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Résumé 

Une suite chirurgicale est un espace fournissant tous les services chirurgicaux au patient. Elle 
comprend les salles d'opération, de récupération et de préparation du patient, du chirurgien, de 
l’anesthésie et des équipements. Une activité clé est la gestion du flux de patients, comme la 
planification des procédures, l'affectation du personnel, le suivi de l'état des opérations, et surtout 
la capacité de réagir et d’adapter le flux selon les éventualités. La gestion des suites chirurgicales 
joue un rôle central pour permettre aux hôpitaux d’offrir l’accès aux soins à des coûts raisonnables. 

L'informatisation et l'automatisation sont des évolutions conventionnelles pour soutenir la gestion 
des ressources et améliorer l’efficacité. Toutefois, un soutien inadapté ne peut améliorer l'activité 
de gestion et peut même nuire à son action. De précédents travaux estiment que jusqu'à présent, 
l'informatisation n'a apporté aucune preuve d'amélioration des coûts administratifs ni de coûts 
globaux dans les hôpitaux, ni d'améliorations de la qualité des soins au patient. Il existe un fossé 
entre les avantages des technologies de cyber santé postulés et empiriquement démontrés, ainsi 
que l'absence de lignes directrices sur les meilleures pratiques pour des stratégies de 
développement et de déploiement efficaces. Le défi consiste donc à fournir un soutien 
informatique à la gestion hospitalière qui bénéficie au personnel médical. Notre hypothèse est que 
des fonctionnalités interactives, utilisables, flexibles et adaptée aux spécificités des activités 
locales peuvent créer un environnement de travail dans lequel le personnel médical est capable de 
réagir à des événements inattendus et de s’approprier la technologie. 

Nos contributions consistent en une analyse de l'activité de l'équipe chirurgicale, basée sur des 
entretiens, observations, questionnaires, une revue de la littérature et une analogie avec l'aviation 
civile. Nous avons participé à la construction d'un modèle mathématique du flux chirurgical et à 
la conception d'une visualisation de ce modèle. Nous avons mené une expérience en combinaison 
avec des travaux antérieurs sur des capteurs de salle d'opération pour identifier le manque de 
conscience de situation du personnel. Nous avons identifié les scénarios, exigences et principes de 
conception nécessaires au développement, à l'intégration et à l'acceptation d'un outil pour soutenir 
les activités de gestion du flux chirurgical. Nous avons conçu des interactions multi-utilisateurs 
sur une grande surface et développé un prototype de tableau blanc électronique, OnBoard, qui 
démontre l'intégration des spécifications et des défis techniques. OnBoard appartient à un système 
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cyber-physique comprenant des capteurs dans les salles d'opération détectant leur statut. Enfin, 
nous avons déployé et évalué OnBoard dans une suite chirurgicale. 

L'objectif est de proposer un environnement informatisé pour gérer le flux chirurgical. Pour ce 
faire, nous avons utilisé la conception participative, l'évaluation de la conception et l'amélioration 
continue du prototype selon des observations et commentaires des utilisateurs. Les observations et 
entretiens ont montré que les utilisateurs pouvaient s’informer du statut des salles en temps réel au 
travers de timelines, à l'aide de manipulation directe pour corriger les déficiences des capteurs. 
Des interactions directes pour changer les horaires, corriger des informations incorrectes et ajouter 
de nouveaux patients dans le flux ont permis aux utilisateurs de faire face à des contingences. 
Enfin, les utilisateurs ont été en mesure de s’approprier la technologie avec l'utilisation de couleurs, 
de l'écriture et le décalage d'objet. 

L'expérience de OnBoard suggère que la conception des interactions est primordiale pour offrir un 
environnement collaboratif efficace au personnel médical. 
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Abstract 

Surgical suites are a group of rooms designed to provide all surgical services to patients. They 
include surgery, preparation and anesthesia for the patient, sterile preparation of the surgeon, 
instrument and materials sterilization and storage, instrument cleaning, operating rooms and 
recovery room. A key activity in a surgical suite is its management e.g. scheduling cases, allocating 
staff, monitoring the status of operations, and most crucially reacting/adapting according to 
contingencies. Surgical suite management plays a key role in the endeavor of hospitals: patients’ 
health at sustainable cost. Since half of the revenue of large hospitals comes from operating room 
procedures, improving capacity through better management of the surgical flow might be 
beneficial on all levels.  

In search of efficiency, computerization and automation of processes are conventional solutions to 
support resource management. However, unsuitable support might not improve the management 
activity, and can even be detrimental to it. Previous works estimate that so far computerization has 
not brought any evidence of improvement in administrative costs neither overall costs or has 
brought modest improvements in quality of patient outcomes. There is a gap between the 
postulated and empirically demonstrated benefits of eHealth technologies and the lack of best 
practice guidelines for effective development and deployment strategies. The challenge is 
therefore to provide computer support for hospital management which benefits the medical staff. 
Our hypothesis is that usable and flexible interactivity tuned to local particularities can create a 
working environment in which the medical staff can cope with unexpected surgery events and 
become the “owners” of technology.  

Our contributions consist first in an analysis of the activity of the surgical team, based on 
interviews, observations, questionnaires, review of the literature and an analogy with civil aviation. 
Then, we participated in the construction of a mathematical model of the surgical workflow and 
the design of a visualization of the mathematical model. We conducted an experimentation in 
combination with previous work on operating room sensors to identify bottlenecks of workflow 
inefficiencies and delays. We identified scenarios, requirements and design principles necessary 
to the development, integration and acceptation of a tool to support surgical workflow activities. 
We then designed multi-users interactions on a large surface and made a prototype of electronic 
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whiteboard, OnBoard, for the surgical suite which demonstrates the integration of the 
specifications and technical challenges. OnBoard belongs to a larger cyber physical system 
including activity sensors in every operating room of the surgical suite. Finally, we deployed the 
prototype in a surgical suite and evaluated it. 

The objective of OnBoard is to propose a computerized environment for surgical flow management 
that supports both the hospital management in cost performance and the medical staff in patient 
care. To do so, we used participatory design, design walkthrough evaluations and continuous 
improvement from users’ observations and feedback in a real setting. Observations and interviews 
“in the wild” showed that users were able to get up-to-date information from the sensors, especially 
through timelines, with the help of their direct manipulation to correct sensor deficiencies. Direct 
interactions to change time, fix incorrect information and add new cases in the flow allowed users 
to face unexpected events. Finally, users were able to appropriate technology, with the use of 
colors, handwriting and object shift.  

The OnBoard experience suggests that the design of interactions is paramount to provide the 
medical staff with an efficient collaborative environment. 
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1 
INTRODUCTION 

“Frequently we see researchers studying other researchers, developers building systems because 
the technology exists, and managers supporting the development of systems that will appeal to 

other managers.” 

Grudin, 1988  

The computer of the 21st century as envisioned by Mark Weiser is here. Technologies are 
"disappearing and are weaving themselves into the fabric of everyday life" [177]. On one hand, 
miniaturization, energy consumption and cost reduction allow for effectively disseminating 
sensors and processing capacity in any location of personal and professional life. On the other 
hand, new fabrication process and material science allow for building large multitouch displays, 
or "yard-size boards" as Weiser called it. Combining these two trends provides designers with a 
new means to improve the support of collaborative activities performed by humans, thanks to 
presumably more accurate data acquisition and richer interactions. 

However, one risk of this trend would be to use them together with the renewed interest for 
Artificial Intelligence to automate some parts of the activity for the sole purpose of getting rid of 
the humans. This is particularly true for critical environments, where contingencies must be 
handled with high-levels of safety. Interactions between humans and automation have been studied 
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in safety-critical fields such as civil aviation [28,54] or power plants [187], and currently is the 
center of attention with the arrival of self-driving cars [25,149]. Being a critical environment that 
requires as much safety and quality of care as cost-efficiency, the hospital is an interesting field 
for exploring where and how humans and automation should be integrated while computerizing 
its processes. Conversely to civil aviation where stakeholders perform well-defined tasks to 
manage the air traffic, the diversity of stakeholders, their background and their daily activities 
make computerization of hospital surgical patient flow even more challenging. 

 Hospital surgical suite motivations 
The hospitals are cautious with automation and computerization. Indeed, Himmelstein et al. [81] 
shows that computerization neither brought quality nor costs improvements in around 4000 
hospitals between 2003 and 2007. 

Improving patient care quality is the main displayed motive of hospitals’ computer systems. 
Nevertheless, underlying reasons of successful stories depend on an efficient management of 
operations in terms of costs and revenue. In the hospital, Operating Rooms (ORs) are the rooms 
where surgical procedures are performed.  Since half of the revenue of large hospitals comes from 
OR operations [51,63], improving capacity through better management of the surgical flow might 
be beneficial at all levels. There is a strong demand for improving surgical results and reduction 
of high costs of surgical procedures, which directly impact insurance and ultimately patients. This 
has been translated into a recent movement in the United States to make all health care costs public 
[188] as they are not affordable for all the population. According to a study [188], there are 
significant differences in the costs of healthcare for the same services, depending on where it is 
delivered: for a vaginal delivery, the lowest cost is $10,140 while the highest is $14,578 (27 
hospitals listed). The lowest cost for a hip replacement is $22,166 whereas the highest cost is 
$36,659 (14 hospitals listed). The study shows that higher costs does not imply lower 
complications/better quality of care. The differences mainly depend on the variations in inpatient 
facility costs across hospitals, therefore including the patient flow and OR management.  

Many studies report about automation within the OR, such as surgical robots 
[34,59,85,111,117,146]. However, few studies report on computerization of the surgical suite as 
whole. A surgical suite is a group of one or more ORs and complementary facilities within a 
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hospital, such as a sterile storage area, a laundry room, the recovery room, etc. (see Figure 1, Figure 
2, Figure 3). Daily activities consist mainly in ordering “elective patient surgeries” – that are 
planned surgeries, arrival of the patient in the surgical suite, preparation of the patient for his/her 
surgery, the procedure itself, and finally the patient recovery in the post-operating areas. This 
workflow is accompanied by multiple collaborative activities. The surgical staff communicate and 
coordinate on the patient’s condition, his/her needs for the surgery, the equipment needed, and the 
scheduling and staff management. The different stakeholders deal with unforeseen events such as: 
an emergency patient who must be emergently integrated in the flow of surgeries, or an on-going 
operation that lasts 4 hours instead of 2 hours. In this situation, staff must reorganize the schedule 
of the surgeries and devise a new, safe and optimized schedule.  

 
Figure 1. Representation of the DunnOR surgical suite, Houston Methodist Hospital. “A” represents the pre-

operating room areas, “B” the nurse station, “C” the ORs and “X” the semi-public area of information 
(reserved to surgical staff). 

 
Figure 2. Example of nurse station at DunnOR, Houston Methodist hospital. The nurse station has view on 

the corridor displaying semi-public information, reserved to the surgical staff. 

staff 
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Figure 3. A whiteboard in the semi-public information space at DunnOR, Houston Methodist Hospital. A 

nurse is writing the schedule of the surgeries. Indicated by the orange rectangle: the non-interactive 
electronic schedule displays, above the whiteboard. 

Large surgical suites must combine high quality of care with an efficient management of 
operations in complex settings. The diversity of procedures in general surgery and the diversity of 
staff and patients make staff collaboration a cornerstone of the system.  Many surgical suites rely 
on large whiteboards (see Figure 3) to enable the surgical staff to communicate and coordinate 
synchronously and asynchronously. The whiteboards display an overview of the status of the 
surgical suite and a plan for the next surgeries. They are very easy to use and highly flexible. 
Furthermore, they are reliable as they can never shut down like a computer system. Therefore, 
these whiteboards have been used for decades and offer a practical and inexpensive means to 
organize the activity of the surgical suite staff. 

However, the whiteboards are usually not up-to-date, take a lot of time to be updated manually 
and have no archives of interactions. Therefore, their computerization seems interesting in terms 
of optimization of the surgical flow: better communication, optimization of re-scheduling, and 
better awareness of the present and past status of the system. 
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 Context of the thesis 
Our study work was carried out at the Houston Methodist Hospital, (www.houstonmethodist.org), 
counting 8 surgical suites and 1700 beds. The size of the Houston Methodist Hospital and its 
surgical suites (up to 23 ORs for the biggest suite) makes the overall system complex and is a 
privileged site to study. The thesis work is part of a larger development project of a cyber-physical 
system to assist the management of the flow of patients in the surgical suite. The project aims at 
developing a mathematical model of the surgical flow and the objective is to advise the 
administrative staff to optimize patient flow in the surgical suite (see chapter 3 “Context: a Cyber-
Physical system”). Many sensors can be added to the system to capture information about the 
operations in the surgical suite. The challenge is to automate data acquisition and transmission to 
provide accurate information on the status of the surgical suite. 

In our thesis, we focus on the interactions between the surgical staff and the cyber-physical system. 
We aim at improving staff collaboration with new interactive means and improving awareness on 
the status of the surgical suite from the acquired data. Our work would participate in the 
improvement of the efficiency of the whole system, as efforts on usability have been showed to 
lead to a significant return on investments when applied [98]. 

 Thesis statement and Research Questions (RQs) 
Previous work [67,87] included the testing of sensors capturing in real time the status of the ORs. 
Our work promotes a human-in-the-loop design approach to foster collaboration and awareness of 
the surgical team, due to the acquired data. 

In such context, we particularly focus on the dissemination and manipulation of surgical suite 
information in the critical environment. How to develop tools allowing a surgical team to better 
coordinate and follow the optimized schedule, while being able to adapt quickly to unforeseen 
events? How to deliver tools that will allow the users to perform their activities in the future? 

Our hypothesis is that interactions between the surgical staff and the patient flow management 
tools are key to foster flexibility, collaboration and awareness required by their activity. We study 
how we can efficiently computerize the surgical staff activity based on our hypothesis. 

file:///C:/Users/TMHJXR57/Desktop/www.houstonmethodist.org
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Our research questions are: 

RQ1. How to computerize users’ activity without jeopardizing the collaboration nor the flexibility 
needed for operating rooms management? 

RQ2. How to effectively deploy a computerized system in a critical environment and gather 
information on its usage? 

RQ3. Can we generalize our work and promote an effective computerization beyond a particular 
example? 

 Contributions 
The contributions of the thesis are as follow: 

1. An analysis of the activity of the surgical team, based on interviews, observations, 
questionnaires, review of the literature and an analogy with civil aviation. 

2. The participation in the construction of a mathematical model of the surgical workflow and 
the design of a visualization of the mathematical model [68,69]. 

3. An experimentation in combination with the SmartOR [67,86,87] in the surgical suite to 
identify bottlenecks of workflow inefficiencies and delays [96].  

4. The formulation of high-level requirements, scenarios and design principles necessary to 
the development, integration and acceptance of a tool to support surgical workflow 
activities. 

5. The design of multi-users interactions on a large surface. 
6. A prototype of electronic whiteboard for the surgical suite which demonstrates the 

integration of requirements and technical challenges. 
7. The deployment of the prototype in the surgical suite and its evaluation by the surgical 

staff. 
8. A reinterpretation of the work towards ubiquitous computing for the surgical suite. 
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 Thesis outline 
This manuscript is divided in seven parts: 

� Chapter 2 provides a related work on the computerization of collaborative systems, with 
a focus on hospitals and multitouch surfaces applications. 

� Chapter 3 presents the context of the work among the design of the whole cyber-physical 
system, including my contribution and the contribution of colleagues.  

� Chapter 4 describes the methods we followed.  
� Chapter 5 reports on the surgical suite staff activity analysis and results.  
� Chapter 6 details the interaction design and implementation of our prototype. 
� Chapter 7 reports on the design evaluations and presents the results obtained through the 

deployment of our prototype. 
� Chapter 8 depicts a reinterpretation of the work towards ubiquitous computing for the 

surgical suite. 
� Chapter 9 summarizes the results and concludes the dissertation. 
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2 

RELATED WORK 

Technological development drives healthcare innovation and consistently brings 
improvements to patient outcomes [167]. However, while improving imaging technology brings 
better information to the doctors, computerizing the hospitals workflow proves to be more 
challenging. Specific studies in hospitals seem to confirm the need for computerization while 
highlighting potential pitfalls [18,66,122].  

This chapter provides a review of the difficulties of computerizing the hospital workflow, with a 
focus on surgical staff collaboration aspects. We then review computerization challenges in other 
fields and explore how large touch surfaces have contributed so far to the support of collaborative 
activities. 

Finally, we position our work and expose the potential contribution that can be made to facilitate 
computerization in the surgical suite. 
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 The challenges of the computerization of hospital 
workflow 

Computerization is the act of using a computer to do something that previously performed by 
people or machines before [189]. There are high expectations when computerizing hospitals, 
because of the belief that it will improve health care quality, reduce costs, and increase 
administrative efficiency [81]. 

In this section, we cover the impact of Electronic Health Records (EHR), and on challenges of 
user-centered design for computer systems in the hospital and Medical Cyber Physical Systems 
(MCPS). 

  Electronic Health Records 

Electronic Health Records are an example of digitalized healthcare systems that have been 
implemented since the 2000s in order to improve healthcare quality, problem solving, 
documentation and administration [31]. As an example, the Epic Company provides EHR 
solutions, costing around US$250 million to US$1.1 billion [100]. Epic has an 80% market share 
(HIMSS analytics Database 2015) in the US and is now taking over day-to-day surgical flow 
management along with many other aspects of billing and information sharing. One key success 
of the EHR is its capability to interconnect all the processed data of the hospital systems and serve 
as the de facto collaborative tool between all the stakeholders; therefore, the EHR is supposed to 
rigorously track down cost, revenue, and patient care. 

However, the implementation of EHRs is considered a potential threat to Private Health 
Information (PHI) [40] and may not even improve care or safety of the patient [71]. With the rapid 
adoption of EHRs, two important matters were left aside: first, EHRs should be designed to 
recognize and flag PHI, in order to be handled differently from non-sensitive information; second, 
stratified access to PHI based on user profile should be implemented [35]. 

 User-centered design 

 Usability as a key factor to technology acceptance 
Patient data must be entered in the EHR system. This activity is laborious and is a source of 
frustration [40] for healthcare providers. It is seen as wasted time and a failure with respect to the 
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usability of the EHR software, leading many institutions to hire “scribes” to specifically enter data 
into EHRs. A study [84] about the integration of cloud-based systems in healthcare shows that 
several factors contribute to the resistance of use of this technology. Inertia, i.e. the fact that users 
tend to be willing to continue using the same technology, seems to be the strongest factor in the 
resistance to the use of a new technology. The perception that the new system is a threat to the 
practitioners’ role and position play a significant role. In addition, 92% of physicians note that the 
use of EHRs disturbs communication with patients, which deteriorates the quality of care [155]. 

For acceptance of a telemedicine system, a study [44] reports that the factors with the highest 
impact are the perceived usefulness and the personnel attitude toward using the technology. It 
suggests that user participation can have a positive impact on adoption. In another study [43], ease-
of-use has the biggest influence on user acceptance of the new system, comparable with the patient 
care impact of the system itself. A study [40] shows that acceptance of the technology by providers 
dwells in whether or not it improves patient care or in the speed of care delivery.  

 The case for user-centered design methods 
Shaha et al. [156] demonstrate that EHR implementation is based on designers’ specifications and 
hospital administrators’ need (the buyers) more than on the clinicians’ needs (the actual users). 
This results in a system that is not flexible enough and does not allow enough communication. The 
study therefore emphasizes the need to include clinicians in the design process. EHRs were 
expected to improve some healthcare issues such as accountability, billing and efficiency [80]. 
However, some studies show that EHRs have not been perfect, as any new technology, and brought 
inefficiencies and higher workloads [14,39]. 

Thimbleby et al. [167]  made the statement that since no new technologies will be perfect, they 
need to be developed with the users to make sure they match their needs. They claim that using 
User Centered Design (UCD) is necessary to deliver the right amount of data to the users and not 
overload them. One of the largest hospital of the United States [190], the New York-Presbyterian 
Hospital (based in New York City), comprising 7 campuses and 2,600 beds, performs more than 
310,000 emergency department visits annually [191]. Recording data associated with the hospital 
leads to a large amount of data: a report from EMC and IBC from 2014 [62] states that there were 
153 exabytes of healthcare data in the world in 2013, growing at 48% a year, reaching 2,314 
exabytes by 2020.  
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Thimbleby et al. [167] claimed that the use of the technology may solve an isolated problem or 
increase performance, but it brings changes to staff’s routines and therefore, creates new problems 
when the technology is not designed with end-users. For instance, they mention the problem of 
physicality. In a traditional setting, a user would complete a form and drop it on the desk of a 
colleague for him/her to follow-up. This paper represents a task to perform. With a computerized 
system that would make the first user complete the form electronically. This person does not then 
drop the paper on the desk of the second user anymore, which increases the risk that the second 
person will not realize the task he/she has to do. Without considering these non-verbal and more 
implicit collaboration patterns, communication and safety could be hindered. The authors 
specifically mention the example of the paper-form patient prescription, given in the hands of the 
patient after meeting with the healthcare provider. With electronic prescriptions, widely used in 
the USA and Europe nowadays, patients tend to forget to pick-up their prescriptions at the 
pharmacy because they do not have a physical paper reminder anymore. The authors suggest 
considering skeuomorphism (the design concept of making digital items resembling their real-
world counterparts) while computerizing to mitigate these problems. Similar concerns about direct 
collaboration are studied in groupware research [159]. 

Himmelstein et al. [81] estimate that computerization has not provided any evidence of 
improvement in administrative costs or overall costs because what is saved is spent on the purchase 
and maintenance of the computer system (presumably evolution maintenance of the system to 
adapt to context particularities). They report that so far computerization has not provided any 
evidence of improvements in quality of patient outcomes. 

The failure of computerization is due to the lack of pertinent evaluation of the computer system 
and should include socio-technical factors to adapt and fit a local activity as best as possible [29]. 
Evidence of the beneficial impact of such systems is limited to a few academic clinical centers of 
excellence where the systems were developed in house, undergoing extensive evaluation with 
continual improvement, supported by a strong sense of local ownership by their clinical users [29]. 
The contrast between the success of these systems and the relative failure in much of the wider 
body of evidence is “striking” [29]. Himmelstein et al. [81] mention that the few custom-built 
systems that have been deployed have improved quality of patient outcomes. However, the extent 
to which the results of these primary studies on custom-built systems can be generalized beyond 
their local environment is questionable [29]. 
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 Medical Cyber-Physical Systems (MCPS) 

Medical Cyber-Physical Systems (MCPS) are an healthcare integration of a network of medical 
devices [58]. Traditional clinical scenarios can be viewed as closed-loop systems where caregivers 
are the controllers, medical devices act as sensors and actuators, and patients are the “plants” [105] 
(see Figure 4). These systems represent the industrialization of healthcare, by bringing new 
technologies at the bedside, in the OR and beyond.  

 
Figure 4.  Medical Cyber-Physical Systems: Conceptual Overview. Source: [105] 

Few cyber-physical system architectures have been offered for healthcare thus far [74,105]. Some 
examples of mobile technologies [165], which needed by medical staff [8,122] and in-OR systems 
[23], or design methods suggestions [103] have been reported, but do not provide a holistic 
integration of the different parts of the surgical suite (pre-operating room, ORs, post-operating 
room, Intensive Care Units etc.). In [105], the authors describe research directions and challenges 
involved in the building of MCPS. They report that the challenges are: High Assurance Software, 
Interoperability, Context-Awareness, Autonomy, Security and Privacy and Certifiability. In [105], 
the authors highlight specific Research and Development challenges for MCPS at the system level: 
primary concerns are security and privacy of information. They warn designers at several levels, 
including at the user-centered design one: human errors are linked to caregiver stress and poor user 
interface design has been attributed for these errors. They recommend considering users’ 



 

41 
 

expectations to incorporate a caregiver behavior model in the design of interactive medical 
devices. They emphasize that the purpose of such projects should not be to design fully 
autonomous systems that exclude humans. 

 Summary & research opportunity 

Transitioning to new technologies in the medical field is non-trivial and is a complicated endeavor. 
The literature shows that adopting UCD methods and including physicians in the design of these 
technologies make a significant difference in effective technology usage and adoption. We believe 
there is an opportunity in research to emphasize this need and to apply these techniques to a 
practical example. 

 Collaboration with focus on hospitals 
We introduce here some insights from previous work on collaborative activities needs within the 
hospital. The traditional way to manage a surgical suite patient flow is to have the patients’ surgical 
schedule written on a large whiteboard, in a semi-public space for the surgical staff. Semi-public 
space here means that it concerns the surgical staff only. This whiteboard is updated through the 
day and serves as a collaboration and information support to monitor the flow (see more details in 
the analysis done in Chapter 5 “User context analysis”). Many projects attempted to replace them 
while computerizing the activity of the surgical staff. Fitzpatrick et al. [66] mentions that for 20 
years, the commercial offers of electronic whiteboards have been a failure. They claim that the 
failure comes mainly from the lack of usability and the poor quality of the display and hardware. 

 Ethnographic studies in the surgical suite 

Several ethnographic studies focus on collaboration in the surgical suite [18,19,154,163]. Bardram 
[18] mentions that the problem of computerization at hospitals is mainly that “the systems are 
typically single-user oriented”, whereas teamwork is omnipresent. These studies describe the 
activity in surgical suites of various hospitals, often around the same kind of surgical whiteboards 
as in the Houston Methodist Hospital. They provide recommendations for designing collaborative 
tools for the surgical suite, such as: 
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x The need to support local mobility within the hospital and to support remote and collocated 
collaboration [18]. 

x The need to make systems that can be tailored, to enable evolution of meaning. “For 
example, the signs used on [surgical] whiteboards may change over time and new signs are 
needed to support the coordination of new actions” [19].  

x Replace the traditional surgical whiteboard with a computerized one [19]. However, the 
authors support the idea that keeping a real whiteboard is relevant. 

x Four design principles for the physical environment of surgical suites, focusing on the 
surgical whiteboard [154]: connectivity, space adjacency and visibility, access areas and 
staff-only area. These four principles suggest that the surgical whiteboard is an information 
hotspot and that it must be considered if one wants to computerize whiteboard’s activities. 

x If one wants to replace the traditional surgical whiteboard with a computerized one, 
surgical whiteboard’s affordances must be preserved: visual persistence, flexibility of the 
ink primitives, and its situated social and physical context [163]. The authors forecast that 
users would not easily appropriate the new tools otherwise. 

These studies did not include the design of a computerized whiteboard; hence they did not apply 
their guidelines nor deployed a new artifact in a real-world setting. 

 Lack of modern co-located collaborative technologies for the hospital  

The hospital field is by nature a critical environment, with constant teamwork and adaptation to 
new contexts. A significant contrast remains however between sophisticated healthcare 
technologies and the traditional collaborative tools used in healthcare: while increasingly 
introducing robotics for surgical activities, staff still uses paper-based communication tools such 
as sticky notes and whiteboards [72]. Possible reasons for the lack of Computer Supported 
Collaborative Work (CSCW) technologies in the hospital are:  

x The lack of deployment possibilities for clinical trials [93] due to the fact hospitals are 
critical environments. 

x The danger of incidents caused by computer systems that change processes and lead to 
errors [122]. 

x The lack of evaluation tools [66]. 
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x The technology acceptance gap: many staff of the hospital environments report being 
worried about computerization and being forced to switch to systems that would be 
imposed to them [103]. 

A recommendation [19] would be to start by “moving from design-for-use to design-for-future-
use”. Design-for-future-use can be defined as the adaptation of work practices to foster ownership 
and appropriation of the technology. 

 Collaborative affordances 

Bardram et al. [22] defines the concept of collaborative affordances as “the relation between an 
artifact and a set of human actors that affords the opportunity for these actors to perform a 
collaborative action within a specific social context”. They define a set of core collaborative 
affordances (portability, collocated access, shared overview, and mutual awareness [144]), and 
highlight that the surgical whiteboards possess some collaborative affordances. They applied it to 
a prototype of a binder called HyPR, which was designed to “augment and hence extend the paper-
based medical records”. 

 
Figure 5. HyPR binder prototype. Photo credits: [22]. 

HyPR augments the paper record by allowing patient tracking and identification and by offering 
auditory and visual notifications. This hybrid solution was evaluated in a simulation environment 
and showed that it supports the 4 collaborative affordances described above. The authors showed 
that HyPR could comprise the benefits of the EHR and the paper-based records. For instance, 
HyPR allowed EHR information to be portable and offered a better support for rendering actions 
visible to others. 
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 Communication needs vs. interruptions problem  

Interruptions are a problem for the surgical staff: a study [133] reports that significantly more 
nurses make medical errors when they are interrupted than when they are uninterrupted. Popovici 
et al. [132] relate the key issues of effective communication among hospital stakeholders, which 
includes interruption problems and unintuitive user interface – a problem also discussed in civil 
aviation [82]. A study [99] designed a prototype of a phone application that displays the status of 
colleagues to nurses. The purpose was to increase mutual awareness of each other’s status to help 
decide whether an interruption is appropriate. 

The relationship between information and representation [19,20] is important but rarely served by 
technology within the hospital. The same information should be portrayed in different ways based 
on by who/when it is accessed, so that it can be efficiently shared [141]. The compatibility between 
these representations is necessary for coordination between different places, and computer systems 
can support it better than paper records [141]. Hence, it would allow more efficient collaboration 
among people with different purposes and work practices. 

Direct communication seems to be the best way of communication in terms of time and 
understanding. It is however very expensive and effortful [1,122], so other means of 
communication are often preferred [178]. Direct communication is sometimes physically 
impossible because of time and space discrepancies or because of the lack of resources. 

To compensate the impossibility of direct communication, surgical suite whiteboards are used. 
They support several “indirect” communication features: 

x They are a semi-public source of information, meaning that they are accessible from the 
staff only. 

x They allow “mutual awareness” among surgical staff that is important for efficient 
collaboration [144], i.e. it is important for two distinct users to be aware that they share 
the same information. 

x They support “trajectory awareness”, Scupelli et al. [153]: the ability to be aware of 
critical events that are spatially and temporally separated from the staff. We develop here 
a typical scenario as an example: in the morning, a surgery was rescheduled to the 
afternoon on the whiteboard. A surgical resident, that was seeing patients in his/her office 
at the moment of the change, became aware of the change at noon while discussing with 
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colleagues. The event “rescheduling” was performed spatially away from the surgical 
resident and the moment he/she became aware of the change was different from the time 
of the change. In this scenario, the surgical resident could have been informed of the 
change with explicit means, rather than by chance. 

Scupelli et al. [153]  points out how the lack of awareness and coordination in the OR escalates to 
bigger problems. They claim that creating a “collaborative culture” is necessary and can be 
achieved by giving to the staff the adapted collaborative tools. In this way, Scupelli et al. [154] 
support that context-aware technology can bridge the gap by bringing automated context 
information about the surgical suite to the surgical staff.  

Moss et al. [122] propose the integration of electronic whiteboards to offer asynchronous 
communication options and reduce face-to-face, time-consuming, interruptive communication. 
This could for instance decrease the unnecessary phone call communications and the number of 
coordination activities disruptions. 

 Disconnected whiteboards  
Large whiteboards are widespread centralized coordinative artifacts to support surgical team 
scheduling activities [79,163]. They allow flexibility due to the many ways information can be 
represented, resulting in great appropriation of information [163,183]. In addition, many studies 
shows that the whiteboard is the place to meet and exchange directly with colleagues [79,154,179]. 
They therefore provide several collaborative affordances such as collocated access, shared 
overview and mutual awareness [22]. The whiteboard of the surgical suite is what Bossen et al. 
[32] call the “common ground”, and is essential to coordination between teammates. The situation 
awareness of the staff in the surgical suite relies partly on what is written on the whiteboard. 
According to Branham et al. [36] whiteboards are familiar, pliant and allow for quick creation and 
modification. 

These whiteboards are however not portable [22] and disconnected from all hospitals computer 
system. Whiteboards are  poor tools for archival and reuse [36]. They could be enhanced by 
surgical suite context awareness information, and could help digitalize important information 
needing mobility [19,20,122]. The design choice of Bossen et al. [32] to improve collaboration in 
the Care Hotel was an electronic whiteboard, a large device with public visibility. 
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 The path to computerization without downgrading in flexibility and accuracy 
Some attempts to bring computer support such as electronic whiteboards can be found in the 
literature [110,138]. Hertzum has been involved for several years in the integration of electronic 
whiteboards in emergency department to maintain the overview of the state of the department, and 
reports on the challenge [79,137,139] (see Figure 6). 

 
Figure 6. Electronic whiteboard deployed in a study from Hertzum. Source: [79]. 

He emphasizes that the notion of overview is key and must be supported through the evolution of 
the content [78]. Physicians want to build an overview of the surgical suite state [33]: the status of 
each OR, the forecast on when surgeries will end, the staff allocation etc. Tang et al. [165] propose 
a mobile system to support surgical suite activity, which is more a mobile desktop than an 
electronic whiteboard [165] (see Figure 7). Figure 8 shows a variety of proposed electronic 
whiteboards. Many of them are WIMP-like applications, though according to Weiser “for both 
obvious and subtle reasons, the software that animates a large, shared display and its electronic 
chalk [should] not [be] the same as that for a workstation.” [177] 

 
Figure 7. COW (Computer on Wheel) system from Tang et al. Source: [165] 
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Figure 8. WIMP-based electronic whiteboard applications for surgical suites. From left to right, top to 

bottom: [65], [137], [181], [13]. 
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The problem stated is that electronic whiteboards deteriorate information accuracy, are inflexible 
and turn the collaborative tool into an administrative tool [138]. In addition, their appropriation 
requires the possibility to apply current practices [163] which is often impossible since the 
proposed electronic whiteboards are not interactive like whiteboards sensu stricto. 

For an effective computerization of the whiteboard, Tang et al. [163] recommends the new system 
be a container for task and coordinating information. This would create an environment where 
information is easily revisable and readily updatable, and which flexibility allows users to build 
representations of information suitable for many modes of activity.  

Hertzum [78] reports on the consequences of introducing an electronic whiteboard in their 
emergency department. In their specific case, the total time spent editing the electronic whiteboard 
was significantly higher than the total time spent editing a traditional whiteboard. This reached the 
point where the total time spent editing over a year represented an additional 1.7 additional full-
time clinicians when compared to the previous use of traditional whiteboards. Hence, the usability 
of these electronic whiteboards plays an important role in their usefulness, and their adoption. 

 Usability 
The international standard, ISO 9241-11, defines usability as: “the extent to which a product can 
be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction 
in a specified context of use.” Effectiveness refers to the ability of the user to actually perform the 
task and reach their objectives. Efficiency refers to the performance of the user and how easily 
he/she can perform the task. Satisfaction is a more subjective aspect and refers to how much users 
enjoy using the system. A number of sets of usability guidelines exist to help design more usable 
systems in academia [158] or engineering [123]. Some design and evaluation methods also exist 
to promote better usability [2,97,124,129]. 

However, reaching a high level of usability is challenging, especially in critical environments like 
hospitals because the access to users and to the environment is restricted. The hospital activities 
generate a large amount of data [62] and clinicians need to access it. If more data is welcome, 
usable data that incorporates satisfactory visualization and interaction features is better. 
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 Synthesis & research opportunity 

The literature shows that the traditional surgical suite whiteboard – supporting case scheduling 
activities and overview of the surgical suite state, is not enough by itself anymore: there is a need 
to go beyond and bring more support to the surgical team (better communication, mobility of 
information, data support and improved mutual awareness). Thus, so-called electronic whiteboards 
have already been implemented and tested. 

The global failure of electronic whiteboards reported by Fitzpatrick et al. [66] mainly comes from 
the lack of usability, and the weakness of the quality of the display and hardware. Recent electronic 
whiteboards might have taken this in account, but to our knowledge there has been no work on 
introducing a “real” electronic whiteboard i.e., a multi touch display, of the size of a whiteboard, 
to maximize the support of traditional whiteboard qualities. Indeed, there is two reasons why 
current whiteboard properties should be preserved: 

x Researchers identified and analyzed several of them and the reasons of their efficiency: 
mutual awareness, trajectory awareness, shared overview, strategic central location and 
flexibility. 

x Although we may not know all the beneficial properties of whiteboards, they constitute a 
satisfying collaborative tool for the surgical suite. Hence, designers must be careful not to 
lose these aspects. 

A pliant interface is an interface able to be flexible enough to adapt to the users – and not the 
contrary – even to the users’ needs that were not identified by the designers [75]. We believe that 
this is what we need to explore to support surgical staff workflow and favor a “design for future 
use” [19] that would incorporate most of the whiteboards properties and bring useful computer 
support. The technology probe approach [90] could help design more usable electronic 
whiteboards.  
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 Computerization and benefits of large interactive surfaces 
in other environments 

Since Weiser’s vision of “yard-size” board (see Figure 9), the industry succeeded in democratizing 
the underlying technology. Large multi-touch & high-resolution surfaces have been explored to 
support various critical activities as they promise better manipulation and visualization of data. In 
this section, we explore how other fields of research utilize large surfaces for collaborative 
activities, from which we derive some requirements. 

 
Figure 9. Weiser's ubiquitous "yard-size" board. 
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 Larges surfaces benefits 

We present here large touch displays properties and how they impact users’ activity.  

 Definition of large display 
Andrew et al. [9] define a “large display” as being at “human scale”, i.e. close to the physical size 
of a human, with the resolution (ratio number of pixels / size of the display) that matches  human 
visualization capacities. Ultra-High-Resolution Interactive Wall Displays (UHRIWD) are the 
denomination for extremely large display surfaces. 

By being so large, these displays condition the environment of the user. Thus, designers cannot 
just scale up an existing application to match the size of the display. Simply displaying more data 
is not enough neither. 

 Size and resolution impact 
Andrew et al. [9] emphasize that large and high-resolution displays can simply present more data 
to the users, especially multiscale data. They highlight that displaying a large amount of data can 
be used efficiently only if people can gain more insights into their datasets. The size and high-
resolution allow users to scan a large amount of information at multiple levels of scale [17]. A 
study [140] shows that larger displays with more pixels can significantly increase the number of 
discoveries reported during visual exploration. Another study  compared [108] a wall-size display 
and a desktop-type display and showed that the wall gains an increasing advantage as the 
complexity of the task grows, but that for simple tasks the desktop is faster. Another study [17] 
shows that increased physical navigation on a large display with high-resolution improved user 
performance compared to virtual navigation. The study shows that the users prefer being able to 
physically navigate in the interface rather than perform virtual navigation.  

 Touch inputs 
With a large surface, users can interact with their whole hands or with combinations of more 
fingers than on small surfaces like tablets or smartphones. Based on two hands per user, five fingers 
per hand, many combinations of multi touch interactions can be designed. Such interactions have 
two challenges: user appropriation and system recognition of the gesture by the system. A study 
[126] classifies 32 multi-touch gestures and evaluate them according to these two challenges. 
Among them, 13 are rated above 4 by the participants (1 is difficult to perform, 5 is easy to 
perform) while offering a 90% recognition rate by the computer system. Another study for tabletop 
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gestures [113] gets about the same recognition percentage in the testing of 7 hand shapes (see 
Figure 10). 

 
Figure 10. Example of hand gestures on a touch surface. Source: [113]. 

As mentioned earlier, if more data can be displayed on large screens, the user must be able to 
explore the dataset and navigate within the data more efficiently. A study on tabletops [148] 
explore multi-scale navigation interactions and showed that the direct manipulation slide, pinch 
and turn gestures are now gestures that users appropriate easily. 

Types of touch inputs other than hands gestures are possible on touch displays. Touch inputs on a 
large size display can seem natural due to the size of the display: for instance, on a horizontal 
surface, one can write with a special pen just like he/she would write on a paperboard or whiteboard 
support [27,106]. A study [186] does a review on touchscreen stroke gestures (writing/drawing a 
stroke on the surface). Gestures can follow various design principle such as being analogous to 
physical effects and must remain simple if they are to be effectively used. Horizontal large surfaces  
enable the use of tokens, i.e. tangible items laid on the table that guide users’ gestures [11,118–
120].  

 Orientation 
Vertical or horizontal interactive displays (in the sense “attached to a wall” or “flat like a table”, 
see Figure 11) has an impact on the way users interact with the surface and each other. Horizontal 
surfaces favor collaboration [169]. In a study conducted in the domain of touch interactions [127], 
the horizontal surface was preferred by the participants for being less physically demanding to use 
than a vertical one.  
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Figure 11. Vertical display (left) vs. Horizontal display (right). Photo credits: [127]. 

 Computer-Supported Collaborative Work (CSCW) 
Harrison & Dourish [61,76] and Akpan et al. [4] claim that a ‘place’ (social context) is determinant 
for the ability of an installation to encourage interaction and facilitate engagement with potential 
users. Harrison et al. highlight that bringing new CSCW tools determines new social organizations 
within the space, turning it into a new place, giving it a structure of unity, continuity, and meaning 
[76]. While creating unity and meaning, designers can focus on the concept of common 
information space [154].  Hence, a large interactive surface is bound to its “place” and will be used 
accordingly to the collaboration it supports in this place. 

Because of high-resolution and their size, large surfaces can be used up close and favor collocated 
collaboration as proximity and tight collaboration are correlated [92]. For example, wall-sized 
displays allow multi-user collaboration with a large amount of data [107], promoting face-to-face 
communication . A study [91] identifies eight types of collaboration styles that can be used to 
identify how people collaborate on a shared surface such as active discussion, sharing the same 
view or work on different problems. The authors recommend favoring flexibility of annotations 
and reorganization of the space to promote collaboration on the shared surface. The study showed 
that large touch surface favor mutual and situational awareness. 

Tang et al. [164] investigated collaborative coupling with a tabletop based application, which 
describes how teammates are involved with each other’s actions. This study resulted in 
implications for tabletop design such as the need for “super lightweight” annotation, offering the 
possibility to produce visual cues about each other’s needs or supporting flexible territoriality 
[152] to differentiate individual work from collaborative work.  
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With AwareMedia [21], the authors designed AwareMedia to support three types of awareness in 
the surgical suite: social (provide cues about the colleagues status), spatial (features of a specific 
location) and temporal (awareness of past, present, and future activities and events). They chose 
to deploy two large touch surfaces (42”) for the coordination areas. 

 Application domains 
Many practical applications of large multi touch surfaces in real contexts can be found for non-
critical activities such as museum installations [46,73,109,130], education [47,48,64,114] or 
gaming [128,185]. The exploration of the use of these displays is facilitated by the possibility of 
installation in the environment. We present hereafter some research projects that tested the benefits 
of large surfaces for critical environment, which include additional challenges such as access to 
the context and access to the users. 

 Air Traffic Control 

Systems from civil aviation, and more specifically Air Traffic Control (ATC), are interesting 
candidates to the use of large multitouch surfaces as their users manage a lot of information in 
real-time while coordinating among many stakeholders. 

 Traditional workflow on an ATC position 
In a traditional ATC position workstation (see Figure 12), two air traffic controllers work together 
as a team to monitor the airspace they oversee. To do so, they use a radar image, computer systems 
and paper strips (see Figure 13) representing flights on which they can write the orders they send 
to the pilots The two controllers collaborate constantly, build mutual awareness, analyze and 
resolve conflicts, or perform inter-sector coordination activities [172]. The controllers face 
multiple stressful situations daily, sometimes requiring a third controller to help devise solutions 
in unusual situations such as storm. In case of a traffic overload, a supervisor manage the separation 
of a specific sector into two smaller sectors, transferring outgoing aircrafts and managing the 
coordination with other sectors [172]. Collaboration with three controllers raises the amount of 
verbal communication as the need for synchronization increases [172]. 
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Figure 12. Example of an ATC workstation position and paper strips used in civil aviation to manage the 

flights. 

The controllers manage a set of paper strips to control the flow of flights in their airspace. These 
strips are printed when an aircraft enters the airspace. It contains a lot of information such as flight 
ID, destination and origin. Controllers manually write on paper strips (see Figure 13) to take notes 
of the information sent to pilots. Paper strips are pliant and efficient tools for air traffic controllers 
activities [112].  

 
Figure 13. Example of paper strip, representing a flight in Civil Aviation Air Traffic Control. 

Photo credits: [42].  

 Computerization of ATC activities 
Air Traffic Control and the surgical suite activity are both critical environments. They share 
specific requirements related to collaboration.  Mutual awareness [144] is key in ATC, as the two 
controllers working together in their workplace need to act efficiently and congruently. Several 
studies developed prototypes to support it while preserving and improving the current way of 
working of the staff to minimize the amount of difference with work habits [50,88,115]. We 
present hereafter some examples, some of them relying on touchscreens. 
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Digistrips (see  Figure 14) is an interface prototype to support ATC, using a touch screen and 
digitalized paper strips [115,116]. The authors support that a touch screen is useful in this 
configuration because it favors direct manipulation [89], mutual awareness (as the screen allows 
the colleague to see what is done) and sharable content. They state that using animations facilitate 
users’ understanding of the transition of data from one state to another and its understanding by 
the operator. Most of all, they report that touch screens support manual writing and that Digistrips 
manual inputs could be displayed with handwriting fonts instead of being converted in computer 
font: this raises awareness on the fact that a human made the modification. 

 
Figure 14. Digital strips visualization and manipulation offered by the Digistrip system. 

While Digistrips focus on collaboration between two controllers working on the same position, 
Sire et al. [160] study the collaboration between air traffic controllers working on distant positions. 
Indeed, coordination between crossing sectors is needed when aircraft want to deviate from their 
planned route due to weather conditions or route optimization. Sire [159] proposes the concept of 
direct collaboration, as a follow-up to direct manipulation, to support coordination through 
manipulation and exchange of objects. The recommendations aim at preserving social skills of 
coordination in groupware instead of implementing data control protocols. In particular, they 
propose media and activity integration, and interaction styles that support prosody and social 
hints.  
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Figure 15. An ATC position using MAMMI system. The whole dashboard is virtual, on a multitouch screen. 

The strips are reified and used via multitouch and multi-users interactions. Image credit: [174]. 

The MAMMI (Multi Actors Man Machine Interfaces see Figure 15) multi touch tabletop system 
[50,172,174,175]  reifies strips into a digital equivalent. Strips can be positioned anywhere on the 
table and rotated in any way. The purpose of free rotation was to enhance collaboration with 
indirect communication: the user drags a strip toward his/her coworker and rotate it in a way that 
the strip seems to be needing attention, to suggest to the colleague that he/she has to deal with it 
and resume an incomplete task. The authors of this tabletop system explored a completely 
digitalized workstation organization and added other types of digital features to improve 
communications with the pilots: for instance, supporting the delivery of an order traditionally made 
on the radio directly in the interface. Finally, the authors fostered partial accomplishment of 
actions, to foster dynamic task allocation among the controllers. 
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Strip’TIC [88] on the other hand, chose to keep using physical strips while augmenting them (see 
Figure 16 and Figure 17) The augmented paper strips can be manipulated and written on by the 
operators just like the traditional way. They are connected to the underlying computer system. As 
such they can “receive” information thanks to back and front video projection. They can provide 
information according to users’ input: handwriting on the strips, movements and location of the 
strips on the stripboard. The physical aspect of the strips allows users to hold them and input 
information even if far away from the control position, as input is transmitted by the pen over a 
wireless network. 

  
Figure 16. Strip’TIC: using augmented reality on tangible object to manage flights. On the right: two 

controllers using the Strip'TIC prototype (digital pens, augmented radar, stripboard, and paper strips). 
Image credit: http://striptic.fr/ (left) and [88] (right) 

 
Figure 17. Strip'TIC whole system overview, including projection and retro-projection of augmented 

information and the radar image. Image credit: http://striptic.fr/ 

http://striptic.fr/
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 Emergency response 

ePlan [45] is a multi-surface environment that includes large and small interactive surfaces for 
emergency response planning training (see Figure 18). The system gathers information from 
multiple sources in real-time and displays an overview of the situation on a large surface. The 
prototype received positive feedbacks for the usability and the learnability of its interactions. The 
study shows that designers should provide multi-touch interactions that avoid hard-to-remember 
multi-fingers gestures. The authors emphasize that technology reliability is key to user 
involvement and trust in the system. For instance, some users can spend a lot of time checking 
whether they are connected to the system instead of performing their activity. 

 
Figure 18. ePlan multi interfaces system, including at the back a large map visualization and at the front a 

multitouch table top interface. Photo credits: [45]. 

TIPExtop [166] introduces a large multitouch display, designed to be used horizontally as a table 
to support decision-makers activity during emergency response. The authors designed tools to 
foster communication and explore alternatives around a multitouch map of the area of interest e.g. 
direct annotation of the map or recorded voice messages. 

 
Figure 19. TIPExtop tabletop multitouch interface. Supporting here three users. Photo credits: [166]. 
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 Road traffic overview 

Prouzeau et al. [134] explore the benefits of collaboration in front of UHRIWD. They describe a 
prototype of UHRIWD to overview real time road traffic. The prototype uses a very large screen 
to foster co-located, synchronous cooperation for two users via several interaction techniques. 
They design simulations to explore decisions consequences and highlight their different impacts 
on the current traffic.  

The authors showed that UHRIWD are beneficial for collaboration close to the screen, but that 
operators need individual displays to work on more independent tasks. They therefore 
combined the UHRIWD with personal devices. 

 
Figure 20. A large multi touch wall display showing the road traffic, allowing the users to interact with the 

map. 

 Synthesis & research opportunity 

Large multitouch surfaces offer several assets for collaborative work such as size, and diversity of 
inputs possibilities. Their size would make them able to replace traditional surgical whiteboards 
(as the latter are usually very large and contain a lot of information). Large surfaces could improve 
surgical whiteboards in theory by bringing computer support and create a new environment which 
goes beyond a simple desktop screen.  

Some projects involve large multitouch surfaces to support operational activities. To our 
knowledge, no application with large multitouch screen was designed nor developed for surgical 
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suite collaboration activities. We believe that there is an opportunity to push further the exploration 
of the use of large multitouch surface for a critical, real-world activity. 

 Opportunity for research 
The literature shows a wide variety of studies on the surgical suite collaborative activity, 
emphasizing the problem of efficiency: up-to-date information, communication, optimization of 
surgical flow, all of which translates into reducing cost/increasing revenues. Other studies claim 
that computers could bring better support, but we remain aware of the risks: jeopardizing 
collaborative perks of existing methods, non-updated displayed information, more administrative 
work on the side of the physicians and lack of usability. For such environments, the 
computerization of activities is complex and UCD methods that include end-users during design 
are necessary. Finally, few studies included a clinical installation and experiment in real settings. 

We think that a large multi touch display can combine the advantages of whiteboards with that of 
connected digital devices. Our aim is to build and deploy a system that fosters teamwork and 
flexibility, as needed for surgical flow management, using a large multi touch surface. We believe 
that following UCD methods will lead us to the design, development and clinical tests of a practical 
example of what can be done for the surgical suite staff.  

The remaining questions are: what design techniques can we use? What interactions can we allow 
on this support? How to link the interface to the rest of the cyber-physical system and the hospital 
system? What methods can we use to design a prototype that is deployable in the clinic for testing? 
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3 

CONTEXT: A CYBER-PHYSICAL SYSTEM  

The present thesis is part of a larger project that consists in equipping surgical suites with 
a Cyber-Physical System (CPS) [67,86,87,94,95]. The CPS aims at providing information on the 
state of the suite. This chapter provides elements of context and describes the contributions I made 
to this larger project. It serves as an introduction to OnBoard, the interface prototype of the CPS 
to support surgical suite workflow. 

The CPS is comprised of two pieces that were part of a separate work [67–69,86,87,95]: 

� The SmartOR element, for which my contribution consists in the evaluation of awareness 
problems in the surgical suite. 

� The mathematical model of the surgical flow, for which my contribution consists in the 
participation in the calibration of the model, the design and development of a visual 
simulation of the surgical flow using the model output and its utilization to support 
awareness, a key factor in the surgical suite efficiency. 

We will detail the contributions of these two elements and show how they are first steps toward 
the full integration of humans in the cyber-physical system. The design of the integration of the 
human element in the cyber-physical system (the interfaces system) is detailed along Chapters 4, 
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5 and 6. This repartition is overall representative of my contribution on each elements of the cyber-
physical system. 

  Rationale and preliminary introduction to the cyber-
physical system architecture 

 Rationale 

Large surgical suites (>6 ORs) present many advantages that enable them to be more productive. 
They have more resources: staff and equipment, ORs and perioperative rooms. Hence, more 
surgeries can be performed during the day. More resources allow for more flexibility in terms of 
daily adjustments of scheduling than smaller ones, as the resources are shared and can be 
redistributed according to the need. 

However, large surgical suites are by nature more complex as to their management. Staff context 
awareness is key to make the right decisions that lead to better control of the surgical suite, reduced 
frustration of the staff and better patient health outcomes. The surgical staff constantly need to be 
updated on the state of ORs to anticipate what they must do. The acquisition of real-time 
information about the surgical suite state (i.e. each OR state, patient state etc.) is often done by 
“looking” inside the operating room to “guess” the status of the surgery, or even by asking directly 
the staff that are performing the procedure. 

More and more hospitals get equipped with electronic hospital systems that contain the schedule 
and sometimes tentative prediction of times – like Epic Software. Such systems require the staff 
to manually input timestamps. For instance, a nurse inputs in the computer that the patient has just 
entered the OR at 8:06am. However, the information on time can be inaccurate because the staff 
has other priorities than memorizing and entering times in the computer (like taking care of the 
patient). Thus, the awareness of the whole surgical suite staff is compromised.  

The need of measurement that emerged a couple of years ago in several industries (oil and gas, 
aerospace…) is happening more recently in the medical field. Management of such complex 
hospitals that tend to be larger and larger needs to follow the principle of continuous improvement 
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[55]. For a process to be stable, its workflow outcomes need to stay in a certain range and try to 
avoid as much as possible outliers.  

Consequently, continuous real-time rescheduling is done by the staff based on their expertise and 
one-to-one communication with other staff members [162]. Common sources of discrepancies for 
OR management include [170]: 

� Turnover time between surgeries above the hospitals management policy [15]. 
� Delays in the start time of the first case of the day [57]. 
� Surgeries that run longer than anticipated and lead to cancellation of other cases [12]. 

Hence, there are three concerns about the surgical suite flow optimization (Surgical Suite Concerns 
– SSC): 

SSC1. How to acquire surgical suite data and measurements relevant to surgical suite steps. 

SSC2. How to use data to raise staff awareness. 

SSC3. How to use data to define a predictive model of surgery times and help the staff 
make better decisions.  

We detail in the next sections the construction of the CPS which aims at answering these concerns. 

 Preliminary introduction to the architecture 

The CPS is comprised of three elements that aims at answering the three concerns:  

� SmartOR sensors [67,86,87,94,96]: automatic and non-invasive sensors and signal 
processing software modules installed in every OR of the surgical suite that acquire the OR 
state in real-time (patient in/out of the OR, patient intubation/extubation, laparoscopic 
procedure start/end). SSC1 

� OnBoard [94,96,135,136]: an interactive interface system to support staff awareness and 
collaboration. This part is my principal contribution to the development of a cyber-physical 
system to improve surgical suite efficiency, patient outcomes and safety. SSC2 

� A mathematical model of the surgical suite patient flow [68,69]: an agent-based 
representation of the surgical suite organization and surgical staff. The output of the model 
helps to understand the accumulation of delays within the surgical suite. SSC3 
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Figure 21 shows the architecture between the ORs, equipped with SmartOR sensors, the hospital 
network and the interface system, OnBoard. 

 
Figure 21. Architecture of the CPS. 

 SmartOR 
I present here the work done prior to my thesis on the technical acquisition of the surgical suite 
state. I present our evaluation of awareness delays in the surgical suite. 

 Previous work insights (no contribution from the present thesis) 

Surgical staff enters timestamps of events in the hospital system, such as: “Patient entered the OR 
at 8:06am”, “first incision at 8:15am”, etc. These timestamps always have the risk of presenting 
errors as the nurses for instance have other priorities than entering information in the computer – 
such as taking care of their patients. Previous work on the CPS for the surgical suite [67,86,87] 
describe an array of sensors and signal processing software that were installed in the surgical suite 
and that automatically tracked surgical cases to identify and quantify inefficiency bottlenecks (see 
Figure 23 and Figure 24). 

Theses sensors communicate with a server where all the data are saved and processed to get only 
the key events. To avoid false positive detection, redundancy of different sensors has been used. 
The resulting system is a real-time timeline of the surgery events that can be used every day by the 
OR manager and the staff of the OR to make better operational decisions. 
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Figure 22. A colleague installing a SmartOR door sensor for detecting opening and closing. 

 

 

Figure 23. Operating Room equipped with 2 SmartOR sensors. The left one is a camera detecting the motion 
of the ventilator, giving the event “Intubation” and the event “Extubation”. The right one is a magnetometer 
detecting a mass of metal entering the OR by the front door. Coupled with signal processing, this sensor can 
detect if this mass of metal is the patient’s bed, giving the event “Patient entry” and the event “Patient exit”.  
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Figure 24. Sensors targeting key events at each step of the procedure. Source: [67]. 

 

Other sensors such as Zigbee modules and RFID systems were added later in these studies to track 
patients and staff. These studies resulted in the acquisition of accurate and real-time measurements 
of OR times, such as average turnover times and first case start delays.  

Tracking the surgical staff raises the problem of privacy and remains controversial. It had a 
negative impact on the staff that considers it is an invasion of their privacy. Patient’s tracking 
seems to be acceptable as patients expect to receive care in a safe way. In addition, conversely to 
the surgical staff, they do not fear such tracking to be used for professional evaluation purposes. 

This work [87] raised the need to deliver the data in real-time to the surgical staff in the best way 
to help making operational decisions and long-term strategy decisions. The authors proposed a 
first draft of potential interface systems (see Figure 25). However, they did not build any interface, 
nor did they conduct research on how it should be designed. 
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Figure 25. Real-time visualization of OR state (right) integrated with the SmartOR network system (left), 

Source: [87]. 

 Evaluation of awareness problems in the surgical suite (contribution of the 
thesis) 

As already explained in the related work, whiteboards in the surgical suite are centralized 
collaborative instruments to inform the surgical staff of the state of the surgical suite (OR state, 
staff allocations, equipment required for which surgeries etc.). The usage we observed will be more 
accurately described in chapter 4 “User context analysis”. 

We performed an experiment to evaluate how up-to-date the information on the whiteboards was, 
compared to the actual state of the surgical suite [94]: 

x Two sensors of the SmartOR system were installed and were recording the timestamps of 
patient entry and exit from the OR.  

x An observer was manually writing timestamps on a paperboard of patient entries/exits from 
the ORs when this information would be written on the whiteboard.  

x We finally compared the times and evaluated the awareness delays.  

The complexity of the surgical suite, in terms of critical environment and activities, made the 
development and deployment of the SmartOR sensors challenging. Between regulatory approvals 
and staff approval, it was unclear whether these sensors could be installed in ORs. After requesting 
approvals, the cyber-physical system project was cleared by the Food and Drugs Administration 
(FDA) and by our institution Institutional Review Board (IRB) representative as a Non-Human 
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Research Project. We were therefore authorized to install sensors in the ORs and deploy staff 
interfaces in the surgical suite with the approval of the surgical suite manager.  

During a period of 8 days, we quantified for 42 cases the time differences between the real entry 
and exit times in 5 ORs (patient entering and exiting the OR detected by the SmartOR sensors) 
and the respective times displayed on the whiteboard. From the whiteboard’s analysis, two 
important steps of a surgery can be detected: patient entry and patient exit of the OR means 
beginning and end of a case. These steps are important because they indicate that the surgery 
started, i.e. the surgical staff is aware that this OR just started a new procedure, and because they 
indicate that the surgery is finished, i.e. the surgical staff can anticipate the next case to come in 
this OR.  Our purpose was to understand better the interaction between the whiteboard of a large 
surgical suite and what is in fact happening in the OR. By doing so, we wanted to analyze whether 
the time differences were significant enough to create a disruption in the awareness of the surgical 
suite.  

 Entry time records 
We first compared the “entry time” information. When a patient enters an OR, the board runner or 
a nurse crosses the start time information of a case with a red star (see Figure 26). We took note 
of the time at which the surgical staff would write this star and compared it later with the SmartOR 
sensors records. We detail in the chapter 5 “User context analysis” the surgical staff use of the 
surgical whiteboard more in detail. 

       
Figure 26. Left: a surgical suite whiteboard to schedule cases. Right: start time of the surgery crossed on the 

whiteboard. 
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Table 1. Time difference between the actual patient’s entry in the OR and the report of this event on the 
whiteboard. 

Patient entry in the OR 
Average time difference Standard deviation 

15min 22min 
 

We compared (see Table 1) the time the case is “crossed” (see Figure 26) on the whiteboard to the 
time the patient enters the room. Table 1 shows that on average there was a 15 min start time 
difference per surgical case, which is significant at the scale of the surgical suite: in a typical day 
with 2 cases in 3 ORs, the time lost would be 2x3x15=90 min. In this surgical suite, surgical case 
last anywhere from 1h to 10h. Potentially, one surgical case could have been added in one of these 
ORs. When we presented our results to one of the board runners in our home institution, he was 
not surprised about these differences, but he realized that it was preventing him from making real-
time rescheduling and reaching higher efficiency. 

 Exit time records 
We then compared the “exit time” information. When a patient leaves an OR, the board runner or 
a nurse erases the whole surgical case from the whiteboard. We took note of the time at which the 
surgical staff would erase the surgical case and compared it later with the SmartOR sensors 
records. 

Table 2. Time difference between the actual patient’s exit of the OR and the report of this event on the 
whiteboard. 

Patient exits the OR 
Average time difference Standard deviation 

13min 29min 
 

As we did for the entry time, we compared (see Table 2) the time at which the case is erased from 
the whiteboard to the time when the patient actually exits the room. Here again, even if it is shorter, 
a time difference exists between the two events and can bring unnecessary waiting time in the 
continuity of the OR workflow, especially in the turnover time. The large standard deviation is 
linked to the variability of workload of the board runners and nurses. 
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 Conclusion  

We found an average difference of 13 to 15 min between an event that happened in the OR and 
this exact same event being reflected on the whiteboard, with important standard deviations. 

Two sensors constitute the SmartOR system that we used for this experiment. One is installed on 
the door and capture patient entry and exit of the OR using signal processing: the magnetometer 
that detect a large amount of metal passing (patients’ beds). The other sensor is installed on the 
ventilator and capture intubation of the patient and extubation with an infrared camera that detects 
the motion of the ventilator via image analysis.  

The SmartOR system can capture automatically real-time OR status with more precision than what 
is today input on the whiteboard. By bringing a user interface delivering real-time information on 
the surgical suite state with SmartOR data acquisition systems, we would offer to the staff a cyber-
physical system that will potentially enable a more omniscient surgical team. Not only every 
elapsed time is analyzed and stored for later analysis, but we can transmit this information to all 
the employees who need it. 

If one could record every action that was performed on the whiteboard, it could also become a 
sensor and archive inputs information. 

  A mathematical model of the surgical flow 
We detail here the rationale behind the development of a mathematical model of the surgical flow 
and an example of its exploitation. 

 Rationales for a mathematical model of the surgical flow 

Surgical flow is a highly complex process occurring at multiple scales across the hospital system. 
Some of the critical surgical maneuvers that affect patient outcomes should be set in context of the 
overall management and organization of surgical staff and performance. A single event in the OR 
can negatively affect other steps and the combination of otherwise benign events can cascade and 
result in adverse outcomes for the patient. Figure 27 shows the different scales that can be impacted 
by adverse events. Figure 27 must be read from the center to the edge of the circle for the impacts 
on space scale and following the unit circle for the impacts on time scale. 
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Figure 27. Symbolic representation of the multiscale distribution of surgical flow ranging from the smallest 

scale, OR awareness, to the hospital system level involving hundreds of staff.  

Current optimization techniques to schedule surgery [24,56] have limited capability because of the 
uncertainty with regard to procedural time, lack of detailed information on the state of the system 
and a large number of last minute emergency cases added to the schedule.  

Standard techniques commonly employed, such as check lists and team work protocols [121], 
cannot maintain satisfactory performance in such a stressful and uncertain environment. We 
propose that staff and patients would greatly benefit from a usable cyber-physical infrastructure 
[105] that constantly monitors events and uses a sophisticated model of surgical flow to anticipate 
difficulties and efficiently assists rescheduling efforts of the OR team.  

Arising from the conceptual work described above on the CPS, a mathematical model of the 
surgical flow in a large OR suite emerged. Each OR process can be represented by an algorithm 
that has a complex graph structure for its execution and requires a minimum number of 
stakeholders to achieve the task corresponding to each node. Normalization of large-volume 
surgery times, such as cholecystectomy (600,000 cases per year in the United States) or bariatric 
surgery (200,000 cases per year) by major surgical associations such as the Society of American 

Whiteboard scale 
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Gastrointestinal and Endoscopic Surgeons (SAGES) provides a solid base to develop a predictive 
model of surgical times. 

 Exploiting the model 

The analytical method results in a staff-specific, agent-based model that retains the key features 
observed in daily clinical practice and is based on a comprehensive multi-scale view of activities 
in the OR suite. The goal of the mathematical model is to add some predictive simulation capability 
of the surgical flow to help optimize OR management decisions. For example, once the timelines 
of hundreds of open surgeries are available, a good statistical predictor of the time spent at any 
given step of the process can be developed. 

The proposed model explicitly takes the OR staff and their communicational and technical skill 
levels into account. Parameter identification in the agent-based model improved as the database of 
SmartOR measures grew and became patient and surgeon specific, by relating it to the hospital 
system. The preliminary analysis was able to differentiate between standard and longer cases as a 
function of patient risk class in anesthesia (e.g., bariatric surgeries) but not yet at a satisfactory 
level of precision. The patient condition prior to surgery plays a key role in those predictions and 
needs to be much further refined in the analysis. Therefore, to provide reliable guidance, the CPS 
must be able to recover extensive information from the hospital system. 

Table 3. Ranking the influence of the parameters on key factors of OR efficiency (q*), such as turnover. 
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We discuss how the model accounts for the awareness factor in the study reported in [96]; a more 
detailed description is available in Appendix 1. The model ranks the influence of parameters, such 
as the ideal length of time to clean the OR or the number of anesthesiologists/number of ORs, 
according to their impact (see scale on Figure 28) on the macro steps of the procedures (turnover 
time, anesthesia time, etc.) – see Table 3.  

 

 

 

 

 

 

Parameter q11, awareness and communication delay until the OR cleaning staff (cleaning OR after 
surgery) arrives in the OR, has a very high impact score (1) on the turnover time performance. 
Therefore, the model suggests that we must increase our efforts on improving surgical suite 
awareness to improve turnover times. The model could suggest what would be the most relevant 
information the staff need to see during the operations. 

 Data visualization of the workflow based on the model output 

I designed a visualization of the output of the mathematical model of the surgical workflow and 
patient flow. The purpose of the visualization was twofold: help mathematical researchers design 
and assess the underlying model, explore the resulting data, and assess potential improvements; 
help the surgical suite executive staff understand the workflow of the surgical suite, discover and 
discuss opportunities for improvement, and make informed decisions. 

The visualization in an animation showing the map of the surgical suite and the movement of staff, 
patients and the changes of OR states. The visualized data are a set of time-stamped events related 
to staff and patients in the surgical suite. An excerpt of a spreadsheet containing such data is visible 
in Figure 29. For instance, a column represents an OR and its different status through the day (12 
hours), sampled every minute. These data are the output of a run of the model. To produce these 

Figure 28. Quantification of impact score of parameters in the model. 

1 2 3 4 

High impact Low impact 
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data, the user must input to the model several parameters such as number of ORs, number of 
patients, their time of arrival, number of surgeons, awareness levels, patient’s time of arrival 
strategies, individual performance, number of cleaning crew or number of endoscopes (in the case 
of Figure 30, the simulation is about the surgical flow of a flexible endoscopy surgical suite). 

 
Figure 29. Example of data output from the model of the surgical flow. Here, each column represents the 

evolution of the OR state according to time (1 row = 1 min). 0 represent an idle time (OR not used), 1 
represents procedure started, 2 represents intubation started etc. 

The resulting animation is a 4min video (see a picture in Figure 30) that updates, through 12 hours, 
the OR state, staff, equipment’ and patients’ locations. It shows the evolution of 4 key performance 
indicators for surgical suite optimization (top-left in Figure 30): the global patient waiting time, 
the turnover time (time between the moment the patient leaves the OR and the next patient enters 
the same OR), and the volume of surgeries and in this specific case the endoscope delivery delay. 
At the end of the animation, the simulation displays the total volume of surgeries and the revenue 
of the surgical suite for this day. 
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Figure 30. Extract of the video representing the output of the mathematical model of the surgical flow for a 

flexible endoscopy surgical suite of 10 ORs. 

The visualization succeeded in helping the designer of the model to partly assess its correctness. 
The simulation visually exhibits inaccuracies, for instance when a surgery has started but not 
patient is in the room, or when a procedure starts in the same OR though it has not been cleaned 
yet. 

It succeeded in helping designers and executive staff discover the relationships between all 
elements that take part in the models. By tuning parameters’ values, they could identify which 
work best in specific situations. For example, we have tested 3 scenarios on surgical flow 
efficiency in the context of Gastro-Intestinal surgery (GI). GI is characterized by short procedures 
(colonoscopy or EGD). We have tested three situations in our simulation: 

1. A baseline with standard scheduling and OR awareness delays observed in clinical 
conditions. 

2. An optimum overbooking to compensate for cancelation. 
3. An optimum OR awareness. 
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We observe a growth of 30% in productivity of the surgical suite going form scenario 1 to scenario 
3 and one can visualize the flow to appreciate this improvement and share that observation with 
management levels. 

The visualization helped the researchers involved in the project to communicate to the executive 
staff on the value of their research at improving the surgical suite management in terms of 
productivity and increased revenue. Notably, it highlights the complexity of the surgical workflow 
and helped the executive staff understand that to improve it, a system approach is necessary i.e. an 
optimized schedule is the result of complex interactions between all the surgical suite subparts. 

 Conclusion 
This chapter presented the CPS and the contributions made to the study of the CPS: 

x An evaluation of awareness problems in the surgical suite, which showed important 
differences between times of events in the OR and the times reported on the whiteboard. 

x An exploitation of the model, showing that the awareness of the surgical team has the 
highest impact on turnover times. 

x A visualization of the surgical flow simulation to help researchers and executive staff 
discover and decide on potential optimizations  

In the rest of the dissertation, we focus on the design of a user interfaces to bring the data from 
the sensors to the staff and foster collaboration and awareness among the surgical team. 
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4 

METHODS 

Previous results and the review of literature shows that a user interface system is needed 
for the CPS, with focus on usability and collaboration. Hence, we chose User-Centered Design 
(UCD) methods [192] to design the user interface of the CPS. This chapter presents the different 
methods we used to conduct this work regarding user context analysis, design and evaluation. The 
results of the application of the methods are presented in subsequent chapters. 

We performed an initial analysis of the surgical suite and of the surgical staff workflow. We had 
the opportunity to access the surgical suites of the hospital for observations and interviews. We 
performed participatory design sessions, usability inspections and design walkthroughs for the 
evaluations. We borrowed principles from the technology probes approach. Finally, we performed 
an analogy between ATC and surgical suite activities. 

 Technology probe 
We initially considered conducting the project with a technology probe approach [90]. Technology 
probes are simple, flexible, adaptable technologies with three interdisciplinary goals:  

1. Collect information about the activity in the surgical suite; 



 

79 
 

2. Inspire the staff and the design team for prototyping; 
3. Engineer and Test prototypes. 

Since we were designing an electronic whiteboard to replace a traditional one, we figured that we 
could design and implement a very simple version with few features only to foster adaptation and 
appropriation. We planned to directly install technology probes in the surgical suite and observe 
their use. Technology probes have already been used in healthcare, notably to design a medical 
checklist [102]. However, the surgical suite is a critical environment. The difficulty we met to get 
authorization to install technology probes in the surgical suite prevented us from conducting the 
PhD work with this method. Hence, we utilized more classical UCD methods. 

Nevertheless, we borrowed 3 principles from this approach to guide the design: 

TP1. Flexibility, Open-ended and co-adaptive: Technology probes must be open-ended with 
respect to use, and users should be encouraged to reinterpret them and use them in unexpected 
ways.  

TP2. Real-world: Technology probes must work in a real-world setting. Therefore, the main 
technological problems must be solved for the technology probes to serve their purpose.  

TP3. Instrumented: Technology probes collect data about users and help them (and us) generate 
ideas for new technology. Logging allows researchers to create visualizations of the use of the 
probes, which can be discussed by both users and designers.  

Following the design principles of technology probes favored the possibility of deployment. We 
could in fine collect information on the usage of the prototype, which inspires the staff when 
ideating during design iterations. 

 User context analysis methods 
We performed the analysis of the workflow in six of the eight surgical suites of the Houston 
Methodist Hospital, with a System Usability Scale questionnaire, interviews, contextual inquiries 
and observations. 
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We followed a UCD approach with a total of 27 surgical staff. Table 4 shows the staff involved in 
the UCD methods. More detailed description of the users’ roles will be presented in chapter 5 
“User context analysis”. 

Table 4. Summary of user-centric design procedure with surgical staff and researchers. (N) next to BRx 
means that the board runner is also a nurse. 

Surgical 
suite 

Board runners (BR) Nurses (N) Surgeons (S) 
Anesthesiologists 

(A) 
Managers 

(M) 

DunnOR 

BR1 (N)  N1 S1 A1 M1 

BR2 (N)  
 

S2 A2  

BR3 S3  

FondrenOR 

BR6  N2 S4 A3  

BR7 (N)  N3 S5 A4 

 N4  A5 

OPC19 
BR4 (N) 

 
 

BR5 (N) 

Other Suites  N5 

S6 

 

 

S7 

S8 

S9 

Legend of Table 4: 

Interview 
Contextual 
inquiries 

Evolutions with 
technology probes 

Participatory 
design 

Design walkthrough 

 

We used System Usability Scale (SUS) questionnaires [2] answered by 22 surgical staff of 
FondrenOR about the use of whiteboards in the surgical suite. We conducted 13 interviews and 12 
contextual inquiries within the surgical suites DunnOR, FondrenOR, OPC and “Other Suites” (see 
Table 4), with 20 surgical staff [26].  The purpose of these interviews was to identify the tasks 
performed by the surgical staff, their collaboration activities, the general workflow and layout of 
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a surgical suite, and its issues. During interviews, we oriented the questions towards the use of the 
whiteboard, and how it supports their activities (see the whiteboard in Figure 31). We oriented 
questions toward critical situations such as cancelation of cases, emergency management or 
resources management issues. The answers were recorded with handwriting on paper documents, 
associated to each user profile. 

 
Figure 31. Picture taken from the surgical suite control room, where there are computers to access scheduling 

and patient information. This room opens windows on the information corridor, containing semi-public 
information (available only to the surgical staff), including two large whiteboards displaying schedule and 

notes, and screens at the top displaying hospital system information. 

We performed observations using cameras to capture the actual usage of the whiteboard. We set 
up a camera that could capture a whole whiteboard (see Figure 32). With the camera, we captured 
1000 pictures per day, taken with 1min delay between each photo or 30s. We recorded pictures 
during 3 consecutive weeks. On the pictures, we could see the symbols that are written/put on the 
whiteboard, the modifications/evolutions (updates, adds, writing/erasing) made on the whiteboard 
along the day, and the user-whiteboard and the user-user interactions (see bottom pictures in Figure 
32). 
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Finally, we identified 19 work scenarios [41] of surgical suite activity which were validated by the 
surgical staff BR1 (see Table 4) as the main activities of the surgical suite staff. Scenarios are 
stories based on interactions between people and tools that describe a sequence of actions and 
events that lead to an outcome. From these scenarios, we established 6 high-level requirements to 
be fulfilled by the new system. 

 

  
Figure 32. Installation of the camera (circled in yellow on the top picture) to take pictures of the whiteboard 

(facing the camera). The top picture shows the control room (on the other side of the windows) and computer 
systems to access patient medical records in front of the surgical whiteboard. The bottom pictures show an 

example of the pictures taken by this camera. 
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 Participatory Design 
We designed and iterated on technological solutions to support surgical staff activity by 
performing participatory design sessions [151] with 9 surgical staff from DunnOR, OPC surgical 
suite and others surgical suites (see Table 4). We performed brainstorming sessions and generated 
ideas about suitable tools for a digital surgical flow management system.  Two sessions consisted 
in a brainstorming in a meeting space on how to represent and arrange elements on an electronic 
whiteboard to be able to perform the same tasks as on the whiteboard and enhancing them with 
the support of a computer. 3 questions were asked during these sessions and the participants had 
to propose ideas to answer them. The 3 questions were: 

� What overall layout to support the case scheduling activity? 
� How to represent information that is very important for a case? 
� How to display the current status/advancement of a case? 

 
Figure 33. Some idea results after a participatory design session with the surgical staff. 

These sessions allowed us to start prototyping. Discussions led to more specific design questions: 

x How to carry information away from the board? 
x How to modify a surgical case? 
x How to modify the OR number? 
x How to modify the start time? 
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x How to insert an emergency case? 
x How could we practically build the system so that we could test it in the surgical suite? 

We show some example of ideas that were designed in Figure 33. The answers and ideas were 
collected on paper notes or drawings during the sessions. They were then analyzed for their 
contents and similarities between different answers to see how and if they should be implemented 
during the design of interactions on the prototype. 

 Design Evaluation – Design Walkthrough sessions 
We performed design walkthrough [97,124,129] sessions on 3 different versions (see Figure 34) 
of the prototype with a total of 12 surgical staff (see Table 4), with 13 separate sessions (see Table 
14). 

 
Figure 34. From left to right: version 1, 2 and 3 of the prototype. 

The first part consisted in 5 sessions, with a total of 6 surgical staff walking through 9 tasks. The 
second part consisted in 1 session, with a total of 2 surgical staff, walking through 10 tasks. The 
third part consisted in 5 sessions, with a total of 5 surgical staff, walking through 8 tasks. The last 
part consisted in 2 sessions, with a total of 4 surgical staff, walking through 5 tasks. All the tasks 
were built upon the work scenarios extracted from the user activity analysis (see Table 7). 

Data were collected via observations during the walkthrough sessions. For each of the scenarios, 
we recorded on paper sheets: the success or failure of the performance of the task (effectiveness), 
the way the user performed the task (efficiency), the user’s satisfaction by asking to answer “How 
difficult was the task?” on a scale from 1 to 5 (satisfaction), and free comments from users and 
questions asked during and after the task and the time to perform the task.  
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Other participatory design sessions were performed at the end of the design walkthrough sessions. 
These sessions allowed us to know what to adjust and to re-iterate the design of our prototypes. 
The implemented ideas that had satisfying performances and positive feedback after the design 
walkthrough were kept for later deployment. 

 Usability inspections 
We performed usability inspection [124] to prepare the system for deployment and followed 
usability guidelines [124,125]. With a team of usability experts (Human-Computer Interaction 
researchers), we reviewed all the interactions of the prototype with focus on error prevention and 
error recovery. The objective was to assess that no critical action could be triggered unexpectedly 
or with insufficient feedback.  

We verified the quality of implementation or implemented the missing interactions of 4 error 
prevention features and 6 error recovery features. 

 Analogy with Air Traffic Control activity 
As shown in the related work, Air Traffic Control (ATC) shares with the surgical suite many 
similarities. Air Traffic Control consists in managing the flow of flights in each airspace or on the 
ground. To do so, air traffic controllers use specific systems such as the radar, paper strips (see 
chapter 2) or radio communications to organize the flights, anticipate and avoid collisions and 
optimize the flow.  Like in the surgical suite, ATC systems run in a critical environment and high 
levels of stress and workloads, and should support complex flow management and risks 
management [77,168]. We thus decided to analyze previous studies or systems related to ATC to 
apply their results when pertinent. 
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 Methods conclusion 
We started with the use of technology probes in mind to explore the needs of the surgical suite. 
The context however prevented us from performing a real technology probe approach. Hence, we 
followed more classical UCD methods all along the analysis, design and evaluation, in order to 
efficiently build features that fit the users’ needs. We kept some of the technology probes design 
principles while designing interactions to help us with the deployment. 

We performed interviews and contextual inquiries with 20 surgical staff to understand the staff 
activity within the surgical suite (see Table 4). This work allowed us to define more precisely the 
surgical suite workflow, the different roles of the users involved in this work and more specifically 
the use of whiteboards in the surgical suite, with the identification of 19 scenarios (see Table 7), 
24 features and 6 requirements. 

We closely worked with 16 surgical staff to perform participatory design and design walkthrough 
sessions. This work allowed us to re-iterate on 3 main versions of the designs and develop useful 
and adapted features with the staff. A timeline of the design process is available Figure 35. 

 
Figure 35. Timeline of methodologies used for the design of OnBoard. 

We developed an analogy between the surgical suite workflow and ATC. 

We presume that such methods maximize the chance of success of deployment in the surgical 
suite, which would allow us to analyze the real use. 

 

 

UCD 

Real world context 
Observations/Interviews 

Participatory design 

Design walkthrough 

Installation in the surgical suite 
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5 

USER CONTEXT ANALYSIS 

In this chapter, we detail the results of the user context analysis. We first describe the 
surgical suite context, then the results of interviews and observations. Then, we present the 
identified needs and scenarios of the surgical staff workflow which helped us determine high-level 
requirements. We end this chapter with the analogy with air traffic control and the introduction of 
design principles. 

 Surgical suite general description 
Surgical suites are areas that are dedicated to the care of surgical patients. They are overloaded 
with information, short deadlines (emergencies) and missing spatial organization (which patient 
for which OR at what time? Where is this laparoscopic tool or imaging device?). 

Each surgical suite has its own culture and rules, including social ones. The surgical suite staff is 
comprised of nurses, surgeons, anesthesiologists, board runners, technicians, cleaning crews, 
transporters etc. They all work as a team to deliver the best care to the patient and need continuous 
access to the surgical suite information to perform their work. A key activity in a surgical suite is 
its management e.g. scheduling cases, allocating staff (surgeons, anesthesiologists, nurses), 
scheduling activities among an operation, monitoring the status of operations, and more 
importantly, reacting/adapting according to contingencies. 
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Inside current ORs, several independent computer systems may coexist. The surgical suite is 
comprised of numerous equipment: equipment to carry information (paper notes, medical records 
etc.), equipment to communicate (whiteboards, phones, and emails), computer equipment to access 
the hospital system and patient information. 

Figure 36 shows a 3D visualization of a surgical suite. The central organizational and collaborative 
tool consists of two large whiteboards (see Figure 31) placed in the surgical suite. On Figure 36, 
“X” represents where the large whiteboards are. “A” represents the Post-Operating Rooms 
(PostOp). There are other rooms where the patient scheduled for surgery may reside before or after 
the surgery: Holding Room - Holding, Pre-Operating room – PreOp and PostOp. “B” represents 
the Coordinative Area. It is physically separated in 2 parts: the Information Hall with the 
whiteboards and the Control Room where necessary information about cases is dispatched. 
Information within the Control Room is available for individual consultation. Information that is 
displayed in the Information Hall is meant to be semi-public i.e. the whole staff of the surgical 
suite. “C” represents the operating rooms, where the surgeries take place. DunnOR, where most of 
the observations were made, contains about 23 operating rooms and requires a complex 
organization in terms of management of the resources – human and equipment. 

 
Figure 36. Surgical suite visualization. 

 
Figure 37. Theoretical and simplified journey of a patient in the surgical suite. 

staff 
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 Surgical suite stakeholders 

We describe here the different types of personnel working in the surgical suite, based on our 
interviews and observations results: surgeon, anesthesiologist, nurse and board runners. 

The surgeons are responsible for the surgery outcomes and are at the center of the procedure. They 
schedule their cases with the hospital. The day of the surgery, they go in the pre-operating room 
to identify their patient, they then perform the surgery, after which they sum up the patient’s state 
and outcomes with the family and/or the patient (the same day if possible). 

The anesthesiologist’s job is to determine the best anesthesia plan for the patient before surgery. 
They are responsible for putting the patient asleep during the procedure and for monitoring the 
patient’s anesthesia all along the surgery. At the end of the procedure, they oversee waking the 
patient up. The anesthesiologists have assistants that are assigned to ORs on the whiteboard by a 
chief anesthesiologist. 

The nurses work as a team with the surgeon and the anesthesiologist before, during and after the 
surgical procedure to perform care delivery. They are assigned to ORs for the day by the board 
runner. Their assignments can be changed according to the needs of the surgical suite. 

The transporters are responsible for moving patients (i.e. patients being in the hospital before the 
surgery and staying after the surgery) from their rooms to the surgical suite and from the surgical 
suite to their room. 

The board runners manage the whiteboard, the schedule and resources assignments. They are in 
charge, the night before, of editing the whiteboard for the next day, writing all the cases, their 
scheduling and associated notes. They edit the whiteboard by printing on a sheet of paper the 
schedule that is initially input in the hospital system by the scheduling department. They oversee 
the nurses’ assignments and adapt the scheduling according to the needs of the surgical suite (staff, 
patient and resources). Board runners are the central persons to make requests to for a change in 
the schedule and special requests such as equipment or staff assignments. They have the best 
overview of the surgical suite status. The Board runners’ job is intensive as they must analyze all 
scheduling information along the day. They are the only ones authorized to make changes of 
scheduling on the whiteboard. Still, other staff such as nurses or anesthesiologists can add notes 
about cases (case started, staff took their lunch break, etc.). 
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The OR manager oversee the day-to-day operations and the long-term strategy of the surgical suite. 

The surgical patient enters the surgical suite by going to the pre-operating room first if the patient 
is an outpatient. If the patient is an inpatient, he/she is brought on his/her bed by transportation 
staff to the pre-operating room. There, the patient is identified by his/her surgeon and 
anesthesiologist and receives the first cares by the nurses. Then, the patient is brought to the 
operating room on his/her bed by the nurses. The patient then receives his/her care in the operating 
room. At the end of the procedure, after waking up, the patient is brought to the post-operating 
room by the nurses, where he/she finishes to fully wake-up, see relatives and is then brought to 
his/her room by transporters if he/she will stay overnight.  

No patient was interviewed about their journey in the surgical suite, as we focused on the care 
givers only. 

 Interviews results 
In this section, we classify the results of interviews and questionnaires with the surgical staff. We 
conducted 13 interviews and 12 contextual inquiries within the surgical suites DunnOR, 
FondrenOR, OPC and “Other Suites” (see Table 4), with 20 surgical staff [26]. 

 A controlled chaos 

The staff calls the surgical suite a “controlled chaos”. It is an accurate description as patients are 
taking care of with a significant quality of care, 24/7, including difficult emergency cases, in a 
complex environment with many independent systems and many stakeholders. Some systems are 
based on paper, other on whiteboards, other on the hospital system, and not everybody use them 
the same way. For each interview, the staff especially refers to the use of the whiteboard, as it is 
their central tool. They like its flexibility and the fact that the information it displays is more 
updated than the hospital official digital system. However, the whiteboard is not perfectly updated, 
and users report that its visualization offered could be better with computer screens. 

In Table 5, we summarize the shared and unshared bottlenecks indicated by the surgical staff: 
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Table 5. Summary of bottlenecks (B1-5) indicated by the different surgical staff. 

 Anesthesiologist Nurse Surgeon Board runner Manager 

B1 The viscous mobility of information.  

B2 
The non-flexibility nor readability of certain tools such as electronic displays 

on top of the whiteboards. 
 

B3  
No accurate data for long-term 

strategy 

B4 The lack of up-to-date information to take operational decisions. 

B5  

Writing the whole 
schedule every day on 
the whiteboard is time 

consuming. 

 

 

We list hereafter examples illustrating the bottlenecks summarized in Table 5: 

x B1. Important update information that is written on the whiteboard is only present on the 
whiteboard. Hence, if one wants such information, he/she has to go to the whiteboard, or 
call someone to read it for him/her. The information can be then written on paper and then 
carried away, but with no updates on the sheet of paper. 

x B2. The staff reported not using the electronic displays as much as the whiteboard, because 
the whiteboards contains more up-to-date information and is editable in the “semi-public” 
space i.e. the corridor of the surgical suite. 

x B3. The managers have the data that was manually input in the system (for instance, 
“surgery started at 9:06AM”). However, the nurse that inputs the data can be busy and not 
entering the exact times in the system. 
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x B4. For real-time management of ORs, information has to be updated in the system and on 
the whiteboard, which is often delayed as the personnel is busy.. 

x B5. Every evening, for the next day, the board runner fills the whiteboard with all the next 
day surgical cases. 

We finally identify a gap between the needs of the surgical staff and their managers: the surgical 
staff is more interested in tools to improve the daily commutation and real-time updated surgical 
suite state information, whereas the interviews with the management level reveals that they are 
interested in tools to track their staff performance and cases data to make reports and work on the 
long-term strategy of the surgical suite. 

We report hereafter on questionnaires’ results about the main collaborative tool of the surgical 
staff. Our purpose was to evaluate how much satisfaction the surgical whiteboard brings to the 
staff. 

 System Usability Scale questionnaire about the whiteboard usage 

We asked 22 staff of FondrenOR to fill a System Usability Scale questionnaire [97] comprising 1 
board runner, 16 nurses, 3 surgical techs, 1 anesthesia staff and 1 that preferred to remain 
completely anonymous. After processing, the answers can be seen in the graph on Figure 38, 
Figure 39 and Figure 40. On Figure 38, each line corresponds to the answers of one person. The 
questionnaire revealed very heterogeneous opinions about the usability of the whiteboard, even 
among the different experience categories, with an average rating of 79/100. All the answers to the 
negative questions have been inverted for homogeneity. 
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Figure 38. Questionnaires results about the whiteboard use feedback (SUS questionnaire), n=22.
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Figure 39. Questionnaires results about the whiteboard use feedback (SUS questionnaire) – Average of answers by experience categories, n=22.  Green: 
>5years in the surgical suite, Red: between 1 and 5 years, Blue: <1 year.
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Figure 40. Questionnaires results about the whiteboard use feedback (SUS questionnaire) – Box and whiskers 

chart per question, n=22. 
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Figure 38 shows that the answers to the questionnaire are mitigated but tends to be on the higher 
side. Which explains the repartition in Figure 40 with large boxes and several outsiders. The 
average of answers by experience levels indicates that high experienced staff (in green in Figure 
39) are more satisfied (average score=3.4) by the whiteboard than the medium experienced staff 
(average score = 3.1) (in red in Figure 39), which are more satisfied by the whiteboard than the 
least experienced staff (average score = 2.9) (in blue in Figure 39). This suggests that the learning 
curve for the whiteboard use and rules might not be immediate, or that younger staff is 
disappointed maybe with using a “ancient” technology. The average scores are between 3 and 3.5 
except the answers to the question 2 “the system is unnecessarily complex” which is 2.8. 

These usability questionnaires about the whiteboard use to the surgical staff suggest that on 
average the whiteboard satisfies the surgical staff. It is effective as the staff is able to fully perform 
their work with it. The efficiency is more complex to assess here. These whiteboards are updated 
manually and only when time is available as shown in the experiment about the difference between 
the updates on the whiteboard and the real state of the OR, that we presented in chapter 3. 

 Observations summary 
We performed observations in six of the eight surgical suites of the Houston Methodist Hospital. 

 Content of the whiteboard 

As the whiteboard is central in the surgical suite staff activities, we made a detailed observation of 
its use and its users. 

 Cases information 
The whiteboard is initially manually filled by board runners in the evening for the next day at 
around 7.00pm. To do so, they print a spreadsheet-like document from the hospital system (see 
Figure 43), they go to the board, and they transcribe the data from the document to handwritings 
on the board.  

The whiteboard starts to be used by the staff early in the morning (at around 6.00am). It is used 
during the night for emergency cases. 
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The cases are updated throughout the day (see Figure 41): new scheduling, shifts, patient location, 
equipment, case status, etc. The surgical suite needs two whiteboards because the number of cases 
can go up to 50 cases for one day. All necessary information about the organization of a case is 
contained in a line of the whiteboard (see Figure 42), which makes it the main source of 
information. The cases schedule for the next day is edited late in the evening on the whiteboard.  

 
Figure 41. Surgical staff working in the surgical suite whiteboard. 

 
Figure 42. Description of a line of the whiteboard, representing a patient and his/her procedure. Each line is 
updated through the day according to changes of status of the procedure or change in the schedule. Magnets 

can be added, as well as notes and symbols. 

The OR number column is the OR where the procedure will take place. It is chosen initially but 
can change along the day. The start time column represents the time at which the procedure is 
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scheduled to start. It can be re-estimated and updated through the day and can be left unchanged 
though the case has been delayed. The location column informs about the patient current location 
within the hospital: it can be a bedroom, a pre-operating area or an outpatient center. The patient 
column comprises his/her name, age and gender. It can contain extra notes (in red in Figure 42) 
and magnets (in orange in Figure 42). The procedure column reads the full title of the procedure 
the patient will receive. There are often additional notes such as equipment requirements. 
Sometimes, the procedure is abbreviated. The anesthesiologist column is the anesthesia staff 
assignments and organization of their schedule. The surgeon column shows which surgeon(s) 
is(are) performing the procedure. Finally, the staff column is the nurses’ assignments to patients 
and ORs. The only information that does not change is the patient information (name, age, gender). 
The surgeon or the procedure rarely changes except for emergency cases or difficult diagnostics. 

 
Figure 43. Prints of the surgical schedule from the hospital system to manually edit the whiteboard the 

evening before the next day of surgeries. 

“Epic” is a hospital computer system that centralizes its data. The screens at the top of the 
whiteboards in Figure 41 display the schedules as entered in Epic: surgical cases associated with 
an OR number, a time, a surgeon(s) and an anesthesiologist(s). It is used in combination with the 
whiteboard.  
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 Symbols, magnets and notes 
We observed the symbols, magnets and notes used on the whiteboard. Users rely on them to define 
a dictionary and communicate information asynchronously. Indeed, the symbols/notes can be 
understood only by people who were “told” what they mean. This creates a sort of fortuitous 
security barrier as this information is not understandable by anyone.  

We detail the full dictionary we were able to observe along the past three years in Table 6.  

Table 6. Symbols, magnets and notes used on the whiteboard. From the left to the right of a line of the 
whiteboard. 

OR number of the surgery column 

 
Number of the OR where the surgery is scheduled. First edition is in black. 

 

Number of the OR where the surgery is scheduled. When it is re-scheduled, 
or added, the staff uses the color red. 

Start Time of the surgery column 

 

Time scheduled for the case. Patient is not in the OR. 

 

Patient is in the OR. 

 

TF: To follow. This case will follow the one immediately before, 
with no start time expected. 

 

Patient has arrived in the pre-operating room. 
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Patient is in the OR – just a different marker available. 

 

TF: To follow. This case will follow the one immediately before, 
with no start time expected. It is in red because the case was a non-
elective case. 

 
Time requested for an unplanned case that has just been added. 

 

TF. Req: request of time. 

 

TF Self: Surgeon is requesting for this case to follow his/her scheduled 
cases in the same room. + Patient has arrived in the Pre-Operative / 
Holding room. 

 
Add-on time of request. 

 

When surgeon is available to perform add-on surgery. 

 

Surgical Intensive Care Unit, bed number 10 . 

Patient current location column 

 

Outpatient. Patient that is coming from home and going back home 
after surgery. 
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Main building. 3rd floor. Room 55. 

 
Fondren cardiac cathlab unit bed 14. 

 

Same Day Admit. Patient will be admitted to the hospital after the 
completion of the surgery and will become a inpatient.  

 

Emergency Room. 

 
Emergency Room too. The circle was drawn to draw the attention. 

Patient Name column (Last name. Initial of the first name.  +  notes +  Gender and Age) 

 
“Patient Sent For”. A transport staff was sent 
to pick up the patient in the hospital. 

 

Order of cases if surgeon chooses different 
order than what is on the schedule. This case 
was re-scheduled to be the first case in this 
OR. 

 

“Name alert” on a patient. It is meant to draw 
the attention to the staff that two patients 
have a similar name. 

 
Patient is allergic to latex. 

 
Patient is in room 335. Sometimes if a green 
pen is at the board the staff will use it as the 
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blue. It is the explanation we got when asked 
to the staff. 

 
Is in pre-operating bed 10. 

 
Patient to be picked up in room 336. 

 

Need To Send a transporter to pick the patient 
in room 332. 

 
Patient has been sent for + room number 336. 

 
Case canceled. 

Procedure title column 

 
Normal situation: first 
edition of a procedure. 

 
Endflip: device needed for 
the surgery. 

 

c-arm: fluoroscopy ( x-ray 
machine) needed for the 
surgery. 

 

Surgical Intensive Care Unit 
– patient is and will be in 
SICU after surgery 

 Complicated note. 

 

Draw attention on the fact 
the patient is obese (a high 
BMI – Body Mass Index, 
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requires special equipment in 
the OR) 

 Prone. Surgical position. 

 
Position, equipment, 

Neuro Intensive Care Unit 

 

Medtronic is a company. It 
means a representative is 
going to assist the surgery, 
supervise if the equipment is 
well used. 

 
Device needed for the 
surgery. 

 

Surgeon will need a surgical 
assistant.  

 
Anterior cervical discectomy 
and fusion. Abbreviation. 

 
Special needs for the 
surgery. 

 

Indicates that OR staff is not 
needed. Staff from a 
different location will 
perform the procedure. 

 Special needs. 

Anesthesiologist(s) columns (green/blue: name or initials of the anesthesiologist) 

 
Normal situation: general anesthesia. 
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Anesthesiologist has had breakfast. 

 
Need this person for after 3.00pm. 

 

Means that the anesthetist board runner is missing an anesthetist for 
a case. “room is not covered”. 

 
Anesthesiologist has had lunch. 

Surgeon(s) columns  

 
Name of the surgeon 

Staff columns 

 

Time off: staff that is on time off. 

 

This staff is needed after 3.00pm. 

(group 3 – group 5). 

 

Normal situation: number of the OR and 
assigned staff to this OR. 

 

No staff assigned yet. Task to do. 

 

Staff is currently in break. 
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Staff has come back from his/her break if “+”. 

 

Staff has come back from his/her break. 

 

Table 6 shows that a variety of combination between colors, symbols, writings and magnets are 
used to represent information on the whiteboard. 

Color is associated to the level of attention the writer wants the reader to receive. Black is used for 
everything that was planned the night before. Hence, this color does not raise a special attention, 
the reader knows that this is what was planned. On the contrary, red is always used for information 
requiring attention: missing resources, updates about the staff or the case, special needs for the 
surgical case or modification of a surgical case schedule (case canceled, OR number changed, start 
time changed). Blue and Green are the color of the anesthesia staff for their schedule. They 
however use red for information about their staff breaks. 

Name alert magnets are used for a repetitive type of information that is very important: the risk to 
mistake a patient with another. 

Finally, free writings are used for all the scheduling management and notes. As it is very flexible, 
the staff uses it when they need to write down an information that has no magnet prepared in 
advance for it such as a latex allergy or the staff took their first break. 

Interestingly, along the three years of observations of the surgical suite, we sometimes noticed new 
symbols or notes never seen before. When I asked the surgical staff about it, they would tell me 
either “this is a very rare situation we rarely write this” or that they just “needed to find a new way 
to inform other staff about it, and that [they] made up this [new symbols or note]”. Writings here 
allow such flexibility. For instance, a new workflow was implemented in the hospital, some 
patients were now coming from a different area of the hospital: the board runners would indicate 
it with a new abbreviation. 
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 Commonalities and differences between observed surgical suites 

We observed that many whiteboards are in used throughout the Houston Methodist Hospital. 
Along the study, all of them became accompanied with an electronic display of the schedule, 
modifiable only from a remote desktop. Some surgical suites contain only the electronic displays 
now and no whiteboard for cases anymore (the smaller surgical suites containing less than 6 ORs 
– see Figure 44, pictures E, G and H). There is however always a whiteboard for organization of 
the staff at least (F, I…). 

 
Figure 44. Several whiteboards and electronic schedules displays in used at our hospital. 
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Figure 45. Whiteboards and transparent boards in the surgical suite of a hospital in Boston. 

We observed whiteboards in use for surgical patients flow management in another hospital in 
Boston (see Figure 45), which has the same fundamental functionalities, with some interesting 
differences: some boards are two-sided and transparent. One side is for the board runners only, the 
other is public to the rest of the surgical staff. The transparency allows users to see information of 
the reverse side through the information on the side they are looking at. They use maps on which 
they show the status of operating rooms, together with different magnets. 

 Summary interviews and observations 

The surgical suite staff is comprised of a very heterogeneous stakeholders, with different 
backgrounds and needs. The whiteboard is their central collaborative tool and is welcomed because 
of its ease of use. The whiteboard allows many collaborative and informative activities such as 
synchronous and asynchronous communication, overview of information, note taking, updates in 
the surgical flow. 

On another level of analysis, the whiteboard has a social translucence which makes it the meeting 
point of all staff, planned or unplanned, and allow communications that would not exist without 
it.  

In the next section, we present the representative scenarios of the surgical staff and refer to them 
as we built the requirements and design principles. 
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 Usage scenarios 
From interviews and observations, we identified 19 relevant scenarios in the surgical suite activity 
(see Table 7), based on the whiteboard. More details on the scenarios and associated images can 
be found in Appendix 2.  

These scenarios can be separated in 2 categories: 

� Central location activities: Sc1, Sc2, Sc4, Sc5, Sc6, Sc9, Sc10 Sc11, Sc13, Sc14, Sc17. 
These scenarios comprise all the interactions between the surgical staff and the surgical 
whiteboard, in the semi-public place. They are single-user tasks. They consist in an update 
of the whiteboard or getting information from it. They comprise asynchronous coordination 
activities. 

� Direct interactions between people to solve a problem: Sc3, Sc7, Sc8, Sc12, Sc15, Sc16, 
Sc18, Sc19. These scenarios comprise interactions between people, with the support of the 
whiteboard or a phone. They are multi-users tasks. They consist in a negotiation for a 
change or a communication to get information about the whiteboard content. They 
comprise synchronous collaboration activities. 

To these scenarios, we add separately in the next section 7 scenarios that do not necessarily involve 
the use of the whiteboard. These 7 scenarios are focused on staff communication with their phones. 
They constitute more detailed descriptions of Sc15, Sc16 and Sc8. 

Table 7. Scenarios of use of the whiteboard in the surgical suite (wb = whiteboard). 

ID Description Relevant interactions Potential issues 

Sc1 
The Nurse arrives at the 
beginning of his/her shift at 
Dunn OR. 

Go check the wb, find his/her 
name and the work/team 
associated. 

Must physically go to the 
wb. Wb often packed of 
information and hard to 
read. 

Sc2 
The Surgeon arrives at the 
beginning of his/her shift at 
Dunn OR. 

Go check the wb, verify the 
schedule is right. 

Must physically go to the 
wb. 
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Sc3 

The Surgeon wants to squeeze an 
additional case in the schedule of 
the day (called “add-on”, or 
“emergency” even if it most of 
the time is not an emergency). 

Surgeon and board runner meet 
in front of the whiteboard to 
discuss the additional case. 

Sometimes no space on 
the wb to write the 
additional case.  

Sc4 
The patient has arrived in pre-
operating room. 

Board runner or nurse will 
update the wb (cross start time 
in red). 

Delay in the update. 

Sc5 The case started. 
Board runner or nurse will 
update the wb (re-cross start 
time in red to make a star). 

Delay in the update. 

Sc6 
The current day is over, edition 
of the new whiteboard for the 
next day – “elective cases”. 

Board runner erase the rest of 
the wb. He/she prints the new 
schedule and write it on the 
wb. 

Takes a long time to fill 
the wb. Human error 
possible. 

Sc7 
The case is delayed but will start 
as soon as the surgeon is ready 
for his/her next case. 

Board runner writes “TF” on 
the wb instead of an accurate 
start time. 

Not accurate. 

Sc8 
Talk about a case with a 
colleague. 

The 2 stakeholders meet at the 
wb and exchange information 
using the corresponding line on 
the wb. OR by phone. OR meet 
in the corridor. 

Be physically present in 
front of the wb gives 
better exchanges about 
the case as there a 
support with the 
information. 

Sc9 
Create a “name alert” for two 
cases. 

Nurse or board runner picks up 
the “name alert” magnets (red) 
that are on the wb and put them 
next to the corresponding 
names. 

Magnets can be removed. 
They can fall. 

Sc10 Nurses break. Nurse or board runner write a 
line or a star (if second break) 

Must go to the wb. 
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next to their name in the staff 
column 

Sc11 
Display that the patient is in 
Neuro Intensive Care Unit 
(NICU) or SICU. 

Board runner write “SICU” or 
“NICU” in the procedure 
column of the patient on the 
wb. 

 

Sc12 
Not enough room on the board to 
manage all the cases (not often) 

Board runner makes room on 
another side wb and write the 
case. 

Not organized with the 
other cases. 

Sc13 A case is canceled 

Board runner or nurse draws a 
red line on the case on the wb 
and write “CX” or 
“CANCELED”. 

If the case is not canceled 
anymore, it is hard to 
erase the line without 
erasing the rest + has to 
rewrite. 

Sc14 
The nurse goes see the patient in 
pre-operating room. 

Nurse take a pen, look at the 
wb, look at the patient medical 
record and fill the pink sheet. 

Carry additional 
paperwork around. 

Sc15 

Surgeon or Nurse or 
Anesthesiologist or else needs to 
have information that is on the 
whiteboards while being far 
away from it. 

They call the board runner to 
ask about the wb information. 

Additional phone calls. 
Generate interruptions. 

Sc16 

Board Runner or another staff 
making an input on the board 
needs involved people to be 
aware of changes that have been 
made on cases that they work on. 

Board runner calls each staff 
involved with the important 
change. 

Additional phone calls. 
Generate interruptions. 

Sc17 A case is finished. 
Board runner or nurse erase the 
case on the wb. 

If the patient comes back 
in the surgical suite, they 
have to re-write all the 
case on the wb. 
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Sc18 Assignments of nurses per ORs  
Board runner write on the wb 
the OR number and the 
associated nurses. 

Static and needs to be 
erased and rewritten 
every time 

Sc19 
Assignments of anesthesia staff 
per ORs  

Anesthesiologist chief writes 
on the wb the anesthesia staff 
assignments in the anesthesia 
column. 

Static and needs to be 
erased and rewritten 
every time 

 Scenarios with a smartphone app connected to the surgical schedule 

From the user analysis, we spotted a main disadvantage of the surgical suite whiteboard. The 
surgical staff reported (see B1. in Table 5) that if someone is not physically present in the surgical 
suite, he/she cannot be aware of whiteboard modifications he is involved in (change of the start 
time, location of the patient etc.) except if another person in the OR sends information to him/her 
via text messages/phone calls or if he/she comes to see the whiteboard. These two solutions are 
for the moment the most used ones by the surgeons and other staff but they are not convenient: it 
requires a synchronous communication involving interruptions issues [82]. 

Table 8 represents the analysis of collaborative mechanics [129] between the surgical suite staff, 
in the surgical suite and outside, synchronously and asynchronously. We interviewed a specific 
resident to build these scenarios. We focused here on collaboration where at least one stakeholder 
is not physically in the surgical suite. Table 8 shows on the left the different collaborative 
mechanics associated to the different scenario in the right column. The right column details the 
actions and the back and forth interactions between the left and right stakeholders of the scenarios. 
It indicates whether the stakeholder is physically present in the surgical suite or not. 

Scenarios A, B, C, D and G involve synchronous collaboration and interrupting additional persons 
to get information about the surgical schedule. Up to three persons will be interrupted at a time to 
give the information to one, because the information on the whiteboard is not mobile. 

Scenario F is an asynchronous communication, which allows the staff to read the new information. 
However, they do not receive a notification that the change was made. 
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Table 8. Analysis of collaborative mechanics between the surgical suite and the “outside world” that we 
focused on (SS: Surgical Suite). 
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In addition to observations and contextual inquiries in the surgical suite, five interviews with S2, 
S3, S8, S9 and BR2 (see Table 4) were necessary to identify the interaction features we needed to 
design to support scenarios A, B, C, D, E, F and G. 

This analysis led to the development of a smartphone application that would be a continuum of 
computerized system needed for the surgical suite. It will be further developed in the chapter 6 
“Interaction design & Implementation”. 

 Analogies between air traffic control and surgical flow 
management 

Airport control towers are comprised of air traffic controllers that oversee the landing, take-off and 
taxiing of airplanes. En-route centers are comprised of air traffic controllers that manage their 
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respective airspace. We propose hereafter the results of a high-level analogy in terms of 
environment and resources management. 

 Critical environments 

Civil aviation and hospitals’ surgical suites share common concerns: working around the clock, 
collaborative work, emergency situations, interruptions, incidents, situation awareness, safety and 
security, wide range of collaborating trades, strict procedures, resource management [50,53,112].   

In civil aviation, studies have tried for many years to model human activity and to insert more and 
more automation with only partial success [6,7]. Instead, the trustworthiness of the system comes 
not only from its individual parts (hardware, software or people), but emerges from the process of 
checking and crosschecking each other's activity [3,37,50,88,145]. Designing new systems that 
improve safety and capacity is thus difficult since it requires to unveil concerns and subtle but 
important details that might be hidden by this emergence.  

The surgical suite is a critical environment. Patients are in critical conditions when they arrive, and 
the surgical procedures are never without risk. Extreme precautions are taken by surgeons and the 
whole surgical team in terms of infection propagations, awareness of patient status during surgery, 
needles and compress counts and more. 

Hence, both air traffic control and the surgical suite manage a flow of persons in a critical 
environment. The surgeon, anesthesiologist and nurse can be compared to the pilot. The board 
runner and manager can be compared to air traffic controllers. 

    
Figure 46. Surgeons in an OR (left). Cockpit of the A330 (right). Picture credits: left - Pexels (Vidal Balielo 

Jr.), right – airbus.com. 
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 Standards 
In Air Traffic Management, air traffic controllers and pilots have a standardized background such 
as Crew Resource Management training [193], regulations via the European Aviation Safety 
Agency [194] and International Civil Aviation Organization (ICAO) [195] such as the air-ground 
communications phraseology (ICAO Annex 10) or Air Traffic Management regulations (ICAO 
doc 4444).  

In the hospital, among the same roles (surgeons, nurses, anesthesiologists), the stakeholders have 
standardized trainings for surgical procedures (CME programs via the ACCME [196]) and sets of 
good practices such as “The Red Book” [83]  via the American College of Surgeons (ACS), but 
the hospital is less standardized regarding management of patient flow. 

 Capacity 
The airspace is packed with planes. Between optimum trajectories and popular destinations, the 
same routes are followed by all airlines. It results in airplanes following each other on the same 
routes and altitudes. Hence, the role of air traffic controllers is to make sure the sky capacity is 
optimized i.e. the highest numbers of flights are performed for a given area within the acceptable 
level of safety – anticipated and preventing collisions. Regulations impose separations minimums 
between planes, vertically and horizontally. Given the speed and the size of a plane compared to 
another one, other separations might be implemented. 

The surgical suite, with given resources, can manage a certain number of patients. The most 
patients a surgical suite treat the better, but there is a maximum number of patients that can be 
safely handled at a time. Emergency departments are in the front line with these issues. 

 
Figure 47. On the left, radar image used by air traffic controllers representing the airspace they oversee 

(Source: [173]). Right, the layout of a surgical suite at Houston Methodist hospital. 
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 Scarce resources 
Air traffic controllers typically work by pairs at a workstation including a dynamic radar image of 
their airspace and flight strips (digital or paper-based). When the flow becomes heavy, managing 
many flights at the same time become difficult for only two persons. Hence, if a third or fourth 
controller are available an additional controller can be added at a workstation already comprising 
two or three controllers.  

In the surgical suite, resources are limited, most of all in emergency departments. There is often a 
need for more doctors, more nurses, more machines, more tests, etc. The surgical suite staff 
manage their resources to accommodate the surgical patient flow and it can become difficult to 
achieve. When delays start to accumulate because of a lack of resources, surgeries start to be 
canceled, the surgical staff become frustrated and patients’ health is at risk. Again, an optimized 
flow might foster safety. 

 
Figure 48. On the whiteboard, this indication tells the surgical staff that 

two staff are missing for OR number 2. 

 Collaboration 
The collaboration between two air traffic controllers at the same workstation is omnipresent. 
Together, the controllers manage their airspace, make decision, contact the pilots and coordinate 
their tasks. An efficient collaboration among them is necessary to the management of flights. For 
instance, when flights are represented with paper strips, they write on the papers and give them to 
each other. There is a lot of synchronous but asynchronous communication, for tasks that can be 
performed later. Communication is significant between the air traffic controllers and the pilots via 
the radio and datalink systems.  

Collaboration in the OR is omnipresent, as the surgeon is not the sole person performing the 
surgery: the nurses, residents and sometimes technicians or medical device company 
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representatives participate to the surgery. Sometimes there is even two surgeons or more that are 
performing the procedure. Communication is mostly synchronous, but the nurses anticipate 
surgeons’ moves and know what instruments they are going to need. Collaboration is as important 
outside of the OR as inside. In the surgical suite, several healthcare providers will take care of the 
patient. A patient’s journey in the surgical suite can overlap a nurse shift and communication 
during the shift transition is critical. From the pre-operating room, to the OR, to the post-operating 
room, the patient will receive different types of care requiring synchronous and asynchronous 
communication. For example, the nurse will leave notes in the patient binder for the next nurse to 
read them later.  

Interruptions are a similar problem in ATC and in the hospital field. Interruptions create undesired 
disruptiveness: partial information should accompany any type of disruptive notification to let the 
user decide whether or not it is worth interrupting the task [82]. Partial information can be a visual 
cue of a pending task, with an indication of its level of priority [82]. In the hospital, significantly 
more nurses make medical errors when they are interrupted than when they are not [133].  

 Instrumented activities 
To support the workflow, the two air traffic controllers use the dynamic radar image, paper or 
digital strips, other visualizations and the radio. Their activity is more and more digitalized, for 
example with the apparition of datalink to support text message exchanges between the air traffic 
controllers and the cockpit instead of speaking over the radio, thus allowing asynchronous 
communication. Flights are reified into paper/digital strips that contain all flight properties. 

In the OR, the procedures were initially only performed with manual instruments. Nowadays, more 
and more robots are used to help the surgeon and to offer more accuracy. For instance, the Da 
Vinci robot supports laparoscopic procedures to operate more precisely than with the traditional 
manual laparoscopic tools. Out of the OR, in the rest of the surgical suite, the activity is 
instrumented. The hospital system is widespread and contains information such as scheduling 
information and patient’s information, which are digitalized and usable via terminals. The surgical 
staff coordinates with direct communication but text messages and phone calls. Finally, the 
surgical whiteboards are used to give an overview of the surgical suite state and make updates on 
the scheduling and patients’ requirements. 
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Figure 49. Left, an air traffic controller workstation comprising two controllers working together. Right, a 

surgical suite whiteboard supporting the collaborative work of several nurses and a board runner. 

 

 Contingencies 
Air traffic controllers face multiple times unforeseen situations. For instance: preventing a 
collision, emergency priority to a plane due to technical or medical issue in the plane, emergency 
landing, difficult landing due to weather, overcrowded airspace, supplemental clearances to pilots 
that are different from the usual ones because they did not work in a first place, changing a route 
because the pilots say “unable because of the weather”, etc. In each of these cases, the controllers 
must coordinate with the pilots and other controllers to deal with the situation.  

In the surgical suite, contingencies are daily situations. An emergency patient arrives and must be 
treated right away, missing documentation, delayed staff and equipment or lab result, etc. The 
board runner and charge nurse must accommodate with unforeseen event to ensure the surgical 
flow. When a surgery is delayed, it can impact the whole surgical flow and delay every procedure 
for the rest of the day. To keep the surgical suite running, the whole surgical team must coordinate 
and make plans. 
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Figure 50. Left: a radar image with several planes – each represented by a green square, on this image the 
there is an intense traffic and the controllers oversee the separation limitations to avoid collisions (Image 

credit: bbc.com). Right: emergency situations represented on the whiteboard of the surgical suite – a patient 
is coming from the emergency department and a specific time is required for surgery (all written in red). 

 

 Concepts analogies 
We will compare a flight to a surgical case (including the patient). Both have a beginning and an 
end in time and space and the objective is to reach destination while having a safe journey. A plane 
can be compared to an OR: a plane fits a mission, a type of flight. ORs support different surgical 
cases. The OR staff tries to separate groups of OR that will deal with specific types of surgeries. 
We compare the Duty supervisor (“Chef de salle”), who is in charge of the ATC center and its air 
traffic controllers, with the Board runner, who is in charge of the surgical suite and its staff. Finally, 
controllers/pilots can be compared to surgeons/anesthesiologists/nurses as they are the operators, 
have similar collaborative activities and face life-threatening contingencies. 
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 Tools and representations analogies between air traffic control and surgical flow 
management 

While being managing traffic in two completely different worlds, air traffic controllers and 
surgical staff have similarities in the tools they use and the representation of traffic elements. 

 

      

Figure 51. Top: radar image of the air traffic controller, displaying the flights in the sector. Source: [197]. 
Bottom: Paper strips giving an overview of the flights and their orders. Source: [198] 

    
Figure 52. Large whiteboards used in the surgical suite to follow the surgical patient flow and manage the 
resources.  Right: electronic board displaying the EHR scheduling information to be used in combination 

with the whiteboard. 



 

122 
 

 Situation overview 
In ATC, the controllers use dynamic radar image to have an overview of the airspace. It shows the 
planes, their physical (horizontal and vertical) and time separations, taking in account the speed. 
The radar shows predicted trajectories and help anticipate collisions. 

The surgical suite whiteboards and the hospital system contains all the surgical suite information. 
The whiteboards give an overview of the operations and are more updated than the hospital system. 

ATC has at its disposal the “secondary radar” i.e. a localization and identification system that allow 
real time information to appear on dynamic radars image, via a transponder. The surgical suite 
does not dispose of such real time information; the patient location is more or less guessed or the 
staff makes call to get the information; the OR state is not available out of the OR so the staff must 
enter inside the OR to ask or see where the procedure is at; the equipment nor the staff are tracked 
within the hospital; etc. 

 Representations of the traffic elements 
A flight is represented in ATC by either an icon on the radar image, paper strips on a board in front 
of the air traffic controllers, or digital strips in the computer system. 

We compare paper strips to each line of the surgical suite whiteboard, which corresponds to a 
surgical case. In both cases, these elements are manually updated or annotated with pens and 
mobiles on the support: paper strips can be picked and moved, lines on the whiteboard can be 
erased or added. Flights have an identifier; the whiteboard lines have the patient’s name. In the 
same idea, a flight has a status, the surgical whiteboard gives the status of the surgery (patient 
arrived in pre-operating room, patient in the OR, surgery canceled, etc.). 
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Figure 53. Top image, a paper strip representing a flight. Middle-top image, a line on the whiteboard 

representing a surgical case at the Houston Methodist Hospital. Middle-bottom: a “patient strip” from [104] 
and Bottom: a “patient strip” from [184].The four can be written on with a pen. 

 What we learnt with ATC 

Many similarities exist between ATC and the surgical environment at the high conception level, 
but they both have similarities down to the tools and representations of the traffic.  Many design 
guidelines from ATC research projects could therefore be applied to surgical suite patient flow 
management. 

In the MAMMI project [50,171,173], the authors’ assumption is that improving collaboration will 
have a positive impact on the safety of the air traffic and its capacity. The system follows 3 design 
guidelines which can inspire us to build the design principles for a computerized tool to support 
surgical flow management: 

� M1. Reify actions into objects: Digital objects represent actions or physical objects. They 
can be manipulated and allow for task reallocation. 

� M2. Enable partial accomplishment of actions: A task can be partially performed and can 
signify to a colleague that it needs to be completed. 
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� M3. Provide as much feedthrough as possible: Having mutual awareness of teammates’ 
actions foster safety and collaboration. 

From Digistrip [116], we extracted 3 graphical design techniques to favor collaboration and 
awareness: 

DG1. Texture or color gradation to code information: Colors can be used in many other ways than 
for state coding. Textures can be subtle reminders of possible users’ actions. 

DG2. Different fonts to convey information: it is possible to distinguish system-computed data and 
user input data through the font (computer vs handwritten).  

DG3. Animation to facilitate transitions: as much as graphical design helps display information in 
better ways, animations in interfaces are useful to help understand state changes.  

 Identification of usability requirements from the scenarios 
and necessary features for a new surgical suite management 
system 

We hereafter identify the 6 usability requirements following the pattern "To [achieve goal], 
OnBoard shall allow [user] to [perform task]” (see  in Table 1) [70]. The requirements reflect the 
importance of supporting medical staff collaboration by design [136]:  

R1. Enriched surgical flow: to get up-to-date information and benefit from relevant automated 
support, OnBoard shall allow users to visualize the surgical flow data enriched with additional 
information from the cyber-physical infrastructure.  

R2. Multi-users and multi-roles: to face high workload situations, foster fluidity and benefit to 
anyone, OnBoard shall allow several users with different roles to interact with it simultaneously.  

R3. Teammates’ activity: to create mutual awareness, OnBoard shall provide users with means to 
be aware of teammates’ activity.  

R4. Communication and Coordination: to regulate the surgical flow, OnBoard shall allow users to 
communicate with each other and coordinate actions.  



 

125 
 

R5. Dynamic change: to face unexpected events, OnBoard shall allow users to change the surgical 
flow dynamically.  

R6. Work adaptation: to appropriate technology, the OnBoard system shall allow users to 
continuously create and adapt new work practices. 

The requirements to support central location activities are R1, R3, R5 and R6. The requirements to 
support direct interactions between people to solve a problem are R2, R3, R4 and R5. 

Most scenarios include an activity to perform on the whiteboard. The central location of the 
whiteboard allows the scenarios to happen. The non-mobility of the information is at the same 
time a strength: to get people together in a central location to directly exchange, and a weakness: 
people must take the time to physically go to the whiteboard or must call someone to ask about the 
whiteboard information. The lack of mobility of the whiteboard information is a recurrent 
bottleneck within the analysis of the user context (cf. Sc15, Sc16). 

From the interviews, observations and establishments of scenarios, we were able to identify 24 
features for supporting the surgical flow management activity (see Table 9). 

Table 9. Synthesis of surgical flow management feature needs. 

ID Feature Justification 

F1. Support for central 
location activities 

Associated requirements to the features: R1. Enriched surgical flow, 
R3. Teammates’ activity, R5. Dynamic change, R6. Work adaptation 

F1.1 Edit cases representation Sc3, Sc4, Sc5, Sc6, Sc9, Sc10, Sc11, 
Sc13, sc17 

F1.2 Visualize a full case All scenarios 

F1.3 Remove a case representation Sc3, Sc6, Sc17 

F1.3 Allergy to latex caution Sc8, Sc3 

F1.4 Name alert caution Sc8, Sc3 

F1.5 Special needs for a patient/surgery 
information Sc11 

F1.6 Import information from the hospital system 
to the whiteboard Sc3, Sc6 
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F1.7 Support staff breaks representation Sc10 

F1.8 Support patient location representation Sc4, Sc5, Sc17 

F1.9 Support case status representation Sc4, Sc5, SC17 

F1.10 Support cases re-organization Sc3, Sc7 

F1.11 Support surgical suite state representation All scenarios 

F2.  Direct interactions between 
people to solve a problem 

Associated requirements to the features: R2. Multi-users and 
multi-roles, R3. Teammates’ activity, R4. Communication 
and Coordination, R5. Dynamic change 

F2.1 Support communicating with colleagues Sc8, Sc3, Sc1, Sc7 

F2.2 Export/Extract information from the 
whiteboard Sc10, Sc15, Sc16, Sc14 

F2.3 Support staff assignments Sc18, Sc19 

F2.4 Carry information away from the surgical 
suite Sc1, Sc2, Sc15 

F3. 
Performances 
& Integration 
in hospital  

Associated requirements to the features: R6. Work adaptation 

F3.1 Quick interactions – Quick feedback 
Transition in technology – installation 
in operational context F3.2 Software reliability – if digital system 

F3.3 Hardware reliability – if digital system 

F3.4 Easy to clean up Surgical suite environment 

F3.5 Not in the way Surgical suite environment – patients’ 
beds circulating in the information hall 

↓Associated Requirements: R2. Multi-users and multi-roles↓ 

F3.6 Appealing and engaging 
Transition in technology – installation 
in operational context F3.7 Usability criteria (effectiveness-efficiency-

user satisfaction) 
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F1.6, F2.2 and F2.4 are the main reasons why a traditional whiteboard is not the optimum solution 
to surgical suite flow management. F4.1 and F4.2 could not be fulfilled by a traditional whiteboard-
based system. F1.6, F2.1, F2.1 and F2.4 suggest incorporating a mobile application.  

 Summary and perspectives 
The surgical suite whiteboards are usable tools to support collaboration and give an overview of 
the surgical suite state. From interviews with the surgical staff and observations of the surgical 
suite, we identified 19 scenarios of whiteboard use that can be divided in two categories: 

x Central location activities 
x Direct interactions between people to solve a problem 

The staff reported in questionnaires being satisfied with the whiteboard and they rely on it to 
perform their daily activities. The surgical suite whiteboards are physical devices at a specific 
location with crucial information. They thus serve as a meeting point and foster face-to-face 
communication. 

We have identified 5 high level requirements based on the scenarios of use of the whiteboard and 
tuned from the MAMMI requirements: 

x R1. Enriched surgical flow 
x R2. Multi-users and multi-roles  
x R3. Teammates’ activity  
x R4. Communication and Coordination  
x R5. Dynamic change  

F4. Cross-interactivity with the CPS Associated requirements to the features: R1.  Enriched 
surgical flow 

F4.1 Linked to the OR sensors of the cyber-
physical system – if digital system 

Bring automatic data 

F4.2 Linked to the hospital system – EPIC – if 
digital system 
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x R6. Work adaptation 

From the scenarios, we extracted 24 features necessary for a new surgical flow management 
system. 

The replacement of the traditional whiteboard by an electronic one aspires to bring better 
information to medical staff but may jeopardize collaboration and adaptation. Therefore, we used 
a user-centered design approach to keep the collaborative aspects and flexibility of the current 
tools. For whiteboards to be removed/replaced, we strongly believe a significant effort must be 
made in term of human computer interaction to leverage their assets better and replace them with 
a system fitted to the surgical staff. As mentioned by Bardram et al. [23] in their design principles 
for a surgical touch screen, the system should augment, rather than automate, users’ activity. The 
challenge is henceforth to gather and implement the benefits of whiteboards and computers 
systems together.  
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6 

INTERACTION DESIGN & 
IMPLEMENTATION 

The related work and the user analysis we performed showed that the power of the traditional 
whiteboard dwells in its flexibility, which can be jeopardized by computerization. Therefore, we 
oriented the design of a collaborative computer support for the surgical suite workflow towards a 
large electronic interactive whiteboard, with direct manipulation of objects [89]. The result is 
OnBoard, an application for a large multitouch surface that proposes whiteboard-like features, 
enhanced by interactions that could be only provided by computer-support. OnBoard follows 
specific design requirements and principles identified thanks to the user context analysis and the 
study of related work. In this chapter, we detail the user interactions allowed by OnBoard, and the 
relevant implementation challenges. We first describe the design principles we followed to design 
the user interactions [136] and finally the 26 Interaction Features (IF) designated as “IF+number” 
in Table 12.  

Hereafter is a recall of the requirements of OnBoard (see Table 10): 
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Table 10. Reminder of the requirements of OnBoard. 

ID. Title Description 

R1. Enriched 
surgical flow 

To get up-to-date information and benefit from relevant automated support, 
OnBoard shall allow users to visualize the surgical flow data enriched with 
additional information from the cyber-physical infrastructure. 

R2. Multi-users and 
multi-roles 

To face high workload situations, foster fluidity and benefit to anyone, OnBoard 
shall allow several users with different roles to interact with it simultaneously. 

R3. Teammates’ 
activity 

To create mutual awareness, OnBoard shall provide users with means to be aware 
of teammates’ activity. 

R4. Communication 
and Coordination 

To regulate the surgical flow, OnBoard shall allow users to communicate with 
each other and coordinate actions. 

R5. Dynamic 
change 

To face unexpected events, OnBoard shall allow users to change the surgical flow 
dynamically. 

R6. Work 
adaptation 

To appropriate technology, the OnBoard system shall allow users to continuously 
create and adapt new work practices. 

 Design considerations 
In this section, we present the design principles that guided the design of the interaction features. 

 Design principles 

We determined design principles to implement these features in a new surgical flow management 
system [136]. Leveraging on usability guidelines [49,124,125], CSCW principles [60] and from 
the analogy with ATC (MAMMI) [50,116], our user analysis and the related work study on touch 
surfaces benefits, we determined and followed 5 design principles (summary of design principles 
and requirements in Table 10): 

P1. Multi-touch: Use a large interactive vertical multi-touch surface to support multi-user 
interaction. This principle was selected to support the benefits of multitouch large surfaces studied 
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in the related a work and in the analogy between ATC activities and our user activity study in the 
surgical suite. 

P2. Reify: Reify actions and real objects into virtual objects. Since objects are displayed on a shared 
surface, their manipulation may enable accountability. Based on the whiteboard’s observations, 
many objects from the whiteboard could be reified and enhanced to promote a better usability. 

P3. Partial: Enable partial accomplishment of actions. An action can be separately prepared, 
checked and accomplished by different users, thus offering seamless task allocation. This principle 
results from the related work and from the whiteboards observations where users do not always 
fully accomplish actions on it but leave unknowns visible on the whiteboard (for example: the 
information that a staff is missing for an OR). 

P4. Feedthrough: Provide as much feedthrough as possible. Since activities must be accountable, 
it is important that appropriate feedback provide an opportunity for teammates to observe one 
another’s actions. This principle supports mutual awareness and synchronous and asynchronous 
communication improvements. 

P5. Robust: Interactions must be tailored to work efficiently in a high-pressure environment. 
OnBoard should be robust enough to be used in a real-setting or offer fallback. This principle is 
instrumental in our success to install OnBoard in the surgical suite for real-world testing. 

We borrowed technology probes principles [90]: 

TP1. Flexibility, Open-ended and co-adaptive: Technology probes must be open-ended with 
respect to use, and users should be encouraged to reinterpret them and use them in unexpected 
ways.  

TP2. Real-world: Technology probes must work in a real-world setting. Therefore, the main 
technological problems must be solved for the technology probes to serve their purpose.  

TP3. Instrumented: Technology probes collect data about users and help them (and us) generate 
ideas for new technology. Logging allows researchers to create visualizations of the use of the 
probes, which can be discussed by both users and designers.  

We also borrowed graphical design techniques from Digistrips [116]: DG1. Texture or color 
gradation to code information, DG2. Different fonts to convey information, DG3. Animation to 
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facilitate transitions: as much as graphical design helps display information in better ways, 
animations in interfaces are useful to help understand state changes.  

The combination of requirements and design principles acted as a driving force in the design 
process.  

In the next sections, we detail the interaction features and the implementation challenges. 

 OnBoard system overview – A large surface in a semi-
public cyber-space (supporting R2 and R6 and satisfying P1) 

OnBoard (see Figure 54 and Figure 55) runs on a large multitouch surface (84”, 4k, 60 Hz, Inglass 
technology – capacitive & infrared) in the surgical suite corridor (IF1. Surface and Space, see 
Table 12). The corridor is a semi-public and central area:  the surgical staff meets there because of 
the presence of the whiteboard, especially during turn-around between operations. It is a place of 
information sharing and verbal communication. The 84” surface is vertical in landscape orientation 
and is as large as one of the two whiteboards of the surgical suite. The surface is multitouch, large 
enough so that 3 people can stand in front of it. The resolution is high enough to allow both close-
up and 5 meters-apart reading. 

The main layout of OnBoard user interface consists in reproducing closely the current traditional 
whiteboard used by the surgical team to manage cases (Figure 41 and Figure 55). OnBoard is 
composed of three main parts. The central part is a vertical list of white, horizontally-elongated 
strips that reify surgical cases and allow rescheduling activities and additions of notes. On the right 
part, a vertical list displays groups of staff members to support staff management and assign them 
to ORs. The banner at the top contains a toolbar with various tools such as magnets, ink color and 
width and an undo button. 

The general philosophy of OnBoard is the direct manipulation of objects [89] such as case strips, 
magnets and staff magnets. Objects can be physically moved on the whole board and their content 
can be modified. OnBoard constantly updates the representation with the information from the OR 
sensors, and is updated by the users via the touch screen. A mobile phone app was prototyped to 
interoperate with OnBoard. [R2: multiusers; R6:adapt; P1:multitouch] 



 

133 
 

 
Figure 54. Three nurses training on OnBoard. 

We thus offered a system that is very similar in terms of use and layout to what the users are used 
to have. Such an approach guarantees a similar usability. In addition, it can be a safety measure. 
Indeed, the traditional whiteboard supports the workflow and it is possible that we do not know all 
the reasons why it works so well. In a critical environment, radically changing a system is a risk 
that can lead to fatal consequences. It differs with a non-critical environment, where radically 
changing of system can be accepted because it allows an adaptation and learning time and can 
tolerate errors. 

We used three kinds of electronic board: a Sharp HD (64”), an InGlass 4K (84”), and a Microsoft 
Surface Hub 4K (84”). The Sharp HD was used at the beginning of the thesis, for development 
purposes. We quickly discovered that its definition was not high enough for proper handwriting 
and its resolution was not enough to include all cases. Houston Methodist thus afforded the InGlass 
4K screen, while ENAC acquired a Microsoft Surface Hub. The InGlass was eventually deployed, 
while the Surface Hub could be used to test and compare the quality of the interaction.  

The software is principally based on the JavaFX library. It  integrates a reimplementation of 
SwingStates to cope with JavaFX events [10]. The software architecture comprises 9 
implementations of state-machines, 14 objects in the Model and 40 visual objects in the. It was 
developed on a Windows 10 operating system, with a NVIDIA Quadro K2200 graphic card. In the 
following, we provide information on the implementation of the interactions, for the sake of 
replicability. 
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Figure 55. Overview of layout and interaction features (IF see Table 12) of OnBoard.
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 Writing/Erasing almost everywhere (supporting R1, R3, R4, R5, R6 

and satisfying P1, P2, P3 and P5) 
Like the traditional whiteboard and for the sake of flexibility, we preserved the ability to write and 
erase on the electronic board. 

 Writing 

We proposed several ways to interact with the surface:  fingers, gloves and different types of pens 
(see Figure 56) (IF2. Handwriting/Erase). Users can write on objects such as cases and staff 
magnets. We inserted empty areas to provide additional zones of writing, one at the top of the 
surface and one that can be hidden behind the staff list (F11. Notes area).  

  
Figure 56. Left: User writing on OnBoard. Right: The different types or pens used by the surgical staff 

during design walkthrough sessions.   

After testing the different types in design walkthrough sessions, the surgical staff promoted the 
use of traditional dry-erase markers that have no ink in it. One advantage is that the “noise” made 
by a marker is preserved and participate to make people around the board aware that something is 
being done on the board (P4 Feedthrough). Another advantage is that writing on the board is very 
smooth with such a pen, whereas writing with plastic/rubber/microfiber pens is less comfortable. 
Indeed, they do not “glide” smoothly nor make annoying tapping noise. 
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 Erasing 

We designed and implemented a multitouch erasing interaction based on the area between two or 
several fingers. The eraser is represented by a line joining the fingers together. Users can select 
the eraser size by moving one’s fingers away or closer from each other. By dragging the fingers 
on the screen, one erases the text which has been overflown (see Figure 57). Users can see what 
will be erased thanks to the dimming of the color of the overflown items [DG1. Color]. 

The participatory design sessions with the staff led to customize a traditional physical eraser with 
four points of contact, allowing them to erase electronic items with a physical object, and bringing 
back some tangibility. For the Inglass multitouch surface, we simply cut the foam of the eraser as 
shown in the top picture/images in Figure 58, as a touch is recognized by the display no matter 
what is touching the surface of the display. For the Microsoft Surface Hub, we glued conductive 
fabric on each of the eraser extremities and we wired the device with thin cooper wires linking the 
hand to the conductive fabric (see bottom images in Figure 58). As the Microsoft Surface Hub is 
a conductive only technology, we had to  link the electricity coming from the hand to the 
conductive fabric to make a connection. The idea is to use the four corners of a traditional dry-
eraser to simulate touches on the display. We consider that if any touch within a certain range next 
to another touch is smaller than a certain treshold (that must be calibrated according to the size of 
the surface and hand’s size), it means that the user is erasing. We then create an erasing shape 
which will collide with digital objects in the interface as the user moves the eraser on the surface 
(see Figure 57 and Figure 59).  The collided shapes’colors are dimmed, and are definitely erased 
with a fading animation [DG3. Animation] when the user lifts the eraser at the end of the gesture. 

 
Figure 57. “2-fingers” erasing (middle) and “2-points” erasing (right). 
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Figure 58. Pictures and drawing of the eraser concept. Top pictures: for Inglass/Infrared touch displays. 
Bottom: wired with copper and conductive textile (in red) for capacitive screens.
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Figure 59. Details of the contacts points for the eraser and associated shapes. Text in light gray: what was 
erased by the eraser shape after moving the shape over the text.
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 Implementation of the writing/erasing interactions 

We developed multitouch interactions to support writing and erasing activities by the user on the 
large display. This multitouch is managed with a reimplementation of SwingStates [10]. This 
reimplementation allows to bridge SwingStates originally meant for the library Swing for Java 
with JavaFX. JavaFX events are therefore redirected to state-machines (see Figure 60, Figure 61 
and Figure 62) specifically designed for supporting JavaFX events. 

 
Figure 60. Sample of the code redirecting the JavaFX events to the state-machine. 

 
Figure 61. Sample of code within a state-machine, here in "1 WRITER" state. 
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Figure 62. Multitouch state machine to support the writing and erasing activities at 1 or 2 users for this 

prototype. 

In Figure 62, the text with each arrow is the necessary action to transfer from a state to another 
one. We assumed that more than 2 users at a time on the same surface was uncomfortable and 
rarely observed. Hence, OnBoard supports two users simultaneously only for the writing-related 
activities. However, the other interactions can support simultaneously as many touches as the 
display can support (JavaFX events management). 

On Figure 62 "id" represents a "touch id" which is the number that identifies a touch event on the 
screen. “d” represents the distance between a touch id and the new touch performed on the screen. 
If the distance is smaller than a threshold that must be calibrated according to the size of the screen 
and a hand’s size, the state-machines will consider that there is no new user and that this touch 
belongs to the same user. It makes the system enter an “eraser” state instead of a “writer” state. 
However, if “d” is larger than the threshold, the state machine will consider a new user and will 
add a writer in the system. It leads the system to allow two users to write on the display. 

The writings are “glued” to a specific strip i.e. with the strip’s coordinates. These coordinates must 
be calculated when the writings are glued to the strip and when the user is trying to erase them 
with their fingers/eraser by creating a selection zone that enters in collision with the writings. Such 
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development required careful algorithm and interaction programming, e.g. we had to resort to 
QuadTrees to optimize the collision detection for erasing. 

The QuadTree as implemented in OnBoard manages the space of the scene on which the surgical 
case strips lay (see Figure 63). 

 
Figure 63. Representation of the QuadTree implemented and parameterized for OnBoard. The black strokes 

represent the erasable strokes that the QuadTree will store  

We parameterized the QuadTree to dynamically and recursively subdivide into four quadrants up 
to 5 levels, as the size of the smallest quadrant corresponds to the height of a strip. The size of 
erasable objects can be reasonably contained within this range. Each quadrant is a new QuadTree.  
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When an erasable shape is added to the scene (by the user writing on OnBoard), it in inserted in 
the initial QuadTree, which will generate if necessary smaller QuadTrees. 

When a user is erasing, the quadrants which coordinates correspond to the coordinates of the 
erasing shape activate and search for erasable shapes/strokes contained in the data structure of the 
QuadTree (see Figure 64). This system allows a significantly improved optimization of the search 
for colliding shapes in the 2D scene.  

  

 
Figure 64. Search of the smallest existing quadrants (containing erasable shapes) which contains the 
coordinates of the erasing shape. Up to 2 users. Bottom-right: OnBoard with the QuadTree division 

visualization activated. 
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We never observed more than two users using the whiteboard at the same time, possibly because 
the physical space makes it difficult. We limited the writing/erasing interactions in OnBoard at 
two users at a time as it seemed reasonable in terms of use, and as it was already borderline in 
terms of speed of feedback of the display to support two users erasing at the same time. Even when 
there was only one user erasing, the system would become slow when a lot of shapes were drawn 
on the display, inducing too many calculations of collisions for the system. 

 Surgical case management (supporting R1, R4, R5 and satisfying P1, P2, 

P3 and P4) 
A surgical case is represented by a long strip containing the following information: operating room 
id, scheduled time, hospital room id, patient name, procedure, surgeon name. The information 
mimics that of the actual board. 

 
Figure 65. A surgical case as represented on the whiteboard. 

 Adding informative magnets 

Magnets exist on the traditional surgical suite whiteboard. They warn (or alert) about potential 
dangers for the associated patient or are just informative. During participatory design sessions, the 
staff oriented the design of “alerts” toward digital magnets. The staff proposed new magnets for 
notes they often write on the whiteboard (for instance, “latex allergy”). A design problem was to 
determine how many magnets we should implement, as a lot of them were proposed. Implementing 
and using too many magnets might weaken the expected magnets ability to draw the attention on 
something specific, even though they are recurrent. After discussions during participatory design 
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sessions with various staff, we decided to implement four magnets: latex allergy, name confusion, 
contact isolation, and pre-op done (see Figure 66) [IF12. Magnets].  

 
Figure 66. Strip magnets. 

Magnets can be associated to a strip: the magnets are taken from the “magnet tool box” at the top 
of the screen and dragged and dropped on a strip. This feature is directly inspired from the way 
DunnOR surgical staff manage their cases i.e., adding physical magnets on the whiteboard. A state-
machine (Figure 67) controls how the magnets are moved and on which part of the board they are 
released: if on a strip, the magnet is “glued” to the strip and will follow it when it is moved. 

 
Figure 67. State-machine controlling the interactions with the magnets versus the strips (Latex Allergy – 

PreOp – Name Alert – Contact Isolation). 

These magnets can be deleted by being “thrown away” with a quick swipe while holding the 
magnet. To implement this effect, we determine the distance between the last two touch points, 
and if the distance is large enough it means that a quick “throw away” movement has been 
performed. 

[R1: enrich; R4: coord; R5: dynachange; P2: reify; P4: feedthrough] 
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 Re-arranging cases  

During interviews and participatory design sessions, users mentioned that re-writing a surgical 
case on the traditional whiteboard was inconvenient: to move the surgical case elsewhere on the 
whiteboard they would have to totally erase it and then re-write it. With the re-arranging case 
feature, users can modify the vertical layout of strips on the board, by dragging them up and down 
(see Figure 68) [IF5. Arranging cases layout]. They usually choose to order them by OR number, 
then by start time number. We wanted to leave this totally free so that any surgical suite culture 
could be applied. 

 
Figure 68. Re-arranging case layout. 

To differentiate between the start of a move and the start of handwriting, we implemented a spatial 
mode: the user must touch on a “grained” textured zone to start a move. At the end of the 
movement. The application computes the height of the touch to determine where the strip should 
be released in the layout, for instance, in between two cases already present. Feedback, which is 
key for such micro interactions [150], is displayed when the strip moved and released (in between 
two other  for instance). An animation gradually moves all the strips to make room for the new 
one. This feature helps understand where the strip was inserted, as inspired from Digistrip [115]. 

[R1: enrich; R4: coord; R5: dynachange; P2: reify; P4: feedthrough] 

 Shifting case 

Users can “visually” extract a case from the flow by dragging and shifting a strip to the right (see 
Figure 69) [IF14. Shift case].  This feature was designed with no targeted use in mind. We wanted 
to observe what use could be done of it, as in the technology probe approach [TP3. Co-adaptive]. 
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This idea  came from the related work on the MAMMI prototype and on actual ATC stripboard 
practices [173]. 

[R1: enrich; R3: teammates; R4: coord; R5: dynachange; P4: feedthrough] 

 

 
Figure 69. Shifting a case to the right. 

 Adding emergency cases  

Along the day, add-on surgical cases can be added on the board (IF13. Add-ons), for instance for 
emergency cases. 

 
Figure 70. Insertion of add-on cases in OnBoard. 

During interviews and observations, we identified that physically adding a case in the flow on the 
whiteboard was a problem due to the lack of space, like moving the cases from one place of the 
whiteboard to another. We designed an interaction that relies on the reification of an add-on case 
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into a magnet. When dragged, the ad-on turns into a blank surgical case. The user drags the add-
on (see Figure 70) and drops it between two trips or at the bottom of the screen. Like the re-
arrangement of existing strips (see section 6.4.2 “Re-arranging cases”), when an add-on is inserted 
in the flow, an animation separate all the strips to make room for the new one. 

[R1: enrich; R4: coord; R5: dynachange; P1: multitouch; P2: reify; P3: partial; P4: feedthrough] 

 Cancelling and deleting cases 

A case can be cancelled [IF3. Cancel case] without being removed from the board by pressing on 
the “trash” icon. A red triangular wave and a CANCELLED text is displayed on top of it to mimic 
strikethrough: this enables the staff to make sure that everybody is aware that the case has been 
cancelled (see Figure 71) (observations at DunnOR).  

 
Figure 71. Canceling a case. 

A case can be totally deleted and removed from the board (IF4. Delete case + undo/redo), by 
pressing the trash icon, then dragging all the way to the bigger trash through each bubble, then 
releasing (see Figure 72). This interaction brings safety in the deletion of a case, which is 
considered a very critical action. This action must be done only when the staff estimates that the 
patient left the surgical suite. Would a mistake be made, or would the patient come back into the 
OR, the staff has the possibility to “undo” the deletion and bring the representation of the case (the 
strip) back on the board by pressing on the “undo” icon at the top of the screen. 

[R1: enrich; R3: teammates; R5: dynachange; P1: multitouch; P2: reify; P3: partial; P4: 
feedthrough] 
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Figure 72. Delete a case from the board. 

 Writing recognition for OR number 

Recognizing the change of OR number is important to the surgical suite managers because it 
provides data about the suite’s schedule. We explored writing recognition for the choice of the OR 
number on a case. The purpose was to let the user handwrite [R1: enrich], while being able to 
inform the system on the newly OR number chosen for a surgical case. Users are intolerant to 
recognition error and it is difficult to get a bullet-proof hand-writing recognition system even for 
entering simple information such as an OR number, with a variety of people having different 
handwritings. We thus designed some interactions to ensure that the OR number has been 
recognized correctly.  

Here, the user writes the OR number in the OR box on the strip (see Figure 73). When the user 
draws on the surface, all the coordinates of the points are saved. When the user releases the pen 
(or his finger), the list of coordinates is sent to the Windows Optical Character Recognition (OCR) 
system via a the Ivy software bus [38]. The system sends the results back to the interface. The 
computer then displays, via a box under what was written, the best proposition according to its 
recognition algorithm (1 or 2 propositions). To validate the recognition, the user must select the 
proposition by clicking in the box, which will make the computer replace what was manually 
written by a computer font. One can notice that the chosen computer font chosen has a “script 
style” as we want to preserve the visual hint that a human made a modification. Would the user 
not select a proposition, the box fades away and leaves the previous writings unchanged. 
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Figure 73. Writing recognition to change the OR number associated to a case. 

If the user wants to input an OR number containing two figures (e.g., OR 12), the users first write 
a “1”, select the “1” recognized by the system, draw a “2” next to the “1”, and select the “12”. 

This feature was appreciated and raised interest from the BR since when the computer recognizes 
the OR number, it replaces the hand-writing with a more readable computer font. However, most 
users during design walkthrough sessions would make the comment that this is a “long and 
complicated” interaction for something as simple as changing a number. Most users during design 
walkthrough sessions, thinking about using it in the clinic, stated that it would be much easier and 
understandable by other staff members if they could press and drag and drop on a number and not 
use recognition. We therefore designed another solution, based on the selection in a list of OR 
numbers laid out in transient dialog box (see Figure 74). 

 Changing procedures scheduling 

OR number and start time for a case may vary regularly according to the other cases and external 
factors such as turnover between two cases, or surgeon availability. OnBoard allows these changes 
(IF6. Change OR number and F7 start time) (see Figure 74). To modify the start time, users need 
to press the current start time and drag the hand of the clock along the inner clock (for AMs) or 
the outer clock (for PMs). The text of the new start time appears with a handwritten font to specify 
that a user changed it. As users sometimes do not know the new start time and just need to give an 
idea of the order of the cases, we added the possibility to drag to numbers (1-2-3-4). This feature 
illustrates how OnBoard enable users to provide partial information in a flexible way. 

[R1: enrich; R4: coord; R5: dynachange; P3: partial; P4: feedthrough] 
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Figure 74. Modification of OR number (top-left) and start time clock (bottom-left). Design idea of the clock 

showed to users during a participatory design session (right). 

The OR number modification is a simple JavaFX press/move/release events listening on the object 
“ORchoiceModule”. The object “ClockModule” converts the angle where the user is dragging into 
a time (no time, pm or am) according to the distance from the center. The white handle represents 
the previous selected time, helping the user to start his/her dragging interaction. The user usually 
thinks “This case will need 30 more minutes to be finished, so I need to delay the start of this case 
here by 30 min”. Instead of having to make an absolute choice, the user is allowed to make a choice 
relative to the former time. 

 Staff management (supporting R1, R4, R5 and satisfying P1, P2, P3 and P4) 
The surgical staff management is performed in the right part of the interface (see the two columns 
on the right of Figure 55). We consider here “staff” as the anesthesiologists, the nurses and the 
surgical technicians. The surgeon is represented on a surgical case strip as he/she is usually not 
changed (except for emergencies). 
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 Staff representation 

An important part of the job of the board runners is to assign staff to ORs and procedures. In 
DunnOR surgical suite, they are manually written on the whiteboard. In FondrenOR surgical suite, 
the surgical staff has magnets to represent their names. All the interviewed staff commented 
willing to have magnets for the staff assignment as it is often the same names that are used because 
the team does not change often. To do so, every staff of the day has a magnet with his/her name 
as his/her representation on the right of the board (see Figure 75) (IF16. Staff magnet). These 
magnets can be moved up/down on the right part of OnBoard to assign them to OR numbers. New 
staff magnets can be created by pressing the “+” at the bottom-right of the screen and edited with 
a pen (see Figure 75). Any staff magnet can also be deleted (for instance if a staff has left) by 
dragging the magnet to the “-“ at the bottom-right of the screen. 

[R1: enrich; R4:coord; R5:dynachange; P1:multitouch; P2:reify; P3:partial; P4:feedthrough] 

 Surgeon occurrence 

Nurses are often associated to a surgeon team and perform surgeries with the same surgeon. Staff 
reported in interviews that if they were able to quickly see what their schedule looks like, it could 
improve the nurses’ efficiency. Hence, we designed an interaction consisting in pressing on the 
surgeon name, which highlights all the cases performed by the same surgeon (see Figure 76) (F10. 
Surgeon occurrence). This feature allows users working with this surgeon to have a quick overview 
of all the patients they will work with. 

[R1: enrich; R4: coord; R5: dynachange; P2: reify; P3: partial; P4: feedthrough] 
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Figure 75. Staff magnets and assignments to ORs. Left image: In the left column is the anesthesia staff and in 

the right column is the nursing staff. Right image: New staff magnet. 

    
Figure 76. Surgeon occurrence feature. 
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 Integration and Cyber-infrastructure (supporting R1) 
This section details the necessary features that were implemented to prepare OnBoard for the 
deployment and its connection to the SmartORs. 

 Pre-editing and loading the surgical schedule 

At the end of the day, the board runner prepares the schedule for the following day by filling up a 
set of preformatted spreadsheets containing the details of the elective cases (start time, OR number, 
patient name, procedure name, surgeon name), the details of the surgical staff (nurses and surgical 
technicians names, shift) and the details of the anesthesia staff (name and job-role). In the morning 
the following day, the board runner loads the schedule in OnBoard (IF17. Load schedule). Digitally 
prefilling the sequence of cases is an asset for board runners, as it prevents from the necessity to 
transcribe by handwriting the information already available in the hospital system, thus avoiding 
pain and potential mistakes. In the future, the hospital system might be able to directly fill 
OnBoard: however, it is not possible now for security and License Agreement-related reasons. 

[R1: enrich] 

 Operating room real time state 

The cyber-physical system comprises sensors in every OR to capture OR state in real-time: it 
detects if the patient is in the OR, if the anesthesia machine is on/off and the number of door 
openings during the procedure. The OR state information is displayed on the board through 
timelines (see Figure 77) (IF9. Mobile OR timeline). The timelines display: “Patient IN” – 
“Intubated” – “Extubated” and “Patient OUT” with “(time of event)”. This information is 
interesting for the staff: it allows them to anticipate and make decision based on accurate data. For 
instance, when sees that the patient is extubated, he/she can call post-operating room staff and 
announce that the patient is coming soon. This prevents from resorting to a displacement in the 
OR susceptible to nosocomial infection. 

[R1: enrich; R3: teammates; R4: coord; P2: reify; P4: feedthrough] 
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Figure 77. Real-time OR state timeline. Top-left: in the orange frame, the surgical cases that will be 

performed in the same OR but at different times – a press on the OR column opens a menu to choose which 
timelines the user wants to display. Top-middle and right: the timeline can be put anywhere in the interface. 

Bottom-left and middle: the timeline can be put on a surgical case, as the user knows which patient is in 
which OR. Bottom-right: Display of the number of door openings per OR. 

Multiple cases on the board are supposed to occur in the same OR (obviously not at the same time) 
(see picture top left, in the orange frames, in Figure 77). However, the sensors are not able to 
decide which case is which, as the cases can be arbitrarily rescheduled and there is no patient 
tracking. Thus, we decided that the timeline be drag-and-droppable (see Figure 77): the board 
runner can manually attach the timeline to the case running in the OR. Such feature is an example 
of how interaction by an informed user might compensate from deficiencies of a partially-
implemented or erroneous cyber system. 

[R1: enrich; R3: teammates; R4: coord; P2: reify] 
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 Doors openings 

The CPS acquires in real time the number of times a door is opened for a procedure in an OR. 
OnBoard displays this information on the right part of the screen, where OR are represented with 
numbers (see Figure 77) (IF15. Number of times OR door is opened during a procedure). The 
number of doors openings is a measure of the infection risk, and we wanted to see if the visibility 
of this information together with that of the operation state would change staff habits.  

[R1: enrich; R3: teammates; R4: coord; P2: reify; P4: feedthrough] 

 Mobile phone application (supporting R4, P4) 
We designed and developed a mobile phone application to enable the staff to pick information 
from OnBoard when connecting with the phone and carry information about cases within the 
hospital (IF18. Phone app). 

 Engaging the staff with a Pinch & Drop interaction for remote collaboration  

A comment coming from almost all the interviews, was that the users, independently from their 
job-role, was to be able to have access of the whole board on their phone. However, during 
interviews, while listening to what information they need to receive on the phone, we realized that 
the need is restrained most of the time to the handful of cases they are responsible for during the 
day (at the exception of the board runner who oversees all the cases). 

We refrained from proposing too many interactions in the mobile app, as it might have hampered 
the use of OnBoard and have a negative impact on shared awareness. Additionally, patient 
information privacy is a critical concern in the hospital; sending all the information potentially to 
everyone is not secure. Therefore, we decided to develop the prototype in such a way that the only 
information to be added on the phone was the one chosen during the day by the users, through an 
interaction allowing a restrained selection of cases.  

Figure 79 shows the layout of the application on the phone. 

First, the user must press and hold on the green button on the mobile app. This button turns red if 
the connection with OnBoard is allowed. The user then performs a Pinch & Drop on the board (see 
Figure 78). Pinch & Drop is an interaction technique derived from pick-and-drop [142]. The idea 
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is to pinch a case strip from the board with two or three fingers and then to touch the screen of 
another device as if the object was dropped. The user then receives the case on the phone in his/her 
list of cases and becomes a “Follower” of the case in the system. Once a user is a Follower of the 
case, he/she can follow its updates in real-time by receiving notifications on the phone without 
being in front of the board anymore. A blue chip appears in the procedure title box of the surgical 
case and displays the number of followers. A user can see all the followers of a case by pressing 
on the blue chip (see Figure 80). 

This interaction has some interesting properties for a use on the board. First, as with the pick-and-
drop, the pinch movement reminds the physical action of pinching an object to take it away, so it 
fits in the concept of taking away a piece of information. Moreover, this is an interaction that is 
performed on OnBoard, creating mutual awareness about who is become follower of cases. 

[R1: enrich; R3: teammates; R4: coord; P2: reify; P4: feedthrough] 

 
Figure 78. Pinch & Drop interaction. 
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Figure 79. Several layouts of the phone app. This apps shows the cases the users subscribed too, plus the 

different updates and alerts.        

 Onboard and mobiles phones through meaningful push of information  

New information on OnBoard (the main interface) triggers an update on the mobile app, and 
possibly an interruption of the activity of the mobile user. According to the content of a new 
information, the level of disturbance of the interruption should be different. We first added partial 
information in the notification to allow the user to better determine the level of priority of the 
update. We then decided that the board runner making the update on the board can decide the 
importance of his/her modification.  

 
Figure 80. Followers visualization on the board when press and hold on the blue chip. 
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We defined two levels of priority of update: high or low. To turn his/her update to a low priority 
level of update or a high priority update, the user drags the strip to the right “pushing the 
information outside”. The corresponding notification is shown to the followers on their phones, 
according to the level of priority [160], from visual highlights to audio rings and vibrations (see 
Table 11).  

Table 11. Levels of priority of the update and view on the mobile app and OnBoard. 
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 Safety and technology probe aspects (supporting R1, TP2, TP3) 
Safety is a primary concern in critical settings such as hospitals and implies constraints on software 
reliability. As the information on the board is critical, it is not possible to afford a crash or a freeze. 
While we did not expect that the hospital management would fully replace the traditional 
whiteboard with OnBoard at once, we took special care to mitigate the robustness risk. 

We tried to harden the interactions and code robustness, so that the board would not crash or stick 
in an unusable state even if misused. The OnBoard software automatically saves it state every 30s.  
In case of failure, the user can re-launch the application and load the last save. Furthermore, the 
application takes screenshots automatically every 30s and saved them on a shared drive on the 
network. This has several uses: 

x Following remotely the use of OnBoard in real-time (Social Science goals of technology 
probes) and making sure the system is running correctly. 

x Archive of the use of OnBoard for analysis on the long-term (idem). 
x A safety function (IF19 Plan B) 

The safety function consists in being able to quickly display the last visual state of the board if it 
shuts down unexpectedly and would not restart. We envisioned a system comprised of a printer 
connected to the shared drive, transparent sheets in the printer, and a connected button. The user 
would press the button, the system would grab the last screenshot from the shared drive, print it 
on the transparent sheet that the user would put on a traditional overhead projector on a cart. Thus, 
the last screenshot would be projected on the wall or a traditional whiteboard and would display 
vital information, or even enable board runners to write on top of it as they already do with the 
current system (see Figure 81). 

The initial information on cases are input in an Excel file prior to the launch of the application. At 
the start of the application, the system loads this file and fill OnBoard. In this file, each line 
corresponds to a case. This file will be modified all day automatically through the application. 
When modifications are made to a case (for instance, the OR number was changed by a user), this 
file is updated. The file contains all the strokes drawn/erased on the board, per case. Therefore, 
one can know what was written on the board. As said before, if the software crashes or the 
computer, one could re-launch the software with the latest version of updates from this file. Even 
the order of strips on the board is recorded. The application records all user interactions. 
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Figure 81. Plan B: a projector on a rolling cart displaying the last screenshot of OnBoard on a whiteboard 

sheet dropped-down from the top of OnBoard. 

 

 
Figure 82. Extract of the initialization excel file to be filed to launch the application. It contains the schedule 

of the surgeries of the day (start time, patient, surgeon, procedure etc.). These files can be either filled 
manually (what was deployed for tests), either filled automatically from the hospital system in future possible 

developments in collaboration with the hospital. 

OR number Start time       Status  Modified start time  Patient Name     Procedure 



 

161 
 

 Usability inspection results (TP2. Real-world) 
The robustness of interactions with OnBoard is critical for a deployment in the surgical suite at the 
usability level (TP2. Real-world). We summarize in this section the results of the usability 
inspection sessions that focused on how to prevent errors from the users while interacting with 
OnBoard, and how to recover from errors if any. 

 Error prevention 
The purpose of these usability inspections was to anticipate the slips that users could make. The 
first one is inadvertently deleting an element. To delete a strip, we created a two-steps deletion 
system, requiring an additional effort from the users to reach a full deletion. For deleting a magnet, 
the swipe interaction is not as easy to perform. The second mistake is the wrong placement of a 
strip or magnet. Hence, we placed a visual indicator to help the users foresee where the element 
will be positioned if released. Another mistake is the wrong selection of a new time or OR number. 
We created many feedback on the status of the selection. For instance, the hand of the clock to 
choose a new start time follows the user finger to help indicate the selection. The interaction to 
delete a strip is complex and requires additional effort from the user to be performed, protecting 
the user from deleting a strip without having the intention to do so. Finally, we must prevent 
inaccurate handwritings. Therefore, we improved the look and feel of the writings to fit to the pen 
or finger tips to the closest. 

 Error recovery 
The purpose of these usability inspections was to allow maximum flexibility by being able to 
“undo” a lot of actions. To recover from a wrong deletion of a strip, a user can “undo” this action 
and recover all former strips one by one. To recover from inputting a wrong time/OR number, the 
user can always change this data with the tools available. A wrong positioning of a strip can be 
fixed by easily changing its position and moving it up or down in the list. To undo wrong writings, 
a user can erase what he/she wrote. If the board runner forgot to input a patient the previous day, 
a new strip can always be edited. Finally, if the user forgot to input a staff, a new staff can always 
be edited. 
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 Summary 
To design OnBoard, we used UCD methods including participatory design and design walkthrough 
with a total of 12 surgical staff. We designed an environment of management of the surgical 
workflow on an 84 inches, 4K, multi touch surface, vertical, multi users. We designed 26 features 
for this environment, 19 were sent in the version for deployment. 

More features and ideas were proposed by designers and staff than the 26 that were developed, as 
such a large surface and collaborative design environment really favors brainstorming and the 
generation of ideas. For instance, we considered using tokens, physical object that could be 
dropped on the screen, as additional means of interaction [119]. However, our system is vertical, 
and cannot use such tokens, unless gravity is compensated by a viscous system (static electricity 
or magnets).  

OnBoard was design to be deployed in the surgical suite. Via the feedback of users, we could 
determine what features would be used by the variety of surgical staff, which is a very 
heterogeneous population and who has no will for learning complex interactions (the example of 
the writing recognition with user confirmation was a good one). As we will see in the next section, 
we realized anything with more than 2 fingers was immediately rejected with a comment “nobody 
will ever remember to do that”, except the writing/erasing feature. We overall limited our 
interactions with direct manipulation and combinations of drag’n’drop, contextual menus, one and 
two fingers interactions and buttons. Writing/Erasing interactions are possible with two people 
simultaneously, which is the maximum number of people that can comfortably be up-close to the 
board at the same time. All other drag’n’drop interactions are multi users.  

Our contributions are: 

x The design and development of OnBoard, a large multitouch, multiusers, surface, designed 
for appropriation by the surgical staff. 

x Specific interactions for surgical suite management: surgical cases representation and 
manipulation, alert magnets, staff magnets, OR state representation, doors openings 
representation, add of emergency cases in the scheduled flow, writing/erasing of notes 
about surgical cases, assisted filling of the whole board, logs of schedule modifications. 

x A 2-fingers (or multiple shapes) erasing method, including a physical eraser device. 
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x A mobile app connected to OnBoard with a new pinch’n’drop interaction. 
x Mobile OR state timelines, that can be dragged’n’dropped on surgical cases or elsewhere 

in the interface. 
x Specific safety features: erasing with a continuous gesture, multiple feedback, case 

deletion undo, fallback projection system 

OnBoard environment copies to some extend the traditional whiteboard by allowing the same type 
of object direct manipulation: free writings, erasing and magnets. It reifies existing concepts: 
whiteboard-like features, surgical case lines and staff magnets. These six imitations/reifications 
favor user appropriation of the technology. Each feature comprises a certain amount of micro 
interactions [150] with subtle feedback and error prevention. 

We summarize OnBoard features and match them with design principles in Table 12. Table 13 
summarizes how the design principles serve the requirements. The interaction features fulfill all 
the needs that are summarized in Table 9 and add new features. 

Table 12. Summary of OnBoard interactions features (IF) and their match with our design principles. “Case” 
refers to “surgical case”. In grey: the features that were not deployed for the clinical trials. 

Design Principles → P1. 
Multi-touch 

P2. 
Reify 

P3.  
Partial 

P4. 
Feedthrough 

P5. 
Robust Interactions Features ↓ 

IF1 Surface & Space x    x 

IF2 Handwriting/Erasing x  x x x 

IF3 Cancel case x x x x  

IF4 Delete case + undo/redo x x  x x 

IF5 Arranging case layout x x x x  

IF6 Change OR number x x x x  

IF7 Change start time x x x x  

IF8 Handwritten style fonts  x  x  

IF9 Mobile OR timeline x x  x x 
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IF10 Surgeon occurrence x x  x  

IF11 Notes area x x x   

IF12 Magnets x x  x  

IF13 Add-ons x x  x  

IF14 Shift case x x x x  

IF15 
Number of times OR door is 
opened during a procedure 

   x  

IF16 Staff Magnets x x  x  

IF17 Load schedule     x 

IF18 Phone app  x  x  

IF19 Plan B     x 

IF20 Board content saves     x 

IF21 Security     x 

IF22 Rewind  x    

IF23 External selector  x x x  

IF24 Patient tracking    x  

IF25 Camera inputs  x x x  

IF26 Case strip    x  
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Table 13. Design Principles to serve Requirements. 

Design 
Principles ↓ 

Requirements ↓ 

R1.  Enriched 
surgical flow 
representation 

R2.  
Multi-
users 
and 

multi-
roles 

R3.  
Teammates’ 

activity 
awareness 

R4.  
Communica 

tion and 
Coordination 

R5.  
Dynamic 
changes 

R6.  
Work 

adaptation 

P1. 
Multi-touch X X X  X  

P2. Reify X X X X X  

P3.  Partial X  X X X X 

P4. 
Feedthrough 

 X X X X X 

P5. Robust     X X 

TP1. 
Design for 

appropriation, 
Open-ended, 
Co-adaptive 

X X X X X X 

TP2. 
Real-world 

 X X X X X 

TP3. 
Instrumented 

     X 
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7 

DESIGN EVALUATION & DEPLOYMENT 
IN THE SURGICAL SUITE 

This chapter reports on the results of the design evaluations and of the deployment. We detail the 
sessions of design walkthrough and the conditions of deployment of OnBoard in a real surgical 
suite of 12 ORs for 2 months. The SmartOR sensors were deployed in 6 ORs and connected to 
OnBoard during the deployment. The system ran through a total of 300 procedures.   

 Design walkthrough - Evaluations 
We conducted four sets of design walkthrough sessions with 12 staff of DunnOR and OPC (see 
Table 4) to refine the features and the overall design. This included overall 5 board runners, 4 of 
them with a nurse background and 1 of them with a secretary background, 6 surgeons and 1 nurse.  

We had full authorization to access the surgical suites of the hospital to observe and interview the 
staff, but we were strongly limited by legitimate restrictions with respect to testing in operational 
conditions of our prototype’s versions, as the surgical suite is a critical environment and not a place 
to experiment all sorts of new systems. While we were waiting for authorization to install our full 
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system in the surgical suite when ready, we recreated simulated conditions close to the reality: a 
fake surgical suite corridor within the hospital, with surgical staff of DunnOR, OPC and other 
suites (see Table 4), As surgical staff are very busy and do not have much time to participate in 
the study, each session was designed to fit within 30min. 

We performed design walkthrough sessions with 12 surgical staff (see Table 4), with 13 separate 
sessions (see Table 14). These design walkthroughs were performed on prototype versions of 
OnBoard. We present hereafter the different walkthrough sessions and their impact. 

Table 14. Participation of staff to design walkthrough sessions (see Table 4). 
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Session 1 BR1, BR3 x   V1 

Session 2 BR2 x   V1 

Session 3 S2 x   V1 

Session 4 S6 x   V1 

Session 5 S7 x   V1 

Session 6 BR1, BR3 x   V1.5 

Session 7 BR2  x  V2 

Session 8 S8  x  V2 

Session 9 S9  x  V2 

Session 10 S2  x  V2 

Session 11 S3  x  V2 

Session 12 BR2, N1  x x V2 

Session 13 BR4, BR5  x x V2 

We present hereafter the different walkthrough sessions and their impact. 
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 Part 1 – Design walkthrough on OnBoard only, on version 1 of the prototype 

Version 1 of OnBoard was designed as a technology probe, and as such it contained very few 
features (see Figure 83): write, erase, add and move cases up and down on a background. The 
hardware used was a Sharp HD 64” infrared touchscreen. We did an analysis of this first prototype 
to evaluate what should be implemented next, and how the users were reacting towards this 
electronic whiteboard compared to the traditional whiteboard. 

   
Figure 83. Design walkthrough with a surgeon on prototype v1 of OnBoard. 

During the very first sessions 1 to 5, we asked the staff (n=6) to perform 9 relevant tasks (see Table 
15) representing daily activities they do on the whiteboard. They were briefly introduced (2min) 
to the few features of the prototype. 

For each of these scenarios, we recorded: 
� The success or failure of the performance of the task (effectiveness). 
� The way the user performed the task. 
� User’s satisfaction by asking to answer, “How difficult was the task?” on a scale from 1 to 

5 (satisfaction). We recorded free comments from users and questions asked during and 
after the task (see example of evaluation sheet in Figure 84). 

� The time to perform the task (efficiency). 
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Table 15. Summary of tasks along which ones we performed design walkthrough of OnBoard prototype 
version 1. 

Task 
Description (Context: the user is in front of OnBoard, already launched, displaying the 
schedule of the day) 

1 Insert in the board the case that is written on this document. 

2 Modify the staff for this operating room. 

3 Signify on the board that the case that was in OR2 is over. 

4 
Inform other staff of the date of edition of this schedule and that there are 10 cases for this 
day. 

5 Signify on the board that the patient in OR1 is allergic to latex. 

6 Inform the surgical suite that the case in OR3 has started. 

7 Signify on the board that the patient programmed for OR4 has been “sent for”. 

8 Edit the case to signify the progression of the surgical case status. 

9 Signify that two patients have similar names. 

 

 
Figure 84. Evaluation sheet during design walkthrough. 
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The difficulty for each task was on average assessed to 1.7 out of 5 (1 being very easy and 5 being 
very hard). 92% of the time, participants were able to perform the tasks. Each task received on 
average 1.7 propositions of change. 

These sessions resulted in numerous direct exchanges. The discussions allowed us to see the 
problems of the prototype and have further discussions about how to improve the design of the 
electronic whiteboard. For instance, we realized that the process of preparing the board with all 
the surgical cases for the next day could be automatized or done on a personal computer, as it is a 
work done by one person only. The idea of having magnets were proposed as some staff saw it in 
other surgical suites. Many objects were displayed too small.  

 Part 2 – Design walkthrough on OnBoard only as a team and System Usability 
Scale (SUS) questionnaire, on version 1.5 of the prototype 

On version 1.5, we added to the baseline of version 1 some additional features to be tested: 
magnets, possibilities to change writing colors, a separated section for staff management, time 
display, more free notes space, cancelation, automatic surgical timeline information and an undo 
feature. 

During session 6, we asked the staff (n=2, board runners) to perform 10 relevant tasks as a team 
(see Table 15) representing daily activities they perform on the whiteboard. These tasks were 
similar to the ones asked during Part 1, with variations due to the need to walk through the new 
features with the staff. 

     
Figure 85. Design walkthrough with two board runners on prototype v1.5 of OnBoard. 

 



 

171 
 

Table 16. Summary of tasks along which ones we performed design walkthrough of OnBoard prototype 
version 1.5. 

Task Description (Context: the user is in front of OnBoard, already launched, displaying the 
schedule of the day, without the staff information) 

1 Assignment of surgical staff to all the cases. 

2 Signify that Patient Beckett has arrived in PreOp, Bed #10 

3 Staff Loya is leaving. Reorganize staff. 

4 Signify that Case #2 in OR1 is canceled. 

5 Arrival of 2 new staff to replace staff Penny and staff Emma. 

6 What equipment is required for Dr Snow for his patient Swan’s procedure? 

7 Phone call: Question – What is the status of the surgery of Dr Stark, patient Beckett? 

8 Staff of OR3 left to take a break. 

9 Read, insert and schedule an add-on case from a paper document. 

10 
Signify that the case of Dr Scrubb, patient Jones, is NOT canceled anymore – still operate at 
10:00. 

As the staff participated in Part 1, they were already familiar with the technology. We added 2min 
of additional explanations for the new features. The participants had a background task to perform 
(answering a Christmas quiz with growing difficulty) to stay busy while asked to perform the tasks. 
They were asked to perform the 10 tasks, and at the end to answer a System Usability Scale (SUS) 
questionnaire about their experience. 

The participants used 100% of the features of OnBoard to perform the tasks, with a success ratio 
of 95%. The SUS questionnaire resulted in a score of 80 (a SUS score >68 is considered “above 
average” [2]) 

This session allowed us to verify the usability of the new features, and how to improve them. For 
instance, the writing/erasing started to be slow when there were a lot of writings on the board. We 
realized that the hardware chosen was not optimum: the screen was too small to display enough 
surgical cases in a real surgical suite and the infrared touch technology was inadequate as the touch 
detection would be too inaccurate for writing activities. 
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 Part 3 – Design walkthrough on usability with a smartphone app connected to 
OnBoard, on version 2 of the prototype 

We used an individual design walkthrough method [131] to evaluate the interaction between 
OnBoard and the mobile phone app and how a single staff deal with these tools. During the sessions 
7 to 11 we asked the staff (5 persons, independently from each other’s) to perform 8 tasks on the 
smartphone app (see Table 17). For these sessions, the prototype is version 2, and was deployed 
on a larger screen (an 84” versus 64” for the initial prototypes see Figure 87) to match the size of 
a traditional whiteboard in used in the hospital and offer as much space as possible to write 
comfortably. This version offers additional features compared to the former version: it comprises 
all the smartphone app related features. It comprises interaction feedback improvements such as 
animations of moving items and fading of deleted items. 

We were using a Wizard of Oz technique to simulate the connection between OnBoard and the 
smartphone app. OnBoard would play the animation of pinch’n’drop when the user pinched a case 
to drop it on his/her phone (see Task 3 in Table 17). The feedback of success of the interaction 
was given to the user but was not sent to the phone. To simulate the arrival of data on the phone, 
we connected the phone to an online server on which we could change the data from another 
computer. The phone would receive the notification of change with the new data when activated. 

Table 17. Summary of tasks along which ones we performed single user design walkthrough of the 
smartphone app prototype. 

Task Description 

1 
Context: The app is in foreground. 
Question: Let’s say the user is Mr. Stark, a surgeon. He must perform a surgery in OR2 at 10:40am, so 
he subscribed to the case just before him in OR2. 
Tell what the current status of the case before his case is. 

2 Context: The app is in foreground. 
Question: Tell the patient’s initial of your patient of 10:40. 

3 Context: The app is in foreground. 
Question: Tell the full procedure of the surgery of 09:20 (the full procedure is too long and visible only 
on the detailed view or on landscape mode). 

4 Context: The app is in foreground. 
Question: Tell if the start time of the surgery of 09:20 has ever been modified, and if yes when the last 
modification was. 

5 Context: Ask the user to come back on the main page and to check his email on the phone. The app is in 
foreground, arrival of a new update with a level of priority “+“. 
Question: which value has been modified and what was the previous value? 
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6 
Context: The user goes in front of OnBoard with his/her smartphone app. 
Question: Pick up a case you want from OnBoard to get it on your phone. 

7 
Context: The app is in foreground, arrival of a new update with a level of priority “–“. 
Question: which value has been modified and what was the previous value? 

8 Context: The app is in foreground. 
Question: Delete the case of Dr. Feng from OnBoard. 

 
For each of these scenarios, we recorded: 

� The success or failure of the performance of the task (effectiveness). 
� The way the user performed the task. 
� User’s satisfaction by asking “How difficult was the task?” with an answer on a scale from 

1 to 5 (satisfaction). We recorded free comments from users and questions asked during 
and after the task (see example of evaluation sheet in Figure 86. Individual design 
walkthrough record sheet example.). 

� The time to perform the task (efficiency). 

 
Figure 86. Individual design walkthrough record sheet example. 

The difficulty for each task was on average assessed to 1.6 out of 5 (1 being very easy and 5 being 
very hard). 86% of the time, participants were able to perform the tasks. Each task received on 
average 0.7 proposition of change in the comments. The average time to perform a task was 9 sec. 

These sessions included an ideation seance at the end of each one, with propositions from the users 
to improve the app. For instance, increasing the size of all writings in the app was demanded by 
every staff. The staff reported that the pinch and drop interaction was very difficult to perform, 
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and most of them failed at first try. Some users reported that with more training, they would have 
better performance with the pinch’n’drop interaction, but others stated that this interaction would 
never work in the surgical suite and that nobody would learn or remember it. A staff did appreciate 
the difficulty/novelty of the interaction, it made him feel that “only trained people could know 
about this feature and therefore use it, it is like a protection”. 

After the design walkthrough that was more focused on the phone app, the users commented on 
the new version of OnBoard itself. The request for a larger size was supported by all users, who 
felt that now OnBoard could be a real candidate to support the surgical flow.  

 Part 4 – Groupware design walkthrough on usability with a smartphone app 
connected to OnBoard, on version 2 of the prototype 

We used a groupware walkthrough method [129] to evaluate the interaction between OnBoard and 
the mobile phone app, and how to deal with those tools as a team.  

 Participants 
The minimum setup of participants consists in a Board Runner (BR) and a Nurse working in the 
same surgical suite. We went through two runs: the first one (1h) with a BR and a Nurse, playing 
respectfully their job-roles, the second one (2h) with two BR – one playing the role of a BR and 
the other the role of a Nurse.  

 Experimental design 
The experimental setup consisted of a control room and a family room. Before starting the 
experiment, the exercise was presented to the participants for a couple of minutes, with a 5min 
training on OnBoard and the smartphone app. The evaluation consisted in the sessions 12 and 13 
(see Table 14) where we asked the staff (4 persons, see Table 14) to walk through the 5 tasks (see 
Table 18) to collect feedback from the users. Two runs of evaluation with the two different teams 
are reported here. 

For each task, we recorded (see example Figure 88):  

� Time 
� How it was carried out 
� Problems if any. After elicitation, we told participants to assume the problems were fixed, 

and told them to resume. 
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We stopped after each task and ask the following questions: 

� Effectiveness: does the interface provide the means to perform correctly the task? 
� Efficiency: would the group make the effort required to perform the task? 
� Satisfaction: would the group be motivated to do this task? Would they be satisfied with 

the outcomes? 

    
Figure 87. On the right, surgical staff during a groupware walkthrough. These pictures allow comparing the 
size of the prototype v1 of OnBoard (right, 64") with the version 2 (left, 84"). Users had no hesitation saying 

they preferred the bigger one. 

 

  
Figure 88. Groupware design walkthrough record sheet example. 

At the end of both sessions, the participants stayed to brainstorm on the system, proposed ideas 
and exposed other problems. Even after improving the pinch’n’drop feedback and animations, 
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some users still felt uncomfortable with the interaction. They proposed other types of interaction 
to replace it such as checkboxes to select the cases one would like to follow on their phones. 

Table 18. Summary of tasks along which ones we performed groupware walkthrough of the smartphone app 
prototype. 

Task Description Task Description Subtasks 

T1 Pinch and Drop a case. 

Subtask ST1.1: Get close to the board, open the mobile 
app then press and hold green button. 
Subtask ST1.2: Perform the pinch and drop action on a 
case on the board. Release green button after. 
Subtask ST1.3: Verify that the right case was 
transferred to the mobile phone app. 

Subtask ST1.4: User leaves the room. 

Subtask ST1.5: User talks to the family of a patient 
about report on a surgery. 

T2 Modification of the same 
case. 

Subtask ST2.1: user comes to the board and modifies 
the OR number on the same case (between 1 and 9). 
Subtask ST2.2: Change the level of priority of changes 
to “high”. 
Subtask ST2.3: user checks who is following the cases. 

T3 
Update notification on 
mobile phone app. 

Subtask ST3.1: user realizes when he/she received a 
notification 
Subtask ST3.2: user decides whether/when he/she can 
interrupt current task. 
Subtask ST3.3: user visualizes content of the 
notification 

T4 Check if the follower saw 
the modification.  

T5 Discussion about the board 
runner decision. 

Subtask ST5.1 – individual: user comes back to the 
board 

Subtask ST5.2 – collaborative: user waits for BR to be 
available to discuss 

Subtask ST5.3 – collaborative: user and BR discuss 
whether the modification should be modified or kept 
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 Results 
The main remaining issues concerned the interaction between OnBoard and the smartphone app: 
performing the Pinch & Drop is complex. Some people think it is usable and others do not (T1). 
The action is simple but according to the hand and finger size, the strip would need to be much 
bigger, which is problematic because we want to display a lot of strips on the board. Some 
participants feel that this interaction is fun but too complicated compared to the purpose of the task 
and that nobody would remember. A nurse said: “only the young nurses might make the effort”, 
indeed this person made 3 attempts before succeeding in performing the Pinch & Drop. However, 
other participants who achieved the interaction said: “the fact that it is a little complex would 
prevent undesired people to transfer cases on their phone”.  

The concept of determining on the board the importance of a modification and therefore the level 
of priority was much appreciated. Shifting the strip to the right seems complex for certain 
participants: “why do we do something so complicated again?” (T2, see Table 18. Summary of 
tasks along which ones we performed groupware walkthrough of the smartphone app prototype.). 
Other participants enjoyed the fact that even on the board itself one can see that the case received 
a special notification is useful: “It is great that from the monitoring area we can remember that the 
notification was sent with a special level of priority”.  

Working through these problems and brainstorming with the participants, we could determine 
some redesigns:  

� Communication: As the participants understood that for the next prototypes there would 
be the possibility to share a whole strip, including manual writings on it, they immediately 
thought that they could write on it a question to each other and the response “Oh so 
whatever I write on the strip would be sent out to the phones? I could write I need the 
Surgeon to identify the patient NOW? This is perfect”. This comment (T3), combined with 
the desire that we recorded during early interviews and participatory design with other 
surgical staff, confirms that our method encouraged users to be inventive and allowed us 
to observe the flexibility of OnBoard to activity needs (R6. Work adaptation).  

� Team awareness: The participants pointed out that they would love to be able to push cases 
to other users’ phones app (T1). “In case they forgot it” or “to help”. The owner of the 
mobile phone would thus not be the only person responsible for his/her awareness: other 
people may help.  
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� Security of access: Some participants were worried (T5) that the easiness of moving strips 
up and down and change OR number is “too easy to perform” and that therefore some staff 
could be tempted to make modification without the approval of the BR. We therefore 
thought about a way to unlock the board with the staff badges to allow inputs on the board 
to people with authorization.  

� Stop the Line: An important scenario never mentioned before, appeared when the 
participants were thinking about the mobile phone ringing/vibrating to notify them of a 
change. Sometimes the BR or a Nurse needs to “Stop the line” (called “Hold on”). It means 
that something is unclear for a patient and the staff must stop the process and fix the 
problem. For instance, there are many times where the patient is brought to a room whereas 
someone knowing that the room is not available yet could have stopped it before the patient 
is brought in front of the room. All the participants agreed on the fact that shifting the strip 
to the right makes it “stand out” from the rest of the strips (T2) and shows that “This case 
is not in the normal flow anymore” (T2). This feature might fit the “Stop the line” scenario.  

� Connect to other boards: Some participants mentioned that there should be a way to 
connect the boards of the different surgical suites, as they sometimes exchange 
staff/patients. Connecting the different surgical suites better would improve the 
management of resources of the hospital. The smartphone application is considered a 
welcomed expansion.  

 Deployment 
Even with full authorization to access the surgical suites of the hospital to observe and interview 
the staff, we were of course (and as it should be) strongly restricted in the deployment by the fact 
the surgical suite environment is critical and had to be at no time an obstacle to the operations of 
the surgical suite and patient care. This notably slowed us down a lot for testing in real settings 
our prototype, but we were able to install the system 2 years and 5 months after the beginning of 
the project, in 12 ORs, for 2 months. The system ran through a total of 300 procedures [136].  

This section describes the condition of deployment of OnBoard in the surgical suite FondrenOR 
(see Table 4). Figure 90, Figure 91, Figure 92 and Figure 93 illustrate the use of OnBoard during 
its deployment in the surgical suite. 
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 Linking OnBoard with SmartORs on the hospital network 

The schema in Figure 89 describes how we integrate OnBoard within the cyber-physical system. 
OnBoard is linked to the sensors of the cyber physical system installed in every OR the hospital 
network, communicating by text files in a shared drive. 

 
Figure 89. Architecture of the system comprising the SmartORs and OnBoard. 

This shared drive is hosted on the hospital network. The sensors (SmartOR sensors) are driven by 
RaspberryPis that are on the hospital network. The sensor data analysis (signal and image 
processing) is made on a computer that then sends, still on the hospital network, the updates to the 
text files on the shared drive. The OnBoard application constantly watches these text files and 
when a modification is made, OnBoard updates itself with the new content. The text files can seem 
a primitive way of storing data. However, this solution allowed us to create a very flexible data 
storage and data sharing system that can be modified easily manually by even a novice. These files 
are used for the initial loading of the day surgical cases, and for the sensors’ updates. On the other 
hand, we use these files to save logs of the use of the system such as writings coordinates, 
modifications of schedules etc. 

All communications are performed via this shared drive, nothing goes on the cloud or out of the 
hospital network. Therefore, we overcome the problem of cybersecurity with this system. For 
many computer systems that host data on the cloud, it is very challenging to integrate with hospital 
systems if they manipulate Protected Health Information (PHI), they must comply with regulation 
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such as the Health Insurance Portability and Accountability Act (HIPAA). This act sets the 
standard for private patient data protection. Such systems must have physical, network, and 
process security measures in place and follow them to ensure the compliance. 

 Participants 

The surgical team of FondrenOR comprises 124 persons: average of 10 surgeons per day, 15 
anesthesiologists., 2 board runners (BR), 40 nurses, 14 surgical technicians (ST), 10 perioperative 
nursing assistant (PNA), 12 anesthesia technicians (AT), 21 certified registered nurse anesthetists 
(CRNA) and (+2 high school interns at the end of the study). 

Among them the 2 anesthesiologists, 2 BR, 2 nurses (including a BR) were deeply involved in the 
study. The 2 BR volunteered to use OnBoard and encourage others to do so. The 2 
anesthesiologists provided feedback on the use of the board by the anesthesia staff. 
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Figure 90. (Left) Two nurses are discussing the schedule a nurses assignement’s using OnBoard as a support to the discussion. (Right) the traditional 

whiteboards that kept being used in parallel of OnBoard. 
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Figure 91. (Left) Charge nurse re-arranging the nurses’ assignments on OnBoard during the deployment at the surgical suite. (Right) Anesthesiologist 

chief re-assigning the anesthesia staff to ORs. 
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Figure 92. Board runner adding an emergency case on OnBoard during the deployment.  
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Figure 93. A nurse looking at information concerning the start time of a surgical procedure during OnBoard deployment. 
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Figure 94. FondrenOR map and the placement of the OR sensors and OnBoard (Electronic Board.
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 Equipment & setting 

We deployed OnBoard in FondrenOR and the activity sensors in the 12 ORs of the surgical suite 
FondrenOR (see Figure 90, Figure 91, Figure 92, Figure 93and Figure 94).  

OnBoard was installed in FondrenOR right next to the whiteboards, in the corridor (see Figure 94). 
OnBoard is running on an 84” 60Hz multitouch 4K display, on a computer installed on a cart, 
connected to the intranet network of the hospital. Every users' input on OnBoard was recorded in 
a CSV file on a shared drive of the hospital network as soon as the input was performed. In 
addition, OnBoard took and stored screenshots of itself every 30s for further analysis. The sensors 
systems were installed in the 12 ORs of FondrenOR prior to the study. The communication 
between OnBoard and the sensors systems were made via csv files on the shared drive located on 
the hospital network. OnBoard was watching the CSV files and reloaded them whenever the 
sensors modified them. 

The software version of OnBoard deployed for testing did not comprise all the features developed. 
We kept it as simple as possible to favor a quick appropriation in the clinic. The following features 
not deployed for clinical testing: 

� Writing recognition of the OR number. 
� Mobile application. 

 Training 

The main users (2 BR and 2 other nurses) quickly tested and formally trained on the last OnBoard 
version during 10min prior to the installation.  

 Procedure 

The Board Runners were asked to make updates first on the whiteboards and then on OnBoard for 
safety reasons. We are aware that this represents supplemental work for the boardrunner, that the 
traditionnal whiteboards would “compete” with OnBoard, and that it would bias the experiment. 
However, we were not allowed to replace the traditionnal whiteboards. 

OnBoard was used mostly from 7.00am to 3.00pm (time during the involved BRs were working), 
Tuesdays through Thursdays and occasionally Mondays/Fridays/Week-ends. OnBoard was mostly 
used between 7.00am and 12.00pm as mornings are typically busier than afternoons.  
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A member of the research team was present the first two weeks every morning from 7.00am to 
11.30am and often during an hour at around 2.00pm, at the time of the afternoon shift. She was 
also present twice a day during the rest of the study, from 9.00am to 10.00am and from 2.00pm to 
3.00pm. She updated OnBoard during the deployment to improve its usability or robustness. Most 
of the software updates were made in the evening when the surgical suite was less busy. She would 
also answer occasional questions about OnBoard to curious members of the surgical team that 
were not directly involved with its use.  

 Data collection means 

During the study, we collected various data, including videos/photos (that were subject to patient 
privacy restrictions), observations, and interviews in the surgical suite when the staff had time, 
questionnaires and logs. 

We used the technology probe method to get inspiration, create new features or better understand 
the surgical flow needs. Many features and ideas came from talking with the surgical staff in their 
environment, in front of OnBoard. The fact that OnBoard was physically in the surgical suite 
changed the users’ way of seeing it and they started to have much more ideas of features than 
during the participatory design sessions with the first team in the laboratory. 

 Results 

We present here the results of the deployment of OnBoard in FondrenOR surgical suite. 

 Different teams 
The participatory design of OnBoard was performed with surgical teams (DunnOR and some staff 
from a third surgical suite), which are different from the surgical team that used the board during 
the study (FondrenOR). Even if they share the same goals and concern, every surgical suite has its 
own culture and specificities. Nevertheless, the first design allowed the FondrenOR team to 
perform most of their daily activities with only minor customizations due to a slightly different 
way of managing anesthesia and staff. The rest of the interface was satisfying to the FondrenOR 
team, which allowed us to deploy the system at their facility to run the study. This suggests that 
OnBoard is not too specific to an OR suite. 

We also ran training sessions with nurses. They consisted in a 10min session in a laboratory 
environment and a 30min class with all the nurses. The nurses were able to perform most of the 
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interactions. Furthermore, the main users did not report difficulties to perform the interactions 
during the study.  This suggests that OnBoard interactions are not too difficult to learn and to 
perform.  

 Successful management of surgical cases 
OnBoard enabled the staff to visualize updates and make the necessary case modifications. The 
BR were able to load up to 21 cases per day on the electronic board during the 2 months of study 
in the surgical suite. Users provided comments such as “Easy to use, clear information” (Board 
Runners), or “The board gives the ability to have a better visual work flow assessment” (Anesthesia 
staff). A nurse also commented “I love this electronic board because I love our whiteboard, and it 
is a good compromised between what we already use and the hospital system”. 

However, a single OnBoard can display 21 cases only for one day: if there are more cases, the 
supplemental ones are hidden until there is room again. There were a few days when the board 
runner had to load 22+ cases on the board (the surgical suite usually uses 2 whiteboards, but we 
could provide only 1 electronic board).  

We observed that OnBoard transcended the whiteboard in the following dimensions: 

1. Flexibility: the staff appreciated and benefited from the flexibility offered by the addition of 
emergency cases (or no-elective cases), and the ability to insert it anywhere, move it around and 
change its OR number and its start time. The reification of physical objects into digital instruments 
(strips, magnets) enabled users to move elements faster (no need to erase a case and rewrite it 
completely elsewhere – action that is also prone to human copy errors) while preserving flexibility. 
We observed partial accomplishment of action when inserting a new case in the flow during an 
emergency. The user would bring the add-on magnet to the bottom of the list for instance, creating 
a whole empty strip. The user would then start to fill patient name, procedure title and surgeon 
name, leaving the OR number and start time of the procedure blank. Indeed, the user did not know 
yet in which room nor at what time he could schedule this emergency case. Case shift was also 
straightforwardly adopted and appropriated: FondrenOR team used this feature to signify a “hold 
on” on a patient, meaning that the surgeon requested that everything about this patient must be 
stopped until further notice. 

2. Semi-public overview: OnBoard preserved a collocated access of the whiteboard by remaining 
a large, central information surface. Users found the overall visualization clearer than the 
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whiteboard when written with computer fonts (once we increased the size after a request from the 
staff), affording a better shared overview. However, it is not possible to conclude on the effective 
support of mutual awareness from OnBoard alone, since the traditional whiteboards were still in 
place and filled up with the same information for safety reasons. 

3. Cross-Interactivity: OnBoard displays new types of information coming from the sensors and 
enables the BR to quickly load all cases for the day from a spreadsheet file. Board Runners and 
Anesthesia reported being more able to anticipate and deal with the surgical flow by having a better 
idea of the status of the procedure. They also reported less need to physically enter the ORs to 
check the state of the surgery if they have the information on the electronic board. The mobile 
timelines helped them compensate the system for not being fully automatic. 

 Staff management adaptation 
Associating staff (anesthesia and nursing) with ORs is as important as case management: who will 
work in what room after the shift, who already took his/her break, who will replace who etc. To 
do this, the team from DunnOR only relies on hand writing on the whiteboard. We designed 
magnets with this surgical team during participatory design to improve efficiency. 

When we installed the system at FondrenOR with the second surgical team, we observed that they 
already use magnets for the staff. Indeed, we were able to automatically load everyday all the 
surgical staff with their shift information by creating individual magnets. However, we observed 
that digital magnets lack flexibility, compared to tangible. The staff was not able to signify some 
information the exact way they were doing it: for instance, rotating by 90° a staff magnet (Figure 
95) to signify to others that this person is covering another person during his/her break (as observed 
with the DunnOR team). Also, the fact that all magnets stay at any time on the board was difficult 
for major re-organization of staff activities: with tangible magnets, the BR can pick them up, keep 
them in hand or in the pocket, and then place them on the whiteboard. With OnBoard, the BR 
could only drag and drop them. This suggests that these magnets need improvements on their 
design to reach the level of flexibility of tangible magnets. The staff asked for more 
“personalization” of “their” magnets, as they represent themselves. We quickly deployed an avatar 
system that was much appreciated (see Figure 96). 



 

190 
 

 
Figure 95. Example of use of tangible magnets on the whiteboard at FondrenOR. 

 
Figure 96. Personalization of staff magnets with an avatar. 

 Handwriting fosters flexibility 
The ability to free-write/erase anywhere on OnBoard is an addition to the electronic whiteboards 
in the literature. Indeed, writing adds extensive flexibility and allow users to support actions that 
were not planned by designers. We observed the ability of the users to write/erase notes on cases 
and magnets, just like they would on the whiteboard. For instance, the inability to rotate by 90° a 
staff magnet was compensated by writing on the magnet the name of the person that is covering 
for the other person. The users also used it to fix an error from the users at the launch of the 
application: a wrong surgeon’s name input (see Figure 97). This suggests that providing 
handwriting on OnBoard mitigates some of its limits. 

 
Figure 97. Manual writings and creative corrections on strips. 
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The three colors (black, red, and blue), were mostly used with the same purpose as on the 
whiteboard: black for regular information, blue for anesthesia information, red for 
special/important notices. On Figure 97, the modification made was on the surgeon name was 
made in blue: an Anesthesia staff noticed the problem and he made the modification with “the 
anesthesia (blue) color”. 

As said before, users found the computer font “clearer” than handwriting. Indeed, the quality of 
the graphic rendering of handwriting may have an impact on users’ satisfaction. JavaFX only 
provides event coordinates rounded to the closest integer. The result was that the writings seems 
wobbly. The users were particularly annoyed by the rendering during a day when they filled 
OnBoard entirely with writings (Figure 98). 

 
Figure 98. OnBoard manually filled with the surgical schedule. 

 Synchronous and asynchronous collaboration among surgical staff 
We observed that the positioning around the boards (whiteboard and electronic board) are similar 
at FondrenOR and DunnOR. Many people gathered in front of the board to check the information 
they need: two people talking about a patient using the board as a support; one person making a 
change on the board; people gathering in front of the board just waiting; people texting information 
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from the board to someone; people taking notes on paper from the board etc.  However, conversely 
to DunnOR, people at FondrenOR tend to write on the whiteboard one person at a time only, while 
having more asynchronous communication. Some collaboration patterns were observed e.g. the 
updates made by a board runner were later read by other staff (change of ORs number, change of 
cases order, staff information). We therefore could observe that OnBoard, even if it can support 
two users at a time, was principally used by one person only. This might be because people wanted 
to be cautious with the technology and were worried to break it. 

Still, every person of the different surgical suites has their own objectives and uses the 
whiteboard/OnBoard to achieve it. Anesthesiologists write to inform other anesthesia staff of the 
anesthesia team organization, the charge nurse writes for the nurses, nurses update cases state etc. 
Overall, every displayed information may have a value for anyone who can read it and has value 
to be displayed to everyone. The large size of OnBoard both provides space for putting information 
and, as a semi-public screen, draws the attention of the staff. 

 Collaboration between surgical staff and design team 
We were able to test on the fly new types of interactions during the study, based on our own 
observations or requests from the staff. The first request consisted in customization due to the fact 
the participatory design was done with a different team: the creation of an anesthesia information 
space on the board with another color, so that the anesthesia team could be linked to an OR instead 
of a case. Two additional magnets “Pre-Op Anesthesia Done” and “Pre-Op Nurse Done” were 
provided to mimic FondrenOR staff practice on the traditional whiteboard. The second type of 
request came from the visibility of the public displays in general and many people asked right 
away for bigger font, as well as different colors to differentiate people by their job-roles on the 
board. We got a request of customization of a staff magnet (representing a person), with an avatar. 
The third type of requests was functional. We were asked first to remove a note area that potentially 
could be hidden: the staff was worried that important things could be written on it, then hidden 
and overlooked. We were asked if we could make it easier to follow staff magnet assignments to 
ORs while moving them up and down, which we did by highlighting the OR number when 
hovering with a staff magnet. Another request was to “make a copy by clicking on a staff magnet”. 
Indeed, some people, represented by a magnet, must be assigned to several ORs. We answered 
quickly by loading directly in the morning several magnets of the same person. 
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The request to connect the electronic board to phones was made many times by every job-role 
staff, emphasizing the need for information mobility. The prototype of the phone application was 
designed to explore this need. All these changes and additions suggests that our methods succeeded 
in fostering rich exchanges and offering new design perspectives.  

Finally, we noticed three documents that were left on the cart of the electronic board during the 
study, one among them with clear intention to be found and reused later (an anesthesia staff 
calendar). We observed that a lot of paper notes were taken from the board, but also that things 
were written on the board from paper notes. This suggests that there is a need for even more 
flexible ways of inputting on and outputting from the board (see chapter 8).  

 Summary 
In this section, we summarize the results of the design evaluations and of the deployment at the 
surgical suite FondrenOR. 

 Design evaluations 

We used design walkthrough to validate and evaluate interactions and the usability of OnBoard. 
The design walkthrough sessions revealed a variety of usability problems and new design ideas. 
They allowed us to go from version to version and iterate to improve the usability of OnBoard. 
The latest version of OnBoard was considered usable and deployable in the surgical suite by all 
the users of the final design walkthrough, for the support of surgical cases, staff, and their 
management. The increase in size of the hardware and the improvement of micro interactions and 
of the writing/erasing features were key to its deployment. 

More than with just interviews and observations, the participatory design sessions and walkthrough 
allowed us to include the users directly in the design process. These sessions allowed us to revisit 
our designs and improve them following users’ failures/successes and advice. It allowed us to 
create a better link with the user and prepare for deployment. 
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 Deployment in FondrenOR 

The prototype (including the sensors) was deployed in real settings in a surgical suite at Houston 
Methodist Hospital, cardio-vascular department (FondrenOR). This suite comprises 12 ORs, for 2 
months and ran through a total of 300 procedures. 

We gathered data about the use of OnBoard in real settings and used technology probes principles 
to improve the system during the evaluations (TP1. Design for appropriation/Open-ended/Co-
adaptive, TP2. Real-world and TP3. Instrumented.). Several features were designed during the 
deployment and integrated before the end of the deployment. 

Observations and interviews “in the wild” showed that users were able to get up-to-date 
information from the sensors (R1.  Enriched surgical flow representation), especially through the 
timelines, with the help of their direct manipulation to correct sensor deficiencies. We did not 
observe high workload situations and several users interacting simultaneously (R2.  Multi-users 
and multi-roles). However, several roles (surgeons, anesthesiologists, nurses) were able to use 
OnBoard, thanks to handwriting. 

We did not evaluate the level of mutual awareness (R3.  Teammates’ activity awareness) and how 
interactions may contribute. The large surface displaying coordination artifacts (surgical cases and 
staff) with hand writing everywhere is definitively a suitable means to support communication and 
coordination (R4. Communication and Coordination). Direct interactions to change time, fix 
incorrect information and add new cases in the flow allowed users to face unexpected events (R5.  
Dynamic changes). Finally, users were able to appropriate technology (R6.  Work adaptation), 
with the use of colors, handwriting and object shift. However, we observed that some users are 
still reluctant to technology, turning away from using OnBoard. We learnt from these sessions how 
to improve the design of OnBoard and how to foster design for appropriation. 

Many aspects of OnBoard revealed being very flexible for deployments. The initial load of cases 
for the day using simple excel files is one: the BR was able to quickly adapt what was written in 
his/her agenda to the current situation (when the schedule was loaded on OnBoard). Therefore, 
even if this feature was there as a temporary solution before a total automation between OnBoard 
and the hospital system, it revealed itself very resilient. Another flexible aspect was the 
writing/erasing feature. The ability to write anything allows the users to cope with any situation 
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that was not foreseen by the designers. This suggests that fulfilling requirement R6. Work 
adaptation is key to the success of deployment for such system. 

Despite the numerous constraints due to the critical environment and the heterogeneity of surgical 
staff, the system was accepted in the surgical suite by the staff and they participated until the end. 
The staff participation in the design increased during the deployment, as it was more exposed and 
put in context. We believe that the effort of building the system with the staff played a big role in 
its acceptation when we moved it to the surgical suite, as it was not a system “imposed” to them. 
After we moved the system to the surgical suite, numerous ideas were proposed by the staff: first 
because more people got to interact with it, second because seeing the system in real condition 
helped generating ideas and seeing problems directly. After this deployment, we moved the system 
back to our offices and decided to try out the implementation of new ideas generated during the 
deployment. 

 Limitations 

As the whiteboard was always being filled first for security reasons, OnBoard was sometimes not 
perfectly up to date due to the staff getting busy (many cases and concerns to take care of at the 
same time, emergencies…). 

We observed that overall, staff do not “fully” trust electronic displays, as they are used to be failed 
by them (cf. hospital systems). Therefore, when a staff was looking at something on the electronic 
board, he/she was often led to check the information on the whiteboard. We believe OnBoard could 
build a better trust over time with more use. 

There remain usability issues, and the OnBoard application is not robust enough to completely 
replace the traditional whiteboards. Furthermore, OnBoard is not linked to the hospital system and 
the smartphone application was only tested in simulated environment. 

On the technical level, OnBoard visual feedback while writing or erasing are still slow, despite the 
optimization made with a QuadTree data storage architecture of the shapes locations. More 
computing power could solve the problem, but we believe there is still many optimizations that 
could be implemented. Furthermore, OnBoard was designed to be used by two people at a time 
maximum. We could improve the implementation of the interactions to allow more than two users 
at a time. 
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Another limitation is the customization of OnBoard. Surgical suites have different cultures and 
ways to perform the surgical flow management. We could see that, despite a lot of similarities 
between the different surgical whiteboards studied in the literature and at the Houston Methodist 
Hospital, there still are many differences. For example, some surgical suite whiteboard displays 
the procedures by OR number vertically instead of horizontally. Another example is the 
transparent whiteboard used in Boston. Finally, some whiteboards use only magnets whereas other 
whiteboards mostly use writings.  

Hence, further development of the software would be necessary to make it a potential tool for 
everyday use in multiple surgical suites. 
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8 

UBIQUITOUS COMPUTING FOR THE 
SURGICAL SUITE 

Computers will be integrated in everyday life in every aspects [177]. However, one must consider 
the consequences on team coordination. The introduction of new automation should engage the 
designers in considering the negative effect on team coordination [180]. Indeed, automation can 
decrease situational and mutual awareness, and change roles and responsibilities of the members 
of the team [52,147]. Hence, creating a ubiquitous computing for the surgical suite must focus on 
this problematic. 

We developed OnBoard as a platform that could be the central element of other coordinative 
artifacts, just like the whiteboard is the central coordinative tool combined with phone calls and 
paper notes. 

 OnBoard in the perspective of the Cyber-Physical System 
At first sight, OnBoard might be considered as an output system, displaying SmartOR sensors data 
and surgical suite schedule from the EHR. An effective information visualization can help 
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providers to explore and analyze EHR data for patient treatment and clinical research 
[143,157,176,182]. However, the innovation brought by OnBoard is not the visualization but the 
interaction design and its support for collaboration. Interactive features not only turned OnBoard 
into an input tool but also into a coordination tool. Table 19 presents how a typical workday would 
unfold with OnBoard and the CPS. 

Table 19. Use cases of OnBoard in the perspective of the Cyber-Physical System. 

Picture Use case 

 

The day before, the board runner uses an 
excel file on his/her desktop to load the 
schedule of the next day on OnBoard via 
the shared drive system. He then launches 
OnBoard in the morning at 6.00am. 

 

Early in the morning, nurses coordinate on 
the nurses’ shift to know where and with 
whom they will be working today. 
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The surgical team is wondering about the 
status of the surgery in OR5. They go to 
visualize the schedule on OnBoard and 
check the OR5 state. 

They discuss with the board runner if it 
could be a possibility to move procedure X 
to another OR as OR5 will likely not be 
ready for a new surgery. 

The board runner negotiates and finds a 
solution. 

 

An anesthesiologist has a coworker that 
will not be able to come this day. He 
reorganizes the schedule of the 
anesthesiologists to compensate. 

 

A nurse notices on OnBoard that the wrong 
surgeon was entered in the system for 
patient X. He crosses the name on the strip 
and write the right name underneath 
instead. 
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A new emergency case must receive care as 
soon as possible in the surgical suite. The 
board runner creates a strip and enters the 
new case in the flow. She partially fills the 
strip, with only the patient name and the 
fact that he is coming from the emergency 
room as she does not know all the details 
yet. 

 

A nurse must go to another surgical suite to 
see a patient. He pinch’n’drops on his 
phone the cases he is assigned to, to 
subscribe and be able to follow them from 
the other surgical suite.  

 

The flow of patient is getting heavier as the 
surgical suite is accepting a lot of 
emergency cases today. The charge nurse 
goes to OnBoard to quickly reassign the 
nurses to be able to sustain the flow. 
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A nurse is subscribed to a case on her 
phone as she is assigned to it. She receives 
an update telling her that the start time of 
the procedure changed. 

  

 

The board runner is informed by the EHR 
that a patient is allergic to latex. He 
drags’n’drops a “Latex allergy magnet” on 
the associated strip in OnBoard. 

A C/ARM equipment will be needed for a 
case, as requested by the surgeon, the board 
runner write it on the associated strip in 
OnBoard. 

A nurse wants to let the board runner know 
that patient X did not sign the consent form 
yet. He takes a picture of an empty consent 
form with the camera (see new features 
afterwards) and drops it on the associated 
strip in OnBoard. 

 

The manager realizes the day of surgery 
was very tedious and that there must have 
been many inefficiencies. She opens the 
logs of OnBoard to see if there were 
scheduling decisions that could have been 
improved for next time. 
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 Towards seamless interactions 
In this section, we present new types of features that were designed after the deployment, to push 
OnBoard flexibility and connectivity further. In particular, we wanted to better integrate all 
subsystems, design interactions that would facilitate the transitions between subsystems, and offer 
a kind of interaction continuum that would make the user forget he/she is working with computers 
[30]. 

 Increased flexibility and usability of the writing feature 

Writing on paper still feels different from writing on a touch screen, even with the current best 
technologies. Technologies are improving, and this might not be an obstacle soon. We think that 
the feedback quality of writing on OnBoard is key to usability and deployment in the surgical suite. 
With the prototype that was deployed in our experiment at FondrenOR, writing on the electronic 
board was still not as satisfying as writing on a traditional whiteboard. 

The literature on digital handwriting is surprisingly short on implementation details and subtleties 
that would lead to fast and nice rendering. In particular, we suspected that implementing nice 
handwriting rendering with JavaFX is challenging due to the library truncating the floating part of 
the event coordinates (even though the type of the event coordinates is “double”). We had to resort 
to another input technology: we adapted an existing java library for direct windows Real-Time 
Synchronous pen events [199] to make the coordinates more accurate by using the full resolution 
of the input. Indeed, the accuracy of some large display input is higher than the accuracy of the 
display output. Combined with a library we wrote to build dynamic, pressure-variable Bezier 
curves, we obtained much better result as the coordinate of the Bezier curves did not stick anymore 
to pixels: jags are removed, and anti-aliasing is much better. This result is another example why 
differentiating between input and output is beneficial [57]. 

However, because JavaFX and WinPointer technologies cannot cohabitate, we had to provide the 
better input mechanism with a 5x5cm translucent overlay window on top of the main application 
(see Figure 99). The handwriting interaction necessitates now a semi-temporal and spatial mode. 
To handwrite, the user needs to click on a strip first. This makes the overlay appear centered on 
the position of the click for a couple of seconds before fading away. The user must write within 
the overlay before its fades away. The overlay follows the user’s writing position while writing, 
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allowing her to write in a discontinuous manner (multi-shape letters, multiple words). We chose 
to make the size of the overlay large enough that the user is unlikely to cross the borders 
inadvertently while writing, and as small as possible to allow multiple users to write on the board 
at the same time. 

Though adding a mode seems cumbersome for the user, it brings two benefits. First, we observed 
that users would leave unwanted traces when failing to properly press on the “grainy zone” to 
move a strip and unexpectedly starting a handwriting interaction. The newly introduced mode 
helps prevent such artefacts.  Second, we benefited from this overlay window by moving writing 
parameters (stroke size, color) from the top bar to the overlay, thus making them closer to the 
writing context. The mode could be more implicitly started provided that the display is capable of 
differentiating between touch and pen interaction. As the deployed screen was not capable, we 
kept this interaction. 

Another aspect that improved the writing/erasing feature in OnBoard is the use of a high-refresh 
display such as the Microsoft Surface (120Hz instead of 60Hz). This lowers the latency between 
input and graphical output. Combining the Microsoft Surface Hub with the interaction proposed 
above provides a more usable writing/erasing feature, closer to a traditional whiteboard. 

We suspect that slow and ugly handwriting may refrain users from updating the board. The new 
technique improved latency and the quality of the graphical rendering. Though we did not gather 
enough supporting data that it helped improve users’ satisfaction and incentive to using it, we at 
least eliminated a potential barrier to its use. 
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Figure 99. A new writing feature based on an overlay capture more accurate inputs from the touch screen 

than the main window. We can appreciate the difference between the former writings (middle-right picture) 
and the new writings allowed by the new technic (bottom-right picture). 

 Inputs from the external world in different formats 

Following the idea of blurring the boundaries between the external and the digital world of 
managing tools for the surgical suite, we thought about a feature/tool that could bring increased 
flexibility in the type of inputs that could be made on OnBoard. 

We installed an IPEVO P2V webcam (see Figure 100) wired by USB to the computer (IF25. 
Camera inputs). When OnBoard is launched, it launches a C# application from which we retrieve 
in the Java code the pictures taken by the webcam. 

The webcam can take pictures from up-close, thanks to an auto-focus or a focus button that can be 
pressed by the user before taking the picture (see Figure 101). When the user takes a picture, the 
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picture appears on OnBoard interface as a magnet (a “picture-magnet”). It can be dragged on the 
scene, and if released on a strip it is attached to the strip. The picture-magnet can be deleted like 
the other magnets with a quick swipe-away movement. One can add written note on the picture-
magnet, zoom in, zoom out and rotate it.  

 
Figure 100. Webcam IPEVO P2V. 

 

We designed this feature to be versatile. The envisioned scenarios are as follow: 

� A nurse takes a picture of a part of a surgeon’s schedule that he printed from the EHR, and 
drag’n’drops the picture-magnet on the patient’s strip. Later, the nurse and other nurses 
working with this surgeon will check the schedule. 

� The board runner writes on paper two possibilities of re-scheduling, takes a picture, and 
drag’n’drop it somewhere on OnBoard dashboard. 

� The anesthesiologist takes a picture of himself/herself and drag’n’drop it on the patients 
he/she is responsible for. 

Other possibilities can be envisioned as the camera allows a flexible type of inputs. This feature 
has interesting properties. First, the direct manipulation of the camera makes it easy and ready-to-
use (P2. Reify, P3. Partial, TP1. Flexibility/open-ended/co-adaptive). Second, it can allow to 
palliate connections’ difficulties with the hospital system (TP3. Real World, TP1. Flexibility/open-
ended/co-adaptive). A picture can be taken of the schedule or any information from the EHR one 

Button to take 
a picture 

Button to 
focus 
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would like to put on the board.). Third, users can draw the attention of others via another type of 
graphics. Finally, the camera input/output might be highly appropriable, and users might be able 
to invent new usages that we did not foresee. 

One could propose to connect the smartphone app with the board to take the pictures from the 
phone app instead of from the IPEVO connected webcam. We argue that it is preferred by the 
hospital that patient-related information does not commute on the phones of the personnel to 
guarantee patient privacy and data security. A user could also take a picture of a patient lab result 
or CT-scan and drop it on the patient’s strip. However, we do not believe this would be an 
appropriate use due to the semi-public location of OnBoard and the fact that not all medical staff 
are authorized to access this type of patient information. 

     
Figure 101. Use of a micro webcam to take pictures and create a magnet object in OnBoard of the picture 

that was taken. A magnet can be associated to a strip. 

 IoT – Bluetooth connection of OnBoard to an external embedded microcontroller  

Connecting the OnBoard platform to embedded microcontrollers opens numerous possibilities of 
inputs/outputs/awareness tools. As an example, we designed a pen (one of the dry-erase pens for 
whiteboard without ink) in which we can fit a small microcontroller (see Figure 102). 
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Figure 102. Pen enable to contain an embbeded microcontroller. The pen was a little too small so we had to 

make a little cut on the side. 

The microcontroller used is an Arduino-compatible Adafruit Feather, with a Bluefruit chip 
enabling BLE connections (Bluetooth Low Energy) (see Figure 103). 

 

  
Figure 103. Left: Adafruit Feather, with a Bluefruit BLE chip. Right: Wired microcontroller with the RGB 

led and a battery. 

We wired the microcontroller pins with an RGB led to change its color as we wish. We plugged a 
battery to the microcontroller that could fit in the pen (see Figure 103). 

We coded the microcontroller to change the colors of the RGB led via Bluetooth communication. 

On the Java code of OnBoard side, we used Bluetooth Low Energy BLED112 USB dongle via the 
RXTXcomm, bgib-gui.jar and bglib_protocol APIs. 

When the user chooses a color in the toolbar of OnBoard (see Figure 104), the pen will turn into 
the chosen color. This allows the user to know which color he/she will write with, without having 
to look at the toolbar or writing and then having to erase because it was the wrong color. 
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Figure 104. User choosing different colors to writ eon OnBoard a and writing with the special pen. 

This simple example illustrates the potential of a platform like OnBoard connected to embedded 
objects. As the user picks and holds the colored pen, s/he might be more aware of the status of the 
handwriting interaction. In fact, the status of the interaction was an undesirable side-effect of using 
neutral, uncolored pens. Bringing the status into the artefact that is used to perform the interaction 
eliminates a potential usability difficulty, and makes the interaction “disappear into the fabric of 
the everyday world”. 

 Minimal set of I/O features for electronic board 

With hindsight from the OnBoard experiment, we propose a minimal set of I/O features for 
electronic boards to make them suitable as ubiquitous platforms and technology probes. The set of 
features might be interesting for researchers involved in future, similar projects. 

The display should be physically located in the semi-public space and offer camera snapshots, free 
writings and a printing option (see Figure 105). The camera allows for a quick entry of any 
information based on an existing real-world object: a document, pictures of people, lab results etc. 
The writings allow a broad variety of other inputs: writing words, sentences, drawing symbols or 
other type of drawings, circling or framing existing inputs etc. The printing option would support 
the export on paper of any part of the display. 

This minimum set of features can be developed in a simple and robust application Together, the 
inputs would make it easier for users to bring artefacts from the outside (with respect to the board) 
world and adapt the board to their practice or unexpected contingencies. On the other hand, the 
output would be the reverse asset: bringing electronic board artefacts into the real world. In 
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addition, designers would leverage on the transmission of information through these inputs and 
outputs to analyze them and provide better supporting tools for the revealed needs.  

 

 
Figure 105. Minimum set of features for a technology probe for surgical staff collaboration. 

 Internet of humans in the surgical suite 
In the surgical suite, numerous stakeholders work together. Communication plays an important 
role in the success of collaboration activities. Direct communication is not always possible, and 
interruptions are an issue to surgical staff performance and focus on the patient (see section 2.2.4 
“Communication needs vs. interruptions problem”). Hence, connecting people via computers in a 
seamless way could have significant impacts for patient care. 

As Weiser describes, computers should adapt to humans instead of humans needing to learn and 
adapt their workflow to computers. In this section, we look into using computers as medium [30] 
to improve communication between humans in the surgical suite. 

 Internet of things: humans’ awareness of the system status 

A cyber-physical system brings many sensors to acquire a system’s status. In our case, sensors 
were developed (SmartOR sensors) to acquire the ORs’ state. Other sensors such as patient 
location sensors or surgical equipment status and location can be added and provide a more 
comprehensive and finer grained system status information. 

In Figure 106, we represent the internet of things for the surgical suite: in orange for the OR’s 
state; in green for the equipment; in blue for the patient location in the surgical suite/hospital. 
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Figure 106. Ubiquitous surgical suite. In the same color: connected humans and objects. Yellow: Surgical suite coordination.  Blue: Patient location 

information.  Green: Equipment location and status information. Orange: OR state information. 
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The OR’s state is acquired by the SmartOR sensors, and the information is distributed on different 
mediums such as OnBoard for the local and semi-public place, personal tablets/phones for mobile 
applications, and desktop station for management levels. For instance, the details of the OR state 
are irrelevant to the patient’s family but is useful to the board runner to anticipate on the schedule 
of surgeries. Based on this acquisition, OnBoard combines the OR state with the schedule of 
surgeries, which gives a broader information on the surgical suite status. Figure 107 depicts the 
scenario where the board runner can anticipate a scheduling change based on the OR state 
information. 

 
Figure 107. The board runner visualizes that the patient in OR1 just got intubated. It tells him that OR1 will 
not be ready for the next patient in time. He starts thinking about an alternative and look into re-scheduling 

the next patient for OR2. 
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The patient location acquisition can be acquired by equipping the patient with a localization 
bracelet when they enter the surgical suite. For instance, such bracelet could use the Bluetooth 
technology or RFID within a Real-Time Localization System (RTLS). In Figure 108, the board 
runner visualizes that the patient, scheduled for OR3 at 9:30, just arrived in Pre-Op. He can 
compare this information with the current status of the OR3. This tells him that if the patient stays 
scheduled for OR3, they surgical flow will see a delay. Hence, he can detect the issue and think 
about how to resolve the scheduling conflict. 

 
Figure 108. The board runner detects a scheduling conflicts in OR3 thanks to the CPS sending to OnBoard 

the OR state. 
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In most cultures, respecting privacy is necessary in a professional context. Hence, tracking the 
surgical staff is not acceptable. Besides, nothing proves that it would be beneficial. It might even 
be counter-productive because it would not be accepted by the surgical staff. Promoting the system 
to track events more than people – except for the patient who is in the hospital to be treated and 
not professionally judged, is a better guidance for future systems for surgical suite efficiency. We 
leverage here the notion of “internet of humans” [161], to encourage human interactions and 
preserve a culture of mutual respect between all stakeholders. 

 Internet of humans: humans’ awareness of the other humans as human beings 

Connecting humans in the hospital is key to the patient care, especially as the element being treated 
by the surgical staff is a person and not an object. The surgical staff works through difficult shifts, 
often more than 24 hours in a row. They spend a lot of time together and must deal with other staff 
shifts and quickly becoming efficient with working with someone on a new shift. Hence, using 
seamless computer systems fostering interactions between the surgical staff, their teammates, the 
patient and their relatives may have a positive impact. 

In Figure 106, we represent the internet of humans for the surgical suite in purple for the connection 
between the surgical staff and the patients’ relatives; in yellow for the connection between the 
surgical staff and teammates; in light blue the direct communication among the surgical staff or 
with the support of OnBoard, a mobile phone or a connected and flexible bracelet around the 
forearm.
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Figure 109. Ubiquitous surgical suite: Internet of Humans. In the same color: connected humans and objects. Yellow: Surgical suite coordination. 

Purple: Information to patient’s relatives. Light blue: direct communication or with the support of OnBoard or a mobile phone. 
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Figure 110, Figure 111 and Figure 112 illustrates a storyboard about an example of human-human 
interactions via the storyboard describing the arrival of a patient and her spouse in the surgical 
suite. The surgical staff will provide them with means to communicate with the surgical team about 
the patient journey in the surgical suite. When the patient arrives, her spouse is offered to download 
an app on his mobile phone, through which he will be kept updated about his wife surgery before, 
during and after the procedure. The surgery happens to be delayed, which can be stressful for the 
spouse who is not aware of the reasons. The nurse can send in the app an update informing the 
husband that the delay is due to the fact the anesthesiologist did not see the patient yet and that 
everything is going fine. 

 
Figure 110. (1/3) The patient and her spouse arrive in the surgical suite. They can download an app so that 

the spouse can be updated about his wife journey in the surgical suite. 
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Figure 111. (2/3) The nurse sends in the app an update informing the husband that the delay is due to the fact 

the anesthesiologist did not see the patient yet and that everything is going fine. 
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Figure 112. (3/3) Finally, the husband receives the information about his wife status and why the surgery did 

not start yet. 

Figure 113 illustrates a human-human interaction storyboard fostered by the computer system and 
how the cyber-physical system helps the transporter to bring the patient to the right destination and 
with human interactions at the same time. The transporter is wearing a connected (but not 
localized) bracelet, with a flexible display allowing him/her to wear it seamlessly on his/her 
forearm. In this storyboard, the transporter gets an update to bring the patient to a first destination. 
He is also informed of the name of the patient. Hence, he can introduce himself, start a conversation 
and begin the transport of the patient. During the transport, he receives an update from the board 
runner, redirecting the transporter to another place with the patient. In this scenario, the transporter 
was able to change the destination of the patient without arriving first to the wrong place, realizing 
it is no more where the patient must be sent, and then redirecting to the new place. 

Figure 114 depicts a utopic ubiquitous hospital that bring situation awareness about the different 
surgical suites to a higher-level of operations management to optimize the distribution of 
resources. 
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Figure 113. Transporter bringing the patient to the surgical suite. A connected tablet gives him the minimum information to take the patient to the right 
place, and the patient name to start a conversation and improve patient experience. 
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Figure 114. Utopic ubiquitous hospital. High level operational and surveillance management. 
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 Summary 
In this chapter, we detailed new use cases allowed by OnBoard within the Cyber-Physical System. 
We then designed and developed new features to support seamless interactions between the 
surgical staff and the computer system. 

Especially in a context of healthcare, re-focusing the attention of the surgical staff on the patient, 
fostering communication with the patient and with the team is key to the patient care. We 
envisioned a ubiquitous computing system for the surgical suite that promote human interactions 
over interactions with the computer. We hope that these few examples will inspire future designers 
of surgical suite system to build applications that are centered on the team and on the patient for a 
seamless, respectful and safer delivery of care. 
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9 

CONCLUSION 

Our hypothesis was that interactions between the surgical staff and the patient flow management 
tools are key to foster flexibility, collaboration and awareness required by their activity. We have 
studied in this thesis how we could efficiently computerize the surgical staff activity based on this 
hypothesis. To this end, we designed and developed OnBoard, an application for large displays for 
the management of Operating Rooms in a Surgical Suite, a mobile phone application to remotely 
communicate on the status of running procedure, and a visualization of an algorithm that models 
the workflow in the surgical suite. We also discussed how to expand this work to a ubiquitous 
computing system for the surgical suite, fostering seamless human-human interactions. 

The objective of OnBoard is to propose a computerized environment for surgical flow management 
that supports both the hospital management in cost performance and the medical staff in patient 
care. OnBoard is a large multitouch, multiusers, interactive surface that offers interactions 
following design principles that favor appropriation. It is part of a Cyber-Physical System 
detecting key events in the surgical suite. OnBoard is a practical example of a prototype for 
ubiquitous computing for the surgical suite environment. Figure 115 shows the timeline of the 
thesis and the different steps. 

In this chapter, we summarize the contributions of this dissertation and how they were achieved. 
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Figure 115. Timeline of the thesis. 

 Contributions 
In chapter 2, we provided a review of literature on the difficulties of computerization of hospital 
workflow, with focus on the collaboration aspects. We then reviewed computerization challenges 
in other fields and explored how large surfaces have contributed so far to support computerization 
of collaborative activities.  The related work encouraged us to cross what we learnt between the 
needs from traditional surgical whiteboards to electronic whiteboards, and what can be offered by 
multitouch interactions, to design a more usable support for the surgical suite staff.  

In chapter 3, we summarized the context of the design of OnBoard. OnBoard is meant to be the 
central collaborative tool of a cyber-physical system detecting key events in the surgical suite and 
displaying them on OnBoard. I participated in the construction of a mathematical model of the 
surgical workflow [68,69]and the design of a visualization of the mathematical model. We finally 
led an experimentation in combination with the SmartOR [94,96] in the surgical suite to identify 
bottlenecks of workflow inefficiencies and delays. The experiment showed an average of 14 min 
delays with more than 20min standard deviation between events in the operating rooms and the 
associated update on the whiteboard. The whiteboard being a central tool for communication and 
coordination these delays have a negative impact on collaboration. 
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In chapter 4, we presented the methods used to conduct our research work. Initially, the whole 
thesis was supposed to be based on a technology probes approach. However, the critical context 
of the surgical suite prevented us to have an easy access and install prototypes often and quickly. 
We therefore used more classical User-Centered Design methods and borrowed principles from 
the technology probe approach. We performed participatory design sessions with 9 surgical staff 
and 13 design walkthrough sessions on 3 different versions of these prototypes with a total of 12 
surgical staff. We used participatory design and continuous improvement from users’ observations 
and feedback in a real setting. 

In chapter 5, we detailed an accurate analysis of the activity of the surgical team, based on 13 
interviews, 12 contextual inquiries with 20 surgical staff and a campaign of photography of the 
surgical whiteboards [135]. We visited and observed 6 of the 8 surgical suites of the Houston 
Methodist Hospital. 22 System Usability Scale questionnaires about the use of the surgical 
whiteboard, were answered by the surgical staff. These analyses allowed us to understand the 
surgical staff and their needs. We understood that the surgical whiteboard plays a central role in 
the surgical suite collaboration and offers properties that no electronic whiteboard could offer so 
far. We then developed an analogy between air traffic control and the surgical suite. These steps 
allowed us to identify 6 high-level requirements necessary to the development, integration and 
acceptance of a tool to support surgical workflow activities [136]: R1. Enriched surgical flow, R2. 
Multi-users and multi-roles, R3. Teammates’ activity, R4. Communication and Coordination, R5. 
Dynamic change, and R6. Work adaptation. We provided an analysis of the activity of the surgical 
team, based on interviews, observations, questionnaires and an analogy with civil aviation.  

In chapter 6, we first identified 5 design principles necessary to the development, integration and 
appropriation of a tool to support surgical workflow activities [136]: P1. Multi-touch, P2. Reify, 
P3. Partial, P4. Feedthrough, and P5. Robust. We then borrowed 3 technology probes principles: 
TP1. Flexibility, Open-ended and co-adaptive, TP2. Real-world, and TP3. Instrumented. Finally, 
we borrowed 3 graphical design techniques from Digistrip: DG1. Texture or color gradation to 
code information, DG2. Different fonts to convey information, and DG3. Animation to facilitate 
transitions. From these principles, we designed multi-users interactions on a large surface. The 
resulting system is a large shared surface, OnBoard, that displays the surgical cases associated 
with highly interactive features. We verified the quality of implementation or implemented the 
missing interactions of 4 error prevention features and 6 error recovery features. We contributed 
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with the design of innovative multi-users interactions on a large surface and a prototype of 
electronic whiteboard for the surgical suite which demonstrates the integration of the specifications 
and technical challenges. 

In chapter 7, we reported on the design evaluations and the deployment of OnBoard in a real 
surgical suite for 2 months [136]. We performed design walkthrough sessions on 4 different 
versions of the prototype with a total of 12 surgical staff, with 13 separate sessions. We finally 
deployed the system in a 12 ORs surgical suite, FondrenOR, for 2 months. The system ran through 
a total of 300 procedures. We contributed with the deployment of the prototype in the surgical 
suite and its evaluation by the surgical staff. 

In chapter 8, we reinterpreted the thesis work towards ubiquitous computing for the surgical suite. 
We describe the new use cases of OnBoard in the surgical suite. We then proposed 3 new features 
to promote seamless interactions with the computer and determined a minimal set of features for 
a technology probe for the surgical staff. Finally, we projected the OnBoard platform onto a 
ubiquitous system considering the importance of human-human interactions in the surgical suite. 

We overall received a substantial amount of participation from the surgical teams of Houston 
Methodist Hospital. Participation was voluntary and much appreciated by the staff and by the 
design team. Such participation played a key in the success of the design of the interactions and 
their appropriation. 

 Research Questions’ answers 

 RQ1: How to computerize users’ activity without jeopardizing their 
collaboration nor the flexibility needed for OR management? 

We followed methods that include the users at every step of the design (User-Centered Design) 
(see Figure 115). Interviews and observations were effective to understand the mechanism of 
collaboration within the surgical suite and the different roles. It allowed us to identify the tools 
used to manage the surgical flow. The related work about these tools and challenges of design for 
surgical workflow management led us to isolate the strengths of the surgical whiteboard.  
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We were able to extract requirements for a digital surgical flow management combining the 
strengths of traditional whiteboards and computers. We determined design principles to be 
followed during the design of interactive features of OnBoard. The design principles are the result 
of a study of related work about design for interactive systems for air traffic control and technology 
probes: 

P1. Multi-touch: Large multitouch surfaces offer extensive means to favor direct collaboration and 
direct manipulation. We used traditional drag n drop-based features on objects manipulation and 
more advanced multitouch interactions such as the erasing feature and the pinch n drop. 

P2. Reify: We reified cases into mobile strips on the large surface. We reified the action to add an 
emergency case into a droppable magnet. The staff and physical magnets were reified into digital 
magnets. We finally reified the action of changing procedure start times with the manipulation of 
an interactive clock. 

P3. Partial: We allowed the addition of an emergency case and a new staff without filling all their 
information. 

P4. Feedthrough: By keeping the OnBoard system physically similar to the whiteboard, we 
preserved the feedthrough provided by traditional whiteboards and promote mutual awareness and 
synchronous and asynchronous communication improvements. Indeed, by being large and located 
in a central place of interactions between the surgical staff, OnBoard allows other users to see that 
someone is interacting with it and what he/she is doing. Furthermore, allowing manual 
writing/erasing almost everywhere allow users to see that humans (and not an automatic system) 
made inputs. Similarly, when a modification of OR number or start time is made, the computer 
font turns into a handwriting font.  

P5. Robust: The interactions were designed to work efficiently in a high-pressure environment, 
respecting usability and simplicity. Furthermore, each interaction went through usability 
inspections. 

Borrowing technology probes principles aligned OnBoard features with the flexibility targeted for 
an effective deployment in the surgical suite: 

TP1. Flexibility, Open-ended and co-adaptive: The free writing/erasing features offers a flexibility 
that guarantee the users that the system can adapt and allow unplanned inputs. Implementing this 
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principle was key to the deployment and to the collaboration between the design team and the 
surgical staff. 

TP2. Real-world: The prototype following this principle is designed to be quickly implemented in 
real context to receive feedback and learn about the activity. OnBoard was deployed in the surgical 
suite to be tested be also to favor collaboration between the design team and the surgical staff. 

TP3. Instrumented: OnBoard archives its states and the interactions performed as logs. The excel 
files offer the possibility to interface the EHR with OnBoard for loading of the initial schedule and 
surgical team.  

Finally, we borrowed graphical design techniques from Digistrip: 

DG1. Texture or color gradation to code information: Color coding of manual writings was 
preserved to distinguish planned schedule from emergency modifications, from anesthesia-related 
information. We also implemented a color coding to distinguish the staff (represented by 
names/role on magnets): doctor anesthesiologists in darker blue than their residents, and  

DG2. Different fonts to convey information: it is possible to distinguish system-computed data and 
user input data through the font (computer vs handwritten).  

DG3. Animation to facilitate transitions: as much as graphical design helps display information in 
better ways, animations in interfaces are useful to help understand state changes.  

This knowledge and participatory design sessions allowed us to design a prototype with the 
surgical staff that fulfills their needs to manage the surgical flow. Testing the interactive feature 
via design walkthrough sessions allowed us to refine the prototype. Finally, succeeding to deploy 
the system in real conditions was a cornerstone and brought us more feedback from the users and 
the ability to validate or invalidate some features. 

During design walkthrough sessions and during the deployment, the prototype served as a 
collaborative tool between the designer team and the surgical staff. Being able to manipulate the 
prototype and make quick changes in the interface promoted exchanges and improvements of 
OnBoard. 

One of the most important design considerations is that team work requires direct communication 
between the different staff to take decisions: face-to-face discussions, supported by a global 
overview, are invaluable in the process of assessing patient conditions and priorities. We must 
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avoid providing interfaces that keep staff away from interacting with patients or talking directly to 
his/her colleagues with an extensive use of phone app communications. 

Large touch surface products on the market reached a high level of quality and are entering the 
everyday life of people as Weiser predicted, along with tablets. With the OnBoard experiment, we 
conclude that to reach an effective ubiquitous computing for the surgical suite without jeopardizing 
the existing collaboration and usability levels, UCDs methods should be implemented along with 
design principles fostering flexibility. 

 RQ2. How to reach an effective deployment of a computerized system in a 
critical environment? 

For a critical environment, satisfying RQ1 alone is not enough. To reach deployment, the system 
needs to “earn” the trust of the users, which legitimately depends on: usability, reliability, privacy 
and security of the new system. 

We first offered a system that is very similar in terms of use and layout to what the users are used 
to have to guarantee similar effectiveness and efficiency. In addition, it can be a safety measure. 
Indeed, the traditional whiteboard does support the workflow today, and it is probable that we do 
not know all the reasons why it works so well. In critical environments, radically changing a system 
is a risk which can have fatal consequences. It is the difference with a non-critical environment, 
where radically changing a system can be accepted because adaptation, learning and errors might 
be tolerable. 

Second, the quality of the hardware plays a significant role. A “small” surface implied a shortage 
of space to write the surgery description. Lower resolution had for consequence to lower the 
usability of the writing/erasing feature from the traditional whiteboard. We noticed that a delay in 
the writing/erasing feedback due to the low screen resolution is detrimental to users’ satisfaction. 
We replaced our first infrared 70” touch screen (30Hz, HD resolution) by a large 84” display, 
InGlass technology, 60Hz, 4K resolution. The quality of the interaction and display was much 
improved and better satisfied our users to the point that it made the board a credible replacement 
of the actual whiteboard. 

Third, the reliability of the system is key to “earn” users’ trust. Inaccuracies in interactions and 
slow-downs of the system harms its usability. For instance, hand writing recognition is still a 
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delicate matter for deployment in a critical environment. Our users are intolerant to mistakes and 
it is difficult to get a bullet-proof hand-writing recognition even for entering simple information 
such as an OR room number. Therefore, we oriented the design of interactions to satisfy TP1. 
Flexibility, Open-ended and co-adaptive, such as free writings, drag’n’drop of objects, mobile OR 
state timelines and free organization of strips. Technology probes principles had a positive impact 
on the results during the deployment along these lines: these features allowed the surgical staff to 
effectively manage the surgical flow with possibility to correct errors coming from the system (c.f. 
wrong patient associated to an OR, wrong surgeon associated to a patient). Implementing 
optimizations such as QuadTrees helped improving the speed of user feedback while interacting 
with OnBoard. Finally, the user can compensate for necessary information that is not captured yet 
by the sensors, e.g. inaccuracies in the automation. Indeed, the operating room state is captured by 
the sensors, but the sensors cannot tell which patient is in the room. The board runner can 
compensate the system’s lack of information and move the operating room state timelines from 
one case to another as he/she is aware of this information. 

Privacy of the surgical staff is respected with the current OnBoard and the Cyber-Physical System 
implemented. The surgical staff location is not tracked via RFID tags or Bluetooth tags. Tracking 
professionals, in westerns countries institutions, is not welcomed and is perceived as an invasion 
of personal privacy. Tracking the surgical staff could be a real brake to the deployment of a cyber-
physical system in the surgical suite. 

Security is an aspect that was not explored with OnBoard, to allow maximum flexibility. We 
discuss the challenge in the limitations in the section 9.3. 

The whole Cyber-Physical System, comprising OnBoard, is a technology probe that informs about 
what impairs the efficiency of a surgical suite. With OnBoard by itself, we were confronted to a 
dilemma between the simple functionality of technology probes, and still bring new value to the 
users. The first version of OnBoard was a simple electronic whiteboard, with a surgical board 
layout. In other words, it was bringing nothing more and even worst: it degraded the usability of 
the writing/erasing feature. Hence, a probe must be simple enough to fit as a real word application 
but must be slightly complex to enhance usability of the system and provides value to the users.  
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 RQ3. Can we generalize our work and promote an effective computerization 
beyond a particular example? 

We first answer this question with the fact that OnBoard was designed with a different team, from 
a different surgical suite than the team and surgical suite where it was tested. The surgical staff of 
the surgical suite where OnBoard was deployed agreed with the proposed layout and concepts of 
OnBoard to manage the patient flow. With minor customizations, OnBoard was ready to be 
installed in a different surgical suite. 

The design principles we determined were inspired and extended from previous design principles 
from air traffic control research projects. Our design principles can be applied to build and deploy 
future applications designed to foster teamwork in an intense workflow environment.  

The interaction techniques designed during the thesis can inspire future projects to promote 
flexibility of the computer support. 

 Limitations 
Allowing flexibility of interactive systems can be a tradeoff with connectivity capacity and security 
at first. For instance, as it became easier to move cases on the board (no need to erase a whole line, 
or re-writing everything after a modification), the question of unauthorized modification that 
would have no witness was raised. Even if unauthorized modifications are possible with the regular 
whiteboard, they are limited to the information on the whiteboard. The easier modifications 
interactions brought by the electronic board, and that were desired by the users to cope with 
unplanned events, also brings this side effect that must be solved in future work. 

 Future work towards ubiquitous computing for the 
surgical suite 

Future research could start by addressing the limitations mentioned above. A first step would 
probably be the connection of OnBoard to the hospital system and the development of more 
sensors to capture more accurately OR states and patients’ locations, for instance with RFID or 
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Bluetooth indoor localization technologies (BLE-RTLS).  Another step is the need to explore how 
to enhance mutual awareness beyond OnBoard surface. The continuity between the large shared 
surface and the private mobile phones is a promising way forward. Deploying OnBoard in other 
surgical suites that would be interconnected could be an addition to create a continuum of 
interfaces to support the surgical flow and create unity. Further research on user interactions with 
OnBoard as a single user or multiple user could lead to more flexibility and hence, have the 
computer systems adapt to the surgical staff activities needs and not the contrary. 

On a larger scale, usability of information technologies must increase in the hospital field. A 
program of NIST (National Institute of Standards and Technologies) is in place to establish a 
framework that defines and assesses health IT usability to guide industry in usability engineering 
practices [5]. Initiatives are implemented to improve health IT usability, as the current systems did 
not focus as much on usability as other industries yet. 

Patient and Family engagement is a transformative force in the health industry, and insurance 
policy in the US has now a component strictly dependent on patient satisfaction that will keep 
growing in importance soon [101]. Future work encompasses the expansion of the continuum of 
interactions to reach the patient and family members who need to manage anxiety and be prepared. 
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APPENDICE 

APPENDIX 1: MATHEMATICAL MODEL DESCRIPTION 
This mathematical model is more precisely detailed, validated and exploited in [68,69] and the 
doctoral dissertation of Guillaume Joerger [95].. We simply recall here the basic description of 
the model. 

We propose a staff-specific Agent-Based Model (ABM) intended to retain the key features we 
observed in daily clinical practice.  

An ABM is type of modeling where individuals (or entities performing a task), their interactions 
and their environment are represented as algorithms. 

The proposed model specifically takes into account the contributions of each staff member in the 
team necessary to advance the task. Some staff, for example the anesthesiologist and the cleaning 
team, is assigned to several ORs and the model accounts for delays in awareness of events and 
time to circulate around the OR suite. The theoretical framework has been kept as general as 
possible to be able to apply it to any hospital system, and calibrate and adapt the modular structure 
to the detail of clinical data specific to the hospital. To summarize, the model computes the time 
evolution of two sets of unknowns: 

� State of task k for agent i is denoted as vector 𝑇𝑘𝑖  
� Trajectory and state of agent i denoted Si 

We start here with a simplified graph showing the macro steps such preparation for anesthesia, 
access, surgical procedure (open or minimally invasive), closing time, time to awake the patient 
and OR exit – see Figure 116.  
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Figure 116. Illustration of our simplified flow chart on the left and its impact on the conceptual 

The system was deployed in five pluri-disciplinary ORs and provides accurate measurements of 
the duration of each of these steps [87]. We use six main categories of agents:  

� A for surgeons 

� B for surgeons’ assistants 

� C for anesthesiologists 

� R for Certified Registered Nurse Anesthesit (CRNA)  
� D for scrub nurses 

� E for cleaning crew 

For simplicity, we assume that a surgical team, denoted S, in any given OR consists of one agent 
in each category. Most importantly each agent is associated with a level of technical skill and a 
level of communication skill. For example, a team of N surgeons noted {𝐴(𝑗, 𝑛)} working in the 
ORs suite is represented by a 𝑁 ×  2 matrix of performance level. The first index is the ID of the 
agent in the set {1…𝑁}, the second is for the performance type: 

� 𝑛 = 1 corresponds to the technical performance and is denoted by 𝑃𝑡𝐴 
� 𝑛 = 1 is for the communication performance index denoted 𝑃𝑐𝐴 

Initially, we set up individual technical skills as a function of the number of years of experience in 
the current position, and communication skills as a function of the time spent working with the 
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current team, since frequency in team composition change is negatively correlated to information 
sharing [16]. 

We use an estimate of the duration for each macro step, such as patient intubation, access time, 
surgical procedure itself, patient extubation, or time to move the patients out of the OR – see Figure 
116. This estimate is a statistical distribution that depends on the patient’s medical conditions and 
reflects the ideal time that a perfect surgical team should achieve. As we will see later on, our 
model is stochastic and accounts for delays due team members lack of timely availability, poor 
coordination between tasks, or suboptimal performance of the surgical team. For any given OR 
only one task can be in process at any given time, as reflected on the flowchart - see Figure 116. 

The progression 𝑇̃ of the task 𝑘 for the agent 𝑖, noted 𝑇𝑘𝑖 , from 0 to 1 is described by an ordinary 
differential equation with the right hand side depending on the team skills. 𝑇̃ is set to 0 if the task 
is not completed, i.e. 0 ≤ 𝑇𝑘𝑖< 1, and 1 otherwise. 𝑀 is a sparse matrix that corresponds to the 
directed graph of Figure 116. 

The master equation that provides the time evolution of the state of the graph of tasks {𝑇𝑘𝑖} handled 
by the team 𝑆𝑖 that advances the task 𝑇𝑞 at time step 𝑞 is:  

(1) 𝑇(𝑡𝑞+1) = [𝑀 × (𝑇̃(𝑡𝑞))] °[(𝐺(𝑡𝑞 − 𝑡0))𝑆𝑖 ∙ 𝐸𝑘] 

Here × denotes the sparse matrix vector product, and ° the vector product component-wise, and ∙ 
the product of a vector by a scalar. This model has three components: 

� 𝑀 × (𝑇̃(𝑡𝑞)) where M is a sparse matrix that expresses the dependency on previous tasks. 

� (𝐺(𝑡𝑞 − 𝑡0)) 𝑆𝑖 reflects the time-dependent progression of the individual task. 

� 0 ≤ 𝐸𝑘 ≤ 1 is a positive factor representing a penalty for the environment conditions. 

It may be the limitation resulting from shared equipment or specific overload of the hospital system 
due to epidemic or crisis. Conceptually we can represent the ABM computing kernel for each node 
of the flow graph as in Figure 116. The advancement of task provide by 𝐺(𝑡) is not linear in time, 
i.e.  𝐺̇(𝑡) = constant, but instead depends on team performance and coordination. We conveniently 
use an ordinary set of differential equations to integrate that progression in time: 

(2) 𝐺 =  𝛽𝐹𝑘(𝑆)𝑓 + 𝐻0̇  
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The initial condition is zero, and 𝛽 is a normalizing constant such that 𝐺 reaches 1 at completion 
of the task in the optimal configuration. Time integration starts only when all staff required for 
that specific task are present in the OR. More precisely, we define the optimum performance of a 
team as one that (i) has full awareness on the case, (ii) does not show any sign of fatigue or stress, 
and (iii) has best technical and communication skills. We represent mathematically each of these 
elements (i) to (iii) below. In equation (2), 1 ≥ 𝐹𝑘(𝑆) ≥ 0 stands for the team efficiency at the 
task𝑇𝑘.  

The team performance component of the surgeon and his assistant for a specific task of the graph 
of nodes described at the high level is additive on technical skills, impacted by the worst skill in 
communication on the team, factored by a function 𝑓(𝑡) that takes into account fatigue, and 
efficiency as a correlation of repetition of the same surgery. Overall performance cannot go below 
a given threshold 𝐻0 corresponding to a minimum processing rate, since the team has been granted 
surgical privileges. For simplicity we assume that the same surgical team operates in the same OR 
the entire day. Nurse shift is modeled as a time penalty for which the Ordinary Differential 
Equation (ODE) integration is on hold. We have applied these basic principles to the team 
performance description of each task in Figure 116 and used the following example in our 
simulations, with A for surgeons, B for surgeon’s assistants, C for anesthesiologists, R for CRNA, 
D for scrub nurses and E for cleaning crews: 

� Task  𝑇1  placing the patient under anesthesia (∝31 + ∝41= 1, 0 ≤  𝛽1 ≤ 1):  

(3) 𝐹1(𝑡) =
1
9
𝛽1[∝31 𝑃𝑡𝐶 +∝41 𝑃𝑡𝑅]min(𝑃𝑐𝐶, 𝑃𝑐𝑅) + (1 − 𝛽1) 

� Task  𝑇2   preparation for laparoscopy procedure to provide access (∝22 + ∝52= 1, 0 ≤
 𝛽2 ≤ 1):  

(4) 𝐹2(𝑡) =
1
9
𝛽2[∝22 𝑃𝑡𝐵 +∝52 𝑃𝑡𝐷]min(𝑃𝑐𝐵, 𝑃𝑐𝐷) + (1 − 𝛽2) 

� Task  𝑇3   preparation for open surgical procedure to provide access (∝13 + ∝23+ ∝53=
1, 0 ≤  𝛽3 ≤ 1):  

(5) 𝐹3(𝑡) =
1
9
𝛽3[∝13 𝑃𝑡𝐴 +∝23 𝑃𝑡𝐵 +∝53 𝑃𝑡𝐷]min(𝑃𝑐𝐴, 𝑃𝑐𝐵, 𝑃𝑐𝐷) + (1 − 𝛽3) 

� Task  𝑇4  laparoscopic procedure (∝14 + ∝24= 1, 0 ≤ ∝34≤ 1, 0 ≤ ∝54≤ 1, 0 ≤  𝛽4 ≤ 1):  

(6) 𝐹4(𝑡) =
1
9
𝛽4[∝34 [∝54 [∝14 𝑃𝑡𝐴 +∝24 𝑃𝑡𝐵] + (1 −∝54)𝑃𝑡𝐷] + (1 −

∝34)𝑃𝑡𝑅]min(𝑃𝑐𝐴, 𝑃𝑐𝐵, 𝑃𝑐𝑅, 𝑃𝑐𝐷) + (1 − 𝛽4) 
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� Task  𝑇5  open surgery procedure (∝15 + ∝25= 1, 0 ≤ ∝35≤ 1, 0 ≤ ∝55≤ 1, 0 ≤  𝛽5 ≤ 1):  

(7) 𝐹5(𝑡) =
1
9
𝛽5[∝35 [∝55 [∝15 𝑃𝑡𝐴 +∝25 𝑃𝑡𝐵] + (1 −∝55)𝑃𝑡𝐷] + (1 −

∝35)𝑃𝑡𝑅]min(𝑃𝑐𝐴, 𝑃𝑐𝐵, 𝑃𝑐𝑅, 𝑃𝑐𝐷) + (1 − 𝛽5) 
� Task  𝑇6  closing laparoscopic procedure: similar to 𝑇2. 
� Task  𝑇7  closing open surgery procedure: similar to the above. 
� Task  𝑇8  waking up procedure (∝38 + ∝48= 1, 0 ≤  𝛽8 ≤ 1):  

(8) 𝐹8(𝑡) =
1
9
𝛽8[∝38 𝑃𝑡𝐶 +∝48 𝑃𝑡𝑅]min(𝑃𝑐𝐴, 𝑃𝑐𝐶, 𝑃𝑐𝑅) + (1 − 𝛽8) 

� Task  𝑇9  cleaning the OR (0 ≤  𝛽9 ≤ 1):  

(9) 𝐹9(𝑡) =
1
9
𝛽9𝑃𝑡𝐸𝑃𝐶𝐸 + (1 − 𝛽9) 

Overall the team performance impact on task advancement are provided by the matrix ∝:  

(

 
 
 
 
 

0 0 0.6 0.4 0
0 0.5 0 0 0.5
0.5 0.3 0 0 0.2
0.6 0.4 0 0.8 0.8
0.8 0.2 0 0.8 0.8
0 0.6 0 0 0.4
0.3 0.5 0 0 0.2
0 0 0.6 0.4 0

 

)

 
 
 
 
 

 

and the vector: 

𝛽 = [0.7 0.6 0.3 0.5 0.5 0.3 0.3 0.7]𝑡 

This matrix is largely the result of a heuristic effort based on a priori knowledge.  

See Results of this model in [68,69]. 

  



 

253 
 

APPENDIX 2: SCENARIOS OF USE 
Scenarios of use of the whiteboard within the surgical suite. “wb” stands for “whiteboard” here. 

ID Description 

Sc1 The Nurse arrives at the beginning of his/her shift at Dunn OR 

Sc2 The Surgeon arrives at the beginning of his/her shift at Dunn 
OR 

Sc3 The Surgeon wants to squeeze an additional case in the 
schedule of the day (called “add-on”, or “emergency” even if it 
most of the time is not an emergency) 

Sc4 The patient has arrived in PreOp 

Sc5 The case started 

Sc6 The current day is over, edition of the new whiteboard for the 
next day – “elective cases” 

Sc7 The case is delayed, but will start as soon as the surgeon is 
ready for his/her next case 

Sc8 Talk about a case with a colleague 

Sc9 Create a “name alert” for two cases or add a latex allergy alert 
to a case 

Sc10 Nurses break 

Sc11 Display that the patient is in Neuro Intensive Care Unit (NICU) 
or SICU 

Sc12 Not enough room on the board to manage all the cases (not 
often) 

Sc13 A case is canceled 

Sc14 The nurse go see the patient in PreOp. 
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Sc15 Surgeon or Nurse or Anesthesiologist or xx needs to have 
information that is on the whiteboards while being far away 
from it 

Sc16 Board Runner or another staff making an input on the board 
needs concerned people to be aware of changes that have been 
made on cases that they work on 

Sc17 A case is finished 

 

ID SC1 

Description The Nurse arrives at the beginning of his/her shift at Dunn OR 

Aim Get to know what he/she has to do 

Actor Nurse (RN) 

Place Information Hall, DUNN OR 

System context Whiteboard is edited and updated 

User context Just start his/her shift 

 

Photo/Diagram Description Drawbacks(-) 

Benefits(+) 

 

Intention: Wants to know about his/her 
patients of the day 

Actions: Look at the board, find his/her 
name and determine who will be 
his/her patients for his/her shift, what 
are their procedures, where they 
currently are, when the procedures are 
scheduled (even though most of the 

(-) wb 
clearness 
maybe not 
excellent – wb 
often packed 
with written 
information 
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time – except for 1st case of the day in 
the OR, the time is “as soon as the 
previous surgery is done and the OR is 
clean and the surgeon is ready”). 
He/She  get to know where the surgeon 
for his/her next surgery is.  

(+) wb contains 
most of the 
time all the 
information 
needed 

 

Intention: If there is a REQUEST, the 
time for the surgery is explicitly 
required  

Actions: Check requested times 

 

 

Intention: Remember 

Actions: Can take notes to 
remember information on 
personal paper. 

 

OR NOT 

(-) wb clearness maybe 
not be excellent – wb 
often packed with 
written information 
and quality of 
handwriting is 
variable. 

(+) very flexible, paper 
and pen, easy to carry, 
easy to edit. 

 

Intention: Get the information that is 
missing – like location of the surgeon 
or of techs 

Actions: Send a text message on the 
phones of the colleagues or make a 
call.  

(-) Information 
should be 
spread by the 
hospital (?) 

(+) smartphone 
always in the 
pocket. Easy. 
Fast. 



 

256 
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ID SC2 

Description The Surgeon arrives at the beginning of his/her day at Dunn OR 

Aim Check the schedule cases 

Actor Surgeon 

Place Information hall 

System context Wb edited and updated 

User context First entrance in the surgical suite of the day 

 

Photo/Diagram Description Drawbacks(-) 

Benefits(+) 

 

Intention: Verify his/her 
patients are correctly 
scheduled as he/she wanted.  

Actions: Look at the wb and 
read the information that 
concerns his/her cases. 

(-) 

(+) 
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ID SC3 

Description The Surgeon wants to squeeze an additional case in the schedule of the day 
(called “add-on”, or “emergency” even if it most of the time is not an 
emergency) 

Aim Add a case in the day 

Actors Surgeon + charge nurse + anesthesiologist 

Place Information hall 

System context Wb edited and updated 

User context / 

 

Photo/Diagram Description Drawbacks(-) 

Benefits(+) 

 

 

Intention: Determine when 
and where can be squeezed the 
additional case 

Actions: Discussions in front 
of the wb and in the control 
room in front of an EPIC 
computer to see the schedule 
and modify it. 

(-) sometimes 
there is no 
room on the 
wb 

(+) The wb is 
a good support 
to the 
discussion and 
the 
interaction. 
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Intention: inform the others 
that there will be an additional 
case. 

Actions: Nurse writes the 
additional case in red on the 
wb when the decision has 
been made. Case  entered in 
EPIC system. 

(-) 

(+) updated 
only when 
decision is 
made. Red 
shows the fact 
it is a new 
case. 

 

ID SC4 

Description Patient has arrived in PreOp 

Aim Awareness of the patient status 

Actors Surgical suite staff 

Place Information hall – Control room 

System context Wb edited and updated 

User context / 
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Photo/Diagram Description Drawbacks(-) 

Benefits(+) 

 

 

Intention: Check 
where the patient X 
is.  

Actions: Look at 
EPIC screens in 
control room or 
information hall 
above the wb. 

The color indicated 
the steps the patient 
is going through (ex: 
yellow = pre 
procedure) 

The pictogram give 
more accurate 
information (ex: red 
bell = in preOp 
room) 

(-) not 
always up to 
date 

(+)  
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Intention: Check 
where the patient X 
is BIS. 

Actions: The staff 
can see it written on 
the wb by another 
nurse. The “PreOp 
#” or the symbole /. 

(-)not always 
up to date 

(+)  
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ID SC5 

Description The case has started 

Aim Awareness of the patient status 

Actor Surgical suite staff 

Place Information hall / control room 

System context Wb is edited and updated 

User context  

 

Photo/Diagram Description Drawbacks(-) 

Benefits(+) 

 

 

Intention: Inquire about the case 
status (WB) 

Actions: look at the wb, this 
symbols means the patient is in 
the OR. 

(-) 

(+)  

 

 

Intention: Inquire about the case 
status BIS () screens above the 
wb. 

Actions: look at the symbols on 
the top screens and the colors. 
Green means the patient is going 
through the surgery. The little 
symbols hereby indicates 
procedure status about start and 
end. 
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ID SC6 

Description The current day is over, edition of the new whiteboard for the next day – 
“elective cases” 

Aim Prepare the wb for the next next 

Actor Nurse/Charge nurse 

Place Information hall 

System context Wb is edited and updated 

User context End of the day, late in the afternoon 

 

Photo/Diagram Description Drawbacks(-) 

Benefits(+) 

 

Intention: Bring the 
information, the 
schedule for the next 
day, to the wb 

Actions: Print the 
schedule from EPIC 
on paper. 

(-) Staff must print it in 
control room and bring 
it to the wb 

 

Intention: Copy the 
schedule on the wb 
and organize the staff 
assignments 

Actions: take a pen 
and copy what is 

(-) long and tiring 

(-)Hand writing must be 
very clear 

(-)Human mistake 
possible 

(+) Human check 
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written on the paper, 
on the wb. 

(+) Organize the staff 

 

ID SC7 

Description The case is delayed, but will start as soon as the surgeon is ready for his/her 
next case 

Aim Inform other staff that case is delayed 

Actor Nurse/charge nurse 

Place Information hall 

System context Wb is edited and updated 

User context  

 

Photo/Diagram Description Drawbacks(-) 

Benefits(+) 

 

 

Intention: Signify 
the case is going 
to be done as 
soon as the 
previous one in 
the same room is 
over and that the 
OR is clean. 

Actions: Write 
TF on the wb. 

(-) not 
accurate 
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ID SC8 

Description Talk about a case with a colleague 

Aim Exchange information about a case 

Actor Nurse/charge nurse/surgeon 

Place Information hall 

System context Wb is edited and updated 

User context  

 

Photo/Diagram Description Drawbacks(-) 

Benefits(+) 

 

 

Intention: Exchange 
unformal information 
about a case (delay, 
patient location, moving 
a case) 

Actions: The two 
protagonists walk to the 
wb. Show with the finger 
the case and exchange 
information. 

(-)  

(+)  
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ID SC9 

Description Create a “name alert” for two cases 

Aim Situation awareness of the whole staff for not mixing names and patients 

Actor Nurse/charge nurse/surgeon 

Place Information hall 

System context Wb is edited and updated 

User context  

 

Photo/Diagram Description Drawbacks(-) 

Benefits(+) 

 

 

Intention: Prevent 
mistakes 

Actions: Take the 
orange “name alert” 
magnets at the top 
of the wb and place 
them on the cases 
where the mistake 
can be done. 

(+) Efficient 
anticipation of 
problems. 
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ID SC10 

Description Nurse break 

Aim Inform other staff that this nurse has taken his/her break already or not, if 
he/she is in break etc. 

Actor Nurse/charge nurse 

Place Information hall 

System context Wb is edited and updated 

User context Break time 

 

Photo/Diagram Description Drawbacks(-) 

Benefits(+) 

 

Intention: Show “no 
break” 

Actions: No symbol next 
to the name of the staff. 

(-)  

(+)  

 

Intention: Show “in 
break” 

Actions: A horizontal line 
next to the staff name. 

(-)  

(+) fast and easy 
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Intention: Show “break 
has been taken and is 
over” 

Actions: Add of a vertical 
line next to the staff name, 
over the previous 
horizontal one. 

(-)  

(+) fast and easy 
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ID SC11 

Description Display that the patient is in Neuro Intensive Care Unit (NICU) or SICU 

Aim Aware staff of special need for patients after surgery 

Actor Nurse/charge nurse 

Place Information hall 

System context Wb is being edited for the next day 

User context  

 

Photo/Diagram Description Drawbacks(-) 

Benefits(+) 

 

 

Intention: Inform 
the staff of the 
next day of special 
needs for the 
patient 

Actions: Take a 
red pen and write 
NICU or SICU 

(-)  

(+)  
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ID SC12 

Description Not enough room on the board to manage all the cases (not often) 

Aim Find more space to keep displaying all the information 

Actor Charge nurse 

Place Information hall 

System context Wb is edited and updated 

User context  

 

Photo/Diagram Description Drawbacks(-) 

Benefits(+) 

 

 

Intention: Find more 
space 

Actions: Room is made 
on the left side extra 
wb, that usually deal 
with vacations, 
weekend assignments 
and other kind of notes.  

(-) long and 
make some 
other 
information 
disappear 

(+) it worked 
well 

 Intention: Write the 
information 

Actions: The additional 
cases are added on this 
wb 

(-) not very 
clean and 
organized 

(+) it worked 
well 
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ID SC13 

Description Case is canceled 

Aim Show to the staff that a case is canceled 

Actor Charge nurse 

Place Information hall / control room 

System context Wb is edited and updated 

User context  

 

Photo/Diagram Description Drawbacks(-) 

Benefits(+) 

 

 

Intention: Show to 
the staff that a case 
is canceled on the 
electronic screens. 

Actions:  

(-)  

(+)  
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ID SC14 

Description The nurse go see the patient just before the scheduled surgery 

Aim Check the patient and getting ready for the procedure 

Actor Nurse (RN) 

Place Information hall / control room 

System context Wb is edited and updated 

User context Is going to get his/her patient for the next procedure 

 

Photo/Diagram Description Drawbacks(-) 

Benefits(+) 

 

Intention: Must fill this sheet 
before going to see his/her 
patient in PreOp 

Actions: take a pen, look at 
the wb, look at the patient 
medical record and fill the 
sheet. 

(-) 

(+) hospital procedure 
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ID SC15 

Description Surgeon or Nurse or Anesthesiologist or xx needs to have information that 
is on the whiteboards while being far away from it 

Aim Stay aware of latest updates 

Actor Surgeon or Nurse (RN) - staff 

Place Anywhere in the hospital 

System context Wb with its info 

User context Very various situations 

 

Photo/Diagram Description Drawbacks(-) 

Benefits(+) 

 Intention: Staff wants to be 
aware of whiteboard schedule 
modification or more 
information. 

Actions: take a phone, call the 
Board Runner or someone he/she 
knows is nearby the whiteboard 

(-) a phone call/sms is very 
invasive. A phone call stops 
the action someone is doing 

(+) phone is very easy to use 
and quick 
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ID SC16 

Description Board Runner or another staff making an input on the board needs 
concerned people to be aware of changes that have been made on cases that 
they work on 

Aim Make sure concerned staff is aware of the latest updates 

Actor Board Runner / Anesthesiologist 

Place Information hall 

System context Wb with its info and updates 

User context User is updating the board 

 

Photo/Diagram Description Drawbacks(-) 

Benefits(+) 

 Intention: User wants to make 
sure concerned staff is aware of 
the latest updates 

Actions: take a phone, call the 
concerned staff 

(-) a phone call/sms is very 
invasive. A phone call stops 
the action someone is doing 

(+) phone is very easy to use 
and quick 
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ID SC17 

Description A case is finished 

Aim Make sure the staff is aware of the latest updates 

Actor Board Runner 

Place Information hall 

System context Wb with its info and updates 

User context User is updating the board 

 

Photo/Diagram Description Drawbacks(-) 

Benefits(+) 

 

Intention: User wants to make 
sure concerned staff is aware 
of the latest updates 

Actions: take and eraser and 
erase the case on the board 

(-) if it was an error, the case 
has been totally erased and 
must be re-written, with 
potential errors. 

(+) easy 
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ID SC18 

Description Assignments of nurses per ORs 

Aim Make sure the nurses are aware of their assignments 

Actor Board runner 

Place Information hall 

System context Wb with its info and updates 

User context User is updating the board 

 

Photo/Diagram Description Drawbacks(-) 

Benefits(+) 

 

Intention: User wants to make sure the 
anesthesia staff is aware of their 
assignments 

Actions: take a pen and write nurses 
assignments on the wb. 

(-) static and needs to 
be erased and 
rewritten every time 

(+) easy 
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ID SC19 

Description Assignments of anesthesia staff per ORs 

Aim Make sure the anesthesia staff is aware of their assignments 

Actor Anesthesiologist in charge 

Place Information hall 

System context Wb with its info and updates 

User context User is updating the board 

 

Photo/Diagram Description Drawbacks(-) 

Benefits(+) 
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Intention: User wants to make sure the 
anesthesia staff is aware of their 
assignments 

Actions: take a pen and write anesthesia 
assignments on the cases lines. 

(-) static and needs to 
be erased and 
rewritten every time 

(+) easy 
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APPENDIX 3: Side activities around the whiteboard 
1 - Control Room workstation 

 

  

Information Hall 

Control Room Workstation for the charge nurse or secretary 
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2- Control Room Screen EPIC case scheduling UI: 

 

(NB: schedule for the next day, late in the evening, is printed from this interface/computer, and 
then the sheet schedule is taken and manually input on the whiteboard. It is important to let the 
user enter manually the date, because it can be confusing most of all on weekend, but assistance 
can be good) 

Color code: 

Green = In Room 

Yellow = In PreOp 

Brown = In Facility (in hospital) 

Blue = In Recovery 

Gray = Canceled 

Information Hall Screens 
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Pictograms: 

These pictograms are visible on the screens of the Information Hall, on the lines that represent a 
case. 
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Paper printed displayed next to workstations in control room. 

3 - Right Side Whiteboard – Anesthesiologist assignments to surgical suites 
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4 - Left Side Whiteboard – weekend assignments – Memo about pictograms… 

 

  

Pictograms memo 
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5- Paper filled after 3pm by a nurse (RN) while watching the whiteboard, purpose is to prepare the 
afternoon after 3pm. 

 

 

 

  

Surgeons’ names manually written 

Nurses’ names (RN) 
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6 - Nurse paper note that he/she fills just before going to see a patient. 

 

 

  



 

286 
 

 

7 - Late evening schedule for the day after. A nurse print this pages from EPIC (Hospital System), 
and go to copy it on the whiteboards. His/her writing clarity is very important otherwise the others 
complain while using the board the day after. 

  

 

 




