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Abstract

In the recent years, the field of light-matter interaction has made a further stride forward
with the advent of superconducting qubits ultra-strongly coupled to open waveguides. In this
setting, the qubit becomes simultaneously coupled to many different modes of the waveguide,
thus turning into a highly intricate light-matter object. Investigating the wealth of new dynam-
ical phenomena that emerge from the high complexity of these engineered quantum many-body
systems is the main objective of this thesis.

As a first crucial step, we tackle the time-evolution of such a non-trivial system using a
novel numerical technique based on an expansion of the full state vector in terms of multi-mode
coherent states. Inspired by earlier semi-classical approaches, this numerically exact method
provides an important advance compared to the state-of-the-art techniques that have been
used so far to study the many-mode ultra-strong coupling regime. Most importantly, it keeps
track of every detail of the dynamics of the complete qubit-waveguide system, allowing both
to perform the tomography and to extract multi-particle scattering of the waveguide degrees
of freedom.

An exploration of the many-mode ultra-strong coupling regime using this new technique
led to the two core theoretical predictions of this thesis. The first demonstrates that the
radiation spontaneously emitted by an excited qubit takes the form of a Schrodinger cat state
of light, a result strikingly different from the usual single-photon emission known from standard
quantum optics. The second prediction concerns the scattering of low-power coherent signals
on a qubit, a very common experimental protocol performed routinely in laboratories. Most
remarkably, it is shown that the qubit non-linearity, transferred to the waveguide through the
ultra-strong light-matter interaction, is able to split photons from the incoming beam into
several lower-energy photons, leading to the emergence of a low-frequency continuum in the
scattered power spectrum that dominates the inelastic signal. By studying the second-order
correlation function of the radiated field, it is also shown that emission at ultra-strong coupling
displays characteristic signatures of particle production.

In the final part of the thesis, the second-order correlation function is investigated again,
but this time experimentally, and in the regime of moderate coupling. Although the results
are still preliminary, this part of the thesis will also provide an instructive account of quantum
signal measurement theory and of the experimental procedure involved in measuring microwave
signal correlations. Moreover, the experimental developments and microwave simulations tools
described in this section could be applied in the future to signals emitted by ultra-strongly
coupled qubits, in order to observe the signatures of particle production revealed by the second-
order correlation function.



Résumé

Au cours des dernieres années, le domaine de l'interaction lumiere-matiere a fait un pas
de plus en avant avec 'avéenement des qubits supraconducteurs couplés ultra-fortement a
des guides d’ondes ouverts. Dans ce contexte, un qubit devient simultanément couplé a de
nombreux modes du guide d’onde, se transformant ainsi en un objet hybride lumiere-matiere
hautement intriqué. L’étude de nouveaux phénomenes dynamiques qui émergent de la grande
complexité de ces systemes quantiques a N-corps est 'objectif principal de cette these.

Dans une premiere étape cruciale, nous abordons I’évolution dans le temps d’un tel systeme
en utilisant une nouvelle technique numérique basée sur un développement complet du vecteur
d’état en termes d’états cohérents multimodes. Inspirée par des approches semi-classiques
antérieures, cette technique numériquement exacte fournit un progres important par rapport
aux méthodes de pointe qui ont été utilisées jusqu’a présent pour étudier le régime de couplage
ultra-fort a N-corps. Fondamentalement, cette approche préserve également le détail de la
dynamique du systeme complet réunissant le guide d’onde et le qubit, permettant a la fois
d’effectuer la tomographie et d’extraire la diffusion multi-particule des degrés de liberté du
guide d’onde.

Une exploration du régime de couplage ultra-fort multi-mode utilisant cette nouvelle tech-
nique a conduit aux deux prédictions théoriques fondamentales de cette these. La premiere
démontre que le rayonnement émis spontanément par un qubit excité prend la forme d’un
chat de Schrodinger de lumiere, un résultat étonnamment différent de I’émission de photon
unique habituelle en optique quantique. La seconde prédiction concerne la diffusion de sig-
naux cohérents de faible puissance sur un qubit, un protocole expérimental tres courant en
laboratoire. De fagon remarquable, il est montré que la non-linéarité du qubit, transférée au
guide d’onde par l'interaction ultra-forte avec la lumiere, est capable de diviser les photons
du faisceau entrant en plusieurs photons de plus basse énergie, conduisant a I’émergence d’un
continuum basse fréquence dans le spectre de puissance, qui domine le signal hors-résonant.
En étudiant la fonction de corrélation de second ordre dans le champ rayonné, il est également
démontré que I’émission en couplage ultra-fort présente des signatures caractéristiques de la
production de particules.

Dans la derniere partie de la these, la fonction de corrélation de second ordre est a nouveau
étudiée, mais cette fois expérimentalement, et dans le régime du couplage modéré. Bien que
les mesures soient encore préliminaires, cette partie de la these présente un compte-rendu
instructif de la théorie de la mesure du signal et permet de comprendre en détail la procédure
expérimentale impliquée dans la mesure de correlations dans les signaux micro-ondes. De plus,
a l'avenir, les développements expérimentaux et les outils de simulation décrits pourraient
étre appliqués aux signaux émis par des qubits ultra-fortement couplés, afin d’observer les
signatures de production de particules révélées par la fonction de corrélation du second ordre.
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Chapter 1

Motivation

1.1 Waveguide quantum optics

It was first remarked in the early 1980s [1] that, in theory, one could construct a two-level
quantum system out of a nearly macroscopic electrical circuit by engineering a superconducting
ring interrupted by a tunnel junction. The idea was that if one could achieve a stable half
quantum of flux ®4/2 = (h/2e)/2 threading the ring, one could in principle use the two opposite
values of the induced persistent currents, |O) and |), as the two quantum levels of the device,
in direct analogy with the |1) and |]) states of a spin qubit.

About 15 years later, the first observation of coherent oscillations however happened in
a different Josephson superconducting device, known as the Cooper pair box [2], a quantum
two-level system that is the dual of the superconducting quantum ring: instead of persistent
currents, one isolates two charge states of a small superconducting island to create a qubit. It
took more time, until 2003, to observe coherent oscillations in a flux qubit [3], mainly because
of the high sensitivity of a single flux quantum to external flux variations [4]. In fact, to address
this stability issue, the flux qubit was only achieved using a more complex configuration than
the one initially thought of, that involved a ring interrupted by three junctions of different
sizes. Today, the most commonly used superconducting qubit is the transmon qubit, which is
a variant of the Cooper-pair box made less sensitive to charge noise by reducing the charging
energy of the superconducting island.

The advent of superconducting qubits is an important turning point, as these artificial
atoms opened the way for expanding the field of quantum optics and light-matter interaction,
to the field of microwave optics in quantum circuits, also known as circuit QED (circuit Quan-
tum Electro-Dynamics). With the support of modern nano-fabrication techniques that allowed
to engineer circuit architectures of many types, the control over the interaction between electro-
magnetic waves and qubits took a great leap forward, making possible for instance, to strongly
couple qubits to microwaves confined in one dimensional waveguides. This allowed Astafiev et
al. in 2010 to achieve 94% extinction in the transmission of a coherent signal scattering on a
flux qubit [5], as shown in Fig. 1.1¢c, at a time when standard optical experiments had barely
managed an extinction of 12%, using a GaAs quantum dot [6], or a single dye molecule [7].

Further observation of the structure of the microwave radiation in quantum circuits how-
ever has proven very challenging, essentially because the efficient detection of single photons is
a very difficult task in the field of microwave quantum circuits where microwave quanta have
frequencies four to five orders of magnitude smaller than their optical counterpart. The mea-
surement of microwaves is in fact restricted to the digitization of the signal voltage using linear
detectors [9], which is a very indirect way of measuring quantum signals, such as itinerant

7
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Figure 1.1: Waveguide quantum optics. Left panels: Resonant wave scattering on a single
artificial atom by Astafiev et al. [5]. (a) Sketch of a natural atom in open space. The atom
resonantly absorbs and reemits photons in a solid angle of 47. (b) False-colored SEM image of the
artificial atom coupled to a 1D transmission line: a loop with four Josephson junctions (flux qubit)
is inductively coupled to the line. Here, the incident wave (blue arrow) is scattered only backward
and forward (red arrows). The transmitted wave is indicated by a magenta arrow. (c¢) Spectroscopy
of the artificial atom. Shown is the power transmission coefficient |t|> versus the flux bias §® and
incident microwave frequency w/2m. When the incident radiation is in resonance with the atom, a
dip in [t|? appears in the 3D plot. (Inset) Power transmission coefficient |t|> at 6® = 0 as a function
of incident wave detuning dw/27m from the resonance frequency, showing a maximal power extinction
of 94%. Right panels: measurement of photon anti-bunching in a waveguide by Hoi et al. [8]. (d)
Transmon qubit coupled to a CPW waveguide (superconducting aluminum elements are in light-grey).
(e) ga2(7) correlation function in the reflected signal: g2(0) < 1 indicates anti-bunching.

photons [10]. Moreover, before performing any measurement of a device in quantum circuits,
the quantum signal has to be amplified, which brings the additional challenge of minimizing
the noise added by the amplification chain. In spite of these difficulties, the measurement
of anti-bunching (the temporal anti-correlation of photons) in an open transmission line (see
Fig. 1.1d-e) was achieved in 2013 by Hoi et al. [8] using linear amplifiers and by performing a
very large number of averages to filter out the noise. Later on, the use of Josephson parametric
amplifiers (JPA) [11, 12], pioneered at Bell labs 30 years back, brought a dramatic improvement
to the measurement accuracy by allowing to pre-amplify quantum signals more than 100 times
while only adding half a photon of noise. Most notably, those amplifiers were pivotal in achiev-
ing the first measurement of quantum jumps in superconducting qubits [13]. A more recent
example among many experiments demonstrating the key role of JPAs, is the measurement of
second-order correlations between two photons emitted in cascade by a superconducting qubit
initially prepared in its third energy state [14] .

On the theoretical side, these experiments are very well modeled by the rotating wave
approximation (RWA), which essentially truncates the system dynamics to resonant transitions.

8



1.2 THE ULTRA-STRONG COUPLING REGIME OF CIRCUIT QED

Reflected
| |

PP TR

0.5

L
v
]
'
L[}
)
[}
]
1
]
'
1
]
‘
1

ol ! ! ! !
0 5 10 15 20 25
I't

Figure 1.2: RWA calculation of the go(t) correlation function in the signal reflected by two qubits
separated by a distance L in a waveguide, by Zheng et al. [15]. When koL = 0, where kg is the
frequency of the incoming signal on resonance with the qubit (red curve), the reflected signal shows
perfect anti-bunching at I't = 0, as if there were a single scatterer (I' being the resonance linewidth).
When L = kon/2, however, the gy function reveals a more complex structure in the waveguide
including bunching at I't = 0 (g2 > 1), and pure anti-bunching at finite time.

In other words, it allows the excitation of the atom upon absorption of a photon or the
relaxation of the atom upon emission of a photon, but forbids any higher order process, such as
the simultaneous excitation of the atom and the emission of a photon. As an example of such
predictions, very recently Zheng et al. [15] used the RWA technique to calculate the second-
order correlations of the field reflected by two qubits in series. As shown on Fig. 1.2, when the
two qubits are next to one another, they behave as a single scatterer, with in particular g»(0) =
0, signature that the signal is completely anti-bunched. When the qubits are located away from
each other however, the reflected signal presents a highly non-trivial pattern, including pure
anti-bunching at finite times, and bunching (g > 1) at t = 0. These theoretical predictions
nicely illustrate the versatility of waveguide quantum electro-dynamics (wQED) to explore

quantum optical phenomena.

1.2 The ultra-strong coupling regime of circuit QED

One of the great strengths of doing quantum optics in circuits is the large number of ways
one can engineer qubits and electromagnetic environments, such as 1D waveguides. This also
means that the fine structure constant a dictating the fundamental value of the coupling can
itself be tuned by choosing the right circuit design. When o becomes large enough, the system
enters the regime of ultra-strong coupling, in which the relaxation rate of the atom I' becomes
a sizeable fraction of the energy splitting A of the atom. It is worth noting that this regime
of coupling is far more intense than what we referred to as “strong coupling” in the previous
paragraph. Indeed, “strong” in the present context means nothing more than having a qubit
that relaxes to the waveguide at a rate I' much greater than the qubit intrinsic losses I'y (as
in Fig. 1.1c), but which remains small compared to the qubit energy A.

The regime of wultra-strong coupling between a qubit and a many-mode waveguide was
demonstrated experimentally very recently both by using a flux qubit [17] and a transmon
qubit [16]. In the later realization, Puertas-Martinez et al., engineered a waveguide consisting
of an array of 4700 SQUIDs coupled to a transmon, as shown on the optical microscope image
of Fig. 1.3b. In this system, it is the huge impedance of this array (in blue), as well as the large

9
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Figure 1.3: A Josephson platform for waveguide quantum electrodynamics (Puertas-
Martinez et al. [16]). (a) Lumped element model of the circuit. (b) Optical microscope image
of the sample. The two zoom-in are SEM images of the SQUID of the qubit (red square) and the
SQUIDs in the chain (blue square). The qubit is capacitively coupled to the chain and to a 5012
measurement line, via large interdigital contacts. Only a small portion of the Josephson chain, which
comprises 4700 SQUIDs in total, is shown. (c) Microwave transmission measurement |Sq2| of the
complete device (transmon and chain) shown above, as a function of flux threading the qubit.
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Figure 1.4: Modes of the Josephson array (Fig. 1.3a-c) [16]. (a) Dispersion relation of the chain
alone obtained from the fit of the resonances obtained at a value of the flux threading the transmon
of &7 = —®(/2 (red-dashed line in Fig. 1.3c), so that the chain modes are not hybridized with the
transmon. (b) Normalized frequency shift d¢,, of the discrete chain modes as a function of mode
frequency wy, for the transmon fluxes @7 indicated by the solid vertical lines in Fig. 1.3¢ (with the
same color code). The values of the relaxation rate I'y of the qubit is extracted from the hybridization
of the chain modes as indicated by the frequency shifts.

interdigitated capacitances of the qubit (in red) that generate the ultra-strong qubit-microwave
interaction. Owing to the tunable flux ®; threading the SQUID loop of the qubit, the qubit
energy can itself be varied.

The measurement of the transmission |Ss;| of this system is shown in Fig. 1.3c, where the
transmon energy was varied over a full period by sweeping the flux ®7. For ®7/®y = —0.5, as
shown by the red dashed line, the qubit is detuned in frequency, allowing to probe the modes
of the unhybridised array. As shown by the frequency of the first 50 unhybridised modes that
have been plotted on Fig. 1.4a, the collective charge density modes along the array present a
sound-like dispersion relation.

As the threading flux is moved away from &7 /Py = —0.5 in Fig. 1.3¢c, one can estimate the
frequency of the transmon by locating the most prominent avoided crossings, signatures of the
hybridization of the chain modes with the qubit. As explained in detail in the paper [16], one
can infer the coupling strength of a certain mode to the qubit from the difference between its
hybridized frequency and the unhybridised mode frequencies (the latter being obtained when
®p /Py = —0.5). This hybridization frequency shift 09, where n labels the mode number, is
shown in Fig. 1.4b for 5 values of the qubit flux indicated by the vertical solid lines on the
Fig. 1.3c, from which one can clearly see that up to 7 modes are interacting simultaneously with
the qubit over a large range of frequencies. From the range of frequencies the qubit interacts
with (Fig. 1.4b), one can then deduce that the relaxation rate of qubit is 10% of the resonance
frequency of the qubit, I'r/wr ~ 0.1. This corresponds to a coupling constant of o ~ 10%,
evidence of the ultra-strong coupling regime.

These very recent developments in the field of quantum circuits, that allowed to reach
this regime of extreme coupling by tweaking the fine-structure constant «, do not have any
counter-part in standard quantum optics where the fine structure constant in vacuum is fixed
by the value a = 1/137. There are nonetheless alternatives to enhance light-matter interaction
in vacuum. The most common way is to confine the electromagnetic field in a cavity, which
leads to higher couplings between the atom and the cavity field [18, 19, 20]. Another strategy,
demonstrated recently, consists in inducing strong photon-photon interaction by making use of
the cooperativity of an ensemble of Rydberg atoms [21, 22]. Although these strategies do allow
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Figure 1.5: (a) TD-NRG and TD-DMRG dynamics in the ultra-strong coupling regime of the decay
of the (0,(t)) = P(t) component of the spin, upon preparation of the spin in the |1) state, for various
values of the coupling constant « (from [28]). In these simulations, the bare qubit energy is A/w, = 0.1
and the time is in units of half the cutoff frequency D = w./2. (b) TD-NRG decay of (o,(t)) (solid
lines) at long time in log-log scale for a small qubit rate A/w. = 0.001. The time axis is units of
the inverse of the relaxation rate I' = A%/w. = 2 x 1075, The dotted lines are the incorrect finite
values of the z component of the spin at infinite time | (o, (¢ = 00)) |(= |P(c0)|) obtained within the
TD-NRG. Dashed lines are the analytical estimates from a ressumed perturbation theory around the
Toulouse limit oo = 0.5.

to obtain strong light-matter couplings that can enhance non-linear effects, the intensities of
coupling are still much below the ultra-strong coupling regime achieved in the experiment by
Puertas-Martinez et al.. Moreover, in their current state, these optical systems are limited to
the interaction with a single cavity mode, which means that many-body effects involving the
strong coupling of a qubit to a large number of modes at once are currently impossible in the
optical domain.

The significance of the ultra-strong coupling regime is in fact more far reaching than it
appears, in particular with its close connection to Kondo physics [23, 24, 25]. Indeed, it was
shown that in certain conditions, the physics of a bath of bosons interacting ultra-strongly
with a spin 1/2, is identical to the physics of a magnetic impurity interacting with a Fermi
sea [26]. The ultra-strong coupling platform engineered by Puertas-Martinez et al. is therefore
a very promising development to observe, in an all-electrical setup, aspects of Kondo physics
that have proven extremely difficult to measure in its fermionic form. One exciting prospect
is regarding the Kondo screening cloud, which has never been observed due to the daunting
task of measuring long-range magnetic correlations, but which could soon be accessible by
measuring the spatial correlations in the microwave signal scattered on a Josephson impurity
[27].

1.3 Quantum dynamics at ultra-strong coupling
in waveguides
The simplest model to represent a qubit coupled to a many-mode waveguide is the spin-boson

model [26], which describes the dissipation of a quantum two-level system into a many-mode
bosonic bath. In systems involving a large number of degrees of freedom however, solving the

12
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Figure 1.6: Inelastic scattering of a single photon on an impurity embedded in the centre of a sym-
metric Josephson waveguide. These results were obtained by Goldstein et al. using a perturbative
approach [29]. (a) Circuit diagram. (b) Elastic transmission |¢(w)|, elastic reflection |r(w)|, and total
inelastic scattering |y(w)| probabilities at the Toulouse point cv = 0.5 for a single incoming photon at
frequency w/Tx, with Tk the Kondo temperature. (c) Frequency-resolved inelastic conversion spec-
trum ~y(w'|w), for an incident photon with frequency '/ EﬁR = 30, where E§R is the qubit energy,
referred to as A in the rest of this thesis.

spin-boson model can prove a very challenging task. This is clearly the case in the experiment
by Martinez et al. described above, in which the SQUID chain includes 4700 modes. The
complete microscopic model with all 4700 modes leads to a Hilbert space of size 4700", where
N is the maximum number of occupied quanta in a mode. This is clearly out of hand for any
brute force numerical technique. Despite the gigantic size of the Hilbert space, in practice only
a small number of modes hybridized with the qubit (up to 10 in the experiment by Puertas-
Martinez et al.), which seems to imply that the problem could be simplified by truncating the
problem to this smaller set of hybridized modes. It turns out however that this does not work,
as the dispersion relation of the modes depends on the microscopic details of the whole array.
A theoretical approach that can incorporate the realistic dispersion relation of multi-mode
arrays is therefore unavoidable.

A few methods exist for solving the time-dynamics of the spin-boson model in the ultra-
strong coupling regime. Recent results by Nghiem et al. [28] use the time-dependent density
matrix renormalisation group (TD-DMRG) and the time-dependent numerical renormalisation
group (TD-NRG). The decay of (o,(t)) calculated with these two techniques for a preparation
of the qubit in the up state |1) and of the waveguide in the vacuum state is compared in
Fig. 1.5a for various values of coupling strengths «. Although the TD-DMRG is accurate
to describe the dynamics all the way up to a = 0.9, it is limited by numerical costs to the
simulation of dynamics on the time scale of ¢ = 50w !, where w, is the cutoff frequency of
the spectrum of modes. TD-NRG on the other hand, can achieve longer time-scales by using
a logarithmic discretization of the spectrum, as shown by the decay of (¢,(t)) on Fig. 1.5b
in log-log scale. However, within the TD-NRG, (0.(t)) does not decay to zero, as should be
the case, and instead relaxes to a finite value (0.(c0)) given by the horizontal dotted lines.
TD-NRG is therefore not adequate either to predict long-time dynamics in the ultra-strong
coupling regime, and in addition cannot be used as a full microscopic technique due to the
logarithmic discretization of the modes. Apart from these methods, a stochastic approach

13



CHAPTER 1  MOTIVATION

based on path-integrals also exists [30], which manages to describe spin dynamics to a good
level of accuracy up to a coupling strength of a = 0.5. For o > 0.5, this method however breaks
down, which highlights once again the highly non-trivial physics of the USC regime. Finally,
many-body wave-functions inspired by quantum chemistry methods [31] have been developed,
and these will be reviewed in more detail in chapter 3.

These approaches however either discard the dynamics of the modes of the bath from
beginning to lighten the computational cost, or have not been used to attempt to investigate
the physics taking place in the environment of the qubit. An example of an interesting phe-
nomenon happening in the bath was demonstrated by Goldstein et al. [29]: by considering a
double-island qubit coupled to a Josephson waveguide (Fig. 1.6a) they showed that a photon
impinging on the qubit can be “split” into several lower energy photons. This process, that
generalizes to the many-body case the spontaneous parametric down-conversion of non-linear
optics, is predicted to lead to a low-energy continuum of down-converted photons, peaked
at the qubit frequency, as shown by the frequency-resolved inelastic conversion spectrum in
Fig. 1.6c. Based on perturbation theory, these results are however limited to o < 1, except
at the Toulouse point o = 0.5 at which equations drastically simplify and allow to treat the
problem exactly. In fact, a significant result obtained at this single value of o = 0.5 is the
total inelastic scattering probabilities y(w) of a single incoming photon (Fig. 1.6b). Finally,
other recent work [32] used the variational matrix product states (VMPS) technique to study
the bath dynamics and visualize the time-evolution of the complete spectrum.

Much of the physics of the spin-boson model in the ultra-strong coupling regime remains
to be explored and it is the purpose of this thesis to address some longstanding questions on
this topic. In chapter 3, we will characterize the form of the radiation spontaneously emitted
into a waveguide by an ultra-strongly coupled qubit prepared in the excited state. In low-
coupling standard quantum optics, it is well known that the emitted radiation takes the form
of a photon, but at ultra-strong coupling, where non-linear effects are significantly enhanced,
we will show that radiation is expected to take a much more complex form. In chapter 4,
we will study the multi-particle scattering of a coherent state on a qubit, a very common
experimental protocol, that we investigate theoretically for the first time in the ultra-strong
coupling regime. We will analyze in particular the frequency conversion that occurs, and the
peculiar correlations resulting from the production of particles. Finally, the last chapter of this
thesis will describe an experimental attempt to measure anti-bunching in the signal reflected
by a qubit strongly coupled to a waveguide. Although the anti-bunching resulting from the
emission of a weakly-coupled qubit has been measured several times, a measurement of the
anti-bunching generated by a strongly-coupled qubit has not been performed yet with high
precision.
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Chapter 2

Light-Matter Interaction in Circuit
Quantum Electrodynamics

2.1 Phonons, photons and plasmons

In this section we review the mathematical formulation of quantized electromagnetic modes in
a cavity, and the analogous quantization in quantum circuits. Since a field mode is ultimately
a harmonic oscillator, we will first derive the formalism based on the paradigmatic mechanical
harmonic resonator [18], and then extend it to the quantization of field modes in a cavity
(33, 34], and to the quantization of an LC resonator in a superconducting circuit [35].

2.1.1 The quantum mechanical oscillator

A mechanical harmonic oscillator (MHO) consists of a mass m moving in one dimension in
the quadratic potential V(z) = mw?z?/2 (Fig. 2.1a). Classically, the force associated to this
potential will define the trajectory (Zciassical(t), Pelassical(t)) of the particle, which describes in
phase space a circle centered at the origin, rotating at an angular velocity of w. In quantum
mechanics, position and momentum are ascribed to the operators X and P while the eigen-
states of the Hamiltonian indicate the discrete set of possible states of the system. For the
mechanical harmonic oscillator, the Hamiltonian is given by

mw?X? P?

— 2.1
2 + 2m ( )

Hyino =

In order to keep the formalism generic, applicable to harmonic systems of a different nature,
we will work with the dimensionless operators given by:

. e . P
X() =— and 0= =T, (22)
2 2p0
where
h mwh
— d =4/ —= 2.3
To Y an Do 9 ( )

are the natural units of position and momentum. Substituting these in Eq. (2.1) we obtain:

Hyno = hw[P} + X7]. (2.4)
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Figure 2.1: Quantum states of the harmonic oscillator. (a) The eigenstates, known as “Fock states” or
“number states”, expressed in the position basis: (z|n). (b) Illustration of the probability distribution
in phase space of a coherent state displaced by o = v/14e?0-357 . The x and p coordinates are smeared
out just enough so as to satisfy the minimum Heisenberg uncertainty relations (Az)?(Ap)? = 1/4.
(c) Fock state probability distribution P,(n) corresponding to the coherent state with mean number

of photons 7 = |a|? = 14 in (b).

Following the usual route [36, 18], we define the non-Hermitian bosonic operators

a= Xo +i]50 and af = XO — ipo,
that verify the following commutation relations:
[a,a'] =1 and [a,a] =0.
Re-expressing XO and PO in term of these operators as

. a+al - a—al
Xy = and FPy=—1i

we can cast Hamiltonian (2.4) into its canonical form:

Hymo = hwlata+1/2)].
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2.1 PHONONS, PHOTONS AND PLASMONS

The energy origin can then be redefined to remove the vacuum fluctuation term in Hyyo:
H o = hwi'a. (2.9)

The eigenstates of this Hamiltonian and their properties derive from a simple manipulation of
the commutation relations (2.6) [36]. Here we will only state the result: the eigenstates are
the Fock states |n) and verify:

0)  Hn) = hw(n +1/2) |n), (2.10)

where the action of @ and a' on a state |n) is defined by:
alny =+v/nln—1) and a'|n)=vVn+1|n+1). (2.11)

It follows that a and af have the effect of annihilating and creating quanta of energy equal
to hw, loosely identified as particles. In the specific case of the mechanical oscillator, these
bosonic particles are know as phonons.

What about the spatial structure of these stationary states of the oscillator? For that we
need to solve for (z|n), that is the eigenfunctions in position space. Note that we chose to work
here with the dimensionless eigenvalues x and p, corresponding to the dimensionless operators
X, and B, we have already defined. For the ground state |0), we can write [36]:

(z]a|0) = (x| Xy + iPy|0) = 0. (2.12)
Recalling that P = —i-L we obtain a differential equation for (z|0):
(X‘+ d)(\m 0 (2.13)
— ) (z]0) = .
0 dr ’
which yields the solution:
(z|0) = (2/m) 4" (2.14)

The rest of the eigenfunctions can be obtained by evaluating:

o) =~ Gl 10) = = (el o = 180100 = = (= ) o). (219)

More concisely, we can write the particle probability amplitude for the n-th state in the fol-
lowing way:

(zln) = (2/ﬁ)1/4\/%me—w2f1n(x\/§), (2.16)

where H,(u) are the Hermite polynomials given by:

2 dTL 2
H =(—=1)"e" —e ™. 2.1
n(u) = (=1)" T © (2.17)

The first seven phonon states in position space are given in Fig. 2.1a.
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2.1.2 States of minimum uncertainty product

As shown from the spatial probability distribution in Fig. 2.1a, the eigenstates |n) (for n # 0)
of the harmonic oscillator describe a particle located nowhere in particular, and therefore very
different from what one expects of the classical state of mechanical oscillator with well defined
spatial coordinates. One could then wonder in what quantum state should the harmonic
oscillator be in order to behave as nearly like a classical oscillator as possible? Clearly, a state
of the particle with a well-defined position z and momentum p cannot be quantum, as it would
violate the Heisenberg uncertainty relations. On the other hand, if we were to give the classical
values z and p just enough quantum uncertainty so that the Heisenberg relations are verified,
for example by smearing out the coordinates of the particle, as illustrated by the gray region
of uncertainty in Fig. 2.1b, then that would make the quantum state of the oscillator as close
to the state of a classical oscillator as it can possibly be.

These states, and more specifically those with equal minimal spread of their position and
momentum, were first discovered in 1926 by Schrodinger, who referred to them as states of
minimum uncertainty product [37, 38]. It is not until the 1960s however, that the importance
of these states was recognized for the treatment of optical coherence, and that Glauber coined
the term “coherent state” [39, 40]. Denoted |a), coherent states are defined as the vacuum
state |0) displaced by a complex number « in phase space [18, 38]:

la) = D(a) |0) = e o7

0), (2.18)

where we have introduced D(«), the displacement operator. As an example, the oscillator state
in Fig. 2.1b is a coherent state displaced by a = v/14¢%3°" and with mean number of photons
(a]a’ala) = 14. A defining characteristic of coherent states is that they are the eigenstates of
the annihilation operator a:

ala) =ala). (2.19)

It can now be verified that for this category of states the canonical variables x and p indeed
satisfy the minimum uncertainty product [38]:

AzAp =1/2, (2.20)

making coherent states as well-defined as quantum mechanics allows, and thus as close to
classical states as quantum states can be. Note that coherent states are only a subclass of the
oscillator states satisfying relation (2.20), with squeezed states being another notable example
of states that satisfy this property.

A key point is that the set of all coherent states is a basis that can be used to represent
any state of the harmonic oscillator, and which is uniquely defined in terms of the Fock state
basis in the following way:

o) = e7lelF/2 " \‘j—; In). (2.21)

To illustrate this correspondence, the Fock state probability distribution associated to the
coherent state in Fig. 2.1b is shown in Fig. 2.1c. Using this decomposition, and the harmonic
oscillator Hamiltonian (2.9), one can then easily deduce the motion of a coherent state by
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2.1 PHONONS, PHOTONS AND PLASMONS

considering its time-evolution from an initial time ¢, = 0 to a time ¢:
a(t)) = 74 |a(0))
 iwatat—ja()2/2 N~ @(0)"
= e araty —F
2

_ o —|a(0)?/2 a(o)n —inwt
=€ —F¢€ n
> et

= 67‘0‘(0”2/2 Z <a<0\>;th>n |n>
n!

= |a(0)e™") (2.22)

The motion in phase space of a coherent state is therefore the same as that of classical am-
plitude: it describes a circle around the origin at an angular velocity w, as represented by the
grey circle in Fig. 2.1b.

Let us recall a few important properties of coherent states [38, 18]:

1. The set of all coherent states forms an over-complete basis of the Hilbert space of the
oscillator, with the following closure relationship:

1- %/\a) (o] da. (2.23)

2. Because of the over-completeness of the basis, there is an infinite number of ways of
expressing a coherent state in terms of other coherent states. For instance, the vacuum |0) can
be rewritten as:

0y = = / eoP12 |0y 2a. (2.24)

™

3. The scalar product of two coherent states |«) and |f5) is given by:
(a|B) = ezl ~alBl*+e™s (2.25)

Moreover, the squared norm of the scalar product quantifies the overlap in phase space between
two coherent state:

[ (0] B) > = e7loPF, (2.26)

4. An major property of coherent states is that they can be used to represent any den-
sity matrix p describing the state of a harmonic oscillator entirely in terms of coherent state
projectors |a) (a|. This representation is known as the Glauber-Sudarshan P-representation
[41, 42], and is expressed as:

b= / #(a) o) (o] o, (2.27)

where ¢(«) is a real function of a. This representation suggests that any state of the oscillator
can be seen as a mixture of coherent states with weights ¢(«). One remarkable consequence of
this decomposition is the optical equivalence theorem for normally ordered operators [42, 43, 38|
that will be relevant to chapter 5.
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2.1.3 Quantized field modes

A field mode in a cavity is precisely a one-dimensional harmonic oscillator [44], which can be

described by the formalism we have just recalled for the mechanical harmonic oscillator. Instead

of describing spatial displacements however, X, and Py in the Hamiltonian in Eq. (2.4) now

describe field displacements. It follows, moreover, that a and a' become the photon creation

and annihilation operators, with N = a'a the total number of photons exciting the field mode.
In the Schrodinger picture, the electric field in the cavity is given by

E(r) = &ef(r)a + e f*(r)al], (2.28)

where the dimensionless scalar f(r), with upper bound 1, describes the spatial structure of the
amplitude of the field while the vector € describes polarization. Note that we have indicated 3D
vectors in bold, and that we have chosen the convention in which the electric field is associated
with the X, = (a+ a')/2 operator. For a Fock state, the expectation value of the electric field
is zero,

(n|E(r)[n) =0, (2.29)
whereas for a coherent state, it takes a finite value:
(a[B(r)|a) = &[ef(r)a + e f*(r)a’]. (2.30)

It turns out that this expectation value coincides precisely with the value of a classical electric
field with amplitude « in units of & [18]. For completeness, we also recall the corresponding
expression for the vector potential:

&

A(r) = i [ef(r)a — e f*(r)al]. (2.31)
We

The field normalization factor &), can be derived by equating the integral over space of the

energy of an n-photon state (n| [ ¢o|Ee|?d®r|n) to the energy of a harmonic oscillator with n
quanta hw,[a'a + 1/2] given in Eq. (2.8). The result is:

hw,
Eo = ,/m, (2.32)

with V = [ |f(r)|?d®r the effective mode volume.

2.1.4 Quantized circuits: the LC oscillator

In this thesis, we will be interested in studying the interaction between fields and matter in
the context of electronic circuits. In this framework, the canonical harmonic oscillator is the
LC oscillator (Fig. 2.2a), which is described by the following Hamiltonian:

Hie=-"2 +—. (2.33)

The operator @ for the charge on the capacitor C, and the generalized flux ®, defined as the
integral of the voltage across the inductor ® = ffoo V (t) dt, satisfy the commutation relation

[®,Q] = ih. (2.34)
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(a) (b)
[
[
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Figure 2.2: (a) Schematic of an LC oscillator. (b) Example of the implementation of a harmonic
oscillator in circuit QED [45]: the inductor is the spiral-shaped conductor in the centre, while the
capacitor is made of two superposed plates on the right (disc-shaped object). In this particular
experiment, the plates of the capacitor are themselves free to oscillate, resulting in a coupling between
the LC circuit and the mechanical motion of the capacitor.

Here again, the system can be described using the formalism of the harmonic oscillator given
in paragraphs 2.1.1 and 2.1.2, by ascribing dimensionless charge and the dimensionless flux to
the Xy and F, operators:

X 1/4 ~ | at /4
@:@(9) ”“:m(%) %

2
—af
2

1/4 .

é:i\/ﬁ@) ¢

= —V2h (é) B Py (2.35)

For details on circuit quantization, the reader is referred to introductory notes by Vool and
Devoret [35]. Note that we adopted the unusual (but legitimate) convention of ascribing the
charge variable (and not the flux variable) to the sum of creation and annihilation operators.
Since the qubits we will consider in the following are capacitively coupled to their environment
through the charge degree of freedom, this choice will result in the standard form of the spin-
boson Hamiltonian in section 2.4.

Substituting Eq. (2.35) in Hamiltonian (2.33), we find once again the diagonal form of the
harmonic oscillator:

Hic = hwreldta+1/2], (2.36)

where this time wyc = 1/ VLC' is the angular frequency of the collective charge oscillation
in the circuit. The quanta with energy hwrc in this framework are sometimes referred to as
“plasmons”. A standard implementation of the inductance of an L.C oscillator is by fabricating
meanders or spiral-shaped inductors, an example of which is shown on Fig. 2.2b.

2.2 Superconducting qubits

In this section, after introducing the Josephson junction, that is the key element of supercon-
ducting qubits, we will present the single Cooper-pair box (SCPB) and the transmon qubit,
two types of superconducting charge qubits central to the work in this thesis. For detailed
treatment of Josephson junctions the reader is referred to the textbook by M. Tinkham [46],
and for superconducting qubits to these Refs. [47, 35].
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(a) (c)

Oxide barrier
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Figure 2.3: (a) Symbol of the Josephson element. (b) SEM image of a Josephson junction after
e-beam lithography and aluminum deposition. (c) Schematic of the three layers of a Josephson
junction: the two aluminum electrodes and the insulating oxide layer in-between.

2.2.1 The Josephson junction: constitutive relations

A Josephson junction consists of a pure superconducting tunnel junction in parallel with a
capacitor (Fig. 2.3a). In practice, these junctions are fabricated in three steps. After depositing
a first layer of aluminum, the metal is left to oxidize for some time in order to generate an
insulating layer of oxidized aluminum. Another layer of metal is then deposited on top, which
forms the second electrode. The symbol for a Josephson junction is given in Fig. 2.3a, and a
scanning electron microscope (SEM) image of an actual junction is shown in Fig. 2.3b.

We start with the observation that the charge ) ; having passed the junction is an integer
number N times the charge —2e of a Cooper-pair:

Q,(t) = —2eN(1). (2.37)

Quantum-mechanically, we have to describe the number of Cooper-pairs by the operator N
given by

N =) N|N)(N|. (2.38)

It was shown that the states |[V) are coupled together by the tunneling of Cooper-pairs through
the junction [48], which leads to the following Hamiltonian:

IflJz—& 3 [IN) (N + 1| +|N + 1) (N]], (2.39)

2
N=—00

where the Josephson energy E; is a macroscopic parameter depending on the conductance in
the normal state Gy and on the superconducting gap A, that is given by [49]:

hGnA
E; = . 2.4
y= 22 (2.40)
Next, let us define a new basis:
o) = Y eN?IN). (2.41)
N=—00
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It can easily be checked that the transformation back to the Cooper-pair number basis is given
by:

1 21 )
N} = / dp =N o) (2.42)
0

T or

Substituting Eq. (2.42) into Eq. (2.39), we obtain an expression for the Josephson Hamiltonian
in the |p) basis:

2m i —1
By defining the operator
1
¢ =5 | el (ol (2.49)

we can then rewrite the Hamiltonian in its most standard form:

~

H;=—FEjcosp. (2.45)
We further recall two important results which follow from the above equations [35]:

1. The super-current operator is:
I=1Isng¢ (2.46)
where [, is the critical current of the junction given by

2e
Ic = %E‘] = EJ/(,O(). (247)

In the last equality, we have also defined the reduced flux quantum ¢y = h/(2e).

2. One can also derive the time-evolution of the phase in the Heisenberg picture:

dp 2e~ -
T2V =V /o, 2.4
dt h /%o (248)

This equation allows us to identify hip/2e as the generalized flux operator d, = fjoo Vdt:
hp/2e = d. (2.49)

Eqgs. (2.46) and (2.48) are the key relations of the Josephson element.

2.2.2 Inductance of the Josephson element

An important implication of Eqgs. (2.46) and (2.48) is that the Josephson junction behaves as a
non-linear inductance. More specifically, using these equations and the definition of inductance

dl
=L— 2.
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(a)

®/d,

Figure 2.4: The SQUID: Superconducting Quantum Interference Device. (a) Circuit diagram of a
SQUID made of two identical junctions with critical current I., threaded by a magnetic flux ®. (b)
SEM image of a SQUID. (¢) Maximum current I,, which can flow in the SQUID. At integer values
of the flux ®/®(, the SQUID behaves as a single junction with critical current 21..

we can straightforwardly derive the non-linear inductance

2
L = 2.51
()= T 251)

which can be rewritten using Eq. (2.46) to obtain an expression in terms of the current:

Li)y=—-2 (2.52)

For I <« 1., we see that the L(I) becomes constant:
L(I) ~ ¢o/I. = @3/ E;. (2.53)

This implies that for large enough I. compared to I, the Josephson junction becomes a linear
oscillator with resonance frequency 1/ VLC'. The main advantage of this LC circuit design, as
compared for example to the superconducting spiral inductor design shown in Fig. 2.2b, is that
it can provide a much higher inductance on a much smaller footprint. This property is useful
when the aim is to engineer very high impedance transmission lines using a large number of
junctions, such as in the experiment mentioned previously by Puertas-Martinez et al. [16], in
which Josephson junction chain includes more than 4000 Josephson junctions.

2.2.3 The SQUID

An important device for superconducting qubits is the SQUID, or Superconducting QUantum
Interference Device, which can be used to allow the flux-tuning of the qubit frequency. The
device consists of two Josephson junctions in parallel enclosing a threading magnetic flux, as
shown in Fig. 2.4a-b. The total current I flowing through the device is the sum of that flowing
through the two individual junctions. Therefore, in the case of two identical junctions with
phase differences ¢, and :

I = 1I.sinp, + I.sin @y, (2.54)

which can be re-written as:

I =21, cos <w> sin (('Oa —2’_ (’Ob> : (2.55)
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Quantization of flux within the ring [46] requires that

%
Vb — Yo = 21— (mod 2). (2.56)
20
It then follows from Eqs. (2.55) and (2.56) that the SQUID behaves as a single junction with
phase difference (¢, + p)/2 across the barrier, and with critical current given by

w(+2)| oo

This critical current versus the threading flux is plotted on Fig. 2.4c. This shows that one
can tune the critical current I,,, (2.57) (by varying the flux ®), and hence the induction of the
SQUID.

Note that the description of the two types of superconducting qubit in the next paragraph
include a single Josephson junction for simplicity, but an actual superconducting qubit would
generally involve a SQUID, in order to make the frequency flux-tunable.

I, =2I.

2.2.4 The single Cooper-pair box and the transmon qubit

Let us now introduce the single Cooper-pair box, the first superconducting two-level system
on which quantum coherent oscillations were observed [2]. As shown on the circuit diagram
in Fig. 2.5a, it consists of a superconducting island (in orange) connected via a Josephson
junction to a superconducting reservoir. The idea is simple: one engineers a system with a
very high charging energy

(2¢)*

Eo=-—ro?t 2.58
“T 20+ 0y (2.58)

so as to suppress the charge fluctuations on the island. One then tunes the gate voltage V
to a voltage equivalent to a half-integer number of Cooper-pairs N, = C,;V,/2e, thus forcing
an integer number N, + % or Ny — % of Cooper-pairs on the island. These two charge states,
coupled together through the Josephson Hamiltonian (2.45), span the Hilbert space of the
qubit.

Mathematically the Hamiltonian of the SCPB is given by:

I:ISCPB = Ec(NO — Ng)2 — EJ COS(@). (259)

Using Egs. (2.38) and (2.39), and taking into account that the high charging energy Ec > E;
constrains the system to the {|N; + 3),|N, — 2)} subspace, the Hamiltonian (2.59) to:

~ Ec
HSCPB:T(|Ng_%><Ng_%|+|Ng+%><Ng+%|)
E;
_7(’Ng+%><Ng_%|+|Ng_%><Ng+%‘)
Ec Ey.
=—=1-—26,. 2.
0 5 00 (2.60)

Dropping the constant energy term, the single Cooper-pair box Hamiltonian takes the simple
form:

Hscpp = ——04, (2.61)
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Figure 2.5: Circuit diagram of two types of superconducting qubit: (a) The Cooper-pair box: the
bias V; is used to tune the electric potential on the superconducting island (in orange) so that the
two lowest energy charge states, |CyVy/2e — 3) and |CyV,/2e + 3), are degenerate. The Josephson
junction hybridizes these two levels by coupling them together. (b) The transmon: with its additional
shunting capacitance, it is much less non-linear than the Cooper-pair box, which makes it is also less
sensitive to charge noise.

with its ground and excited eigenstates given by:

mp\%(i) and @:%(_11). (2.62)

Note also, that in this 2-state subspace, the pair number operator can be written in terms of
the &, operator (this will be useful in the next section):

NOZ (Ng_%”Ng_%)(Ng_%|+(Ng+%)|Ng+%> <Ng+%|
= Ng1 - %62 (2.63)
The main drawback of the Cooper-pair box its high susceptibility to charge noise, and es-
pecially to quasi-particle poisoning [50, 51], which drastically limits the coherence time. For
instance, a single quasi-particle relaxation on the capacitor plate Cy is enough to change the
charge parity on the island, and thus destroy the quantum information stored in the qubit. To
counter this effect, the idea was to create a modified version of SCPB, known as the transmon
qubit [52, 53]. In this design, an additional shunting capacitance Cy, is added to the SCPB,
as shown in Fig. 2.5b, which reduces the charging energy F¢ of the qubit to E¢c ~ E;/100.
With smaller F¢, a larger range of Cooper-pair occupation states |N) become energetically
favorable, which makes the charge associated to a specific eigenstate less well-defined. In other
words, the eigenstates become superpositions of a larger range of |N) states, and the conse-
quence of this indeterminacy in the number of pairs, is that the qubit becomes less sensitive
to charge noise, as it was demonstrated [53]. A disadvantage of having reduced the charging
energy however is that now the qubit is a multi-level system, which can become an issue if the
energy difference between the ground state and the 15 excited state (that is the two ‘qubit’
levels of the transmon) becomes too close to the energy difference between the 1% excited state
and the 2" excited state. A full solution of the transmon Hamiltonian is beyond the scope of
this discussion, but we will simply mention that it can be solved exactly in terms of Mathieu
functions [54] or by numerical diagonalization.
Regarding the theory work of this thesis (chapters 3 and 4), the Cooper-pair box is the
only device of interest, since the spin-boson model that was studied assumes a purely two-level
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system. The transmon will be relevant to chapter 5, where we present an experiment involving
the scattering of coherent states on such a qubit.

2.3 Single-mode interaction: cavity QED

In this section, we begin by recalling the correspondence between an atom interacting with a
cavity electromagnetic mode, and the Rabi model [18]. We will then re-derive the Rabi model,
but this time starting from a superconducting qubit interacting with an LC resonator. Finally,
we will give a basic overview of the physics related to the Rabi model.

2.3.1 The Rabi model in quantum optics

Let us consider a hydrogen-like atom with energy gap A between its two lowest eigenstates,
and let us assume it is located near the center of an electromagnetic cavity with resonance
frequency w, as illustrated in Fig. 2.6. In quantum optics, the standard convention [18] consists
in representing the Hamiltonian of the atom by the &, operator (this convention differs from
the one used in most of this manuscript):

Hatom = —(3'2, (264)

and the eigenstates therefore by:

|0):<(1)) and |1>:((1’). (2.65)

We then denote by R the position operator of the electron with respect to the nucleus, and by
q the charge of that electron. It follows that the atomic dipole moment operator of the atom
is given by:

it =qR. (2.66)
By multiplying £ on the right and on the left by unity, we obtain the following expression:
= (11) (1] +10) (0 a(]1) (1] + [0) (0])
= pa1 1) (1] + poo |0) (O] + w10 1) (O] + 101 [0) (1], (2.67)

where p;; are the matrix elements of (i|ft|j). From symmetry considerations, poo and pt11 must
vanish [38]. Defining the atomic raising and lowering operators 6+ = [1) (0] and 6~ = |0) (1],
we then obtain:

o= 1o [1) (O] + po1 [0) (1] = p106™" + pie0 . (2.68)

Assuming the dipolar approximation (|R| < cavity size) [33], the electron-field interaction can
be written in terms of the scalar product of the electric field at the nucleus with the dipole
moment [18]:

Hi = —f1 - B(0). (2.69)
Substituting Eqgs. (2.68) and (2.28) into (2.69), we obtain:

A

Hiy = — (100t + pi007) - & [ef(r)d + e*f*(r)dw. (2.70)
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Figure 2.6: Two systems described by the Rabi model: (a) Atom in a cavity. The cavity resonance
frequency limits the interaction with the electric dipole of the atom to a single mode of the elec-
tromagnetic field. (b) The two charge states of the Cooper box [N, — 3) and [N, + 3) couple via
capacitance C to the LC resonator with inductance L; and capacitance Cf.

(b)

Since the spatial variations of the electric field are slow on the scale of the atom, we take the
relative field amplitude f(r) = 1. Let us now assume for simplicity that pq9 and € are real,
which brings the interaction Hamiltonian (2.70) into the following form:

Hi = =5(67 +5)(a+al), (2.71)

where we have introduced the coupling constant g:

g = 26,510 (2.72)
h
Combining Egs. (2.72), (2.64) and (2.9), we obtain the Rabi model describing the interaction

of an atom with a single mode of the field:

A
Hpabi = 502 — g&x(d* +a) + wa'a. (2.73)

This model was explored extensively in atomic systems [18].

2.3.2 The Rabi model in circuit QED

More generally, the Rabi model describes any two-level quantum system interacting with a
single-mode bosonic system. We will now re-derive the Rabi model, but this time starting from
a quantum circuit by considering a superconducting qubit (here a Cooper-pair box) coupled
to superconducting resonator (an LC circuit), an approach more relevant to this thesis. The
circuit diagram is shown in Fig. 2.6b, from which we can write down the Hamiltonian in terms
of capacitive and inductive terms:
Lo Y 2 Loy g ~1y AR CB% .
H = §(M )OO(NO_NQ) +§<M )11N1 + (M )01N1N0+2—Ll —EJCOSQO, (274)

where the matrix M is the capacitance matrix given by:

1 (Cg+CJ+C —C )

M=oy —C Ci+C

(2.75)
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The standard procedure to derive the Hamiltonian of such a circuit, shown for example in this
thesis [55], is first to write down the Lagrangian in terms of the node fluxes ®,, and then
to apply a Legendre transform to obtain an expression of the Hamiltonian in terms of the
Cooper-pair numbers N,,. Tt turns out however that one can directly write down the capaci-
tance matrix (2.75), by applying the following simple prescription [56]:

For@':j: Muzﬁzkczk
(2.76)
For ¢ #] : Mij = _@Cﬁ

where C;; denotes the capacitance between node 7 and node j. Note that since the bias Vj is
constant, it can simply be added as a charge offset to the charge number NO, as we did for the
Cooper-pair box.

Making the coefficients explicit in Hamiltonian (2.74), we obtain:

(2@)2 1 - 9 1A2 o
H= ~(No — N, =N NN,
GCT O 0y T OO T ) [0~ MG+ €) + 3NHC, 4 €y +.0) 4 Ol
o2 .
+ 2_[11 - EJ COS . (277)

The first term in the brakets corresponds to the Cooper-pair box charging energy, which this
time also involves the C' and C capacitances. Cleary, in order to make the charging energy
high on the island and thus to constrain the Cooper-pair box to |N, + 1) and [N, — 1), it will

also be necessary to keep C' < 1. The second term, together with the @% term, we recognize
as the Hamiltonian of a harmonic oscillator (Eq. 2.36) with effective resonance frequency

1
P 2.78
et V Llceﬁ" ( )

in which the effective capacitance Ceg is a combination of all capacitances of the circuit:

Cy(C+C1+Cy)+C(CL+Cy)
Cg+CJ+C

Cogt = . (2.79)
The third term in the brakets of Eq. (2.77) is the coupling term. Using Eq. (2.63) (in which
we drop the energy offset) to rewrite Ny, and Eq. (2.35) to rewrite Ny, we get that:

- V2h ([ Cog\ M
(2)NoNy = === ( LH) 6.(a +a).
1

(2.80)

Bringing everything together, and recalling the form of the Josephson Hamiltonian in the
subspace of the Cooper-pair box given in Eq. (2.61), we obtain:

H=—-"26,—26.(a" + a) + wegd'a, (2.81)

where we have defined the coupling constant

1/4 5
g = \/E (Ceff) (2¢)C | (2.82)
2\ Ly Cg(C+C1+CJ)+C(Cl+CJ)
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Figure 2.7: Eigenenergies of the Jaynes-Cummings model: (a) The hybridization between |0, +) and
|0, —) is revealed by the anti-crossing between the eigenvalues Ear —FE, and E; —FE,. The energy of the
ground state F, = —A /2 was here subtracted for convenience. (b) Ladder of hybridized eigenenergies
versus coupling. The orange-dashed line indicates the coupling at which the anti-crossing in (a) was
plotted.

From this expression, it appears as if the coupling is proportional to the inverse square-root of
the characteristic impedance of the effective resonator Zeg = 1/ L1/Ceg. In practice however,
it is only really meaningful to quantify the coupling relatively to the energy of the resonator
hwe (2.78), by taking the ratio of the two energy scales:

g 2e2 7 g C
—— =1/ : 2.83
hwesr h Cy+C;+C (2.83)

It turns out therefore, that the coupling relative to hw.g scales proportionally to the square-root
of the characteristic impedance of the effective resonator.

Finally, to recover the standard form of the Rabi Hamiltonian, we remove the minus sign
in front of the qubit term by applying a w-rotation around o,:

E
H= "6, - g&z(fﬁ + @) + wegdla. (2.84)
Up to a 7/2 rotation of the qubit basis around the y-axis, Eq. (2.81) is precisely in the same
form as Eq. (2.73). Although we will mostly be working in the Cooper-pair box basis in
this thesis, with 6, as the qubit tunneling term, the next paragraph will consider the qubit

eigenbasis.

2.3.3 The rotating-wave approximation

As long as ¢ < A and g < w, it is safe to neglect the off-resonant terms of the interaction.
Those are the ones that either involve a jump to the excited state together with the emission
of a photon (6+a'), or the relaxation to the ground state together with the absorption of a
photon (6~a). Within this approximation, known as the rotating-wave approximation (RWA),
the Rabi Hamiltonian (2.84), now expressed in the eigenbasis of the qubit, becomes the Jaynes-
Cummings Hamiltonian:

A g

Hyc = 50~ 5(&*5—— +a6t) + wa'a. (2.85)
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By explicitly writing the matrix for this Hamiltonian we see that it is block-diagonal (except
for the Hyy element, which corresponds to the uncoupled ground state):

—1A
Hy
H= i, , (2.86)

with the blocks given by the following 2 x 2 matrices that mix the neighboring energy levels
lg,n+ 1) and |e,n):

H, = w(n+1/2)1 + ( —gf/fﬁ _g_v(;};l )

)
= 562 —gvn+16, +w(n+1/2)1, (2.87)

In the above equation, we have defined 6 = A — w, the detuning between the field mode
frequency and the resonance of the qubit. Diagonalizing this system yields the eigenenergies

E,=—-A)2, (2.88)

Ef =wn+1/2)+ %\/4(71 +1)g2 + 42, (2.89)
and the eigenstates, often referred to as the “dressed” states of the atom:
|+,n) = cos(0,/2) |e,n) + sin(6,/2) |g,n + 1),
|—,n) =sin(0,/2) le,n) — cos(0,/2) |g,n + 1) . (2.90)
For convenience, we have here introduced 6,,, a “mixing angle” defined by
tan(6,) = gvn + 1/6. (2.91)

The eigenenergies (2.89) are plotted versus coupling in Fig. 2.7b, to illustrate the progressive
hybridization of |e,n — 1) and |g,n) into |[+,n) and |—,n). If one sweeps the detuning 9, let’s
say by varying the qubit energy A while keeping w constant, this hybridization appears as an
avoided crossing centered at the point of no detuning (A/w = 1). As an example, we show in
Fig. 2.7a the avoided crossing between Ey — E, and Ej — E,, which reveals the hybridization
of e,0) and |g, 1) (in grey-dashed lines) into |+,0) and |—,0).

2.3.4 Rabi oscillations induced by n photons

Rabi oscillations is a phenomenon occurring when the field mode is resonant with the qubit,
and that involves the coherent exchange of quanta between the atom and the field. For § =0,
the hybridized modes take the following form:

1+,1) = (le,n) +]g,n +1))/V2. (2.92)

Let us assume that at ¢ = 0 the atom-cavity system is in the |e, n) state. We can then rewrite
this initial state in terms of the eigenstates as

1W(0)) = |e,n) = (|+,n) + |-, n))/V?2, (2.93)
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Figure 2.8: Energy spectrum of the Rabi model. In dashed-grey is the spectrum from the Jaynes-
Cummings model, which was shown in Fig. 2.7b. Note that within the full Rabi model, the ground
state energy is no longer constant as coupling is increased.

and apply the time-evolution operator Ut = e=#8t to obtain the state of the system at time ¢:
(1)) = ([, m) e 4 ) €9V /2 (2.04)
Finally, reverting to the uncoupled basis, we obtain:

|W(t)) = cos(gvn + 1t) |e,n) + sin(gvn + 1t) |g,n + 1) (2.95)

Thus, we see that a periodic coherent exchange of quanta takes place, with 7 = #ﬁ being
the time required for the atom to emit/absorb a complete photon.

2.3.5 Beyond the rotating-wave approximation - the Rabi model

Briefly, we consider the full Rabi model, including the off-resonant terms dropped in the
Jaynes-Cummings formalism:
Hpabi = %&x — g&z(af +a) 4+ wa'a.

This Hamiltonian can easily be diagonalized numerically after truncating the Fock space to
n ~ 100, as long as g/w is not too large. We denote the eigenstates as the set {|¢,)}, and
the corresponding energy spectrum {F,}, which is plotted in red in Fig. 2.8. To provide
a comparison and visualize the break-down of the rotating-wave approximation, we show in
dashed-grey lines the Jaynes-Cummings spectrum from Fig. 2.7b.

Performing a time evolution is then just a matter of re-writing the initial state |¥(0)) in
the diagonal basis,

[W(0)) = Z Cn [¥n) (2.96)

and then applying the time-evolution operator:

W) = U [W(0) = e i [W(0)) = D cne™ 7" |45, (2.97)

n
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This exact time-evolution (up to numerical error) will be useful to us in chapter 3 to provide
a benchmark of our multi-coherent state technique applied to the Rabi model.

Note that no complete exact solution to the Rabi model has been found in compact an-
alytical form, although transcendental equations can be written using integrability [57]. Nu-
merically, its spectrum and dynamics have been explored in great detail, including the ultra-
strong coupling regime, in several studies (here is a non-exhaustive list of recent references
[58, 59, 60, 61, 62, 63]).

2.4 Many-mode ultra-strong coupling: waveguide QED

In this section, we generalize the single-mode circuit to the many-mode chain interacting with
a superconducting qubit. In particular, following the derivation by Snyman and Florens [27],
we show that the spin-boson model can describe a Cooper-pair box coupled to a chain of
Josephson junctions. Finding the solution to this complicated many-body model will then be
the topic of the next chapter. Note that there are various possible architectures for coupling
qubits to waveguides that can also be mapped on the spin-boson model. Several theoretical
papers for example consider a double-island quantum impurity [64, 29] instead of a Cooper-pair
box. Another example is the coupling of flux qubit to a 50 €2 transmission line which can also
be described by the spin-boson Hamiltonian [17].

2.4.1 Hamiltonian of the Josephson waveguide

We start with the Hamiltonian of the circuit illustrated in Fig. 2.9:
H = Hy + Hj, (2.98)

where the quadratic part Hy describes the linearized semi-infinite Josephson junction chain:

) 1 “+o00 R R 1 “+o00
Ho =5 > Nu (MY, N+ 5 > G Vinnn. (2.99)
m,n=0 m,n=0

The impurity, located at the end of the chain, contains the only source of non-linearity of the
problem, encoded in the Josephson energy:

Hy = —Ejqc08(¢o — ¢1). (2.100)

Similarly to how we derived the Rabi model in paragraph 2.3.2, we can write down the capac-
itance matrix M by applying prescription (2.76):

Cya + Cy —Cy
) -Cy  Gy+Cy+C  —C
M= -C Cy+20  =C . (2.101)
(2e) -C  C,+2C —C
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Figure 2.9: Schematic view of the studied superconducting circuit supporting two dressed qubit states,
where one or two Cooper-pairs in excess on the leftmost island are each accompanied by a different
charge polarization cloud, illustrated by the orange cubes symbolizing the charge accumulated at each
site. Josephson tunneling between the two configurations generates entanglement between the qubit
and its environment. This illustration is from [27].

The inductance matrix V is easily deduced by considering the linearized Josephson terms
—Ejcos(¢i — ¢;) ~ Ej(¢; — ¢4)?/2 that couple site ¢ to site j:
0 0
0 1

V—E 1 2 -1 , (2.102)

which excludes the flux ¢g at the beginning of the array. The indexing convention is such that
the upper-left entries of these matrices are labeled by Mgy and V9. One would like to express
Hj as a bath of independent oscillators that are linearly coupled to the impurity at site 0. This
is achieved by expressing the set of harmonic variables in terms of bosonic operators:

A

N, = / dii Opi(b, +01)  m=1,2,... +00 (2.103)

P = f/ dk &y (b, — bL) m=1,2,..., +oc (2.104)

where &,,, and 0,,, are real numbers. We stress that the coordinates (No,géo) at the end
of the chain (site m = 0) are not part of this decomposition, which will facilitate the later
projection onto the two-level system. A first important relation follows from (2.103-2.104) by
imposing the commutation relation [@m,Nn] = 10, and assuming standard algebra of the
bosonic operators, namely [b,,b,] =0, [b,,bl] = 6(k — k'):

+oo
/ dk Empbnk = Omn- (2.105)
0
The eigenfrequencies and eigenmodes of the chain are then obtained by imposing that the
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quadratic part of the Hamiltonian, excluding site m = 0, is diagonalized by the bosonic oper-
ators:

Frchain 1 \J - \ 1 ~ A i 177
Fchain — 5 > No(M7Y) No+ 5 > gomengan/O dk wiblb,, (2.106)
m,n#0 m,n#0

with wy the positive frequencies of the normal modes. Here we will simply state the result for
the eigenvalues:

_ [4(2e)2E, sin*(k/2)
Wk \/Cg +4Csin?(k/2) (2.107)

The complete derivation of this expression, and of the coefficients 6,,, and &,,, defining the
eigenmodes in Eq. (2.103), is given in appendix A.

2.4.2 Hamiltonian of the full system: the spin-boson model

To obtain the full Hamiltonian we need to include the degrees of freedom of the impurity at
site m = 0, which have been excluded in Eq. (2.106). The impurity part of the quadratic
Hamiltonian (2.99) related to the site m = 0 reads:

Hy™ =~ (M) NG+ No > (MY, N, (2.108)

DN | —

As shown in appendix A, we can obtain an exact and remarkably compact expression for the
full Hamiltonian in terms of the normal modes and of the variables at the first two sites of the
Josephson chain:

1

H==

5 (M_l)oo N2 + /dk‘ wibl b, + No /dk gi(by, + b)) — Ejqcos(@o — 1), (2.109)
0 0

where we have introduced the mode-dependent coupling constant

1 Gy 1 w} cos k retan (1 —Cy/Cett) sin(k)
k=5 Ca+ Cysin(k/2) \| 27E, " |2 (1— Cy/Cugr) cos(k) — 1

(2.110)

To get rid of the factors containing ¢, we perform a unitary transformation H=UHU T with
U = eNo#1 The transformed Hamiltonian reads

~ (26) 1 . s R ~ EJd . i
H = QCimp dk’ UkaTb — \/§N0 Odk‘ wkﬁgk(b}i + bk) — T [6 P +e P } (2111)
where o )2 . )
€ - d
= (M~ 1— ———— | [ dk wéiy. 2.112
L ) (1- o) [t o)

Now we assume that we are at a degeneracy point of the uncoupled impurity, and project the
impurity part of the Hilbert space onto the two degenerate states. This results in Ny — —6, /2
and (e + e~%0) — &, as discussed in paragraph 2.2.4. Dropping the constant term &2, it
follows that Eq. (2.111) takes the form of a spin-boson Hamiltonian:

H~ /wkab ——/ dk gi (b +b,) — EJd— (2.113)
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Figure 2.10: (a) Dispersion relation of the chain and (b) spectral function for three different values of
the ground capacitance Cy and for C' = 100 {F, Cyq = Cyq = 100 {F, L; = 0.3 nH. The solid lines are
the exact results while the dashed lines correspond to the low-frequency approximation. Note that
as Cy becomes very small, the density of states at the cutoff frequency becomes very large, which is
why the spectral function is peaked close to the cutoff frequency.

Performing a m-rotation around &, we remove the minus sign on the o, operator to obtain the
standard form of the Hamiltonian:

H g/ wibl b, — %/ dk ge (D] +b,) +EJd%. (2.114)
0 0

In the low-frequency approximation, with & < /C,/C,

wy >~ FEok, (2.115)
Cag )2 E3
~ 3 2.116
g \/(Cdﬁcd i (2.116)
where Ey = +/(2¢)2E;/C,. We can thus identify the Ohmic spin-boson model parameter
1 °F
o= — _ Cag = (2.117)
2 Odg + Oy E;

which brings g into a more concise form:

Je =V 20wy (2.118)

By calculating the spectral function, we can further characterize the interaction between
the chain modes and the qubit:

T dk
J(w) = 7r/ dk gro(w —wy) = d—‘ | gr(w) 2. (2.119)
0 w
In the low-frequency approximation (2.116) this is simply:
J(w) ~ 2raw (2.120)

In Fig. 2.10, we plot the spectral function and the dispersion relation using the exact expressions
(2.107) and (2.110), for the realistic parameters C' = 100 {fF, Cq = Cyq = 10 {fF, Ly = 0.3 nH,
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and for three different values of the ground capacitance C,. These curves are compared with the
low frequency approximation given by Eq. (2.116) (dashed curves). Clearly, the low frequency
approximation best matches the exact curve for C; > 100 fF (in red and green). For the lower
value Cy = 20 fF (in blue) however, wy quickly reaches the plasma frequency, resulting in a
very high density of states close to this frequency, which in turn leads to the sharply peaked
spectral function of Fig 2.10b. Note that in the work of this thesis we will apply an exponential
cutoff to the spectral function to model the sharp decrease observed in Fig. 2.10b. This is a
common approach in the literature [30]. The other approach [28] is to apply a sharp cutoff to
the spectral function above at certain frequency w,. It is worth noting at this point that in this
thesis we will be working with qubit frequencies typically of the order of w./10, well within
the range where the low-frequency approximation (2.116) is close to exact (i.e. the solid lines
and the dashed lines agree in Fig. 2.10b).

2.4.3 The discretized spin-boson model

In view of solving the system numerically, let us discretize the spin-boson Hamiltonian to
a number of modes Nyoges- In the low-frequency approximation, the discrete version of the
spectral function (2.120) is

Nmodcs

J(w) = 2rawe/* = lim = Z 92 6(w — wp) (2.121)

Nmodes—00 £>0

to which we have added the exponential cutoff that was discussed above. To obtain the coupling
gx corresponding to a given discrete mode, with the assumption that the mode separation 0k
is small, we integrate Eq. (2.121) around a certain mode k;:

k1+4-6k/2 k1+0k/2
/ J(w)dwy, = 271'04/ we ™Yo duy, ~ 2maky Ske Wk /e (2.122)
ker —5k /2 k1 0k /2
= TG, (2.123)
It follows that

g = V2 k Ok e—won/we. (2.124)

Therefore, the discretized spin-boson model [26] reads

A a_ Nmodes Niodes
H="6,-+ > gelay, +al)+ Y wala, (2.125)
k>0 k>0

where we have renamed the bare splitting of the qubit levels A = E;,;. We stress again that we
do not work in the qubit eigenbasis here, but rather in a basis that makes the qubit-waveguide
coupling diagonal, as described by the ¢, term above. This choice allows a natural description
of the driving force behind the entanglement between the qubit and the waveguide, and sets
the natural language for the numerical technique based on coherent states we will now present.

Note that an important assumption that we have made in this study is the restriction of
the atom to a perfect two-level system. This hypothesis is perfectly legitimate for strongly
non-linear qubits, such as the Cooper-pair box or the flux qubit [5, 65, 17, 66]. Focusing on
a two-level system allows to capture the maximum inelastic scattering cross-sections, due to
its intrinsically high non-linearity. It is thus an excellent testbed to examine physics that
is already quite rich, and to develop methodologies in the most challenging situation from a
computational point of view.
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Chapter 3

Solving the Spin-Boson Model at
Ultra-Strong Coupling

In this chapter, we introduce a key element of this thesis: a variational method based on a
coherent state ansatz for solving the spin-boson model in the ultra-strong coupling regime
(67, 68]. Although the usual approach consists in making use of the Fock basis to describe the
quantized bath excitations, this technique is based on the expansion of the bosonic degrees of
freedom in terms of a finite number of coherent states. In other words, we use an adaptable
basis, wherein both the amplitude and the displacement of the coherent state Gaussians are
variational parameters. It was previously demonstrated that for calculating of the ground state
of the spin-boson model, the use of this basis can provide a tremendous computational gain
(69, 70]. In this chapter, we will extend this result to the dynamics.

Interestingly, work on Gaussian-based techniques can be traced all the way back to the work
of E. J. Heller in 1975 on a semiclassical method aimed at describing molecular dynamics [71].
Since then, many methods have been introduced, mostly on the side of theoretical chemistry,
to tackle the interaction of a strongly non-linear system with a large bath. After we have
presented the multi-coherent state technique and introduced the framework we will be working
in, an account of previous work will be given and compared to the new approach proposed in
this thesis.

An important characteristic of the multi-coherent state technique, as we will see, is the
surprisingly small number of coherent states required to tackle systems that would otherwise
require an unmanageably huge Hilbert space in the Fock state basis. The reader will however
quickly realized that the underlying physical machinery of our variational algorithm is greatly
obscured by the complexity of the many-body systems we study in this thesis. For this reason,
after laying out the framework of the variational method, we will begin by revisiting the
spin-boson model with a single mode, which will provide some insight regarding the physics
dictating the qubit-bath dynamics within the coherent state framework. We will then move
on to the full many-mode spin-boson model and provide a first demonstration of our technique
by identifying the quantum states of spontaneous emission in a wave-guide in the ultra-strong
coupling regime [67].
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CHAPTER 3 SOLVING THE SPIN-B0OSON MODEL AT ULTRA-STRONG COUPLING

3.1 Variational dynamics with coherent states

3.1.1 The ansatz: a superposition of multi-mode coherent states

The strategy is to write the state vector as a coherent state expansion, also referred to in the
following as the MCS ansatz [69, 70, 72, 67, 68]:

Ncs

W) = 3 PO 1) + gu (Ol ()] )], (3.1)

m=1

We have introduced here the complex and time-dependent amplitudes p,,(t) and g¢,,(t) for
each qubit component, as well as a set of discrete multi-mode coherent states for each qubit
component:

Nmodes
|fm(t)> — H efv]%(t)az— ke (t)ay, ’O>, (3.2)
k=1

and similarly for |h,,(t)). The index m labels the N, coherent states of the superposition,
each defined with the correponding set of Nyoqes displacements {f*} (or {hE }).

This ansatz allows in principle to target an arbitrary state of the full Hilbert space (with an
exponential cost). One must note a strong difference here with the standard Glauber-Sudarshan
decomposition (2.27), which relies on a continuous expansion of the state vector onto coherent
states. Because of the large number of modes involved in waveguide QED at ultra-strong
coupling, the continuous representation is not suitable for numerical purposes. Our discrete
expansion (3.1) can however be understood as a discretized version of the continuous integral
representation of an arbitrary wave-function onto coherent states. Most importantly, we will
demonstrate that physical states obtained from standard protocols, including spontaneous
emission (section 3.3) and coherent state scattering (chapter 4), can be efficiently simulated
with a discrete set of coherent states, showing only a polynomial cost in the number of modes
Niodes and coherent states N.

3.1.2 Equations of motion

We choose to approach the problem with a variational technique. Just as in the classical case
where minimizing the action S = [ £ dt is equivalent to Newton’s 27 Jaw, one can show
that the Shrodinger equation is equivalent to minimizing the action defined with the following
Lagrangian density [73]:

1= 1
£ = (V)50 — 20— H|(2). (3.3)
. . -
Here, we have introduced the short-hand notation gt and 0; defined as:
- d — d t
g [u(t) = Zw®)  and  (U(0)]0 = —( [w@) ). (3.4)

This leads to the Euler-Lagrange equations for the set of variables v = {p,, ¢n, ¥, h%} that
characterize the MCS state vector (3.1):

d oL or d oL oL

diop, " op.  digp T OfF (3:5)
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3.1 VARIATIONAL DYNAMICS WITH COHERENT STATES

Taking H in Eq. (3.3) to be the spin-boson Hamiltonian (2.125), and after a few lines of algebra,
these equations explicitly read:

i =Y (= ooy ) (515 (3.

op;
oF  (OF oF : 1
g~ 5 (G )55 = X ot (= s ) S5 G137
by = 0 [F i+ 7 i — 21 ] (3.5)
k>0

Identical equations (up to a minus sign in g;) are obtained for the variables ¢, and h%. Let
us recall that the notation («|/) used here denotes the inner product between two multimode
coherent states |a) and |5), and is given by:

(0]6) = exp | - %Z lal? + |82 — 20284 (3.9)
k

Note also that we have denoted E = (V|H|V) the expectation value of the energy, whose
explicit expression is:

E :% > (qum<fn|hm> + pmq;<hn\fm>) +) (p;‘;pm< Fal f)UL .+ q;qm<hn|hm>ggm>

where we have defined the shorthand notation Q= >, jwefifE Qb =3 wphfhk
Gl = 20 N+ )y G = 2o g (B + h7,).

3.1.3 The numerical algorithm

In contrast to the dynamics with a single coherent state [74, 75|, one encounters here a com-
putational difficulty [76], because the time-derivatives f,’f{ of all the possible coherent state
amplitudes enter Eq. (3.7) dictating the value of a given field fj'-C through the parameter x,,;
in Eq. (3.8). Indeed, for stability reasons it is crucial to formulate the dynamical equations in
an explicit form ff = F[v], where F' is only a functional of the variables v = {p,, qu, f¥, h%},
without reference to their time derivatives. Numerical inversion in order to bring the system
into explicit form is however prohibitive as it would cost (Npodes X Nes)® operations (unless
the number of modes is small, for instance in the case of the Wilson discretization [74], which
is not adapted to study the bath dynamics). It turns out that a very convenient trick allows
to make the inversion in (N)® operations. This is favorable provided Nes < Npodes, Which is
the case for very long Josephson arrays or broadband environments.
First, let us cast Eq. (3.6-3.7) into the following more concise form:

> (m - ;pm“mj) Mjm = P, (3.11)

m

> (pmf;ii + ( pmnmj> ) jm = FF (3.12)

m
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where we have defined the overlap matrix

M = (filf;)
as well the shorthands
oF
P, = —i—,
op;
oF 1 (OF oF
Fe— — __ 27 fR

By multiplying Eqgs. (3.11-3.12) by the inverse of the overlap matrix, we obtain:

_ ) 1 _

Z Mnjlpj =DPn — 5 meﬁijnlejm
J mj
_ 1 _ ) - »
=i = g DA 8] + S p Mg £
k mjk
and
B ) . 1 ke in
SO MG = paft b iaft — gon( A4 A AE) 1
J k

+ > My M fEFEfL

Jjmgq

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

Combining Eqs. (3.16) and (3.17), we can easily remove the dependance on p,,, and thus obtain

an equation in terms of f* only:
ot Y My My [ 18 (fh = [2) = > M, Ff — fEM, Py,
mjq j

The next step is then to define the mode-independent matrix

Qin = Pn fz n?

k

and use it to re-express Eq. (3.18) as:

Pola + ZMn_lejmajm(fj; —fH= ZMn‘lef — fEM P
mj P

Multiplying (3.20) by f¥*, and summing over k, we obtain an equation for a;, alone:

Qin, + Z aijn_lejm (bzm - bzn) = Aina
mj

where for convenience we have defined the variables

A =Y (M Ef = fEMP) and by =) SR
gk k
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3.1 VARIATIONAL DYNAMICS WITH COHERENT STATES

Eq. (3.21) is a linear system of (N)? equations that can be solved numerically. Once the
matrix a;, is obtained, one can straightforwardly use Eqgs. (3.20) and (3.16) to deduce the sets
of derivatives {p,} and {f*} corresponding to the N coherent states of the 1 qubit sector.
The same procedure is applied to obtain the derivatives {¢,} and {hfl} of the | qubit sector.
The Fortran 98 code written to perform these numerics makes an extensive use of the highly
optimized Math Kernel Libraries (MKL) from Intel'.

Remarkably, Eq. (3.21) allows us to bypass the gigantic system of (Nyodes X Nes) Euler-
Lagrange equations (3.5) that would have involved a numerical cost scaling as (Npodes X Nes)®.
Instead, the cost of solving Eq. (3.21) only scales as (N)®, which is a tremendous advantage
as long as Nyodes > Nes.

3.1.4 Quantifying the error

Theoretically, the multi-mode coherent state technique becomes exact only when the number of
coherent states N — oo. It turns out however that only a small number of coherent states are
required to converge the solution with high precision. The precise number required will depend
on the regime of coupling considered and on the degree of precision required to calculate the
quantities of interest. As we will see in the next chapter, calculating second-order correlation
functions in the radiation scattered by the qubit requires many more coherent states to obtain
adequate accuracy, as compared to calculating power spectra.

We therefore need a reliable tool to quantify the degree of convergence of the dynamical
solutions that we find. In this work, we define an error by the squared norm

Err(t) = (®(1)|®(¢)) (3.23)
of the auxiliary state
|<I>(t)> = (i0; — H)|\If(t)> (3.24)

The full expression for Err(¢) is given in appendix B. Clearly, if |¥(¢)) satisfies the Schrodinger
equation, then Err(t) = 0. With only a finite number of coherent states N in the state vector,
Err(t) can only be finite, but will steadily decrease as more coherent states are included in the
state vector and the dynamics converge closer to the exact solution. In the following, we will
systematically demonstrate this steady decrease to show that our technique is well-controlled.

3.1.5 Precursors of the MCS technique

Historically, the use of Gaussian-like state functions can be traced back to the work on semi-
classical approaches of E. J. Heller in the mid 1970s. Motivated by an effort to describe
molecular nuclei dynamics, his first proposal was to describe heavy-particles by a single Gaus-
sian wavepacket with a centre and a width that evolved variationally [71]. This approximation
is referred to as the “thawed” Gaussian ansatz, because the shape of the Gaussian evolves to
adapt to the requirement of the dynamics. This ansatz however turned out to be too limited
for the description of the dynamics of a real molecular system, which prompted E. J. Heller to
introduce a variant where nuclei are this time described by a superposition of multiple Gaus-
sians. In this improved version, known as the “frozen” Gaussian method [77], the centers of the
different Gaussians now follow classical trajectories, and their shapes are frozen. At the level
of molecules, where most of the quantum dynamics falls into the semiclassical domain, these

thttps:/ /software.intel.com /en-us/mkl
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CHAPTER 3 SOLVING THE SPIN-B0OSON MODEL AT ULTRA-STRONG COUPLING

Gaussian-based approximations conveniently offer a link between the localized classical parti-
cle trajectory, and the delocalization due to the unavoidable quantum uncertainty. The frozen
Gaussian ansatz became most powerful in combination with the time-dependent semiclassical
Green’s function approaches later developed [78, 79, 80].

Although these Gaussian techniques proved astoundingly effective for semiclassics, they
remain a trade-off between quantum and classical that is bound to fail as we go deeper
into the quantum domain. The next stride forward was made with the advent of the multi-
configuration time-dependent Hartree technique (MCTDH) aimed at solving variationally the
time-dependent Schrodinger equation [81]. This method consists in expanding the state vec-
tor onto a set of time-evolving functions, which can in principle be anything. More powerful
than the MCTDH however, is an improved version of it known as the ML-MCTDH, that is the
multi-layer MCTDH [82]. In this version of the method, the functions on which the state vector
was already expanded, are themselves expanded on another set of functions, leading to ‘layers’
of expansions. This method proved particularly powerful at describing condensed matter pro-
cesses taking place in large systems, such as photo-induced electron-transfer in semiconductors
[83], or proton transfer reactions in condensed-phase environments [84]. Furthermore, Wang
and Thoss used the ML-MCTDH technique [82, 31] to calculate for the first time the complete
dynamics of the spin-boson model. Remarkably, they were able to include hundreds of bath
modes, and thus study spin dynamics without tracing on the bath degrees of freedom entangled
with the qubit, a necessary condition for accurately describing the strong coupling regime.

The next theoretical development, brings us nearest to the description that we have de-
scribed in this section. Introduced by Burghardt et. al. in 1999 [85, 86], the variational
multi-configuration Gaussian method (vMCG), is a variation of the MCTDH (the single layer
version), in which the linear degrees of freedom, such as a those of a bath, are expanded on
either frozen or thawed Gaussian wave-functions. Although reminiscent of Heller’s frozen Gaus-
sian method, the vMCG technique here entails the full quantum treatment of the MCTDH, as
opposed to the frozen Gaussian’s semiclassical approximation.

Our approach in this thesis, although aimed specifically at solving the spin-boson model,
bears some similarities with the vMCG method in that we have also described the bath de-
grees of freedom in terms of a superposition of Gaussians, and have used the Euler-Lagrange
equations to derive the equations of motion. Instead of considering a generic type of Gaussians
however, we have specified our derivation to an expansion in terms of coherent states, which
are basically Gaussians that present just enough widths in position and momentum that they
verify the Heisenberg uncertainty relations. As we saw, this specific choice of parametrization,
leads to an astonishing simplification of the dynamical equations which allows our simulations
to run orders of magnitude faster than the vMCG for large systems. In particular, whereas the
bottleneck of the vMCG is a system of (Ngof X Ngaussians) €quations, with Ngaussians the number
of Gaussians and N4, the number of bath degrees of freedom, our method’s bottleneck is a
system of only N2 equations (Eq. 3.21).

Although this drastic simplification that we witness seems surprising at first, let us point
out that our ansatz appears particularly well motivated if we think in the lines of the philosophy
of Heller’s Gaussian approach. Indeed, in the ultra-strong coupling regime, one expects the
macroscopic dynamics that emerge from the intense qubit-bath coupling to lead to classical-like
bath trajectories with minimum quantum uncertainty, which is most appropriately described
by our Gaussian coherent states. In parallel, the tunneling effect from the qubit will induce
coherent superpositions of these macroscopic trajectories, similar to the superposed frozen
Gaussians. In a way therefore, the ultra-strong coupling regime bears some similarity with the
semiclassical realm, in that it requires classical-like states to describe emerging classical-like
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3.2 DyYNAMICS OF THE RABI MODEL

dynamical effects within a more general quantum description.

Another notable difference of our approach is that it is expressed in the second-quantization
formalism, the natural language of quantized harmonic modes, whereas the MCTDH and the
vMCG methods have systematically been expressed using real-space wave-functions. Second-
quantization will prove most appropriate for the study of the bath dynamics on which we will
be focusing our study of spin-boson physics.

3.2 Dynamics of the Rabi model

The aim here is to demonstrate how to implement the MCS algorithm on the simpler single-
mode Rabi model before we move on to the many-mode spin-boson model. In particular,
having only one mode will make it possible to visualize field states using Husimi or Wigner
functions and to gain some insight in the way the different coherent states from the MCS
state vector evolve dynamically. The simplicity of this model will also allow us to provide a
benchmark for the multi-coherent state dynamics by comparing our technique with a direct
diagonalization in the usual Fock state basis. Remarkably in fact, we will see that very few
degrees of freedom need to be considered in the coherent state basis, which clearly seems
to indicate that quantum superpositions of classical-like states are more representative of the
physical reality in the ultra-strong coupling regime than the usual number-state representation.

3.2.1 Hamiltonian and dynamical equations

The Hamiltonian for the Rabi model is given by:

A
Hyapi = 50t wa'a — gaz(aT + a). (3.25)

Following the strategy outlined in the previous section but with a single mode, we start with
the multi-coherent state ansatz defined in Eq. (3.1):

NCS

() =) [pn(t)\fn(t)ﬂ T+ @) )|,

n=1

where |f,) (|h,)) are here the familiar one-mode coherent states described by a single dis-
placement f, (h,). With only one frequency involved in the system, the variational method
introduced in paragraph 3.1.2 leads to only N, Euler-Lagrange equations, for each sector of
the spin:

doc_oc  doc_oc o2
dt 0p,  Opn dtof, Ofn
and the same for {¢g,} and {h,}. As long as the couplings are not too large, the number N
of Lagrange-Euler equations will remain small enough that one can obtain the set of values of
{Pn; Gn, o, hn} by directly solving the equations numerically.

In order to provide a benchmark of our simulations, we will be comparing this solution
with the one obtained by directly diagonalization the Rabi Hamiltonian in the Fock state basis,
which is described in paragraph 2.3.5.
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tA tA

Figure 3.1: Dynamics of the expectation value of the (o,) operator for two different values of the
coupling ¢g upon preparing the qubit in the [1) state. For those simulations we took the qubit energy
A = 0.1 and the mode frequency w = 1.0. The dynamics obtained from the MCS technique in shown
in red, while the dashed black curve is obtained by directly diagonalizing the Hamiltonian and by
performing a unitary evolution. The blue dashed lines correspond to the 4 snapshots of the field
shown in Fig. 3.2.

3.2.2 Quench dynamics

We start by considering a standard protocol in quantum optics: the quantum quench. The
idea is that initially the spin and the qubit are decoupled (g = 0), while the qubit is prepared

in a superposition of the two bare atomic levels |g) = [|1) —[{)]/v2 and |e) = [|1)+ 1) ] /V2,
and the bath is left in the vacuum:

Wit = 0)) = 1) j0) = 219

V2

Let us then assume that at t = 0 the coupling is switched on and that the system is left to
evolve dynamically. The subsequent spin evolution as obtained using the MCS technique is
shown in solid-red on Fig. 3.1, for two values of the coupling g. The result obtained from
direct diagonalization (2.97) is given by the black-dashed line, showing very good agreement
with our simulations in both cases. In the low coupling regime with ¢ = 0.1, in the left panel,
the spin is almost uncoupled from the bath, and is performing nearly free Purcell oscillations
driven by the tunneling operator o, in the Hamiltonian. Note that in this regime, using only
two coherent states in the MCS state vector is enough to obtain the correct spin dynamics.

At strong coupling with ¢ = 4, in the right panel, the spin dynamics becomes much more
complex, and requires at least N.s = 8 coherent states to reach convergence. Note some very
peculiar features of the evolution: after initially decaying gradually, as in the low-coupling
case, the spin tunnels back up to [1) for a short time at tA ~ 1.3 before it suddenly reaches
a plateau [87]. To understand this behavior we need to consider the corresponding dynamics
of the bath. We do so by calculating the Husimi Q functions of the bath Q(cr) and Q) ()
in the two spin sectors, which in the coherent state basis are given by the following concise
expressions:

®0). (3.27)

Qpy (@) = {af (T [¥) (¥ 1) |a) = mepn (@l fn) (fml), (3.28)

Quy (@) = (o (L [W) (¥[ |) |o) = quQn (@) (hunlar) - (3.29)
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Figure 3.2: Husimi Q functions of the field state of the |1) sector (left panels) and of the ||) sector
(right panels) at 4 different times of the quench dynamics for ¢ = 4,A = 1.0, and w = 1.0. The
displacement of the coherent states fy,(hy) with weight |p(n)| > 0.05 (|g(n)| > 0.05) are indicated by
white dots. Note in particular the trailing tail of the field excitation due to the o, tunneling of the
coherent states together with their qubit states, as depicted in Fig. 3.3a.
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Figure 3.3: Illustration of the physics involved in the tunneling regime (until w.t ~ 1.3) and in the
localized regime (w.t ~ 3.1) of the coherent state dynamics shown in Fig. 3.2. As indicated by
Eq. (3.30), the renormalized tunneling rate is strongly dependent on the overlap between the different
coherent states. If, as in panel (a), there is an overlap between the coherent states of the opposite
sectors then tunneling is allowed from |1) to ||) at a rate Ar. Note that the coherent states of each
sector tunnel via their spin states, in other words: |[1)|f1) tunnels into |]) |hs). Similarly, |]) |h1)
tunnels into |1) |f2). Because |f3) and |he) end up in the opposite sector, they become subject to a
strong force that reverses their momentum and directs them to the minimum of the new potential
landscape. If on the other hand, as in panel (b), the overlap between the two coherent states is nearly
zero, then the tunneling rate A is completely suppressed.

These functions are plotted in Fig. 3.2 at the four times indicated by the vertical dashed
lines in Fig. 3.1b. White dots have also been added on top of the color plots to indicate
the displacements of the coherent states with weight |p,| > 0.05 (|g,| > 0.05). The key to
understanding the physics of this time-evolution, is to note that the tunneling rate is strongly
dependent on the coherence (o,) between the two spin states, and therefore on the amount of
overlap between the field states of the 1 and | sectors. To see this, consider the renormalized
tunneling rate:

Agr=A{o,) = AZp;qm (fulhm) + c.c., (3.30)

m,n

which is the effective tunneling rate in the presence of non-vacuum field states. Clearly, as the
overlap (f,|hm) — 0, tunneling is blocked, and it is maximum when (f,|h,,) — 1.

Moving on to a detailed analysis, we note that at w.t = 0.3, the Husimi functions of both
sectors overlap almost completely, thus leading to maximum tunneling, consistent with the
rapid (o,) decay in Fig. 3.1b. Later, at w.t = 1.3, one can see that the fields have had time
to precess for about % of a period, and interestingly, both field states are developing a tail
that extends all the way to the opposite sector (especially in the down sector). This happens
because coherent states, which have already been displaced according to their spin orientation
through the coupling term o (a+a'), tunnel together with their spin state, and thus end up in
the opposite spin sector. Now located in the opposite sector, these coherent states are suddenly
endowed with a very high potential energy that directs them towards the minimum of their
new potential landscape. This process is depicted in a cartoon in Fig. 3.3a, where the spin-up
coherent state f; tunnels to a spin-down coherent state hy,. This tunneled coherent state is
what forms the peculiar tail in the Husimi function.
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After half a period of precession, at w.t = 3.1, the fields of the two sectors are now
at their maximum displacement and have minimum overlap, hence preventing any tunneling
from happening, as depicted in Fig. 3.3b. In other words (o) becomes localized, which explains
the plateau in Fig. 3.1b.

Finally, at w.t = 5.3, as the field states are about to complete one period, the overlap be-
tween the two sectors is progressively recovered which allows the tunneling to resume. This is
clearly demonstrated by the smear in the lower right quadrant of the | field, which corresponds
to coherent states that have tunneled from the lower-right quadrant of the 1 field. This is also
consistent with the beginning of the second phase of (o,) decay in Fig. 3.1b.

It is clear from this analysis of the Rabi model at strong coupling, that spin tunneling and
coherent state tunneling from one sector to the other are heavily inter-dependent: coherent
states can of course only tunnel via the spin tunneling, but spin tunneling can only occur
provided that the field states of both sectors are overlapping.

3.2.3 Convergence and coherent state spawning

The convergence of the quench dynamics with the number of coherent states in the MCS ansatz
(3.1) is extremely fast, as can be see in Fig. 3.4a: with only N, = 8 coherent states in the state
vector, our algorithm is able to converge the (0,) trajectory for g = 4. That same trajectory
required including all Fock states up to the 30-photon state |n = 30) (that is a 60-dimensional
Hilbert space for the whole system), in order to converge the solution in Fock space using direct
diagonalization. The MCS algorithm therefore provides a huge gain in terms of the number
of degrees of freedom that one needs to keep track of. We can of course further increase the
number of coherent states to decrease the error beyond the level at which the MCS solution
simply “matches” the exact result. This is clear from the right panel of Fig. 3.4 which shows
that by using 14 coherent states, we can further reduce the error obtained with 8 coherent
states by about 3 orders of magnitude.

One can also check the field convergence by comparing the Husimi and Wigner functions
[18] obtained with the two different approaches. The expression for the Wigner distribution
for our ansatz is given in appendix C. In the left panels of Fig. 3.6 we plotted the two functions
in log scale corresponding to the |1) sector at time w.t = 20 of time-evolution, and in the right
panels the same but obtained via direct diagonalization. They are clearly almost identical,
and it is in fact quite remarkable how the right arrangement of a few simple coherent states is
capable of describing the high complexity of this field state.

A subtle point of the MCS technique is that because the coherent state basis we are working
in is over-complete, when different coherent states in the state vector overlap exactly, that is
to say f, = fm for some n and m, the matrix representing the linear system of equations (3.26)
becomes non-solvable. For this reason, only one coherent state of the expansion (3.1) may be
initialized in the vacuum state |0) at ¢ = 0, and the other coherent states should be spawned in
the vacuum at a later point of the dynamics. The weight of the new coherent states ppe,, and
(new cannot be zero, as this would also result in a singularity in the equations (3.26). However,
as long as Prew = uew == 0, the vacuum values of f e and hpe, will only affect the state vector
negligibly.

A spawning algorithm was first introduced by Martinez, BenNun and Levine [88, 89, 90],
in the context of the frozen Gaussian method that we discussed in paragraph 3.1.5. Similarly
to our technique, by generating Gaussian states at the right time of the dynamics, they were
able to allow Gaussian-based classical trajectories to bifurcate into quantum superpositions of
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Figure 3.4: In the left panel we show the convergence of (o,) with the number of coherent states
for g = 4 with up to N.s = 8 coherent states in the MCS state vector. In the right panel we show
the error Err(tA = 6) at time ¢t = 6 as a function of the number coherent states used in the state
vector. The fast decrease of the error demonstrates the appropriateness of the coherent state basis
for studying regimes of high coupling.
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Figure 3.5: Evolution of error Err(¢) with time during the addition of the first 8 coherent states. The
threshold error at which an additional coherent is to be added in indicated by the green dashed line.
The drop of the error to 0, signals that a coherent state was added.

classical trajectories. This “right time” at a which an additional coherent state should to be
spawned depends on the specificities of the physical framework, and our solution for defining
that time is in fact different from the one used for frozen Gaussians.

One simple way to time the spawning of coherent states would have been to wait a time
0t for the initial (or previously spawned) coherent state to be pulled into the dynamics, so
that it moves away from its zero displacement state, and then to add a new zero-displacement
coherent state. This procedure would however not have taken into account the rate at which
new coherent states are required in the dynamics. A better way is to use the error Err(¢) defined
in paragraph 3.1.4 and to trigger the addition of a coherent state whenever Err(t) > Erryax,
where Err,,, is an error threshold that we set. To illustrate this, the error versus time for
the g = 4 regime is plotted in middle panel of Fig. 3.5, where one can see that as soon that
Err(t) > Erryae = 1075, Err(¢) drops to 0, indicating that a coherent state was spawned. It
is important to point out here that the error we defined is instantaneous, meaning that Err(t)
does not account for the error accumulated since the beginning of the dynamics. This is why
also the error returns to 0 as soon as a coherent state is added, because the coherent state
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Figure 3.6: Comparison of the Wigner and Husimi functions at w.t = 20 obtained using the MCS
technique (left panels) and the one obtained using direct diagonalization in Fock space (right panels).
The simulation parameters are the same as in Fig. 3.2. White dots indicate the center of the coherent
states with weight |p(n)|,|q(n)| > 0.05.

provides the extra degree of freedom required by that precise instant of dynamics.
This procedure thus ensures that coherent states will be added only when required, and
that the added coherent state does not end up on top of one another.

3.3 Qubit and bath dynamics in the spin-boson model

Having demonstrated the multi-coherent state technique on the Rabi model, we are now ready
to tackle the full many-mode spin-boson model that we introduced in paragraph 2.4.2:

A o,
H= 50 ng(ak + aL) + Zwkalak : (3.31)

k>0 k>0

We will first study the dynamics of the qubit following its preparation in the |1) state and
characterize the time scales at play as we go from the onset of the ultra-strong coupling
regime (o ~ 0.1) to the deep ultra-strong coupling regime (o ~ 1.0). We will then move
on to characterize the light emitted by spontaneous emission upon preparing the qubit in the
excited state. Using the Wigner function, we will see that the emission happens in the form of a
Schrodinger cat state of light, which however is not fully coherent, due to the slow decoherence
time scale T5 in the ultra-strong coupling regime.
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Figure 3.7: (Color online) Left panel: decoherence process <O'Z(t)> with typical decay time T5, for
increasing dimensionless coupling o = 0.1,0.4,1.0 (with coherent state number N = 2,6, 14, as
required to reach convergence in the respective regimes). In all computations, A/w, = 0.2 and
Niodes = 800. Right panel: energy relaxation process <U$(t)> with typical decay time 77, for the
same parameters. For a < 1, decoherence and relaxation times fulfill the usual relation To = 277,
but for o = 1.0 the two time scales are widely different, with To > T7.

3.3.1 Quench dynamics and relaxation time scales

We consider first the important issue of the time scales governing the qubit dynamics in the
ultra-strong coupling regime. For this purpose, we prepare the initial state in the same way
as we did for the Rabi model with the qubit in a superposition of the two bare atomic levels,
and with the bath modes in the vacuum:

l9) +1e).

V2

An important point is that, unlike the Rabi model we studied in the previous section, here the
system has a finite length L = 1/dk, where dk is the smallest wave-vector of the system. It
follows that within this finite size, our system is effectively an open system, in which the qubit
is allowed to relax to the ground state by releasing its extra energy outwards in the waveguide.
Since the qubit energy gap is described by the o, operator in Eq. (3.31) (as opposed to standard
quantum optics), one expects relaxation to happen over a time 7; for the longitudinal term
<ax(t)>, and over a time Ty for the transverse spin component <0z(t)> as it precesses and
decays to 0. This standard behavior is well obeyed in the weak-coupling regime o < 1, with
T, = 2T}, as seen from the dot-dashed green curve in the two panels of Fig. 3.7. For the
intermediate value o = 0.4 (full blue curve), precession of (0. (t)) is nearly over-damped, as is
well established [26].

Remarkably, the ultra-strong coupling regime o = 1.0 (dashed red curve) shows a striking
decoupling between the decoherence time T, and the energy relaxation time 77, with 75 > Tj.
The underlying physics can be anticipated: rapid decoherence is prohibited because the atom
is dressed by its electromagnetic environment [27] on a large spatial scale

U(Et=0)=0)®|1)=0)® (3.32)

L = (wp/A)/ (@) (3.33)

(here o, = 1 + A/w,, corresponding to the threshold of full localization). Decoherence thus
takes a considerable time T, ~ Lg for the complete relaxation of all quantum correlations
between the dressed atom and the radiated field. This effect is seen by the very slow decay of
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Figure 3.8: (color online) Left panel: error Err(¢) as a function of time with respect to the exact
Schrodinger dynamics for the challenging case v = 1.0 (here the atomic splitting is A/w. = 0.2),
which drops rapidly to zero with increasing N.. Right panel: error Err(t = T) at a fixed time
T = 80, as a function of the number of coherent states for « = 0.1, & = 0.4 (intermediate ultra-strong
coupling regime) and a = 1.0 (deep ultra-strong coupling regime), showing a scaling [Nes] 2.

(0.(t)) (dashed red curve in the left panel of Fig. 3.7). Indeed, for o« = 1.0 and A/w, = 0.2,
T, ~ 3000, which was not reached at the final time of our simulations. It is worth noting, that
this slow decoherence is in essence the same as the one that led to the temporary freezing of
the decay of (0.(t)) in Fig. 3.1(b) in the case of the Rabi model: the entanglement between
the spin and its cloud drastically reduces the spin coherence that was allowing the spin to
decay. As we will see in the following, this damping of the qubit decay by the cloud is key
to understanding the physics at play, due to its strong impact on the structure of the emitted
light.

Similarly to how we proceeded with the Rabi model in the previous section, we can study
the convergence of our solution by using the error Err(¢) defined in Eq. (3.23). Clearly, the
error is already small at all times for a single coherent state N, = 1, and goes quickly to
zero as number of terms in the decomposition Eq. (3.1) increases. The precise scaling of the
algorithm with N is demonstrated in the right panel of Fig. 3.8. We find that the error (here
computed at a fixed time T = 80) decreases typically with an inverse square power [Ng] ™2,
independently of the coupling strength «. This shows that our methodology is based on a
physically well-motivated decomposition of the state vector, and is not tied to a particular
regime of the spin-boson model. The coherent state expansion of the time-dependent state
vector (3.1) thus provides numerically accurate results in all regimes of coupling for a small
computational effort.

3.3.2 Quantum states of spontaneous emission

We turn to the emission protocol, taking now the bare excited level of the atom

1) +14)
[TE=0)=100® = =10)®]e), (3.34)
as the initial state. According to Wigner-Weisskopf theory [34] valid at weak coupling o < 1,
one expects spontaneous emission of a single photon and decay of the atom towards its bare
ground state. Although our theory (3.1) is based on coherent states and not Fock excitations,

we can show that it does recover the standard quantum optics results at « — 0, while providing
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Figure 3.9: (Color online) Real part of the coherent state amplitudes in real space f,,(x,T) and
h (2, T) (for m = 1,2) at a time 7" = 200 long enough that the emitted wavepacket is uncorrelated
from the entanglement cloud associated to the dressed atomic ground state (denoted as a shaded
area). Here A/w, = 0.2, and Ngs = 2, with o = 0.1 (top panel), o = 0.4 (middle panel), and o = 0.8
(bottom panel).

a simple physical picture in the ultra-strong coupling regime. For this purpose, we plot in
Fig. 3.9 the real part of the coherent state amplitudes f,,(x,T) and h,,(x,T) (of the first two
coherent states m = 1,2) as a function of the spatial separation x along the waveguide (the
atom is located at x = 0). Here we choose a time T > T, ~ Ly long enough that the system
has had time to fully relax to its dressed ground state. The emitted wavepacket is clearly
seen at a distance x ~ T, due to ballistic propagation of the wavefront, and the displacements
weights satisfy the following relations:

fi(z,t) = —fox,t) >~ —hy(2,t) =~ ho(x,t) = fap(z — 1),
Pm=-—p=Q=—@=Dp (3.35)

Within the spatial region x < Ly, where the atom is dressed by its static surrounding cloud,
a different set of relations is observed:

fl(xat) = f2($at> = —h1($,t) = —hg(fl?,t) = fCl('T)a
p1=-p2=q =—q¢ =p (amplitudes are the same as above). (3.36)
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Using these relations we can then separate spatially the coherent states into their cloud and
wave-packet components, which gives:

f1) = 1fa) ® | fup)

|f2) = fe) @ | = fup)

|h1) = | = fa) @ | — fup)

|ha) = | = fa) @ | fup)- (3.37)

These four relations can then be used to simplify the MCS state vector (3.1) for N = 2:

(D)) == [pul i) + ol 2|1 1)+ [anlhn) + aalha)] | 4)
Pl fuw) =PI} = Fu)] 11+ [l = fel = Fup) = Pl = )l fun)| | )
= [fa)l 1) = | = fa)l 9] @ p[lfun) = | = fup)]. (3.38)

12

The last line in (3.38) is straightforwardly interpreted as the absence of correlations between
the dressed qubit

[Wa) = [[fadl 1) = | = )l B)] V2, (3.39)

and the emitted wavepacket

W) = Vp[lfun) = = fin)]- (3.40)

This is physically expected as the system relaxes at long times to a unique dressed ground
state, while emitting a stream of electromagnetic radiation carrying the excess energy but no
quantum correlations with the atom. We stress that the above expressions for [¥) (3.39) and
|Wyp) (3.40) are only approximate, as quantum corrections arise at increasing « [69, 70] that
are accounted for by other coherent states in the MCS state vector (3.1).

The approximate state vector (3.38) nicely recovers the result of Wigner-Weisskopf theory
in the quantum optics regime o — 0. Indeed, in this case the displacements fq(z) in the
dressing cloud |V) are vanishingly small, and thus

W) = [0)[| 1) — | 1)]/V2=0)]g), (3.41)

so that the atom has correctly relaxed to its bare ground state. The quantum state describing
the emitted light also simplifies, since the displacements fy, (%) in the wavepacket |Uy,) are
also small. A first-order Taylor expansion of the coherent states in (3.40) gives

|\IJWP> - \/ip _|pr> - ’ - pr>i|
e \/§p _QZk fxlfrpaz_fvlg;ak _ GZk —fvlf,paz—ﬁ-fvlf,;ak :| |O>

V[t (3 foal — iz, ) — 1 (0 ~fhal + £, )] 0
B k k
~ 2\/§pz fvﬁpa2|0>, (3.42)
k

which is the expected one-photon Fock state. The monochromatic nature of the emitted light
can be seen from the spatiotemporal oscillations of the fields in the upper panel of Fig. 3.9, with
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Figure 3.10: (Color online) Left: photon number density <a£ak> /dk as a function of mode number k,
for & = 0.01,0.1,0.9, with A/w, = 0.2. Right: photon number in the wavepacket (solid line) and in
the total wave-function (dashed line).

an envelope controlled by the underdamped dynamics of the qubit (left panel of Fig. 3.7 for
a = 0.1). Moving towards the ultra-strong coupling regime for increasing « values (middle and
lower panel in Fig. 3.9), two major changes occur. First, the displacements in the entanglement
cloud * < Lk penetrate deeper and deeper within the waveguide, due to the increase of the
screening length Ly with «, as shown by the shaded area in Fig. 3.9. Second, the emitted
wavepacket becomes very localized temporally, with associated displacements that clearly grow
in magnitude.

We can further analyze the emitted wave-packets by studying the spectrum of the radiation,
which we show in the left panel of Fig. 3.10. In the quantum optics regime o = 0.01, the line-
shape is a narrow Lorentzian centered at the bare transition frequency A, which confirms the
monochromatic nature of the photon we pointed out in the previous paragraph. For increasing
a, the peak is shifted to lower frequencies due to the dressing of the atom by the bosonic bath.
But more remarkably, its line-shape becomes spectrally broad, which indicates the presence
of a large number of photons in the emitted wave-packet. This observation is confirmed by
the integrated number of photons in the wavepacket, shown in solid red in the right panel of
Fig. 3.10: as expected, the number of emitted quanta at very low coupling is exactly ny, =1,
it then increases steadily to reach ny, ~ 3 photons at & = 1. On the same plot, the dashed
blue curve shows the total number of photons in the system, that combines the n photons in
the cloud and the ny, in the wave-packet. The total of 6 photons reached at o = 1 highlights
the complexity of the quantum problem at play, involving more than 10007t ~ 10'® quantum
states.

These coherent state spatial profiles and the photon spectra certainly give us detailed
information concerning the photon and frequency content of the radiation, but what about
the profile of the quadratures of the field themselves? Indeed, due to the over-completeness of
the coherent state basis, it is very hard to get an intuitive idea of the field quadrature profile,
as the overlaps between the different coherent states shown in Fig. 3.9 carry as much physical
meaning as the coherent states individually. In the next paragraph, we therefore turn to a
detail study of the field quadratures to gain more insight regarding the quantum nature of
emitted radiation.
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Figure 3.11: Wigner distribution W () at ¢ = 900 identifying a one-photon state at o = 0.1 (left
panel) and a partially coherent cat state at & = 1 (right panel) with two positive classical lobes and
a negative region with reduced amplitude compared to —2/7 for a fully coherent cat. The function
was computed with N = 14 and Nyoqes = 1800.

3.3.3 Nature of the spontaneously emitted cats

Let us consider again the approximate expression of the emitted wavepacket we gave in
Eq. (3.40):

[Wup) = V2P| fuw) = | = fun)] (3.43)

As we saw in Eq. (3.42), when a — 0, this expression becomes the 1-photon Fock state. As
the displacements grow large however, as can be seen for o = 0.8 in the lower panel in Fig. 3.9,
this state clearly turns into an odd parity Schrodinger cat state of the field.

In order to check this idea on the converged state vector at = 1.0, which includes N = 14
coherent states, we computed the Wigner distribution. In contrast to photons released into
a cavity [91, 18], we stress again that the radiation is not purely monochromatic, due to
the significant damping effect on the atom caused by the strong coupling to the waveguide.
Accordingly, following standard practice [10], one uses an optimized temporal filter w(t) of the
output signal to define an effective creation operator

b = w(x)a'(x)O(x — L), (3.44)

T

in which a ©-function is used to filter out the static bound component of the screening cloud.
The Wigner distribution [18] is then computed using the standard expression

W(\) = % / d?B Oy(B)eM A7, (3.45)

with the symmetrized correlation function Cy(8) = (¥|e®*' 72| ¥). The full expression is given
in appendix C. For a = 0.1, the phase space distribution in the left panel of Fig. 3.11 shows
the characteristic circular form of the n = 1 Fock state with negative quasi-probability —2/7
at the origin.
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At ultra-strong coupling for o = 1.0, the emitted radiation undergoes radical changes, as
shown in the right panel of Fig. 3.11. The Wigner distribution now presents two positive lobes
(signature of the two classical configurations of the cat), but also a negative region near the
origin, fingerprint of the characteristic quantum interference, or “whiskers”, of a Schrédinger
cat. The strongly displaced lobes are consistent with the large number of photons accumulated
in the wave-packet at a = 1, as we saw in the previous paragraph. Surprisingly, the maximum
negative amplitude does not reach the expected value —2/7 of a perfectly coherent cat, al-
though our system does not present any extrinsic source of decoherence for the optical modes
(such as leaks into a 3D continuum). We argue that the physical source of decoherence is the
dressed qubit itself, which can be understood from the qubit dynamics shown in Fig. 3.7, in
relation to the separation of time scales Ty > T). Indeed, the cat state is emitted on a short
scale 71 ~ 1/w, in the ultra-strong coupling regime, due to the sudden release of energy. But
the atom maintains its coherence on a longer time scale T3, due to the entanglement between
the spin states and the cloud that prevents (o,(t)) from decaying. From the no-cloning theo-
rem [34], the quantum information stored in the dressed atom state cannot be fully transferred
to the wavepacket for times ¢t < T5, and thus the coherence of the emitted cat state is only
partial at intermediate timescales.

In this chapter, we have thus demonstrated the power of a variational method, dubbed the
MCS technique, that harnesses coherent states to describe the complex dynamics between a
qubit and a waveguide in the ultra-strong coupling regime. In particular, we have shown here
that we are able to describe accurately the process of spontaneous emission in a waveguide by
using a very small number of coherent states (N.s ~ 10), as opposed to an unmanageably large
number of states that we would have needed to consider in order the solve the problem in the
number state basis. A key to the success of this technique is the adaptability of the coherent
state basis, which allows the coherent state displacements to evolve in time, and therefore to
span different parts of the Hilbert space at different moments of the dynamics. It should be
noted, however, that the protocol presented to create the Schrodinger cat states of light is
very difficult to implement experimentally, and it is therefore unlikely that the phenomenon
we predict will be observed in the near future. In the next chapter on the other hand, we
will be looking at the more common and accessible protocol, namely the scattering of coherent
states on a qubit, which will allow us to probe the physics of the ultra-strong coupling regime
in greater detail.
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Chapter 4

Particle Production in Ultra-Strongly
Coupled Waveguides

In waveguide QED, many-body effects are expected to occur at ultra-strong coupling that
have no counterpart in standard quantum optics. An example is the spontaneous emission of
cat states that we demonstrated in the previous chapter, which involves the emission of many
light quanta over a large range of frequencies. There are many other examples of theoretical
predictions of phenomena taking place at ultra-strong coupling including giant Lamb shifts [26,
64, 92, 69, 93], single-photon down-conversion [29, 94|, non-RWA transmission line-shapes [64,
75, 95], and multi-mode entanglement [70, 27, 96]. The origin of all these phenomena is rooted
in the non-conservation of quanta occurring when the waveguide-qubit coupling energy becomes
of the same order as that of the qubit level spacing. It is therefore worthwhile that we focus
directly on physical measures of this non-conservation.

In this chapter, we will investigate particle production by analyzing the scattered output
of coherent wave-packets impinging on a qubit, the most common experimental protocol. The
scenario we consider is shown in Fig. 4.1, where a right-going coherent state pulse is injected
into a waveguide to which a qubit is side-coupled in the centre. We consider that the waveguide-
qubit system is initially in its ground state, meaning that the qubit is dressed by a cloud of
waveguide photons [27]. The scattering of the coherent state on this dressed qubit then results
in an outgoing transmitted pulse and a reflected pulse, that have acquired on general grounds
a many-body character [97].

After an overview of the state-of-the-art RWA solutions for this problem, we will first
develop a general many-body wavefunction approach for the study of inelastic photon emission
by a single two-level system. Detailed inelastic emission spectra will then be presented, in
connection with the relevant physical processes. Following this, we will provide a comparison
of our results to standard results in quantum optics based on the RWA. Finally, we will close
the discussion by analyzing the temporal correlations of the emitted light, which will reveal
several qualitative features of the ultra-strong interaction.

4.1 Coherent state scattering within the RWA

Before making use of the multi-coherent state (MCS) technique that has proven very effective
in tackling spontaneous emission in the previous chapter, let us begin by making a simple
assessment of the non-linear processes that can be readily described by the rotating-wave
approximation (RWA). This will allow the reader to get familiar with a simpler version of the
problem and to understand the necessity of going beyond the RWA. As illustrated in Fig. 4.1(b),
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Figure 4.1: Tllustration of the setup considered in this chapter: a long transmission waveguide (grey
horizontal line) is side-coupled to a two-level system, allowing the measurement of multi-photon
scattering matrices in a typical two-terminal geometry from the reflection and transmission (in red)
of a coherent state Gaussian wavepacket (in blue). (a) Complete problem, where non-RWA terms
cause the interaction with the qubit to spread within the wave-guide, leading to the presence of a
many-body polarization cloud tied to the qubit (in green) [27], which in turn renormalizes the qubit
resonance A to Agr . (b) RWA approximation: point-like interaction and no qubit renormalisation.
The contents of the outgoing wave-packets is limited to RWA contributions.

dropping the counter-rotative terms simplifies the problem by removing the qubit polarization
cloud and the renormalisation of the qubit energy altogether (when the RWA is performed
using an approximate point contact interaction [98]). In addition, scattering of Fock states
can be described within a smaller subspace of number-conserving states [15], which is easier to
handle theoretically. However, the fact that the RWA misses out on the qubit renormalisation
requires to set “manually” the qubit frequency to be the renormalized frequency Ag (found
numerically with the full MCS calculation), if one is to obtain any quantitative result within
the RWA. The complete RWA calculation on which the following results are based is beyond
the scope of this discussion. For a detailed derivation using the input-output formalism, the
reader may refer to appendix D.

In the left panels of Fig. 4.2, we show the scattered radiation spectrum for an incoming
off-resonant beam with kg = 0.16 ~ 2Ag. In these simulations, the renormalized qubit energy
was taken to be A = Ar = 0.083w,, while the wavepacket was given a mean photon number
n = 0.5 and a linewidth ¢ = 0.005w.. Note that although the incoming beam is far detuned
from resonance, a small fraction of the signal is still reflected due to the high coupling (o =
0.1). More interesting however, is the conversion of the incoming frequency kq to two lateral
frequencies, located at k = Ag and k = 2ky — Ai. Having in mind that we are only considering
the rotating terms, the physics here is clear: a 2-photon process is occurring which redistributes
the energy of two photons incoming at ko into a spontaneously emitted photon at Ar and
another at energy 2kg — Ag. As shown in Fig. 4.3, this is clearly an RWA process, as its
vertices only involve the quanta-conserving processes.

If we now consider an on-resonant drive with kg = Apg, as shown in the right panels, the
major part of the beam is reflected, but an important part of the signal is still transmitted due
(in part) to a significant fraction of N > 1 Fock states in the incoming state (the RWA cannot
reflect 2 photons at once). The inelastic contribution to the spectrum can also be seen in the
on-resonant case (Fig. 4.2b), as shown in the bottom panel by the long tails that extend beyond
the width on the incoming wave-packet, and that account for up to 10% of the transmitted
signal. These tails can be explained by the same 2-photon process (Fig. 4.3): this time the
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Figure 4.2: Mean density of photons at momentum & in the outgoing left /right wavepackets (in blue)
within the RWA approximation. The parameters for this simulations are the qubit energy Ar = 0.1w,,
the coupling a = 0.1, the mean photon number 7 = 0.5 and bandwidth ¢ = 0.005w,. Left panels: off-
resonant drive with momentum k¢ ~ 1.9AR, leading to inelastic bands at £k = Agr and k& = 2k — Ag.
Right panels: on-resonant drive with kg = Ag. The inelastic RWA process (shown below) gives rise
to wings reaching beyond the width of the incoming wave-packets.
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Figure 4.3: Diagrammatic representation of an RWA frequency converting 2-photon process.

qubit is absorbing two on-resonant photons at ky = Ag and reemitting two photons laterally
within the extent of its linewidth at A + 6k and Ap — 0k.

It is common knowledge that the RWA becomes exact as « — 0, but how well does it
actually fare in this finite o regime, already at the onset of the ultra-strong coupling? Indeed,
in the ultra-strong coupling regime, where the linewidth of the qubit energy becomes of the
order of its energy splitting, one expects many-photon processes to become increasingly likely,
which includes particle non-conserving processes. In fact, an off-resonant photon-producing
process which “splits” a single incoming photon into three lower energy ones, was recently
discovered by Goldstein et al. using perturbation theory [29], and is predicted to lead to a
broad low-energy continuum in the scattered spectrum (see Fig. 1.6, and the related discussion
in section 1.3). Clearly, this splitting is an example of a process that cannot be described by
an RWA quanta-conserving process, which points to a severe limitation of the RWA regarding
its potential to describe inelastic scattering in the ultra-strong coupling regime.

Having demonstrated in the previous chapter that the multi-coherent state technique is
capable of tackling the waveguide-qubit interaction all the way up to the deep ultra-strong cou-
pling regime (a ~ 1), it appears to be a good candidate for taking over where the RWA seems
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Figure 4.4: (a) Second order correlation function go(7) calculated in reflected wave-packet, for the
same parameters as Fig. 4.2(b). Note that go(0) = 0, implying at at any point in the wave-packet,
there is at most one photon. This is known in the literature photon anti-bunching. We have also
denoted 7y, the time required for ga(7) to reach 0.5. (b) Illustration of the expectation value of
the local photon number (n(x)) at the beginning of the simulation (in blue) and at the end of the
simulation right after annihilation of a photon at z¢ (in red). The qubit is located at x = 0. As
shown, the annihilation results in a dip in the photon density centered at xy and of width twice the
time scale 74, of the go function. The reflected signal before annihilation is shown by the grey dashed
lines.

to be failing. It should be noted however, that the scattering of a coherent state on a two-level
system is a significantly more complex and challenging problem than our idealistic description
of spontaneous emission in chapter 3. For one, scattering involves both the absorption of part
of the signal by the qubit, followed by re-emission, implying that the emission process is only a
subpart of the physics involved. Secondly, since we are interested in long enough wave-packets
(i.e. a small wave-packet linewidth) in order to define a nearly monochromatic drive, the scat-
tering will involve a continuous sequence of excitation and reemission by the qubit which will
lead to a highly non-trivial scattered quantum state. The complexity and quantum nature
of this state of light is best revealed in the second-order correlations as measured by the g
function given by:

oy - tab@®)al(t+ T)an(t + 7)au(t)) i1
92(.7) (@t + )au(t + 7)) (@b (t)an(t))’ (41)

which gives the probability of measuring a photon at the point x of the waveguide and at
time t + 7, provided that a photon was already measured at time ¢t. To get an idea of this
complexity, we calculated this g(7) in the reflected wave-packet of the on-resonant RWA-
simulation corresponding to Fig. 4.2(b), and plotted that function in Fig. 4.4a. In particular,
we see that at 7 = 0, the gy function vanishes, meaning that the simultaneous measurement of
two photons is impossible (at least within the RWA). In the literature, photons anti-correlated
in this fashion are often referred to as anti-bunched. Note that the time scale giving the shape
of the g is a non-trivial function of the qubit relaxation rate I' = mAra and of the drive power
[99]. For convenience therefore, let us simply denote 7,, the time required for go(7) to reach
0.5.

Finally, to get some insight into the structure of the anti-bunched radiation, we show in
Fig. 4.4b the mean number of scattered photons in the waveguide, right after the first photon
was measured, say at xo by applying the annihilation operator a,,. Although in circuit QED
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measurement is generally performed by measuring the voltage of the signal (a + a')/2, it is
instructive to consider what would be the effect of the direct destruction of a photon in the
emitted signal. What we see is that a dip entirely depleting the photon density at xq is created,
which has a spatial width of twice the time scale of g5(7) (since we took ¢ = 1, the time scale
is also a spatial scale).

In the following, we move on to the investigation of contributions beyond the RWA to
obtain a full solution to the scattering problem by making use of the MCS technique introduced
in the previous chapter.

4.2 Many-body coherent state scattering formalism

4.2.1 Two-level system coupled to a double-sided waveguide

Until now, we have only been working with right-propagating waves when studying spontaneous
emission, and have therefore only needed to take into account the positive kK modes in the spin-
boson model. Since we are now interested in simulating a wave-guide on both sides of the
qubit, with reflected waves traveling to the left and transmitted waves traveling to the right,
we now need to consider the full range of positive and negative momenta k (with w(k) = |k|)
in the spin-boson model:

A o,
H = 50 5 gla, + al) Zwkakak ) (4.2)
keR keR

where gi"!! here stands for the coefficient of interaction between mode a, and the full double-
sided waveguide.

In order to simplify the problem, we start by folding the bosonic modes onto a half-line,
by defining even and odd modes:

1 1
ag = 7 (ag +a—) and aj = 7 (ar, —a_yg), (4.3)
so that the Hamiltonian (4.2) can be rewritten as
o A O e et ef e of o
H—g%—gzgk(ak —l—ak)—l—Zwk[akak—l—akak] (4.4)

k>0 k>0

with the coupling constant to the even modes, g, = v/2 2¢l With this simple manipulation,
we have recovered the form of the spin-boson model we had derived in paragraph 2.4.2. The
value of gy, is the one given by Eq. (2.124).

According to Hamiltonian (4.4), only the even modes are interacting with the qubit, while
the odd modes are freely propagating. This allows us to write the state vector |¥) as the direct
product of the even sector |¢°) and the odd sector [¢°):

W) = [¢9), @ [%), = [¥°), [v°), , (4.5)

provided the initial state can be decomposed accordingly. The dynamics in the odd sector is
essentially trivial, while many-body effects have to be considered to capture the dynamics in
the even sector. The strategy will therefore be to use the MCS ansatz to describe the even
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sector [¢°), only, while the odd sector |¢)°) , detailed in the next paragraph, maintains a very
simple form:

NCS

W)= [pm(t)|fm(t)>| T+ @@ ()] 1) | ©[9°),, (4.6)

m=1

The details of the preparation of this state for performing scattering simulations is a topic we
address now.

4.2.2 General coherent state scattering formalism

We now process to prepare the initial state in order to perform scattering simulations ac-
cording to the scheme in Fig. 4.1(a). The generic difficulty is that the qubit is dressed non-
perturbatively by a cloud of photons in the ultra-strong coupling regime [26, 92, 70, 94, 27, 93],
so that this ground state assumes a many-body character. Thanks to the MCS ansatz intro-
duced in eq. (4.6), we can efficiently express the static ground state of the joint qubit and
waveguide system in terms of multi-mode coherent states:

NGS

cs

0S) = 355 (17550l 1) = | = £S5l D)]10)o, (4.7)

m=1

where we enforced the Zy spin-symmetry of the spin-boson Hamiltonian (4.4) to simplify the
expression. We have also used the fact that the odd modes do not interact with the qubit,
which is why in (4.7) the ground state displacements involve only even modes, while odd modes
are kept in the vacuum state.

By implementing numerically a variational optimization [70, 69], one can determine the
set of weights p$S and displacements l?sl, and thus obtain an exact result for the ground state
up to negligible numerical error. Conveniently, only a small number of coherent states NG5,
typically less than 10, are required in the realistic domain of parameters of the spin-boson
model.

The second step in the scattering picture of Fig. 4.1 is to include a wavepacket (in blue)
impinging on the dressed ground state. We will work in what follows with a single coherent state
pulse as input, which is realistic in terms of the classical sources used in actual experiments.
Let us denote z; the displacement of the incoming wave-packet in mode k of the physical

waveguide, and z, its Fourier transform to real space:
[ dk
—oo V2T

We choose to use here a Gaussian-shaped wavepacket

ety (4.8)

Zx

1
Zk _ \/ﬁ ( 1 ) 4 6_%6—i(k71€0)2067ﬂ€010/27 (49)

2w o2

corresponding to a signal initially centered around position xy in the waveguide, with mean
wavenumber kg, spatial extent 1/0, and total intensity corresponding to 7 photons on average,
as indicated on Fig. 4.1. The associated real space wavepacket is then

202\ 1 2,2 ik koo /2
2. = Vi [ — ] e (#=%0)°0% gtiko(z—z0) +ikowo/2 (4.10)
T
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Note that these amplitudes are both normalized so that [~ dx|z,|> = [7_ dk|z|* = n.
The even and odd parts of the incoming wavepacket are then defined strlctly for £ > 0 as

1 1
E E (Zk — Z_k) .

Since even and odd modes commute, we can then define a displacement operator D(z) for the
initial incoming wave-packet which verifies:

2,2%) = D(2) |0) = D(z°)D(z°) |0) (4.12)
= Xrso(#a ~27 0k )  Tio (2hai —287a1) )

zp = (21 +2-) and zp = (4.11)

The final step in the initialization of the state vector is to combine the incoming wavepacket
coherent state |zx) in Eq. (4.9) with the displacements entering the full many-body ground
state (4.7). Using the operator D(z) we just defined, we readily find for the spin-up projection
of the wavefunction

[T1) = D(2°)D(=°) |F) (4.13)
NGS
— e2k>0 zfay, —c.c. Zpgsezmo fﬁfna?—w |0>6 |ZO>O ,
which can be recombined using the standard relation e4e? = eA+B e%[A’B], valid as the com-

mutator here is only a number. The initial state associated to the 1 qubit state thus reads:

NGS
|\IJT ZPGSGZ Zk>0(zkaS* Gﬁsﬂ)62k>0[(flgfn+z;z)a?7(ka’7Sn+Zz)*ai] |O>e |ZO>0 : (414)

For the spin-down projection, one simply replaces f", G5 hy kaS@ without changing the sign of
2y, so that our total initial wavefunction is given by

NGS
(o) = ZP [IT ) 3 Zioo (100 =2 105) e Xuoo[ (A5 +20)oi = (£, +28) " of] (4.15)

4 e Donal 85 48R Dol Al (a5 el oy, |2,

The many-body scattering theory thus amounts to use state (4.15) as the initial condition
for the dynamical equations of motion (3.11)-(3.12). During the dynamics, as the incoming
wavepacket impinges on the qubit, the necessary number of coherent states N will sensibly
grow from the initial value NG5 due to non-classical emission, therefore requiring to add extra
coherent states to the state vector when needed (the procedure is the same as for the Rabi
model, which was detailed in paragraph 3.2.3). In the odd sector, which is completely decoupled
from the qubit, the related displacements are trivially evolving in time according to 2] = w2y,
and a single coherent state is enough for the whole time-evolution.

After a given time 7" long enough to ensure interaction of the wavepacket with the qubit and
subsequent decoupling of the reflected and transmitted wavepackets from the many-body cloud
surrounding the qubit, one expects on general grounds a factorization of the final wavefunction
as:

[T(T)) =[P @ [TOVT), (4.16)
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where |U©%) is the many-body ground state of the spin-boson model and |[¥OUT) a many-body
outgoing wavepacket that contains a non-trivial decomposition of the emitted signal in terms
of a large number of multi-mode coherent states (typically NOUT ~ 20 — 30):

OUT
N Nmodes

“I]OUT Z pOUT H efOUT eT fOUT*ak ]|0> (417)

Clearly the quantum many-body character of the scattering process is encoded in the sum
over more than a unique coherent state, in contrast to the incoming wavepacket (4.12) that is
characterized by a single coherent state (namely a classical-like signal).

Extracting the wavepacket contribution (4.17) from the long-time wavefunction (4.16) can
be performed as follows. The complete set of displacements {fg,,(T), A, (T)} in the even
sector at a fixed long time T for the full wavefunction (4.6) are first Fourier transformed to
real space using (4.8). The local photon density n(z) associated to these displacements is
sketched in Fig. 4.1: photons are either bound statically near the qubit (associated to the
dressed vacuum, in green) or travel in the outgoing wavepackets (in red). The displacements
are then simply set to zero in the region surrounding the qubit, and Fourier transformed back
to the momentum basis. Due to factorization (4.16), the outgoing wavefunction is recovered up
to a normalization factor, which is supplemented accordingly. The even modes thus obtained
and the trivial odd mode wave-functions are finally combined together, allowing reconstruction
of the full outgoing wavefunction for the physical waveguide.

4.2.3 Number resolved spectra

In order to analyze the content of the scattered wavepackets, we will need to assess the nature
of the particle production in the scattering process. For this purpose, we derive the inelastic
spectrum in terms of Fock states | V). First, consider the general expansion of the multi-mode
outgoing wavefunction (4.17) in terms of number states:

|\I}OUT> _ ,Y |0 + Z akak |O + Z Oékl k2ak;1ak2 |0>
k1,k2

+ Z akl’k%kSaLlakQaks 0y + ... (4.18)
k1,k2,k3

It can then easily be verified that the 1-photon amplitude is given by:

and that the scattering amplitude for a generic N-photon state is:

1
Ay ky = N' <0‘ Ay ... Ay ’\IJOUT N' anfkl, ka7 <O|fn> ) (420)

which can be obtained straightforwardly from the algebraic identities of coherent states. For
the sake of clarity, we have dropped the OUT labels on p,, and f, ;. From the multi-photon
amplitudes, we can then compute the probability distribution for finding a photon in a given
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k mode, according to the various Fock contents of the total wavefunction:

<nk>1photon = |Oék|27

<nk>2ph0ton = 4 Z |ak,k1 ’27
k1

<nk>3phot0n = 18 Z ’ak,k2,k3‘2- (421)
k2,k3

4.3 Multi-photon inelastic scattering

4.3.1 Elastic emission and high power saturation

As a first illustration for our dynamical many-body scattering method, we investigate reflection
as a function of the frequency and power of the incoming signal. This problem is particularly
challenging because of the combination of non-perturbative ultra-strong coupling with non-
equilibrium effects that arise at finite input power. Ultra-strong coupling scattering at non-
vanishing power has been addressed previously with approximate techniques [64, 75, 95, 66] and
with more advanced numerical methods [92, 94]. However, systematic extraction of many-body
scattering matrices has not been performed to our knowledge.

Our calculation scheme proceeds similarly to an experimental setup: the incoming Gaus-
sian coherent-state wavepacket, shown schematically in blue as a distribution of photons in real
space in Fig. 4.1(a), is initialized to the left of the qubit. The qubit is placed at position z = 0
as seen from its sharply decreasing photonic cloud [27] which is present in both the input and
output ports, but remains statically bound to the central impurity. After propagation towards
the qubit and subsequent interaction, the photon flux decouples at long times, and is separated
into a reflected left going (k < 0) signal and a transmitted right going (k > 0) signal, both
shown in red in Fig. 4.1(a). Note that in all the simulations made in this paper, we have
considered the linewidth o of the wavepacket in k-space to be smaller than the qubit linewidth
' (in order to achieve high spectroscopic resolution), but large enough to keep the simulations
on a reasonable system size (typically we consider from Nyoges = 1000 to Nyodes = 3000 modes
for the chain in the even sector). All calculations are done in units of the plasma frequency w,
as defined in the spectral density (2.121), and the wavepacket linewidth appearing in Eq. (4.9)
is taken as o = 0.005w,, unless indicated otherwise.

We define the reflection and transmission coefficients in the following way:

_ Z’€>0 <a;r€a’k >0ut and R = Zk<0 <acha’k >0ut

Zk>0 <a2ak >in Zk>0 <a2ak >in

where we have denoted (...); the average over the state vector corresponding to the coherent
incoming wave-packet before scattering, and (...) , the average over the many-body outgoing
wave-packet after scattering. Both are obtained from the full state vector (4.17) by simply
filtering out in real-space the polarization cloud associated with the ground state, as explained
in paragraph 4.2.2.

Results for different values of the incoming power are shown in Fig. 4.5. The probability of
reflection generally increases on resonance; indeed, for elastically scattered photons, inference
effects cause the near extinction of the transmission signal, leading to an almost complete
reflection when exactly on resonance. For small values of the incoming power (7 = 0.01
and n = 0.1), for which the initial coherent state wavepacket has a very small probability of

: (4.22)
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Figure 4.5: Saturation effects in the reflection and transmission coefficients as a function of the incom-
ing wave-vector kg, for three different amplitudes n = 0.01,0.1,2.0 of the input, with a wavepacket
width ¢ = 0.005w.. These curves correspond to converged numerical data with up to N = 16
coherent states in the MCS wavefunction (4.6). The bare qubit frequency is A = 0.1lw. and the
dimensionless light-matter interaction is o = 0.1, leading to a sizable renormalized qubit frequency
Apr ~ 0.08w,.

containing Fock states with more than 1 photon, one can note that the reflection only reaches
R ~ 0.9 at peak value. This incomplete reflection of the photons arises from the finite linewidth
of the incoming wavepacket, and not from inelastic losses. Since our incoming Gaussian pulse
is not perfectly monochromatic, the modes at the edge of a resonant incoming beam (centered
at kg = Ag) are slightly off-resonant and do not get fully reflected by the qubit.

Even in the present case of a relatively small light matter coupling a = 0.1, many-body
effects due to the ultra-strong coupling are apparent in the reflection curve of Fig. 4.5. First,
a non-Lorentzian asymmetric line-shape is obtained, with a high energy tail more prominent
than at low energy. In addition, we clearly observe a substantial renormalisation of the qubit
frequency Ag ~ 0.08w, from its bare value A = 0.1w.,.

For higher incoming power, one physically expects saturation effects to take place, and
these are clearly evidenced by the curve with average number of photons n = 2.0 in Fig. 4.5.
We stress that converging such computations in the high power regime is quite challenging, and
approximate techniques such as single coherent state truncation lead to uncontrollable noise
levels, as found in previous work [75]. It will be shown in paragraph 4.3.5 that the reflection
curve converges smoothly at n = 2.0 for about N, = 16 coherent states in the MCS state
vector (4.6).

4.3.2 Off-resonant particle frequency-conversion spectra

We now turn to the analysis of the emitted radiation in the off-resonant case, in which the
system is excited at a frequency ky above the renormalized qubit transition frequency Ag. A
typical inelastic spectrum is shown in Fig. 4.6(a), here for ky = 0.16w., Ar = 0.08w,, and an
injected 7 of 0.5. The stronger transmission relative to reflection (upper panel) is simply a
result of the off-resonant situation ky ~ 2Apg, in agreement with the reflection curve in Fig. 4.5.
The vertical scale is expanded in the lower panel, so that the inelastic contributions are made
apparent at the foot of the large reflection and transmission elastic peaks located at +ky. Note
that the actual linewidth of this elastic peak, set by ¢ = 0.005w,,, is in fact much smaller than
what the lower panel seems to indicate, because the maximum peak amplitude is 2000 times
higher than the scale of the graph. The grey-shaded curve displays the expectation value of the
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Figure 4.6: Mean density of photons at momentum k in the outgoing wave-packet calculated with
the MCS technique, with the same parameters as in Fig. 4.2 (« = 0.1, 0 = 0.005, n = 0.5). The total
outgoing signal (grey shaded) is decomposed into Fock resolved excitations with N = 2, 3,4 photons
(blue, red, green curves), in order to highlight the processes of Fig. 4.9. Left panels: off-resonant
drive with kg = 1.9Ag. The simulations were performed by considering a wavefunction containing
N¢s = 30 coherent states, and Npyodes = 1200 modes. Right panels: on-resonant drive with kg = Ag.
Because of the wavepacket finite linewidth o, a small fraction of one-photon states is still transmitted
(orange dot-dashed line), despite being on resonance. Besides the wide inelastic wings, the two-photon
contribution (in blue) presents a 3-photon continuum (in red) magnified in the inset.

0.2
0.1
SR04
< 00 0.0
~e
~0.1
03 = i, 02
20.3-02-0.1 0.0 0.1 0.2 0.3 ~02 -01 00 01 02

ki /we i 2ko — Ar Ky /we

Figure 4.7: Left panel: probability distribution of the two-photon states |ak17k2|2 /dk? corresponding
to the 2-photon curve in Fig. 4.6(a). The clear inelastic sidebands correspond to frequency exchange
between 2 photons. Right panel: probability density distribution |ou, gy ks=nj|?/dk® of the three-
photon states in which one photon is at the resonance frequency k3 =~ Ap, corresponding to the
3-photon curve in Fig. 4.6(a). The emission continuum associated to particle production is revealed
by the diamond-shaped line.
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Figure 4.8: Left panel: Frequency conversion spectrum by going deeper in the ultra-strong coupling
regime (a = 0.1,0.2,0.3) for an off-resonant incoming wave-vector ky = 0.2w.. Although the resonance
frequency Agr and inelastic linewidth 7}?61 were optimized, one observes increasing deviations to the
fitting formula (E.1) at larger . Enhanced scattering of low-energy modes, precursor of the Kondo
regime, originate from non-perturbative many-body corrections beyond the lowest order perturbation
theory of Ref. [29]. Right panel: Low-energy inelastic spectrum for several off-resonant values of
the incoming momentum kg = 0.16,0.20, 0.25w. obtained using the MCS technique, together with
a comparison to the analytical formula (E.1), using a fitted and momentum-dependent linewidth

vr(ko). [Unspecified parameters on both plots are the same as in Fig. 4.6(a)].

total number of outgoing photons <a,1ak )ous While the dashed line indicates the total number of
incoming photons <a£ak );, centered around k. The first striking result is the broad spectrum

of emission extending fro;n the qubit frequency Ag all the way down to £ = 0.

The solid, colored lines display how the total outgoing photon contribution is distributed
among different Fock states |N) with photon number N = 2,3 4, allowing us to assess the
nature of particle production. (see paragraph 4.2.3 for details on the method). Note that the
majority of the inelastic emission involves 3 and 4 photon contributions. Since the incoming
average photon number is only 0.5, clearly substantial particle production is occurring. Both
the broad inelastic spectrum and particle production are quintessentially ultra-strong coupling
phenomena. The two-photon scattered spectrum, in blue, is the two photon inelastic RWA
process (Fig. 4.3) that was identified in the RWA spectrum in Fig 4.2 that occurs by distributing
the total incoming energy 2kg into a resonant photon at Ar and another at 2ky — Agz. On
the other hand, for a single incoming photon with momentum kg, since the emission is still
maximum at the (renormalized) resonant qubit frequency Ag, an excess energy of kog—Ag must
be distributed between two extra outgoing photons (in order to properly relax to the ground
state). The accessible non-resonant states thus lead to the non-RWA 3-photon emission process
shown in Fig. 4.9(a). In general, the two extra photons that are produced are not resonant, and
the amplitude of the total process is sizable only because of the ultra-strong coupling regime.
Indeed, the elastic reflection curve of Fig. 4.5 is spectrally very broad, and emission does not
necessarily involve strictly resonant photons.

The non-RWA nature of the particle production process is obvious from the non-conservation
of excitations: the middle red arrow in Fig. 4.9(a) corresponds to the emission of a photon
upon ezcitation of the two-level system (instead of the usual de-excitation). Four-photon pro-
duction is also displayed in panel (a) for an input state with two photons. In this case, one
input photon is elastically scattered at kg, while the second input photon splits into three
photons similar to the process in panel (b). Since the RWA 2 — 2 process in panel (a) and the
non-RWA 2 — 4 process in panel (b) come at the same order in the input power, they can be
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Figure 4.9: Diagrammatic representation of some non-RWA non-linear photon processes occurring
during scattering onto a two-level system. Panel (b) shows the one photon to three photon conver-
sion [29], which leads to a broad emission continuum, sharply peaked at the resonance Apr in the
case of an off-resonant drive. Panel (c) is a similar particle producing process, now with two input
photons, one being down converted to three photons, the other photon being elastically scattered.

used to directly compare the relative strength of RWA and non-RWA processes. Note that all
three processes of Figs. 4.9 and 4.3 are clearly observed in the spectrum shown in Fig. 4.6(a),
as the emission amplitude is decomposed into photon number states N = 2,3,4. In view of
the wide use of the RWA in the quantum optics context, the main surprise in these results (to
be discussed in more detail below) is that non-RWA processes strongly dominate in amplitude
the RWA processes.

Some of the off-resonant processes were previously predicted perturbatively [29] in the
a — 0 limit and at the Toulouse limit. Using the MCS method, we are able to characterize
quantitatively the non-linear emission for the first time up to a = 0.3, as shown in the left
panel of Fig. 4.8. The main effect brought by stronger coupling is a further renormalisation
of the spontaneous emission line Ar down to lower values, as well as a global increase of the
probability for inelastic conversion. Interestingly, we find that the perturbative formula (E.1),
given in appendix E, cannot quantitatively describe our data anymore in this regime, even
when allowing to fit the inelastic linewidth. Perturbation theory thus fails to capture the pile-
up of low-energy photons found in the numerical simulations, which signals the approach to
the incoherent Kondo regime, in which the qubit resonance is fully washed out.

Note nonetheless, that for « = 0.1 and for various values of the incoming momentum
ko, the results from perturbation theory match our results quantitatively when allowing to
fit the inelastic linewidth, as shown in the right panel of Fig. 4.8. More details are given in
appendix E.

4.3.3 On-resonant frequency-conversion spectra

We now consider the resonant case where the incoming photon energy ky = Ag matches the
renormalized atomic transition energy. Fig. 4.6(b) shows the total transmitted signal as well
as its decomposition in terms of number states with N = 1,2, 3 photons. As we had observed
on Fig. 4.2(b), the two-photon amplitude in this regime is strongly enhanced with respect to
the off-resonant situation of Fig. 4.6(a). One-photon contributions are also observed as two
side-bands away from the resonance Ag, which are due to the finite width of the incoming
wave-packet. The resonant 1-photon state (at exactly k = kg) is completely reflected, as
expected. The on-resonant regime is a promising one to observe experimentally non-linear
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effects, because of the enhanced magnitude of the inelastic signal, as compared to the weaker
off-resonant situation of Fig. 4.6(a). Note also, that the blue curve in Fig. 4.6(b), gives us
confirmation that the long inelastic tails in Fig. 4.2(b), which corresponded the total mean
number of photons, are indeed due to the 2-photon RWA process.

As in the off-resonant case, the resonant scattered spectrum also presents a 3-photon low
energy continuum, as can be seen from the inset. The shape however does not present any
sharply peaked feature, since this time the continuum does not contain the resonant frequency
k = Apg at which the qubit spontaneously reemits. Instead, the spectrum is more flat, implying
the single photon splits more uniformly into all the possible (ki, k2, k3) allowed by the 1 — 3
process of Fig. 4.9. Interestingly, the magnitude of this 3-photon continuum is of the same
order of magnitude as in the off-resonant case of Fig. 4.6(a), since non-linear processes are here
intensified by having an on-resonant input, which compensates for the absence of an enhancing
resonant frequency in the output below ky. Again, this particle production process dominates
the RWA contribution, but here only away from the probe frequency. The spectral line-shape
of this resonant inelastic signal will be further analyzed in section 4.4.

4.3.4 Particle production processes

We now investigate more precisely the photonic content of the emitted radiation in the inelastic
channel. Let us start with the 2-photon particle-conserving RWA contribution (blue line in
Fig. 4.6(a)) forming two lobes symmetrically arranged around the main elastic peak (at ky =
0.16w.). The lowest energy lobe is centered around k ~ 0.08w. ~ Apg corresponding to the
spontaneous reemission of the qubit, while the high energy lobe is located around k ~ 0.24w,. ~
2ko — Apg, as expected from energy conservation (panel (a) in Fig. 4.9). A closer view into this
two-photon joint emission process is given by the complete two-photon probability distribution
|, &, |? that is plotted in the left panel of Fig. 4.7 (see paragraph 4.2.3 for details).

The main 2-photon elastic peaks are the white disks located at [tko, £ko|, that have
been cut-off in order to magnify the small inelastic contributions. From the lateral inelastic
peaks, one can immediately read-off the two-photon frequency conversion process in which two
photons with energy kg redistribute their energy into one photon with momentum Apg and
another with energy 2ky — Ag.

The inelastic spectrum originating from the conversion of a single incoming photon into
three outgoing photons, with probability <nk>3phot0n of measuring one of these photons at energy
k, is represented by the green curve in Fig. 4.6(a). This inelastic line-shape presents quite
unusual features: a sharp resonance at the qubit frequency Ag, a broad continuum extending
from zero energy up to the foot of the elastic peak, and a small lobe at the same energy
2ky — AR as the previous two-photon conversion process. The latter is easily understood as an
input of three photons with momentum kg, out of which one photon is elastically scattered,
while the other two are RWA frequency converted to Ar and 2ky — Ag (similar to the previous
2 — 2 RWA process). We have checked that this 3 — 3 RWA process becomes relatively
weaker in amplitude as the input power 7 is turned down, and is indeed therefore associated
to a three-photon input.

The broad low-energy continuum is readily explained by the 1-photon to 3-photon non-
RWA conversion process shown in Fig. 4.9(a). This interpretation is backed up by studying
in the right panel of Fig. 4.7 the probability distribution |, g,ks=n,|*> of 3-photon outgoing
states for which one of the three outgoing modes is resonant, k3 = Ag. To understand the
diamond pattern, one can observe that the process leading to the diagonal line in the top-left
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Figure 4.10: Left panel: Power reflection spectrum shown for different number of coherent states
Nes = 1,4,16 included in the MCS wavefunction (4.6), with the same parameters as in Fig. 4.5 in
the case of n = 2 photons in the incoming beam. Right panel: Convergence of the error defined
in the text at the final time Tg,, of the simulations, as a function of coherent state number in the
wavefunction for the off-resonant case (red) of Fig. 4.6(a) and the high-power regime of the upper
panel (blue).

quadrant can easily be parametrized as:
|ko) = |AR) |Q) |[ko — Ar — Q) with Q € [0: ko — Ag], (4.23)

which expresses conservation of energy between the input and the output. Again, it is not
necessary to have one of the three photons emitted at the resonance frequency for the process
to occur, as we saw in the on-resonant situation (Fig. 4.6b), where the complete 3-photon
continuum is below k = Ag. In the offresonance case on the other hand, the three-photon
process has largest amplitude only when it allows the qubit to reemit at k = Ag, as in process
(4.23).

4.3.5 Convergence properties

Assessing the good convergence of the numerical results is important to gain confidence in the
time-dependent variational MCS technique Indeed, we find that using too few variational pa-
rameters imposes strong constraints on the dynamics, which may result in unphysical behavior
and numerical artifacts. One delicate test is the strong power saturation spectrum shown in
Fig. 4.5. Indeed, the calculations that use only a single coherent state, as done in a previous
publication [75], are found to be problematic in the strong power regime. This behavior is
illustrated in the left panel of Fig. 4.10, showing the power reflection spectrum as a function
of incoming frequency at a strong input power (n = 2) for three different values of the number
of coherent states N = 1,4,16. The computation with N, = 1 is indeed quite noisy and
imprecise, and a smooth and converged curve is only obtained at N, = 16. We find that
the inelastic spectra shown in Fig. 4.6(a) are also delicate to compute, because they consist
of a tiny fraction of the total signal, and encode complex quantum states. A relatively large
number of coherent state is also necessary here for success, even at small input power.

The next section investigates how the complete inelastic emission spectra compare with
the standard RWA prediction in quantum optics. This comparison will provide not only a
benchmark of our simulations, but will also reveal several physical features that cannot be
captured without the inclusion of particle production processes.
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Figure 4.11: Comparison of MCS simulations to RWA input-output theory with regard to frequency
conversion spectra for the off-resonant case (left panel) and on-resonant case (right panel). The
parameters are the same as in Figs. 4.6(a) and 4.6(b). This confirms the previous interpretation
that RWA inelastic processes dominate only on-resonance, and miss the main contributions to the
off-resonant signal.

4.4 Success and failure of the RWA for inelastic emission

4.4.1 RWA inelastic conversion

To highlight particle production that arises at ultra-strong coupling, we now compare our MCS
simulations to the direct treatment within the RWA that we had presented at the beginning
of this chapter. As we saw in the scattered spectra of Fig. 4.2, the approximation can only
describe particle-conserving inelastic processes and therefore misses all the particle production
processes that occur in the complete theory.

Comparison to the RWA power spectrum in the off-resonant and resonant cases is shown
in the left and right panels of Fig. 4.11 respectively. The dominant inelastic process within
the RWA is the scattering of two incoming photons into two outgoing photons, see panel (a)
of Fig. 4.2. One sees that this process explains most of the total scattered spectrum in the
resonant case. Indeed, the right panel in Fig. 4.11 shows that the RWA and numerical MCS
results are nearly identical on the scale shown. In particular both the overall width and shape
of the inelastic power spectrum agree well. However, it is clear that the RWA prediction is only
a small fraction of the total inelastic scattering in the off-resonant case (left panel in Fig. 4.11),
as particle production leads to qualitatively different and much larger cross-sections. Thus for
these parameters, the RWA fails badly, even though the coupling constant o = 0.1 is not very
large.

4.4.2 Temporal correlations associated to particle production

It is interesting to study photon number temporal correlations, a standard measure of non-
linearities, but now in light of the large inelastic effects that we uncovered in the ultra-strong
coupling regime. In section 4.1, we have defined the autocorrelation function of the reflected
wavepacket (z < 0, k < 0) as

(ab(t)al (t + T)as(t + T)aa(t)

(ad(t + T)ag(t + 7)) (ah(t)an(t)) (4.24)

g2(x,7) =
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An equivalent way to express this correlation function is by fixing a time ¢ at which the reflected
signal is completely dissociated from the qubit cloud, and to calculate the correlation between
two spatial points of the wave-packet. This is clearly the same as to calculate the correlation
according to Eq. (4.24), where the gs is calculated between point = at time ¢, and point z after
the wavepacket has been translated in time by 7. Although both strategies are equivalent, the
former is more convenient as it allows to access the correlation in one go without additional
time evolution from ¢ to ¢ + 7. Accordingly therefore, we re-write Eq. (4.24) as:

<alajﬂ+‘ra$+7'a$> (425>

92(7_) = )
<a;rc+raa:+T> <ai€aaz>

where x is such that both x and z+7 are within the reflected wavepacket. In principle, go(7) also
depends on x, but this dependence is weak provided the wavepacket is almost monochromatic,
and the location x is taken deep within the outgoing wavepacket. Note that since we take the
speed of light ¢ = 1, 7 is just the distance traveled by radiation in time 7.

To obtain an expression for the go function (4.25) in terms of our coherent state degrees
of freedom, we insert the MCS expansion Eq. (4.6) into Eq. (4.25). Since coherent states are
eigenstates of the annihilation operator, we immediately obtain a very compact expression for
the autocorrelation function in terms of the real space displacements f:

2 aman PP ()" )" T o (il )

() = (n()) (n (i + 7)) / 420
with the local photon number defined as:
(n(x)) = (akac) = D oo () Fro (Fal f) - (4.27)

In the simulations performed to compute this quantity we used a sharp cutoff O(w. — w) for
the dispersion relation instead of the exponential cutoff e/, Note that using the hard
cut-off results in a slightly lower value of the renormalized qubit energy Ag, than with the
exponential cutoff. This allowed us to decrease the numerical cost and therefore attain a
higher number of coherent states, N, = 40, which was necessary, as second-order correlations
are more challenging to converge than average photon numbers. The simulations were stopped
at a timescale T" = 1250/w. long enough that the wavepacket is located far away from the
dressed qubit, and we chose the spacial point x = —681 in Eq. (4.25), so as to keep the
range of the function near the centre of the wavepacket. We finally note that spurious effects
associated with the finite spatial extension of the wavepacket (due to o # 0) lead to the small
oscillations seen in Fig. 4.12 at longer times.

We find that temporal correlations are a very sensitive measure of ultra-strong coupling
effects. In the resonant case (see the top panel of Fig. 4.12), the correlations are typical of
single photon emission. The comparison to the RWA is globally quantitative, as expected from
the previous agreement in the inelastic spectrum on-resonance (small oscillations at long time
in go(7) reflect the improper convergence of our MCS numerics near the edges of the outgoing
wavepacket). In disagreement with the RWA however, we notice that the numerical data shows
partial anti-bunching at zero delay, g»(0) > 0, signaling the production of particles, as was
revealed by the low-energy spectrum in Fig. 4.6(b). Thus particle production leads to physical
effects that are potentially observable experimentally even when on resonance. This offset,
which is zero in the RWA, is found to increase with « (see the upper middle of Fig. 4.12 for kg =
Ag). The incomplete cancellation here can be readily interpreted as a probability of emitting
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Figure 4.12: Second-order correlation function gs(7) in reflection, at @« = 0.1 (upper panel) and
a = 0.2 (middle panel). The dip at 7 = 0 is a standard signature of anti-bunching, but multiple
photon emission seen in Fig. 4.6(a) at ultra-strong coupling leads to an incomplete cancellation,
92(0) > 0. In the off-resonant case (kg = 1.2AR), particle production is enhanced relative to the
single photon reflection, resulting in a stronger bunching (g2(7) > 1) than predicted in the RWA.
The MCS simulations were performed with the same parameters as in Fig. 4.6(b), except for the
stronger coupling o = 0.2, 0 = 0.004w. and a hard cut-off that was used (see text). Bottom panel:
Real space probability distribution of the two-photon states |a, 4, |*/dz? at the initial (left panel)
and final (right panel) times of the simulation. One remarks the absence of reflection for two photons
arriving at the same time on the qubit, as seen by the dip within the probability distribution located
in the bottom left quadrant of the right panel.
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many-photon states due to frequency down-conversion. Even more striking is the appearance
of a large bunching signal at intermediate times in the off-resonant case (see the middle panel of
Fig. 4.12 for kg = 1.2AR), which was not reported to our knowledge for the radiation of a single
level qubit (bunching can be observed in spontaneous emission from multilevel atoms [100],
due to a simpler cascade effect [14], or from multiqubit systems [15, 101, 102]). Here, bunching
originates from the single-shot emission of three photons by the two-level system, a property
that is only allowed at ultra-strong coupling. Even though particle production is comparable
in the resonant case and the off-resonant case, the bunched signal only becomes sizable off-
resonance, because the amplitude for a single photon to be reflected is strongly reduced.

As a nice illustration of the partitioning of the incoming beam by the two-level system,
we show in the bottom panels of Fig. 4.12 the real space probability distribution of the two-
photon states |a,, .,|*/dz? at the beginning and at the end of the time evolution. These results
were obtained in the on-resonant case with o = 0.1, by Fourier transforming to real space the
k-space displacements. One can clearly see within the reflected signal (bottom-left quadrant
in the right panel) a deep trench on the diagonal x; = x5 < 0 with vanishing photon content
(the incoming coherent state is shown in the bottom left panel for comparison). Two photons
impinging simultaneously on the qubit have thus very low likelihood of both being reflected.
This provides a direct visualization of photon anti-bunching, which arises because a single
emitter can only reflect one photon at a time.

Thus, in this chapter we extended the MCS technique introduced in the chapter 3 to
address the many-body scattering properties of a two-level system embedded in a waveguide
in the regime of ultra-strong coupling. This problem is intrinsically non-perturbative in nature
due to the large production of particles, and cannot be reliably addressed by the standard
methods of quantum optics.

We have been able to characterize precisely the output field, by decomposing the reflected
and transmitted photon wave-packets into Fock states, and also by computing temporal cor-
relations. The main results are as follows. (i) The process by which one photon is absorbed
and three photons are emitted dominates in the off-resonant low-power limit and leads to a
broad spectrum of emission extending from zero frequency to the renormalized qubit frequency.
(ii) In the resonant case as well, where the dominant inelastic emission near the resonant fre-
quency is captured by the rotating wave approximation, there is a broad spectrum of weak
inelastic transmission produced by the counter-rotating terms. (iii) The correlation function
g2(7) in reflection is a sensitive measure of ultra-strong coupling physics. In particular, parti-
cle production implies that it needs not vanish at zero delay, ¢g2(0) > 0, and that it shows a
bunching effect at a delay of the order of the inverse lifetime. (iv) Finally, we have found that
perturbative predictions for the inelastic response [29] cannot be used simply by renormalizing
the bare qubit resonance frequency and linewidth when the coupling becomes ultra-strong. A
more consistent theory including self-energy effects should be developed for the future.

All our quantitive predictions have relevance for the ongoing experimental effort in pushing
waveguide quantum electrodynamics to the ultra-strong coupling regime. The connection to
future experiments opens in addition various research directions. One important issue is that
superconducting qubits are rarely operated as truly perfect two-level systems. Reducing the
non-linearity of the qubit is typically important to minimize the effect of random noise from
the circuit, but this strongly diminishes of course the amplitude of the interesting non-linear
signals, a topic we discuss in chapter 6. Thus, extending our methodology to fully realistic
superconducting quantum circuits will be crucial to address whether particle-production can
be sizable in practice.
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Chapter 5

Photon Statistics in a Microwave
Signal

In this chapter, we describe an experiment aimed at measuring the anti-bunching of photons
in the signal reflected by a qubit strongly coupled to a waveguide. Here, we use the word
“strong” in accordance with its common use in the literature: strong compared to the so-
called “weak” coupling regime, so that the energy relaxation rate I' due to the waveguide
dominates the losses I'y, but still small compared to the ultra-strong couplings investigated
in the previous two chapters, where the rate I' ranged from 10% to 90% of the qubit energy.
More specifically, in this chapter we will be considering a coupling of the order of I'/27 = 30
MHz, with I'/27 > ', /27 ~ 1 MHz.

In section 4, we introduced the second-order correlation function go, and discussed how
measuring go[0] = <a*2a2> / <aTa>2 = 0 is evidence that a signal is anti-bunched. Previously,
Hoi et. al succeeded in measuring ¢;[0] < 1 in the signal reflected by a strongly coupled
qubit [8], but due to limited measurement bandwidth, the measured value of g5[0] was only
of the order of 0.5, as shown in Fig. 1.le. As a reminder, the ideal go[7| for a perfectly
anti-bunched signal is a function that goes all the way to zero at 7 = 0, as shown by the g9
curve in Fig. 4.4a, calculated using Eq. (D.11). The use of a parametric amplifier would have
considerably increased the signal to noise ratio of that experiment, but at the time, parametric
amplifiers did not have the required bandwidth to amplify the wide spectrum of the signal
emitted by a qubit at a rate of 30 MHz.

With the recent development of broadband parametric amplifiers [103], it has become pos-
sible to perform this experiment with a much better signal to noise ratio. The aim of the
experiment described in this chapter is therefore to measure, using a broadband parametric
amplifier, a value of ¢5[0] very close to 0. It should be noted that the experiment is still on-
going, and that final results are not yet available. We will nonetheless present the developed
simulation tools and the results obtained so far.

In the first section, we will present the qubit-waveguide design developed using a simula-
tion software, and the characterization of sample properties after fabrication. In the second
section, we will explain the various steps involved in demodulating the signal reflected from or
transmitted through the qubit, and the extraction of the signal quadratures of interest. In the
third section, we will provide the basic background required for calculating signal correlators,
according to the chosen experimental setup. Following this, we will present the calculation of
the ¢g; and g, correlation functions on simple numerically-generated signals, in order to show
that our code is working as expected for these simple signals. Finally, we will present our
preliminary measurements of the g; and g9 correlation functions.
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The work presented in this chapter was carried out at the Tata Institute of Fundamental
Research (TIFR), in Mumbai (India).

5.1 Sample fabrication and characterization

The qubit-waveguide system was designed based on simulations performed with AWR, mi-
crowave office, a software that simulates the electromagnetic behavior of an electronic struc-
ture by solving Maxwell’s equations using a finite element method (FEM). The samples were
fabricated by depositing aluminum thin films on an intrinsic silicon chip in either a micro-strip
design or a coplanar waveguide design (CPW) [104].

The final design of the CPW qubit-waveguide system is shown in Fig. 5.1a, where the grey
area is the aluminum structure, and the white area the silicon chip. The waveguide is composed
of 3 elements: the central strip and the two lateral ground planes. In this architecture, the
electromagnetic field oscillates between the central strip and the outer ground planes, coplanar
to the chip. The qubit, in the centre, is made of the two large rectangular capacitor plates
and a SQUID joining them in-between, of which the linearized inductance is equal to 8 nH
(drawn schematically on top of the design). In our AWR simulations, which are of course
purely classical, the SQUID was modeled by a regular linear inductance corresponding to that
of the SQUID at superconducting temperatures, that is as given by Eq. (2.52). The capacitors
of the qubit were then shaped and positioned in AWR in such a way as to impose a coupling
of about 30 MHz. In designing the qubit, care was also taken to keep it within the transmon
regime (F;/Eqc ~ 100), so that the sensitivity to charge fluctuations remains low while at the
same time allowing enough non-linearity for the qubit to behave as a good two-level quantum
system. The reflection S;; and transmission Si5 by the qubit as simulated by AWR are shown
in Fig. 5.2a-b, from which we can read-off the resonance frequency wy/2m = 6.39 GHz. Based
on this value, as well as on the linear inductance of Lj;, = 8 nH, the total capacitance of this
qubit design was then estimated to be around C' = wg /Lyin = 86.0 fF, and from this value the
ratio F;/Ec = 119 was deduced.

Note the extension of the bottom capacitor plate at the level of the qubit in the electro-
magnetic structure (Fig. 5.1a). The reason for this adjustment is that the large cut in the
upper ground plate, made to accommodate the qubit, creates an impedance mismatch leading
to non-negligible reflection, even for signals far detuned above the qubit resonance, as shown
by the purple-dashed line in Fig. 5.2b. The idea is then that by empirically adjusting the
width of the gap opposite to the qubit, one can find a narrower gap width that reduces the
impedance mismatch. As demonstrated by the solid orange curve in Fig. 5.2b, this adjustment
allows us to bring down the off-resonant reflection above the qubit resonance by about 10 dB.

The whole device was fabricated on a high resistivity intrinsic silicon chip in two electron-
beam lithography steps, with a strong dose for the rectangular plates and a weaker dose for
the junctions. After depositing the aluminum using a double-angle evaporation, the sample
was glued to a PCB! chip using silver epoxy which was designed and milled specifically for this
sample. After wire-bonding of the sample (Fig. 5.1b), the PCB with the sample was clamped
between two SMA connectors (Fig. 5.1c). Fig. 5.1d shows two of these devices tightly screwed
to an OFHC copper plate, which itself is connected to the base plate of the dilution fridge that
reaches 30 mK after cool down. On the opposite side of the copper bar is a superconducting
coil, which is used to tune the resonance frequencies of the qubits by varying the magnetic flux

!Printed Circuit Board: 762 pum-thick layer of TMMS6 dielectric between two layers of copper.
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Figure 5.1: CPW sample fabrication and mounting: ( ) AWR (microwave office) EM structure used
to simulate the response of the qubit that 1 dv large capac1tance to the CPW transmission
line. In these classical simulations, the SQUID signed via the AWR the non-linear inductance
derived from the Josephson relation. (b) Pic f the samp l after wir b d h on
chip. (c) Picture of the chip clamped betwee SMA ccccccccccc (d) TW amples mo nted on the
20 mK stage of the dilution fridge. Opp the samples uperconductmg coil used to tune
the resonance frequency of the qubits.
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Figure 5.2: Top panels: AWR simulation of the qubit response before fabrication. The curves la-
belled “without adjustment” correspond to the predicted response of the qubit without the expansion
of the bottom ground plate in Fig. 5.1a. Lower panels: CPW sample response. Fitted parameters
using Eq. (5.1): I'/27 = 34 MHz, I'y /27 = 1.6 MHz, fy = 6.061 GHz. Note also that it does not mat-
ter that the measured resonance frequencies differ from the ones initially designed by a few hundreds
of MHz, as this will only slightly change the resonance frequency and the E;/E¢ ratio.

threading their SQUID loops.
The response of the qubits after cool down is shown in the lower panels of Fig. 5.2, which

indicate that the resonance frequency is wy/2m = 6.06 GHz. By probing the room-temperature
resistance of the sample, we found the linear SQUID inductance to be L; = 6.10 nH, from
which we deduced the qubit capacitance C;, and the ratio E;/Ec ~ 156. The theoretical
result for the reflection as a function of the detuning dw = w — wy is given by [5]:

r 1 —idw/Ty

Su(dw) = 20y 1+ (6w/Ty)2 + 2(Q2/T4I)’ (5.1)

where () is the Rabi oscillation frequency. Fitting this expression to the data at low power
(dashed lines in the bottom panels of Fig. 5.2), revealed the relaxation rate I'/2r = 34 MHz
and the pure dephasing I',/2m = 1.6 MHz. Note also the strikingly asymmetric line-shape of
the Si; in Fig. 5.2d. This is because of a Fano resonance [105], which arises here from the
interference between the qubit-reflected signal and a spurious reflection due to an impedance
mismatch in the transmission line.

Using the micro-strip sample, we were also able to fit the saturation of the qubit when the
incident power is increased, as shown in Fig. 5.3. This demonstrates the strongly anharmonic

nature of our sample.
The properties of the two samples mentioned above are summarized in Table 5.1.

As
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Figure 5.3: Qubit saturation fitted with Eq. (5.1). The qubit measured was fabricated using the
micro-strip design, with parameters very similar to those of the CPW sample of Fig. 5.2c-d.

Samples E;/Ec | wo/2m (GHz) | I'/2r (MHz) | I'y/27 (MHz)
Micro-strip sample 188 6.061 34 1.6
CPW sample 156.3 5.475 33.9 1.21

Table 5.1: List of samples and their measured/calculated parameters.

expected, both qubits present a relaxation rate much greater than the intrisinc losses, I' > T'y,
indicating that coupling strength is well within the strong coupling regime. In the following
sections, all the results presented have been obtained using the CPW sample.

5.2 Signal processing

Having characterized the qubit via the S parameters the electromagnetic response, we will now
describe how the quantum electrical signal is processed after it exits the sample. After using a
chain of amplifiers (JPA, HEMT and room temperature amplifier), the signal will go through
an analog demodulation, followed by a digital demodulation in software. The 5 main steps
discussed in this section are illustrated in Fig. 5.4.

5.2.1 Analog signal processing

Classically, the voltage for a generic signal with carrier frequency wy and amplitude A(t) can
be written as A(t) cos (wot + ¢(t)). Since in the following we will only be interested in signals
with constant average power and normalized correlation functions, let us set A(¢) = 1 and work
with dimensionless signals. Expanding the sine, we can cast the expression for the voltage into
the “IQ” form:

cos (wot + ¢(t)) = cos(wot) cos(¢(t)) — sin(wot) sin(A(t))
= I(t) cos(wot) — Q(t) sin(wyt)

_ m[(z@) + iQ(t))e‘int], (5.2)
where in the second line we have defined the dimensionless field quadratures

I(t) = cos(o(t)) and Q(t) = sin(¢(t)). (5.3)
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Figure 5.4: Calculation of the power spectral density at the five steps of the simulated demodulation
described in section 5.4. A schematic of the corresponding demodulation setup is provided in Fig. 5.5.
To make these plots, a 6 GHz signal was initially generated numerically and superposed to Gaussian
random noise. Note that during the demodulation stages, both the signal and the finite range of noise
are shifted down in frequency. (the signal to noise ratio was not chosen to model the experiment, but
only to provide an illustration)
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-----------------------------------------------------------------------------------------------

)e—iwift

ADC

ANALOG | DIGITAL

50 Q

Figure 5.5: Schematic of the analog and digital down-conversion processes (compare with the corre-
sponding power spectral densities of Fig. 5.4 computed to the 5 blue points). First, an analog mixer
is used to down-convert a signal 7e~*! with carrier frequency w to the intermediate frequency wir,
by multiplying it with a local oscillator (LO) at frequency wis — w. Note that only the I output is
needed here as it alone contains the two quadratures of 7. Secondly, after digitization using an analog
to digital converter (ADC), the digitized signal is further down-converted to DC, and the I and @
outputs are combined to reconstruct the initial signal #. In the text, it is the amplified signal a’ as
given by Eq. (5.6) that has the role of 7.

To obtain a quantum mechanical description, we promote I and () to operators, and define
the corresponding creation and annihilation operators:

- a al A a(t) —al
) - AEEO) gy A0

5 (5.4)

These are the same operators we had defined in Eq. (2.5) verifying the bosonic commutation
relations (2.6), except for the fact that we have switched from the X /P to the I/Q notation
to conform with the usual notation in quantum microwave optics. Since a = I+ i@, ais a
convenient way of expressing the two quadratures of the signal at once:

a(t)e™ ot = (I(t) +iQ(t))e ™", (5.5)

Let us now assume that (5.5) is the amplitude of the electrical signal leaving the sample,
and entering the amplification/demodulation chain of the experiment. If we are considering,
for instance, a signal that just got reflected on the qubit, then that signal is a train of anti-
bunched photons. After being pre-amplified by a Josephson parametric amplifier at 30 mK, the
signal a(t) is amplified by two amplifiers which add a background noise h;mp. Mathematically,
this process of amplification can be written as [9, 106]:

a—d =vVia+VN—1hl,, (5.6)

where A is total gain of the amplification chain. Note that this form of the amplified signal
conserves the bosonic commutation relations.

Since the sampling frequency of our digitizer is 1 GHz, much lower than the signal fre-
quency, we must down-convert our signal to an intermediate frequency wi. This is done by
mixing the qubit signal with a local oscillator (LO) at frequency wy — wi, as illustrated in
Fig. 5.5. Since both quadratures are present in each of the two outputs of the mixer, we can
collect only the signal coming from the I output, and not loose any information. Note that
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in addition to down-converting the signal, the mixer will also contribute a certain amount of
noise h! ., leading to the following signal transformation [9]:

i—a =a+hl, (5.7)
Applying amplification (5.6) and mixing (5.7) to the signal (5.5), we obtain:

S(t)e~ @it = (I +iQ)e i, (5.8)
with the signal envelope given by

S =V\a+h), (5.9)

Here we have denoted A' the combined noise contribution from amplification and mixing, as is

standard practice [9, 107]:
- A—1- 1
ht = ,/Thgmp + \ﬁhjnix. (5.10)

Note that because of the added noise A

(5,51 =0 (5.11)

To provide an illustration of the successive transformations undergone by the signal, a
6 GHz coherent pulse superposed to Gaussian random noise was generated numerically to
represent the amplified signal (5.6), and the corresponding power spectral density (PSD) was
plotted in the top panel of Fig. 5.4. The PSD following down-conversion to an intermediate
frequency wir/2m = 70 MHz, and after filtering of frequencies below 100 MHz, is shown on the
second panel of Fig. 5.4. The next steps of demodulation are digital, which we now discuss.

from the mixer, S and ST now commute:

5.2.2 Digital signal processing

The voltage from the I output of the mixer is acquired on the memory card of the digitizer
at the rate of 1 sample every nanosecond, with 1600 points per buffer, that is a total time of
1.6 ps. The digitized voltage is the real part of the signal (5.8):

V(t) = R(S(t)e ")

1 /4 . A )
_ - iwirt T —tw;ft
=3 (S(t)e +S'(t)e ) . (5.12)

As shown by the second line of Eq. (5.12), the digitization does not distinguish between positive
and negative frequencies, meaning that the measured signal at frequency fir = wir/27 includes
part of the noise at — fi;, effectively reducing the signal to noise ratio by 50%. For this reason,
the PSD right after digitizing the signal (shown in the third panel of Fig. 5.4) is symmetrical
and contains both a positive peak and a negative peak.

The digitized signal is then brought down to DC by digitally mixing it with an LO at
wir/2m = 70 MHz. The resulting quadratures are then recombined on software into the com-
plex signal S = I + (), which leads to the PSD in the fourth panel. Note that aside from the
DC signal, we also have a 140 MHz replica, since mixing generates a signal at the difference
and at the sum of the frequencies of the input signals. Finally, the high-frequency replica and
the unwanted high-frequency noise are filtered out by applying a low-pass digital filter with
cutoff frequency 50 MHz. The resulting PSD is shown in the bottom panel of Fig. 5.4.

This completes the demodulation of the signal. In the next section, we will describe how
to compute the g; and g9 correlation functions on this demodulated signal.
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5.3 Two-time correlation functions

5.3.1 General formalism

Let us first define a generic two-time correlation function:

T—ts

(Syx So)[r] = > Si(t)Sa(t +7), (5.13)

where * denotes correlation and 7T is the total integration time (in our case T' = 1.6 us, the
length of a buffer). The time delay 7 takes the values 7 = 0,t,,...,T — t5, and t; = 1/ f;,
where f; is the acquisition frequency of the digitizer. Note that in (5.13) we take Sy(t) = 0
for t > T — ts. Moreover, to give the correlation function the same weight for all 7 (since the
sum involves different numbers of elements for different 7 values), it would also be necessary
to apply an unbiased normalization [108] to the sum in (5.13). It turns out however that this
is not necessary, as this correlation function is more efficiently computed via Fourier space. To
do so, one first calculates the product of the Fourier transforms of the signals S; and S;, and
then applies an inverse transform to get back to the time domain:

(S1%S)[r] = P~ (F*(S)F () )71, (5.14)

where the discrete Fourier transform (and inverse transform) for a signal y(¢) is given by:

T—t, fo—Av
Fy)v] = ) yt)e ™™, Fl(y)lr] :% > yw)e N, (5.15)

with N =T/ fs and Av = 1/T. Here v takes the values v = f;/2,..., —Av, 0, Av, ..., f/2— Av.
Using this correlation function, we can define the quantum mechanical second-order cor-
relation functions of the amplitude and power of the signal [38]:

)
*ata:) [r], (5.16)

where the normal ordering” :: is introduced here for the convenience of writing the G5 function
as a correlation of intensities I = ata. One can easily check that by writing down the full
expression for Gy in Eq. (5.16), and implementing the normal-ordering, one recovers the form
of Eq. (4.1). Note that for correlations on operators, complex conjugation in Eq. (5.13) is
replaced by Hermitian conjugation. The normalized forms of the functions are given by:

_ Gl _ Gol7]
gilt] = ma gol7] = G1[0]2

(5.17)

Let us point out that g;[r] can be a complex quantity, while go[7] is real by construction.
There are two main strategies for measuring correlation functions [109]. One is a Hanbury-
Brown-Twiss (HBT) type of setup as shown on the left panel of Fig. 5.6, where the signal is
split into two branches and amplified by two distinct amplification chains. In this case, cross-
correlations are calculated between the signals digitized by the two distinct digitizers. Another
possibility is to use only one detection chain and to calculate the auto-correlation of the signal,

2For any two operators A and B normal-ordering is defined as: :ATB:= A'B, :BA":= A'B
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as shown on the right panel of Fig. 5.6. In this case, noise correlations mix with the signal
correlations of interest, and it is then necessary to subtract the noise contributions digitally,
as we will explain in the next paragraph.

Both setups were implemented experimentally, but all the results presented in the following
were obtained using the single-channel setup. The main reason for using this setup is that it
involves less components. In particular, a technical difficulty is that a double-channel setup
requires to have two broadband amplifiers at the beginning of the two measurement chains,
each powered by a different pump line, and each operating with enough bandwidth around the
frequency of the qubit. The single-channel setup on the other hand is lighter to implement, and
therefore appears as a more convenient option. Because it requires noise cancellation however,
the single-channel setup has the disadvantage of being very sensitive to any saturation in the
amplification chain, as we will see in the following.

5.3.2 The HBT-type two-channel setup

In the two-channel setup, a hybrid coupler (symbolized in blue on Fig. 5.6) splits the signal
a(t) into two equal signals b(t) and c(t), which implies that b(t) = c(t) = a(t)/v/2 (here we
have dropped the carrier frequencies for the sake of clarity). It follows that we can derive the
second-order correlation function of the amplitude of the signal a(t) from the cross-correlation
between the amplitudes Sy(t) and S.(¢):

LY[r] = (Sy % Se) [7]

2
VA
2

Gal7]. (5.18)

G1[7] is therefore directly proportional to T'®[7]. Similarly, we can directly obtain the G[7]
correlation function from the cross-correlation of the powers:

[5¢[7] = (Sy Sy % S:Se) [7]
= Mo (O + ho) (b + hf) % (¢! + he) (e + b)) [7]
= XA (Wb * cfe) [1]
ApAc

=0 (:d'axala:)[r]

AbAc
4

~

Go

—

7]. (5.19)

Note that in deriving G2 and (G1, all noise correlations conveniently cancel out, as the noise
generated by the two individual amplification chains is uncorrelated.
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Figure 5.6: The one-channel versus the two channel measurement setups. The one channel setup has
the advantage of using less components, but it requires performing noise subtraction, which is very
sensitive to saturation. The two-channel setup has the advantage of being insensitive to the noise
correlations between the two channels, but it uses more components.

5.3.3 The one-channel setup
With a single-line setup, the auto-correlation function of the amplitude S(¢) is given by:
Ty[r] = (S % S) [7]

= X{(a+h")* (a+ A" [7]
A({axa)[r]+ (K" A1) [1]), (5.20)

from which we deduce:
)\Gl[T] = Fl[T] — Hl[T], (521)

where we have defined H,[r] = A (hf xh') [7]. In contrast to the two-channel setup, here the
auto-correlation of the signal includes the auto-correlation function of the noise amplitude
Hi[r]. This quantity is obtained by calculating the auto-correlation function of the data ac-
quired when the qubit drive is ‘off .

Similarly, in the one-channel setup, the second-order correlation function of the power is
given by:

Dafr] = {|SI* x|S]%) [7]- (5.22)

Unlike the previous correlation functions we have derived, it is not obvious how to relate this
average product of four complex numbers (that is our digital waveform), to the expectation
value of the normal-ordered product of signal operators a and a' that define the G5 function.
Indeed, although ST and S commute, as we pointed out in Eq. (5.11), a" and a do not, which
seems to suggest the odd consequence that different choices of ordering of the S and S* complex
numbers could result in different expressions for Go(7). It turns out however, that regarding
the process of field measurement by annihilation of a photon, the optical equivalence theorem
(42, 43, 38| states that it is only the expectation value of normally-ordered operators that is
equivalent to the corresponding average of complex numbers. As an annihilation operator, this
applies to @, but for the noise on the other hand, ascribed to the creation operator hf, we have
to use the opposite prescription and instead apply anti-normal ordering®. Thus, expanding

3For any two operators A and B anti-normal-ordering is defined in the following way: “ ATB 7 = BAT,
“BAt” = BAt
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Figure 5.7: Block-diagram of the code used to calculate the G2 function on a numerically generated
noisy coherent signal in the case of a single-channel setup. Because correlations of the signal mix with
the noise correlations, it is necessary to subtract the noise contribution using Eq. (5.26).

Eq. (5.22) while applying ordering to a, a’ and anti-normal ordering to h, h', we obtain:
Cafr) = A Ja -+ K o+ K12 [7]
= 3 ((aa+ a'h! + ha + hh') x (ala + a'h' + ha + b)) 7]
= 22| (alaxata:) +2 (alax hht) + (a'hi x ah') + (ah' x ha)

+ (hax atht + (ha ha) + (¢ hht % hht ”>]

= 2] Gataxa'a:) +2(a'a) (hh') + (:at % a®:) (R x BY) + (a' % a) (AT x h)
+(axa") (hxh') + {axa) (“hxh”)+ (“hht x hhT ") } (5.23)
where we have introduced the second-order correlation function of the noise power:
Hy[r] = N2 (“ hht % hh! ) [1]. (5.24)

T—ts

For 7 = 0, note that G1[0] = + >_,_,° (al(t)a(t)) = (a'a), and similarly that H;[0] = X (hhT).
Moreover, it is easy to show that:

(a" % a') [1] = G4[—7],
A{hxh)[r] = Hi[-T]. (5.25)

Combining everything, and noting that (hx h') = (hT x h) = 0, Eq. (5.23) becomes:

N2Gy[1] = Dy[7] — Ha[7] — 20G1[0] H,[0]
— )\Gl[—T]Hl[T] — )\Gl[T]Hl[—T]. (526)
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Figure 5.8: Normalized correlation functions g; and go obtained from the code described by the
block-diagram in Fig. 5.7.

Thus, to find the second-order correlation function Go[7], we will need to evaluate the noise
correlations Hi[7] and Hs[r]|. In order to illustrate how this is done, we provide in the next
subsection a demonstration of the calculation of the Go[7] function using a Python simulation.

5.3.4 Example of noise subtraction: ¢; and ¢, for a coherent state.

Here we present the calculation of the Go function, in the case of a single-channel setup, on
a numerically generated noisy coherent state. As explained in the previous paragraph, the
strategy will be to use Eq. (5.26) to extract the correlations of interest from the full signal.
A block-diagram representation of the code is given in Fig. 5.7. Note that only the numerical
generation of the signal (left-most blocks) differs from the data processing performed in the
actual experiment, in which the signal is directly provided by the digitizer.

As shown in the top-left part of the diagram, the 70 MHz sinusoidal pulse with unit
amplitude (in blue) is first added to Gaussian noise (in red) with a standard deviation of
3.5. This noisy signal is then demodulated to DC by mixing (i.e. multiplying) it with another
coherent pulse eit? (in orange, with wis /27 = 70 MHz), with identical frequency. The resulting
quadratures I(t) and Q(t) are then combined together and filtered with a 50 MHz low-pass
filter, to obtain S(¢). The calculation of the auto-correlations of S(t) and |S(t)|* then yields
I'y[7] and I'y[7], which are combinations of signal-only correlations, G;[r] and Go[7], and of
noise-only correlations, H[7] and Hy[r]. In order to remove the noise contributions, we need
to generate noise-only signal, which is done in the lower-left of the block-diagram. This noise-
only signal is then demodulated, recombined, and filtered in exactly the same way as the noisy
signal above. With ['y[7], T'y[r], Hi[r] and Hs[r] thus obtained, and Eq. (5.26), we can find
Go[r]. Finally, using Eq. (5.17), we obtain the normalized second-order correlation function
92[7].

The resulting correlation functions are shown in Fig. 5.8. As expected from standard
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literature [33], we have that for pure Gaussian noise ¢1[0] = 1, and g»[0] = 2, as shown in the
left panels. For 7 # 0, although one could have expected ¢;[7] = 0 and go[7] = 1, the 50 MHz
filter we applied induces a broadening of the central peak. The correlations of the noisy signal,
plotted in dashed blue lines in the right panels, are very similar to those of the noise only
correlations. This is consistent with the fact the noise generated in this simulation is about 12
times greater than the signal power. After performing noise subtraction with 10° averages, we
obtain the second order correlation of the signal, given by the solid red line. As expected for
a coherent signal, the result is gi[7] = 1 and go[7] = 1, for all 7.

Ultimately, the goal of the experiment is to measure the second-order correlations of the
signal reflected by a qubit. Since that signal is expected to be anti-bunched, meaning that
at every point in the reflected signal there is at most one photon, the correlation function is
expected to be go[0] = 0, as shown on Fig. 4.4a (discussed in Chapter 5).

An important requisite for this extraction of the G5 function to work, is that the amplitude
of the noise in the ‘off” and ‘on’ pulses be strictly identical. In our simulations, of course, this
is given, as the noise was intentionally generated identical in both pulses.

Finally, note that the number of averages required to converge the ¢g; scales as 1 + Py,
where Py is the noise power, much less than the number of averages required to converge the
go, which scales as (1 + P%) [9].

5.4 Measurements

5.4.1 The broadband parametric amplifier

A key element of this experiment is the broadband parametric amplifier [103]. A picture of
the device is given in the left panel of Fig. 5.9. Using bandwidth engineering, the bandwidth
of the amplifier was broadened to as much as 650 MHz, as shown by the gain profile in the
right panel of Fig. 5.9. Because the pump operates at the central frequency of this band, only
300 MHz of this range are in practice available for signal amplification. Since the correlations
we are looking for are of the order of 30 MHz, this provides more than enough bandwidth for
performing this experiment.

It should be noted that these parametric amplifiers have to be biased at specific frequencies
in order to generate the maximum bandwidth. This puts a constraint on the qubit frequency
which should fall around the centre of the upper or lower half of the parametric amplifier
bandwidth. As long as the qubit frequency is not below that frequency, the resonance can
always be tuned down using the SQUID loop, and positioned in the middle of the upper or
lower band of the gain profile.

5.4.2 Measurement of the g; and g, functions

The schematic of the full experimental setup is shown in Fig. 5.10. The protocol for generating
an anti-bunched signal consists in sending a coherent signal through line 2: after the signal
reaches the sample, the qubit reflects single photons while the rest of the signal is transmitted.
The three circulators direct this train of single photons to the parametric amplifier, shown in
red. The last circulator then reroutes the signal up towards the amplification and demodulation
chain. Note that in this chapter, we will not present any results regarding the measurement
of the g9 function on anti-bunched signal, due to technical difficulties encountered in the
experiment. Instead, we will present the measurement of the g, function for a coherent signal,
which is a test that should be performed before any more complex measurement is attempted.
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Figure 5.9: Broadband parametric amplifier gain profile. To obtain this profile the pump was set to
5.893 GHz. The signal cannot be amplified at precisely the frequency of the pump, since otherwise
the signal and pump would interfere. Therefore, only the 300 MHz to the right or the left of the pump
are available for amplification. Ideally, the qubit frequency should be in the middle of this band to
benefit from the maximum bandwidth.

As was shown in the simulation of paragraph 5.3.4, the g;[7] and go[7] functions for such a
coherent state should give 1 for all 7.

To perform the measurement of the g, function on a coherent state, we set the frequency
generated by the BNC to be off resonance from the qubit, and we connected the switch to line
1. This way, the signal reaches the qubit from the right and is completely transmitted through
the sample. After exiting from the left, the signal is then amplified by the parametric amplifier
and redirected to the demodulation chain the way it was described above for an anti-bunched
signal. After being digitized, the signal is processed numerically as described by the block
diagram in Fig. 5.7. The reader may refer back to Fig. 5.4, for an illustration of these 5 steps
of analog and digital demodulation.

In the left panels of Fig. 5.11, we show in solid red the g; and gs thus obtained for a
signal amplitude of 0.32 Vpp (Volt peak to peak). In the upper right panel is plotted the
power spectral density (PSD) of the {signal+noise} and of the noise-alone, right after being
digitized. The same are plotted in the bottom right panel, after having been demodulated
to DC. Surprisingly, gi[7] > 1 for 7 # 0 and ¢»[0] < 0, when we were expecting to get
g1[7] = 1, and g»[0] = 0. This result can be easily explained by noting from the power spectral
density plots that the digitized noise power is higher when the noise is alone than when it is
combined with the signal. This clearly indicates saturation of one of the electrical components
of the setup. Moreover, coming back to the simulation of the previous section, one can tell
from the bottom panels of Fig. 5.8 that the noise subtraction consists in subtracting from the
{signal+noise} go the central peak of the noise go. Clearly, therefore, if the power of the noise
when the drive is ‘off” is more than when it is ‘on’, the peak in the {signal+noise} g, will be
over-subtracted, which will lead to the dip that we obtain.

To correct for this saturation, we considered decreasing numerically the noise digitized
alone by multiplying it by a “noise factor”, right before the calculation of the auto-correlation
functions. If that noise factor is taken to be 0.925, the resulting ¢; is adequately corrected
as shown by the dashed line in the top left panel of Fig. 5.11. The spurious dip in the g, is
however only partially corrected, going from about —3 to about —1. The fact that this quick
fix does not correct the go by making it 1 indicates that the saturation is due to a complex
non-linearity that cannot be modeled by simply including a noise factor.
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Figure 5.10: The complete experimental setup. As explained in the text, the switch set on line 2
corresponds to the configuration leading to the digitization of an anti-bunched signal, while the switch
set on line 1, together with wy detuned from the qubit resonance, corresponds to the digitization of
a coherent signal. The latter configuration is the one studied in this chapter.
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Figure 5.11: Left panels: g¢g; and g correlation functions of an off-resonant coherent signal with
amplitude 0.32 Vpp sent through line 2 of the setup shown in Fig. 5.10. Top right panel: PSD of
the signal right before digitization. Lower right panel: PSD of the demodulated signal on which the
correlation functions were calculated.

To reduce this non-linearity causing the saturation, we attempted to decrease the signal
power. In Fig. 5.12; we show the same results but with a signal of amplitude of 0.16 Vpp and
0.08 Vpp. From the PSD plots, in the bottom panels, it is clear that the saturation reduces
with the signal power. On the other hand, instead of becoming smaller, the dip in the g,
functions becomes deeper. This can be explained by the fact the amplitude of Gy scales as
the square of the signal power, while H; is independent of power (remember that Gy and Ho
are the un-normalized second-order correlation functions of the power). Therefore, provided
the imbalance between the ‘on’ and ‘off” noises (H$" — HST) scales as less than the square of
the power, reducing the signal power will make the noise imbalance more dominant over the
G5. In other words, G[0] reduces faster than HS"[0] — HS[0]. This explains that for a signal
amplitude of 0.08 Vpp, the dip of the go function reaches all the way down to g,[0] = —40.

The component most prone to saturation is the parametric amplifier, which has low sat-
uration power. However, when performing the experiment without it, that is by using the
HEMT and the room temperature amplifiers only for amplification, we still obtain a negative
dip in the g5 function. This suggests that another component must be saturating as well, which
could be the mixer used in the demodulation chain. The next step is therefore to solve this
issue of saturation, after which it will be checked that the go function for a coherent state is
indeed 1. We will then move on to measure the g, function for an anti-bunched signal, and
attempt to obtain the expected dip at 7 = 0, signature of photon anti-bunching. Note that
the experiment is still on-going at the time of the writing of this thesis.

Thus, in this experimental chapter, we have described an on-going attempt to measure
second-order correlations in the signal reflected by a qubit strongly coupled to a transmission
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Figure 5.12: Middle and top panels: ¢g; and gs correlation functions of an off-resonant coherent state
of with amplitude 0.08 Vpp sent through line 2 of the setup shown in Fig. 5.10. Bottom panels: PSD
of the demodulated signal on which the correlation functions were calculated.

line. After presenting the sample design and fabrication, we gave a detailed account of how
the qubit parameters were extracted. Following this, we introduced the single- and double-
channel setups which were used to attempt the experiment, and the corresponding procedures
for extracting the correlations of interest. The code used to perform this extraction in the case
of the single-channel setup was then presented, and was shown to successfully carry out the
task it was designed for when applied to a numerically generated noisy coherent state. Finally,
we discussed the measurement of the ¢g; and gy correlation functions applied to an analog
sinusoidal signal. Saturation in the amplification chain however hampered the noise correlation
subtraction process, leading to distorted correlation functions. Although the second-order
correlation function of the amplitude was successfully corrected by restoring the noise balance
between the ‘on’ and ‘off’ signals, the second-order correlation of the power could not be
corrected in this way.

Clearly, the measurement of quantum correlations in microwave signals is still in its in-
fancy. We hope that the experimental developments and the simulation tools presented in this
chapter will provide in the near future useful diagnostic tools for quantum signals traveling in
superconducting waveguides, that could be used to investigate both the strong and ultra-strong
coupling regimes of light-matter interaction.
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Chapter 6

Conclusion and Perspectives

To summarize, the core result of the theoretical work presented in this thesis is a new variational
technique based on a coherent state expansion for solving the spin-boson model. Similar in
spirit to the frozen Gaussian technique introduced by E. J. Heller in the 1970s, it allows to
harness the classical-like nature of the coherent state trajectories to describe the macroscopic
dynamics arising in the ultra-strong coupling regime, while at the same time preserving the
complete quantum behavior. Besides giving an intuitive description of the underlying physical
machinery in terms of superpositions of classical-like trajectories, as we saw in the case of
the Rabi model, the MCS technique also offers a dramatic computational speed-up for solving
the dynamics of spin-bosonic systems involving a near continuum of modes. This numerical
gain allowed us in section 3.3 to reach deep-ultra strong levels of coupling (o ~ 1) between
a qubit and the thousands of modes present in the bosonic bath, and to demonstrate the
surprising result that in this regime spontaneous emission of the qubit involves the emission of
a Schrodinger cat state of light. Interestingly, this drastic speed-up seems to be very specific to
the choice of the coherent states basis we have made, as such a speed-up was never reported in
the context of the previously developed Gaussian-based methods (such as the recent variational
multi-configuration Gaussian technique (vMCG)).

The success of the MCS technique with spontaneous emission then prompted us to move
on to a more challenging simulation involving the scattering of a coherent state on a qubit.
For the first time, we obtained the frequency resolved scattered spectra of the radiated field
at the onset of the ultra-strong coupling regime (o = 0.1 — 0.3). The most striking feature
of those spectra is a low-energy continuum that arises from a non-RWA process involving the
splitting of a single photon into 3 lower energy photons. This process had been first discovered
perturbatively by Goldstein et al. for @« — 0 (and for the value of a = 0.5) [29], and in this
work we have generalized this result numerically up to o = 0.3. Moreover, the high accuracy
we achieved with our technique allowed us to go beyond the study of scattered spectra, and to
investigate the second-order correlations in the radiation scattered by the qubit. Most notably,
the go(7) function revealed striking features that are not present in the RWA treatment of
the same problem. We have argued for example that the partial anti-bunching occurring at
t =0 (0 < ¢2(0) < 1) is a signature of the particle production that was observed in the power
spectra.

This study of the second-order correlations at ultra-strong coupling was in fact inspired
by the theoretical considerations related to the experimental work presented in chapter 5. The
aim of this experiment was to measure the photon anti-bunching in the field radiated by a
strongly coupled qubit. Although final results are not yet available, we have presented the
scattering measurements on the qubit that allowed us to characterize its properties and gave
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an account of the different steps involved in processing of the signal emitted by the gbit. Fol-
lowing this, we defined the G4 correlation function and described mathematically how it can
be retrieved from the bare correlations of the signal that include noise contributions (I'; and
I';). A python simulation was then presented that gave an example of the calculation of the
go function for a coherent state in the case of a two-channel setup, and that demonstrated
our algorithm for subtracting the unwanted noise correlations. Finally, we showed preliminary
results for the measurement of the second-order correlation function on a coherent state which
was being used as a test. It turned out saturation in the amplification and/or demodulation
chain did not allow us to perform an accurate subtraction of the noise correlations.

To conclude this thesis, we will present some perspectives on future research directions,
and some ideas that are currently being investigated in the lab.

6.1 From the Cooper-pair box to the transmon qubit

The MCS technique we presented in this thesis focuses on the case of an ideal qubit with
only two discrete levels, such as a Copper pair box ultra-strongly coupled to a waveguide.
The Cooper pair box however generally suffers for significant charge noise that leads to very
small coherence times, making it very impractical for most applications. For this reason, the
transmon qubit is more commonly used, which is similar to a Cooper-pair box but with less
anharmonicity, as discussed in section 2.2.4. It is therefore important that we generalize our
model to this more practical implementation. We will discuss two possible strategies to achieve
this.

One is to simply extend the 2-dimensional Hilbert space of the qubit to include higher
energy levels of the transmon. Supposing that we want to include the first three energy levels
of the qubit, we could rewrite our MCS ansatz as:

Nes
(1) =S [am(t) lam(®)} g} + bul®) 1Bn(D) le) + nl®) bn) 1) ] (6.1)
m=1
We have here used {|g),|e),|f)} to describe the qubit eigenbasis, as the {|1),[})} notation
used throughout this thesis was only useful as long as we could identify the two spin states
with the two charge states of a Cooper pair box. We have also switched to Greek letters
to designate the fields displacements. The present algorithm presented in this thesis could be
easily generalized to this situation of a multilevel qubit (or to describe several coupled two-level
system) provided the Hilbert space spanned by the discrete levels remains small.

Another possibility for extending our technique consists in describing the qubit quantum
states using coherent states, in the same way the degrees of freedom of the bath are described.
The idea here is that the transmon is basically an harmonic oscillator with a certain degree
of anharmonicity, and that therefore it is likely that the representation used to describe the
state of the harmonic modes of the chain will also be an effective way of describing the state
of an oscillator with weak to moderate anharmonicity. Moreover, as we saw in Eq. (3.42), we
already know that the first excited state of an oscillator can be described by using only two
coherent states:

lim o~ (|a) - |-a)) = da'|0),

and higher energy levels can be described in a similar fashion. Another advantage of this
approach is that all the degrees of freedom are treated in the same way, as opposed to the
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6.2 IMPROVEMENTS TO THE NUMERICAL INTEGRATOR

approach chosen in this thesis, where the qubit has its own discrete Hilbert space while the
bosons are described by multi-mode coherent states. While we can be confident that the
transmon regime can be captured with this new method, it is an open question wether generic
quantum circuits can be tackled using coherent state superpositions.

6.2 Improvements to the numerical integrator

One of the main limitations of the MCS technique is that the iterative algorithm requires huge
computation times as soon as the number of coherent states in the MCS ansatz (3.1) becomes
large. The inversion of the linear system of equations (3.21) is the main cause of the high
numerical cost.

An alternative that would avoid having to recalculate the solution at every time-step would
be to use an iterative method, and more specifically the Krylov subspace method [110]. The
idea is that the solution at time ¢ 4 dt can be found iteratively by starting from the nearly
identical solution at ¢t. One restriction for using the most optimized version of this technique,
the Conjugate Gradient (CG), is that the matrix representing the system of equations be
symmetric-positive-definite, which is not the case of our system of equations. Alternative
Krylov-based methods, including optimal pre-conditioning strategies, are currently explored.

6.3 Production of many-body Bell states

As we have seen in this thesis, the ultra-strong interaction between a single qubit and a
waveguide provides vast possibilities for doing many-body quantum optics. We present here
an idea to build on the prediction of the down-conversion of a single photon described in
chapter 4 to create a source of on-demand many-body Bell states built from photonic pairs.

As we have shown in chapter 4, in the ultra-strong coupling regime non-linear effects
become prominent, allowing the down-conversion of an input single photon state into three
photons with lower frequencies. According to quantum mechanics, these three photons are
emitted in a quantum superposition of all the possible combinations of the available low-
energy modes. If the number of available low-frequency modes is large enough therefore, the
incoming single photon will be transformed into a quantum many-body entangled state.

The main difficulty is that the inelastic cross-sections are associated to a very low proba-
bility, because down-conversion from a qubit is a high order process. To enhance the splitting
to the low-frequency many-mode entangled state, one could ultra-strongly couple the qubit to
an auxiliary resonator with resonance frequency identical to that of the qubit. This original
development would lead to a considerable increase of the re-emission by the qubit of a single
photon at frequency A in the resonator, thus forcing the qubit to release the excess energy
in the form of two entangled photons into the low frequency modes of the waveguide. Note
that implementing this development implies that the resulting many-body entangled state now
involves only two photons, as the third is emitted with high probability to the resonator.

The protocol of the proposed experiment, illustrated in Fig. 6.1, is the following: a photon
with energy kq is sent through the waveguide towards a single qubit (with resonance frequency
A), in a non-resonant condition such that kg > A. Because of the dominant coupling to the
auxiliary resonator (shown above the qubit), the qubit is compelled to give away a part of its
energy by emitting one photon with frequency £y in that resonator, which implies that k; = A.
Since the incoming photon had energy ko, kg — A of extra energy still remains, which can now
only be released in the form of two photons with momenta k, and k3 restricted as follows by
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Figure 6.1: Left: illustration of the ultra-strongly coupled waveguide-qubit system. The experimental
protocol taking place is the following: a photon with energy k¢ gets absorbed by the qubit, which
ends up in the excited state. To relax back to the ground state, the qubit emits simultaneously one
photon at k1 = A to the ultra-strongly coupled auxiliary resonator and two photons at (ke, k3), such
that A + kg + ks = ko. Because of the multitude of possible (kg2, k3) states, these photonic pairs end
up in an entangled state of all the possible combinations. The process involved is illustrated below
the waveguide, where the various colors indicate the various frequencies of the two photons included
in the many-body entangled superposition. Right panel: probability of measuring photonic pairs with
energy (ko, k3) in the waveguide, discussed in paragraph 4.3.2.

conservation of energy:
ko + ks = ko — A. (6.2)

This is the origin of the entanglement: the photonic pair is emitted in all the states that verify
this restriction at the same time. In the right panel of Fig. 6.1 is displayed the result from
paragraph 4.3.2 (that did not consider any auxiliary cavity) which shows the probability of
emitting photon pairs at the pair frequencies (ks, k3) for a fixed energy k; of the third photon.
In such a scheme that does not involve a cavity, the resonant photon is dominantly emitted in
the reflection channel.

The measurement of this entanglement would be performed using standard correlation
measurement as demonstrated for example in a recent work [111]. This would involve measuring
correlations between pairs of modes (ks, k3), for all the possible photon energies ks, k3. By
measuring all the possible combinations, one obtains a global measure of the entanglement of
the many-body wave-function, proving the realization of a massively-complex Bell state.

Previous experiments have demonstrated entanglement between a maximum of three modes
[111], which makes this idea of generating many-mode entanglement an exciting experimental
project.

6.4 Measurement of anti-bunching and high saturation power SPAs

We saw in chapter 5, that saturation in the setup prevented us from performing the noise
subtraction required to recover the g, correlation function of the signal. This origin of this
issue is most likely to be the low saturation power of the JPAs that was used in this experiment.
Since the Gy correlation is small compared to the correlation of the noise (Hj), any small noise
imbalance between the noise when the signal is ‘on’ and the noise when the signal is ‘off” will
make it almost impossible to retrieve the correlation Gs.

To avoid this saturation problem, we will attempt again the experiment with the two chan-
nel setup. In this setup the signal is split in two right after being emitted by the qubit, and
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6.4 MEASUREMENT OF ANTI-BUNCHING AND HIGH SATURATION POWER SPAS

two different amplification and demodulation chains process the two copies of signal indepen-
dently. This way the noise arising in the two amplification chains is uncorrelated, which will
avoid the saturation issues we have encountered. As mentioned in paragraph 5.3.1, this is a
more challenging setup to implement.

Another idea that is currently being investigated is to use parametric amplifiers with a
better dynamic range. In particular, a promising device is the SNAIL parametric amplifier
(SPA) [112] developed by the Yale group, which consists of an array of Superconducting Non-
linear Asymmetric Inductive eLements (SNAILs). The SNAIL [113] is a device made of four
SQUIDs designed to optimize the 3-wave mixing process used for amplification, and to reduce
the 4-wave mixing Kerr nonlinearity which is suspected to lead to the saturation effects in
JPAs [114, 112]. This amplifier will therefore provide us with a higher saturation power,
which will hopefully allow the experiment to succeed. Because the bare SPA has narrow
operational bandwidth, it will also be necessary to engineer the impedance of this SPA to
make it broadband before is can be used to amplify the signal emitted by the strongly coupled
qubit. This impedance matching can be done in a way similar to how the JPA was impedance
matched for this experiment [103].
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Appendix A

Derivation of the spin-boson model
from a superconducting circuit

This appendix follows the derivation by Snyman and Florens [27]. We start with the Hamilto-
nian

H=Hy+ H, (A.1)

of the circuit illustrated in Fig. 2.9, where the quadratic part H, describes the linearized
semi-infinite Josephson junction chain:

IR - R R
P SEAUSIERES P w2
m,n=0 m,n=0

The impurity located at the end of the chain contains the only source of non-linearity of the
problem, encoded in the Josephson energy:

ﬁl = _EJd COS(@O - @1) (A?))

The matrices M and V' are defined in the main text. One would like to express Hy as a bath
of independent oscillators that are linearly coupled to the impurity at site 0. This is achieved
by expressing the set of harmonic variables in terms of bosonic operators:

N, = / dk Oy (b, + b1) m=1,2,... 400 (A.4)
P = f/ dk Emi (b, — bl) m=1,2,...,+o00 (A.5)

where &, and 6, are real numbers. We stress that the coordinates (¢, No) at the end of the
chain are not part of this decomposition, which will facilitate the later projection onto the two-
level system. A first important relation follows from (A.4-A.5) by imposing the commutation
relation [@m,Nn] = 10,,, and assuming standard algebra of the bosonic operators, namely

[l;kv Bk] =0, [Bkv B;] =06(k—K): .
/0 dk &EnkOnk = O (A.6)
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APPENDIX A DERIVATION OF THE SPIN-BOSON MODEL FROM A SUPERCONDUCTING
CIRCUIT

Let’s focus first on the chain part of Hy which contains the sites m = 1,2,..., 400 only,
and impose that it is diagonalized by the bosonic operators:

| . 1 . . e
thaln = 5 Z Nm (M_1>mn Nn + 5 Z QOmen(pn = /0 dk wkb;rcbk? (A7)
m,n#0 m,n#0

with wy the positive frequencies of the normal modes. Using the decomposition (A.4-A.5),
this provides several constraints on the set of unknown parameters:

0 = Z [emk (M_l)mn an’ - gmkvmngnl’} (AS)
m,n#0

2(A)k5(k - k,) = Z [emk) (M_l)mn ‘gnk:’ -+ gmkvmnfnl’} . (Ag)
m,n#0

One can then take the sum and differences of Eq. (A.8-A.9), and integrate them respectively
with f0+oodk‘ & and with f0+oodk: 6,1 Using the orthogonality condition (A.G), one readily
gets:

Zémk (M_l)mp = wkfpk (AlO)
m##0
mekvmp = wkﬁpk. (All)
m#£0

In order to write the above equations as full matrix products, we extend the variables to the
rangem = 0,1, ..., +o0o, and define the vectors & = (&ok, &1k, oy - - ) and O, = (o, O1k, Oax, - - -)-
Noting that Vp, = 0 and with the condition 0y, = 0, we can write:

M_lgk = wkég (A12)
VE = wibp. (A.13)

This results in an eigenvalue equation M 'V, = wi&,, which can be rewritten in the explicit
form (that avoids inverting explicitly the matrix M):

Vi = wp M. (A.14)

This gives a set of conditions, for the different cases m =0, m =1, and m > 2:

C
Sk = —Cdjcd&k (A.15)
g
Ceffwk
= |1-— Al
Eak (26)°E, — Cu? 3Y: (A.16)
(2¢)°E; — (C + Cy/2)wy

(2e)2E; — Cw?

fm—i-l,k = 2 gmk_fm—l,k (A17)

with Cop = Cy 4+ CyaCy/(Cya + Cy4). Now we exploit the fact that the Josephson chain is
uniform except at the first two sites. We thus introduce scattering states that we parametrize
as follows:

Emk = Nicos [k(m —1/2) —=6,] m=1,2, ..., 4+ (A.18)
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with amplitude N, and phase shift ; to be determined. Inserting the above expression into
Eq. (A.17), we readily find the eigenfrequency:
o 4(2¢)2E;sin®(k/2)

_ , A19
kT, 1 A0 sin? (k/2) (A.19)

The phase shift is then determined from condition (A.16), which reads:

3]{7 . Ceﬁ‘u)]% k
Ccos (7 - (5k> = [1 " 2o, - szl Cos (5 - (5k) . (A.20)

After some trigonometric manipulation and using Eq. (A.19), one finds the simple condition:

sin (6;) = {1 - gg } sin (6 — k), (A.21)

eff

which is solved explicitly as:
(1 - c%) sin(k)
<1 - g—;) cos(k) — 1

It is useful to establish an inverse relation between the harmonic variables and bosonic oper-
ators. Using (A.6), it is straightforward to check that the relations (A.4-A.5) can be inverted
by:

(A.22)

0 = arctan

3
I

One is equipped now to determine the normalization factor N, which follows from the commu-
tation relation [b,, bf] = 6(k—k'). This relation is equivalent to the condition 0 -& = 6(k—k'),
which can be rewritten as:

m,n#0

From the explicit expression of V' and the recursion relations (A.16-A.17), one gets:

E, Cog — C =
5k — ) = 477 sin®(b/2) | =26 + > ki | - (A.26)
9 m=1

Finally, using expression (A.18) and the following standard algebraic identities Y °_, cos(mk) =
(k) —1/2 and Y °_, sin(mk) = 1/[2tan(k/2)], one finds:

E
5(k — k') = 2r=2L sin?(k/2)N26(k — k') + Finite Terms, (A.27)

Wi

where we have singled out the delta-function contribution. Let us prove that the finite terms
are actually zero, which implies the choice of normalization:

1 Wi
Nie = sin(k/2)\/ 27 B, (A.28)
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APPENDIX A DERIVATION OF THE SPIN-BOSON MODEL FROM A SUPERCONDUCTING
CIRCUIT

For this purpose, let us show that (9}54 = 0 for all k£ # k’. The proof relies on equations (A.12-
A.13):

— — — — — T — —
wz,ﬁk : fk/ = Qk . M‘lng/ = (VM_lgk) fk/ = w,f@k . {kl. (A29)
Since w? is a monotonous function of k, the scalar product 0y - 5,6/ indeed vanishes for k # k’.

The impurity part of the quadratic Hamiltonian (A.2) related to the site m = 0 reads:

+oo
e — % (M) N2+ No 37 (M), Ny (A.30)

m=1

Using Eq. (2.103) and Eq. (A.10), we finally obtain an exact and remarkably compact expres-
sion for the full Hamiltonian in terms of the normal modes and of the variables at the first two
sites of the Josephson chain:

R 1 . s o . T R R R R
H = 3 (M_l)oo NO2 + /dk wkblbk + Ny /dk gi(b, + bz) — Ejqco8(po — p1), (A.31)
0 0

where we have introduced the mode-dependent coupling constant

1 Cy 1 w3 k (1-C,/Cu)sin(k)
gk = 20+ Cy Sin(k:/Q)” ok, [2 arctan <(1 =G,/ Co) cos(h) —1) | (A.32)
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Appendix B

Expression for the dynamical error

To check the accuracy of our wave-function, we monitor the norm of the following vector:

9) = (z%—z%—ﬂ) ) (B.1)

(BI0) = — SR((¥] 3, 0, [9)) + 5 (¥] D, 0, [¥) +21 R((E| D, H [0)) + (¥[E0) | (B2)

o (1003 |9) = Y (slf) i - T S+ 25

.3

i S+ 25 Bip; ((Z FERE + £ ) (Z FEay - i gt =26t

(S fE ) (S Ar e ) (S ) (D A ) +4(X ff*fj)ﬂ
k k k k k
+—aq, f—h)
o 10510 = Yl [ (s A - 2g )
9] k

(S gt sl —aghp) < B (S 2RGE g+ 2t = 211
k k
+@%%f%m

o - 2t ZgHAZp,qJ (ilhg) (Ekjwkff*h;?) + > pip; (filFy) [(Ek:wiff*ff)
2y
+(Qf)?+ @f —%}:%wf“+f@ G%@ﬂ+@—w,f%mg—+ﬂ)
.« (U0 H V)= Zp] (filf) [( *M(kaff“rfk*fz))(ij—%szj)
+ 5 @ ff*ff) (of ~ 361) + i (; o fF I~ fo*)] 4334 (lhy) [p:-‘
2y

—;M(Elﬁﬁ“+ﬁWf—2ﬁ%ﬂ]Hp%q,f%h,wé—@
k
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Appendix C

The Wigner distribution of a
superposition of coherent states

C.1 For single-mode coherent states

The Wigner function Wl(a) of a density matrix p = |¥) (¥| function is defined as the two-
dimensional Fourier transform of the symmetric order characteristic function [18]:

W (a) = 12 / d? ACPI(\)eoA —a"A (C.1)

™

where

CPI(N) = (U] DA W) = (W[ e

o) (C.2)

For a superposition of coherent states

|\Ij> :an|fn>v (C3)

corresponding for example to one of the sectors of the MCS state vector, the characteristic
function becomes:

CYN) =D phupn (finl fu) 2 (AFF2OTn=20) (C.4)

Obtaining the Wigner function is then a matter of evaluating the following 2-dimensional
Gaussian integral:

In = /dQ)\ AP /202N fa=Af) X —a (C.5)



APPENDIX C THE WIGNER DISTRIBUTION OF A SUPERPOSITION OF COHERENT STATES

C.2 For a many-mode wave-packet

For calculating the Wigner function of the propagating multi-mode wave-packets in paragraph
3.3.3, we define an effective mode b on which to evaluate the characteristic function C ]()\):

b = w(z)a'(z)O(x — L) (C.7)

T

where we have used a normalized complex optimized temporal filter w(z) given by:

wiz) = —28) (C.8)

V2 [2(@)?

with

@) = 3 Pufae (C.9)

We can then evaluate the characteristic function, which now reads

CN) =" phupn (fnl fu) e2 A2 @ =@ ) (C.10)

In the same way as for the single-mode coherent states above, we obtain the Wigner distribu-
tion:

2 * — w(x) fr, —a* w* (x —a
Wh(a) :;mepn (Fnl o) €=2Es W@ 52 =0")(Eg w* @), 5—0) (C.11)
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Appendix D

RWA input-output theory for coherent
state scattering

Transport under the RWA is obtained in the framework of input-output theory. Within the
RWA, it is convenient to work in the basis that diagonalizes the qubit. After applying the
rotating wave approximation to the Hamiltonian (4.2) and assuming a frequency-independent
coupling constant g = v/aAg, one finds that the system is described by the Hamiltonian

A
H=%0"+ /dw g[eﬁ(rw + 1) + h.c] + /dw w(rlr, — L), (D.1)
where o™ is the raising operator of the qubit and r,(l,) is the annihilation operator for the
right(left)-going mode of frequency w. We adapt standard input-output theory for a monochro-
matic input [33, 115, 116, 117] to our case of an incoming wavepacket with finite energy reso-
lution. The input-output relations remains the usual ones,

Touw (t) = rin(t) — i\/gg o (t)
o (1) — -z-@ go(0), (D.2)

where we have taken into account that the wavepacket is incoming from the left. This allows
one to find the properties of the outgoing field from a master equation for the qubit. In this
Way the power spectrum is calculated through the first-order correlation function G (t,t,) =
(a Out(tl)aout(tg» (@ouy being either 7o, or loy) by a Fourier transform

dty [ dt, G loltz=tn), D.3
=5 [ [ e 023)

We assume that the qubit is located at x = 0 while the input and output ends are located
at © = —T/2 and T/2 respectively (¢ = 1). From the definition (4.9), we can write the
wavepacket in frequency as

1\ _w?
z(w):\/ﬁ( ) e it elw=ho)T/2 (D.4)

2w o2

through which the input coherent state is defined as

124) = exp [ / e () ! () — h.c} 0Y, (D.5)
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where r;fn(w) is the standard monochromatic input operator [33, 115, 116, 117] of input-output

theory. The input operator describing our wavepacket then satisfies

1 )
ri(t) [27) = —=A(t)e "ot | 2T and () [zT) =0, D.6
() |=7) N (t) 27) (t)|=7) (D.6)
where A(t) = Ae=7"(=T/2” with A = /20 (27)"/* is the change of driving amplitude on the
qubit with time as the Gaussian wavepacket passes by.

A master question for the qubit density matrix p, is then obtained by transforming to the
Schrodinger picture using a rotating frame given by kyo* /2

9
ot

0 1
ps = =il50" + gAW)oy + hc. p] + 7% (0 psos = S{ps 040 })

= Lps, (D.7)

where in the last line we have defined the system’s Liouvillian £. Note that decay rate is
I' = 7¢?> = maAg. For the reflected light, the power spectrum can be shown to be

Slw] = ¢ /0 it /_ tt dr (oo (o (L + 7)) @, (D.8)

two additional interference terms appear in the power spectrum for the transmitted light and
are not given here. The desired correlation function (o, (t)o_(t + 7)) can be calculated through
the master equation (D.7) and the quantum regression theorem [99]:

(o4 (t)o_(t+7)) = Tr{a+(0)e—ﬁ [0 (0)ps(t)] } (D.9)

In the main text, we also require the RWA 2°¢ order correlation function of the radiation
emitted towards the left (I' ()1 . (t 4+ 7)o (t + 7)louws(t)). To calculate this field correlator,
we first express it in terms of a spin correlator by using Eq. (D.2):

7T2

(It (Dl (8 + Dlowt (£ + Tl (1)) = 9" (o4 (B)oy (t+ 7)o (t+ 7)o (1) (D.10)

Using again the quantum regression theorem, we then obtain an expression for the spin corre-
lator:

(or(t)or(t+T)o_(t+T)o_(t)) = Tr{aJr(O)a_(O)eﬁT [0_(0)ps(t)o+(0)] } (D.11)
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Appendix E

Perturbative calculation of the 1 — 3
photon process

We proceed here with a systematic study of particle production spectra in the off-resonant
case, as a function of incoming momentum kg (see right panel of Fig. 4.8). A weak coupling
calculation of the one photon to three photon conversion process (see Fig. 4.9) was given in
the @ — 0 limit in Ref. [29]. We have found that this theory can quantitatively account for
our data at small o upon two important modifications.

First, as we already saw from the frequency shift in the reflection spectrum in Fig. 4.5,
one must replace the bare qubit frequency A by the renormalized quantity Ar within the
analytical results given by the perturbative approach. Second, the golden rule value for the
qubit linewidth appearing in the transmission line-shape, given by I' = maA at small o, cannot
be used. For the elastic response, one can use reliably ' = maAgr up to moderate values of
«. However, we find that the renormalized broadening parameter v entering the inelastic
response function for fixed value of the incoming momentum kj is not given by I'g, but rather
displays a strong momentum dependence, v = v (kq). This is not completely unexpected,
since a consistent calculation should include the full momentum variation of the self-energy,
and we found that the theory of Ref. [29] is very sensitive to the way the inelastic regularization
is implemented. For the present purpose, we will only use a phenomenological model that uses
(as fitting parameters) only two renormalized quantities Ag and vz (ko) within the perturbative

formula:

8
‘kokklkg — KA (K2 + K2+ k2 + Kk + Kk + kks) + 3K4 |2
(k? — kX) (kg — KA) (kT — k3) (k3 — k3) ’

ol ko—Fk
<nk>3photon = _A?z/ dky kkokiks (E.1)
0

with ko = ko — k1 — k and ka = Ag + ivr(ko), with Ag the renormalized qubit frequency and
vr(ko) the linewidth describing the inelastic spectrum, which is fitted from our numerical data.
The resulting comparison is shown in the right panel of Fig. 4.8 for o = 0.1, with excellent
quantitative agreement.
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