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Synthèse de la thèse en français

Dans cette thèse on étudie la quantification de :

1. Systèmes Hamiltoniens dépendants du temps. Leur flot décrit des équations dif-
férentielles non-linéaires qui gèrent les déformations isomonodromiques de certaines
connexions méromorphes sur la sphère de Riemann. Il s’agit ici de quantification
par déformation.

2. Espaces de modules, qui sont réalisés par des variétés hyperKähler. Ils paramétrisent
SL(2,C)-connexions holomorphes sur un tore dans une structure complexe, et SL(2,C)-
fibrés de Higgs dans une autre. Il s’agit ici de quantification géométrique.

Pour introduire ces deux projets, nous commençons par rappeler les constructions que
nous voulons généraliser.

Quantification par déformation de connexions de isomon-
odromie

Soient m,n deux entiers positifs. On définit

g := gl(n,C), B := Cm \ {diags} =
{

(t1, . . . , tm) ∈ Cm | ti 6= tj si i 6= j
}
,

et on fixe un produit scalaire invariant sur g, ce qui permet d’identifier g ∼= g∗. Considérons
le fibré vectoriel holomorphe trivial de rang n sur la sphère, avec la connexion

∇ = d−
∑
i

Ri

z − ti
dz, où Ri ∈ g, (t1, . . . , tm) ∈ B, (1)

et où z est une coordonnée qui identifie CP 1 ∼= C∪{∞}. Les équations différentielles afin
qu’une section locale ψ soit horizontale pour la connexion s’écrivent

dψ

dz
=
(∑

i

Ri

z − ti

)
ψ. (2)

Les solutions de (2) sont des fonctions multivaluées. La façon dans laquelle elle se transfor-
ment par prolongement analytique le long d’un boucle autour d’un pole (simple) est dictée
par la monodromie du système. La monodromie exprime l’action du groupe fondamental
de la sphère — où l’on a enlevé les pôles — sur l’espace des solutions fondamentales de
(2). Si les positions des pôles et les résidus varient, la monodromie en général change.
Une classe importante de déformations est définie précisément en demandant que ceci
n’arrive pas : celles-ci sont les déformations isomonodromiques des systèmes Fuchsiens
(sur la sphère).
Schlesinger [Sch05] a dérivé un système d’équations différentielles pour les résidus Ri — en
tant que fonctions des positions ti — qui code de telles déformations isomonodromiques.
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Résoudre ces équations d’isomonodromie revient à calculer le flot du système Hamiltonien
dépendant du temps HSch

i : gm ×B −→ C défini par:

HSch
i (R1, . . . , Rm, t1, . . . , tm) =

∑
i 6=j

Tr(RiRj)
ti − tj

, pour 1 ≤ i ≤ m. (3)

Les équations d’isomonodromie s’écrivent alors {HSch
i , Rj} = ∂Rj

∂ti
, où l’on utilise le crochet

de Poisson de gm ∼= (g∗)m. Géométriquement, elles sont équivalentes à une connexion de
Ehresmann intégrable sur la fibration de Poisson triviale gm × B −→ B. Quantifier
cette connexion d’isomonodromie signifie quantifier les Hamiltoniennes HSch

i , et il y a
un formalisme algébrique standard pour cela. À savoir, la restriction fibre-à-fibre des
HSch
i définit des fonctions polynomiales sur gm, c’est-à-dire des éléments de l’algèbre

symétrique Sym(g∗)⊗m ∼= Sym(g)⊗m, et le théorème de Poincaré–Birkhoff–Witt donne une
applicationQPBW : Sym(g)⊗m −→ U(g)⊗m. Comme l’algèbre enveloppante universelle est
une quantification de l’algèbre symétrique, la quantification fibre-à-fibre

QPBW(HSch
i ) : U(g)⊗m ×B −→ B

définit un système Hamiltonien quantique dépendant du temps qui quantifie (3). De plus,
[Res92; Har96] ont montré que les équations dynamiques qui lui sont associés correspon-
dent aux équations de KZ universelles, c’est-à-dire

∂ψ

∂ti
=
∑
j 6=i

Ωij

ti − tj

ψ. (4)

Celles-ci sont des équations pour une section locale ψ du fibré vectoriel trivial U(g)⊗m ×
B −→ B (cf. [EFK98]). Du point de vue mathématiques, les éléments Ωij dénotent
l’action d’un tenseur Ω ∈ g⊗ g par multiplication gauche sur l’i-ème et le j-ème facteur
du produit tensoriel U(g)⊗m, et la preuve que KZ quantifie le système de Schlesinger
revient à la remarque que la fonction Tr(RiRj) est quantifiée par l’opérateur Ωij.
Tout comme pour les équations de Schlesinger, les équations de KZ (4) sont équivalentes
à une connexion plate — dans le fibré vectoriel trivial U(g)⊗m × B −→ B —, et toute
cette discussion peut se résumer en disant que la connexion de KZ est une quantification
de la connexion de Schlesinger.

Ceci est le programme que l’on veut généraliser, en admettant des singularités ir-
régulières dans les connexions méromorphes. La première étape dans cette direction a été
la dérivation de [Boa02] de la connexion de DMT à partir d’un problème d’isomonodromie
irrégulier. Nous considérons ici les déformations isomonodromiques de connexions méro-
morphes sur la sphère de Riemann ayants un pôle d’ordre deux à l’infini et un pôle simple
en zéro :

∇ = d−
(
T + R

z

)
dz, où T,R ∈ g, (5)

et où T = diag(t1, . . . , tn) est diagonale avec spectre simple. Maintenant nous déformons
T dans la partie régulière hreg de l’algèbre de Cartan h ⊆ g des matrices diagonales, et
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nous écrivons accordement des équations d’isomonodromie pour le résidu R. Les Hamil-
toniennes d’isomonodromie s’écrivent alors

HdSch
i =

∑
i 6=j

RijRji

ti − tj
. (6)

Elles sont définies sur la fibration triviale g × hreg −→ hreg, et leur quantification à là
PBW produit les Hamiltoniennes quantiques (dépendants du temps) de la connexion de
DMT :

ĤDMT
i = 1

2
∑
j 6=i

êij · êji + êji · êij
ti − tj

: hreg −→ U(g),

où eij est la base canonique de g.

Le système d’isomonodromie classiqueHdSch
i est une version duale de celui de Schlesinger,

dans le sens suivant. L’espace des temps pour (3) est l’espace des configurations de m
pôles sur la sphère où aucune pair de pôle ne se réunit, tandis que dans (6) on peut varier
le spectre de la matrice diagonale T — qui code le type irrégulier Tdz à l’infini — de
façon que les valeurs propres restent distinctes. Ces derniers correspondent aux temps
d’isomonodromie irréguliers considérés par Jimbo–Miwa–Môri–Sato (JMMS) [Jim+80].
Harnad [Har94] a montré que les deux familles de temps dans le système de JMMS peu-
vent être renversées, et ceci n’est qu’une partie de la dualité d’opérateurs différentiels
rationnels suivante :

d

dz
−
(
T 0 +Q(z − T∞)−1P

)
7−→ d

dz
+
(
T∞ + P (z − T 0)−1Q

)
, (7)

oùW∞,W 0 sont des espaces vectoriels complexes de dimension finie, et T 0, T∞, Q, P sont
des fonctions linéaires allant dans les directions indiquées dans ce graphe orienté :

W∞ W 0T∞

Q

T 0.
P

Donc le côté gauche de (7) (resp. le côté droit) agit sur des sections locales du fibré
vectoriel holomorphe trivial de fibre W 0 sur la sphère (resp. de fibre W∞). Cette dualité
induit en particulier une correspondance entre les connexions (1) et (5). Cette dernière
sous-tend la dualité de Howe/quantique de [Bau99] utilisé dans [Tol02] pour relier les
connexions de KZ et de DMT pour g = gln.

Nous pouvons ainsi dire qu’il existe une correspondance entre les problèmes d’isomonodromie
et les connexions quantiques intégrables qui sont associées aux représentations du graphe

, c’est-à-dire du graphe complet sur deux nœuds. À ces deux nœuds nous asso-
cions un espace de temps qui correspondent aux variations admissibles des spectres des
endomorphismes semi-simple T∞ et T 0 : ces déformations sont définies comme celles qui
ne changent pas les décompositions de W∞ et W 0 en espaces propres. À son tour, ces
déformations sont les déformations admissibles d’une surface de Riemann sauvage équipée
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Figure 1: L’étoile est le graphe complet biparti associé à KZ et DMT.

Figure 2: Un graphe biparti complet générique correspond à la connexion de FMTV.

avec un type irrégulier qui transporte un pôle d’ordre deux à l’infini, plus un nombre fini
de pôles simples. Pour coder ces déformations admissibles dans le graphe, on peut éclater
les nœuds de suivant les décompositions en sommes directes de W∞ et W 0 en
obtenant un graphe biparti complet (cf. § 3.1).

En [Boa12b], Boalch a montré qu’on peut généraliser ce point de vue à des graphes
k-partis complets arbitraires. Ceci étend la théorie Hamiltonienne des déformations
d’isomonodromie de connexions méromorphes sur la sphère de façon à inclure un cas
particulier de [JMU81]. Les nouveaux systèmes Hamiltoniens intégrables associés à des
graphes k-partis complets simplement lacés sont appelés “système d’isomonodromie sim-
plement lacés” (simply-laced isomonodromy systems en anglais). Comme nous pouvons
nous y attendre, ils impliquent k familles de temps qui correspondent toujours à des dé-
formations de sphères sauvages en généralisant les deux familles de temps du système de
JMMS. De plus, à ce niveau-ci, il y a un groupe de SL(2,C)-symétries évident qui inclue
la transformée de Fourier–Laplace. Cette transformée définit (7) pour un graphe biparti
complet. Le groupe de symétrie conduit au groupe de Weyl su système de racines du
graphes.

Suite à cette discussion, nous avons l’impression qu’il devrait y avoir une théorie
quantique sous-jacente à cette extension en mécanique classique. À savoir, on conjecture
l’existence d’une famille de connexions plates associées à des graphes k-partis complets qui
quantifie par déformation les systèmes d’isomonodromie simplement lacés, et qui contient
KZ, DMT et FMTV comme cas particuliers (Fig. 1 et 2).
Le premier nouvel exemple est associé à un triangle car dans le langage de [Boa12b] ce
graphe correspond à un système d’isomonodromie pour des connexions ayants un pôle
d’ordre trois à l’infini et qui ne peuvent pas être ramenées à des connexions avec rang de
Poincaré inférieur en utilisant les SL(2,C)-symétries ci-dessus (Fig. 3).
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Figure 3: Quelle est la connexion quantique plate du triangle ?

La première question qu’on se pose est alors la suivante :

1. Peut-on construire une quantification par déformation des systèmes d’isomonodromie
simplement lacés ?

Si cela avait été possible, on obtiendrait une nouvelle famille de “connexions quan-
tiques simplement lacés” (simply-laced quantum connections en anglais : SLQC) à partir
de la quantification par déformation de connexions d’isomonodromie. Toutefois, il faut
remarquer qu’une quantification arbitraire n’a aucune raison de préserver la propriété
cruciale d’intégrabilité. Nous devons alors renforcer la question précédente.

2. Peut-on construire un système Hamiltonien quantique intégrable qui quantifie les
systèmes d’isomonodromie simplement lacés ?

Une telle construction serait plus intéressante si elle était une généralisation de KZ
[KZ84], DMT [MT05] et FMTV [Fel+00], qui sont toutes obtenues à partir de la quan-
tification de cas particuliers des systèmes d’isomonodromie simplement lacés. Plus pré-
cisément, Schlesinger et son dual sont associés aux graphes étoilés, et JMMS au graphe
biparti complet arbitraire.

3. Peut-on construire les connexions quantiques simplement lacés de façon qu’elles se
réduisent à KZ, DMT et FMTV dans les cas pertinents ?

Pour résumer, répondre aux trois questions précédentes signifie remplir la dernière
colonne de la table suivante :

Système d’isomonodromie Schlesinger Schlesinger dual JMMS SLIMS

Espace des temps Cm \ {diags} Cn \ {diags} Cm \ {diags} × Cn \ {diags} ∏k
1 Cdi \ {diags}

Connexion quantique KZ DMT FMTV SLQC

Ceci va être traité dans le Chap. 3.
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Quantification Kählerienne de l’espace de module de
connexions plates

Soit Σ une surface réelle, fermée, orientable de genre g ≥ 2. Posons K := SU(2). Nous
pouvons considérer l’espace de modules Mfl(Σ, K) de classes de S-équivalence de K-
connexions plates semi-stables sur le K-fibré principal trivial au-dessus de Σ. Les con-
nexions irréductibles (pour lesquelles la S-équivalence se réduit à la relation ordinaire
d’isomorphisme) définissent un sous-espace lisseMst

fl ⊆Mfl.
Atiyah & Bott [AB83] et Goldman [Gol84] ont prouvé qu’il existe une structure sym-
plectique entière naturelle ω surMst

fl . Nous pouvons alors définir la préquantification de
(Mst

fl , ω). La définition de données de préquantification pour (Mst
fl , ω) est suggérée par la

théorie des champs de Chern–Simons [CS74] pour la variétéX := Σ×[0, 1]. Chern–Simons
est une théorie des champs topologique en dimension 3 (cf. [Fre95]). En ce sens-ci, l’espace
de modulesMst

fl est l’espace des conditions au bord pour la théorie de Chern–Simons sur
la 3-variété X. Du coup, une des motivations principales derrière la quantification deMst

fl
est de définir une quantification de la théorie de Chern–Simons (compacte).

La préquantification de la variété symplectique lisse (Mst
fl , ω) est, par la suite, per-

fectionnée en une quantification par rapport à des polarisations Kähleriennes. À savoir,
pour toute structure complexe τ sur la surface Σ on trouve une structure Kähler Iτ sur
(Mst

fl , ω) et on considère l’espace de Hilbert quantique de sections Iτ -holomorphe à carré
intégrable du fibré de préquantification L — au niveau k ≥ 1. Pour faire cela, on équipe
L avec l’opérateur ∂ défini par la partie (0, 1) de la connexion de préquantification et
on utilise la norme L2 naturelle sur les sections lisses de L induite par la métrique de
préquantification et la mesure de Liouville :

H(k)
C,τ := H0

(
Mst

fl , L
⊗k
)
∩ L2(Mfl, µ). (8)

La structure complexe Iτ dépend de τ à isotopie près, et donc l’espace de Teichmüller
TΣ de Σ paramétrise une famille d’espaces vectoriels dont les projectifiés sont des mod-
èles pour la quantification de (Mst

fl , ω). Toutefois, en physique, la quantification est par
principe indépendante du choix des polarisations.
Du point de vue mathématique, on souheterait des identifications canoniques entre les
projectifiés des espaces de Hilbert (8) pour des choix différents de τ ∈ TΣ. La solution
proposée par Axelrod & Della Pietra & Witten [ADW91] et Hitchin [Hit90] est de con-
struire une connexion projectivement plate dans le fibré vectoriel H(k) −→ TΣ dont la
fibre au-dessus de τ est l’espace (8) (Witten suggère déjà cette idée en [Wit89] et trace
son origine dans la théorie conforme des champs). Cette connexion a été, par la suite,
appelée la connexion de Hitchin dans la communauté mathématique ; Hitchin a établi
la platitude projective en utilisant les Hamiltoniennes Poisson-commutatives du système
intégrable introduit par lui même en [Hit87b]. Une nouvelle construction de la connexion
de Hitchin par opérateurs différentiels globaux agissant sur des sections lisses du fibré
de préquantification a été donnée après par Andersen [And12], dans un contexte plus
général (cf. aussi [And06] pour une application de ce point de vue pour démontrer la
fidélité asymptotique des représentations quantiques du mapping class group de la sur-
face, ainsi que le plus récent [AR16]).
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Ceci accompli la quantification Kählerienne de l’espace de modules de connexions unitaire
plate au-dessus d’une surface de Riemann il y a environ 25 ans.

La prochaine étape naturelle dans ce programme est la quantification de la théorie de
Chern–Simons complexe, déjà considérée par Witten en [Wit91]. Du point de vue des es-
paces de modules, on complexifie le groupe K pour obtenir un groupe réductif complexe
G — l’archétype étant G = SL(2,C), la complexification de SU(2) — et on considère
l’espace de moduleMdR(Σ, G) de G-connexions plates au-dessus de Σ.
La situation classique est davantage plus riche que celle du cas compact puisque main-
tenant la structure complexe J du groupe G se combine avec toute structure complexe
Iτ qui provient d’une structure de surface de Riemann sur Σ pour définir un triplet hy-
perKähler (Iτ , J,Kτ = IτJ). La construction de Atiyah–Bott produit cette fois-ci une
structure symplectique J-holomorphe ωC sur l’espace de modules. Ceci a été montré par
Hitchin [Hit87a] en introduisant un espace de module hyperKähler M de solutions aux
équations d’auto-dualité sur Σ (maintenant appelées équations de Hitchin) qui a été relié
à MdR Donaldson en [Don87] — compagnon de [Hit87a]) — et plus généralement par
Corlette en [Cor88].
Plus précisément, l’espace de modules de Hitchin est une variété hyperKähler qui sous-
tend trois variétés algébriques non-isomorphes, une desquelles estMdR — dans la struc-
ture complexe J —, et une autre étant l’espace de modules MDol(Σ, G) de G-fibrés de
Higgs au-dessus de Σ — dans la structure complexe Iτ . La troisième description al-
gébrique est celle de l’espace de modules de Betti MB(Σ, G) des G-représentations du
groupe fondamental de Σ, à conjugaison près.

La correspondance lisse entre G-fibré de Higgs et G-connexions plates/G-systèmes lo-
caux a été établie d’après les travaux précédemment cités de Hitchin, Donaldson, Corlette
et finalement Simpson [Sim92]. Simpson a également suggéré en [Sim94; Sim97] de con-
sidérer cette correspondance comme une correspondance de Hodge pour le premier groupe
de cohomologie non-Abelienne de la variété Kähler compacte Σ — à coefficients dans G
—, parallèlement aux théories cohomologiques usuelles de de Rham, Dolbeault et Betti
— à coefficients en C∗ ∼= GL1(C).

Une question naturelle se pose alors : construire la quantification géométrique de
l’espace de modules M par rapport à des polarisations Kähleriennes extraites de la sphère
de structures Kähler. Plus précisément, on remplace le niveau quantique de la théorie
par un paramètre complexe t = k + iσ ∈ C∗, et on l’utilise pour définir une structure
symplectique réelle sur M à partir de la forme complexe de Atiyah–Bott ωC :

ωt := tωC + tωC

2 = <(tωC).

La construction de données de préquantification (L(t),∇, h) au niveau t est adaptée du
cas compact. Pour tout point τ dans l’espace de Teichmüller, nous avons une combinaison
linéaire distinguée I(t)

τ du triplet hyperKähler qui donne une structure complexe et qui
dépend du niveau quantique à homothétie près. Géométriquement, varier le nombre com-
plexe unitaire t

/
|t| ∈ U(1) donne une paramétrisation du cercle de structures complexes

I(t)
τ = k′Iτ − σ′Kτ dans la sphère Kähler, où k′ + iσ′ = k+iσ√

k2+σ2 est la normalisation de t.
Ce cercle est l’équateur de la sphère si l’on prend ±J comme étant les pôles.
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Nous avons donc une famille de polarisations Kähleriennes parametrisée par l’espace de
Teichmüller qui, en conséquence, définit le fibré quantique H(t)

C de sections holomorphes
de L(t), comme c’était dans le cas d’un groupe compact.

La question qu’on se pose est alors la suivante :

1. Peut-on construire une connexion projectivement plate dans H(t)
C , pour tout choix

de t ∈ C∗ ?

Ceci permettrait d’établir la quantification Kählerienne de l’espace de modules de
connexions plates pour le groupe de jauge complexe G. En cette généralité, cette ques-
tion est toujours ouverte, accordement avec le fait que la quantification de la théorie de
Chern–Simons complexe reste un sujet de recherche active, au moins du point de vue
mathématique.

Ce que Witten a fait en [Wit91] est différent. Il a considéré des polarisations réelles,
toujours dépendantes d’une structure complexe sur Σ, et il a par la suite définit une
connexion projectivement plate dans le fibré quantique H(t)

R de sections polarisées. Les
détails mathématiques ont été donnés par Andersen & Gammelgaard [AG14], qui ont
appelé cette connexion la connexion de Hitchin–Witten.
Comme on assume que la construction de Witten est la plus pertinente du point de vue
de la théorie quantique des champs, on devrait relier la connexion pour la quantification
Kählerienne de Mst

dR et la connexion de Hitchin–Witten. Une manière naturelle est de
chercher à construire un isomorphisme B(t) : H(t)

R −→ H(t)
C entre les fibrés quantiques

et conjuguer la connexion de Hitchin–Witten à travers cet isomorphisme. Le candidat
naturel est — une petite variation de — la transformée de Bargmann [Bar61].

2. Peut-on construire une identification entre les espaces des sections polarisées par
polarisations réelles et les sections holomorphes, pour tout point de l’espace de Te-
ichmüller ?

3. Peut-on calculer une formule pour la conjugaison de la connexion de Hitchin–Witten
dans le fibré vectoriel H(t)

C ?

Nous pouvons nous attendre à ce que la connexion de Hitchin dans H(t)
C soit unique.

Plus précisément, la construction de la connexion de Hitchin par opérateurs différentiels
globaux (d’ordre deux) se base sur une Ansatz qui peut être généralisée en ce contexte
non-compact. Ceci est notamment important si l’on veut tenir compte d’un élément
important de l’espace de modules pour la théorie complexe : l’action de dilation naturelle
de C∗ sur les champs de Higgs.
Nous voudrions utiliser cette action pour induire une action du groupe U(1) sur l’espace
de Hilbert quantique des sections holomorphes en définissant ainsi une gradation sur Z
qui donnerait une décomposition en composantes isotypiques :

H(t)
C,τ =

⊕
m∈Z
H(t)

C,τ,m, où H(t)
C,τ,m =

{
s ∈ H(t)

C,τ

∣∣∣∣λ.s = λms
}
.
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Ceci est une des façons pour traiter le fait que les espaces des états de la théorie de
Chern–Simons complexe sont de dimension infinie.

Actuellement, il existe un thème de recherche dédié à calculer des formules pour la
dimension des composantes isotypiques, avec le caveat que l’action de U(1) soit bien définie
sur les espaces de sections holomorphes. Si par exemple on suppose que =(t) = σ = 0,
alors I(t)

τ = Iτ est fixée par l’action du cercle, et [AGP16] établie une formule à la Verlinde
dans ce contexte-ci.
Si l’on admet une partie imaginaire non nulle dans le niveau quantique, au contraire,
alors le diffeomorphisme λ ∈ U(1) va changer I(t)

τ en λ∗I(t)
τ . Géométriquement, le tiré-

en-arrière correspond à une rotation par λ dans la sphère Kähler ; plus précisément,
comme la structure complexe de Dolbeault Iτ est fixée par l’action, la rotation est le long
de l’équateur de la sphère, si cette fois-ci on fixe ±Iτ comme étant les pôles. Donc la
rotation est autour d’un axe orthogonal à celui de la rotation induite par une variation
du niveau quantique t.
En tout cas, pour définir une action dans le fibré des sections holomorphes nous avons
besoin d’une identification canonique entre l’espace des sections I(t)

τ -holomorphes de L(t)

et celui des sections λ∗I(t)
τ -holomorphes.

La première idée qu nous avons poursuivi pour résoudre ce problème est une extension
de la configuration de Hitchin et Witten. À savoir, nous pouvons montrer que les espaces
des sections holomorphes pour les structures Kähleriennes λ∗I(t)

τ se situent dans un sous-
fibré vectoriel du fibré vectoriel trivial de préquantification, au-dessus d’une base étendue

C∞(M, L(t))× TΣ × U(1) −→ TΣ × U(1).

Par la suite, nous pouvons essayer de démontrer que ce fibré peut être muni d’une connex-
ion projectivement plate. La variété TΣ×U(1) devrait être considérée comme un “espace
de Teichmüller étendu” pour Σ, ce qui est une des motivations principales de cette thèse.

Cependant, une première difficulté technique se présente : l’action de U(1) n’est pas
symplectique. On doit donc trouver une bonne définition pour les données de préquantifi-
cation pour la famille de variétés symplectiques (M, λ∗ωt)λ∈U(1) parametrisées au-dessus
d’un cercle.

4. Peut-on construire des données de préquantification sur l’espace de modules qui sont
compatibles avec l’action de Hitchin ?

La situation change les règles usuelles de la quantification géométrique qui demandent
de quantifier une variété symplectique fixée par rapport à des polarisations qui varient.
Si les données de préquantification sont définies, alors le fibré trivial de préquantifica-
tion l’est aussi. Nous pouvons désormais montrer que les espaces de sections λ∗I(t)

τ -
holomorphes définissent un sous-fibré vectoriel à l’intérieur. Une des manières est de
répondre à la question suivante.

5. Existe-t-il une connexion dans le fibré de préquantification au-dessus de l’espace de
Teichmüller étendu qui préserve l’holomorphicité fibre-à-fibre ?
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Si nous avions une connexion projectivement plate avec monodromie triviale autour du
cercle, alors nous aurions une action du cercle sur les espacesH(t)

C,τ de sections holomorphes.
Nous pourrions en effet composer l’isomorphisme défini par λ avec le transport parallèle le
long du chemin qui relie λ∗I(t)

τ à I(t)
τ , c’est-à-dire le chemin de (τ, λ) à (τ, 1) dans l’espace

de Teichmüller étendu.

Une autre possibilité en genre un est d’utiliser une généralisation de la transformée
de Bargmann de la question 2, liée au couplage générique entre des polarisations linéaires
transverses sur un espace vectoriel. Plus précisément, si λ ∈ U(1) et τ ∈ TΣ ont été
choisis, alors on peut faire la chose suivante.
Premièrement, l’inverse de la transformée de Bargmann donne une application HC,τ −→
HR,τ . Deuxièmement,λ agit par tiré-en-arrière en envoyant HR,τ dans l’espace HR,λ∗τ de
sections qui sont horizontales pour la polarisation réelle tournée par λ. Enfin, le couplage
non-dégénéré entre HR,λ∗τ et HC,τ ferme le triangle, et on peut définir cette composition
comme étant l’action du cercle sur HC,τ .

6. Peut-on calculer une formule pour cette action sur des sections holomorphes du fibré
de préquantification ?

Dans le Chap. 4 nous considérons le cas d’une surface de genre un et le groupe G =
SL(2,C), et nous répondons affirmativement à toutes ces questions.
En particulier, nous montrons qu’il existe un fibré quantique (étendu) non trivial bien
défini de sections holomorphes au-dessus de TΣ × U(1). Nous n’avons cependant pas de
preuve du fait que ce fibré supporte une connexion projectivement plate.

Résumé des résultats principaux

Dans le Chap. 3 on répond aux questions 1, 2 et 3, dans la direction de la quantification par
déformation. Plus précisément, soit G le graphe k-parti complet sur les nœuds I = ∐

j∈J I
j,

décoré par un reading a : I −→ P(C2) et des espaces vectoriels de dimension finie {Vi}i∈I .
Soit {Hi}i∈I le système d’isomonodromie simplement lacé associé à ces données.

On prouve alors les proposition suivantes.

Theorem. Il existe un système Hamiltonian quantique naturel dépendant du temps {Ĥi}i∈I
qui quantifie par déformation {Hi}i.

La définition des systèmes d’isomonodromie simplement lacés est rappelée en § 3.1.
Les Hamiltoniennes quantiques Ĥi sont définies en § 3.4 en utilisant l’idée de potentiels
quantiques introduite en § 3.3. Ces systèmes constituent les connexions quantiques sim-
plement lacés associées au graphe décoré G.

Theorem. Toutes les connexions quantiques simplement lacées sont fortement plates.

La preuve de ce résultat est le contenu de § 3.5 et § 3.6.
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Après avoir construit cette nouvelle famille de connexions plates, on la compare avec
d’autres connexions quantiques déjà apparues dans la littérature.

Theorem. Les systèmes d’isomonodromie simplement lacés se réduisent au système de
Schlesinger, dans le cas particulier du reading dégénéré d’un graphe étoilé sans temps
irréguliers. La connexion quantique simplement lacée associée se réduit au système de
KZ, et donc elle quantifie Schlesinger.

La première affirmation est démontrée en § 3.7.2 et § 3.7.3 ; la seconde en § 3.7.4 et
§ 3.7.5.

Theorem. Les systèmes d’isomonodromie simplement lacés se réduisent au système de
Schlesinger dual, dans le cas particulier du reading dégénéré d’un graphe étoilé sans temps
réguliers.

Cette affirmation autour de systèmes classiques est démontrée en § 3.8.4.

Theorem. Une correction naturelle de la connexion quantique simplement lacée associée
se réduit au système de DMT, et sa différence avec la connexion quantique simplement
lacée est nulle à la limite semi-classique.

Corollary. Une réduction de la connexion quantique simplement lacée quantifie le système
de Schlesinger dual.

Ces affirmations autour de systèmes quantiques sont démontrées en § 3.8.5.

Theorem. Une restriction de la connexion de FMTV peut être corrigée pour obtenir une
quantification du système de JMMS, et la différence est nulle à la limite semi-classique.
Donc le système de FMTV quantifie le système de JMMS.

Ceci est démontré en § 3.9.3.

Theorem. Une correction naturelle de la connexion quantique simplement lacée se réduit
au système de FMTV, dans la cas particulier du reading dégénéré d’un graphe biparti
complet. Sa différence avec la connexion quantique simplement lacée est nulle à la limite
semi-classique.

Corollary. Une réduction de la connexion quantique simplement lacée quantifie le système
de JMMS.

Les deux dernières affirmations sont démontrées en § 3.9.4.

Finalement, on compare la connexion quantique simplement lacée avec la quantifica-
tion de [NS11] en § 3.10.

Dans le Chap. 4 on répond aux questions 1, 2, 3, 4, 5, dans la direction de la quan-
tification géométrique. Plus précisément, soit G = SL(2,C), Σ une surface réelle fermée
orientable de genre un, t ∈ C∗ un niveau quantique. Considérons l’espace de modules de
Hitchin M = M(Σ, G) associé à ces données.

On démontre alors les propositions suivantes.
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Theorem. Il existe une connexion de Hitchin plate pour la quantification géométrique
de M au niveau t, par rapport à une famille distinguée de structures complexes dans la
sphère Kähler de M.

L’espace de module est étudié de manière détaillée en § 4.2 ; en particulier, la famille
des polarisations Kähleriennes parametrisée par l’espace de Teichmüller de Σ est introduite
en § 4.2.5. La formule explicite d’une connexion qui préserve l’holomorphicité est donnée
en § 4.3.2. La preuve de platitude est le contenu de § 4.3.3.

Après avoir construit cette connexion, on considère l’action de Hitchin.

Theorem. Des données de préquantification qui sont compatibles avec l’action de Hitchin
sur les champs de Higgs existent pour M.

Ceci est discuté en § 4.4.4. D’autres aspects de l’action de U(1) sont explorés en § 4.4.3,
où l’on décrit aussi la façon dans laquelle les polarisations Kähleriennes sont tournées.

Theorem. Il existe une connexion dans le fibré de préquantification au-dessus de l’espace
de Teichmüller étendu TΣ × U(1) de Σ qui préserve les sections holomorphes, au niveau
t.

Ceci est décrit en § 4.5. Une formule explicite pour une connexion qui préserve
l’holomorphicité est donnée en Thm. 4.3.

Enfin, on considère la transformée de Bargmann.

Theorem. Soit τ un point dans l’espace de Teichmüller de Σ, et soient PR, P la polar-
isation réelle et Kählerienne associée sur M, respectivement. Il existe un isomorphisme
canonique défini entre les espaces de Hilbert des sections PR-polarisées et P -polarisées, en
utilisant la transformée de Bargmann.

Ceci est discuté en § 4.6. La formule explicite pour la transformée est donnée en
Thm. 4.4. De plus, en § 4.6.4 on calcule une formule explicite pour la conjugaison de la
connexion de Hitchin–Witten du côté des polarisations Kähleriennes, en utilisant Thm. 4.6
: ce théorème constitue une généralisation des relations de commutations usuelles entre la
représentation de Fock et de Schrödinger de l’algèbre de Weyl. La connexion de Hitchin–
Witten est introduite en § 4.6.4.

Theorem. L’action de Hitchin est transformée par la transformée de Bargmann en une
transformée intégrale qui agit sur l’espace de Segal–Bargmann de dimension 2. Le noyau
de cette transformée généralise le reproducing kernel associé aux états cohérents.

Ceci est discuté en § 4.6.5 et une formule pour l’action est donnée en Thm. 4.7. Enfin,
dans la même section on explique comment conjuguer dérivées et multiplications par des
fonctions par rapport à l’action du cercle qu’on vient de calculer, ce qui correspond à la
première étape pour conjuguer les deux connexions (plates) construites précédemment.
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Chapter 1

Introduction

The main results of this thesis are the following:

1. We construct a new family of flat quantum connections generalising the Knizhnik–
Zamolodchikov (KZ) connection [KZ84], the De Concini–Millson–Toledano-Laredo
(DMT) connection [MT05] and the Felder–Markov–Tarasov–Varchenko (FMTV)
connection [Fel+00]. These systems are obtained via deformation quantisation of
Hamiltonian systems controlling the isomonodromic deformations of meromorphic
connections on the Riemann sphere.

2. We construct the geometric quantisation of the Hitchin moduli space for the group
SL(2,C), on a compact Riemann surface of genus one — with respect to Käh-
ler polarisations — as well as an explicit mapping class group invariant Hitchin
connection. We also consider the circle action on the Hitchin moduli space, and
construct a connection that is simultaneously compatible with the action and pre-
serves holomorphicity. Finally, we explain how to relate our constructions with the
geometric quantisation of Witten [Wit91], using the Bargmann transform [Seg63;
Bar61], and we also turn Hitchin’s action on the moduli space into an action on the
space of holomorphic sections using the pairing with coherent states.

The first project is discussed in Chap. 3, expanding the preprint [Rem17]; the second
one in Chap. 4. The necessary mathematical background is recalled in Chap. 2, whereas
§ A provides some motivational material rooted in quantum mechanics, and explains the
origin of much of the terminology we use.

Before introducing the two projects in further details we wish to underline one impor-
tant driving motivation.

Extended Teichmüller spaces

One essential feature of the quantisation of symplectic moduli spaces of flat smooth uni-
tary connections on a closed real surface Σ of genus g is that every complex structure on
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Σ yields a Kähler polarisation on the moduli space. Since the polarisation only depends
on the isomorphism class of the Riemann surface, the moduli space Mg of smooth pro-
jective curves of genus g — or rather the moduli stack — parametrises polarisations on
the moduli space of connections, and thus becomes the base of a bundle fitting together
the quantisations corresponding to different choices. Equivalently, we can work over the
Teichmüller space Tg −→Mg in a mapping class group equivariant way — with the ad-
vantage that Tg is a manifold.
In the mathematical formalism of geometric quantisation, the fibres of the quantum bundle
are Hilbert spaces, whose projectivisation are the phase-spaces of the quantum-mechanical
theory; in the deformation quantisation approach, the fibres are noncommutative alge-
bras that quantise the algebra of functions — i.e. classical observables — on a complex
symplectic moduli space of connections.

One important point of the thesis is that one may construct quantum bundles over
bases that extend the Riemann moduli spaceMg, at least in the deformation approach.
More precisely, the extension we propose in Chap. 3 is motivated by the observation
that the moduli spaces of meromorphic connections provide far-reaching generalisations
of those for nonsingular ones. Whereas this is well-established for the moduli spaces
themselves — which we view as symplectic phase-spaces for classical-mechanical systems
—, their quantisation is pretty much an open problem, and quite a broad one in this
generality.

In the case of connections having simple poles, one can define (hyper-)Kähler mod-
uli spaces of such connections over pointed Riemann surfaces, with the marked points
parametrising the positions of the poles. The moduli space of pointed Riemann surfaces
then becomes the base of a family of symplectic manifolds, which one may quantise fibre-
wise.
The fact that this bundle is projectively flat, which is the mathematical way of phrasing
the independence of the quantisation of the polarisation, is understood as follows in genus
zero: from the viewpoint of geometric quantisation one has the Hitchin connection, on the
bundle of holomorphic sections of the Chern–Simons prequantum bundle, and from the
viewpoint of conformal field theory one has the KZ connection [KZ84], on the Verlinde
bundle of conformal blocks for the Wess–Zumino–Witten model. The interesting point for
us is that the KZ connection can be derived via a simple deformation quantisation of the
isomonodromy equations for the logarithmic connections on the sphere (the Schlesinger
system), whereas the construction of the Hitchin connection is arguably more complex.
In Chap. 3 we achieve the next natural step in this program, allowing for irregular singu-
larities in the connections that go beyond previously studied examples.

To define symplectic moduli spaces of connections with irregular singularities one has
to fix local normal forms for the principal parts at the poles, involving the irregular type
and the residue. The crucial remark is that the extra moduli of the irregular types be-
have in the quantisation just as the moduli of the underlying pointed surface, and thus
the good setup becomes that of pointed Riemann surfaces with choices of irregular types
at the marked points, i.e. “wild Riemann surfaces”.
This means that the moduli space of wild Riemann surfaces is naturally the base of a sym-
plectic bundle of moduli spaces of meromorphic connections, generalising the moduli of
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pointed Riemann surfaces for regular singularities, and even further the classical Riemann
moduli space Mg for no singularities at all. We consider again the case of genus zero,
and we show that one can indeed construct quantum bundles over spaces of restricted
deformations of wild Riemann spheres, via fibrewise deformation quantisation of the as-
sociated moduli spaces of meromorphic connection. Moreover, we quantise the associated
isomonodromy connection to construct (new) quantum connections in the quantum bun-
dle, generalising the relation between Schlesinger and KZ.
The construction of flat connections out of deformation quantisation of irregular isomon-
odromy problems was first considered in [Boa02], where the Harnad-dual version of the
Schlesinger system — in the sense of [Har94] — was quantised to yield the DMT con-
nection of [MT05]. The simply-laced quantum connections of Chap. 3 subsume this
construction, as well as that of the FMTV connection of [Fel+00] as a quantisation of the
combined isomonodromy system of [Jim+80].

In Chap. 4, instead, we extend the Teichmüller space of surfaces of genus one to contain
a further real direction, taking into account Hitchin’s circle action on Higgs fields. This
results in a larger space parametrising Kähler polarisations on Hitchin’s moduli space,
and the construction of a connection preserving the subspaces of holomorphic sections
proves that there is indeed a well defined quantum bundle over the extended base.
The question whether the extended quantum bundle carries a projectively flat connection
remains open, but an interesting new feature has already appeared: one no longer quan-
tises a fixed symplectic manifold with respect to varying polarisations, but rather has to
allow for the symplectic structure to vary as well — along the circle action in our case.
This extends the usual setup of geometric quantisation, and forces one to look for new
Ansatz for the construction of Hitchin connections.

We now introduce the two quantisation projects in more details, recalling the con-
structions that they aim to generalise.

Deformation quantisation of isomonodromy connec-
tions

Let m,n be positive integers, set

g := gl(n,C), B := Cm \ {diags} =
{

(t1, . . . , tm) ∈ Cm | ti 6= tj if i 6= j
}
,

and fix an invariant scalar product on g so to identify g ∼= g∗. Consider the trivial rank
n holomorphic vector bundle over the sphere, equipped with the connection

∇ = d−
∑
i

Ri

z − ti
dz, where Ri ∈ g, (t1, . . . , tm) ∈ B, (1.1)

where z is a coordinate that identifies CP 1 ∼= C ∪ {∞}. The differential equations for a
local section ψ to be covariantly constant then read

dψ

dz
=
(∑

i

Ri

z − ti

)
ψ. (1.2)

3
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Solutions to (1.2) are multi-valued, and the way in which they transform when analyti-
cally continued along a loop that encircles a (simple) pole is dictated by the monodromy
of the system. The monodromy expresses the action of the fundamental group of the
punctured sphere — with the poles removed — on the space of fundamental solutions of
(1.2). If the position of the poles and the residues are varied, the monodromy will change
in general. An important class of deformations is defined precisely by requiring that this
does not happen: these are the isomonodromic deformations of Fuchsian systems (on the
sphere).
Schlesinger [Sch05] derived a system of differential equations for the residues Ri — as
functions of the positions ti — which codes such isomonodromic deformations. Solv-
ing these isomonodromy equations amounts to compute the flow of the time-dependent
Hamiltonian system HSch

i : gm ×B −→ C defined by:

HSch
i (R1, . . . , Rm, t1, . . . , tm) =

∑
i 6=j

Tr(RiRj)
ti − tj

, for 1 ≤ i ≤ m. (1.3)

The isomonodromy equations then read {HSch
i , Rj} = ∂Rj

∂ti
, where one uses the linear Pois-

son bracket of gm ∼= (g∗)m. Geometrically, they are the same as an integrable Ehresmann
connection on the trivial Poisson fibration gm × B −→ B. To quantise this isomon-
odromy connection means to quantise the Hamiltonians HSch

i , and there is a standard
algebraic machinery for that. The fibrewise restriction of the HSch

i defines polynomial
functions on gm, i.e. elements of the symmetric algebra Sym(g∗)⊗m ∼= Sym(g)⊗m, and the
Poincaré–Birkhoff–Witt theorem results in a map QPBW : Sym(g)⊗m −→ U(g)⊗m. Since
the universal enveloping algebra is a quantisation of the symmetric one, the fibrewise
quantisation

QPBW(HSch
i ) : U(g)⊗m ×B −→ B

defines a time-dependent quantum Hamiltonian system which quantises (1.3). Moreover,
[Res92; Har96] showed that the dynamical equations associated to it are the (universal)
KZ equations, i.e.

∂ψ

∂ti
=
∑
j 6=i

Ωij

ti − tj

ψ. (1.4)

These are equations for a local section ψ of the trivial vector bundle U(g)⊗m ×B −→ B
(see [EFK98]). From the mathematical viewpoint, the element Ωij denotes the action of
a tensor Ω ∈ g ⊗ g by left multiplication on the ith and jth slot of the tensor product
U(g)⊗m, and the proof that KZ quantises the Schlesinger system then boils down to the
observation that the function Tr(RiRj) quantises to the operator Ωij.
Just as it was for Schlesinger equations, the KZ equations (1.4) amount to a flat connection
— in the trivial vector bundle U(g)⊗m × B −→ B —, and the whole discussion is then
resumed by saying that the KZ connection is a quantisation of the Schlesinger connection.

This is the program that one wants to generalise, allowing for irregular singularity
in the meromorphic connections. The first step in this direction was the derivation of
[Boa02] of the DMT connection from an irregular isomonodromy problem. One considers
the isomonodromic deformations of meromorphic connections on the Riemann sphere
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having one pole of order two at infinity and a simple pole at zero:

∇ = d−
(
T + R

z

)
dz, where T,R ∈ g, (1.5)

and where T = diag(t1, . . . , tn) is diagonal with simple spectrum. Now one deforms
T inside the regular part hreg of the Cartan subalgebra h ⊆ g of diagonal matrices,
and accordingly writes isomonodromy equations for the residue R. The isomonodromy
Hamiltonians read

HdSch
i =

∑
i 6=j

RijRji

ti − tj
. (1.6)

They are defined on the trivial fibration g × hreg −→ hreg, and their PBW-quantisation
yields the time-dependent quantum Hamiltonians defining the DMT connection:

ĤDMT
i = 1

2
∑
j 6=i

êij · êji + êji · êij
ti − tj

: hreg −→ U(g),

where eij is the canonical basis of g.

The classical isomonodromy system HdSch
i is a dual version of Schlesinger, in the

following sense. The space of times for (1.3) is the space of configurations of m poles on
the sphere where no poles coalesce, whereas in (1.6) one may vary the spectrum of the
diagonal matrix T — coding the irregular type Tdz at infinity — so that no eigenvalues
ti coalesce. The latter correspond to the irregular isomonodromy times considered by
Jimbo–Miwa–Môri–Sato (JMMS) [Jim+80]. Harnad [Har94] has shown that the two
collections of times in the JMMS system may be swapped, entering into a larger duality
of rational differential operators:

d

dz
−
(
T 0 +Q(z − T∞)−1P

)
7−→ d

dz
+
(
T∞ + P (z − T 0)−1Q

)
, (1.7)

where W∞, W 0 are finite-dimensional complex vector spaces, and T 0, T∞, Q, P are linear
functions mapping as in this quiver:

W∞ W 0T∞

Q

T 0.
P

Thus the left-hand side of (1.7) (resp. the right-hand side) acts on local sections of the
trivial holomorphic vector bundle with fibre W 0 over the sphere (resp. with fibre W∞).
This duality induces in particular a correspondence between the connections (1.1) and
(1.5). This underlies the quantum/Howe duality of [Bau99] used in [Tol02] to relate the
KZ and DMT connections for g = gln.

Thus, in brief, there is a correspondence between isomonodromy problems and flat
quantum connections which is attached to representations of the graph , i.e. the
complete graph on two nodes. Each node carries a set of times associated to variations
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Figure 1.1: The star is the complete bipartite graph associated to KZ and DMT.

of the spectra of the semisimple endomorphisms T∞ and T 0 that do not change the
eigenspace decomposition of W∞ and W 0. In turn, these are precisely admissible defor-
mations of a wild Riemann sphere equipped with an irregular type that carries a pole
of order two at infinity, plus a finite number of simple poles. To encode this admissible
deformations in the graph, one may also splay the nodes of according to the
decomposition in direct sum of W∞ and W 0, getting as result a complete bipartite graph
(see § 3.1).

The natural question whether this graph-theoretic viewpoint could be generalised to
arbitrary complete k-partite graphs was answered positively in [Boa12b], extending the
Hamiltonian theory of isomonodromic deformations of meromorphic connections over the
sphere to include an extension of a particular case of [JMU81]. The new integrable Hamil-
tonian systems attached to simply-laced, complete k-partite graphs are called “simply-
laced isomonodromy systems”. As expected, they involve k collections of times that still
correspond to deformations of wild spheres, generalising the two collections of times in
the JMMS system. Moreover, at this level there is now an apparent group of SL(2,C)-
symmetries, which includes the Fourier–Laplace transform defining (1.7) for a complete
bipartite graph, and which leads to the Weyl group of the root system of the graph.

From this discussion, one gets the impression that there should be a quantum the-
ory underlying this classical-mechanical extension, i.e. a family of flat quantum connec-
tions attached to complete k-partite graphs which deformation-quantise the simple-laced
isomonodromy systems, and which contains KZ, DMT and FMTV as particular cases
(Fig. 1.1 and 1.2).
The first new example is attached to a triangle, because in the language of [Boa12b] this
graph corresponds to an isomonodromy systems for connections having a pole of order
three at infinity, which cannot be carried to connections with lower Poincaré rank using
the aforementioned SL(2,C)-symmetries (Fig. 1.3).

The first question we ask, then, is the following:

1. Can one construct a deformation quantisation of the simply-laced isomonodromy
systems?

If this were possible, one would get a new family of “simply-laced quantum connec-
tions” (SLQC) out of the deformation quantisation of isomonodromy connections. Notice

6



CHAPTER 1. INTRODUCTION

Figure 1.2: A generic complete bipartite graph yields the FMTV connection.

Figure 1.3: What is the flat quantum connection of the triangle?

however that an arbitrary quantisation procedure need not preserve the crucial property
of integrability. One should thus reinforce the previous question.

2. Can one construct an integrable quantum Hamiltonian system that quantises the
simply-laced isomonodromy systems?

Such a construction would be more interesting if it were a generalisation of KZ [KZ84],
DMT [MT05] and FMTV [Fel+00], which are all obtained from the quantisation of par-
ticular cases of the simply-laced isomonodromy systems. More precisely, both Schlesinger
and its dual are attached to a star-shaped graph, and JMMS to a generic complete bipar-
tite one.

3. Can one construct the simply-laced quantum connections so that they reduce to KZ,
DMT and FMTV, in the relevant setup?

In brief, answering to the previous three questions means filling-in the last column of
the following table:

Isomonodromy system Schlesinger Dual Schlesinger JMMS SLIMS

Space of times Cm \ {diags} Cn \ {diags} Cm \ {diags} × Cn \ {diags} ∏k
1 Cdi \ {diags}

Quantum connection KZ DMT FMTV SLQC

This is what we do in Chap. 3.
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Kähler quantisation of moduli spaces of flat connec-
tions

Let Σ be a closed, orientable, real surface of genus g ≥ 2, and K := SU(2). One considers
the moduli spaceMst

fl (Σ, K) of S-equivalence classes of semistable, flat K-connections on
the trivial principal K-bundle on Σ. Irreducible connections (on which S-equivalence re-
duces to the ordinary relation of isomorphism) define an open smooth subsetMst

fl ⊆Mfl.
Atiyah & Bott [AB83] and Goldman [Gol84] proved that there is a natural integral sym-
plectic structure ω onMst

fl , and thus one can define the prequantisation of (Mst
fl , ω). The

definition of prequantum data for (Mst
fl , ω) is suggested by Chern–Simons field theory

[CS74] for the manifold X := Σ × [0, 1]. Chern–Simons is a 3-dimensional, topological
field theory (see [Fre95]). In this sense, the moduli space Mst

fl is the space of boundary
conditions for the theory on the 3-manifoldX, and one motivation behind the quantisation
ofMst

fl is to define a quantisation of (compact) Chern–Simons theory.

The prequantisation of the smooth symplectic locus (Mst
fl , ω) is then upgraded to geo-

metric quantisation with respect to Kähler polarisations. Namely, for each complex struc-
ture τ on the surface Σ one finds a Kähler structure Iτ on (Mst

fl , ω), and then considers the
quantum Hilbert space of square-summable Iτ -holomorphic sections of the prequantum
bundle L — at level k ≥ 1 —, equipping L with the ∂-operator defined by the (0, 1)-part
of the prequantum connection, and using the natural L2-norm on smooth sections of L
which is induced by the prequantum Hermitian metric and the Liouville measure:

H(k)
C,τ := H0

(
Mst

fl , L
⊗k
)
∩ L2(Mfl, µ). (1.8)

The complex structure Iτ only depends on τ up to isotopy, and thus the Teichmüller space
TΣ to Σ parametrises a family of vector spaces, whose projectivisations are models for the
quantisation of (Mst

fl , ω). This is however not the full story, since in physics quantisation
is assumed to be independent of the choice of polarisations.
From the mathematical viewpoint, one would like to have canonical identifications among
the projectivisations of the Hilbert spaces (1.8) for different choices of τ ∈ TΣ. The
solution proposed by Axelrod & Della Pietra & Witten [ADW91] and Hitchin [Hit90] is to
construct a projectively flat connection in the vector bundle H(k) −→ TΣ, whose fibre over
τ is the space (1.8) (Witten already suggests this idea in [Wit89], and traces its origins
in conformal field theory). This connection has subsequently been called the Hitchin
connection in the mathematical community; Hitchin established projective flatness by
exploiting the Poisson-commuting Hamiltonians of the integrable system he introduced in
[Hit87b]. A new construction of the Hitchin connection via global differential operators
acting on smooth sections of the prequantum bundle was later given by Andersen [And12],
in a more general context (see also [And06] for an application of this viewpoint to proving
the asymptotic faithfulness of the quantum representation of the mapping class group of
the surface, as well as the more recent [AR16]).
This achieved the Kähler quantisation of the moduli space of flat unitary connections on
a Riemann surface, some 25 years ago.

The next natural step in this program is the quantisation of complex Chern–Simons
theory, already considered by Witten in [Wit91]. From the viewpoint of moduli spaces,
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one complexifies the group K to obtain a complex reductive group G — the archetype
being G = SL(2,C), the complexification of SU(2) — and considers the moduli space
MdR(Σ, G) of flat G-connections on Σ.
The classical situation is much richer than in the compact case, since now the complex
structure J of the group G combines with any complex structure Iτ arising from a a
Riemann surface structure on Σ to yield a hyperKähler triple (Iτ , J,Kτ = IτJ). The
construction of Atiyah–Bott now yields a J-holomorphic symplectic structure ωC on the
moduli space. This was shown by Hitchin [Hit87a], who introduced a hyperKähler moduli
space M of solutions to self-duality equations on Σ (now Hitchin equations), which was
related toMdR by Donaldson in [Don87] — companion to [Hit87a] — and more generally
by Corlette in [Cor88].
More precisely, the Hitchin moduli space is an hyperKähler manifold that underlies three
nonisomorphic complex algebraic varieties, one of which isMdR — in the complex struc-
ture J—, and another one being the moduli spaceMDol(Σ, G) of G-Higgs bundles on Σ
— in the complex structure Iτ . The third algebraic description is that of the Betti moduli
spaceMB(Σ, G) of G-representations of the fundamental group of Σ, up to conjugation.

The smooth correspondence between G-Higgs bundles and flat G-connections/local G-
systems was established by the aforementioned works of Hitchin, Donaldson, Corlette, and
finally Simpson [Sim92]. Simpson also suggested in [Sim94; Sim97] that one should think
of this correspondence as a Hodge correspondence for the first non-Abelian cohomology
of the compact Kähler manifold Σ — with coefficients in G —, in analogy to the usual
cohomological theories of de Rham, Dolbeault and Betti — with coefficients in C∗ ∼=
GL1(C).

A natural project now arises: construct the geometric quantisation of the moduli space
M with respect to distinguished Kähler polarisations extracted from the sphere of Kähler
structures. More precisely, one replaces the quantum level of the theory with a complex
parameter t = k + iσ ∈ C∗, and use it to define a real symplectic structure on M out of
the complex Atiyah–Bott form ωC:

ωt := tωC + tωC

2 = <(tωC).

The construction of prequantum data (L(t),∇, h) at level t is adapted from the compact
case. For any point τ in Teichmüller space there is now a distinguished linear combination
I(t)
τ of the hyperKähler triple that yields a complex structure, and which depends on
the quantum level up to dilations. Geometrically, moving the unitary complex number
t
/
|t| ∈ U(1) parametrises the circle of complex structures I(t)

τ = k′Iτ −σ′Kτ in the Kähler
sphere, where k′+ iσ′ = k+iσ√

k2+σ2 is the normalisation of t. This circle is the equator of the
sphere, if one takes ±J to be the poles.
One thus has a family of Kähler polarisations parametrised by Teichmüller space, which
in turn defines the quantum bundle H(t)

C of holomorphic sections of L(t), as it was for a
compact gauge group.

The question we ask is then:

1. Can one construct a projectively flat connection on H(t)
C , for all choice of t ∈ C∗?

9
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This would achieve the Kähler quantisation of the moduli space of flat connections
for the complex gauge group G. In this generality, this question remains open to these
days, reflecting the fact that the quantisation of complex Chern–Simons theory is still a
current research topic, at least from a mathematician’s viewpoint.

What Witten did in [Wit91] was different. He considered real polarisations on the
moduli space, still depending on a complex structure on Σ, and accordingly defined a pro-
jectively flat connection in the resulting quantum bundle H(t)

R of real-polarised sections.
The mathematical details have been laid out by Andersen & Gammelgaard [AG14], who
called this connection the Hitchin–Witten connection.
Since it is assumed that Witten’s construction is the most sensible one from the stand-
point of quantum field theory, one should relate the Hitchin connection for the Kähler
quantisation of Mst

dR and the Hitchin–Witten connection. A natural way to do this is
looking for an isomorphism B(t) : H(t)

R −→ H
(t)
C of the quantum bundles, and conjugate

the Hitchin–Witten connection through it. The natural candidate is — a slight variation
of — the Bargmann transform [Bar61].

2. Can one construct an identification between the spaces of real-polarised and holo-
morphic sections for all points in Teichmüller space?

3. Can one compute a formula for the conjugation of the Hitchin–Witten connection
on the vector bundle H(t)

C ?

Note that one does not expect the Hitchin connection in H(t)
C to be unique. More

precisely, the construction of the Hitchin connection via global differential operators (of
order two) relies on an Ansatz which may be relaxed in this new noncompact setting.
This is particularly important if one wants to take into account an important feature of
the moduli space for the complex theory: the natural dilation action of C∗ on Higgs fields.
One would like to use this action to induce a U(1)-action on the quantum Hilbert spaces
of holomorphic sections, thereby defining a Z-grading which will give a decomposition
into isotypical components:

H(t)
C,τ =

⊕
m∈Z
H(t)

C,τ,m, where H(t)
C,τ,m =

{
s ∈ H(t)

C,τ

∣∣∣∣λ.s = λms
}
.

This is one way around the fact that the spaces of states of complex Chern–Simons theory
are infinite-dimensional.

There is a current research trend dedicated to computing formulae for the dimension
of the isotipical components, with the caveat that the U(1)-action be well defined on
the spaces of holomorphic sections. If for example one assumes that =(t) = σ = 0,
then I(t)

τ = Iτ will be fixed by the circle action, and [AGP16] established a Verlinde-type
formula in this context.
If one allows for a nonvanishing imaginary part in the quantum level, instead, then the
diffeomorphism λ ∈ U(1) will move I(t)

τ to λ∗I(t)
τ . Geometrically, the pull-back amounts

to a rotation by λ inside the Kähler sphere; more precisely, since the Dolbeault complex
structure Iτ is fixed by this action, the rotation happens along the equator of the sphere,
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if this time one fixes ±Iτ to be the poles. Hence the rotation happens around an axis
which is orthogonal with respect to that of the rotation induced by varying the quantum
level t.
Nonetheless, to define an action on the quantum bundle of holomorphic sections one now
needs to find a canonical identification between the spaces of I(t)

τ -holomorphic sections of
L(t) and the λ∗I(t)

τ -holomorphic ones.

The first idea we pursued to solve this problem is an extension of the original setup of
Hitchin and Witten. Namely, one may try to show that the the spaces of holomorphic sec-
tions for the Kähler structures λ∗I(t)

τ fit into a vector subbundle of the trivial prequantum
bundle over an extended base

C∞(M, L(t))× TΣ × U(1) −→ TΣ × U(1).

Second, we try to prove that this bundle carries a projectively flat connection. The
manifold TΣ × U(1) should be thought as an “extended Teichmüller” space for Σ, which
is one of our motivating viewpoint throughout the thesis.

Anyway, a first technical difficulty arises immediately: the U(1)-action is not sym-
plectic, and thus one has to find a proper definition of prequantum data for the family of
symplectic manifolds (M, λ∗ωt)λ∈U(1) parametrised over the circle.

4. Can one construct prequantum data on the moduli space which are compatible with
the Hitchin action?

This situation changes the usual rules of geometric quantisation, which prescribe to
quantise a fixed symplectic manifold with respect to varying polarisations.
If the prequantum data are defined, then the trivial prequantum bundle is defined too.
One now has to prove that the spaces of λ∗I(t)

τ -holomorphic sections define a subbundle
inside of it. One way to show this is to answer the following question.

5. Is there a connection in the prequantum bundle over the extended Teichmüller space
that preserves holomorphicity fibrewise?

If one had a projectively flat connection with trivial monodromy around the circle,
then one might indeed define a circle action on the spaces H(t)

C,τ of holomorphic sections.
One would compose the isomorphism defined by λ with the parallel transport along any
path that connects λ∗I(t)

τ back to I(t)
τ , i.e. from (τ, λ) back to (τ, 1) inside the extended

Teichmüller space.

Another possibility in genus one is to use a generalisation of the Bargmann transform
of question 2, related to the generic pairing among transverse linear polarisations on a
vector space. More precisely, if λ ∈ U(1) and τ ∈ TΣ are chosen, then one might do the
following.
First, the inverse Bargmann transform provides a map HC,τ −→ HR,τ , and then λ acts by
pull-back sending HR,τ to the space of sections HR,λ∗τ which are horizontal along the real
polarisation rotated by λ. Finally, the nondegenerate pairing between HR,λ∗τ and HC,τ
closes the triangle, and we define this composition to be the circle action on HC,τ .
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6. Can one compute a formula for this action on holomorphic sections of the prequan-
tum bundle?

In Chap. 4 we consider the case of a genus one surface and the group G = SL(2,C),
and we answer positively to the all these questions.
In particular we show that there is a well defined (extended) nontrivial quantum bundle
of holomorphic sections over TΣ×U(1). We do not however have a proof that this bundle
carries a projectively flat connection.

Summary of main results

In Chap. 3 we answer to questions 1, 2 and 3, in the direction of deformation quantisation.
More precisely, let G be the complete k-partite graph on nodes I = ∐

j∈J I
j, decorated

with a reading a : I −→ P(C2) and finite-dimensional vector spaces {Vi}i∈I , and define
{Hi}i∈I to be the simply-laced isomonodromy system associated to these data.

Then we prove the following statements.

Theorem. There exists a natural time-dependent quantum Hamiltonian system {Ĥi}i∈I
that deformation-quantises {Hi}i.

The definition of the simply-laced isomonodromy systems is recalled in § 3.1. The
quantum Hamiltonians Ĥi are defined in § 3.4, using the idea of quantum potentials
introduced in § 3.3. They constitute the simply-laced quantum connection attached to
the decorated graph G.

Theorem. All simply-laced quantum connections are strongly flat.

The proof of this result is the content of § 3.5 and § 3.6.

After constructing this new family of flat connections, we compare it with other quan-
tum connections which already appeared in the literature.

Theorem. The simply-laced isomonodromy systems reduce to the Schlesinger system, in
the special case of the degenerate reading of a star-shaped graph with no irregular times.
The associated simply-laced quantum connection reduces to the KZ system, and thus it
quantises Schlesinger.

The former statement is proven in § 3.7.2 and § 3.7.3; the latter in § 3.7.4 and § 3.7.5.

Theorem. The simply-laced isomonodromy systems reduce to the dual Schlesinger system,
in the special case of the degenerate reading of a star-shaped graph with no regular times.

This statement about classical systems is proven in § 3.8.4.

Theorem. A natural correction of the associated simply-laced quantum connection reduces
to the DMT system, and its difference with the simply-laced quantum connection vanishes
in the semiclassical limit. In particular,
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Corollary. A reduction of the simply-laced quantum connection quantises the dual Schlesinger
system.

These statements about quantum systems is proven in § 3.8.5.

Theorem. A restriction of the FMTV connection can be corrected to obtain the quantisa-
tion of the JMMS system, and the difference vanishes semiclassically. Hence the FMTV
system quantises the JMMS system.

This is proven in § 3.9.3.

Theorem. A natural correction of the simply-laced quantum connections reduce to the
FMTV system, in the special case of the degenerate reading of a complete bipartite graph.
The difference with the SLQC vanishes semiclassically.

Corollary. A reduction of the simply-laced quantum connection is a quantisation of
JMMS.

The last two claims are proven in § 3.9.4.

Finally, we compare the simply-laced quantum connections with the quantisation of
[NS11] in § 3.10.

In Chap. 4 we answer to questions 1, 2, 3, 4, 5, in the direction of geometric quan-
tisation. More precisely, set G = SL(2,C), let Σ be a real closed orientable surface of
genus one, t ∈ C∗ a quantum level, and consider the Hitchin moduli space M = M(Σ, G)
attached to this data.

Then we prove the following statements.

Theorem. There exists a flat Hitchin connection for the geometric quantisation of M
at level t, with respect to a distinguished family of complex structures inside the Kähler
sphere of M.

The moduli space itself is studied in detail in § 4.2; in particular, the family of Kähler
polarisations parametrised by the Teichmüller space to Σ is introduced in § 4.2.5. The
explicit formula of a connection preserving holomorphicity is given in § 4.3.2. The proof
of flatness is the content of § 4.3.3.

After constructing this flat connection, we turn to the Hitchin action.

Theorem. There exist prequantum data on M which are compatible with the Hitchin
action on Higgs fields.

This is detailed in § 4.4.4. More features of the U(1)-action are explored in § 4.4.3,
where we also describe how the Kähler polarisations are rotated.

Theorem. There exists a connection in the prequantum bundle over the extended Teich-
müller space TΣ × U(1) to Σ which preserves holomorphic sections, at level t.

13



CHAPTER 1. INTRODUCTION

This is described in § 4.5. An explicit formula for a connection that preserves holo-
morphicity is given in Thm. 4.3.

Finally we turn to the Bargmann transform.

Theorem. Let τ be a point in the Teichmüller space to Σ, and let PR, P be the associ-
ated real and Kähler polarisation on M, respectively. There is a canonical isomorphism
between the Hilbert spaces of PR-polarised sections and P -polarised sections, defined via
the Bargmann transform.

This is discussed in § 4.6. The explicit formula for the transform is given in Thm. 4.4.
Moreover, in § 4.6.4 we compute an explicit formula for the conjugate of the Hitchin–
Witten connection onto the Kähler-polarised side, using Thm. 4.6: this theorem is a
generalisation of the usual commutation relations between the Schrödinger and the Fock
representation of the Weyl algebra. The Hitchin–Witten connection is introduced in
§ 4.6.4.

Theorem. The Hitchin action gets turned by the Bargmann transform into an integral
transform, acting on the 2-dimensional Segal–Bargmann space. The kernel of the trans-
form generalises the reproducing kernel associated to coherent states.

This is discussed in § 4.6.5, with a formula for the action given in Thm. 4.7. Finally,
in the same section we explain how to conjugate derivatives and function multiplications
with respect to the circle action just computed, which is the first step to conjugate the
two (flat) connections previously constructed.

14



Chapter 2

Background

In this chapter we will introduce two mathematical frameworks used to tackle the problem
of quantisation introduced in § A.4: deformation quantisation in § 2.1 and geometric
quantisation in § 2.2. The purpose of the exposition is to be able to discuss the original
content of the thesis (chapters 3 and 4) in an — almost — self-contained fashion.

The origins of the deformation approach to quantisation can be traced back to the
papers [Bay+78a; Bay+78b]. An overview on deformation quantisation can be read in
[Wei95]. Our particular viewpoint follows the first chapters of [ES98], as well as the notes
[Eti07].
The origins of the geometric approach to quantisation can instead be traced back to
[Kir76; Kos70; Sou70], which used the orbit method to classify unitary representations
of Lie groups. A standard reference for geometric quantisation is the book [Woo80]; the
second chapter of [AN01], written by Kirillov, provides a sharp and shorter introduction.

After discussing quantisation abstractly, in § 2.3 we introduce the classical phase-
spaces whose quantisation has been the primary concern of this project: moduli spaces of
connections. The relevant citations in this case are scattered along the exposition.

All the quantum-mechanical terminology used in the forthcoming sections is motivated
by the material of the appendix A.

2.1 Deformation quantisation

Throughout this section on deformation quantisation, all vector spaces and algebras will
be taken over C. The layout of this section is the following.

In § 2.1.1 we define formal deformation quantisation.
In § 2.1.2 we discuss gradings and filtrations, and in § 2.1.3 we use this to define filtered
quantisation. This construction is seen to be a particular case of formal quantisation, as
explained in § 2.1.4. § 2.1.2 also contains the definitions of the Weyl algebra (2.5) of a
symplectic vector space and the universal enveloping algebra (2.6) of a Lie algebra, which
will be the quantum algebras used in Chap. 3.

15
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In § 2.1.5 we define two quantisation maps associated with Weyl algebras and universal
enveloping algebras: the PBW quantisation and the Weyl quantisation, respectively (2.8)
and (2.9).
Finally, in § 2.1.6 we review classical and quantum Hamiltonian reduction from an alge-
braic viewpoint, which will be relevant for Chap. 3. This is likely to be less familiar to
the reader than the usual Marsden–Weinstein reduction.

2.1.1 Formal deformation quantisation

Let ~ be a complex variable, and set K := CJ~K. This is the ring of formal power series
in ~, with complex coefficients. It has a natural topology, induced by the ~-norm, which
is defined by ∣∣∣∣∣∣

∑
k≥n

ck~k
∣∣∣∣∣∣ := C−n ∈ R≥0, (2.1)

if cn 6= 0, and where C > 1 is a real constant. Moreover, K is a complete metric space
for the metric induced by this norm.

One now works in the category of topological K-modules V , which are topological
vector spaces together with with an algebraic K-module structure K −→ End(V ). A
natural way to construct them is the following. If V0 is a vector space, set

V0J~K :=
∑
k≥0

vk~k
∣∣∣∣∣∣ vk ∈ V0 for all k ≥ 0

 .
This has a structure of a K-module, by letting ~ ∈ K act via the natural multiplication.
Moreover, it carries a natural ~-norm defined as in Eq. (2.38), which defines a structure
of topological K-module.

Remark 2.1. One has an embedding

ϕ : V0 ⊗C K ↪→ V0J~K, ϕ : v ⊗
∑
k≥0

ck~k 7−→
∑
k≥0

ckv · ~k,

which is an isomorphism as long as V0 is finite-dimensional over C. In general, the image
of ϕ corresponds to the space of power series ∑k≥0wk~k such that the dimension of the
complex span of the family {wk}k≥0 is finite.

Definition 2.1. A K-module V is topologically free if there exists a vector space V0
together with an isomorphism of K-modules V ∼= V0J~K.

If V is a topologically free K-module, then one can uniquely recover the space V0 from
V up to isomorphism, via the quotient

V0 ∼= V
/
~V,

where, ~V := {~v | v ∈ V }.
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CHAPTER 2. BACKGROUND

Definition 2.2. A topologically free K-algebra A is a topologically free K-module with
an associative algebra structure.

If A is a topologically free K-algebra, the set ~A ⊆ A is a two-sided ideal. Since
A is topologically free, one may write A ∼= A0J~K for some vector space A0, and since
A0 ∼= A

/
~A is a quotient with respect to a two-sided ideal then A0 is itself an algebra.

One may now do the opposite, that is consider an algebra A0 and look for K-algebras
A such that A0 is the ring of coefficients for the power series in A.

Definition 2.3. A formal, one-parameter deformation of an algebra A0 consists of a
topologically free K-algebra A and an isomorphism A

/
~A ∼= A0.

Deformations always exist: if A0 is an algebra, take A := A0J~K.

The crucial observation of the theory of deformation quantisation is that every defor-
mation A of A0 induces a Poisson structure {·, ·}0 on A0, provided that A0 is commutative.
To see this, pick elements f0, g0 ∈ A0, and lift them arbitrarily to elements f, g ∈ A. Now
consider the commutator

[
f, g

]
∈ A, whose class in A0 must vanish because of the com-

mutativity of A0. This means that
[
f, g

]
∈ ~A, and thus the element 1

~

[
f, g

]
exists in A.

Moreover, the class of this element in the quotient A0 does not depend on the lifts f, g
chosen: if f ′ = f + ~x, g′ = g + ~y ∈ A are two other lifts of f0, g0, then the difference
1
~

[
f ′, g′

]
− 1

~

[
f, g

]
expands as a sum of commutators, and it vanishes in the commutative

algebra A0.

It makes thus sense to define {f0, g0}0 ∈ A0 to be the class of the corrected commutator:

{f0, g0}0 := 1
~
[
f, g

]
+ ~A. (2.2)

This is the sound mathematical way of expressing the relaxation of the Dirac axiom 4
that is discussed at the end of § A.4 (cf. Eq. (A.12), up to a multiplication by the opposite
of the imaginary unit i).

Start again from a commutative Poisson algebra (A0, {·, ·}).

Definition 2.4. A formal, one-parameter deformation quantisation of (A0, {, }) is a for-
mal deformation A of A0 such that the induced Poisson structure {·, ·}0 on A0 coincides
with {·, ·}. In this case, A0 is called the semiclassical limit of A, and the canonical
projection σ : A −→ A0 is called the semiclassical limit too.

Notice that neither existence nor uniqueness of a quantisation A of a given commu-
tative Poisson algebra A0 are trivial problems. Conversely, the semiclassical limit of a
topologically free K-algebra is always uniquely determined.

Now, pick a Poisson manifold (M, {·, ·}), i.e. a classical phase space (see § A.2).

Definition 2.5. A (formal, one parameter) deformation quantisation of M is a deforma-
tion quantisation of some distinguished Poisson algebra of functions A0 ⊆ C∞(M,C).
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One can now make sense of the quantisation of a time-dependent Hamiltonian system
(see Def. A.5 and Def A.7).

Definition 2.6. Let Hi : B −→ A0 ⊆ C∞(M,C) be a time-dependent Hamiltonian sys-
tem on the phase-space M , with space of times B, and assume A to be a deformation
quantisation of A0, with semiclassical limit σ : A −→ A0. A time-dependent quantum
Hamiltonian system Ĥi : B −→ A is a quantisation of {Hi}i if the identity σ

(
Ĥi

)
= Hi

holds for all times t ∈ B.

In general, one would like to take A0 to be as big as possible, in order to be able to
quantise many classical observables. One allows for subalgebras in the definition because
of the no-go theorems that we discuss in § A.4. A concrete example of this phenomenon
is the following.

Remark 2.2 (Quantisation breaks symmetries).
Assume the phase-space (M,ω) to be symplectic. The group of symplectomorphisms
Symp(M,ω) of M will act faithfully on C∞(M,C), so that one has an injective morphism

ϕ : Symp(X,ω) ↪→ Aut
(
C∞(M,C)

)
.

Theorem 2.1 (Groenewold–van Howe).
There exists no pair (A,Φ) where A is a quantisation of the classical algebra C∞(M,C)
and Φ: Symp(M,C) −→ Aut

(
A
)
a group morphism lifting ϕ.

2.1.2 Gradings and filtrations

The actual type of deformation quantisation we will deal with is somewhat simpler, and
it is called filtered quantisations. To define it, one first needs to introduce the notions of
gradings and filtrations, which we do in this section.

Consider a vector space B.

Definition 2.7. A Z-grading on B is a decomposition B = ⊕
k∈ZBk in vector subspaces.

Elements of Bk are said to be homogeneous elements of degree k. The grading is said
to be positive if B−k = (0) for all k > 0. A positively Z-graded vector space is a vector
space equipped with a positive Z-grading. A morphism of such spaces is a linear map
preserving the Z-grading.

We will hereafter drop “Z” from the notation, since this is the only grading monoid
we will ever consider.

Example 2.1. If A,B are graded vector space, there exists a natural grading on the
tensor product A⊗ B, suggested by the distributivity of tensor products in direct sums.
It is defined by

A⊗B ∼=
⊕
k∈Z

(A⊗B)k, where (A⊗B)k :=
⊕

l+m=k
Al ⊗Bm.
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Let us now define what we mean for a graded space B to have a compatible associative
algebra structure.

Definition 2.8. Let B ∼=
⊕

k∈ZBk be a graded vector space. A graded associative algebra
structure on B is an associative product µ : B ⊗ B −→ B such that Bl · Bm ⊆ Bl+m for
l,m ∈ Z.1 The grading is positive if it is a positive grading of vector spaces. A positively
graded associative algebra is a vector space B provided with all this structure. We will
refer to such objects as graded algebras.

If one has a graded algebra B ∼=
⊕
k≥0Bk, then one can construct new ones by taking

appropriate quotients. Consider a complex subspace I ⊆ B.

Definition 2.9. I is a homogeneous space if I = ⊕
k≥0 I ∩Bk.

If I is in addition a two-sided ideal, then the quotient algebra B
/
I has a natural

positive grading:
B/I ∼=

⊕
k≥0

(
Bk

/
(I ∩Bk)

)
.

Example 2.2. The chief example of this construction, as far as this document is con-
cerned, is the quotient,

Sym(V ) ∼= Tens(V )
/
I0

where V is a vector space. Here Tens(V ) is the tensor algebra

Tens(V ) =
⊕
k≥0

V ⊗k,

and I0 is the two-sided ideal generated by the commutators:

v ⊗ w − w ⊗ v, v, w ∈ V.

It is clear that an ideal generated by homogeneous elements is homogeneous. The algebra
Sym(V ∗) has a natural interpretation as the algebra of polynomial functions f : V −→ C,
with the usual notions of homogeneous elements and degree. This is also the algebra of
regular functions C[V ] = OV (V ) of V , thinking of the vector space V as an affine complex
space AC of the same dimension, with structural sheaf OV .

To be more explicit, choose a basis B := {e1, . . . , en} ⊆ V , with associated dual
basis {de1, . . . , den} ⊆ V ∗. Then an explicit identification Sym(V ∗) ∼= OV (V ) is given on
homogeneous elements of degree k by∏

1≤j≤k
deij 7−→ f, where f(X1, . . . , Xn) :=

∏
1≤j≤k

Xij ,

for indices i1, . . . , ik ∈ {1, . . . , n}. The notation for the leftmost product indicates that
one has a symmetric tensor products dei1 ⊗ · · · ⊗ deik . The complex variables X1, . . . , Xn

are precisely the global coordinates on V ∼= Cn associated to the basis B ⊆ V . If one
1This is a morphism of graded vector spaces, if the tensor product is endowed with the natural grading.
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thinks of them as (linear) functions Xi : V −→ C, then actually Xi = dei, and the
above identification is tautological. Notice that, in this identification, the embedding
V ∗ ∼= Sym(V ∗)1 ↪→ Sym(V ∗) is simply the inclusion of homogeneous polynomials of
degree one in the space of all polynomials.

To define graded Poisson algebras, one must also introduce shifts.

Definition 2.10. Let B = ⊕
k∈ZBk be a graded vector space, and n an integer. The

n-shift of B is the graded vector space B[n] having the same underlying complex vector
space, endowed with the grading

B =
⊕
k∈Z

B[n]k, where B[n]k := Bk+n.

Definition 2.11. Let B be a graded associative algebra, and n an integer. A graded,
n-shifted Poisson structure on B is a grading preserving Poisson bracket

{·, ·} : B ∧B −→ B[−n].

Example 2.3 (Symplectic vector spaces).
The symmetric algebra Sym(V ∗) ∼= OV (V ) admits a 2-shifted Poisson structure, provided
that (V, ω) is a symplectic vector space. Indeed, there must be a natural Poisson bracket
on OV (V ), since symplectic manifolds are Poisson (see Rem. A.1). To explicitly describe
it, fix a Darboux basis B := {q1, . . . , qn, p1, . . . , pn} ⊆ V of V , so that

ω =
∑
i

dqi ∧ dpi ∈ V ∗ ∧ V ∗.

The coordinate qi are called the generalised positions, and pi the generalised momenta.
The choice of such coordinates determines a Lagrangian splitting (V, ω) ∼= (T ∗Q,ωcan),
where one sets Q := spanC{qi}i, and ωcan is the canonical symplectic structure of the
cotangent bundle. Now let us compute the Hamiltonian vector fields of the coordinate
functions dqi, dpi : V −→ C. To this hand, notice that one has

ω(∂qi , ·) =
∑
j

dqj ∧ dpj(qi, ·) =
∑
j

δijdpj = dpi,

and
ω(∂pi , ·) =

∑
j

dqj ∧ dpj(∂pi , ·) = −
∑
j

δijdqj = −dqi.2

These identities can be rewritten as

ι∂qiω − dpi = 0, ι∂piω + dqi = 0.

According to the convention (A.3), this means that −∂qi and ∂pi are the Hamiltonian
vector fields of dpi and dqi, respectively.

2In these computation one thinks of ∂qi
and ∂pi

as the derivatives in the direction of the coordinates
qi, pi, which is an elementary differential-geometric notion. However, using the canonical identification
TV ∼= V × V , these translation invariant vector fields correspond to the vectors qi, pi ∈ B of the chosen
Darboux basis of V .
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To check that the Poisson bracket shifts the degree down by 2, it is enough to consider
homogeneous elements of degree 1, since they generate the symmetric algebra. One must
thus see that {V ∗, V ∗} ⊆ C, which follows from:

{dqi, dqj} = ω(∂pi , ∂pj) = 0 = ω(∂qi , ∂qj) = {dpi, dpj},
{dqi, dpj} = −ω(∂pi , ∂qj) = ω(∂qj , ∂pi) = δij.

(2.3)

These relations are collectively called the canonical commutation relations. This particular
2-shifted graded Poisson algebra is the model for the classical observables quantised in
Chap. 3.

Example 2.4 (Dual Lie algebras).
The algebras of functions on the dual of every Lie algebra is a 1-shifted graded Poisson
algebra.

Indeed, let
(
g,
[
·, ·
])

be a Lie algebra, and let us define a Poisson bracket

{·, ·} : Og∗(g∗) ∧ Og∗(g∗) −→ Og∗(g∗).

Again, one thinks of g∗ as a complex affine space, with structural sheaf Og∗ . The global
sections of this sheaf are just polynomial functions g∗ −→ C, which one can identify with
Sym(g), as done in Ex. 2.2. Moreover, in this identification g ⊆ Sym(g) corresponds
to the space of linear functions on g∗, because of the canonical isomorphism g∗∗ ∼= g.
This being said, it is then enough to define the restriction of the Poisson bracket to
g∧ g ⊆ Sym(g)∧Sym(g), and its extension to the whole of the symmetric algebra will be
uniquely determined by the Leibnitz identity, because g generates Sym(g) as associative
algebra. Let us then set

{x, y}(ξ) := 〈ξ,
[
x, y

]
〉, (2.4)

where x, y ∈ g, ξ ∈ g∗, and 〈·, ·〉 : g∗⊗g −→ C is the canonical duality. One can show that
this indeed defines a Poisson bracket on elements of degree one. Moreover, the formula
shows that {g, g} ⊆ g ∼= Sym(g)1, because the bracket of two linear functions is still a
linear function. This shows that the full Poisson bracket is 1-shifted. The Poisson bracket
defined by Eq. (2.4) is called the Lie–Berezin–Kirillov bracket.

Let us now define filtrations, which are a weaker version of gradings. Consider again
a vector space B.

Definition 2.12. An increasing, exhaustive Z-filtration on B is a family of subspaces
{B≤k}k∈Z of B such that Bl ⊆ Bm if l ≤ m, and ⋃k≥0B≤k = B. The filtration is positive
if B≤−k = (0) for all k > 0. In this case, the order of b ∈ B is the nonnegative integer

ord(b) := min{k ∈ Z≥0 | b ∈ B≥k}.

A positively, exhaustively Z-filtered vector space is a vector space equipped with an
increasing, exhaustive, positive Z-filtration. A morphism of such spaces is a linear map
preserving the filtrations.

The notions of a filtered associative algebra is a perfect analogue of Def. 2.8.
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Definition 2.13. Let B = ⋃
k∈Z be a filtered vector space. A filtered associative algebra

structure on B is an associative product µ : B⊗B −→ B such that µ
(
B≤l, B≤m

)
⊆ B≤l+m,

for all l,m ∈ Z. The filtration is positive if it is positive as a filtration of vector spaces.
A positively filtered associative algebra is a vector space B with all this structure.

There is no need to define generic n-shifted filtered Poisson algebras, since the only
examples of such structures that we will consider are those arising from commutators[
·, ·
]
: B ∧B −→ B of a filtered associative product.

Remark 2.3 (Difference between gradings and filtrations).
It is clear that filtrations are a weaker notion then gradings, since if B ∼= ⊕k∈ZBk is a
graded vector space then B≤k := ⊕

m≤k Bm defines a filtration on B. The main difference
between graded algebras and filtered algebras is that for the latter there is no notion of
homogeneous elements.

More precisely, one might consider the elements of the quotient B≤k
/
B≤k−1, which is

the same as looking for a splitting B≤k = Ck ⊕ B≤k−1, and declare Ck to be the space of
homogeneous elements of degree k. The difference between a filtration and a grading is
that there is in general no canonical choice for such complement spaces {Ck}k∈Z.

In the filtered context, one can take quotients without additional constraints, meaning
that if B is a filtered algebra and B −→ B′ −→ 0 is an exact sequence of algebras, then
there is a natural filtration on B′: one just takes the images of the subspaces defining the
filtration on B. The product is defined as for ordinary quotients of ring.

Example 2.5 (Weyl algebra).
This example is central for the results of Chap. 3. Consider again a symplectic vector
space (V, ω), and let Tens(V ) be the tensor algebra of V . In Ex. 2.2 we defined the
symmetric algebra as a quotient of Tens(V ) with respect to a homogeneous ideal. Now
we consider the two-sided ideal Iω ⊆ Tens(V ) generated by the nonhomogeneous elements

x⊗ y − y ⊗ x− ω(x, y), where x, y ∈ V.

The quotient W (V, ω) := Tens(V )
/
Iω has the structure of a filtered associative algebra,

with the quotient filtration. It is called the Weyl algebra of the symplectic vector space
V .

To describe the Weyl algebra by means of generators and relations, let us pick again
a Darboux basis B := {q1, . . . , qn, p1, . . . , pn} ⊆ V , as in Ex. 2.3. Now, there is a natural
inclusion V ↪→ W (V, ω), given by applying the canonical projection π : TV −→ W (V, ω)
after the inclusion ι : V ↪→ TV . The overall composition is injective, since ι(V ) ⊆ TV
does not intersect the ideal Iω ⊆ TV . We will denote v̂ := π ◦ ι(v) ∈ W (V, ω) the image
of an element v ∈ V in the Weyl algebra for this composition. The notation is chosen to
indicate that this is the linear part of a quantisation map (see § 2.1.5).

In particular, the elements q̂i, p̂i ∈ W (V, ω) generate the Weyl algebra. This is because
TV is generated in degree one, and π is a surjective morphism of associative algebras.
Moreover, the elements qi, pi satisfy no nontrivial relations in TV , since TV is by definition
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the free associative algebra on the vector space V . Hence the only nontrivial relations
that their classes q̂i, p̂i satisfy in the Weyl algebra are those modulo Iω, namely:[

x, y
]

= ω(x, y) mod Iω, for x, y ∈ V.

Hence [
q̂i, q̂j

]
= 0 =

[
p̂i, p̂j

]
,[

q̂i, p̂j
]

= δij,
(2.5)

for all 1 ≤ i, j ≤ n. These are the quantum canonical commutation relations (cf.
Eq. (2.3)). The Weyl algebra (of dimension n) can thus be presented as the algebra
on 2n generators satisfying the above commutation relations.

Notice that there is a dual realisation of the Weyl algebra. Consider the canonical
linear isomorphism ω] : V ∗ −→ V , induced by the nondegenerate, alternating symplectic
pairing ω : V ∧ V −→ C (cf. Rem. A.1). There is now a unique symplectic structure
on V ∗ such that ω] is a symplectomorphism — which we may denote ω∗ — obtained by
pull-back:

ω∗(f, g) := ω
(
ω](f), ω](g)

)
, for f, g ∈ V ∗.

The Weyl algebra W (V ∗, ω∗) of the dual symplectic space is then canonically isomorphic
to W (V, ω).3

The intrinsic way of thinking about this is the following. The symplectic vector space
(V, ω), considered as an affine complex space, comes equipped with a 2-shifted Poisson
bracket {·, ·} : OV (V ) ∧ OV (V ) −→ OV (V ), according to Ex. 2.3. We have seen that this
implies that its restriction to linear functions yields an alternating bilinear form on the
dual space {·, ·} : V ∗∧V ∗ −→ C. This is exactly the dual structure ω∗ we’re talking about
in the previous paragraph, because ω](f) = Xf is the Hamiltonian vector field associated
to f ∈ V ∗ (which one may also think as a translation invariant 1-form on V ). Thus:

ω∗(f, g) = ω
(
ω](f), ω](g)

)
= ω(Xf , Xg) = {f, g},

for f, g ∈ V ∗. Hence, in essence, one may say that the Weyl algebraW (V ∗, ω∗) is obtained
from the tensor algebra Tens(V ∗) by modding out the Poisson structure. This is analogous
what happens for the universal enveloping algebras U(g) of a Lie algebra g, discussed just
below in Ex. 2.6.

Finally, if one is interested in explicit generators and relations, notice that the dual
basis {dq1, . . . , dqn, dp1, . . . , dpn} provides a presentation of W (V ∗, ω∗) which is the same
as that for W (V, ω), since

{dqi, dqj} = 0 = {dpi, dpj}, {dqi, dpj} = δij

3The canonical isomorphism is given by the universal property of the quotient applied to the compo-
sition π ◦ Tens(ω]) : Tens(V ∗) −→ W (V, ω), where Tens(ω]) : Tens(V ∗) −→ Tens(V ) is the image of the
morphism ω] under the functor Tens, and again π : Tens(V ) −→W (V, ω) is the canonical projection.
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for all 1 ≤ i, j ≤ n, reading again the classical canonical commutation relations (2.3).
Hence [

d̂qi, d̂qj
]

= 0 =
[
d̂pi, d̂pj

]
,[

d̂qi, d̂pj
]

= δij.

Example 2.6 (Universal enveloping algebras).
Let

(
g,
[
·, ·
])

be a Lie algebra, and consider its tensor algebra Tens(g). This is a filtered
algebra, and one considers its quotient with respect to the two-sided ideal I1 ⊆ Tens(g)
generated by the nonhomogeneous elements

x⊗ y − y ⊗ x−
[
x, y

]
, for x, y ∈ g.

One sets U(g) := Tens(g)
/
I1, and calls this the universal enveloping algebra of

(
g,
[
·, ·
])
.

The algebra U(g) is an associative filtered algebra, with the quotient filtration. Notice
that the tensor algebra Tens(g) is naturally Poisson, if one extends the Lie bracket of g
by demanding the Leibnitz rule to be satisfied, i.e. generalising the following equality to
arbitrary tensor products:[

x⊗ y, z
]

= x⊗
[
y, z

]
+
[
y, z

]
⊗ x, for x, y, z ∈ g,

and similarly for the other slot. Hence one may say that the enveloping algebra is obtained
from the tensor algebra by modding out its Poisson structure, just as for the Weyl algebra
introduced in 2.5. Nonetheless, the associative algebra U(g), endowed with the Poisson
structure defined by its commutator (cf. Ex. A.1), is a filtered Poisson algebra. The shift
follows from that of Sym(g) ∼= Og∗(g∗).

Let us describe in some more detail the case of g = gl(V ), where V is a vector space
of dimension n, because this is relevant to the results of § 3.7, § 3.8 and § 3.9. Picking a
basis B := {ei}i ⊆ V of V , one may define a basis for g as follows: denote eij : V −→ V
the element eij := ei ⊗ dej ∈ V ⊗ V ∗ ∼= End(V ). These elements satisfy the commutation
relations [

eij, ekl
]

= δjkeil − δilekj.
There is now an inclusion g ↪→ U(g), provided by the composing the canonical injection
ι : g ↪→ Tens(g) with the canonical projection π : Tens(g) −→ U(g). Let us denote
x̂ := π ◦ ι(x), for x ∈ g, underlying the fact that this is the restriction of a quantisation
map (see § 2.1.5). Then, reasoning as in Ex. 2.5, the enveloping algebra U(g) is the
algebra on generators {êij}i,j, subjected to the relations[

êij, êkl
]

= δikêil − δilêkj,

for all i, j, k, l.

2.1.3 Filtered deformations and filtered quantisations

We now want to use the material of the previous section to give a new definition of de-
formations of associative algebras, and quantisation of commutative associative algebras.
The main idea is to replace the general notion of a semiclassical limit by the grading map.
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Definition 2.14. Let B = ⋃
k∈ZB≤k be a filtered associative algebra. The associ-

ated graded of B is the graded algebra gr(B) defined as follows. One sets gr(B)k :=
B≤k

/
B≤k−1, and then

gr(B) :=
⊕
k∈Z

gr(B)k,

as graded vector space. The product of two classes a + B≤l−1, b + B≤m−1, having repre-
sentatives a ∈ B≤l, b ∈ B≤m is (well) defined to be the class of the product a · b ∈ B≤l+m
in gr(B)l+m. One writes σk : B≤k −→ gr(B)k for the canonical projection, where k ∈ Z,
and σ : B −→ gr(B) for the map defined by σk on B≤k \B≤k−1.

Notice that B and gr(B) are isomorphic as vector spaces. The examples of the previous
sections are related like this.
Example 2.7. Consider a symplectic vector space (V, ω). We have a commutative,
graded, 2-shifted Poisson algebra A0 := Sym(V ∗) ∼= OV (V ) associated to this space,
as well as a filtered, associative A := W (V ∗, ω∗). One can show that gr(A) ∼= A0.

To do this, consider the composition σ◦π : Tens(V ∗) −→ gr(A), where π : Tens(V ∗) −→
A is the canonical projection, and σ : A −→ gr(A) the grading map. One can now show
that the kernel of this map contains the ideal I0 ⊆ Tens(V ∗) defining the symmetric alge-
bra (see Ex. 2.2). This is the two-sided ideal generated by the commutators f ⊗g−g⊗f ,
for f, g ∈ V ∗ ⊆ Sym(V ∗). Now, one has

π
(
f ⊗ g − g ⊗ f

)
=
[
π(f), π(g)

]
=
[
f̂ , ĝ

]
∈ A.

This element vanishes in the associated graded algebra, because one has
[
f̂ , ĝ

]
= {f, g}

in the Weyl algebra, and the left-hand side a priori lives in A≤2, whereas the right-hand
side lives in A≤0 ∼= C, so that σ

([
f̂ , ĝ

])
= σ2

([
f̂ , ĝ

])
= σ2

(
{f, g}

)
= 0.

The universal property of the quotient provides a surjective morphism

A0 ∼= Tens(V ∗)
/
I0 −→ gr(A),

and one can show that it is injective. Up to identifying A0 with gr(A), one then has the
following relation between the two Poisson structures

σ
[
f̂ , ĝ

]
= {f, g} =

{
σ
(
f̂), σ

(
ĝ
)}
,

for f, g ∈ A0, and for arbitrary lifts f̂ , ĝ ∈ A. This equality has been shown for elements of
degree one in A0, comparing the canonical commutation relations of Ex. 2.5 and Ex. 2.3.
The Leibnitz identity then yields the general formula. This will be relevant for Prop. 2.1.
Example 2.8. Reasoning exactly as in the above example 2.7, one can show that the
associated graded algebra gr

(
U(g)

)
of the universal enveloping algebra U(g) of a Lie

algebra
(
g,
[
·, ·
])

is isomorphic to the symmetric algebra Sym(g) of g. Moreover, up to
identifying Sym(g) ∼= Og∗(g∗) with gr

(
U(g)

)
, one has the same relation for the Poisson

brackets as in the previous example 2.7. In this case the identity on elements of degree
one follows directly from the definition of the Poisson bracket of g∗ as dual to the Lie
bracket

[
·, ·
]
. This will be relevant for Prop. 2.1, and it also one way of expressing the

theorem of Poincaré–Birkhoff–Witt.
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These two examples are instances of filtered deformations.

Definition 2.15. Let A0 be a graded algebra. A filtered deformation A of A0 is a filtered
algebra such that gr(A) ∼= A0.

The crucial remark is the following: if A is a filtered algebra whose associated graded is
commutative, then there is a canonical 1-shifted Poisson bracket {·, ·}A on gr(A), defined
by the condition that

σk+l−1
[
x, y

]
= {σk(x), σl(y)}A, for x ∈ A≤k, y ∈ A≤l.

Just as we did in the case of deformation quantisation, we use this fact to define filtered
quantisations. Let then (A0, {·, ·}) be a commutative, graded Poisson algebra.

Definition 2.16. A filtered quantisation of A0 is a filtered deformation A of A0, such
that moreover

σk+l−1
[
x, y

]
= {σk(x), σl(y)}, for x ∈ A≤k, y ∈ A≤l,

where one identifies A0 ∼= gr(A).

The discussions of 2.3, 2.7, 2.6 and 2.8 then immediately yield the following standard
result.

Proposition 2.1. Let g be a Lie algebra, and (V, ω) be a symplectic vector space.

• The Weyl algebra W (V, ω) of (V, ω) is a filtered quantisation of the algebra of poly-
nomial functions Sym(V ∗) on V .

• The universal enveloping algebra U(g) is a filtered quantisation of the algebra of
polynomial function Sym(g) on g∗.

What is left to do is to relate this notion to that of a formal deformation quantisation
of § 2.1. The main idea is that the former is a particular case of the latter. Moreover,
given a filtered quantisation, there is a universal construction to get a formal deformation
quantisation out of it.

2.1.4 Rees construction

The notions of formal deformation quantisation (§ 2.1) and filtered quantisation (§ 2.1.3)
can be related by the so-called Rees construction.

Definition 2.17. Let A = ⊕
k∈ZA≤k be a filtered algebra. The Rees algebra of A at level

~ is the algebra
R~(A) :=

⊕
k∈Z

A≤k~k ⊆ A[~].
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To get back to topologically free CJ~K-modules, one may consider a completion of this
Rees algebra:

Â :=
∑
k≥0

ak~k
∣∣∣∣∣∣ ak ∈ A≤k for all k ≥ 0, lim

k−→+∞

(
k − ord(ak)

)
= +∞

 ⊆ AJ~K.

Now assume that A is a filtered deformation of A0 ∼= gr(A).

Proposition 2.2. The algebra Â is a formal, one-parameter deformation of A0.

Proof. Consider the morphism ϕ : Â −→ A0 defined by

ϕ

∑
k≥0

ak~k
 =

∑
k≥0

σk(ak), (2.6)

identifying gr(A) = σ(A) with A0. The sum on the right-hand side is finite, since by
definition ord(ak) = k only for finitely many indices k, so that σk(ak) = 0 in all but
finitely many cases.

The map ϕ is surjective, and its kernel is precisely ~Â, so that A0 ∼= Â
/
~Â.

In a sense, the morphism ϕ define by Eq. (2.6) is the true semiclassical limit.

Now assume that
(
A,
[
·, ·
])

is a filtered quantisation of (A0, {·, ·}).

Proposition 2.3. The algebra Â is a formal, one-parameter deformation quantisation of
A0.

Proof. All that is left to show is that the Poisson bracket on A0 comes from the com-
mutator of Â, by means of (2.2). This follows precisely from the condition of filtered
quantisation in Def. 2.16.

Because of Prop. 2.3, we shall consider filtered quantisation as a good notion of defor-
mation quantisation for commutative, graded Poisson algebras, and keep the notation A
for the quantum algebras.

2.1.5 Quantisation maps

Let us conclude this section on deformation quantisation by adding something to the
quantisations of Prop. 2.1. Namely, in both cases one can define a “quantisation” map,
i.e. a distinguished right-inverse of the semiclassical limit.4 The idea is the same both for
enveloping algebras and Weyl algebras, and relies on symmetrisation.

Let (g,
[
·, ·
])

be a Lie algebra, and (V, ω) a symplectic vector space. Denote A := U(g),
A0 := Sym(g) ∼= gr(A), B := W (V ∗, ω∗) and B0 := Sym(V ∗) ∼= gr(B). One has natural

4We use quotation marks, because these maps are a weaker notion than that presented in § A.4.
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inclusions A0 ↪→ Tens(g), B0 ↪→ Tens(V ∗), given on monomials of degree k by the same
formula: ∏

1≤i≤k
Xi 7−→

1
k!

∑
τ∈Σk

Xτ1 ⊗ · · · ⊗Xτk , (2.7)

where Xi ∈ A0 or B0, and where Σk is the symmetric group on k objects. This is just
the standard fact that — in characteristic zero — symmetric algebras can be realised as
subalgebras of the tensor algebras, whereas a priori they are defined as quotients.

One can now compose this map with the canonical projections πW : Tens(V ∗) −→ B
and π : Tens(g) −→ A. This defines maps QW : B0 −→ B and QPBW : A0 −→ A which
are sections of the respective semiclassical limits, because of the normalisation taken in
(2.7).

Definition 2.18. The map QW is called the Weyl quantisation. The map QPBW is called
the PBW quantisation.

Notice that the explicit formula for the quantisation maps reads just as the symmetri-
sation (2.7), if one replaces the element Xi in the relevant symmetric algebra with its
class X̂i := πι(Xi), as explained in Ex. 2.5 and Ex. 2.6. Namely, if k is a nonnegative
integer, and if Xi ∈ g for 1 ≤ i ≤ k:

QPBW

(
k∏
i=1

Xi

)
= 1
k!

∑
τ∈Σk

X̂τ1 · . . . · X̂τk . (2.8)

Similarly, if Yi ∈ V ∗ for all 1 ≤ i ≤ k:

QW
(

k∏
i=1

Yi

)
= 1
k!

∑
τ∈Σk

Ŷτ1 · . . . · Ŷτk . (2.9)

We will see in Chap. 3 how to use a variation of these maps in order to quantise
interesting time-dependent Hamiltonian systems.

2.1.6 Hamiltonian reduction: an algebraic viewpoint

Here we briefly review the algebraic viewpoint on Hamiltonian actions and Hamiltonian
reductions, which is suited to deformation quantisation (see [Eti07]). This material will
be used in Chap. 3, more precisely in § 3.7, 3.8 and 3.9.

Let (A0, {·, ·}) be a commutative Poisson algebra, and g a Lie algebra. Denote by
Der(A0) the Lie algebra of Poisson derivations of A0, i.e. of C-linear maps ψ : A0 −→ A0
satisfying

ψ(fg) = ψ(f)g + fψ(g), ψ
(
{f, g}

)
= {ψ(f), g}+ {f, ψ(g)}, for f, g ∈ A0,

with the Lie bracket provided by the commutator.

Definition 2.19. A g-action on A0 is a morphism of Lie algebras ϕ0 : g −→ Der(A0).
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Now, one has a natural map X : A0 −→ Der(A0), associating to an element f ∈ A0
the bracket Xf = {f, ·} : A0 −→ A0. This is a Poisson derivation of A0, because of the
Leibnitz and Jacobi identities. The notation mimic that for the Hamiltonian vector field
of a function f defined on a Poisson manifold (see A.2).
From an algebraic perspective, X is just the morphism defining the adjoint action of A0
on itself, considered as a Lie algebra.
Definition 2.20. A (classical) moment map for the g-action ϕ0 : g −→ Der(A0) is a
morphism µ0 : Sym(g) −→ A0 of Poisson algebras whose restriction to g lifts ϕ0 through
X:

g Der(A0)

A0

ϕ0

µ0|g
X

Recall that Sym(g) ∼= Og∗(g∗) is Poisson, as explained in Ex. 2.4. The lifting condition
means that

X
(
µ0(x)

)
.a = {µ0(x), a} = ϕ0(x).a for x ∈ Sym(g), a ∈ A0.

In particular the g-action is completely determined by µ0. Moreover, µ0 is completely
determined by its restriction to g.
Definition 2.21. Let ϕ0 : g −→ A0 be a g-action on A0. The subring of g-invariants of
A0 is:

Ag
0 :=

{
a ∈ A0 | ϕ0(g).a = 0

}
.

Remark 2.4. The subring Ag
0 is a C-subalgebra. Moreover, it is a Poisson subalgebra,

because ϕ0 is a Poisson derivation by definition. Notice that if µ0 is a moment for ϕ0,
then the invariant algebra equals

Ag
0 =

{
a ∈ A0 | {µ0(g), a} = 0

}
,

which means that it is the centraliser of µ(g) ⊆ A0 in A0.

These notions are introduced to define reductions of A0 with respect to the moment
map µ0 and the choice of an ideal I ⊆ Sym(g). More precisely, one wants to define the
Hamiltonian reduction R(A0, µ0, I) as a Poisson algebra. To this end, let J ⊆ A0 be the
ideal generated by µ0(I).
Lemma 2.1. One has {Ag

0, J} ⊆ J .

Proof. Pick c ∈ Ag
0, b ∈ J . One may write b = ∑

i biµ0(ai) for suitable bi ∈ A0, ai ∈ I.
One has:

{c, b} =
∑
i

{c, biµ0(ai)} =
∑
i

bi{c, µ0(ai)}+ µ0(ai){c, bi} =
∑
i

µ0(ai){c, bi} ∈ J,

since {µ0(ai), c} = 0 by g-invariance.
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An immediate corollary is that the invariant part Jg ⊆ Ag
0 of J is a Poisson ideal in

Ag
0.

Definition 2.22. The (classical) Hamiltonian reduction of A0 with respect to the moment
µ0 : Sym(g) −→ A0 and the ideal I ⊆ Sym(g) is the quotient

R(A0, µ0, I) := Ag
0

/
Jg.

This quotient is a Poisson algebra, thanks to the above remark.

Remark 2.5. This is indeed the good algebraic notion that corresponds to the reduction
of a symplectic manifold with respect to the Hamiltonian action of a Lie group. To
explicitly state the correspondence, let (M,ω) be a symplectic manifold, equipped with a
symplectic action of a Lie group G, with Lie algebra g.

The G-action preserves the Poisson structure of A0 := C∞(M,C), in the sense that
the action of G on A0 defined by pull-back satisfies

g.{f, h} = {g.f, g.h}, g.(fh) = (g.f) · (g.h),

where g ∈ G, f, h ∈ A0. Hence the differential of this G-action ρ : G −→ Aut(A0), at
the identity e ∈ G, provides a morphism deρ : g −→ Der(A0) of Lie algebras, which is a
g-action on A0 by Def. 2.19.
If one thinks of the geometric action on points of M , this g-action is the standard mor-
phism that associates to x ∈ g the vector field x̂ ∈ C∞(M,TM) on M defined by

x̂(p) = d

dt

(
exptx .p

)∣∣∣∣∣
t=0

where p ∈ M , and exp: g −→ G is the exponential map of G. There is now a standard
identification between derivatives of A0 and vector fields on M .

Now assume that the G-action is Hamiltonian, equipped with a (G-equivariant) mo-
ment map µ : M −→ g∗. The dual viewpoint provides a map µ∗ : g −→ A0, usually
called a comoment, which admits a unique extension to a morphism of Poisson algebras
µ∗ : Sym(g) −→ A0. Moreover, by definition, this map sends an element x ∈ g to the
function µ∗(x) ∈ A0 whose Hamiltonian vector field is x̂ = deρ(x) ∈ Der(A0), and thus µ∗
is a moment map for the g-action, according to Def. 2.20.

Next there is the question of the reduction. Let O ⊆ g∗ be a closed G-invariant set,
for example the closure of a coadjoint orbit. Then one defines the Hamiltonian reduction
of M with respect to the moment µ and the set O as the quotient

M �O G := µ−1(O)
/
G,

which inherits a natural symplectic structure from ω (and which may fail to be smooth).
The natural algebraic counterpart of this construction would be to consider the algebra
of functions on this Hamiltonian reduction. The way to match this up with Def. 2.22 is
the following.
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Consider the ideal I ⊆ Sym(g) ∼= Og∗(g∗) of functions g∗ −→ C that vanish on the
closed set O ⊆ g∗. Then the ideal J ⊆ A0 generated by µ∗(I) is the ideal of functions
that vanish on µ−1(O) ⊆ M , and the quotient A0

/
J is canonically identified with the

ring of functions on the closed set µ−1(O). Finally, taking the G-invariant part of the
quotient ring would provide the ring of functions on the quotient M �O G. Recall that
by definition one sets

AG0 := {f ∈ A0 | G.f = f} ⊆ A0,

and differentiating g.f = f at the identity e ∈ G shows that this is the same as Ag
0 of

2.21. Hence, a priori, the ring of functions of M �O G is the quotient
(
A0
/
J
)g

. One can

show that invariant ring is isomorphic to the quotient Ag
0

/
Jg in some fortunate cases, e.g.

when G and g are reductive.

On the whole, the construction we described above is the natural algebraic and con-
travariant counterpart of the classical Marsden–Weinstein reduction. If one were to work
with with affine Poisson varieties X over C, provided with algebraic actions of reductive
Lie group G that satisfy all of the above, then one would have Spec

(
OX(X)

) ∼= X, and
one could define X �O G := Spec

(
R(OX(X), µ, I)

)
, using the same notations as above

(and taking care that O ⊆ g∗ is now Zariski-closed). This produces an affine Poisson
scheme that may be singular.

In the same algebraic fashion as above, and exploiting the standard PBW quantisation
QPBW : g −→ U(g) for Lie algebras as in § 2.1.5, one defines quantum moments. To this
end, let us denote σ : U(g) −→ Sym(g) the semiclassical limit, and let A be a possibly
noncommutative associative algebra over C, equipped with a g-action ϕ : g −→ Der(A).5

Definition 2.23. A quantum moment for ϕ is an associative morphism µ : U(g) −→ A
such that its restriction to g lifts ϕ through the natural morphism X : A −→ Der(A):

U(g) Der(A)

A

ϕ

µ|g
X

Just as in the classical case, the action is determined by µ, which is in turn completely
determined by its restriction to g.

Now suppose to be in the context of filtered quantisation, as in § 2.1.3. Assume
hence that A be filtered, and that A0 = gr(A) is commutative. Call σ′ : A −→ A0 the
semiclassical limit, and consider two g-actions ϕ0 : g −→ Der(A0), ϕ : g −→ Der(A) which
admit a classical moment µ0 : Sym(g) −→ A0 and a quantum moment µ : U(g) −→ A,
respectively.

5If A is associative, a C-linear map f : A −→ A is a derivation if f(ab) = f(a)b+af(b) for all a, b ∈ A.
This is however the same as asking for it to be a Poisson derivation with respect to the Poisson bracket
defined by the commutator of A (see A.1).
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Definition 2.24. The quantum moment µ : U(g) −→ A is quantisation of the classical
moment µ0 : Sym(g) −→ A0 if they are intertwined by the semiclassical limits:

Sym(g) A0

U(g) A

	

µ0

σ

µ

σ′

If one were to pick the completion of the Rees algebra of A, thereby getting a gen-
uine ~-deformation quantisation, as explained in § 2.1.4, then one might say that µ ≡
µ0(mod(~)).

Remark 2.6. Notice that definition Def. 2.24 implies in particular that ϕ0 ◦ σ = σ′ ◦ ϕ
as well, since

ϕ0
(
σf̂
)
.g = {µ0(σf̂), g} = {µ0(σf̂), σ′ĝ} = {σ′µ(f̂), σ′(ĝ)} = σ′

[
µ(f̂), ĝ

]
= σ′ϕ(f̂).ĝ,

for all f̂ ∈ U(g), g ∈ A0, and for all lift ĝ ∈ A.

One now defines the quantum Hamiltonian reduction Rq(A, µ, I), where (A, µ, I) is a
triple consisting of an associative algebra A, a quantum moment µ : U(g) −→ A, and a
two-sided ideal I ⊆ U(g). One considers the left-ideal J := A.µ(I) ⊆ A generated by
µ(I), which need not be two-sided.

Lemma 2.2. The invariant part Jg ⊆ Ag is a two-sided ideal.

Here again one sets Ag to be the algebra of g-invariants:

Ag :=
{
b ∈ A

∣∣∣ [µ(g), b
]

= 0
}
.

Proof. It is clear that Jg = J ∩Ag is an ideal in Ag. To see that it is bilateral, pick c ∈ Ag,
b ∈ Jg. One may write b = ∑

i biµ(ai) for suitable bi ∈ A, ai ∈ I. Then:

bc =
∑
i

biµ(ai)c =
∑
i

bicµ(ai) + bi
[
µ(ai), c

]
=
∑
i

bicµ(ai) ∈ Jg,

where
[
µ(ai), c

]
= 0 since c is g-invariant.

Definition 2.25. The quantum Hamiltonian reduction of A with respect to the quantum
moment µ : U(g) −→ A and the two-sided ideal I ⊆ U(g) is the quotient:

Rq(A, g, I) := Ag
/
Jg.

Notice that this quotient is an associative algebra, because of the above lemma.
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2.2 Geometric quantisation

The geometric approach to quantisation starts with a smooth symplectic manifold (M,ω)
as phase-space, which moreover satisfies a certain integrality condition.

In § 2.2.1 we define the prequantisation of (M,ω), which results in a Hilbert space H.
Next, in § 2.2.2 we introduce polarisations P ⊆ TCM on (M,ω), and in § 2.2.3 we
construct the true quantum phase-space HP of the theory out this data.
In § 2.2.4 we define the Hitchin connection, which provides a canonical way to identify
the spaces that correspond to different choices of polarisations, solving the problem of the
geometric quantisation of (M,ω).
Finally, in § 2.2.5 we explain how to introduce the deformation parameter ~ into the
geometric picture, thereby providing a direct link with deformation quantisation.

2.2.1 Prequantisation

The main idea of geometric quantisation is to realise the quantum phase-space P(H)
underlying (M,ω) out of smooth sections of a complex line bundle π : L −→ M over M .
Given such a line bundle, one has a priori no way to define an Hermitian product on
C∞(M,L). However, if h is a Hermitian metric on L, then it makes sense to consider the
space of sections whose h-norm squared is integrable with respect to some measure onM .
This is better, but there is still a priori no way to let a classical observable f : M −→ R
act on the space of sections — apart from fibrewise multiplication — when the line bundle
is not trivial. The next good idea is then to ask for a connection ∇ on L, so that the
first-order operators ∇Xf : C∞(M,L) −→ C∞(M,L) of covariant derivative may act on
the space of smooth sections, where Xf is the Hamiltonian vector field of f .

This quick overview motivates the following few definitions and remarks.

Definition 2.26. A set of prequantum data on the symplectic manifold (M,ω) is a triple
(L,∇, h), where

1. π : L −→M is a smooth, complex line bundle over B.

2. h ∈ C∞(M,L∗ ⊗ L∗) is a smooth Hermitian metric on L.

3. ∇ is a h-parallel connection in L satisfying F∇ = −iω.

One also refers to (L,∇, h) as a prequantum triple, to π : L −→M as the prequantum
line bundle and to ∇ as the prequantum connection. Here F∇ ∈ A2

(
M,End(L)

) ∼=
A2(M,C) is the curvature of ∇. The constant i is necessary because ω is a real form,
whereas F∇ is purely imaginary. This is conceptually due to the fact that the local 1-
forms defining the connection take values in the Lie algebra u(1) ∼= iR of the unitary
group U(1), since ∇ is parallel for the Hermitian metric h on L:

∂Xh(s, t) = h(∇Xs, t) + h(s,∇Xt), for all s, t ∈ C∞(M,L), X ∈ C∞(M,TM).
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Moreover, the normalised curvature form i
2πF∇ ∈ A

2(M,R) has integer periods, and
thus ω

2π must be an integer form in order for a set of prequantum data to exist.
Definition 2.27. A differential form α ∈ Ωk(M,R) is integer if its de Rham cohomology
class [α] ∈ Hk

dR(M,R) lies in the image of the natural map

Hk(M,Z) −→ Hk(M,R) ∼= Hk
dR(M,R),

defined for the ordinary singular cohomology.

We thus immediately see an obstruction to the geometric quantisation of (M,ω).
Definition 2.28. The symplectic manifold (M,ω) is prequantisable if ω

2π is an integer
form.6

A set prequantum data may exist only if (M,ω) is prequantisable. The nice starting
result of the theory is the fact that the converse is true.
Theorem 2.2 (Konstant–Souriau–Weyl).
Let M be a smooth manifold, and α ∈ A2(M,R) a closed 2-form. If α is integer then
there exists a triple (L,∇, h) as in Def. 2.26, such that 1

2πF∇ = −iα.

The Chern class of the prequantum line bundle π : L −→M is fixed. In particular, the
line bundle L is uniquely determined as a smooth complex line bundle. We now consider
the vector space C∞(M,L) of smooth sections of L, and try to construct a Hilbert space
out of it. To this end, consider the Liouville measure on (M,ω), that is the measure
associated to the volume form

µ := ω∧n

n! ,

if M is 2n-dimensional. Then, if s ∈ C∞(M,L) is a section, one can consider the real-
valued function h(s, s) : M −→ R≥0, and consider the space of square-summable sections:

{s ∈ C∞(M,L)|
∫
M
h(s, s)µ < +∞

}
.

This space is pre-Hilbert, endowed with the inner product

〈s | t〉 :=
∫
M
h(s, t)µ ∈ C. (2.10)

Definition 2.29. The space H of the prequantisation of (M,ω) with respect to the
prequantum data (L,∇, h) is the Hilbert completion of the space of square-summable
sections of L.

Hence H generalises the space C∞(R2n,C)∩L2(R2n, dx1 . . . dx2n) of square-integrable
complex-valued functions for the 2n-dimensional Lebesgue measure, which would corre-
spond to a trivial line bundle over flat 2n-dimensional space (cf. Rem. 2.9).

As noted above, one now has two basic types of differential operators acting on H,
associated to a smooth function f ∈ C∞(M,C):

6One may also find in the literature that the prequantum condition is expressed as F∇ = −2πiω. In
this case [ω] itself must be an integer class.
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• The function multiplication µf : s 7−→ fs, an operator of order zero.

• The covariant derivative ∇Xf : s 7−→ ∇Xf s, where Xf = {f, ·} is the Hamiltonian
vector field of f , an operator of order one.

We are admittedly ignoring some analytical issues here. Namely, these operators are
a priori defined on C∞(M,L). One should check whether they act on H̃, and then extend
them to H by density. Even after doing that, it is not clear what their domain D ⊆ H will
be. At any rate, the procedure of quantisation that we are describing must be corrected
in order to work: the space H is in a sense too big (see Rem. 2.9).

Definition 2.30. The prequantum operator attached to f ∈ C∞(M,C) is

f̂ := µf − i∇Xf ∈ End(H).

If we think of the map f 7−→ f̂ as a quantisation map Q : C∞(M,C) −→ End(H), in
the sense of § A.4, then we might try to show that is satisfies some of the Dirac axioms
listed there, up to a multiplication by Planck constant. For instance, it is clear that the
map is C-linear, and the function constant to 1 acts as the identity. Moreover, the strong
version 4 of the compatibility of the Poisson structures holds.

Proposition 2.4. One has Q
(
{f, g}

)
= i

[
f̂ , ĝ

]
for all f, g ∈ C∞(M,C).

Proof. Pick functions f, g ∈ C∞(M,C). One has

Q
(
{f, g}

)
= µ{f,g} − i∇X{f,g} = {f, g} − i∇[

Xf ,Xg

],
because f 7−→ Xf is a morphism of Lie algebras with the chosen convention (see (A.4)).
Now, one has

∇[
Xf ,Xg

] =
[
∇Xf ,∇Xg

]
−F∇(Xf , Xg) =

[
∇Xf ,∇Xg

]
+iω(Xf , Xg) =

[
∇Xf ,∇Xg

]
+i{f, g}.

Hence, on the whole:

Q
(
{f, g}

)
= 2{f, g} − i

[
∇Xf ,∇Xg

]
Let us now compute the commutator:

i
[
f̂ , ĝ

]
= i

[
µf − i∇Xf , µg − i∇Xg

]
= i

[
µf , µg

]
+
[
µf ,∇Xg

]
+
[
∇Xf , µg

]
− i

[
∇Xf ,∇Xg

]
.

The first addend vanishes, since function multiplication is commutative. Hence all
that is left is show is that [

µf ,∇Xg

]
−
[
µg,∇Xf

]
= 2{f, g}.

35



CHAPTER 2. BACKGROUND

Now, if s ∈ C∞(M,L):[
µf ,∇Xg

]
s = f∇Xgs−∇Xg(fs) = −df(Xg)s.

Hence [
µf ,∇Xg

]
= −Xg(f) = −{g, f} = {f, g},

and similarly [
µg,∇Xf

]
= {g, f}.

One can also verify that the algebra of classical observables is preserved, according to
axiom 2.

Proposition 2.5. Let f ∈ C∞(M,R) be a real-valued function, and s, t ∈ C∞(M,L) two
sections. One has

〈Q(f)s | t〉 = 〈s | Q(f)t〉.

Proof. Let us fix f, s, t as in the statement.

It is clear that 〈fs | t〉 = 〈s | ft〉, because 〈· | ·〉 is sesquilinear. We must then show
that 〈−i∇Xf s | t〉 = 〈s | −i∇Xf t〉, i.e.

〈∇Xf s | t〉+ 〈s | ∇Xf t〉 = 0.

In terms of integral, this means showing that

0 =
∫
M
h
(
∇Xf s, t

)
µ+

∫
M
h
(
s,∇Xf t

)
µ =

∫
M
Xf

(
h(s, t)

)
µ,

Using the fact that ∇ is h-parallel:

Xf

(
h(s, t)

)
= h

(
∇Xf s, t

)
+ h

(
s,∇Xf t

)
.

Introduce the Lie derivative LXf along the vector field Xf , which allows for computing
derivatives of arbitrary differential forms. Using the generalised Leibnitz identity:7

LXf
(
h(s, t)µ

)
= LXf

(
h(s, t) ∧ µ

)
= LXf ∧

(
h(s, t)

)
µ+ h(s, t) ∧ LXf (µ).

The first addend is just the product Xf

(
h(s, t)

)
µ appearing in the integral. Indeed,

LXf
(
h(s, t)

)
is the ordinary derivative Xf

(
h(s, t)

)
of the nonnegative, smooth function

h(s, t) : M −→ R≥0. The second term vanishes, because of the Leibnitz identity, and
the fact that LXf (ω) = 0, n!µ = ω∧n. Recall that LXf (ω) = 0 follows from the Cartan
formula:

LXf (ω) = (d ◦ ιXf + ιXf ◦ d)(ω) = d(ιXfω) + ιXf (dω) = −d2f = 0.
7That is LX(α ∧ β) = LX(α) ∧ LX(β) for all X ∈ C∞(M,TM) and α, β ∈ A•(M,C).
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Now, using again the Cartan formula

LXf
(
h(s, t)µ

)
=
(
d ◦ ιXf + ιXf ◦ d)

(
h(s, t)µ

)
= d

(
ιXf

(
h(s, t)µ

))
,

since h(s, t)µ ∈ Ω2n(M,R) is closed, being a form of top degree.

One can finally conclude, using Stokes theorem:∫
M
Xf

(
h(s, t)

)
µ =

∫
M
d
(
ιXf

(
h(s, t)µ

))
=
∫
∂M

ιXf
(
h(s, t)µ

)
= 0.

The constructions described so far has made some significant steps forward in the
search for a solution to the problem of quantisation of § A.4. Unfortunately, there are
major drawbacks, which explain the prefix “pre” in “prequantisation”. From the mathe-
matical viewpoint, the aberration can already be seen in the failure of the Dirac axiom
5 on irreducibility. From the viewpoint of quantum mechanics, the present construction
violates Heisenberg’s indeterminacy principle. To see why, let us apply the material of
this section to a simple classical system: a free particle in three-dimensional space.
Example 2.9 (Dirac prequantisation).
The classical phase-space of a free point particle in three-dimensional space is (T ∗R3, ωcan),
using the standard Hamiltonian viewpoint for which the momenta variables live in cotan-
gent spaces.8 The canonical symplectic form ωcan = ∑

i dqi∧dpi is exact. One has ω = dλ,
where λ := −∑i pidqi is the so-called Liouville potential. In particular one has [ω] = 0 in
H2

dR(T ∗R3,R), and thus our phase-space is prequantisable.

One can take the prequantum data (L,∇, h) consisting of the trivial complex line
bundle L := C× T ∗R3 −→ T ∗R3, the translation invariant metric h which is everywhere
equal to the standard inner product h(s, t) := st, and the prequantum connection

∇ := d− iλ.

In this context one has C∞(T ∗R3, L) ∼= C∞(T ∗R3,C), and

H ∼= L2(R6, dqdp),

where dqdp is the standard Lebesgue measure on R6 ∼= T ∗R3.

We now see why this is not acceptable from the quantum mechanical viewpoint. The
classical observables qi, pi do not Poisson commute: {qi, pi} = 1. This means that their
quantisation q̂i, p̂i correspond to quantum observables whose values cannot be measured
simultaneously. In particular, it makes little sense for a wave function ψ ∈ H to depend
on both positions and momenta. One would rather like to have a quantum phase-space
like H1 ∼= L2(Q, dq), where Q ∼= R3 is the configuration space spanned by the positions,
or H2 ∼= L2(P, dp), where P ∼= R3 is the space of momenta. These spaces correspond to
the usual position and momentum representations for a wave function ψ, and they illus-
trate the general idea that one should only have functional dependence on a Lagrangian
submanifold of the classical phase-space.

8This is in essence the dual viewpoint to Lagrangian mechanics. The two are related by the Legendre
transform: [Arn89].
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This remark shows that the prequantisation just proposed fails to recover the canonical
quantisation of the free particle in flat space, which is an essential request for any viable
quantisation procedure, as expressed in § A.4. We now turn to polarisations, in order to
find a way to correct the space H by “cutting out” some directions.

2.2.2 Polarisations

We will now restrict the prequantum phase-space H by considering sections of the pre-
quantum line bundle which are covariantly constant along chosen Lagrangian subman-
ifolds of the classical phase-space, i.e. along submanifolds having maximally isotropic
subspaces.

Let again (M,ω) be a symplectic manifold.

Definition 2.31. A polarisation in (M,ω) is a smooth, integrable, Lagrangian distribu-
tion P ⊆ TCM inside the complexified tangent bundle to M , such that the dimension of
P ∩ P ⊆ TCM is constant.

The complexified tangent bundle is the tensor product TCM := TM ⊗R C of vector
bundles overM , where C denotes the trivial complex line bundle. One tacitly extends ω to
the complexification by imposing C-linearity, getting a new complex, close, nondegenerate
2-form ω ∈ C∞

(
M,Λ2T ∗CM

)
. A Lagrangian subspace L ⊆ (TCM)p is then a vector

subspace such that L = L⊥ωp , where p ∈M . Its real dimension is equal to the dimension
of M , or half the real dimension of (TCM)p. Since the distribution has constant rank, the
Frobenius theorem applies to show that P is integrable if and only if it is involutive, i.e.
closed for the Lie bracket of vector fields.

It follows from the definition 2.31 that the conjugate P ⊆ TCM of a polarisation is
still a polarisation. There is a priori no condition on the dimension of the integrable
subbundle P ∩P ⊆ TCM , but the two extreme cases are so important that one introduces
further terminology for them.

Definition 2.32. Let P ⊆ TCM be a polarisation on the symplectic manifold (M,ω).

• If P = P then P is said to be real.

• If P ∩ P = (0) then P is said to be pseudo-Kähler. If moreover the nondegenerate
Hermitian form iω : P ⊗ P −→ C on P is positive definite, then the polarisation is
said to be Kähler.

The Hermitian form in the statement is defined at p ∈ M by (u, v) 7−→ iωp(u, v), for
u, v ∈ Px ⊆ (TCM)x. Its radical is precisely P ∩ P . Hence a polarisation is real if and
only if iω = 0, and pseudo-Kähler if and only if iω is nondegenerate.

Notice that a real polarisation can be obtained from a smooth, integrable, Lagrangian
distribution R ⊆ TM , by means of P := R ⊗R C. Conversely, if P is a real polarisation,
then P is the complexification of R = P ∩ TM , and thus considering distributions in the
complexified tangent bundle allows for more general objects.
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Remark 2.7. Geometrically, real polarisations are the same as Lagrangian foliations on
M , up to integrating the real subbundle of TM to Lagrangian submanifolds of M (and
one sometimes requires this foliation to be a smooth fibration).

Remark 2.8. The existence of global polarisations has topological implications which we
will not delve into. It is also to deal with such issues that one works in the complexified
tangent bundle.
For the sake of an example, there are no real polarisation on the symplectic sphere (S2, ω),
where ω is the standard volume form. This is because a real polarisation in this case is
just a smooth distributions of lines inside TS2, which can be given an orientation up to
lifting it to a two-sheeted cover of S2. This cover is diffeomorphic to the 2-sphere, and it
now carries a nowhere vanishing vector field: impossible.

Remark 2.9. In general, one calls a polarisation P ⊆ TCM admissible if the subbundle
P + P ⊆ TCM is integrable. This condition is automatically satisfied for real and Kähler
polarisations, since in the former case one has P+P = P , and in the latter P+P = TCM .
Still speaking in full generality, one says that a polarisation P ⊆ TCM is positive if the
Hermitian form iω : P ⊗ P −→ C is positive semidefinite. This is the case of Kähler
polarisations by definition, and of real polarisations because in that case iω = 0, as
remarked above.

The terminology for Kähler polarisations is justified as follows. If I is a complex
structure on M that makes (M,ω, I) into a Kähler manifold, then one may consider
the antiholomorphic tangent bundle P := T0,1M ⊆ TCM as polarisation. Indeed, this
distribution is smooth, and it is integrable if and only if I is integrable — by the theorem
of Newlander–Nirenberg — which is assumed. Moreover, the compatibility with ω makes
it isotropic, and thus Lagrangian for dimension reasons. Then P is pseudo-Kähler because

P ⊕ P = T0,1M ⊕ T1,0M = TCM,

and finally the positive definiteness of iω : T0,1M ⊗ T1,0M −→ C follows from the com-
patibility of I with ω, i.e. from the positivity of the Kähler metric g = ω

(
·, I(·)

)
.

The converse is true.

Proposition 2.6. If P is a Kähler polarisation on (M,ω), then there exists a complex
structure I on M such that (M,ω, I) is Kähler and P = T0,1M .

Proof. One defines the complex structure as the multiplication by −i on P and by i on
P .
More precisely, let x ∈ M be a point. Since P ⊕ P = TCM , we can decompose each
tangent vector v ∈ TxM ⊆ (TCM)x as v = v′ + v′′, with v′ ∈ Px and v′′ ∈ P x uniquely
determined. Since v = v, one has v′ + v′′ = v′ + v′′. Because v′ ∈ P x and v′′ ∈ Px, it
must be that v′ = v′′ and v′′ = v′, by the uniqueness of the decomposition of v ∈ Px⊕P x.
Then we define Ix : TxM −→ TxM via

Ix(v) := i(v′′ − v′).
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This is indeed an endomorphism of TxM , since
Ix(v) = −i(v′′ − v′) = i(v′ − v′′) = i(v′′ − v′) = Ix(v).

By definition, the complexification of I yields automorphisms of the complexified tangent
spaces for which P is the eigenbundle of eigenvalue−i, and P the eigenbundle of eigenvalue
i. This almost-complex structure is then integrable, since P = T0,1M is integrable by
hypothesis.

Finally, I is compatible with ω; indeed, if v = v′ + v′′ and w = w′ + w′′ are tangent
vectors at some point that we omit from the notation, then one has

ω
(
I(v), I(w)

)
=

= ω
(
− iv′ + iv′′,−iw′ + iw′′

)
= −ω(v′, w′) + ω(v′, w′′) + ω(v′′, w′)− ω(v′′, w′′) =

= ω(v′, w′′) + ω(v′′, w′),

where in the last passage we used the fact that P and P are ω-isotropic. For the same
reason, the last term is equal to ω(v′+ v′′, w′+w′′) = ω(v, w), as it was to be shown. The
positivity of the bilinear symmetric form g = ω

(
·, I(·)

)
follows from the positivity of the

Hermitian form iω.

Before leaving the general theory of polarisations, exploiting them in § 2.2.3 to correct
the prequantisation procedure of § 2.2.1, let us briefly discuss the case of flat space. This
is relevant for the discussion of § 4.6.
Example 2.10 (Linear polarisations on flat space).
Let M = T ∗Rn, equipped with the standard symplectic structure ωcan. There is in this
case an important, distinguished class of polarisations on M : the constant ones. This
makes sense because the tangent bundle TM ∼= M × M is trivial, and thus a vector
subspace V ⊆ M ⊗ C ∼= C2n defines the subbundle PV ⊆ TCM such that PV (x) = V for
all x ∈ M . Such polarisations are said to be linear. The space of linear polarisations is
then naturally identified with the Lagrange–Graßmann manifold Λ(C2n) of C2n, i.e. the
compact manifold of complex dimension 1

2n(n+1) parametrising Lagrangian subspaces of
(C2n, ωcan), where we abusively denote ωcan the complexification of the canonical cotan-
gent symplectic form.
We now set Λ+(C2n) to be the subspace of positive linear polarisation. The group
Sp(2n,R) of linear symplectic transformations of M acts on Λ(C2n), preserving Λ+(C2n),
and splitting the latter space into n+ 1 orbits, according to the rank of iωcan:

Λ+(C2n) =
n⋃
k=0

Λk
+(C2n).

The subset Λ0
+(C2n) is closed, and consists of the real, linear polarisations. Indeed, if

iωcan vanishes on PV ⊗PV then one has PV ⊆ P⊥ωV ; but one also has P⊥ωV = PV , since PV
is Lagrangian, and thus PV = PV by the equality of dimensions: PV is real. Conversely,
if PV is real then iωcan vanishes on PV ⊗ PV = PV ⊗ PV .
On the opposite side, if iωcan > 0 then one has PV ∩ PV = (0), since all vectors in the
intersections are ωcan-isotropic. Hence the polarisation is Kähler, by Def. 2.32, and the
converse is essentially one way of rewriting the definition.
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2.2.3 Quantisation

Consider a prequantisable symplectic manifold (M,ω), together with prequantum data
(L,∇, h) (as in § 2.2.1) and a polarisation P ⊆ TCM (as in 2.2.2).

We now correct the prequantum phase-space H, by only considering sections which
are covariantly constant along the polarisation.

Definition 2.33. A section s : M −→ L of the prequantum bundle is P -polarised if

∇Xs = 0 for all X ∈ C∞(M,P ). (2.11)

We denote C∞P (M,L) the space of smooth P -polarised sections of L.

Remark 2.10. The notation X ∈ C∞(M,P ) indicates that X is a smooth section of
the polarisation P ⊆ TCM . Such vector fields are said to be tangent or adapted to the
polarisation. In particular, X is a complex vector field onM , and the covariant derivative
∇X is well defined.

We can now repeat the same construction as in § 2.2.1, but for polarised sections.

Definition 2.34. The space of the geometric quantisation of (M,ω) with respect to the
polarisation P is the Hilbert completion HP of the pre-Hilbert space of square-integrable,
P -polarised sections of L: {

s ∈ C∞P (M,L)
∣∣∣∣∫
M
h(s, s) < +∞

}
.

The completion is taken with respect to the restriction of the Hermitian product (2.10)
to P -polarised sections.

Notice thatHP ⊆ H is a closed Hilbert subspace. We will speak of the Kähler quantisa-
tion of (M,ω) to refer to the geometric quantisation with respect to Kähler polarisations.

Remark 2.11. There are further issues to discuss at this point.

First, assume that the polarisation P is real, and let F be a leaf of the associated
Lagrangian foliation on M . Then one can consider the holonomy of any section of L
along a loop in F , with respect to the prequantum connection ∇. The restriction of ∇ to
the line bundle L|F is flat, since the curvature is a multiple of the symplectic form, and
F is a (maximal) isotropic submanifold. Hence the holonomy along loops based at p ∈ F
defines a 1-dimensional representation ρ∇ : π1(F , p) −→ C∗ ∼= GLC(Lp), i.e. a character
of the fundamental group. If this character is not trivial on a loop class [γ] ∈ π1(F , p),
then any solution of (2.11) vanishes on F , because of the equality s = ρ∇

(
[γ]
)
s.

One way out is to letM0 ⊆M be the union of all leaves having trivial holonomies. This is
the Bohr–Sommerfeld submanifold of (M,ω, P, L,∇), and then one may consider solutions
of (2.11) which are concentrated on M0. In the case we will consider in Chap. 4, however,
the leaves of our real polarisations will be simply connected, in which case M0 = M .
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A second issue for real polarisations is that of integrability. Namely, the h-norm of a
P -polarised section is constant along the leaves of P , since ∇ is h-parallel:

X.h(s, s) = h
(
∇Xs, s

)
+ h

(
s,∇Xs

)
= 0,

if X ∈ C∞(M,P ), and if s is a solution of (2.11). In particular, the function h(s, s) fails
to be integrable on any non-compact leaf of P , and s is not an L2-section.
One way out of this is the introduction of L-valued half-forms on M . In the case we
will consider in Chap. 4, however, there will be a canonical global transverse to the
Lagrangian foliation defined by the real polarisation. In this case, the set of leaves is in
natural correspondence to the transverse, which has a natural measure. One can thus
replace the integral of a P -polarised over M with an integral over the transverse.

A third issue is that the prequantum operators of Def. 2.30 need not preserve a given
polarisation P , be it real of Kähler. This is one of the fundamental issues of geometric
quantisation: one would like to have projective identifications among the Hilbert spaces
which correspond to different choices of polarisations. We will present in § 2.2.4 a viable
solution to this problem.

Let us discuss in more details the case of Kähler polarisations, which will be central
in Chap. 4.
Example 2.11 (Kähler quantisation).
Consider a prequantisable Kähler manifold (M,ω, I), together with prequantum data
(L,∇, h). The complex structure I on M implicitly defines a Kähler polarisation via the
antiholomorphic tangent bundle P := T0,1M ⊆ TCM to M (see 2.32), and we can define
HP as in Def. 2.34. Let us understand this space in more details.

First, every quasi-complex structure I ∈ C∞(M,TM ⊗ T ∗M) ∼= C∞
(
M,End(TM)

)
on M provides a splitting A1(M,C) = A1,0(M,C) ⊕ A0,1(M,C), according to the di-
rect sum T ∗CM

∼= T 1,0M ⊕ T 0,1M .9 Namely, one sets A1,0(M,C) := C∞(M,T 1,0M), and
A0,1(M,C) := C∞(M,T 0,1M). This decomposition can now be extended to the prequan-
tum connection ∇, which one should now think as a differential operator

∇ : C∞(M,L) −→ A1(M,L) ∼= C∞(M,T ∗CM ⊗ L)
of order one. One thus has ∇ = ∇1,0 +∇0,1, where in particular

∇0,1 : C∞(M,L) −→ A0,1(M,L) ∼= C∞(M,T 0,1M ⊗ L).
The explicit formula for the (0, 1)-part of the connection is

∇0,1 = 1
2
(

Id +iI
)
∇. (2.12)

One can now upgrade π : L −→M to a holomorphic line bundle (L, ∂), using ∂ := ∇0,1

as Dolbeault operator. The integrability of this operator follows from the prequantum
condition that F∇ = −iω ∈ A1,1(M,C), since

∂
2 =

(
∇0,1

)2
=
(
∇2
)0,2

= (F∇)0,2 = −iω0,2 = 0.
9Recall that T 1,0M (resp. T 0,1M) is the eigenbundle of eigenvalue i (resp. −i) for the C-linear

extension of the dual structure I∗ ∈ C∞
(
M,End(T ∗M)

)
to T ∗CM .
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Notice that now the connection ∇ is tautologically upgraded to the Chern connection of
the Hermitian line bundle (L, ∂, h). Moreover, by the very definition of ∇0,1, a section
s : M −→ L is P -polarised if and only if it lies in the kernel of ∂, i.e. if and only if it is a
holomorphic section. Hence in this case one has

C∞P (M,L) ∼= H0(M,L) := Ker
(
∂ : C∞(M,L) −→ A0,1(M,L)

)
.

Here H0(M,L) is the standard, cohomological-theoretic notation for the space of holo-
morphic sections of (L, ∂) −→M , which depends on the Kähler structure I. Then HP is
the completion of the space of square-summable holomorphic sections of L.

This construction is a much more satisfactory quantisation procedure, as the following
example indicate.

Example 2.12 (Dirac quantisation).
Let us improve on Ex. 2.9 by adding a polarisation into account.

Consider again the exact symplectic manifold (T ∗R3, ωcan = dλ), with prequantum
data (L = C × T ∗R3,∇ = d − iλ, h = dz ⊗ dz). The prequantum phase-space of the
theory is H ∼= L2(R6, dqdp), where (q, p) are the natural Darboux coordinates for ωcan.
We now want to cut the number of variables in half, by means of a polarisation. To get
the position representation, for which pure states are elements ψ ∈ L2(R3, dq), one must
then ask for all sections to be constant along the vertical fibres of the cotangent bundle.
It is a nice fact that this amounts to the choice of a real polarisation.

Set then R(q,p) := T ∗qR3, and check that this defines a real polarisation P := R ⊗R
C inside TC(T ∗R3). It is clear that the distribution is smooth and isotropic. Since
DimR

(
R(q,p)

)
= 3 for all (q, p) ∈ T ∗R3, it is then Lagrangian. It is simple to show

that it is integrable, because the vector sub-bundle R ⊆ T (T ∗R3) is the tangent distribu-
tion to a foliation in the phase-space, namely to the vertical foliation defined by the fibres
of the canonical projection π : T ∗R3 −→ R3. There is little to distinguish between the
distribution and the foliation, in this case. We then define HP ⊆ H to be the completion
of the space of smooth, square-integrable, P -polarised sections, according to Def. 2.34.
To be more explicit, let us look in more detail to the space of P -polarised sections, which
is the same as that of sections which are covariantly constant along the directions of R.

Pick then a section s : T ∗R3 −→ L, and consider the vector fields {∂pi}i ⊆ C∞(T ∗R3, R),
which provide a trivialising frame of R. One has, for k ∈ {1, 2, 3}:

∇∂pk
s = ∂pks− iλ(∂pk)s = ∂pks,

since ∂pk is in the kernel of λ = −∑i pidqi. Hence a P -polarised section is one satisfying
the following first-order, linear homogeneous system of PDEs:

∂pks = 0, for k ∈ {1, 2, 3},

which is just saying that they are constant along the vertical directions. For example the
constant section r = 1 would be a solution.
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It is not always the case that covariantly constant sections are just sections which
are constant along the polarisation. It happened here because we took care to choose a
symplectic potential λ that vanishes along the polarisation. Such a symplectic potential
is said to be adapted to the polarisation. If we had taken λ′ := ∑

i qidpi, thereby changing
the prequantum connection to ∇′ = d − iλ′, then the condition for polarised sections
would have read

∂pks = iqks, k = 1, 2, 3,

which admits e.g. the solution

r(q, p) = exp
i∑

j

qjpj

 = eiq·p ∈ C,

where · denotes the ordinary scalar product for the Euclidean space R3.

Regardless of the choice of symplectic potential, one can find a h-unitary, nowhere
vanishing section r : M −→ L which is P -polarised.10 This is in particular a frame of
L, and every other section s ∈ C∞(M,L) can now be written s = fr for a suitable
function f ∈ C∞(M,C). Now it really makes sense to identify sections of the trivial
prequantum bundle with complex-valued functions onM . Moreover, a P -polarised section
now correspond to functions which are plainly constant along the polarisation, because
of the Leibnitz rule:

∇X(fr) = ∂X(f)r +∇Xr = ∂X(f)r,

for all X ∈ C∞(M,TM). Under this identification, one can finally write

HP
∼= L2(Q,C, dq) ∩ C∞(Q,C),

recovering the good quantum phase-space.

It is now a small step to get to the operators of the so-called canonical quantisation,
or Dirac quantisation, of flat space. Introduce back Planck constant ~, and consider the
following operators, acting on HP :

q̂k := µqk , p̂k := −i~∂qk .

In this way, one recovers the ~-deformed canonical commutation relations:[
q̂k, q̂l

]
= 0 =

[
p̂k, p̂l

]
,[

q̂k, p̂l
]

= δkli~,

for 1 ≤ k, l ≤ 3. The nontrivial commutator for the position and the momentum relative
to the same direction are the mathematical way of expressing Heisenberg uncertainty
principle. The operators q̂i, p̂i have continuous spectrum equal to the whole of R, and
one can measure them in the state ψ ∈ HP in order to get a real number lying in their
spectrum, as far as the mathematical formalisation is concerned (see § A).

10Since h is just the fibrewise standard Hermitian product on C, being h-unitary is equivalent to take
values in U(1) ⊆ C.

44



CHAPTER 2. BACKGROUND

To do some explicit dynamics, one could consider the classical observable

H(q, p) := 1
2 |p|

2 = 1
2

3∑
j=1

p2
j ,

a.k.a. kinetic energy (for a particle of mass 1). The canonical quantisation of this function
is then the quantum Hamiltonian

Ĥ := −~2

2

3∑
j=1

∂2
qj

= −~2

2 ∆,

acting on HP via a multiple of the standard Laplacian operator for the flat Riemannian
metric.

This is not the end of the general theory of geometric quantisation. For example,
one might introduce metaplectic corrections in order to correct for the spectra of the
operators defined at the end of this procedure. This direction has not been pursued in the
thesis. Rather, the original results of Chap. 4 consist in new constructions of the Hitchin
connection, which we shall now introduce.

2.2.4 The Hitchin connection

In the previous sections § 2.2.1, § 2.2.2 and § 2.2.3 we explained how to attach a quantum
phase-space HP to the data of a prequantisable smooth manifolds (M,ω), a prequantum
triple (L,∇, h) and a polarisation P ⊆ TCM . The problem we face now is the following:
the quantum theory should be independent of the chosen polarisation, quantum mechanics
tells us. This means that one would like to have canonical isomorphisms P(HP ) ∼= P(HP ′)
for the projective spaces of two geometric quantisations of (M,ω) associated to different
polarisations P, P ′ ⊆ TCM . This is because these projective spaces are the true quantum
phase-spaces of the theory, according to Def. A.6.

To solve this problem in the context of the quantisation of compact Chern–Simons
theory, [Hit90] and [ADW91] independently proposed the following solution.

Suppose there to exist a family {Pτ}τ∈T of polarisations on the classical phase-space
(M,ω) at hand, parametrised by some smooth manifold T . Consider the trivial vector
bundle π : H×T −→ T , and notice that the subspace HPτ ⊆ H lives in the fibre π−1(Pτ ).
The program is then the following:

1. Show that those subspaces can be glued into a vector sub-bundle V −→ T , so that
Vτ = HPτ for all P ∈ T .

2. Define a connection ∇̂ on the vector bundle V −→ T .

3. Use the parallel transport PT∇̂γ : Vγ(0) −→ Vγ(1) of ∇̂ along paths γ : [0, 1] −→ T ,
in order to provide isomorphisms HPτ

∼= HPτ ′
between different fibres of V , where

τ = γ(0), τ ′ = γ(1).11

11See Def. 2.45.
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4. Show that ∇̂ is projectively flat.

5. Use some topological property of the base T to conclude that the induced isomor-
phisms are canonical.

Definition 2.35. The connection ∇̂ is called the Hitchin connection for the geometric
quantisation of (M,ω) with respect to the family of polarisations {Pτ}τ∈T .

The first two points 1 and 2 are actually dealt with simultaneously, as follows. One
looks for a connection ∇̂ in the trivial bundle H×T −→ T that preserves the subspaces
HPτ ⊆ H. If such a connection exists, then V is a smooth vector sub-bundle, and the
restriction of ∇̂ is what one is after. Since the prequantum bundle is trivial, one has the
following formula:

∇̂ = ∇T + u,

where ∇T is the trivial connection, and u is a one-form on the base taking values in
endomorphisms of H. The Hitchin Ansatz is to take u ∈ A1

(
T ,D(M,L)

)
: the one-form

takes values in differential operators acting on smooth sections of the prequantum line
bundle. The problem is now to choose u so that the subspaces HPτ are preserved.

One now has isomorphisms PT∇̂γ : HPγ(0) −→ HPγ(1) , according to 3, but they a priori
depend on the choice of the path γ : [0, 1] −→ T . If however ∇̂ is projectively flat (see
Def. A.9), as indicated by 4, then the induced isomorphisms

P
(

PT∇̂γ
)

: P(V)Pγ(0) −→ P(V)Pγ(1)

on the projectivisation P(V) −→ T of V will only depend on the homotopy class [γ] ∈
Π1(T ) of the path γ. Finally, following the lead of the last item 5, if T is for example
simply connected, then these isomorphisms will be totally canonical. One may then finally
define the Hilbert space of the geometric quantisation HM of (M,ω) as the isomorphism
class of HPτ , for any τ ∈ T . This is the same a declaring that HM is the space of
∇̂-covariant constant sections of V .

This is the final output of the geometric approach to quantisation, as far as this thesis
is concerned.

2.2.5 The quantum level

Before leaving geometric quantisation, a last important remark is at hand. Namely, one
may introduce the deformation parameter ~ into the theory, and consider semiclassical
asymptotic expansions for ~ −→ 0. This will also provide a bridge towards the deforma-
tion quantisation, as introduced in § 2.1.

Pick again a prequantisable smooth manifold (M,ω), prequantised by the triple (L,∇, h).
Let k be a nonnegative integer, call it the quantum level of the theory, and replace the
prequantum data by the new (L⊗k,∇⊗k, h⊗k), where π : L⊗k −→ M is the k-fold tensor

46



CHAPTER 2. BACKGROUND

power of L, and the remaining data are the naturally induced metric and connection in
the line bundle L⊗k. One now has the new prequantisation condition

F∇⊗k = kF∇ = −ikω.

It would have been the same to consider k-depending prequantum data (L(k),∇(k), h(k))
on (M,ω) such that F∇(k) = −iωk, where ωk is a k-deformation of ω, in this case just
equal to kω. This is the viewpoint of § 4.2.4.

All the above material can be now be recast in those k-dependent terms, to define pre-
quantum Hilbert spaces H(k), and quantum Hilbert spaces H(k)

P .12 There is one technical
reason for doing this, which is allowing for prequantum bundles with more P -polarised
sections, as the level k grows. However, the most deep reason consists in considering
asymptotic properties of the geometric quantisation H(k)

P , as k −→ +∞. The link with
deformation theory comes by introducing ~ := k−1, so that the above limit is actually the
semiclassical one (see § A.4). The following example will make this more precise, in the
context of Kähler quantisation (2.11).

Example 2.13 (Berezin–Toeplitz quantisation).
Let (M,ω, I) be a prequantisable, compact Kähler manifold, k ∈ Z≥0 a quantum level,
and (L,∇, h) prequantum data. According to Ex. 2.11, the Hilbert space H(k)

P of the
Kähler quantisation of (M,ω, I) at level k is the metric completion of the subspace of
holomorphic sections of L⊗k,

C∞P (M,L⊗k) = H0
(
M,L⊗k

)
,

within the space of square-integrable ones, where P := T0,1M ⊆ TCM . Similarly, the pre-
quantum Hilbert space H(k) is the completion of the full space of square-integrable section
of L⊗k, so that one may write H(k) ∼= L2(M,L⊗k, µ), where µ := ω∧n

n! , and DimR(M) = 2n.
One can now try to define a k-dependent quantisation map

Qk := C∞(M,C) −→ End
(
H(k)
P

)
,

by improving on the definition of the prequantum operators 2.30. One way of doing this
is provided by Toeplitz operators.

To introduce them, denote by Πk : H(k) −→ H(k)
P the orthogonal projection onto the

closed quantum subspace. Now, if f ∈ C∞(M,C) is a smooth function, the operator µf
will act on H(k), but it need not preserve the space of holomorphic sections. However,
the composition T (k)f := Πk ◦ µf : H(k)

P −→ H
(k)
P is forcefully an operator acting on the

quantum Hilbert space H(k)
P .

Definition 2.36. The operator T (k)f ∈ End
(
H(k)
P

)
is the Toeplitz operator of level k

associated to the function f : M −→ C. The assignment T (k) : C∞(M,C) −→ End
(
H(k)
P

)
is the Berezin–Toeplitz quantisation.

12It is important to note that here one does not necessarily have tensor or direct products, whence the
heavier the notation.
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One can show that these operators are a hidden version of (a k-deformed version of)
the prequantum operators Q(k)(f) of Def. 2.30. Namely, one can relate T (k)

g to Q(k)(f),
where g := f − 1

2k∆f (see [Tuy87]). Moreover, some of the desired Dirac axioms of § A.4
are recovered, thanks to the following results.

Theorem 2.3. One has ‖T (k)
f ‖ ≤ ‖f‖∞ for all f ∈ C∞(M,C), where ‖ · ‖∞ is the

∞-norm, and ‖ · ‖ the operator norm with respect to the scalar product (2.10). Moreover

lim
k−→+∞

‖T (k)
f ‖ −→ ‖f‖∞.

This guarantees that the Toeplitz operators are bounded, hence continuous. The limit
indicates that the norm of of the quantum operator is semiclassically equal to that of the
classical observable, which is coherent with Bohr correspondence principle.

The next result shows even more strikingly that the weakening of axiom 4 holds in this
geometric context, thereby essentially providing a deformation quantisation of the classical
Poisson algebra A0 := C∞(M,C). The aim of this result is to compare the ~-deformed
commutator i

~

[
T

(k)
f , T (k)

g

]
= ik

[
T

(k)
f , T (k)

g

]
with the Berezin–Toeplitz quantisation T

(k)
{f,g}

of the Poisson bracket of f, g ∈ A0. One expects the difference to be infinitesimal for
~ −→ 0, and this is precisely what happens for the operator norms.

Theorem 2.4. Let f, g ∈ A0. One has:∥∥∥ik[T (k)
f , T (k)

g

]
− T (k)

{f,g}

∥∥∥ = O
(1
k

)
, k −→ +∞.

These two theorems are quoted from [BMS94].

2.3 Moduli spaces of connections

Here we introduce the classical phase-spaces we are interested in: moduli spaces of flat
connections on Riemann surfaces. We will neither delve into the general categorical
definition of coarse and fine moduli spaces as representable functors, nor into the general
question of actually constructing moduli space for a given classification problem. Rather,
we point to the results in the literature that guarantee that the moduli spaces we consider
exist, and that they have the correct geometric structure in order to try to quantise them.

Throughout this section K is a connected compact Lie group, and G = KC its com-
plexification: it is a complex reductive group containingK as maximal compact subgroup.
The symbol Σ will denote a smooth complex projective curve, a compact Riemann surface
or a compact orientable smooth surface, depending on the context.

In § 2.3.1 we introduce the moduli space of MdR(Σ, G) of flat G-connections on Σ,
which is the classical-mechanical setup for the geometric quantisation results of Chap. 4.
For the sake of a self-contained exposition, we also briefly introduce the moduli space
MDol(Σ, G) of G-Higgs bundles on Σ, as well as the character varietyMB(Σ, G) of Σ, in
the broader context of the non-Abelian Hodge correspondence on curves.
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In § 2.3.2 we consider the particular case of unitary connections, i.e. connections for the
compact group K ⊆ G. In § 2.3.3 we then recall the successful geometric quantisation of
the moduli space of C∞, flat SU(2)-connections: this is a direct application of the setup
of § 2.2 to a particular, interesting classical phase-space. The complexification of this
construction is what we look at in Chap. 4.
In § 2.3.4 we introduce the moduli space M∗ of meromorphic connections on holomor-
phically trivial vector bundles over Σ = CP 1, which is the classical-mechanical setup for
the deformation quantisation results of Chap. 3.
Finally, in § 2.3.5 we discuss the Schlesinger system after introducing the notion of holon-
omy/monodromy for flat connections. We also apply the material of § 2.1 to deformation-
quantise the Schlesinger system, getting the Knizhnik–Zamolodchikov connection. The
project detailed in Chap. 3 is a generalisation of this procedure.

2.3.1 Nonsingular connections

Let us fix a positive integer n, and consider the group G := GLn(C). The category of
principal G-bundles on the nonsingular, complex projective curve Σ is then equivalent to
that of rank n, complex vector bundles on Σ. All the discussion of this section can be
generalised to a generic complex reductive group by consistently replacing vector bun-
dles with G-principal bundles.13 Nonetheless, one must pay attention that there are a
priori three types of principal G-bundles, or complex vector bundles over Σ: algebraic,
holomorphic and smooth ones.

To clarify the distinction, let OΣ be the sheaf of regular function on Σ as a complex
algebraic variety, Oan

Σ its sheaf of holomorphic function as a complex manifold, and C∞Σ
its sheaf of complex-valued smooth functions as a smooth manifold. One has inclusions
OΣ(U) ⊆ C∞Σ (U) for all open sets U ⊆ Σ, making C∞Σ into an OΣ-module.
Now, because of the fact that Σ is projective, the first two sheaves are related by the
classical GAGA correspondence of [Ser56]. This means that the classification problem for
algebraic vector bundles and connections on Σ provides a moduli space which is in natural
bijection to that for the same type of holomorphic objects on the underlying Riemann sur-
face. More precisely, the category of coherent OΣ-modules on the smooth projective curve
(e.g. algebraic vector bundles of finite rank) is equivalent to that of coherent Oan

Σ -modules
(e.g. holomorphic vector bundles of finite rank) on the underlying Riemann surface. The
equivalence is an essentially surjective, fully-faithful functor; this means precisely that the
map induced on the moduli spaces parametrising isomorphism classes is bijective.
With this correspondence clarified, we will work in the holomorphic category, but abu-
sively omit the superscript “an” from the notation.

On the whole, we will consider holomorphic vector bundles on Σ, i.e. locally-free
sheaves of OΣ-modules, and smooth complex vector bundle on Σ, i.e. locally-free sheaves
of C∞Σ -modules. We will use the same notation for a vector bundle and its associated
sheaf of sections.

Definition 2.37. A holomorphic G-connection on Σ is a pair (V,∇) consisting of a
13And forms taking values in endomorphism bundles with forms taking values in adjoint bundles.
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holomorphic, rank n vector bundle on Σ and a first-order differential operator
∇ : V −→ Ω1

Σ ⊗ V,

satisfying the Leibnitz identity:
∇(fs) = df ⊗ s+ f∇s,

for any local section s of V and a holomorphic function f on Σ.

The symbol Ωp
Σ denotes the sheaf of holomorphic p-forms on Σ, i.e. differential forms

of type (p, 0) with holomorphic coefficients. In a local holomorphic trivialisation V |U ∼=
Cn × U of V over the open set U ⊆ Σ, one will have a formula

∇|U = d− A,

where A ∈ End(Cn) ⊗ Ω1
Σ is the connection form. The curvature of the connection ∇ is

by definition
F∇ = ∇2 ∈ Ω2

Σ ⊗ End(V ).
This differential form vanishes, for dimension reasons: there are no holomorphic 2-forms
on Σ. Hence all holomorphic connections on Σ are flat.
Remark 2.12. Before discussing stability conditions, thereby defining the moduli space
we want to quantise, let us consider the equivalent smooth picture. First, if V is a
holomorphic vector bundle on Σ, then one may consider the underlying C∞ bundle

V ∞ := V ⊗OΣ C
∞
Σ

on Σ. By definition, a local section of V ∞ on the open set U ⊆ Σ can be written as a linear
combination t = ∑

i fisi, where si : U −→ V are holomorphic sections, and fi : U −→ C
smooth functions. One can then extend ∇ to a connection on the underlying smooth
vector bundle by imposing the Leibnitz identity; namely, all terms of the equality

∇
(∑

i

fisi

)
=
∑
i

dfi ⊗ si + fi∇si

are well defined. The result is a differential operator
∇ : V ∞ −→ A1

Σ ⊗ V ∞,

where A1
Σ is the sheaf of smooth, differential one-forms on Σ. This smooth connection is

still flat, because the curvature F∇ ∈ End(V )⊗A2
Σ vanishes on holomorphic sections, and

∇ is just defined by extending scalars.

Conversely, let (V ∞,∇) be a flat, smooth connection on Σ, i.e. a smooth complex
vector bundle π : V ∞ −→ Σ equipped with a flat connection ∇ : V ∞ −→ V ∞⊗A1

Σ. Then
in particular one has

(
∇0,1

)2
= ∇0,2 = 0, and so the differential operator

∂V∞ := ∇0,1 : V ∞ −→ V ∞ ⊗ A0,1
Σ

defines a holomorphic structure on V ∞, where Ap,qΣ denotes the sheaf of smooth differ-
ential forms of bidegree (p, q) on Σ. One then defines V := Ker

(
∂V∞

)
⊆ V ∞ to be the

holomorphic vector bundle defined by the Dolbeault operator ∂V∞ within V ∞. Now, the
restriction of ∇ to V (i.e. the (1, 0)-part of ∇) is by definition a holomorphic connection.
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Now that the equivalence is clear, let us define stability conditions for holomorphic
connections.
Definition 2.38. Let π : V −→ Σ be a vector bundle over Σ. The slope of V is the ratio

µ(V ) := Deg(V )
Rk(V ) ,

where Deg(V ) is the degree of V , and Rk(V ) the rank of V .

Recall that the degree of the vector bundle V only depends on its smooth structure,
and it is defined as follows. One has a short exact sequence of sheaves on Σ:

(0) −→ Z −→ OΣ −→ O∗Σ −→ (1).

Here Z is the constant sheaf associated to the ring Z, and O∗Σ is the sheaf of nowhere
vanishing holomorphic functions on Σ. The first nontrivial arrow is the natural embedding
of Z into the sheaf of holomorphic functions on Σ, and the surjective morphism of sheaves
OΣ −→ O∗Σ is given by the exponentiation f 7−→ e2πif of local holomorphic functions f on
Σ. For general cohomological-algebraic reasons, this short sequence defines a long exact
sequence in Čech cohomology, and one in particular has a coboundary map

δ : Ȟ1(Σ,O∗Σ) −→ Ȟ2(Σ,Z) ∼= Z.

Now one recalls that the first cohomology group Ȟ1(Σ,O∗Σ) classifies line bundles over Σ.
Namely, a Čech 1-cocycle {ϕij : Ui ∩ Uj −→ C∗ ∼= GL(1,C)}i,j∈I associated to an open
cover {Ui}i∈I of Σ will define transition functions for a line bundle π : L −→ Σ which is
trivial over the open sets Ui, and its isomorphism class will be provided by adding all
possible Čech 1-coboundaries. Then, by definition, the degree of L is the integer Deg(L)
associated to its cohomology class under the map δ above. Finally, the degree of a generic
vector bundle V is the degree Deg

(
det(V )

)
∈ Z of its determinant line bundle.

Definition 2.39. Let (V,∇) be a holomorphic G-connection on Σ. A subconnection of
(V,∇) is a vector subbundle W ⊆ V such that ∇(W ) ⊆ W ⊗ Ω1

Σ, endowed with the
restricted connection ∇|W . The connection (V,∇) is said to be:

• semistable, if one has µ(W ) ≤ µ(V ) for all subconnections such that W 6= (0).

• stable, if one has µ(W ) < µ(V ) for all subconnections such that (0) 6= W 6= V .

• polystable, if it is a direct sum of stable connections of one and the same slope.
Remark 2.13. This definition is given in this full generality in order to match it up
with that for G-Higgs bundles and G-bundles. In this context, however, there are many
simplifications.

The basic remark is that the degree of a vector bundle carrying a flat connection
vanishes. Hence a holomorphic connection (V,∇) is carried by a vector bundle of slope
zero, as well as for all its nontrivial subconnections. Hence all holomorphic connections
are semistable, and the only stable ones are those which are irreducible, i.e. those with-
out nontrivial subconnections. Similarly, a connection is polystable if and only if it is
semisimple. The same is true if one replaces “holomorphic” with “smooth and flat”.
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We now consider the moduli spaces Mst
dR(Σ, G) (resp. MdR(Σ, G)) of isomorphism

classes of stable (resp. polystable), holomorphic G-connections on Σ. A stream of re-
sult relates this moduli space — or rather the underlying moduli stack — to two other
classification problems associated to the pair (Σ, G), and show that it has the structure
of a hyper-Kähler manifold. Let us now briefly review these results, starting from the
definition of Higgs bundles.

Definition 2.40. A Higgs bundle on Σ is a pair (V,Φ), consisting of a holomorphic vector
bundle V on Σ and a Higgs field Φ on V . In turn, a Higgs field on V is an End(V )-valued
holomorphic 1-form on Σ:

Φ ∈ H0
(
Σ,Ω1

Σ ⊗ End(V )
)
.

A Higgs subbundle of (V,Φ) is a vector subbundle W ⊆ V such that Φ(W ) ⊆ W ⊗ Ω1
Σ.

The Higgs bundle (V,Φ) is said to be

• semistable, if one has µ(W ) ≤ µ(V ) for all Higgs subbundles such that W 6= (0).

• stable, if one has µ(W ) < µ(V ) for all Higgs subbundles such that (0) 6= W 6= V .

• polystable, if it is a direct sum of stable Higgs bundles of one and the same slope.

We denoteMst
Dol(Σ, G) andMDol(Σ, G) the moduli spaces of isomorphism classes of

stable and polystable Higgs bundles of slope zero, respectively.

Remark 2.14. For the sake of generality, we shall also express the definition in terms
of principal G-bundles. In this language, a G-Higgs bundle on Σ is a pair (P,Φ), where
P is a principal G-bundle and Φ a section of Ad(P ) ⊗K, where K is the canonical line
bundle of the Riemann surface. Since G is a classical reductive group, such pairs (P,Φ)
correspond to triples (V, θ,Φ), where V is a holomorphic vector bundle, θ a reduction of
the structure group of V from GLn(C) to G (vacuous in the context of this section) and
Φ is a K-twisted endomorphism of V which is compatible with θ.

In Chap. 4 we will pursue the viewpoint of vector bundles, for the structure group
SL(2,C): a SL(2,C)-Higgs bundle is a rank 2 holomorphic vector bundle V with trivial
determinant, together with a holomorphic 1-form Φ that takes values in traceless endo-
morphisms End0(V ) ⊆ End(V ).

Higgs fields were defined in [Hit87a]. The existence of the moduli space MDol(Σ, G)
was proved by Hitchin in the case of rank two, and by Simpson [Sim92; Nit91] in the
general case. Simpson extended these result to an arbitrary reductive complex group in
[Sim94]. The upshot is the following.

Theorem 2.5 (Nitsure, Simpson). The moduli spaceMDol is a quasi-projective algebraic
variety, containingMst

Dol as smooth locus.

In [Hit87a] it is also shown that MDol is in natural correspondence with the space
of (equivalence classes of) solutions of a certain system of differential equations on Σ.
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Namely, one considers a smooth complex vector bundle π : V ∞ −→ Σ, together with a
smooth Hermitian metric h. The Hitchin equations readFA +

[
Φ,Φ∗

]
= 0

∂AΦ = 0,
(2.13)

where A is a h-unitary connection on V ∞, ∂A := A0,1 the holomorphic structure on V ∞
associated to A, and Φ a smooth, End(V ∞)-valued (1, 0)-form on Σ. One accordingly
introduces a moduli space M = M(Σ, G) of pairs (A,Φ) that solve (2.13), up to gauge-
equivalence.

Theorem 2.6 (Hitchin, Simpson).
The moduli space M of solutions to Hitchin equations (2.13), up to equivalence, is the
hyper-Kähler quotient of an infinite dimensional vector space, with (2.13) expressing the
vanishing of the hyper-Kähler moment map. Moreover, this hyper-Kähler manifold is
isomorphic toMDol in one complex structure coming from the Kähler sphere of M.

The natural map M −→ MDol is obtained as follows. To a solution (A,Φ) of (2.13)
on the smooth vector bundle V ∞, one associates the holomorphic vector bundle V :=
Ker

(
∂A
)
⊆ V ∞, so that now Φ is tautologically a holomorphic section of Ω1

Σ ⊗ End(V ),
i.e. a G-Higgs field. The theorem is there to prove the nontrivial statements that this
correspondence is well defined on isomorphism classes, and that it induces a bijection
with the polystable part of the Dolbeault moduli space.

Similarly, one can relate the hyper-Kähler moduli space M to that of polystable (i.e.
completely reducible) algebraic/holomorphic connections on Σ (see [Cor88], as well as
[Don87], which is a companion paper to [Hit87a]).

Theorem 2.7 (Corlette, Donaldson).
The hyper-Kähler moduli space M is isomorphic toMdR in a different complex structure
coming from the Kähler sphere of M.

A more precise statement is that a flat connection (V ∞,∇) on Σ is polystable, then
V supports a harmonic metric. The equations for such metrics are then related to (2.13).

In this case the natural bijection M ∼= MdR is constructed as follows. To a solution
(A,Φ) of (2.13) on a smooth vector bundle V ∞ one associates the smooth G-connection
∇ = A+ Φ + Φ∗ : V ∞ −→ V ∞ ⊗ A1

Σ. The first equation of (2.13) then assures that ∇ is
flat, and thus its gauge class is a point ofMdR. Then [Don87] shows that any irreducible,
flat connection on Σ is gauge-equivalent to one of the form ∇ = A+ Φ + Φ∗, where (A,Φ)
solves (2.13).

One gets by composition a diffeomorphism MDol ∼= MdR, which is called the non-
Abelian Hodge correspondence. This terminology was introduced by Simpson, and it is
motivated by cohomological reasons (see [Sim92; Sim94; Sim97]). In brief, on the compact
Kähler manifold Σ one has three different cohomological theories named after Betti, de
Rham and Dolbeault, defined for the Abelian group C∗ = GL1(C); the moduli spaces
MdR,MDol just introduced then correspond to the non-Abelian analogue of the latter
two.

53



CHAPTER 2. BACKGROUND

What is left is the Betti viewpoint, which provides a third, different complex algebraic
avatar of the (coarse moduli space underlying the) first cohomology group Ȟ1(Σ, G). This
is obtained by considering the moduli space of G-representations of the fundamental group
of Σ, up to conjugation. We thus set

MB(Σ, G) := Hom
(
π1(Σ), G

)/
G, (2.14)

which is also called the G-character variety of Σ. Notice that we omit the base point from
the fundamental group, for the following reason. If p, q ∈ Σ are two points, then there is
an isomorphism ϕµ : π1(Σ, p) −→ π1(Σ, q) for all choice of continuous path µ : [0, 1] −→ Σ
that starts at p and ends at q. Namely, if [γ] is the homotopy class of a loop γ based at
p, then one sets

ϕµ([γ]) := [µ−1 ∗ γ ∗ µ],

where ∗ denotes path concatenation (written from left to right), and µ−1 denotes the path
µ traced backwards. If one chooses a second path µ′ that joins p to q, then the composition
ϕ−1
µ′ ◦ϕµ : π1(Σ, p) −→ π1(Σ, p) results in an inner automorphism of the fundamental group

at p, namely the conjugation by the loop µ−1 ∗ µ′. Such automorphism are turned into
inner automorphisms of G by any representation ρ : π1(Σ, p) −→ G, and thus the class
[ρ] ∈MB does not depend on them.

The varietyMB is constructed as the GIT quotient of a complex affine variety, with
respect to the action of the reductive group G (see [MFK94]). Namely, if one let g be the
genus of Σ, then one has a presentation

Hom
(
π1(Σ), G

) ∼= {
(Ai, Bi)1≤i≤g

∣∣∣∣∣∏
i

[
Ai, Bi

]
− I = 0

}
⊆ G2g,

where I ∈ G is the identity matrix. This is an affine variety within G2g, cut out by
algebraic equations, and its quotient with respect to the G-action

g.(Ai, Bi)i := (gAig−1, gBig
−1)i

is what one is after. One can show that the stable points for this action correspond to
irreducible representations, that the polystable ones correspond to semisimple representa-
tions, and that all points are semistable (see [Ric88]). This is in full accordance with the
terminology for flat connections, as it should, because of the following standard result.

Theorem 2.8. The map ν : MdR −→ MB that sends a flat G-connections to its mon-
odromy data is a bijection that respects polystable and stable points. It induces a non-
algebraic biholomorphismMst

dR
∼=Mst

B .

The application ν may be called the C∞ Riemann–Hilbert correspondence, of which
we will see an explicit instance in § 4.2.1 for a curve Σ of genus one and G = SL2(C).
Let us just recall here that to a flat, nonsingular G-connection ∇ one associates its holon-
omy representation ν(∇) : π1(Σ) −→ G, and that this data reconstructs the connection
entirely (see § 2.3.5 for more details on holonomy, where we will also introduce Deligne’s
Riemann–Hilbert correspondence for logarithmic connections on the sphere).
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Conversely, to an n-dimensional complex representation ρ : π1(Σ) −→ GL(Cn) one can
associate a flat connection (Vρ,∇ρ) on Σ, as follows. The universal cover Σ̃ −→ Σ is a
principal π1(Σ)-bundle, with the fundamental group acting freely on the right via deck
transformations; one then considers the vector bundle on Σ associated to the representa-
tion ρ, whose total space is the quotient

Vρ := Σ̃×ρ Cn = Σ̃× Cn
/
π1(Σ),

where [γ] ∈ π1(Σ) acts diagonally on the right as [γ].(p, v) :=
(
p.[γ], ρ([γ])−1.v

)
. The

clutching maps on this vector bundle are actually constant: it is a local system on Σ.
Hence it makes sense to define a connection ∇ρ : Vρ −→ A1

Σ ⊗ Vρ on Vρ by declaring that
∇|Ui = d for local trivialisations Vρ|Ui

∼= Cn×Ui of Vρ on an open cover {Ui}i∈I of Σ such
that the transition maps gij : Ui ∩ Uj −→ G are constant for all i, j ∈ I. These locally
trivial connections glue to a global connection because the terms g−1

ij dgij of the local gauge
transformations vanish all. This connection is tautologically flat, because its connection
forms vanish in the given trivialisation. Hence one can associate a holomorphic connection
to all representation of π1(Σ) (the Narasimhan–Seshadri theorem that we recall in 2.10
exploits this fact).

Remark 2.15. The Betti description MB of the hyper-Kähler moduli space provides
the most explicit presentation of its underlying smooth manifold. It also shows that the
moduli space is trivial if the genus g of Σ is zero, i.e. when Σ ∼= CP 1. In that case one can
still get nontrivial moduli spaces by allowing for singular objects, that is for meromorphic
connections and Higgs fields: see § 2.3.4. This is precisely the setup for the deformation
quantisation results of Chap. 3.
Still speaking of lower genus, the case of genus g = 1 leaves no stable representations,
because in that case one deals with commuting pair of matrices; it is then better to consider
polystable objects, i.e. semisimple ones. This is the situation which is relevant to the
geometric quantisation results of Chap. 4. The classification of polystable objects up to
isomorphism is the same as the classification of semistable ones up to a weaker equivalence
relation, called S-equivalence, where “S” stays for “semisimple”. This is because in any S-
equivalence class there exists a polystable object, unique up to isomorphism, and because
the notion of S-equivalence is the same as that of isomorphism on polystable objects.
To clarify what S-equivalence is about, we consider holomorphic vector bundles. One can
show that any semistable holomorphic vector bundle V on Σ admits a Jordan–Hölder
filtration

(0) ⊆ W1 ( · · · ( Wk = V,

where every quotient Wl

/
Wl−1 is stable of slope µ(Wl

/
Wl−1) = µ(V ).14 Thus V is a

filtered vector space in the sense of § 2.1.2, and the associated graded gr(V ) = ⊕
iWi

/
Wi−1

is defined as a holomorphic vector bundle on Σ. One can show that the isomorphism class
of gr(V ) is uniquely determined by V , although the Jordan–Hölder filtration need not be
unique. Two semistable vector bundles on Σ are said to be S-equivalent if their associated
graded are isomorphic.

14This is a variation of the Harder–Narasimhan filtration of an arbitrary vector bundle, introduced in
[HN75].
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If now V is polystable, then it is by definition a semistable vector bundle provided with a
grading in stable vector bundles. Up to picking an order, the associated filtration satisfies
the above conditions, and thus the isomorphism class of the associated graded gr(V )
uniquely identifies the isomorphism classes of the direct addends of V . This fixes the
isomorphism class of V among the polystable vector bundles.

2.3.2 Nonsingular unitary connections

We now replace the complex reductive group G by the compact maximal subgroup K
that it complexifies. The chief case we consider here is that of K = U(n), whose complex-
ification is the group G = GLn(C) of the previous section § 2.3.1. A principal K-bundle is
then the same as a vector bundle equipped with an Hermitian metric. Assume moreover
in this sections that the genus g of Σ is at least two.

In this case there are only two different moduli spaces to consider, as far as algebraic
structure is concerned. First, there is the moduli space of unitary representations of the
fundamental group of Σ, up to equivalence. This is the quotient

Char(Σ, K) := Hom
(
π1(Σ), K

)/
K.

The C∞ Riemann–Hilbert correspondence identifies this space with that of flatK-connections
on Σ, and it makes little sense to distinguish the two. One can still show that the irre-
ducible part is a smooth manifold. In this case there is however no natural way to define
a complex algebraic structure on the quotient, since K is not a complex variety.15

The way around this comes from the second moduli space we consider: it is BunG(Σ, 0),
parametrising equivalence classes of degree zero, algebraic/holomorphic principalG-bundles
on Σ, i.e. holomorphic, degree zero, rank n vector bundles π : V −→ Σ. One defines the
slope of such a bundle as in Def. 2.38, which is always zero in this context of vanishing
degree. Next, the definition of stability is given in accordance to Def. 2.39 and 2.40,
only that one now considers all vector subbundles, and not just the ones fixed by a G-
connection or a G-Higgs field. One then has a moduli space Bunst

G(Σ, 0) of isomorphism
classes of stable, holomorphic G-bundles on Σ of degree zero, as well as the following
result (see [Mum63]).
Theorem 2.9 (Mumford).
The moduli space Bunst

G(Σ, 0) has the structure of a nonsingular, quasiprojective variety
over C.

The link between this moduli space and that of irreducible, flat K-connections is
provided by the theorem of Narasimhan and Seshadri (see [NS65]). Recall from the
previous section that a representation ρ of π1(Σ) with values in G = KC provides a flat
connection (Vρ,∇ρ) on Σ. Hence a unitary representation ρ : π1(Σ) −→ K ⊆ G does
the same, and one may just consider the associated holomorphic vector bundle Vρ on Σ,
forgetting about the fact that it carries a holomorphic connection ∇ρ (but noticing that
this forces Deg(Vρ) = 0).

15However the complex structures of Σ does provide a complex structure on the moduli space of flat
connections: see § 2.3.3.
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Theorem 2.10 (Narasimhan–Seshadri).
A degree zero, holomorphic vector bundle on Σ is stable if and only if it comes from an
irreducible, unitary representation of π1(Σ).

This theorem fills in the nontrivial details of showing that the association ρ 7−→ Vρ
induces a well defined map on the moduli spaces, and it sends K-conjugacy classes of
irreducible connections bijectively on the stable locus of BunG(Σ, 0). A different, later
proof consists in showing that the stability condition on a vector bundles V amounts to
that for the existence of a metric h such that the associated Chern connection is flat,
and then the Narasimhan–Seshadri correspondence is obtained by taking the local system
defined on Σ by that flat connection (see [Don83]). This is all nowadays subsumed by
the results of the previous sections, where one considers Bunst(Σ, 0) as the subvariety
of MDol(Σ, G) where the G-Higgs fields vanish, noticing that the stability conditions in
this case match up. Then the theorem of Narasimhan–Seshadri is a corollary of the
non-Abelian Hodge correspondence, even though saying so reverses the history of the
development of this vast subject.

After the theorem of Narasimhan–Seshadri, one expected that the space of all unitary
representation of the fundamental group should provide a compactification of Bunst

G(Σ, 0),
resulting in a (singular) projective variety. This was shown two years later in [Ses67].

Remark 2.16. The tangent space to a principal G-bundle V on Σ is naturally iden-
tified with the first cohomology space H1

(
Σ,End(V )

)
. Hence a G-Higgs field Φ ∈

H0
(
Σ,End(V ) ⊗ Ω1

Σ

)
is naturally a cotangent vector to Bunst

G at V . This provides an
embedding

T ∗ Bunst
G ⊆Mst

Dol,

which is however not an isomorphism. The point is that there do exist stable G-Higgs
bundles defined on non-stable principal G-bundles over Σ. The correct statement is that
Mst

Dol is a partial compactification of the cotangent bundle T ∗ Bunst
G. The same exact

phenomenon occurs for the polystable locus.

The next section is devoted to recalling the geometric quantisation of the moduli space
of flat SU(2)-connections.

2.3.3 Kähler quantisation of the moduli space of flat unitary
connections

We first recall how the moduli space of irreducible, unitary flat connections on a nonsin-
gular, complex projective curve Σ of genus g ≥ 2 has a natural symplectic structure. The
mathematical details we leave out are to be found in [AB83] (and [Gol84] for a different,
finite-dimensional approach). Let us agree to denote Mst

fl = Mst
fl (Σ) the moduli space.

This is the same as the irreducible locus of the character variety considered in the previous
section.

Let us then switch to the compact group K := SU(n) in this section, which is both
simple and simply connected. In the language of vector bundles of rank n, intersecting the
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structure group with SL(Cn) amounts to having a trivial determinant bundle. Consider
the trivial principal K-bundle PT := K × Σ −→ Σ on Σ, and let A = A(Σ, K) be the
infinite-dimensional space of unitaryK-connections on it. In general, fixing the topological
type of the bundle is a genuine restriction, without which one cannot even hope to have
a connected moduli space. In the previous sections this has been done by fixing the
degree, which in the case of principal GLn(C)-bundle is an integer (i.e. an element of the
fundamental group of the structure group). Since K is simply connected, however, all
K-principal bundles over Σ surface are trivialisable, and thus the choice made is just that
of a global section.16

The spaceA ofK-connections on PT is an affine space havingA1(Σ, k) ∼= A1
(
Σ,Ad(PT )

)
as vector space of translations, where Ad(PT ) denotes the vector bundle associated to PT
by the Adjoint representation ofK on its Lie algebra k := su(n). This is because the differ-
ence of any two K-connections on PT is given by a global k-valued one-form A ∈ A1(Σ, k).
In particular, the tangent spaces can be everywhere identified with the space of transla-
tions:

T∇A ∼= A1(Σ, k), for all ∇ ∈ A.
The moduli space Mfl is then the set of gauge-orbits of flat connections on PT , i.e.
the quotient of A for the action of the gauge group K of PT , i.e. the group of bundle
automorphisms of PT over the identity. Its elements are K-equivariant diffeomorphisms
g : PT −→ PT such that one has a commutative triangle

PT PT

Σ

g

π π

where π is the projection of the principal K-bundle. Because of the K-equivariance, such
maps are coded by smooth functions g : Σ −→ K, and thus K ∼= C∞(Σ, K). Writing the
gauge group like this, one also has an identification Lie(K) ∼= C∞(Σ, k). The action of
g ∈ K on a connection ∇ = d− A is given by:

g.∇ = d−
(

Adg(A) + g∗θ
)
,

where θ ∈ A1(K, k) is the Maurer–Cartan 1-form of K. More concretely, if p ∈ Σ is a
point on the surface, then g∗θp is the composition of dgp : TpΣ −→ Tg(p)K with the left
translation g−1 : Tg(p)K −→ TeK ∼= k.

Now, there exists a canonical symplectic structure ω on A, defined at a connection
∇ ∈ A by:

ω∇ : A1(Σ, k) ∧ A1(Σ, k) −→ R, ω∇(A,B) := − 1
2π

∫
Σ

Tr(A ∧B). (2.15)

16Principal K-bundles on Σ are classified by homotopy classes of maps Σ −→ BK, where BK is the
basis of the universal principal K-bundle EK −→ BK: see [Aud04], § VI.1. If K is 1-connected, then
BG is 3-connected, and all maps from a surface to BG are homotopic to a constant.
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In words, one uses an Ad-invariant scalar product on k to construct a real-valued 2-form
out of two k-valued 1-forms.17 Since A is an affine space, it makes sense to consider
translation-invariant tensors on it, and ω is exactly one of such.

Next, one can show that the K-action preserves ω, i.e. g∗ω = ω for all g ∈ K. This is
due to the invariance of the bilinear form chosen on k. Moreover, there exists a moment
map µ : A −→ Lie(K)∗ ∼= C∞(Σ, k)∗ for the gauge-action. Namely, one can show that the
formula (

µ(A)
)
(f) =

∫
Σ

Tr
(
FA ∧ f

)
works, where FA = −dA + A ∧ A ∈ A2(Σ, k) is the curvature of ∇ = d − A (see also
[Aud04], Chap. 5). By definition the zero level-set A0 := µ−1(0) ⊆ A is then the space
of flat K-connections on Σ. The usual Marsden–Weinstein symplectic reduction goes
through, and thus the quotient

A �0 K := A0
/
K

is symplectic, with symplectic form abusively written ω. This description is clearly purely
formal, and one needs nontrivial analytic arguments to make this infinite-dimensional
quotient into a manifold. Nevertheless, if one now only considers irreducible connections
Airr ⊆ A, then the quotient is precisely the stable part Mst

fl of the moduli space of flat
connections.

One should turn to the construction of prequantum data for the symplectic manifold
(Mst

fl , ω), at level k ≥ 1. To this end, consider the trivial line bundle L̃ := A×C, equipped
with the tautological Hermitian metric h̃. Since this bundle is trivial, any global, complex
1-form α on A will define a connection in it. Set then

αA(B) = − 1
4π

∫
Σ

Tr(A ∧B),

for A ∼= d− A ∈ A, B ∈ T∇A. The connection ∇̃(k) = d− ikα on L̃⊗k is then h̃-unitary,
and it is a prequantum connection at level k since F∇̃(k) = −ikdα = −ikω. What is left
is to find a way to reduce this prequantum data by the gauge action. To this end, one
looks for multipliers

Θ(k) : K ×A −→ U(1),

i.e. functions satisfying

Θ(k)
(
h, g.A

)
·Θ(k)(h,A) = Θ(k)(gh,A), for g, h ∈ K, A ∈ A.

Such choices provides a linearisation of the K-action from A to L̃, by means of

g.(A, η) :=
(
g.A,Θ(k)(g, A)η

)
, for g ∈ K, A ∈ A, η ∈ C.

Their abstract definition is provided by Chern–Simons theoretical arguments (see [And+17],
section 3.1). Consider the oriented 3-manifold X := Σ×[0, 1]. Choose a connection A ∈ A
and a gauge-group element g ∈ K, and set Ã := π∗A, where π : X −→ Σ is the natural

17The normalisation of the trace pairing is tuned according to [AG14]; anyhow, since k is simple, every
AdK-invariant scalar product is a multiple of the Killing form of k, i.e. B(X,Y ) = 4 Tr(XY ).
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projection; this is a connection on the trivial, principal K-bundle over X. Moreover,
choose an isotopy g̃ : X −→ K from the trivial gauge-transformation to g. The transform
g̃.Ã ∈ A1(X, k) is defined for all t ∈ [0, 1], and one sets

Θ(k)(g, A) := exp
(
− 2πikSCS(g̃.Ã)

)
∈ U(1),

where SCS : A1(X, k) −→ R denotes the Chern–Simons action on X, i.e.

SCS(A) := 1
8π2

∫
X

Tr
(
A ∧ dA+ 2

3A ∧ A ∧ A
)
.

The constant is chosen so that the cohomology class of 1
6

(
θ ∧ [θ ∧ θ]

)
is integral inside

H3
dR(K, k). This assures that a gauge-transformation changes the action by an integer

(see [Fre95]).
Now one can restrict all prequantum data to the space of irreducible flat connections, and
notice that the lifted actions fixes the symplectic potential and the metric, thereby defining
prequantum data (L⊗k,∇(k), h) at level k on the symplectic moduli space (Mst

fl , ω): the
prequantisation has been achieved.

Now let us move on to the Kähler quantisation of (Mst
fl , ω). One should use the full

data of the problem, and recall that Σ carries a complex structure. Using some elemen-
tary Hodge theory, this induces a complex structure I on the moduli space.
More precisely, considering Σ as a compact Kähler manifold, hence in particular a Rie-
mannian manifold, it comes equipped with Hodge star operators

∗l : Al(Σ,C) −→ A2−l(Σ,C),

for l ∈ {0, 1, 2}, satisfying ∗l ◦ ∗l = (−1)l Id. One can then extend them naturally to
k-valued differential forms, and the case l = 1 provides a complex structures on the vector
space A1(Σ, k), which can be upgraded to a translation-invariant almost-complex struc-
ture on A, since TA ∼= A × A1(Σ, k), as argued above. Such almost-complex structures
are integrable, precisely because they are translation invariant.
Next, one recalls that the tangent space T[A]Mfl of the moduli space at the gauge-
equivalence class [A] of a unitary connection A ∈ A1(Σ, k) is identified with the first
A-twisted cohomology group H1(Σ, dA), which means the first cohomology group of the
complex

A0
(
Σ,Ad(PT )

)
A1
(
Σ,Ad(PT )

)
A2
(
Σ,Ad(PT )

)
.

dA dA

The fact that this is actually a complex means precisely that dA is a flat connection.

Finally, one recalls that the Hodge star preserves harmonic forms, and that such
forms are representatives for de Rham cohomology classes. More precisely, one has an
identification

H1(Σ, dA) ∼= Ker(∆A),
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where ∆A = dAd
∗
A + d∗AdA is the Hodge Laplacian attached to the first-order differential

operator dA, whose kernel is invariant for ∗1 (this explicitly uses the compactness of Σ).
The automorphism I := −∗1 is by definition the complex structure onMst

fl associated to
a complex structure on the curve. The sign is there to assure that ω

(
·, I(·)

)
> 0.

The triple
(
Mst

fl , ω, I
)
is then a smooth, compact Kähler manifold. Using the material

of § 2.2, and particularly the example 2.11, one can try define its Kähler quantisation HP ,
where P := T0,1Mst

fl . This is done with respect to the prequantum data described above.
Remark 2.17. Once a complex structure is chosen on Σ, the theorem of Narasimhan–
Seshadri 2.10 provides an identification ofMst

fl with the moduli space Bunst
G(Σ, 0) of stable

holomorphic G-bundle on Σ of degree zero, where G = SL(2,C) is the complexification
of K. This smooth projective variety admits a compactification BunG(Σ, 0), which is the
moduli space of semistable holomorphic G-bundles of degree zero up to S-equivalence.
One can show that the Picard group Pic

(
BunG(Σ, 0)

)
— i.e. the group of isomorphisms

classes of holomorphic line bundles over the moduli space — is isomorphic to Z (see
[DN89]). Finally, the Chern–Simons line bundle at level k is (the smooth line bundle
underlying) L⊗k, where L is an ample generator of the Picard group.

This discussion indicates that there is a natural family of Kähler polarisations on
the prequantisable symplectic manifold

(
Mst

fl , ω
)
, parametrised by complex structures

on Σ. However, the notion of holomorphicity on the moduli space only depends on the
biholomorphism class of the complex manifold Σ, and thus one has a Kähler polarisation
for every point in the Riemann moduli space Mg for closed oriented surfaces of genus
g. Since this space is singular, one prefers working with the Teichmüller space Tg of
closed orientable surfaces of genus g, which is a contractible, finite-dimensional space
parametrising marked Riemann surfaces structures on Σ (see the beginning of § 4.2 for
more details on this important point).

Following the program presented in § 2.2.4, one gets a vector bundle π : V(k) −→ Tg
of holomorphic section, sitting inside the trivial bundle π : C∞

(
Mfl, L

⊗k
)
× Tg −→ Tg of

smooth section of L⊗k. Then [Hit90] and [ADW91] independently defined a projectively
flat connection ∇̂ inside V(k). Since the base is contractible, this produces the desired
canonical identifications among Hilbert spaces arising from different choices of Kähler
polarisations.
Remark 2.18. The mapping class group Γg of closed oriented surfaces of genus g —
defined in § 4.3 — acts on all the data of the geometric quantisation. One can also show
that the Hitchin connection is invariant under this action, and thus the projectively flat
connection descends on a bundle over the Riemann moduli spaceMg, which is the actual
parameter space for the Kähler polarisations.18

The advantage of considering Γg-invariant connections on Tg instead of genuine connec-
tions onMg is that the former space is smooth, whereas the latter is a (Deligne–Mumford)
orbifold. One should really consider the moduli stack of Riemann surfaces to construct
the good objects.

18Incidentally, the action of Γg on the fibres of Vk is precisely the origin of the quantum mapping class
group representation in the geometric quantisation setting (see e.g. [Mas03]).
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2.3.4 Meromorphic connections

Let us consider again a compact Riemann surface Σ, and set G := GLn(C), g := Lie(G).
We have seen how to attach three moduli spaces to the first non-Abelian cohomology
group of Σ, taking values in G: holomorphic Higgs bundles, holomorphic connections and
complex representation of π1(Σ) of dimension n. We now consider one natural extension
of this program, where one replace nonsingular objects by meromorphic ones. To this
end, fix a positive divisor D on Σ, and let Ω1

Σ(D) be the sheaf of meromorphic 1-forms
on Σ with poles bounded by D.

Definition 2.41. A meromorphic connection on Σ bounded by the divisor D is a pair
(V,∇), where V is a holomorphic vector bundle on Σ and ∇ is a first order differential
operator

∇ : V −→ Ω1
Σ(D)⊗ V,

satisfying the Leibnitz identity:

∇(fs) = f∇s+ df ⊗ s,

for any local holomorphic function f , and local holomorphic section s.

Notice the strict analogy with Def. 2.37. More concretely, let z be a local holomorphic
coordinate on Σ on the open set U ⊆ Σ, and let ∇ be a meromorphic connection on
π : V −→ Σ. Then the restriction of ∇ to U may be written

∇|U = d− Bdz,

where B is a meromorphic, End(V )-valued function on U bounded by D. If one writes
D = ∑

i ki(pi), with ki > 0 for all i, and if z is a local coordinate vanishing at pi, then one
will have

B =
ki∑
j=1

A
(i)
j

zj
+ B0, where A

(i)
j ∈ g for all 1 ≤ j ≤ ki, (2.16)

and where B0 is a matrix of holomorphic functions. As it was before, one can replace
holomorphic, rank n vector bundles with principal G-bundles, and End(V )-valued forms
with g-valued ones.

One can now introduce a moduli space for meromorphic connections on rank n, holo-
morphic vector bundles over Σ with poles bounded by a positive divisor D. It turns out
however that one also needs to fix further data at the poles pi, related to (unramified)
normal forms, as well as a parabolic structure on the curve Σ with marked points defined
by the support of D. Moreover, one has to introduce stability conditions totally analogous
to Def. 2.39, replacing the degree by the parabolic degree.
The general theory may be read in [Boa01; Nit93; Sim94], while [Boa12a] provides a quick
review. These constructions will not not be needed in full generality, as far as the results
presented in Chap. 3 are concerned. We thus immediately restrict our attention to the
case of a curve Σ of genus zero, i.e. Σ ∼= CP 1, and we introduce the remaining piece of
data needed to the define the moduli spaces.
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Definition 2.42. Let p ∈ CP 1 be a point, and z a local holomorphic coordinate on CP 1

that vanishes at p. An (unramified) irregular type for the group G, at the point p ∈ CP 1,
is an element

Q =
k−1∑
i=1

Ai
zi
∈ t((z))

/
tJzK,

where t ⊆ g is the subalgebra of diagonal matrices, and k a positive integer. The centraliser
of Q is the subgroup

H := {g ∈ G | gAig−1 = Ai for all i} ⊆ G,

and we denote h ⊆ g its Lie algebra.

The following definition is instead given for all genera.

Definition 2.43. Let Σ be a Riemann surface. A structure of wild Riemann surface
Σ =

(
Σ, {pi}i, {Qi}i

)
on Σ is a decoration consisting of

• Distinct marked points pi ∈ Σ.

• Irregular types Qi at the points pi.

These wild Riemann surfaces are the good base spaces for holomorphic vector bundles
carrying meromorphic connections. The marked points code the positions of the poles,
and the irregular types provide distinguished local normal forms around the poles.

Definition 2.44. Let Σ =
(
CP 1, {pi}i, {Qi}i

)
be a wild Riemann surface that underlies

the Riemann sphere, and let Oi ⊆ hi be a choice of adjoint Hi-orbit for all i, where
Hi is the centraliser of the irregular type Qi. We denote by M∗ = M∗

(
Σ, G, {Oi}i

)
the moduli space of gauge-equivalence classes of meromorphic connections ∇ living on
globally holomorphically trivial vector bundle over CP 1, such that

1. ∇ has poles at the marked points, and only there.

2. ∇ is locally holomorphically isomorphic near pi to a connection of the form

d−
(
dQi + Λi

dz

z
+ Bi0dz

)
, (2.17)

where Λi ∈ Oi and Bi0 is a local g-valued holomorphic function.

3. ∇ has no nontrivial subconnections.

The last requirement is what the more general stability condition boils down in this
context. The choice of adjoint orbits instead amounts to fixing a symplectic leaf inside a
bigger Poisson moduli space.
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Remark 2.19. The moduli space M∗ is a refined geometric viewpoint on differential-
analytic objects, i.e. gauge-equivalence classes of systems of linear, first order, ordinary
differential equations with rational coefficients. Indeed, a meromorphic connection (V,∇)
on the trivial, rank n vector bundle over CP 1 is defined by a global section A of the sheaf
Ω1

CP 1(D) ⊗ End(V ), in the sense that one has ∇ = d − A. Choose a local holomorphic
coordinate z that identifies CP 1 ∼= C∐{∞}, so that the support of D lies in C, and
let v : U −→ V be a local holomorphic section of V on the open set U ⊆ C. Then the
equation for the flatness of v reads

dv = Av, i.e. dv

dz
= A(dzz)v.

This is precisely a system of linear ODEs with rational coefficients for the components of
v.

Before picking the actual irregular types that will be relevant to the discussion of
3, let us briefly recall the finite-dimensional presentation of M∗ as a smooth, complex
symplectic quotient. To this end, consider the group

Gk := GLn
(
C[z]/zk

)
,

where k is a positive integer. One has G1 = G, whereas a generic element of Gk can be
written as a polynomial

g =
k−1∑
i=0

giz
i, with gi ∈ G for all i.

This means that the Lie algebra gk of Gk consists of elements

X =
k−1∑
i=0

Xiz
i, with Xi ∈ g for all i,

where the Lie bracket is defined expanding that of g = g1 by bilinearity, and deleting
terms that carry a power zl with l ≥ k. There exists a canonical identification of the dual
Lie algebra g∗k with the space of polar parts of meromorphic connections having one pole
of order k on the trivial, holomorphic rank n vector bundle over a disc. If one has a local
coordinate z on the disc, such a polar part is a sum

A =
k∑
i=1

Ai
dz

zi
, where Ai ∈ g for all i,

and the identification with g∗k is provided by the nondegenerate pairing

〈A,X〉 := Res0
(

Tr(A ·X)
)

=
k∑
i=1

Tr(AiXi−1).

Now one fixes a coadjoint orbit Oi ⊆ g∗ki for all 1 ≤ i ≤ m, according to the irregular
type Qi and the residue Λi ∈ hi, chosen as above. Namely, one lets Oi be the orbit
through the point

dQi + Λi
dz

z
∈ g∗ki ,

where z is as usual a coordinate on CP 1 vanishing at the marked point pi.
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Theorem 2.11. Ignoring stability, the moduli space M∗ is isomorphic to the complex
symplectic quotient

O1 × · · · × Om �0 G,

where the group G ⊆ ⋂
k≥1Gk acts diagonally on the product of coadjoint orbits ∏iOi ⊆∏

i g
∗
ki
, if one has m marked points on the wild sphere.

Notice that for m = 0 the moduli space is trivial. This is in accordance with the fact
that the moduli space for nonsingular flat connections on the sphere is identified with the
representation of its (trivial) fundamental group.

Remark 2.20. This is one of the results of [Boa01], where one considers the naïf sym-
plectic quotient of the product of orbits at the zero level of the moment map, without
a restriction to irreducible connections (which are the stable objects in our context).
However, for a generic choice of the orbits Oi one can assure the absence of nontrivial
subconnections, and thusM∗ consists of stable objects. In particular, it is smooth.

Example 2.14. The case with m simple poles yields

M∗ ∼=
{

(R1, . . . , Rm) ∈ O1 × · · · × Om
∣∣∣∣∣∑
i

Ri = 0
} /

G,

with Oi ⊆ g∗ for all i. Since g is reductive, one has an isomorphism g ∼= g∗ obtained by
fixing an AdG-invariant scalar product.
In this case one point ofM∗ corresponds to a Fuchsian system of the form

d−
m∑
i=1

Ri

z − ti
dz,

on the trivial, rank n vector bundle V ∼= Cn×Σ −→ Σ, where ti ∈ C are distinct marked
points. The moment map µ : ∏iOi −→ g∗ for the diagonal, (co)adjoint G-action is the
sum of inclusions Oi ↪→ g∗. Its vanishing provides the above condition that the sum of
the residues Ri on C ⊆ CP 1 is zero; this in particular assures that there is no singularity
at ∞.

This example has several other interesting features that will be explored in § 2.3.5.

Remark 2.21. Finally, the particular moduli spaceM∗ that is relevant to the results of
Chap. 3 is obtained by considering the following type of polar divisor on CP 1. Choose
points t1, . . . tm ∈ C, and considers meromorphic connections ∇ bounded by the effective
divisor

D :=
m∑
i=1

(pi) + 3(∞).

Such connections have by definitions at most simple poles at the points pi, plus a pole of
order at most three at z =∞. To fix the normal form at infinity, let A, T ∈ t be diagonal
matrices, and consider the irregular type Q := Az2

2 + Tz at ∞. One can now fix arbitrary
adjoint orbits Oi ⊆ g for the Fuchsian singularities, plus an orbit O ⊆ h, where h ⊆ g is
the algebra of matrices commuting with A and T .
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According to the discussion above, we consider connections ∇ = d−A on the trivial
vector bundle Cn × CP 1, which are of the form

A =
(
Az + C +

m∑
i=1

Ri

z − ti

)
dz,

where Ri ∈ Oi, and C ∈ g. Moreover, in accordance with Def. 2.44, we ask that ∇ is
locally holomorphically isomorphic to a connection of the form(

Az + T + Λ
z

+ B0

)
dz

at z =∞, where B0 is a holomorphic term and Λ ∈ O a residue lying in the correct orbit.
It is a nontrivial problem to find criteria that assure the existence of such connections
which are moreover stable. This is the (unramified), additive Deligne–Simpson problem,
in which we will not delve (see [Boa12b], § 10). The last thing we wish to recall from
[Boa12b] is that in this case M∗ can be realised as a quiver variety. Namely, one can
find a suitable graph G on nodes I, together with vector spaces {Vi}i∈I , such that the
following holds.

Theorem 2.12. One has an isomorphism

M∗ ∼= T ∗Rep
(
G, {Vi}i

)
�O Ĥ,

where Ĥ := ∏
i∈I GL(Vi) acts on representations by simultaneous conjugations, and where

O is a suitable coadjoint orbit.

The representation space can also be introduced as a space of presentations of modules
for the one-dimensional Weyl algebra (i.e. the algebra 2.5 with only two generators);
this notwithstanding, the moduli space is the complex symplectic quotient of a finite-
dimensional symplectic vector space. See the beginning of § 3.1 for more details.

Remark 2.22. In a parallel fashion to § 2.3.1, one can also attach Poisson moduli spaces
MDol and MB to any wild Riemann surface Σ, in addition to MdR, generalising the
non-Abelian Hodge theoretic viewpoints of Dolbeault and Hitchin. The Dolbeault mod-
uli space parametrises meromorphic G-Higgs fields on holomorphic vector bundles over
Σ, whereas the Betti one is a more far-fetched generalisation of the character variety of
G-representations of the curve.
If further choice are made to pick symplectic leaves, then [BB04] and [Sab99] realize the
triple of moduli spaces as an hyper-Kähler manifold having three different, distinguished
complex algebraic structures, and one does have a wild, non-Abelian Hodge correspon-
dence as soon as certain parameters are matched up (coadjoint orbits signatures forMDol
andMdR, and conjugacy classes forMB). In the case of simple poles, this was first set
up in [Sim90].

The idea behind the definition of the Betti moduli space is that it should still be
a repository for generalised monodromy data of connections, even when their holonomy
representation is no longer enough to code them uniquely. The good notion is that
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of Stokes data, which we will not need. Nonetheless, one still has a wild Riemann–
Hilbert correspondence ν : MdR −→MB that generalises Thm. 2.8. The proof that it is
symplectic can be read in [Boa01].
Getting back to the setting of trivial vector bundles over a wild sphere Σ, one gets an
exponential-like map ν : M∗ −→ MB, that relates the “additive” moduli space M∗ to
the “multiplicative” Betti side.
In the next section 2.3.5 we will consider this map in the case of simple poles on the
sphere. The correspondence is essentially the same as the nonsingular one, if one takes
care to replace the Riemann sphere with the punctured sphere CP 1 \ ∆, removing the
support of the polar divisor (this is due to [Del70]).

Finally, notice that it follows from Def. 2.44 that if one varies the wild curve Σ over
a family B then one finds symplectic bundlesM∗ −→ B,MB −→ B, whose fibres at a
wild curve Σ ∈ B is the relevant moduli space of connections or Stokes data.

2.3.5 Schlesinger and KZ

In this section we expand example 2.14, which introduces the moduli space of Fuchsian
systems on the sphere, in two directions: first, we discuss the monodromy data of a loga-
rithmic connection on a vector bundle over the sphere, thereby defining its isomonodromic
deformations, which yield the Schlesinger system of [Sch05]; second, we give a proof of
the fact that the PBW quantisation of the Schlesinger Hamiltonians, defined according
to § 2.1.5, yields the Knizhnik–Zamolodchikov system of [KZ84], as was first remarked
in [Res92]. Extending this deformation quantisation procedure is precisely the content of
the next chapter 3.

Let us then temporarily start from an abstract, nonsingular viewpoint. Let M be a
smooth manifold, V a smooth, complex vector bundle on M , and ∇ : V −→ V ⊗ A1

M a
smooth connection on V . Let p, q ∈ M be two points which are connected by a smooth
path γ : [0, 1] −→M .

Definition 2.45. The parallel transport of ∇ along γ is the C-linear isomorphism

PT∇γ : Vp −→ Vq

that associates to v ∈ Vp the value at t = 1 of the solution of the initial value problemγ∗∇s = 0
s(0) = v

(2.18)

This is a differential equation for a smooth section s of the pull-back vector bundle γ∗V
over [0, 1], equipped with the pull-back connection γ∗∇.

Remark 2.23. Concretely, one considers the vector field ∂t that trivialises T [0, 1] ∼=
[0, 1]× R, and then one considers the linear, first-order ODE

∇γ̇(t)s = 0,
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where γ̇(t) is the image of ∂t for the tangent map dγ : T [0, 1] −→ TM (the velocity of
γ). If one has a local trivialisation V |U ∼= U × Cn for V over an open set U ⊆ M

that contains γ
(
[0, 1]

)
, then one can write ∇ = d − α for a suitable connection form

α ∈ A1
(
U,End(Cn)

)
, and the system becomes

∂ts(t) = α
(
γ̇(t)

)
s(t),

for a vector-valued function s : [0, 1] −→ Cn. If v ∈ Cn ∼= Vp, then (2.18) admits a unique
solution s, because of the Cauchy–Lipschitz theorem, and one sets

PT∇γ (v) := s(1) ∈ Cn ∼= Vq.

In particular, if p = q ∈ M , then one gets an automorphism PT∇γ ∈ GLC(Vp). More-
over, one can show that if ∇ is flat then PT∇γ only depends on the homotopy class
[γ] ∈ Π1(M) of γ in the fundamental grupoid of M , and that path-concatenation gets
turned into composition of linear maps. Hence a flat connection produces representations
ν(∇)p : π1(M, p) −→ GLC(Vp) for all p ∈M .

Definition 2.46. The representation ν(∇)p is called the holonomy representation of ∇
at p ∈ M . The image ν(∇)p

(
π1(M, p)

)
⊆ GL(Vp) is the holonomy group of the flat

connection (V,∇) at p ∈M .

The symbol ν is chosen so to match it up with the Riemann–Hilbert correspondence
of Thm. 2.8. Indeed, if G := GL(Cn), then the monodromy data of a holomorphic G-
connection on a compact Riemann surface Σ of genus g ≥ 0 amounts to its holonomy
around loops that generate π1(Σ, p), where p ∈ Σ (the base point is immaterial when
these data are considered only up to conjugation). Notice that a priori the notion of
monodromy is related to differential equations in complex domain, and to the analytic
continuation of their (holomorphic) solutions along differentiable paths. We will only
momentarily discuss this viewpoint in the context of Ex. 2.14.

To express the nonsingular Riemann–Hilbert correspondence more concretely, one can
choose the classes of 2g loops a1, b1, . . . , ag, bg ∈ π1(Σ, p), together with an implicit order-
ing, such that one has a presentation

π1(Σ, p) ∼=
〈

(ai, bi)1≤i≤g

∣∣∣∣∣∏
i

[ai, bi] = e

〉
.

In this case the correspondence ν : MdR −→ MB is precisely obtained by associating
to a gauge-equivalence class of holomorphic connections [∇] the G-orbit of matrices
(M1, N1, · · · ,Mg, Ng) ∈ GL(Vp)2g defined by

Mi := PT∇ai , Ni := PT∇bi ,

where G acts by diagonal conjugation. This will be used in § 4.1 and § 4.2.1.

Let us now move on to the case of Σ = CP 1 with marked points, i.e. to the
setup of Ex. 2.14. Let m be a positive integer, and consider the marked curve Σ =
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(
CP 1, {ti}i≤i≤m

)
, where ti ∈ CP 1. Here irregular types vanish: it is a particular case of

Def. 2.43. This pointed curve carries meromorphic connections

∇ = d−
∑
i

Ri

z − ti
, (2.19)

over the trivial rank n holomorphic vector bundle V ∼= Cn × CP 1 on the sphere, where
Ai ∈ g = gln(C) are residues, and z is a local coordinate that identifies CP 1 ∼= C∐{∞}.
We assume that∑iRi = 0, so that the m-tuple (R1, . . . , Rm) defines a point of the moduli
space M∗ of Def. 2.44, as soon as one restrict the residues to live in prescribed adjoint
orbits Oi ∈ g ∼= g∗.

The Fuchsian system (2.19) admits global solutions which are multi-valued functions
on CP 1 \ ∆, where ∆ = {ti}i is the support of the polar divisor. A multi-valued func-
tion is a holomorphic function s : ˜CP 1 \∆ −→ Cn defined on the universal cover of the
punctured sphere. These solutions form a complex vector space of dimension n, on which
the fundamental group of CP 1 \∆ acts, and this representation is by definition the mon-
odromy of ∇ (see [Bea93]). Looking for a system (2.19) with a prescribed monodromy is
precisely one instance of the Riemann–Hilbert problem (which does not always admit a
solution: [Bol89] constructs a counterexample).
This notion of monodromy is however equivalent to considering the holonomy representa-
tion of the holomorphic connection on CP 1\∆ obtained by restricting (V,∇) outside of the
singular locus. One may pick a point p ∈ CP 1\∆, choose classes c1, . . . cm ∈ π1(CP 1\∆, p)
of loops that run once around the punctures, and then find the presentation

π1(CP 1 \∆, p) ∼=
〈

(c1, . . . , cm)
∣∣∣∣∣∏
i

ci = e

〉
.

Hence the monodromy data of a connection as (2.19) is the data of m invertible matri-
cesM1, . . . ,Mm of size n that factorise the identity matrix in the given order. The restric-
tion of the residues Ri to adjoint orbits Oi on the “additive” de Rham side amounts to re-
stricting the monodromy matricesMi to conjugacy orbits Ci = exp(2π

√
−1Oi) ⊆ G on the

“multiplicative” Betti side. Then the map ν : M∗
dR

(
Σ, G, {Oi}i

)
−→ Mirr

B

(
Σ, G, {C}i

)
is well defined. The proof that ν is a holomorphic symplectic maps in this case is due
to Hitchin and Iwasaki: [Hit97; Iwa91; Iwa92] (this was extended in [Boa01]). Notice
incidentally that the multiplicative Deligne–Simpson problem consists precisely in finding
conjugacy classes {Ci}i such that the Betti moduli space is non-empty.

Now one can consider the following question. If one deforms the irregular curve Σ ever
so slightly, by a small variation of the positions of the poles pi inside the configuration
space B := Confm(C) of m-tuples of complex points, then the monodromy map ν will
take a different value in the same moduli space as before.19 This deformation will vary
the connection (2.19), and one may ask the natural question: how should one modify the

19If the classes of the loops ci are chosen to bound a small disc around each puncture, then one
may move every pole within its disc and keep the same presentation for the fundamental group of the
punctured sphere. Notice also that we tacitly restricted deformations to a subclass of admissible ones,
where coalescence of singularities is forbidden.
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residues Ri so that the monodromy of the new meromorphic connection is the same as
the starting one? Such a deformation of ∇ is thus called isomonodromic.
The answer to this question, due to [Sch05], has been known for more then a century
now. If one thinks of the residues Ri as the dependent variables, which are expressed as
functions of the independent time-like variables ti, then one finds the following system of
nonlinear, first-order differential equations for the matrices Ri:

dRi =
∑
j 6=i

[
Ri, Rj

]
ti − tj

(dti − dtj). (2.20)

This is the Schlesinger system. Geometrically, it amounts to a flat Ehresmann connection
on the trivial symplectic fibrationM∗×B −→ B, as explained in § A.2. Namely, one can
show that the system (2.20) admits an Hamiltonian formulation, meaning that there is a
time-dependent Hamiltonian system Hi : M∗ × B −→ C with space of (complex) times
B such that one has

∂(Ri)kl
∂tj

= {Hj, (Ri)kl},

where one thinks of the components (Ri)kl of the residue Ri as functions on M∗. One
finds the explicit formula

HSch
i = HSch

i (R1, . . . , Rm, t1, . . . tm) =
∑
j 6=i

Tr(RiRj)
ti − tj

∈ C. (2.21)

This functions are called the Schlesinger Hamiltonians. They constitute a time-dependent,
classical Hamiltonian system, in the sense of Def. A.5. To match up with that definition,
one should define the horizontal 1-form

$Sch :=
∑
i

Hidpi,

defined on the trivial symplectic fibration at hand.

This time-dependent system is strongly flat, in the sense of Def. A.4. Now, as ex-
plained in § A.2, one can also consider the time-dependent Hamiltonians as sections of
the “universal” vector bundle A0 ×B −→ B, where A0 := O⊗mg is the algebra of regular
functions on the Poisson variety gm ∼=

(
gm
)∗
. Recall that the dual of any Lie algebra

is Poisson, via the Lie–Berezin–Kirillov bracket presented in Ex. 2.4. It is an impor-
tant fact that the functions Hi are invariant under the diagonal, adjoint G-action on gm,
which is just the statement that the trace is a class function. In particular, the formula
(2.21) defines functions that can be harmlessly restricted to the product of adjoint orbits∏
iOi ⊆ gm where one chooses the residue, and that moreover define functions on the

quotient
M∗ ∼= O1 · · · Om �0 G,

where one uses Thm. 2.11. The advantage of working at the level of the trivial Poisson
fibration gm × B −→ B is that one can now use the discussion of § 2.1.3 in order to
quantise the Schlesinger system (in the sense of Def. 2.6). Namely, according to Prop. 2.1,
and using the universal property of tensor products, the quantum algebra A := U(g)⊗m
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provides a filtered quantisation of A0, and 2.18 defines a quantisation map Q : A0 −→ A,
whose explicit formula is (2.8): it is the PBW quantisation of the symmetric algebra
Sym

(
gm
) ∼= Sym(g)⊗m.

The rest of this section is devoted to proving the following result.

Theorem 2.13. The PBW quantisation of the Schlesinger system (2.21) yields the (uni-
versal) Knizhnik–Zamolodchikov connection.

Recall that the Knizhnik–Zamolodchikov connection (to be referred to as “KZ” here-
after) of [KZ84] is a connection ∇̂KZ in the trivial vector bundle

U(g)⊗m ×B −→ B.

Its origins lie in certain two-dimensional models for conformal field theory, named after
Wess, Zumino and Witten. The KZ connection can be written

∇̂KZ = dB −
∑

1≤i≤m

∑
i 6=j

Ωij

ti − tj

 dti, (2.22)

for certain operators Ωij : U(g)⊗m −→ U(g)⊗m. To define them, one considers the stan-
dard invariant C-bilinear form

(·, ·) : g⊗ g −→ C, (A,B) := Tr(AB),

which provides an isomorphism g∗ −→ g, as it is nondegenerate. Next, one considers
the identity Idg ∈ g ⊗ g∗, and uses the trace-duality on the second factor to turn it into
an element Ω ∈ g ⊗ g. This does not depend on a choice of basis, but if one does fix a
(·, ·)-orthonormal basis {xi}i of g, then

Idg =
∑
i

xi ⊗ dxi ∈ g⊗ g∗, Ω =
∑
i

xi ⊗ xi ∈ g⊗ g,

since xi is then dual to itself with respect to the trace-duality.
Now one uses the natural embedding ιU : g ↪→ U(g) to consider the element ιU(Ω) ∈
U(g) ⊗ U(g), and defines Ωij as its left multiplication on the ith and jth slot of the
product U(g)⊗m, and the identity elsewhere (for i 6= j).

Let us now set
ĤKZ
i :=

∑
j 6=i

Ωij

ti − tj
, (2.23)

Those are the KZ Hamiltonians. They constitute a time-dependent, strongly flat, quan-
tum Hamiltonian system, in the sense of Def. A.7 and A.8. To precisely match it up with
A.7, one should construct the 1-form

$̂KZ :=
∑
i 6=j

Ωijd log(ti − tj) ∈ A1
(
B,End

(
U(g)⊗m

))
.

Notice that every connection of the form ∇̂~
KZ = dB−~$̂KZ would be strongly flat as well,

for every complex parameter ~ ∈ C. Using the construction recalled in § 2.1.4 one can
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add such a quantum parameter in the KZ connection, to match the above expression with
what is usually found in the literature (one normally considers the dual Coxeter number
of g: see [EFK98]).

Now, the Schlesinger Hamiltonians are smooth sections

HSch
i : B −→ Sym(g∗)⊗m,

since to every point {ti}i ∈ B in the base they associate a polynomial function on gm.
Thanks to the trace-duality g∗ ∼= g, one may as consider them as elements of Sym(g)⊗m,
abusively written HSch

i as well. Now it makes sense to compare the fibrewise quantisation
QPBW(HSch

i ) ∈ U(g)⊗m with the KZ Hamiltonian (2.23). The proof of Thm. 2.13 follows
from the following remark, by appealing to the C-linearity of the PBW quantisation.

Proposition 2.7. One has QPBW
(

Tr(RiRj)
)

= Ωij for all i 6= j ∈ {1, . . . ,m}.

Proof. The function (R1, . . . , Rm) 7−→ Tr(RiRj) is precisely the invariant scalar product
(·, ·) ∈ g∗ ⊗ g∗ on the ith and jth slot of the product gm, and it does not depend on the
other variables. Hence it is enough to show that the PBW-quantisation of the trace-dual
K ∈ g⊗ g ⊆ Sym(g)⊗ Sym(g) of (·, ·) equals ιU(Ω) ∈ U(g)⊗ U(g).

Now, in a (·, ·)-orthonormal basis one has (·, ·) = ∑
i dxi ⊗ dxi, and thus actually

K =
∑
i

xi ⊗ xi = Ω.

The conclusion then follows from the fact that the PBW-quantisation on elements of
degree one corresponds to the tautological embedding ιU on Sym(g)1 ∼= g.

It is in this sense that one says that the KZ connection is a quantisation of the
Schlesinger system.

Remark 2.24. Finally, we recall here an intrinsic, geometric approach to the isomon-
odromy connection. The base space B of admissible deformation of pointed curves carries
the symplectic bundlesM∗ −→ B andMB −→ B that have the relevant moduli spaces
as fibres. In the Betti bundle the notion of isomonodromy is simpler: one may locally
keep Stokes matrices constant (see [Boa01]). In particular, this bundle is equipped with a
flat connection, the isomonodromy connection. The pull-back of this connection along the
fibrewise Riemann–Hilbert correspondence ν : M∗ −→MB then defines a nontrivial, flat
Ehresmann connection inside the de Rham bundle, and this is precisely the connection
coded by the Schlesinger system. It is also shown in [Boa01] that the isomonodromy con-
nection is symplectic, meaning that integrating it yields symplectic isomorphism among
different fibres ofM∗.
Alternatively, one can provide a cohomological interpretation of the isomonodromy con-
nection, following Simpson [Sim94], and see the isomonodromy connection as the Gauß–
Manin connection in non-Abelian cohomology for the group G. In general, if π : Y −→ X
is a fibration, one can replace the fibres π−1(t) = Yt by their cohomology H•(Yt,C), where
t ∈ X. This vector bundle carries a natural flat connection, which is the Gauß–Manin
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connection. Abstractly, this connections arises from the existence of canonical identifica-
tions H•(Yt,C) ∼= H•(Ys,C), obtained from the homotopy invariance of the cohomology:
the restriction Y |D to a ball D ⊆ X has the homotopy type of any fibre Yt, for t ∈ D. It
turns out that this extends to the first G-valued cohomology group of the punctured curve.
Since the moduli spaces are avatars for this non-Abelian cohomology, this abstractly de-
fines a flat connection in the symplectic bundles de Rham, which is the isomonodromy
connection.

73



CHAPTER 2. BACKGROUND

74



Chapter 3

Simply-laced quantum connections

In this chapter we describe the original results obtained in the direction of deformation
quantisation. The aim was a generalisation of the construction outlined in § 2.3.5, more
precisely Thm. 2.13, stating that the KZ connection (2.22) can be obtained as a defor-
mation quantisation of the Schlesinger system (2.21). These results have already been
presented in [Rem17].

Let us start by summarising the content of the following sections.

In § 3.1 we recall the definition of the simply-laced isomonodromy systems (SLIMS).
This involves a trivial fibration Fa = M × B −→ B, and a collection of time-dependent
Hamiltonian functions Hi : Fa −→ C. These systems are attached to simply-laced, com-
plete k partite graphs.
In § 3.2 we realise the Hamiltonians as traces of cycles on the graph (classical potentials),
and we study the Poisson bracket of such traces.
In § 3.3 we define quantum potentials, which are related to the quantum algebra A simi-
larly to how classical potentials are related to the functions on M.
In § 3.4 we explain how to quantise the Hamiltonians Hi to elements Ĥi, thereby defining
the simply-laced quantum connection (SLQC).
In § 3.5 and § 3.6 we prove the main theorem (Theorem 3.2) that the simply-laced quan-
tum connection is strongly flat.
In § 3.7 we show that a reduction of the simply-laced quantum connection yields the KZ
connection in the special case of a star-shaped graph, i.e. a complete bipartite graph
where one part has only one node. This means that this SLQC quantises the Schlesinger
system, because so does KZ.
In § 3.8 we consider the Harnad-dual data of the previous section, and we show that
a natural (strongly flat) correction of the SLQC reduces to the DMT connection. This
correction amounts to a reordering within the quantum Hamiltonians, and it does not
tamper with the classical dynamics, as it vanishes in the semiclassical limit. This means
that this SLQC quantises the dual Schlesinger system, because so does DMT.
In § 3.9 we put together the results of the previous two sections to show that an analogous
natural correction of the SLQC reduces to the FMTV connection. Together with the fact
that FMTV quantises the JMMS system, this proves that this SLQC quantises the JMMS
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system.
Finally, in § 3.10 we compare the SLQC with the quantisation [NS11] of a particular
case of the JMU system. We argue that our cycle-theoretic formulation recovers part of
the explicit Hamiltonian formulation for the systems that lie in the intersection of the
isomonodromy equations of [Boa12b] and [JMU81], as well as its quantisation. This is
also the occasion for writing down the simply-laced quantum connection explicitly in rank
3, via differential operators acting on polynomial functions on C3.

3.1 Simply-laced isomonodromy systems

One of the results of [Boa12b] is an explicit Hamiltonian formulation of isomonodromic
deformations for certain families M∗ × B −→ B of moduli spaces of meromorphic con-
nections (on holomorphically trivial vector bundles) on the Riemann sphere. The general
setup for the definition of the moduli spacesM∗ has been recalled in § 2.3.4, culminating
in Def. 2.44. We then discussed isomonodromy in the case of simple poles, in § 2.3.5.

The theory of isomonodromy equations for meromorphic connections on the Riemann
sphere has been greatly extended in [JMU81], passing from Fuchsian systems to almost
generic rational matrices; the restriction is that all highest irregular terms be regular
semisimple. In this chapter we relax the requirement of regularity, admitting nonsim-
ple eigenvalues, but only consider a particular choice of irregular types, as explained in
Rem. 2.21: one allows for at most one singularity of Poincaré rank 2 at infinity, together
with simple poles. With these choices, one has two alternative realisations of the moduli
space:

• M∗ is isomorphic to the symplectic quotient of a symplectic spaceM of presentations
of modules for the one-dimensional Weyl algebra.

• M∗ is isomorphic to the Nakajima variety of a suitably defined graph.

We will start by discussing the former viewpoint, since it is the most natural, and very
soon turn to the latter one. The upshot is the definition of a symplectic vector space
(M, ωa) that surjects onto the moduli space M∗. We will also introduce a base space
B of admissible deformations which will play the role of the space of (complex) times
for the isomonodromy systems, as explained in § A.2. Finally, and more importantly,
we will define the simply-laced isomonodromy systems as a strongly-flat, time-dependent
(classical) Hamiltonian systems on the trivial symplectic fibration M×B −→ B.

Let us then get started by considering three complex square matrices α, β, γ of size n.
The n× n matrix

M := α∂ + βz − γ
takes its coefficients from the unitary C-algebra A1(C) generated by the two symbols z,
∂ = ∂z, submitted to the commutation relation

[
∂, z

]
= 1. This is precisely the Weyl

algebra W
(
T ∗C, ωcan

)
, in the sense of Ex. 2.5, where ωcan is the canonical symplectic

form of the cotangent bundle. We call it the one-dimensional Weyl algebra because of
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its tautological representation by differential operators acting on holomorphic functions
on one complex variable. One then lets M act on holomorphic functions v : U −→ Cn

defined on open sets U ⊆ C, and the equation Mv = 0 is a local system of differential
equations for v.
Elementary D-modules’ theory relates the space of solutions of this system to the quotient
N := An1 (C)

/
An1 (C)·M (the ringD of differential operators being exactly the Weyl algebra

in this case). This quotient is a (left) module for the one-dimensional Weyl algebra, and
thus the matrices α, β, γ parametrise such objects. More precisely, one has a presentation
of N defined by the exact sequence of A1(C)-modules

An1 (C) An1 (C) (0)
(·M)

Instead of taking the full family of presentations of A1(C)-modules defined by triples
α, β, γ ∈Mn(C), one restricts α, β to be commuting, diagonalisable matrices whose kernels
have trivial intersection. If one lists the eigenvalues αi, βj of α and β respectively, in some
given order, then one gets points

ai :=
[
− βi : αi

]
of the complex projective line P(C2). The point at infinity would correspond to the
(possibly trivial) kernel of α in the affine chart P(C2)\

{[
1: 0

]}
−→ C that sends

[
z1 : z2

]
to the ratio z1

/
z2. We identify P(C2) with C∐{∞} in this way, but we wish to distinguish

this copy of the Riemann sphere from the Riemann surface Σ = CP 1 that carries the
meromorphic connections: this is why we use an alternative notation.
Let now {aj}j∈J ⊆ P(C2) be the set of points thus obtained, and set k := |J | to be the
cardinality of the index set. We agree to write∞ ∈ J for the index that corresponds to the
point at infinity, if it exists. For each j ∈ J consider the vector subspace W j ⊆ V := Cn

defined as the joint eigenspace for the endomorphisms α, β corresponding to pairs (αi, βi)
of eigenvalues lying over aj:

W j :=
{
v ∈ V

∣∣∣∣αv = αiv, βv = βiv,
[
αi : βi

]
= aj

}
.

Since α and β are simultaneously diagonalisable, one has V = ⊕
j∈JW

j. One further
requires that the restriction γ|W j be semisimple for all j ∈ J .

Let us now write U∞ = ⊕
j∈J\{∞}W

j. If α is nonsingular then V = U∞, otherwise
U∞ equals the whole of V “minus” the kernel of α. One can multiply M on the left so to
put in the following normalised form

M =
(

0 0
0 Id

)
∂ +

(
Id 0
0 −A

)
z − γ ∈ End(V )⊗ A1(C),

where the block diagonal decomposition is taken with respect to the direct sum V =
W∞ ⊕ U∞; also, one has necessarily A = ∑

j∈J\{∞} ajI
j, where Ij : U∞ −→ U∞ is the
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idempotent for W j.
The endomorphism γ ∈ End(W∞ ⊕ U∞) admits a similar block decomposition

γ =
(
T∞ P
Q T +B

)
,

where T∞ ∈ End(W∞), T,B ∈ End(U∞) and

W∞ U∞.

Q

P

The diagonal part δ(γ) of γ in this decomposition is then

δ(γ) =: T̂ =
(
T∞ 0
0 T

)
,

whereas the off-diagonal part γo is

γo =: Γ =
(

0 P
Q B

)
.

By hypothesis, T∞ and T are both semisimple.

One may now write explicitly the system of ODEs Mv = 0 as

∂v =
(
Az +B + T +Q(z − T∞)−1P

)
v,

for a local, U∞-valued holomorphic function v defined on open sets of C.1 As explained
in Rem. 2.19, this system of first order ODEs with rational coefficients is the same as the
meromorphic connection

∇ = d−A, where A :=
(
Az +B + T +Q(z − T∞)−1P

)
dz, (3.1)

living in the trivial vector bundle U∞ ×CP 1 −→ CP 1 over the sphere. As stated before,
such connections have a pole of order at most three at infinity, plus Fuchsian singularities
at the spectrum of T∞. The elements of the diagonal matrices T∞ and T will be the
time variables of the simply laced isomonodromy systems; we call them the regular and
irregular times, respectively.

Remark 3.1. One of the main advantages of working at this higher level is that many

symmetries become apparent. More precisely, if N =
(
a b
c d

)
∈ SL2(C), then the one can

act on M = α∂ + βz − γ by

N.M := α(a∂ + bz) + β(c∂ + dz)− γ.
1We abusively keep the same notation as before for the local section. If ∞ ∈ {aj}j∈J then U∞ 6= Cn.
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This action comes from the fact that SL2(C) is the group of linear symplectomorphisms
of (T ∗C, ωcan), whose action can be lifted to the Weyl algebra A1(C), and then to the
tensor product End(V ) ⊗ A1(C) where M lives.2 Doing this changes the meromorphic
connections, as well as the underlying vector bundle on which it is defined; to see this,
just remark that N acts on the finite set {aj}j∈J ⊆ P(C2) via the restriction of a Möbius
transformation, and thus the rank of the vector bundle need not stay fixed.

A particular case of such transformation is obtained by taking N =
(

0 −1
1 0

)
, which

results in the transformation ∂ 7−→ −z, z 7−→ ∂, i.e. the Fourier–Laplace transform (at
the level of differential operators).

The important fact is that the isomonodromic deformations of such connections are
all governed by the same system of nonlinear differential equations, when one varies the
time-like variables T∞ and T .

We can now define the symplectic vector space that will work as classical phase-space
for the system we wish to quantise. This space must contain the dependent variables of
the isomonodromy equations for the connections (3.1), which are the irregular terms Q,P
and B, i.e. the off-diagonal part Γ of γ. With this idea in mind, one sets

M := End(V )o =
⊕
i 6=j∈J

Hom(W i,W j),

equipped with the symplectic form

ωa :=
∑

i 6=j∈J\{∞}

Tr
(
dBij ∧ dBji

)
2(ai − aj)

+
∑

j∈J\{∞}
Tr
(
dBj∞ ∧ dB∞j

)
,

where Bij is the linear map from W j to W i for all i 6= j ∈ J . In matrix notation, this
is precisely the corresponding block component of the matrix B that appears above. The
subscript “a” stresses the dependence of this symplectic form on the weights aj ∈ C, for
j 6=∞.

To introduce the independent time-variables of the isomonodromy equations, that is
the diagonal part T̂ of γ, one now looks to a more refined decomposition of V ; namely,
consider the decomposition of the direct addends W j in eigenspaces for the semisimple
matrices T j := γ|W j . One may accordingly write

W j =
⊕
i∈Ij

Vi,

where Ij is the set of eigenspaces of T j. This decomposition defines an open space

B :=
∏
j∈J

C|Ij | \ {diags} ⊆ C|I|, (3.2)

where I := ∐
j∈J I

j.
2One must also check that if α, β are commuting semisimple matrices whose kernels intersect trivially,

then the same holds for aα+ cβ and bα+ dβ, provided that ad− bc 6= 0.
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Remark 3.2. One may think of B as a space of deformations of the diagonal matrices
T j = ∑

i∈Ij Idi ti, where Idi : W j −→ W j is the idempotent for Vi in W J , and where
{ti}i∈Ij is the spectrum of T j. Such deformations preserve the decomposition of W j into
eigenspaces for T j, since removing the “diagonals” from C|Ij | precisely avoids that different
eigenvalues will coalesce. This must be thought of as a generalisation of the base space
Confm(C) for the trivial fibration on which the Schlesinger system is defined (in the case
of m simple poles; see § 2.3.5).

We shall refer to these as the admissible deformations.

Finally, one defines Fa := M × B as a trivial fibration in symplectic vector spaces,
and proceeds to define a strongly flat Ehresmann connection inside Fa that codes the
isomonodromic deformations of the connections (3.1), with respect to variations of T∞
and T , but keeping the highest irregular term fixed.3 The sense in which this Ehresmann
connection codes isomonodromy equations is totally analogous to what happens in the
situation of § 2.3.5 for the Schlesinger system.
Before doing this, however, we turn to the graph-theoretic presentation of the theory,
turning around the one just made from the viewpoint of D-modules. To this end, notice
that the construction of the trivial symplectic fibration Fa only relies on the choices of:

• A finite set J .

• A second finite set I, together with a partition I = ∐
j∈J I

j indexed by J .

• An embedding a : J ↪→ P(C2), written a : j 7−→ aj (where we still just write ∞ ∈ J
for the index a−1(∞), if it exists).

Starting from all this data, let G̃ be the complete graph on nodes J , and G the complete
k-partite graph on nodes I. The latter means that two nodes of G are adjacent if and
only if they lie in different parts of I. Both G̃ and G are by definition simply-laced, i.e.
without edge loops or repeated edges.

Definition 3.1. The embedding a : J ↪→ P(C2) is called a reading of G̃. The reading
is generic if ∞ 6∈ a(J), and degenerate otherwise. We extend the reading to a map
a : I −→ P(C2) by declaring it to be constant to aj on each part Ij of I, and we call it a
reading for G.

Let us abusively denote by G̃ the quiver associated to the graph G̃: it is the quiver
on nodes I having a pair of antiparallel arrows for each edge of G̃. The same abuse of
notation will be taken for G.
Finally, we attach complex vector spaces Vi to the nodes of G, and we set W j := ⊕

i∈Ij Vi.

These data determine the same symplectic fibration Fa = (M, ωa) ×B as above, but
now one thinks of M as the space of representations of the quiver G̃ with respect to the

3Indeed, the diagonal term A only appear in the definition of the symplectic structure, but not in
the space M itself. If one allows for A to vary too, then one would no longer have a trivial symplectic
fibration.
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vector spaces {W j}j∈J :

M ∼= Rep
(
G̃, {Wj}j∈J

)
=

⊕
i 6=j∈J

Hom(W i,W j).

Notice that this is the same as the representation space of the finer k-partite graph, if
one just decomposes the linear maps Bij : W j −→ W i in block components with respect
to the direct sums Wj = ⊕

i∈Ij Vi.

As a last piece of notation, define X ij : W j −→ W i to be the scalar multiplication of
Bij by the weight φij ∈ C, where

φij = −φji :=
(ai − aj)−1, ai, aj 6=∞

1, ai =∞
.

With this notation introduced, the formula for the symplectic form simplifies to

ωa := 1
2
∑
i 6=j∈J

Tr
(
dX ij ∧ dBji

)
.

Remark 3.3. Notice that we did not choose an orientation for the arrows of neither
graphs. Such a choice is necessary in order to characterise the representation space as a
cotangent bundle, which leads to the usual definition of the Nakajima varieties of a quiver
([Nak94]): a representation of a graph is the same thing as a representation of the double
of any quiver obtained by choosing an orientation of the graph. The symplectic form ωa
instead relies on the reading a : J ↪→ P(C2).
This notwithstanding, it is shown in [Boa12b] that (M, ωa) and the cotangent bundle

T ∗

⊕
e∈G1

Hom
(
Vt(e), Vh(e)

)
are isomorphic as Hamiltonian Ĥ-spaces, where t, h : G1 −→ I denote any choice of tail
and head functions, assigning to each edge of G its source and target, respectively.

The symplectic reduction of (M, ωa) with respect to Ĥ is then isomorphic to a Naka-
jima quiver variety, for all choice of orbits in the dual Lie algebra of Ĥ. This symplectic
reduction is also isomorphic to the moduli space M∗ described in Rem. 2.21: see again
[Boa12b], from which we recall one last result.

Theorem 3.1. The isomonodromy deformation (isomonodromy) equations for the mero-
morphic connections (3.1) admit an Hamiltonian formulation via a time-dependent Hamil-
tonian system Hi : Fa −→ C. Moreover, the Hamiltonian system is strongly flat, in the
sense of Def. A.4:

{Hi, Hj} = 0 = ∂Hi

∂tj
− ∂Hj

∂ti
, for i 6= j.

As stated above, the isomonodromy equations are nonlinear first order PDEs for Γ =(
0 P
Q B

)
, as a function of T̂ =

(
T∞ 0
0 T

)
. The fact that this problem admits an Hamil-

tonian formulation means that the time-dependent Hamiltonian system Hi : Fa −→ C in
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the statement is such that the isomonodromy equations can be written

∂Γj
∂ti

= {Hi,Γj},

for all components Γi of a local section Γ of the fibration.

The definition of the Hamiltonians is implicitly given by defining the following hori-
zontal 1-form $ = ∑

i∈I Hidti:

$ := 1
2 Tr

(
Ξ̃Γδ(ΞΓ)

)
− Tr

(
ΞγΞdT̂

)
+ Tr

(
X2TdT

)
+ Tr

(
PAQT∞dT∞

)
. (3.3)

One will have Hi = 〈$, ∂ti〉.

In the above formula we define Ξ := φ(Γ) and X := φ(B), applying the alternating
weights φij ∈ C componentwise. Also, δ(ΞΓ) denotes the diagonal part of ΞΓ in the direct
sum decomposition V = ⊕

j∈JW
j, and one defines

Ξ̃Γ := ad−1
T̂

[
dT̂ ,ΞΓ

]
.

As explained in § A.2, the horizontal 1-form $ is in itself a time-dependent Hamil-
tonian system, expressed in a coordinate-independent fashion. Its coefficients Hi can be
thought of as global sections of the (universal) vector bundle

A0 ×B −→ B,

where A0 := O(M) ∼= Sym(M∗) is the algebra of regular function on the affine complex
space M.

Definition 3.2. The simply-laced isomonodromy system (SLIMS) attached to the com-
plete k-partite graph G on nodes I, to the vector spaces {Vi}i∈I and to the reading
a : I −→ C ∪ {∞} is the time-dependent Hamiltonian system (3.3).

This is the classical system we wish to quantise, in the sense explained in § 2.1. To
this end, we first express the algebraic functions Hi as traces of potentials on the k-partite
quiver.

3.2 Classical potentials

Consider again the complete k-partite quiver G on nodes I = ∐
j∈J I

j.

Definition 3.3. A potential W on G is a C-linear combination of oriented cycles in G,
defined up to cyclic permutations of their arrows. The space of potentials is denoted
CGcycl.

Every potentialW ∈ CGcycl defines a regular function on M, by taking the traces of its
cycles in every given representation. Thus a time-dependent potential W : B −→ CGcycl
will define a global section Tr(W ) : B −→ A0.
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Introducing the natural notation I i := π−1(π(i)) ⊆ I for the part of I containing the
node i ∈ I, consider the following potentials on G:

Wi(2) :=
∑

j∈I\Ii
(ti − tj)αijαji,

Wi(3) :=
∑

j,l∈I\Ii : Ij 6=Il
(aj − al)αilαljαji,

Wi(4) :=
∑

m∈Ii\{i},j,l∈I\Ii
(ai − aj)(ai − al)

αijαjmαmlαli
ti − tm

.

(3.4)

Here αij denotes the arrow from j to i in G, and one writes a cycle in G as the sequence
of its arrows, reading from right to left. We will speak of an m-cycle to refer to a cycle
C = αm . . . α1 having m arrows, and write l(C) = m in that case.

Proposition 3.1. The Hamiltonian Hi of the simply-laced isomonodromy system (3.3)
is the sum of the traces of the potentials (3.4), for a generic reading of G:

Hi = Tr
(
Wi(4)

)
+ Tr

(
Wi(3)

)
+ Tr

(
Wi(2)

)
.

Moreover, in a degenerate reading one only needs to change the weights of the same cycles
that appear in the potentials (3.4).

Notice that the trace Tr
(
Wi(d)

)
defines an homogeneous element of degree d in A0,

for d ∈ {2, 3, 4}.

Proof. This follows from an explicit expansion of the formula for $. Let us provide some
detail.

One may write $ = $(4) + $(3) + $(2), taking $(d) to be the term of order d of
the time-dependent system, i.e. the one satisfying 〈$(d), ∂ti〉 = Tr

(
Wi(d)

)
. The highest-

order term expands as:

$(4) = 1
2 Tr

(
Ξ̃Γδ(ΞΓ)

)
= 1

2 Tr
(
X̃Bδ(XB)

)
=

= 1
2

∑
i,j,k,l,m,n,p

(am − an)(am − ap) Tr(Xmn
ij Xnm

jk X
mp
kl X

pm
li )d log(tmi − tmk )

In the above sum, one has n 6= m 6= p ∈ J, i 6= k ∈ Im, j ∈ In, l ∈ Ip.

This means that the order-four part of the Hamiltonian for the time ti will be

〈$(4), ∂ti〉 =
∑

j,k 6=i,l,n,p
(am − an)(am − ap)

Tr(Xmn
ij Xnm

jk X
mp
kl X

pm
li )

ti − tk
.

The crucial remark is that one is summing over all 4-cycles of the form

Vi −→ Vl −→ Vk −→ Vj −→ Vi,
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each one with the weighted by the (time-dependent) complex coefficient (am−an)(am−ap)
ti−tk

.
The numerator of this weight only depends on the coarse decomposition V = ⊕

j∈JW
j,

whereas the denominator depends on the finer V = ⊕
j∈J,i∈Ij V

j
i . In particular, this shows

that the potential Wi(4) is chosen correctly in (3.4).

Similarly, going down with the order:

$(3) = −Tr(XBXdT ) = −
∑

m,n,p,i,j,l

(an − ap) Tr(Xmn
ij Xnp

jl X
pm
li )dti

where m 6= n 6= p ∈ J, i ∈ Im, j ∈ In, l ∈ Ip. Hence one is now summing all 3-cycles:

Vi −→ Vl −→ Vj −→ Vi,

each one with weight (ap − an) ∈ C (a constant function on B in this case).

Finally, one has:

$(2) = Tr(X[X,T ]dT ) =
∑

m,n,i,j

Tr(Xmn
ij Xnm

ji )(ti − tj)dti

where m 6= n ∈ J, i ∈ Im, j ∈ In. This is a sum over the ‘2-cycles

Vi −→ Vj −→ Vi,

with weights (ti − tj) ∈ C∞(B,C).

We made the choice to express all algebraic functions on M as polynomials in the
corrected variablesX ij = φijB

ij. This is done in order to achieve simpler-looking formulae
for the potentials.

Corollary 3.1. The simply-laced Hamiltonians Hi are invariant for the natural Ĥ-action
on M.

This just follows from the fact that the trace is a class function, and Ĥ = ∏
i∈I GLC(Vi)

acts by simultaneous conjugations. In particular, the Hamiltonians Hi descend to a time-
dependent Hamiltonian system on the symplectic reduction of (M, ωa) at any coadjoint
orbit, i.e. on the trivial symplectic fibrationM∗ ×B −→ B. One can thus work on the
upper level of M to quantise a time-dependent classical system on the moduli space itself.

Let us now introduce some terminology, for further use.

Definition 3.4. The potentials Wi(n) of (3.4) are called the (classical) isomonodromy
potentials, for i ∈ I, 2 ≤ n ≤ 4. The isomonodromy cycles are the cycles that appear in
their addends. The isomonodromy 4-cycles can be further divided in two families:

1. nondegenerate, if they touch 4 distinct nodes of G.

2. degenerate, if they touch 3 distinct nodes of G.
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A picture will help clarifying; the isomonodromy cycles are the following type of cycles
in G:

In order from left to right, one has 2-cycles, 3-cycles, nondegenerate 4-cycles and degen-
erate 4-cycles. Notice that the degenerate 4-cycle are the glueing of two 2-cycles at a well
defined node, which will be called their centre.4

As a last remark, there is a natural (positively) graded Lie structure {, } on CGcycl,
where the gradation is given by cycle length, called the necklace Lie algebra structure (see
e.g. [BL02; Eti07]). If α is an arrow in G, we write α∗ for its (unique) antiparallel one.
Definition 3.5. Pick two oriented cycles C1 = αn · · ·α1 and C2 = βm · · · β1 in G. The
Lie bracket {C1, C2} is a weighted sum of (n + m − 2)-cycles obtained as follows. For
all pairs of antiparallel arrows αi, βj = α∗i , one deletes that pair and glues together the
two remaining cycles. The weights are determined by the defining relation of the Poisson
bracket of A0.

To see this graphically, fix a pair i, j such that αi = β∗j , and introduce the notation
t(α), h(α) ∈ I for the tail and the head of an arrow α in G, respectively; these are
the starting node of α and the end node of α, respectively. Set then a = t(βj−1), b =
h(βj−1) = h(αi), c = h(βj) = h(αi−1), d = h(βj+1), e = t(αi−1), f = h(αi+1) ∈ I. Then the
local picture before deleting arrows looks like this:

a

b c

d

e

cb

f

βj−1
βj

βj+1

αi−1
αiαi+1

Afterwards, one will have:

a

b

f e

c

d

βj−1

αi+1 αi−1

βj+1

4The other two nodes must lie in one and the same part of I, looking at the indices of Wi(4) in (3.4).
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Now, the nice fact is that this bracket comes from the Poisson structure {·, ·}A0 of A0.
Proposition 3.2. One has

Tr
{
C1, C2} =

{
Tr(C1),Tr(C2)

}
A0
∈ A0

for all cycles C1, C2 ∈ CGcycl.

Proof. The proof consists of a direct expansion of the Poisson bracket{
Tr(C1),Tr(C2)

}
A0

=
{

Tr(Xαn · · ·Xα1),Tr(Xβm · · ·Xβ1)
}
A0
.

To simplify the notation, introduce multi-indices K := (kn, . . . , k1), L := (lm, . . . , l1)
that vary respectively in the products of sets

DC1 := {1, . . . , dh(αn)}×· · ·×{1, . . . , dh(α1)} and DC2 := {1, . . . , dh(βm)}×· · ·×{1, . . . , dh(β1)},

where di := dim(Vi) for all i ∈ I.

One Has:{
Tr(Xαn · · ·Xα1),Tr(Xβm · · ·Xβ1)

}
A0

=
∑

K∈DC1 ,L∈DC2

{
Xαn
kn,kn−1 · · ·X

α1
k1,kn , X

βm
lm,lm−1 · · ·X

β1
l1,lm

}
A0

=

=
∑

K,L,1≤i≤n,1≤j≤m

{
Xαi
ki,ki−1

, X
βj
lj ,lj−1

}
A0
Xαn
kn,kn−1 · · · X̂

αi
ki,ki−1

· · ·Xα1
k1,kn ·X

βm
lm,lm−1 · · · X̂

βj
lj ,lj−1

· · ·Xβ1
l1,lm =

=
∑

K,L,i,j:αi=β∗j

cijδki,lj−1δki−1,ljX
αn
kn,kn−1 · · · X̂

αi
ki,ki−1

· · ·Xα1
k1,kn ·X

βm
lm,lm−1 · · · X̂

βj
lj ,lj−1

· · ·Xβ1
l1,lm =

=
∑

K,L,i,j:αi=β∗j

cijX
αi−1
ki−1,i−2

· · ·Xα1
k1,knX

αn
kn,kn−1 · · ·X

αi+1
ki+1,ki

·Xβj−1
ki,lj−2

· · ·Xβ1
l1,lmX

βm
lm,lm−1 · · ·X

βj+1
lj+1,ki−1

=

=
∑

i,j:αi=β∗j

cij Tr(Xβm · · ·Xβj+1 ·Xαi−1 · · ·Xα1Xαn · · ·Xαi+1 ·Xβj−1 · · ·Xβ1).

Here a hat denotes an arrow that has been left out, and one used{
Xαi
ki,ki−1

, X
βj
lj ,lj−1

}
A0

= cijδki,lj−1δki−1,lj ∈ C.

Notice that αi = β∗j implies t(αi+1) = h(βj−1) and h(αi−1) = t(βj+1). Hence the
compositions Xαi+1 ·Xβj−1 and Xβj+1 ·Xαi−1 make sense.

Conceptually, what happens is the following. The invariant regular functions on M for
the action of Ĥ consist of the C-algebra AĤ0 ⊆ A0 generated by traces of cycles. Hence
we have an injective map Tr: CGcycl ↪→ AĤ0 , and the above discussion shows that this is a
Lie algebras’ morphism: the necklace Lie bracket is the pull-back of the Poisson bracket
on A0.

Last, notice that it is not possible to upgrade CGcycl to a Poisson algebra using the
natural concatenation product, since Tr(AB) 6= Tr(A) Tr(B) is clearly generally false for
endomorphisms A,B of a vector space. Rather, one should define a formal product of
cycles that satisfies the same rules as the product of their traces, i.e. be commutative.
This is well expressed by the following elementary algebraic fact.
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Proposition 3.3. Let V be a complex vector space, and ι : V ↪→ B a C-linear embedding
into a C-algebra. Then there is a natural tensor map Tens(ι) : Tens(V ) −→ B, defined
on pure tensors as

Tens(ι)(v1 ⊗ · · · ⊗ vn) := ι1(v) · · · ιn(v) ∈ B.
This map is surjective on the subalgebra B′ ⊆ B generated by the vector space ι(V ) ⊆ B,
and it induces an isomorphism of C-algebras

Tens(V )
/

Ker(Tens(ι)) ∼= B′.

This is just an application of the universal properties of tensor products and quotients.
In the case at hand, one finds an isomorphism AĤ0

∼= Sym(CGcycl). This identification is
just saying that all Ĥ-invariant regular functions onM are monomials of (traces of) cycles.
Notice that the Lie bracket of CGcycl is now tautologically upgraded to a Poisson bracket
on Sym(CGcycl), and this symmetric algebra is isomorphic to AG0 as a graded commutative
Poisson algebra, because of Prop. 3.2. We will present a quantum counterpart of this, in
§ 3.3.
Remark 3.4. As a first application of the cycle-theoretic viewpoint, one can provide a
direct proof of “half” of the strong flatness of the SLIMS. More precisely, remark that one
has

Tr(∂tiWj) = ∂ti Tr(Wj)
for all i, j ∈ I, where Wj is an isomonodromy potential. This is because the derivative
does not modify the cycles that make up the potentials, but only their weights. Hence
showing that ∂tiHj − ∂tjHi = 0 is equivalent to showing that ∂tiWj − ∂tjWi = 0, because
of the injectivity of Tr : CGcycl ↪→ A0.
Proposition 3.4. One has ∂tiWj = ∂tjWi for all i, j ∈ I.

Proof. One can clearly assume i 6= j ∈ I. Then one has

∂tjWi(2) =
−αijαji, I i 6= Ij

0, else
and ∂tiWj(2) =

−αjiαij, I i 6= Ij

0, else
.

Also
∂tjWi(3) = 0 = ∂tiWj(3),

since all 3-cycles are actually time-independent in our setting. Finally,

∂tjWi(4) =

∑
m,l∈I\Ii(ai − am)(ai − al)αimαmjαjlαli(ti−tj)2 , I i = Ij

0, else
and

∂tiWj(4) =

∑
m,l∈I\Ij(aj − am)(aj − al)αjlαliαimαmj(tj−ti)2 , I i = Ij

0, else
.

This is seen explicitly on the formulae (3.4), and proves the claim, because
αijαji = αjiαij ∈ CGcycl and αjlαliαimαmj = αimαmjαjlαli ∈ CGcycl.

For the case of 4-cycles, one must also recall that ai = aj if I i = Ij, because the reading
only depends on the parts of I.
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3.3 Quantisation of potentials

Let now A := W (M, ωa) be the Weyl algebra of (M, ωa), defined as in 2.5. Recall that
there is a natural quantisation map QW : A0 −→ A, described in § 2.1.5.
The problem we face is that if one naively uses this canonical quantisation to quantise the
SLIMS, in the sense of Def. 2.6, then one gets a time-dependent quantum system which
fails to be flat. The problem lies in the necessity of symmetrising all monomials in A0 to
have a well defined map in the quantum algebra. Namely, recall that one can associate n!
different quantum operators to all monomial f = X1 · · ·Xn of degree n. One has elements

X̂σ(1) · · · X̂σ(n) ∈ A≤n,

for all permutation σ ∈ Σn on n objects, where X̂i ∈ A is the class of Xi ∈ Tens(M∗) in
A (see § 2.1 for all the background details). The lack of a canonical way to pick one of
them is one of the main issues of the theory, i.e. extending the quantisation X 7−→ X̂ of
linear functions to a full quantisation f 7−→ f̂ : A0 −→ A.

This notwithstanding, the idea we propose is to code quantum operators via decorated
cycles, just as we coded (Ĥ-invariant) functions on M via cycles.
Consider again the complete k-partite quiver G.
Definition 3.6. An anchored cycle Ĉ is an oriented cycle in G with a starting arrow
fixed, to be called the anchor of Ĉ. We will denote this by underlining the anchor:

Ĉ = αn · · ·α1,

where αn, . . . , α1 are arrows in G.

Now suppose that f ∈ A0 is a monomial coming from the trace of a cycle C =
αn · · ·α1 ∈ CGcycl. This means that f is one monomial of the sum

Tr(C) =
∑
K

Xαn
kn,kn−1 · · ·X

α1
k1,kn ∈ A0,

where K = (kn, . . . , k1) is an appropriate multi-index. Now, if one picks an anchor for C,
say that Ĉ := αn · · ·α1, then the quantum operator

f̂ :=
∑

K∈DC
X̂αn
kn,kn−1 · · · X̂

α1
k1,kn ∈ A≤n

is uniquely defined, and one can in turn define Tr(Ĉ) ∈ A to be that operator. In
hindsight, and more intrinsically, one could just consider the operator-valued matrix

X̂αn · · · X̂α1 ∈ A⊗ End(Vi),

where i := t(α1) ∈ I is the starting node of Ĉ. Taking the trace then amounts again to
contracting Vi against V ∗i .

As a final remark, notice that two different anchored cycles Ĉ1, Ĉ2 may define the
same quantum operator. This happens when their two underlying cycles coincide under
an “admissible” permutation of their arrows: no arrow α may pass over its antiparallel α∗.
This is because the entries of matrices X̂α, X̂β commute if and only if α 6= β∗, according
to the defining relations of A. This motivates the next definitions.
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Definition 3.7. Consider an anchored cycle Ĉ = αn · · ·α1 on G. An admissible permu-
tation of its arrows consists in dividing the word αn · · ·α1 in two subwords

A = αn · · ·αn−i, B = αn−i−1 · · ·α1

such that no arrow in A has its antiparallel in B, and in swapping A and B. This yields
a new anchored cycle Ĉ ′ = αn−i−1 · · ·α1αn · · ·αi.

Definition 3.8. Let ĈGcycl be the complex vector space spanned by anchored cycles in G,
defined up to admissible permutations of their arrows. Its elements will be called quantum
potentials, its generators quantum cycles.
One denotes by σ : ĈGcycl −→ CGcycl the map that forgets the anchor, which we call
the semiclassical limit. A quantum potential Ŵ is a quantisation of the potential W if
σ(Ŵ ) = W .

There exists now a well defined C-linear injective map Tr: ĈGcycl ↪→ A, together with a
commutative square where the quantum and classical traces intertwine the semiclassical
limit: σ

(
Tr(Ĉ)

)
= Tr(C) ∈ A0 for all quantum cycles Ĉ ∈ ĈGcycl that quantises the

classical cycle C ∈ CGcycl. Moreover, one can use Prop. 3.3 to produce a cycle-theoretic
analogue of the Weyl algebra. Namely, one considers the tensor map

Tens(Tr) : Tens(ĈGcycl) −→ A,

which is surjective on the subalgebra of A′ ⊆ A generated by traces of quantum cycles.
One thus has an isomorphism of associative algebras

Tens(ĈGcycl)
/

Ker(Tens(Tr)) ∼= A′.

The quotient on the left-hand side is thus an associative (quantum) algebra that has an
analogous relation with A′ ⊆ A as Sym(CGcycl) has with AĤ0 . Notice that this is abstract,
as we do not have a nice description of the kernel of the quantum trace map. However,
one has an identification

C⊕ ĈGcycl ∼= A′≤1,

with respect to the quotient filtration on A′. Indeed, this happens because Tens(Tr) is by
definition the identity on C (trace of empty cycles, if one will), and it is injective on the
vector space generated by quantum cycles.

Finally, A′ now has a well defined product, defined on quantum cycles by

Tr
(
Ĉ1Ĉ2

)
= Tr(Ĉ1) Tr(Ĉ2) ∈ A′.

This makes A′ into a filtered associative algebra, provided with a semiclassical limit

σ : A′ −→ AĤ0 ,

which is defined on monomials by forgetting anchors σ : Ĉ1 · · · Ĉn 7−→ σ(Ĉ1) · · ·σ(Ĉn).

In this noncommutative context it is even more important to allow for formal products
of cycles, in order to keep track of the anchoring, as exemplified by the next proposition.
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Proposition 3.5. Pick a quantum cycle Ĉ = αn · · ·α1, and let Ĉ ′ = αj · · ·α1αn · · ·αj+1
be a change of anchoring. One has

Ĉ − Ĉ ′ =
∑

1≤l≤j

∑
αm=α∗

l

clmĈlmD̂lm

where Ĉlm, D̂lm are two quantum cycle obtained by deleting the arrows αk, αl = α∗k, and
where clm ∈ C is the usual structure constant coming from ωa.

Proof. First, notice that one has a telescopic sum:

Ĉ − Ĉ ′ =
∑

0≤l≤j−1

(
αl · · ·α1αn · · ·αl+1 − αl+1 · · ·α1αn · · ·αl+2

)
,

so that the problem reduces to make one arrow commute.
Now pick traces and compute, introducing again the multi-index K associated to C =
σ(Ĉ) = σ(Ĉ ′):

Tr
(
αl · · ·α1αn · · ·αl+1 − αl+1 · · ·α1αn · · ·αl+2

)
=

=
∑

K∈DC
X̂αl
kl,kl−1

· · · X̂α1
k1,knX̂

αn
kn,kn−1 · · · X̂

αl+1
kl+1,kl

− X̂αl+1
kl+1,kl

· · · X̂α1
k1,knX̂

αn
kn,kn−1 · · · X̂

αl+2
kl+2,kl+1

=

=
∑

K∈DC

[
X̂αl
kl,kl−1

· · · X̂α1
k1,knX̂

αn
kn,kn−1 · · · X̂

αl+2
kl+2,kl+1

, X̂
αl+1
kl+1,kl+2

]
=

=
∑

K∈DC

∑
αm=α∗

l+1

X̂αl
kl,kl−1

· · · X̂αm+1
km+1,km

[
X̂αm
km,km−1 , X̂

αl+1
kl+1,kl

]
X̂
αm−1
km−1,km−2 · · · X̂

αl+2
kl+2,kl+1

=

=
∑

K∈DC

∑
αm=α∗

l+1

(
cm,l+1δkl,kmδkm−1,kl+1

)
X̂αl
kl,kl−1

· · · X̂αm+1
km+1,kmX̂

αm−1
km−1,km−2 · · · X̂

αl+2
kl+2,kl+1

=

=
∑
K′

∑
αm=α∗

l+1

cm,l+1X̂
αl
km,kl−1

· · · X̂αm+1
km+1,km · X̂

αm−1
km−1,km−2 · · · X̂

αl+2
kl+2,km−1 =

=
∑

αm=α∗
l+1

cm,l+1 Tr(αl · · ·αm+1) Tr(αm−1 · · ·αl+2) =:
∑

αm=α∗
l+1

cm,l+1 Tr(Ĉm,l+1) Tr(D̂m,l+1).

The last identity defines the cycles Ĉm,l+1 and D̂m,l+1. Also, we used

cm,l+1δkl,kmδkm−1,kl+1 =
[
X̂αm
km,km−1 , X̂

αl+1
kl+1,kl

]
∈ C.

Now, by definition, the above computation yields

αl · · ·α1αn · · ·αl+1 − αl+1 · · ·α1αn · · ·αl+2 =
∑

αm=α∗
l+1

cm,l+1Ĉm,l+1D̂m,l+1,

and summing on l ∈ {0, . . . , j − 1} gives the conclusion.

The following few definitions now come naturally. Consider again the classical isomon-
odromy cycles of § 3.2. The 3-cycles and the nondegenerate 4-cycles do not contain pairs
of antiparallel arrows, so that one can quantise such a cycle C by choosing any anchor:
all of them are equivalent. As for 2-cycles and degenerate 4-cycles, we make the following
choices.
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Definition 3.9. The quantisation of a degenerate 4-cycles is the quantum cycle having
the same underlying classical cycle, anchored at any arrow coming out of its centre. The
quantisation of a two cycle C = is by definition the quantum potential

Ĉ = 1
2

 +
.

In this picture and in all that follow, the black nodes are the tails of the anchors.
Remark 3.5. In the case of degenerate 4-cycles, a priori specifying a starting arrow is
more than specifying a starting node, but in this case there is no ambiguity: changing the
order of the arrows coming out of the central node amounts to an admissible permutation
of the arrows of the degenerate 4-cycles. This is because such a cycle can be written as a
word C = β∗βα∗α, where α, β are the two distinct arrows of G coming out of the centre.
Now, the two possible anchors at the centre correspond to the quantisations Ĉ1 = β∗βα∗α
and Ĉ2 = α∗αβ∗β. These two are equivalent, using the admissible permutation that swaps
the two 2-cycles: one can move β∗β to the right of α∗α without changing the relative order
of the antiparallel pairs (α, α∗), (β, β∗).

This is totally canonical, and does not rely on a full quantisation Q : A0 −→ A. One
can however show that it amounts to correcting the standard Weyl quantisation.

3.4 Definition of the simply-laced quantum connec-
tion

Consider now the isomonodromy potentialsWi = Wi(4)+Wi(3)+Wi(2) ∈ CGcycl of (3.4).

Definition 3.10. The quantum isomonodromy potential Ŵi ∈ ĈGcycl at the node i is
the sum of the quantisations of its isomonodromy cycles. The quantum isomonodromy
Hamiltonian Ĥi : B −→ A is the trace of the quantum isomonodromy potential at the
node i, i.e. Ĥi := Tr(Ŵi).

This is a quantisation of the classical isomonodromy Hamiltonian Hi : B −→ A0, in
the sense that the identity σ(Ĥi) = Hi is true everywhere on B. Consider now the trivial
“universal” bundle Ea := A×B −→ B.
Definition 3.11. The (universal) simply-laced quantum connection ∇̂ is the connection
on Ea defined by

∇̂ := dB − $̂, where $̂ :=
∑
i∈I

Ĥidti.

Note that Ω1(B, A) ⊆ Ω1
(
B,End(Ea)

)
, where one lets Ĥi act linearly on the fibre A

of Ea by left multiplication. If one thinks of $̂ as an element of A1(B, A), then this is the
same as a time-dependent quantum Hamiltonian system (see § A.3).

The main result is the following.
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Theorem 3.2. ∇̂ is strongly flat, in the sense of Def. A.8:[
Ĥi, Ĥj

]
= 0 = ∂Ĥi

∂tj
− ∂Ĥj

∂ti
, for i, j ∈ I.

To the proof of Thm. 3.2 we dedicate the next two sections.

3.5 Proof of strong flatness: I

Let us start by showing that
∂tiĤj − ∂tjĤi = 0

for all i, j ∈ I. This follows from a lemma.
Lemma 3.1. Let Wi : B −→ CG be a classical isomonodromy potential. Then

∂tjŴi = ∂̂tjWi, ∂tj Tr(Ŵi) = Tr(∂tjŴi),

for all j ∈ I.

Proof. The first set of identities are due to the fact that the quantisation does not depend
on B. Moreover, as already mentioned at the end of § 3.2, tacking a derivative does not
change the type of cycles that make up the potential, but only modifies their weights.
This means that the quantisation ∂̂tjWi is well defined, and that taking traces (both of
classical and quantum potentials) commutes with picking derivatives.

Using the second set of identities of the lemma, it is thus enough to verify that one
has ∂tiŴj − ∂tjŴi = 0 for all i, j ∈ I, because the trace of the left-hand side is precisely
the difference ∂tiĤj − ∂tjĤi. Finally, to prove this, one exploits Thm. 3.1, borrowing the
statement

∂tiWj = ∂tjWi.

This is precisely Prop. 3.4, which implies that

∂̂tiWj = ∂̂tjWi.

Then the first set of identity of the above lemma permits to conclude. Notice that crucial
fact that the quantisation is “symmetric on G”, in the sense that the quantisation Ĥi of
the Hamiltonian Hi does not depend on the base node i ∈ I.

3.6 Proof of strong flatness: II

One is left to show that the quantum isomonodromy Hamiltonians commute. By bilin-
earity, this reduces to the problem of computing commutators of the form[

Tr(Ĉ1),Tr(Ĉ2)
]
∈ A

where Ĉ1, Ĉ2 are quantum isomonodromy cycles.
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3.6.1 Commutators of quantum cycles

The first thing to do is to see whether one can still write this element in terms of traces of
quantum cycles. Let us get back to our quantum algebra A′ whose commutator is defined
by Tr

(
[Ĉ1, Ĉ2]

)
=
[

Tr(Ĉ1),Tr(Ĉ2)
]
.

We would like to be able to give a characterization of [Ĉ1, Ĉ2] along the lines of
Prop. 3.2, but unfortunately that used the commutativity of the product on A0. This
means that we cannot a priori hope that the commutator of quantum cycles be a quantum
potential: one must a priori allow for higher-order elements.
The crucial point of our proof is that one can show that the desired property holds for
the cycles we have to consider. Set ÎMD ⊆ ĈGcycl to be the vector space spanned by the
quantum isomonodromy cycles.

Proposition 3.6. The restriction [·, ·] : ̂IMD∧ ̂IMD −→ A′ takes values into ĈGcycl. More-
over, if Ĉ1, Ĉ2 ∈ ̂IMD then the commutator

[
Ĉ1, Ĉ2

]
is obtained by a suitable anchoring

of the Poisson bracket {C1, C2}, where Ci := σ(Ĉi).

The proof of Prop. 3.6 relies on a lemma, plus two separate verifications.

Lemma 3.2. Pick two quantum cycles Ĉ1, Ĉ2, with semiclassical limit C1, C2. Assume
that one of Ĉ1, Ĉ2 is a 2-cycle, or that one of them does not contain pairs of antiparallel
arrows. Then Prop. 3.6 holds for

[
Ĉ1, Ĉ2

]
∈ ĈGcycl.

Proof. Write Ĉ1 = αn · · ·α1, Ĉ2 = βm · · · β1, for αi, βj ∈ G1, and introduce again multi-
indices K := (kn, . . . , k1), L := (lm, . . . , l1) varying respectively in

DC1 := {1, . . . , dh(αn)}×· · ·×{1, . . . , dh(α1)} and DC2 := {1, . . . , dh(βm)}×· · ·×{1, . . . , dh(β1)}.

Now, one wants to expand[
Tr(Ĉ1),Tr(Ĉ2)

]
=

∑
K∈DC1 ,L∈DC2

[
X̂αn
kn,kn−1 · · · X̂

α1
k1,kn , X̂

βm
lm,lm−1 · · · X̂

β1
l1,lm

]
.

By applying Leibnitz rule recursively, one finds two possible developments:[
Tr(Ĉ1),Tr(Ĉ2)

]
=

∑
K∈DC1 ,L∈DC2

∑
i,j:αi=β∗j

[X̂αi
ki,ki−1

, X̂
βj
lj ,lj−1

]X̂βm
lm,lm−1 · · · X̂

βj+1
lj+1,lj

·

· X̂αn
kn,kn−1 · · · X̂

αi+1
ki+1,ki

X̂
αi−1
ki−1,ki−2

· · · X̂α1
k1,kn · X̂

βj−1
lj−1,lj−2

· · · X̂β1
l1,lm =

=
∑

K∈DC1 ,L∈DC2

∑
i,j:αi=β∗j

[X̂αi
ki,ki−1

, X̂
βj
lj ,lj−1

]X̂αn
km,kn−1 · · · X̂

αi+1
ki+1,ki

·

· X̂βm
lm,lm−1 · · · X̂

βj+1
lj+1,lj

X̂
βj−1
lj−1,lj−2

· · · X̂β1
l1,lm · X̂

αi−1
ki−1,ki−2

· · · X̂α1
k1,kn

Here we could displace all commutators of variables on the left, since they’re just constants
lying in the centre of A.
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Now, one would like to write all the words of length n + m − 2 in the sum as traces
of quantum cycles. One consistent way to ensure this is precisely the condition given in
the statement. Indeed, if — say — Ĉ1 satisfies the hypothesis, then it has no pair of
antiparallel arrows, as soon as one of its arrows is removed. Then one is free to write

X̂αn
kn,kn−1 · · · X̂

αi+1
ki+1,ki

X̂
αi−1
ki−1,ki−2

· · · X̂α1
k1,kn = X̂

αi−1
ki−1,ki−2

· · · X̂α1
k1,knX̂

αn
kn,kn−1 · · · X̂

αi+1
ki+1,ki

and thus all addends get the desired form:[
Tr(Ĉ1),Tr(Ĉ2)

]
=

∑
K∈DC1 ,L∈DC2

∑
i,j:αi=β∗j

[X̂αi
ki,ki−1

, X̂
βj
lj ,lj−1

]X̂βm
lm,lm−1 · · · X̂

βj+1
lj+1,lj

·

· X̂αi−1
ki−1,ki−2

· · · X̂α1
k1,knX̂

αn
kn,kn−1 · · · X̂

αi+1
ki+1,ki

· X̂βj−1
lj−1,lj−2

· · · X̂β1
l1,lm =

=
∑

i,j:αi=β∗j

cij Tr
(
X̂βm · · · X̂βj+1X̂αi−1 · · · X̂α1X̂αn · · · X̂αi+1X̂βj−1 · · · X̂β1

)
,

where we used [X̂αi
ki,ki−1

, X̂
βj
lj ,lj−1

] = cijδki,lj−1δki−1,lj ∈ C. This is the same structure con-
stant as in the classical case, precisely because A is a quantisation of A0. Notice that the
second development would work if Ĉ2 were the quantum cycle satisfying the hypothesis.

Comparing the above formula with that of {C1, C2} = σ
([
Ĉ1, Ĉ2

])
shows that the

commutator is a lift of the Poisson bracket.

The only IMD cycles that do not satisfy the hypothesis of Lem. 3.2 are the degenerate
4-cycles. Hence one must still show that the commutator of two such cycles follows the
same rule. This leads us to check the possible intersections of cycles in G.

Definition 3.12. Two (classical or quantum) cycles are said to intersect if there exists
an arrow of the first with its antiparallel in the second. The intersection is said to be
nontrivial if the two cycles are different.

Notice that two classical cycles (resp. quantum cycles) may have a nonvanishing
Poisson bracket (resp. vanishing commutator) only if they intersect nontrivially. Now,
two degenerate 4-cycles have only two possible nontrivial intersections: either they have
the centre in common, or they do not.

Proposition 3.7. Pick nodes a, b, c, d ∈ I such that the sequences of nodes (a, b, a, c) and
(a, c, d, c) define two degenerate 4-cycles. Then the following commutator vanishes:

a b

c

a

c d

,
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Here we sketched quantum cycle by drawing a black node where their anchor starts.

Proof. Let’s set α := (a, b), β := (b, c), γ := (c, d). Then one has:

[
Tr(X̂β∗X̂βX̂α∗X̂α, X̂βX̂β∗X̂γ∗X̂γ)

]
=

∑
i,j,k,l,m,n,o,p

[
X̂β∗

ij X̂
β
jkX̂

α∗

kl X̂
α
li , X̂

β
mnX̂

β∗

no X̂
γ∗

op X̂
γ
pm

]
=

=
∑

i,j,k,l,m,n,o,p

[
X̂β∗

ij X̂
β
jk, X̂

β
mnX̂

β∗

no

]
X̂α∗

kl X̂
α
liX̂

γ∗

op X̂
γ
pm =

=
∑

i,j,k,l,m,n,o,p

X̂β∗

ij X̂
β
mn

[
X̂β
jk, X̂

β∗

no

]
X̂α∗

kl X̂
α
liX̂

γ∗

op X̂
γ
pm +

[
X̂β∗

ij , X̂
β
mn

]
X̂β∗

no X̂
β
jkX̂

α∗

kl X̂
α
liX̂

γ∗

op X̂
γ
pm =

=
∑

i,j,k,l,m,n,o,p

cββ∗δjoδknX̂
β∗

ij X̂
β
mnX̂

α∗

kl X̂
α
liX̂

γ∗

op X̂
γ
pm + cβ∗βδjmδinX̂

β∗

no X̂
β
jkX̂

α∗

kl X̂
α
liX̂

γ∗

op X̂
γ
pm =

= cββ∗
(

Tr(X̂β∗X̂γ∗X̂γX̂βX̂α∗X̂α − Tr(X̂β∗X̂γ∗X̂γX̂βX̂α∗X̂α)
)

= 0.

One uses that cββ∗ ∈ C is alternating in the arrows of G.

The next intersection asks instead to show that the following picture is true.

Proposition. Pick two degenerate 4-cycles with the central node j ∈ I in common. If
they intersect nontrivially, then one has, ignoring structure constants:

j j

3

2

1 2

3

1

,

The number at the peripheral nodes indicates the order in which one must touch them,
starting from the centre (the tail of the anchor).

Proof. Denote β, β∗ the arrows that the two cycle have in common, with t(β) = j. Set
then α, α∗ to be the remaining arrows of the leftmost cycle, with t(α) = j, and similarly
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for γ, γ∗, where t(γ) = j. Then one has:[
Tr(X̂β∗X̂βX̂α∗X̂α),Tr(X̂β∗X̂βX̂γ∗X̂γ)

]
=

∑
i,j,k,l,m,n,o,p

[
X̂β∗

ij X̂
β
jkX̂

α∗

kl X̂
α
li , X̂

β∗

mnX̂
β
noX̂

γ∗

op X̂
γ
pm

]
=

=
∑

i,j,k,l,m,n,o,p

[
X̂β∗

ij X̂
β
jk, X̂

β∗

mnX̂
β
no

]
X̂α∗

kl X̂
α
liX̂

γ∗

op X̂
γ
pm =

=
∑

i,j,k,l,m,n,o,p

X̂β∗

ij

[
X̂β
jk, X̂

β∗

mn

]
X̂β
noX̂

α∗

kl X̂
α
liX̂

γ∗

op X̂
γ
pm + X̂β∗

mn

[
X̂β∗

ij , X̂
β
no

]
X̂β
jkX̂

α∗

kl X̂
α
liX̂

γ∗

op X̂
γ
pm =

=
∑

i,j,k,l,m,n,o,p

cββ∗δjnδkmX̂
β∗

ij X̂
β
noX̂

α∗

kl X̂
α
liX̂

γ∗

op X̂
γ
pm + cβ∗βδioδjkX̂

β∗

mnX̂
β
jkX̂

α∗

kl X̂
α
liX̂

γ∗

op X̂
γ
pm =

= cββ∗
(

Tr(X̂α∗X̂αX̂β∗X̂βX̂γ∗X̂γ)− Tr(X̂β∗X̂βX̂α∗X̂αX̂γ∗X̂γ)
)
,

3.6.2 Anchors

Let us decompose the classical IMD potentials Wi,Wj into a sum of classical IMD
cycles: Wi = ∑

k ckCk,Wj = ∑
l dlDl. After expanding their vanishing Poisson bracket by

bilinearity, one will find itself with a sum of potentials:

0 = {Wi,Wj} =
∑
k,l

ckl{Ck, Dl}. (3.5)

Putting together all the cycles that coincide as elements of CGcycl, one will get to a
finer decomposition

0 = {Wi,Wj} =
∑
m

emEm ∈ CGcycl.

Now, since we’re assuming that Em 6= Em′ for m 6= m′ in this sum, one has necessarily
em = 0 for all m: any finite family of distinct cycles in G is free inside CGcycl, by definition.

Now, thanks to Prop. 3.6, one will find a similar development:[
Ŵi, Ŵj

]
=
∑
k,l

ckl
[
Ĉk, D̂l

]
,

with Ĉk, D̂ being the quantisation of Ck, Dl, and more importantly with
[
Ĉk, D̂l

]
being a

quantisation of {Ck, Dl}. One would now like to have[
Ŵi, Ŵj

]
=
∑
m

emÊm ∈ ĈGcycl,

with the same constants em ∈ C, for some lift Êm of Em. This happens if and only if every
time that one has {Ck, Dl} = {Ck′ , Dl′} in (3.5), then one also has

[
Ĉk, D̂l

]
=
[
Ĉk′ , D̂l′

]
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in ĈGcycl. Since these two commutators have the same underlying classical cycle, this
happens if and only if their anchors are equivalent, which can clearly be achieved whenever
both Ck and Dl are not degenerate 4-cycles. Indeed, for 3-cycles and nondegenerate 4-
cycles the choice of anchor is totally immaterial, and one can change the anchor of a
2-cycle at the cost of adding a term of order zero, i.e. a central additive constant which
will not tamper with the commutator.
Hence one is led to consider the nontrivial intersections of nondegenerate 4-cycles with
other types of cycles. The only ones which yield a nonvanishing Poisson brackets are
described in plain words as:

1. a 3-cycle and a degenerate 4-cycle with one pair of antiparallel arrows in common5

2. two degenerate 4-cycles with the centre in common

3. a nondegenerate 4-cycle and a degenerate one, with one pair of antiparallel arrows
in common

4. same as the one just above, with two pairs in common

All these intersections give cycles which are classically distinguishable. Also, n ° 2 has
already been dealt with above.

We will now show that these nontrivial intersections yield equivalent quantum po-
tentials, as needed in order to conclude the proof of Thm. 3.2. We will thus sketch
three commutators of quantum cycles, with the logic behind the pictures always being to
summarise longer computations in noncommutative variables, exploiting Prop. 3.6. We
also explicitly write down these computations in Darboux coordinates, so to simplify the
formulae.

Let us start from n°1. One can verify that this nontrivial intersection produces as
Poisson brackets 5-cycles which are built from glueing a 2-cycle to a 3-cycle, with the two
having no antiparallel arrows in common. It would then be enough to choose anchors so
that one always follows the 3-cycle first, and this can indeed be done.

Proposition 3.8. Pick nodes a, b, c, d ∈ I so that (a, d, c) defines a 3-cycle. Assume also
that a and b are adjacent. Then one may choose Darboux coordinates so that:

a

b

c a

d

c a

b

c

d

,

5It is impossible that they have two pairs of antiparallel arrows in common, since the three nodes of
a IMD 3-cycle all lie in three different parts of I, whereas the nodes of a degenerate 4-cycle lie in two
different parts.
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Proof. Set α := (a, d), β := (d, c), γ := (c, a) and ε := (a, b). Then one has:[
Tr(X̂ε∗X̂εX̂γX̂γ∗),Tr(X̂γX̂βX̂α)

]
=

∑
i,j,k,l,m,n,o

[
X̂ε∗

ij X̂
ε
jkX̂

γ
klX̂

γ∗

li , X̂
γ
mnX̂

β
noX̂

α
om

]
=

=
∑

i,j,k,l,m,n,o

X̂ε∗

ij X̂
ε
jkX̂

γ
kl

[
X̂γ∗

li , X̂
γ
mn

]
X̂β
noX̂

α
om =

=
∑

i,j,k,l,m,n,o

δlnδimX̂
ε∗

ij X̂
ε
jkX̂

γ
klX̂

β
noX̂

α
om = Tr(X̂ε∗X̂εX̂γX̂βX̂α).

Now, every time that such a nontrivial intersection arises, one can base the 3-cycle
as in the above figures without loss of generality, and the resulting 5-cycle will start at
its 3-subcycle. In particular, two such commutators will be equal if and only if their
associated classical brackets are, which is the result one is after.

One may next consider n °3. This nontrivial intersection produces a 6-cycle as Poisson
bracket, built from glueing a nondegenerate 4-cycle and a 2-cycle, with the two having no
antiparallel arrows in common. It would then be enough to choose anchors so that one
always follows the 4-cycle first, and this can indeed be done.

Proposition 3.9. Pick nodes a, b, c, d, e ∈ I such that (a, b, c, d) defines a 4-cycle. Assume
that b and e are adjacent. Then one can choose Darboux coordinates so that:

a b

d c

a b

e

a b

d c

e

,

Proof. Set α := (a, b), β := (b, c), γ := (c, d), ε := (d, a) and ζ := (b, e). Then one has:[
Tr(X̂εX̂γX̂βX̂α),Tr(X̂ζ∗X̂ζX̂αX̂α∗)

]
=

∑
i,j,k,l,m,n,o,p

[
X̂ε
ijX̂

γ
jkX̂

β
klX̂

α
li , X̂

ζ∗

mnX̂
ζ
noX̂

α
opX̂

α∗

pm

]
=

=
∑

i,j,k,l,m,n,o,p

X̂ε
ijX̂

γ
jkX̂

β
klX̂

ζ∗

mnX̂
ζ
noX̂

α
op

[
X̂α
li , X̂

α∗

pm

]
=

∑
i,j,k,l,m,n,o,p

δipδlmX̂
ε
ijX̂

γ
jkX̂

β
klX̂

ζ∗

mnX̂
ζ
noX̂

α
op =

=
∑

i,j,k,l,m,n

X̂ε
ijX̂

γ
jkX̂

β
klX̂

ζ∗

lmX̂
ζ
mnX̂

α
ni = Tr(X̂εX̂γX̂βX̂ζ∗X̂ζX̂α).

Finally, one should check n °4.

Proposition 3.10. Pick nodes a, b, c, d ∈ I defining a 4-cycle. One may choose Darboux
coordinates so that:
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a b

d c

a b

c

a b

d c2 c1

a
b2

d c

b1

,

On the right-hand side one has split the nodes c = c1 = c2 and b = b1 = b2, which are
both touched twice. The point of this proposition is the same as before: up to changing
the anchor of the nondegenerate 4-cycle, all 6-cycles that appear as a result of this type
of nontrivial intersection will have equivalent anchors (one follows the 2-cycle first).

Proof. Let’s denote α := (a, b), β := (b, c), γ := (c, d), and ε = (d, a). Then one has:[
Tr(X̂εX̂γX̂βX̂α),Tr(X̂αX̂α∗X̂β∗X̂β)

]
=

∑
i,j,k,l,m,n,o,p

[
X̂ε
ijX̂

γ
jkX̂

β
klX̂

α
li , X̂

α
mnX̂

α∗

no X̂
β∗

op X̂
β
pm

]
=

=
∑

i,j,k,l,m,n,o,p

X̂ε
ijX̂

γ
jkX̂

β
kl

[
X̂α
li , X̂

α
mnX̂

α∗

no X̂
β∗

op X̂
β
pm

]
+ X̂ε

ijX̂
γ
jk

[
X̂β
kl, X̂

α
mnX̂

α∗

no X̂
β∗

op X̂
β
pm

]
X̂α
li =

=
∑

i,j,k,l,m,n,o,p

X̂ε
ijX̂

γ
jkX̂

β
klX̂

α
mn

[
X̂α
li , X̂

α∗

no

]
X̂β∗

op X̂
β
pm + X̂ε

ijX̂
γ
jkX̂

α
mnX̂

α∗

no

[
X̂β
kl, X̂

β∗

op

]
X̂β
pmX̂

α
li =

=
∑

i,j,k,l,m,n,o,p

δloδinX̂
ε
ijX̂

γ
jkX̂

β
klX̂

α
mnX̂

β∗

op X̂
β
pm − δloδkpX̂ε

ijX̂
γ
jkX̂

α
mnX̂

α∗

no X̂
β
pmX̂

α
li =

=
∑

i,j,k,l,m,n,o,p

δloδinX̂
α
mnX̂

ε
ijX̂

γ
jkX̂

β
klX̂

β∗

op X̂
β
pm − δloδkpX̂ε

ijX̂
γ
jkX̂

β
pmX̂

α
mnX̂

α∗

no X̂
α
li =

=
∑

i,j,k,l,m,n

X̂α
ijX̂

ε
jkX̂

γ
klX̂

β
lmX̂

β∗

mnX̂
β
ni − X̂ε

ijX̂
γ
jkX̂

β
klX̂

α
lmX̂

α∗

mnX̂
α
ni =

= Tr(X̂αX̂εX̂γX̂βX̂β∗X̂β)− Tr(X̂εX̂γX̂βX̂αX̂α∗X̂α).

This computation concludes the proof of Thm. 3.2.

3.7 KZ and the star

Here we show that the KZ connection (2.22) of § 2.3.5 is a reduction of the simply-
laced quantum connection for the degenerate reading of a star with no irregular times.
Recall that a star is a complete bipartite graph having one part with a single node. The
statements we will prove are the following.

Theorem 3.3. The Schlesinger connection quantises to the KZ connection via the stan-
dard PBW isomorphism.
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This is proven in § 2.3.5.

Theorem 3.4. The SLIMS reduce to the Schlesinger system, in the special case of the
degenerate reading of a star with no irregular times.

This is proven in § 3.7.2 and § 3.7.3.

Theorem 3.5. The SLQC reduces to the KZ system, in the same case as above.

This is proven in § 3.7.4 and § 3.7.5.

3.7.1 Simply-laced quantum connection of a star

The general construction of § 3.1 must be reduced to the following data: the set J has
cardinality k = 2 the reading is a(J) = {+∞, 0}, and T 0 = 0. One considers the
complete graph on nodes J . The splayed graph G will be a star on nodes
I = I0∐ I∞ = {0}∐ I∞. It will be centred at 0, and have m := |I∞| legs.
The base space of times is then B = Cm \ {diags}, the vector phase-space is

M = Hom(W∞,W 0)⊕ Hom(W 0,W∞),

equipped with the symplectic form ωa = Tr(dQ ∧ dP ), where one considers linear maps
Q : W∞ −→ W 0, P : W 0 −→ W∞. If W∞ = ⊕

i∈I∞ Vi, then one will write Qi for the
component of Q in V ∗i ⊗W 0, and Pi for the component of P in (W 0)∗ ⊗ Vi. Notice that
we’ve basically chosen an orientation of G̃, which wasn’t necessary. However, this provides
Darboux coordinates:

{(Qi)kl, (Pj)mn} = δijδknδlm, {(Qi)kl, (Qj)mn} = 0 = {(Pi)kl, (Pj)mn}.

Those data code a space of meromorphic connections of the form

∇ = d−
∑
i∈I∞

QiPi
z − ti

dz,

on the trivial vector bundle W 0 × CP 1 −→ CP 1. Here {ti}i∈I∞ ∈ B, and (Q,P ) ∈M.

The isomonodromic deformations of those connections are coded by the Hamiltonian
system

$ = 1
2 Tr

(
P̃QPQ

)
=
∑
i∈I∞

Hidti ∈ Ω0(Fa, π∗T ∗B),

where π : Fa = M×B −→ B is the trivial symplectic fibration of § 3.1. This system spells
out as

Hi(Q,P, T∞) =
∑

i 6=j∈I∞

Tr(PiQjPjQi)
ti − tj

∈ Sym(M∗). (3.6)

Indeed, Hi is the sum of the traces of all (necessarily degenerate) 4-cycles at the node
i, whereas 3-cycles cannot appear in a bipartite context, and all 2-cycles are not there
because of A = T 0 = dT 0 = 0.
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The SLQC at hand is then

∇̂ = dB − $̂ = dB −
∑
i∈I∞

 ∑
i 6=j∈I∞

Tr(Q̂jP̂jQ̂iP̂i)
ti − tj

 dti. (3.7)

This is a connection on the trivial (quantum) vector bundle Ea = A × B −→ B, where
A := W (M∗, ωa). Here again one denotes by ωa the symplectic form induced on M∗ by
the linear isomorphism induced by the symplectic pairing M ∧M −→ C. As explained
when introducing the Weyl algebra, this bilinear alternating map M∗ ∧M∗ −→ C is the
restriction of the Poisson bracket of O(M) to linear function.

The main theorem 3.2 assures that ∇̂ is strongly flat. Let us set

Ĥi :=
∑
i 6=j

Tr(Q̂jP̂jQ̂iP̂i)
ti − tj

,

for the quantum Hamiltonians defining the simply-laced quantum connection. Let us
prove explicitly that the connection is strongly flat. To this end, the only nontrivial
verification is that for the commutators.

Proposition 3.11. One has [
Ĥi, Ĥj

]
= 0

for all i, j ∈ I∞.

Proof. Pick i 6= j ∈ I∞. The trick is to decompose the commutator in the following sum:
[
Ĥi, Ĥj

]
=

∑
k∈I∞\{i,j}

1
(ti − tk)(tj − tk)

[
Tr(Q̂kP̂kQ̂iP̂i),Tr(Q̂kP̂kQ̂jP̂j)

]
+

+ 1
(ti − tj)(tj − tk)

[
Tr(Q̂jP̂jQ̂iP̂i),Tr(Q̂jP̂jQ̂kP̂k)

]
+

+ 1
(ti − tk)(tj − ti)

[
Tr(Q̂iP̂iQ̂kP̂k),Tr(Q̂iP̂iQ̂jP̂j)

]

This decomposition is suggested by looking at the degenerate 4-cycles at the nodes i, j
with 2-cycles in common, which leaves the following nontrivial intersections:

k

i

k

j,

and
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i

j

k

j,

and

k

i i

j,

All those cycles are based at the centre 0 ∈ I of the star. Those intersections give precisely
the terms above. Now, using Prop. 3.6.1 for the commutators, one finds:

[
Ĥi, Ĥj

]
=
∑
k 6=i,j

1
(ti − tk)(tj − tk)

Tr
(

[Q̂iP̂i, Q̂kP̂k]Q̂jP̂j

)
+

+ 1
(ti − tj)(tj − tk)

Tr
(

[Q̂iP̂i, Q̂jP̂j]Q̂kP̂k

)
+ 1

(ti − tk)(tj − ti)
Tr
(

[Q̂kP̂k, Q̂iP̂i]Q̂jP̂j

)
=

=
∑
k 6=i,j

[
1

(ti − tk)(tj − tk)
− 1

(ti − tj)(tj − tk)
− 1

(ti − tk)(tj − ti)

]
Tr
(

[Q̂jP̂j, Q̂iP̂i]Q̂kP̂k

)
.

Finally, this vanishes thanks to the identity

1
(ti − tk)(tj − tk)

− 1
(ti − tj)(tj − tk)

− 1
(ti − tk)(tj − ti)

= 0.

Remark 3.6. It is precisely this type of computation that motivated the introduction
of (traces of) quantum potentials. Moreover, cyclic identities of the type above for the
functions (ti− tk)−1(tj − tk)−1 are also used in the proof of flatness of the KZ connection.
Indeed, we view the commutation relations among degenerate 4-cycles as a lift of the
so-called Kohno relations for the operators Ωij of the KZ connection (2.22).
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3.7.2 The classical reduction

The main idea is to replace the product QiPi ∈ End(W 0) that appears in (3.6) with the
residue Ri ∈ End(W 0) that appears in (2.21). This transforms the former into the latter,
as one sees directly on the explicit formulae.

To make this rigorous, get back to the vector spaces W 0,W∞ = ⊕
i∈I∞ Vi, and set

g0 := gl(W 0). Thanks to the trace-pairing, one has a canonical identification

Li := W 0 ⊗ V ∗i = Hom(Vi,W 0) ∼= Hom(W 0, Vi) = (W 0)∗ ⊗ Vi,

and this for all i ∈ I∞. One now considers the map given by the composition of linear
functions, that is

µi : Li ⊕ L∗i −→ g0, (A,B) 7−→ AB,

This best expressed by choosing bases. If {ej}j is a basis of W 0, then one has a
canonical basis of g0, provided by {ejk := ej⊗dek}jk: ejk is the endomorphism that maps
ek into ej. If one next chooses a basis {f (i)

j }j of Vi, then one has a basis {(ef (i))jk :=
ej ⊗ df (i)

k }jk of Li: (ef (i))jk is the linear function that maps f (i)
k into ej. The trace-duality

sends this to a basis {(f (i)e)jk := f
(i)
j ⊗ dek}jk of L∗i , with (f (i)e)jk : W 0 −→ Vi sending ek

to f (i)
j .

With those choices made, the product µi : T ∗Li −→ g0 reads

µi((ef (i))jk, (f (i)e)lm) = µi
(
(ej ⊗ df (i)

k )⊕ (f (i)
l ⊗ dem)

)
= δklej ⊗ dem = δklejm.

Then one expands by bilinearity, to get the usual matrix product Li ⊗ L∗i −→ g0. Notice
that µi is nothing but a restriction of the moment map for the standard action of GL(W 0)
on M. Equivalently, it is the Poisson map for the restricted action of GL(W 0) on the
invariant symplectic subspace T ∗Li ⊆M:

g.(Qj, Pj)j∈I∞ = (Q′j, P ′j)j∈I∞ ,

with

(Q′j, P ′j) =
(Qj, Pj), j 6= i,

(gQi, Pig
−1), else.

In particular, µi is a Poisson map.

This was the situation for a single leg of the star-shaped graph G. One can now glue
the maps µi to the full moment map

µ : M =
⊕
i∈I∞

T ∗Li −→ g0, µ : (Qi, Pi)i∈I∞ 7−→
∑
i∈I∞

µi(Q,P ) =
∑
i∈I∞

QiPi,

which will satisfy the same as above. We shall also abusively denote µ : M −→ (g0)m the
map (Qi, Pi)i∈I∞ 7−→ (QiPi)i∈I∞ that separates the components.

Proposition 3.12. One has µ∗(HSch
i ) = Hi for all i ∈ I∞.
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Proof. By linearity, it is enough to check that

µ∗Tr(RiRj) = Tr(QiPiQjPj),

for i 6= j. This follows from the fact that

(Ri)kl = dekl(Ri), (Qi)kl = d(ef (i))kl(Qi), (Pi)kl = d(f (i)e)kl(Pi),

with the same notation as above, by the very definition of the component maps with
respect to the bases {ej}j of W 0 and {f (i)

j }j of Vi. One may write de(i)
kl for the coordinate

function R 7−→ (Ri)kl = dekl(Ri).

Having understood this notation, one has

µ∗i de
(i)
jk

(
(ef (i))lm ⊕ (f (i)e)no

)
= de

(i)
jkµi

(
(ef (i))lm ⊕ (f (i)e)no

)
= de

(i)
jk (δmne(i)

lo ) = δmnδjlδko,

which yields the formula

µ∗i de
(i)
jk =

∑
m

d(ef (i))jm ⊗ d(f (i)e)mk ∈ O(T ∗Li).

Hence the following computation yields the result:

µ∗Tr(RiRj) = µ∗
∑
k,l

(Ri)kl(Rj)lk =
∑
k,l

(
µ∗i (Ri)kl

)(
µ∗j(Rj)lk

)
=

=
∑
k,l

(
µ∗i de

(i)
kl

)
⊗
(
µ∗jde

(j)
lk

)
=

∑
k,l,m,n

d(ef (i))km ⊗ d(f (i)e)ml ⊗ d(ef (j))ln ⊗ d(f (j)e)nk =

=
∑

k,l,m,n

(Qi)km(Pi)ml(Qj)ln(Pj)nk = Tr(QiPiQjPj).

This proposition means that there is a consistent way to pass from the star-shaped
SLIMS to the Schlesinger ones, by the change of variable Ri := QiPi. We view this as a
classical reduction, in the following sense.

3.7.3 Dual symplectic pairs and classical Hamiltonian reduction

Consider two smooth affine complex Poisson varieties P1, P2.

Definition 3.13. A smooth affine symplectic variety (M,ω) over C, together with a
couple of Poisson maps µ1, µ2 : M −→ Pi, is called a symplectic dual pair if one has

{µ∗1(O(P1)), µ∗2(O(P2))}ω = 0,

where O(Pi) are the global sections of the structural sheaf of Pi, and with {·, ·}ω being
the Poisson bracket on O(M) defined by ω.
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This notion was introduced in [Kar89].6 Such a situation arises in particular for the mo-
ment maps with respect to commuting Hamiltonian actions. To prove this, pick two com-
plex algebraic groups G1, G2 with Lie algebras g1, g2, and a symplectic manifold (M,ω).

Lemma 3.3. Assume that G1, G2 act on (M,ω) with momenta µi : M −→ g∗i . If the two
actions commute, then one has a dual symplectic pair.

Proof. One can consider the natural action of G := G1 × G2 on (M,ω). It admits the
moment

µ = µ1 ⊕ µ2 : M −→ g1 ⊕ g2.

Now one has, for xi ∈ gi:

{µ∗1(x1), µ∗2(x2)}ω = {µ∗(x1, 0), µ∗(0, x2)}ω = µ∗
(
[(x1, 0), (0, x2)]

)
=

= µ∗
(
[x1, 0], [0, x2]

)
= µ∗(0, 0) = 0,

where one used the fact that µ∗ : g1 ⊕ g2 −→ O(M) is a morphism of Lie algebras, plus
the definition of the direct sum of Lie algebras.

To apply this to the case at hand, set G0 := GL(W 0), G∞ := ∏
i∈I∞ GL(Vi), with Lie

algebras g0, g∞. The two groups act on (M, ωa) with commutative Hamiltonian actions.
Introduce the notation µ0 : M −→ g0 ∼= (g0)∗ and µ∞ : M −→ g∞ ∼= (g∞)∗ for the
momenta. One would now like to relate the subalgebra µ∗0(O(g0)) ⊆ O(M) to that of
regular functions on the reduction M

/
G∞. Recall that this is by definition the affine

Poisson scheme defined as

M
/
G∞ := Spec

(
O(M)G∞

)
,

using elementary affine GIT theory. This is well defined, because one is acting via a
reductive group on affine space, but it can have geometric issues: the space may be
nonreduced and/or singular. Here we are however only interested in the dual functional
viewpoint, i.e. the algebraic one, which is more suited to deformation quantisation.

Recall from § 2.1.6 that one defines the (classical) Hamiltonian reductionR
(
O(M), g∞, I

)
of O(M) with respect to the Lie algebra g∞ and an ideal I ⊆ Sym(g∞), assuming there to
be a (co)moment µ∗∞ : Sym(g∞) −→ O(M). Namely, one considers the ideal J ⊆ O(M)
generated by µ∗∞(I), and then one sets

R(O(M), g∞, I) := O(M)g∞
/
Jg∞ ,

where
O(M)g∞ := {f ∈ O(M) | {µ∗∞(g∞), f} = 0},

and Jg∞ = J ∩ O(M)g∞ . In § 2.1.6 it was shown that the reduction is Poisson. Notice
that one has

O(M)g∞
/
Jg∞ ∼=

(
O(M)/J

)g∞

,

6This is the weakest possible notion that one finds in the literature. Some authors require the maps
µi to be submersive. Some other require that the two subalgebras µ∗i (O(Pi)) be the mutual centraliser
of one another into O(M).
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since g∞ is reductive.

The important feature of the above symplectic dual pairs is that the image of µ∗0 is
contained in O(M)g∞ . This provides a natural morphism of Poisson algebras

ϕ : O(g0)m −→ R
(
O(M), g∞, I

)
for all ideals I ⊆ Sym(g∞), by composing µ∗0 with the canonical projection to the Hamil-
tonian reduction π : O(M)g∞ −→ R(O(M), g∞, I).

This is the correspondence we invoke to say that {HSch
i }i is a reduction of the classical

SLIMS of a star. Indeed, we’ve shown that µ∗0(HSch
i ) = Hi : B −→ O(M). Now, since

actually Hi takes values in the invariant part O(M)g∞ , one may reduce it to a function
π(Hi) defined on any symplectic reduction

(
M//OG

∞
)
×B of the above trivial Poisson

fibration. One then has ϕ(HSch
i ) = π(Hi), by definition.

3.7.4 The quantum reduction

One can now use the quantum constructions which are analogue to the above classical
ones. Recall that we defined quantum moments and quantum Hamiltonian reduction in
§ 2.1.6, and now we wish to apply that material to our context, where the group GL(W 0)
acts on (M, ωa) with comoment µ∗0 : Sym

(
(g0)∗

)
−→ A0.

One can provide a natural quantisation of it. Namely, one defines µ̂∗0 : U
(
(g0)∗

)
−→ A

by showing that the auxiliary morphism

µ̃∗0 : Tens
(
(g0)∗

)
−→ Tens(T ∗Li), µ̃∗0 : dejk 7−→

∑
m

d(ef (i))jm ⊗ d(f (i)e)mk,

induces an associative morphism of the quantum algebras thanks to the universal property
of the quotient. Just as before, one can fix i ∈ I∞, and admits that all results will glue
as they have to, because of the universal property of the direct sum. Moreover, it turns
out to be simpler to check this for the trace-dual version.

Consider thus the map

α : Tens(g0) −→ Tens(T ∗Li), α : ejk 7−→
∑
m

(f (i)e)mk ⊗ (ef (i))jm.

To get to this map, one indeed uses the dualities

Tr : dejk 7−→ ekj, Tr: d(ef (i))jk 7−→ (f (i)e)kj, Tr: d(f (i)e)jk 7−→ (ef (i))kj,

provided by the trace. A last point must however be made: the linear isomorphism
Tr: (M, ωa) −→ (M∗, ωa) is anti-symplectic, since the trace reverses the orientation chosen
for the arrows of G. To be more explicit, the isomorphism ϕ : M∗ −→M provided by the
symplectic pairing is canonical, whereas the isomorphism Tr: M∗ −→ M is noncanonical
(it relies on the choice of a polarisation for (M, ωa)), and they differ by a sign when
computed on the usual basis:

ϕ : d(ef (i))jk 7−→ −(f (i)e)kj, ϕ : d(f (i)e)jk 7−→ (ef (i))kj
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Hence one should prove that α induces a morphism with the Weyl algebra for the opposite
symplectic structure, and this is precisely what happens.

Proposition 3.13. The map α : Tens(g0) −→ Tens(T ∗Li) induces an associative mor-
phism ϕ̂ : U(g0) −→ W (T ∗Li, ωop

a ), where ωop
a is the opposite symplectic structure.

Proof. Thanks to the universal property of the quotient, it is enough to show that one
has α(I1) ⊆ Jop

ωa . Here Jop
ωa ⊆ Tens(T ∗Li) is the bilateral ideal generated by

x⊗ y − y ⊗ x− ωop
a (x, y) = x⊗ y − y ⊗ x+ ωa(x, y),

for x, y ∈M, and I1 ⊆ U(g0) is the bilateral ideal generated by

v ⊗ w − w ⊗ v − [v, w],

for v, w ∈ g0. This can be shown on the usual bases {ejk}j,k ⊆ g0, {(ef i)jk}j,k ⊆ Li and
{(f ie)jk}j,k ⊆ L∗i . One has:

α
(
ejk ⊗ elm − elm ⊗ ejk − [ejk, elm]

)
= α

(
ejk ⊗ elm − elm ⊗ ejk − δklejm + δjmelk

)
=

=
∑
n,o

[
(f ie)nk ⊗ (ef i)jn, (f ie)om ⊗ (ef i)lo

]
− δklδno(f ie)om ⊗ (ef i)jn + δjmδno(f ie)nk ⊗ (ef i)lo =

=
∑
n,o

(f ie)nk ⊗
([

(ef i)jn, (f ie)om
]

+ ωa
(
(ef i)jn, (f ie)om

))
⊗ (ef i)lo+

+
∑
n,o

(f ie)om ⊗
([

(f ie)nk, (ef i)lo
]

+ ωa
(
(f ie)nk, (ef i)lo

))
⊗ (ef i)jn+

+
∑
n,o

(f ie)nk ⊗ (f ie)om ⊗
([

(ef i)jn, (ef i)lo
]

+ ωa
(
(ef i)jn, (ef i)lo

))
+

+
∑
n,o

([
(f ie)nk, (f ie)om

]
+ ωa

(
(f ie)nk, (f ie)om

))
⊗ (ef i)lo ⊗ (ef i)jn.

This expansion follows from the Leibnitz rule for the commutator of Tens(T ∗Li), and
from the canonical relations

ωa
(
(ef i)jn, (f ie)om

)
= δjmδno, ωa

(
(f ie)nk, (ef i)lo

)
= −δklδno,

ωa
(
(ef i)jn, (ef i)lo

)
= 0 = ωa

(
(f ie)nk, (f ie)om

)
.

At the end one has four addends, each of which is a (bilateral) Tens(T ∗Li)-linear combi-
nation of generators of Jop

ωa . Hence the result lies in the ideal, by definition.

This proposition shows that the definition

µ̂∗0
(
d̂ejk

)
=
∑
m

d̂(ef (i))jm · d̂(f (i)e)mk ∈ A (3.8)

makes sense. The conceptual reason why this works is that µ∗0 is Poisson. It is straightfor-
ward to check that this maps quantises µ∗0. Moreover, it now defines a quantum g0-action
ξ̂0 : g0 −→ Der(A) that quantises the classical ξ0 : g −→ Der(A0).

107



CHAPTER 3. SIMPLY-LACED QUANTUM CONNECTIONS

Proposition 3.14. One has µ̂∗0
(
ĤKZ
i

)
= Ĥi.

Proof. This equality makes sense by using the canonical trace-duality, as above. By
linearity, it will be enough to show that

µ̂∗0
(

Tr(R̂iR̂j)
)

= Tr(Q̂iP̂iQ̂jP̂j),

for i 6= j ∈ I∞. Indeed, one knows that the ∑j 6=i
Tr(R̂iR̂j)
ti−tj ∈ U(g∗)⊗m is the trace-dual

of ∑j 6=i
Ωij
ti−tj = ĤKZ

i , because KZ quantises Schlesinger. The result now follows by the
straightforward expansion

µ̂∗0
(

Tr(R̂iR̂j)
)

=
∑
k,l

µ̂∗0
(
(R̂i)kl

)
· µ̂∗0

(
(R̂j)lk

)
=
∑
k,l

µ̂∗0
(
d̂e(i)

kl

)
· µ̂∗0

(
d̂e(j)

lk

)
=

=
∑

k,l,m,n

̂d(ef (i))km · d̂(f (i)e)ml · ̂d(ef (j))ln · ̂d(f (j)e)nk =
∑

k,l,m,n

(Q̂i)km · (P̂i)ml · (Q̂j)ln · (P̂j)nl =

= Tr(Q̂iP̂iQ̂jP̂j),

because by definition the quantum variables (R̂i)kl, (Q̂i)km and (P̂i)ml corresponds to the
generators

d̂e
(i)
kl ∈ U(g∗), d̂(ef (i))kl, d̂(f (i)e)ml ∈ A.

Hence one has lifted the classical correspondence to a quantum one. One should again
perform the “quantum” change of variables R̂i := Q̂iP̂i in order to retrieve KZ (2.22) from
the simply-laced quantum connection (3.7). We view this as a quantum reduction, in the
following sense.

3.7.5 Howe pairs and quantum Hamiltonian reduction

We start by providing the most straightforward quantum analogue of the notion of a
symplectic dual pair. Consider three associative algebras A,B1, B2.

Definition 3.14. 7 A pair of associative morphisms µ̂∗i : Bi −→ A is a Howe dual pair if
one has [

µ̂∗1(B1), µ̂∗2(B2)
]
A

= 0,

where [·, ·]A is the commutator in A. Moreover, this is said to be a quantisation of
the symplectic dual pair µ∗i : O(Pi) −→ O(M) if Bi is a quantisation of O(Pi), A is a
quantisation of O(M) and the semiclassical limits σi : Bi −→ O(Pi), σ : A −→ O(M) are
intertwined:

7This is again the weakest notion one finds around. One could require that µ̂∗i(Bi) ⊆ A be the
mutual centraliser of one another into A. This latter notion admits a representation-theoretic analogue
concerning the action of a product G1×G2 of two (algebraic) groups on a finite-dimensional vector space,
which is the actual definition of a Howe pair (see [How89]). Nevertheless, we won’t be needing any of
this to discuss our quantum reduction.
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O(Pi) O(M)

Bi A

	

µ∗i

µ̂∗i

σi σ

One can show that the quantum momenta µ̂∗0, µ̂
∗
∞ for the actions of GL(W 0) and

GL(W∞) provide such a Howe pair.

Proposition 3.15. One has[
µ̂∗0
(
U(g0)

)
, µ̂∗∞

(
U(g∞)

)]
A

= 0.

The proof uses the explicit formula

µ̂∗∞(d̂fkl) =
∑
n

d̂(fe)kn · d̂(ef)nl ∈ A,

which is proven in the same way as (3.8).

Proof. One has, using the usual generators:[
µ̂∗0(d̂eij), µ̂∗∞(d̂fkl)

]
A

=
∑
m,n

[
d̂(ef)im · d̂(fe)mj, d̂(fe)kn · d̂(ef)nl

]
A

=

=
∑
m,n

d̂(ef)im · d̂(fe)kn ·
[
d̂(fe)mj, d̂(ef)nl

]
A

+
[
d̂(ef)im, d̂(fe)kn

]
A
· d̂(ef)nl · d̂(fe)mj =

=
∑
m,n

−δmlδjnd̂(ef)im · d̂(fe)kn + δinδmkd̂(ef)nl · d̂(fe)mj =

= −d̂(ef)il · d̂(fe)kj + d̂(ef)il · d̂(fe)kj = 0.

.

In particular, the image of µ̂∗0 inside A is contained in the invariant subalgebra

Ag∞ :=
{
f̂ ∈ A

∣∣∣ [µ̂∗∞(U(g∞)
)
, f̂

]
A

}
⊆ A.

This can be used to provide an correspondence between the quantum algebra U(g0)⊗m
and all quantum reductions Rq

(
A, g∞, I

)
. Recall from § 2.1.6 that this is defined using

the moment µ̂∗∞ : U(g∞) −→ A and an ideal I ⊆ U(g∞). As in the classical case, one
considers the left ideal J := A.µ̂∗∞(I) ⊆ A generated by µ̂∗∞(I). This need not be
a two-sided ideal, whereas the invariant part Jg∞ ⊆ Ag∞ must be. Thus the quotient
Rq

(
A, g, I

)
= Ag∞

/
Jg∞ is an associative algebra.
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There is now a natural arrow ϕ̂ : U(g0)⊗m −→ Rq(A, g∞, I), composing µ̂∗0 with the
canonical projection π : Ag∞ −→ Rq(A, g∞, I). Finally, the results of the previous section
show that

ϕ̂(ĤKZ
i ) = π(Ĥi),

and the right-hand side is precisely the reduction of the (G∞-invariant) quantum SLIMS
with respect to the G∞-action.

3.8 DMT and the dual star

We want to show that the DMT connection is a reduction of the SLQC connection for
the Harnad-dual picture to the previous one. The main ideas of the proof are exactly as
for KZ. We will prove the following statements.

Theorem 3.6. The dual Schlesinger connection quantises to the DMT-Casimir connec-
tions via the standard PBW isomorphism.

This is proven in § 3.8.3.

Theorem 3.7. The SLIMS reduce to the dual Schlesinger system, in the special case of
the degenerate reading of a star with no regular times.

This is proven in § 3.8.4.

Theorem 3.8. A natural correction of the SLQC reduce to the DMT system, in the same
case as above. The correction produces a strongly-flat connection whose difference with
the SLQC vanishes when taking the semiclassical limit. In particular, a reduction of the
SLQC is a quantisation of the dual Schlesinger system.

This is proven in § 3.8.5.

3.8.1 Simply-laced quantum connection of a star: dual version

One takes k = 2, a(J) = {∞, 0} and T∞ = 0, in the general setup of § 3.1. The graph G,
and the symplectic phase-space (M, ωa) are the same as in § 3.7.1. What changes is the
space of times B = CI0 \ {diags}, and the space of meromorphic connections that these
data code, namely:

∇ = d−
(
T 0 + QP

z

)
dz.

This is a connection in the trivial vector bundle W 0 × CP 1 −→ CP 1. One can write
T 0 = diag(t1I1, . . . , tmIm) ∈ B, where Ii is the idempotent for Vi ⊆ W 0, and (Q,P ) ∈M.

The isomonodromic deformations of those connections are controlled by the simply-
laced Hamiltonian system

$ = 1
2 Tr

(
Q̃PQP

)
=
∑
i∈I∞

Hidti ∈ Ω0(Fa, π∗T ∗B),
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where π : Fa = M×B −→ B is the usual trivial symplectic fibration. The system spells
out as

Hi(Q,P, T 0) =
∑

i 6=j∈I0

Tr(QiPjQjPi)
ti − tj

∈ Sym(M∗). (3.9)

The SLQC at hand is then

∇̂ = dB − $̂ = dB −
∑
i∈I∞

 ∑
i 6=j∈I∞

Tr(P̂jQ̂jP̂iQ̂i)
ti − tj

 dti. (3.10)

This is a connection on the trivial (quantum) vector bundle Ea = A × B −→ B, where
A := W (M∗, ωa).

The main theorem 3.2 assures that ∇̂ is strongly flat. Let us set

Ĥi :=
∑
i 6=j

Tr(P̂jQ̂jP̂iQ̂i)
ti − tj

,

for the quantum Hamiltonians defining the SLQC. One may prove the flatness of this
connection in the very same way as Prop. 3.11. Indeed, the combinatoric of the nontrivial
intersections of the degenerate 4-cycles is the same as before, because it only depends on
the adjacency of the quiver G, which has not changed.

3.8.2 DMT connection

Here we briefly recall the construction of the Casimir connection [MT05]. Consider a
simple Lie algebra g over C. Choose a Cartan subalgebra h ⊆ g, with associated root
system R ⊆ h∗. Let

hreg := h \
⋃
α∈R

Ker(σα)

be the open complement to the root hyperplanes. This means that σα : h −→ h is the
reflection associated to α ∈ R. Let K : g ⊗ g −→ C be (a multiple of) the Killing form
of g. One can now define a strongly flat connection ∇̂DMT on the trivial vector bundle
U(g) × hreg −→ hreg. Namely, for all α ∈ R one chooses a sl2(C)-triplet of vectors
eα ∈ gα, fα ∈ g−α, hα = [eα, fα] ∈ h, and then

∇̂DMT := dhreg −
∑
α∈R

K(α, α)
2 (êα · f̂α + f̂α · êα)dα

α
,

where K(α, α) ∈ R>0 is the length squared of the root α, computed with the dual of the
Killing form (still abusively noted K). Just as for KZ, the constant in front of the 1-form

$̂DMT :=
∑
α∈R

K(α, α)
2 (êα · f̂α + f̂α · êα)d log(α) ∈ Ω1

(
B, U(g)

)
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is not a concern here. One could introduce any deformation parameter ~ ∈ C in front
of it. Moreover, this is the universal version of the DMT connection: one may pick any
g-module V and use it for the generic fibre of the trivial vector bundle.

We will now specialise this connection to the case of g := gll(C), noting that this Lie
algebra is reductive but not semi-simple. One can just consider an invariant nondegenerate
bilinear symmetric form on g to perform the same construction as above, and we will use
K(X, Y ) = 1

2 Tr(XY ), for X, Y ∈ g. We can choose h ⊆ g to be the subalgebra of
diagonal matrices. Now the root system R = R(g, h) reads

R = {αij : h −→ C}1≤i 6=j≤l, where αij(diag(x1, . . . , xl)) := xi − xj.

Moreover, one has

gαij = spanC{eij}, g−αij = gαji = spanC{eji},

so that hαij = [eij, eji] = eii − ejj ∈ h. This is indeed the dual root to αij with respect to
Tr, as

Tr(hαijekl) = Tr(eiiekl)− Tr(ejjekl) = δik Tr(eil)− δjk Tr(ejl) = δikδil − δjkδjl = αij(ekl).

The length squared of all roots is given by

2K(αij, αij) = Tr(hαijhαij) = Tr(eii) + Tr(ejj)− 2 Tr(eiiejj) = 2.

Finally, notice that if one introduces the usual global coordinates {ti}1≤i≤l on hreg, then
one has

d log(αij) = d
(

log(ti − tj)
)

= dti − dtj
ti − tj

.

Putting all this together, one finds

∇̂DMT = dhreg −
∑
i

ĤDMT
i dti, (3.11)

if one sets
ĤDMT
i := 1

2
∑
j 6=i

êij · êji + êji · êij
ti − tj

: hreg −→ U(g).

These are by definition the DMT Hamiltonians.

Dual Schlesinger system

Pick a complex reductive group G, with Lie algebra g. Consider the trivial Poisson
fibration g∗ × hreg −→ hreg, where h ⊆ g ∼= g∗ is Cartan. One lets (R, T 0) ∈ g × hreg
parametrise the following set of g-valued meromorphic connections on trivial G-bundles
over CP 1:

∇ = d−
(
T 0 + R

z

)
dz.
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One can show that the isomonodromy differential equations of such connections admit an
Hamiltonian formulation. Namely, one defines

$ := K
(
R, ad−1

T 0 [dT 0, R]
)

= K
(
R, R̃

)
,

where K is an invariant nondegenerate bilinear symmetric form on g, and where R is
a local section of the fibration. Next, by choosing global coordinates {ti}i on hreg, one
writes

$ =
∑
i

HdSch
i dti,

for functions HdSch
i : g∗ × hreg −→ C. This is by definition the dual Schlesinger system.

Specialising all this to G = GLl(C) as before, one has

∑
i

HdSch
i dti = 1

2 Tr
(
R̃R

)
.

Notice that

R̃ij =
d log(ti − tj)Rij, i 6= j,

0, i = j
,

and so
1
2 Tr(R̃R) = 1

2
∑
i,j

R̃ijRji = 1
2
∑
i 6=j

RijRji

ti − tj
(dti − dtj).

This provides the explicit expansion

HdSch
i = HdSch

i (R, T 0) =
∑
j 6=i

RijRji

ti − tj
. (3.12)

3.8.3 DMT is a quantisation of dual Schlesinger

It is argued in [Boa02] that the DMT connection is a quantisation of the dual Schlesinger
system. After all the above preparation, it follows from the following observation. The
(classical) dual Schlesinger Hamiltonians can be written

HdSch
i =

∑
j 6=i

eij ⊗ eji
ti − tj

,

if one thinks of them as smooth sections Hi : hreg −→ Sym(g∗) ∼= Sym(g). The PBW
quantisation (2.8) of the numerator is by definition

Q(eij ⊗ eji) = êij · êji + êji · êij
2 ,

so that one has on the whole Q(HdSch
i ) = ĤDMT

i .
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3.8.4 The classical reduction

To get the dual Schlesinger system (3.12) from the simply-laced system (3.9), one should
first restrict itself to the case where dim(Vi) = 1 for all i ∈ I0. Notice that this implies
dim(W 0) = |I0| =: l. In this case B = Cl \{diags} ∼= hreg, where h is the standard Cartan
subalgebra of g := gl(W 0) ∼= gll(C).

Now, as in § 3.7.2, one considers the classical (co)moment

µ∗0 : Sym(g0) −→ O(M)

for the GL(W 0)-action. This is the dual map to

µ0 : M −→ g0, (Q,P ) 7−→ R := QP.

Now one can show that µ∗0(HdSch
i ) = Hi for all i ∈ I0. Notice that in this case there are no

traces to take, as the endomorphism QiPjQjPi : Vi −→ Vi is a scalar for all i 6= j. Hence
indeed

µ∗0(HdSch
i ) = µ∗0

∑
i 6=j

RijRji

ti − tj

 =
∑
i 6=j

QiPjQjPi
ti − tj

=
∑
i 6=j

Tr(QiPjQjPi)
ti − tj

= Hi,

by means of the change of variable Rij := QiPj ∈ C. The conceptual justification of this
computation is again the explicit formula

µ∗0(deij) =
dim(W∞)∑

k=1
d(e(i)f)k ⊗ d(fe(j))k,

where {deij := ej ⊗ dei} ⊆ g0 is the canonical basis (with Vi = spanC{ei}), and with
d(e(i)f)k := ei ⊗ dfk, d(fe(j))k := fk ⊗ dej, fixing a basis {fk}k of W∞. Indeed, with these
notation one has Rij = deij(R), and the slightly more complicated

QiPj =
dim(W∞)∑

k=1
(Qi)k(Pj)k =

∑
k

d(e(i)f)k(Q) ·d(fe(j))k(P ) =
∑
k

d(e(i)f)k⊗d(fe(j))k(QP ),

where (Qi)k : C −→ Vi, (Pj)k : Vj −→ C are the components of Qi : W∞ −→ Vi and
Pj : Vj −→ W∞ in the subspace spanC{fk} ⊆ W∞. We view this as a reduction, in the
same sense in which Schlesinger (2.21) is a reduction of the SLIMS for a star (3.6) (see
§ 3.7.2 and § 3.7.3).

3.8.5 The quantum reduction

Following the same strategy as in § 3.7.4 and § 3.7.5, one would like to implement the
quantum change of variable R̂ij := Q̂iP̂j to show that the formula for the DMT connection
(3.11) expands to that of the simply-laced quantum connection (3.10). The precise justi-
fication for this would again be the natural quantisation µ̂∗0 : U(g0) −→ A of the moment
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map of the previous section. By doing this, however, one does not recover the words that
make up the the Hamiltonians Ĥi of the SLQC. Rather:

µ̂∗0

∑
i 6=j

R̂ijR̂ji

ti − tj

 =
∑
i 6=j

Tr(Q̂iP̂jQ̂jP̂i)
ti − tj

,

where as usual one writes R̂ij = d̂eij ∈ U
(
(g∗)0

)
and

Q̂iP̂j =
∑
k

(Q̂i)k(P̂j)k =
∑
k

d̂e(i)fk · d̂fe(j)
k ∈ A

for the natural quantisations of deij ∈ O(g0) and d(e(i)f)k, d(fe(j))k ∈ O(M) = A0. This
means that the actual quantum connection that reduces to DMT is

∇̂′ = dhreg −
∑
i∈I0

Ĥ ′idti,

still defined on the trivial vector bundle Ea = A× hreg −→ hreg, where

Ĥ ′i =
∑
j 6=i

Tr(Q̂iP̂jQ̂jP̂i)
ti − tj

.

This connection is clearly a close relative to the simply-laced quantum connection (3.10).
Indeed, it just amounts to a change of anchoring of all quantum potentials defining the
Hamiltonians Ĥi: instead of anchoring all degenerate 4-cycles at their centre, one anchors
them at their starting node.8 The following proposition shows that the difference between
∇̂ and ∇̂′ is negligible as ~ −→ +∞.

Proposition 3.16. The A-valued one-form ∇̂ − ∇̂′ ∈ Ω1(hreg, A) vanishes in the semi-
classical limit.

Proof. This means that the element

〈∇̂ − ∇̂′, ∂ti〉 = H ′i −Hi =
∑
j 6=i

Tr(Q̂iP̂jQ̂jP̂i)− Tr(P̂jQ̂jP̂iQ̂i)
ti − tj

∈ A

lies in the kernel of the grading map gr : A −→ A0 for all {ti}i ∈ hreg. In the chosen
notation, this is seen to be true because the identity Tr(QiPjQjPj) = Tr(PjQjPiQi)
holds for matrices Qi, Pi, Qj, Pj having coefficients in a commutative ring (C, in this
case), and because of the definition of quantum potentials of § 3.3: namely, the functions
Tr(QiPjQjPj),Tr(PjQjPiQi) ∈ A0 are the semiclassical limit of the quantum operators
Tr(Q̂iP̂jQ̂jP̂i),Tr(P̂jQ̂jP̂iQ̂i) ∈ A.

One can moreover provide an explicit formula for the above difference, using Prop. 3.5:

Tr(Q̂iP̂jQ̂jP̂i)− Tr(Q̂jP̂jQ̂iP̂i) = Tr(P̂jQ̂j).
8Notice that if one had defined the SLQC making this latter of anchoring, then an analogous correction

would have been needed to recover KZ, which is part of the motivation for choosing the former one.
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To show this, one uses the fact that
[
(Q̂i)k, (P̂i)k

]
= 1 in the quantum algebra A. This

also gives an equivalent proof that the semiclassical limit of the difference must vanish:
if one added the deformation parameter ~ into the picture, via the universal construction
of § 2.1.4, then the operator of order two Tr(P̂jQ̂j) ∈ A would come with a power ~k of
~ having an exponent k > 2.

In terms of quantum cycles, the above proof can be sketched by saying that

equals plus . This is a valid statement in the space ĈGcycl.
As a final application of the material about quantum traces introduced in § 3.3, one can
quickly conclude the following.

Proposition 3.17. The corrected connection ∇̂′ is strongly flat.

Proof. The only nontrivial thing to prove is that
[
Ĥ ′i, Ĥ

′
j

]
= 0 for i 6= j, as the other half

of strong flatness follows trivially from that of ∇̂. Now, the above picture says that we
can move the anchor of all degenerate 4-cycles of Ĥ ′i from the arrow coming out of i to
the centre, up to adding a 2-cycle to each of them. One thus has Ĥ ′i = Ĥi +∑

j 6=i
Tr(Ĉij)
ti−tj ,

where Ĉij is a suitable quantum 2-cycle based at the centre, for all i 6= j. The following
lemma is then enough to conclude.

Lemma 3.4. All quantum 2-cycles commute among themselves, as well as with all de-
generate 4-cycles.

Proof. Thanks to Prop. 3.6, these commutators are anchored cycles with the Poisson
bracket of their semiclassical limit as underlying cycle. A straightforward computation
then shows that these Poisson brackets vanish.

Another meaningful comparison can be made between ∇DMT and the reduction of the
simply-laced quantum connection. To compute the latter, notice that one has:

Ĥi =
∑
j 6=i

Tr(P̂iQ̂iP̂jQ̂j)
ti − tj

=
∑
j 6=i

1
ti − tj

(
Tr(Q̂iP̂jQ̂jP̂i)− Tr(Q̂jP̂j) + 1

)
,

using the commutation relations of A. The reduction of this is

π(Ĥi) =
∑
j 6=i

1
ti − tj

(
êij · êji − êjj + 1

)
.
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Notice that adding diagonal elements êii does not tamper with flatness, because of[
eijeji, ekk

]
= 0, for all k.

This is the reduction of the cycle-theoretic statement that all 2-cycles commute with
all degenerate 4-cycles. The difference between this reduced connection and DMT is
analogous to the difference between DMT and a reduction of the FMTV connection (to
be explicitly written down at the end of § 3.9.3).

3.9 FMTV and the bipartite graph

Combining § 3.7 and § 3.8 leads to the fact that for the case of a complete bipartite graph
the simply laced quantum connection reduces to the FMTV connection [Fel+00], as we
shall argue momentarily. More precisely, we will show the following.

Theorem 3.9. The SLIMS reduce to the JMMS system, in the special case of the degen-
erate reading of a complete bipartite graph.

This is proven in § 3.9.2.

Theorem 3.10. A restriction of the FMTV connection can be corrected to obtain the
PBW quantisation of the JMMS system, and the difference vanishes semiclassically.
Hence the FMTV system quantises the JMMS system.

This is proven in § 3.9.3.

Theorem 3.11. A natural correction of the SLQC reduces to the FMTV system, in the
special case of the degenerate reading of a complete bipartite graph. The correction pro-
duces a connection whose difference with the SLQC vanishes when taking the semiclassical
limit. In particular, a reduction of the SLQC is a quantisation of JMMS.

This is proven in § 3.9.4.

3.9.1 Simply-laced quantum connection of a bipartite graph

The constructions of § 3.7.1 and § 3.8.1 generalise as follows. One still has k = 2 and
a(J) = {+∞, 0}, but G is now an arbitrary bipartite graph on nodes I = I0∐ I∞. The
base space of times is

B = C|I∞| \ {diags} × C|I0| \ {diags}.

The vector phase-space is

M = Hom(W∞,W 0)⊕ Hom(W 0,W∞),
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equipped with the symplectic form ωa = Tr(dQ∧dP ), where Q,P have the same meaning
as in § 3.7.1 and § 3.8.1. If W∞ = ⊕

i∈I∞ V
∞
i and W 0 = ⊕

i∈I0 V 0
i , then one will write Qij

for the component of Q in (V ∞j )∗ ⊗ V 0
i , and Pji for the component of P in (V 0

j )∗ ⊗ V ∞i .
These data code a space of meromorphic connections of the form

∇ = d−
(
T 0 +

∑
i∈I∞

QiPi
z − t∞i

)
dz,

on the trivial vector bundleW 0×CP 1 −→ CP 1, with respect to the coarser decomposition
Pi : W 0 −→ V ∞i , Qi : V ∞i −→ W 0. The isomonodromic deformations of those connections
are coded by the Hamiltonian system

$ = 1
2 Tr

(
P̃QPQ

)
+ 1

2 Tr(Q̃PQP ) =
∑
i∈I∞

H∞i dt
∞
i +

∑
j∈I0

H0
j dt

0
j ,

which spells out as

H∞i (Q,P, T∞, T 0) =
∑

k∈I∞\{i},j,l∈I0

Tr(PilQlkPkjQji)
t∞i − t∞k

+
∑
j∈I0

t0j Tr(PijQji),

H0
j (Q,P, T∞, T 0) =

∑
l∈I0\{j},i,k∈I∞

Tr(QjiPilQlkPkj)
t0j − t0l

+
∑
i∈I∞

t∞i Tr(QjiPij).
(3.13)

One now has nondegenerate 4-cycles, as well as 2-cycles. The SLQC at hand is

∇̂ = dB − $̂ = dB −
∑
i∈I∞

Ĥ∞i dt
∞
i −

∑
j∈I0

Ĥj
0dt

0
j , (3.14)

on the trivial vector bundle Ea = A × B −→ B, where A := W (M∗, ωa). The explicit
quantum Hamiltonians are

Ĥ∞i =
∑

k∈I∞\{i},j 6=l∈I0

Tr(P̂ilQ̂lkP̂kjQ̂ji)
t∞i − t∞k

+
∑

k∈I∞\{i},j∈I0

Tr(Q̂jkP̂kjQ̂jiP̂ij)
t∞i − t∞k

+

+ 1
2
∑
j∈I0

t0j

(
Tr(P̂ijQ̂ji) + Tr(Q̂jiP̂ij)

)
,

Ĥ0
j =

∑
l∈I0\{j},i 6=k∈I∞

Tr(Q̂jiP̂ilQ̂lkP̂kj)
t0j − t0l

+
∑

l∈I0\{j},i∈I∞

Tr(P̂jlQ̂liP̂jiQ̂ji)
t0j − t0l

+

+ 1
2
∑
i∈I∞

t∞i

(
Tr(Q̂jiP̂ij) + Tr(P̂ijQ̂ji)

)
.

Here one separated nondegenerate 4-cycles (on the left) from degenerate ones, taking care
to anchor the latter at their centre rather than at their starting node. The main theorem
3.2 assures that ∇̂ is strongly flat.

3.9.2 Classical reduction: JMMS system

It is argued in [Boa12b] that (3.13) controls isomonodromic deformation equations which
correspond to the lifted equations of [Jim+80] (A.5.9). Moreover, the usual change of
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variable Ri = QiPi provides the JMMS equations themselves ([Jim+80] 4.44 or A.5.1).
Just as in § 3.8.4, one must further restrict T 0 to have simple spectrum in order to
recover the setup of JMMS. One finds then a system of time-dependent Hamiltonians
HJMMS,∞
i , HJMMS,0

j controlling the isomonodromic deformations of meromorphic connec-
tions of the form

∇ = d−
(
T 0 +

m∑
i=1

Ri

z − t∞i

)
dz,

on the trivial vector bundle W 0 × CP 1 −→ CP 1. More precisely, one lets T 0 and {t∞i }i
vary, and looks for residues Ri ∈ gl(W 0) ∼= gll(C) such that the monodromy of ∇ stays
fixed (where dim(W 0) = |I0| =: l) . This should be thought as the combination of the
isomonodromy problems of § 3.7 and § 3.8, and the resulting phase-space for the JMMS
Hamiltonians will be the trivial Poisson fibration gm × B −→ B, where g := gll(C) and
B := hreg × Confm(C). Here h ⊆ g is the standard Cartan subalgebra, and Confm(C) is
the space of configurations of m-tuples of points in the complex plane, so that

(Ri)i ∈ gm, T 0 ∈ hreg, {ti}i ∈ Confm(C).

The explicit formula for the JMMS Hamiltonians is

HJMMS,∞
i =

∑
1≤k 6=i≤m

Tr(RiRk)
t∞i − t∞k

+ Tr(RiT
0),

HJMMS,0
j =

∑
1≤k 6=j≤l

∑
1≤i,n≤m

(Ri)jk(Rn)kj
t0j − t0k

+
∑

1≤i≤m
t∞i Tr(Riejj).

(3.15)

Indeed, this is precisely equation (A.5.13) of [Jim+80], rewritten according to our nota-
tion.9 To justify why (3.13) reduces to (3.15) after changing variables, notice that one has
(Ri)jk = QjiPik ∈ C for all 1 ≤ i ≤ m and 1 ≤ j, k ≤ l. Hence, e.g.

Tr(RiT
0) =

∑
j,k

(Ri)jkT 0
jk =

∑
j,k

δjkt
0
j(Ri)jk =

∑
j

t0jQjiPij =
∑
j

t0j Tr(PijQji),

where in the last passage one used the fact that QjiPij : V 0
j −→ V 0

j is a complex number.
Similarly∑

i 6=k
Tr(RiRk) =

∑
i 6=k,j,l

(Ri)jl(Rk)lj =
∑
i 6=k,j,l

QjiPilQlkPkj =
∑
i 6=k,j,l

Tr(PilQlkPkjQji).

The expansions of the terms of H0,JMMS
j are done similarly. The justification of this

formula lies as usual on the components µi0 : T ∗Hom(V ∞i ,W 0) −→ g of the moment
µ0 : M −→ gm, defined by

µi(Qi, Pi) := QiPi, µ =
⊕
i∈I∞

µi : (Q,P ) 7−→ (QiPi)i.

One could pick bases {ei}i ofW 0 and {fj}j ofW∞ and write this down in terms of explicit
generators of the algebras O(g),O(M), as done in § 3.7.2 and § 3.8.4. Moreover, the same

9We wrote it in this half-expanded form to make it clear that this is indeed the same Hamiltonian
system. One should replace Ri, T 0, t∞i , t

0
j with Ai, A∞, ci, aj , respectively.
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argument of § 3.7.3 permits to rely this change of variable to the reduction of the SLIMS
with respect to the action of GL(W 0) on M.

As a final remark, notice that the leading term of HJMMS,∞
i provides the Schlesinger

Hamiltonian (2.21). Similarly the leading term of HJMMS,0
j provides a generalisation of

the dual Schlesinger Hamiltonian (3.12). This generalisation amounts to the fact that
now one has several simple poles, corresponding to several residues, instead of just one.

3.9.3 FMTV is a quantisation of JMMS

Here we briefly recall the construction of the dynamical connection [Fel+00]. One con-
siders the KZ equations for a simple Lie algebra g, with an additional parameter µ ∈ h
chosen in a Cartan subalgebra h ⊆ g. The equations read

∂ψ

∂t∞i
=
µ(i) +

∑
1≤j 6=i≤m

Ωij

t∞i − t∞j

ψ, (3.16)

for a section of ψ : Confm(C) −→ U(g)⊗m of the universal KZ vector bundle, where the
indices of Ω and µ specify on which factors of the fibre to act. This is equation 3 on page
3 of [Fel+00].10 Eq. 4 on the same page then provides a system of differential equations
which is compatible with this version of KZ: the dynamical equations. It is a system for
ψ with respect to the variable µ ∈ h, in which one recognises a variation of the DMT
connection of § 3.8.2, plus an additional term. Namely, the derivative of ψ in the direction
of µ′ ∈ h is given by:

∂ψ

∂µ′
=
 ∑

1≤i≤m
t∞i (µ′)(i) +

∑
α>0

〈α, µ′〉
〈α, µ〉

êα · f̂α

ψ (3.17)

The rightmost sum is made over positive roots α ∈ h∗. The superscript of µ′ still denotes
the factor on which to act, and the symbols êα, f̂α ∈ U(g) are the standard quantisations
of the vectors eα, fα ∈ g that together with hα compose a sl2-triplet. The full FMTV
system consists of those two sets of equations, for a function ψ : h×Confm(C) −→ U(g)⊗m.
One can now interpret those linear differential equations as a flat connection ∇̂FMTV on
the trivial vector bundle E := U(g)⊗ × B −→ B, where B := h × Confm(C), called the
FMTV connection:

∇̂FMTV = dB −
∑

1≤i≤m
ĤFMTV,I
i dt∞i −

∑
i≤j≤l

ĤFMTV,II
j dµ′j, (3.18)

where l := dim(h) is the rank of g, and where one picks linear coordinates {µ′j}j on h,with
respect to a fixed basis of the Cartan subalgebra. The time-dependent quantum operators

ĤFMTV,I
i , ĤFMTV,II

i : B −→ U(g)⊗m

10One should replace ψ, t∞i ,Ωij with u, zi,Ω(ij). Moreover, instead of considering the universal KZ
equations, one should pick highest weight g-modules Vi, and replace U(g)⊗m with V = V1 ⊗ · · · ⊗ Vm.
Finally, the choice of a complex parameter k is not relevant here.
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are by definition the FMTV Hamiltonians. As done for KZ and DMT in § 2.3.5 and
§ 3.8.2, one can rewrite the system for the reductive Lie algebra g := gll(C), using (a
multiple of) the canonical duality induced by the trace pairing. Now it makes sense to
compare (i) the restriction of the FMTV Hamiltonians to the regular part hreg of the
Cartan subalgebra and (ii) the PBW quantisation of the JMMS system (3.15).

Proposition 3.18. Take g = gll(C). Then:

1. The FMTV Hamiltonian ĤFMTV,I
i restricts to Q

(
HJMMS,∞
i

)
on hreg × Confm(C).

2. The difference(
ĤFMTV,II
j

∣∣∣
hreg×Confm(C)

)
−Q

(
HJMMS,0
j

)
: hreg × Confm(C) −→ U(g)⊗m

vanishes in the semiclassical limit, everywhere on the restricted JMMS base.

Hence the FMTV system is a quantisation of the JMMS system.

Proof. 11 Let us start by showing that the quantisation of the linear addends of (3.15)
yields the additional terms of (3.16) and (3.17), when restricted to the regular part
hreg. Notice that the elements µ ∈ hreg now corresponds to the diagonal matrix T 0 =
diag(t01, . . . , t0l ). Similarly, instead of differentiating along a generic direction µ′ ∈ h, it is
enough to consider partial derivatives with respect to the system of fundamental coweights
{eii}1≤i≤l, which is a basis of h. This is a subset of the canonical basis eij ∈ g.

With these identifications, the additional term of (3.16) can be written

µ(i) = (T 0)(i) =
∑

1≤j≤l
t0j ê

(i)
jj ,

where T 0 = ∑
j t

0
jejj is the decomposition with respect to the basis of fundamental

coweights. This is indeed the PBW quantisation of the linear function

Tr(RiT
0) =

∑
1≤j≤l

t0j(Ri)jj,

which appears in the JMMS Hamiltonian HJMMS,∞
i . The justification of this passes

through the identification (Ri)jj = de
(i)
jj (R) ∈ C, where de(i)

jj ∈ (gm)∗ is the appropri-
ate coordinate function. The trace duality sends this element to e

(i)
jj , whose standard

PBW quantisation is by definition ê(i)
jj ∈ U(g)⊗m (see (2.8)).

11This proof is suggested by a slight variation of the example on page 4 of [Fel+00], where the FMTV
connection is written down for the simple Lie algebra sll(C), in terms of the fundamental coweights of
the standard Cartan subalgebra of traceless diagonal matrices:

$i =
(

1− i

l

) ∑
1≤j≤i

ejj −
i

l

∑
i<j≤l

ejj , i ∈ {1, . . . , l − 1}.
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Similarly, the additional term of (3.17) becomes∑
1≤i≤m

t∞i (µ′)(i) =
∑

1≤i≤m
t∞i ê

(i)
jj ,

for 1 ≤ j ≤ l. This is because, as explained above, the derivative ∂µ′ has been replaced
by the partial derivative ∂t0j in the direction of ejj ∈ h. This is the quantisation of the
linear function∑

1≤i≤m
t∞i Tr(Riejj) =

∑
i,k,m

t∞i (Ri)km(ejj)mk =
∑
i,k,m

t∞i δkjδmj(Ri)km =
∑
i

t∞i (Ri)jj,

which appears in the JMMS Hamiltonian HJMMS,0
j .

Now, it has been shown in § 2.3.5 and § 3.8.3 that the standard PBW quantisation of
Schlesinger (eq. (2.21)) and dual Schlesinger (Eq. (3.12)) yields KZ (Eq. (2.22)) and DMT
(Eq. (3.11)), respectively. This means that the restriction to the regular part hreg of the
leading term of (3.16) should coincide with the PBW quantisation of the leading term of
HJMMS,∞
i . Similarly, this suggests that the restriction to hreg of the leading term of (3.17)

should be strictly related with the PBW quantisation of the quadratic term of HJMMS,0
j ,

as it reduces to DMT when m = 1. Replacing again µ = T 0, µ′ = ∂t0j for 1 ≤ j ≤ l, one
has: ∑

α>0

〈α, µ′〉
〈α, µ〉

êα · f̂α =
∑

1≤i,n≤m

∑
k>l

〈αkl, ejj〉
〈αkl, T 0〉

ê
(i)
kl · ê

(n)
lk =

=
∑
i,n

∑
j>l

〈αjl, ejj〉
〈αjl, T 0〉

ê
(i)
jl · ê

(n)
lj +

∑
i,n

∑
k>j

〈αkj, ejj〉
〈αkj, T 0〉

ê
(i)
kj · ê

(n)
jk =

=
∑
i,n

∑
j>l

ê
(i)
jl · ê

(n)
lj

t0j − t0l
−
∑
i,n

∑
k>j

ê
(i)
kj · ê

(n)
jk

t0k − t0j
=
∑
i,n

∑
k 6=j

ê
(i)
jk · ê

(n)
kj

t0j − t0k
.

Here one used 〈αkl, ejj〉 = δkj − δlj and 〈αkl, T 0〉 = t0k − t0l . Also, the choice {αkl}k>l
of positive roots has been made. This sum is not quite the PBW quantisation of the
quadratic term of HJMMS,0

j , which rather equals:

Q

∑
i,n

∑
j 6=k

(Ri)jk(Rn)kj
t0j − t0k

 =
∑
i,n

∑
j 6=k

1
2(t0j − t0k)

(
ê

(i)
jk · ê

(n)
kj + ê

(n)
kj · ê

(i)
jk

)
=

=
∑
i,n

∑
j 6=k

ê
(i)
jk · ê

(n)
kj

t0j − t0k
+
∑
i

∑
j 6=k

ê
(i)
kk − ê

(i)
jj

2(t0j − t0k)
.

This formula is obtained by remarking that
[
ê

(i)
kj , ê

(n)
jk

]
= δin

(
ê

(i)
kk − ê

(i)
jj

)
as elements of

U(g)⊗m. This means that the difference(
ĤFMTV,II
j

∣∣∣
hreg×Confm(C)

)
−Q

(
HJMMS,0
j

)
: hreg × Confm(C) −→ U(g)⊗m

is an operator of order one, when evaluated at a point of the restricted JMMS base. Hence
the restricted FMTV Hamiltonian has the same semiclassical limit as Q

(
HJMMS,0
j

)
, which

is by definition the JMMS Hamiltonian for the irregular time t0j .
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Finally, one can make sense of the statement that the DMT connection (3.11) is
a variation of the FMTV connection. Indeed, by taking m = 1 in the Hamiltonian
ĤFMTV,II
j , and picking g = gll(C), one finds

ĤFMTV,II
j =

∑
k 6=j

êjk · êkj
t0j − t0k

,

for 1 ≤ j ≤ l. Now there is no need for superscripts, because one has only one residue.
The analogous Hamiltonian of the DMT system is

ĤDMT
j =

∑
k 6=j

êjk · êkj + êkj · êjk
2(t0j − t0k)

=
∑
k 6=j

êjk · êkj
t0j − t0k

+
∑
k 6=j

[
êkj, êjk

]
2(t0j − t0k)

= ĤFMTV,II
j +

∑
k 6=j

êkk − êjj
2(t0j − t0k)

.

This difference is indeed coherent with the fact that DMT is the PBW quantisation of
the dual Schlesinger system, i.e. of the JMMS Hamiltonian HJMMS,0

j . Indeed, the proof of
Prop. 3.18 shows that one must correct FMTV in order to get to the PBW quantisation
of JMMS. Moreover, this difference is totally analogous to the difference between the
simply-laced quantum connection and DMT. One thus has three different flat connections
quantising the same classical system.

As a final remark, let us mention the cycle-theoretic interpretation of the difference
between FMTV and the PBW quantisation of JMMS. Namely, the sum

∑
j 6=k

ê
(i)
jk · ê

(n)
kj ∈ U(g)⊗m

will expand in the Weyl algebra (via the quantum moment µ̂∗0 : U(g)⊗m −→ W (M, ωa) as
in § 3.7.4) as the trace of a quantum 4-cycle through the nodes i, n ∈ I∞ and j 6= k ∈ I0.
More precisely, the expansion yields a quantum 4-cycle, which is an addend of the quantum
potential for the simply-laced quantum Hamiltonian Ĥ0

j . Now, the condition i 6= n
means that the cycle is nondegenerate, whereas i = n makes it degenerate. It is only on
degenerate 4-cycles that one must make a choice of ordering, and one basically has to
either pick an anchor or to consider some symmetrisation. In this article made the first
choice, because the symmetrisation seems to tamper with the flatness for more general
quivers. This is thus more in line with the definition of the FMTV connection. The
DMT connection, on the other way, considered a symmetric quantisation, and this is
possibly one way of explaining the footnote on page 3 of [MT05] (it states that the
Casimir connection is equivariant with respect to the action of the Weyl group, whereas
the dynamical connection is not).

3.9.4 The quantum reduction

What is left is putting together the results of § 3.7.4, § 3.7.5 and § 3.8.5 to show that a
correction of (3.14) reduces to FMTV when g = gll(C). In the proof of Prop. 3.18 we
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provided the explicit formulae:

ĤFMTV,I
i =

∑
i 6=k,j,l

ê
(i)
jl · ê

(k)
lj

t∞i − t∞k
+
∑
j

t0j ê
(i)
jj ,

ĤFMTV,II
j =

∑
k 6=j,i,l

ê
(i)
jk · ê

(l)
kj

t0j − t0k
+
∑
i

t∞i ê
(i)
jj .

As argued in the aforementioned sections, the change of variable (R̂i)jk = Q̂jiP̂ik amounts
to applying the quantum (co)moment µ̂∗0 : U(g)⊗m −→ A = W (M, ωa). Doing this, one
finds the following A-valued quantum Hamiltonians:

Ĥ ′
∞
i =

∑
i 6=k,j,l

Tr(Q̂jiP̂ilQ̂lkP̂kj)
t∞i − t∞k

+
∑
j

t0j Tr(Q̂jiP̂ij),

Ĥ ′
0
j =

∑
k 6=j,i,l

Tr(Q̂jiP̂ikQ̂klP̂lj)
t0j − t0k

+
∑
i

t∞i Tr(Q̂jiP̂ij).

This produces a new connection

∇̂′ := dB −
∑
i∈I∞

Ĥ ′
∞
i dt

∞
i −

∑
j∈I0

Ĥ ′
0
jdt

0
j ,

in the trivial vector bundle Ea = A × B −→ B. This connection is again obtained by
the SLQC via a change of anchors, so to write all operators as traces of quantum cycles
based at nodes in the part I0 ⊆ I, because such a cycle can be interpreted as a residue.
Moreover, the correction is negligible in the semiclassical limit.

Proposition 3.19. The A-valued one-form ∇̂− ∇̂′ ∈ Ω1(B, A) vanishes in the semiclas-
sical limit.

Proof. The proof is analogous to that of Prop. 3.16. One can compute explicitly the
differences 〈∇̂ − ∇̂′, ∂t∞i 〉 = Ĥ ′

∞
i − Ĥ∞i and 〈∇̂ − ∇̂′, ∂t0j 〉 = Ĥ ′

0
j − Ĥ0

j for all i, j, using[
Q̂ji, P̂ij

]
= 1. The difference of these operators of order four is an operator of order

strictly less than four. Hence they have the same principal symbol, i.e. the same semi-
classical limit.

It is not relevant here, but the corrected connection might still be flat. The general
proposition 3.6 can still be used to test this. Notice however that ∇̂′ is less symmetric
than the simply-laced quantum connection, because now on top of the classical nontrivial
intersection of a nondegenerate 4-cycle with a degenerate one there are a priori different
quantum intersections. Hence more minute verifications than those of § 3.6.2 are required.
This phenomenon is another motivation for the definition of the simply-laced quantum
connection.
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3.10 Comparison with Nagoya–Sun.

As a last comparison, we consider the isomonodromy systems of [JMU81]. They developed
a theory of monodromy preserving deformations of systems of differential equations of the
form:

dY

dz
= A(z)Y (z), where A(z) =

m∑
i=1

ri∑
l=0

Ai,−l
(z − ai)l+1 −

r∞∑
l=1

A∞,−lz
l−1,

such that the leading coefficient at each irregular pole has distinct eigenvalues. Here
z is a local holomorphic coordinate on CP 1 that identifies CP 1 ∼= C∐{∞}, and Y =
Y (z), Ai,−l, A∞,−l ∈ Mn(C) are matrices of size n > 0 for all i, l. Next, {ai}i ⊆ C is
a collection of m distinct points (with a∞ = ∞ implied) and ri, r∞ ≥ 0 are integers
for all i. If ri > 0 then one has an irregular singularity at ai of Poincaré rank ri, for
i ∈ {1, . . . ,m,∞}. If instead ri = 0 then one has a regular singularity. One further
assumes Ai,−ri to have distinct eigenvalues (modulo integers, if ri = 0).

The intersection of those systems with the SLIMS of [Boa12b] is obtained by taking
ri = 0 for all 1 ≤ i ≤ m and r∞ = 2. Indeed, by replacing Ai,0, ai, A∞,−1, A∞,−2 with
−QiPi, t

∞
i , B + T,A, respectively, then the above system reduces to

dY

dz
= −

(
m∑
i=1

QiPi
z − t∞i

+ (B + T ) + Az

)
Y (z),

which is equivalent to considering the meromorphic connection

∇ = d−A = d−
(
Az + (B + T ) +Q(z − T∞)−1P

)
dz

on a trivial vector bundle U∞ × CP 1 −→ CP 1, as in § 3.1. The difference is that
now one considers nonresonant residues, and more importantly the diagonal matrix A =
diag(a1, . . . , ak) is regular. This means taking a degenerate reading of a complete k + 1-
partite graph G such that only the part corresponding to∞ is splayed in |I∞| = m nodes,
and to all other parts one attaches vector spaces W j of dimension one.

Now, the theory of [JMU81] allows one to consider the pole positions t∞i and the di-
agonal matrices T,A as independent deformation parameters (see Eq. 4.2 of [JMU81] and
the remark thereafter12). This falls out of the present scope, where the highest irregular
type A is not varied in order to enable for an explicit description of the isomonodromy
Hamiltonians for the remaining deformation parameters T, T∞. One is after these explicit
formulations because they provide quite straightforward quantisation: this is one of the
main points of this article. The general proof that the deformation equations are sym-
plectic can be found in [Boa01], but a general Hamiltonian theory hasn’t been written
down yet.

In [NS11] one finds explicit functions associated to the deformations of T,A and T∞.
Namely, one takes a variation of the Schlesinger Hamiltonians for the deformation of the

12One should replace ai, T∞−1, T
∞
−2 with t∞i , T, A, respectively.

125



CHAPTER 3. SIMPLY-LACED QUANTUM CONNECTIONS

pole positions. For the other parameters, one writes

ω = ω(1) + ω(2) =
k∑
i=1

H
(1)
i dti +H

(2)
i dai,

for suitable functions H(1)
i , H

(2)
i .13 Then Eq. 3.11 and 3.12 of [NS11] provide an explicit

expansion of the one-form ω.

The most interesting comparison to make is that ofH(1)
i andHi, for 1 ≤ i ≤ k, since the

results of § 3.7 and § 3.9 prove that the simply-laced quantum Hamiltonians can recover
the KZ connection when moving the regular times t∞i . Now, looking at the aforementioned
Eq. 3.11, one sees indeed expansions of traces of cycles in G, in terms of the entries of
the matrices B,Ri. If one writes the first addend of 〈ω(1), ∂ti〉, then one recognises the
sum of all three cycles in G starting at the node i, with suitable weights.14 The rest of
the formula yields a weighted sum of traces of 2-cycles through the node i. There are no
4-cycles as it is expected in the general setup of the SLIMS. Finally, notice that eq. 3.12
has the same overall structure: each of its addend is the trace of a certain potential on G,
and now one also finds 4-cycles.

All this seems to indicate that the cycle-theoretic viewpoint of this article provides a
conceptual framework that simplifies part of the exposition of [NS11], and that moreover
this approach could be extended to the full Hamiltonian system at the intersection of
[JMU81] and [Boa12b].

As far as quantisation is concerned, in [NS11] one fixes an order for the variables
appearing in the classical system, and then systematically replaces them with operators
acting on modules for a certain quantum algebra (those are the confluent Verma modules,
defined in [JNS08] for sl2(C)). The choice of an order is noncanonical, and in our setting it
amounts to fix an orientation for the quiver. In this way one defines operators H(1)

i ,H(2)
i ,

so that H(1)
i is associated to the time ti, and H(2)

i to ai. Ex. 3.3. on page 9 provides an
expansion of these operators when there are no simple poles, in the case of rank k = 3.
In our setting, this means passing to the generic reading of a triangle where all nodes
have dimension one. Again, the most meaningful comparison to make is that of H(1)

i

and the quantum Hamiltonian Ĥi 3.10, where i ∈ {1, 2, 3}. To write down the simply-
laced quantum Hamiltonians, call 1, 2, 3 the nodes of the triangle, and write arrows as
α := (1, 2), β := (2, 3), γ := (3, 1). Then

Ĥ1 = c1 Tr(γβα) + c2 Tr(α∗β∗γ∗) + c3 Tr(α∗α) + c4 Tr(γγ∗) + c5,

where the weights c1, . . . , c4 depend on the reading a : {1, 2, 3} ↪→ CP 1, and c5 is a function
used to commute the arrows of the 2-cycles. To make things more explicit, one chooses
an orientation for the triangle, by saying that the arrow (i, j) is positive if i < j. Then

13It is not entirely clear to us how to interpret the functions H(2)
i as time-dependent Hamiltonians (cf.

Rem. 7.1 of [Boa01]).
14The matrix B1 of [NS11] correspond to our B, the matrix B0 to the sum

∑
iQiPi of residues, and

B−1 is the sum
∑
iQiPit

∞
i . Finally, the highest irregular times t(2)

i now become our diagonal entries ai.
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one has the splitting

M =
⊕

1≤i 6=j≤3
Hom(W i,W j) ∼= T ∗

 ⊕
1≤i<j≤3

Hom(W i,W j)
 ,

for which the arrows α, β, γ now correspond to the position variables q12, q23, p31, and their
opposite to the momenta variable p21, p32, p13:

ωcan =
∑

1≤i<j≤3
dqij ∧ dpji.

One can now let Ĥ1 : B −→ W (M, ωa) act on the space of polynomials C[q] in the position
variables, by means of q̂ij := µqij (multiplication operator) and p̂ji := −∂qij , so that:

Ĥ1 = c′1q31q23q12 + c′2(∂q12∂q23∂q31) + c′3∂q12q12 + c′4q13∂q13 + c′5

Ignoring the order-zero operator c′5, this formula is an analogue of that of H(1)
1 in example

3.3 of [NS11], which seems to indicate that the two viewpoints are compatible.
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Chapter 4

Hitchin connections

In this chapter we describe the results obtained in the direction of geometric quantisation.
The primary aim was the construction of a Hitchin connection for the Kähler quantisation
of moduli space of polystable SL(2,C)-Higgs bundles over a torus. The flat connection
we construct is a Kähler analogue of the connection of [Wit91], defined for the geometric
quantisation with respect to real polarisations, to which we will refer as the Hitchin–
Witten connection (see § 4.6.4).

Consider then a real, compact orientable surface of genus Σ of genus g = 1: a torus.
The purpose here is to be as concrete as possible, so we can realise the surface as Σ ∼=
R2
/
Z2, where Z2 acts by translations on the plane. The usefulness of this flat description

of the torus will become apparent as we go on. Set K := SU(2), and let G := SL(2,C) be
the complexification of the compact Lie group K.

In § 4.1 we provide an explicit topological description of the moduli space M =
Mfl(Σ, K) of polystable, flat K-connection on Σ.
In § 4.2 we provides a much more in-depth description of the moduli space of the complex
theory M, which is the hyper-Kähler moduli space of polystable Hitchin pairs, introduced
in § 2.3.1. We also set up all that’s needed for its geometric quantisation, following the
background material of § 2.2: the symplectic structure (§ 4.2.3), the prequantum data
(§ 4.2.4) and the polarisations (§ 4.2.5 and 4.2.6).
Next, in § 4.3, we use all the data we introduce to achieve the Kähler quantisation of
M. More precisely, in § 4.3.2 we construct a connection ∇̂ that preserves holomorphic
sections (Thm. 4.1), and in § 4.3.3 we show that the restriction of ∇̂ to be subbundle of
holomorphic sections is flat (Thm. 4.2).
After this first success, in § 4.4 we first consider the natural U(1)-action on polystable
G-Higgs fields. After finding explicit formulae for this actions and its pull-backs, in § 4.4.4
we to set up U(1)-equivariant prequantum data on M, and in § 4.4.5 we discuss how to
extend the basis of the quantum bundle to an extended Teichmüller space that takes into
account the circle action.
We move on in § 4.5 by trying to construct an Hitchin connection inside the extended
quantum bundle of the previous section. After a technical discussion about how to cor-
rectly extend the variation of tensors in the new context of a varying symplectic structure,
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in Thm. 4.3 we achieve the construction of a connection that preserves holomorphic sec-
tions.
In the last section 4.6 instead we set up the Bargmann transform Bτ in our non-flat con-
text. The result is a transform defined on the moduli space, which identifies the quantum
spaces corresponding to different polarisations (see Thm. 4.4).
The transform is introduced to transport the Hitchin–Witten connection of [Wit91] to a
flat connection the Kähler-polarised side, as detailed in § 4.6.4. This is done with the
clear idea to look for a new Ansatz for constructing Hitchin connection, as did in (4.15)
(see also the discussion of 4.22).
Finally, in § 4.6.5 we make use of the Bargmann transform to turn the Hitchin action of
§ 4.4 into an operator defined on the Segal–Bargmann space: this operator is an integral
transform, whose kernel generalises the reproducing kernel of coherent states (see 4.7). In
the same section we compute the way in which derivatives and function multiplications
commute with the new action, which is the first step to conjugate any connection defined
on the bundle of holomorphic sections, like the flat connections previously constructed.

4.1 Compact moduli space

We start by describing more precisely the moduli space of flat connection for the group
K = SU(2) over Σ, already introduced in § 2.3.3. The final result of this section is that
the moduli space for the compact theory is topologically a torus, up to a flip.

Let (x, y) the standard real coordinates on Σ. This means that we can either think of
them as real coordinates defined modulo Z or as sincere real coordinates on a dense open
set of the torus, namely on the image of a fundamental domain of the lattice Z2 ⊆ R2. This
open set leaves behind only one parallel and one meridian on the torus, which we denote
γ1 and γ2; their homotopy classes generate the fundamental group: π1(Σ) ∼= Z[γ1]⊕Z[γ2].
The first aim is to explicitly describe the moduli spaces attached to the pairs (Σ, K) in
§ 2.3.2.

To this end, let P := Σ × K −→ Σ be the trivial smooth principal K-bundle on Σ.
Picking trivial bundles is not a restriction, for generic topological reasons: every principal
bundle over a curve that has a simply connected structure group is trivialisable. Thus
we’re simply assuming that an explicit global trivialisation has been given. Moreover,
one may equivalently work on trivialisable, rank 2 vector bundles π : V −→ Σ, with
the appropriate restriction of the transition functions to K ⊆ GL2(C). Let us denote
e1, e2 : Σ −→ V a global trivialising frame of V .

As explained in § 2.3.1, we can now consider the moduli space Mfl(Σ, K) of gauge-
equivalence classes of flat, unitary connections on V −→ Σ, and the moduli space
Char(Σ, K) of conjugacy classes of unitary representations of π1(Σ). The two are related
by the Riemann–Hilbert correspondence, mapping a class of flat connections to their con-
jugacy class of monodromy representations of the fundamental group of Σ. This map is a
transcendental (C-analytic) isomorphism, as will be argued more explicitly momentarily.
Moreover, ν intertwines the gauge-action on the left-hand side with the conjugation action
on the right-hand side.
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Now let us give a coordinate-wise description of those spaces in our particular case,
starting from the de Rham viewpoint. A connection over V −→ Σ is globally defined by
a k-valued 1-form A ∈ A1(Σ, k), setting ∇ = d − A, where d is the ordinary de Rham
differential over A•(Σ,C), and k := su(2).
Using our real coordinates x, y, we can write an k-valued 1-form as A = αdx+βdy, for α, β
two smooth k-valued functions. It turns out that it is enough to consider the following
space of connections, as far as gauge equivalence classes are concerned:

A0 :=
{
A =

(
iξ1dx+ iξ2dy 0

0 −(iξ1dx+ iξ2dy)

)∣∣∣∣∣ ξ1, ξ2 ∈ R
}
⊆ A1(Σ, k).

This copy of R2 parametrises a space of translation-invariant connections. They are all
flat, as it is straightforward to check that dA = 0 = [A ∧ A] if A ∈ A0. Notice that they
are not stable, but rather polystable, according to Def. 2.39. Indeed, it is clear that in
chosen frame {e1, e2} the pointwise span of ei is ∇-invariant, and V is the direct sum of
these two (necessarily stable) subconnections of rank one.

Now, thanks to the Riemann–Hilbert correspondence of Thm. 2.8, the image of this set
of flat connections in the moduli space is given by modding out those that have a trivial
monodromy around both generating loops of π1(Σ). Recall from the beginning of § 2.3.5
that the monodromy data ν(A) : π1(Σ) −→ K of a flat connection A ∈ A0 correspond by
definition to a pair of commuting matrices holγ1(A), holγ2(A) ∈ K; in this case one finds:

holγ1(A) =
(
eiξ1 0
0 e−iξ1

)
, holγ2(A) =

(
eiξ2 0
0 e−iξ2

)
. (4.1)

One thinks here of holγi : C2 −→ C2 as a automorphism of the fibre at γi(0) = γi(1),
for i ∈ {1, 2}. Notice that the term in dy gets cancelled by the holonomy around γ1
because this loop is defined by taking y to be constant (with the homotopy class being
independent of its precise value), and similarly for γ2.

We conclude that the monodromy of A is trivial if and only if ξ1, ξ2 ∈ 2πZ. The
quotient of A0 with respect to those choices of parameters gives a torus. Finally, one
must not forget that the gauge group also identifies A and −A, because:

hAh−1 + h−1dh = hAh−1 = −A, if h :=
(

0 1
−1 0

)
.

One thinks of h as a constant map h : Σ −→ K, i.e. as an element of the gauge group
K ∼= C∞(Σ, K). Now we will show that the space A0 surjects on the moduli space, by
showing that it provides all possible monodromies.

To do this, consider the Betti viewpoint. We consider conjugacy classes of group
morphisms Z2 ∼= π1(Σ) −→ K. Those are just given by pairs of commuting matrices
(Ã, B̃) ∈ K that we can assume simultaneously codiagonalised up to a conjugation in K.
In particular, we see there are no irreducible representations of π1(Σ), up to conjugation,
but rather just completely decomposable representations: this is the conceptual reason
why considering polystable connections is not restrictive. Pairs of diagonal matrices in K
are written

Ã =
(
θ1 0
0 θ−1

1

)
, B̃ =

(
θ2 0
0 θ−1

2

)
,
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for suitable unitary complex numbers θ1, θ2. We thus find a torus U(1)×U(1) of matrices.
Notice that by diagonalising A,B have not considered the whole conjugation by K: just
as above, we still need to identify matrices obtained after conjugating by h. This yields

h

(
θ1 0
0 θ−1

1

)
h−1 =

(
θ−1

1 0
0 θ1

)
=
(
θ1 0
0 θ−1

1

)−1

,

and similarly for B̃. Conceptually, the gauge-action h : A 7−→ −A on the matrix of a
connection gets turned h : Ã 7−→ Ã−1 after exponentiating (i.e. taking monodromies).

In the end, we have the explicit description

Char(Σ, K) ∼=
(
U(1)× U(1)

)/
(Z/2Z), (4.2)

with the group of order two acting diagonally by taking inverse matrices. This is a
nice finite-dimensional presentation of the moduli space as a torus, up to a flip. From
this description it follows that there are 4 fixed points for the action, namely the pairs
(Ã, B̃) ∈ {(±I,±I), (±I,∓I)} ⊆ U(1)×U(1). The degenerate orbits of these points give
4 singular points on the quotient, outside which one has a two-fold covering of the torus
on the moduli space.

Notice that we have also incidentally proved the above claim that the flat connections
in A0 provide a full set of representatives for the de Rham moduli space, because these
connections give all the possible monodromy representations of π1(Σ). To see this, remark
that the equations

(Ã, B̃) =
((

θ1 0
0 θ−1

1

)
,

(
θ2 0
0 θ−1

2

))
=
(

holγ1(A), holγ2(A)
)

have solutions A ∈ A0 for all θ1, θ2 ∈ U(1), using (4.1): pick ξ1, ξ2 ∈ R such that
eiξ1 = θ1, e

iξ2 = θ2 ∈ U(1).

To conclude with the gauge-equivalence description on the de Rham side, notice that
the elements

glm :=
(
e2πi(xl+ym) 0

0 e−2πi(xl+ym)

)
∈ K

of the gauge group generate the action on R2 ∼= A0 by translations:

glmAg
−1
lm + g−1

lmdglm = A+ g−1
lmdglm = A+

(
2πi(ldx+mdy) 0

0 −2πi(ldx+mdy)

)
,

where we used the fact that all diagonal matrices commute. We see that this gauge action
add to A ∈ A0 a matrix that corresponds to a connection with trivial holonomy. Now, just
to stress, the Riemann-Hilbert map tells us that in our moduli space we must precisely
consider flat connections up to those inducing a trivial monodromy representation of the
torus, hence we get a finite-dimensional representation of the de Rham moduli space as

MdR ∼= A0
/
K0, where K0 := 〈g10, g01, h〉 ⊆ K. (4.3)
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This is a discrete group, consisting of the standard lattice Z2 ⊆ R2, plus the flip h.

From the above descriptions of Char(Σ, K) andMfl(Σ, K), we see that the two moduli
spaces are isomorphic as real analytic spaces, and the map from one to the other is given
in coordinates by the exponential R2 −→ U(1)× U(1), which sends (ξ1, ξ2) to (eiξ1 , eiξ2).
We will hereafter just write M to refer to this compact moduli space, when we do not
wish to distinguish among its realisations.

Remark 4.1. This topological characterisation can be rewritten as

M∼= TK × TK
/
WK ,

where TK ⊆ K is the maximal torus of K, and WK its Weyl group. Indeed, if K = SU(2)
then TK ∼= U(1), and WK is the group of order two. This description would still be true
for any other compact, simple, simply connected Lie group K (see [AM16]).

Notice how we already exploited the notion of a “constant” connection, i.e. a translation-
invariant one, which only makes sense because the coordinates x, y vary in a flat space.
This gives a canonical identification of the fibres, and picking constant matrices makes
sense.

4.2 Complex moduli spaces

The purpose of this section is to describe all the data required for the geometric quanti-
sation of M(Σ, G) in full detail, where G = SL(2,C), the complexification of K = SU(2)
from the previous section. We will discuss the following facets:

• The topology: § 4.2.1.

• The hyper-Kähler structure: § 4.2.2.

• The symplectic structure: § 4.2.3.

• The prequantum data: § 4.2.4.

• The Kähler polarisations: § 4.2.5.

• The real polarisation: § 4.2.6.

At the end of each section we will make a remark related to the analogous piece of data
on the compact moduli spaceM.

Finally, in § 4.2.7 we will explain how the mapping class group of closed surfaces of
genus one acts on all these data. To do this, a discussion about the parametrisation of
complex structures on a closed, oriented real surface S — of arbitrary genus — seems
necessary, and we will delve into this immediately (the standard reference is [FM12]; see
also the beginning of [Mad07]). Recall that a complex structure on the surface S is an
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integrable almost-complex structure I ∈ C∞(S, TS ⊗ T ∗S) that is compatible with the
orientation, i.e. such that {v, I(v)} is an oriented R-basis of TpS for all p ∈ S and v ∈ TpS.
Since the integrability condition is vacuous in this low-dimensional setup, the space

CS :=
{
I ∈ C∞(S, TS ⊗ T ∗S)

∣∣∣∣ I2 = − Id, {v, I(v)} > 0 for all v ∈ TS
}

parametrises all complex structures on the oriented surface S: the elements of CS are all
the Riemann surfaces on the underlying smooth manifold S. The orientation of S defines
a restriction of the structure group of the frame bundle of TS from GL(2,R) to GL+(2,R),
where GL+(2,R) = {M ∈ GL2(R) | det(M) > 0}. This defines a principal GL+(2,R)-
bundle over S. Sections of the adjoint bundle correspond to sections of End(TS) that
preserve orientation. This space carries a natural (Whitney) topology, and CS inherits
the subspace topology. One can actually show that it is an infinite-dimensional complex
Fréchet manifold.

Now the group Diff+(S) of orientation-preserving diffeomorphisms of S acts on CS, by
push-forward of almost-complex structure, and the quotient for this action is the (coarse)
Riemann moduli space of closed Riemann surfaces of genus g:

Mg := CS
/

Diff+(S).

Geometrically, this quotient is a topological space with mild singularities corresponding
to fixed points of the action. More precisely, it can be made into an orbifold.
Because of the GAGA correspondence,Mg is also the moduli space for smooth complex
projective curves of genus g (using the correspondence in the sense explained at the
beginning of § 2.3.1).

The connected component of the identity Diff0(S) E Diff+(S) instead acts freely on
CS, and the quotient

Tg := CS
/

Diff0(S)

can be made into a smooth manifold, which happens to be contractible and finite-
dimensional.

Definition 4.1. The space Tg is the Teichmüller space of smooth closed surfaces of genus
g.

If follows from the definition that Teichmüller space parametrises complex structures
on S up to isotopy. More precisely, if I, J ∈ CS are orientation-preserving complex
structures on S, then by definition they lie in the same Diff0(S)-orbit if there exists an
orientation preserving diffeomorphism f ∈ Diff+(S) which is both (I, J)-holomorphic and
isotopic to the identity inside Diff+(S). The former condition means that for all p ∈ S
one has a commutative square
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TpS Tf(p)S

TpS Tf(p)S

dfp

Ip Jf(p)

dfp

	

The latter condition instead means that there exists a smooth map Γ: S × [0, 1] −→ S
such that Γ(p, 0) = γ(p), Γ(p, 1) = p and Γ|S×{t} ∈ Diff+(S) for all p ∈ Σ, t ∈ [0, 1].

Another characterisation of Tg is via marked Riemann surfaces, which we recall in the
form of a definition.

Definition 4.2. A marked Riemann surface structure over the smooth closed oriented
curve S is a pair (X, f), where X is a Riemann surface and f : S −→ X is an orientation
preserving diffeomorphism, endowing X with the natural orientation defined by its holo-
morphic atlas. The diffeomorphism f is the marking of X.
Two marked Riemann surfaces (X, f), (Y, h) over S are equivalent if there exists a biholo-
morphism ϕ : X −→ Y such that h−1 ◦ ϕ ◦ f : S −→ S is isotopic to the identity.1

One may then define Tg as the space of equivalence classes of marked Riemann surfaces
of genus g, and show that this is consistent with the previous description.
From the former description it also follows that there is a residue action of the discrete
quotient group Γg := π0

(
Diff+(S)

)
= Diff+(S)

/
Diff0(S) on Teichmüller space, such that

Tg
/

Γg ∼=Mg.

Definition 4.3. The group Γg is the mapping class group of smooth closed surfaces of
genus g.

The mapping class group acts on a marked Riemann surface (X, f) via γ.(X, f) :=
(X, f ◦ g−1), where γ ∈ Γg is a mapping class. The projection Tg −→ Mg amounts to
forgetting the marking, and it is a (universal) covering map.
All this discussion is done for an oriented surface. If one forgets about the orientation,
then one can define an extended mapping class group, which contains the mapping class
group as a subgroup of index 2.

Regardless of the definition used, in genus g = 1 the Teichmüller space can be identified
with the upper-half plane

T1 ∼= H := {τ1 + iτ2 ∈ C | τ2 > 0}.

The way in which a point τ ∈ H defines a complex structure is the following. If one lets
again Σ be a closed surface of genus one, together with the realisation Σ ∼= R2

/
Z2 of the

1It is the same to ask that the orientation preserving diffeomorphism h ◦ f−1 : X −→ Y be isotopic to
a biholomorphism.
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previous section, then one may consider the integer lattice Λτ = spanZ{1, τ} ⊆ C, and
upgrade the real quotient R2

/
Z2 to the holomorphic quotient X = C

/
Λτ . This is now a

compact Riemann surface of genus one, together with the marking g : Σ −→ X induced
to the quotients by the map (x, y) 7−→ zτ := x + τy. Notice that translating (x, y) ∈ R2

by the vector (k, l) ∈ Z2 amounts to translating x + τy ∈ C by the vector k + τ l ∈ Λτ ,
and thus the transformation g is well defined. One may also take zτ as a densely defined
holomorphic coordinate on X (it is well defined on a fundamental domain of the lattice
Λτ , which descends bijectively to X).

The mapping class group Γ1 is isomorphic to SL(2,Z). One can show this by con-
sidering the morphism Φ: SL(2,Z) −→ Γ1 that to a matrix A ∈ SL(2,Z) associates the
diffeomorphism fA : Σ −→ Σ induced by the (Z-linear) map A : R2 −→ R2, via the uni-
versal property of the quotient. The inverse of this morphism is obtained as follows. If
f ∈ Diff+(Σ) is an orientation-preserving diffeomorphism, the homology functor H•(·,Z)
defines a map f∗ : H1(Σ,Z) −→ H1(Σ,Z) which only depends on the mapping class of f .
One has an identification H1(Σ,Z) ∼= Z2, and thus f∗ is an invertible Z-linear map of Z2

into itself, which has positive determinant since f preserves orientation, i.e. an element
of SL(2,Z) (see e.g. [FM12], Thm. 2.5). In this case the morphism f∗ is just the usual
morphism defined by the continuous map f on the Abelian fundamental group.
The extended mapping class group is then isomorphic to GL(2,Z).

4.2.1 The topology

As explained in § 2.3.1, one can attach four moduli spaces to the pair (Σ, G). One has the
de Rham moduli spaceMdR(Σ, G) of gauge-equivalence classes of flat G-connections on
the trivial principal G-bundle π : PC −→ Σ. Choosing the trivial bundle is as restrictive
as fixing a global section, because all principal G-bundles on Σ are trivialisable. Working
in the equivalent category of vector bundles, one considers smooth flat connections on
rank 2, complex vector bundles π : V −→ Σ having trivial determinant.
Next, there is the Betti moduli spaceMB(Σ, G) of representations of π1(Σ) in G, up to
conjugation.

These two are the complex versions of the moduli spaces introduced in the previous
section 4.1, but now one also has the moduli space MDol(Σ, G) of G-Higgs bundles on
holomorphic, principalG-bundles, as well as the hyper-Kähler moduli spaceM of solutions
to Hitchin’s equations, which underlies the triple of de Rham, Betti and Dolbeault.

Let us start from the Betti viewpoint, considering homomorphisms ρ : π1(Σ) −→ G up
to conjugation by G. As before, those are coded by a pair

(
Ã, B̃

)
of commuting matrices

of determinant one, up to conjugation. In this complexified context, there is no need for
Ã and B̃ to be diagonalisable. Let us first assume that both are. We will then find, up
to a simultaneous diagonalisation:

Ã =
(
µ1 0
0 µ−1

1

)
, B̃ =

(
µ2 0
0 µ−1

2

)
,

where µ1, µ2 ∈ C∗. This space is parametrised by C∗ × C∗. Then, just as in the compact
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case, we still need to consider the conjugation under the flip matrix h =
(

0 1
−1 0

)
. Hence,

topologically, the moduli space of semisimple representations of π1(Σ) is homeomorphic
to the quotient

(
C∗ × C∗

)/(
Z
/

2Z
)
, and this is the space of representations we want

to consider, discarding the non-diagonalisable one. This means that we will restrict to
polystable connections in the de Rham viewpoint, exactly as we did in § 4.1 for the
compact moduli space. Similarly, we will only consider polystable Higgs bundles.

Remark 4.2. Considering polystable objects is reasonable, since there are no stable
ones. To see this, let

(
Ã, B̃

)
be a pair of commuting matrices. Assume that one of them

is diagonalisable, say Ã, which we may take to be diagonal without loss of generality.
Then either Ã ∈ {± Id} = Z(G), or B̃ is also diagonal. Conversely, if none of them is
diagonalisable, then we may assume that Ã is the Jordan block of size 2 for the eigenvalue
+1 or −1, and one finds

Ã ∈
{(

1 1
0 1

)
,

(
−1 1
0 −1

)}
, B̃ ∈

{
±
(

1 a
0 1

)∣∣∣∣∣ a ∈ C
}
.

In particular, there are no irreducible G-representations of π1(Σ), since one always finds
a common eigenvector for Ã, B̃. These quick computations also explicitly show the points
that we are discarding.

The classification of polystable points up to isomorphism is the same as the classi-
fication of semistable ones up to S-equivalence (see Rem. 2.15). Hence we are indeed
considering the usual moduli problem.

Getting back to the topology of the space of semisimple representations up to conju-
gation, notice that C∗ × C∗ can be identified with the cotangent bundle to Σ. Indeed,
the torus is parallelisable, hence T ∗Σ ∼= Σ × R2 ∼= U(1) × U(1) × R2, and U(1) × R ∼=
U(1)× R>0 ∼= C∗, using the standard polar representation of complex numbers.

Let us now pass to the de Rham viewpoint. One can again identify flat connections
on PC −→ Σ with g-valued differential 1-forms on Σ. We will consider the following space
of flat, translation-invariant, polystable connections:

A0 :=
{
AC =

(
w1dx+ w2dy 0

0 −(w1dx+ w2dy)

)∣∣∣∣∣w1, w2 ∈ C
}
⊆ A1(Σ, g).

The idea is again to show that this space surjects on the de Rham moduli space, via the
action of a restricted gauge group, as in the previous section § 4.1. To this end, consider
the holonomy of AC ∈ A0 connections along γ1 and γ2. This holonomy is again explicitly
given by exponentiating:

holγ1(AC) =
(
ew1 0
0 e−w1

)
, holγ2(AC) =

(
ew2 0
0 e−w2

)

Hence we see that the connections inducing a trivial monodromy representation are those
for which ew1 = 1 = ew2 . This happens for w1, w2 ∈ 2πiZ. Now, the short exact sequence

(0) −→ 2πiZ −→ C −→ C∗ −→ (1),
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where the nontrivial arrows are the natural inclusion ι : 2πiZ ↪→ C and the exponential
exp: C � C∗, implies that the space of parameters (w1, w2) ∈ C2 identified modulo
(2πiZ)2 is C∗ × C∗. Finally, just as before, we need to further identify our connections
with their opposite because of the gauge group. Hence:

MdR(Σ,C) ∼= (C2)
/(

(2πiZ)2 o (Z/2Z)
) ∼= (C∗ × C∗)

/
(Z/2Z).

One has incidentally defined two natural complex coordinates w1, w2 ∈ C on the
complex moduli space, defined up to translations, and a flip. They are complex because
the group G is, and to define them we did not appeal to the complex structure chosen for
Σ.

Finally, let’s describe Hitchin pairs, for which we’ll need the description ofMfl(Σ, K)
from the previous section § 4.1. The claim is that all Hitchin pair are represented up to
gauge equivalences by Hitchin pairs (D,Φ), with D ∈ A0 and

Φ =
(
ϕ 0
0 −ϕ

)
dz, where φ ∈ C.

One has Φ ∈ H0(Σ, KΣ ⊗ V ), and thus this is indeed a polystable G-Higgs field. Once
again, we’ve considered only constant tensors. Set also

B :=
{

Φ =
(
ϕ 0
0 −ϕ

)
dz

∣∣∣∣∣ϕ ∈ C
}
.

To see that this gives a Hitchin pair, notice that FD = 0 by definition. Thus we need
to show that [Φ∧Φ∗] = 0 and D0,1Φ = 0. The former follows from the fact that diagonal
matrices commute, together with dz ∧ dz = 0; the latter from the fact that Φ is constant.

Proposition 4.1. The quotient of {(D,Φ) | D ∈ A0,Φ ∈ B} by the action of the gauge
group gives the whole Hitchin moduli space

Proof. We can do as follows. First, we map such a pair to a flat complex connection
∇ = D + Φ + Φ∗, according to the non-Abelian Hodge correspondence, and then we try
to show that these connections give all possible complex monodromy representations of
π1(Σ).

If we write D = d − A, for A =
(
iξ1dx+ iξ2dy 0

0 −(iξ1dx+ iξ2dy)

)
, for ξ1, ξ2 ∈ R, then

the g-valued 1-form defining ∇ is:

AC = A+ Φ + Φ∗ =

=
(
iξ1dx+ iξ2dy 0

0 −(iξ1dx+ iξ2dy)

)
+
(
ϕdz + ϕdz 0

0 −(ϕdz + ϕdz)

)
=

=
(
iξ1 + ϕ+ ϕ 0

0 −iξ1 − (ϕ+ ϕ)

)
dx+

(
iξ2 + τϕ+ τϕ 0

0 −iξ2 − (τϕ+ τϕ)

)
dy.
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Now, the monodromy of such a connection around γ1, γ2 is given by:

holγ1(AC) =
(
eiξ1eϕeϕ 0

0 (eiξ1eϕeϕ)−1

)
, holγ2(AC) =

(
eiξ2eτϕeτϕ 0

0 (eiξ1eτϕeτϕ)−1

)

Thus we need to show that the following equation has a solution in ξ1, ξ2 ∈ R, ϕ ∈ C for
all µ1, µ2 ∈ C∗: eiξ1eϕeϕ = µ1

eiξ2eτϕeτϕ = µ2

Consider an open simply connected set of C that contains µ1, µ2. Then we have a well
defined branch of the logarithm on this open set, and we can find w1, w2 ∈ C such that
ew1 = µ1, e

w2 = µ2. It is then enough to solve:iξ1 + ϕ+ ϕ = w1

iξ2 + τϕ+ τϕ = w2.

If one writes w1 = u1 + iv1, w2 = u2 + iv2, then considering decompositions in real and
imaginary parts provide the unique solution

u1 = 2<(ϕ), v1 = ξ1, u2 = 2<(τϕ), v2 = ξ2. (4.4)

Remark 4.3. The interest of this proof was mainly to describe natural coordinates on
the moduli space. One has

• The set of four real coordinates ξ1, ξ2, ϕ1 := <(ϕ) and ϕ2 := =(ϕ), defined using the
Hitchin pair viewpoint.

• The complex coordinates w1, w2, defined using the de Rham viewpoint.

• The real coordinates u1, v1, u2, v2, defined from the decomposition of w1, w2 in real
and imaginary part.

The linear relation between these two sets of coordinates is coded by (4.4).

Another important remark is that the set of coordinates {ξ1, ξ2, ϕ1, ϕ2} depends on
the complex structure τ ∈ H of Σ, because one uses Higgs fields to define them. The
second set, on the contrary, does not depend on the complex structure; we shall hereafter
refer to them as the τ -independent coordinates, and having them will be very useful when
considering derivatives with respect to τ .

Once again, ξ1 and ξ2 are defined modulo 2πZ on the quotient, and then we have to
act by the group Z/2Z generated by the gauge-flip h. Thus, once more:

M ∼= R4
/(

(2πZ)2 o (Z/2Z)
) ∼= (U(1)× U(1)× R2)

/
(Z/2Z).
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This is the hyper-Kähler Hitchin moduli space underlying the three nonisomorphic com-
plex algebraic varietiesMdR,MB andMDol.

A last useful thing to do is to write the connection form AC in terms of the complex
coordinate z = x+ τdy. One finds:

AC =
(
ϕ+ i

τ−τ (τξ1 − ξ2) 0
0 −

(
ϕ+ i

τ−τ (τξ1 − ξ2)
)) dz+

+
(
ϕ+ i

τ−τ (ξ2 − τξ1) 0
0 −

(
ϕ+ i

τ−τ (ξ2 − τξ1)
)) dz (4.5)

Notice that τ − τ = −2i=(τ) = −2iτ2 6= 0, and thus one can divide by it.

One could again look for a restricted gauge group G0 ⊆ G ∼= C∞(Σ, G) that provides
all the necessary gauge-transformations to get the good quotient. Reasoning as in the
previous section, it turns out that one can take the same group as in the compact case,
i.e. :

MdR ∼= A0
/
K0,

with K0 defined in (4.3). The point is that in the complex case too one only needs the
flip h and the translations g01, g10 in order to introduce all the gauge relations. Hence one
also has a finite-dimensional presentation of the complex moduli space. Moreover, one
sees that there is an embedding

ι : M ↪→M,

which is well defined on G0-orbits. This embedding is natural, and it does not depend on
the choice of a complex structure on Σ. Notice that (4.4) means thatM is defined as the
subspace of the complex moduli space where the natural coordinates u1, u2 vanish.

Remark 4.4. All the discussion of this section is an accordance with [FGN14], which
studies Higgs bundles over elliptic curves with a classical complex reductive group as
structure group.2 In particular, Thm. 4.27 states that the moduli space of semistable
G-Higgs bundles up to S-equivalence is isomorphic to T ∗Σ

/
(Z/2Z), where the action

of the group of order two on the cotangent bundle is obtained by lifting the action on
U(1) × U(1) (i.e. the action on the compact moduli space by matrix inversion). Our
explicit description agrees with that result (see also [Tha01], § 2).

Moreover, we can explicitly verify the following fact.

Proposition 4.2. The singular locus of MDol
(
Σ, SL(n,C)

)
has complex codimension 2

for all n ≥ 2.

This proposition is intended in the category of algebraic varieties. It implies that the
section of any holomorphic vector bundle over the smooth locus can be extended on the
whole of the moduli space. We will implicitly use this fact when considering holomorphic
sections of the prequantum bundle — with respect to the choice of Kähler polarisations
— without introducing further notation for the smooth locus.

2We can neglect the choice of a base point p0 ∈ Σ, which is needed to define an elliptic curve.
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To be more concrete in our case where n = 2, the dimension of the of the whole moduli
space equals 2, and thus one expects to just have finitely many singular points. Indeed,
the action of the group of order two on C∗×C∗ ∼= R2×U(1)×U(1) is obtained by lifting
the action on U(1) × U(1) by simultaneous inversion that we already encountered. The
induced action on cotangent vectors is a change of sign, which fixes only the origin in
every cotangent space. Hence the fixed points of the lifted actions come from those on
the base, of which there are 4.

Finally, let us remark explicitly that since the canonical bundle KΣ is trivial, then
a G-Higgs bundle is (poly)stable if and only if the underlying principal G-bundle is
(poly)stable. Hence one abstractly expects to have a projection M −→ M obtained
by forgetting the Higgs field in any given Hitchin pair. In our notation, this is just the
restriction of the canonical projection π : A0 −→ A0

/
G0 to A0 ⊆ A0.

4.2.2 The complex structures

Let us start from a general definition.

Definition 4.4. A hyper-Kähler manifold is a smooth Riemannian manifold (M, g), to-
gether with three ∇LC-covariantly constant, g-symmetric sections

I, J,K ∈ C∞(M,TM ⊗ T ∗M)

of the endomorphism bundle of TM , which satisfy the quaternionic relations I2 = J2 =
K2 = IJK = − Id, where ∇LC denotes the Levi–Civita connection of (M, g). The metric
g is called the hyper-Kähler metric.

The relations we quoted imply IJ = −JI = K, JK = −KJ = I and KI = −IK = J .
Remark that if a, b, c ∈ R3 are real numbers satisfying a2 + b2 + c2 = 1, then the tensor

Iabc := aI + bJ + cK

is still a complex structure on M , using the same notations as in the above definition. Its
integrability is assured from that of I, J,K.

Definition 4.5. Let (M, I, J,K, g) be a hyper-Kähler manifold. The set

{Iabc | (a, b, c) ∈ R3, a2 + b2 + c2 = 1} ⊆ C∞(M,TM ⊗ T ∗M)

is called the sphere of Kähler structures of M .

It is shown in [Hit87a] that (M, Iτ , J,Kτ ) admits a hyper-Kähler metric g. What is
nice is that one can explicitly describe its sphere Kähler structures in our context, by
writing down formulae for the triple Iτ , J,Kτ = IτJ of complex structures.

The Dolbeault complex structure Iτ comes from the complex structure τ fixed on the
surface Σ. Concretely, when we decompose a connection as AC = A1dz + A2dz, we’re
using the complex structure of the curve to define coordinates z, z. This in turn defines
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a complex structure by declaring that the local coordinates ϕ, ψ := ξ2 − τξ1 on M are
holomorphic.
The associated vector fields live in the eigenbundle of the complexification of Iτ of eigen-
value i ∈ C. This amounts to impose

dϕ(Id +iIτ ) = dψ(Id +iIτ ) = 0 = dϕ(Id−iIτ ) = dψ(Id−iIτ ),

since 1
2(Id +iIτ ) and 1

2(Id−iIτ ) are the projections of the complexified tangent bundle
TCM onto the antiholomorphic part and the holomorphic part, respectively.
The De Rham complex structure J comes from the fact that G itself has a complex
structure. Namely, writing AC = diag(w1,−w1)dx + diag(w2,−w2)dy, we declare w1, w2
to be holomorphic coordinates on the moduli space. As argued just above, this amounts
to imposing

dw1(Id +iJ) = dw2(Id +iJ) = 0 = dw1(Id−iJ) = dw2(Id−iJ).

Finally, there will be the third complex structure Kτ = IτJ .

One may explicitly compute the following:


Iτ (∂ξ1) = τ1

τ2
∂ξ1 + |τ |2

τ2
∂ξ2

Iτ (∂ξ2) = − 1
τ2
∂ξ1 − τ1

τ2
∂ξ2

Iτ (∂ϕ1) = ∂ϕ2

Iτ (∂ϕ2) = −∂ϕ1


J(∂ξ1) = −1

2∂ϕ1 − τ1
2τ2∂ϕ2

J(∂ξ2) = 1
2τ2∂ϕ2

J(∂ϕ1) = 2∂ξ1 + 2τ1∂ξ2
J(∂ϕ2) = −2τ2∂ξ2


Kτ (∂ξ1) = τ1

2τ2∂ϕ1 − 1
2∂ϕ2

Kτ (∂ξ2 = = − 1
2τ2∂ϕ1

Kτ (∂ϕ1) = 2τ2∂ξ2
Kτ (∂ϕ2) = 2∂ξ1 + 2τ1∂ξ2

Remark 4.5. One can ask what is the compatibility between the complex structure Iτ on
M and the complex structure on the compact moduli spaceM, which also arises from an
element τ in Teichmüller space (see § 2.3.3). What happens is that the complex structure
Iτ identifies MDol as the holomorphic cotangent bundle T1,0M, where M is given its
τ -dependent complex structure. Notice indeed that the first set of formulae shows in
particular that Iτ restricts to a τ -dependent complex structure onM, because the vector
fields ∂ξ1 , ∂ξ2 generate the complexified tangent bundle toM over C.

We now move on to define the symplectic structure of M.
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4.2.3 Symplectic structure

We follow the infinite-dimensional approach by Atiyah and Bott (see 2.3.3), and then
write the result explicitly in our finite-dimensional presentation. The idea is to realise M
as the symplectic reduction of the space AC of all G-flat connections, with respect to the
Hamiltonian action of gauge group G ∼= C∞(Σ, G). Recall that the moment map for the
action is the curvature

F : AC −→ A2
(
Σ, g

) ∼= C∞
(
Σ, g

)∗ ∼= Lie(G)∗.

This means that one can use the complex analogue of the Atiyah–Bott symplectic
form ωC on AC. Since this form is gauge-invariant, it automatically induces a symplectic
structure on the moduli space by Marsden–Weinstein reduction (see § 2.3.3).
Set then:

ωC(A,B) := − 1
2π

∫
Σ

Tr(A ∧B),

with A,B ∈ A1(Σ, g). As done in § 2.3.3, one uses a multiple of the Killing form of the
simple Lie algebra g to provide a pairing A1(Σ, g) ⊗ A1(Σ, g) −→ A2(Σ,C), and then
integrates the result on the surface.

We now want to compute this using our coordinates on the restricted space A0 ∼= C2 of
flat connections that we introduced in the previous section, using the complex coordinates
w1, w2. Recall that the coordinates on the Betti space are µ1 = ew1 , µ2 = ew2 . In these
coordinates, if we use the tacitly complexified base dx, dy for A1(Σ,C), we see that the
basis tangent vectors are

∂w1 =
(

1 0
0 −1

)
dx, ∂w2 =

(
1 0
0 −1

)
dy.

Hence

ωC(∂w1 , ∂w2) = − 1
2π

∫
Σ

Tr
((

1 0
0 −1

)(
1 0
0 −1

))
dx ∧ dy = − 1

π

∫
Σ
dx ∧ dy = − 1

π
.

This means that one has
ωC = 1

π
(dw2 ∧ dw1).

Remark 4.6. Let us verify that the symplectic form is the same when written in terms of
the complex basis dz, dz for A1(Σ,C). This is expected because the symplectic structure
has a topological nature: it does not depend on the complex structure chosen on the real
surface.

Recall that z = x+ τy, so that dz = dx+ τdy and z = dx+ τdy. We must write again
our flat connections in terms of this coordinates, i.e. solving the following linear equation
for two complex diagonal matrices A1, A2 of size two:

A =
(
w1 0
0 −w1

)
dx+

(
w2 0
0 −w2

)
dy = A1dz + A2dz.

143



CHAPTER 4. HITCHIN CONNECTIONS

One finds

A1 = 1
τ − τ

(
τw1 − w2 0

0 −(τw1 − w2)

)
dz, A2 = 1

τ − τ

(
w2 − τw1 0

0 −(w2 − τw1)

)
dz,

and thus in these coordinates one has

∂w1 = 1
τ − τ

(
τdz − τdz 0

0 −(τdz − τdz)

)
, ∂w2 = 1

τ − τ

(
−dz + dz 0

0 −(−dz + dz)

)
.

Hence:

ωC(∂w1 , ∂w2) = − 1
2π

∫
Σ

Tr
( τ

(τ−τ)2 0
0 τ

(τ−τ)2

)
dz ∧ dz + Tr

( −τ
(τ−τ)2 0

0 −τ
(τ−τ)2

)
dz ∧ dz =

= − 1
π(τ − τ)

∫
Σ
dz ∧ dz.

Now remark that dz ∧ dz = (τ − τ)dx ∧ dy, so that ωC(∂w1 , ∂w2) = − 1
π
, as it was to be

shown.

We shall thereafter denote ωC the symplectic structure on M obtained via symplectic
reduction.

Remark 4.7. One may now ask what is the restriction ι∗ωC of the symplectic structure
toM, if ι : M ↪→M is the natural embedding ofM into M. More precisely, one should
consider the relation between ωC and the compact version ω ∈ A2(M,R) of the Atiyah–
Bott symplectic form presented in 2.3.3.

Proposition 4.3. The symplectic form ωC is the complexification of ω, in the sense that

ι∗
(
<(ωC)

)
= ω, where <(ωC) := ωC + ωC

2 .

This is ultimately related to the fact that g ∼= k ⊗R C, and that one is defining the
symplectic forms via the pairing provided by the traces in both cases. Apart from this
conceptual reason, one can give a proof in coordinates.

Proof. One has:

<(ωC) = − 1
π
<(dw1∧dw2) = − 1

π
<
(
(du1+idv1)∧(du2+idv2)

)
= − 1

π
(du1∧du2−dv1∧dv2).

Now, one recalls from (4.4) that u1, u2 are the coordinates parametrising the field Φ in
any Hitchin pair, and thus they vanish in the restriction to M. On the contrary, v1, v2
are the real coordinates parametrising unitary connections, whose classes are precisely
the points ofM. Hence

ι∗<
(
ωC
)

= 1
π

(dv1 ∧ dv2) = 1
π

(dξ1 ∧ dξ2).
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On the other hand, the vector fields ∂ξ1 , ∂ξ2 on the compact moduli spaceM correspond

to the matrices X :=
(
i 0
0 −i

)
dx and Y :=

(
i 0
0 −i

)
dy, and thus:

ω(∂ξ1 , ∂ξ2) = − 1
2π

∫
Σ

Tr(XY )dx ∧ dy = 1
π
,

which means that ω = 1
π
(dξ1 ∧ dξ2), as it was to be shown.

We now move to define prequantum data on (M, ωC). To do this, one first has to
correct for the fact that the symplectic form is complex, by introducing a complex version
of the quantum level of 2.2.5.

4.2.4 Prequantum data

In what follows fix a nonzero complex number t = k + iσ ∈ C∗, with k, σ ∈ R.3 This
complex number will play the role of what was the level of the quantisation in the compact
case, and its real part will be eventually directly related to that. The idea to define
prequantum data on M is again to pass from our quotient description of this moduli
space. All that happens in this section is independent of the complex structure of Σ,
since this is still prequantisation.

Let us associate to each level t ∈ C∗ a real symplectic form on A0 via:

ωt := <(tωC) = k<(ωC)− σ=(ωC).

We will abusively use the same symbol for the induced real symplectic structure at level
t ∈ C∗ on the moduli space. This is the symplectic form we’re considering when looking
for prequantum data.

As explained in § 2.3.3, we start by defining prequantum data (L̃(t), ∇̃(t), h̃(t)) on the
prequantisable phase-space of flat connection (A0, ωt), and then we make them descend
on the moduli space itself via multipliers acting on L̃(t).

Since A0 is just a flat space, all vector bundles over it are trivialisable. We take L̃(t)

to be the trivial line bundle:
L̃(t) := C× A0 −→ A0.

Moreover, we pick h̃(t) to be the translation-invariant metric which is everywhere equal
to the standard Hermitian product on C. Then we can look for a prequantum connection
of the form

∇̃(t) = d− iαt
where d is the trivial connection and αt ∈ A1(A0,R) Such a connection is automatically
h-unitary. We see that the prequantum condition F∇̃(t) = −iωt forces dαt = ωt, and the
most natural definition is αt := <(tα), where

α∇(B) := − 1
4π

∫
Σ

Tr(A,B)

3We shall see later on that the restriction k ∈ Z is to be imposed.
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for ∇ = d− A ∈ A0, A,B ∈ A1(Σ, g).

Proposition 4.4. One has dα = ωC, and thus dαt = ωt.

Proof. If one denotes X ∈ C∞(A0, TA0) the tautological vector field defined by

X(d− A) := A,

then one has 2α = ιXωC, meaning that 2α is the contraction of ωC against this X.

Now, one can prove that LXωC = 2ωC, so that by the Cartan formula:

2ωC = LXωC = dιXωC + ιXdωC = dιXωC = 2dα.

Indeed, the flow ϕXt of X at times t is given by ϕXt (d−A) = d− (1+ t)A, for a connection
∇ = d− A ∈ A0. Hence, omitting the evaluation of ωC at the point ∇:(
ϕXt
)∗
ωC(B,C) = ωC

(
dϕXt .B, dϕ

X
t .C

)
= ωC

(
(1 + t)B, (1 + t)C

)
= (1 + t)2(ωC)(B,C),

so that
d

dt

(
ϕXt
)∗
ωC = 2(1 + t)ωC.

Evaluating at t = 0 yields LXωC = 2ωC.

Remark 4.8. The same conclusion can be obtained by computing α in coordinates. We
consider again the tangent vectors ∂w1 , ∂w2 to A0. At a point ∇ = d−A, with A written
as usual, one finds:

α∇(∂w1) = − 1
4π

∫
Σ

Tr(A ∧ ∂w1) = − 1
4π

∫
Σ

Tr
((

w2 0
0 −w2

)(
1 0
0 −1

))
dy ∧ dx =

= 1
2πw2.

Similarly α∇(∂w2) = − 1
2πw1. Hence, in those coordinates:

α = 1
2π (w2dw1 − w1dw2),

whose differential is precisely ωC = 1
π
(dw2 ∧ dw1).

Now that we have defined the prequantum line bundle and its connection, we can try
to define an action of the (restricted) gauge group G0 on L̃(t) that preserves the connection.
This means that our data will descend to an hermitian line bundle with connection on
A0
/
G0 =MdR. To define this lifted action, we use multipliers

Θ(t) : G0 × A0 −→ U(1),

with a slight modification of those of § 2.3.3, used for the compact theory. Namely, if g ∈
G ∼= C∞(Σ, G) is a gauge-transformation, then it is isotopic to the identity, i.e. the map
constant to the identity of G. Using this, one can extend g to a gauge-transformation g̃ of
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the pull-back bundle π∗PC −→ X over to the cylinder X := Σ× [0, 1], where π : X −→ Σ
is the canonical projection. Namely, one lets g̃ act on the restricted principal bundle
π∗PC|Σ×{t} −→ Σ×{t} ∼= Σ as gt : P −→ P , where {gt}t∈[0,1] is an isotopy from g0 = g to
g1 = Id. If ∇ = d−A ∈ A0 is a connection, then consider ∇̃ = π∗∇ = d−π∗A, which is a
connection on the 3-manifold X. Then g̃.∇̃ is an extension of g.∇ to X, and one defines:

Θ(t)(g,∇) := exp
(

2πi<
(
tSCS(g̃.π∗A)

))
,

where SCS : A1(X, g) −→ R denotes the Chern–Simons action. Notice that the only
difference with the exposition of § 2.3.3 is that the multiplication by the integer k is now
replaced by taking the real part of the multiplication by t.

It turns out that one can be much more explicit when considering the restricted gauge
group G0 ⊆ G, at least in genus 1, by imposing that the multipliers preserve the pre-
quantum data. To this end, consider temporarily the following abstract setting (we also
introduce this viewpoint since it will also be useful in § 4.6).
Let (V, ω) be a real symplectic vector space of dimension four. Thinking of V as a man-
ifold such that TV ∼= V × V , we set αv(w) := 1

2ω(v, w), which is a symplectic potential.
To see it, notice that if one fixes a Darboux basis {xi, yi}i of V where ω = ∑

i dxi ∧ dyi,
then one has α = 1

2
∑
i(xidyi− yidxi) in the same set of coordinates. Now, the full lattice

Λ ⊆ V of integer translations acts on the space V :

λ : v 7−→ v + 2πλ for λ ∈ Λ, v ∈ V.

This lattice is isomorphic to Z4 as Z-module, and this is precisely the situation we’re
dealing with above, only that there we only consider a half lattice Λ0 ⊆ Λ generated
by the translation along 2 directions. Nonetheless, one can define multipliers to lift the
full Λ-action to the trivial complex line bundle L := C × V −→ V , equipped with the
connection ∇ := d− iα, in such a way that the connection is fixed.

Proposition 4.5. The multipliers

Θ(λ, x) := ελe
πiω(λ,x), (4.6)

provide a lift of the Λ-action from V to L that preserves ∇ and the standard metric on
L, where ε : Λ −→ Z

/
2Z is a sign satisfying ελ · εµ = ελ+µe

πiω(λ,µ).

In this proposition, one may just think of ω as an alternating bilinear form on V , and
since Λ ⊆ V it makes sense to evaluate it on V × Λ. Moreover, one has ω

(
Λ × Λ

)
⊆ Z,

and so the identity for the signs makes sense too. Notice that one has to add these signs
into the definition in order to establish a genuine multiplier, i.e. to ensure that one has

Θ(λ, x+ µ) ·Θ(µ, x) = Θ(λ+ µ, x),

for x ∈ V, λ, µ ∈ Λ.

Proof. It is clear that the metric is preserved, since we’re acting fibrewise by unitary
transformations of C.
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Next, the condition λ∗∇ = ∇ can be rewritten as follows, in terms of the connection
form α:

λ∗
(
Θ(λ, x)−1dΘ(λ, x)− iΘ(λ, x)−1αxΘ(λ, x)

)
= −iαx

where αx means the evaluation of α at the point x ∈ V .
Now, the conjugation acts trivially, because L has rank 1. Moreover, the pull-back λ∗

fixes the translation-invariant form Θ(λ, x)−1dΘ(λ, x), since the differential of λ is the
identity everywhere. Finally, one verifies directly that

Θ(λ, x)−1dΘ(λ, x) = πiω(λ, dx) = i(λ∗αx − αx)

Considering V = A0, ω = ωt, α = αt, and Λ0 the Z-module generated by the transla-
tions in the direction of a unitary connection, one has a lift of almost all the gauge-group
G0 to the prequantum line bundle, such that the prequantum data are preserved. One
can then extend this definition to the whole of G0 by declaring that Θ(t) is trivial on the
flip h.

Remark 4.9. We now see that one is forced to choose a quantum level t = k + iσ with
k ∈ Z. The point is that this condition assures that ωt takes integer values when evaluated
on the half-lattice Z2 ⊆ A0, since ωC does so.

We now apply all this to (V, ω) = (A0, ωt), thereby defining Θ(t) according to (4.6).
We can now consider the quotient line bundle L(t) := L̃(t)/G0, defined on the moduli space
M ∼= A0

/
G0, and then ∇(t) and h(t) to be the induced connection and metric downstairs

on this line bundle. By construction, we have F∇(t) = −iωt, so that we have defined
prequantum data for (M, ωt) at level t ∈ C∗.

Remark 4.10. As always, we compare this situation with that for the compact moduli
space, with respect to the natural embedding ι : M ↪→ M. More precisely, one ponders
the relation between the prequantum line bundle : L(t) −→M and the Chern–Simons one
L −→M over the compact moduli space, and one finds that the topological type of the
restriction L(t)

∣∣∣
M

= ι∗L(t) −→M is that of the k-fold tensor power L⊗k (see [AM16]).

The relation between the overall prequantum data is quite transparent when σ = 0.
Indeed, one has in that case ωt = ωk = k<(ωC), which restricts to kω on M, where
ω ∈ A2(M,R) is the Atiyah–Bott symplectic form on the compact moduli space (see
Rem. 4.7). In the same way, the symplectic potential α of ωC restrict to the standard
primitive of ω, and thus αt = αk = k<(α) also descends accordingly. In this case the
prequantum connection ∇(t) = ∇(k) restricts to k∇ on L⊗k −→ M, where ∇ is the
prequantum connection of compact Chern–Simons theory, which has the correct curvature.
Finally, the Hermitian metrics also match.

If one instead chooses σ 6= 0, then the situation gets more complicated. The symplectic
structure now becomes

ωt = k<(ωC)− σ=(ωC),
but its restriction to M is still equal to kω, thereby loosing a lot of information. The
same happens for αt and ∇(t).
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Now we move on from prequantisation to quantisation, following § 2.2.2 and § 2.2.3.
To do this, one can introduce K0-invariant polarisations on (A0, ωt), and then make them
descend to the moduli space as done in this section for the prequantum data. The invari-
ance for the action is quite restrictive, and forces e.g. the polarisations to be translation-
invariant in the direction of the compact moduli space (i.e. when varying the unitary
connection in a Hitchin pair). This will however pose no issues, as we will consider
polarisation which are tout-court translation-invariant on the whole affine space. Such
polarisation on a symplectic vector space are said to be linear, because they are defined
by translating a linear subspace (see Ex. 2.10), and will descend to translation-invariant
polarisations on M.

4.2.5 The Kähler Polarisations

We now introduce Kähler polarisations Pτ on M. These polarisations depend on the
(marked) complex structure τ of the surface, thereby defining a map I(t) from H to the
space of Kähler complex structures of the symplectic moduli space. To describe them in
more detail, consider first the following general fact.

Let (M, g, I, J,K) be a hyper-Kähler manifold, and define symplectic forms as follows,
for p ∈M , v, w ∈ TpM :

ωI(v, w) := g(v, Iw), ωJ(v, w) := g(v, Jw), ωK(v, w) := g(v,Kw).

These are the Kähler forms in the respective complex structures.

Proposition 4.6. The nondegenerate complex form ωC = ωI + iωK is a J-holomorphic
symplectic structure.

This means that ωC is a J-holomorphic nondegenerate (2, 0)-form.

Proof. One has, for all p ∈M and v, w ∈
(
TCM

)
p
(omitting the evaluation at p):

−ωC
(
v, (Id +iJ)w

)
= g

(
Iv, (Id +iJ)w

)
+ ig

(
Kv, (Id +iJ)w

)
=

= g(Iv, w) + ig(Iv, Jw) + ig(Kv,w)− g(Kv, Jw) =
= g(Iv, w)− g(JKv,w) + ig(Kv,w) + ig(JIv, w) =
= g(Iv, w)− g(Iv, w) + ig(Kv,w)− ig(Kv,w) = 0.

This means that ωC vanishes on TCM ∧ T(0,1)M , because Id +iJ : TCM −→ T(0,1)M is the
natural projection on the antiholomorphic tangent bundle to M . Hence indeed ωC is of
bidegree (2, 0) for the complex structure J .

This is exactly the situation we face. Namely, consider the complex structures Iτ , J,Kτ

of § 4.2.2, and the symplectic form ωC of § 4.2.3. There we provided the formula

ωC = 1
π

(dw2 ∧ dw1),
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using the natural, τ -independent complex coordinates introduced in § 4.2.1. These co-
ordinates are by definition the ones which are holomorphic for the complex structure J
arising from the group G, and ωC is the J-holomorphic symplectic structure that appears
in the proposition, and one has ωC = ωIτ + iωKτ .
This accidentally provides a different proof of the fact that the real part of ωC restricts to
the Atiyah–Bott form ω ∈ A2(M,R) on the compact moduli space. Indeed, <(ωC) = ωIτ
is the Kähler form for the complex structure Iτ , and thus ι∗<(ωC) must be the Kähler
form of ι∗Iτ . However, this complex structure is precisely the one arising onM from τ ,
and its associated Kähler form is ω.

The above formula also shows that

ωt = k<(ωC)− σ=(ωC) = kωIτ − σωKτ .

This provides a natural way to pick a complex structure I = I(t) such that the triple(
M, ωt, I

(t)
)
is a Kähler manifold. Namely, if we write t′ := t

|t| ∈ U(1) as t′ = k′ + iσ′,
with

k′ := k√
k2 + σ2

, σ′ := σ√
k2 + σ2

,

then one can show that the complex structure we are looking for is

I(t)
τ := Ik′,0,−σ′ = k′Iτ − σ′Kτ ,

using the same notation as in § 4.2.2. This is because the symplectic form ωt is of type
(1, 1) with respect to I(t), and I(t) is the only complex structure in the Kähler sphere for
which this is true. To show it, consider that the definition of the hyper-Kähler metric
implies that

g
(
Iτ (·), ·

)
= ωIτ , g

(
J(·), ·

)
= ωJ , g

(
Kτ (·), ·

)
= ωKτ .

Hence by bilinearity

g
(
Iabc, ·

)
= g

(
aIτ (·) + bJ(·) + cKτ (·), ·

)
= ag

(
Iτ (·), ·

)
+ bg

(
Kτ (·), ·

)
+ cg

(
Kτ (·) ·

)
=

= aωIτ + bωKτ + cωKτ ,

and indeed the choice (a, b, c) = (k′, 0,−σ′) is the correct one. One can also directly check
the compatibility of ωt with I(t)

τ .

Lemma 4.1. One has ωt
(
I(t)
τ (·), I(t)

τ (·)
)

= ωt(·, ·).

Proof. A straightforward expansion yields the following, omitting evaluation dots:

ωt(I(t)
τ , I(t)

τ ) =

= (k′)2
(
k′ωIτ − σ′

(
ωKτ (Iτ , Iτ ) + ωIτ (Iτ , Kτ ) + ωIτ (Kτ , Iτ )

))
+

+ (σ′)2
(
− σ′ωKτ + k′

(
ωIτ (Kτ , Kτ ) + ωKτ (Kτ , Iτ ) + ωKτ (Iτ , Kτ )

))
.
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Hence it is enough to show that

ωKτ (Iτ , Iτ ) + ωIτ (Iτ , Kτ ) + ωIτ (Kτ , Iτ ) = ωKτ ,

since this is equivalent to proving the identity for the expression obtained by swapping Iτ
and Kτ , giving

ωt(I(t)
τ , I(t)

τ ) = (k′)2(k′ωIτ − σ′ωKτ ) + (σ′)2(−σ′ωKτ + k′ωIτ ) =
(
(k′)2 + (σ′)2

)
ωt = ωt.

Now, one has
ωIτ (Kτ , Iτ ) = g(Kτ , ·) = ωKτ (Kτ , Kτ ) = ωKτ ,

and thus we are left to prove that ωKτ (Iτ , Iτ ) + ωIτ (Iτ , Kτ ) = 0, which is seen to be true
as follows:

ωKτ (Iτ , Iτ ) = −ωKτ (Iτ , K2
τ Iτ ) = −ωIτ (Iτ , IτKτIτ ) = −ωIτ (Iτ , IτJ) = −ωIτ (Iτ , Kτ ).

Definition 4.6. The Kähler polarisation Pτ ⊆ TCM, associated to τ ∈ H, on the sym-
plectic manifold (M, ωt), is the polarisation defined by the Kähler structure I(t).

We can thus define the space of the Kähler quantisation of M as the space of I(t)
τ -

holomorphic sections of L(t):
H(t)

C,τ := H0
(
M, L(t)

)
.

This follows the general theory presented in § 2.2.3, particularly Ex. 2.11. Right now we
do not care about the exact form of the inner product of the quantum phase-space, which
is induced by a natural L2-norm with exponential weight. We will nonetheless deal with
this later on, when discussing the Bargmann transform (see § 4.6).

To make this more explicit, some elementary linear algebra shows the following.

Proposition 4.7. The matrix MI(t) of the complex structure I(t) in the τ -independent
frame {∂u1 , ∂v1 , ∂u2 , ∂v2} reads

MI(t) = 1
τ2


−k′τ1 −σ′τ1 k′ σ′

−σ′τ1 k′τ1 σ′ −k′
−k′|τ |2 −σ′|τ |2 k′τ1 σ′τ1
−σ′|τ |2 k′|τ |2 σ′τ1 −k′τ1

 .
The eigenspace of (the complexification of) MI(t) for the eigenvalue −i is the complex span
of

1
|τ |2


iτ2σ

′

τ1 − iτ2k
′

0
|τ |2

 , 1
|τ |2


τ1 + iτ2k

′

iτ2σ
′

|τ |2
0

 .

This is obtained by reading from the formulae of § 4.2.2, and conjugating with respect
to the linear change of coordinates from {ξ1, ξ2, ϕ1, ϕ2} to {u1, v1, u2, v2}. In particular
one has an explicit expression for Pτ as a —constant — vector subbundle of TCM.
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Remark 4.11. As for the prequantum data, the relation between the Kähler polarisation
on M and M (for the same fixed τ) is the most natural one only for σ = 0. In that
case t = k ∈ Z≥0, and thus k′ = 1. Thus I(t) = I(k) = Iτ , and it was shown in 4.5
that Iτ restricts to a complex structure on the compact moduli space. Moreover, this is
necessarily the Kähler structure for kω ∈ A2(M,R), i.e. the complex structure defined
by the opposite of the Hodge ∗-operator (see § 2.3.3).
If σ 6= 0, then things get mixed up by σKτ . There is no reason why the restriction of I(t)

should preserve TCM, and indeed it does not.

As a final remark, notice that one could make the same construction at the higher level
of the flat space (A0, ωt), and equip it with a ωt-compatible complex structure I(t). This
complex structure is invariant for the G0-action, and thus defines a complex structure on
the quotient M ∼= A0. Hence the Kähler polarisation we constructed actually comes from
a linear Kähler polarisation on a 4-dimensional (real) symplectic vector space.

We now move on to discuss the real polarisations originally considered in [Wit91].

4.2.6 The real polarisations

The moduli space M also carries a family of real polarisations PR,τ , which still depend on
the complex structure of the Riemann surface. Namely, for any Riemann surface structure
on Σ one has a Hodge splitting

H1
dR(Σ, g) ∼= H1,0

Dol(Σ, g)⊕H0,1
Dol(Σ, g).

Since H1
dR(Σ, g) is identified with the complexified tangent space to M at every point,

this decomposition defines subbundles of TCM. We now use this to define a Lagrangian
subbundle which is fixed by conjugation, in the following way.

If z = x + τy is a holomorphic coordinate on Σ ∼= C
/

Λτ , we can write a flat G-
connection in the form AC = A1dz + A2dz, where Ai ∈ C∞(Σ, g) for i = 1, 2, as we did
at the end of § 4.2.1. The idea is now to let PR,τ be the pointwise span of the tangent
vectors in the direction of the complex coordinates A1 and A1, defined up to gauge (a
diagonal traceless matrix of size two is the same as a complex number).

Let us now make this more precise, ultimately describing the distribution PR,τ as the
pointwise complex span of suitable linear combinations of the vector fields associated
to the τ -independent coordinates w1, w2 of § 4.2.1. Recall that they correspond to the
decomposition of an SL(2,C)-connection with respect to the real coordinates x, y on Σ.
In what follows we identify a diagonal matrix diag(wj,−wj) with the number wj, for
j = 1, 2. We also write w1 = u1 + iv1, w2 = u2 + iv2 to separate real and imaginary part.

Proposition 4.8. The real polarisation PR,τ is the complex span of the following vector
fields: X = ∂u1 − i∂v1 + τ∂u2 − iτ∂v2

X = ∂u1 + i∂v1 + τ∂u2 + iτ∂v2
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Proof. We have already shown that A1dz + A2dz = w1dx+ w2dy impliesA1 = 1
τ−τ (τw1 − w2)

A2 = 1
τ−τ (w2 − τw1)

Now, if one expresses this in terms of u1, v1, u2, v2, separates real and imaginary parts,
and take differentials, one finds:dA1 = 1

2τ2

[
(τ2du1 − τ1dv1 + dv2) + i(τ1du1 + τ2dv1 − du2)

]
dA2 = 1

2τ2

[
(τ2du1 + τ1dv1 − dv2) + i(−τ1du1 + τ2dv1 + du2)

]

The natural way to compute the vector fields ∂A1 , ∂A2 associated to our coordinates
is to impose the duality equations d(Ai)∂Aj = δij, for {i, j} = {1, 2}. Since each vector
field is a complex linear combination of the four vector fields above, we can expect the
solution to this linear system to exist and to be unique. Some elementary linear algebra
finally provides the formulae∂A1 = 1

2∂u1 − i
2∂v1 + τ

2∂u2 + −iτ
2 ∂v2

∂A2 = 1
2∂u1 − i

2∂v1 + τ
2∂u2 + −iτ

2 ∂v2

The thesis follows.

Corollary 4.1. The real polarisation PR,τ is transverse to the compact moduli space for
all τ ∈ H.

Proof. The compact moduli space sits inside M as the torus parametrised by the real
coordinates v1 = ξ1, v2 = ξ2 (up to integer translations, and the flip; see § 4.2.1). Hence
TCM ⊆ TCM is the complex span of the vector fields ∂v1 , ∂v2 . If one completes this to
the set {∂v1 , ∂v2 , X,X}, with PR,τ = spanC{X,X} as in the previous proposition 4.8, one
must then show that this family is C-linearly independent.

This is equivalent to showing that the square matrix of the components of these
vectors in the frame {∂u1 , ∂v1 , ∂u2 , ∂v2} is nonsingular everywhere on M. Reading again
from Prop. 4.8, this matrix equals

M =


0 0 1 1
1 0 −i i
0 0 τ τ
0 1 −iτ iτ

 ,

and one computes det(M) = τ − τ = −2iτ2 6= 0, for all τ ∈ H.

This proposition is just a way to check the computations. It was expected that the
tangent space to M is transverse to PR,τ at any point, since the only real form of type
(1, 0) is the zero form.
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Finally, since PR is a real polarisation, one should be able to find an integrable La-
grangian subbundle of TM that complexifies to PR. One may in this case just take the
complexification of the real pointwise span of the (constant) vector fields

X1 :=


1
0
τ1
τ2

 , X2 :=


0
−1
τ2
−τ1

 ,

i.e. X1 = 1
2

(
X + X

)
= <(X) and X2 = 1

2i

(
X − X

)
= =(X). One can also explicitly

check that ωt(X1, X2) = 0 as it should, using the fact that the matrix of ωt in the given

global coordinates reads 1
π


0 0 k −σ
0 0 −σ −k
−k σ 0 0
σ k 0 0

. Moreover, one could have started from

this totally real description, i.e. considering the quantum space as that of smooth sections
of L(t) −→M which are covariantly constant along the (τ -dependent) coordinates <(A1)
and =(A1) on M.

Remark 4.12. Each Lagrangian leaf of the real polarisation meets M in exactly one
point. This provides an explicit τ -dependent projection πτ : M −→ M, obtained by
sending a point p ∈ M to the only point at the intersection of M and the leaf for the
polarisation PR,τ passing through p. This realises once more M as a vector bundle over
M.

Finally, one can make the same remark as for the Kähler polarisation: the real po-
larisation we constructed comes from a linear real polarisation on a 4-dimensional (real)
symplectic vector space, i.e. from the choice of a distinguished Lagrangian subspace.
We now move on to describe the action of the mapping class group of closed orientable
surfaces of genus one on all the data introduced so far.

4.2.7 Mapping class group action

Let Γ = Γ1 be the mapping class group of oriented closed surfaces of genus one, as in
Def. 4.3.

Proposition 4.9. There is a natural action of Γ on M induced by the action on the
fundamental group of the surface.

Proof. Consider the Betti viewpoint: M = MB(Σ, G) = Hom
(
π1(Σ), G

)/
G in one al-

gebraic structure. If f ∈ Diff+(Σ) is a diffeomorphism of Σ (that preserves orientation),
then there is an induced isomorphism f∗ : π1(Σ, p) −→ π1

(
Σ, f(p)

)
for all p ∈ Σ, defined

by f∗([γ]p) = [f ◦ γ]f(p), where [·]q denotes the homotopy class of a loop at q ∈ Σ. As
explained in § 2.3.1, there is an identification of the fundamental group based at two dif-
ferent points which is well defined up to inner automorphisms, which in turn are negligible
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in MB since they get turned into inner automorphisms of G by any representation. In
this sense, the class of f∗ in the group of outer automorphisms of π1(Σ) is well defined,
and the G-conjugacy orbit of the representation ρ ◦ f∗ only depends on this class. This
defines a Diff+(Σ)-action onMB.

This description also shows that Diff0(Σ) E Diff+(Σ) acts trivially on the moduli
space, since a continuous map f : Σ −→ Σ which is isotopic to the identity induces the
identity on the fundamental group. Hence the quotient Γ = Diff+(Σ)

/
Diff0(Σ) acts on

the moduli space.

Remark 4.13. In the proof we identified a morphism Γ −→ Out
(
π1(Σ)

)
, where we

set Out
(
π1(Σ)

)
:= Aut

(
π1(Σ)

)/
Inn

(
π1(Σ)

)
(well defined without choosing base point).

One can actually show that it is injective, and that the natural extension to the extended
mapping class group is an isomorphism. This is the content of Dehn–Nielsen–Baer theo-
rem, valid for closed surfaces of genus g ≥ 1 (see [FM12], Thm. 8.1). In genus one, the
isomorphism follows from the identifications Out

(
π1(Σ)

)
= Aut

(
π1(Σ)) = Aut(Z2) ∼=

GL(2,Z).

In the de Rham viewpoint, the action of Diff+(Σ) is defined by pulling back connections
on the trivial principal G-bundle PC = G×Σ over Σ, using that the pull-back of the trivial
bundle is still the trivial bundle (e.g. since it admits a global section). Let us now describe
the compatibility with the gauge action of G ∼= C∞(Σ, G).
First, notice that Diff+(Σ) acts on G by composition: f.g := g ◦ f : Σ −→ G, for g ∈ G,
f ∈ Diff+(Σ). If one denotes with g.∇ the gauge-action on a G-connection ∇, then one
has

f ∗(g.∇) = (g ◦ f).(f ∗∇).4

This implies that the gauge-class of f ∗(g.∇) is the same as that of f ∗∇, and thus the
Diff+(Σ)-action is well defined on gauge-equivalence classes of connections. Since it more-
over preservers flatness, it descends to an action on the de Rham moduli space.
The above proposition 4.9 then also implies that Diff0(Σ) acts trivially, since the mon-
odromy representation of a pulled-back connection changes according to the natural action
of Diff+(Σ) on Hom

(
π1(Σ), G

)
. This claim essentially follows from
(
f ∗∇γ̇

)
(f ∗s) = f ∗

(
∇df(γ̇)s

)
,

where s is a local section of the trivial bundle defined on an open set containing the
loop γ, and f ∈ Diff+(Σ). The vector field df(γ̇) = d

dt
(f ◦ γ) is the velocity of the loop

f ◦ γ, and thus the parallel transport of f ∗∇ along the homotopy class [γ] is given by
the parallel transport of ∇ along the homotopy class [f ◦ γ] = f∗([γ]), which means that
ρf∗∇ = ρ∇ ◦ f∗, as claimed.

It is known that the mapping class group action on M preserves the complex sym-
plectic form ωC of § 4.2.3, and thus also ωt = tωC+tωC

2 : see e.g. [Gol04], which describes
4Both are equal to the pull-back of ∇ with respect to the bundle automorphism over f : Σ −→ Σ

defined by the pair (g, f). We will momentarily describe the group of automorphisms as a semidirect
product of the Diff+(Σ) and G.
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exactly the case of the group SL(2,C). In brief, one can argue as follows.
As mentioned in § 2.3.3, the tangent space to the de Rham moduli space at the gauge-
equivalence class of a G-connection dA on PC = G × Σ is the first cohomology group
H1(Σ, dA) of the complex of Ad(PC)-valued differential forms on Σ, with the flat connec-
tion dA as differential. The nondegenerate alternating pairing

ωC : H1(Σ, dA) ∧H1(Σ, dA) −→ C

is then defined by composing:

1. The cohomology cup product H1(Σ, dA) × H1(Σ, dA) −→ H2(Σ, dA) twisted with
the AdG-invariant scalar product g ⊗ g −→ C fixed at the beginning. Notice that
the cup product is induced by the wedge product on cohomology classes of g-valued
differential forms. This results in a map

H1(Σ, dA)×H1(Σ, dA) −→ H2(Σ,C).

2. The isomorphism H2(Σ,C) ∼= C provided by the orientation of Σ.

Now one remarks that the cup product of two de Rham cocycles is the Poincaré dual
of the intersection of their dual cycles, and that these intersections are preserved under
diffeomorphisms of Σ. Hence Γ preserves the symplectic pairing.
This implies that Γ also preserves the symplectic potential α, since

(f ∗α)∇(B) = αf∗∇(f ∗B) = ωC(f ∗A, f ∗B) = ωC(A,B) = α∇(B),

for f ∈ Diff+(Σ), ∇ = d− A ∈ AC, B ∈ T∇AC. Hence Γ also fixes the t-deformation αt.
Notice also that the pull-back f ∗L(t) of the prequantum bundle is now isomorphic to
L(t) as a smooth line bundle, since their Chern classes coincide: these line bundles carry
connections with the same curvature −iωt.

Now that we know that Γ acts symplectically on (M, ωt), there is the question of
lifting the action to the Chern–Simons prequantum bundle L(t) at level t ∈ C∗. The best
is to define an action on L̃(t) = AC × C, and show the compatibility with the lift of the
G-action to L̃(t), i.e. with the multipliers of § 4.2.4.
Consider then the trivial linearisation of the Diff+(Σ)-action defined by

f.(∇, η) := (f ∗∇, η) for ∇ ∈ AC, η ∈ C.

A straightforward adaptation of Lem. 3.1 of [And+17] yields the following.

Lemma 4.2. The lifts of the G-action and the Γ-action combine to provide a lift of the
action of Aut(PC) ∼= G o Diff+(Σ) from AC to AC × C.

The statement is understood as follows. The automorphism group Aut(PC) consists
of bundle automorphisms PC −→ PC covering an arbitrary orientation-preserving dif-
feomorphism f : Σ −→ Σ. They are thus coded by pairs (g, f) ∈ G × Diff+(Σ), where
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(g, f)(p, h) :=
(
f(p), g(p)h) for all p ∈ Σ, h ∈ G. This is however not a direct product,

since the composition of two such pairs is evaluated as

(g2, f2) ◦ (g1, f1)(p, h) =
(
f2 ◦ f1(p), g2(f1(p)) · g1(p)h

)
,

i.e. (g2, f2) ◦ (g1, f1) =
(
(g2 ◦ f1) · g1, f2 ◦ f1

)
. This means that one has an isomor-

phism Aut(PC) ∼= G oΦ Diff+(Σ), where Φ: Diff+(Σ) −→ Aut(G) is the action by right
composition considered earlier.

Proof. One has to prove that

f ∗
(
g.(∇, η)

)
= (g ◦ f).

(
f ∗(∇, η)

)
,

for all ∇ ∈ AC, η ∈ C, f ∈ Diff+(Σ) and g ∈ G.

The left-hand side reads

f ∗
(
g.(∇, η)

)
= f ∗

(
g.∇,Θ(t)(∇, g)η)

)
=
(
f ∗(g.∇),Θ(t)(∇, g)η)

)
.

The right-hand instead equals:

(g ◦ f).
(
f ∗(∇, η)

)
=
(

(g ◦ f).(f ∗∇),Θ(t)
(
f ∗∇, g ◦ f

)
η
)
,

where in the second passage we used f ∗(g.∇) = (g ◦f).(f ∗∇). Hence one can conclude by
showing that Θ(t)(f ∗∇, g ◦ f) = Θ(t)(∇, g). This follows from the invariance of integrals
on the oriented 3-fold X := Σ × [0, 1] under the orientation preserving diffeomorphisms
F := f × Id, which is used in the last passage of the following suite of identities:

SCS
(
(g̃ ◦ f).(f̃ ∗∇)

)
= SCS

(
(g̃ ◦ F ).(F ∗∇̃)

)
= SCS

(
F ∗(g̃.∇̃)

)
= SCS(g̃.∇̃).

This lemma says that the lift of Diff+(Σ) ∼= Aut(PC)
/
G to L̃(t) is compatible with

the lifted gauge action, and thus one also gets an action on the prequantum line bundle
L(t) −→M over the moduli space. Finally, one can conclude that Diff0(Σ) acts trivially,
as follows. If f ∈ Diff0(Σ), then f ∗(∇, η) = (f ∗∇, η) = (g.∇, η) for some element g ∈ G.
One can then show that Θ(t)(∇, g) = 1 for such g, and thus the element f ∗(∇, η) is equal
to (∇, η) in the quotient line bundle (see Prop. 3.10 of [And+17], where this is proven in
the more general case of a curve with a nonnegative number of punctures).
The punchline is that there is an action of Γ via bundle automorphisms of L(t) −→ M
that covers the natural symplectic action of Prop. 4.9. It follows from the definition of the
lift that the action preserves the Hermitian metric h(t) of the prequantum line bundle, and
since it preserves the symplectic potential then it also fixes the prequantum connection
∇(t). Hence the lift of the mapping class group action fixes all the prequantum data.

The action on the line bundle induces a Γ-action on the space of its smooth sections by
pull-back: f.s([∇]) = s([f ∗∇]) for all s ∈ C∞

(
M, L(t)

)
, [∇] ∈ M, and f an orientation-

preserving diffeomorphism. The action on sections reduces to pull-back because f acts
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trivially on the fibres of L(t). Moreover, since Γ preserves the Hermitian metric on L(t)

and the Liouville measure on M, then it also preserves the L2-norm of C∞(M, L(t)).
Finally, if τ ∈ H is a point in Teichmüller space, then this need not be fixed by Γ. Rather,
if γ ∈ Γ is a mapping class and s a Pτ -polarised (resp. PR,τ -polarised) section of L(t),
where Pτ is the Kähler polarisation of § 4.2.5 (resp. the real polarisation of § 4.2.6),
then γ.s will be a γ∗Pτ -polarised (resp. γ∗PR,τ -polarised) section. This follows from the
identity

(γ∗∇(t))X(γ∗s) = γ∗
(
∇(t)
dγ(X)s

)
.

Indeed, if s is a Pτ -polarised (resp. PR,τ -polarised) section of L(t), and X is a section of
γ∗Pτ (resp. γ∗PR,τ ), then dγ(X) will be a section of Pτ (resp. PR,τ ), and the right-hand
side will vanish.
In the case of Kähler polarisations, this means that I(t)

f∗τ = f ∗I(t)
τ for all τ ∈ H and

all orientation-preserving diffeomorphism f of Σ, where I(t) is the map from H to the
space of ωt-compatible complex structures on (M, ωt) defined in § 4.2.5. In general, one
might say that the map from Teichmüller space to polarisations on the moduli space is
Γ-equivariant.

Putting all together, there is an action of the mapping class group on the quantum
vector bundles of polarised sections over Teichmüller space, lifting the action of Γ on
Teichmüller space. We will resume the discussion of this section in a proposition.

Proposition 4.10. The natural symplectic Γ-action of Prop. 4.9 on the prequantisable
symplectic manifold (M, ωt) lifts to the an action of the prequantum line bundle L(t) at
level t that preserves the prequantum data (L(t),∇(t), h(t)) of § 4.2.4. There is a natural
Γ-action on the quantum bundles HP ,HPR of L2-summable polarised sections which lifts
the natural Γ-action on Teichmüller space.

In particular, if one element τ ∈ H is fixed by Γ then one gets a genuine infinite-
dimensional representation of the mapping class group on the Hilbert spaces HPτ and
HPRτ

. Otherwise, some identification between HPτ and Hf∗Pτ (resp. HPR,τ and Hf∗PR,τ ) is
needed. This is one place where the Hitchin connection comes into play, and helps defining
the so-called “quantum” representations of the mapping class group in the geometric
quantisation setting (see e.g. [Mas03]).

We now move on and construct such a Hitchin connection in the Kähler-polarised case,
complementing the Hitchin–Witten connection [Wit91; AG14] on the quantum bundle for
real polarisations.

4.3 The Hitchin connection before the circle action

In the previous section we attached a symplectic phase-space (M, ωt) to a genus one surface
Σ, the group G = SL(2,C) and a level t ∈ C∗. Moreover, we also constructed prequantum
data (L(t),∇(t), h(t)) at level t, and a family of Kähler polarisations Pτ parametrised by
the upper-half plane H ⊆ C. Everything is ready to adapt the general theory presented
in § 2.2.4, and construct a Hitchin connection for the Kähler quantisation at hand.
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To this end, we need some more ingredients.

4.3.1 Variation of tensors

Let V ∈ C∞(H, TCH) be a complex vector field on Teichmüller space. One can differ-
entiate any τ -dependent tensor on M along V , and this turns out to be relevant for the
construction of the Hitchin connection. We will denote V [T ] the variation of a tensor
field T on H along V . The most interesting tensors to differentiate for us are the com-
plex structure I(t) : H −→ C∞

(
M, TM ⊗ T ∗M

)
of 4.2.5, and the hyper-Kähler metric

g = ωt
(
·, I(t)(·)

)
. Let us start from understanding what kind of tensor the derivative

V
[
I(t)

]
is.

The identity
(
I(t)

)2
= − Id for almost-complex structures implies

V
[
I(t)

]
I(t) + I(t)V

[
I(t)

]
= 0, (4.7)

by the Leibnitz rule. This means that the tensor V
[
I(t)

]
∈ C∞

(
M, TCM ⊗ T ∗M

)
cor-

responds to an endomorphism of the complexified tangent bundle that exchange types.
Indeed, if p ∈M, and v ∈ T1,0M, then:

−I(t)V
[
I(t)

]
(v) = V

[
I(t)

]
I(t)(v) = iV

[
I(t)

]
(v).

This implies that V
[
I(t)

]
lives in the eigenbundle of I(t) of eigenvalue −i, i.e. it that it is

of type (0, 1). The same verification shows that V
[
I(t)

](
T0,1M

)
⊆ T1,0M.

This can be written as

V
[
I(t)

]
∈ C∞(M, T1,0 ⊗ T 0,1)⊕ C∞(M, T0,1 ⊗ T 1,0),

where one abusively omits M from the notation of tangent and cotangent bundles. This
decomposition defines a splitting

V
[
I(t)

]
= V

[
I(t)

]′
+ V

[
I(t)

]′′
,

where the former addend is an endomorphism taking values in the holomorphic tangent
bundle, and the latter in the antiholomorphic one.

Now we define a tensor G̃(V ) on M by means of the identity

G̃(V ).ωt = V
[
I(t)

]
,

where the dot means a contraction. By looking at types, one concludes necessarily that
G̃(V ) ∈ C∞(M, TC ⊗ TC). More precisely, if one has a real set of coordinates {xi}1≤i≤4,
so that ωt = ∑

i,j ωijdxi ∧ dxj and G̃(V ) = ∑
i,j Gij∂xi ⊗ ∂xj, then:

G̃(V ).ωt =
∑
i,j,k,l

Gijωkl(∂xi ⊗ ∂xj) · (dk ∧ dxl) =
∑
i,j,l

Gijωjl∂xi ⊗ dxl =
∑
i,l

(Gω)il∂xi ⊗ dxl.
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This is indeed a tensor of type (1, 1), whose coefficient matrix is the product of that of
G̃(V ) on the left of that of ωt. Moreover, one can now use the relation g

(
I(t)(·), ·

)
= ωt(·, ·),

which is equivalent to g(·, ·) = ωt
(
·, I(t)(·)

)
, to see that the variation of the hyper-Kähler

metric is
V [g] = ωt.V

[
I(t)

]
= g.G̃(V ).g,

because ωt is τ -independent. Hence in this context the variation of the metric and of the
complex structure are related one to another via the symplectic form, and this incidentally
shows that the tensor G̃(V ) is symmetric.

Finally, there is a decomposition G̃(V ) = G(V ) +G(V ), due to the type-swapping of
V
[
I(t)

]
, where

G(V ) ∈ C∞(M, T1,0 ⊗ T1,0), G(V ) ∈ C∞(M, T0,1 ⊗ T0,1).

Said differently, the tensor G̃(V ) has vanishing (1, 1)-component, and its decomposition
is defined by the identity

G(V ).ωt = V
[
I(t)

]′
, G(V ).ωt = V

[
I(t)

]′′
.

A crucial property for the construction of the Hitchin connection is the following.

Definition 4.7. The family of complex structures
{
I(t)
τ

}
τ∈H

is rigid if G(V ) is a holomor-
phic section of T1,0 ⊗ T1,0 for all complex vector field V on H.

If one takes a I(t)-holomorphic frame {∂z1 , ∂z2} for T1,0, then G(V ) is identified with
a function G(V ) : M −→ M2(C), where Mn(C) is the space of matrices of order n with
complex coefficients. Then the condition is that ∂G(V ) = 0 for this function, which is
usually a strong assumption. In our case, however, it is straightforward to see that it
is verified: since ωt and I(t) are translation-invariant, the same is true for G(V ), and a
constant section is holomorphic.

4.3.2 Construction of the connection

Now consider the trivial prequantum bundle C∞
(
M, L(t)

)
× H −→ H, as in § 2.2.4. We

pick in there a connection of the form ∇̂ = ∇T − u, where ∇T is the trivial connection,
and u ∈ A1

(
C,D(M, L(t))

)
a 1-form on Teichmüller space taking values in differential

operators acting on smooth sections of L(t). Such a connection acts on sections of the
trivial bundle by means of:

∇̂V s = V [s]− u(V ).s,

where V is a complex vector space on Teichmüller, s = s(τ) is a τ -dependent smooth
section of L(t), and u(V ).s denotes the action of the operator on the smooth section.

Next, let H(t)
C be the quantum bundle fitting together the spaces H(t)

C,τ := H0
τ (M, L(t))

be the quantum bundle at level t, fitting together the spaces of the Kähler quantisation

160



CHAPTER 4. HITCHIN CONNECTIONS

of the moduli space with respect to the polarisation of § 4.2.5. The first objective is to
find an operator u such that H(t)

C is preserved. This means by definition that(
∇(t)

)0,1
∇̂s = 0, if s : H −→ H(t)

C .

To check this, one has the following.

Lemma 4.3. A connection of the form ∇̂ = ∇T −u preserves holomorphicity if and only
if

i

2V
[
I(t)

]
∇(t)s+

(
∇(t)

)0,1
u(V ).s = 0,

for all vector fields V on H and all section s taking values inside H(t)
C .

Proof. Let V be a vector field of Teichmüller, and s = s(τ) a section which is everywhere
holomorphic. One computes(

∇(t)
)0,1
∇̂(t)s =

(
∇(t)

)0,1
V [s]−

(
∇(t)

)0,1
u(V ).s.

Now, the first addend can be rewritten, differentiating the identity
(
∇(t)

)0,1
s = 0 along

V . To do this recall that according to (2.12) one has(
∇(t)

)0,1
= 1

2
(

Id +iI(t)
)
∇(t).

Hence:

0 = V
[(
∇(t)

)0,1
∇̂s
]

= 1
2V

[
∇(t)s

]
+ i

2V
[
I(t)∇(t)s

]
=

= 1
2∇

(t)V [s] + i

2V
[
I(t)

]
∇(t)s+ i

2I
(t)∇(t)V [s] =

(
∇(t)

)0,1
V [s] + i

2V
[
I(t)

]
∇(t)s.

If one substitutes the new identity
(
∇(t)

)0,1
V [s] = − i

2V
[
I(t)

]
∇(t)s in the first equation,

one sees that
(
∇(t)

)0,1
∇̂s = 0 is equivalent to

− i2V
[
I(t)

]
∇(t)s−

(
∇(t)

)0,1
u(V ).s = 0,

which is exactly the condition in the statement.

Notice that ∇(t)s =
(
∇(t)

)1,0
s, since s is everywhere holomorphic. Moreover, one

has V
[
I(t)

](
∇(t)

)1,0
= V

[
I(t)

]′(
∇(t)

)1,0
, by looking at types. Hence one may write the

condition for preserving holomorphicity as(
∇(t)

)0,1
u(V ).s = − i2V

[
I(t)

]′(
∇(t)

)1,0
s (4.8)

We now consider the Ansatz for the operator u of [And12], which is used for the Kähler
quantisation of the compact theory. The prescription is to produce a differential operator
of order two out of:
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• The tensor G(V ) of the previous section § 4.3.1, encoding the holomorphic part of
the variation of the complex structure.

• The prequantum connection ∇(t).

• The Levi–Civita connection ∇LC of the Riemannian manifold (M, g).

• A family of Ricci potential F : H −→ C∞(M,C).

In general, one defines a family of Ricci potentials for the Kähler manifold (M, ωt, I
(t))

as follows. The Riemannian metric g defines the Riemann curvature tensor Rg = F∇LC as
the curvature of the Levi–Civita connection ∇LC for the metric g. Next, one extracts the
Ricci tensor Ric ∈ C∞(M, TC⊗TC) from it, via a contraction, and defines the Ricci form
ρ := Ric

(
I(t)(·), ·

)
∈ A2(M,C). This form is a representative of the first Chern class of

the complexified tangent bundle, which is by definition the Chern class of the underlying
symplectic manifold. If one assumes that λωt is also such a representative for some integer
λ, then difference λωt − ρ is exact, and one calls F ∈ C∞(M,C) a Ricci potential if

ρ = λωt + 2i∂∂F.

Now, since the complex and the metric structures are τ -dependent, then one would like
to have a family of such potentials parametrised by H. The operator u depends explicitly
on F .

In our flat context, however, one has Rg = Ric = ρ = 0, because there is no curvature
whatsoever: the tangent bundle to M is trivial, since the moduli space is topologically the
cotangent bundle to a flat torus (up to an immaterial flip, see § 4.2.1). The first Chern
class of the moduli space is given by the curvature of ∇LC, which is the trivial connection;
hence the Ricci potential vanishes for all τ ∈ H.
The punchline is that one might try to use the symmetric tensors G(V ) and the (1, 0)-part
of the prequantum connection ∇(t) to construct a Hitchin connection. The fact that this
works is the content of the following two theorems. This fortunate situation does not hold
when one takes into account the C∗-action on Higgs fields (see § 4.4 and 4.5).

Consider then the variation V
[
∆g

]
of the usual Laplace–Beltrami Laplacian coming

from the Riemannian structure. One can realise this differential operator of order two
more explicitly. Namely, consider the composition

∆G(V ) : Tr
(
∇̃1,0 ◦G(V ) ◦

(
∇(t)

)1,0
)

: C∞(M, L(t)) −→ C∞(M, L(t)), (4.9)

where:

• The (1, 0)-part of the prequantum connection acts as(
∇(t)

)1,0
: C∞(M, L(t)) −→ C∞(M, T 1,0 ⊗ L(t)).

• The contraction with the tensor G(V ) changes the types of tensor, thereby providing
a map

G(V ) : C∞(M, T 1,0 ⊗ L(t)) −→ C∞(M, T1,0 ⊗ L(t)).
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• One sets ∇̃ := ∇LC ⊗ Id + Id⊗∇(t), which is a connection in the bundle TC ⊗ L(t)

over the moduli space. Hence its (1, 0)-part provides a map
(
∇LC

)1,0
⊗ Id + Id⊗

(
∇(t)

)1,0
: C∞(M, T1,0 ⊗ L(t)) −→ C∞(M, T 1,0 ⊗ T1,0 ⊗ L(t)).

• Finally, the trace means the contraction of T 1,0 against T1,0, and one lands again in
the space of smooth sections of the level t prequantum bundle.

This general definition simplifies significantly, because of the aforementioned fact that
the Levi–Civita connection is trivial, and that G(V ) is constant. Namely, if one considers
a I(t)-holomorphic frame {z1, z2} of T1,0, then one finds:

∆G(V ) =
2∑

i,j=1
∇(t)
∂zi
Gij(V )∇(t)

∂zj
=
∑
i,j

Gij(V )∇(t)
∂zi
∇(t)
∂zj
.

We now set u(V ) := c∆G(V ), where c ∈ C is a constant, and try to fix it so to define a
Hitchin connection.

Proposition 4.11. One has:(
∇(t)

)0,1
∆G(V )s = −2iV

[
I(t)

](
∇(t)

)1,0
s

for all V ∈ C∞(H, TCH), and for all sections s : H −→ H(t)
C .

Proof. The idea is to make
(
∇(t)

)0,1
commute past the Laplacian, using the commutation

relations [(
∇(t)

)0,1

∂zi

,
(
∇(t)

)1,0

∂zj

]
= F 1,1

∇(t)(∂zi , ∂zj) = −iωt(∂zi , ∂zj),

for i, j ∈ {1, 2}, since
[
∂zi , ∂zj

]
= 0. If one omits the superscript (t) and the evaluation

at the vector fields associated to the complex coordinates this reads
[
∇0,1,∇1,0

]
= −iωt.

Hence, if one abusively writes ∇1,0 also for the connection ∇̃ defined above, one finds:

∇0,1∆G(V )s = ∇0,1 Tr
(
∇1,0G(V )∇1,0

)
s = Tr

(
∇0,1∇1,0G(V )∇1,0

)
s =

= −iTr
(
ωtG(V )∇1,0

)
s+ Tr

(
∇1,0G(V )∇0,1∇1,0

)
s =

= −iTr
((
ωt.G(V )∇1,0

)
+
(
∇1,0G(V ).ωt

))
s+ Tr(∇1,0G(V )∇1,0)∇0,1s =

= −2iωt.S
(
G(V )

)
∇1,0s,

where S
(
G(V )

)
denotes the symmetric part of the tensor G(V ) (cf. § 4.5.2), and where

one uses the rigidity of the complex structure to conclude that ∇0,1G(V ) = 0. Also, in
the last passage ∇0,1s = 0 because s is taken to be holomorphic. See Rem. 4.20 for a
computation in coordinates.
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Since G(V ) is symmetric, one concludes that

∇0,1∆G(V )s = −2iωt.G(V )∇1,0s = −2iV
[
I(t)

]′
∇1,0s,

since ωt.G(V ) = V
[
I(t)

]′
by definition (see § 4.3.1). However, this is also equal to the

whole of the differential operator V
[
I(t)

]
∇1,0s, because the (1, 0)-part of the prequantum

connection vanishes when contracted with the antiholomorphic component V
[
I(t)

]′′
of the

variation of the complex structure.

Putting together this proposition with (4.8), we have proved the following.

Theorem 4.1. The connection

∇̂V := ∇T
V − u(V ), where u(V ) := 1

4∆G(V ), (4.10)

defined in the trivial prequantum bundle C∞
(
M, L(t)

)
×H −→ H, preserves the subspaces

H(t)
C,τ of I(t)-holomorphic sections.

This in particularly proves that H(t)
C is actually a vector sub-bundle. The program

sketched in § 2.2.4 is almost completed: we still have to show that the connection is
(projectively) flat.

Remark 4.14. A corollary of the construction is that the connection (4.10) is preserved
by the group of bundle automorphisms of H(t)

C defined by the mapping class group Γ,
according to proposition 4.10. This is the same remark that precedes Lem. 6 of [And12],
transferred to our non-compact context.
Indeed, the Laplacian ∆G(V ) is constructed out of the Γ-invariant prequantum connection
∇(t) and the symmetric tensor G(V ). In turn, G(V ) corresponds to the holomorphic
part V [I]′ of the variation of the complex structure under the isomorphism between T1,0
and T 0,1 induced by the Γ-invariant symplectic pairing ωt : T1,0 ∧ T0,1 −→ C. Since the
variation of the complex structure varies naturally along the Γ-action, so does G(V ).

Remark 4.15. Before discussing flatness, let us discuss the uniqueness of our construc-
tion. To this end consider any Laplacian operator built out of the (1, 0)-part of the
prequantum connection, i.e.

∆T =
∑
i,j

∇(t)
∂zi
Tij∇(t)

∂zj
,

where T ∈ C∞(M, TC⊗TC) is a twice contravariant (complex) tensor on M. The principal
symbol of ∆T is T , and we may ask for conditions on T such that ∇T − c∆T preserves
holomorphicity, where c ∈ C∗ is a constant.

According to (4.8) and the further remarks we made, one needs c∇0,1∆T = − i
2V [I]′∇1,0.

Since the right-hand side is a differential operator of order one, we need in particular that
T is annihilated ∇0,1, i.e. that the tensor T is holomorphic. Using this, one finds

∇0,1∆T = −2iωt.S(T )∇1,0,

164



CHAPTER 4. HITCHIN CONNECTIONS

and thus we see that one needs

ωt.S(T ) = 1
4cV [I]′.

Hence the symmetric part of the symbol is fixed by the condition that holomorphicity is
preserved.

One might of course add lower order terms to the Laplacian, and consider an operator
of the form

u′(V ) = c2∆T (V ) + c1∇1,0
X(V ) + c0f(V ),

where X(V ) is a vector field on M of type (1, 0), and f(V ) is a smooth function on M.
Looking at (4.8) one still sees the necessary conditions ∇0,1T = 0 and ωt.S(T ) = 1

4c2V [I]′,
and then the zero-order term ∇0,1

(
c1∇X(V ) + c2f(V )

)
must simply vanish.

In § 4.5 we will indeed have to consider an order-one correction to the Laplacian oper-
ator, in the new context where the symplectic structure and the prequantum connection
vary too.

4.3.3 Flatness

The aim of this section is to prove the following theorem.
Theorem 4.2. The connection (4.10) is flat when restricted to H(t)

C .

To show this, one starts by computing the curvature F∇̂ ∈ A
2
(
H,D(M, L(t))

)
, finding:

F∇̂(V,W ) = 1
4

(
W
[
∆G(V )

]
− V

[
∆G(W )

])
+ 1

16
[
∆G(V ),∆G(W )

]
,

for vector fields V,W on Teichmüller space such that [V,W ] = 0. This is computed by
expanding the commutator

[
∇T
V − 1

4∆G(V ),∇T
W − 1

4∆G(W )
]
.

Notice that the complex vector fields ∂τ , ∂τ associated to the complex coordinate τ yield
a global frame for the complexified tangent bundle TCH of H. In particular, the curvature
must be of type (1, 1) for the standard complex structure on the upper-half complex plane,
and it is enough to show that the differential operator F∇̂(∂τ , ∂τ ) ∈ D(M, L(t)) vanishes on
holomorphic sections, whereas a priori it acts on them via a differential operator of order
at most three. In particular, the hypothesis that V and W commute is not restrictive.
Lemma 4.4. One has W

[
∆G(V )

]
s − V

[
∆G(W )

]
= 0s for all commuting vector fields

V,W ∈ C∞(H, TCH), and for all holomorphic section s.

Proof. One has

V
[
∆G(W )

]
= V Tr

(
∇1,0G(W )∇1,0

)
=

= − i2

(
V [I]G(W )∇1,0 +∇1,0G(W )V [I]

)
+ Tr

(
∇1,0V

[
G(W )

]
∇1,0

)
=

= −iG(W )V [I]′.∇1,0 + ∆
V

[
G(W )

].
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In this expansion we used

V
[
∇1,0

]
= V

[
π1,0

]
∇ = − i2V [I]∇,

where π1,0 = 1
2

(
Id−iI

)
is the projection on the holomorphic tangent bundle. Also, the

contraction V [I].∇1,0 is the same as V [I]′.∇1,0, since ∇1,0 vanishes on the antiholomorphic
tangent bundle to M.

If one now subtracts this term fromW
[
∆G(V )

]
, one is left with the following differential

operator of order 2:

W
[
∆G(V )

]
− V

[
∆G(W )

]
=

= i
(
G(W )V [I]′ −G(V )W [I]′

)
∇1,0 + ∆

W

[
G(V )

] −∆
V

[
G(W )

].
To see that these two operators vanish, one can just transform using the τ -independent
tensor ω:

W
[
G(V )

]
− V

[
G(W )

]
= W

[
ω−1.V [I]′

]
− V

[
ω−1.W [I]′

]
= ω−1.

(
WV [I]− VW [I]

)′
=

= ω−1.
(
[V,W ][I]

)′
= 0,

and

ω.
(
G(W )V [I]′ −G(V )W [I]′

)
= ω.G(W )V [I]′ − ω.G(V )W [I]′ =

= G(W )G(V )−G(V )G(W ) = 0.

Remark 4.16. A quicker proof is given by the characterisation of ∆G(V ) as the the
variation V

[
∆g

]
of the Laplace–Beltrami operator for the (hyper-)Kähler metric g, acting

on the space of holomorphic sections. One can show that

∆G(V )s = V
[
∆g

]
s,

if s is a holomorphic section. Hence

W
[
∆G(V )

]
s− V

[
∆G(W )

]
s = WV

[
∆g

]
s− VW

[
∆g

]
s = [W,V ]

[
∆g

]
s = 0.

Next comes the commutator of the Laplacians.

Proposition 4.12. One has [
∆G(V ),∆G(W )

]
= 0,

for all vector fields V,W on H.
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Proof. One has, writing abusively ∇1,0 for the composite connection ∇̃1,0, and omitting
the superscript t for the prequantum connection:

[
∆G(V ),∆G(W )

]
=
[

Tr
(
∇1,0G(V )∇1,0

)
,Tr

(
∇1,0G(W )∇1,0

)]
=

= Tr
([
∇1,0G(V )∇1,0,∇1,0G(W )∇1,0

])
.

Now, ignoring the final contraction provided by picking traces, one can just develop the in-
ner commutator using the Leibnitz rule. This provides nine addends, which vanish because
of the relations

[
∇1,0,∇1,0

]
= F 2,0

∇ = (−iωt)2,0 = 0, and
[
∇1,0, G(V )

]
=
[
∇1,0, G(W )

]
= 0,

due to the fact that the tensors G(V ), G(W ) are translation-invariant. It is also clear that[
G(V ), G(W )

]
= 0, since these operators are just function multiplications.

This concludes the proof of Thm. 4.2. We have constructed a flat Hitchin connection
for the Kähler quantisation of the moduli space of polystable SL(2,C)-Higgs bundles
over a Riemann surface of genus one, which is invariant under the natural action of the
mapping class group.

Remark 4.17. To construct the Hitchin connection, to prove its flatness, and to deduce
Γ-invariance, we did not use any particular feature of the group G = SL(2,C), apart from
it being the complexification of a simple, compact, 1-connected Lie group. The same
proof would work for any group satisfying these requirements.

Now one would like to explore a feature of the moduli space M which is not present
in the compact case: the dilation action on Higgs fields. This is an action of the group
C∗ on M, and one might look for a Hitchin connection which is compatible with it. The
motivation for this has been discussed in the introduction, and we now move on to describe
this extension.

4.4 The Hitchin action

We introduce here another characteristic data of the Dolbeault moduli space, the natural
C∗-action of homothety on Higgs fields.

4.4.1 Definition of the action

If λ ∈ C∗ is a nonzero complex number, then one can multiply a Higgs field Φ by λ to
get another Higgs field, because such objects are linear. This clearly breaks down for
connections.

The coordinate-free formula for the action is just

λ.(A,Φ) := (A, λΦ),
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for λ ∈ C∗ acting on a Hitchin pair (A,Φ). Recall from § 4.2.1 that we had natural
coordinates ξ1, ξ2, ϕ1, ϕ2 on the moduli space given by the decomposition

A+ Φ + Φ∗ =

=
(
iξ1 + 2ϕ1 0

0 −(iξ1 + 2ϕ1)

)
dx+

(
iξ2 + 2(τ1ϕ1 − τ2ϕ2) 0

0 −(iξ2 + 2(τ1ϕ1 − τ2ϕ2))

)
dy.

Now, if we write λ = λ1 + iλ2, then in these coordinates the action is coded by the linear
transformation

λ.


ξ1
ξ2
ϕ1
ϕ2

 =


1 0 0 0
0 1 0 0
0 0 λ1 −λ2
0 0 λ2 λ1



ξ1
ξ2
ϕ1
ϕ2

 =


ξ1
ξ2

λϕ1 − λϕ2
λ1ϕ2 + λ2ϕ1

 .
The problem is, as always, that those coordinates depend on the choice of the complex
structure τ ∈ T chosen to define Higgs fields over Σ. Since eventually we’ll have to pick
derivatives with respect to the coordinate on Teichmüller space, we prefer working in the
τ -independent coordinates (u1, v1, u2, v2) introduced in § 4.2.1.

Recall that the transformation from the atlas (ξ1, ξ2, ϕ1, ϕ2) to (u1, v1, u2, v2) is linear,
and coded by 

u1
v1
u2
v2

 =


0 0 2 0
1 0 0 0
0 0 2τ1 2τ2
0 1 0 0



ξ1
ξ2
ϕ1
ϕ2

 =


2ϕ1
ξ1

2τ1ϕ1 − 2τ2ϕ2
ξ2

 .
One can now compute the action in the new coordinates by applying this change of
coordinates, i.e. by conjugating the matrix of the action by the matrix of the change of
basis. One finds:

λ.


u1
v1
u2
v2

 = 1
τ2


(τ2λ1 − τ1λ2)u1 + λ2u2

τ2v1
−|τ |2λ2u1 + (τ2λ1 + τ1λ2)u2

τ2v2

 .
The action fixes the coordinates v1 and v2. One has v1 = ξ1, v2 = ξ2, and these real
coordinates parametrise the unitary connection A in the Hitchin pairs (A,Φ). Since the
C∗-action is on the Higgs field only, this was expected. Notice also that the action depends
on τ , as it should, since Higgs field do so.

There is now a 1-dimensional family {λ : M −→M | λ ∈ C∗} of diffeomorphisms of
the moduli space. The next aim is to compute the pull-back of various tensor fields with
respect to a diffeomorphism λ. To do this, one must compute the tangent map

dλp : TpM −→ Tλ.pM,

at every point p ∈ M. On the other hand, since λ is linear in the coordinates cho-
sen on M, that linear map admits the same formula as above, computed on the frame
{∂u1 , ∂v1 , ∂u2 , ∂v2}.
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4.4.2 Pull-back of the symplectic structure

One might hope that the dilation action preserves the symplectic form. This is far from
true.

Proposition 4.13. Pick λ ∈ C∗. One has, in local, τ -invariant coordinates:

λ∗ωt = − 1
π

(σλ2

τ2

)
du1 ∧ v1 +

(
k(τ 2

2λ
2
1 − τ 2

1λ
2
2 + |τ |2)

τ 2
2

)
du1 ∧ du2+

+
(
−σ(τ2λ1 − τ1λ2)

τ2

)
du1 ∧ dv2 +

(
−σ(τ2λ1 + τ1λ2)

τ2

)
dv1 ∧ du2−

− kdv1 ∧ dv2 +
(
σ|τ |2λ2

τ2

)
du2 ∧ dv2

.
(4.11)

The proof is a straightforward expansion of the formula

ωt = − 1
π

(
k(du1 ∧ du2 − dv1 ∧ dv2)− σ(du1 ∧ dv2 + dv1 ∧ du2)

)
.

The C∗-action is thus not symplectic. This means that one cannot hope to keep the
prequantum data of § 4.2.4 in order to take into account this action. Notice however that
(4.11) implies that the restriction of λ∗ωt on M equals kω, where ω is the Atiyah–Bott
symplectic form on the compact moduli space. Indeed, setting du1 = du2 = 0 yields

ι∗
(
λ∗ωt

)
= 1
π
k(dv1 ∧ dv2) = kω.

One can also provide a formula for the pull-back λ∗αt of the symplectic potential αt.
The proof would be analogous to that of Prop. 4.13. Regardless of the exact expression,
one verifies that λ∗α varies linearly on the moduli space, and that it is a polynomial of
degree two in λ1, λ2, τ1, τ2 and τ−1

2 . Moreover, one can also show that λ∗αt restricts to the
canonical symplectic potential of kω on A0 ⊆ A0.

4.4.3 Pull-back of complex structures

We now consider the sphere of complex structures

Iabc = aIτ + bJ + cKτ ,

with a2 + b2 + c2 = 1 in R, as introduced in § 4.2.2. The Kähler structure I(t) that defines
the Kähler polarisation, defined in § 4.2.5, lives in this sphere.

Now, the pull-back of a complex structure Iabc with respect to a diffeomorphism λ
given by the C∗-action is defined by a conjugation:

(λ∗Iabc)p(v) = dλ−1.(Iabc)λ.p(dλ.v),

169



CHAPTER 4. HITCHIN CONNECTIONS

for p ∈ M and v ∈ TpM (omitting the evaluation of dλ at p and dλ−1 at λ.p). This
definition is coherent with that of the pull-back of the associated Kähler polarisation.

The result we are after is the following.

Proposition 4.14. The pull-back of the U(1)-action obtained by restricting the C∗-action
on the hyperkähler manifold (M, Iτ , J,Kτ , g) moves the complex structures Iabc along the
parallels of the Kähler sphere. More precisely one has λ∗Iabc = Ia,b′,c′, where λ ∈ U(1),
(a, b, c) ∈ S2 ⊆ R3, and

b′ := λ1b+ λ2c, c′ := λ1c− λ2b.

Proof. To make explicit computations, one must write the formulae for the complex struc-
tures Iτ , J,Kτ in the τ -independent complex frame {∂u1 , ∂v1 , ∂u2 , ∂v2}. To this end, the
formulae of § 4.2.2 imply that the matrices of the complex structures in the old frame
{∂ξ1 , ∂ξ2 , ∂ϕ1 , ∂ϕ2} are

MIτ = 1
τ2


τ1 −1 0 0
|τ |2 −τ1 0 0
0 0 0 −τ2
0 0 τ2 0

 ,

MJ = 1
τ2


0 0 2τ2 0
0 0 2τ1τ2 −2τ 2

2
− τ2

2 0 0 0
− τ1

2
1
2 0 0

 ,

MKτ = 1
τ2


0 0 0 2τ2
0 0 2τ 2

2 2τ1τ2
τ1 −1

2 0 0
− τ2

2 0 0 0

 .

One can check that MIτMJ = MKτ . Moreover, the complex variable ϕ = ϕ1 + iϕ2 is a
holomorphic variable for the complex structure Iτ , as it should, since Iτ is the complex
structure on M that corresponds to the complex algebraic Dolbeault moduli space of
Higgs fields.

Now, in order to compute the matrices in the new frame above, we have to conjugate
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MIτ , MJ and MKτ with respect to the matrix of P that changes basis. One finds:

PMIτP
−1 = 1

τ2


−τ1 0 1 0

0 τ1 0 −1
−|τ |2 0 τ1 0

0 |τ |2 0 −τ1



PMJP
−1 =


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0



PMKτP
−1 = 1

τ2


0 τ1 0 −1
τ1 0 −1 0
0 |τ |2 0 −τ1
|τ |2 0 −τ1 0


Notice that the complex structure J is the canonical one in the τ -independent frame
because indeed it was defined by declaring the coordinates u1 + iv1, u2 + iv2 to be holo-
morphic (we are writing the complex structure of the group G in canonical form).
This provides the following matrix for the complex structures Iabc, in the τ -independent
frame:

MIabc = aMIτ + bMJ + cMKτ = 1
τ2


−aτ1 −bτ2 + cτ1 a −c

bτ2 + cτ1 aτ1 −c −a
−a|τ |2 c|τ |2 aτ1 −bτ2 − cτ1
c|τ |2 a|τ |2 bτ2 − cτ1 −aτ1

 .

Now we can finally compute the pull-back with respect to the linear transformation

λ = dλ = 1
τ2


τ2λ1 − τ1λ2 0 λ2 0

0 τ2 0 0
−|τ |2λ2 0 τ2λ1 + τ1λ2 0

0 0 0 τ2

 ,
since it is already expressed in the correct set of coordinates.

The matrix obtained for |λ| = 1 is seen to be equal toMIa,b′,c′
, if one sets b′ := λ1b+λ2c,

c′ := λ1c − λ2b. Moreover, notice that (a, b′, c′) ∈ R3 is still a point in the unit sphere,
since b′ + ic′ = λ(b+ ic), which amounts to a rotation within the sphere.

Finally, this transformation is bijective, since one immediately checks that

λ
∗
λ∗Iabc = (λ−1)∗λ∗Iabc = Iabc,

for |λ| = 1.

We see in particular that the complex structures ±Iτ are preserved.

Remark 4.18. In the proof we remarked that (b′, c′) = λ(b, c), if one identifies a pair
(b, c) ∈ R2 with b+ ic ∈ C. Because of a2 + b2 + c2 = 1, one has necessarily b+ ic ∈ D, if
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D is the closed unit disk of C (the boundary ∂D corresponds to the equator of S2). Hence
the circle action can be geometrically described as follows.
If λ = eiθ, and (a, b, c) ∈ S2, then λ∗(a, b, c) is obtained by rotating the pair (b, c) ∈ D of
−θ, in the parallel at height a ∈ [−1, 1].

This action is free on the complement of the two poles, which is homeomorphic to C∗,
using the standard stereographic projections. One can also show that the full C∗-action
is essentially the same as the restricted circle action, up to stretching some coordinates.
To see this, pick λ ∈ C∗, and consider the linear diffeomorphism ψ of M given in τ -
independent coordinates by the diagonal matrix

Mψ :=


1 0 0 0
0 |λ| 0 0
0 0 1 0
0 0 0 |λ|

 .
It amounts to dilating the natural coordinates ξ1, ξ2 on M. This correction is clearly
trivial for |λ| = 1.

One can then prove the following.

Proposition 4.15. Choose λ ∈ C∗. The pull-back ψ∗(λ∗Iabc) is equal to the complex
structure Ia,b′,c′, if one sets:

b′ := λ1b+ λ2c

|λ|
, c′ := λ1c− λ2b

|λ|
.

Proof. It is enough to compute the conjugation (Mψ)−1λ∗MIabcMψ and see that one gets
the matrix MIa,b′,c′

with the above definition.

Hence, on the whole, the C∗-action is free on the two-holed sphere

{Iabc | a2 + b2 + c2 = 1} \ {I±1,0,0} ∼= C∗,

up to correcting with a dilation. Moreover, the full action still fixes I±1,0,0. In particular,
if one takes a quantum level t = k + iσ with vanishing imaginary part, then the Kähler
polarisation on M is given by the complex structure I(t) = I(k) = kIτ , which is fixed by
the circle action. This means that if one takes σ = 0 then there is a natural U(1)-action
on the Hilbert space H(k)

Pτ of the Kähler quantisation of the Higgs bundle moduli space,
for all τ ∈ H.
The fact that this is still true in higher genus is used in [AGP16] to compute a U(1)-
equivariant version of the Verlinde formula, as explained in the introduction to this thesis.
What we would like to do instead is to allow for a generic quantum level t ∈ C∗, and try
to construct canonical identifications between the spaces of holomorphic sections for the
complex structure I(t)

τ and λ∗I(t)
τ , where λ ∈ U(1). A consistent way to do that is to let the

bigger space H̃ := H×U(1) parametrise the enlarged family of complex structures λ∗I(t)
τ ,

and construct a projectively flat connection inside the bundle of holomorphic sections over
H̃.
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The first clear obstacle is Prop. 4.13: the symplectic structure of the moduli space
varies along the circle. In the next section we will explain how one may deal with that
issue.

4.4.4 Equivariant prequantum data

The aim of this section is to construct prequantum data on the moduli space which
transform well under the circle action.
To this end, we choose to fix the prequantum line bundle, and to let the prequantum
connection vary, together with the symplectic form. This is necessary, since its connection
form is a local symplectic potential, as implied by the prequantum condition. Moreover,
it is best to work on the flat space A0, and define prequantum data on the moduli space
via G0-invariant prequantum data on A0, as we did in § 4.2.4.

Let then L̃(t) := C × A0 −→ A0 be the trivial line bundle on the usual space of flat
connections. If λ ∈ U(1), then we get a new line bundle λ∗L̃(t) over A0, which is tautolog-
ically isomorphic to L̃(t) over the diffeomorphism λ : A0 −→ A0. We then prescribe a new
identification of the two line bundles over the identity, thereby providing a noncanonical
trivialisation of the line bundle L̃(t) −→ U(1) over the circle, whose fibre at λ ∈ U(1) is
λ∗L̃(t). In this way, one can always pick the tautological metric h on L̃(t).
To conclude with the prequantum triple, we let on the contrary the prequantum con-
nection vary, thereby getting a circle of prequantum data

(
L(t), ∇̃(t)

λ , h̃
(t)
)
λ∈U(1)

, over the
circle (M, λ∗ωt)λ∈U(1) of symplectic manifolds.

We thus have to fix, for each λ ∈ U(1), an isomorphism

Φλ : λ∗L̃(t) −→ L̃(t)

that closes the following square:

λ∗L̃(t) L̃(t)

(A0, λ∗ωt) (A0, ωt)

Φλ

Id

Notice that the fibre of λ∗L̃(t) at AC ∈ A0 is by definition the fibre of L̃(t) at λ.AC.
Hence an isomorphism is the data of a linear isomorphism

Φλ(A) : λ∗L̃(t)
AC

= L̃
(t)
λ.AC
−→ L̃

(t)
AC

for each A ∈ A0. But every fibre is a copy of C, hence Φλ is coded by a (smooth) map:

Φλ : A0 −→ GL(1,C) ∼= C∗.
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As far as the construction of prequantum data is concerned, we may as well restrict
to constant maps Φλ ∈ C∗. Finally, it is natural to ask that the association λ 7−→ Φλ be
multiplicative, i.e. a character Θ: λ 7−→ λr, for r ∈ Z.

On the whole, having fixed a character via the integer r ∈ Z, one gets a circle of
connections

{
∇̃(t)
λ

}
λ∈U(1)

in L̃(t), as follows. For each λ ∈ C∗, one first considers the
pull-back λ∗∇̃t, which is a connection on λ∗L̃(t).5

Definition 4.8. The connection ∇̃(t)
λ is the connection induced on L̃(t) by λ∗∇̃(t) via the

isomorphism Φλ.

This means that ∇̃(t)
λ is obtained by conjugating λ∗∇̃(t) with respect to Φλ. The

curvature of this connection is the same as that of λ∗∇̃t, i.e. λ∗ωt. Indeed, this curvature
would be given by conjugating F

λ∗∇̃t with the map Φλ, fibrewise, but in dimension one
all conjugations are trivial. Moreover, one can provide the following explicit formula.
Proposition 4.16. The λ-deformation ∇̃(t)

λ of the connection ∇̃(t) = d− iαt is

∇̃λ = d− iλ∗αt + Φ−1
λ dΦλ.

This boils down to the computation of a gauge transformation.

Notice that the formula simplifies to ∇̃(t)
λ = λ∗∇(t) when Φλ is constant. This can be

seen directly from the definition of ∇̃(t)
λ , using the fact that all connections are C-linear.

In this case the isomorphism Φλ chosen is immaterial, and in what follows we’ll assume
to have made such a choice.

Finally, one would like to pick the quotients of these U(1)-equivariant prequantum
data with respect to the G0-action, in order to define a circle of prequantum data lying
over the circle

{
(M, λ∗ωt)

}
λ∈U(1)

of prequantisable manifolds. Notice however that a priori
the pull-back of the symplectic form on the moduli space may be not well defined, since
one still has to show that the U(1)-action is compatible with the G0-action.
Proposition 4.17. Choose λ ∈ U(1), g ∈ G0 and AC. One has

λ.(g.AC) = g.(λ.AC).

Proof. It is enough to check this on the generators h, g10, g01 of G0.

The result is clearly true for the flip, by C-linearity: λ.(−AC) = −λ.(AC).
As for g10 and g01, notice that the U(1)-action rotates the component Φ of any given
Hitchin pair (D,Φ), whereas the elements of the gauge group translate the unitary con-
nection D. Hence the two actions commute.

This result implies that the formula for circle action is the same on the moduli space,
if one works on representatives. This concludes the construction of U(1)-equivariant
prequantum data for the complex moduli space.

5Recall that by definition ∇̃(t) = d − iαt, where αt is the t-deformation of the canonical symplectic
potential α of the Atiyah–Bott symplectic form on A0 (see § 4.2.3). Hence λ∗∇̃(t) = d− iλ∗αt, which is
compatible with the fact that Fλ∗∇(t) = λ∗F∇(t) = −iλ∗ωt.
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4.4.5 The extended Teichmüller and the problem of equivari-
ance

The next step is to enlarge the complex structures considered. We set

H̃ := U(1)×H,

and refer to this as the extended Teichmüller space of Σ. Now, for (λ, τ) ∈ H̃, one
considers the complex structure

I
(t)
λ := λ∗I(t),

where I(t) was defined in § 4.2.5 to be

I(t) = Ik′,0,−σ′ = k′Iτ − σ′Kτ ,

choosing from the sphere of Kähler structures defined by the hyper-Kähler triple Iτ , J,Kτ =
IτJ . The results of § 4.4.3 (namely Prop. 4.14) yield

I
(t)
τ,λ = Ik′,−λ2σ′,λ1σ′ = k′Iτ − λ2σ

′J + λ1σ
′Kτ .

We are effectively enlarging the class of Kähler polarisation by allowing a pull-back
with respect to λ. Indeed, the triple (M, λ∗ωt, I

(t)
τ,λ) is a Kähler manifold, and the diffeo-

morphism
λ : (M, λ∗ωt, I

(t)
λ ) −→ (M, ωt, I

(t))
tautologically preserves the Kähler structures.

Fixing both parameters λ, τ ∈ H̃, one can define (local) holomorphic sections s of L(t)

to be smooth sections such that: (
λ∗∇(t)

)0,1
s = 0.

One can now define the usual spacesH(t)
C,λ∗τ

∼= H0
(
M, L(t)

)
for the Kähler quantisation

of the moduli space, and the ultimate goal would be to define a Hitchin connection ∇̂ in
the trivial prequantum bundle

C∞(M, L(t))× H̃ −→ H̃,

over the extended Teichüller space, that preserves these subspaces. This bundle is still
trivial, since the space of smooth sections of L(t) only depends on the smooth structure
of M, and not on its symplectic structure. The choice of identifying all pull-backs λ∗L(t)

was made precisely to have a trivial prequantum bundle.

Remark 4.19. Notice two interesting new features of this geometric quantisation. First,
the quantum level t is no longer fixed, since the U(1)-action moves the parameters k′, σ′.
Second, the base space is not simply connected, but rather has a fundamental group
isomorphic to Z. Hence this also opens the question to compute the monodromy of the
Hitchin connection around the nontrivial loop.
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In the next section we tackle this problem by looking for a different Ansatz for the
Hitchin connection, admitting that the Laplacians ∆G might be corrected by a differential
operator of order one of the form λ∗∇(t)

X , where X ∈ C∞(M, T1,0) is a vector field of type
(1, 0), depending on λ and τ .
The result of this approach is that indeed one can find a connection ∇̂ that preserves
holomorphic sections (incidentally showing that they constitute a vector sub-bundle of
the prequantum one), but we have no proof that it is projectively flat.

4.5 The equivariant connection

Let us briefly recall the setup. One considers a genus one closed surface Σ, the group
G = SL(2,C), and three parameters t ∈ C∗, τ ∈ H and λ = eiθ ∈ U(1). To these data one
attaches the following objects:

• A smooth symplectic manifold (M, ω).

• Prequantum data (L,∇, h) for (M, ω).

• A Kähler polarisation P ⊆ TCM on the symplectic manifold, coming from a complex
structure I.

• The hyper-Kähler metric g = ω.I ∈ A2(M, T ∗M⊗ T ∗M).

• The trivial prequantum bundle C∞(M, L)× H̃ −→ H̃, where H̃ = H× U(1).

• The quantum space HP = H0(M, L) = Ker
(
∇0,1 : C∞(M, L) −→ A0,1(M, L)

)
.

Each of these objects depends on a subset of {t, τ, λ}, but we will drop their dependence
from the notation in this section, to avoid cumbersome formulae. This dependence must
however be taken into account when differentiating sections and tensors in the directions
∂τ , ∂τ and ∂θ on the extended Teichmüller space H̃.

4.5.1 Preservation of holomorphicity

Now, just as we did in § 4.3.2, before looking at the U(1)-action, we consider connections
∇̂ in the trivial prequantum bundle of the form

∇̂ = ∇T − u,

where ∇T is the trivial connection and u ∈ A1
(
H̃,D(M, L)

)
a 1-form on the base space

taking values in differential operators acting on smooth sections. We can now give condi-
tions on u so that ∇̂ preserves the quantum spaces fibrewise, finding an equation analogous
to (4.8).
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Proposition 4.18. The connection ∇̂ = ∇T − u preserves the spaces of holomorphic
sections if and only if

∇0,1u(V ).s = −π0,1V [∇]s− i

2V [I]∇s, (4.12)

for all vector fields V ∈ C∞(H̃, T H̃) and for all holomorphic sections s, where we write
π0,1 : T ∗CM −→ T 0,1M for the projection on the antiholomorphic cotangent bundle.

Notice the crucial fact that V [∇] 6= 0. The derivative of the prequantum connection
∇ = d − iα along V equals the 1-form V [∇] = −iV [α] ∈ A1(M,C). Indeed, 1-forms are
the objects that linearise connections. Hence one gets the additional operator

π0,1V [∇] : C∞(M, L) −→ A0,1(M, L)

that one did not see in (4.8). The projection π0,1 is by definition the dual of the standard
projection π0,1 := 1

2

(
Id +iI

)
: TCM −→ T0,1M on the antiholomorphic tangent bundle.

Proof. One imposes ∇0,1(∇̂V s) = 0 for every vector field V on H̃, i.e.

∇0,1V [s]−∇0,1u(V ).s = 0.

Now, the holomorphicity of s is expressed by the identity ∇0,1s = 0, which one can
differentiate with respect to any vector field V on the extended Teichmüller, in order to
find a different formula for ∇0,1V [s]. One finds

0 = V [∇0,1s] = i

2V [I]∇s+ π0,1V [∇]s+∇0,1V [s],

because by definition ∇0,1 = π0,1∇. This expansion follows from the chain rule.
Substituting − i

2V [I]∇s−π0,1V [∇]s = ∇0,1V [s] in the previous equation proves the stated
formula.

As remarked in the nonequivariant case, we may replace V [I]∇s by V [I]′∇1,0s, since
s is holomorphic.

4.5.2 Variations of tensors: equivariant version

Let V be a vector field on the extended Teichmüller space. The derivative of the metric
g = ω.I in the direction of V direction now has a further term:

V [g] = ω.V [I] + V [ω].I,

by the Leibnitz rule. This means that for all vector fields X, Y on M one has:

g(X, Y ) = ω
(
X, I(Y )

)
, V [g](X, Y ) = V [ω]

(
X, I(Y )

)
+ ω

(
X, V [I](Y )

)
.
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Now there is a choice: either one keeps defining the tensor G̃(V ) as before, coding only
the variation of the complex structure, or we take into account the whole variation of the
metric. The first choice defines G̃(V ) via

G̃(V ).ω = V [I], which means ιω⊗ωG̃(V ) = ω.V [I].

The second choice instead defines G̃tot(V ) by means of

ιω⊗ωG̃tot(V ) = V [g].

Notice that the tensor G̃tot(V ) ∈ C∞(M, TCM⊗TCM) is still symmetric. This happens
since V [g] is symmetric, and one applies the same isomorphism (defined by ω) in both
entries. There are instead no particular reasons why tensor G̃(V ) should be symmetric,
as it corresponds to only one part of the variation of g.

Another difference is also the decomposition into holomorphic and antiholomorphic
types. Namely, one can write

G̃(V ) = G(V ) +G(V ),

according to the decomposition V [I] = V [I]′ + V [I]′′, corresponding to ω.G(V ) = V [I]′,
ω.G(V ) = V [I]′′. Notice that G(V ) is still translation-invariant, which implies that it
is a holomorphic section of T1,0M

⊗2. This is the property of rigidity for the extended
family of complex structures

{
I = λ∗I(t)

τ

}
(τ,λ)∈H̃

. On the other hand, the tensor G̃tot(V )
decomposes as

G̃tot(V ) = Gtot(V ) +G1,1
tot(V ) +Gtot(V ),

according to
ιω⊗ωG̃tot(V ) = V [g]2,0 + V [g]1,1 + V [g]0,2,

with the addends taken in the same order.

In the next section we will try to construct a Hitchin connection by correcting the
Laplacian ∆G(V ) associated to the nonsymmetric, holomorphic tensor G(V ) of type (2, 0).

4.5.3 Construction of the equivariant connection

Let V be a vector field on H̃. Consider the second-order differential operator:

∆G(V ) := Tr(∇1,0G(V )∇1,0),

defined as in (4.9). One can compute the commutator [∇0,1,∆G(V )] on a holomorphic
section s, and see which type of correction is required in order to satisfy 4.12.

Looking at the proof of Prop. 4.11, one sees that

∇0,1∆G(V )s = −2iω.S
(
G(V )

)
∇1,0s,

for a holomorphic section s, where S
(
G(V )

)
denotes the symmetrisation of the tensor

G(V ). The symmetrisation operator, already met in the context of Weyl quantisation in
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§ 2.1.5, is defined as follows. If V is a vector space over C, then S : Tens(V ) −→ Tens(V )
is defined on homogeneous elements of degree n by

S(v1 ⊗ · · · ⊗ vn) 7−→ 1
n!

∑
σ∈Σn

vσ1 ⊗ · · · ⊗ vσn .

The image S
(

Tens(V )
)
is identified with the symmetric algebra Sym(V ) of V , which is

a priori a quotient of the tensor algebra Tens(V ). This definition extends naturally to
vector bundles, and then to sections of such. If one replace V by TCM or T ∗CM, then
S acts on sections of arbitrary tensor powers of these bundles, which are by definition
tensors on M.

Remark 4.20. Let us provide a computation in I-holomorphic coordinates {z1, z2}, for
the sake clarity. Write the relevant tensors as follows

G(V ) =
∑
i,j

Gij(V )∂zi ⊗ ∂zj , ω =
∑
i,j

ωijdz̄i ∧ dzj, V [I]′ =
∑
i,j

aijdz̄i ⊗ ∂zj ,

so that one has by definition

S
(
G(V )

)
= 1

2
∑
i,j

(Gij(V ) +Gji(V ))∂zi ⊗ ∂zj , and aij =
∑
k

ωikGkj(V ).

Finally, in those trivialisations one can write

∆G(V ) =
∑
i,j

∇iGij(V )∇j,

where ∇i := ∇1,0
∂zi

= ∇∂zi
. If one chooses k ∈ {1, 2} then one finds the following, using

the commutation relation
[
∇0,1
∂zk
,∇j

]
= −iωkj provided by the prequantum condition:

i

2

[
∇0,1
∂z̄k

∆G(V )
]

= i

2
∑
j,l

[
∇0,1
∂z̄k
,∇jGjl(V )∇l

]
= 1

2
∑
j,l

ωkjGjl(V )∇l +∇jGjl(V )ωkl =

= 1
2
∑
j,l

(
ωkjGjl(V ) + ωkjGlj(V )

)
∇l = 1

2
∑
j,l

ωkj
(
Gjl(V ) +Glj(V )

)
∇l =

=
∑
j,l

ωkjS
(
G(V )

)
jl
∇l.

The last term is by definition the k-th component of the operator ω.S(G(V ))∇1,0.

The idea is now to look for a differential operator of order one that takes into account
what is left to satisfy 4.12. To this end, let ϕ ∈ A0,1(M,C) be a (0, 1)-form, and consider
the vector field X ∈ Ω(M, T ) defined by

ιXω + ϕ = ω(X, ·) + ϕ = 0.

The vector fieldX must then be of type (1, 0), since the pairing ω : T0,1M∧T0,1M −→ R
defined by the nondegenerate (1, 1)-form ω swap types.
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Let us now compute the commutator of ∇0,1 and the operator of covariant derivative
∇X . One finds the following, extracting a vector field from an I-antiholomorphic frame
{∂z1 , ∂z2} of T0,1M:

∇0,1
∂z̄k
∇Xs =

[
∇0,1
∂z̄k
,∇1,0

X

]
s = F∇(∂z̄k , X)s+∇[∂z̄k ,X]s =

(
− iω(∂z̄k , X) +∇[

∂z̄k ,X

])s =

=
(
− iϕ(∂z̄k) +∇[

∂z̄k ,X

])s.
The idea is then to set ϕ := π0,1V [∇] ∈ A0,1(M,C), in order to recover the derivative of
the prequantum connection that was necessary to satisfy Eq. (4.12). Thus one considers
the (τ, λ)-dependent vector fieldX(V ) of type (1, 0), satisfyingX(V ).ω = π0,1V [∇], where
as always we mean the contraction on the right.

Putting everything together one has the following, for V ∈ C∞(H̃, T H̃) and s holo-
morphic:

∇0,1
(1

4∆G(V ) + i∇X

)
s = − i2ω.S

(
G(V )

)
∇1,0s− π0,1V [∇]s+ i∇∇0,1

LCX(V )s,

where ∇LC denotes the (trivial) Levi–Civita connection on TM for the metric g. This
means that if one were able to show that

∇∇0,1
LCX(V )s = −1

2ω.A
(
G(V )

)
∇1,0s, (4.13)

then one would have a connection that preserves holomorphicity, using

− i2ω.
(
S
(
G(V )

)
+ A

(
G(V )

))
= − i2ω.G(V ) = − i2V [I]′,

where A
(
G(V )

)
is the alternating part of G(V ); it is defined as the symmetric part,

adding the sign of each permutation involved. The normalisation factors of S and A are
indeed chosen so that S + A = Id.
Moreover, to show (4.13) it is enough to prove that ∇0,1

LCX(V ) = −1
2ω.A

(
G(V )

)
, up to

applying the (1, 0)-part of the prequantum connection.

Now, one has
∇0,1

LCX(V ) = ∇0,1
LC(ω.π0,1V [∇]) = ω.A

(
∇0,1

LCπ
0,1V [∇]

)
,

using the Leibnitz rule to differentiate the contraction ω.π0,1V [∇], together with the fact
that ∇LCω = 0 since ω is Kähler. Notice that to be rigorous one should introduce a
different symbol for the connections that ∇LC induces in T ∗M, and that one has to
explicitly take alternating parts, since the covariant derivative of a differential form is not
automatically alternating.
Next, if β is a differential 1-form on M, and X, Y are commuting vector fields on M,
then (

A(∇LCβ)
)
(X, Y ) = 1

2
(
∇LCβ(X, Y )−∇LCβ(Y,X)

)
=

= 1
2
(
∇LCX[β(Y )]−∇LC(Y )[β(X)]

)
=

= 1
2
(
X[β(Y )]− Y [β(X)]

)
= 1

2dβ(X, Y ),
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since the (dual) Levi–Civita connection is trivial. Hence

ω.A(∇0,1
LCπ

0,1V [∇]) = ω.A
(
(π0,1◦∇LC)π0,1V [∇]

)
= 1

2ω.
(
(π0,1◦d)π0,1V [∇]

)
= 1

2ω.
(
∂π0,1V [∇]

)
.

On the whole, one has ∇0,1
LCX(V ) = 1

2ω.(∂π
0,1V [∇]), and thus if one were able to show

that
∂π0,1V [∇] = −A(ω.V [I]′) ∈ A0,2(M,C),

then the proof would be complete, because A(ω.V [I]′) corresponds to ω.A
(
G(V )

)
under

the isomorphism defined by ω (this is clear if one computes in local normal coordinates
on the Kähler manifold where ω = ∑

j dzj ∧ dzj).

Lemma 4.5. One has ∂π0,1V [∇] + A
(
ω.V [I]′

)
= 0.

Remark 4.21. Before proving this final lemma, we remark that it expresses a necessary
condition for a having a connection that preserves holomorphicity. Indeed, (4.12) implies

0 =
(
∇0,1

)2
u(V ).s = −∇0,1

(
π0,1V [∇] + i

2V [I]′∇1,0
)
s = −

(
∂π0,1V [∇] + A

(
ω.V [I]′

))
s.

Once again, taking alternating parts is necessary in the last passage, since ∇0,1 produces
a (0, 2)-form on M — with values in D(M, L) — out of the (0, 1)-form ∇0,1u(V ).
To be more explicit, letX, Y be commuting vector fields of type (0, 1) onM, and compute:

i

2

(
∇0,1(V [I].∇1,0s)

)
(X, Y ) = i

2∇
0,1
X (∇1,0

V [I]′Y s)−
i

2∇
0,1
Y (∇1,0

V [I]′Xs) =

= i

2
(
− iω(X, V [I]′Y )s

)
− i

2
(
− iω(Y, V [I]′X)s

)
=

= 1
2

(
ω(X, V [I]′Y )− ω(Y, V [I]′X)

)
s =

= 1
2

(
ω.V [I]′(X, Y )− ω.V [I]′(Y,X)

)
s =

= A(ω.V [I]′)s,

from the convention taken for the alternating part.

Proof. Since the tensor V [g] = V [ω].I + ω.V [I] is symmetric, one has

A(V [ω].I) + A(ω.V [I]) = 0.

Notice that the contraction with I and V [I] perturbs the skew-symmetry of ω, but taking
alternating parts one has genuine differential forms. There is also an analogous identity
for the (0, 2)-parts:

π0,2A(V [ω].I) + π0,2A(ω.V [I]) = 0.
Looking at bidegrees one sees that π0,2A(ω.V [I]) = A(ω.V [I]′). Hence:

A(V [I]′.ω) = −π0,2A(V [ω].I). (4.14)
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Now, one has
∂π0,1V [∇] = ∂(−iπ0,1V [α]),

where ∇ = d− iα is — as usual — the prequantum connection written on a local patch
where L −→M is trivial. Since I acts on (0, 1)-forms multiplying by −i, one finds

∂(−iπ0,1V [α]) = ∂(π0,1V [α].I).

Next, one uses the following identity of differential operators
∂ ◦ π0,1 = π0,2 ◦ d : A1(MC,C) −→ A0,2(MC,C),

obtaining
∂(π0,1V [α].I) = π0,2d(V [α].I) = π0,2A(dV [α].I) = π0,2A(V [dα].I).

The last identity uses dV [α] = V [dα], which is clearly true in any (τ, λ)-independent local
frame of the cotangent bundle, e.g. the one defined by the usual independent coordinates.
On the whole

∂π0,1V [∇] = π0,2A(V [ω].I) = −A(ω.V [I]′),
using the identity (4.14).

We have thus proven the following theorem.
Theorem 4.3. Consider the connection

∇̂ = ∇T − u, where u(V ) := 1
4∆G(V ) + i∇1,0

X(V ),

defined in the trivial bundle C∞(M, L) × H̃ −→ H̃ over the extended Teichmüller space.
This connection preserves the subspaces H(t)

C = H0(M, L) of holomorphic sections fibre-
wise.

This shows in particular that the spaces of holomorphic sections fit in a nontrivial
vector sub-bundle V −→ H̃. The next step to get the canonical identification of the fibres
of the projectivisation P(V) −→ H̃ would be to prove that ∇̂ is projectively flat, and that
it has trivial monodromy around the generator of π1(H̃).

4.5.4 Comments on flatness and final remarks

The curvature of the connection constructed in Thm. 4.3 is an operator of order at most
two, since two holomorphic Laplacians constructed using a translation-invariant tensor
always commute (see § 4.3.3). The complete expansion yields, for commuting vector
fields V,W on the extended Teichmüller:

F∇̂(V,W ) =

= i

4

([
∆G(V ),∇X(W )

]
−
[
∆G(W ),∇X(V )

])
−
[
∇X(V ),∇X(W )

]
+

+ 1
4

(
W
[
∆G(V )

]
− V

[
∆G(W )

])
+ i
(
∇W [X(V )] −∇V [X(W )]

)
+

+ i
(
〈W [∇], X(V )〉 − 〈V [∇], X(W )〉

)
.
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This is indeed obtained considering the commutators among the different operators, and
the terms involving the derivatives with respect to V and W . This expansion is straight-
forward, apart maybe from

V
[
∇X(W )

]
= 〈V [∇], X(W )〉+∇V [X(W )],

which follows from the fact that both ∇ and X vary on H̃. The first term means the
contraction of the 1-form V [∇] = −iV [α] against the vector field X(W ), which defines
an operator of order zero. Also, one has[

∇X(V ),∇X(W )

]
= F∇

(
X(V ), X(W )

)
−∇[

X(V ),X(W )
] = −∇[

X(V ),X(W )
],

since F∇ = −iω has vanishing (2, 0)-part. Finally, notice that it is no longer true that
∆G(V ) = V

[
∆g

]
, since the holomorphic tensor G(V ) now only codes the variation of the

complex structure (see § 4.5.2).
There is still one general simplification that can be observed. One has:

V
[
∆G(W )

]
= V Tr

(
∇1,0G(W )∇1,0

)
=

= V
[
∇1,0

]
G(W )∇1,0 +∇1,0V

[
G(W )

]
∇1,0 +∇1,0G(W )V

[
∇1,0

]
.

However, differentiating∇1,0G(W ) = 0 along V yields V
[
∇1,0

]
G(W )+∇1,0V

[
G(W )

]
= 0,

and thus
V
[
∆G(W )

]
= ∇1,0G(W )V

[
∇1,0

]
.

Remark 4.22. The upshot of this section is that one should look for Hitchin connections
of the form ∇̂ = d − u, where u(V ) = ∆G(V ) + ∇X(V ) for a suitable vector field X(V ),
instead of just using the Laplacian operator as we did in § 4.3.2. Moreover, it could be
necessary to add an operator of order zero, i.e. a function multiplication µf(V ), in order
to achieve flatness.
In short, one could consider the new Ansatz

u(V ) = ∆G(V ) +∇X(V ) + f(V ), (4.15)

where one still constructs the Laplacian ∆G(V ) using the holomorphic part of the variation
of the Kähler structure (i.e. one still asks for ω.G(V ) = V [I]′), but now one accepts to
correct it with an operator of order one. Such a differential operator can be written as the
covariant derivative ∇X(V ) with respect to a vector field X(V ) of type (1, 0) that depends
on (τ, λ), plus the multiplication by a function f(V ) which also varies on the extended
Teichmüller. One can readily write some differential equations satisfied by X(V ) and
f(V ), in order for u(V ) to satisfy (4.12), and for ∇̂ to be projectively flat. This would
provide the full class of equivariant Hitchin connections ∇̂ = ∇T−u such that the principal
symbol of u(V ) is S

(
G(V )

)
.

If one tries to attack the problem as it is stated, the differential equations obtained
are difficult to solve. There is however one natural intermediate step to take. Namely,
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assume Ansatz (4.15) for constructing a Hitchin connection without considering the U(1)-
action. This means producing a connection which is different from that of Thm. 4.1, but
that has the same leading differential operator ∆G(V ) for all vector field on the ordinary
Teichmüller H. To this end, in the next section § 4.6 we will turn to the connection
of [Wit91], described in sound mathematical terms in [AG14] (and e.g. [AM16] in the
explicit case of genus one), which we call the Hitchin–Witten connection.

The Hitchin–Witten connection is defined for the geometric quantisation of M with
respect to the real polarisations

{
PR,τ

}
τ∈H

of § 4.2.6. In the case of genus one as we
are, it is flat. Now, there exists an isomorphism between the space of real-polarised
sections and that of Kähler-polarised ones, named after Bargmann: one can try to push
the Hitchin–Witten connection along the Bargmann transform to define a new, necessarily
flat connection that tautologically preserves holomorphicity.

4.6 The Bargmann transform and the Hitchin–Witten
connection

In this section we set up the Bargmann transform, which relates the quantum spaces for
the geometric quantisation of M with respect to real and Kähler polarisations, and we use
it to transfer the Hitchin–Witten connection onto the Kähler-polarised side. We will start
from an abstract viewpoint, as we temporarily did in § 4.2.4, for the sake of obtaining
cleaner formulae.

4.6.1 Setup

Let (V, ω) be a symplectic vector space of dimension four, which we consider as a manifold
equipped with a constant symplectic form. Since there is no cohomology one has [ω] = 0,
and (V, ω) is an exact symplectic manifold, hence prequantisable. Consider prequantum
data (L,∇, h) for (V, ω), where L := C× V −→ V is the trivial line bundle, ∇ := d− iα
the prequantum connection defined by the symplectic potential αv(w) := 1

2ω(v, w), for
v, w ∈ V , and h the translation-invariant metric such that h(z, w) = zw, for z, w ∈ C.
Note that we define the symplectic potential as a 1-form varying linearly on V , using that
TV ∼= V × V .

Finally, assume there to be two linear polarisations on (V, ω): a real polarisation
PR ⊆ TV , and a Kähler polarisation P ⊆ TCV , both depending on a parameter τ ∈ H.6

As we know, one attaches Hilbert spaces of polarised sections to these data. First, set:

H̃R :=
{
r ∈ C∞(V, L)

∣∣∣∣∇Xr = 0 for all X ∈ C∞(V, PR),
∫
V
h(r, r)µ < +∞

}
,

6This matches up perfectly with the original setup of § 4.2, by taking V = A0, ω = ωt, α = αt,
(L,∇, h) = (L̃(t), ∇̃(t), h̃(t)), and the linear polarisations of § 4.2.6 and § 4.2.5.
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and

H̃C :=
{
s ∈ C∞(V, L)

∣∣∣∣∇Xs = 0 for all X ∈ C∞(V, PC),
∫
V
h(s, s)µ < +∞

}
,

where µ := ω∧ω
2 is the Liouville volume form. The spaces H̃R and H̃C are pre-Hilbert,

and one lets HR and HC be the Hilbert spaces given by their completion with respect to
L2-type norm (2.10) introduced in the background.

Finally, there is an action Λ: V −→ V via translations

λ : v 7−→ v + 2πλ,

where Λ ∼= Z4 sits inside V as an integral lattice. To get the quotient we want, we
actually consider only half of that lattice, i.e. a Z-submodule Λ0 ∼= Z2 containing only
two of the generators of Λ (this corresponds to half-lattice generated by the translations
in the direction of a unitary connection, in the language of § 4.2.1).

We know from (4.6) that there exists a lift of the action on the prequantum line bundle
L, via multipliers Θ: G0 × V −→ U(1), where G0 is the group generated by the 1

2 -lattice
Λ0 and the involution h.v = −v, for v ∈ V . This means that

λ.s(v) = Θ(λ, v − λ)s(v − λ), and h.s(v) = s(−v),

for all λ ∈ Λ0. Since the lattice action preserves linear polarisations, it makes sense to
consider G0-invariant, polarised sections of the prequantum line bundle, i.e. elements of
HG0

R and HG0

C . These spaces are by definition the Hilbert spaces of the quantisation of the
quotient V

/
G0, which is the abstract avatar of the hyperKähler moduli space M.

Remark 4.23. To describe the Hilbert spaces more explicitly, choose global frames
r, s : V −→ L for the prequantum line bundle such that r ∈ HR and s ∈ HC.

One can choose r to be h-unitary, i.e. h(r, r) = 1 identically on V . With this choice,
every real-polarised section can be written t = ψr, for some function ψ ∈ C∞(V,C) that
is constant along the directions of PR, because of

0 = ∇X(ψr) = X.ψ + ψ∇Xr = X.ψ,

where X is tangent to PR. According to (2.10) the inner product (·, ·) of two sections of
the prequantum bundle is defined by

〈t | t′〉 =
∫
V
h(t, t′)µ =

∫
V
ψψ′ · h(r, r)µ =

∫
V
ψψ′µ,

where t = ψr, t′ = ψ′r. This has no chances of converging if t and t′ are both real-
polarised and nonvanishing, because the leaves of PR are the noncompact translations of
the Lagrangian space L (this issue was pointed out in 2.11). To correct this problem
one may replace integration on V with the integration over a global transverse subspace
W ⊆ V to L, and remark thatW is in natural correspondence with the set of leaves of the
real polarisation. The advantage is that the space W now carries a natural 2-dimensional
Lebesgue measure dw, and this provides an identification of Hilbert spaces

ψr 7−→ ψ|W : HR ∼= C∞(W,C) ∩ L2(W,dw).
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More precisely, HR is isomorphic as a vector space to{
f ∈ π∗R

(
C∞(W,R)

)∣∣∣∣ f |W ∈ L2(W,dx)
}
⊆ C∞(V,C),

where πR : V −→ V
/
PR ∼= W is the projection of V onto the space of leaf of the admissible

real polarisation PR, which we identify with the global transverse. This is because a
function ψ : V −→ C is constant along PR if and only if it can be written as π∗Rψ̃ for some
function ψ̃ : W −→ C. Next, one promotes the vector space to an Hilbert space, taking a
completion with respect to the L2-norm on W .

Similarly, one may write t = fs for a generic Kähler-polarised section, using the frame
s of HC. Note since r is a frame then there exists a smooth function ϕ : V −→ C such
that s = eϕr, and thus the norm of s is

h(s, s) = |eϕ|2h(r, r) = |eϕ|2 = e2<(ϕ).

A section t = fs is now holomorphic if and only if ∂f = 0, i.e. if f is an entire function
on V with respect to the complex structure associated to the Kähler polarisation. The
inner product of t = fs, t′ = f ′s reads

〈t | t′〉 =
∫
V
h(t, t′)µ =

∫
V
ff ′ · h(s, s)µ =

∫
V
ff ′ν

where ν := e2<(ϕ)µ. Note that in the chosen Darboux coordinates the volume form reads
µ = dx1 ∧ dx2 ∧ dy1 ∧ dy2, and thus the integration with respect to µ means to integrate
for the Lebesgue measure dxdy on V ∼= R4. One may finally write

HC ∼= O
(
C2
)
∩ L2(C2, e2<(ϕ)dxdy).

4.6.2 The Bargmann transform: Lagrangian splitting

We will now describe a τ -dependent isomorphism B : HG0

R −→ HG0

C . To do this, it is
natural to start from constructing a map B : HR −→ HC, and to show that it commutes
with the G0-action. This map is the Bargmann transform on flat space (cf. [GS81]), and
so it make sense to start discussing the standard setup to clarify what we want to do.

With the same notions and notations of the previous section, consider a Darboux
basis {xj, yj}j on V , so that ω = ∑

j dxj ∧ dyj, and let L be the Lagrangian subspace
spanned by {y1, y2}. One then has a symplectomorphism (V, ω) ∼= (T ∗R2, ωcan), and
the symplectic potential reads α = 1

2
∑
j(xjdyj − yjdxj) in the same basis. Next, define

the balanced holomorphic coordinates zj := xj+iyj√
2 , which are associated to the complex

structure I : V −→ V sending xj to yj and yj to −xj.

One can show that r(x, y) = e
i
2x·y defines a real-polarised unitary frame, and that a

holomorphic frame is provided by s = ce−
|z|2

2 , for every constant c ∈ C.7

7Here and afterwards we denote by a dot the componentwise product of two vectors in any vector
space: x · y =

∑
j xjyj and |z|2 = z · z =

∑
j zjzj =

∑
j |zj |2.
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Indeed, if one denotes ∂yj the partial derivative along the direction of yi, then

∇∂yj
r = ∂yjr − i〈α, ∂yj〉r = ∂yje

i
2x·y − i

2xje
i
2x·y =

(
∂yj −

i

2xj
)
e
i
2x·y = 0.

Similarly, the symplectic form ω in the chosen — normalised — complex coordinates reads
ω = i

∑
j dzj ∧ dzj, and thus α = i

2
∑
j zjdzj − zjdzj. Then the (0, 1)-part of the covariant

derivative acts as the differential operator ∇0,1
∂zj

= ∂zj + 1
2zj, which annihilates s.

With these choices we may identify the spaces of polarised sections with spaces of
complex valued functions, as explained in the previous section:

HR ∼= C∞(R2,C) ∩ L2(R2, dx), HC ∼= O(C2) ∩ L2(C2, e−|z|
2
dxdy),

where dx is the Lebesgue measure on the global transverse {(x, 0) | x ∈ R2} ∼= R2 to the
real polarisation, and dxdy the standard Lebesgue measure on C2 which corresponds to
the volume form µ on V .

The inner product of two holomorphic functions — noted (·, ·) — reads

(f, g) = |c|2
∫
C2
f(z)g(z)e−|z|2dxdy,

We decide to take c = π−1, so that the norm of the constant function z 7−→ 1 equals
one. This in turn corresponds to the definition of the 2-dimensional Segal–Bargmann
space (see [Hal99]; the origins of the definition of the Segal–Bargmann space trace back
to [Bar61; Seg63], with Segal actually working in the infinite-dimensional setting).

Definition 4.9. Let d be a positive integer, and q ∈ R>0. The q-normalised, d-dimensional
Segal–Bargmann space FC is the Hilbert space of holomorphic functions on Cd which have
finite length for the norm induced by the scalar product

(f, g) = (qπ)−d
∫
Cd
f(z)g(z)e−

|z|2
q dxdy.

The Gaussian weight assures that all polynomials will be elements of the space, with
the monomials providing an orthogonal basis. Moreover, the formal adjoint of the operator
µzj : f 7−→ zjf is q∂zj : f 7−→ q ∂f

∂zj
, as it can be shown integrating by parts:

(q∂zjf, g) = qπ−2
∫
C2

(∂zjf)ge−
|z|2
q dxdy = −qπ−2

∫
C2
f∂zj

(
ge−

|z|2
q

)
dxdy =

= π−2
∫
C2
f(zjg)e−

|z|2
q dxdy = (f, zjg).

In this passages we used the fact that z 7−→ f(z)g(z)e−|z|2 goes to zero sufficiently fast
for |z| −→ +∞, since (f, g) < +∞, and also that ∂zjg = 0 since g is antiholomorphic.

It was Fock who first remarked that the equality
[
q∂zi , zj

]
= δijq holds when these

differential operators act on holomorphic functions defined on Cd. Bargmann enriched
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this idea by finding a suitable Hermitian product so that moreover these operators will
be reciprocally adjoint.8

Going back to our discussion where d = 2 and q = 1 (abusively omitted from the nota-
tion), let us similarly denote by FR the space of functions ψ : R4 −→ C which correspond
to real-polarised sections, i.e. functions which are constant along the y-direction whose
restriction to R2 ⊕ (0) ⊆ V is square-summable for the 2-dimensional Lebesgue measure
dx. The transform B : HR −→ HC corresponds to a linear map I : ψ 7−→ ψ̂ acting on
functions, by means of B(ψr) = ψ̂s. In turn, we require the following property for I:(

ψ̂, f
)

= 〈ψr | fs〉 ∈ C,

for ψ ∈ FR and f ∈ FC. Since by definition
(
ψ̂, f

)
= 〈ψ̂s | fs

〉
, it is the same to ask that〈

B(ψr) | fs
〉

= 〈ψr | fs〉. (4.16)
On both sides of (4.16) one sees the restriction — to closed subspaces — of the inner
product on the prequantum Hilbert space of smooth sections of L. On the right-hand
side one considers the restriction to HR × HC, which yields a nondegenerate pairing
HR ⊗HC −→ C, since the two polarisations are transverse.9 The transversality is due to
the complex span of {∂z1 , ∂z2} =

{
1√
2(∂x1 + i∂y1), 1√

2(∂x2 + i∂y2)
}
intersecting the complex

span of {∂y1 , ∂y2} only at zero inside V ⊗R C, which is identified with the complexified
tangent space to V at any point.
On the left-hand side of (4.16) instead one sees the restriction of 〈· | ·〉 to HC×HC, which
defines the inner product on the Hilbert subspace of Kähler-polarised sections. Note that
since the pairing is nondegenerate then this property determines B and I uniquely.

The computation of an explicit formula for the transform I : FR −→ FC is a different
task. For doing it, one exploits the fact that FC is a reproducing kernel Hilbert space,
which means that function evaluation defines continuous functionals: for all a ∈ C2 there
exists a (unique) function ea ∈ FC such that f(a) = (f, ea) for all f ∈ FC.
Definition 4.10. The function ea is the coherent state at the point a ∈ C2.

Using (4.16) one thus finds

ψ̂(a) =
(
ψ̂, ea

)
= 〈ψr | eas〉,

and this determines the value of the function ψ̂ at all point. To compute the coherent
states explicitly one relies on the following fact.
Proposition 4.19. Polynomial functions are dense in the Segal–Bargmann space. More
precisely, the monomials defined by

um1,m2(z) = zm1
1 zm2

2√
m1!m2!

,

8The idea behind this is to take q = ~ and to construct representations of the d-dimensional Weyl
algebra W (T ∗Rd, ωcan) of 2.5 on FC. We will come back to that after deriving an explicit formula for the
Bargmann transform.

9The intrinsic definition of the pairing requires a choice of half-forms which we tacitly assume. This
choice influences the pairing only up to a multiplicative factor (see [GS81]).
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provide a orthonormal basis of FC, where m1,m2 ∈ Z≥0.

Proof. The integrals involved split into one-dimensional integrals for the two complex
variables z1, z2, and thus the result follows from the analogous one on C (i.e. for d = 1).

If m,n are nonnegative integers, one finds:∫
C
zmzne−|z|

2
dxdy =

∫ +∞

0

∫ 2π

0
ρmeimθρne−inθe−ρ

2
ρdρdθ,

after passing to polar coordinates. The right-hand side equals∫ +∞

0
ρm+n+1e−ρ

2
(∫ 2π

0
ei(m−n)θdθ

)
dρ,

and the integral
∫ 2π

0 ei(m−n)θdθ vanishes if m − n 6= 0; otherwise it equals 2π. This
establishes orthogonality.

Moreover, the orthogonal system {zm}m≥0 is complete. Indeed, if f is any entire
function defined on C, then one can expand in power series f = ∑

k≥0 fkz
k, and the

condition (f, zm) = 0 gives am = 0. Hence the orthogonal subspace to the span of all
monomials is reduced to zero.

As for orthonormality, if n = m the computation above yields∫
C
zmzne−|z|

2
dxdy = 2π

∫ +∞

0
ρ2n+1e−ρ

2
dρ = π

∫ +∞

0
rne−rdr = πΓ(n+ 1) = πn! ,

where we substituted r = ρ2 in the second passage. Hence we see that the set of monomials{
zn√
n!

}
n≥0

provides an orthonormal Hilbert basis inside FC for d = q = 1, and the very
same proof can be used for d = 2, q = 1.

Corollary 4.2. The function ea(z) := ea·z is the coherent state at a ∈ C2.

Proof. Consider the following expansion:
∑

m1,m2≥0
um1,m2(a)um1,m2(z) =

∑
m1,m2≥0

(a1z1)m1

m1!
(a2z2)m2

m2! =
2∏
i=1

∑
mi≥0

(aizi)mi
mi!

=

=
2∏
i=1

exp(aizi) = exp
( 2∑
i=1

aizi

)
= ea·z = ea(s).

Infinite sums and finite products can be intertwined because all power series converge,
and this means that ea = ∑

m1,m2≥0 um1,m2(a)um1,m2 .

Now introduce a 2-index m = (m1,m2) ∈
(
Z≥0

)2
, and pick any function f ∈ FC. Its

decomposition in the orthonormal basis of 4.19 is f = ∑
m fmum, with coefficients given

by fm = (f, um), so that one has by definition f(a) = ∑
m fmum(a). Hence, if n is also a

2-index:

(f, ea) =
∑
m,n

(fmum, un(a)un) =
∑
m,n

fmun(a)δmn =
∑
m

fmum(a) = f(a).
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This proposition means that one has the integral representation formula

f(a) = 1
π2

∫
C2
ea·zf(z)e−|z|2dxdy,

for all entire function f : C2 −→ C which is square-summable for the measure e−|z|2dxdy.

Using the explicit formula for the coherent state, one finds the following for a function
ψ ∈ FR:

ψ̂(a) =
(
ψ̂, ea

)
= 〈ψr | eas〉 = 1

π

∫
C2
h(ψr, eas)dxdy =

= 1
π

∫
C2
ψ(z)ea(z)h(r, eϕr)dxdy = 1

π

∫
C2
ψ(z)ea·z+ϕ(z)dxdy,

where we introduced the change of frame s = eϕr. It follows from the definition of r and
s that ϕ is the quadratic form ϕ(x, y) = −1

2

(
|z|2 + ix · y

)
, and plugging-in the value of

ϕ(z) finally yields the following integral transform for the smooth function ψ:
(
I(ψ)

)
(a) = ψ̂(a) = 1

π

∫
C2
ψ(z) exp

{
a · z − 1

2 |z
2|+ i

2x · y
}
dxdy. (4.17)

One sees that the result is holomorphic, by taking the derivative with respect to the new
variable a under the integral sign.

Remark 4.24. One should spend a few words about the changing of frames. Let then r′
be another real-polarised unitary frame of L, and call ϕr : HR −→ FR the identification
ψr 7−→ ψ. The new frame r′ provides a second identification ϕr′ : HR −→ FR, which
differs by a phase. Namely, there exists a function χ : V −→ C such that r′ = eχr, and
the unitarity condition yields χ(V ) ⊆ iR (also ∂yjχ = 0 in order that r′ be polarised).
Now ϕr′ : ψr = ψe−χr′ 7−→ ψe−χ ∈ FR.
If the Kähler-polarised frame s is fixed, then one has to compare the number ψ̂(a) ∈ C
defined by (4.17) with the pairing 〈ψe−χr′ | eas〉, where the coherent state at a hasn’t
changed. The relation between s and r′ is s = eϕr = eϕe−χr′, and thus

h(ψe−χr′, eas) = ψeae
ϕ|e−χ|2h(r′, r′) = ψeae

ϕ,

where we used that r′ and eχ are unitary. Hence ψ̂(a) = 〈ψe−χr′ | eas〉, and the resulting
map HR −→ HC does not depend on the choice of a unitary real-polarised frame.

The choice of a holomorphic frame instead is more rigid, because one wants an identi-
fication with the Segal–Bargmann space. More precisely, one has to impose the condition
that

(
∂zj + 1

2zj
)
s = 0 in order to have a holomorphic frame, but there is also a further

constraint if one wants that the differential operators zj and t∂zj be reciprocally adjoint
for j = 1, 2, where t > 0 is the parameter appearing in Def. 4.9. Namely, the weight
h(s, s) = |s|2 : V −→ R>0 must be annihilated by the differential operator ∂zj + 1

t
zj, be-

cause this is precisely what is needed to show that (t∂zjf, g) = (f, zjg) via an integration
by parts.
Hence the choice of s is fixed up to a normalisation constant, and finally we fix this
constant according to Def. 4.9.
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One can now move on by splitting (4.17) in an integral along the Lagrangian and the
transverse. Since ∂yjψ = 0 for j = 1, 2 then one may write

ψ̂(a) =
∫
R2
ψ(x)A(x, a)dx,

where the kernel A : R2 × C2 −→ C is essentially the Fourier transform of a Gaussian:

A(x, a) := π−1
∫
R2

exp
{
a · z − 1

2 |z|
2 + ix · y

}
dy.

Proposition 4.20. One has:

A(x, a) = 2√
π

exp
{
−1

2
(
x2 − 2

√
2a · x+ a2

)}
.10

In the next section we will provide a proof in a more general context, which implies
this proposition as a corollary (see Prop. 4.23). We thus recovered the usual formula for
Bargmann kernel, although one has to take care of a multiplicative factor to achieve the
unitarity of B (cf. [Hal13]).

Finally, one should recall the quantum-mechanical relevance of the transform. As
mentioned before, the operators µzj and ∂zj act on FC, and are reciprocally adjoint. This
defines a representation of the 2-dimensional Weyl algebra on the Segal–Bargmann space
(i.e. the algebra defined by the canonical commutation relations), which is the Fock
representation. The Weyl algebra also acts on FR, by means of the annihilation and
creation operators, i.e. respectively

aj := Qj + iPj√
2

a∗j := Qj − iPj√
2

,

where Qjµxj is the position operator, and Pj = −i∂xj the momentum operator. Since Qj

and Pj are self-adjoint, it follows that a†j is the formal adjoint of aj, as the notation sug-
gests. These operators make FR into a module for the Weyl algebra as well, and one may
show that both modules are irreducible. The Stone–Von Neumann theorem thus suggests
that there should exist a unitary map FR −→ FC that intertwines the two representa-
tions: the Schrödinger position representation corresponds to the Fock representation.
The Bargmann transform (4.17) is precisely this map, up to a multiplicative constant.

Proposition 4.21. One has, for j ∈ {1, 2}:I ◦ aj ◦ I−1 = ∂zj
I ◦ a†j ◦ I−1 = µzj .

10Note that x2 = x · x = |x|2, but a2 = a · a 6= a · a = |a|2. This is important to get the commutation
relations of Prop. (4.18).
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Summing and subtracting the relations of Prop. (4.21), one finds:I ◦ µxj ◦ I
−1 = ∂zj+µzj√

2

I ◦ ∂xj ◦ I−1 = ∂zj−µzj√
2 .

(4.18)

These are the actual commutation relations that we will generalise to the context where
the linear polarisations vary along the Teichmüller space of a genus one closed orientable
surface. We will achieve this in Thm. 4.6, incidentally deriving Prop. 4.21 as a corollary.

With this aim in mind, let us consider generic linear polarisations PR, P . The space
V is thus equipped with a ω-compatible complex structure I corresponding to P and a
preferred Lagrangian subspace L ⊆ V corresponding to PR. One can turn this situation
back to the previous one, up to a linear symplectomorphism. Namely, the sum L+I(L) ⊆
V is direct, because if g = ω

(
·, I(·)

)
is the real scalar product associated to ω and I, then

I(L) = L⊥g is the g-orthogonal space to L. Hence V = L ⊕ I(L), and the (constant)
tensors ω and I have the canonical formulae when written in a basis {xj, yj}j of V such
that yj is a g-orthonormal basis of L, and where xj := −I(yj). If one considers the basis
as a set of global (linear) coordinates dxj, dyj : V −→ R, then

ω =
∑
j

dxj ∧ dyj, I =
∑
j

dxj ⊗ ∂yj − dyj ⊗ ∂xj .

Moreover, one has a Lagrangian splitting of (V, ω), since ω provides an identification
I(L) ∼= L∗ which induces an isomorphism V ∼= L⊕L∗ ∼= T ∗L. This basically amounts to
the choice of global normal coordinates for the Kähler manifold (V, ω, I), and shows that
PR and P are transverse.

In the next section we will pursue this idea further to get more explicit formulae,
but one can already conclude at this stage that there exists a transform B : HR −→ HC
satisfying (4.16) for all choice of PR and P , because the pairing HR⊗HC −→ C is always
nondegenerate. Moreover, (4.16) alone implies that this generalised transform commutes
with the gauge-action on polarised sections, i.e. with the translations λ ∈ Λ0 and the flip
h, acting both on HR and HC.

To prove this, consider the following.
Lemma 4.6. The translation operators λ : C∞(V, L) −→ C∞(V, L) are 〈· | ·〉-unitary for
all λ ∈ Λ0, and the flip h is (formally) self-adjoint.

Proof. The first statement follows from the fact that the Lebesgue measure is invariant
under translations, and the cocycle Θ takes values in U(1). Explicitly, if s is a smooth
section of L and λ ∈ Λ0, one has∣∣∣λ.s∣∣∣2 = 〈λ.s | λ.s〉 =

∫
V
h
(
λ.s(v), λ.s(v)

)
µ(v) =

=
∫
V
h
(

Θ(λ, v − λ)s(v − λ),Θ(λ, v − λ)s(v − λ)
)
µ(v) =

=
∫
V

∣∣∣Θ(λ, v − λ)
∣∣∣2h(s(v), s(v)

)
µ(v) =

∫
V
h
(
s(v), s(v)

)
µ(v) =

= 〈s | s〉 = |s|2,
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where we used
∣∣∣Θ(λ, v − λ)

∣∣∣ = 1 and the change of variable −λ : v 7−→ v − λ, satisfying
−λ∗(µ) = µ.

The analogous proof for the flip h.s(z) = s(−z) just follows from the fact that V has
even real dimension.

This lemma implies that the formal adjoint to λ is λ−1 = −λ, for all λ ∈ Λ0. This is
enough to conclude what one wants.

Corollary 4.3. The Bargmann transform B : HR −→ HC commute with the G0-action
for any choice of a real polarisation PR and a Kähler polarisation P .

Proof. Choose ψ ∈ FR, f ∈ FC and λ ∈ Λ0. One has, using (4.16) and the previous
lemma twice:〈
B(λ.ψr) | fs

〉
= 〈λ.(ψr) | fs〉 = 〈ψr | (−λ).fs〉 =

〈
B(ψ.r) | (−λ).fs

〉
=
〈
λ.B(ψr) | fs

〉
.

Since 〈· | ·〉 is nondegenerate when restricted to HC, this proves that B(λ.ψr) = λ.B(ψr).
The important point is that the formal adjoint of λ preserves polarised sections, and thus
all passages makes sense.

The proof for the group element h is exactly the same.

In summary, in this section we have shown the following.

Theorem 4.4. The Bargmann transform on 4-dimensional flat space induces a map
B : HG0

R −→ HG
0

C satisfying (4.16) and (4.18), for all choice of a linear real polarisation
PR and a linear Kähler polarisation P on (V, ω).

Remark 4.25. Let us get back to our original viewpoint, where the polarisations are
attached to a point the Teichmüller space of closed surfaces of genus one.

It follows from the very definition of the Bargmann transform that B is compatible with
the mapping class group action on the quantum bundles over Teichmüller space. Namely,
recall from § 4.2.7 that the mapping class group Γ ∼= SL(2,Z) acts symplectically on the
moduli space (Prop. 4.9), that this action lifts to the Chern–Simons prequantum bundle
fixing all prequantum data, and that the induced action on L2-summable polarised sections
of the prequantum bundle covers the standard action of Γ on Teichmüller space (Prop. 4.9).
Since this action preserves the L2-inner product, it also preserves the nondegenerate
pairing HR ⊗ HC −→ C, and thus also the transformation B — since this transform
satisfies (4.16).

To give more details one needs to introduce quite a lot of notation. Pick ψ ∈ FR,
f ∈ FC and γ ∈ Γ. Let us explicitly introduce the symbol τ ∈ H for the element of
Teichmüller space used to define the polarisations. Then the sections γ.r and γ.s are now
frames of L which are horizontal for the real and Kähler polarisation — respectively —
arising from γ∗τ ∈ H (thinking of τ as a marked Riemann structure C

/
Λτ −→ R

/
Z

on the real torus). The section γ.(ψr) will be written γ∗ψ(γ.r) in the new frame, and
similarly γ.(fs) = γ∗f(γ.s), where ψ ∈ FR, f ∈ FC.
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Let us denote HR,τ ,HR,γ∗τ the spaces of real-polarised sections, and HC,τ ,HC,γ∗τ those
of Kähler-polarised ones; then let FR, FC, FR,γ∗τ and FC,γ∗τ be the associated spaces of
complex-valued functions in the frames r, s, γ.τ, γ.s, respectively. Write (·, ·)τ and (·, ·)γ∗τ
for the inner products of HC,τ and HC,γ∗τ , and finally add subscripts Iτ : FR −→ FC,
Iγ∗τ : FR,γ∗τ −→ FC,γ∗τ for the integral transforms.

Then one has:

(γ∗ψ̂τ , γ∗f)γ∗τ = (ψ̂τ , f)τ = 〈ψr | fs〉 = 〈γ.(ψr) | γ.(fs)〉 = 〈γ∗ψ(γ.r) | γ∗f(γ.s)〉 =
= (γ̂∗ψγ∗τ , γ∗f)γ∗τ .

Using that f is arbitrary, that γ is an isomorphism of the quantum bundle for Kähler
polarisations, and that (·, ·)γ∗τ is nondegenerate, one gets γ∗ψ̂τ = γ̂∗ψγ∗τ . This means
precisely that the Γ-action intertwines naturally with the Bargmann transform.
Hence, in brief, the transform of Thm. 4.4 is Γ-equivariant.

4.6.3 The Bargmann transform: symplectic transverse

We now need to adapt the previous abstract construction to the case which is relevant for
us. The main technical issue is that we consider a global transverse to the real polarisation
which is symplectic, and not Lagrangian.

Let us then fix a quantum level t = k + iσ ∈ C∗ and a point τ ∈ H, and specialise
the abstract objects of the previous section to W = A0 (§ 4.1), V = A0 (§ 4.2.1), ω = ωt,
α = αt (§ 4.2.3), (L,∇, h) =

(
L̃(t), ∇̃(t), h̃(t)

)
(§ 4.2.4) and finally PR,τ and Pτ defined as

in § 4.2.6 and § 4.2.5. The Hilbert spaces HR,τ ,HC,τ ⊆ C∞
(
A0, L̃(t)

)
are also defined.

The restricted gauge group G0 acts on these data, defining the moduli spaces

M∼= A0
/
G0 ⊆ A0

/
G0 ∼= M,

the prequantum data
(
L(t),∇(t), h(t)

)
and the Hilbert spaces HG0

R,τ ,HG
0

C,τ ⊆ C∞
(
M, L(t)

)
,

which are the spaces for the geometric quantisation of M.

In the previous section § 4.6.2 we constructed an isomorphism Bτ : HR,τ −→ HC,τ that
commutes with the G0-action. Its explicit formula depends on the choice of a unitary real-
polarised frame r and a Kähler polarised frame s of L̃(t). Such frames are easy to compute
in a Darboux basis for ωt, but here we wish to do something different. Namely, we wish
to identify HR,τ with the space of smooth functions on the symplectic global transverse
A0 to the real polarisation PR,τ , and thus we look at the splitting A0 ∼= A0 ⊕ Lτ , where
Lτ is the Lagrangian space defining PR,τ .

Let us start by getting the simplest possible expression for the symplectic form ωt in
this context.

Proposition 4.22. There exists a basis {x1, x2, y1, y2} of A0 such that {x1, x2} is a basis
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of A0, {y1, y2} is a basis of Lτ , and one has

ωt =


0 k 1 0
−k 0 0 1
−1 0 0 0
0 −1 0 0

 .

Proof. Looking at the formulae of § 4.2.6, one sees that ωt has matrix


0 0 k −σ
0 0 −σ −k
−k σ 0 0
σ k 0 0


in the usual τ -independent global de Rham coordinates u1, v1, u2, v2, up to a scaling which
cancels the factor π−1 (this is the matrix of a real alternating bilinear form on A0).
Moreover, the Lagrangian subspace Lτ ⊆ A0 that corresponds to PR,τ is the real span of
the vectors

X1 :=


1
0
τ1
τ2

 , X2 :=


0
−1
τ2
−τ1

 ,
expressed in the same basis, and A0 ⊆ A0 is the real span of {v1, v2}.

Hence the matrix of ωt ∈ Λ2
(
A0
)∗

in the new basis {x1, x2, X1, X2} := {v1,−v2, X1, X2}
becomes 

0 k −(στ1 + kτ2) kτ1 − στ2
−k 0 −σ k

στ1 + kτ2 σ 0 0
στ2 − kτ1 −k 0 0

 .
Note that the determinant of this matrix is the real number (|t|2τ2)2 6= 0.

Now one can change basis within Lτ to get to the matrix given in the statement.
Explicitly:

y1 := − 1
|t|2τ2

(kX1 + σX2), y2 := 1
|t|2τ2

(
(kτ1 − στ2)X1 + (στ1 + kτ2)X2

)
.

This means that in the new basis one has ωt = ωcan + kdx1 ∧ dx2, where ωcan is the
canonical symplectic form ωcan = ∑

j dxj ∧ dyj. In words, one must add to the canonical
structure the real Atiyah–Bott symplectic form ω := dx1 ∧ dx2 on the space of unitary
flat connections — at level k > 0 — which is precisely the expected restriction of ωt to
A0. The Liouville form still reads

µ = ωt ∧ ωt
2 = dx1 ∧ dx2 ∧ dy1 ∧ dy2

in these coordinates. Similarly, the symplectic potential defining the prequantum connec-
tion becomes αt = αcan + k

2 (x1dx2 − x2dx1), where as usual αcan = 1
2
∑
j xjdyj − yjdxj.
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The 1-form α := 1
2(x1dx2 − x2dx1) is the standard symplectic potential for ω, and the

prequantum connection ∇̃(t) restricts to ∇ := d− ikα on A0. Recall that this is a connec-
tion on ι∗L̃(t) = L̃⊗k, where ι : A0 ↪→ A0 is the τ -independent de Rham embedding, and
that L̃ descends to the Chern–Simons prequantum line bundle L = L̃

/
G0 −→ M over

the compact moduli space.

From this explicit description, one sees that the covariant derivatives along the La-
grangian are the differential operators

∇̃(t)
∂yj

= ∂yj − i〈αt, ∂yj〉 = ∂yj −
i

2xj,

for j ∈ {1, 2}. Hence the function r(x, y) := e
i
2x·y still defines a unitary real-polarised

frame of L̃(t) — equal to 1 on A0 — thereby providing the usual identification of Hilbert
spacesHR,τ ∼= C∞(A0,C)∩L2(A0, dx1dx2). Moreover, considering the gauge-group action
one will have (temporarily neglecting the L2-norm) HG0

R,τ
∼= C∞(M, L⊗k), where L −→M

is the Chern–Simons prequantum bundle for the compact theory (cf. 2.3.3).
The computation of an I(t)-holomorphic frame is more involute (if σ 6= 0 then A0 is not
even preserved by the complex structure). One viable option is to look for a symplecto-
morphism that turns the situation back to the standard case.

Concretely, denote g = ωt
(
·, I(t)(·)

)
the Kähler scalar product associated to ωt and

construct a g-orthonormal basis {y′1, y′2} of L. Next, define x′j := −I(t)(y′j) ∈ A0, and
remark that {x′1, x′2} is now a g-orthonormal basis of I(t)(Lτ ), because I(t) ∈ O(g) ⊆
GLR

(
A0
)
. As already mentioned in the previous section, one has I(t)(Lτ )⊕ Lτ ∼= T ∗Lτ ,

and ωt and I(t) tautologically have the canonical form in the new basis.
To be more precise, denote ϕτ :

(
A0 ⊕ Lτ , ωt

)
−→

(
T ∗Lτ , ωcan

)
the τ -dependent linear

map that sends the basis {xj, yj}j to {x′j, y′j}j. It satisfies ϕ∗τωcan = ωt and I(t) = ϕ−1
τ ◦

I ◦ ϕτ by construction, where I : T ∗Lτ −→ T ∗Lτ is the standard complex structure.
This symplectomorphism sends Lτ to itself and A0 to I(t)(Lτ ), and is encoded in by a

τ -dependent, invertible block-triangular matrix Mτ =
(
A 0
B C

)
, meaning that the real

global coordinates dx′j, dy′j : T ∗Lτ −→ R4 are related to dxj, dyj : A0 ⊕ Lτ −→ R4 by(
dx′

dy′

)
= Mτ

(
dx
dy

)
=
(

Adx
Bdx+ Cdy

)
,

where A,B,C ∈M2(R), with det(A) det(C) = det(Mτ ) 6= 0 — all depending on τ and t.

The point of this is that dz′ = dx′+idy′√
2 defines a vector of I-holomorphic coordinates

on T ∗Lτ , i.e. a global I-holomorphic chart dz′ : T ∗Lτ −→ C2. Hence the composition
dz := ϕ∗dz′ = dz′ ◦ ϕτ : A0 ⊕ Lτ −→ C2 will define I(t)-holomorphic coordinates on A0

which depend linearly on dx and dy:

z =
Ax+ i

(
Bx+ Cy

)
√

2
= Zx+ iCy√

2
, (4.19)

where Z := A + iB ∈ M2(C). This generalises the standard parametrisation of linear
complex structures which are compatible with the canonical symplectic structure of R4

196



CHAPTER 4. HITCHIN CONNECTIONS

(see e.g. [KW06]). In our context we cannot use the standard parametrisation, since we
do not consider the canonical symplectic structure. Note however that the symplectic
structure ωt is tautologically of type (1, 1) when expressed in coordinates (4.19), since

ωt = ϕ∗τωcan = iϕ∗τ (dz′ ∧ dz′) = iϕ∗τdz
′ ∧ ϕ∗τdz′ = id(ϕ∗τz′) ∧ d(ϕ∗τz′) = idz ∧ dz.

This clearly imposes constraints on the matrices A, B and C. In particular the following
must hold.

Lemma 4.7. One has At = C−1.

Hereafter a superscript “t” on a matrix always denotes transposition, and never to
elevate to the power t ∈ C∗.

Proof. One must have

i
(
dz1 ∧ dz1 + dz2 ∧ dz2

)
= kω + ωcan.

In particular, comparing the coefficients of dxi ∧ dyj for i, j ∈ {1, 2} yields

−i
2

2∑
i,j=1

dxi ∧ dyj
(
Z1iC1j + Z1iC1j + Z2iC2j + Z2iC2j

)
= dx1 ∧ dy1 + dx2 ∧ dy2,

and the left-hand side also equals

−i
2∑

i,j=1
dxi ∧ dyj

(
A1iC1j + A2iC2j

)
,

using that Zij + Zij = 2<(Zij) = 2Aij. Now notice that

A1iC1j + A2iC2j = Ati1C1j + Ati2C2j = (AtC)ij.

Hence the condition reads (AtC)ij = δij, i.e. AtC = Id, as claimed.

Since now αt = i
2
∑
j zjdzj − zjdzj, we see that the function s(z) = π−1e−

|z|2
2 is a

I(t)-holomorphic frame of L̃(t), and we can repeat the construction of the previous section
even if the symplectic structure is not in canonical form. Set then

FR :=
{
ψ ∈ C∞(A0,C)

∣∣∣∣ ∂yψ = 0, ψ|A0 ∈ L2(A0, dx)
}
∼= C∞(A0,C) ∩ L2(A0, dx).

and
FC :=

{
f ∈ O(A0)

∣∣∣∣∫
A0
|f |2e−|z|2dxdy < +∞

}
.

We know from Thm. 4.4 that there exists a transform Iτ : ψ 7−→ ψ̂ going from FR to FC,
and satisfying (

ψ̂, f
)

= 〈ψr | fs〉 ∈ C,
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where 〈· | ·〉 is the inner product of C∞(A0, L̃(t)), and (·, ·) : FC⊗FC −→ C is obtained by
restricting 〈· | ·〉 to HC. This uses once more the nondegenerate pairing HR,τ⊗HC,τ −→ C
induced by 〈· | ·〉, and defines a transform Bτ : HR −→ HC by plugging-in the frames r
and s:

Bτ (ψr) := Iτ (ψ)s = ψ̂s.

We have shown in 4.2 that the function ea(z) := ea·z is the coherent state at a ∈ C2

inside FC, and thus reasoning as in § 4.6.2 one gets again to the integral formula (4.17),
i.e. (

Iτψ
)
(a) = ψ̂(a) = 1

π

∫
A0
ψ(z) exp

{
a · z − 1

2 |z
2|+ i

2x · y
}
dxdy,

with the important difference that now the coordinates z1, z2 are τ -dependent linear combi-
nations of x1, x2, y1, y2. To obtain a new τ -dependent Bargmann kernel Aτ : C2×R2 −→ C
one must then integrate the following quadratic function along the Lagrangian:

exp
{
a · z − 1

2 |z
2|+ i

2x · y
}

=

= exp
{

1√
2
a ·
(
Zx− iCy

)
− 1

4
(
Zx+ iCy

)
·
(
Zx− iCy

)
+ i

2x · y
}

= exp
{

1√
2
a · Zx− i√

2
a · Cy − 1

4

(
x · ZtZx+ y · CtCy

)
− 1

2x ·B
tCy + i

2x · y
}
,

where Zt
, Bt = =(Zt) and Ct denote the transpose of the three matrices, and the position

of the dot is important when working with nonsymmetric matrices.

Proposition 4.23. One has:

Aτ (a, x) = 2
√
π
∣∣∣ det(C)

∣∣∣ exp

(
a
x

) − Id
2

Z√
2

C−1+iBt√
2 −Ξ

2

(a
x

) ,
where Ξ := AtA+ 2i(AtB +BtA).

The result is the exponential of a quadratic function, as expected. Moreover, taking
Z = C = Id (and thus B = 0) yields the standard Bargmann kernel of Prop. 4.20:

A(z, x) = 2√
π

exp
{(

z
x

)(
− Id

2
Id√

2
Id√

2 − Id
2

)(
z
x

)}
.

One might say that there exists a family of integral kernels parametrised by the Teich-
müller space of a genus one closed orientable surface. Finally, remark that the real part of
Ξ is a symmetric positive definite matrix. Indeed one has AtA ≥ 0, and the definiteness
follows from det(A) 6= 0.

Proof. The term exp
{

1√
2a · Zx−

1
4x · Z

tZx
}
comes out of the integral, and one is left

with computing∫
A0

exp
{

1
4y · C

tCy − i√
2
a · Cy − 1

2x ·B
tCy + i

2x · y
}
dy.
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Substituting y 7−→ Cy simplifies this to
∣∣∣ det(C)

∣∣∣−1 ∫
A0

exp
{
−y2

4 − i√
2
a · y − 1

2x ·B
ty + i

2x · C
−1y

}
dy.

We now have two squares to complete, and then the Fourier transform of a Gaussian to
compute. First:

−y
2

4 −
i√
2
a · y = −1

4
(
y2 + 2

√
2ia · y

)
= −1

4
(
y +
√

2ia
)2
− a2

2 ,

and thus the above integral becomes

e−
a2
2

∫
A0

exp
{
−1

4
(
y +
√

2ia
)2
− 1

2x ·B
ty − i

2x · C
−1y

}
dy =

= exp
{
−a

2

2 + 1√
2
x ·
(
C−1 + iBt

)
a

}∫
A0

exp
{
−y2

4 − 1
2x ·B

ty + i

2x · C
−1y

}
dy,

where we changed variable according to y 7−→ y +
√

2ia, which is a transform whose
Jacobian equals the identity.

Now, similarly

−y2

4 − 1
2x ·B

ty = −1
4
(
y +Bx

)2
+ 1

4x ·B
tBx,

and thus the integral in the last passage becomes

e
1
4x·B

tBx
∫
A0

exp
{
−1

4
(
y +Bx

)2
+ i

2x · C
−1y

}
dy =

= exp
{1

4x ·B
tBx− i

2x · C
−1Bx

} ∫
A0

exp
{
−y

2

4 + i
(C−1)tx

2 · y
}
dy,

by replacing the variable y with the variable y +Bx.

The last integral to evaluate is by definition the inverse Fourier transform of the
function y 7−→ e−

y2
4 evaluated at the point 1

2(C−1)tx, i.e.∫
A0

exp
{
−y

2

4 + i
(C−1)tx

2 · y
}
dy = 2

√
πe−

1
4x·C

−1(C−1)tx.

Putting all together provides the formula given in the statement. In particular, to show
the formula for the matrix Ξ given there observe that C−1(C−1)t = AtA and C−1B = AtB,
thanks to Lem. 4.7. Then
1
4
(
− ZtZ +BtB − 2iAtB − AtA

)
= 1

4
(
(−At − iBt)(A− iB) +BtB − 2iAtB − AtA

)
=

= 1
4
(
(−2AtA+ i(AtB −BtA)− 2iAtB

)
=

= −1
2
(
AtA+ 2i(AtB −BtA)

)
.
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Theorem 4.5. The explicit formula for the Bargmann transform Bτ : HR,τ −→ HC,τ reads
as follows, in the chosen frames:

e
i
2x·yψ(x, y) 7−→ 2e−

|z|2
2

√
π
∣∣∣ det(C)

∣∣∣
∫
A0
ψ(x) exp

{
−1

2

(
z
x

)(
Id −

√
2A

−
√

2At Ξ

)(
z
x

)}
dx.

(4.20)

Proof. This result is a corollary of the previous computations. The point is that it is only

the symmetric part of the matrix
 − Id

2
Z√
2

C−1+iBt√
2 −Ξ

2

 which is relevant, because we work

with commutative variables. Hence one has may replace the off-diagonal blocks with the
sum

1
2

 Z√
2

+

(
C−1 + iBt

)t
√

2

 = Z + (C−1)t + iB

2
√

2
.

Using Lem. 4.7, one finds indeed

Z + (C−1)t + iB = A− iB + (C−1)t + iB = A+ (C−1)t = 2A.

In particular there is no ambiguity in the notation for the quadratic form: no dot is
needed.

Finally one can describe how the differential operators ∂x and µx commute past the
transform Iτ : FR −→ FC, generalising (4.18).

Proposition 4.24. One has
Iτ ◦ µx ◦ I−1

τ = 1√
2A
−1
(
∂z + µz

)
Iτ ◦ ∂x ◦ I−1

τ = 1√
2ΞA−1

(
∂z +

(
Id−2At

)
µz

) (4.21)

Proof. The basic ingredient are the derivatives of the quadratic form in the exponent of
the generalised kernel of Prop. 4.23, i.e.

−1
2∂x

(
z2 − 2

√
2x · Atz + x · Ξx

)
=
(√

2Atz − Ξx
)
,

and
−1

2∂z
(
z2 − 2

√
2z · Ax+ x · Ξx

)
=
(√

2Ax− z
)
.

Because of that, integration by parts yields(
Iτ ◦ ∂x

)
ψ(z) = ∂̂xψ(z) =

∫
A0

(
∂xψ(x)

)
Aτ (z, x)dx = −

∫
A0
ψ(x)

(
∂xAτ (z, x)

)
dx =

= −
∫
A0
ψ(x)

(√
2Atz − Ξx

)
Aτ (z, x)dx = −

√
2Atzψ̂ + Ξ̂xψ =

=
(
−
√

2Atµz ◦ Iτ + Iτ ◦ Ξµx
)
ψ(z),
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for any ψ ∈ C∞(A0,C). Hence

I−1
τ ◦ µz ◦ Iτ = 1√

2
(A−1)t

(
Ξµx − ∂x

)
. (4.22)

Next, similarly(
∂z ◦ Iτ

)
ψ(z) = ∂zψ̂(z) =

∫
A0
ψ(x)

(
∂zAτ (z, x)

)
dx =

∫
A0
ψ(x)

(√
2Ax− z

)
Aτ (z, x)dx =

=
√

2Âxψ − zψ̂ =
(√

2Iτ ◦ Ax− µz ◦ Iτ
)
ψ,

and substituting the value of µz ◦ Iτ provided by the first identity yields

I−1
τ ◦ ∂z ◦ Iτ = 1√

2
(A−1)t

((
2AtA− Ξ

)
µx + ∂x

)
. (4.23)

Summing (4.22) and (4.23) provides:

I−1
τ ◦ (µz + ∂z) ◦ Iτ =

√
2Aµx,

whence the first identity in the statement. Now one can substitute the value of I−1
τ ◦Ξx◦Iτ

in the identity
Iτ ◦ ∂x ◦ I−1

τ = Iτ ◦ Ξx ◦ I−1
τ +

√
2Atµz,

finding

Iτ ◦ ∂x ◦ I−1
τ = 1√

2
ΞA−1

(
z + ∂z

)
−
√

2Atz = 1√
2

ΞA−1
((

Id−2At
)
µz + ∂z

)
,

which is the second identity in the statement. In all this computations one uses the
C-linearity of Iτ .

Note that (4.21) specialise to (4.18) for A = Ξ = Id, as expected. Prop. 4.24 is almost
what we were after, since our transform Bτ acts on sections rather then functions. To
correct for this, one must plug-in the τ -dependent frames r and s of L̃(t). Let us denote
µr : ψ −→ ψr and µs : f −→ fs the frame multiplications. Clearly these maps commute
with function multiplication, but the same is not true for the derivative of functions.

Lemma 4.8. One has, for j ∈ {1, 2}:
µ−1
r ◦ ∇∂x1

◦ µr = ∂x1 + ik
2 µx2 ,

µ−1
r ◦ ∇∂x2

◦ µr = ∂x2 − ik
2 µx1 ,

µs ◦ ∂zj ◦ µ−1
s = ∇̃(t)

∂zj
+ µzj .

Proof. The real-polarised frame is r = e
i
2x·y, and thus e.g.(

∇̃(t)
∂x1
◦ µr − µr ◦ ∂x1

)
ψ = ∇̃(t)

∂x1
(ψr)− (∂x1ψ)r = ψ∇̃(t)

∂x1
r = ψ

(
∂x1r − i〈αt, ∂x1〉r

)
=

= i

(
y1 + k

2x2

)
ψr,
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where we recall that αt = kα+αcan = k
2x1dx2−x2dx1 +∑

j xjdyj− yjdxj. The restriction
of this relation to A0 is

∇∂x1
◦ µr − µr ◦ ∂x1 = ik

2 µx2 ◦ µr,

since ∇̃(t) restricts to ∇ by definition, and the coordinates yj vanish on A0. This yields
the first identity of the statement. Similarly one sees that ∇∂x2

corresponds to ∂x2− ik
2 µx1 .

Said differently, the frame r restricts to the constant function 1 on A0 (for all τ), which is
not horizontal for ∇, and thus one needs a correction for passing from ordinary derivatives
to covariant ones.

The same happens for the Kähler-polarised frame s = π−1e−
|z|2

2 . The derivative ∂z on
holomorphic functions cannot correspond to ∇̃(t)

∂z
under the frame multiplication µs, since

the latter differential operator does not even preserve holomorphic sections (because of[
∇0,1,∇1,0

]
6= 0). Rather, one has:(
∇̃(t)
∂z
◦ µs − µs ◦ ∂z

)
f = ∇̃(t)

∂z
(fs)− (∂zf)s = f∇̃(t)

∂zs = −zfs,

which means that ∂z corresponds to the holomorphicity-preserving differential operator
∇̃(t)
∂z

+ µz, since µs ◦ ∂z ◦ µ−1
s = ∇̃(t)

∂z
+ µz.

Hence one can upgrade prop. 4.24 to a statement about differential operators acting
on smooth sections of line bundles.

Theorem 4.6. One has:

Bτ ◦ µx ◦ B−1
τ = 1√

2A
−1
(
∇̃(t)
∂z

+ µz + µz
)

Bτ ◦ ∇∂x1
◦ B−1

τ = 1√
2
∑
j

(
(ΞA−1)1j + ik

2 A
−1
2j

)(
∇̃(t)
∂zj

+ µzj
)
+

+ 1√
2
∑
j,l

(
2(ΞA−1)1j(δjl − Atjl)µzl + ik

2 A
−1
2j µzj

)
,

Bτ ◦ ∇∂x2
◦ B−1

τ = 1√
2
∑
j

(
(ΞA−1)2j − ik

2 A
−1
1j

)(
∇̃(t)
∂zj

+ µzj
)
+

+ 1√
2
∑
j,l

(
2(ΞA−1)2j(δjl − Atjl)µzl − ik

2 A
−1
1j µzj

)
.

(4.24)

Note that the differential operators on the right-hand sides preserve holomorphicity,
because those on the left-hand sides preserve real-polarised sections.

Proof. The statement is a corollary of Prop. 4.24 and the above lemma. Using the defining
identity Bτ = µs ◦ Iτ ◦ µ−1

r . One finds

Bτ ◦ µx ◦ B−1
τ = µs ◦

(
Iτ ◦ µx ◦ I−1

τ

)
◦ µ−1

s = µs

(
1√
2
A−1

(
∂z + µz

))
µ−1
s =

= 1√
2
A−1

(
µs ◦ ∂z ◦ µ−1

s + µz
)

= 1√
2
A−1

(
∇̃(t)
∂z

+ µz+z
)

where we used the commutation between function multiplications, as well as the C-
linearity of all maps involved.
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Similarly, but slightly more difficultly

Bτ ◦ ∇∂x1
◦ B−1

τ = µs ◦ Iτ ◦ (µ−1
r ◦ ∇∂x1

◦ µr) ◦ I−1
τ ◦ µ−1

s =

= µs ◦ Iτ ◦
(
∂x1 + ik

2 µx2

)
◦ I−1

τ ◦ µ−1
s =

= 1√
2
∑
j,l

µs ◦ (ΞA−1)1j
(
∂zj + (δjl − 2Atjl)µzl

)
◦ µ−1

s + ik

2
√

2
∑
j

A−1
2j (∇̃(t)

∂zj
+ µzj+zj) =

= 1
2
√

2

∑
j,l

(2ΞA−1)1j
(
∇̃(t)
∂zj

+ (2δjl − 2Atjl)µzl + µzj
)

+ ik
∑
j

A−1
2j (∇̃(t)

∂zj
+ µzj+zj)

 ,
and

Bτ ◦ ∇∂x2
◦ B−1

τ = µs ◦ Iτ ◦
(
∂x2 −

ik

2 µx1

)
◦ I−1

τ ◦ µ−1
s =

= 1
2
√

2

∑
j,l

(2ΞA−1)2j
(
∇̃(t)
∂zj

+ (2δjl − 2Atjl)µzl + µzj
)
− ik

∑
j

A−1
1j (∇̃(t)

∂zj
+ µzj+zj)

 .
One can now rearrange the term, isolating the covariant derivative and the antiholomor-
phic multiplication on the left. This yields the latter identities of the statement.

Finally, letting the restricted gauge group G0 act yields a transform

Bτ : HG0

R,τ −→ HG
0

C,τ ,

for all τ ∈ H. Neglecting inner products, the space on the left is identified with C∞(M, L⊗k),
and that on the right with a subspace of C∞(M, L(t)). Letting τ vary provides a map of
vector bundles over Teichmüller space, and in the next section we will exploit Thm. 4.6
to conjugate the Hitchin–Witten connection through it.

4.6.4 The conjugation of the Hitchin–Witten connection

As explained in [Wit91; Wit11], the quantum Hilbert space for Chern–Simons theory
with gauge group SL2(C) can be identified with the prequantum Hilbert space for Chern–
Simons theory with gauge group SU(2). This identification depends on the complex
structure of Σ. In our setting we were able to made this quite explicit, as we now briefly
recall.

In § 4.2.6 we introduced real polarisations PR on M, and we showed in 4.1 that these
polarisations are all transverse to the compact moduli space (M, ω) for the gauge group
SU(2), where ω is the real Atiyah–Bott symplectic form of § 2.3.3. We know that this
results in an identification of all quantum spaces HR,τ with C∞

(
M, L⊗k

)
(neglecting the

inner product), where k is the real (positive integer) part of the quantum level t = k+iσ.11

11In this section we drop the group G0 from the notation. One should as always define all objects on
the flat spaces A0 and A0, where there are global symplectic potential and frames, and then argues that
all data descends following the gauge-action.
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Let us write H(t)
R −→ H for the vector bundle of the geometric quantisation of (M, ωt)

—at level t — with respect to the polarisations PR,τ . Then H(t)
R carries its own Hitchin

connection, which can be pushed along the isomorphism of vector bundles

H(t)
R −→ C∞

(
M, L⊗k

)
×H,

where we temporarily neglect the inner product on the right-hand side. Doing so provides
the following explicit formula for a connection on the trivial prequantum bundle for the
compact moduli space (see [AM16] for this formula, the original [Wit91] for other genera,
and [AG14] in a more general context).

Definition 4.11. The Hitchin–Witten connection ∇̂R at level t, for the closed curve Σ of
genus one and the gauge group SL(2,C), is the following connection on the trivial vector
bundle C∞

(
M, L⊗k

)
×H −→ H:

∇̂R = ∇T + 1
2t∆G′ −

1
2t∆G′ . (4.25)

Here ∇T is the trivial connection in the trivial bundle, and

G′(V ) ∈ C∞(M, T1,0M⊗ T1,0M), G′(V ) ∈ C∞(M, T0,1M⊗ T0,1M
)

are the symmetric tensors corresponding via ω to the variation of the complex structures
Iτ (arising from the Hodge star) as τ varies in H. This means that kω.G(V ) = V

[
Iτ
]′

and kω.G′(V ) = V
[
Iτ
]′′
. The size of their matrices in any given trivialisation is half of

that of the tensors G(V ) and G(V ) of § 4.3.1, which were instead defined for variations
of the complex structure I(t) = k′Iτ − σ′Kτ on M; this means that G′(V ) and G′(V ) are
complex numbers.

If Σ is a torus then one can be much more explicit, stating that

∆G′(∂τ ) = i

2π∇z′∇z′ , ∆G′(∂τ ) = − i

2π∇z′∇z′ , (4.26)

and
∆G′(∂τ ) = 0 = ∆G′(∂τ ),

where ∇z′ := ∇∂z′
, ∇z′ := ∇∂

z′
, and z′ is a Iτ -holomorphic coordinate onM. The vector

fields ∂τ and ∂τ provide a frame of TCH, and this is enough to code G′(V ) and G′(V ) for
all complex vector fields V on Teichmüller space.
Recall that when σ 6= 0 then z′ is not a I(t)-holomorphic coordinate on M. Rather, we
will keep writing z1 and z2 for the coordinates defined on M in the previous section.

The connection ∇ of (4.26) is the prequantum connection of the k-fold tensor power
L⊗k of the Chern–Simons line bundle for the compact theory (see Rem. 4.10). The same
argument used for the connection of Thm. 4.1 shows that the Hitchin–Witten connection
is invariant for the group of bundle automorphisms defined by the action of the mapping
class group.
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Remark 4.26. It is known that the Hitchin–Witten connection (4.25) is flat in genus one,
thereby providing canonical identification between the fibres of the trivial prequantum
bundle C∞

(
M, L⊗k

)
×H −→ H, along the lines of § 2.2.4 (see [AM16]). The point that

must not be missed is that the given global trivialisation of the quantum bundle for real
polarisations depends on the complex structure τ ∈ H, and thus picking the tautological
identifications among the fibres of C∞

(
M, L⊗k

)
×H −→ H does not get rid of the choice

of a polarisation: it is only the parallel transport along ∇̂R that achieves that.

One may now push the Hitchin–Witten connection (4.25) onto the Kähler-polarised
side, using the transform of Thm. 4.4. Concretely, this means computing the conjugate of
the Hitchin–Witten connection with respect to Bτ , where we denote by Bτ the isomorphism
already defined on C∞(M,C), i.e. ψ · 1 7−→ ψ̂s. This is not quite the same as (4.20),
because here we already considered the restriction toM. This viewpoint is better because
the restriction of r onM does not depend on τ , which is useful for conjugating the trivial
connection ∇′, which is a connection on C∞(M, L⊗k)×H −→ H.

Proposition 4.25. One has Bτ ◦ ∇′V ◦ B−1
τ = ∇T

V − D(V ), where ∇T is the trivial
connection on C∞(M, L(t))×H −→ H, and D(V ) is the differential operator defined by

D(V ) := − 1
2
√

2
∇zÃ∇z−

− 1√
2
∇zÃ(µz + µz) +

√
2(µV [z] · ∇z + µz · V [A]A−1∇z)+

+ (
√

2− 1)µzV [z] +
(√

2− 1
2

)
µzV [z] −

1
2µzV [z]+

+ 1
2
√

2
µz ·

(
4V [A]A−1 − Ã

)
µz + 1√

2
µz ·

(
2V [A]A−1 − Ã

)
µz −

1
2
√

2
µzÃµz−

− Tr(Ã)− det
(
V [C]

)
det(C)−1,

where Ã := (A−1)tV [Ξ]A−1.

We have written D(V ) in order-descending fashion: the first item is an operator of
order two, the second row has order one, and then one has function multiplication in the
third and fourth row (with the last one being the multiplication by a constant function).
Note that the differential operators D(V ) themselves do not preserve holomorphicity.

Proof. The trivial connection ∇′ acts on a section ψ = ψτ · 1 of C∞(M, L⊗k) × H by
means of ∇′V (ψ · 1) = V [ψ] · 1, where V is a vector field on the upper-half plane. The
trivial connection ∇T instead acts on a Kähler-polarised section fs = fτsτ by

∇T
V

[
ψ̂s
]

= V [ψ̂]s+ ψ̂∇T
V s = V [ψ̂]s+ ψ̂V [s].
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Hence:

∇T
V ◦ Bτ (ψ · 1)− Bτ ◦ ∇′V (ψ · 1) = V [ψ̂]s+ ψ̂V [s]− V̂ [ψ]s = V

[∫
M
ψ(x)Aτ (z, x)dx

]
s(z)+

+
(∫
M
ψ(x)Aτ (z, x)dx

)
V [s](z)−

(∫
M
V [ψ](x)Aτ (z, x)dx

)
s(z) =

=
(∫
M
ψ(x)V

[
Aτ (z, x)

]
dx
)
s(z) +

(∫
M
ψ(x)Aτ (z, x)dx

)
V [s](z),

where we used V (
∫
M ψAτdx) =

∫
M

(
V [ψ]Aτ + ψV [Aτ ]

)
dx, which is obtained by taking

the derivative under the integral sign. Now, the derivative of the Bargmann kernel of
Prop. 4.23 is

V
[
Aτ (z, x)

]
= V

[
2√

π| det(C)| exp
{
− 1

2
(
z2 − 2

√
2z · Ax+ x · Ξx)

}]
=

= − 2√
π

det
(
V [C]

)
(

det(C)
)2 exp

{
− 1

2
(
z2 − 2

√
2z · Ax+ x · Ξx)

}
−

− 1
2
(
2zV [z]− 2

√
2V [z] · Ax− 2

√
2z · V

[
A
]
x+ x · V

[
Ξ
]
x
)
Aτ (z, x) =

=
−det

(
V [C]

)
det(C) − 1

2

(
2zV [z]− 2

√
2V [z] · Ax− 2

√
2z · V

[
A
]
x+ x · V

[
Ξ
]
x
)Aτ (z, x),

where we assumed det(C) > 0 for all τ . Since τ 7−→ det(Cτ ) is a continuous nowhere
vanishing function then it is always strictly positive or negative, and one may assume
the former up to choosing the g-orthonormal basis {y′1, y′2} of the Lagrangian space Lτ to
have the same orientation as the base y1, y2 (see § 4.6.3).

Similarly, the derivative of the holomorphic frame s of § 4.6.3 is

V [s](z) = π−1V
[
e−
|z|2

2

]
= − 1

2π
(
zV [z] + zV [z]

)
e−
|z|2

2 = −1
2
(
zV [z] + zV [z]

)
s(z).

Hence:
(∇T

V ◦ Bτ − Bτ ◦ ∇′V )ψ =

= −
det

(
V [C]

)
det(C) + zV [z] + 1

2(zV [z] + zV [z])
 · (∫

M
ψ(x)Aτ (z, x)dx

)
s(z)+

+
(∫
M

(√
2(V [z] · Ax+ z · V [A]x)− 1

2xV [Ξ]x
)
ψ(x)Aτ (z, x)dx

)
s(z) =

=
(
µf ◦ Bτ +

√
2µV [z] ◦ Bτ ◦ Aµx +

√
2µz ◦ Bτ ◦ V

[
A
]
µx −

1
2Bτ ◦ µx · V

[
Ξ
]
µx

)
ψ,

where f := − det
(
V [C]

)
det(C)−1 − 1

2

(
2zV [z] + zV [z] + zV [z]

)
.

Now one can use the first identity of (4.24) to rewrite the right-hand side in the
form D(V )◦Bτ , where D(V ) ∈ D(M, L(t)) is a differential operator of order two acting on
smooth sections of L(t). This is achieved by making the Bargmann transform Bτ commute
to the right, passing over various differential operators of order zero.
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More precisely, if one denotes ∇(t)
zk

the covariant derivative along ∂zk for the prequan-
tum connection on L(t):
√

2µV [z] ◦ Bτ ◦ Aµx =
∑
i,j

µV [z]i ◦ Bτ ◦ Aijµxj =
∑
i,j,k

µV [z]i ◦ AijA−1
jk (∇(t)

zk
+ µzk + µzk) ◦ Bτ =

=
∑
i

µV [z]i ◦ (∇(t)
zi

+ µzi + µzi) ◦ Bτ = µV [z] · (∇(t)
z + µz + µz) ◦ Bτ ,

and
√

2µz ◦ Bτ ◦ V
[
A
]
µx =

√
2
∑
i,j

µzi ◦ Bτ ◦ V
[
A
]
ij
µxj =

=
∑
i,j,k

µzi ◦ V
[
A
]
ij
A−1
jk (∇(t)

zk
+ µzk + µzk) ◦ Bτ =

= µz · V
[
A
]
A−1(∇(t)

z + µz + µz) ◦ Bτ ,

and finally the operator of order two:

Bτ ◦ µx · V
[
Ξ
]
µx = Bτ ◦

∑
i,j

µxiV
[
Ξ
]
ij
µxj =

∑
i,j

Bτ ◦ µxi ◦ B−1
τ ◦ Bτ ◦ V

[
Ξ
]
ij
µxj =

= 1√
2
∑
i,j,k,l

A−1
ik (∇(t)

zk
+ µzk + µzk) ◦ V

[
Ξ
]
ij
A−1
jl (∇(t)

zl
+ µzl + µzl) ◦ Bτ =

= 1√
2
∑
i,j,k,l

(∇(t)
zk

+ µzk + µzk) ◦ (A−1)tkiV
[
Ξ
]
ij
A−1
jl (∇(t)

zl
+ µzl + µzl) ◦ Bτ =

= 1√
2

(∇(t)
z + µz + µz) · (A−1)tV

[
Ξ
]
A−1(∇(t)

z + µz + µz) ◦ Bτ .

Hence one has ∇T
V ◦Bτ −Bτ ◦∇′V = D(V ) +Bτ , by defining D(V ) as in the statement.

Applying B−1
τ to the right yields ∇T

V −Bτ ◦∇′V ◦B−1
τ = D(V ), which means precisely that

the action of ∇′V on C∞(M, L⊗k) × H gets turned by Bτ into the action of ∇T
V −D(V )

on C∞(M, L(t))×H.

We are left with computing the conjugation of the Laplace operators. For this it is
enough to compute the conjugation of the covariant derivatives along the prequantum
connection ∇ on L⊗k, since

1
2tBτ ◦∆G′(∂τ ) ◦ B−1

τ = i

4πt

(
Bτ ◦ ∇z′ ◦ B−1

τ

)
◦
(
Bτ ◦ ∇z′ ◦ B−1

τ

)
,

and
1
2tBτ ◦∆G′(∂τ ) ◦ B

−1
τ = i

4πt

(
Bτ ◦ ∇z′ ◦ B

−1
τ

)
◦
(
Bτ ◦ ∇z′ ◦ B

−1
τ

)

Now we have to consider the complex structure Iτ onM, which is compatible with the
symplectic form kω = kdx1 ∧ dx2. Recall from § 4.2.2 that Iτ is defined by the complex
coordinate z′ = ξ2−τξ1 = −(x2 +τx2), since the natural coordinates ξ1 and ξ2 are related
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to x1 and x2 by the simple relations ξ1 = x1 and ξ2 = −x2 (see the proof of Prop. 4.22).
One then computes the complex derivatives to be

∂z′ = i

2τ2
(∂x1 − τ∂x2), ∂z′ = i

2τ2
(−∂x1 + τ∂x2).

Hence, by the C∞-linearity of connections on vector fields:

∇z′ = i

2τ2

(
∇∂x1

+ τ∇∂x2

)
, ∇z′ = i

2τ2

(
−∇∂x1

+ τ∇∂x2

)
.

Now one may directly apply the second and third identity of Thm. 4.6, finding:

Bτ ◦ ∇∂z′
◦ B−1

τ = i

2τ2

(
Bτ ◦ ∇∂x1

◦ B−1
τ − τBτ ◦ ∇∂x2

◦ B−1
τ

)
=

= i

2
√

2τ2
·

·

∑
j

(
(ΞA−1)1j + ik

2 A
−1
2j

)(
∇̃(t)
∂zj

+ µzj
)

+
∑
j,l

(
2(ΞA−1)1j(δjl − Atjl)µzl + ik

2 A
−1
2j µzj

)−
− iτ

2
√

2τ2
·

·

∑
j

(
(ΞA−1)2j −

ik

2 A
−1
1j

)(
∇̃(t)
∂zj

+ µzj
)

+
∑
j,l

(
2(ΞA−1)2j(δjl − Atjl)µzl −

ik

2 A
−1
1j µzj

) ,
and

Bτ ◦ ∇∂z′
◦ B−1

τ = i

2τ2

(
Bτ ◦ −∇∂x1

◦ B−1
τ + τBτ ◦ ∇∂x2

◦ B−1
τ

)
=

= − i

2
√

2τ2
·

·

∑
j

(
(ΞA−1)1j + ik

2 A
−1
2j

)(
∇̃(t)
∂zj

+ µzj
)

+
∑
j,l

(
2(ΞA−1)1j(δjl − Atjl)µzl + ik

2 A
−1
2j µzj

)+

+ iτ

2
√

2τ2
·

·

∑
j

(
(ΞA−1)2j −

ik

2 A
−1
1j

)(
∇̃(t)
∂zj

+ µzj
)

+
∑
j,l

(
2(ΞA−1)2j(δjl − Atjl)µzl −

ik

2 A
−1
1j µzj

) .
Composing these two order-one differential operators with themselves, and multiplying

by the correct constants, provides a formula for the differential operator

E(V ) := Bτ ◦
(
− 1

2t∆G′(V ) + 1
2t∆G′(V )

)
◦ B−1

τ .

Recall from (4.24) that the differential operator ∇̃(t)
∂zj

+ µzj acts on a holomorphic section
fs by fs 7−→ (∂zjf)s. Hence E(V ) preserve holomorphicity by construction, and one may
well add it to D(V ).
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Finally
∇̂C := Bτ ◦ ∇̂R ◦ B−1

τ = ∇T −D − E

is a mapping class group invariant flat connection inside the trivial prequantum bundle
C∞

(
M, L(t)

)
×H −→ H that preserves the subbundle H(t)

C of holomorphic sections: it is
a Hitchin connection for the geometric quantisation of (M, ωt) with respect to the natural
family Pτ of Kähler polarisations on the moduli space.
It is certainly different from the connection of Thm. 4.1, since it also contains terms of
order one and zero.

4.6.5 Circle action on holomorphic sections

As a second application of the Bargmann transform, we use it to turn Hitchin’s action of
§ 4.4 into an action on the spaces HC. In this section we denote again by λ ∈ U(1) an
element of the circle, acting on M via λ.(A,Φ) = (A, λΦ), where A is a unitary connection
and Φ a Higgs field.

The idea is the following. For fixed τ ∈ H and λ ∈ U(1), we first consider the
Bargmann transform B−1

τ : HC,τ −→ HR,τ , then we act by λ by pull-back on section, fixing
the line bundle but moving the prequantum connection (see § 4.4.4), thereby defining an
arrow λ∗ : HR,τ −→ HR,λ∗τ ; the space on the right is that of smooth sections of L(t)

which are covariantly constant along the Lagrangian subspace λ−1(Lτ ) for the pull-back
connection. Indeed, if s is covariantly constant along Lτ , and if X ∈ λ−1Lτ then one has

(λ∗∇(t)
X )λ∗s = λ∗

(
∇(t)
dλ.Xs

)
= 0.

Here again one uses the fact that we are working on a vector space, so that the linear real
polarisation is the same as a Lagrangian subspace, a tangent vector field is the same as a
family of endomorphisms taking values into that subspace, and λ = dλ since λ is linear.

Now one can consider HR,λ∗τ and HC,τ as vector subspaces of one and the same vector
space, C∞(M, L(t)). Then the symplectic form ωt and the Hermitian metric h(t) provide
an inner product 〈· | ·〉 on C∞(M, L(t)), which is different then the one provided by λ∗ωt
and h(t): since we change some prequantum data, the Hilbert space structure varies along
the Liouville measure. This notwithstanding, the pairing betweenHR,λ∗τ andHC,τ defined
by 〈· | ·〉 is still nondegenerate, since all totally real subbundles of TCM are transverse
to all purely complex ones (be them Lagrangian with respect to some symplectic form
or not). Hence one still has an isomorphism ϕ = ϕτ,λ : HR,λ∗τ −→ HC,τ that closes the
triangle, defined by

〈ϕ(λ∗s1) | s2〉 = 〈λ∗s1 | s2〉,

where s1 is polarised along Lτ , and s2 is holomorphic for I(t)
τ .

Definition 4.12. The action of λ ∈ U(1) on HC,τ is given by the isomorphism

λ := ϕτ,λ ◦ λ∗ ◦ B−1
τ : HC,τ −→ HC,τ .
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The aim is now to compute a formula as explicit as possible for the above composi-
tion. To this end, we pick again the (local) coordinates {xj, yj} on M such that M is
parametrised by the τ -independent coordinates xj and Lτ by the yj. This splitting has
the further advantage that λ ∈ U(1) acts trivially onM, and thus also on the coordinates
xj. On the contrary, it transforms the coordinates yj into a linear combination y′j of xj
and yj. Hence there exist 2-by-2 real matrices α, β, depending on τ and λ, such that(

dx
dy′

)
=
(

Id 0
α β

)(
dx
dy

)
, i.e.

(
dx
dy

)
=
(

Id 0
−β−1α β−1

)(
dx
dy′

)
,

with det(β) 6= 0. Now if r = e
i
2x·y is the usual PR,τ -polarised frame, and ψ ∈ C∞(M,C),

then by definition

λ∗(ψr)(x, y) = λ∗ψ(x, y) · λ∗r(x, y) = ψ(x, y′)r(x, y′) = ψ(x, y′)e i2x·(αx+βy).

Hence, introducing the coherent state ea(z) = ea·z at the point a, where z = Zx+iCy√
2 as in

§ 4.6.3:

ϕ
(
λ∗(ψr)

)
(a) = 〈λ∗(ψr) | eas〉 =

∫
M
h(t)

(
λ∗(ψr), eas

)
dxdy =

=
∫
M
ψ(x, y′)ea·zh(t)(λ∗r, s)dxdy = π−1

∫
M
ψ(x, y′)ea·z+ i

2x·y
′− |z|

2
2 dxdy,

where we used s(z) = π−1e−
|z|2

2 = π−1e−
i
2x·y

′− |z|
2

2 r(x, y′), as well as the h(t)-unitarity of r.
Now one may change variable in the above integral, going from (x, y) to (x, y′). Correcting
the measure according to dxdy = | det(β)|−1dxdy′, and considering that

z = Zx+ iCy√
2

= Zx+ iC(−β−1αx+ β−1y′)√
2

= (Z − iCβ−1α)x+ iCβ−1y′√
2

,

one finds:

ϕ
(
λ∗(ψr)

)
(a) = 1

π| det(β)|

∫
M
ψ(x, y′)·

· exp
{

1√
2
a ·
(
Z ′x− iC ′y′

)
− 1

2
(
Z ′x+ iC ′y′

)
·
(
Z ′z − iC ′y′

)
+ i

2x · y
′
}
dxdy′,

where Z ′ := Z − iCβ−1α ∈ M2(C) and C ′ = Cβ−1 ∈ GL(2,R). Notice that the real part
of Z ′ is still equal to the matrix A ∈ GL(2,R) of the previous two sections. Hence one
can perform the integration over y′ to get a new λ-deformed kernel as in Prop. 4.23, and
the result of the computation is obtained by a straightforward adaptation of Thm. 4.5.

Proposition 4.26. The explicit formula for the map ϕ : HR,λ∗τ −→ HC,τ reads as follows:

λ∗
(
e
i
2x·yψ(x, y)

)
7−→ 2e−

|z|2
2

√
π
∣∣∣ det(β) det(C)

∣∣∣
∫
M
ψ(x) exp

{
−1

2

(
z
x

)(
Id −

√
2A

−
√

2At Ξ′
)(

z
x

)}
dx,

where
Ξ′ := AtA+ 2i

(
(AtB′ + (B′)tA

)
.

and B′ := B − Cβ−1α.
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This means that the isomorphism λ of HC,τ acts on a Bargmann-transformed section
ψ̂s by

λ(ψ̂s)(z) =
(∫
M
ψ(x)Aτ,λ(z, x)dx

)
s(z),

where

Aτ,λ(z, x) := 2
√
π
∣∣∣ det(β) det(C)

∣∣∣ exp
{
−1

2

(
z2 − 2

√
2z · Ax+ xΞ′x

)}

is the new λ-deformed Bargmann kernel. To write the formula in terms of a generic
holomorphic section fs one must now invert the Bargmann transform Bτ . This is simple,
once one has fixed the correct unitary constant to make it unitary.

Proposition 4.27. Assume to have fixed cτ ∈ R such cτBτ is 〈· | ·〉-unitary for all τ ∈ H.
Then one has

B−1
τ (fs) =

(
cτ
π

)2
·
(∫

M
f(z)Aτ (z, x)e−|z|2dxdy

)
r.

Proof. If cτ is as in the statement, one has〈
cτBτ (ψr)

∣∣∣cτBτ (ψ′r)〉 = 〈ψr | ψ′r〉,

but also 〈
cτBτ (ψr)

∣∣∣cτBτ (ψ′r)〉 = c2
τ

〈
B†τBτ (ψr)

∣∣∣ψ′r〉,
where B†τ : HC,τ −→ HR,τ is the Hermitian adjoint of the Bargmann transform. The
nondegeneracy of the pairing HR,τ ⊗ HC,τ −→ C then implies that c2

τB†τ ◦ Bτ is the
identity on HR,τ , and thus c2

τB†τ is the inverse of Bτ .

To compute the adjoint boils down to swap two integrals. More precisely, if ψr is a
real-polarised section and fs a holomorphic one, then

〈
Bτ (ψr)

∣∣∣fs〉 =
(
ψ̂s, fs

)
= π−2

∫
M

(∫
M
ψ(q)Aτ (z, q)dq

)
f(z)e−|z|2dxdy =

= π−2
∫
M
ψ(q)

(∫
M
Aτ (z, q)f(z)e−|z|2dxdy

)
dq = 〈ψr | f̃ r〉,

where
f̃(q) := π−2

∫
M
f(z)Aτ (z, q)e−|z|

2
dxdy.

Hence B†τ (fs) = f̃ r, and one recovers the formula in the statement.

Note that we have incidentally shown that the map f 7−→ f̃ is the inverse of the
integral transform Iτ . Explicitly it reads:

f̃(q) = π−2
∫
M
f(z) exp

{
−1

2z
2 +
√

2z · Aq − 1
2qΞq

}
e−|z|

2
dxdy.
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Remark 4.27. As a consistency check, one may to compute the value of Bτ (f̃ r) at a
point a ∈M. One finds, up to a multiplicative constant:

Bτ (f̃ r)(a) = kτ

(∫
M
f(z)

(∫
M
Aτ (a, q)Aτ (z, q)dq

)
e−|z|

2
dxdy

)
s(a),

and the integral in the middle is seen to be equal to the conjugate of the coherent state
ea = ea·z. Indeed

∫
M
Aτ (a, q)Aτ (z, q)dq = e−

1
2 (a2+z2)

∫
M

exp
{
−1

2q(Ξ + Ξ)q +
√

2(a+ z) · Aq
}
dq =

= e−
1
2 (a2+z2)

∫
M

exp
{
−qAtAq +

√
2(a+ z) · Aq

}
dq =

= e−
1
2 (a2+z2)

| det(A)|

∫
M

exp
{
−q2 +

√
2(a+ z)q

}
dq =

=
exp

{
−1

2(a2 + z) + 1
2(a+ z)2

}
| det(A)|

∫
M
e−q

2
dq =

√
π

| det(A)|e
a·z.

Hence indeed Bτ (f̃ r)(a) = f(a)s(a), by the reproducing property of the coherent state.

This is also the description of the action of the identity 1 ∈ U(1) acting on a holo-
morphic section fs. What happens for generic λ ∈ U(1) is that one still finds an integral
transform, but with a different overall kernel. Hence we say that the circle action on Higgs
fields gets turned into a coherent state transform on the Segal–Bargmann moduli space,
and then one recovers the geometric action on sections by plugging-in the holomorphic
frame.

Theorem 4.7. Assume that the coefficients of the complex symmetric matrix

−1
2(Ξ + Ξ′) =

(
n11 n12
n12 n22

)

satisfy

<
(
n11n22 − n2

12
n11

)
> 0. (4.27)

Then the action of λ ∈ U(1) on HC,τ is provided by the integral transform:

λ(fs)(a) =
(∫

M
f(z)Ãτ,λ(z, a)e−|z|2dxdy

)
s(a),

where

Ãτ,λ(z, a) := cτ,λ exp
{
−1

2

(
a
z

)(
Id +M M
M Id +M

)(
a
z

)}
,

for a suitable symmetric matrix M and a constant cτ,λ.
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Proof. One has λ(fs) = ϕ ◦ λ∗B−1
τ (fs), by definition. Using Prop. 4.27 and 4.26 one sees

that this equals

ϕ ◦ λ∗ ◦ B−1
τ (fs)(a) = ϕ ◦ λ∗(f̃ r)(a) = ϕ

(
λ∗(f̃ r)

)
(a) =

(∫
M
Aτ,λ(a, x)f̃(x)dx

)
s(a) =

=
(
cτ
π

)2
·
(∫
M
Aτ,λ(a, x)

(∫
M
f(z)e−|z|2Aτ (z, x)idzdz

)
dx
)
s(a) =

=
(
cτ
π

)2
·
(∫

M
f(z)e−|z|2

(∫
M
Aτ,λ(a, x)Aτ (z, x)dx

)
idzdz

)
s(a).

Replacing the measure dxdy = idzdz provides the formula in the statement, after calcu-
lating

∫
MAτ,λ(a, x)Aτ (z, x)dx. Now, up to a multiplicative constant the integrand equals

exp
{
−1

2z
2 − 1

2a
2 − 1

2x(Ξ + Ξ′)x+
√

2(a+ z) · Ax
}
,

and after isolating e− 1
2 (z2+a2) one is left with

exp
{
−1

2x(Ξ + Ξ′)x+
√

2(a+ z) · Ax
}
.

Now there is some condition on the matrix Ξ + Ξ′ to assure that this integral converges.
One can split the integral along x1 and x2, and then notice that the integral in dx1
converges because the real part of Ξ + Ξ′ is the positive definite symmetric matrix 2AtA,
and the imaginary part oscillates quickly enough. This does not however imply that the
resulting integral in dx2 will converge.
Rather, if one denotes nij the complex coefficients of −1

2(Ξ + Ξ′), then one finds the
condition (4.27) in the statement.12

Let us thus assume that this condition is satisfied. Then, up to changing the previous
multiplicative constant, the result of the integration is the exponential of a quadratic
function of a+ z, which may be written

−1
2(a+ z)M(a+ z) = −1

2
(
aMa+ 2aMz + zMz

)
,

where one can assume that the invertible matrix M is symmetric.13 Hence one recovers
the formula in the statement by picking the correct constant cτ,λ.

Remark 4.28. One way of getting more control on all the constants involved would be
to introduce the metaplectic correction, defining all pairings intrinsically in terms of half-
forms. Doing this would not however make it possible to just set all these constants to
be equal to one (see e.g. [KW06]).

12Note that (4.27) is not quite the same as

<(n11)<(n22)−<(n12)2 > 0,

which expresses the fact that AtA > 0.
13The computation in Rem. 4.27 shows that M = − Id if λ = 1.
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Now that we have an explicit formula for the Hitchin action on HC,τ , which can be
upgraded to an action on the whole of the vector bundle H(t)

C −→ H, we can study the
compatibility of any connection with it. To do this, the essential problem is to conjugate
the differential operators of function multiplication and covariant derivative through the
action. As we did in § 4.6.3, we start by seeing how the integral transform

Iτ,λ : f 7−→
∫
M
fÃτ,λdxdy,

commutes with function multiplication and ordinary derivative ∂z. Then one may use
λ = µs ◦ Iτ,λ ◦ µ−1

s .

Proposition 4.28. One has:
Iτ,λ ◦ ∂z ◦ I−1

τ,λ = −M−1
(

1
2(M + Id)µa + ∂a

)
Iτ,λ ◦ µz ◦ I−1

τ,λ = 1
2

((
Id−3

2M + 1
2M

−1
)
µa + (M−1 + Id)∂a

)
.

Proof. Let us compute the derivative ∂a after applying the transform. One finds:

∂a ◦ Iτ,λ(f) = ∂a

(∫
M
f(z)Ãτ,λ(a, z)e−|z|2dxdy

)
=
∫
M
f(z)∂a

(
Ãτ,λ(a, z)

)
e−|z|

2
dxdy =

=
∫
M

(
−1

2(M + Id)a−Mz
)
f(z)Ãτ,λ(a, z)e−|z|2dxdy.

This gives two addends: the former is just −1
2(M + Id)µa ◦ Iτ,λ and for evaluating the

latter one may use −Mze−|z|
2 = M∂ze

−|z|2 , which yields:∫
M
−Mzf(z)Ãτ,λ(a, z)e−|z|2dxdy =

∫
M
f(z)Ãτ,λ(z, a)

(
M∂ze

−|z|2
)
dxdy =

= −
∫
M

(
M∂zf(z)

)
Ãτ,λ(z, a)e−|z|2dxdy,

where we integrated by parts, also using ∂zÃ(a, z) = 0. Hence the second addend equals
−Iτ,λ ◦M∂z(f), and one finds

∂a ◦ Iτ,λ = −1
2(M + Id)µa ◦ Iτ,λ − Iτ,λ ◦M∂z,

whence the first identity of the statement.

Similarly we compute Iτ,λ ◦ µz to be:

Iτ,λ ◦ µz(f) =
∫
M
zf(z)Ãτ,λ(a, z)e−|z|2dxdy = −

∫
M
f(z)Ãτ,λ(a, z)

(
∂ze
−|z|2

)
dxdy =

=
∫
M
f(z)

(
∂zÃτ,λ(a, z)

)
e−|z|

2
dxdy =

=
∫
M

(
−1

2(M + Id)z −Ma
)
f(z)Ãτ,λ(a, z)e−|z|2dxdy,

where we used ∂zf(z) = 0 when integrating by parts. This also gives two addends: the
first one is −Mµa ◦ Iτ,λ, and the second one is evaluated as before. Hence

Iτ,λ ◦ µz = −Mµa ◦ Iτ,λ −
1
2(M + Id)Iτ,λ ◦ ∂z.
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Substituting the value of Iτ,λ ◦ ∂z provided by the first identity yields the second identity.

In all integration by parts one needs to use the fact that f is square-summable for the
measure e−|z|2dxdy.

Now one may use again Lem. 4.8 to compute analogous commutation relations after
plugging-in the holomorphic frame s. This can be used to observe how the flat connection
of Thm. 4.1 transforms under the action, and similarly for the Bargmann-conjugated
Hitchin–Witten connection ∇̂C of § 4.6.4. The argument is analogous to the one used in
§ 4.6.4 to conjugate ∇̂R with respect to the Bargmann transform, using § 4.6.
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Appendix A

The problem of quantisation

This chapter presents some motivational material. The aim is to introduce the general
problem of quantisation, which has its roots in quantum mechanics.

After a loose terminological introduction to classical systems in § A.1, we provide their
basic mathematical dictionary in § A.2.
Next, quantum system are introduced from the mathematical perspective in § A.3, to-
gether with some of the standard formalism of quantum mechanics.
Finally, we state the problem of quantisation in § A.4, relying on the definitions of the
previous sections.

Another objective of this chapter is to motivate some of the terminology used through-
out the whole document. Also, the notions of time-dependent Hamiltonian systems, be
they classical or quantum, are assumed as standard in Chap. 3. An excellent reference
for all this material is [FY09].

A.1 Classical systems in words

The main ingredients of a classical mechanical system are

• a configuration space

• a phase-space

• states

• observables.

The configuration space is the spacial, geometric setting for the evolution of the system at
hand. Each of its points corresponds to a different position for the overall components of
the said system. For instance, the configuration space for an unrestrained point-particle
in three-dimensional space is the whole of R3.
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The phase-space complements the configuration space by adding kinetic information.
It is a space parametrising both the positions and the velocities of the components of the
mechanical system. For example, the phase-space for an unrestrained point-particle in
three-dimensional space is the whole of R3 × R3 ∼= R6. It is a fundamental, undisputed
assumption that this information is all that’s needed in order to predict the evolution of
the system: the totality of positions and velocities of the components of a system at some
moment of time uniquely determine its motion.1

At each given time, the system will thus find itself in a particular mechanical condition,
as described by its phase-space. The particular value of all relevant variables that make
this up is the state of the system, which thus amounts to a point in its phase-space. This
should more precisely be referred to as a pure state, whereas a mixed state is a statistical
combinations of such pure states (i.e. a generic probability measure on the phase-space,
instead of a Dirac δ). We shall always deal with pure states, since this is not a thesis in
statistical mechanics. To get back to the usual example, the point (x, 0) ∈ R3×R3 in the
phase-space of a free point-particle correspond the state in which the particle is at rest at
the position (or configuration) x ∈ R3.

An observable is a physical quantity that depends on the mechanical state of the
system, and which can be measured to yield some real number in any fixed unit system
(in the case of mixed states, one would only get an expected value). For example, the
kinetic energy of a free point particle of mass m ∈ R≥0 in the pure state (x, v) ∈ R6

is the quantity H(x, v) = m
2 |v|

2. One may have time-independent observables, as well
as observables whose values explicitly depend on the moment in which the measure is
performed.

Finally, a classical system is a collection of observables H1, . . . , Hn. They are meaning-
ful, possibly interacting quantities that can be measured as time flows, and the prediction
of their time evolution is the fundamental question one asks. More precisely, in non-
statistical mechanics one studies the evolution of the values Hi(p) ∈ R, where p is a pure
state. To do this, one has different dynamical pictures:

1. One may fix the state p, and try to predict the evolution of the values Hi(t, p) by
letting the time-dependence lie in this the observable entirely: this is the Hamilton
picture of motion.

2. One may fix the observableHi, and try to predict the evolution of the valuesHi

(
p(t)

)
by letting the time-dependence lie in the state entirely: this is the Liouville picture
of motion.

3. One may let both the observable and the state vary: this is the interaction picture.

The first two pictures are equivalent, in the sense that the value of an observable Hi in the
state p changes with time in the same way. Both pictures provide differential equations
for the object that is assumed to vary, which rely on (i) the choice of a distinguished

1This is taken verbatim from [Arn89], which also adds: "One can imagine a world in which to determine
the future of a system one must also know the acceleration at the initial moment, but experience shows
us that our world is not like this".
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observable H, called the Hamiltonian of the system (e.g. the total energy, for conservative
systems), and (ii) a binary operation {·, ·} on the space of observables, called the Poisson
bracket. With these two choices made, the Hamilton picture of motion yields the following
differential equations:

Ḣi = {H,Hi}, ṗ = 0. (A.1)

The Liouville picture instead provides differential equations for a curve into the phase-
space. If one picks local coordinates {xi}i on the phase-space, so that the curve can be
written p(t) = (x1(t), . . . , xn(t)) componentwise, then one has

Ḣi = 0, ẋi = {xi, H} = −{H, xi}.2 (A.2)

A solution to this system of nonlinear, first-order, ordinary differential equations is called
a classical trajectory. Solving the dynamics of the system means solving an initial-value
problem for these equations, collectively called the classical equations of motion.

Let us now provide a sound mathematical dictionary for all these terms.

A.2 Mathematical dictionary for classical systems

We must first define phase-spaces, states and observables.

Definition A.1. A classical phase-space is a Poisson manifold (M, {·, ·}). A (pure)
classical state is a point p ∈M . A classical observable is a smooth function H : M −→ R
on the phase-space, also called a classical Hamiltonian.

Recall that a Poisson manifold (M, {·, ·}) is a manifold M together with a Poisson
structure {·, ·} : C∞(M,R) ∧ C∞(M,R) −→ C∞(M,R), i.e. a Lie bracket which is com-
patible with the associative product, in the sense of the Leibnitz identity:

{fg, h} = f{g, h}+ {f, h}g, for f, g, h ∈ C∞(M,R).

Example A.1 (Associative algebras are Poisson).
Any associative algebra A can be endowed with the Poisson structure provide by the
commutator for its associative product:

{a, b} :=
[
a, b

]
= ab− ba, for a, b ∈ A.

Indeed, the Leibnitz identity is readily shown:[
ab, c

]
= abc− cab = abc− acb+ acb− cab = a(cb− cb) + (ac− ca)b = a

[
b, c
]

+
[
a, c

]
b,

for all a, b, c ∈ A. This is actually the universal construction for the Poisson bracket of
the algebra of quantum observables, as explained in § A.3.

2When expressed for a symplectic phase-space in local Darboux coordinates (q, p), this yields the
canonical Hamilton equations: q̇ = ∂H

∂p , ṗ = −∂H∂q .
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Poisson manifolds are thus the mathematical stage of classical mechanics. In the
thesis we deal with less general objects, namely symplectic manifolds (M,ω), i.e. smooth
manifolds equipped with distinguished closed, nondegenerate 2-forms.

Remark A.1 (Symplectic manifolds are Poisson).
Let (M,ω) be a symplectic manifold, and call ω] : T ∗M −→ TM the isomorphism of
vector bundles induced by the fibrewise nondegenerate pairings ωp : TpM ∧ TpM −→ R
(p ∈M), as follows. If α ∈ T ∗pM , then there exists a unique tangent vector v ∈ TpM such
that ιvωp = ωp(v, ·) = −α, and one sets ω]p(α) := v. This means that v is defined by the
identity ιvωp + α = 0.
Now, if f, g ∈ C∞(M,R), then the differential forms df, dg ∈ C∞(M,T ∗M) correspond to
unique vector fields Xf := ω](df), Xg := ω](dg) ∈ C∞(M,TM). Then it makes sense to
set

{f, g} := ω(Xf , Xg) ∈ C∞(M,R),

and one can readily verify that the Leibnitz identity is verified.
Notice moreover that the vector field Xf acts as a derivation of C∞(M,R) via the Poisson
bracket with respect to f , on the left:

Xf (g) = dg(Xf ) = −ιXgω(Xf ) = ω(Xf , Xg) = {f, g}, for all g ∈ C∞(M,R).

This follows from the sign convention taken earlier:

ιXfω + df = ω(Xf , ·) + df = 0. (A.3)

This convention is also used so that the map f 7−→ Xf : C∞(M,R) −→ C∞(M,TM) is a
morphism of Lie algebras:

X{f,g} =
[
Xf , Xg

]
, for f, g ∈ C∞(M,R). (A.4)

This remark suggests the following more general definition for the Hamiltonian vector
field of an observable on a classical phase-space.

Definition A.2. Let (M, {·, ·}) be a classical phase-space, and f : M −→ R an observable.
The Hamiltonian vector field Xf ∈ C∞(M,TM) of f is defined as a derivation by

Xf (g) := {f, g} ∈ C∞(M,R), for all g ∈ C∞(M,R).

One can finally define what a classical Hamiltonian system is.

Definition A.3. Let (M, {·, ·}) be a classical phase-space, and n a positive integer.

• A time-independent classical Hamiltonian system is a set of classical observables
{Hi}i ⊆ C∞(M,R).

• A n-time-dependent Hamiltonian consist of an open set B ⊆ Rn, together with a
smooth function H : M ×B −→ R. The natural global coordinates t1, . . . , tn on B
are called the time variables, and B the space of times.
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• A n-time-dependent classical Hamiltonian system is a set H1, . . . , Hn : M×B −→ R
of n-time-dependent Hamiltonians of cardinality n, all the Hamiltonians having the
same space of times B ⊆ Rn.

An important notion for Hamiltonian systems is that of integrability, which is ulti-
mately related to the problem of solving the dynamics of the system, as pointed out at
the end of § A.1. The equations (A.2) for a classical “trajectory” x : B −→M now read

∂xi
∂tj

= {xi, Hj}, (A.5)

where {xi}i are local coordinates on the phase-space, and j ∈ {1, . . . , n}. This is the
reason why one asks for as many Hamiltonians as there are time variables.

We will not delve in the analytical interest of the notion of integrability, i.e. actually
solving — integrate — the equations of motion; rather, we shall be content with the
following definition.

Definition A.4. Let {Hi}i be a time-dependent classical Hamiltonian system on the
phase-space M , with space of times B.

• The system is said to be integrable, or flat, if the function

fij := ∂Hj

∂ti
− ∂Hi

∂tj
− {Hi, Hj} ∈ C∞(M ×B,R) (A.6)

vanishes for all i, j. The Poisson bracket is computed for the fibrewise restrictions
Hi|M×{t}, Hj|M×{t} ∈ C

∞(M,R), where t ∈ B.

• The system is said to be strongly integrable, or strongly flat, if

∂Hj

∂ti
− ∂Hi

∂tj
= 0 = {Hi, Hj},

for all i, j.

Remark A.2. The definition of integrable time-independent systems is in a way simpler
than that for time-dependent ones, and in a way more complicated. It is simpler, since
there are no partial derivatives ∂tiHj to consider, and thus (A.6) reduces to Poisson-
commutativity; it is more complicated, because in the usual notion of Liouville integrabil-
ity one adds the condition that the Hamiltonians be functionally independent on an open
dense set.

Def. A.4 has a natural geometric interpretation. Namely, consider a time-dependent
Hamiltonian system H1, . . . , Hn : M ×B −→ R. The product F := M ×B, together with
the canonical projection π : F −→ B on the second factor, is a trivial Poisson fibration over
the base B. One can use now use the Hamiltonian vector fields of the fibrewise restrictions
of the time-dependent Hamiltonians in order to define a Ehresmann connection in this
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fibration. Recall in turn that a Ehresmann connection is a horizontal vector sub-bundle
H ⊆ TF ∼= TM × TB, i.e a vector sub-bundle of the tangent bundle to F satisfying

Ker(dπ)⊕H = TF,

where dπ : TF −→ TB is the tangent map to the fibration map. This means that H is a
complement to the vertical subspace Ker(dπ) = TM ⊆ TF.
Now, to define such horizontal spaces, one considers the derivatives ∂t1 , . . . , ∂tn associated
to the time variables varying in B. They provide a global trivialising frame for TB ⊆ TF,
and this sub-bundle defines the trivial Ehresmann connection. Next, one modifies this
connection by adding the following vertical components. If t ∈ B, then the restrictions
H1|M×{t} , . . . , Hn|M×{t} : M −→ R admits Hamiltonian vector fields XH1 , . . . , XHn ; let
us set

Xi := ∂ti +XHi ∈ C∞(F, TF),
for i ∈ {1, . . . , n}, and let us define a Ehresmann connection as the pointwise span of
these vector fields

H := spanR{X1, . . . , Xn} ⊆ TF.3

Notice that a section x : B −→ F of the fibration is horizontal with respect to this
connection if and only if it solves the partial derivative version of the equations of motion,
since

Xj(xi) =
(
∂tj +XHj

)
xi = ∂xi

∂tj
+ {Hj, xi},

so that Xj(xi) = 0 is exactly (A.5), using the alternance of the Poisson bracket. This new
nonlinear connection is thus the geometric object that codes the classical dynamics of the
time-dependent system.

Finally, recall that such a distribution H of planes is said to be integrable, or flat, if
there exists a foliation of F consisting of integral manifolds for H. In this case, where H
is smooth and has constant rank, the Frobenius theorem implies that H is integrable if
and only if it is involutive, i.e. if the space of smooth sections C∞(F,H) ⊆ C∞(F, TF) is
a Lie subalgebra for the standard Lie bracket of vector fields.
One now computes, for any smooth function f ∈ C∞(F,R), and for i, j ∈ {1, . . . , n}:[

Xi, Xj

]
(f) = {∂tiHj − ∂tjHi, f}+ {{Hi, Hj}, f}.

This means that the vector field
[
Xi, Xg

]
∈ C∞(F, TF) acts via the Poisson bracket of

the function
fij := ∂Hj

∂ti
− ∂Hi

∂tj
+ {Hi, Hj},

on the left. Hence
[
Xi, Xi

]
= Xfij is the (vertical) Hamiltonian vector field of this function,

and one needs it to vanish in order for H to be integrable. This happens if and only if
fij is constant on the fibre M of the fibration, so that it must actually the pull-back of
a function on B with respect to π. The first condition of A.4 amounts to the stronger

3This is indeed a horizontal subbubdle, since the restriction dπ|H : H −→ TB is an isomorphism of
vector bundles, because of dπ(Xi) = ∂ti for i ∈ {1, . . . , n}.
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requirement that fij = 0. If moreover {Hi, Hj} = 0 for all i, j, then one has a strongly
flat connection, and this is totally equivalent to the strong integrability of the classical
system.

Remark A.3. There exists a coordinate-independent way of phrasing the above con-
struction. Namely, using the same notations, one can consider the following horizontal
1-form on the fibration F:

$ :=
∑
i

Hidti ∈ C∞(F, π∗T ∗B).

With this notation introduced, the dynamical equations (A.5) become dxi = {xi, $}. If
one starts from such a 1-form $, then any vector field X on the basis produces a time-
depend Hamiltonian function with space of times B, by contraction: HX := 〈$,X〉. One
can thus give the following alternative definition of a time-dependent Hamiltonian system.

Definition A.5. Let (M, {·, ·}) be a Poisson manifold, and B ⊆ Rn an open set. A time-
dependent classical Hamiltonian system is a horizontal 1-form $ on the trivial Poisson
fibration π : M ×B −→ B.

In the symplectic case, there is a natural way of thinking of $ as a correction to
the trivial Ehresmann connection. Namely, assume (M,ω) to be symplectic, so that
F = M × B is a trivial symplectic fibration, and denote ω̂ ∈ A2(F,R) the pull-back of
ω with respect to the canonical projection F −→ M to the first factor. This is a 2-form
on the fibration that restricts to ω on each fibre, and such objects define Ehresmann
connections by taking the orthogonal complements of the vertical spaces TM ⊆ TF. In
particular, the form ω̂ defines the trivial Ehresmann connection, and one can correct it
via

Ω := ω̂ − d$ ∈ A2(F,R).
One can indeed check that the spaces

Hp := TpM
⊥Ωp =

{
v ∈ TF | Ωp(TpM, v) = 0

}
⊆ TpF

satisfy Hp ⊕ TpM = TpF, for all p ∈ F. Moreover, they are the pointwise span of the
vector fields Xi = ∂ti +XHi , where Hi := H∂ti

, as above.

Hence a time-dependent classical Hamiltonian system is the correction between a
trivial connection on a trivial symplectic fibration, and a new, possibly interesting one.
In the thesis we deal with connections arising from the isomonodromic deformations of
meromorphic connections over the Riemann sphere (in Chap. 3).

Remark A.4 (Universal classical vector bundle).
Let us mention a third “universal” viewpoint on classical systems, which is suited to de-
formation quantisation. Namely, one can think of a time-dependent Hamiltonian function
H : M ×B −→ R as a section H : B −→ A0 of the trivial vector bundle A0 ×B −→ B,
where A0 := C∞(M,R) is the Poisson algebra of classical observables. This is just the
remark that the restriction H|t : M −→ R is by definition a classical observable for all
t ∈ B. We say that this a universal construction, because one can then take any A0-
module to construct other vector bundles. The case discussed above correspond to the
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tautological representation ρ : A0 −→ Der
(
C∞(M,R)

)
, where Hi acts via its Hamiltonian

vector field, i.e. its Poisson bracket.

In particular, one may also define a time-dependent classical Hamiltonian system as
an A0-valued 1-form on the space of times B:

$ =
∑
i

Hidti ∈ C∞(B, T ∗B⊗ A0).

This shows that the formula
∇ := dB +$ (A.7)

defines a connection in the vector bundle A0 × B −→ B, by letting Hi : B −→ A0 act
on the fibre A0 via its Poisson bracket. This is just a way to implement the equation of
motion (A.5). The simply-laced isomonodromy systems of § 3.1 correspond exactly to
such objects. We will define the quantum analogue of those classical connections at the
end of the next section § A.3.

Remark A.5. We can (and will) consider algebraic Poisson varieties M as phase-spaces,
instead of Poisson manifolds. One should then replace smooth functions with sections
of the structural sheaf OM , and ask for it to be a sheaf of Poisson algebras. In the case
where M is a variety over C, one should also allow for complex-valued observables, and
for complex spaces of times B ⊆ Cn. With these small caveat, all the above material can
be rephrased in the complex-algebraic category.

A.3 Quantum Hamiltonian systems

A quantum mechanical still consists of a set of observables, whose (expectation) values
depend on the state of the system. To propose a quantum analogue of the previous
two sections, one must first recall the standard linear-algebraic formalism of quantum
mechanics. The mathematical notions we will introduce provide a quantum analogue of
the mathematical dictionary for classical mechanics presented in § A.2.

Definition A.6. The phase-space of a quantum mechanical system is the projective space
P(H) to a separable Hilbert space

(
H, 〈· | ·〉

)
. A (pure) quantum state is a line ψ ∈ P(H),

also called a wave function. A quantum observable is a self-adjoint operator Ĥ : H −→ H,
also called a quantum Hamiltonian.4

Recall in turn that a Hilbert space is a vector space H over C, together with an
Hermitian product 〈· | ·〉 : H ⊗ H −→ C, such that H is a complete metric space with
respect to the metric induced by the inner product. Such a space is separable if there exists
a 〈· | ·〉-orthonormal countable basis (in the topological sense, when DimC(H) = +∞).
Notice that a pure state is the same as a unitary vector of H, defined up to a phase
eiθ ∈ U(1).

4For the sake of simplicity, we assume all operators to have the whole of H as domain. We however
admit unbounded operators, in order to deal with the quantisation of generalised positions and momenta
later on.
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Exactly as in the classical context, the phase-space of the theory parametrises pure
states of the system. In this case a mixed state would be a density matrix, i.e. an
Hermitian, positive semi-definite operator of trace 1. Extremal cases are the 1-dimensional
projectors, i.e. wave functions.

A quantum observable Â ∈ End(H) can still be evaluated at a pure state ψ ∈ H, only
that this does not give a real number as result. Rather, the standard formalism instructs
one to take the number

〈ψ | Âψ〉 ∈ R
as the expectation value of Â in the state ψ: this is only notion that makes sense in
the intrinsically probabilistic quantum theory. Notice that the expectation value is real
because Â is self-adjoint, and it is well defined up to a change of phase on ψ.5

Just as the space of classical observables had the structure of a Poisson algebra, the
same is true for quantum observables, following Ex. A.1. Namely, the commutator

[
·, ·
]

makes End(H) into a noncommutative Poisson algebra. Unfortunately, however, the
commutator of two self-adjoint operators is not self-adjoint; rather, it is anti-adjoint:

(ÂB̂ − B̂Â)† = B̂†Â† − Â†B̂† = B̂Â− ÂB̂ = −(ÂB̂ − B̂Â).

One can however correct this by multiplying it with a pure imaginary constant, usually
written {

Â, B̂
}
~

:= i

~
[
Â, B̂

]
.

The value of ~ ∈ R is fixed by the experiments, not by the theory. It is not surprising
that this value is that of the reduced Planck constant.

To show the analogue dynamical notions as those at the end of § A.1, one can still
study the evolution of the expectation values 〈ψ | Âψ〉 ∈ R with different pictures:

1. One may fix the state ψ, and try to predict the evolution of the values 〈ψ | Â(t)ψ〉 by
letting the time-dependence lie in this the observable entirely: this is the Heisenberg
picture of motion.

2. One may fix the observable Ĥ, and try to predict the evolution of the values
〈ψ(t) | Âψ(t)〉 by letting the time-dependence lie in the state entirely: this is the
Schrödinger picture.

3. One may let both the observable and the state vary: this is the interaction picture,
or Dirac picture.

The first two pictures are equivalent, and rely again on (i) the choice of a distinguished
quantum observable Ĥ, the Hamiltonian of the system, and (ii) the Poisson bracket {·, ·}~
of observables. More precisely, the first picture yields the Heisenberg equation, for the
quantum observable Â:

dÂ

dt
=
{
Ĥ, Â

}
~

= i

~
[
Ĥ, Â

]
, ψ̇ = 0. (A.8)

5More generally, if S is a density matrix then the expectation value of the observable A in the mixed
state S is the real number Tr(AS).
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The second picture yields Schrödinger equation, for the wave function ψ:

dÂ

dt
= 0, ψ̇ = − i

~
Ĥψ. (A.9)

It follows that the eigenvectors of ψ̂ correspond to stationary states, since scalar multi-
plication does not affect the state of the system.

We can now provide the good quantum analogue of Def. A.5. Let us denote A the non-
commutative Poisson algebra of quantum observables, endowed with the bracket {·, ·}~.

Definition A.7. Let (H, 〈·, ·〉) be a Hilbert space, and B ⊆ Rn an open space. A time-
dependent quantum Hamiltonian system is a A-valued 1-form $̂ on B:

$̂ ∈ C∞(B, T ∗B⊗ A).

The idea is the same as in § A.2. If now X is a vector field on B, then one finds a time-
dependent quantum Hamiltonian by contraction: ĤX := 〈$̂,X〉 ∈ C∞(B, A), thinking of
this object as a smooth section of the trivial vector bundle A×B −→ B over B.
To push the geometric parallel even further, recall that, according to Def. A.5, a classical
Hamiltonian system is the same as nonlinear Ehresmann connection on a trivial Poisson
fibration π : F = M × B −→ B, where M is the classical phase-space. In the same
way, one may define a quantum system as a connection ∇̂ in the trivial vector bundle
E := H×B −→ B, by setting

∇̂ := dB + $̂,

where dB is the ordinary exterior differential on the base. This may be referred to as a
quantum connection, to stress that it is associated to a time-dependent quantum Hamil-
tonian system.

The 1-form $̂ takes its values in the endomorphisms of the fibre, by definition, and thus
this formula really defines a connection in E. One can thus also think of a time-dependent
quantum Hamiltonian system as a correction to the trivial connection on a trivial vector
bundle bundle, in order to obtain new interesting ones. Just as in the classical case, a
∇̂-horizontal section ψ : B −→ H corresponds to a solution of the equations of motion,
since

∇̂∂ti
ψ = ∂tiψ + Ĥiψ,

so that ∇̂ψ = 0 is the multi time variable case of (A.9), up to the quantum parameter
i~−1.

The flatness of a quantum Hamiltonian system is equivalent to that of its associate
connection, as expressed in the following definition.

Definition A.8. Let {Ĥi}i be a time-dependent quantum Hamiltonian system on the
quantum phase-space P(H), with space of times B.

• The system is integrable, or flat, if the operator

f̂ij := ∂Ĥj

∂ti
− ∂Ĥi

∂tj
−
[
Ĥi, Ĥj

]
∈ C∞(B, A) (A.10)
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vanishes for all i, j. The commutator is computed for the fibrewise restriction
Ĥi

∣∣∣
t
, Ĥj

∣∣∣
t
∈ A, where t ∈ B.

• The system is strongly integrable, or strongly flat, if

∂Ĥj

∂ti
− ∂Ĥi

∂tj
= 0 =

[
Ĥi, Ĥj

]
,

for all i, j.

The time dependent operator f̂ij is simply the commutator
[
∇̂∂ti

, ∇̂∂tj

]
, i.e. one term

of the curvature F∇̂ ∈ A
2
(
B,End(H)

)
of ∇̂.

Remark A.6 (Projective flatness).
To be totally rigorous, the quantum analogue of the trivial Poisson fibrationM×B −→ B
should be the trivial projective bundle P(E) := P(H) × B −→ B, since one needs the
phase-spaces as fibres. All that we defined above for the vector bundle E = H×B −→ B
descend to the projectivisation, because of the elementary fact that all linear operators
Ĥ ∈ End(H) act naturally on the projective space. However, the induced connection on
the projectivisation may be flat even if ∇̂ is not.

Definition A.9. The quantum connection ∇̂ is projectively flat if the induced connection
on P(E) is flat.

This is equivalent to the fact that the curvature of ∇̂ be a scalar. This definition is
assumed when discussing the Hitchin connection (see § 2.2.4).

Remark A.7 (Universal quantum vector bundle).
There exists a “universal” version of the quantum vector bundle E. Namely, one could con-
sider the algebra A of quantum observable abstractly, and use a time-dependent quantum
Hamiltonian system Ĥi : B −→ A to define a connection ∇̂ in the trivial vector bundle
A×B −→ B, with the same formula as before:

∇̂ = dB +
∑
i

Ĥidti. (A.11)

This is the exact quantum analogue of (A.7). The simply-laced quantum connections of
§ 3.4 are exactly such objects.

Now the elements Ĥi(t) ∈ A are assumed to act on A by left multiplication, for all
t ∈ B, thereby implementing Schrödinger equation of motion (A.9). This is a universal
version of the above material, in the sense that one can now pick any A-module V to
induce a connection in the vector bundle V ×B −→ B. The tautological representation
ρ : A ↪→ End(H) is just an example.

The universal viewpoint of the above remark is more suited to deformation quantisa-
tion, which is introduced in § 2.1. Indeed, in this algebraic setting one abstractly looks
at the algebra of quantum observables, and not to a concrete geometric realization of the

227



APPENDIX A. THE PROBLEM OF QUANTISATION

quantum phase-space. On the other hand, this is exactly the primary concern of geomet-
ric quantisation, discussed in § 2.2.
Both constructions aim to solve the very same fundamental problem of quantisation, and
the following section, last of this motivational appendix, is devoted to introducing this
problem.

A.4 The correspondence principle and the problem
of quantisation

We can now phrase the problem of the quantisation of a classical Hamiltonian system, be
it time-dependent or not. The origin of this question lies in Bohr correspondence principle.

One can safely work under the ontological assumption that the phenomena of nature
occur regardless of the theory that one uses to describe them, be it classical or quantum. It
happens however that in certain regimes one theory might be better suited than another in
order to provide this description. The only ground for preferring one theory over another
is their respective prediction accuracy.

For instance, both Newtonian mechanics (implementing Galilean relativity) and rel-
ativistic mechanics (implementing Einstein relativity) can be used to derive a velocity-
addition formula to relate the velocities of objects in different reference frames. When the
velocities v considered are negligible with respect to the speed of light in vacuum c, i.e.
when the Lorentz factor

γ := 1√
1−

(
v
c

)2

is almost equal to 1, then the two theories are in good accordance. However, as v −→ c,
which is equivalent to γ −→ +∞, the predictions diverge, and it is relativistic mechanics
the one that passes the empirical tests. One might say that there exists a mathematical
theory for all values of the parameter γ ∈ [1,+∞), that the “Newton regime” corresponds
to the limit γ −→ 1, and the “relativistic regime” to the asymptotic γ −→ +∞ (study of
photons, and other massless light-like objects). It is mathematically equivalent to obtain
the limit γ −→ 1 by taking c −→ +∞, if one considers the speed of light in vacuum as
upper bound; indeed, in Galilean relativity there is no such thing as a limit speed.6
The deformation approach thus indicates that there is a full family of theories underlying
Newton mechanics, with relativistic mechanics being an extremal case, and one may ask
the question to reconstruct the full family from the knowledge of the regime γ ≈ 1.

Conceptually, the same happens for passing from classical mechanics to quantum
mechanics. Bohr correspondence principle states that the quantum description underlies
the classical one: it provides a finer theory whose predictions deviate from the classical one
in the microscopic regime, and whose macroscopic asymptotic gives back the predictions
of classical mechanics. The macroscopic asymptotic is obtained by taking the limit of one

6This clashes however with the interpretation of c as a universal constant of nature. See also the
discussion for Planck’s constant ~ below.
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or several quantum numbers that dictates the characteristic size of the system (e.g. the
distance between two consecutive energy shells in Bohr’s model of the hydrogen atom).
The most important such quantum parameter is ~: the limit ~ −→ 0 would correspond
to the failure of the fundamental quantum hypothesis that energy is quantised, since the
difference between two consecutive energy levels in the harmonic oscillator is proportional
to ~. Because of this, the asymptotic ~ ≈ 0 is called the semiclassical limit, to indicate
that the theory is already somewhat classical, but more quantum number might still be
far from vanishing.
To resolve the question about the status of ~ — variable or constant ? — one might
say the following. For every mechanical system there are usually characteristic masses,
velocities, etc., from which a unit of action appropriate to the system can be derived. The
semiclassical limit is applicable when Planck’s constant ~ divided by this unit is much
smaller than 1. Hence, mathematically, we just regard ~ as a parameter.7

In conclusion, one has the semiclassical regime ~ −→ 0 (study of macroscopic objects),
and the quantum regime ~ ≈ 1 (study of microscopic objects).

The problem of quantisation is the following:

Given the semiclassical limit of a family of quantum theories, is it possible to reconstruct
the whole family?

To get back to the terminology of the previous section, one would start from a time-
dependent classical Hamiltonian system Hi : M ×B −→ R over the classical phase-space
M , with space of times B. The question is then to construct a time-dependent quantum
Hamiltonian system Ĥi : B −→ End(H) over a quantum phase-space P(H), such that the
semiclassical limit of the quantum Hamiltonian Ĥi is the classical Hi. The semiclassical
limit will be a distinguished projection σ : A −→ A0 sending the noncommutative Poisson
algebra A of quantum observables to the commutative Poisson algebra A0 of classical
observables, thereby implementing the aforementioned operation of taking the limit ~ ≈ 0.
The strongest possible solution to this problem is to explicitly construct a Hilbert space
(H, 〈· | ·〉), together with a quantisation map

Q : C∞(M,C) −→ End(H), Q : f 7−→ f̂ ,

satisfying the so-called Dirac axioms:

1. The map is C-linear.

2. The map sends classical observables (real-valued functions) to quantum observables
(selfadjoint operators): Q(f) = Q(f)† if f ∈ C∞(M,R). In particular, Q is a
section of the semiclassical limit.

3. The map is normalised: 1̂ = −i~ IdH.

4. The map respects the Lie structures: Q
(
{f, g}

)
= i

~

[
f̂ , ĝ

]
for all smooth functions

f, g ∈ C∞(M,C).
7This is quoted almost verbatim from the introduction of [BW97].
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5. The map respects irreducibility: if {fi}i ⊆ C∞(M,C) is a complete set, then the
quantisation {f̂i}i ⊆ End(H) acts irreducibly.8

Moreover, one demands that this procedure recovers the standard Dirac quantisation
of the free particle in flat space R2n, which is presented in Ex. 2.12, in the context of
geometric quantisation.
Finally, if the initial classical system carries a group of symmetries G, i.e. a group of
Poisson automorphisms, then it is natural to ask that the quantum model does too. This
would result in a 〈· | ·〉-unitary G action on H. In the symplectic case, the group of all
classical symmetries — physicists’ canonical transformations — is by definition the group
of all symplectomorphisms. On the quantum side, a quantum symmetry is an element
of the projective unitary group of (H, 〈· | ·〉). Since these two groups are in general not
isomorphic, one sees that there is a priori no hope to have a natural correspondence of
classical and quantum symmetries. When a classical symmetry is not preserved one says
that it has been broken, and speaks of quantum anomalies.

There are then other general reasons why the program described above is destined to
fail, collectively referred to as no-go theorems. The original results in this direction are
due to Groenewold ([Gro46]) and van Howe ([Van51b; Van51a]). This is why one also
speaks of Groenewold–van Howe theorems for such negative results. One may collectively
express them by saying that there is no functor from the category of Poisson manifold to
the category of Hilbert spaces that satisfies of all the above.

In the background chapter 2 we have introduced two sound mathematical frameworks
that nonetheless aim to provide partial solutions to the problem of quantisation: defor-
mation quantisation and geometric quantisation (see § 2.1 and § 2.2, respectively).
Loosely speaking, deformation quantisation weakens axiom 4, asking for the relevant iden-
tity to hold in the semiclassical asymptotic, thereby making sense of the following equality
in the quantum algebra A:

{f, g} = lim
~−→0

i

~
[
f̂ , ĝ

]
, (A.12)

where f, g ∈ A0 (see Eq. (2.2)). Geometric quantisation instead starts by constructing
the quantum phase-space P(H).

8A set of function fi : M −→ C is complete if its centraliser equals the centre C ⊆ C∞(M,C) of the
whole Poisson algebra, i.e. the constant functions.
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Résumé : On construit de nouvelles connex-
ions quantiques intégrables dans fibrés vectoriels
au-dessus d’espaces de modules de surfaces de
Riemann et de leurs généralisations sauvages, en
utilisant deux approches différentes. Première-
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pour construire de nouvelles connexions intégrables
à partir d’Hamiltoniennes d’isomonodromie ir-
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tion de la connexion de Knizhnik–Zamolodchikov
à partir des Hamiltoniennes de Schlesinger [Res92].
Deuxièmement, on construit une version complexe

de la connexion de Hitchin [Hit90] pour la quan-
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au groupe SL(2,C) et à des polarisations Kähle-
riennes, en complémentant l’approche par polari-
sations réelles de Witten [Wit91]. Finalement, on
utilise la transformée de Bargmann pour dériver
une formule pour la connexion de Hitchin–Witten
[Wit91] dans le fibré vectoriel des sections holomor-
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une transformée sur l’espace de Segal–Bargmann
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