net Primary production (NPP) between
forest, grassland and cropland. Furthermore, the classification of cultivated grassland and forest together may
highlight the effect of land use practices on soil carbon content dynamics. Cultivation may change the ground
surface and root distribution of plants. Furthermore, cultivation has a potential to destroy soil structure and
make soils more prone to other forms of degradation, such as erosion.

Nonetheless, the signal is not that clear and we may wonder if another type of vegetation and land-use
grouping would not have been more appropriate. For example, keeping only 3 major groups: cropland,
grassland and forest, keeping the notion of man induced landscape only for cropland.

Impact of the ecosystem type on carbon content incorporation depth

The ecosystem type is detected as influential for carbon content incorporation depth (@3) by the Bayesian
Effect Fusion. However, the result of fusion of levels for ecosystem type discriminates natural forest from all
other ecosystem types. The result of fusion does not have any physical interpretation (Figure 5.30).
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Figure 5.30: The fusion of levels of ecosystem type for the carbon content incorporation depth (@s). The slices of
ecosystem categories having the same color belong to the same cluster. The same levels fusion of ecosystem type is
obtained under different values of k : k = 10, 50 and 100.

5.4 Synthetic representation of the dependence of F'“C and soil carbon

content on soil-climate-biomes

In order to compare the predicted profiles with observed F'4C and soil carbon content of the major world soil
groups present in contrasting climates, we chose ten representative soil profiles from the database (Figure 5.31).
The predicted profiles are obtained according to the best sub-models identified for the soil radiocarbon and soil
carbon content dynamics respectively. Figure 5.31 illustrates the overall dependence of F'*C and soil carbon content
profiles on environmental variables in a holistic approach that implicitly accounts for the interacting roles of all
variables on radiocarbon dynamics.
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Soil group Nitisol Ferralsol Vertisol Luvisol Andosol
Vegetation natural forest natural forest cleared grassland  natural grassland natural forest
MAT/Dif_T(°C) 26.4/1.4 20.5/6.2 19.5/14.3 16/18.4 10.9/26.5
MAP(mm) 2237 1270 666 369 1113
Aridity Index 1.75 1.00 0.40 0.23 1.33
min_P (mm) 25 25.4 31.9 0.8 44.6
sampling year 1992 1994 1997 1978 2001
Reference data Pessenda et al., 98 Pessenda et al., 96 Krull et al., 03 Baisden et al., 02 Katsuno et al., 10
Country Brazil Brazil Australia USA Japan
Soil group Luvisol Chernozem Cambisol Podzol Chernozem
Vegetation field natural forest cleared grassland field natural forest
MAT/amplitude(°C) 9.9/14.8 9.4/26.8 8.4/18.5 6.4/18.7 5.5/31.2
MAP(mm) 698 382 673 723 507
Aridity Index 1.05 0.28 1.04 1.15 0.62
min_P (mm) 48.1 7.6 41.9 45.2 28.5
Sampling year 2009 1994 1996 1996 1997
Reference data Jagercikovaetal., 14  Leavitt et al., 07 Rumpel et al., 02 Schulze et al, 09  Torn et al., 02
Country France USA Germany Germany Russia

Figure 5.31: Synthetic view of the dependence of soil F'4C and carbon content on soil—climate-biome. Ten sites
from the database were selected as representative of 10 major biomes, taking into account only the explanatory
covariates detected as significant for soil F'“C and soil carbon dynamics respectively. The orange (the green) band
corresponds to the confidence in the local (within site) estimate of F'“C (soil carbon content), and the gray band
corresponds to the between-site variability of soil with similar environmental variables. Dark lines represent the
sampled horizon of observed data and the blue points the real F'“C (soil carbon content) measurements.

Briefly, it is interesting to note that simulated profiles are very close to measured data, for both carbon content
and F'4C profiles. Simulation reflects the general shape of the original profile but misses some specific features, as
is expected from a model. The mean estimated topsoil F '4C ranges between 0.97 and 1.22 and the mean estimated
deep radiocarbon varies between 0.10 and 0.45 in all ten soils. Generally speaking and excluding the Andosol-type
soils, the surface F'4C was the highest in the warm tropical climates and was the lowest in the coldest climates.
The mean estimated carbon content ranges between 3.88 g/kg and 294 g/kg for topsoil and between 0.02 g/kg and
5.56g/kg for the deep soil. Soil carbon content estimation at the top of the profiles is associated to a very large
variability that reflects the natural worldwide variability of carbon content (Tifafi et al., 2018). It appears thus that
even by forcing the system by specifying soil type, climate and land-use, the variability remains very high. The

variability of the simulated profile decreases with depth.

It is worth noting the specific fate of some profiles. For example, the "Vertic" fate of the Vertisol that shows a
specific F14C profile with a very deep F'“C incorporation depth, associated, as shown by the carbon content profile,
with deep incorporation of fresh plant-derived organic material. Chernozem and boreal Podzol are deep soils with
a long history, close to the fate of permafrost. This is also reflected by the very low F'“C in depth. In contrary
Ferralsol and Cambisol are young soils with rapid turnover and thus associated to a higher F'4C in depth. Luvisol,
also, shows a specific structure. It exhibits good drainage and this is clearly expressed in the carbon content profile
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