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Solution du problème de Poisson avec coefficients
variables sur maillages cartésiens hiérarchiques en
parallèle: applications aux matériaux avec
changement de phase

Résumé Détaillé

Les matériaux avec changement de phase (PCM) sont utilisés pour le stock-
age de l’énergie solaire grâce à leur forte capacité thermique. Ces matériaux
sont également caractérisés par leur faible conductivité thermique. Les in-
dustriels utilisent des mélanges de PCM (graphite et sel comme mentionné
par la suite, ou autres...) avec des milieux caractérisés par une haute con-
ductivité thermique. Le matériau hybride qui en résulte (Fig. 1) présente
ainsi à la fois une haute conductivité et une forte capacité thermique.

Figure 1: Matériau hybride

Le matériau testé lors de cette thése est un mélange de graphite et de
PCM, il est utilisé par l’entreprise ABEGNOA Solar (Fig.2). Cette société
travaille sur les énergies renouvelables et l’environnement durable.

Figure 2: PS10 Solar Power Plant, ABENGOA Solar - Seville, Espagne

La structure du graphite considérée ici contient des capsules salines de
matériau qui passe de la phase solide à la phase liquide. Le processus de
stockage d’énergie s’effectue par changements de phase du PCM. Si le PCM



se liquéfie en période d’ensoleillement et capte la chaleur, il se solidifie en-
suite la nuit et restitue cette chaleur sous forme d’énergie thermique. Ce
modèle présente une première difficulté lors de la conception géométrique, en
particulier pour le positionnement des capsules. Si elles sont trop proches ou
trop petites, le matériau risque de s’évaporer (dû à la porosité du graphite).
A l’inverse, si elles sont trop grosses ou trop lointaines, il ne se liquéfiera pas
totalement et la quantité d’énergie stockée ne sera pas maximale.

Figure 3: Configuration simplifiée d’étude.

On s’intéresse en particulier à l’analyse des discontinuités de contact
entre les deux milieux (entre le graphite et le PCM). Dans cette thèse,
nous présentons une approche qui se concentre sur ces zones, où le milieu
hybride est dans un domaine Ω, avec G et S les parties qui représentent
respectivement le graphite et le sel PCM (Fig. 3). On obtient Ω = G ∪ S
et on appelle γ la surface entre les deux matériaux, en faisant la distinction
entre les conditions aux limites de Neumann ΓN et de Dirichlet ΓD. En
notant u la température, les équations qui modélisent l’état stationnaire de
notre problème physique sont:

−div(k(x)5 u(x)) =g(x), in G ∪ S, (1a)

k(x)∂nu(x) =0, on ΓN , (1b)

u(x) =uD(x), on ΓD, (1c)

[k(x)∂nu(x)] =0, R(k(x)∂nu(x))S = [u(x)], on γ, (1d)

où le vecteur normal unitaire n pointe vers l’extérieur du milieu S et
[·] représente le saut à travers l’interface γ. La conductivité thermique
k(x) = (kG, kS(u)) peut prendre différentes valeurs entre S et G. Nous
considérons dans le cadre de ce travail un changement brutal entre les deux
matériaux. Le premier chapitre de cette thèse sera donc dédié à l’étude
du problème de Poisson avec coefficients variables et discontinuités sur des
sous-domaines. On présentera les méthodes développées et utilisées pour la
résolution numérique.



Lors de la résolution des équations aux dérivées partielles (EDP), une
tâche fondamentale consiste à déterminer la structure discrète utilisée pour
représenter le domaine continu. Dans cette thèse, nous présenterons une
méthode compacte aux différences finies sur des maillages hiérarchiques
cartésiens structurés quadtrees/octrees en deux et trois dimensions. Les
méthodes de raffinement adaptatif (AMR) ont pour objectif commun de
limiter les coûts en mémoire et en temps de calcul, ainsi que d’obtenir
une précision accrue dans les zones d’intérêt du domaine (les zones de dis-
continuités ou de sauts). Dans le deuxième chapitre de cette thèse, nous
présenterons les structures octree afin d’en montrer les avantages en terme
de calcul ainsi que les difficultés observées. Notre code est prédisposé pour
être développé en parallèle grâce à la structure de données utilisant le Z-
order pour la numérotation des élements du maillage.

Par la suite, nous considérerons une méthode aux différences finies où
les inconnues sont au centre des cellules. Nous utilisons tous les voisins d’un
octant pour calculer les poids du schéma afin d’en garantir la consistance
et d’assurer une convergence à l’ordre deux dans la mesure du possible. Ce
processus nécessite la résolution d’un problème d’optimisation dans lequel
nous minimisons l’erreur de troncature sur chaque octant en fonction de son
voisinage.

Les résultats principaux concernant la méthode sont présentés dans le
quatrième chapitre en 2D et 3D. La première partie est dédiée à l’étude
de convergence du schéma, en particulier en 2D. On considère une con-
figuration de référence qui ne converge pas si l’on prend uniquement une
partie des voisins possibles, et nous étudions la convergence après appli-
cation du schema. Cette configuration a été également comparée à deux
méthodes aux volumes finis, développées par des membres de notre équipe.
En 3D, nous proposons les études de convergence du Laplacien et des résidus.
La discrétisation du Laplacien utilisant le Z-order génère une structure de
matrice dispersée, difficile à appréhender en l’absence d’un solveur partic-
ulièrement adapté. Cependant, nous montrerons sur des exemples multi-
échelles que l’AMR octree mis en place garantit des gains de temps et de
mémoire CPU significatifs par rapport à des maillages cartésiens uniformes.
Les tests montrent aussi que globalement, le schéma tend vers l’ordre deux
en l’absence de discontinuités (pénalisation). On présente aussi un premier
cas de discontinuité du terme de conductivité thermique traité comme une
fonction continue qui varie brusquement entre deux valeurs. Le chapitre se
conclut avec une présentation plus détaillée du code de calcul en insistant sur
les propriétés de parallélisation unitlisées, sur les librairies concernées pour
le calcul, et enfin sur une étude de scalabilité forte et faible pour démontrer
les propriétés en temps de la résolution. Le dernier chapitre de cette thèse
contient une introduction à l’équation de la chaleur, en particulier pour la
diffusion de chaleur dans les matériaux hybrides mentionnés ci-dessus. On
introduit un terme instationnaire qui permet de décrire l’évolution de l’état



d’un système sujet au changement de phase pour chaque pas de temps.
Ce terme d’enthalpie s’ajoute au problème (1), ce qui conduit au système
d’équations suivant:

∂tH(u(x))−∇ · (κ(x)5 u(x)) =0, in G ∪ S,
κ(x)∂nu(x) =0, on ΓN ,

u(x) =uD, on ΓD,

[k(x)∂nu(x)] =0, on γ,

R(k(x)∂nu(x))S =[u(x)], on γ.

Pour résoudre ce problème de façon implicite en temps nous utilisons
une projection avec un pseudo pas de temps (méthode de relaxation). Cette
approche nous permettra d’étudier le temps de fusion des capsules PCM en
fonction de la surface occupée en pourcentage dans son conteneur conducteur
(Fig. 4).

Figure 4: Exemple d’évolution de la chaleur au cours du temps. Cas avec
dix capsules de PCM.

Mots clés: AMR, octree, différences fines, discrétisation équations aux
dérivées partielles, équation de la chaleur, discontinuités intérieures.
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Introduction

Context: The Phase Changing Materials

Phase-changing materials (PCM) are used in various industrial applications
for storing energy due to their high thermal capacity. On the other hand
these materials usually have very low thermal conductivity. Several tech-
niques involving mixing the PCM with other highly conductive materials
allow this drawback to be overcome. The resulting composite material has
both high thermal conductivity and high thermal capacity. Depending on
the technique, the shape of the interface between the different components
of the composite material is more or less complex.

Figure 5: Composite material

The model that we studied in this thesis is related to a graphite/salt com-
posite material (Fig.5) belonging to ABENGOA Solar (Fig.6); this company
is involved in renewable and sustainable energy.

The material to which we are referring has a graphite structure contain-
ing salt capsules, which are subjected to a phase change from solid to liquid.
The ideal loop of this energy storage system requires that the salt liquefies
during the day, preserving its temperature, then solidifies during the night
and it releases heat to the graphite, converting it in energy.

The produced material is conserved in tanks (Fig. 7a) where heat is
transported during the day from the heliostats area using nanotubes that
direct hot gases. These nanotubes cross sections of the hybrid material by
dissipating the heat to the graphite they are in contact with (Fig. 7b). This

1



INTRODUCTION 2

Figure 6: The PS10 Solar Power Plant, ABENGOA Solar - Sevilla, Spain

(a)
(b)

Figure 7: Tank (left) containing the PCM and a section of the material
(right).

model presents the first difficulties in the provisions of salt capsules; if they
are too small, the PCM evaporates and consequently is dispersed; moreover,
if they are too big or close together, the PCM does not reach the liquid state
entirely.

In the study of these materials it is particularly important to analyse the
surface contact between the different components in the internal interfaces.
In this thesis we show how to manage localized refinements on the zones
concerned by this kind of variations; our approach will be initially more
general, then gradually we add new properties to our problem until the
model describes the material at best.

Heat Conduction Problem

We describe a hybrid material on a simplified domain Ω. Let G be the host
material of the presented mixture (graphite, for example) and S be the one
that changes its phase (PCM) (Fig. 8). We have Ω = G∪S, and we denote
with γ the interface between both sub-domains. We distinguish the tank
boundaries into an isolated part (Neumann boundary conditions ΓN ) and a
conductive one (Dirichlet boundary conditions ΓD). Assuming that u stands
for temperature, we impose u0 as initial condition when the entire system
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is turned off.

Figure 8: Simplified domain example.

The equations describing the steady-state conduction in Ω are:

−div(k(x)5 u(x)) =g(x), in G ∪ S, (2a)

k(x)∂nu(x) =0, on ΓN , (2b)

u(x) =uD(x), on ΓD, (2c)

[k(x)∂nu(x)] =0, R(k(x)∂nu(x))S = [u(x)], on γ, (2d)

where n is the normal vector oriented outward from S, and the symbol [·]
refers to the jump through γ. We call R the contact resistance between the
two components. The thermal conductivity represented by k(x) can be dif-
ferent in G and S. In our cases it changes significantly (k(x) = (kG, kS(u))).

Figure 9: Empty layer generated by the loss of volume in liquid state.

In Figure 9 a graphical explanation of the conditions on γ (eq. (2d)) is
proposed: the loss of volume caused by the liquid state generates an empty
layer, across which the temperature undergoes a discontinuity; however the
flux conservation condition ensures the continuity of the normal derivatives.
In this work, we take into account the steady state in the first part; other-
wise, in the future the eq. (2a) has an added term, ∂tH(u), which depends
on the two materials and the phase change conditions and it controls the la-
tent heat. This function will be presented in detail in Chapter 5. Moreover,
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in the first part of this thesis, we suppose that the conductivity term k(x) is
constant, so we will reduce it to the Poisson equation k(x)∆u(x) = g(x) on
the entire domain. A survey of discretizations for these kinds of problems is
given in Chapter 1.

Numerical Method

In the resolution of partial differential equations (PDEs) problems, discrete
domains are used that describe the continuous one on which the solution
lies. One method is to approximate the unknown values on grid points that
cover the domain in a specific way. The position of grid points determines
the local error and, hence, the accuracy of the solution. The spacing between
adjacent points also determines the cost of the computation.

The correct choice of the data structure can decrease the time complexity
of a resolution. In the general case, a uniform mesh is efficient, but there are
special cases where the solution is more difficult to estimate in some regions
(perhaps due to discontinuities, steep gradients, etc.) than in others. A
uniform grid with a finer refinement to catch these difficult regions can be
acceptable, but this approach is computationally costly. Many problems
in numerical analysis, however, do not require a uniform precision in the
entire discretized domain; from this observation, it is necessary to focus the
computation on specific areas of interest that require precision.

In numerical analysis, adaptive mesh refinement, or AMR, is a method
of adapting the accuracy of a solution within certain sensitive regions of the
entire domain, dynamically during the calculation or fixed statically at its
beginning. It provides focus on the precision of the numerical computation
based on those areas while leaving the other regions of the domain at lower
levels of precision and resolution. This technique has been accredited to
Marsha Berger, Joseph Oliger, and Phillip Colella who developed an algo-
rithm for dynamic grids called local adaptive mesh refinement, which begins
with the entire computational domain being covered with a coarsely resolved
base-level regular Cartesian grid. As the calculation progresses, individual
grid cells are tagged for refinement, and the computation follows the internal
jumps generated over the domain.

The AMR approach allows the user to solve problems that are com-
pletely intractable on a uniform grid. In this thesis, a numerical algorithm
is presented for solving elliptic partial differential equations subjected to
discontinuities. The computational domain is subdivided into Cartesian, hi-
erarchical, quadtree-based meshes, above which a cell-centred discretization
is devised.

Several techniques to numerically solve partial differential equations ex-
ist. The finite element and finite volume methods are widely used in engi-
neering and in computational fluid dynamics, and they are easily adapted
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to problems with complicated geometries. Other methods are often more
accurate, but they provide smooth solutions. The method chosen for the
current work is a finite difference method; in general, this method is sim-
pler to use and understand. Our approach was conceived to be optimal for
adaptive mesh refinement approaches, and the respective computation was
created to be easily managed in parallel.

Structure of the thesis

The Chapter 1 it is a survey of Poisson equations on complex geometries
and also with variable coefficients. The chapter contains the analytical basis
of the problem, with existence and uniqueness results for solutions. We recall
a variational formulation for the above specific problem (2), which will be
studied in the following chapters. Various discretizations are considered in
order to introduce the problem within which the method presented in this
thesis is placed.

In Chapter 2 we present the octree data structure, on which we devise
our numerical method. The aim of this chapter is to outline the purposes
and advantages of these kinds of hierarchical meshes, explaining technical
details that recur many applications. We introduce different computing cat-
egories where octrees are used, involving AMR. Then we make an accurate
study of mesh ordering to complete the general framework of our structure
usage and improve understanding of the algorithms used in computation.
This part ends with the first employment of our application to uniquely
identify the configurations that can occur. This tool in particular, when
used, is necessary to gain computing time and avoid some interprocess com-
munications.

In Chapter 3 the finite difference methods technique is presented in
general; then we construct our method in detail. The algorithm is devised
to impose the consistency constraints and to minimize the second-order ac-
curacy by studying each configuration independently from others. We ex-
plain the minimization problem’s creation, concluding with a comparison
with uniform mesh case. In general, it is difficult to prove the stability of
finite difference methods, such as the one presented, so we justify the choice
of using a five-points weights distribution when the uniform configuration
occurs, in front of a second-order accurate nine-points stencil computed
with our method. Other finite difference methods are also presented. We
highlight that our method allows us to examine each configuration on its
intrinsic geometry; meanwhile, most existing methods tend to interpolate
ghost neighbour values to recreate a fictitious semi-classical configuration.

In Chapter 4 we present the main results of our method in two and three
dimensions. The first part is devoted to the consistency study, as a proof of
the numerical convergence of the method globally, taking, for example, spe-
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cific two-dimensional cases. There is also a comparison of the method with
two finite volume methods implemented within our work group. We show
cases of unbalanced meshes to reinforce the study of weights computed with
our strategy. In three dimensions, we then show a convergence study of the
residual of the operator, analysing its norm; it then follows the numerical
consistency tests on Laplacian equation. A progressive study is proposed
to reach the discontinuous model, starting from penalization and ending
with a study on discontinuities added in the Poisson equation. In this part,
the comparison between our AMR method and a uniform resolution is out-
lined, highlighting the advantages in time and memory at the same error
order. The chapter ends with a code presentation: its internal properties,
the libraries involved, and the optimized parts; the scalability tests are also
reported to confirm the properties of the parallelism used.

In Chapter 5 the application model about phase changing material
simulations is presented, including a study of modellisation and an outline
of the difficulties that it involves. A first jump result is shown through a
fictitious layer model that simulates resistance due to thermal conductivity
discontinuity; cases of the model involving time evolution are proposed,
concluding the robustness proof of our method from the Laplace functional
to the heat equation with internal discontinuities.



Chapter 1

Poisson Problems On
Complex Geometries

We introduced the problem model, whose more complex parts are given
by strong internal discontinuities and by having to solve the equation with
variable coefficients on complex geometries. In this chapter, we present this
problem and its difficulties.

Partial differential equations (PDEs) often describe physical phenom-
ena existing in nature, or man-made; however this ability to model real-life
applications can lead to complex geometric structure to delineate. This
thesis represents an example of heat conduction problem with mixed mate-
rials interaction, but the vast set of applications includes tumours in human
bodies, electrodynamics problems, fluid dynamics, quantum mechanics and
wave theory.

To face complex geometrical problems, standard discretization meth-
ods require multilevel solutions that can result in being hard to compute;
moreover the geometry might evolve in time, which would require a new
discretization at each time step. Thus, most methods to approach these
problems are non-standard and based on the complex geometry given ex-
plicitly or implicitly by level set functions. Other methods preserve the
numerical scheme and are simple to manage, acting on the domain directly
as diffused domain methods.

In this part, we present an analytical characterization of the equations
that we refer to, and different discretizations used to resolve them, high-
lighting their different computational properties.

1.1 The Poisson Problem

A wide set of physical problems are represented by Poisson’s equations; its
origins are generally associated with the study in the fields of mechanics,
physics of conducting media, electrostatics and gravitational potential. The

7
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applicability of the Poisson problem also includes other disciplines. Several
different methods have been studied to solve this kind of equation of the
form:

∆u(x) = f(x) on Ω ⊂ Rd, (1.1)

with d ≤ 1, f : Ω→ R.
The homogeneous equivalent of the Poisson equation is the Laplace equa-

tion:
∆u(x) = 0.

Definition 1.1.1 A function u(x) : Ω → R is called harmonic when it
satisfies the Laplace equation ∀x ∈ Ω.

Harmonic functions have special smooth geometrical properties, in gen-
eral; for problem derivation and solution properties, we invite the interested
reader to read [1]-[2].

For Ω ⊂ R2, rigid motion or isometric deformation of Ω don’t change the
value of the Laplacian operator ∆. In the following, we will denote with u
the term u(x) for simplicity.

1.1.1 The Boundary Conditions

We can consider a Poisson problem with different possible boundary condi-
tions:

αu+ β(∇u · n) = g on ∂Ω, (1.2)

where α and β are constant, although variable coefficients are possible. n
is the outward unit normal vector and g : ∂Ω→ R.

The corresponding problem (1.1)-(1.2) is considered ill-posed if the
boundary conditions imposed are either not sufficient to yield a unique so-
lution to the problem or over-constrained so that no non-trivial solution to
the problem exists.

Dirichlet Boundary Condition

When β is zero, the boundary condition is of Dirichlet type

u = gD on ∂Ω. (1.3)

The physical interpretation of the Laplace equation with Dirichlet boundary
conditions (1.1)-(1.3) is a heat application through the surface of a domain
which will reach a temperature inside up to a steady state.
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Neumann Boundary Condition

If α, in (1.2) is equal to zero, the condition is of Neumann type

∇u · n = gN on ∂Ω. (1.4)

When gN = 0, we talk about natural boundary condition. It represents
on the steady state, for equivalent heat problem representation, that the
boundary is totally insulated from external sources.

Cauchy and Robin Boundary Condition

When α and β in (1.2) are both nonzero

αu = g1 on ∂Ω,

β(∇u · n) = g2 on ∂Ω,

the boundary condition is of Cauchy type.
In general, this condition generates an ill-posed problem and does not

guarantee a solution for elliptic problems; however each class of PDE re-
quires a different class of boundary conditions in order to have a unique,
stable solution. Even if we are not dealing with it in this work, for example
hyperbolic equations require the Cauchy boundary condition for existence
and uniqueness; meanwhile, others are not sufficient or are too restrictive
(see also [3]). The Cauchy boundary condition is analogous to the initial con-
ditions for a second-order ordinary differential equation, and it corresponds
to imposing both a Dirichlet and a Neumann boundary condition.

Less common, but provided in many application, is the Robin boundary
condition

αu+ β(∇u · n) = g on ∂Ω, α 6= 0, β 6= 0,

where the value of a linear combination of the dependent variable and the
normal derivative of the dependent variable is specified on the boundary.

Mixed Boundary Conditions

A third possibility is that Dirichlet conditions are valid on part of the bound-
ary ∂ΩD, and Neumann conditions hold on the relative complement of Ω
with respect to ΩD, i.e. ∂ΩN = ∂Ω/∂ΩD:

u =gD on ∂ΩD, (1.5)

∇u · n =gN on ∂ΩN . (1.6)

Most numerical tests presented in this thesis are boundary value prob-
lems with Dirichlet or mixed boundary conditions, thus it is necessary to
list some results about the solutions of these problems.
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1.1.2 Uniqueness of Solutions to the Poisson Equation

For the case of Dirichlet boundary conditions or mixed boundary conditions,
the solution to Poisson’s equation always exists and is unique when Ω is
compact, smooth, and with a piecewise smooth boundary. Finally, for the
case of the Neumann boundary condition, a solution may or may not exist
(depending on whether a certain condition is satisfied). If a solution exists,
then it is unique up to an overall additive constant.

For the existence of mentioned solutions, we invite the interested reader
to read [4], where a Green’s function complete analysis offers solution ex-
istence proofs using the magic rule. The author also proposes an accurate
explanation for the instability of Cauchy boundary conditions, with respect
to the fact that solution existence could not be proved in general. More
extensive results for elliptic operators, solution existence, local properties
and continuities are given by S. Agmon in [5]. The author proves local ex-
istence and regularity, then introduces Garding’s inequality to ensure the
global existence for these operators.

The Uniqueness For Dirichlet Boundary Conditions

Consider the problem (1.1)-(1.3). If u1 and u2 are both solutions, with
u1 6= u2, they satisfy the same boundary condition. Then u1 = u2 on ∂Ω.

Consider the function φ = u1 − u2. It satisfies:

∆φ =0 on Ω, (1.7)

φ =0 on ∂Ω. (1.8)

We assume that φ 6= c,∀c ∈ R/0 because if φ is constant, the boundary
condition (1.8) imposes has to be the zero-function over the entire domain,
and it is impossible by assumption. As a consequence the following integral
has a positive contribution

I =

∫
Ω

(∇φ)2 dΩ > 0. (1.9)

Moreover, we can rewrite by the product rule

∇ · (φ∇φ) = (∇φ)2 + φ∆φ
(1.7)
==⇒ ∇ · (φ∇φ) = (∇φ)2. (1.10)

Using this result in the above integral formula and the divergence theorem
to convert the integral over the closed surface ∂Ω, we obtain:

I =

∫
Ω
∇ · (φ∇φ) dΩ =

∫
∂Ω
φ(n · ∇φ) d(∂Ω). (1.11)
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We remark (1.8); hence, it follows that I = 0 but is possible only if φ is a
constant inside Ω; consequently, this constant must be zero since
φ = 0 on ∂Ω, which is equivalent to the statement that u1 = u2, on Ω.

It follows that, if the Poisson problem with Dirichlet boundary condition
has a solution, it has to be the unique one.

The Uniqueness For Neumann Boundary Conditions

Consider the problem (1.1)-(1.4). If u1 and u2 are both solutions, with
u1 6= u2, they satisfy the same boundary condition. Then n ·∇u1 = n ·∇u2

on ∂Ω.
Consider the function φ = u1 − u2. It satisfies:

∆φ =0 on Ω, (1.12)

n · ∇φ =0 on ∂Ω. (1.13)

As done for the Dirichlet boundary condition case, we consider the integral:

I =

∫
Ω

(∇φ)2 dΩ. (1.14)

Moreover, a simple product rule:

∇ · (φ∇φ) = (∇φ)2 + φ∆φ
(1.12)
===⇒ ∇ · (φ∇φ) = (∇φ)2 (1.15)

Using this result in the integral formula and the divergence theorem to
convert the integral over the closed surface ∂Ω, we obtain:

I =

∫
Ω
∇ · (φ∇φ) dΩ =

∫
∂Ω
φ(n · ∇φ) d(∂Ω). (1.16)

We remark that (1.13); hence, it follows that I = 0, but it is possible only if
φ is a constant inside Ω. Consequently, φ = c ∈ R, on Ω, which is equivalent
to the statement that u1 − u2 = c, on Ω.

It follows that if the Poisson problem with Neumann boundary condition
has solutions, they at most differ for a constant value. However, there is an
important consistency condition that must be satisfied in order for a solution
to the Neumann boundary value problem to exist.

We integrate equation (1.1), and we apply the divergence theorem as
follows: ∫

Ω
∆u dΩ =

∫
Ω
f dΩ (1.17)

⇓∫
Ω
f dΩ =

∫
Ω
∇ · ∇u dΩ =

∫
∂Ω

(n · ∇u) d(∂Ω). (1.18)

The term
∫

Ω f dΩ is known a priori; we can then conclude that solutions
exist and differ for a constant value, if and only if the Neumann boundary
condition satisfies (1.18).
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The Uniqueness For Mixed Boundary Conditions

In the case of mixed boundary conditions

u =gD on ∂ΩD, (1.19)

∇u · n =gN on ∂ΩN , (1.20)

we can again use the above procedure using φ = u1 − u2, and the integral
I =

∫
Ω(∇φ)2 dΩ, to conclude that if u1 and u2 are both solutions, then φ is

a constant on Ω. Being zero on a part of the boundary, it is the zero value
function over the entire domain.

1.1.3 The variable coefficient Poisson’s equation

As already mentioned, PDEs can describe real applications. The Poisson
problem especially can have internal modifications by becoming the variable
coefficient Poisson’s equation, when the discontinuities and other character-
istics can be described with an internal variable κ:

∇ · (κ(x)∇u(x)) = f(x) on Ω ⊂ Rd, (1.21)

where κ(x) can be constant anywhere, piecewise constant on internal
sub-domains, or a function described in Ω.

The variable coefficient Poisson equation is part of the model problem
proposed for the heat conduction equation which describes a phase-changing
material. Given its relevance with this thesis some methods of resolution
for this equation on complex geometries will be reported below.

About The Solution: Weak Formulation

We analyse in this part the weak formulation for the equation (1.21), with
added internal conditions, introducing a boundary value problem that will
be mentioned several times throughout this thesis.

We recall some space definitions useful in following

L2(Ω) = {u : Ω→ R |
∫

Ω
|u|2 <∞}

(u, v)L2(Ω) =

∫
Ω
u(x)v(x)dx

Hs(Ω) = {v ∈ L2(Ω) | ∂α(Ω) ∈ L2(Ω), ∀α ∈ Nn, |α| = α1+. . .+αn ≤ s}, s ≥ 0

D(Ω) = C∞0 (Ω), the space of infinitely differentiable functions with compact
support.

Given a solution for equation (1.21) with mixed boundary conditions
(1.19)-(1.20), in [6], for piecewise constant κ the existence of Lagrangian and
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punctual differentials is proved and their respective expressions are given.
The author considers g ∈ L2(∂ΩN ), κ(x) piecewise constant as κ1 on Ω1

and κ2 on Ω2, such that Ω1 ∪Ω2 = Ω and κ1, κ2 > 0. In this context a new
computation for derivatives along discontinuities is proposed.

As above we consider the problem (1.21) with mixed boundary conditions
(1.19)-(1.20), adding internal conditions through the domain discontinuity,
and for a more general form of κ(x) > 0, κ(x) ∈ L∞(Ω):

−∇ · (κ(x)5 u(x)) =g(x), in Ω1 ∪ Ω2, (1.22a)

κ(x)∂nu(x) =0, on ∂ΩN , (1.22b)

u(x) =uD(x), on ∂ΩD, (1.22c)

[k(x)∂nu(x)] =0, R(k(x)∂nu(x))S = [u(x)], on γ, (1.22d)

with n the normal unit vector through γ = ∂Ω̄1 ∩ ∂Ω̄2. R is a defined
constant, in our case the contact resistance between two different materials.
We invite the interested reader to see [7]-[8], where the results summed up
in this section are not thorough enough.

We introduce the variational space

V = {v ∈ L2(Ω) : v1 = v|Ω1 ∈ H1(Ω1), v2 = v|Ω2 ∈ H1(Ω2)},

with its broken norm and subspace

||v||V = (||v||2H1(Ω1) + ||v||2H1(Ω2))
1
2

V0 = {v ∈ V : v = 0 on ∂ΩD}.

Multiplying (1.22a) for a smooth function v ∈ V0 on both sub-domains,
and integrating by parts, we obtain∫

Ω1

κ(∇u)(x) · (∇v)(x) dx−
∫
γ
(κ∂nu)(s)v(s) ds =

∫
Ω1

g(x)v(x) dx,

∫
Ω2

κ(∇u)(x) · (∇v)(x) dx+

∫
γ
(κ∂nu)(s)v(s) ds =

∫
Ω2

g(x)v(x) dx,

with s as the tangential variables. Using (1.22d) and a sum of the above
equations results in∫

Ω1∪Ω2

κ(∇u)(x) · (∇v)(x) dx+

∫
γ

1

R
[u](s)[v](s) ds =

∫
Ω1∪Ω2

g(x)v(x) dx,

(1.23)
resulting in the variational problem:

Find u ∈ V, such that
u(x) = uD(x) (1.24)

on ∂ΩD and it satisfies (1.23) ∀v ∈ V0.
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Theorem 1.1.1 Assume that the partition of ∂Ω into ∂ΩD and ∂ΩN is
sufficiently smooth for D(Ω̄1\∂ΩD) to be dense in the space

{v ∈ H1(Ω1) : v = 0 on ∂ΩD}.

Problems (1.22) and (1.23)-(1.24) are equivalent, in the sense that any func-
tion in V is a solution of (1.22) in the distribution sense if and only if it is
a solution of (1.23)-(1.24).

We invite the reader to [7] for proofs and results on the variational prob-
lem. A study of norms and bounded spaces is proposed to obtain all tools
needed to prove the well-posedness of the problem.

Theorem 1.1.2 For any data g in L2(Ω) and uD ∈ H1/2(∂ΩD), the prob-
lem (1.23)-(1.24) has a unique solution u ∈ V.

Moreover, a constant c > 0 exists such that this solution satisfies

||u||V ≤ c(||g||L2(Ω) + ||uD||H1/2(∂ΩD))

and a maximum discrete principle equivalence, used for existence in the
general Poisson’s problem, is given to complete the solution’s existence.

1.1.4 Discrete Problem

Discretizations of an elliptic linear partial differential equation by finite dif-
ferences, finite element or the finite volume methods result in a linear sys-
tem to be solved. In general, the matrix induced by the numerical method is
sparse, and it is necessary to use a good solver. Best cases involve symmetric
positive-semidefinite matrices:

MT = M,xTMx ≥ 0,∀x ∈ Ωh,

where Ωh represents the discretized subspace of Ω. This difficulty creates
a second problem, solving the discrete equation about the better solver to
choose (among the direct and iterative ones). The immersed boundary meth-
ods use discrete delta functions on domain boundaries, allowing a flexible
approach (see a.e. [9],[10]).

Triangular Meshes

A first refinement method is to approximate the surface by triangles (Fig.1.1)
adjacent along edges. The discretization can stand on vertex points, centres
or half-edges depending on the method.

On these kinds of meshes finite element (FEM) and finite volume schemes
are often applied. The robustness of the method is sometimes related to the



CHAPTER 1. POISSON PROBLEM ON COMPLEX GEOMETRIES 15

Figure 1.1: An example of a triangular mesh (Triangle product0).

geometry of these triangles and the dimension relationship between them
when they are contiguous. Rules to triangularize, like the Delaunay prop-
erty, are therefore required. Most of these discretizations entail sparse ma-
trices; however, constraints for the mesh structure, like the Delaunay one,
can ensure some advantages (symmetry, maximum principle, etc.).

Square Meshes

Quadtree and octree data structures have been proven to be optimal in such
cases since they are able to capture the principal curvatures of a surface.

Figure 1.2: Graded grid on a cylindrical obstacle (current work).

The quad structures allow degrees of freedom on centres and nodes, si-
multaneously. In general, cell-centred methods involve symmetric matrices,
since the neighbouring relationship is reflective. Depending on the prob-
lem to solve these meshes can afford different adaptive mesh refinement

0 https://www.cs.cmu.edu/ quake/triangle.html
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approaches: they can follow a discontinuous geometry at the beginning of
computation or they can evolve in time. They can also be graded or unbal-
anced where required, and so on.

This advantage of being particularly compliant with the numerical prob-
lem has, over the years, led to an increase in the use of square meshes for
numerical methods in the PDE resolution field.

1.2 Complex geometries approaches

1.2.1 Finite Difference Schemes

The use of a finite difference method (FDM) is nothing more than a direct
conversion of the Poisson equation from continuous functions and operators
into their discretely sampled counterparts. This converts the entire problem
into a system of linear equations that may be readily solved via matrix
inversion.

To solve (1.1) McCorquodale et al. [11] proposed a nodal finite difference
scheme on rectangular Cartesian grids. In uniform areas, as well as we see for
our method, they use standard discretization, while in jumping areas they
consider the mesh as the coarser-level values as follows. For the generic
point j on the jump boundary at level ` of refinement:

if the level-` node j coincides with a node at level ` − 1, the value is
projected;

else an interpolation (quadratic in two dimensions and bi-quadratic in three
dimensions) is applied to obtain the value on j.

Even if the truncation error is O(h) on the interpolations. The solution
error computed with this method is O(h2).

McKenney et al. [12] devised a robust fast solver with an integral part
for Laplace equations on complicated domains; they used a finite difference
operator on the Poisson equation with a discontinuous right hand side. Their
solver is developed on rectangular embedded mesh and distinguishes regular
and irregular points whether the discretization stencil is entirely contained
in a discrete sub-domain part or not.

Gibou et al. [13] proposed a second-order accurate symmetric discretiza-
tion for the variable coefficient Poisson equation (1.21) on irregular domains,
taking into account jumps along internal surfaces. In this work, they use
a level set formulation to represent the interface location and a finite dif-
ference discretization of the heat equation on a Cartesian grid to solve for
the temperature. The level set method was developed in the 1980s by the
American mathematicians Stanley Osher and James Sethian [14]-[15]; this
method became popular in many mathematical applications.
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In absence of irregular surfaces, for a ∆x uniform Cartesian mesh size,
the standard finite difference discretization for (1.21) is:

κi+ 1
2
(ui+1−ui

∆x
)− κi− 1

2
(ui−ui−1

∆x
)

∆x
= fi. (1.25)

This formula can easily be extended in more dimensions; the symmetric
matrix that this method produces is computationally inexpensive. For the
method in this article, since a grid point is not contained in a subdomain,
its ghost value is properly chosen (for u or κ where needed) using con-
stant, linear and quadratic interpolation as appropriate. The choice of the
better interpolation is a common problem when level jumps occur in most
cases. A supra convergent finite difference method is given in [16], where the
interpolation on non-graded grids are studied both in two and three dimen-
sions. In [17], this node-based adaptive mesh refinement framework based
on quadtree/octree Cartesian grids is applied for an approach to solve the
Poisson problem, the diffusion equations, and the Stefan problem. A level-
set approach is used to capture the complex geometry or the free boundary.
The method is second-order (some cases fourth) accuracy for L∞ norm.

1.2.2 Finite Element Schemes

The numerical efficiency of finite element methods (FEM) is mostly at-
tributed to the fact that such formulations always yield symmetric linear
systems, which are computationally inexpensive to invert; however, on AMR
approaches the finite elements can be difficult to implement. On the other
hand, the advantages of using Cartesian meshes are the simplification of
data structure and the method of fluxes formulation handling.

Figure 1.3: Non-conforming interface passing through unstructured (trian-
gular) mesh [18].

Huh and Sethian [18] introduced a non-conforming finite element method,
on triangular meshes, for second-order elliptic interface problems. Given a
standard background mesh and an interface that passes between elements
(Fig. 1.3), they devised a singular correction function that satisfies the jump
conditions and provides accurate sub-grid resolution of the discontinuities.
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Young et al.[19] introduced a finite element method employing adaptive
mesh refinements for second-order variable-coefficient elliptic equations us-
ing a cut-cell representation of irregular domains. Their method uses box
finite elements defined by a Cartesian, octree data structure grid that is in-
dependent of the boundary definition, and their discretization is non-linear.

1.2.3 Other Approaches

Johansen and Colella [20] treated the problem (1.21) on complex geome-
tries, with κ(x) > 0, using a finite volume scheme on Cartesian grids. Their
method is cell centred on a rectangular grid; even if the rectangular centres
lie outside the domain of interest, the irregular boundary geometry is repre-
sented locally by intersecting the domain Ω with each rectangular cell and
approximating the operator using a conservative, finite volume discretiza-
tion. This approach is combined with a standard five-points discretization
on interior points. Even if the truncation error on boundary discontinu-
ity is first order, they use a second-order accurate differences discretization
on fluxes and they ensure overall a solution second-order accurate. This
method allows them to solve a linear system and they can prove that it is
well-conditioned; however on adaptive mesh refinement, an approach, sim-
ilar to the one seen in [11], is applied to interpolate a value on a fine-level
grid from the coarse grid (Fig. 1.4). The method proposed is a specific ap-
plication of a general formalism for constructing consistent finite difference
methods for problems with irregular boundaries, as the one proposed in the
current work.

Figure 1.4: Coarse-fine stencil approach in [20]



CHAPTER 1. POISSON PROBLEM ON COMPLEX GEOMETRIES 19

On Cartesian-grids approaches, we also find in Marques et al. [21] that
implemented an algorithm able to compute interfaces across which jump
conditions are prescribed for both the solution and its weighted normal
derivatives. Their algorithm is a combination of the correction function
method (CFM) and boundary integral formulations of the Laplace equa-
tion, as presented in McKenney’s strategy. Li et al. [22] presented a diffuse
domain approach that provides numerical simulations using adaptive, mul-
tilevel finite-difference, and finite-element methods. Advantages of their
method are that it can be easily combined with a diffuse interface approx-
imation of PDE and that the geometry of the domain does not need to be
given analytically; moreover, this diffuse domain approach does not require
any modification of standard finite elements or finite differences.

The Voronoi Interface Method was presented for elliptic problems on
irregular domains by Guittet et al. in [23],[24]. Given a uniform mesh, they
modify the mesh so that the irregular interface coincides with the edges
of the new mesh and the degrees of freedom close to the interface are all
located at the same distance from the interface. The new structure will
contain the Voronoi interfaces (Fig. 1.5), on which a finite volume approach
is conceived, obtaining a first order accurate method on both uniform and
adaptive octree base meshes in two and three dimensions.

Figure 1.5: Illustration of the procedure for generating a Voronoi diagram
based computational mesh [23].
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1.2.4 Applications To Navier-Stokes Equations

The problem of PDEs on complex geometries include applications of the
Navier-Stokes equations, where some methods reduce part of the resolution
to solve the Poisson equation on irregular domains.

We consider non-dimensional incompressible Navier-Stokes equations (NSE)
in a general and bounded domain Ω:

∂tu(x) + (u(x) · ∇)u(x) = −∇p+ ν∆u(x) ∀x ∈ Ω, (1.26)

∇ · u(x) = 0 ∀x ∈ Ω. (1.27)

For simplicity, from now on we will call u the term u(x). We apply the
Chorin’s projection method (see [25]) to (1.26), which computes an interme-
diate velocity u∗ explicitly using the momentum equation by ignoring the
pressure gradient term:

u∗ − un

∆t
= −(un · ∇)un + ν∆un, (1.28)

where un is the velocity at the n-th time step, then the projection step
corrects the intermediate velocity to obtain the solution at time n+ 1:

un+1 = u∗ −∆t∇pn+1 ⇔ un+1 − u∗

∆t
= −∇pn+1. (1.29)

To compute the pressure term at time n + 1, we use di divergence of
(1.29), requiring that ∇ · un+1 = 0 as in (1.27). We obtain:

∆pn+1 =
∇ · u∗

∆t
. (1.30)

Problem (1.30) is a Poisson problem. Thus, solving these internal pres-
sures requires computational methods devised for the Poisson problem on
complex geometries, such as above.

Losasso et al. [26] developed an octree data structure method where
they used all dimensions of the mesh. The velocity components are defined
on the cell faces, while the pressure is defined at the centre of the cell, and
other data are stored at the nodes. Moreover, the implemented method
is symmetric positive definite, enabling the use of fast solution methods.
The value of a new node on an edge is defined as the average of its two
neighbours, and the value of a new node at a face centre is defined as the
average of the values on the four corners of that face. The velocities on
the new faces are defined by first computing the velocities at the nodes and
then averaging back to the face centres. Nodal velocities are computed by
averaging the four values from the surrounding cell faces as long as the faces
are all the same size. This method is first-order accurate for the Poisson
solver part that stands on non graded grids.
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Popinet [27] proposed a second-order non-symmetric numerical method
to study the incompressible Navier–Stokes equations using an octree data
structure. In his method, he solves a Poisson equation for pressure using
a cell-centred approach; moreover, the interpolations involve adjacent cells
using both an exact projection for face-centred advection velocities and an
approximate projection for the final projection of the cell-centred velocities.

A fast finite difference method, on Cartesian grids, is given by Li and
Wang [28]. Using the vorticity stream-function formulation to solve the
Navier-Stokes equations, they solved the Poisson equation on irregular do-
mains; thus, they applied a central finite difference scheme on immersed
boundary approaches. As discussed before, they had to determine regular
and irregular grid points using interpolations on interface intersections.

Fadlun et al. [29] developed a second-order accurate, highly efficient
method for simulating unsteady three-dimensional incompressible flows in
complex geometries. They used boundary body forces that allow the impo-
sition of the boundary conditions on a given surface not coinciding with the
computational grid. The scheme is an immersed boundary method combined
with a second-order finite difference scheme.

Olshanskii et al. [30] introduced a finite difference solver for the unsteady
incompressible Navier–Stokes equations based on adaptive Cartesian octree
grids. They used graded mesh, treating the staggered location of velocity
and pressure unknowns on cubic meshes. The pressure degrees of freedom
are assigned to cells centres and velocity variables are located at cells faces.
A similar cell-centred approach is applied on a parallel multigrid Poisson
solver, developed by McAdams et al. [31], where a complete analysis of
multigrid advantages in parallel are presented in detail.

1.3 Preliminary Conclusions

Several different numerical methods have been introduced in this chapter
in order to provide a broad view of the various possible resolutions to the
problem. In the broad set of these methods and their continuous evolution
and improvement, the numerical method of this thesis is framed.

Some discretization problems can arise in AMR approaches when a level
jump occurs in the numerical domain. The majority of these methods over-
come this obstacle by using, as seen, internal interpolations that can ap-
proximate the value of a fictitious neighbour; these methods thus, introduce
an interpolation error with the aim of optimizing it to higher orders, this to
ensure the convergence of the finite difference method. We present a finite
difference method adapted to local geometry in the presence of level jumps
that does not makes use of internal interpolations: the error introduced by
our method is related to the truncation error of the discretization. One
reason for using the FDM is the easy conception that applies to discretiza-
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tion, so our method is easy to understand besides being locally accurate;
our variant aims at optimize the finite difference method in a context of an
adaptive mesh refinement approach.



Chapter 2

The Octree Data Structure

At the centre of each numerical method for solving differential equations is
the way in which we discretize a continuous domain of interest in a grid
of many individual elements. This subdivision can be of the static type,
when it is established once at the beginning of the calculation, or dynamic,
when the grid itself progresses with the calculation. If you want to create
a greater refinement in some areas compared to others, you need to create
very dense static refinement or adopt dynamic methods. The adaptive
grids refinement proposes to work on simple discrete spaces on the graphic
plane. For this reason, they are represented by regular figures that are easy
to manage. Therefore, we will work in detail with squares and cubes, each
of which will be represented as a node of a quadtree and octree respectively,
which, depending on the case, will be cleaved on some parts of the domain.
In this thesis we analyse the duality of the grid, what is visually represented,
and the tree, which is a useful computational tool for our purpose.

This chapter introduces the definitions needed to understand the struc-
ture, which are presented with more in-depth specifications for those applied
in our code.

As explained before, following a discontinuity, or a complex geometry,
requires accuracy in some parts of the numerical domain. To this purpose,
a number of advantages of the structure are presented in general, and then
a more thorough look at some of the qualities used in this work follows.
In what follows we highlight, on one hand, the conceptual simplicity of the
octrees in their spatial occupation, and on the other hand, the computational
efforts that can determine choices during the construction of the mesh.

2.1 Quadtrees and Octrees Introduction

In graph theory, a tree is an undirected graph in which any two vertices are
connected by exactly one path. In other words, any acyclic connected graph
is a tree. However it is possible to define it as a data structure independent

23
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of a sub-set family of graphs.

Definition 2.1.1 A tree can be seen as a collection of objects of the same
nature, called cells or octants, which are connected to each other in an
appropriate manner by arches.

Remark 2.1.1 Other definitions can be attributed to this structure. For
example:

• a tree is a data structure made up of nodes and edges without having
any cycle.

• a tree is a non-linear data structure that organizes data in hierarchical
structure and this is a recursive definition.

The cells of a tree may contain various types of information; the impor-
tant thing is that all the nodes of a tree itself are homogeneous: they contain
the same type of information during computation.

Definition 2.1.2 A rooted tree T is defined as a finite set of nodes labelled
such that:

• there is a very specific node called root;

• the remaining set nodes are divided into N subtrees, respectively with
roots T1, T2 . . . TN , which, besides being connected at the root, they are
mutually disjoint, i.e., they have no nodes in common.

Definition 2.1.3 When, for each generation of descendant nodes, N is set
to four we will consider it to be a quadree. If it is fixed at eight, it will be
considered an octree.

In other words, a quadtree is a tree data structure in which each internal
node has exactly four children. This data structure was named a quadtree
by Raphael Finkel and J.L. Bentley in 1974 [32].

Definition 2.1.4 A node directly connected to another node when moving
away from the root is a child. The nodes of a tree with no children are
called leaves. A node with children is named father.

Definition 2.1.5 Given the node P contained in a tree T, the level L(P )
of node P is the whole number defined by recursion:

• if P root T then L = 0;

• if P is not the root of T, let F be the father of P. Then L(P ) = L(F )+1.

The depth, height, or level of a tree T, L(T ), is the whole number max
P∈T
{L(P )}.
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Definition 2.1.6 Each leaf C has two kinds of neighbours: through faces
following the axial directions and through corners following its diagonals
directions. The mesh generated by a quadtree is defined as graded (or
balanced 2:1) if:

• the levels of face neighbouring cells can not differ by more than one;

• the levels of diagonally neighbouring cells can not differ by more than
two.

There are several algorithms to manage a tree, and their efficiencies
are often given by the type of application. For example, search and visit
operations can be done from top to bottom, or from leaves to neighbourhood,
by climbing levels, by using the node position in the graph, by the geometric
position that it represents or by searching for the information it contains.
The optimized method to access a trees informations is so an open problem
depending on the application involved. For example, in [33], a traversal
method for standard basic quadtree structures involves point and region
location.

2.1.1 Common Applications

Quadtrees are used in many applications; the information they contain de-
termines the type of structure. A particularly fruitful usage is in image
processing. In this case, we can talk about region quadtrees (see [34],[35]),
which represent a partition of space in two dimensions by decomposing the
region into four equal quadrants, subquadrants, and so on, with each leaf
node containing data corresponding to a specific subregion. The use of
quadtrees to represent an image improves memory usage, especially for im-
ages where there are large areas of one colour. The recursion concept starts
with an image in the form of a squared (2D) or cubical (3D) volume and re-
cursively subdivides it into four/eight congruent disjoint octants until blocks
of a uniform colour are obtained or a predetermined level of decomposition
is reached [36]. This representation of the images gives ample scope for
their union and intersection by allowing fluent algorithms for overlapping or
comparing elements translated from pixels to octants (see Fig 2.1).

Another common use of quadtrees is in search algorithms field, in
particular for representing multidimensional point data, where you can talk
about point quadtrees [37]. Point quadtrees can also be used for metric
problems, representing the different points of a map to determine the best
links between distances. An example of this particular application is given
by Samet and Hanan in [38], where an algorithm to track and measure all
cities within 50 miles of Washington D.C. is presented.

The point quadtrees and the region quadtrees are similar in structure and
decomposition strategy; a the substantial difference is the data contained.
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Figure 2.1: Quadree image representations: example of union.

Indeed some applications could also refer to point-region (PR) quadrees for
this reason, as appropriate quadtrees can be interpreted differently. Some
others categories exist, such as edge quadtrees, compressed quadtrees, and
so on.

Among the various relevant applications of octrees is mesh generation,
in sub-quads structure sometimes followed by a triangulation. The reason
why quadtrees are functional, both in imaging and building numerical meth-
ods, is the relative simplicity with which it is possible to identify a quadtree
with a spatial section that suits the need. Choosing the right data structure
can significantly reduce the time complexity of a task. In general, adapt-
ing a mesh to optimize a problem is called Adaptive Mesh Refinement
(AMR), and it is in this sense that we make use of quadtrees in this work .

2.1.2 Adaptive Mesh Refinement Outlines

The AMR approaches have common purposes, if compared to uniform re-
finements. In particular the uniform meshes require high resolution for han-
dling difficult regions (discontinuities, steep gradients, shocks, etc.), and
they could be extremely computationally costly. To face this difficulty and
to zoom in on regions of interest, adaptive mesh refinement has seen more
and more use in computation applications.

Different approaches exist for managing non-uniform meshes (Fig. 2.2).
Completely unstructured AMR is identified by irregular connectivity. It
cannot easily be expressed as a two-dimensional or three-dimensional ar-
ray in computer memory; moreover, it provides greater geometric flexibility
and fine-scale adaptivity at the cost of explicitly storing all neighbourhood
relations between mesh elements.

Hierarchical hybrid grids split the domain into unstructured macroele-
ments and they contain a mixture of structured portions and unstructured
portions.

Block-structured AMR methods utilize unions of possibly mapped reg-
ular grids, which can be encoded cheaply. They are identified by regular
connectivity. The possible element choices are quadrilateral in 2D and hex-
ahedra in 3D. This model is highly space efficient, since the neighbourhood
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AMR on the cubed-sphere grid (Mc-
Corquodale et al. (2015), Chomboa)

Quadtrees mesh refinement (current
work, PABLOb)

Octrees Mesh Refinement (Optimad,
PABLOb)

Triangular mesh refinement (Noureddine
Hannounc)

Non-orthogonal moving mesh (NERSC)d

Finite element mesh refinement on a
stressed point (FEA software, COM-
SOLe)

Figure 2.2: Some examples of different AMR approaches.

[abcde]

ahttp://www-personal.umich.edu/~cjablono/amr.html
bhttps://github.com/optimad/bitpit
chttp://perso.usthb.dz/~nhannoun/research.html
dhttp://www.nersc.gov/about/nersc-staff/application-performance/

alice-koniges/ale-amr/
ehttps://www.comsol.com/multiphysics/mesh-refinement
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relationships are defined by storage arrangement.
Some advantages of AMR methods are shared irrespective of the type of

structure applied, such as:

• starting with a coarse grid and identifying regions that need finer res-
olution;

• superimposing finer sub-grids only on those regions that increase com-
putational (storage and time) savings over a static grid approach;

• compared to the fixed resolution of a static grid approach, this method
offers accurate calculations on the zones of interest.

Recently, the use of quadrees and octrees for dynamic refinement meth-
ods has become increasingly common, in particular for solving PDEs: Balaras
and Valella [39] proposed adaptive mesh refinement for immersed boundary
methods based on a second-order finite difference scheme, obtained by ghost-
cells interpolations; Min et al. [16] proposed a finite difference application
for the variable coefficient Poisson equation on non-graded grids using in-
terpolated values along jumps; Popinet [27] conceived of a finite volume,
tree-based solver for the incompressible Euler equations in complex geome-
tries. His method is second-order and uses a standard projection method.

One of the reasons for choosing quadtrees is the easy visual interpretation
of these structures; the connectivity of tree structures also provides the
information needed on multigrid methods. In this thesis, for simplicity,
the quadtree is used as an example in many cases, specifying that similar
reasoning can be used for octrees.

2.2 Ordering

An obvious problem with using AMR approaches can be seen in the way
these meshes are ordered and more complex than a uniform mesh, where
indexing of the elements is quite obvious.

Figure 2.3 shows the initial construction of a quadtree that follows an
interface smaller than the domain that contains it. The tree root node
represents the entire domain and is split in four parts to the next generation.
As the refinement continues towards the sub-domain, the leaves, highlighted
in red in the image, represent a square partition independent of the others.

Level 3 in Figure 2.3 is, in particular, an unbalanced tree. In this thesis,
we use a particular type of tree structure, called the Linear Octree, in
which only tree leaves are stored in memory (red dots in the figure). This
type of data structure has evident advantages in memory gain and apparent
difficulties in mesh management, such as sorting. Linear octrees are part of a
wider category of quadtrees called compressed quadtrees, designed precisely
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Level 0 (square domain) Level 1

Level 2 Level 3

Figure 2.3: Construction of a quadtree for a square domain with an internal
subdomain.

for memory savings and the selection of relevant sub-trees from the full
structure (see [34]).

The example shown in Figure 2.3 reinterprets an example of Campbell
et al. [40], in which special attention is given to the concept of space-
filling curves; these curves are necessary to sort the elements of this type
of mesh and possess the ability to cross every space partition once, thus
they automatically generate a one-dimensional continuous mapping of the
tree representation. Space-filling curves, therefore, address the problem of
ordering the AMR octree structures, and several may exist if they comply
with the aforementioned properties [41].

We briefly present the most well-known filling curves, and we focus on
the last one that is applied in this thesis. In general, the mapping should
preserve proximity in the sense that neighbouring cells should ideally corre-
spond to adjacent blocks on the domain. The presented orderings follow the
common idea of an initial curve that is pursued and imitated in the following
levels. Sometimes these curves can resemble each other, and the distinction
is the linking or sequence algorithm of the octants that are crossed by the
filling curves such as the Hilbert filling curve (figure 2.4), which is derived
from a different indexing algorithm of the more general Gray code filling
curves (figure 2.5), where adjacent quadrants differ only by one bit in a
binary representation.

The Hilbert filling curve consists of a sequence of iteratively defined
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Figure 2.4: Hilbert filling curve ordering on quadree data structure [40].

curves. This space-filling curve, in image-mapping applications, offers great
locality, as it exploits the correlation between pixels within small regions;
thus, it can be preferred in certain scenarios.

Figure 2.5: Gray code filling curve ordering on quadtree data structure [40].

The Morton ordering or Z-code (Figures 2.6, 2.8), is a space filling curve
that follows an initial direction along a Z-like pattern.

Figure 2.6: Morton filling curve ordering on quadtree data structure [40].

In this work, we refer to the order for local and global indices, as well
as the search for neighbours along an octant’s directions, using this space-
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filling curve. An indexing of faces and vertices in the two-dimensional case,
when we refer to the structure, is given in Figure 2.7.

Figure 2.7: Internal Morton code of an octant through faces and vertices.

Figure 2.8: Morton filling curve ordering on octree data structure [40].

2.2.1 The Morton Code

The Morton code has been introduced in 1966 by G. M. Morton in A com-
puter Oriented Geodetic Data Base and a New Technique in File Sequenc-
ing [42]. The aim of this work was to store, in sequence, a large amount
of data concerning a wide geographical area. In particular, he focused on
the Canada surface to store information about lands properties (inhabited
areas, vegetation, etc.) with the purpose to be able to reuse this information
for local development.

The algorithm to list the elements and determine the neighbourhood
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with easy access to data starts from the position of an octant, using a point
to determine it, with the information (x, y, z). The spatial coordinates of the
point in the mesh are translated in binary, then the Morton code consists on
interleaving the binary identifications. To conclude, we take the fractional
part of each coordinate and expand it by inserting two “gaps” after each
bit; then, we interleave the bits of all three coordinates together to form a
single binary number (see Fig.2.9).

(a) 2D bits interleaving. (b) 3D bits interleaving.

Figure 2.9: Creation of Morton index by binary interleaving.1

The images in this section are presented in the documentation of the
library Ash C++ 1. To give an example of the process of creating the
Morton index and binary construction, consider the Level 1 quadtree in
Figure 2.10. 1

Figure 2.10: Computing Morton Code: step one of three.1

When the tree is broken into four children, the inner numbering of each
quadrant follows that of the upper (2.11). By combining the two tracking
indices, the ordered position is obtained for the global structure (2.12). We
remark that a single level requires a 2-bit address and so on until leaves.

Spatial locality is an important factor in optimising access time to data
elements. This means that accessing a data element in memory, then ac-
cessing another data element in memory that is nearby (has an address that
is close to the first), can be cheaper by several orders of magnitude that ac-
cessing a data element that is far away. Standard c arrays (and many other

1Ash C++ Template Library (AshTL), http://ashtl.sourceforge.net/index.html
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Figure 2.11: Computing Morton Code: step two of three1

Figure 2.12: Computing Morton Code: step three of three 1

data structures) have this property. This obvious advantage in looking for
the neighbours of an octant, based on the numerical array that identifies it,
is one of the reasons Morton code is preferred in this work.

The filling curve thus makes the balancing of the parallelisation topo-
logically contiguous, advantage already stated but less obvious, easier to
understand if the subdivision between the processors follows this sorting.

The structure management, the parallelisation, and its filling curves are
made more efficient in this thesis thanks to the use of the PABLO library2;
this library can efficiently manage both the Z-order of the elements and their
local and global indexing, as well as allow processor communication that is
almost automated in the library and therefore easy to access for the user.
The Morton indexing used in PABLO manages the (x, y, z) coordinates for
the octants (in two dimensions with value zero for z), respecting the principle
presented above.

We can now fully summarize the type of structure that is referred to
in this thesis work: linear octree, ordered according to Morton code and
optimized in parallel. Our study focuses on graded meshes; however, we will
present cases that are unbalanced to confirm the stability of the method.

2Optimad, PABLO https://github.com/optimad/bitpit, https://optimad.

github.io/bitpit
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2.2.2 Conclusions about the indexing in the code

In general, space-filling curves allow one to reduce higher-dimensional prox-
imity problems, e.g., nearest neighbour search, to a one-dimensional prob-
lem. Solving such a problem typically involves searching and sorting in
one-dimensional space. Using space-filling curves, these algorithms can be
applied to higher-dimensional proximity problems. A further advantage of
space-filling curves like the Hilbert curve is their recursive nature, which
allows for them to be used for hierarchical indexing of higher-dimensional
data. However the Hilbert curve is only suited for applications where a short
path through the points is needed.

To conclude this part, we present four examples, devised by Campbell
et al. in [40] (Fig.2.13), that study the partition quality of the three curves
presented, examining the surface index versus the number of processes. The
surface indices measure the interprocess communication. Let NP be the
total number of processes Pi, bi be the number of partition boundary faces
(elements faces that lie between two contiguous processes) and fi be the
total number of faces of Pi. We recall the definitions of maximum local
surface index and average local surface index as:

rM = max
i=1,...,NP

bi
fi
,

rA =
1

NP

NP∑
i=1

bi
fi
.

Measuring the communication to compare the filling curves, we can dis-
tinguish interprocess connectivity as the percentage of other processes with
which each process must communicate and intraprocess connectivity as the
number of disjoint regions assigned to a given process. This value in partic-
ular can adversely affect the performance of some problems.

The comparison in figure 2.13 appears to favour the Gray or Morton
codes for some tests and the Hilbert filling curve for most part. In the
cases that seem to prefer Hilbert code, the mapping and inverse mapping
processes are considerably more complex when compared to Morton code.

Z-order is mainly used to store data for fast searches due to the good
locality it offers. The break due to jumps and connectivity that promote
the Hilbert filling curves are facilitated, in our case, by internal communi-
cations handled by PABLO. Another reason to use the Morton code in our
applications, in addiction to the good results for Hilbert curve, is that its
computational cost is constant (and cheap) to access any point of the curve
directly. Other curves may require recursive steps for their computation and
result in bigger cost than a Z-curve with a minimal gain in terms of locality
coherence.
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Figure 2.13: Surface indices vs. number of processes (NP ), four tests pre-
sented in [40]. Solid lines show the average surface index while the dashed
lines show the maximum surface index.

The programming language used in this work was C++, and we mainly
used two open-source external libraries: PABLO, mentioned above, which
is a module of bitpit, for mesh management, and PETSc3, for parallel cal-
culation of linear systems.

The code has been implemented to be parallelly optimized. The first
thing that can be highlighted in Figure 2.14 is whether the Z-order indexing
managed with PABLO guarantees spatial contiguity where possible (2.14a),
or following the order where it is not possible (isolated zones in Figure 2.16);
on the other hand there is not contiguity in the global indexing managed
with PETSC (2.14b). This mismatch causes sparsity of the numerical oper-
ator globally managed with PETSc that cannot be treated like a symmetric
diagonal operator (see Fig. 2.15).

3PETSc home page http://www.mcs.anl.gov/petsc/
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(a)
(b)

Figure 2.14: A parallel partition of a structured grid and its global indexing
along the cores intersections.

Figure 2.15: 3D PETSc operator matrix draw. 36128 points, octree level 6.

2.3 Octree mesh management libraries

We presented our rationale for choose PABLO in this work. However, oc-
trees’ mesh structures have recently obtained importance for their ability to
solve numerical problems. Others libraries to approach these cases are in
continuous evolution. We list some of these useful libraries, some of which
are already associated with an appropriate resolution type (like finite ele-
ment methods and go on).

Tao Chen devised CAMINO4 (Cardinal’s Advanced Mesh INnovation

4 CAMINO web page http://www-tcad.stanford.edu/tcad/bios/tchen.html#
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(a)

(b)

Figure 2.16: A parallel partition of a structured grid on 16 cores, the number
of cells distributed present contiguous isolated coloured zones, following the
global indexing.

with Octree), a 2D/3D octree mesh program that allows for easier tetrahe-
dralization afterwards.

Point Cloud Library (PCL)5provides efficient methods for creating
a hierarchical tree data structure from point cloud data; furthermore, it
handles efficient nearest neighbour search routines.

DENDRO6 is a collection of tools for parallel octree-based applications
that supports PETSc objects. Similar to PABLO, this library is among the
first to safeguard memory saving only the leaves of the tree’s structure.

The etree7 library is written in C and provides a couple dozen functions
for creating, modifying, and searching octrees, including efficient mecha-
nisms for appending octants and iterating over octants in Z-order.

The best performing library in this area, as far as we know, and for
which we take some additional specification by comparing it to our choice,
is p4est8. This library is designed to work in parallel and scales to hundreds
of thousands of processor cores, adapted to AMR approaches [43]. Its most
interesting characteristic is the ability to connect multiple adaptive octrees

page$\%$20a
5 PCL web page http://docs.pointclouds.org/trunk/group__octree.html
6 DENDRO github page https://github.com/hsundar/dendro
7 etree web page http://www.cs.cmu.edu/~euclid/
8 p4est web page http://www.p4est.org
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into a forest of octrees that can represent a wide variety of geometric shapes.
Some similarities to PABLO of this library are:

• the Morton code indexing of elements (the global indexing can across
different trees);

• the balancing 2:1 relation is handled by the library when required;

• the parallel partition is user defined with a possible wheighted partition,
which allows distributing the octants on the processors not according
to the number but to a weighted relevance in the calculation.

Despite of several advantages of p4est, we refer in this section to PABLO
as a module of bitpit, but we focus on its advantages, excluding its (more
complex) container properties. Both libraries are open source, but PABLO’s
routines allow immediate inclusion within a code without needing important
adaptation; this characteristic is useful for a user who can easily integrate
an AMR approach from pre-existing code without completely rebuilding his
strategy on classes bound to the management library. Moreover, PABLO
is able to handle intersections, to balance the elements by refinement level
strategies, and to balance 2:1 relations also along vertexes and edges, on
the other hand, PABLO cannot manage more flanked trees at this moment.
Furthermore, the main reason for our choice is that PABLO manages linear
octrees. This allows a relevant gain of memory; in fact it counts approx.
30B per octant in 3D.

2.4 Identifying a Neighbourhood Configuration

We classify the neighbours topology of an octant using a base-5 8-digits
numerical key (resp. 26-digits for the 3D case). To describe the possible
set of contiguous neighbours we need five values whose choice is defined
in detail below. Four digits are devoted to face-adjacent neighbours, the
remaining four to corners ones. Each octant looks at its neighbours following
the internal index due to the Morton code (Fig. 2.7); we suppose that an
octant analyses its neighbourhood through face indexed by zero (red cell in
Figure 2.17), three cases are possible for a graded grid:

• The neighbour has the same level of refinement (Fig. 2.17a). In this
case the two cells have equal dimensions and properties.

• The neighbours have a level of refinement more than the octant (Fig. 2.17b).
Along the face of the octant two adjacent neighbours lie.

• The neighbour have a level of refinement less than the octant (Fig. 2.17c).
This case implies the absence of at least a corner neighbour, for the
case in figure is the corner indexed at zero (bottom-left one).
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(a) Neighbour at same
level.

(b) Neighbours one level
more than the octant.

(c) Neighbour one level
less than the octant.

Figure 2.17: Possible neighbourhood cases through a face.

The analysis done for the first face is repeated through the others and
the corners. This study of neighbourhood allows us to conceive a tool rep-
resenting the topology of an octant as follows.

We define a function of level: [L] := Lo − Ln, with Lo the level of
the concerned octant and Ln the level of the neighbour, so that the value
attributed to the key elements are:

0 @ neighbours on this side

1 [L] = 0

2 [L] = −1

3 [L] = 1

4 [L] = −2

5 [L] = 2

This key has the following properties:

• it is bijective;

• it is elementary to build and clear to interpret;

• it is independent of the involved cell dimensions, i.e., the tree level.
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This key is not strictly necessary, but it can lead to a significant speed up
in the pre-processing phase. For this reason, often within the code, this tool
will be used, even if not specified.

Figure 2.18 briefly shows the order of attribution of the function (2.18a)
and the construction of the numerical sequence for two configurations (2.18b).

(a) 2D key order attribution, where F stands for face and
C for corner.

(b) Example of key’s generating.

Figure 2.18: Identifying a configuration.

To get an idea of how many configurations would have existed, taking
only the balanced 2:1 case through the faces, a random production code
of octrees is repeatedly launched; for each configuration, their respective
identification keys have been saved. The count of the 2D configurations
stabilized at 809, while in the three-dimensional case is over a million.

2.5 Preliminary Conclusions

In this chapter we introduced the octrees and we focused on space filling
curves. Our code is natively designed in parallel, allowing us to overcome
some of the indexing-related obstacles and also the benefits of using other
curves, using external libraries properly. Moreover, the bijective identifica-
tion of local topology in the case of graded grids gives us an instrument
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for further advantages in terms of computing time. The octree-based solver
is designed to be immediate for the user and therefore easy to handle and
adaptable to different numerical and physical applications besides what is
considered in this work. Lastly, we optimize the space filling curve applied
to maximize its advantage, limiting the intra-process communication.
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Chapter 3

The Finite Difference
Method Computation

This chapter introduces the finite difference methods to approximate partial
differential equations. The first part presents common properties of finite
difference schemes: the analytical derivation, the convergence study and
the advantages. The accuracy of these methods is directly related to the
ability of a mesh to approximate a continuous system, and errors may be
arbitrarily reduced by simply increasing the number of degrees of freedom.
Then, a survey of their adaptation to hierarchical meshes is done; in this
context, our method is included. We follow up the construction of the cell
centred scheme applied in this thesis project and highlight the benefits of a
method strongly dependent on the local geometries.

3.1 Introduction to Finite Difference Methods for
PDEs

There are several methods for approximating a derivative on a point of a
mesh. The finite difference method (FDM) works by replacing the region
over which the independent variables in the PDE could be approximated
with a neighbouring value [44]. This method is based on the use of Taylor’s
theorem, here enunciated, to obtain the approximate values.

Theorem 3.1.1 (Taylor’s theorem) Let u be an n-times differentiable
function on an open interval containing the points a and x, and h = (x− a)
then:

u(x) = u(a)+h·u′(a)+
h2

2!
·u2(a)+

h3

3!
·u(3)(a) . . .+

hn−1

(n− 1)!
·u(n−1)(a)+O(hn),

(3.1)
where O(hn) = hn

n! · u
(n)(c) for some value c between x and a.

43
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In calculus, Taylor’s theorem gives an approximation of an n-times dif-
ferentiable function around a given point by a truncated part of above for-
mulation.

Definition 3.1.1 Let ar be the value u(r)(a)
r! . The function Tn defined by

Tn(x) = a0 + a1 · h+ a2 · h2 + . . .+ an · hn

is called Taylor polynomial of degree n of u at a and it can be thought as a
polynomial which approximates the function f in some interval containing
a.

For analytic functions the Taylor polynomials at a given point are finite-
order truncations of its Taylor series, which completely determines the func-
tion in some neighbourhood of the point. The error of this approximation
is on the limit of the term O(hn), defined as truncation error. In gen-
eral, when we discard this term, we get an approximation of u(x) of error
O(hn). The truncation error is often included in the more general definition
of discretization error.

Following (3.1) and truncating after the first derivative, we obtain:

u(x) = u(a) + h · u′(a) +O(h2) (3.2a)

⇒ u′(a) =
u(x)− u(a)

h
+
O(h2)

h
(3.2b)

⇒ u′(a) =
u(x)− u(a)

h
+O(h). (3.2c)

The (3.2c) is called a first-order finite-difference approximation of u′(a)
since O(h) depends on the first power of h. In general, when the Taylor
development is truncated after ulterior derivatives, such as the truncation
error of (3.1) depends on the n+ 1 power of h ,the finite difference method
is of order n. h is called step size, and the formula (3.2c) is called a
forward finite-difference approximation if h > 0, otherwise backward.

The tests in this work are at least of dimension two, and analogous for-
mulae stand for further dimensions. We present the general bi-dimensional
formulation. Let us consider when hx and hy are not necessarily equal and
a function u(x, y) : Ω→ R, with Ω ⊂ R2 and u ∈ Cn+1(Ω) derivable at least
(n + 1) times. The general two-dimensional Taylor polynomial formula of
n-th order has the form:

u(x+ hx, y + hy) =
∑

0≤j+k≤n

1

j!k!

∂j+ku(x, y)

∂xj∂yk
hjxh

k
y + En+1,

where En+1 stands for a truncation error of order n+ 1.
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3.1.1 The five-points difference operator

Let us consider the Poisson problem:

∆u(x, y) = f(x, y) (x, y) ∈ Ω, (3.3)

u(x, y) = 0 (x, y) ∈ ∂Ω,

with Ω = [0, 1] × [0, 1] the unit square in R2. For sake of simplicity we
consider the homogeneous Dirichlet boundary condition. Let N be a positive
integer and h = 1

N . We consider the discrete cell-centred uniform mesh
(Fig.3.1) in R2, described as:

MN = {(ih+
h

2
, jh+

h

2
), i, j ∈ {0, . . . , N − 1}}. (3.4)

Figure 3.1: Uniform mesh. N = 10

To discretize (3.3), we use a discrete function uh :MN → R satisfying:

∆huh = fh in MN , (3.5)

where ∆h is an operator on the discrete domain formulated on the mesh,
and fh the discrete values of the right hand side over grid points. We
consider, for simplicity, the generic point uij , which lies in the inner part of
the numerical domain, excluding the boundary; the natural choice is to see
four neighbours for the concerned point: one each to the left, right, above,
and below. Equation (3.1) following the two axes in both directions, with
respect to uij gives:

ui−1,j = ui,j + h∂xui,j +
h2

2
∂xxui,j +O(h3), (3.6a)
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ui+1,j = ui,j − h∂xui,j +
h2

2
∂xxui,j −O(h3), (3.6b)

ui,j−1 = ui,j + h∂yui,j +
h2

2
∂yyui,j +O(h3), (3.6c)

ui,j+1 = ui,j − h∂yui,j +
h2

2
∂yyui,j −O(h3). (3.6d)

A simple sum of which generates an approximation with respect of all
considered neighbours equally considered in both axial directions.

(3.6a) + (3.6b) + (3.6c) + (3.6d)

⇓
ui−1,j + ui+1,j + ui,j−1 + ui,j+1 = 4uij + h2∂xxui,j + h2∂yyui,j +O(h3)

We remember the numerical equivalence of discretized operator combining

the equation above as

(∆h ≈ ∆ = ∂xxu+ ∂yyu)

⇓

∆huij =
ui−1,j + ui+1,j + ui,j−1 + ui,j+1 − 4uij

h2
+O(h2). (3.7)

This formulation is valid ∀i, j ∈ {1, . . . , N −2}, there are several approaches
for boundary points that we will see later. Equation (3.7) constitutes the
five-points stencil for the Laplacian approximation, and it satisfies particular
properties [44]-[45]:

Theorem 3.1.2 If u ∈ C2(Ω̄), then

lim
h→0
||∆hu−∆u||∞ = 0.

If u ∈ C4(Ω̄), then

lim
h→0
||∆hu−∆u||∞ ≤

h2

6
σ,

where σ = max
{
∂4u
∂x4

, ∂
4u
∂y4

}
The matrix of this scheme has special advantages:

• it is sparse, with at most five elements per row non-zero;

• it is block tridiagonal;

• it is symmetric;

• it is negative definite;
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• its diagonal elements are negative, the others are positive.

The problem (3.5) could be rewritten, on interior points, in matrix form as
Aui = fi, with

A =


B I O . . . O
I B I . . . O
O I B . . . O
...

...
...

. . .
...

O O O . . . B

 ,

B =

−4 1 0
1 −4 1
0 1 −4

, I the R3×3 identity matrix and O the R3×3 zero

matrix. We will see in the following, studying the finite difference method
of this work, that the regularity of the matrix describing the operator is not
taken for granted. It is sufficient to think about the Z-order indexing and
the global matrix previously presented in Chapter 2, Fig.2.15.

3.1.2 Boundary Conditions

We discuss the finite difference strategies to impose Dirichlet and Neumann
boundary conditions, which concern this work; however, other methods
and cases can be found in [46]-[47]. For simplicity, we consider the one-
dimensional case; the same reasoning is valid for further dimensions.

∆u(x) = f(x), x ∈ Ω = [0, 1],

where the unit interval is subdivided in n points uniformly h = 1
n .

Dirichlet boundary conditions

Given Dirichlet boundary conditions

u(0) = a, u(1) = b,

we define the interior unknowns vector U = {u1, . . . , un−2} and the complete
set Ū = {u0, . . . , un−1}. It is clear that the boundary conditions resulting
from the continuous problem are

u0 = u(x0) = u(0) = a, un−1 = u(xn−1) = u(1) = b. (3.8)

We present two simple ways to deal with the discrete problem ∆huh = fh.
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First approach

In general, ∀j ∈ {1, . . . , n− 2} stands the discretization

1

h2
(uj−1 − 2uj + uj+1) = fj , (3.9)

where fj is known a priori as the evaluation f(xj). We take into account
the limit case j = 1, and the same procedures can be applied for j = n− 2:

(3.9)⇒ 1

h2
(u0 − 2u1 + u2) = f1

(3.8)⇒ a− 2u1 + u2 = h2f1

⇒ − 2u1 + u2 = h2f1 − a.

The discrete problem can be expressed as an (n−2)×(n−2) matrix product
without influencing the good properties of the matrix as:

AU = F

m
−2 1 0 0 . . . 0 0 0 0
1 −2 1 0 . . . 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . 0 1 −2 1
0 0 0 0 . . . 0 0 1 −2

U =


h2f1 − a
h2f2

...
h2fn−3

h2fn−2 − b

 .

With U the interior unknowns vector described above.

Second approach

We present the approach used in this work where Dirichlet boundary condi-
tions occurred. Even if this approach is simpler to apply, it does not ensure
the retention of the matrix properties explained above; however, we will see
that we handle particular matrices where is simpler to apply the conditions
in this way, rather than disassemble the stencil on the right hand side for
first interior points.

We consider the complete n× n matrix problem

ĀŪ = F̄

m
1 0 0 0 . . . 0 0 0 0
1 −2 1 0 . . . 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . 0 1 −2 1
0 0 0 0 . . . 0 0 0 1

 Ū =


a

h2f1
...

h2fn−2

b

 ,
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where Ū is the complete set of unknowns. It is easy to prove that the two
formulations are equivalent and that this second one corresponds to include
the linear equations (3.8) in our system.

Neumann boundary conditions

Given the Neumann boundary conditions

u′(0) = a, u′(1) = b, (3.10)

and considering, as above, the vectors of unknowns U and Ū for the dis-
cretized problem, we study the left boundary condition, remembering that
the same reasoning can be applied on the right one, and for further dimen-
sions, as done for the Dirichlet case.

First approach

A second-order way to approximate the Neumann boundary condition takes
into account the existence of u−1: a fictitious point that lies outside the
interval such that the backward and forward difference formulation for the
derivative u′(0) can be expressed with O(h) approximations:

u′(0) =
u1 − u0

h
, u′(0) =

u0 − u−1

h

⇓

2u′(0) =
u1 − u−1

h

⇓ (3.10)

1

2h
(u1 − u−1) = a.

Then, we use the centred finite difference formula (3.9) to vanish this term
not belonging on the discrete domain, obtaining a second-order accurate
formulation

1

h
(u1 − u0) = a+

h

2
f0.

The obtained n× n matrix problem has form

ĀŪ = F̄

m
−h h 0 0 . . . 0 0 0 0
1 −2 1 0 . . . 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . 0 1 −2 1
0 0 0 0 . . . 0 0 h −h

 Ū =


h(a+ h

2f0)
h2f1

...
h2fn−2

h(b+ h
2fn−1)

 .
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Second approach

The approach used in this work is first-order and follows the same princi-
ple using the approximations of boundary conditions (3.10) as first-order
accurate formulations

u′(0) =
u1 − u0

h
,

u′(1) =
un−1 − un−2

h
.

The obtained n× n matrix problem has form
−1 1 0 0 . . . 0 0 0 0
1 −2 1 0 . . . 0 0 0 0
...

...
...

...
...

...
...

...
0 0 0 0 . . . 0 1 −2 1
0 0 0 0 . . . 0 0 −1 1

 Ū =


ha
h2f1

...
h2fn−2

hb

 .

In mixed boundary condition cases, the approaches above can be easily
combined in the matrix product formulation. This mixture is used in the
current work applications.

3.1.3 Consistency, stability, and convergence

Let Lh :Mh → Dh be a finite difference operator that discretizes a partial
differential equation from a normed discrete sub-domain of Rn to a finite
dimensional normed vector space:

Lhuh = fh in Mh. (3.11)

u and uh belong to different spaces, so we introduce the operator rh such as
rhu ∈Mh. A natural choice, which we shall make, is that
rh :M⊂ Rn →Mh is the orthogonal projection so that

||u− rhu|| = inf
v∈Mh

||u− v||.

Definition 3.1.2 A finite difference method is convergent when

h→ 0⇒ ||rhu− uh||Mh
→ 0.

Definition 3.1.3 A finite difference method is consistent when

h→ 0⇒ ||Lh(rhu)− fh||Dh → 0.

The consistency of a finite difference method does not imply the convergence
in general [45]. In fact, the consistency represents a relationship between
the numerical scheme and the differential equation. If the inverse operator
L−1
h is defined, we call the variable ch = ||L−1

h ||L(Mh,Dh) stability constant
of the discretization.
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Definition 3.1.4 A finite difference method is stable when suph ch <∞.

In other words, if h is the mesh width, the method is stable when (Lh)−1

exists for all h sufficiently small (h < h0) and if there is a constant C,
independent of h, such that:

||(Lh)−1|| ≤ C ∀h < h0.

Theorem 3.1.3 If a finite difference method is consistent and stable, then
it is convergent.

Taking as an example that the five-points stencil the consistency error
is O(h2), the stability, and therefore convergence, is given by theorem 3.1.2.
Stability means that the error caused by a small perturbation in the numer-
ical solution remains constrained.

3.2 Finite Difference Methods on Hierarchical Grids

Although the principle of finite difference methods follows the criteria shown
on a uniform mesh, the construction on hierarchical grids, where there are
jumps of level, can follow different strategies. A centre-cell construction has
been shown, but the first step when these methods are computed is to choose
between nodes and cell-centred methods as needed.

Min et al. [16] chose a vertex-centred scheme, justified by their prob-
lem of a variable coefficient Poisson equation on non-graded octree-based
grids. They computed the information on nodes, exploiting the presence
of intermediate values computed on faces neighbours. The information on
the intermediate values are computed using proper interpolations on the ax-
ial distances with fictitious points; then the finite difference method on the
concerned node is calculated using a Taylor’s analysis, where these interpola-
tions are substituted, as mentioned above. As example, for the configuration
in Figure 3.2, they involve the value on point u4, thus obtained through a
linear interpolation:

u4 =
s5u6 + s6u5

s5 + s6
.

Taylor analysis gives the following results for the standard discretizations
in the x and y directions, respectively:

(
u4 − u0

s4
− u0 − u1

s1
) · 2

s1 + s4
= uxx +

s5s6

(s1 + s4) · s4
uyy +O(h)

(
u3 − u0

s3
− u0 − u2

s2
) · 2

s2 + s3
= uyy +O(h)

With a linear weighting of spurious terms involving uyy due to interpolations
of the two equations above, the method is rendered second-order accurate.
We invite the interested reader to [16] for a detailed analysis.
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Figure 3.2: A two dimensional nodes centred discretization [16].

Berger and Colella [48] devised a cell-centred finite-difference scheme for
shock hydrodynamics on an AMR mesh constituted by rectangular regions.
The procedure follows an overlapping of refinement levels. The values on a
grid at a given level are projected onto a virtual grid, coarsened by a factor
of two in each direction with an error proportional to the truncation error
on that point. Processing the discontinuities properly, they highlighted the
memory management due to the AMR approach comparing the memory
that would be used for a uniform mesh; in particular they present a factor
of 2.2 larger than that required by AMR. Berger and Oliger [49] used a
finite difference time integration for hyperbolic PDEs on rectangular sub-
grids with an adaptation of time step (larger or smaller) in line with the
refinement of the grid. Moreover, their AMR approach is dynamic: every
several time steps, they estimate the error at all grid points and adjust
the grid structure. They also compared the time advantages with AMR,
concluding that in less than at least one fourth of the time (in some cases),
mesh refinement was able to calculate a solution that was accurate as the
uniform fine grid calculation. For some tests, comparing also the complete
procedure, they found that the entire run cost only 16% of the cost of a run
on the uniform line grid with the same accuracy. Both these articles justify
the choice of an AMR approach in terms of time and memory.

In [50] Oleg V. Vasilyev presents a high-order finite difference method on
non-uniform meshes. His method preserves symmetries of the uniform mesh,
and his conservation properties are as good as those of the standard second-
order finite difference scheme on non-uniform meshes, while the accuracy is
definitely superior. His formulation is valid on staggered grids and uses cell-
centre values for the pressure points. It is not the only case where node and
centre interpolations are mixed to compute several values; another example,
fully conservative at second order for incompressible flow on non-uniform
grids, is given by Ham et al. in [51].

Overall, a neighbour’s search topology based on a cell-centre scheme
shows more simple understanding. A scheme of this kind will be proposed
in this thesis where, for level jumps, it has been chosen to respect geometry
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without internal interpolations. This choice means that the symmetry of
the uniform scheme can not be respected by making the resolution finite
difference operator more complex. The difficulties of the operator, shown
below, will be overwhelmed by the benefits of whole computation elements.

3.3 A Cell-Centred Finite Difference Method

In this section, we present the main idea to discretize the Laplacian. A
similar approach is used for the gradients.

There are two natural choices to discretize differential operators on hi-
erarchical grids: sampling at the nodes or at the centre of each cell. As an
example, in [16], the discretization is vertex-centred, and in [27] it is cell cen-
tred. Here we considerer a cell-centred scheme. In this case, thanks to the
data structure we use, the neighbour configuration is more easily accessible
compared to a vertex-centred scheme.

The main idea is to ensure consistency and second-order accuracy of the
truncation error in the sense of finite differences as a function of the number
of neighbours. Let us focus for the moment on a two-dimensional problem
and let us consider the configuration in Figure 3.3. As shown in [16], if only
face-adjacent cells are to be used, then there is no locally consistent linear
scheme in the sense of finite differences. Instead, we discretize the Laplace
operator in c4 using all the points belonging the first layer of neighbours.
This will allow us to obtain more degrees of freedom than sufficient con-

Figure 3.3: A test configuration centred in c4. (Presented in [16])

straints for consistency. Possibly, as a function of the number of available
points and symmetries, we will also ensure sufficient conditions for second-
order accuracy. To see this, let h be the side length of the cell c4. To obtain
a consistent scheme, we must ensure that the discretization coefficients ai,
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1 ≤ i ≤ 7 satisfy:

uxx + uyy = a1u1 + a2u2 + a3u3 + a4u4 + a5u5 + a6u6 + a7u7 +O(h).

Using standard Taylor analysis, we expand the solution ui in ci with respect
to u4 in c4, ∀i = 1, . . . , 7, and get:

u4 = u4,

u1 = u4 − h
∂u4

∂x
+ h

∂u4

∂y
+
h2

2

∂2u4

∂x2
− h2 ∂

2u4

∂x∂y
+
h2

2

∂2u4

∂y2
+O(h3),

u2 = u4 − h
∂u4

∂y
+
h2

2

∂2u4

∂y2
+O(h3),

u3 = u4 − h
∂u4

∂x
+
h2

2

∂2u4

∂x2
+O(h3),

u5 = u4 +
3h

2

∂u4

∂x
+
h

2

∂u4

∂y
+

9h2

8

∂2u4

∂x2
+

3h2

4

∂2u4

∂x∂y
+
h2

8

∂2u4

∂y2
+O(h3),

u6 = u4 −
h

2

∂u4

∂x
− 3h

2

∂u4

∂y
+
h2

8

∂2u4

∂x2
+

3h2

4

∂2u4

∂x∂y
+

9h2

8

∂2u4

∂y2
+O(h3),

u7 = u4 +
3h

2

∂u4

∂x
− 3h

2

∂u4

∂y
+

9h2

8

∂2u4

∂x2
− 9h2

4

∂2u4

∂x∂y
+

9h2

8

∂2u4

∂y2
+O(h3).

A complete Taylor analysis, using the coefficients of the Taylor expansions
as columns of a matrix for all the involved neighbours, leads to the following
linear system:

1 1 1 1 1 1 1

0 −h 0 −h 3h
2 −h

2
3h
2

0 h h 0 h
2 −3h

2 −3h
2

0 h2

2 0 h2

2
9h2

8
h2

8
9h2

8

0 −h2 0 0 3h2

4
3h2

4 −9h2

4

0 h2

2
h2

2 0 h2

8
9h2

8
9h2

8





a4

a1

a2

a3

a5

a6

a7


=



0
0
0
1
0
1

 .

In the example above we must determine seven discretization coefficients ai,
1 ≤ i ≤ 7, but we only have six constraints for consistency. The idea is to
ensure consistency and, at the same time, to minimize the deviation from
second-order accuracy as follows.

In the general case, when the number of constraints is m, we solve the
constrained minimization problem by defining an appropriate Lagrangian
function. Let λ ∈ Rm a vector of Lagrange multipliers, a ∈ Rn the dis-
cretization coefficient vector of size n (the size of the stencil), M ∈Mm,n(R)
the constraint matrix, f ∈ Rm the right hand side vector corresponding to
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the imposed constraints and F (a) a convex cost function from Rn to R. We
define a Lagrangian function L(a, λ) : Rn × Rm → R as follows

L(a, λ) = F (a)− λT (Ma− f), (3.12)

and compute the stationary point of this function with respect to (a, λ):{
∂L(a,λ)
∂a = 0

∂L(a,λ)
∂λ = 0

⇔

{
∂F
∂a −M

Tλ = 0

Ma = f.

Let B ∈ M6,n be the submatrix corresponding to the consistency con-
straints, C ∈M4,n be the submatrix relative to the second-order constraints
and α ∈ [0, 1]. The matrix C is obtained adding terms to the Taylor’s ex-
pansion until third order, as done for the consistency constraints, taking
into account the configuration in Fig.3.3 is:

0 −h3

6 0 −h3

6
27h3

48 −h3

48
27h3

48

0 h3

2 0 0 9h3

16 −3h3

16 −27h3

16

0 h3

2 0 0 3h3

16 −9h3

16 −27h3

16

0 h3

6
h3

6 0 h3

48 −27h3

48 −27h3

48


The discretization coefficients are then rescaled, dividing by the appropriate
value of the cell side. We distinguish two cases:

• n ≤ 10 : M = B and we take F (a) = 1/2aT
(
(1− α)CTC + αI

)
a

and the local system to be solved is(
((1− α)CTC + αI) −BT

B 0

)(
a
λ

)
=

(
0
f

)
.

This choice of the convex function F (a) is such that the discretiza-
tion coefficients minimize the second-order truncation error encoded
in matrix C, and their L∞ norm is penalized by coefficient α. We
have chosen a small value of α that results in a stable matrix to in-
vert and that introduces the minimal amount of regularisation. We
took α = 0.01 for all the numerical illustrations in the following The
coefficients a always satisfy 6 consistency constraints.

• n > 10 : M =
(
B
C

)
and we take F (a) = 1/2aT a, m = 10, I ∈ Mn,n,

and the local system to be solved is(
I −MT

M 0

)(
a
λ

)
=

(
0
f

)
.

The coefficients satisfy 10 second-order accuracy constraints while
their L∞ norm is minimized.
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This approach is independent of the specific grid configuration and can
be applied to either graded or non-graded grids. Although we use a cell-
centred stencil, this method can in principle be applied to vertex-centred
stencils. We remark that the minimal number of available points, including
only the first neighbours in 2D, is 7 if the grid is graded and 6 if the grid is
non-graded. Therefore, the discretization will always be at least consistent.

3.3.1 Three-dimensional extension

The neighbours are found through faces, edges and vertexes. The consis-
tency constraints are 10, the number of equations to obtain second order
accuracy is 20. For either graded or non-graded grids, the scheme will be at
least consistent since with graded grids we have at least 15 available points,
including only first layer neighbours, and 11 with non-graded cases. Be-
yond 30 available points, in order to limit the size of the stencil, we consider
the minimum number of all possible neighbours satisfying consistency and
second-order accuracy.

3.3.2 Speed up the computation

On graded grids, our tool for identifying the configurations, introduced in
chapter 2, allows us a gain of memory and time for all internal communi-
cations that requires knowing the structure of the neighbourhood but not
necessarily the position or dimension. In fact, the strategy to build the
minimization problem is handled from an arbitrary value of h and then
adapted to perform the matrix condition number as best as possible when
the depth of the tree becomes relevant; also the operations to recognize a
uniform neighbourhood through faces, and some others, are independent
from the topological position of the configuration in space and processes.
These observations can now explain the utility to have a bijection between
the configuration and integer array.

3.3.3 Remarks on the uniform stencil

In 3.1.1, we described the classical five points stencil with its regular ma-
trix, then in 3.1.3 we presented some important properties of finite differ-
ence schemes. As explained, our Morton code won’t let us obtain a matrix
so regular; meanwhile we can ensure the local consistency, but in general,
the stability proof of a finite difference scheme requires a complex Fourier
analysis [52]. For time-dependant PDEs, some conditions to ensure stability
can be applied. Arnold [53], Lax and Richtmyer [54] studied the problem in
detail; however, as far as we know, there are not local properties that can
ensure the stability for our method.
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We propose to solve a typical uniform zone using all neighbours involved.
The linear system built following our method assumes the form:



1 1 1 1 1 1 1 1 1
0 −h h 0 0 −h h −h h
0 0 0 −h h −h −h h h

0 h2

2
h2

2 0 0 h2

2
h2

2
h2

2
h2

2
0 0 0 0 0 h2 −h2 −h2 h2

0 0 0 h2

2
h2

2
h2

2
h2

2
h2

2
h2

2





a0
a1
a2
a3
a4
a5
a6
a7
a8


=


0
0
0
1
0
1

 . (3.13)

This problem has ∞3 possible solutions in the set of:

{a0 = − 4

h2
+ 2a6 + 2a7, a1 =

1

h2
− a5 − a7, a2 =

1

h2
+ a5 − 2a6 − a7,

a3 =
1

h2
− a5 − a6, a4 =

1

h2
+ a5 − a6 − 2a7, a8 = −a5 + a6 + a7}.

We can then try to determine a second-order solution of problem (3.13),
trying to solve:

1 1 1 1 1 1 1 1 1
0 −h h 0 0 −h h −h h
0 0 0 −h h −h −h h h

0 h2

2
h2

2 0 0 h2

2
h2

2
h2

2
h2

2
0 0 0 0 0 h2 −h2 −h2 h2

0 0 0 h2

2
h2

2
h2

2
h2

2
h2

2
h2

2

0 −h3

6
h3

6 0 0 −h3

6
h3

6 −h3

6
h3

6

0 0 0 0 0 −h3

2 −h3

2
h3

2
h3

2

0 0 0 0 0 −h3

2
h3

2 −h3

2
h3

2

0 0 0 −h3

6
h3

6 −h3

6 −h3

6
h3

6
h3

6





a0

a1

a2

a3

a4

a5

a6

a7

a8


=



0
0
0
1
0
1
0
0
0
0


.

(3.14)
The set of ∞1 solutions for (3.14) is:

{a0 = 4a5 −
4

h2
, a1 =

1

h2
− 2a5, a2 =

1

h2
− 2a5, a3 =

1

h2
− 2a5, a4 =

1

h2
− 2a5,

a6 = a5, a7 = a5, a8 = a5}.

The discretization weights (Fig. 3.4) obtained with our minimization
problem are:

• −1.3̄
h2

for the red point (centre of the configuration);

• −0.3̄
h2

for the face adjacent cells marked in green;
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Figure 3.4: Uniform mesh configuration. The weights are enumerated fol-
lowing the internal Z-Order of a0 through faces, then through vertices.

• 0.6̄
h2

for the corner blue points.

The resulting truncation error, easily obtained substituting the weights
in (3.14), ensures the order two of convergence; however, this nine-point
stencil is an example of a second-order scheme, but it is possibly not stable.
As long as we can not prove the stability, our choice falls on the five-points
stencil, allowing us a gain of elements in the Laplacian operator. We do not
report here some results about it, but we specify that nine-points stencils are
useful to obtain high-order approximations precisely because of the flexibility
in the infinite set of solutions [46]. The additional constraints can be, in fact,
adapted to such specific complex problems as heat conduction, Helmhotz
equations, and so on (see, for example, [55], [56], [57]). The observations in
this section are also valid for the three-dimensional case.

3.4 Preliminary Conclusions

We explained quadtree data structures’ application with some different dis-
cretizations that could be applied on these kinds of meshes (chapter 2).
In this part, we explored the existent finite-difference methods conceived
similarly, or on similar meshes, if compared with ours.

Most finite volume methods are cell centred, due to fluxes node-sampling
gradients; meanwhile, for finite-difference method, it is the opposite. An
analysis of existent methods is proposed by C. Batty [[58], p.5] who intro-
duces a finite-volume method on non-graded grids. Our method can be
compared with the others, not only for its local consistency (with tendency
towards the second order of convergence globally) but also for the ease with
which it manages the structure along jumps.

The method proposed in the current work is among the first finite dif-
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ference schemes to devise the weights stencils without the use of internal
interpolations and fictitious points.
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Chapter 4

Numerical Results

In this chapter, the numerical results are presented. We start with a proof
of consistency to validate our method in two and three dimensions. We
also analyse ill-posed configurations in other methods to demonstrate the
advantages of our approach. In three dimensions, an analysis of convergence
of the sparse operator derived by the discretization is given. A comparison
with other finite volume methods is briefly proposed in two dimensions,
concluding with unbalanced mesh cases to examine the sTable computation
of weights if the geometry is abruptly changing.

We will discuss the discontinuity approach, first of all with penalization
tests, to simulate the internal boundary conditions, and we will present
the strategy on various cases in two and three dimensions. Moreover, we
provide a comparison of time and memory with an uniform regular solver
to highlight that for equal error there is better performance and an evident
memory advantage. Then, we perform a study on internal discontinuities;
we treat them as mollified functions, continuous between two values, and we
expose a first simple approach for internal jumping conditions.

The final part of this chapter contains details about the code structure:
the handling of the parallelization, and the solvers used, concluding with its
properties of scalability.

4.1 Numerical Results: Consistency

4.1.1 Two-Dimensional Test

We consider here the case ∆u = f . The domain is the two-dimensional
square, Ω = [0, 1]×[0, 1], and the grid studied is a biperiodic lattice obtained
by initially repeating the elementary configuration presented in Chapter 3,
Fig. 3.3, obtaining the mesh in Figure 4.1.We have seen that for this grid,
a scheme that does not include all the first neighbours’ layer, but only face-
adjacent cells, is always inconsistent, as shown in [16].

61
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The analytical solution considered is ue(x1, x2) = sin
(
(x1 − 0.5)2 + (x2 − 0.5)2

)
,

and the problem solved is ∆u(x) = f(x) = ∆ue(x), with exact Dirichlet
boundary conditions imposed at the cell centres along the border of the do-
main. The convergence rate is obtained by subsequently subdividing each
cell, and it is given in Table 4.1. Second-order accuracy is obtained as antic-
ipated. An example of the error distribution over a refined grid is presented
in Figure 4.2.

(a) Tree level 4 (b) Tree level 5

Figure 4.1: Example of initial grid and its subsequent refinement.

Figure 4.2: Example of error distribution on a grid corresponding to tree
level 6.

A second proof of convergence, regarding the same test configuration,
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Tree level L∞ Order L2 Order

4 5.023·10−4 2.491·10−4

5 9.921·10−5 2.5315 4.97·10−5 2.506
6 2.239·10−5 2.2155 1.131·10−5 2.19725
7 5.364·10−6 2.087 2.725·10−6 2.075
8 1.317·10−6 2.0365 6.709·10−7 2.0305

Table 4.1: Error norms and order of the scheme. Proof of consistency refer-
ring to Fig. 4.1, 4.2

consists of the repetition of the test configuration, increasing the depth of
our tree (Fig. 4.3). The order of convergence for this case is given in Table
4.2.

Tree level - Octants L∞ L2 Order

5 - 448 4.088·10−4 2.679·10−4 -
6 - 1792 1.160·10−4 8.038·10−5 1.737
7 - 7168 3.097·10−5 2.195·10−5 1.873
8 - 28672 7.943·10−6 5.698·10−6 1.946
9 - 114688 2.012·10−6 1.448·10−6 1.976
10 - 458752 5.176·10−7 3.714·10−7 1.963

Table 4.2: Error norms and order of the scheme. Proof of consistency refer-
ring to Fig. 4.3.

The two cases studied allow us to demonstrate the stability of the method
and, above all, the consistency. The configuration analysed was chosen for
its property to not be consistent if only face-adjacent cells are used (as seen
in Section 3.3, [16]). In the first refinement (Fig. 4.2) we can see the second-
order convergence; the tendency of second order accuracy is also presented
for the second refinement approach (Fig. 4.3). The reason for this inequal-
ity is the occurrence of the uniform stencil (second-order truncation error)
combined with the occurrence of the configuration presented, where the con-
sistency is ensured and the second order is minimized. We can conclude that
this method is always consistent, with a global tendency to the second order.
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(a) Tree level 5

(b) Tree level 7

Figure 4.3: Examples of error distribution on a grid corresponding to two
different levels. Simple repeat test configuration for each level of refinement.

Comparison With Other Methods

The finite different method presented in this work has been compared with
two other finite volume schemes implemented by Memphis Inria project-
team members. The results of this test are given in Figure 4.4). The first
method, identified by FV, was implemented by Marco Cisternino [59]; the
second one, identified by Diam FV, by Claire Taymans (Morel). All three
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methods stick on the same grid (Fig. 4.2), and they use PABLO’s data
structure with its parallel balance.

(a) L2 norm comparison

(b) LInf norm comparison

Figure 4.4: Norms Comparison

The finite volume scheme to compute gradients on the intersections hy-
bridises the method averaging cell gradients of neighbours and introduces
a finite difference correction along the direction joining neighbour cell cen-
tres. In the conforming region, the truncation error of the discrete elliptic
operator is O(h2) because it is the classical second-order centred scheme.
On the other hand, the truncation error is only O(1) in the non-conforming
region because the fluxes are approximated with only first-order accuracy
and there is not cancellation effect due to symmetry, allowing to preserve the
first-order accuracy for the elliptic operator, as is the case in the conforming
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region.

Figure 4.5: Diamond’ scheme stencil

The second method of this comparison uses the diamond scheme, when
a gap in refinement level occurs between two neighbours. It consists of
defining a dual mesh (Fig. 4.5) and assumes that the gradient is constant
inside the diamond. Solving the equations system (4.1),(4.2), it returns the
gradients values through the cells faces.

∇Φ.τc =
Φout − Φin

∆c

∇Φ.τbt =
Φt − Φb

∆L

(4.1)


∂Φ

∂x
.τcx +

∂Φ

∂y
.τcy =

Φout − Φin

∆c
∂Φ

∂x
.τbtx +

∂Φ

∂y
.τbty =

Φt − Φb

∆L
.

(4.2)

This comparison points out that all three methods applied to the same
problem are in the second order of convergence, with somewhat different
local precision. Indeed, the finite difference method presented in this work,
as it optimises the truncation error locally depending on the neighbourhood
configuration, tends to be more accurate than the finite volume methods
that look at the problem globally.

Unbalanced Cases

We conclude the two-dimensional results for this part by presenting some of
unbalanced tests.

In the first case presented (Fig. 4.6, Table 4.3) we split the domain
in two equal parts and impose a level jump between the subdomains of 4
without balancing. In this test we solved the equation:

∆u(x) = f(x) x ∈ Ω, (4.3)

imposing Dirichlet’s boundary condition. This test allows us to exploit the
weights calculation when strong internal jumps are present.
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The analytical solution we used to study the convergence is the paraboloid:
ue(x) = ue(x1, x2) = 1

8 −
1
4((x1 − 0.5)2 + (x2 − 0.5)2).

Figure 4.6: Error distribution example. Unbalanced case mesh.

Norm Infty Norm 2 Mesh Points Solver Iterations

7.500 · 10−8 1.611 · 10−7 8224 154
2.453 · 10−8 7.679 · 10−8 32896 333
3.220 · 10−8 1.20 · 10−7 131584 695
4.361 · 10−8 2.187 · 10−7 526336 8995
4.899 · 10−8 2.486 · 10−7 2105344 107364
5.095 · 10−8 2.594 · 10−7 8421376 734596

Table 4.3: Error norms. Case in Fig.4.6

We can remark, in Table 4.3, that if we do not force the tolerances of
the solver, the error becomes stable without changing solver tolerances, for
this solution, so it is impossible to see an order of convergence. We used
a block Jacobi preconditioning (BJACOBI) on a global flexible GMRES.
For this purpose, we tested a different mesh with a circular sub-domain
of discontinuity, without the imposition of balance constraints (Fig. 4.7).
In Table 4.4, the error variation is more evident for a sinusoidal analytical
solution: ue(x1, x2) = sin

(
(x1 − 0.5)2 + (x2 − 0.5)2

)
.

These tests conclude for the two-dimensional part the proof of the consis-
tency of the method. For topological and computational reasons (that will
be presented below), if not required, it is preferred to balance the structure,
although it can be seen from the comparison between Tables 4.2 and 4.4 the
robustness of the convergence order.

Remark 4.1.1 (On the order calculations) Convergence orders in AMR
cases, especially where we try to track an interface, are approximated fol-
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Figure 4.7: Error distribution example, level 8, sinus analytical function.

Norm Infty Norm 2 Mesh Points Order Solver Iterations

1.388 · 10−3 6.825 · 10−3 796 - 123
9.973 · 10−5 5.503 · 10−4 3352 1.752 167
2.738 · 10−5 1.596 · 10−4 13588 1.769 352
7.789 · 10−6 4.559 · 10−5 54268 1.809 727
1.955 · 10−6 1.141 · 10−5 217936 1.994 161905

Table 4.4: Error norms and order. Case in Fig.4.7

lowing a dimensional-dependent formulation: p = d ∗ ln(err1/err2)
ln(np2/np1) , where d

stands for dimension, erri for error norms and npi is the total number of
concerned points. We should remark, in general, that two meshes subsequent
in level of refinement may not be exactly the same; the number of points is
not a simple increase for four (eight in 3D, as example see last two cases
of Table 4.4) but it is subject to small variations that still give a reliable
formula.
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4.1.2 Three Dimensional Test

As explained in Chapter 3-Remark 3.3.1, the computational details aimed
at building the finite difference method for the three-dimensional extension
follow the same strategy. The number of constraints necessary for a con-
sistent set of weights becomes 10 instead of 6; similarly, the dimensions of
the local variables have to be increased properly. We show in this section
the convergence and consistency of the three-dimensional method so as to
complete the proof.

Figure 4.8: 3D matrix draw. 36128 points, tree’s level 6.

In Figure 4.8 we present an example of non-zero elements entries in the
solver matrix for an AMR which follows a centred sphere with one level of
jump between the two parts involved (Fig.4.9); we can highlight the sparsity
of the matrix that presents several sub-blocks of non-zeros. This sparsity is
due to the Z-order, a problem repeatedly faced in previous sections.

As in previous cases, we solve the problem ∆u(x) = f(x), x ∈ Ω im-
posing Dirichlet’s boundary conditions on Ω = [0, 1]× [0, 1]× [0, 1], at first,
using an analytical solution invariant along the third axis ue(x1, x2, x3) =
sin
(
(x1 − 0.5)2 + (x2 − 0.5)2

)
. We set an internal spherical sub-domain

where the mesh assumes one level more than elsewhere. In Figure 4.9, a
section of the error for this case is presented. Confirming our previous two-
dimensional studies, the error is concentrated in the jumping zones between
the different levels of the mesh.

We intend to study the convergence of our operator. Let ∆h be the
Laplacian operator of our problem and ue the analytical solution calculated
on the cells’ centres. We present in Table 4.5 an analysis of the residual of
the operator ∆h · ue − fe, and a section of it cell by cell is showed in Figure
4.10. Once we study the convergence of the operator, we emulate the cases
proposed in the two-dimensional part by increasing the level of jumps on a
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Figure 4.9: Distribution of error on a AMR following a central sphere with
radius 0.15.

Tree’s depth level ||∆h · ua − f ||∞ Mesh Points Order

5 7.325·10−3 4488
6 2.207·10−3 36128 1.726
7 5.981·10−4 287680 1.888
8 1.552·10−4 2303400 1.945

Table 4.5: Study of residual order.

balanced mesh from one to three. We always solve the equation ∆u(x) =
f(x) with Dirichlet’s boundary conditions; the results are presented in Table
4.6.

Norm Infty Norm 2 Mesh Points Order

2.412·10−4 1.162·10−4 4880
7.936·10−5 4.161·10−5 32656 1.6184
2.201·10−5 1.235·10−5 264944 1.7461
5.829·10−6 3.360·10−6 2111880 1.8813
1.501·10−6 8.761·10−7 17103976 1.9281
3.807·10−7 2.236·10−7 137484026 1.965

Table 4.6: Laplacian resolution AMR in a sphere. Balanced mesh, three
levels of difference between maximal and minimal depth; two-dimensional
sinus function.

In Figure 4.11 we extract the two different parts for a level of refinement
9 in the sphere and 6 outside. At this level of refinement we can highlight
the symmetry of the error in the uniform areas. The radius of the sphere is
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Figure 4.10: Section of the domain studying the residual.

0.15.
We remind that for this test, the analytical solution is bi-dimensional;

this case allowed us to determine the stability of the third axial contribution
of weights with the new existence of edge directions; as shown, they don’t
influence the computation until they are not taken into account. To conclude
the test of consistency, we need a three-dimensional evaluation. We consider
∆u(x) = f(x), x ∈ Ω imposing Dirichlet’s boundary conditions on Ω =
[0, 1] × [0, 1] × [0, 1], and we apply the analytical solution ue(x1, x2, x3) =
sin
(
(x1 − 0.5)2 + (x2 − 0.5)2 + (x3 − 0.5)2

)
. As above, we present in Table

4.7 the convergence rate, and in Figure 4.12 the error outside and inside the
considered sphere.

Norm Infty Norm 2 Mesh Points Order

3.937·10−4 1.977·10−4 4880
1.257·10−4 7.147·10−5 32656 1.61
3.548·10−5 2.121·10−5 264944 1.74
9.426·10−6 5.777·10−6 2111880 1.878
2.428·10−6 1.506·10−6 17103976 1.935

Table 4.7: Errors: Laplacian resolution AMR in a sphere. Balanced
mesh, three levels of difference between maximal and minimal depth; three-
dimensional sinus function.
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Figure 4.11: Distribution of error around and inside the sphere. Tree’s levels
9 inside and 6 outside.

These results conclude the demonstration part on the finite difference
method. To test the gradients approximations, similar tests were repeated
for the respective derivatives. We can conclude beforehand that the method,
both in two and three dimensions, is consistent with the second-order trend.

4.1.3 The Mesh Refinement

The previous examples, and most of those we see, follow the same refinement
strategy around a subdomain. Unless specified otherwise, there will be three
level jumps between the maximum and minimum depth of the tree. Given
φ(x) the distance function with the considered sub-domain boundary, and
a tolerance δ sufficiently small, the mesh refinement is defined as:
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Figure 4.12: Distribution of error around and inside the sphere. Tree’s levels
9 inside and 6 outside. Three-dimensional solution.

• the maximal depth of the tree is fixed at value M ;

• the squared domain is uniformly refined until level M − 3;

• from M − 3 to M the incidence with the internal sub-domain is evalu-
ated on each octant. If the octant lies on the refining zone, that means
|φ(x)| < δ, and it splits in four/eight children.

• balance constraints are applied on the jump zones.
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4.2 Dirichlet boundary conditions and penaliza-
tion

Internal boundaries with Dirichlet-type conditions are modelled by a penalty
term, as done for more complex models in [60],[61]. Let χc be the charac-
teristic function of a given domain c, e.g., the circle in Figure 4.13. Let us
consider the equation

∆uε = g +
χc
ε

(uε − u0). (4.4)

We set uε = u+εũ to derive the equations satisfied by u and ũ. By identify-
ing the terms of the same order in ε, we have χc (u−u0) = 0 and ∆u = χc ũ.
This formally implies that u = u0 in the circle and ∆u = 0 outside. Further
analysis in [61] shows that ‖uε − u‖2 = O(

√
ε). Overall, u satisfies u = u0

on the border of c with very good accuracy, taking ε ≈ 10−8.
The numerical discretization of the penalized model on an unfitted bound-

ary will introduce an additional discretization error of order h, so that the
scheme will be only first-order accurate. Second-order penalization can be
obtained by extrapolation as shown in [62].

As explained, we impose Dirichlet conditions by a penalty term at the
continuous level. We consider the exact solution ue(x) = sin((x1 − 0.5)2 +
(x2 − 0.5)2), with the same square domain as before and a centred circle of
radius 0.25. We take u0 = sin

(
(0.25)2 + (0.25)2

)
and ε = 10−11. The grid

is refined according to the distance function to the circumference (according
to 4.1.3) in a layer of δ = 0.02 on each side of the circle boundary; moreover
the mesh is graded.

In Figure 4.13 we show the error distribution in the computational do-
main for tree level 7. Table 4.8 presents the error convergence. As expected,
the penalized model is order one.

Tree level L∞ Order L2 Order

5 1.392·10−2 3.216·10−3

6 7.169·10−3 0.971 1.501·10−3 1.071
7 3.848·10−3 0.932 7.157·10−4 1.048
8 1.952·10−3 0.986 3.687·10−4 0.970
9 9.726·10−4 1.003 1.563·10−4 1.18
10 4.883·10−4 0.996 7.963·10−5 0.981

Table 4.8: Error norms and order of the scheme.

To confirm the stiffness of the AMR approach on the penalized zone, we
reproduce the test above with the exact solution on cells’ centres when the
cell splits the circumference. The order of this test is given in Figure 4.14,
confirming the theoretical second-order expectations.
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Figure 4.13: Error example, level of tree equal to 7 (∆x = ∆y = 1
27

).

Figure 4.14: Exact boundary conditions convergence study.

4.2.1 Three Dimensional Results

The equivalent penalization tests have been reproduced in three dimensions.
In this case, the radius of the sphere is 0.05 and the analytical solution is
ue(x) = sin((x1−0.5)2+(x2−0.5)2+(x3−0.5)2). We focus the refinement on
the penalized sphere (Fig. 4.16-4.17), as mentioned in 4.1.3, and we present
the error study in Tables 4.9 and 4.10 for exact and approximated boundary,
conditions respectively.

In figures 4.15-4.17 a section of the error is presented, while a zoom in
near the penalized area is presented in Figure 4.16. For both figures, a
part is more visible, retained to be able to distinguish the sections, and the
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Figure 4.15: Exact boundary conditions convergence study. Error example
of a penalization test (plane section). Radius of sphere: 0.05.

Level Norm Infty Norm 2 Mesh Points Order L2

6 2.382·10−4 1.07·10−4 2976
7 7.455·10−5 3.942·10−5 10536 2.369
8 2.432·10−5 1.196·10−5 55672 2.15
9 5.372·10−6 3.082·10−6 380024 2.117
10 1.387·10−6 8.050·10−7 2826104 2.007
11 3.524·10−7 2.057·10−7 21907208 1.999

Table 4.9: Exact boundary conditions error convergence study.

Figure 4.16: Zoom of error near the penalized spherical zone.

other one is an opaque wireframe of the mesh that allows us, precisely in
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Figure 4.17: Approximated boundary conditions convergence study. Error
example of a penalization test (plane section). Radius of sphere: 0.05.

Level Norm Infty Norm 2 Mesh Points Order L2

8 1.31·10−3 1.509·10−5 38256 -
9 6.176·10−4 6.40·10−6 330968 0.996
10 3.508·10−4 3.719·10−6 2646512 0.783
11 1.802·10−4 1.979·10−6 21205696 0.91

Table 4.10: Approximated boundary conditions error convergence study.

the second image, to distinguish the change of error in the proximity of the
sphere. In fact, there is an obvious colour change where the mesh starts
further refinement along the AMR, able to seize this discontinuity in the
most efficient way possible, following the methodology and the principles
already indicated in its two-dimensional section.

4.2.2 Uniform refinement and AMR for a multiscale problem

We investigate an idealized multiscale problem, taking the penalized subdo-
main much smaller than the rest; the configuration is given in Figure 4.18
and a zoom next to the circle Fig. 4.19. We consider the same exact solution
above, the same square domain, but now the centred circle has radius 0.01.
We take u0 = sin

(
(0.49)2 + (0.49)2

)
and ε = 10−11. The grid is always re-

fined according to the distance function to the border of the circle, we apply
a distance to the border of δ equal two times the smallest octant’ size for each
level, following dynamically the equation δ = 2 ∗ hL, ∀M − 3 ≤ L ≤M − 1:
if the octant, of size hL, belongs to the circular ring considered (see 4.1.3)
the cell splits into a new generation.



CHAPTER 4. NUMERICAL RESULTS 78

Figure 4.18: Error distribution when Dirichlet condition is imposed on a
circle of radius 0.01.

Figure 4.19: Zoom of the error next to the circle.

The aim of this section is to highlight the advantages of our AMR ap-
proach in comparison with uniform mesh resolutions. We remark that when
a uniform stencil is performed we apply a standard five-point discretization
for the Laplacian operator. The refinement of the uniform grid is chosen
to give the same error compared to the non-uniform quadtree mesh at each
level of the tree. For the uniform grid, we use two orderings of the un-
knowns. The first one is the standard ordering for a structured Cartesian
grid, giving a pentadiagonal discretization matrix. We denote the uniform
five-point structured scheme as US in the following Tables. For the sake
of comparison, the same discretization stencil is used, but this time the
unknowns are ordered with the Z-order (UZ ). The discretization matrix
contains the same weights of that of the US case, but it is not any-more
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pentadiagonal. The non-uniform grid is obtained by mesh refinement next
to the circle with three levels of jump between the maximal and the minimal
depth of tree, enforcing balancing constraints through faces. The results of
the finite-difference scheme on the non-uniform mesh are denoted by AMR.
The Krylov space used for this test is BCGS with ASM preconditioning and
ILU sub-preconditioner.

In tables 4.11, 4.12 and 4.13, the first line reports the results for level 7
of grid refinement (h = 1

27
) and the last one for level 15. For the AMR case,

the first three lines do not exist because of the non-uniform refinement (the
largest grid is at tree level 10, where the minimal depth of the tree is 7).

Tree’s L2 L∞ L2 L∞ L2 L∞

Level US US UZ UZ AMR AMR

7 5.25·10−6 3.49·10−5 9.30·10−6 5.72·10−5 – –
8 4.15·10−6 2.79·10−5 1.31·10−6 1.29·10−5 – –
9 8.96·10−7 9.20·10−6 2.62·10−6 1.81·10−5 – –
10 9.56·10−7 9.09·10−6 1.08·10−6 1.08·10−5 3.63·10−6 1.07·10−5

11 6.57·10−7 5.75·10−6 7.71·10−7 8.01·10−6 7.47·10−7 7.99·10−6

12 3.7·10−7 4.16·10−6 3.05·10−7 2.87·10−6 2.08·10−7 2.87·10−6

13 1.64·10−7 2.05·10−6 – – 1.08·10−7 1.49·10−6

14 6.36·10−8 9.34·10−7 – – 5.58·10−8 7.33·10−7

15 1.13·10−8 3.26·10−7 – – 1.16·10−8 3.81·10−7

Table 4.11: Errors for the configuration shown in Fig. 4.18. US stands for
the uniform structured grid, UZ for uniform mesh with Z-order and AMR
for the adaptive mesh with three jumps of level.

In Table 4.11, we present the error norms for the configuration shown in
Figure 4.18. This Table shows that the uniform grid refinement is such that
the errors are approximatively the same as those for the non-uniform grid,
where they are at same maximal depth of refinement. The slight differences
between US and UZ are due to the iterative linear solver, because of the
different numbering, even though the grid is exactly the same.

In Table 4.12, we show the number of grid points for the corresponding
error levels in Table 4.11 (the grids US and UZ have of course the same num-
ber of cells). As expected, the number of grid points are strongly reduced in
the adaptive mesh method. At level 15, the AMR grid has approximatively
220 times fewer grid points.

In Table 4.13, we report the total CPU time required to solve the linear
problem. All the tests presented in this section have been solved using
96 cores on 4 nodes. The time in seconds refers to the elapsed time of the
KSPSolve() module of PETSc. The computational time needed for the AMR
is one to two orders of magnitude less compared to the US grid. Because of
the numbering, the UZ case is way more expensive.
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Tree’s Level US/UZ AMR

7 16384 –
8 65536 –
9 262144 –
10 1048576 4900
11 4194304 19012
12 16777216 76036
13 67108864 302776
14 268435456 1214512
15 1073741824 4863616

Table 4.12: Number of grid points.

Tree’s Level US UZ AMR

7 3.533·10−2 8.299·10−2 –
8 2.641·10−2 2.926·10−1 –
9 6.564·10−2 1.812·100 –
10 5.101·10−1 1.715·101 3.796·10−2

11 3.764·100 2.078·102 1.109·10−1

12 2.837·101 2.387·102 4.104·10−1

13 1.904·102 – 2.428·100

14 1.241·103 – 2.23·101

15 7.647·103 – 2.710·102

Table 4.13: Times (in seconds) to solve the linear problem.

Of course, the results of this section depend on the configuration studied,
e.g., the ratio between the square side and the circle diameter. The point
we make is that, even though Z-order may significantly reduce performance
of linear solvers, the number of grid points is reduced to an extent that
makes the solution by far faster, as well to justifies its use in these kinds of
applications.

4.3 Diffusion coefficient discontinuity

We consider in this section the equations:

κ(x)∆u(x) = −1.0, in Ω = [0, 1]× [0, 1] = G ∪ S, (4.5a)

[κ(x)∂nu(x)] = 0, on γ. (4.5b)

The region S is defined by a circle of radius R = 0.25.
In many applications, the diffusion coefficient κ(x) can abruptly vary

across an interface from, say, α to β, two positive constants. As it is well
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known, in the limit case the solution and the normal fluxes are continuous at
the interface. We model these problems by the regularised diffusion function

κ(x) = α+ (β − α)

(
tanh (σ · Φ(x)) + 1

2

)
, (4.6)

where Φ(x) is the distance function with respect to the interface of dis-
continuity and σ is the regularisation parameter. The distance function is
obtained by solving |∇Φ(x)| = 1 together with a homogeneous Dirichlet
boundary condition on the interface.

Overall, also in this case we expect first-order convergence for the dis-
continuous coefficient case. We will recover accurate enough results using
local grid refinement thanks to the distance function to the boundary.

We consider now the full problem of equations 4.5. The diffusion coeffi-
cient κ(x) is piecewise constant. It is equal to one in G and one hundred in
S. The parameters of equation (4.6) relative to this test are:

α, β such that α+
1

2
(β − α) = 49.5 + 1, and

β − α
2

= 49.5,

σ = 100.

The limit problem solution ue(x, y) (Fig. 4.20) with appropriate boundary
conditions on the sides of the square is:

uG(x, y) =
1

8
− 1

4
((x− 0.5)2 + (y − 0.5)2) (x, y) ∈ G,

(4.7a)

uS(x, y) = (
1

8
− R2

4
(1− 1

κS
))− 1

4κS
((x− 0.5)2 + (y − 0.5)2) (x, y) ∈ S.

(4.7b)

Figure 4.20: Analyitical test function.

We depict the convergence results obtained referring to this specific so-
lution in Tables 4.14-4.15.



CHAPTER 4. NUMERICAL RESULTS 82

Figure 4.21: Numerical result obtained by AMR: numerical solution plane
section, with a projection of the error.

Tree’s Level Norm Infty Norm 2 Mesh Points

7 2.406 · 10−2 1.694 · 10−1 3784
8 2.438 · 10−2 1.74 · 10−1 14968
9 3.861 · 10−2 2.778 · 10−1 51472
10 1.866 · 10−2 1.343 · 10−1 112684
11 2.878 · 10−3 1.985 · 10−2 228484
12 6.602 · 10−4 3.821 · 10−3 465028
13 1.543 · 10−4 1.03 · 10−3 1124968

Table 4.14: Convergence results. Difference between AMR along the molli-
fication and external mesh: five levels.

The test in Table 4.14 is built on a mesh that focuses on mollification
according to the following criteria (Fig. 4.23):

• the maximal depth of the tree is fixed at value M from 7 to 13 for
presented results;

• the squared domain is uniformly refined until level M − 3;

• from M−3 to M , the mollified function (4.6) is valued on each octant.
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Figure 4.22: Numerical result obtained on uniform mesh: numerical solution
plane section (blue) and analytical one (upper), with a projection of the error
(bottom) comparable in front of the conductivity term κ (earl grey).

If the octant lies on the regularization zone, that means ∇κ(x) 6= 0,
and it splits in four children;

• balance constraints are applied on the jump zones.

Figure 4.23: Levels 7 and 8 of the AMR along the mollification with three
levels of jump admitted.
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Figure 4.24: Levels 8 and 9 of the AMR along the mollification with uniform
mesh outside at level 7 (top). Zoom of level 13 on bottom.
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This refinement is compared to another one (Fig 4.24) connected to Table
4.15 where the refinement follows:

• the maximal depth of the tree is fixed at value M from 7 to 13;

• the squared domain is uniformly refined until level 7 (16384 octants);

• from 7 to M , the mollified function (4.6) is valued on each octant. If
the octant lies on the regularization zone, that means ∇κ(x) 6= 0, and
it splits in four children.

• balance constraints are applied on the jump zones.

Tree’s Level Norm Infty Norm 2 Mesh Points

7 2.63 · 10−2 1.895 · 10−1 16384
8 2.567 · 10−2 1.848 · 10−1 30868
9 3.901 · 10−2 2.815 · 10−1 59896
10 1.887 · 10−2 1.362 · 10−1 117796
11 2.909 · 10−3 2.014 · 10−2 233512
12 6.602 · 10−4 3.821 · 10−3 465028
13 1.535 · 10−4 1.028 · 10−3 1090300

Table 4.15: Convergence results. AMR along the mollification outside level
7 is fixed.

The convergence result presented in Table 4.15 is built on a grid that
increase the refinement level by level on the mollification part and stands
constant outside at level seven of the tree. This choice is compared to Table
4.14, where the mesh is splitting in both directions, retaining a constant
difference of level between the maximal and the minimal depth of the tree.
We evidence that most of the error is focused on the mollification part while
the external part refinement does not have a strong influence on the global
results. This point allowed us to reach a certain gain of memory on degrees
of freedom with a local focus on the part concerning the discontinuities. The
first line of each Table is the level 7 case; it means that for the second case
the first line is an uniform mesh and its result is comparable to the AMR
one in Table 4.14.

In Figure 4.25, once the memory gain has been presented, we focus on
the accuracy. The uniform grid covers the domain with 1048576 degrees of
freedom, the level of the tree is ten, and the results employ 2, 6 ·102MB. The
AMR concerned in this test is the same presented in Table 4.15, where the
level of the tree is fixed at seven outside, with finer levels until thirteen on the
mollification; 1090300 degrees of freedom are involved and the results employ
2, 3 · 102MB. Being equal the occupied memory and the order of degrees of
freedom, this comparison highlights that the AMR approach sticks better
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(a) Uniform mesh. 1048576 degrees of freedom.

(b) AMR approach. 1090300 degrees of freedom.

Figure 4.25: Comparison between uniform and AMR resolutions
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on the solution; on the other hand, where the refinement is less fine the
function appears piecewise continuous, but it follows the discontinuity with
a finer approach. Then a sensitive precision is guaranteed on the entire
computational domain.

Analytical Proof

We briefly demonstrate that the analytical solution (4.7) satisfies the prob-
lem (4.5a)-(4.5b) for piecewise constant diffusion coefficient. Let κi be
(κG, κS), remembering that κG = 1.

∂xue(x, y) = − 1

2κi
(x− 0.5), ∂yue(x, y) = − 1

2κi
(y − 0.5)

∂xxue(x, y) = − 1

2κi
, ∂yyue(x, y) = − 1

2κi

⇓

κi∆ue(x, y) = κi(∂xxue(x, y) + ∂yyue(x, y)) =

= κi(−
1

2κi
− 1

2κi
) = −1⇒ (4.5a). �

We point out that the two paraboloids uG and uS are symmetrical with
respect to the curve γ, so we can calculate the normal derivative on a generic
point P (0.25, 0.5) of the circumference and consider the calculation that is
valid for each point of the curve. On P the normal unit vector n has opposite
directions with respect to γ. We evaluate:

[κ(x)∂nu(x)]γ |P = κG∂nuG(x)|P − κS∂nuS(x)|P =

= κG((∂xuG, ∂yuG) · nG)|P − κS((∂xuS , ∂yuS) · nS)|P =

= κG((− 1

2κG
(x− 0.5),− 1

2κG
(y − 0.5)) · (−1, 0))|P−

κS((− 1

2κS
(x− 0.5),− 1

2κS
(y − 0.5)) · (1, 0))|P =

= κG(− 1

2κG
(x− 0.5))|P − κS(− 1

2κS
(x− 0.5))|P = 0⇒ (4.5b).

�

4.4 The parallel code

In this section, some outlines of the code are presented. We explained before
that this work was conceived to be optimal in parallel; however, we can
split the code in two main parts: the first one where the cores are almost
independent of each other and the second one with greater communication.

First of all, the guidelines for the mesh construction are dictated by the
problem:
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1. set the max depth of the tree;

2. creation of the AMR with balancing constraints;

3. load balance on the cores.

Step one is user defined; in fact, the only variable required to execute the
code from command line is the depth of the tree. Then, the set of balancing
following the dimension of the problem and the type of mesh required is
automatic in PABLO. During this construction, a balancing process is made
so that there is a fair distribution of the octants between the process and a
spatial contiguity as possible, as discussed above in the chapter 2.

4.4.1 The weights calculation

After establishing the refinement and the balancing on nodes, each process
traverses the octants that belong to him locally once, and for each of them:

• a first study of neighbourhood allows us to build the identification key
where required;

• using the key (the neighbours for unbalanced meshes) the vectors of
axial distances from the octant to its neighbours are built;

• the vectors of axial distances are applied to compute the optimal local
minimization problem in order to the configuration (if the local con-
figuration through faces is uniform the five points stencil is applied);

• the linear problem is solved with PETSc, obtaining the weights ai,
they are stored on a vector of doubles;

• a second analysis of neighbourhood obtains the global indices of the
octants, and the integer vector of their values is devised;

• the vector of indices and the vector of weights are both used to add the
global values in the Mat object PETSc which describes the complete
physical model to solve.

The interprocess communication in this preliminary phase is provided
during the neighbourhood analysis; indeed during the local investigation
(through faces, edges and vertices) if a neighbour appertains to another
process is said ghost for that octant. When a ghost neighbour is evaluated,
PABLO allows us to obtain easily the informations contained; this commu-
nication is thus concealed to the user, who does not need to directly request
information at the adjacent processes. On the other hand, in each process,
at the beginning of the calculation, some data regarding the geographically
adjacent ghost points are retained so that these communications, to lighten
time calculations, are limited only to cases of real need, whereas access to
that information through of the local vectors is faster.
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4.4.2 Parallel solution of PDEs

We make use of PETSc [63] for the numerical solution of partial differ-
ential equations; this library is conceived for these kind of problems on
high-performance computers. The PorTable, Extensible Toolkit for Scien-
tific Computation (PETSc) is a suite of data structures and routines that
provides the building blocks for the implementation of large-scale applica-
tion codes on parallel (and serial) computers. PETSc uses the MPI standard
for all message-passing communication.

In the weights calculation is contained a part that build the Mat object
PETSc, called M , which resumes the numerical operator. In this second
part of the code, the interprocess communication is handled by its routines
through which we are able to:

• pre-processing phase: we define the right hand side terms on a Vec
object f ;

• define the Krylov (KSP) and preconditioner methods adapted to the
problem;

• solve the problem Mx = f ;

• post-processing phase: we extract x, compute errors and results.

The methods may vary depending on the problem; generally the chosen
Krylov subspace is Flexible GMRES (FGMRES) while we try to optimize
the preconditioning. For example, in the test case in 4.4.3 the resolution
choices are:

-pc_type asm

-pc_asm_overlap 8

-sub_pc_type ilu

-sub_pc_factor_levels 8

which define the overlapping between the processes of an Additive Schwartz
preconditioner with ILU sub-preconditioner.

KSP Outlines

A lot of computational problems require solving linear systems:

Ax = b. (4.9)

When these systems have small sizes in general they can be approached using
direct solvers; however, to solve partial differential equations generates A ar-
bitrarily large. For these reasons, iterative resolution methods have become
necessary in modern computations. The combination of a Krylov subspace
method and a preconditioner has recently spread in numerical codes for
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the iterative solution of linear systems [64]. The Krylov subspace methods
produce approximations xn to A−1b such that:

xn ∈ x0 +Kn(r0, A),

where x0 ∈ CN , with N number of unknowns, is any initial guess for (4.9),
r0 = b−Ax0, the residual vector, and Kn(r0, A) = {φ(A)r0|φ ∈ Pn−1} the
Krylov subspace at n-step generated by r0.

For an efficient solution, it is necessary to use preconditioning meth-
ods. Let M be a non-singular matrix in RN×N , which approximates A and
decomposes in M = M1M2. The preconditioned method solves:

A′x′ = b′, (4.10)

where A′ = M−1
1 AM−1

2 , b′ = M−1
1 b, x′ = M2x. The problems residuals are

related by
xn = M−1

2 x′n, rn = M1r
′
n.

Since the rate of convergence of Krylov projection methods for a partic-
ular linear system is strongly dependent on its spectrum, preconditioning is
typically used to alter the spectrum and hence accelerate the convergence
rate of iterative techniques. This concludes the advantages to properly adapt
the Krylov method to sub-preconditioner for our purpose.

Remark 4.4.1 (About FGMRES) The choice of the iterative method is
not an immediate process, not even the suitable type of preconditioning. In
this work, the use of FGMRES is preferred for its stability (an accurate anal-
ysis of FGMRES performances on ill-posed problems is given [65]). How-
ever, for indefinite and highly non-symmetric matrices (which is our case)
the performance of a given preconditioner can be unpredictable as proved by
Saad [66], who presented this algorithm in 1993.

The main difference between the standard GMRES and the flexible one
is that in each iteration the preconditioned vectors obtained solving (4.10)
are stored in memory and the solution is updated using them. Moreover, it
allows larger flexibility in the choice of solution subspace than GMRES , but
the memory increase for these spaces is offset by more speed convergence for
a solution.

Another advantage of the flexible GMRES in this work is its adaptivity
to mixed preconditioners to solve a given problem.

4.4.3 Code Scalability

To test the code scalability, we reproduced the test in section 4.3, with
equations:

κ(x)∆u(x) = −1.0, in G ∪ S, (4.11a)

[κ(x)∂nu(x)] = 0, on γ. (4.11b)



CHAPTER 4. NUMERICAL RESULTS 91

κ(x) is piecewise constant from 1 to 100, following the formulation (4.6). The
analytical solution is composed of the two paraboloids in (4.7) intersecting
on the circumference with radius 0.25.

The test investigated is on 228484 degrees of freedom with an adaptive
mesh refinement across the mollified discontinuity, where the depth of the
tree is 11 and the smallest cells have size ∆x = ∆y = 0.000488281 = 1/211.

The test has been executed on PlaFRIM; each node used has the follow-
ing properties:

• 2 Dodeca-core Haswell Intel R©Xeon R©E5-2680 v3 @ 2,5 GHz

• 128Go de RAM

• Infiniband QDR TrueScale: 40Gb/s

• Ethernet : 10Gb/s

Figure 4.26: Time comparison for different parallel cases (strong scalability)

Figure 4.26 shows the calculation time for the three main operations of
the execution. Except for the first diagram showing the serial results, the
nodes are optimized using all the available processes (24 for each node).
This means, for example, that 384 processes are distributed on 16 nodes,
fully occupied in computation.

The time comparison highlights that the creation of the mesh does not
have significant parallelism advantages. This result is due to the fact that the
load balance on nodes is not recursive on each level of the tree. Meanwhile
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without intermediate balance, we can see an evident worsening on the serial
case (first column). On the other hand, we can see, for the two main code
operations, that as the number of processes is doubled, the execution time
is approximately halved.

Figure 4.27: Time partition for a complete execution. 48 cores distributed
on 2 nodes. Total execution time 29 sec(s)

In Figure 4.27, a time partition is presented. This execution concerns
48 processes (2 nodes). We can highlight that the most expensive operation
is the parallel solver, while the weights calculation occupies only 13% of
the complete execution. With Others Operations are implied the data con-
structions necessary for the complete resolution (right hand side imposition,
boundary conditions, and go on) that employ a negligible amount of time.

In Figure 4.28, a weak scalability result is presented. To achieve this
test, solving still equations (4.11a)-(4.11b), we applied a uniform mesh over
the domain and we considered 4096 degrees of freedom for each processor.

We quadruple the degrees of freedom and the processors at the same
time. We expect to preserve the resolution times for the two main blocks,
and we can actually see how the process on the octants (in light blue) is
performing, which is almost constant. This test allows us to check the good
scalability on the octants in weighing and computing the matrix operations.
On the other hand the Laplacian resolution time grows by a factor of 0.5,
but we remember that the resolution time is dependent of the degrees of
freedom.
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Figure 4.28: Time comparison for different parallel cases (weak scalability)
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Chapter 5

The Heat Equation
Applications

We introduced the phase-changing material (PCM) on which we would like
to apply our numerical method. We cited as example that the physical
interpretation of the Laplace equation with Dirichlet boundary conditions
is a heat application through the surface of a domain which will reach a
temperature up to a steady state inside; meanwhile for Neumann boundary
conditions, we face an isolated boundary (see [1]-[2]). In this chapter, we
explain the problem and we study in detail the real applications we have
referred to. It is initially proposed to derive the heat and diffusion equation
and then more meticulously analyse the properties of the PCM by presenting
some numerical tests. The concluding part of this thesis therefore explains
the bases of application of our method in real and environment applications.

5.1 Heat Conduction

Heat is a form of energy that moves from warmer regions to cooler areas
of a body. The study of heat conduction is mostly based on the analysis
of the temperature distribution, which we will denote with u(x), where x
represents the spatial and time coordinates. It is possible to determine the
heat flow in a region from u(x) often subject to appropriate boundary and
initial conditions.

We suppose a homogeneous and isotropic conducting material; thus, the
variables governing the heat conduction phase are independent from their
spatial position. Let ∆Q be the amount of heat un+1−un in time ∆t, where
un = u(x, y, z, tn) represents the generic temperature on a point at time th.
The amount of heat in a volumetric domain, Ω with area A = A(Ω), is
proportional to the rate of decrease in temperature u. In other words, given
q, a vector of heat flow, we can resume this dependency with:

q = −κ∇u, (5.1)

95
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where κ is the thermal conductivity of the material. The total heat flux
in unit time, leaving the surface across A is so obtained:∫ ∫

A
q · dA =

∫ ∫
A

(−κ∇u) · n dA. (5.2)

The quantity of heat entering the surface is given by:∫ ∫
A

(κ∇u) · n dA =

∫ ∫ ∫
Ω
∇ · (κ∇u) dΩ. (5.3)

The heat dQ contained on a part of volume dΩ, with ρ the density of the
material and c the specific heat is:

dQ = (ρc)u dΩ. (5.4)

Meanwhile, the increase of heat in the conducting body is:

dQ

dt
=

d

dt

∫ ∫ ∫
Ω

(ρc)u dΩ =

∫ ∫ ∫
Ω

(ρc)
∂u

∂t
dΩ. (5.5)

Remembering that we supposed an homogeneous material, κ is constant in
space; thus we obtain:∫ ∫ ∫

Ω
κ∇ · (∇u) dΩ =

∫ ∫ ∫
Ω

(ρc)
∂u

∂t
dΩ (5.6)

⇓∫ ∫ ∫
Ω

(κ∇ · (∇u)− (ρc)
∂u

∂t
) dΩ = 0 (5.7)

⇓

(since we used an arbitrary volume dΩ)

κ∇ · (∇u) = κ∆u = ρc
∂u

∂t
, (5.8)

thus, we obtain the heat conduction equation, developed by Joseph Fourier,
i.e.

α∆u =
∂u

∂t
, (5.9)

where α = κ
ρc is named thermal diffusivity of the conducting material. The

thermal diffusivity has an intrinsic relationship with heat propagation: the
higher its value, the faster the propagation will be.

Remark 5.1.1 When the material reaches the steady state temperature, the
problem reduces to Laplace’s equation:

∆u = 0.



CHAPTER 5. THE HEAT EQUATION APPLICATIONS 97

Boundary Conditions: Physical Properties

Given the equation (5.9) over a domain Ω that represents the conducting
body, different cases are possible:

Dirichlet boundary condition. u = uD, on ∂Ω, indicates a bound-
ary surface is maintained at constant temperature, as example a fixed source
that influences the surface.

Neumann boundary condition. ∂u
∂n = uN , on ∂Ω, describes the

velocity of heat flow through the surface. The special case when uG = 0, as
example, represents a perfect insulated boundary.

Mixed boundary condition. u = uD on ΓD,
∂u
∂n = uN on ΓN , ∂Ω =

ΓD ∪ΓN , is the most common boundary condition for cases of heat conduc-
tion in solid regions. It describes part of the domain subject to heat sources
at constant temperature while another one describes the diffusion along the
surface.

The heat diffusion problem is related to initial conditions governing the
evolution in time. The initial boundary value problem can be well-posed
when a solution exists and it is the unique one.

5.2 Steady Heat Transfer Boundary Value Prob-
lem

We consider a composite media described on a domain Ω with a backing
part material (as example graphite) denoted with G and capsules filled with
a phase change material denoted with S, such that Ω = G ∪ S. Let γ be
the interface between S and G, ΓD the boundary part subjected to Dirichlet
boundary condition and ΓN the Neumann one.

We observe that the two materials have different physical properties; in
particular we would like to simulate a material where the conductivity term
κ abruptly varies between the two parts. Considering a general heat source
g(x), the temperature at steady state is described so:

−∇ · (κ(x)∇u(x)) = g(x), x ∈ Ω = G ∪ S (5.10)

with κ(x) = (κG(x), κS(x)) depending on the sub-domain considered. In
our particular hybrid material, we suppose that the capsules change their
phase from solid to liquid, the porosity of media along γ is such that the
liquid state loses volume generating empty layers (Fig. 5.1). These layers
guarantee the continuity of heat fluxes but admit a jump in temperature:
considering n the normal unit vector towards γ, and R a constant repre-
senting the contact resistance, we resume these interface condition as

[κ(x)∂nu(x)] =0, on γ (5.11)

R(κ(x)∂nu(x))S =[u(x)], on γ (5.12)
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Figure 5.1: Empty layers generated by the liquid phase.

where [·] refers to the jump through the interface uG − uS .
We suppose that the material is contained in a tank, receiving and diffus-

ing heat on bottom and up parts, but totally insulated on lateral boundaries.
The domain Ω thus built, simplified for three salt capsules, is shown in figure
5.2.

Figure 5.2: Hybrid media simplified domain

The heat conduction problem, described until this moment, considering
the boundary conditions and (5.10)-(5.11)-(5.12) in a composite media with
a graphite matrix foam infiltrated by a PCM is described by the following
set of equations:

−∇ · (κ(x)5 u(x)) =g(x), in G ∪ S, (5.13a)

κ(x)∂nu(x) =0, on ΓN , (5.13b)

u(x) =uD(x), on ΓD, (5.13c)

[k(x)∂nu(x)] =0, on γ, (5.13d)

R(k(x)∂nu(x))S =[u(x)], on γ. (5.13e)

The discontinuity along the surface caused by the jump of conductivity
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κ causes a series of analytical obstacles about the existence for the solution
at boundary value problem (5.13). For results about the solution, we recall
the results in Chapter 1.

Nomenclature
κ Thermal conductivity Wm−1K−1

u Temperature ◦C
ρ Density kgm−3

C Heat capacity JK−1

La Latent heat of fusion Jg−1

R Thermal resistance m2KW−1

t Time s

5.3 Boundary Layer Approach

In this section, we propose an analytical solution that aims to simulate the
jump of temperature of the model (5.13), where we choose g(x) = 1 for
analytical purposes; for simplicity, the model is derived in one dimension
in radial coordinates; however, two-dimensional tests of convergence are
presented. We simulate the physical absence of conductivity in a fictitious
layer in order to obtain a piecewise continuous solution that jumps along
the layer.

As shown in Fig. 5.3 from r = rl = 0, we have three values of κ, respec-
tively κm, κa and κp, distributed on the subintervals [rl, rm[, [rm, rp], ]rp, R]
(0 ≤ rl ≤ rm ≤ rp ≤ R) with temperatures on the extremes 0 ≤ tl ≤ tm ≤
tp ≤ tR.

Figure 5.3: One dimensional sub-interval containing the fictitious layer.

Let tR be the temperature on R. The κa part is in the interval [rm, rp]
with temperatures tm and tp. In what follows, we define δ such as δ = rp−rm;



CHAPTER 5. THE HEAT EQUATION APPLICATIONS 100

we impose the value of κa depending of δ:

κa = αδ,

rp = rm + δ.

Let us analyse the case of left boundary condition on a subinterval; we
define tL as a temperature limit on rL 6= 0 (which can be in our case rm or
rp, namely the left boundary), κ the conductivity term, and d an additional
value. We are looking for a function φ(r, tL, d, κ, rL) such that, for both
subintervals [rm, rp], ]rp, R], its derivative on rL is equal to d and globally:

∂r(κr∂rφ) = r1. (5.15)

We look for a solution h(r) of (5.15). Integrating both sides of the equation
we have:

∂rh(r) =
(κrL d+ 1

2(r2 − r2
L))

κr
(5.16)

⇓

h(r) =

∫
r

(κrL d+ 1
2(r2 − r2

L))

κr
=

r2

2 + log(r)(2dκrL − r2
L)

2κ
. (5.17)

h0 is its limit to rL, and h(r) derivative on rL is equal to d:

h0 = lim
r→rL

h(r) =

r2L
2 + log(rL)(2dκrL − r2

L)

2κ
. (5.18)

Then we define:

φ(r, tL, d, κ, rL) = h(r)− h0 + tL =

= tL +
r2

2 + (2dκrL − r2
L) log(r)

2κ
−

r2L
2 + (2dκrL − r2

L) log(rL)

2κ
. (5.19)

Where if ·L stands for the generic value on the left boundary condition. The
function defined in (5.19) is such that its derivative on rL is equal to d and it
satisfies (5.15). For construction, however, in order to complete the steady
diffusion problem internal boundary conditions have to be validated. Then
we impose:

• the continuity of the solution and its fluxes at the interfaces on rm and
rp: in order to satisfy (5.13d);

• the temperature on R equal to tR.

1We remind that r∂r = x∂x + y∂y
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We build a function ω(r) : [0, rm] → R such that its derivative on 0 is
zero value, ω(0) = c and it satisfies (5.15):

ω(r) = c+
r2

4κm
.

The unknowns are c (temperature on 0), dm the right derivative on rm, tm
the temperature on rm, tp the temperature on rp and dp the right derivative
on rp. We have thus five equations for five unknowns:

κm∂rω(rm) =κadm,

ω(rm) =tm,

κa∂rφ(rp, c, dm, κa, rm) =κpdp,

φ(rp, tm, dm, κa, rm) =tp,

φ(R, tp, dp, κp, rp) =tR.

This system is solved with the solutions:

c =−
κaκmR

2 + κaκpr
2
m − κmκpr2

m − κaκmr2
p + κmκpr

2
p − 4κmκaκptr

4κmκaκp
,

(5.20a)

tm =−
κaR

2 − κpr2
m − κar2

p + κpr
2
p − 4κaκptr

4κaκp
, (5.20b)

dm =
rm
2κa

, (5.20c)

tp =−
R2 − r2

p − 4κptr

4κp
, (5.20d)

dp =
rp

2κp
. (5.20e)

We evaluate the difference J between the temperatures and the fluxes F1, F2

on the interfaces:

J = tp − tm =
r2
p − r2

m

4κa
,

F1 = κadm =
rm
2
,

F2 = κpdp =
rp
2
.

We remind the definition of a real value δ in (5.14). From a study on limit
to zero of δ, calculating the jump of temperature in function of this limit,
we obtain:

lim
δ→0

J = lim
δ→0

(rm + δ)2 − r2
m

4αδ
= lim

δ→0

rm + δ

α
=
rm
α
.
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A calculus at limits, taking α = 2
β (eq. (5.13e)), arises a proportionality

between the jump J and the flux F1, such that:

βF1 =
rm
α

= lim
δ→0

J

This calculus of limit complete the proofs for the hypothesis proposed in eq.
(5.13), for this kind of modelisation with a fictitious boundary layer support.
Resuming, on different subintervals and their relative variables using (5.20),
the function that satisfies the constraints is:

• r ∈ [0, rm[:

ω(r) = c+ r2

4κm
=

−
κaκmR

2 + κaκpr
2
m − κmκpr2

m − κaκmr2
p + κmκpr

2
p − 4κmκaκptr

4κmκaκp
+

r2

4κm
;

• r ∈ [rm, rp] :

φ(r, tm, dm, κa, rm) = φ(r,−κaR2−κpr2m−κar2p+κpr2p−4κaκptr
4κaκp

, rm2κa
, κa, rm);

• r ∈]rp, R] :

φ(r, tp, dp, κp, rp) = φ(r,−R2−r2p−4κptr
4κp

,
rp

2κp
, κp, rp).

5.3.1 Numerical Results

The model proposed above provides a new subdomain where the conduc-
tivity term κ(~x) tends to 0 Wm−1K−1 to guarantee a discontinuity on the
internal part. An example is given in Figure 5.4), where the values κm and
κp are, respectively, 1 and 10 Wm−1K−1. The discontinuity is described as
a double mollified function (similar to the one proposed in 4.3):

κ(x) = α+(β−α)

(
tanh (σ1 · Φ1(x)) + 1

2

)
+(ψ−β)

(
tanh (σ2 · Φ2(x)) + 1

2

)
,

(5.21)
where Φ(x)1,2 are the distance functions with respect to the interfaces of
discontinuity at radius rm and rp respectively, and σ1,2 are the regularisation
parameters.

5.3.2 The Mesh Refinement Strategy

As seen in Section 4.3, using an adaptive mesh refinement approach is the
best strategy to focus the mesh along the mollification parts with a larger
layer to cover the finite difference stencil. On the other hand, the model
above proposed that we reconstruct on the squared domain [0, 1] × [0, 1]
converges with δ → 0. As a result of these observations the mesh refinement
follows the criteria:
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Figure 5.4: Double mollified function κ(~x) from 1 to 10.

• the maximal depth of the tree is fixed from M = 9 to M = 14;

• the δ-layer zone is defined proportionally to M ;

• the squared domain is initially uniformly meshed with level M − 3;

• from M − 3 to M , the mollified function (5.21) is evaluated on each
octant. If the octant lies on the regularization zone2 it splits into four
children;

• balance constraints are applied on the jump zones.

The regularization of the layer zone in order with the level of the tree
allows us to obtain a simulation of the limit of δ → 0 with the fictitious
layer, which decreases with O(∆x) as shown in figure 5.5.

The convergence results for this test case are given in 5.1

5.4 The Heat Conduction Problem With Phase
Change In A Composite Media

By enthalpy, we mean measurement of energy in a thermodynamic system.
It is the thermodynamic quantity equivalent to the total heat content of a

2The regularization zone is defined by |∇κ(x)| > ε, where ε is a small user defined
parameter.
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(a) Level 9 (b) Level 10 (c) Level 11

Figure 5.5: Boundary layer zone behaviour in order with the level of refine-
ment.

∆x Norm Infty Norm 2 Mesh Points

1.953 · 10−3 1.96 · 100 1.024 · 10−2 20500
9.766 · 10−4 9.885 · 10−1 5.108 · 10−3 64180
4.883 · 10−4 4.913 · 10−1 2.524 · 10−3 211324
2.441 · 10−4 2.449 · 10−1 1.254 · 10−3 773056
1.22 · 10−4 1.224 · 10−1 6.256 · 10−4 2959756
6.103 · 10−5 6.131 · 10−2 3.131 · 10−4 11167768

Table 5.1: Convergence results with δ = ∆x( 2
2M−1 ).

system and includes the internal energy plus the product of pressure and
volume. Enthalpy is defined as a state function that depends only on the
prevailing equilibrium state identified by the system’s internal energy, pres-
sure, and volume.

We assume that the internal salt capsules change their phase from solid
to liquid at constant temperature uf . We also assume the specific heat and
the thermal conductivities are phase-wise constant. The idea of the enthalpy
approach is based on the fact that the energy conservation law, expressed
in terms of enthalpy and temperature, together with the equation of state
contain all the physical information needed to determine the evolution of
the phases.

We consider −q ·n to be the heat flux into the volume Ω. With constant
pressure, we consider a new function, H(u), that varies in volume with the
fluxes along the surface, such that:

∂t

∫
Ω
H dΩ =

∫
∂Ω
−q · n ∂Ω.

Given the relationship of the enthalpy with the heat flux, if the total
variation of enthalpy ∆H > 0, the heat processes is said to be endothermic;
in the opposite case, it is exothermic (Fig. 5.6).
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Figure 5.6: Enthalpy behaviour in order with the heat flux.

We recall the law (5.1), which allows us to rewrite the relationship above
as:

∂t

∫
Ω
H dΩ =

∫
∂Ω
κ∇u · n ∂Ω

⇓

(Using the divergence theorem)

∂tH −∇ · (κ∇u) = 0, (5.22)

obtaining the general heat conduction equation. The enthalpy H(u) can be
defined as a function of the latent heat

H(u∗) =

∫ u∗

0
ρC du+ ρf(u)La, (5.23)

where La is the latent heat of fusion, f(u) is a function that describes the
liquid fraction and C is the specific heat.

Adding the new hypothesis to the diffusion problem (5.13), we can re-
sume the heat diffusion problem in a composite media, with internal heat
sources, internal interfaces with discontinuities, and boundary conditions,
using the following equations:

∂tH(u(x))−∇ · (κ(x)5 u(x)) =g(x), in G ∪ S, (5.24a)

κ(x)∂nu(x) =0, on ΓN , (5.24b)

u(x) =uD(x), on ΓD, (5.24c)

[k(x)∂nu(x)] =0, on γ, (5.24d)

R(k(x)∂nu(x))S =[u(x)], on γ. (5.24e)
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5.4.1 Enthalpy Formulation

Enthalpy exhibits a jump at the points where u(x) = uf , which in some cases
may provoke numerical instabilities. In order to overcome these difficulties
often linearised expressions of the enthalpy and the liquid fraction are used.

Denoting the variables with G, if concerning the host material, with S if
concerning the phase change material, and with s and l if differences between
solid and liquid states exist, we suppose that:

• the specific heat C is phase-wise constant with values CG, C
s
S , C

l
S ;

• the density ρ is not affected by the phase change with values ρG, ρS ;

• the conductivity κ is a piecewise continuous function or constant with
values κG, κS .

In the field of phase changing materials V.R. Voller [67] proposes an
overview on the solutions of problems concerning nonlinear phenomena. His
analysis involves the tracking of a sharp during the change boundary due to
phase change. The enthalpy formulation used by Voller is taken up by F.
Jelassi, M. Azäıez and E. Palomo Del Barrio in [68], in which they define
the volumetric enthalpy function and the liquid fraction as follows:

H(u) =

{
[(ρC)sS(1− f(u)) + (ρC)lSf(u)]u+ Laf(u), in S,

(ρC)Gu, in G.
(5.25)

f(u) =
1

2
+

1

2
tanh(σ(u− uf )), (5.26)

with σ a regularization parameter.
In the numerical test presented in this work we use a linearised formu-

lation of enthalpy such that:

H(u) = (ρC)Gu, in G, (5.27)

on S depending on the melting temperature uf and a user-defined parameter
ε

H(u) =


(ρC)sSu if u < uf − ε,
(ρC)sSu+ ρlSLaf(u) if uf − ε < u < uf + ε,

(ρC)lSu+ ρlSLa if uf + ε < u.

(5.28)

f(u) =


0 if u < uf − ε,
u−uf+ε

2ε if uf − ε < u < uf + ε,

1 if uf + ε < u.

(5.29)

The formulations (5.28)-(5.29) are inspired by X. Jin et al. [69], where a
central difference scheme is applied in space and a fully implicit scheme in
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time. They used this method to compare two of the most common different
heat transfer models for phase change materials: the effective heat capacity
method and the enthalpy method. They conclude that for the heat capacity
method a significant error is obtained for some attribution in controlling the
PCM fusion temperature; on the other hand, the enthalpy model needed
more computing time. A fast implicit finite difference method for the anal-
ysis of phase changing problems is given by Voller in [70]- [71], where the
new source method is presented. This method consists in adding a source
temperature for the heat equation; this tool would allow to compute by iter-
ative steps the latent heat appearing during the phase changing at melting
temperature.

5.4.2 Pseudo-Time Scheme

To solve this kind of problem, the classical methods to solve PDEs are often
combined to approaches that allow us to neglect the internal discontinu-
ities. In [68] finite element substructuring algorithm is presented for steady
and unsteady problems. The authors used the interface Steklov–Poincare
operator and applied an iterative sub-structuring method. This way of de-
scribing and solving the problem is well adapted to the specificities of the
studied composites, which include thermal contact resistances at the inter-
face, giving rise to temperature jumps at these locations. An analysis of the
latent heat and its properties during the liquid phase is given by [72], which
offers various combinations of conductivity values for the hybrid material
mentioned, studying the interaction of graphite foam in the phase-change
material and the turbulent flow.

To discretize problem (5.24), we introduce a fictitious fixed time step
in the time-marching scheme obtaining an implicit scheme. Considering
(5.24a) with g(x) = 0 at time t = 0s (absence of internal heat sources when
the system is turned off at the beginning of computation), we rewrite the
expression for a general time step tn, with ∆t = tn+1 − tn, and with un the
temperature at time tn.

H(un+1)−H(un)

∆t
−∇ · (κ∇(un+1)) = 0, (5.30)

where for simplicity we denote with κ the piecewise continuous κ(x) =
(κG(x), κS(x)). Let be ε = 1

∆t :

(5.30)⇒ εH(un+1)−∇ · (κ∇(un+1)) = εH(un). (5.31)

We introduce a new variable T , fictitious temperature, adding a pseudo-
time term ∂T

∂τ to equation (5.31), and we assume:

• Tn = un for the generic time step tn;

• T0 = un as iterative initial condition.
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We obtain an internal loop from the solution at time tn to the tn+1 one,
such that

Tj+1 − Tj
∆τ

+ εH(Tj)−∇ · (κ∇(Tj+1)) = εH(Tn), ∀j ∈ {0, . . . , Jmax}

⇓
Tj+1

∆τ
+−∇ · (κ∇(Tj+1)) = εH(Tn) +

Tj
∆τ
− εH(Tj), ∀j ∈ {0, . . . , Jmax}.

(5.32)
The loop on j is such that:

• from 0 to Jmax we are able to compute εH(Tn)+
Tj
∆τ −εH(Tj) since Tn

and T0 are given by hypothesis and H(·) is obtained from (5.28)-(5.29);

• we can compute the discretization matrix
Tj+1

∆τ +−∇·(κ∇(Tj+1) easily
with our method using the tools seen above with an additive term along
diagonal elements.

5.4.3 Convergence Versus The Steady State

We have not specified any value, until now, for Jmax; if the solution is
smooth enough Jmax can be fixed as small as needed for each relaxed time
step, obtaining a convergent approach, but since the temperature is not
known a priori, we applied a variable value Jmax, determined during the
computation.

The formulation (5.32) tends to (5.30) as long as

Tj+1 − Tj
∆τ

→ 0.

Thus, we determine j + 1 = Jmax if and only if

||Tj+1 − Tj ||∞ < ε1.
3 (5.33)

When (5.33) is satisfied, we impose the new solution at time step tn+1

un+1 = TJmax , (5.34)

that leads back to equation (5.30). At the same time, the temperature in
time converges to steady state, equilibrium of heat internal and external
sources for the composite media, as long as

H(un+1)−H(un))

∆t
→ 0.

Thus, when a new solution un+1 is computed two cases are possible:

• the new solution satisfies the convergence condition

H(un+1)−H(un)

∆t
−∇ · (κ∇(un+1)) < ε2

4, (5.35)

3ε1 is an user defined tolerance.
4ε2 is an user defined tolerance.
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which approximates (5.30) as good as possible in calculus at a limit
for ε2 → 0;

• the condition (5.35) is not satisfied, the iterative procedure is repeated
for the new initial condition T0 = un+1, reaching the solution for the
subsequent time step until convergence.

5.4.4 Numerical Results

Our numerical simulations provides different number of molten salt capsules
where we aim to solve the problem (5.24). We described the enthalpy during
the computation using the formulations (5.28)-(5.29)

Numerical Domain Conditions

The presented method is applied to solve the heat diffusion problem on
composite materials. We propose a boundary part of the domain insulated,
the other part with a heat source, and variable positions and properties for
salt capsules. We solve the problem on the logic unit square Ω = [0, 1]×[0, 1]
as the container of our composite material (see figure 5.7).

∂tH(u(x))−∇ · (κ(x)5 u(x)) =0, in G ∪ S,
κ(x)∂nu(x) =0, on ΓN ,

u(x) =uD, on ΓD,

[k(x)∂nu(x)] =0, on γ,

R(k(x)∂nu(x))S =[u(x)], on γ.

Diffusion Test Case

We applied the pseudo-time scheme on a case inspired by tests presented
in [7] and [73]. In this first test, we suppose three encapsulated parts. The
three capsules are similar but not of the same dimensions; however, they
have common physical properties (conductivity, latent heat, density,...).

We impose the initial temperature of the system u0 = −10◦C, the melt-
ing temperature of the PCM material at uf = 0◦C, a part of ∂Ω subject
to Dirichlet boundary condition ΓD as a continuous constant heat source of
uD = 20◦C. Meanwhile, the other part of boundary ΓN is totally insulated
with Neumann boundary conditions. Moreover, in this test, the resistance
term for the material tends to zero from ∼10−5 to ∼10−9 m2KW−1; for sim-
plicity, we imposed this term R at zero; also, tests with different values of
R were done but not presented because of the low influence of its variation.

We tested different values of the conductivity κ, supposing for the con-
ductivity at liquid state equals the solid one, using the mollified formula-
tion (4.6) (Fig.5.8b). The first and simplest case proposed presents La =
2.1Jg−1, CG = 10JK−1CsS = C lS = 21.5 JK−1.
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Figure 5.7: Numerical domain, host media containing three PCM capsules.

The time step considered is ∆t = 0.1s; the pseudo-time between two
solutions is ∆τ = 0.01.

We impose the temperature, needed to compare the error progress, com-
puted as the inverse function of enthalpy. We remember that the latent heat
of the host material is zero-value:

T =


H
ρC if u < uf − ε,
H−ρLa

ε−uf
2ε

ρC+ ρLa
2ε

if uf − ε < u < uf + ε,

H−ρLa
ρC if uf + ε < u.

(5.36)

For the presented test we refined the mesh until level 9 of the tree using
an AMR approach to focus the salt parts; meanwhile, the host part is at
level of refinement 6, obtaining in total 133306 degrees of freedom; balancing
constraints are applied to control the jump (see Fig. 5.8a).

Pseudo-Time Convergence

With respect to condition

Tj+1 − Tj
∆τ

→ 0,

a study of convergence for a pseudo-time processes is proposed in order
to analyse its convergence. The case reported in figure 5.9 refers to the
amount of time, from 2.1 seconds to 2.2 seconds, taking in example the last
10 iterations.

In figures 5.10, the front propagation of temperature at different time
steps is presented; for the last one, we reported the liquid fraction compu-
tation, which highlights the front of fusion temperature uf for two liquefied
spheres and the last one still in solid state.
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(a) Mesh refinement zoom on zones of interest
(b) Example test (κG, κS) = (1, 10)

Figure 5.8: Refinement of computational domain zoom (left) and conduc-
tivity term (right).

Figure 5.9: Rate of convergence of internal pseudo-time relaxation. From
tn = 21∆t to tn+1 = 22∆t. Convergence reached at Jmax = 19.

We talked about the fact that the conductivity of the material, in the
face of its high capacity, is low compared to that of the conductive material
that supports it. We inversed the problem, retaining the conditions pro-
posed with (κG, κS) = (100, 1) Wm−1K−1 until reaching convergence. We
imposed ε2 = 10−6.

The time step considered is ∆t = 0.07s; the pseudo-time between two
solutions is ∆τ = 0.01. The convergence is obtained approximately at
tn∼ 30∆t because of the good conductivity of graphite foam. We will see,
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(a) Temperature at tn = ∆t (b) Temperature at tn = 5∆t

(c) Temperature at tn = 8∆t (d) Liquid fraction evaluation at tn = 8∆t

Figure 5.10: (κG, κS) = (100, 1) Wm−1K−1. Propagation front of temper-
ature uf in time and liquid fraction (right bottom).

in what follows, parameters that better describe the real physics of the ma-
terials.

Figure 5.11: (κG, κS) = (100, 1). Temperature at tn = 2∆t
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Charge Time Test

The main idea of this test is to measure and compare the charge time of
a system in the presence of molten salt. We suppose we to have three salt
capsules aligned in square domain Ω = [0, 1]× [0, 1], as in Figure 5.12, with
left and right walls insulated and heat coming from bottom to upper side.
We define time of charge of this system as the time that occurs from the
initial temperature to the complete fusion of salt capsules; the temperature
u is fixed on boundaries as uD = 400◦C at the lower wall and uD = 300◦C
at the upper one.

The composite material physical properties are given in [74], which stud-
ied the numerical effect of an increasing resistance for these kinds of prob-
lems. Other details are given in [75]. We briefly resume the parameters they
computed numerically: the fusion temperature of PCM is uf = 306◦C, the
conductivity term has values (κG, κS) = (40, 0.514) Wm−1K−1, the latent
heat of fusion is set at 187 Jg−1, and the density (ρG, ρS) = (240, 1900)
kgm−3.

Figure 5.12: Conductivity term (κG, κS) = (40, 0.514) Wm−1K−1.

Figure 5.13: Liquid fraction propagation front: three capsules.
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Figure 5.14: Liquid fraction propagation front: six capsules.

A first test compared the charge time for a system composed of three
capsules of radius 0.1 aligned in the centre of the domain. The second one
is composed of six capsules aligned in two columns of three PCM sections of
radius 0.1. The time step is coherent with the physics of materials imposed
at ∆t = 200s for both cases.

In Figures 5.13 and 5.14, the propagation liquid fraction along the numer-
ical domain is presented. Similarly, the temperature behaviour is presented
in Figures 5.15 and5.16, where the melting temperature uf is used as an
intermediate value (white-coloured) to describe the cooler zones at best.

Figure 5.15: uf propagation front for three capsules case.

We compared the times of these simulations. We expected that increas-
ing the surface of salt capsules would correspond to an increase in conver-
gence time; in fact, the low conductivity of salt creates a clear slowdown
on the heat temperature propagation. We computed a convergence time for
the three capsules case of tn∼ 120∆t∼ less than 7 hours and
tn∼ 150∆t∼ more than 8 hours for the second one. The comparison of
temperatures respectively after 4200sec and 6000sec is given in Figures 5.17
and 5.18. The comparisons highlight a more rapid propagation of tempera-
ture where the surface of graphite is prevalent.

We remark that we did not compare the code times because, following
the salt surfaces, we modified the degrees of freedom between the two cases;
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Figure 5.16: uf propagation front for six capsules case.

Figure 5.17: uf propagation front comparison. tn = 21∆t.

Figure 5.18: uf propagation front comparison. tn = 30∆t.

however, the simulations ran on 48 cores, reaching convergence in less than
four hours for both cases.

Once we determine an increase in time proportional to salt surface in
symmetric and regular cases, we can change the geometry with the more
complex presence of salt capsule. The last result for heat diffusion in this
composite material is given using ten capsules with different dimensions and
irregular position. In Figure 5.19 the conductivity term is presented. We
retain the physical properties referred above. The liquid fraction front
propagation at different times is shown in Figure 5.20; moreover, in Fig-
ure 5.21, the propagation of melting temperature (uf = 306◦C) is given.
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Figure 5.19: Conductivity term (κG, κS) = (40, 0.514) Wm−1K−1.

Figure 5.20: Liquid fraction propagation front: ten sparse capsules.

This test makes the increase in convergence times more apparent; in fact,
the material reaches steady state stability after more than 11 hours ∼ , over-
coming tn = 200∆t; meanwhile, the code’s execution time, as above on 48
processors, remains under two ours.

5.5 Preliminary Conclusion

In this chapter, we presented an analysis of the heat equation, the physical
properties that characterize the heat diffusion in general, and mixed mate-
rials in particular. We presented a boundary layer approach able to impose
the jump through internal boundaries. We proved the convergence in order
with the size of the mesh.

We further explored the problem of heat conduction in mixed materials;
in this part we presented the enthalpy term in detail, its analytical formu-
lation and the linearised one computed in our code. To solve the problem
in time, we devised an implicit scheme, and we served a pseudo-time relax-
ation. Thus, we obtained simulations in time for heat conduction problems
on composite media with a phase-changing material part encapsulated in
graphite foam. The presented results properly follow the physics expected,
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Figure 5.21: uf propagation front for ten sparse capsules case.

and we were able to prove the time-increasing dependence of the percentage
of both materials.

A future perspective is to extend the results in three-dimensions, adding
the term of resistance between the sub-domains. Moreover, further analysis
of dependency between convergence times and salt volumes are predicted.
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Conclusion

In this thesis we have proposed a numerical method to solve the elliptic
equation with mixed boundary conditions and discontinuous coefficients.
The problem is discretized on a hierarchical Cartesian quadtree-based grid
by a finite-difference method. The values on jumps are computed using
a minimization problem to extrapolate the finite-difference weights to en-
sure consistency and tend to second-order convergence where possible. This
computation guarantees the supra-convergence of the method globally. Also
most tests proved that where second order is established on the major part
of the mesh, globally second-order accuracy can be obtained. This is the
main strength and drawback of the discretization. It is a strong point be-
cause the method is easy to obtain, conceptually simple and coherent with
the real topology of concerned problems. On the other hand, it generates
difficulties for the obtained matrix that describes the discretization, which
is sparse and difficult to invert; this drawback requires special attention to
the choice on solvers in parallel.

First, the model problem was presented in detail. The many applications
that involve Poisson’s equations are associated with studies in the fields of
mechanics, physics of conducting media, electrostatics and gravitational po-
tential. The application proposed in this thesis is a heat-conduction prob-
lem, and in particular the category of variable coefficient Poisson equation
where coefficients abruptly change through different geometries included in
the resolution domain. The primary objective was to evidence the difficul-
ties that affect a Poisson problem with internal discontinuities and variable
coefficients; then we also reported a proof of existence for weak solutions of
our specific problem. We presented the strategies to overcome the obstacles
mentioned and possible alternative spatial discretizations that, let us remem-
ber, strongly affect the total cost of numerical calculation. To face complex
geometrical problems, standard discretization methods require multilevel so-
lutions that can result in being hard to compute; moreover, the geometry
might evolve in time, which would require a new discretization at each time
step. We listed different methods to define the vast category of resolutions
among which the current work is placed.

At the centre of each numerical method for solving differential equations
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is the way in which we discretize a continuous domain of interest in a grid
of many individual elements. We chose Cartesian meshes for their simple
structure in space distribution. However, since we use Cartesian grids, they
do not necessarily fit with the considered internal discontinuities as long as
a certain refinement is reached. Our contribution in this field is an adaptive
mesh refinement (AMR) method. The adaptive grid’s refinements propose
to work on simple discrete spaces on the graphic plane. For this reason, they
are represented by regular figures that are easy to manage. We conceived
the numerical domain with squares and cubes in two and three dimensions,
respectively; each square part was represented as a node of a quadtree, or
octree. In this thesis we analysed the duality of the grid, what is visually
represented, and the tree, which is a useful computational tool for our pur-
pose. The AMR approach allowed us to obtain accuracy in some parts of the
numerical domain, facing the problem of internal discontinuities for a vari-
able coefficient Poisson equation with a zoom in on regions of interest. This
is in general a common purpose of AMR approaches if compared to uniform
refinements that can result in being extremely costly. The use of quadrees
and octrees for dynamic refinement methods has become increasingly com-
mon, in particular for solving PDEs, as in our case. The advantages of these
structures as much as the technical cares they need are presented. The
spatial discretization in this work was optimized in parallel. The main com-
munications parts were almost automatic for construction and balancing of
the mesh; however, the ordering of these structures is not at all immediate:
it overcomes proximity problem on one hand, but creates sparsity for the
discretization on the other. This argument required an analysis; thus, we de-
voted a description of the possible orderings, giving comparisons and further
details about the chosen one: the Morton code. We explained the conse-
quences in code development, in particular the sparsity of the discretization
matrix that corresponds to the numerical resolution of the Poisson problem.
Moreover, we presented the manner to handle this difficulty in parallel by
providing a description of the solver used. We tested the performed code in
its parallel capability by giving a study of weak and strong scalability and
by highlighting the advantages in time, memory and precision of our AMR
approach; we could conclude, in general, that several proven advantages
broadly overcome the disadvantages given by the discretization.

The method proposed in this work was a finite-difference discretization
that locally treat the non conforming regions; each configuration of the
neighbourhood for the concerned octant was approached by the resolution
of a minimisation problem in order to optimize the truncation error. We
were able to ensure first-order of convergence; moreover, as the local linear
systems that we devised minimize the deviation from second-order accu-
racy, we could present the global tendency to second order of our method.
We explored the existent finite-difference methods conceived similarly, or
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on similar meshes, if compared with ours. The method proposed in the
current work is among the first finite-difference schemes to devise weights
stencils without the use of internal interpolations and fictitious points. We
also verified that our method can be applied on non-graded grids without
changing its reasoning, and that, where first-order approaches like penaliza-
tion are combined with our resolution, the computation retains the expected
convergence. Our tests involved two and three dimensions, and completed
the framework to demonstrate the good arrangement of the finite-difference
method on hierarchical meshes with non-conforming zones. Future perspec-
tives in this study are to combine our method to geometries and discon-
tinuities more complex than those presented, considering meshes that can
variate in time, thus implementing a dynamic AMR approach.

Concentrated solar power has the desirable properties of being a clean,
renewable, and a sustainable energy source. The ability to store heat and
produce power beyond daylight hours is their unique advantage in contrast
to other renewable energy sources. In order to provide electricity during
off hours for the system, phase-changing materials (PCMs) have become
popular. The purpose is not only to avoid the natural absence of solar
resource during night (∼ 15) hours, but also to produce power during this
time. One objective of this thesis was to devote the method proposed to
the application of heat diffusion in hybrid materials with phase-changing
properties. Also if the latent heat of these materials makes them interesting
to design, the process described as thermal energy storage (TES) requires a
complete study to be optimal. Moreover, the existent tested TES systems
are not cost competitive with sensible heat storage; different candidates for
the host material, coupled with PCM encapsulations, have been studied,
such as metallic meshes and carbon fibres. We offered, among our tests,
results about the time of charge with respect to the surface occupied by
both media: the PCM salt and the foam of graphite in our case; a future
perspective is to extend this study in three dimensions. We simulated two-
dimensional sections of heat diffusion in one of all possible cases; the future
interest would be to compare other materials in order to optimize in two
and three dimensions an entire TES system such that: the molten capsules
are able to liquefy totally during day hours, but not too fast to avoid the
possibility of evaporation.

This objective requires further analysis, not only on heat propagation due
to the percentage of space occupied by the PCM compared to its container,
but also on the manner in which the capsules interact among themselves
following positions, dimensions, physical properties (such as conductivity,
capacity and latent heat), and so on. The contribution given in the last
chapter of this thesis constitutes a basis for more complex studies; the most
improvement done for heat conduction applications on composite media is
to create simulations with different geometries and parameters for the con-
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cerned materials, which allows us to provide, in the future, more detailed
simulations in order to optimize the problems that, at present, involve con-
centrated solar power in thermal energy storage systems.
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Solution of the variable coefficient Poisson equation
on Cartesian hierarchical meshes in parallel:
applications to phase changing materials

Abstract

We consider problems governed by a linear elliptic equation with varying
coefficients across internal interfaces. The solution and its normal derivative
can undergo significant variations through these internal boundaries. We
present a compact finite-difference scheme on a tree-based adaptive grid
that can be efficiently solved using a natively parallel data structure. The
main idea is to optimize the truncation error of the discretization scheme as
a function of the local grid configuration to achieve second order accuracy.
Numerical illustrations relevant for actual applications are presented in two
and three-dimensional configurations.

Key Words: AMR, octree, finite difference, PDEs discretization, heat
equation, Poisson equation, internal discontinuities.

Solution du problème de Poisson avec coefficients
variables sur maillages Cartésiens hiérarchiques en
parallèle: applications aux matériaux avec
changement de phase

Résumé

On s’interesse aux problèmes elliptiques avec coefficients variables à travers
des interfaces intérieures. La solution et ses dérivées normales peuvent subir
des variations significatives à travers les frontières intérieures. On présente
une méthode compacte aux différences finies sur des maillages adaptés de
type octree conçues pour une résolution en parallèle. L’idée principale est
de minimiser l’erreur de troncature sur la discretisation locale, en fonction
de la configuration du maillage, en rapprochant une convergence à l’ordre
deux. On montrera des cas 2D et 3D des résultat liés à des applications
concrètes.

Mots clés: AMR, octree, differences fines, discrétisation équations aux
dérivées partielles, équation de la chaleur, discontinuités intérieures.


