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Abstract

Modelling of the hydrodynamics of bubble columns using a
two-fluid model coupled with a population balance approach

The simulation of bubble column reactors under industrial operating conditions is
an exciting challenge. The main objective of this work is to predict the bubble size,
in turn interconnected with the reactor hydrodynamic conditions, with computa-
tional models, by modelling bubble breakage and coalescence. Experimental data
are collected for model validation, including bubble size measurements with an in-
novative cross-correlation technique. Experiments are carried out with tap water
and demineralised water, with or without the addition of ethanol, and gathered
results show that additives reduce coalescence and lower the mean bubble size.
Two different spargers are used, in order to decouple the investigation of breakage
and coalescence. The experimental data set is used to validate our unsteady three-
dimensional Eulerian-Eulerian CFD simulations. A drag law for oblate bubbles
is considered, together with a factor that accounts for the swarm effect. Several
turbulence models are tested. The contribution of the bubbles to scalar mixing
is assessed. To predict bubble size, a population balance model is coupled to the
hydrodynamic model and is solved with the quadrature method of moments. A set
of breakage and coalescence kernels is proposed, capable of predicting the bubble
size for different operating conditions. Scale-up effects are also investigated.

Keywords Bubble columns, Bubble size, Computational fluid dynamics, Popu-
lation balance modelling, QMOM.
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Résumé

Modélisation de l’hydrodynamique des colonnes à bulles selon
une approche couplant modèle à deux fluides et bilan de
population

La simulation de réacteurs à bulles en régime industriel est un grand défi. L’objectif
principal de ce travail est la prédiction de la taille des bulles à l’aide d’un modèle
numérique de bilan de population, basé sur la modélisation des phénomènes de
brisure et de coalescence, et pouvant être couplé aux conditions hydrodynamiques
présentes dans les réacteurs. Différentes données expérimentales sont obtenues
pour valider le modèle. La taille des bulles est mesurée à l’aide d’une technique
innovante de corrélation croisée. Les essais, réalisés en eau du réseau (partiellement
contaminée) et en eau déminéralisée avec ajout éventuel d’éthanol, montrent que les
additifs réduisent la coalescence et diminuent la taille moyenne des bulles. Deux
distributeurs du gaz différents sont utilisés pour découpler l’étude de la bri-sure
et de la coalescence. Les données expérimentales sont utilisées initialement pour
valider des simulations CFD 3D transitoires Eulériennes-Eulériennes. La loi de
traînée est corrigée par un facteur de swarm pour intégrer l’effet d’une fraction
de gaz élevée. Différents modèles de turbulence sont testés. La contribution des
bulles au mélange de scalaires est évaluée. Enfin, pour prédire la taille des bulles,
un bilan de population est couplé au modèle hydrodynamique préalablement validé
et est résolu par la méthode de quadrature des moments (QMOM). Un set original
de kernels de brisure et coalescence est proposé, capable de prédire la taille des
bulles pour différentes conditions opératoires. Le comportement du modèle lors de
l’extrapolation des réacteurs est également examiné.

Mots clés Colonnes à bulles, Taille des bulles, CFD, Bilan de population, QMOM.
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Riassunto

Modellazione dell’idrodinamica delle colonne a bolle con un
approccio che combina modello a due fluidi e bilancio di
popolazione

La simulazione di colonne a bolle in condizioni industriali è un problema di grande
rilevanza. L’obiettivo principale di questo lavoro è prevedere con modelli com-
putazionali la dimensione delle bolle, legata alla fluidodinamica dei reattori, con-
siderando i fenomeni di rottura e di coalescenza. La validazione del modello è
effettuata tramite il confronto con dati sperimentali appositamente raccolti, tra cui
la dimensione delle bolle, ottenuta con un’innovativa tecnica di cross-correlazione.
Gli esperimenti effettuati con acqua parzialmente contaminata e con acqua demi-
neralizzata con l’eventuale aggiunta di etanolo, mostrano che gli additivi riducono
la coalescenza e diminuiscono la dimensione media delle bolle. Sono stati inoltre
utilizzati negli esperimenti con due sparger diversi, per disaccoppiare lo studio
di rottura e coalescenza. I dati sperimentali sono stati utilizzati per convalidare
simulazioni CFD 3D transitorie Euleriane-Euleriane. Il modello per la forza di
trascinamento è corretto da un fattore di swarm per considerare l’effetto delle in-
terazioni tra le bolle. Sono stati testati diversi modelli di turbolenza, nonché il
contributo delle bolle sulla miscelazione degli scalari. Per prevedere la dimensione
delle bolle, è stato utilizzato un bilancio di popolazione risolto con il metodo di
quadratura dei momenti. Nella presente tesi viene proposto un set di kernel di
rottura e coalescenza per prevedere le dimensioni delle bolle in diverse condizioni
operative, considerando anche gli effetti dello scale-up.

Parole chiave Colonne a bolle, Dimensione delle bolle, CFD, Bilancio di popolazione,
QMOM.
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Résumé substantiel

Cette thèse de doctorat porte sur la modélisation des réacteurs à bulles en ré-
gime industriel. L’objectif principal est la prédiction et la modélisation de la taille
des bulles dans ces systèmes. Parmi les différents types de réacteurs gaz-liquide,
les colonnes à bulles sont largement utilisées dans différents domaines du génie
chimique. La géométrie de ces réacteurs est simple, sans parties mobiles. Les
colonnes à bulles ont de faibles coûts d’exploitation et d’entretien et de bons taux
de transfert de masse et de chaleur. Leur hydrodynamique peut toutefois être
complexe et fortement dépendante de la géométrie et des débits de fluide. Le taux
de vide, les vitesses du gaz et du liquide, la turbulence et la taille des bulles sont
liés de manière complexe aux conditions opératoires. Les colonnes à bulles sont
généralement utilisées en régime d’écoulement dit « hétérogène ». Dans ce régime,
caractérisé par une forte fraction volumique en gaz et une recirculation liquide,
différentes corrélations empiriques ont été développées pour aider les ingénieurs
à réaliser les dimensionnements. Ces corrélations ont généralement des domaines
de validation assez étroits en termes de conditions opératoires, géométries ou pro-
priétés physiques. Des modèles avec une plus grande validité (c’est-à-dire pour le
régime homogène et hétérogène) ont un fort intérêt dans le domaine industriel.

Dans le passé, la mise à l’échelle des colonnes à bulles a été basée sur l’utilisation
de corrélations macroscopiques pour décrire l’hydrodynamique et le transport. De
nos jours, la mécanique des fluides numérique (MFN ou CFD selon la terminologie
anglo-saxonne), apparaît comme un outil clé pour prédire les propriétés globales et
locales de ces systèmes. Plusieurs approches numériques sont envisageables pour
simuler les écoulements à bulles. D’une part la phase dispersée peut être modélisée
sous forme discrète, et les trajectoires individuelles des bulles sont calculées, on
parle alors de modèles Lagrangiens. Ces modèles fournissent des informations à
l’échelles des bulles mais ne peuvent guère être appliqués à un nombre de bulles
dépassant quelques millions. D’autre part la phase dispersée peut être modélisée
comme une phase « pseudo » continue en interaction avec la phase porteuse conti-
nue. Ce type de modèle, dit Euler-Euler ou modèles à 2 fluides, n’est pas limité
par le nombre de bulles mais seule une description moyennée de l’écoulement des
bulles est accessible. Ces deux familles de modèles nécessitent le choix de modèles
physiques représentant les forces échangées entre les phases. Une troisième famille
de modèles, basée sur la reconstruction des interfaces, n’est pas détaillée ici car elle
ne peut pas être, à l’heure actuelle, utilisée pour simuler les écoulements industriels.

Quelle que soit l’approche choisie pour modéliser la phase dispersée, différentes
modélisations de la turbulence sont possibles : simulation directe, simulation aux
grandes échelles, ou simulation basée sur la moyenne temporelle des équations
de Navier Stokes (ou Reynolds Average Navier Stokes Equations - RANS). Etant
donné l’objectif de la thèse et sa finalité en termes de simulation de réacteurs
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industriels, pouvant contenir plusieurs milliards de bulles, seule l’approche Euler-
Euler basée sur une approche RANS est envisageable.

Les simulations CFD Eulériennes-Eulériennes classiques supposent que chaque
élément de la phase dispersée a la même taille. Cette contrainte peut être levée en
couplant la simulation numérique à un modèle de bilan de population (population
balance modelling - PBM). Des équations sont alors ajoutées afin de calculer les
distributions des bulles en termes de taille, de vitesse ou de composition chimique.
Dans le présent travail, l’amélioration de la prédiction se concentre sur un couplage
avec la taille et la distribution de taille des bulles (bubble size distribution - BSD),
car il n’existe pas un bilan de population validé en régime hétérogène.

Trois types de méthodes sont disponibles a priori dans la littérature pour le
calcul des bilans de population. Elles peuvent être divisées en : méthodes des
classes (CM), méthodes Monte Carlo (MCM) et méthodes des moments. Dans la
méthode des classes, l’espace des coordonnées internes est discrétisé. La méthode
Monte Carlo résout des équations différentielles stochastiques pour reproduire un
nombre fini de réalisations artificielles du système à l’étude. Ces deux groupes
nécessitent d’énormes ressources de calcul et ne peuvent pas être utilisés à l’heure
actuelle pour les systèmes gaz-liquide à l’échelle industrielle. Les méthodes basées
sur le moment résolvent des équations de transport pour un petit ensemble de
moments d’ordre inférieur de la BSD. Cette méthode nécessite des équations de
fermeture qui peuvent être obtenues par plusieurs méthodes. Les méthodes basées
sur la quadrature des moments (Quadrature-Based Moments Methods - QBMM)
représentent un groupe important. En particulier, la méthode QMOM peut être
utilisée si une seule coordonnée interne (c’est-à-dire la taille des bulles) est étudiée
(Marchisio & Fox 2013).

La méthode QMOM est couplée à un modèle CFD Eulérien-Eulérien dans ce
travail pour étudier la coalescence (Liao & Lucas 2010) et la brisure des bulles (Liao
& Lucas 2009) et obtenir un bilan de population validé en régime hétérogène. Ces
modèles ont également besoin de données expérimentales précises pour différents
régimes, conditions opératoires et fluides. Ces données sont cependant difficiles à
obtenir et à extrapoler. La prédiction de la distribution de la taille des bulles par
les modèles CFD est donc un grand défi, car cela contribuerait à rendre la CFD
complètement prédictive.

Jusqu’à récemment, il était encore difficile de mesurer correctement la taille
des bulles pour un fort taux de gaz. La plupart des travaux expérimentaux pu-
bliés se concentrent sur le régime d’écoulement homogène (Krishna 2000), avec de
faibles vitesses superficielles de gaz. Très peu d’articles traitent des mesures de
BSD en régime hétérogène (Xue 2004, Chaumat et al. 2007, McClure et al. 2015,
2016, 2017). Ils sont basés sur une mesure utilisant des sondes multipoints. Cette
technique est valide dans le cas de bulles ayant des trajectoires presque verticales.
Dans le régime hétérogène, les bulles n’ont pas de trajectoires verticales, surtout
dans le cas de larges colonnes. Cette technique a par ailleurs une faible précision
en régime hétérogène (McClure et al. 2013, Xue 2004). Malgré cette limitation,
les sondes multipoints ont l’avantage d’accéder à la distribution de cordes et à la
vitesse des bulles.

Pour pallier à cette carence, une technique de corrélation croisée (CC) a été
mise au point pour surmonter les limites des techniques précédentes. Cette tech-
nique peut mesurer la taille des bulles indépendamment de la trajectoire des bulles
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(Raimundo 2015). Elle est donc bien adaptée au régime hétérogène (Raimundo
et al. 2016). La technique CC ne fournit pas la BSD, mais un diamètre moyen, qui
est mesuré de manière fiable à toutes les positions radiales. Cette technique est
donc complémentaire des techniques existantes. Raimundo (2015) a utilisé l’eau
du réseau pour ses mesures. Des mesures complémentaires sont nécessaires, afin
de disposer d’une base de données expérimentales élargie, pouvant être utilisée
pour valider indépendamment des modèles de brisure et de coalescence. La BSD
est fortement influencée par le niveau de contamination de l’eau. Les phénomènes
de brisure et coalescence doivent être étudiés en considérant l’effet des additifs.
McClure et al. (2015) ont présenté un travail documenté sur les propriétés des
bulles en présence d’additifs. L’addition d’alcool retarde la transition des régimes
vers des vitesses superficielles de gaz plus élevées, en raison de la diminution de la
coalescence (Keitel & Onken 1982) et de l’augmentation de la rigidité des bulles
(Dargar & Macchi 2006). Un point d’intérêt industriel concerne l’effet du distri-
buteur de gaz sur la taille des bulles (McClure et al. 2016). La modification du
type de distributeur de gaz est un moyen simple pour modifier la BSD à l’entrée
de la colonne.

En considérant simultanément les effets des additifs et du distributeur du gaz,
les phénomènes de brisure et de coalescence peuvent être découplés. Différents
essais ont été réalisés, en eau déminéralisée, eau du réseau et eau déminéralisée avec
ajout d’éthanol. Les profils de diamètre moyen, de fraction de gaz et de vitesse du
liquide sont mesurés. L’ajout d’éthanol est utilisé pour réduire la coalescence des
bulles. Les mesures sont réalisées sur une colonne cylindrique avec un diamètre de
0,4 m dans une large gamme de vitesses de gaz superficielles, entre 0,03 m/s et 0,35
m/s. Deux distributeurs du gaz différents sont utilisés, générant ainsi des bulles
de tailles initiales très différentes et simulant dans certains cas une forte brisure
des bulles. Ce travail fournit une base de données expérimentales pour dissocier
les phénomènes de brisure et de coalescence, en jouant sur la présence d’additifs e
le type de distributeur de gaz.

À partir des résultats expérimentaux, des simulations CFD 3D transitoires
Eulériennes-Eulériennes avec ANSYS Fluent sont réalisées pour atteindre l’objectif
de ce travail. Les interactions entre le gaz et le liquide dominent ces systèmes et
différentes forces interfaciales caractérisent l’environnement. Il n’y a pas de consen-
sus sur la façon de simuler les colonnes de bulles en termes de forces d’interface
et donc il faut focaliser l’attention sur ces forces. Parmi elles, la force de traînée
est la plus importante (Hlawitschka et al. 2017). Pour simuler ces systèmes, il est
nécessaire de trouver une loi de traînée appropriée sous le régime hétérogène. Pour
fractions de gaz élevées, les lois de traînée pour les bulles de forme oblate devraient
être utilisées, comme la loi de traînée de Tomiyama (1998). La force de traînée
doit tenir compte de l’effet de la présence de nombreuses bulles (swarm effect en
anglais), car la distance entre les bulles est faible et elles interagissent les unes avec
les autres. Dans la littérature, plusieurs facteurs correctifs ont été proposés, mais
ils ont été obtenus en régime homogène. Le facteur de swarm doit réduire l’effet de
la loi de trainée pour fractions volumiques élevées. Plusieurs formulations de la loi
de trainée ont été testées dans un modèle CFD de type RANS instationnaire 3D, et
il a été identifié que la loi de trainée de Tomiyama couplée à un nouveau facteur de
swarm basé sur les travaux de Simonnet et al. (2008) permettait de reproduire assez
fidèlement l’hydrodynamique dans une très large gamme de colonnes et conditions
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opératoires.
Le choix du modèle de turbulence est un autre point important, étudié durant

la thèse. Le modèle de turbulence influence le mélange, qui est une propriété clé
pour les réacteurs en colonne de bulles, et l’hydrodynamique. La contribution des
bulles au mélange de scalaires doit être considérée en régime hétérogène, car elle a
un fort effet sur le mélange en régime homogène (Alméras et al. 2016).

Une fois acquises les données expérimentales nécessaires, et la modélisation CFD
permettant de reproduire les écoulements en régimes hétérogènes, le développement
et la validation d’un modèle de Bilan de Population a pu être réalisée. Pour cela,
les modèles courants de la littérature ont été testés selon une approche QMOM en
0D avec Matlab puis en CFD 3D URANS. Les modèles existants de brisure (Liao
& Lucas 2009) et de coalescence (Liao & Lucas 2010), développés pour le régime
homogène, sont testés en régime hétérogène. Concernant la brisure, il a été montré
que le modèle de Laakkonen et al. (2006) permettait de fournir des simulations
réalistes d’écoulements gouvernés par la brisure. Concernant la coalescence, des
résultats satisfaisants sont obtenus en utilisant les modèles de fréquence de collision
de Wang et al. (2005) et de probabilité de coalescence de Lehr et al. (2002), ces deux
modèles ayant toutefois fait l’objet de modifications pour prédire quantitativement
les diamètres de Sauter mesurés dans une large gamme de conditions opératoires.

Les perspectives de ce travail sont nombreuses. Le lien entre les propriétés
physiques des liquides et la coalescence doit être clarifié. Il faudra faire plus un
plus grand nombre d’expériences avec des additifs et de recueillir des données ex-
périmentales sur les propriétés des liquides pertinentes pour obtenir un outil entière-
ment prédictif. Mais encore faut-il identifier les propriétés physiques pertinentes.
La tension de surface en fait partie mais elle ne justifie les écarts de comportements
observés. Le modèle de coalescence de Lehr et al. (2002) utilisé dans cette étude,
basé sur une vitesse critique entre bulles, nécessiterait également d’être relié à des
fondements théoriques plus solides. Concernant la modélisation hydrodynamique,
le facteur de swarm proposé dans ce travail est complètement empirique, et il serait
intéressant d’obtenir un facteur de swarm basé sur un modèle théorique ou sur des
simulations numériques résolues à une échelle plus fine. En outre, l’étude des
forces interfaciales secondaires, négligées dans ce travail, reste un axe important de
recherche.
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Chapter 1

Introduction

Gas-liquid systems play a key role in different chemical engineering fields. The
simplest and most representative systems are bubble columns reactors. Bubble
columns are often used for reactions with slow kinetics such as oxidation, alkylation,
hydrogenation, hydroformylation, chlorination, Fischer-Tropsch synthesis, ferment-
ation, coal liquefaction and desulfurization (Chaumat et al. 2007, Ranade 2002).
These reactors are also used nowadays for wastewater treatment, production of
organic acids or yeasts and cell cultures (Tisnadjaja et al. 1996). The geometry of
the bubble column reactors is really simple and without any moving parts. These
reactors have low operation costs, low maintenance and good mass and heat trans-
fer rates, but their hydrodynamics is complex and strongly depends on geometry,
fluid flow rates and potential presence of internals. Local and global properties
such as phase velocities, flow pattern, turbulence, gas hold-up and bubble size are
linked to the operating conditions and the design variables in a complex way.

Industrially, bubble column reactors often operate in the heterogeneous churn-
turbulent flow regime. It is therefore important to study these systems under these
operating conditions. This regime is characterized by a high volume fraction of gas
and by a strong liquid recirculation. Several empirical correlations were developed
to design these systems. These correlations generally have narrow validity domains
in terms of operating conditions, geometries or physical properties. Computational
models for the simulation of bubble column reactors with a larger range of validity
(i.e. for both homogeneous and heterogeneous regime) should be developed.

For decades, scale-up of bubble columns was based on the use of macroscopic
correlations to describe hydrodynamics and transport (Deckwer 1992, Xiao et al.
2017). Nowadays, Computational Fluid Dynamics (CFD) appears as a promising
tool to predict global and local properties of interest in bubbly flows (Jakobsen
et al. 2005), overcoming the constraints of the traditional scale-up approach, such
as the systematic use of expensive experimental setups of increasing sizes. Al-
though numerical tools are very promising, they still need development to be fully
useful and predictive in some complex flow configurations, as it is the case for in-
dustrial bubbly flows at high gas fraction. Under these conditions, also known as
heterogeneous regime, the disperse phase is formed by bubbles that interact with
each other due to their chaotic movement. The size of the bubbles depends on the
operating conditions, global hydrodynamics and turbulence.

Various models are available for the simulation of disperse two-phase flows. In
the Eulerian-Lagrangian point-particle approach, the continuous phase is calcu-
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lated using the average Navier-Stokes equations and the pathway of each bubble
is followed. This model is then limited to low gas velocity and gas hold-up. The
Eulerian-Eulerian (two-fluid) model considers the two phases as inter-penetrating
continua (Zhang 2007, Vaidheeswaran & Lopez de Bertodano 2017). A third family
of models, based on the DNS interface tracking, e.g. Volume of fluid methods or
Level-set methods, is not detailed here as it cannot currently be used to simulate
industrial flows. The first two families of models require the choice of physical
models representing the gas-liquid interactions. Gas-liquid interactions dominate
these systems and interfacial forces ought to be studied, as detailed below.

Different turbulence models are available: Direct Numerical Simulations (DNS),
Large eddy simulations (LES), or simulation based on Reynolds-averaged Navier-
Stokes equations (RANS). Given the objective of the thesis and its purpose in terms
of industrial reactor simulation, which can contain several billion bubbles, only the
Euler-Euler approach based on a RANS approach is possible.

One important limitation of Eulerian-Eulerian classical CFD modelling is due
to the assumption that all bubbles have the same size and velocity. A Popula-
tion Balance Model (PBM) can then be used in order to overcome this limitation.
The bubble size distribution (BSD) can be numerically predicted when CFD is
coupled with a PBM. In the literature, three groups of methods can be found:
Class methods (CM), Monte Carlo methods (MCM) and Moment Methods. The
first group discretize the space of the internal coordinates. In Monte Carlo methods,
stochastic differential equations are solved. These two groups have high computa-
tional costs and hence they cannot be used for the industrial purposes studied in
this work. Moments Methods solve transport equations for the lowest-order mo-
ments of the BSD. This method requires closing equations. A Quadrature-based
Moments Method (QBMM) approach (Marchisio & Fox 2013) limits the number
of equations to solve. In particular, the Quadrature Method of Moments (QMOM)
can be used if only one internal coordinate (i.e. bubble size) is studied. Bubble
coalescence (Liao & Lucas 2010) and bubble breakage (Liao & Lucas 2009) phe-
nomena ought to be studied and they should be decoupled in order to propose
an accurate model. These models also need accurate experimental data for all re-
gimes, different operating conditions and fluids. These data are however difficult
to get and extrapolate. The prediction of BSD by CFD models is thus an exciting
challenge as it would help to make CFD completely predictive.

These models need experimental data for different operating conditions. The
bubble size distribution (BSD) is a key parameter for bubble column reactor per-
formance, but until recently it was still difficult to measure properly BSD beyond
a few percentage of gas hold-up (Xue 2004, Chaumat et al. 2007, Raimundo 2015,
McClure et al. 2017). Most of the experimental published works focused on the
homogeneous bubbly flow regime (Krishna 2000) at low superficial gas velocities.
Only a very few papers deal with BSD measurements in the heterogeneous re-
gime (Xue 2004, Chaumat et al. 2007, McClure et al. 2015, 2016, 2017). They
are based on the calculation of chord distributions by multi-point needle probes.
This technique has been validated in the case of bubbles having almost vertical
trajectories. In the case of heterogeneous regime, bubbles do not have vertical tra-
jectories, especially when the distance from the column centre increases, causing
low accuracy (McClure et al. 2013, Xue 2004). Despite this limitation, multi-point
probes have the advantage of accessing both the bubble chord distribution and the
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bubble velocity.
To overcome the limitations of chord-based measurement techniques, a cross-

correlation (CC) technique has been recently developed to measure the bubble size
independently of the bubble trajectory. It is thus well suited to heterogeneous
regimes (Raimundo 2015, Raimundo et al. 2016). However, CC techniques do not
provide chord distributions, but a mean diameter, that is measured with confidence
at any radial position. This technique is therefore complementary to the existing
ones, providing a reliable average measurement for every position of the column.
Raimundo (2015) used tap water and air in bubble columns of different diameters
(0.15 m, 0.4 m, 1 m and 3 m). These experimental measurements allow validating
CFD simulations at different scales and help to draw conclusions on the capability
of CFD to scale up gas-liquid reactors.

Another important issue concerning bubbly flows is the impact of additives and
impurities. Industrial applications rarely involve pure fluids, as generally liquids of
complex compositions are employed. A few experimental well-documented works
provide data on bubble properties in the presence of additives (McClure et al.
2015). Among the most common additives, alcohols are often investigated, with
particular attention on their effects on breakage and coalescence. Alcohol addition
delays the transition of bubbling regimes to higher gas velocity, due to the decreased
coalescence rates (Keitel & Onken 1982, Guo et al. 2017) and the increased bubble
rigidity (Dargar & Macchi 2006).

A point of industrial interest concerns the effect of the sparger on the bubble
size, which has been reported in some articles (Chaumat et al. 2007, McClure et al.
2016). The sparger choice might influence the bubble size and the hydrodynamics
inside the bubble column. The choice of the sparger appears as a way to modify
the BSD at the entrance of the column. By considering simultaneously additives
and spargers effects, breakage and coalescence phenomena can be decoupled.

Another point of interest is the role played by the interfacial forces, that must
be accurately modelled, as stated by McClure et al. (2013). Gas-liquid interac-
tion is the result of various forces: the drag force is the most important to con-
sider (Hlawitschka et al. 2017). Literature reports several drag laws mostly based
on semi-empirical correlations with a limited validity: for example, the drag law
proposed by Schiller & Naumann (1935) should be preferably used for spherical
bubbles. At high gas volume fractions, the regime is heterogeneous and drag laws
for oblate bubbles should be used, as the drag law of Tomiyama (1998). In the het-
erogeneous regime, the distance between bubbles is small and the boundary layers
of the bubbles interact with each other modifying the drag force. This phenomenon
is known as the swarm effect. In literature, several swarm factors have been pro-
posed. Some of them are suitable for low gas volume fractions, while for high gas
volume fractions very few correlations have been developed (e.g. Simonnet et al.
(2008), McClure et al. (2017)). The existing swarm factors are often empirical or
obtained with DNS simulations. They usually have a narrow range of validity and
they are based on experiments conducted under homogeneous regimes. Therefore,
their validity in the heterogeneous regime is not established yet. Other interfacial
forces could be considered, i.e. lift, wall lubrication and turbulent dispersion forces.

Besides interfacial forces, another important point, for obtaining reasonable
results in the simulation of bubble columns operating under the heterogeneous
regime, is the choice of the turbulence model. The turbulence model influences
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the turbulent mixing, that is a key property for bubble column reactors. The
turbulence model is important not only to predict the hydrodynamics but also
to properly predict the turbulent mixing of the involved scalars, namely enthalpy
and reactant concentrations (Shaikh & Al-Dahhan 2013). The contribution of the
bubbles to mixing needs to be considered, as Alméras et al. (2016) stated that it
impacts strongly on the mixing in bubble flows under the homogeneous regime. Its
effect under the heterogeneous regime should be studied. However, the objective
of this work is not to develop new turbulence models but rather use existing ones
in a commercial CFD software such as ANSYS Fluent.

The main goal of this work is to study breakage and coalescence phenomena in
bubble columns under the heterogeneous flow regime, providing suitable and innov-
ative models that can predict correctly the bubble size for a wide range of operating
conditions. This will pave the way for fully-predictive CFD-PBM simulations.

To reach this goal, it is necessary to carry out experiments in which coalescence
and breakage change depending on the operating conditions. These experimental
data will allow the validation of bubble coalescence and breakage models. Demin-
eralised water, tap water and demineralised water with different ethanol concen-
trations are employed to suppress bubble coalescence. Experiments are performed
on a cylindrical column with a diameter of 0.4 m in a wide range of superficial gas
velocities, going from 0.03 m/s to 0.35 m/s. Two different spargers are used, gener-
ating very different initial bubble sizes and simulating in some cases strong bubble
breakage. Besides the mean diameter profiles, gas fraction and liquid velocity dis-
tributions are measured, providing a very useful and accurate set of experimental
data. These experiments provide an experimental database, useful to decouple
breakage and coalescence phenomena.

To achieve the objective of this work, 0D simulations with Matlab and 3D
transient Eulerian-Eulerian CFD simulations with ANSYS Fluent are carried out.
The existing breakage (Liao & Lucas 2009) and coalescence (Liao & Lucas 2010)
kernels, suitable for the homogeneous regime, are tested for the heterogeneous
regime. Under the heterogeneous regime, most of the existing models are not
valid and it is necessary to find coalescence and breakage kernels that can be used
under both homogeneous and heterogeneous regimes. Concerning breakage, the
model of Laakkonen et al. (2006) provides CFD results in good agreement with the
experiments. Concerning coalescence, the Wang et al. (2005) collision frequency
can be used but it cannot be associated at a film drainage model for the coalescence
frequency. A critical approach velocity model needs to be considered. A new set
of breakage and coalescence kernels is then proposed, that provides an accurate
bubble size prediction in a wide range of tested operating conditions. Effects of
turbulence model, water contamination, inlet conditions and scale-up are detailed
in order to validate the proposed kernels for industrial applications.

This dissertation is organized as follows:

• In Chapter 1 a general introduction of the context and the objectives of the
thesis have been presented. The goal of this chapter is to clarify the aim of
the thesis and to show a short preview of the work that has been done during
the thesis. The structure of the thesis is detailed.

• In Chapter 2 the bubble column hydrodynamics is described, with partic-
ular attention to flow regimes and main properties of these systems. This
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chapter is useful to introduce the general background that is necessary to
fully understand the following chapters.

• In Chapter 3 the experimental results are shown. Experimental tools, setup
and data are detailed, describing the measurement methods. This part
reports experimental data obtained by measuring bubble sizes with cross-
correlation technique. Experiments with demineralised water, tap water and
adding small quantities of ethanol are compared. Gas distribution effects are
detailed and commented. These experimental results were published in the
article of Gemello et al. (2018a) during the PhD and they are presented with
further details in this part.

• In Chapter 4 the CFD results concerning drag laws, swarm corrections and
turbulence are presented. In this part, a correlation for the drag force coeffi-
cient is tested and improved to consider the so-called swarm effect at high gas
volume fractions. The swarm factor proposed in this work is the adjustment
of the swarm factor proposed by Simonnet et al. (2008). It provides a precise
prediction of gas volume fraction and liquid velocity in a wide range of tested
operating conditions. Several turbulence models are tested. Finally, the con-
tribution of the bubbles on mixing, as proposed by (Alméras et al. 2015), is
evaluated via an analysis of the mixing time. Results are validated by com-
parison with experimental data of Chapter 3. These CFD simulations require
the knowledge of the average bubble diameter. Once CFD hydrodynamics
is validated for a known bubble size, it is possible to study the population
balance. If this order is not respected, it will not be possible to carry out
CFD-PBM simulations and validate the population balance. The work de-
scribed in this chapter has been previously published in Gemello et al. (2018b)
during the PhD. Further details are shown in this part of the dissertation.

• In Chapter 5 the population balance is introduced and the CFD-PBM res-
ults are detailed. The Quadrature Method of Moments proposed by March-
isio et al. (2003) is presented in detail and used as PBM. Coalescence and
breakage models are validated using experimental results of Chapter 3. The
breakage and coalescence kernels suggested in this part allow prediction of
the bubble size for several operating conditions. Effects of turbulence model,
water contamination, inlet conditions, sparger and scale-up are detailed in
order to validate the proposed kernels for industrial applications. This work
has been published in Gemello et al. (2018c) and it is presented with further
details in this chapter.

• In Chapter 6 the general conclusions of this thesis are presented. The main
results and conclusions obtained in the three previous chapters are reported.
The limits of this work are presented in order to suggest some interesting
perspectives that could follow this work.
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Chapter 2

Bubble column hydrodynamics

Bubble column hydrodynamics is very complex and linked to the column geometry
and the operating conditions.

In simple bubble columns, liquid is the continuous phase whereas gas is the
disperse phase and is injected at the bottom of the column. Global properties and
local ones are equally important in the study of these systems.

The main global property is the global gas hold-up, defined as the average gas
fraction in the column. It is calculated as the global ratio between the volume of
the gas and the total volume. Important local parameters are gas volume fraction,
velocities of liquid and gas and bubbles size. The gas volume fraction αg is defined
as the local ratio between the volume of the gas and the total one and it depends
strongly on the superficial gas velocity vsg.

αg =
Vg

Vg + Vl

; (2.1)

vsg =
V̇g

A
=

∫ R

0
2πrαg(r)vg(r)dr∫ R

0
2πrdr

. (2.2)

The liquid phase often operates in a batch manner; it could also operate in a
semi-batch manner, with a circulation in the same or in opposite direction of the
gas.

2.1 Flow regimes
Different flow regimes are present in bubble columns, depending on the superficial
gas velocity and on the dimension of the column (Fig. 2.1):

• Homogeneous regime (bubbly flow);

• Transition regime;

• Heterogeneous regime (churn-turbulent flow);

• Slug flow regime.

As shown in Fig. 2.2, three main regimes are available (Krishna 2000): homo-
geneous, transition and heterogeneous (or churn-turbulent). This representation
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Figure 2.1: Gas-liquid flow configurations in a vertical tube (Wiswanathan 1969,
Shah et al. 1982).

is not universal: it depends on the design of the sparger. The transition regime
can be absent if the gas is not distributed uniformly and can be influenced by the
contamination of the liquid phase. The homogeneous regime (or bubbly regime or
dispersed regime) occurs at low superficial gas velocity and the gas volume fraction
has a strong dependency on the superficial gas velocity. The bubbles have a nar-
row size distribution which almost does not depend on the spatial position. The
time-averaged profile of the gas hold-up is approximately flat (Fig. 2.2). The path
of the bubble is quite linear: the phenomena of bubble coalescence and break-up
are negligible. Non-coalescing, small and almost spherical bubbles are continu-
ously generated in the distributor at the bottom. The bubbles drag a considerable
amount of liquid to the top of the column. The liquid must return down, in order to
have net liquid flow in the column equal to zero. The liquid flowing in the opposite
direction delays the bubbles rise, increasing the gas hold-up.

In the transition regime, the gas volume fraction reaches a maximum. After
reaching the maximum, if the superficial gas velocity increases, the gas volume
fraction decreases or it remains quite constant (Fig. 2.2). In this case, some big
bubbles start to appear in the centre of the column and the path is not linear. The
bubbles interact with each other.

The heterogeneous regime is present for high superficial gas velocities. The
gas volume fraction increases with the superficial gas velocity more slowly than in
the homogeneous regime (Fig. 2.2). The movement of the bubbles is chaotic, the
path is irregular and the regime is characterized by a highly turbulent flow. The
distribution of bubble diameters is wide, with some big bubbles, especially in the
centre of the column. The bubbles are smaller near the wall: some bubbles go down
with the high recirculation of the liquid. The profile of the gas volume fraction is
not flat along the radial position: the profile is parabolic, with a maximum in the
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Figure 2.2: Representation of the flow regimes in bubble column (Krishna 2000).

centre of the column. The bubble velocity radial profile is also parabolic.
Slug regime is strongly unstable: some huge gas bubbles are distributed over the

entire column diameter and pass through the liquid intermittently. The bubbles
cause large pressure and liquid flow rate fluctuations, like a large wave. This regime
is limited to columns with small diameters for very high superficial gas velocities.

2.2 Gas volume fraction
The global gas hold-up is the mean gas volume fraction into the column. The gas
hold-up does not only depend on the superficial gas velocity but also on the gas
injector, on the properties of the liquid in the column and on the pressure.

A homogeneous regime is normally present in case of very low superficial gas
velocity. In the case of large orifices in the gas distributor, a wide bubble size
distribution appears: the heterogeneous regime appears also at low the superficial
gas velocities.

The properties of the liquid have a big influence on the hold-up. Cases in lit-
erature report that the gas volume fraction is lower in the case of higher viscosity
(Zahradník et al. 1997, Kantarci et al. 2005); bubble coalescence is increased creat-
ing big bubbles that rise more rapidly than the smaller ones. The surface tension
is equally important: if this property decreases, for example by adding surfact-
ants, the coalescence of the bubble decreases with smaller bubbles and higher gas
volume fraction. Increasing the pressure, the global gas volume fraction increases,
depending on the liquid and the gas present into the column.

Under the heterogeneous regime, the gas volume fraction profile can be estim-
ated with a symmetric polynomial expression (Schweitzer 2001):

αg = ᾱg

[
a
(
r6 − 1

)
+ b

(
r4 − 1

)
+ c

(
r2 − 1

)]
(2.3)

where r is the dimensionless radial position, ᾱg is the mean gas fraction and a =
−1.7889, b = 1.228 and c = −0.939 are fitting parameters.
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Using this correlation, the local gas volume fraction can be estimated in each
radial position of the column, knowing the total gas hold-up for a giving height
(Fig. 2.3): the profile is closely linked to the liquid circulation pattern in the column
(Forret 2003).
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Figure 2.3: Radial profile of the normalized gas hold-up (Forret 2003).

2.3 Bubble shape and size
The bubble shape depends on the superficial gas velocity and on the flow conditions.
Dimensionless numbers can be used to predict the shape of the bubbles: Reynolds
number, Eötvös number and Morton number (Fig. 2.4) (Clift et al. 1978).

The bubble Reynolds is defined as the ratio between inertial and viscous forces:

Reb =
ρl ub deq

μl

(2.4)

where ρl is the density of the liquid, μl the viscosity of this phase, ub is the mean
velocity of the bubbles and deq is the equivalent diameter of a spherical bubble with
the same volume (V ), (Smolianski et al. 2008):

deq =
3

√
6V

π
. (2.5)

The Eötvös number, also called Bond number, determines the impact of surface
tension forces compared with body force. It is calculated as the ratio of gravita-
tional forces to surface tension forces:

Eo =
Δρ g deq

2

σ
(2.6)
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where Δρ is the difference between the density of the liquid and gas phase, g is the
gravity acceleration and σ is the surface tension.

The Morton number is defined as:

Mo =
Δρ g μl

4

ρl2 σ3
. (2.7)

For water-liquid systems, the Morton number is 3.98× 10−11.
The size of the bubble is not identical for all the bubbles in the column, but it

is characterized by a distribution. For all the calculations, it is then necessary to
define a mean bubble diameter. The most common diameter for several applications
is the Sauter mean diameter, defined as the ratio between the total volume of the
bubbles and the total surface:

dSauter = d32 =

∑
dV

3∑
dS

2 =
Vtot

6Stot

(2.8)

where dV is the diameter of an isovolumic spherical bubble and dS the diameter of
a spherical bubble with the same surface.

The arithmetic diameter is instead defined as:

d10 =

∫
db fN(db)ddb∫
fN(db)ddb

=

∑
db

Nb

(2.9)

where Nb is the number of the bubbles.
Different parameters influence the bubble size: superficial gas velocity, gas

volume fraction, liquid properties, radial and axial position. The mean diameter
increases slowly with superficial gas velocity. Especially for high superficial gas
velocities, the dimensions of the bubbles change along the radial position of the
column; in this situation bigger bubbles are present in the centre of the column.

The surface tension has a great impact on the size of the bubbles: a reduction
of the surface tension decreases bubble size (Chaumat et al. 2007) and this induces
higher gas hold-up and higher mass transfer coefficient. The surface tension has a
higher effect in the homogeneous regime than in the heterogeneous one, where the
effect of macro-scale turbulence eclipses the other ones, as stated by Zahradník et al.
(1995) and Camarasa et al. (1999). The surfactants in water delay the transition of
bubbling regimes to higher gas velocity, given the decrease of coalescence and the
increase in bubble rigidity (Dargar & Macchi 2006). The impact of the viscosity of
the liquid phase hardly influences the bubble (Akita & Yoshida 1974).

The gas distributor, however, influences all the properties, particularly on the
size distribution in the lowest part of the column. Das & Das (2015) studied the
bubble formation from submerged orifices. The initial bubble size depends on the
sparger design, on the orifice orientation and on the operating conditions, as the rate
of periodic attachment and detachment increases with the gas flow rate. Different
models have been developed to estimate the initial bubble size. Most of them
are calculated by considering a force equilibrium, as detailed by Liu et al. (2013).
They are mostly studied for the homogeneous regime. In the case of heterogeneous
regime, some experimental data close to the bottom are desirable, as the existing
models are not already validated under these operating conditions.
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2.4 Bubble velocity

As the bubble size, the bubble velocity is influenced by different parameters. The
bubble velocity depends on the superficial gas velocity, the pressure and the proper-
ties of the liquid phase, as for the gas volume fraction. In a homogeneous flow, the
rising of the bubble is regular and the bubble velocity radial profile is flat. In the
transition and heterogeneous flows, the bubbles rise non-linearly and the velocity
depends strongly on the radial position. The movement is chaotic: given liquid
recirculation, the bubble velocity radial profile results parabolic. The velocity in-
creases always with the superficial gas velocity in the centre; there is the opposite
effect close to the wall, given that the recirculation of the liquid pushes down the
bubbles (Xue 2004).

The pressure influences the bubble velocity, as shown by Xue (2004), increasing
the bubble velocity in the central zone of the column and decreasing it near the
wall. In fact, the gas volume fraction increases, enhancing the liquid recirculation
that has a positive effect in the centre of the column and a negative one near the
wall. The present work considers only atmospheric pressure.

The presence of surfactants influences the terminal rising velocity of a single
bubble significantly. In the case of pure water, the profile of terminal velocity shows
maximum, as shown in Fig. 2.5 (Clift et al. 1978).
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Figure 2.5: Terminal velocity of air bubbles in water at 20◦C (Clift et al. 1978)

The surfactant modifies the velocity field near a fluid-fluid interface. This phe-
nomenon has been explained for the first time by Frumkin & Levich (1947) and
Levich (1962): they suggested that surfactants tend to stay along the bubble sur-
face and accumulate near it (Kulkarni & Joshi 2005).

41



2.5 Liquid velocity induced by bubbles
The liquid velocity in the centre of the column increases, increasing the velocity
of the gas. The recirculation increases near the wall, where the liquid comes
down. Forret (2003) studied this phenomenon with a bubble column of 1 m in
diameter: the result is a parabolic profile for the liquid with a maximum in the
centre (Fig. 2.6). Some issues appear close to the wall: the liquid velocity should
be zero at the boundary, therefore the Forret (2003) model is only valid outside
the boundary layer.
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Figure 2.6: Radial profile of the normalized liquid velocity proposed by Forret
(2003)

For a stabilized region of the column, the profile is obtained using the correlation
proposed by Forret (2003):

ul(x) =
ul(0)

a− c

[
a exp(−b x2)− c

]
(2.10)

with a=2.976, b=0.943 and c=1.848, empirical parameters determined at ambient
conditions in a wide range of validity under the heterogeneous regime. They were
established by Forret (2003) thanks to several measurements of the axial liquid
velocity with a Pavlov tube in bubble columns with a diameter between 0.15 mm
and 1 m. The liquid velocity depends on the dimensionless radial position r and
on the liquid velocity in the column centre.

This equation is empirical, but it allows to define the shape of the radial velocity
profile if the liquid velocity in the column centre is known. The upward flow rate is
equal to the downward one, in accordance with experimental data. This correlation
is also suitable for contaminated systems and in presence of additives.

Under the heterogeneous regime, the liquid velocity in the centre of the column
is obtained with the correlation proposed by Miyauchi & Shyu (1970):

ul(0) = 2.47vsg
0.5D0.28, (2.11)
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This correlation is empirical, but it has a wide range of validity in the so-called
“stabilized region” (H/D>1). This equation can be used for obtaining a first ap-
proximation of the axial liquid velocity in the centre for many operating conditions
under the heterogeneous regime. This correlation can be also used for scale-up
purposes. Unfortunately, this correlation cannot be used for contaminated systems
and in presence of additives.
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Chapter 3

Experimental study of
hydrodynamics and bubble size

3.1 Introduction

Bubble dispersion and bubble size are important parameters that influence the
performance of bubble column reactors. The bubble size depends on operating
conditions, global hydrodynamics and turbulence. Bubbles have a high polydis-
persity, i.e. they are characterized by different sizes and velocities (Rusche & Issa
2015). Only a very few papers are focused on bubble size measurements in the het-
erogeneous regime, i.e. Xue (2004), Chaumat et al. (2007), McClure et al. (2015,
2016, 2017). They are based on the calculation of chord distributions by multi-point
needle probes. This technique has been validated in the case of bubbles having al-
most vertical trajectories. In the case of heterogeneous regime, bubbles do not have
vertical trajectories and their path becomes more chaotic as the distance from the
column centre increases. The measurement has then low accuracy, as stated by
McClure et al. (2013) and Xue (2004). Multi-point probes access both the bubble
chord distribution and the bubble velocity. To overcome the limits of classical tech-
niques, a cross-correlation (CC) technique has been recently developed to measure
the bubble size. The cross-correlation technique does not depend on the trajectory
of the bubbles, so it is well adapted to the heterogeneous regime (Raimundo 2015,
Raimundo et al. 2016). In return, cross-correlation technique does not provide
chord distributions, but a Sauter mean diameter, that is measured with confidence
at any radial position. Chord-based measurement techniques and CC technique
are therefore complementary.

The impact of contaminants and additives is a key point concerning bubbly
flows for industrial applications, that never involve only pure fluids: complex com-
positions are used. In literature, the effects of additives are not well-studied: few
experimental well-documented works provide data on phases velocity and on bubble
size distribution (McClure et al. 2015). In aqueous solutions with alcohol, the
bubbles are smaller and the transition of bubbling regimes is delayed to higher gas
velocity, due to the coalescence decrease (Keitel & Onken 1982, Guo et al. 2017)
and the bubble rigidity increase (Dargar & Macchi 2006). This effect increases with
alcohol molecular weight, as stated by Jamialahmadi & Miiller-Steinhagen (1992).
The decrease of surface tension due to the alcohol presence is not enough to ex-
plain this behaviour. Several authors (Clift et al. 1978, Kelkar et al. 1983, Lindland
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& Terjesen 1965, Raymond & Zieminski 1971) suggest that these differences are
linked to the reduction of the bubble-rise velocity.

The sparger effect on the bubble size is another point of industrial interest, as
stated by Chaumat et al. (2007) and McClure et al. (2016). The choice of the
sparger gives the possibility to modify the bubble size at the column inlet. The
sparger effect is important for a height of approximately one column diameter (Polli
et al. 2002).

The objective of this part of the work is to produce data that could validate
bubble coalescence and breakage models. Experiments in which coalescence and
breakage change depending on the operating conditions are carried out. Demin-
eralised water, tap water and demineralised water with different ethanol concen-
trations are used in order to decrease bubble coalescence. Experiments are also
carried out using two different spargers, generating very different initial bubble
sizes and simulating in some cases strong bubble breakage. By considering simul-
taneously additives and spargers effects, breakage and coalescence phenomena can
be decoupled. Besides the mean diameter profiles, gas fraction and liquid velocity
distributions are measured, providing a very useful and accurate set of experimental
data. The cross-correlation technique was first presented by Raimundo (2015) and
it was tested with tap water only. In this work, this technique is employed under
the presence of impurities and additives. Different radial and axial positions are
considered.

3.2 Experimental tools

3.2.1 Gas volume fraction

The global gas volume fraction, also called gas hold-up, can be calculated by using
the difference of liquid height before and after gas injection:

ᾱg = 1− H0

Hf

(3.1)

where H0 is the non-aerated liquid height and Hf is the aerated liquid height.
This method is not very precise due to the interface deformation at the top of

the column: a characteristic error of about 10% is associated with this technique.
The local gas fraction can be obtained thanks to an optical probe. The local

gas volume fraction is calculated as the fraction of time in which the gas is detected
at the probe tip, as detailed by Raimundo (2015). A 1C conical mono-fibre optical
probe is used in this work (Fig. 3.1).

3.2.2 Bubble size

Different methods could be considered to obtain the bubble size: optical probe,
cross-correlation and endoscope.

Using an optical probe, the bubble chord can be computed by multiplying the
time of detection of a bubble and the bubble velocity. Liu et al. (1996) explained
how chord length can be transformed into bubble size by modelling the bubbles
as ellipsoidal. This model is defined starting with the horizontal radius and the
shape of the bubble. Using this model, it is possible to obtain the vertical Sauter
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Figure 3.1: Tip of a 1C mono-fibre optical probe (Cartellier & Barrau 1998).

mean diameter from the mean bubble chord, as detailed by Raimundo (2015). This
technique is valid in the case of bubbles having almost vertical trajectories. In the
case of heterogeneous flow regime, bubbles trajectories are not vertical, causing
low accuracy, as stated by McClure et al. (2013). This work is focused on the
heterogeneous flow regime and then the optical probe technique cannot be used.

An endoscope could be adapted to high gas volume fraction flows. A cam-
era captures a high-speed video. A Light Emitting Diode (LED) on the opposite
side provides the necessary light. In each video at least 150 bubbles should be
considered. Each vertical and horizontal diameter is measured manually. This ap-
proach is tedious and requires too much time to get the results. Consequently, it
is not suitable to obtain bubble size at several operating conditions. Small bubbles
are not detected due to the tool resolution. Huge bubbles are not measured as they
are bigger than the maximum size of the photos.

The mean bubble size can be obtained from the spatial cross-correlation (CC)
of the signals of two optical probes (Fig. 3.2). The cross-correlation quantifies
the similarity of two signals, analysing them simultaneously. The cross-correlation
function is then calculated as follows (Raimundo 2015):

CC =

∫ texp
0

signalA(t)signalB(t)dt

texp
. (3.2)

Its value is equal to unity (maximum) if the two probes are in the same position,
considering that the signals are identical. The cross-correlation decreases with the
distance between the probes. Its signal reaches an asymptotic value, that depends
on the local gas volume fraction. The time-averaged horizontal diameter of the
bubbles is obtained by using the CC signal, the distance between the probes and
the eccentricity of the bubbles. The two probes are placed at the same height,
with a distance equal to 1 mm (Fig. 3.2). This technique can be used in the case
of heterogeneous regime and high gas volume fractions, as stated by Raimundo
(2015) and Raimundo et al. (2016). It has been validated by comparing its results
with endoscopic measurements. The error is lower than 10% for every operating
condition.

In the case of heterogeneous regime, the bubbles are often oblate. The CC
technique measures the horizontal diameters, by using the Sauter mean diameter
of the bubbles. In the case of oblate form of the bubbles, the slope of the linear
part of the curve (θ) of the cross-correlation in function of the distance between
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Figure 3.2: Schematic representation of the CC technique.

the probes depends only on the bubble sizes. The horizontal Sauter mean diameter
(dh,32) can therefore be calculated as (Raimundo 2015):

dh,32 = − 1.46

θ 0.505 exp(0.7Ecc)
, (3.3)

where Ecc is the eccentricity. A constant eccentricity equal to 0.70 is considered,
as this value has been obtained by Raimundo (2015) with experiments in the same
range of measurements. If the bubble shape is known, the time-averaged Sauter
mean diameter, also called Sauter mean diameter, can be computed, by using the
time-averaged horizontal diameter of the bubbles. The eccentricity considered in
this work is in accordance with the value calculated by using the Wellek et al.
(1966) correlation for liquid drops, that depends on the surface tension and on the
Eötvös number.

3.2.3 Liquid velocity

The liquid velocity in bubble columns of different diameters in the heterogeneous re-
gime can be obtained by using a modified Pitot tube, called a Pavlov tube (Fig. 3.3)
(Forret 2003). The differential pressure between two opposite holes is measured in
order to obtain the liquid velocity. As the presence of two phases is important, Vial
et al. (2003) propose to add a calibration parameter and a correction parameter
that considers the gas fraction. These measurements have an associated error of
about 10-20%, that depends on the gas fraction.

The measured differential pressure ΔP allows the liquid velocity to be obtained:

uL,i(r, t) =

⎧⎪⎨⎪⎩
√

2ΔPi

ρL
forΔPi ≥ 0

−
√

−2ΔPi

ρL
forΔPi ≤ 0

(3.4)

50



where uL,i is the instantaneous liquid velocity and ΔPi is the instantaneous differ-
ential pressure.

The average liquid velocity uL is obtained by sampling the instantaneous liquid
velocity:

uL(r) =

∑N
i=1 uL,i(r, t)

N
. (3.5)

Figure 3.3: Pavlov tube (Forret 2003).

3.3 Experimental setup

Experiments are carried out in a 0.4 m diameter cylindrical bubble column (Fig. 3.4a)
at atmospheric pressure for a wide range of superficial gas velocity, that varies from
0.03 m/s to 0.35 m/s. The net liquid flow rate is zero. The initial liquid height
(without gas) is equal to 4 diameters (H/D=4). This ratio is higher than the critical
value above which the gas volume fraction does not depend on the initial height,
as stated by Sasaki et al. (2017). The total column height is about 8 diameters, in
order to work with very high gas volume fractions.

The techniques detailed above are used to obtain the experimental data: the
global gas volume fraction by using the difference of liquid height, the local gas
volume fraction by using a 1C conical mono-fibre optical probe, the Sauter mean
diameter by using the CC technique and the liquid velocity by using a Pavlov tube
with a sampling frequency of 400 Hz.

Different water qualities are tested in this work: demineralised water (pure
water or slightly contaminated water), tap water (fully contaminated water) and
small percentages of ethanol (0.01% and 0.05% by volume) in demineralised water.

The gas enters the column through a perforated sparger placed at the bottom
of the column. Two different spargers are tested. The first sparger has 92 holes
of 2 mm of diameter (Fig. 3.4b), that assures a homogeneous gas distribution.
The second sparger has 7 holes of 9 mm (Fig. 3.4c), that allows analysis of the
effects of the sparger on hydrodynamics and bubble dimensions. In the second
sparger, one hole is in the sparger centre, while the other 6 holes create a hexagon
at a dimensionless radial position of 0.65 (Fig. 3.4c). In the following sections,
the results are mainly collected using the first sparger (92 holes of 2 mm), while
the results collected with the second sparger (7 holes of 9 mm) are reported in
Section 3.4.5.
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3.4 Experimental results

3.4.1 Gas hold-up

The global gas volume fraction is the first macroscopic property that is studied.
The global gas volume fraction increases with the superficial gas velocity with
different slopes, depending on the operating conditions. This change of slope allows
the homogeneous and the heterogeneous regimes to be distinguished. In Fig. 3.5
and Table A.1 the measured gas hold-up is reported versus the superficial gas
velocities for demineralised water, tap water and demineralised water with different
concentrations of ethanol. With demineralised water, the regime is homogeneous up
to a superficial gas velocity of 0.05 m/s (Fig. 3.5). The global gas volume fraction
increases quickly with a linear dependence on the superficial gas velocity. After a
superficial gas velocity of 0.05 m/s, the transition regime occurs, in which the gas
hold-up has a low dependence on the superficial gas velocity. The hold-up curve
has a monotonic increasing trend, without any local maximum in the transitional
regime in these experiments. The heterogeneous regime begins at a superficial gas
velocity of about 0.09 m/s: at this superficial gas velocity, the gas hold-up starts
to increase with a dependence that is quite linear.
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Figure 3.5: Gas hold-up versus superficial gas velocity for demineralised water
(�), tap water (�), ethanol 0.01% (�) and ethanol 0.05% (�).

In the case of tap water, the gas hold-up curve shows some differences corres-
ponding to the transition regime, as reported in Fig. 3.5. The behaviour at the
transition regime is influenced by the water quality used to fill the column. Tap
water results are not fully reproducible, as the water quality changes daily. It
is possible to observe that far away from the transitional regime, the trends for
demineralised water and tap water are similar.

The addition of small quantities of ethanol in water changes radically the hy-
drodynamics, in particular in the case of heterogeneous regime. These differences
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are bigger when the ethanol concentration is higher. The trends are similar under
the homogeneous regime, but the transition is delayed, as shown in Fig. 3.5. In the
case of heterogeneous regime, the differences of gas hold-up between ethanol solu-
tions and demineralised water are almost constant as the superficial gas velocity
increases.

3.4.2 Local gas volume fraction

The local gas volume fraction is affected by the superficial gas velocity and the
radial and axial positions. The optical probe measures correctly the local gas
volume fraction for every operating condition. The local gas volume fraction is
maximum in the column centre and minimum close to the wall, as suggested by the
correlation of Schweitzer (2001). The gas volume fraction profile is symmetric and
it can be assumed, in first approximation, as parabolic. Increasing the superficial
gas velocity, the local gas fraction value becomes higher for every bubble column
position. The effect is more important in the column centre, where the largest
bubbles rise to the top. Close to the wall, the smallest bubbles are dragged down
by the liquid that recirculates.

In the case of homogeneous regime, the radial profile is less pronounced. Big
bubbles appear in the centre of the column and the gas fraction radial profile has a
stronger concavity in the case of heterogeneous and transition regimes, as reported
in Fig. 3.6 and Table A.2.

The axial gas fraction profile in the column centre increases along the axial
position (Fig. 3.7, Table A.6 and Table A.7). More gas is trapped in the highest
part of the column. This axial effect is present under both the homogeneous and
the heterogeneous regimes. This effect may be important for industrial applica-
tions: increasing the axial position, the radial gas volume fraction profile is more
pronounced and can lead to strong heterogeneities in products concentrations, for
instance.

As observed with the global gas hold-up (Fig. 3.5), the effect of the tap water
on the gas volume fraction is low for both homogeneous and heterogeneous regimes
(Fig. 3.6 and Table A.3). Adding few percent of ethanol, the transition is delayed:
with a superficial gas velocity of 0.06 m/s, the radial gas volume fraction profile
is almost flat. In the case of homogeneous regime, the local gas fraction is almost
not influenced by the presence of ethanol. In the case of heterogeneous regime, the
local gas fraction is higher if small quantities of ethanol are present (Fig. 3.6).

In the case of heterogeneous regime, the local gas fraction increases adding a
small quantity of alcohol for every position: this discrepancy is important both for
the radial (Fig. 3.6, Table A.4 and Table A.5) and the axial position (Fig. 3.7 and
Table A.7). The ethanol effect on the gas fraction is almost absent in the case of
homogeneous regime (Table A.6).

To further study and validate the local gas fraction measurements, they are
compared with the correlation of Schweitzer (2001) (Eq. (2.3)). It is suitable for
the prediction of gas fraction profiles under the heterogeneous regime. It does not
consider an axial evolution. In accordance with the experiments of Forret (2003),
this correlation considers the local gas fraction near the wall close to zero.

Considering a superficial gas velocity of 0.16 m/s, the global gas volume fraction
(measured with the difference of height of the liquid into the column) is equal to
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Figure 3.6: Radial gas fraction profiles at H/D=2.5 with demineralised water (�),
tap water (�), ethanol 0.01% (�) and ethanol 0.05% (�) at different superficial
gas velocities. Comparison with Schweitzer (2001) correlation profiles for water

(solid lines) and ethanol 0.05% (dashed lines).
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Figure 3.7: Axial gas fraction profile in the centre of the column with
demineralised water (�), tap water (�), ethanol 0.01% (�) and ethanol 0.05% (�)

at different superficial gas velocities.
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0.26. Another method to compute the mean gas fraction is to average the radial
local gas fraction profile in a certain axial position. In order to compute this
average, it is necessary to assume that the fraction of gas near the wall is equal to
zero, as suggested by Schweitzer (2001) and Forret (2003). In the same operating
conditions, with a H/D = 2.5, the average of the radial local gas fraction profile is
equal to 0.22. This discrepancy is due to different factors: the importance of the
axial effect (Fig. 3.7), the assumption of absence of gas near the wall and the low
precision of the gas hold-up measured with the difference of liquid height.

The correlation of Schweitzer (2001), calculating the mean gas fraction as the
average in the axial position of interest, fits well the experimental profile in the
case of heterogeneous regime and demineralised water (Fig. 3.6). The correlation
of Schweitzer (2001) cannot be used in the case of homogeneous regime: the ex-
perimental radial profile is flat, while the profile obtained from this correlation is
parabolic.

Under the heterogeneous regime, the correlation of Schweitzer (2001) is suitable
also in the case of tap water and alcohol addition: the mean gas fraction changes,
but a correct radial profile is obtained, as reported in Fig. 3.6.

The results of this work are qualitatively compared with the experimental res-
ults of McClure et al. (2016). McClure et al. (2016) use ‘tree’ type spargers, located
at a height of 0.135 m. The radial profiles with this sparger have an M-shape if
a symmetric sparger is used, as shown in Fig. 3.8. A perforated plate injects gas
homogeneously, while a ‘tree’ type sparger cannot. The different type of spar-
ger cause the experimental data differences between this work and McClure et al.
(2016). For different operating conditions, the sparger choice can significantly in-
fluence the global hydrodynamics.
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Figure 3.8: Radial gas fraction profiles at H/D=2.5 with demineralised (�) and
tap water (�) versus the experimental data of McClure et al. (2016) (+).

57



3.4.3 Axial liquid velocity

The mean radial profile of axial liquid velocity depends on global hydrodynamics
and on bubbles recirculation, as observed by Krishna et al. (2000b). Its radial
profile has a quadratic shape in the case of heterogeneous regime, with a strong
liquid recirculation, that goes up in the column centre and goes down next to the
wall, as reported in Fig. 3.9 and Table A.8. The radial profile is more pronounced
in the case of heterogeneous regime and it is almost flat under the homogeneous
regime. For a superficial gas velocity of 0.06 m/s, using demineralised water, the
transition regime appears: the radial profile is quadratic with a weak concavity,
i.e. the profile is halfway between the homogeneous and the heterogeneous regime.
These results are in accordance with gas hold-up and local gas volume fraction
profiles.
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Figure 3.9: Radial profile of axial liquid velocity at H/D=2.5 with demineralised
water for different superficial gas velocities: 0.03 m/s (�), 0.06 m/s (�), 0.09 m/s

(×) and 0.16 m/s (�).

In the case of heterogeneous regime, the mean axial liquid velocity profile and
the recirculation does not seem to be influenced by the presence of contaminants
in the water (Fig. 3.10 and Table A.9). The velocity profile depends on the vertical
position close to the sparger, while the dependence is negligible in the case of
H/D>1.

These experimental data are compared with the correlation of Forret (2003)
(Eq. (2.10)) (Fig. 3.10). This correlation allows the radial profile of the liquid axial
velocity to be defined if the liquid velocity at the column centre is known. This
equation can be used in presence of contaminants and additives.

The experimental liquid velocity in the centre of the column is then compared
with the correlation proposed by Miyauchi & Shyu (1970) (Eq. (2.11)), that can
be used for many operating conditions under the heterogeneous regime. This cor-
relation can also be used for scale-up purposes, but it cannot be used in presence
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Figure 3.10: Radial profile of axial liquid velocity for a superficial gas velocity of
0.16 m/s at H/D=2.5 for demineralised water (�), tap water (�) and ethanol

0.05% (�); radial profiles are compared with the correlations proposed by
Miyauchi & Shyu (1970) and Forret (2003) (solid line).

of contaminants and additives. It slightly underestimates the liquid velocity in the
column centre also without additives.

3.4.4 Bubble size

The Sauter mean diameter is obtained from the CC measurements for different
water qualities, for a wide range of superficial gas velocity, from 0.03 m/s to 0.35
m/s. These results are given on Fig. 3.11 and reported in Table A.10, Table A.11,
Table A.12 and Table A.13.

The radial profile of the Sauter mean diameter is symmetrical with a maximum
in the centre. In the case of homogeneous regime, the profile is flatter. When the
superficial gas velocity increases, the concavity grows. In the case of heterogeneous
regime, big bubbles are formed. These bubbles they rise in the column centre, while
small bubbles are dragged down by the liquid recirculation near the wall. Radial
profiles of gas volume fraction, liquid velocity and bubble size are interconnected
and consistent.

The axial evolution of the Sauter mean diameter in the column centre is reported
in Fig. 3.12, in Table A.14 and in in Table A.15. The Sauter mean diameter slightly
decreases for both media close to the sparger. Close to the bottom, the bubble size
profile is not developed and it needs about 0.5 m to reach a stable radial profile;
above this height, the bubble size grows along the axial position. (Fig. 3.12). This
increase can be partially due to the decrease of pressure along the column. The
ideal gas law can be used to obtain a first approximation valuation: this effect is
less than 5%, while experimentally the increase is more than 20%. It means that
other factors are involved. This phenomenon is still difficult to explain. A partial
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Figure 3.11: Sauter mean diameter profiles at H/D=2.5 with demineralised water
(�), tap water (�), ethanol 0.01% (�) and ethanol 0.05% (�) at different

superficial gas velocities.
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explanation could be the higher concavity of the radial profiles along the axial
position, that causes an increase of the parabola maximum. The main phenomenon
that should cause the axial increase should be the bubble coalescence.

0

2

4

6

8

10

0 1 2 3 4 5

Sa
ut

er
 m

ea
n 

di
am

et
er

, m
m

Axial position (H/D)
Figure 3.12: Axial Sauter mean diameter profile in the centre of the column for a

superficial gas velocity of 0.16 m/s (heterogeneous regime) with demineralised
water (�) and ethanol 0.05% (�).

The Sauter mean diameter in demineralised water is higher than in tap water
(Fig. 3.11) for every operating condition: water contamination has an important
effect on the bubble size. Adding ethanol, the Sauter mean diameter becomes
lower in comparison with the case of demineralised water, but increases with the
superficial gas velocity. Adding ethanol, the radial profile is almost flat both for 0.03
m/s and for 0.06 m/s (Fig. 3.11), confirming the delay in entering the transition
regime, as suggested by global and local gas volume fraction. The bubble size is
lower if the concentration of ethanol is higher. The ethanol effect is consistent
with the results of McClure et al. (2015), adding 2-propanol into water. Small
quantity of ethanol and presence of impurities in tap water decrease coalescence;
as a consequence, the Sauter mean diameter is lower.

The surface tension difference is too small to have an effect: at 17 ◦C, with an
ethanol concentration of 0.05%, it goes from 0.07335 N/m to 0.07325 N/m. The
surface tension decrease is not enough to explain the differences: a small variation
of temperature would have a stronger effect than the presence of ethanol. It means
that other phenomena are at stake. (Kelkar et al. 1983) suggest that the differences
are caused by the bubble-rise velocity reduction. This explanation is reasonable
for the homogeneous regime, where the bubbles go up vertically and the bubble
velocity tends to the terminal velocity. As suggested by several authors (Camarasa
et al. 1999, Zahradník et al. 1995, 1997), under the heterogeneous regime, the
macro-scale turbulence effect eclipses the others. The effect on the gas fraction
can be entirely explained by the delay in entering the transitional regime (Krishna
et al. 2000a). The homogeneous regime is larger and the gas hold-up at transition
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in presence of alcohol can be estimated by using the correlation proposed by Reilly
et al. (1994).

As presented in Fig. 3.11 for a superficial gas velocity of 0.06 m/s, lower coales-
cence causes a transition delay: a lower coalescence rate causes smaller bubbles,
resulting in a higher gas hold-up into the column. Bigger bubbles feel a higher
buoyancy force (in comparison with the drag force) and they rise more quickly. As
big bubbles rise quickly in the column centre, the transition from the homogen-
eous regime to the transition regime and to the heterogeneous regime is affected.
By using an endoscope, Raimundo (2015) measured the bubble size distributions,
observing that they are wide, but still unimodal or bimodal with a predominant
peak. The biggest bubbles are in the column centre.

The principal effect of alcohol is to modify the surface mobility of the bubbles,
as stated by Najafi et al. (2007). In the case of pure systems, the bubble interface
is mobile. In this case, the liquid film between the approaching bubbles drains
out quickly. Alcohol forms a monolayer at the interface; that causes an additional
resistance to the liquid film motion (Jamialahmadi & Miiller-Steinhagen 1992).
This additional resistance increases the liquid film drainage time. Consequently, the
overall coalescence rate decreases. Takahashi (2005) stated that another important
aspect is linked to the effect of alcohol on the zeta-potential of the bubbles.

3.4.5 Effect of the sparger on demineralized water systems

A sparger with 92 holes of 2 mm in diameter (Fig. 3.4b) ensures a homogeneous gas
distribution and a generation of small bubbles. The bubble distribution is optimal.
Dead zones in the bubble column are absent.

A sparger with 7 holes of 9 mm is used to form bigger bubbles and to enhance
bubble breakage close to the bottom of the column. Gas injection with this sparger
is completely different: the gas is injected heterogeneously in a small fraction of the
column section and is then concentrated close to the holes. In correspondence of the
column centre, where the data is collected, the new sparger has a hole (Fig. 3.4c).

The axial gas fraction profiles obtained with the two spargers are compared
in Fig. 3.13 (Table A.16, Table A.17 and Table A.18). More gas accumulates
near the sparger in the column centre if the 7-holes sparger is used, in the case of
heterogeneous regime. The sparger effect is important for every column position
in the case of homogeneous regime and it determines the gas volume fraction in
the entire column: using the 7-holes sparger, the gas fraction is lower than when
using the 92-holes sparger for every axial position. Under the heterogenous regime,
the sparger effect is important in the lowest part on the column, while its effect is
almost null above a certain height.

Close to the bottom of the column, by using the 92-holes sparger, the radial pro-
file of the gas fraction is almost flat (Fig. 3.14) contrary to the results obtained with
the 7-holes sparger: a strong bubble accumulation appears above the holes, while
the gas concentration is low in the other radial positions. As shown in Fig. 3.14
(Table A.19 and Table A.20), the gas volume fraction with the two spargers is
approximately identical under the heterogeneous regime above an axial position of
0.5 m.

The initial dimension of the bubbles is strongly influenced by the sparger choice,
with the formation of very large bubbles (more than 20 mm) close to the bottom
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Figure 3.13: Axial gas fraction profile at the centre of the column with
demineralised water: sparger with 92 holes of 2 mm (�) vs sparger with 7 holes of

9 mm (�) with different superficial gas velocities.
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Figure 3.14: Radial gas fraction profile at different axial positions with
demineralised water: sparger with 92 holes of 2 mm (H/D=2.5 (�) and H/D=0.25

(�) vs sparger with 7 holes of 9 mm (H/D=2.5 (�) and H/D=0.25 (�)) with
different superficial gas velocities.

64



0

5

10

15

0 1 2 3 4

Sa
ut

er
 m

ea
n 

di
am

et
er

, m
m

Axial position (H/D)

(a) 0.03 m/s

0

10

20

30

40

0 1 2 3 4

Sa
ut

er
 m

ea
n 

di
am

et
er

, m
m

Axial position (H/D)

(b) 0.16 m/s

0

10

20

30

40

0 1 2 3 4

Sa
ut

er
 m

ea
n 

di
am

et
er

, m
m

Axial position (H/D)

(c) 0.25 m/s

Figure 3.15: Axial Sauter mean diameter profile at the centre of the column:
sparger with 92 holes of 2 mm (�) vs sparger with 7 holes of 9 mm (�) with

different superficial gas velocities.
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Figure 3.16: Radial Sauter mean diameter profile at different axial positions with
demineralised water: sparger with 92 holes of 2 mm (H/D=2.5 (�) and H/D=0.25

(�)) vs sparger with 7 holes of 9 mm (H/D=2.5 (�) and H/D=0.25 (�)) with
different superficial gas velocities.
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using the 7-holes sparger in correspondence of the holes, as shown in Fig. 3.15
(Table A.21, Table A.22 and Table A.23). The Sauter mean diameter decreases
rapidly along the axial position and after some centimetres, the bubble size is almost
identical to the case of 92-holes sparger (Fig. 3.16, Table A.24 and Table A.25).
Under the heterogeneous regime, the sparger has a weak effect both on gas fraction
and on Sauter mean diameter above an axial position of 1 m. In the case of
heterogeneous regime, the initial bubble size does not influence the final bubble
size. This effect cannot be neglected in the lowest part of the column. Close to
the bottom, the radial profile of the Sauter mean diameter is flat with the 92-holes
sparger, while it is irregular with the other sparger, as detailed in Fig. 3.16. The
irregularity of this profile is partially due to the creation of random preferential
paths of the bubbles. The sparger effect on the bubble size is only important in
the region close to the bottom, where the Sauter mean diameter is very high. If
the Sauter mean diameter is very high, bubble breakage is stronger than bubble
coalescence. Bubble breakage is the main phenomenon and bubble coalescence can
be neglected.

3.4.6 Effect of sparger for different media

The effects of additives and sparger design are coupled. The sparger effect is the
same both with demineralised water and with ethanol addition under the het-
erogeneous regime: more gas accumulates near the sparger in the column centre.
Under the heterogeneous regime, the sparger effect becomes null above 1 m: the
gas fraction is not influenced by the sparger above this height, both with demin-
eralised water and in presence of ethanol (Fig. 3.17 and Table A.17)). This aspect
is reasonably consistent with the conclusion of Polli et al. (2002), stating that
the sparger effect is important up to a distance of the order of magnitude of the
diameter of the column. Under the heterogeneous regime, alcohol addition has a
relatively low effect close to the sparger, but it affects the gas fraction in the entire
bubble column. Under the homogeneous regime, the ethanol addition has a lower
effect than under the heterogeneous regime (Fig. 3.17), while the sparger choice
influences the gas fraction in the entire column (Table A.16).

As shown in Fig. 3.18, the final dimension of the bubbles is almost not influenced
by the initial bubble size under the heterogeneous regime, while the alcohol presence
is very important (Table A.21, Table A.22 and Table A.23). The alcohol presence
almost does not influence the rate of bubble size decrease. The alcohol effect is
important only when the bubble size reaches equilibrium. In the lower part of the
column with the 7-holes sparger, when the bubbles are huge, bubble breakage can
be considered as the main phenomenon and bubble coalescence is negligible. It
allows decoupling bubble breakage and bubble coalescence. A priori, the alcohol
presence can infer coalescence and break-up rates. Experimental data show that the
presence of alcohol almost does not modify the rate with which bubbles coming out
of the sparger reduce their size, but on the contrary it affects the final equilibrium
size. From these observations, it is possible to state that the alcohol does not
change significantly the break-up rate, but it reduces the coalescence rate. The
main alcohol effect is on the bubble surface mobility and then it is reasonable that
the coalescence rate, that depends on the bubble surface mobility, is influenced in
turn by the presence of alcohol.
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Figure 3.17: Axial gas fraction profile at the centre of the column: sparger with
92 holes of 2 mm (with demineralised water (�) and ethanol 0.05% (�)) vs

sparger with 7 holes of 9 mm (with demineralised water (�) and ethanol 0.05%
(�)) with different superficial gas velocities.
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Figure 3.18: Axial Sauter mean diameter profile at the centre of the column:
sparger with 92 holes of 2 mm (with demineralised water (�) and ethanol 0.05%
(�)) vs sparger with 7 holes of 9 mm (with demineralised water (�) and ethanol

0.05% (�)) with different superficial gas velocities.
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3.5 Conclusions and perspectives
The goal of this experimental part is to study hydrodynamics and bubble size in
bubble columns under the heterogeneous regime, with the objective of highlighting
and studying the breakage and coalescence phenomena.

The use of different quality of water and the addition of small quantities of
ethanol is used to control coalescence. Bubble sizes in fully contaminated systems
are significantly lower than in pure or slightly contaminated water. The presence
of small percentages of ethanol into demineralised water delays the transition re-
gime and heterogeneous regime occurs later. Water contamination increases the
gas volume fraction and decreases the bubble dimension in the case of heterogen-
eous regime. Tap water causes similar consequences. Surface tension variations
are not enough to explain these differences. The alcohol presence modifies the
surface mobility of the bubbles. If the surface mobility is lower the coalescence
rate decreases and then the bubbles are smaller. Further investigations concern-
ing interface physical properties are necessary to understand how alcohol presence
inhibits coalescence.

The sparger choice strongly influences gas volume fraction and bubble size in
the lowest part of the column, close to the bottom. By using a perforated sparger
with big holes, there is an accumulation of big bubbles close to the bottom, in cor-
respondence of the holes. In this zone, bubble breakage is the main phenomenon.
It allows identifying some configurations in which bubble generation and breakage
are the only governing phenomena. The use of both different spargers and alco-
hol addition allows stating that bubble breakage is almost not influenced by the
presence of alcohol: alcohol effect changes the surface mobility and then affects
mainly the bubble coalescence. Coalescence models ought to consider the impact
of additives, that drastically change the coalescence rate without modifying the
physical properties involved.

Bubble size distributions (BSD) would be interesting to get, but unfortunately
the CC technique is not able to calculate the BSD: A possible perspective could
be to couple a classical optical probe for BSD measurements with a CC probe for
the Sauter mean diameter. It could allow rescaling the BSD, that is not precisely
measured with a classical optical probe in the case of heterogeneous regime.
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Chapter 4

CFD simulations: hydrodynamics
and mixing

4.1 Introduction

Bubble column reactors require effective mass, momentum and energy transfers
between the liquid and the gaseous phases. Although bubble column reactors
appear simple, their modelling is difficult. Phase velocities, gas volume fraction,
bubble size, flow pattern and turbulence depend on the operating conditions and on
the bubble column design and they are linked in a complex way. Moreover, in the
case of heterogeneous churn-turbulent flow regime, local profiles of the properties
of interest depend strongly on the radial position. Models for the simulation of
bubble column reactors suitable for both homogeneous and heterogeneous regime
still need to be developed.

CFD simulations are a promising tool for the study of large bubble columns
in a wide range of operating conditions. A common choice is to model these sys-
tems with Reynolds-averaged Navier-Stokes (RANS) equations and by using the
Eulerian-Eulerian multiphase model, describing the two phases as inter-penetrating
continua, as stated by Zhang (2007), Vaidheeswaran & Lopez de Bertodano (2017).
The interactions between the continuous and the disperse phases must be accurately
modelled (Jakobsen et al. 2005). These interactions are dominated by different in-
terfacial forces (McClure et al. 2013, Hlawitschka et al. 2017) and the drag force is
the most important. In the case of high gas volume fractions, the distance between
bubbles is small and the bubble boundary layers interact, modifying the drag force.
This phenomenon can be considered by adding a swarm factor. In the literature,
several drag force correlations and swarm factors have been proposed. Different
swarm factors are suitable for low gas volume fractions, while few correlations have
been proposed for high gas volume fractions (e.g. McClure et al. (2017b)). These
correlations are often empirical or obtained through Direct Numerical Simulations.
They are usually based on experiments carried out under the homogeneous regime
and then they have a narrow validity range.

Drag law expressions, including swarm factor, can be studied and validated
thanks to the experimental data of (Raimundo 2015) and the experiments detailed
in Chapter 3 and in Gemello et al. (2018) for a wide range of superficial gas ve-
locities, going from 0.03 m/s to 0.35 m/s and at different scales. Experimental
gas hold-up, local gas volume fraction and axial liquid velocity are compared with
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CFD results. The bubble size cannot be compared with the CFD simulations at
this stage: classical CFD simulations consider a fixed bubble size as input para-
meter. The population balance model proposed in Chapter 5 will allow overcoming
this limit. In the first part of this chapter, different drag laws and swarm factors
are tested, with a view to obtaining a swarm factor suitable for several operating
conditions.

The choice of the turbulence model is another important point for obtaining
reasonable CFD results. Classical models of turbulence are based on the Boussinesq
(1897) hypothesis. The choice of the turbulence model has a strong impact on the
turbulent mixing, that is a key property for bubble column reactors. In the second
part of this chapter, four different turbulence models, already usable in ANSYS
Fluent, are tested: standard k-ε, realizable k-ε, RNG k-ε and k-ω model.

Bubble contribution to mixing is considered in this work. It affects strongly the
mixing, as detailed by Alméras et al. (2016) for the homogeneous regime. With this
method, shear-induced turbulence (SIT) and bubble contributions are attributable
to similar diffusive properties. Alméras et al. (2015) stated that the bubbles have
an influence on the dispersion of a passive scalar in the case of bubbly flows,
characterizing the contribution of bubble wake interactions by adding a bubble-
induced diffusivity to the scalar transport equations. Mixing due to the bubble
contribution is studied in the last part of this chapter.

Turbulence due to energy transfer from gas to liquid could be included in a
RANS model with different techniques, as detailed by Joshi (2001). Pfleger &
Becker (2001), Yao & Morel (2004) and Rzehak & Krepper (2013) suggest adding
directly the source terms in the turbulence properties transport equations, as poin-
ted out by Fletcher et al. (2017) and McClure et al. (2017a) for predicting mixing.
However, this contribution needs clarifications, in particular for bubble columns at
high gas volume fractions. Sato & Sekoguchi (1975) stated that only a fraction
of this contribution forms a source term for the turbulence kinetic energy. Turbu-
lence due to energy transfer from gas to liquid is neglected in this chapter, without
adding source terms in k and ε (or ω) equations.

4.2 Modelling of bubble columns
Fluid flows are defined by the continuity equation, that represents the local con-
servation of mass, and by the Navier-Stokes equation, that characterizes the local
conservation of momentum (Bird et al. 2007):

∂ρ

∂t
+∇ρu = 0, (4.1)

∂ (ρu)

∂t
+∇ · (ρuu) +∇p = ∇ · T + g (4.2)

where T is the viscous stress tensor and g is the body forces vector. For a Newto-
nian fluid, T is equal to:

T = μ

[
∇u+ (∇u)T − 2

3
∇ · uI

]
(4.3)

where I is the identity matrix.
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Usually, solutions can be very accurate for single-phase laminar flows and sat-
isfying results are obtained for turbulent flows when the geometry is simple. Con-
trariwise multiphase flows simulations are more complex, given that interactions
between phases need to be considered and then modelled.

4.2.1 Multiphase flows

Multiphase flows can generally be divided into dispersed and separated flows, as
shown in Fig. 4.1 (Andersson et al. 2012).

(a) Separated flow. (b) Dispersed flow.

Figure 4.1: Main classification of multiphase flow.

Bubble columns work in a dispersed flow regime: the dispersed phase is repres-
ented by the bubbles of gas and the continuous one by the liquid. If the volume
fraction of the dispersed phase is high, it is difficult to obtain good results. Differ-
ent approaches are possible in order to describe the behaviour of this multiphase
system: Euler-Lagrange approach and Euler-Euler approach are the most used.

4.2.1.1 Euler-Lagrange approach

Euler-Lagrange approach (also called Discrete bubble model) is a model where the
liquid phase is considerate continuous and the gas phase is defined as discontinuous.
In this approach, the equation of motion for the continuous phase is solved using
an Eulerian frame of reference, solving the time-averaged Navier-Stokes equations.
The disperse phase is tracked explicitly within a Lagrangian context and the motion
equation of Newton is solved for each particle individually (Suzzi et al. 2013). The
dispersed phase can exchange mass, momentum and energy with the liquid. The
gas phase is described by tracing several random inclusions, through the solution
of an equation of motion. It is supposed that the hydrodynamic forces acting on
each bubble are known. This method is limited in the number of inclusions that
could be tracked, specifically only for small columns or conditions of low gas volume
fraction. The assumption in this model is that the volume fraction of the secondary
phase is below 10-15%. Actually, this approach cannot be applied in this work with
high gas fraction.

4.2.1.2 Euler-Euler approach

In Euler-Euler approach, phases are considered as interpenetrating continua. Volume
fractions for different phases are introduced in order to consider that the volume of
a phase cannot be occupied at the same time by the other one. These fractions are
continuous functions of time and space and their sum is equal to one. The equa-
tions, similar for each phase, are obtained by deriving the conservation equations
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for each phase. The Euler-Euler approach presents three models of multiphase flow:
volume of fluid (VOF), mixture model and Eulerian model.The Eulerian model is
described and used in this work.

Using the Eulerian multiphase model, a single pressure is shared by all phases;
momentum and continuity equations are solved instead for each phase. With the
Eulerian multiphase model, the number of secondary phases is limited only by
memory requirements and convergence behaviour. Any number of secondary phases
can be modelled, provided that sufficient memory is available. For complex mul-
tiphase flows, it is possible that each solution is limited by convergence behaviour.
The volume of phase q, Vq, is defined by:

Vq =

∫
V

αqdV (4.4)

where:
n∑

q=1

αq = 1. (4.5)

The continuity equation for phase q is:

∂ (αqρq)

∂t
+∇ · (αqρquq) =

n∑
p=1

(ṁpq − ṁqp) (4.6)

where uq is the velocity of phase q and ṁpq characterizes the mass transfer from
the phase p to the phase q.

The momentum balance for phase q is:

∂ (αqρquq)

∂t
+∇ · (αqρququq) =

= −αq∇p+∇ · (αqτ q) + αqρqg +
n∑

p=1

(ṁpqupq − ṁqpuqp) + F (4.7)

where τ q is stress-strain tensor for the phase q.
If phase p mass is transferred to phase q (ṁpq > 0), upq = up; if phase q mass

is transferred to phase p (i.e. ṁpq < 0), upq = uq. If ṁqp > 0 then uqp = uq, if
ṁqp < 0 then uqp = up.

F contains the interfacial forces involved, that are detailed in section 4.2.2.

4.2.2 Interfacial forces

Dispersed gas-liquid systems are generally dominated by interfacial forces (Tabib
et al. 2008) and the drag force is the most important one for bubble column reactors.
In this work, several drag laws and swarm factors are tested.

The lift force is normally considered minor and it can be important for sheared
flows. When velocity gradients are present in the primary fluid field, the dispersed
phase is affected by a pushing force oriented perpendicular to the flow direction.
It is necessary to consider this phenomenon when the flow of the continuous phase
is not uniform. Including lift force in CFD simulations of bubble columns under
the heterogeneous regime is still an open question. It has been found by some
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authors that the lift force can be very helpful when two-dimensional simulations
are performed (Joshi 2001). Lift force can be important in a wall-peaked gas
volume fraction distribution linked to a boiling flow, due to the presence of shear
flows, as suggested by Sugrue (2017). On the other hand, McClure et al. (2013)
found lift force effect as being negligible under the heterogeneous regime for three-
dimensional simulations. Finally, as the expression of the lift force coefficient at
high gas fraction is still debated, and as acceptable results are obtained without
including it, the lift force has not been considered in the present study. This is
done also with the objective to simplify as much as possible the final CFD model
obtained from the present work.

The virtual mass is generated mainly by the relative acceleration between the
two phases. The virtual mass effect is due to the inertia of the liquid phase mass,
which exerts a virtual force on the bubbles that accelerate relative to the liquid
phase. The virtual mass is quite important when the density of the continuous
phase is much bigger than the density of the dispersed phase. The virtual mass has
not been considered in the present work in order to simplify the final CFD model
as much as possible.

In bubble column reactors, bubbles are concentrated near the walls, not in
direct contact with them: this phenomenon can be explained by adding the wall
lubrication force, that acts in the direction normal to the wall. Wall lubrication
force has been ignored for reasons similar to the previous forces.

The dispersion force is obtained by averaging over time the instantaneous drag.
The previous hypothesis leads to two terms: the first one is the drag force and
represents the mean momentum exchange between the fluids; the second term is
the turbulent dispersion force, depends on the drift velocity and permits to consider
the dispersion of the secondary phases caused by turbulent fluid motion transport.
Secondary interfacial forces could be considered in CFD simulations but the final
CFD simulations would be more complex, unstable and time-consuming.

4.2.2.1 Drag law correlations

The drag force is the most important force of interaction between the two phases.
During rising motion, the bubble is accelerated by buoyancy and decelerated by
pressure effects and the friction between the surface of the bubble and the sur-
rounding fluid. In the bubble columns, the drag force is opposed to the buoyancy
force during the ascensions of the bubbles if they go upwards vertically. The drag
law must be studied in detail: it influences the relative velocity of the bubbles and
then the gas volume fraction in the bubble column.

The drag force for the phase q can be calculated as:

FD,q =
n∑

h=1

Kjq(uh − uq) (4.8)

where the index h is for the generic phase different from q. Only two phases are
present in simple bubble columns, e.g. continuous liquid and dispersed bubbles of
gas. Consequently, for these systems the expression can be simplified on:

FD,q = Kpq(up − uq). (4.9)
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p is the dispersed phase and q is the continuous one.

Kpq =
CD Reb Ai μq

8 dp
. (4.10)

Ai is the interfacial area between phases per unit mixture volume. The bubble
Reynolds number (Reb) is defined with respect to the relative velocity between
bubble and surrounding liquid:

Reb =
ρq(up − uq)dp

μq

. (4.11)

Literature reports several drag correlations for different operating conditions. It is
possible to find correlations for spherical and deformed bubbles and drag laws that
consider the effect of the contamination of the water.

Grace et al. (1976) and Ishii & Zuber (1979) proposed drag laws suitable for
deformed bubbles. For deformed bubbles, the drag force coefficient depends on
Reynolds, Eötvös and Morton numbers. Alternatively, some authors use the Froude
number or the Weber number, that can be written as a function of Reynolds, Eötvös
and Morton numbers.

Tomiyama (1998) proposed one of the most common drag laws:

C ∞
D = max

{
min

{
24

Reb

(
1 + 0.15Re0.687b

)
,
72

Reb

}
,
8

3

Eo

(4 + Eo)

}
, (4.12)

where C ∞
D is the drag coefficient for an isolated bubble.

This drag law is suitable for both spherical and ellipsoidal bubbles, in the case
of slightly contaminated air-water systems. Similar expressions are valid for other
water qualities (pure and fully contaminated systems).

A more compact drag law gives similar results (Zhang et al. 2006) in the studied
range:

C ∞
D =

2

3

√
Eo. (4.13)

Using this drag law, the terminal bubble velocity does not depend on the bubble
diameter in the diameter range from 5 to 8 mm. The drag law proposed by Tom-
iyama (1998) has a larger range of validity and it has the advantage that considers
water contamination effects. The drag law proposed by Tomiyama (1998) is chosen
for this work. More details and a comprehensive collection of drag laws for both
spherical and oblate bubbles are reported in Annex B.

4.2.2.2 Swarm factor

The drag laws described above are studied for isolated bubbles and they are only
suitable in the case of low gas volume fractions. This work is focused on bubble
columns with high gas volume fractions: a correction term, called swarm factor h,
is required:

h =
CD

CD
∞ =

(
ur

∞

ur

)2

, (4.14)

where CD is the real drag force that acts on a bubble in the actual operating
conditions.
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The first swarm factors have the following form:

h =
1

1− αg
2n (4.15)

where n is 1.39 for Bridge et al. (1964) or 1 for Wallis (1969).
Ishii & Zuber (1979) coined another swarm factor:

h =
1√
αl

=
1√

1− αg

. (4.16)

Rusche & Issa (2000) provided a factor available for oblate bubbles, αg < 45% and
27 ≤ Reb ≤ 960:

h = e3.64αg + αg
0.4864. (4.17)

Roghair et al. (2011) studied a swarm factor that can be used also in the case of
high Reynolds number, for oblate bubbles with αg < 45%, 150 ≤ Reb ≤ 1200,
1 ≤ Eo ≤ 5 and 4 ∗ 10−12 ≤ Mo ≤ 2 ∗ 10−9:

h =

(
1 +

18αg

Eo

)
(1− αg) (4.18)

The proposed swarm factors hinder the rise of the bubbles, increasing the effect of
the drag force for high gas volume fractions. The swarm factors are higher than
one at low gas volume fractions. Some of these are reported in Fig. 4.2.
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Figure 4.2: Swarm factors in function of the gas volume fraction: Bridge et al.
(1964) (�), Wallis (1969) (�), Ishii & Zuber (1979) (�), Rusche & Issa (2000)

(×), Simonnet et al. (2008) (�), Roghair et al. (2011) (�), McClure et al. (2014)
(�) and McClure et al. (2017b) (�).
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Figure 4.3: Swarm factors that decrease the effect of the drag force in function of
the gas volume fraction: Simonnet et al. (2008) (�), McClure et al. (2014) (�)

and McClure et al. (2017b) (�).

Simonnet et al. (2008) propose a swarm factor that considers the existence
of a critical value of gas volume fraction of 15%, above which this swarm factor
decreases. This empirical expression is completely different from the previous ones.
The authors state that this swarm factor has been validated for a gas volume
fraction lower than 30%. This swarm factor is shown in Fig. 4.2 and in Fig. 4.3,
that focuses on the swarm factors that decrease the effect of the drag force in
function for high gas volume fractions.

h = (1− αg)

[
(1− αg)

25 +

(
4.8

αg

1− αg

)25
]− 2

25

. (4.19)

McClure et al. (2014)) suggest a modified form of the swarm factor proposed by
Simonnet et al. (2008):

h =

⎧⎨⎩min (h′, 1.0) for h′ > 1.0

0.8h′ for h′ < 1.0
(4.20)

where h′ is the original swarm factor proposed by Simonnet et al. (2008).
McClure et al. (2017b) propose an empirical term suitable for gas volume frac-

tions higher than 25%:
h = min ((1− αg)

n + b, 1) , (4.21)

where n and b are empirical constants, obtained with a least-squares fit of their
data. The suggested value for n is 50, while b is linked to the sparger design.

Most of these swarm factors have been studied for air-water systems and they
need to be validated for applications in other systems.
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4.2.3 Modelling of turbulence

Turbulence has a main role in coalescence and break-up of bubbles and it enhances
heat and mass transfer rates: turbulence consequently becomes one of the key ele-
ments in CFD simulations. Different existing turbulence models, already installed
in ANSYS Fluent, are tested in this work: standard k-ε, realizable k-ε, RNG k-ε
and k-ω models. The objective is to try to justify which one provides the best
results and which one is the more stable, without modifying them.

Navier-Stokes equations can describe also turbulent flows: a way to simulate
turbulent flows could be resolving directly this equation without turbulence mod-
els. This approach is called direct numerical simulation (DNS): due to the huge
computational resources required, it cannot be used in engineering applications.

Another method could be to model only the smallest scales of turbulence, that
are encountered where the flow is mainly viscous, e.g. near a wall, with a sub-grid
stress model, and to resolve momentum equation only for the main flow where
largest eddies are in. This approach is called large-eddy simulation (LES) and
allows using coarser meshes than DNS. Intermediate-to-large turbulence is hard
to model in a universal way due to anisotropy. The smallest turbulence can be
easily modelled since are closer to isotropy, following the theory of Kolmogorov,
that suggests that the smallest length scales are given by the Kolmogorov scale:

η =

(
ν3

ε

)1/4

(4.22)

where ν is the kinematic viscosity and ε is the turbulence dissipation rate.
The most common way to compute turbulence is averaging over time the Navier-

Stokes equations by Reynolds decomposition. The concept is to split instantaneous
variables into a mean time independent part and a fluctuating part. Time averaging
over a reasonable time allows describing separately fluctuations and non-turbulence
quantities. Applying the Reynolds decomposition to both pressure and velocity, in
continuity and momentum equations, they become respectively

∂ (αqρq)

∂t
+∇ · (αqρq〈uq〉) +∇ · (αqρqu

′
q

)
= 0; (4.23)

∂ (αqρq〈uq〉)
∂t

+
∂
(
αqρqu

′
q

)
∂t

+∇ · (αqρq
(〈uq〉+ u′

q

) (〈uq〉+ u′
q

))
+

αq (∇〈p〉+∇p′) = αqμq

(∇2〈uq〉+∇2u′
q

)
+ αqρqgq + F . (4.24)

where the strain-stress tensor was expressed for a Newtonian fluid.
Averaging these equations with respect to time, a new set of PDE can be ob-

tained. This set, known as Reynolds-averaged Navier-Stokes (RANS), presents the
following equations if the mass transfer is neglected:

∂ (αqρq)

∂t
+∇ · (αqρq〈uq〉) = 0; (4.25)

∂ (αqρq〈uq〉)
∂t

+∇ · (αqρq (〈uq〉〈uq〉)) + αq∇〈p〉 =

= αqμq

(∇2〈uq〉
)
+ αqρqgq −∇ · (αqρq〈u′

qu
′
q〉
)
+ F . (4.26)
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The averaging adds a new term:

τ ′′
q = ρq〈u′

qu
′
q〉. (4.27)

It is an unknown symmetric second-order tensor, which has to be modelled in
order to close the problem. Deriving a transport equation for the Reynolds stress
tensor itself introduces a third-order tensor. Deriving an equation for this term
would yield to an equation that contains fourth-order moments of the velocity
components: this is noted as the closure problem. The Reynolds stress tensor
(RST) is a symmetric matrix: this means that six components are unknown and
six equations are needed to close the problem. The Boussinesq approximation
(Andersson et al. 2012) considers RST proportional to the mean velocity gradients.
The hypothesis of Boussinesq introduces the turbulent viscosity and it is the basis
of several turbulence models:

τ ′′
q = ρq〈u′

qu
′
q〉 = −2

3
(ρqkq + μt,q∇ · 〈uq〉) I + μt,q

(∇〈uq〉+∇〈uq〉T
)
. (4.28)

These models solve zero, one or two equations with the RANS equations. In this
work, only two-equations models have been used and described.

Two-equations turbulence models are studied for a single-phase system, in order
to extend them to multiphase systems three options exist (Buffo & Marchisio 2014):

• Dispersed turbulence model: the dominant process that causes the random
motion of the secondary phase is the primary-phase turbulence. The turbu-
lence is calculated only for the continuous liquid phase and extra terms are
involved in primary-phase turbulence equations for considering the turbulence
induced by the dispersed secondary-phase.

• Mixture turbulence model: it is applicable for separated phases, for stratified
flows, and when the density ratio between phases is close to 1. In these cases,
mixture properties and mixture velocities are used.

• Per-phase model: this model computes the turbulence for each phase sep-
arately. This model often provides good results, but the computational re-
sources required are too big. For this reason, it is not often used in engineering
applications.

These three models are implemented in ANSYS Fluent. For this work, only the
dispersed model was used, since the density ratio between phases is very high, and
so the following equations refer to this option.

4.2.3.1 Standard k − ε model

The standard k− ε model was proposed initially for single-phase flows by Launder
& Spalding (1972). Two transport equations are added: the turbulence kinetic
energy k and turbulence dissipation rate ε. This model is robust and economical:
it assumes that the flow is completely turbulent. This is a direct consequence of
the definition of ε, relating the large-scale quantity l to the small-scale quantity ε:
when the flow is fully turbulent, the rate at which the largest eddies extract energy
from the mean flow is paired with the rate at which energy goes from larger to
smaller eddies (Versteeg & Malalasekera 2007).

84



For k − ε models, the turbulent viscosity is defined as:

μt = ρCμtk
2ε−1. (4.29)

For multiphase flows, if the dispersed turbulence model is adopted, the turbulence
kinetic energy equation is

∂ (αqρqkq)

∂t
+∇ · (αqρqkq〈uq〉) = ∇ ·

[
αq

(
μq +

μt,q

σk

)
∇kq

]
+

+ αq (Gk,q +Gb,q − ρqεq) + αqρqSk,q (4.30)

while the turbulence dissipation rate equation is

∂ (αqρqεq)

∂t
+∇ · (αqρqεq〈uq〉) = ∇ ·

[
αq

(
μq +

μt,q

σε

)
∇εq

]
+

+ αq
εq
kq

(C1εGk,q + C1εC3εGb,q − C2ερqεq) + αqρqSε,q (4.31)

where Gk,q is the generation term of the kinetic energy due to gradients of mean
velocity and Gb,q is the generation term of the kinetic energy due to buoyancy. Gb,q

is equal to zero as it is not null when a non-zero gravity field and temperature
gradient are present simultaneously, while, in this case, the temperature gradient
is zero and the dispersed phase density is constant; consequently c3ε does not need
to be defined. C1ε and C2ε are constants. σk and σε are the turbulent Prandtl
numbers. Sk,q and Sε,q are user-defined production terms of k and ε respectively.

c1ε = 1.44;

c2ε = 1.92;

cμt = 0.09;

σk = 1.00;

σε = 1.30.

These values allow having a good compromise between performance and accuracy
for different kind of flows and these values can be modified for a particular system.

This model is widely used due to its robustness and the ease of interpretation of
terms. Best results are obtained in flows where an isotropic turbulence is presented,
characterized with high Reynolds number, but some problems are present with
swirling flows: flows involving curvature and regions with low Reynolds number.
Literature reports several modifications of the standard model: RNG k − ε and
realizablek − ε models are the most important variants.

4.2.3.2 RNG k − ε model

The RNG model was initially developed from instantaneous Navier-Stokes equa-
tions, by using the Re-normalization group theory (Yakhot & Orszag 1986). This
model allows obtaining better results with simulations in low-Re region and when
the flow changes direction suddenly.

The main difference with the standard model is the presence of an extra pro-
duction term in the equation of ε contained in the term C∗

2ε. A different way to
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model the turbulent viscosity is applied in order to consider zones where the flow
is not fully turbulent. This model is more responsive to the effects of rapid strain
and streamline curvature than the standard one.

∂ (αqρqkq)

∂t
+∇ · (αqρqkq〈uq〉) = ∇ ·

[
αq

(
μq +

μt,q

σk

)
∇kq

]
+

+ αq (Gk,q +Gb,q − ρqεq) + αqρqSk,q (4.32)

∂ (αqρqεq)

∂t
+∇ · (αqρqεq〈uq〉) = ∇ ·

[
αq

(
μq +

μt,q

σε

)
∇εq

]
+

+ αq
εq
kq

(C1εGk,q + C1εC3εGb,q − C∗
2ερqεq) + αqρqSε,q, (4.33)

where

C∗
2ε = C2ε +

Cμδ
3(1− δδ0)

1 + βδ3
, (4.34)

δ =
k

ε
S, (4.35)

S = (2〈S〉〈S〉)1/2, (4.36)

where 〈S〉 is the mean strain rate tensor and Gb,q is null, as detailed above.
Model constants are calculated analytically by the Re-normalization group the-

ory, obtaining

c1ε = 1.42;

c2ε = 1.68;

cμt = 0.0845;

σk = 1.00;

σε = 1.393;

δ0 = 4.38;

β = 0.012.

4.2.3.3 Realizable k − ε model

Realizable k− ε model is used when both standard and RNG models are not real-
izable, i.e. Reynolds stress tensor does not satisfy some mathematical constraints,
and it is consistent with the turbulent flow physics. Proposed by Shih et al. (1995),
this model uses an equation for the dissipation rate based on the transport equa-
tion of the mean square vorticity fluctuation and an alternative formulation for the
eddy viscosity.

The turbulence kinetic energy equation is identical to the standard k−ε model,
while the turbulence dissipation rate equation is

∂ (αqρqεq)

∂t
+∇ · (αqρqεq〈uq〉) = ∇ ·

[
αq

(
μq +

μt,q

σε

)
∇εq

]
+

+ αqεq

(
C1ρqS + C1εC3ε

Gb,q

kq
− C2ρq

εq
kq +

√
νqεq

)
+ αqρqSε,q (4.37)
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where
C1 = max

(
0.43,

η

η + 5

)
, (4.38)

η = S
kq
εq
, (4.39)

S = (2〈S〉〈S〉)1/2; (4.40)

Gb,q is null, as detailed above. Model constants are calculated to ensure good
performance for canonical flows:

c1ε = 1.44;

c2 = 1.90;

σk = 1.00;

σε = 1.20.

This model is used for flows that present a large strain rate, i.e. flows with rotation
and strong curvature. For swirling flows and flow separation, this model performs
better than the standard one. The main issues are that it is less stable and the
computational resources required are bigger (Cappello 2016).

4.2.3.4 k − ω model

The standard k − ω model is an empirical model based on the model of Wilcox
(1998) that reports a specific dissipation ω, the frequency of the turbulence, is the
quantity used for describing the length-scale of turbulence:

ωq =
εq
kq
. (4.41)

Two equations are solved:

∂ (αqρqkq)

∂t
+∇ · (αqρqkq〈uq〉) = ∇ · (αqμeff,k,q∇kq) + αqGk,q + αqρqSk,q (4.42)

∂ (αqρqωq)

∂t
+∇ · (αqρqωq〈uq〉) = ∇ · (αqμeff,ω,q∇ωq) + αqGω,q + αqρqSω,q (4.43)

where Gk,q and Gω,q represent respectively the generation of k and ω. μeff,k,q and
μeff,ω,q represent the effective diffusivity of turbulence kinetic energy and specific
dissipation rate. Sk,q and Sω,q are user-defined source terms.

μeff,k,q = μq +
μt,q

σk

(4.44)

μeff,ω,q = μq +
μt,q

σω

(4.45)

σk,q and σω are the turbulent Prandtl numbers both equal to 2. The turbulent
viscosity depends on k and ω.

This model provides a better performance for low Reynolds number, adverse
pressure gradients and wall-bounded boundary layer flows; wall functions are not
required. A finer mesh near the wall is however necessary.
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4.2.3.5 Turbulence due to energy transfer from gas to liquid

As detailed by Joshi (2001), for a single bubble that rises in liquid the pressure
energy is transformed into potential energy. In a laminar flow, the gas energy is
transformed into internal energy. In a turbulent flow, the gas energy is converted
into turbulence in the liquid phase and finally into internal energy. The fraction of
gas energy that generates turbulence depends on the operating conditions.

In a bubble column, the axial bubble velocity depends on the radial position,
due to the liquid recirculation. In the central region of the column, the gas velocity
is higher than the slip velocity, as the axial liquid velocity is positive. The energy
released depends on the gas velocity, while the energy converted into turbulence
and used for viscous dissipation depends on the slip velocity, as detailed by Joshi
(2001). In the central region of the column, the energy released is higher than the
dissipation. Near the wall, in contrast, the energy of the liquid phase is transferred
to the gas phase.

Yao & Morel (2004) stated that the turbulence due to energy transfer from gas
to liquid can be considered by adding source terms in the turbulence properties
transport equations (in k and ε or ω equations). The additional turbulence due to
energy transfer between the phases can be considered by adding the contribution
of the drag force, that is the main interfacial force for bubble columns under the
heterogeneous regime. In the case of k − ε models, the source terms are:

Sk,q = Kpq (up − uq)
2 (4.46)

and
Sε,q =

1

τp
Sk,q (4.47)

where Kpq has been defined in Eq. (4.10) and

τp =

(
dp

2

ε

)1/3

. (4.48)

Troshko & Hassan (2001) used a similar approach, but they stated that only a frac-
tion of the energy due to the drag force is transferred to the liquid-phase turbulence.
The turbulence source terms are:

Sk,q = CSk,q
αqKpq (up − uq)

2 (4.49)

and

Sε,q =
CSε,q

τ ′p
Sk,q (4.50)

where CSk,q
and CSε,q are user-modifiable constants. Troshko & Hassan (2001)

proposed to consider these constant equal to 0.75 and 0.45 respectively.

τ ′p =
2CVMdp

3CD |up − uq| . (4.51)

where CVM is the virtual mass coefficient (equal to 0.5) and CD is the drag coeffi-
cient.
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A similar expression has been proposed by Simonin & Viollet (1990):

Sk,q = CS
Kpq

αqρq

ρp
ρp + CVMρq

[kpq − 2kq + (up − uq) · udrift] (4.52)

where CS is a constant equal to 1, kpq is the covariance of the phase velocities and
udrift is the drift velocity. More details are presented in Simonin & Viollet (1990)
and in the ANSYS Fluent Theory Guide.

The turbulence dissipation rate source term is calculated according to Elgho-
bashi & Abou-Arab (1983):

Sε,q = 1.2
εq
kq
Sk,q. (4.53)

Sato & Sekoguchi (1975) proposed a different approach: instead of adding source
terms in turbulence equations, the viscosity for the continuous phase is modified:

νq = Cμ

k2
q

εq
+ 0.6αpdp |up − uq| (4.54)

where Cμ is the turbulent viscosity constant.
In the case of turbulent flows, many authors stated that only a fraction of the

energy due to the drag force is transformed into liquid-phase turbulence, as pro-
posed by Troshko & Hassan (2001). Kataoka et al. (1992), Hillmer et al. (1994) and
Ranade (1997) stated that the additional turbulence due to the bubble energy is
compensated by the additional dissipation due to the small-scale interfacial struc-
tures. They suggested to consider CSk,q

equal to zero. Other authors used very
low values for CSk,q

. The model of Yao & Morel (2004) is the extreme case, where
the entire gas-phase energy is converted into liquid-phase turbulence. All other
models have a lower effect. Considering that this contribution is far from being
well-understood under the heterogeneous flow regime, these source terms have been
neglected in this chapter. This assumption has been however checked, comparing
CFD results to experiments.

4.2.4 Mixing time

Mixing is a continuous process. The mixing time is defined for a predefined level of
homogeneity: a deviation of 5% from the final concentration is used in this work.
The normalized concentration is defined as the ratio C(t)/C ∞. It does not depend
on the volume used for the introduction of the scalar. A User Defined Scalar (UDS)
transport equation is used to simulate the mixing of a scalar quantity. The source
term of the scalar is null. The diffusion coefficient is the sum of molecular (Dm,q)
and turbulent (Dt,q) diffusivities.

The turbulent diffusivity is classically linked to the turbulent viscosity through
the dimensionless turbulent Schmidt number (Sct), that varies from 0.7 to 1 (Combest
et al. 2011). An empirical approach could consider a greater global turbulent diffu-
sion by using a lower Schmidt-turbulent number. In this work, a constant turbulent
Schmidt number equal to 0.7 is used in every simulation, as suggested by Radl &
Khinast (2010). Contributions of SIT and bubbles are considered. The diffusive
model of Alméras et al. (2016) considers bubble contribution as a regular diffusion
phenomenon, so an extra diffusivity (D+) is added. This diffusion coefficient is
anisotropic: the axial diffusivity is twice the radial diffusivity, due to the velocity
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fluctuations. This model is based on the experimental analysis of the mixing of a
low-diffusive scalar. The diffusive model of Alméras et al. (2016) is adopted in this
work.

Dt =
μt

ρlSct

+D+, (4.55)

where μt is the turbulent viscosity.
Alméras et al. (2016) define the extra diffusivity due to the bubbles as:

D+ =

⎧⎨⎩Di,0α
0.5
g αg ≤ αgc,i

βγ2
i UR d αg > αgc,i

(4.56)

where UR is the relative velocity between gas and liquid (measured in m/s), d is
the bubble diameter (in m). The constants are:

Dx,0 = 0.0029;

Dz,0 = 0.0045;

αgc,x = 0.027;

αgc,z = 0.041;

β = 25;

γx = 0.13;

γz = 0.18.

αgc,i is a critical value that divides between low and high gas hold-up regimes. In
the first case, the diffusivity depends on the gas volume fraction, in the other case
no.

4.3 CFD simulations
For studying high gas volume fraction systems under the heterogeneous regime, the
simulations ought to be transient and three-dimensional (3D), since the movement
of the bubble plume is chaotic (Ekambara et al. 2005).

The Euler-Euler approach is adopted: the two phases are considered as in-
terpenetrating continua. The Eulerian model solves momentum and continuity
equations for each phase. Different two-equation turbulence models are tested.

4.3.1 Test cases and CFD setup

Three-dimensional CFD Eulerian-Eulerian simulations are carried out with ANSYS
Fluent 18.0, in a wide range of operating conditions, as the superficial gas velocity
ranges from 0.03 m/s to 0.35 m/s. Both homogeneous and heterogeneous flow
regimes are studied (Fig. 4.4a).

Initially, a cylindrical column with a diameter of 0.4 m is tested; subsequently,
other simulations with different column diameters are carried out: 0.15 m, 1 m
and 3 m. Instantaneous properties are averaged over a sample time. The required
time depends on the operating conditions and on the properties of interest. Every
simulation is sampled over a period of 100 s as a precautionary measure. The initial
transient hydrodynamics is neglected.
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Figure 4.4: Operating range of CFD simulations.

The PC-SIMPLE algorithm is used. A first-order Euler implicit temporal dis-
cretization scheme is adopted. A Green-Gauss node-based formulation is con-
sidered for the gradients calculation. The QUICK method is adopted for volume
fraction and momentum. The second-order upwind method is used for the scalar.
The first-order upwind is chosen for the turbulence: second-order schemes for tur-
bulence and temporal discretization compromise severely the numerical stability.
Under-relaxation factors are set equal to 0.5 for pressure, volume fraction and mo-
mentum, while they are set equal to 0.7 for turbulent equations. Maximum residual
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values are imposed below 0.0001 for every equation for every simulation. Courant-
Friedrichs-Lewy number (CFL) determines the first limit of the time step size:
CFL ought to be lower than unity, as stated by Guédon et al. (2017). Sensitivity
analysis of time discretization needs to be carried out for every operating condition
and column size. The time step size is close to 0.005 s for many cases.

At this stage of the work, CFD simulations consider the bubble diameter as
an input parameter. A mono-disperse approach is adopted initially: a constant
bubble diameter is considered. In the previous chapter is possible to observe that
the Sauter mean diameter is often between 5 mm and 9 mm. The terminal velocities
are poorly affected by the bubble size in this range in the case of contaminated
bubbles, has reported in Fig. 4.4b. Preliminary terminal velocity calculations based
on Tomiyama (1998) and Zhang et al. (2006) drag laws are coherent with this. The
averaged Sauter mean diameter is about 6.5 mm for several operating conditions.
A fixed value, equal to 6.5 mm, is used in the CFD simulations of this chapter.
Under the homogeneous regime, the profile is almost flat with a constant value
equal to 6.5 mm. Under the heterogeneous regime, the space-averaged Sauter
mean diameter is about 6.5 mm.

4.3.2 Geometry and meshes

The bubble columns studied in this work can be considered as cylinders with an
initial liquid height (without gas) equal to four diameters. The total height of the
column must be at least twice of the initial height of the liquid, with a view to
simulating high gas volume fractions (up to 50%). The column with a diameter of
0.4 m (Fig. 4.5) has an initial height of the liquid equal to 1.6 m and a total height
of 3.6 m.

Φ 0.40 m

Φ 0.38 m

Wall zone

Inlet zone

Figure 4.5: Schematic representation of the bottom of the bubble column.
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As detailed in the previous chapter, experimentally the gas is injected through
a sparger with 92 holes of 2 mm for the column φ 0.4 m. As observed in Chapter 3,
using this sparger, the initial gas distribution is homogeneous: it is possible to ap-
proximate the real sparger with a homogeneous porous plate (inlet zone in Fig. 4.5).
The goal of this choice is to be able to carry out industrial simulations where it is
not possible to simulate the real sparger. A homogeneous sparger, where the gas
enters the domain already mixed with some liquid, ensures more stable and faster
CFD simulations. The best choice is to choose a fraction of gas at the gas entrance
of about 50%, as stated by Li et al. (2009). In order to avoid turbulent instabilities
close to the bottom, a turbulent intensity (defined as the ratio of root-mean-square
of the velocity fluctuations to mean flow velocity) equal to 5% and a turbulent vis-
cosity ratio (μt/μ) equal to 10 are imposed as inlet conditions. The external ring
of the bottom (with a thickness of 0.01 m for the column φ 0.4 m) is considered
as a wall (Fig. 4.5), in order to avoid convergence issues and to induce liquid recir-
culation. The gas outlet at the top of the column has a complete backflow of gas
and it operates at atmospheric pressure. The backflow turbulent length scale and
the backflow turbulent intensity are respectively equal to 0.4 m and 0.001%.

Different numerical grids are tested, starting from the column φ 0.4 m:

• A tetrahedral irregular mesh. It leads to completely wrong results and the
column loses water (the total amount of water present in the column dimin-
ishes).

• An unstructured “cooper mesh”. An unstructured quadrilateral 2D mesh is
mapped at the bottom (Fig. 4.6a) and it is then extruded along the column,
by using a coopering algorithm in Gambit and obtaining a hexahedral mesh.
It allows obtaining acceptable results, but it requires a high computational
cost.

• A structured “cooper mesh”. A more regular mesh with a smaller cells number
is created starting with a structured quadrilateral bottom, that is extruded
by using a coopering algorithm. This mesh is reported in Fig. 4.6b.

An analysis of the sensibility of the results on the cell size is required. Different
rhomboidal cooper meshes are tested, varying the cell number and size. Starting
with a very fine mesh, with 500000 cells, the number of cells is diminished step
by step. Until a structured rhomboidal cooper mesh with 40000 cells, the hydro-
dynamic results do not depend on the mesh used. Considering a mesh with less
than 40000 cells, the results depend on the mesh: the accuracy required to con-
sider the hydrodynamic phenomena is not respected, as the mesh resolution is not
enough.

A structured hexahedral cooper mesh with 40000 cells (Fig. 4.6b) allows main-
taining acceptable computational time and to obtain good hydrodynamic res-
ults. With this mesh, it is possible to consider the transient phenomena. Grid-
independent test on the gas hold-up, by using correct drag law and swarm factor,
confirms that the mesh with 40000 cells gives mesh-independent results for the
column φ 0.4 m, as detailed in Table 4.1. This mesh gives acceptable results also
for larger bubble columns, by scaling-up this mesh.

In CFD simulations, the dimensionless wall distance (y+) must be checked:

y+ =
ufry

ν
, (4.57)
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(a) Irregular 1 cm.

(b) Regular 2 cm.

Figure 4.6: Cooper meshes.
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vsg, m/s 0.03 0.06 0.09 0.16 0.25 0.35
Experimental 12.8% 20.0% 20.8% 26.3% 32.2% 37.3%
500000 cells 12.5% 17.4% 19.0% 24.2% 30.1% 33.8%
150000 cells 12.4% 17.3% 19.0% 24.1% 29.8% 34.1%
40000 cells 12.6% 17.3% 18.9% 24.1% 29.6% 34.1%
10000 cells 12.1% 16.9% 22.0% 24.8% 26.8% 29.9%

Table 4.1: Grid-independent test on the gas hold-up, by using correct drag law
and swarm factor, for the column φ 0.4 m with different structured cooper meshes.

where ufr is the friction velocity at the nearest wall, y is the distance to the nearest
wall and ν is the local kinematic viscosity.

It should range from 30 to 300. It affects wall shear force, pressure drop and
wall lubrication force. In a large volume, y+ is not the most important parameter.
By using the structured cooper mesh with 40,000 cells, the values of y+ range from
30 to 500. In this work, drag force eclipses the effects of the wall forces. Wall
treatments and y+ can be neglected. For this reason, standard wall functions are
adopted in this work.

To scale-up this bubble column, the scale-up criteria proposed by Wilkinson
et al. (1992) ought to be respected, as stated by Besagni et al. (2018):

• “The diameter of the bubble column must be larger than 0.15 m”.
This criterion is satisfied for the columns φ 0.4 m, φ 1 m and φ 3 m. The
φ 0.15 m column is the limit of the criterion and it could cause discrepancies.

• “The aspect ratio must be larger than 5”.
Concerning this point, the definition of the aspect ratio is important (Sasaki
et al. 2016, 2017, Besagni et al. 2017). Some authors defined the aspect ratio
in terms of the column height, while other authors define the aspect ratio
in function of the initial liquid level. If the total height of the column is
considered, the studied bubble columns have an aspect ratio that is higher
than 8 and then they respect largely the criterion. If the initial liquid level is
considered, the simulations are slightly below the criterion limit, as the initial
liquid level is equal to 4 diameters. Under these operating conditions, Forret
(2003) stated that the aspect ratio between operating liquid level (aerated
height) and column diameter ought to be higher than 4. Due to the presence
of high gas volume fractions in the studied systems, the operating liquid level
is about 5 or 6 diameters. This criterion is respected if the actual operating
liquid level is considered.

• “The holes of gas sparger larger than 1-2 mm”.
This criterion is satisfied for the three biggest columns (φ 0.4 m, φ 1 m and
φ 3 m). These columns provide similar hydrodynamic results. The smallest
column (φ 0.15 m) has a sparger with holes of 1 mm. This column is at the
limits of the first and third criteria. For these reasons, some hydrodynamic
differences could appear, compared with the other columns.

95



4.4 Results and discussion

4.4.1 Drag law and swarm factor

Calculations are validated by comparing CFD results with those obtained exper-
imentally. The simulations are initially carried out on the column φ 0.4 m and
for different superficial gas velocities with demineralised water. RNG k − ε model
is initially used; later other turbulence models are tested. The global gas volume
fraction is the first parameter to analyse for studying the quality of drag laws and
swarm factors.

The first simulations use the drag law of Schiller & Naumann (1935) for spherical
bubbles (See Annex B for the complete study). At low superficial gas velocities
(0.03 m/s, 0.09 m/s and 0.16 m/s) the computed global gas volume fraction is
lower than the experimental one (Fig. 4.7). At higher superficial gas velocities, the
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Figure 4.7: Comparison between experimental (�) and CFD gas hold-up for
different superficial gas velocities in the column φ 0.4 m using the drag laws of
Schiller & Naumann (1935) (�), Tomiyama (1998) (�) and Zhang et al. (2006)

(�) without swarm factor.

gas hold-up obtained with CFD simulations is higher than with experiments. It
could mean that the drag law is too weak for low superficial gas velocities, but it is
too strong for high superficial gas velocities. A drag law for oblate bubbles is then
required.

The same simulations are carried out with the drag law of Tomiyama (1998),
that is the most common for oblate bubbles. CFD simulations with this drag law
result always in very high gas volume fractions, for any superficial gas velocity
investigated, except for 0.03 m/s (Fig. 4.7). Similar results are obtained with the
drag law proposed by Zhang et al. (2006) (Fig. 4.7). The inaccuracy of these models
is wide, with the liquid reaching the top of the domain already for a superficial gas
velocity equal to 0.16 m/s. The tendencies are however good: the global gas hold-up
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is increasing with the gas velocity. It is useless to analyse the radial profile for these
simulations, as the gas hold-up results are completely wrong. The drag coefficient
is always too high: it is necessary to consider a swarm factor. Every simulation
performed with a drag law for oblate bubbles and without swarm factors, leads to
an overestimation of the gas hold-up in the case of heterogeneous regime.

The swarm factors that increase the drag force coefficient cannot be used. In
the case of heterogeneous regime, the swarm factor ought to be lower than unity,
in order to decrease the drag force for high gas volume fractions. The swarm factor
proposed by Simonnet et al. (2008) (Equation 4.19) has this characteristic. This
swarm factor is studied in this work and coupled with the drag law proposed by
Tomiyama (1998). The gas hold-up predicted by implementing the swarm factor
is lower than the experimental one (Fig. 4.8).
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Figure 4.8: Comparison between experimental (�) and CFD gas hold-up in the
column φ 0.4 m for different superficial gas velocities by using the drag law of
Tomiyama (1998), considering the swarm factor of Simonnet et al. (2008) (�),

the swarm factor of McClure et al. (2014) (�), the swarm factor of McClure et al.
(2017b) (�) and the new swarm factor (�).

The swarm factor of Simonnet et al. (2008) has a too strong effect for high
gas volume fractions. If this swarm factor is used, some difficulties of convergence
also appear. The instantaneous behaviour of the gas volume fraction is wrong, as
shown in Fig. 4.9. Some huge accumulations of gas appear in these simulations,
while these huge accumulations were not found in the experiments. In these CFD
simulations, the bubbles create areas where there is only gas and areas where
there is only water. This non-physical behaviour could be due to the asymptotic
value of the swarm factor of Simonnet et al. (2008) in the case of very high gas
volume fraction, in which this swarm factor is close to zero. Simonnet et al. (2008)
validated this empirical swarm factor only for gas volume fractions lower than 30%.
It is likely unsuitable for gas fractions greater than 30%. In CFD simulations, local
and instantaneous gas volume fractions exceed this value, due to fluctuations. If
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the local gas volume fraction is greater than 30%, the drag force decreases to almost
zero and causes the unphysical formation of large accumulations of bubbles.
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Figure 4.9: Gas volume fraction for the column φ 0.4 m for a superficial gas
velocity of 0.16 m/s: (1) instantaneous behaviour, (2) sampled behaviour and

(3) instantaneous radial profile at H/D=2.5.
.

McClure et al. (2014) modified the swarm factor proposed by Simonnet et al.
(2008). They used the Favre-averaged model proposed by Burns et al. (2004) for the
turbulent diffusion, the drag law of Grace et al. (1976) coupled with the modified
swarm factor, the k-ε model for turbulence and additional turbulence source terms
due to energy transfer from gas to liquid (Pfleger & Becker 2001). Unphysical huge
accumulations of bubbles are absent, thanks also to the Favre-averaged turbulent
diffusion model and turbulence source terms.

McClure et al. (2017b) criticized the swarm factors of Simonnet et al. (2008)
and McClure et al. (2014) for high gas volume fractions. Alternatively, McClure
et al. (2017b) suggested an alternative empirical swarm factor (Equation 4.21).
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Unphysical huge accumulations of bubbles are absent, but the global gas volume
fraction is not well-predicted for each operating condition. McClure et al. (2017b)
stated that this swarm factor predicts correctly the hydrodynamic properties only
for high gas volume fractions.

The goal of this part of the work is to obtain a global swarm factor that fits
well the experimental data for every operating condition. To achieve this goal, the
swarm factor of Simonnet et al. (2008) is modified, adding a minimum constant
value. The new swarm factor is identical to the correlation of Simonnet et al. (2008)
up to 30%, but, instead of decreasing down to zero at higher gas volume fractions,
it has a constant value:

h = max

⎧⎨⎩(1− αg)

[
(1− αg)

25 +

(
4.8

αg

1− αg

)25
]− 2

25

, hmin

⎫⎬⎭ . (4.58)

Several minimum constant values (hmin) are tested. For different superficial gas
velocities, the column φ 0.4 m gives CFD results that are in good agreement with
the experiments if hmin is equal to 0.15 (Fig. 4.8). As shown in Fig. 4.9, huge
accumulations of bubbles are absent: there are only fluctuations and preferential
bubble paths, in which the air fraction is quite bigger. The instantaneous behaviour
of the CFD simulations is in good agreement with the experiments.

The other bubble columns are simulated with the swarm factor reported in
Eq. (4.58): φ 0.15 m, φ 1 m and φ 3 m. In order to keep the cell number
constant, the column φ 0.4 m is scaled without modifying the mesh. By scaling-up,
the differences are lower than 10% and consequently lower than the experimental
error. The differences between experiments and CFD results are small, as shown
in Fig. 4.10. A fine tuning of hmin would be possible between 0.12 and 0.18 to fit
simulations to experiments at every scale, but it is preferable to use a fixed value
(hmin=0.15) for scaling-up purposes. The discrepancies are slightly higher with
the column φ 0.15 m. This column is at the limit of two Wilkinson et al. (1992)
scale-up criteria, as detailed above. For these reasons, the results obtained with
this column have some discrepancies. Other methods are required for scaling-down
these systems.

As observed in Fig. 4.11, the radial profile of gas volume fraction is almost flat
under the homogeneous regime (0.03 m/s) and it is parabolic under the heterogen-
eous regime (0.16 m/s). It allows recognizing the flow regime.

The axial liquid velocity strongly influences the mixing processes and it is an
important parameter for bioreactors, in which shear stress and high velocities can
damage the biomass, lowering the efficiency. The axial liquid velocity in the column
centre obtained with CFD simulations is compared with that of experiments of
Forret (2003), as shown in Fig. 4.12. These results are compared also with the
correlation of Miyauchi & Shyu (1970) (Fig. 4.12). The radial profiles of axial
liquid velocity are well-predicted with the new swarm factor (Fig. 4.13). By using
the new swarm factor, CFD and experimental liquid velocity profiles are almost
identical for every operating condition investigated in this study. The liquid velocity
strongly depends on the drag law and swarm factor. As the liquid velocity profile
is well-predicted, this new swarm factor, coupled with the drag law proposed by
Tomiyama (1998), can be considered as correct. Consequently, this swarm factor
is used in the following parts of this work.
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Figure 4.10: Scale-up effect on the gas hold-up using the Tomiyama (1998) drag
law and the new swarm factor (hmin=0.15). Parity graph for the gas hold-up
between experimental (Raimundo 2015) and CFD data for different columns:

φ 0.15 m (�), φ 0.4 m (�), φ 1 m (�) and φ 3 m (�).

The physical meaning of the proposed swarm factor is not fully understood.
Very complex interactions between bubbles and large turbulent eddies occur. Con-
sequently, the resulting drag law, coupled with the swarm factor, can be considered
as an integrated interfacial exchange term. It is considered as a drag force as it is
the main force involved, but it includes probably other interfacial forces.

Standard k-ε, realizable k-ε, RNG k-ε and k-ω models are compared. The first
two models give numerical errors in the case of high superficial gas velocities. The
first model slightly overestimates the gas fraction in the column centre and under-
estimates the axial liquid velocity in the column centre in the case of heterogeneous
regime, as reported in Fig. 4.14. Realizable k-ε model gives a well-predicted gas
volume fraction profile and the axial liquid velocity in the column centre is under-
estimated, as detailed in Fig. 4.14. RNG k-ε model provides better and more stable
results. With this model, gas volume fraction profile and axial liquid velocity in
the column centre are well-predicted. The k-ω provides radial profiles of local gas
volume fraction and axial liquid velocity very similar to those obtained with RNG
k-ε model, as reported in Fig. 4.14. RNG k-ε and k-ω models seem to be the best
ones due to their stability and thus they are used in the following parts of this
work.
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Figure 4.11: Experimental versus CFD sampled radial profiles of the gas volume
fraction at H/D=2.5 using the new swarm factor for a superficial gas velocity

equal to 0.03 m/s (experimental (�) vs CFD (dashed line)) and 0.16 m/s
(experimental (�) vs CFD (solid line)).

101



0

0.5

1

1.5

0 0.1 0.2 0.3

A
xi

al
 li

qu
id

 v
el

oc
ity

, m
/s

Superficial gas velocity, m/s

(a) φ 0.4 m

0

0.5

1

1.5

0 0.1 0.2 0.3

A
xi

al
 li

qu
id

 v
el

oc
ity

, m
/s 

Superficial gas velocity, m/s
(b) φ 1 m

Figure 4.12: Axial liquid velocity in the centre at H/D=3.75: experimental data of
Forret (2003) (�) versus CFD data obtained using the new swarm factor (� and

solid line) versus correlation of Miyauchi & Shyu (1970) (dotted line).
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Figure 4.13: Experimental versus CFD sampled radial profiles of the liquid
velocity using the new swarm factor at H/D=3.75 for a superficial gas velocity

equal to 0.03 m/s (experimental (�) vs CFD (dashed line)) and 0.16 m/s
(experimental (�) vs CFD (solid line)).
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Figure 4.14: Turbulence models comparison of the hydrodynamic properties for
the column φ 0.4 m and a superficial gas velocity of 0.16 m/s: standard k-ε (dash
dot line), realizable k-ε (dotted line), RNG k-ε (solid line) and k-ω (dashed line).
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4.4.2 Mixing time

An additional transport equation is used to simulate the mixing of a scalar quant-
ity. The normalised concentration is used as additional transport equation. Mixing
time is defined as the time necessary to reach a predefined level of homogeneity, i.e.
a deviation of 5% from the final concentration. The mixing time results obtained
using the RNG k-ε and the k-ω models are compared in Fig. 4.15 with the exper-
imental data of (Forret 2003). The tracer response data are available only for the
column φ 1 m. The diffusion coefficient is defined in three different ways for each
simulation: considering only the molecular diffusivity, adding only SIT or consider-
ing SIT with bubble contribution. CFD curves are obtained by averaging the scalar
concentration over the column section at the same height of the experiments. The
cases simulated with only the molecular diffusivity term in the transport equation
are wrong, while the other CFD cases are in good agreement with the values of the
experiments. Bubble contribution does not have a great impact on the mixing time
with both the turbulence models. The RNG k-ε predicts well the concentration
evolution over time (Fig. 4.15). Mixing times obtained with RNG k-ε simulations
under the heterogeneous regime are listed in Table 4.2.

superficial gas velocity 0.09 m/s 0.16 m/s 0.25 m/s
Bubble contribution yes no yes no yes no

φ 0.4 m 6.70 7.70 4.70 5.50 3.40 3.60
φ 1 m 12.30 12.40 10.20 11.10 5.38 5.35
φ 3 m 36.70 37.75 31.08 31.22 23.20 23.33

Table 4.2: Mixing time (in seconds) using RNG k-ε and diffusivity model of
Alméras et al. (2016) for different bubble columns.

These results confirm that bubble contribution on trasport of scalars has not
great effects, except for the column φ 0.4 m, as shown in Fig. 4.16: a difference
of about 10% appears if the superficial gas velocity is lower than 0.16 m/s. The
bubble contribution should be taken into account for small-scale systems, as stated
by Alméras et al. (2015). The time evolution of the scalar concentration field is
represented in Fig. 4.17.

By using the model of Pfleger & Becker (2001) for considering turbulence due
to energy transfer from gas to liquid, McClure et al. (2014) obtained good results
for a column of 0.19 m with a square perforated sparger. McClure et al. (2014)
obtained a gas volume fraction profile similar to the experimental data. In this
work, the hydrodynamics is well-predicted without additional source terms in the
k and ε transport equations. McClure et al. (2014) used ANSYS CFX, while the
CFD simulations are realized with ANSYS Fluent in the present work. Fletcher
et al. (2017) proved that, if identical closure models are used, the choice of the
software does not affect the results. Different operating conditions and different
geometries have been tested: it could be a partial explanation.

The proposed swarm factor allows obtaining computational results in good
agreement with the experiments. Huge accumulations of bubbles are absent and
the instantaneous preferential paths for bubbles (Fig. 4.9) simulate the creation of
experimental instantaneous bubble macro-structure. The drag force contribution
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Figure 4.15: Normalized concentration for the column φ 1 m and a superficial gas
velocity of 0.15 m/s. Comparison of the experimental data of Forret (2003) (�)
with the CFD simulations using molecular diffusivity only (dotted line), SIT

(dash dot line) and SIT + bubble contribution (solid line).
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Figure 4.16: Mixing time as a function of the superficial gas velocity, calculated
by using the RNG k-ε model coupled with SIT (dash dot line) and SIT + bubble

contribution (solid line). Comparison with the experimental data collected by
Forret (2003) (�).
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Figure 4.17: Snapshots of the scalar concentration field with RNG k-ε and
Alméras et al. (2015) models for the column φ 0.4 m and a superficial gas velocity
equal to 0.15 m/s at different times: t=0, 2, 4, 6, 8, 10, 12, 14 s from left to right.

influences the hydrodynamic behaviour and thus the mixing time. More efforts
will be required to fully understand the additional turbulence due to the energy
transfer from gas phase to liquid phase.

Column diameter and superficial gas velocity strongly influence the mixing time.
In Fig. 4.18 and in Fig. 4.19, mixing time is presented as a function of column dia-
meter and superficial gas velocity for both k-ω and RNG k-ε models; furthermore,
the Alméras et al. (2015) turbulent diffusivity model is considered. Mixing time is
low for high superficial gas velocities. Bigger columns require higher mixing time.
The turbulence model choice has stronger effects when column diameter increases.

The turbulent viscosity appears directly in the diffusion coefficient and then
it is an important parameter to model the scalar transport. In Fig. 4.20, the
simulated viscosity is compared with several correlations. The best agreement is
obtained with the correlation proposed by Kawase & Moo-Young (1989), while
higher discrepancies appear with the correlations of Miyauchi & Shyu (1970) and
Burns & Rice (1997). Guédon et al. (2017) arrived at the same conclusions.

Furthermore, turbulent kinematic viscosities obtained by using RNG k-ε and k-
ω models, are compared in Fig. 4.20. Turbulent kinematic viscosity obtained with
the k-ω is almost twice that obtained with the RNG k-ε. Mixing time computed
with the RNG k-ε is lower. These aspects could appear in contradiction, but this
behaviour can be explained by considering that there is the convective transport in
addition to the diffusive phenomena. If only the molecular diffusion of the scalar
is considered, the mixing time is longer. For the k-ω, the mixing time increase is
higher, so it can be concluded that the macro recirculation is stronger for the RNG
k-ε model, and it causes a quicker tracer mixing into the bubble column, even if
the turbulent dispersion is lower with this turbulence model.
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Figure 4.18: Mixing time as a function of the column diameter. Comparison
between two different turbulence models: RNG k-ε (� 0.09 m/s, � 0.16 m/s and
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Figure 4.19: Mixing time as a function of the superficial gas velocity. Comparison
between two different turbulence models: RNG k-ε (� φ 0.4 m, � φ 1 m and
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Figure 4.20: Turbulent kinematic viscosity versus the superficial gas velocity:
RNG k-ε (�) versus k-ω (�). Comparison with correlations: Burns & Rice (1997)

(dotted line), Kawase & Moo-Young (1989) (solid line) and Miyauchi & Shyu
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4.5 Conclusions and perspectives
Transient 3D simulations are required to simulate bubble columns under the het-
erogeneous flow regime. Gas-liquid interactions are dominated by interfacial forces.
The drag force is the most important interfacial force for these systems. A drag law
suitable for oblate bubbles needs to be used. The drag law proposed by Tomiyama
(1998) has a wide range of validity and it has the advantage that it can consider
contamination effects. For high gas volume fractions, the original drag law ought
to be modified considering a swarm factor in order to decrease the drag force effect.
The experimental swarm factor of Simonnet et al. (2008) has this characteristic,
but its effect is too strong and the instantaneous behaviour is not well-predicted:
unphysical huge accumulations of bubbles appear in the column. This swarm factor
can be used for a gas volume fraction up to 30%. This value is instantaneously
overcome and then the swarm factor of Simonnet et al. (2008) needs to be modified.

By adding a minimum value at the swarm factor of Simonnet et al. (2008)
(Equation 4.58), the CFD results are in good agreement with the experimental data.
The instantaneous behaviour is correct: unphysical huge accumulations of bubbles
are absent. The CFD simulations are stable. The radial profiles of gas volume
fraction and liquid velocity are well-predicted. A constant value of hmin=0.15 is
suggested. The discrepancy between experimental data and CFD results is very
small in the case of big bubble columns and then this swarm factor can be used for
scaling-up purposes.

An extra diffusion coefficient due to the presence of bubbles (Alméras et al.
2015) is considered in the scalar transport equation to study the mixing time.
Shear-induced turbulence is the dominant contribution in mixing processes. The
RNG k-ε turbulence model predicts a mixing time that is similar to the exper-
imental one. Mixing time is higher if only the molecular diffusion is considered
to model diffusivity. Bubble contribution is often negligible for big columns. The
diffusion due to the presence of bubbles has a significant effect on scalar mixing for
small columns and, in these cases, the diffusive model of Alméras et al. (2015) im-
proves the numerical results. Bubble contribution should be considered for bubble
columns with a diameter up to 0.4 m.

Secondary interfacial forces, neglected in this work, near wall treatments and
other boundary conditions could be considered.
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Chapter 5

Population Balance Modelling of
heterogeneous bubble column
reactors

5.1 Introduction

Eulerian-Eulerian RANS methods allow simulating heterogeneous flows with a rel-
atively low computational cost, as detailed in Chapter 4. These methods are often
used for industrial applications. One important limitation of Eulerian-Eulerian
classical CFD models is due to the assumption that every bubble has the same size
and that this is an input parameter for the simulation. The use of a single bubble
size hinders the prediction of local hydrodynamic properties. The polydispersity of
gas bubbles is an aspect that turns out to be very important in gas-liquid multiphase
flows: significant variations of bubble size are observed in bubble column reactors.
Bubble polydispersity causes considerable variations in the interfacial area, affect-
ing, in turn, the rate of exchange of mass, momentum and energy between the two
phases (i.e. continuous and disperse) and between the multiphase flow and the ex-
ternal boundaries. A population balance model (PBM) can be coupled with CFD
simulations to overcome these limits and make the CFD simulations more predict-
ive. Classical mass, momentum and energy equations solved in multiphase flows
are coupled with population balance equations (PBEs). CFD-PBM coupling allows
considering the effects of bubble coalescence and breakage on the development of
the interfacial area between the continuous and disperse phases.

The methods for solving the PBE could be distinguished into three groups:
Classes (or sectional) Methods, Monte Carlo Methods and Moment-based Methods
and only some of them are suitable for CFD implementation.

In the Classes Methods (CM) the internal coordinates, for example bubble size,
is discretized. These methods, firstly developed for univariate cases (see for example
the comparison performed by Vanni (2000)), are extended to multivariate cases
(Kumar et al. 2008). The discretization is performed by using different techniques,
as such the finite volume method proposed by Gunawan et al. (2004), the finite
element method proposed by Godin et al. (1999) or the finite difference method.
The MUSIG method is often used for gas-liquid flows (Frank et al. 2008). These
methods could present however the following problem: they could require large
computational resources, resulting in time-consuming simulations. The transport
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of separated classes of bubbles, although displaying some advantages, is often time-
consuming.

The second group, called Monte Carlo Method (MCM), solves stochastic dif-
ferential equations that are capable of reproducing a finite number of artificial
realizations of the system (Zhao et al. 2007); these methods require huge compu-
tational costs when coupled with CFD and they can be used only for simplified
simulations.

The Methods of Moments solve the transport equations for some lower-order
moments (Marchisio et al. 2003a). In other words, instead of solving the PBE,
a limited number of transport equations, derived from the PBE by applying the
moment transform, are solved. These methods present a closure problem that
can be solved through different methods. An important class of these methods is
the Quadrature-Based Moments Methods (QBMM), used in this work, where the
closure problem is overcome by using an ad-hoc quadrature approximation.

In Quadrature-Based Moments Methods (QBMM), the bubble size distribution
(BSD) or Number Density Function (NDF) is assumed to be the summation of some
basis functions centred on the zeros of polynomials orthogonal to the BSD or NDF,
or in other words, centred on the nodes of a Gaussian quadrature approximation.
The quadrature approximation, calculated from the moments of the BSD or NDF,
is more accurate than other methods in overcoming the closure problem even when
the order of the quadrature approximation is very small (i.e. two or three). The
final method, that combines the use of the moments of the BSD and the use of the
quadrature approximation, can be employed for coupling with CFD simulations,
as a small number of additional equations is required. For a typical problem, the
evolution of the BSD can be predicted only by tracking the evolution of six moments
of the BSD, corresponding to a quadrature approximation of order three. By using
the CM to predict the evolution of the BSD with similar accuracy, 30 or 40 classes
(and corresponding transport equations) might have to be solved, resulting in much
higher computational costs (Marchisio et al. 2003b).

These methods are employed both for univariate and multivariate PBE, where
in other words, one internal coordinate (e.g. bubble size) or multiple internal
coordinates (e.g. bubble size and composition) are employed. For univariate cases,
the original Quadrature Method of Moments (QMOM) (McGraw 1997) can be used.
The quadrature approximation is obtained with a specific inversion algorithm.

Bubble size depends on coalescence and breakage phenomena, closely linked
to operating conditions and turbulence. These phenomena are however mainly
studied for low gas velocities (Falzone et al. 2018) and model small gas volume
fraction. In this work, the objective is to go beyond current practice and develop
a model that simulates what happens at higher superficial gas velocities. To this
end, experimental data obtained by Gemello et al. (2018a) and detailed in Chapter
3 are used. Thanks to these experimental results it is possible to investigate also
the effects of different initial bubble sizes and the presence of additives. The main
goal of this work is to identify breakage and coalescence kernels that are capable
of simulating the bubble size for both homogeneous and heterogeneous regimes.
Different mechanisms are involved in bubble breakage as shown by Liao & Lucas
(2009) and the main mechanism is linked to turbulent fluctuations. On the other
hand, the coalescence kernel is divided between collision frequency and coalescence
efficiency, as stated by Liao & Lucas (2010). Collisions are caused by several
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phenomena, the turbulent fluctuations being the most important. The coalescence
efficiency can be studied with three methods: film drainage model, energy model
and critical approach velocity model; the first model is the most common for the
homogeneous regime. Existing breakage and coalescence models were developed
and validated for the homogeneous regime, where there is a lack of kernels suitable
for the heterogeneous regime.

In this work, breakage and coalescence models are validated under the hetero-
geneous flow regime, providing a suitable and innovative set of models that can
predict correctly the bubble size for a wide range of operating conditions.

Starting from the experimental results detailed in Chapter 3, the existing break-
age and coalescence kernels, suitable for the homogeneous regime, are tested and
extended for the heterogeneous regime. 3D transient Eulerian-Eulerian CFD sim-
ulations with ANSYS Fluent are carried out and coupled with QMOM. 0D simu-
lations with Matlab were also performed to provide a preliminary screening of the
tested coalescence and breakage models.

5.2 Population Balance Modelling

The disperse phase is constituted by discrete elements (i.e. bubbles in the case
of gas-liquid systems): each element of this phase is identified by a number of
coordinates, that are classified as internal and external. Two elements are identical
if they have identical coordinates. External coordinates are spatial coordinates and
time, while internal coordinates refer to other intrinsic properties of the elements
such as volume, surface area, size, age, velocity and temperature (Marchisio & Fox
2013).

The Number-density functions (NDF) contains information about the popu-
lation of bubbles, explaining how it is distributed over the properties of interest
inside an infinitesimal control volume. Let us consider an infinitesimal control
volume located at physical point x = (x1, x2, x3) of measure dx = (dx1, dx2, dx3)
and at phase-space point, ξ = (ξ1, ξ2, ξ3). The NDF nξ(t, x, ξ) identifies the pop-
ulation of bubbles in the computational domain at each instant. Integrating the
NDF over all possible values of the internal-coordinate vector, the total number
concentration N(t,x) is obtained, which is the total number of entities per unit
volume located at time t at point x, and it corresponds to the moment of order
zero of the NDF:

N = mξ,0 =

∫
nξ(ξ)dξ. (5.1)

Higher-order moments of the NDF can be defined:

mξ,k =

∫
ξ1

k1 ...ξM
kMnξ(ξ)dξ, (5.2)

where k = (k1, k2, ..., kN) . The PBE is a continuity statement expressed in terms
of the NDF. The velocity of the PBE is assumed to be equal to the local velocity in
the continuous phase or derivable from this. The PBE basically counts the number
of elements (bubbles) belonging to a specific finite volume defined both in physical-
space and phase-space. The number of elements inside this volume changes due to
the movement of the bubbles in physical space, their velocities, the movement of
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the bubbles in physical space, continuous processes, and because of discontinuous
or discrete events, resulting in the following equation (Marchisio & Fox 2013):

∂

∂t

(∫
Ωx

dx
∫
Ωξ

dξ nξ

)
+

∫
Ωξ

dξ

∫
∂Ωx

(nξu) · dAx+

+

∫
Ωx

dx
∫
∂Ωξ

(
nξξ̇

)
· dAξ =

∫
Ωx

dx
∫
Ωξ

dξ Sξ, (5.3)

where u is the velocity vector of the bubbles, ξ̇ is the rate of change of the generic
internal coordinate for the bubbles, Ωx is the finite control volume in physical space,
Ωξ is the finite control volume in phase space, ∂Ωx and ∂Ωξ are their boundaries
and Sξ considers the discrete events, such as collisions between bubbles, leading to
coalescence or breakage and nucleation.

If the Reynolds-Gauss theorem is applied and the equality is forced to be re-
spected for any possible control volumes, the following equation is obtained:

∂nξ

∂t
+

∂

∂x
· (unξ) +

∂

∂ξ
·
(
ξ̇ nξ

)
= Sξ. (5.4)

A generic turbulent gas-liquid flow can be considered as a dispersion of bubbles,
that are characterized by their size L, composition φb, velocity ub and possibly
temperature T . The PBE is considered univariate if the population of bubbles is
described by just one internal coordinate, for example bubble size or length. The
PBE is called bivariate if two internal coordinates are considered, e.g. bubble size
and chemical composition. Higher-dimensional PBEs are referred to as multivari-
ate. If the bubbles are characterized by their own velocity distribution, the PBE
becomes the generalized population-balance equation (GPBE) were bubble velocity
is included in the PBE as an internal variable:

∂nξ

∂t
+

∂

∂x
· (unξ) +

∂

∂u
· (u̇nξ) +

∂

∂ξ
·
(
ξ̇ nξ

)
= Sξ, (5.5)

where u̇ is the rate of change of bubble velocity, the acceleration, i.e. the forces per
unit mass acting on bubbles (gravity, buoyancy, drag and other interfacial forces).

Isothermal systems are considered in this work and the bubbles have the same
chemical composition. Furthermore, it is assumed that the bubble velocity is linked
to the bubble size with a known algebraic relationship and therefore only bubble
size remains an internal coordinate. The final PBE becomes:

∂nL

∂t
+

∂

∂x
· (unL) +

∂

∂L
(GL nL) = S(L), (5.6)

where GL is the continuous rate of change of bubble length (L̇L) (due to mass
transfer) and S(L) considers discrete events such as coalescence and breakage (nuc-
leation, a common phenomenon for example in fermentation processes, is not con-
sidered in this work). As mentioned the bubble velocity u is considered as known.

If only the size of the bubble is considered as internal coordinate, the definition
in Eq. (5.2), of the moments of order k simplifies into the following expression:

mL,k =

∫ +∞

0

nL(L)L
k dL. (5.7)
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With this simplified definition of the kth moments, the PBE can be rewritten as:

∂mL,k

∂t
+

∂

∂x
· (uL,k mL,k) = k GL,k−1mL,k−1 + S̄mk

, (5.8)

where GL,k is the average rate of change of the moment of order k:

GL,k =

∫ ∞

0

GL nL(L)L
k dL∫ ∞

0

nL(L)L
k dL

, (5.9)

uL,k is the average velocity of the moment of order k:

uL,k =

∫ ∞

0

uL nL(L)L
k dL∫ ∞

0

nL(L)L
k dL

(5.10)

and the source term is written as:

S̄mk
=

∫ ∞

0

SL L
kdL. (5.11)

The growth term GL,k is neglected in this work as the mass transfer is not studied.
The last term of Eq. (5.8) is the source term due to discontinuous events. This
term is an unclosed term, that cannot in general be written in terms of the known
moments. The term on the right side of the Eq. (5.8) strongly depends on the
system that is considered. The literature reports different expressions for gas-
liquid disperse bubbly systems; other correlations are available for other systems,
i.e. particles, bubbles or drops in fluids (Buffo 2012). This term depends on
discontinuous events, causing a discontinuous jump in phase space and can be
divided in three classes (Marchisio & Fox 2013):

• zero-order processes, in which the events’ rates depend only on the continuous
phase, e.g. nucleation; as mentioned this is a very important process in
fermentation processes, but is neglected in this work;

• first-order processes, in which each event rate depends only on the interaction
of the continuous phase with an element of disperse phase, i.e. breakage;

• second-order process, in which the interactions are between two different
elements of disperse phase and the continuous phase, i.e. coalescence.

Simultaneous interactions between three or more dispersed elements are very un-
common compared with the other interactions, so higher-order processes can be
neglected. Moreover, a higher-order process can always be represented as a se-
quence of multiple second-order processes.
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5.2.1 Source terms

Only breakage and coalescence are considered in this work. The source term in
Eq. (5.6) can be written as the summation of the terms due to breakage and
coalescence, where each phenomenon produces two terms: death and birth. The
birth terms are summed up and the death terms are subtracted. Four terms are
considered (Petitti et al. 2010):

• birth term due to coalescence, BC ;

• death term due to coalescence, DC ;

• birth term due to breakage, BB;

• death term due to breakage, DB.

Coalescence causes at the same time the formation of a new bubble and the death
of two smaller bubbles that collapse together. The two terms due to coalescence
can be calculated respectively as (Marchisio & Fox 2013):

BC(L) =
L2

2

∫ L

0

h
(
(L3 + λ3)

1/3
, λ
)

(L3 − λ3)2/3
nL

((
L3 + λ3

)1/3)
nL(λ)dλ (5.12)

and
DC(L) =

∫ ∞

0

h(L, λ)nL(L)nL(λ)dλ, (5.13)

where h(L, λ) is the coalescence kernel (or frequency) related to two bubbles of size
L and λ.

The third term is due to the formation of daughter bubbles caused by the
breakage of a mother bubble:

BB(L) =

∫ ∞

L

β (L,L′) g(L′)nL(L
′)dL′, (5.14)

where g (L) is the breakage kernel (or frequency) for a bubble L and β (L,L′) is the
daughter distribution function for a daughter bubble L formed by the breakage of
the mother bubble L′.

The death term due to breakage is:

DB(L) = g(L)nL(L). (5.15)

The source term, considering a bubble of size L1, becomes:

S (L) = BC(L)−DC(L) +BB(L)−DB(L). (5.16)

Using the explicit form for all the terms and summing then up we obtain:

S (L) =
L2

2

∫ L

0

h
(
(L3 + λ3)

1/3
, λ
)

(L3 − λ3)2/3
nL

((
L3 + λ3

)1/3)
nL(λ)dλ+

−
∫ ∞

0

h(L, λ)nL(L)nL(λ)dλ+

+

∫ ∞

L

β (L,L′) g(L′)nL(L
′)dL′+

− g(L)nL(L). (5.17)
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5.2.2 Breakage kernel and daughter distribution function

Bubbles breakage in turbulent flows is determined by the hydrodynamics of the
continuous liquid phase and by the interfacial interactions between the phases (Liao
& Lucas 2009). This phenomenon is due to a balance between external stresses
caused by the liquid phase, surface stresses of the bubble and viscous stresses.
The external stresses attempt to destroy the bubbles, meanwhile the other stresses
restore the shape of the bubbles. Using this balance, it is possible to predict the
more stable size of the bubbles (Revankar 2001).

Breakage mechanisms can be divided into four groups (Liao & Lucas 2009):

• turbulent fluctuations and collisions;

• viscous shear forces;

• shearing-off process;

• interfacial instability.

In turbulent systems, the first group of mechanisms is the most important and
breakage is mainly caused by turbulent pressure fluctuations along the surface and
by collisions between bubbles and eddies. Fluctuations cause a deformation of a
bubble until separating the bubble into two daughter bubbles. The main external
force is the dynamic pressure difference around the bubble: breakage can be studied
as a balance between dynamic pressure and surface stresses. Viscous stresses due
to the gas inside the bubble are generally neglected. These become very important
instead in the case of liquid droplets (Gao et al. 2016) (Li et al. 2017). The
mechanisms that cause breakage due to turbulent fluctuation and collision can be
classified on different criteria, that can be combined:

• turbulence kinetic energy of the bubble greater than a critical value;

• velocity fluctuation around the bubble surface greater than a critical value;

• turbulence kinetic energy of the hitting eddy greater than a critical value;

• inertial force of the hitting eddy greater than the interfacial force of the
smallest daughter bubble.

Breakage due to the viscous shear forces is caused by velocity gradient around
the interface and wake effect. Viscous shear forces in the continuous phase cause
velocity gradients around the interface and deform the bubble, leading to breakage.
Breakage can be seen as a balance between external viscous stresses and surface
tension forces. Another cause of shear stress is the wake effect: if a bubble has a
large part outside a wake region, the wake boundary could split. The bubble is
elongated and breaks into two equal size daughters or into several smaller bubbles
(Renardy et al. 2002).

Shearing-off and interfacial instability could be important if the bubble size in-
creases: several small bubbles are sheared-off from a big one. The balance between
the viscous shear force and the surface tension of the cap or slug bubbles is con-
sidered. The interfacial viscous shear forces are negligible in air-water systems
as the viscosity of water is low. The shearing-off process is characterized by small
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bubbles sheared-off from a big one and this phenomenon is also called erosive break-
age. The shearing-off processes are due to the gas velocity profile into very large
bubbles: gas molecules inside the bubble move globally at the bubble terminal
velocity. Near the bubble interface, the velocity is instead equal to the liquid film
(Fu & Ishii 2003).

Breakage is due to interfacial instabilities in the case of absence of liquid-phase
net flow. Rayleigh-Taylor instability occurs if a density difference is present and
a light liquid is accelerated into a heavy fluid. Kelvin-Helmholtz instability oc-
curs if the density ratio is similar to one and a relative velocity exists. Turbulent
fluctuations are assumed to be the dominant breakage mechanism and the other
mechanisms are neglected in the case of turbulent flow.

The number and the size of the generated bubbles are necessary to describe com-
pletely breakage. This information is included in the daughter distribution function
β that depends on the dimension of the parent bubble and on the local turbulence
level. The number of daughter bubbles depends on the difference of density between
the two phases and on the viscosity of the dispersed phase. Breakage is mainly bin-
ary if the density difference is high and the viscosity of the dispersed phase is low,
as in bubble columns (Andersson et al. 2012). Only binary breakage is considered
in the models; the parent bubble can break in very different daughter bubbles.

The daughter distribution functions can be divided into:

• empirical model;

• statistical model;

• phenomenological model.

The first class of daughter distribution functions requires a great number of experi-
ments to be determined. A statistical model can be formulated in term of different
distributions: delta function, normal function, beta function and uniform distri-
bution. Phenomenological models can be classified according to the final shape:
bell-shape, U-shape and M-shape. Many of these distributions are linked to a
specific breakage kernel.

The first phenomenon that was studied is the breakage due to turbulent fluctu-
ations and collisions in the case of kinetic energy of bubbles greater than a critical
value. Coulaloglou & Tavlarides (1977) studied the turbulent nature of the liquid-
liquid dispersion and results can be easily extended to bubbles. The breakage
frequency gi is defined as the inverse of the breakage time multiplied by the frac-
tion of bubbles that break. The breakage time is obtained by the homogeneous
isotropic turbulence theory, assuming that the bubble velocity is the same as that
of the turbulent eddies. The efficiency is the fraction of bubbles that actually
break: it is proportional to the fraction of drops that have a turbulence kinetic
energy greater than their surface tension. Through a balance is possible to obtain
the following breakage kernel:

g(L) = c1L
−2/3ε1/3 exp

[
− c2σ

ρgε2/3L5/3

]
. (5.18)

The damping effect of bubbles on the local turbulence intensity is important for
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high gas fractions and was considered by Coulaloglou & Tavlarides (1977):

g(L) = c1L
−2/3 ε1/3

1 + αg

exp

[
−c2σ (1 + αg)

2

ρgε2/3L5/3

]
. (5.19)

where αg is the local gas volume fraction.
Prince & Blanch (1990) explained that the model of Coulaloglou & Tavlarides

(1977) generally predicts a breakage frequency that appears to be lower than the
experimental results for gas-liquid mixtures. The gas density in a gas-liquid system
is much lower than in a liquid-liquid dispersion. In gas-liquid systems, the density
of gas ρg could be replaced by the density of the liquid phase ρl (Lasheras et al.
2002). The previous expressions become respectively:

g(L) = c1L
−2/3ε1/3 exp

[
− c2σ

ρlε2/3L5/3

]
(5.20)

and

g(L) = c1L
−2/3 ε1/3

1 + αg

exp

[
−c2σ (1 + αg)

2

ρlε2/3L5/3

]
. (5.21)

Velocity fluctuations around the bubble’s surface greater than a critical value ucr

was initially studied by Narasimhan et al. (1979) with a stochastic model in the
case of similar density and similar viscosity between the phases. The eddies arrive
next to the surface of the bubble and cause differences in velocity fluctuations. The
arrival of the eddies could be considered as a Poisson (rare) process. The critical
velocity is calculated from the energy balance: following this theory symmetrical
binary breakage is the main phenomenon, as this requires less energy than asym-
metrical ones. It is inconsistent with the experimental observations of Hesketh
et al. (1987), as the symmetrical binary breakage is not the main phenomenon.
However, this is a controversial issue in the literature and no general theory has
been developed yet.

Alopaeus et al. (2002) corrected the model, considering a dependency on tur-
bulent dissipation rate, obtaining the following expression for drops in liquid:

g(L) = c3ε
1/3 erfc

(√
c4

σ

ρlε2/3L5/3
+ c5

μg√
ρlρgε1/3L4/3

)
. (5.22)

resulting however in a constant c3 that is not dimensionless. In this model, the
viscous forces are also considered in addition to the interfacial ones.

The mechanisms of bubble and droplet breakage have similarities. Laakkonen
et al. (2006) modified this kernel in order to use it also for gas-liquid systems, sub-
stituting the gas viscosity with the viscosity of the continuous phase, by considering
that viscous stresses that resist the breakage depend on the liquid viscosity that
surrounds the bubble instead of the gas viscosity, which is low:

g(L) = c3ε
1/3 erfc

(√
c4

σ

ρlε2/3L5/3
+ c5

μl√
ρlρgε1/3L4/3

)
, (5.23)

where c3, c4 and c5 are numerical constants. The last two constants do not depend
on the studied system and they are obtained by the turbulence theory: they are
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equal to c4 = 0.04 and c5 = 0.01. The first constant was obtained with experimental
data and for very different systems (i.e. air-water systems) and it is equal to 4.0.

The daughter distribution function of Laakkonen et al. (2006) considers binary
breakage, as the most common phenomenon for gas bubbles. Laakkonen et al.
(2006) used a very simple daughter distribution function based on a common stat-
istical distribution function, the β-distribution:

β (L, λ) = Nf

(
9 +

33

2
C + 9C2 +

3

2
C3

)(
L2

λ3

)(
L3

λ3

)2(
1− L3

λ3

)C

, (5.24)

where L is the size of the daughter bubble and λ is the size of the mother bubble.
Nf is computed imposing that:∫ ∞

0

β (L, λ) dL = Nf (5.25)

and that: ∫ ∞

0

β (L, λ)L3dL = λ3, (5.26)

obtaining:

Nf =
4

3
+

C

3
. (5.27)

The Eq. (5.24) can be rewritten as (Laakkonen et al. 2007):

β (L, λ) =
1

2
(1 + C)(2 + C)(3 + C)(4 + C)

(
L2

λ3

)(
L3

λ3

)2(
1− L3

λ3

)C

, (5.28)

where the constant C is assumed to be equal to 2 for binary breakage. The final
form for the daughter distribution function is:

β (L, λ) = 180

(
L2

λ3

)(
L3

λ3

)2(
1− L3

λ3

)2

. (5.29)

Wang et al. (2003) proposed a breakage kernel due to interactions between
eddies and bubbles:

g(L) =

∫ 0.5

0

g(fv|L)dfv, (5.30)

where:

g(fv|L) = 0.923 (1− αg)
1/3

∫ L

λmin

Pb(fv|L, λ)(λ+ L)2

λ11/3
dλ, (5.31)

where λmin is the minimum eddy size for breakage and Pb(fv|L, λ) is the breakage
probability density for a bubble of size L breaking with breakage fraction fv when
hit by an eddy of size λ (Wang et al. 2004).

Prince & Blanch (1990) considered breakage due to bubble collisions with eddies
equal to or smaller than the bubbles, fixing a minimum value for the eddies of 0.2L.
Only eddies having a velocity larger than the critical velocity are considered. An
energy balance (considering the surface tension) provides the following kernel:

g(L) =

∫ L

0.2L

0.07π4

λ4
(L+ λ)2

(
L2/3 + λ2/3

)1/2
ε1/3 exp

(
− 1.18σ

λ2/3ρlLε2/3

)
dλ. (5.32)
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Prince & Blanch (1990) did not include the daughter distribution function in the
model and used a uniform function.

Luo & Svendsen (1996) proposed a breakage kernel based on isotropic turbu-
lence theory and probability, with the advantage that the daughter bubble size
distribution is obtained directly from the breakage frequency:

g(L) =

∫ 0.5

0

g(fv|L)dfv, (5.33)

β(fv, L) =
2g(fv|L)∫ 1

0
g(fv|L)dfv

, (5.34)

g(fv|L) = 0.923 (1− αg)n
( ε

L2

)1/3
∫ 1

ξmin

(1 + ξ)2

ξ11/3
exp

(
− 12cfσ

βρlε2/3L5/3ξ11/3

)
dξ,

(5.35)
where ξ is the ratio between the size of the eddies able to break the bubble and
the dimension of the bubble. cf is computed as:

cf (f) = f 2/3 + (1− f)2/3 − 1, (5.36)

where f represents the volume ratio between a daughter bubble and its primitive
bubble.

The ξmin is related to the Kolmogorov scale LKol:

ξmin =
11.4

LKol

(
μ3
l

ρ3l ε

)1/4

. (5.37)

Lehr et al. (2002) modelled a breakage kernel following the approach of Luo &
Svendsen (1996), with the difference that the kernel does not present experimental
constants. The formulations of g(L) and β(fv, L) are the same as the model of Luo
& Svendsen (1996), respectively Eq. (5.33) and Eq. (5.34), whereas g(fv|L) is:

g(fv|L) =
∫ L

L1

0.8413
√
2
σ(λ+ d)2

λ13/3
exp

(
− 2σ

ρlε2/3L1λ2/3

)
dλ, (5.38)

where L1 is the smaller daughter bubble size (Wang et al. 2005a).
Carrica & Clausse (1993) suggested to use the following kernel in order to

consider the breakage due to interfacial instability:

g(L) = g∗
(L− Lcr)

m

(L− Lcr)m + Lm
cr

, (5.39)

where Lcr is the critical bubble diameter, that for air-water systems is equal to
27mm. g∗ and m are model parameters, set to 100 s−1 and 6.0 respectively.

No detailed studies describe this phenomenon, so it is assumed that two equal
daughter bubbles are created, whereas in case of breakage due to turbulence differ-
ent daughter distribution functions are available. Viscous shear forces and shearing-
off process have no noticeable impact on breakage for gas-liquid systems. For this
reason, these kernels are not reported in this work.
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5.2.3 Coalescence kernel

Coalescence may appear more complex than breakage: not only it involves interac-
tions of bubbles with the continuous phase but also interactions with surrounding
bubbles once they collide due to the external flow and forces. Coalescence could
be studied using empirical models or first-principle models. The models of the first
group are simpler and they represent power law functions with parameters that
are empirically adjusted, depending on disperse phase concentration, number of
bubbles, size of bubbles and other physical properties, as proposed by Casamatta
& Vogelpohl (1985), Konno et al. (1988), Wright & Ramkrishna (1994) and Kentish
et al. (1998).

The main limitation of these empirical models is that they depend on the ex-
perimental set-up and on the geometry of the studied system. Results cannot be
extended to other cases: for this reason, first-principle models are preferable and
studied in this work.

Three main first-principle models are usually proposed to study the coalescence
phenomenon (Liao & Lucas 2010):

• film-drainage model;

• energy model;

• critical velocity model.

The film-drainage model is the most popular. This theory is based on the idea that
two bubbles, after colliding, could coalesce together or could be prevented from
coalescing by the thin film of liquid that is trapped between the bubbles (Shinnar
& Church 1960). When two bubbles collide, they fully define the dynamics of the
balance between repulsive forces, caused by the film of liquid that separates them
and the attractive forces. This dynamics in turn defines the drainage of the liquid.
The phenomenon can be divided into three steps:

• approach and collision between bubbles;

• drainage of the thin film of liquid trapped between bubbles until a critical
thickness;

• final merging consequent to the film ruptures.

The first step is governed by the external forces acting on the bubbles. The second
step is the controlling one, as the liquid film must be drained out until a critical
thickness, to obtain coalescence.

The energy model assumes that the molecular attraction forces between bubbles
are weaker than the turbulent forces and assumes therefore that coalescence is con-
trolled by the second ones. During an energetic collision, the approach velocity of
two colliding bubbles overcomes a critical value and causes an immediate coales-
cence event. The energy model was proposed by Howarth (1964) and confirmed by
the experiments of Park & Blair (1975) and Kuboi et al. (1972): they observed that
a fraction of collisions causes an immediate coalescence and this fraction increases
when the energy of collision grows. According to the energy model, coalescence
will occur immediately when the approach velocity exceeds a critical value at the
instant of collision.
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The critical velocity model assumes that coalescence is favoured by gentle col-
lisions, as observed by Doubliez (1991). Lehr et al. (2002) studied the relationship
between coalescence and approach velocity, observing that a low approach velocity
leads to coalescence.

For each model, the coalescence kernel can be separated into two parts: a
collision frequency and a coalescence efficiency. The first term considers the number
of collisions in a certain time interval. It has units of volume divided by time and its
physical meaning is the following: the collision frequency multiplied by the number
of bubbles per unit volume (bubble number density) represents the actual number
of collisions between bubbles per unit time. The coalescence efficiency is instead
a dimensionless quantity that states the fraction of collision events that actually
result in coalescence events:

h (L1, L2) = h0 (L1, L2)λ (L1, L2) , (5.40)

where h (L1, L2) is the coalescence kernel, h0 (L1, L2) is the collision frequency and
λ (L1, L2) is the coalescence efficiency.

Bubbles collisions are caused by differences in their relative velocities. The
relative motion is due to different mechanisms as summarized below:

• motion due to turbulent fluctuations in the continuous phase;

• different bubble rise velocities caused by buoyancy and other forces, e.g. drag
force;

• motion due to mean-velocity gradients in the flow;

• wake-entrainment;

• capture of the bubbles in turbulent eddies.

5.2.3.1 Collision frequency

The total collision frequency is generally considered as the sum of the rates due
to the previously cited mechanisms. The first is the most important at medium
superficial gas velocities and the other terms are often negligible; on the contrary,
at high superficial gas velocities, the wake entrainment could be important due
to the formation of very large bubbles. Bubble collisions due to different bubble
rise velocities cannot be ignored if the bubble rise velocity depends on the bubble
size. If two bubbles are captured at the same time in one eddy, they could coalesce
thanks to the flow shear rate into the eddy (Wang et al. 2006). The final coalescence
frequency can, therefore, be written as a summation of five different terms:

h0 = hT
0 + hB

0 + hV
0 + hW

0 + hE
0 , (5.41)

where the overall collisions frequency is related respectively to turbulent fluctu-
ations, buoyancy force, velocity-gradient, wake-entrainment and capture in turbu-
lent eddies.
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Collisions due to turbulent fluctuations. Bubble collisions due to turbulent
eddies are calculated by analogy with the gas kinetic theory by Prince & Blanch
(1990). The random movement of bubbles in a turbulent flow is considered similar
to the random gas motion in the kinetic gas theory (Kennard 1938). The collision
frequency due to turbulence hT

0 (L1, L2) is calculated as the volume swept by the
moving bubble in a certain time interval:

hT
0 (L1, L2) = S12urel, (5.42)

where urel is the relative approach velocity between two bubbles. S12 is the collision-
sectional area of the colliding bubbles and can be calculated as:

S12 =
π

4
(L1 + L2)

2 , (5.43)

where L1 and L2 are the diameters of the colliding bubbles.
In order to obtain the relative velocity, the most common assumption is that

the colliding bubbles assume the velocity of an equal-sized eddy, as considered by
Coulaloglou & Tavlarides (1977), Prince & Blanch (1990) and Luo (1993). A too
large eddy transports bubbles without effect on the relative movement whereas a
too small eddy does not have sufficient energy to modify bubble movement. The
relative velocity could therefore be calculated as (Liao & Lucas 2010):

urel =
√

u2
t1 + u2

t2, (5.44)

where ut1 is the eddy velocity with size L1 and ut2 is the eddy velocity with size
L2. Applying classical turbulence theories and considering the inertial subrange
of isotropic turbulence, the mean turbulent velocity of an eddy is calculated as
(Levich 1962):

ut1 =
√
2ε1/3L

1/3
1 . (5.45)

The relative velocity becomes:

urel =
√
2ε1/3

√
L
2/3
1 + L

2/3
2 . (5.46)

The final expression for the collision frequency is:

hT
0 (L1, L2) =

√
2
π

4
(L1 + L2)

2 ε1/3
√
L
2/3
1 + L

2/3
2 . (5.47)

Prince & Blanch (1990) modified Eq. (5.47):

hT
0 (L1, L2) = C ′

1 (L1 + L2)
2 ε1/3

√
L
2/3
1 + L

2/3
2 , (5.48)

where C ′
1 is a constant that depends on the studied system and varies in the range

of 0.28− 1.11. This equation is widely used to compute the collision frequency.
A size ratio between bubbles and eddies could be considered, while in the ori-

ginal model bubbles and eddies were considered equal-sized (Liao & Lucas 2010).
Bubbles larger than the turbulence integral length scale Lt cannot be affected by
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turbulence. Differences between bubble and liquid velocities are considered. Colli-
sions lead to coalescence only if L1 < Lt, as stated by Colin et al. (2004):

urel =

⎧⎨⎩
Ct√
1.61

(
εL1+L2

2

)1/3
L2 < Lt;

Ct√
1.61

(εL1)
1/3 L2 > Lt.

(5.49)

Alternatively, to consider this effect, a parameter could be added to the Eq. (5.47)
(Wang et al. 2005b):

Π = exp

[
−
(
Lbt,12

hbt,12

)6
]
, (5.50)

where Lbt,12 is the mean relative turbulent path length of bubbles and is related to
the mean distance between bubbles:

Lbt,12 =
√

L2
bt,1 + L2

bt,2, (5.51)

where:

Lbt,1 =
√
2 (εL1)

1/3

(
L2
1

4ε

)1/3

≈ 0.89L1; (5.52)

Wu et al. (1998) obtained this correction factor by assuming that average eddies
and bubbles have the same order size:

Π =

[
1− exp

(
−CΠ

α
1/3
maxα

1/3
g

α
1/3
max − α

1/3
g

)]
, (5.53)

where the constant CΠ depends on the studied system and it is equal to 3 for
air-water systems.

The secondmodificationisto consider the existence of bubbles that reduces the
free space for bubble movement and causes an increase in the collision frequency.
Another important correction is to consider the bubble presence, that reduces the
free space for bubble motion and causes an increase in collision frequency. Many
correlations are available to consider this effect, adding a new parameter γ (Liao
& Lucas 2010):

• Wu et al. (1998)

γ =
1

α
1/3
max

(
α
1/3
max − α

1/3
g

) αmax = 0.8; (5.54)

• Hibiki & Ishii (2000)

γ =
1

αmax − αg

αmax = 0.52; (5.55)

• Lehr et al. (2002)

γ = exp

⎡⎣−(α
1/3
max

α
1/3
g

− 1

)2
⎤⎦ αmax = 0.6; (5.56)
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• Wang et al. (2005b)

γ =
αmax

αmax − αg

αmax = 0.8. (5.57)

Other correlations for γ are available in the literature.
The final equation for the collisions efficiency proposed by Wang et al. (2005b)

is:
h0 (L1, L2) = C ′

2 γ Π(L1 + L2)
2 ε1/3

√
L
2/3
1 + L

2/3
2 , (5.58)

with C ′
2=

√
2π/4.

Lehr et al. (2002) proposed the same general expression without Π and using γ
from Eq. (5.56) instead of Eq. (5.57).

Collisions due to buoyancy. This term is non-negligible if the bubble rise
velocity is strongly influenced by the size of the bubbles, as a consequence of the
balance between buoyancy, gravity and drag forces. Friedlander (1977) proposed
this expression:

hB
0 (L1, L2) = S12|ur1 − ur2|, (5.59)

where ur1 is the rise velocity of bubble L1, that depends on the body forces.

Velocity gradient-induced collisions. This term is normally neglected. Any-
way, Friedlander (1977), for laminar shear, proposed the following expression:

hV
0 (L1, L2) =

1

6
(L1 + L2)

3ShR
. (5.60)

Prince & Blanch (1990) used this formula to describe the liquid circulation due to
high gas rates in bubble columns. The previous equation could be also applied to a
turbulent flow, if collisions are caused by the velocity shear of the mean flow. The
constant ShR

could be modified.

Collisions due to wake entrainment. A large sphere-cap bubble has a big
wake region, where other bubbles are accelerated, causing a collision with the
former one (Bilicki & Kestin 1987). Wake-induced collisions are important for
large cap bubbles into sufficiently viscous media with laminar wakes.

Kalkach-Navarro et al. (1994) derived the collision frequency due to wake-
entrainment hW

0 (L1, L2) as:

hW
0 (L1, L2) = C ′

2 (V1 + V2)
(
V

1/3
1 + V

1/3
2

)2

, (5.61)

where C ′
2 is an experimental constant and V1 and V2 are the volumes of the two

bubbles.
Considering wake interactions and bubble swarms, Colella et al. (1999) proposed

an equation for bubble-bubble interactions in the column:

hW
0 (L1, L2) = urel

V BOX
1

〈lw〉 , (5.62)
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where urel is the relative velocity, 〈lw〉 is the normalized average bubbles distance
(assumed equal to 1) and V BOX

1 is the volume that is influenced by the wake of
the bubble L1, following the theory of Nevers & Wu (1971).

Hibiki et al. (2001) calculated the wake-induced collision frequency for bubbles
with uniform size as:

hW
0 (L1, L1) = C ′

3C
1/3
D L2

1urel. (5.63)

It was later extended by Wang et al. (2005b) and Wang et al. (2005a) to the multi-
group case:

hW
0 (L1, L2) = C ′

3C
1/3
D L2

1urel, (5.64)

where L1 is the diameter of the leading bubble.
Wang et al. (2005a) proposed also the following correlation, in order to obtain

directly the coalescence kernel:

hW
0 (L1, L2) = 15.4L2

1 0.71
√
gL1. (5.65)

Collisions due to capture in a turbulent-eddy. Chesters (1991) stated that
collisions are dominated by viscous forces in a turbulent flow, if the bubble size is
much smaller than the energy dissipating eddies, given that the bubble velocities
are very similar to the liquid velocity:

hE
0 (L1, L2) =

0.618

8
(L1 + L2)

3

√
ε

ν
. (5.66)

A typical bubble column has eddies that vary from a minimum size depending on
the Kolmogorov scale and a maximum size that depends on the operating condi-
tions. The ratio between bubble size and turbulence length scale is very important.
Usually, in bubble columns, bubbles are contained in the inertial subrange and in
that case the collisions due to turbulent fluctuations are very much higher than col-
lisions due to capture in a turbulent-eddy. In the rare case of very small bubbles,
collisions due to capture in a turbulent-eddy become important.

5.2.3.2 Coalescence efficiency

Only a fraction of collisions leads to coalescence: some of the colliding bubbles
separate after collision or bounce off each other. Efficiency can be divided into
the three main physical models proposed: film-drainage model, energy model and
critical velocity model.

Film-drainage model. The film-drainage model determines the coalescence ef-
ficiency by considering two characteristic time scales: the contact time (the time
for which the bubbles stay in contact after a collision) and the drainage time (the
time required by the liquid film between two particles to drain out). Coulaloglou
(1975) proposed to describe the efficiency as:

λ (L1, L2) = exp

(
−tD
tC

)
, (5.67)

where tD is the drainage time and tC is the contact time.
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Different regimes of drainage can be identified according to the rigidity of the
bubbles (deformable or non-deformable) and the mobility of the interfaces (im-
mobile, partially mobile or fully mobile). Bubbles can be assumed rigid when the
viscosity is very high or when their diameter is smaller than 1 mm. Chesters (1991)
stated that the radial velocity in the film depends on a certain pressure variation
and then on an interaction force as follows:

F =
3πμlL

2

8h

dh
dt

, (5.68)

where F is the force that results again from the pressure fluctuations, the turbulent
force and the repulsion forces, L is the bubbles diameter, h is the film thickness
(i.e. the distance between the bubbles) and dh/dt is the approach velocity.

Chesters (1991) derived the drainage time in case of constant compression force
as

tD =
3πμl

8F
L2 ln

(
hi

hf

)
, (5.69)

where hi and hf are the thicknesses of the liquid film at the beginning and at the
end of the drainage process respectively.

Jeffreys & Davies (1971) derived the drainage time for two bubbles with different
diameters (L1 and L2) as

tD =
3πμl

F

(
L1L2

L1 + L2

)2

ln

(
hi

hf

)
. (5.70)

where hi and hf are the thicknesses of the liquid film at the beginning and at the
end of the drainage process, respectively, and F is the force that results again from
the pressure fluctuations, the turbulent force and the repulsion forces.

Bubbles larger than 1 mm are considered deformable. In this case the mobility of
the interface has an important effect. For immobile interfaces, the velocity profile in
the film is parabolic (laminar flow) with no slip at the surface. The approximation
of immobile interfaces is applicable to systems containing surfactants or if the
viscosity of the dispersed phase is very high. Chesters (1991) derived the following
expression for the approach velocity:

dh
dt

=
2h3F

3πμlR4
a

, (5.71)

with the interaction force considered proportional to the excess film pressure:

F ∝ πR2
a

4σ (L1L2)

L1L2

, (5.72)

where Ra is the film dimension.
And thus, integrating from hi to hf , the drainage time results to be:

tD =
3Fμl

32πσ2

(
L1L2

L1 + L2

)2
(

1

h2
f

− 1

h2
i

)
. (5.73)

For partially mobile surfaces, Chesters (1991) modified the previous expression for
equal-size bubbles:

tD =
F 1/2μgπ

2πσ/L3/2

(
1

hf

− 1

hi

)
. (5.74)
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Deformable bubbles with fully mobile interfaces are the most difficult to study.
In the inertial-controlled limit, as for bubbles in turbulent systems, Luo (1993)
proposed the following expression:

tD = 0.5
u12ρlL

2
1

(1 + L1/L2)2σ
. (5.75)

The contact time was firstly studied by Levich (1962). Chesters (1991) explained
that the contact time in turbulent flows is inversely proportional to the flow strain
rate for the smallest eddies and the drainage velocity model which includes the
contribution of inertia and viscous forces.

For highly viscous liquids the viscous term is prevalent. The approach velocity
becomes

dh
dt

=
4hσ

3μlL
(5.76)

and the drainage time is equal to

tD =
3μl (L1L2)

4σ (L1 + L2)
ln

(
hi

hf

)
. (5.77)

If inertia is the predominant phenomenon, the drainage time becomes

tD =
ρl (L1L2)

2 urel

32σ (L1 + L2)
2 ln

(
hi

hf

)
, (5.78)

where urel is the relative velocity of the colliding bubbles.
Luo (1993) obtained an expression for the contact time, based on a parallel film

model:

tC =

(
1 +

L1

L2

)√
(ρg/ρl + CVM) ρlL3

1

3 (1 + L2
1/L

2
2) (1 + L3

1/L
3
2) σ

, (5.79)

where CVM is a constant with a range of 0.5 - 0.8.
Podgórska & Marchisio (2016) studied in detail these mechanisms for drops in

turbulent flows, providing better expressions for these systems.
Many coalescence efficiencies are available in the literature; the most common

was proposed by Coulaloglou & Tavlarides (1977), applying the film drainage model
to immobile interfaces:

λ (L1, L2) = exp

[
−C ′′

1

μlρlε

σ2

(
L1L2

L1 + L2

)4
]
. (5.80)

Coulaloglou & Tavlarides (1977) modified this expression, in order to consider high
gas volume fraction effects:

λ (L1, L2) = exp

[
−C ′′

2

μlρlε

σ2(1 + αg)3

(
L1L2

L1 + L2

)4
]
. (5.81)

For partially and fully mobile interfaces, Lee et al. (1987) proposed two very com-
plex equations with many parameters. More details are reported in Liao & Lucas
(2010).
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Chesters (1991) studied viscous collisions and proposed:

• for immobile bubbles

λ (L1, L2) = exp

(
−C ′′

3

9μlL
4
eqερl

128σ2h2
f

)
; (5.82)

• for partially mobile interfaces

λ (L1, L2) = exp

(
−C ′′

4

L
5/2
eq

√
3μgμ

3/4
l

29/2σ3/2ε1/4ρl1/4hf

)
; (5.83)

• for fully mobile interfaces

λ (L1, L2) = exp

(
−C ′′

5

3Leq
√
μlερl

4σ
ln

(
hi

hf

))
. (5.84)

For all cases, the equivalent length is computed as:

Leq =

(
1

L1

+
1

L2

)−1

. (5.85)

Similar expressions were proposed by the same author (Chesters 1991) for inertial
collisions.

Luo (1993) obtained an expression for the efficiency starting with the definition
of the contact time shown in Eq. (5.79).

Wang et al. (2005b) proposed different coalescence efficiency according to the
mechanism of collision involved. They refuted the validity of Eq. (5.40), modifying
it as follows:

h0 = hT
0 λ

T + hW
0 λW + hB

0 λ
B. (5.86)

Wang et al. (2005b) considered only coalescence due to turbulent eddies, wake
entrainment and different rise velocities. In order to study the coalescence due to
turbulent eddies, Wang et al. (2005b) proposed the following equation:

λT (L1, L2) = exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−

√
0.75

[
1 +

(
L1

L2

)2
] [

1 +
(

L1

L2

)3
]

ρlL1(u2
1+u2

2)
σ[

ρg
ρl
+ CVM

] [
1− L1

L2

]3
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

, (5.87)

where CVM is the virtual mass coefficient.
The efficiency linked to wake entrainment is:

λW (L1, L2) = Θ exp

[
−0.46ρ

1/2
l

ε1/3

σ1/2

(
L1L2

L1 + L2

)5/6
]

(5.88)

Θ =

⎧⎨⎩
(L2−Lc/2)

6

(L2−Lc/2)
6+(Lc/2)

6 L2 ≥ Lc/2

0 L2 ≤ Lc/2,
(5.89)
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where
Lc = 4

√
σ

gΔρ
. (5.90)

It can be coupled with the Eq. (5.65), obtaining the following kernel due to wake
entrainment:

hW (L1, L2) = hW
0 (L1, L2)λ

W (L1, L2) =

= 15.4ΘL2
1 0.71

√
gL1 exp

[
−0.46ρ

1/2
l

ε1/3

σ1/2

(
L1L2

L1 + L2

)5/6
]
. (5.91)

Wang et al. (2005b) did not investigate the coalescence efficiency linked to the
mechanism of different rise velocities: they set a constant value of 0.5 for the
efficiency.

Energy model. Sovova (1981) developed a coalescence model for the energetic
collisions of droplets, considering the ratio between kinetic collision energy and
interfacial energy:

λ (L1, L2) = exp

(
−C ′′

6

Eσ

Ekinetic

)
= exp

⎛⎝−C ′′
6

σ
(
V

2/3
1 + V

2/3
2

)
1
2
ρg

V1V2

V1+V2
u2
rel

⎞⎠ . (5.92)

A similar expression was formulated by Simon (2004):

λ (L1, L2) = exp

⎛⎝−C ′′
6

σ
(
V

2/3
1 + V

2/3
2

)
ρgε2/3

(
V

11/9
1 + V

11/9
2

)
⎞⎠ . (5.93)

Sovova (1981) proposed a miscellaneous model, that considers both the film drain-
age model, both the energy model:

λ (L1, L2) = λ1 (L1, L2) + λ2 (L1, L2)− λ1 (L1, L2)λ2 (L1, L2) , (5.94)

where λ1 (L1, L2) is calculated from the energy model and λ2 (L1, L2) is calculated
from the film drainage model.

Critical approach velocity model. Lehr et al. (2002) observed that above
a certain relative approach velocity the bubbles bounce; if the relative approach
velocity is lower than a critical value then the bubbles can collide. Starting with
the observation that gentle collisions lead to more efficient coalescence, Lehr et al.
(2002) proposed the following coalescence efficiency:

λ (L1, L2) = min

(
ucrit

urel

, 1

)
, (5.95)

here the relative velocity urel is reported in Eq. (5.46) and the critical approach
velocity ucrit depends on the studied system and can be determined experimentally.
By fitting with experiments, the ucrit has found to be equal to 0.08 m/s for distilled
water-air systems. This critical value does not depend on the size of the bubbles in
the studied range (3-8 mm). In liquid with additives the coalescence inhibition lead
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to lower critical velocities. The final expression for the coalescence kernel considers
also the γ correction of Eq. (5.56) resulting in (Lehr et al. 2002):

h (L1, L2) =
π

4
(L1 + L2)

2 urel min

(
ucrit

urel

, 1

)
γ (5.96)

or alternatively in:

h (L1, L2) =
π

4
(L1 + L2)

2 min(urel, ucrit) exp

⎡⎣−(α
1/3
max

α
1/3
g

− 1

)2
⎤⎦ . (5.97)

5.3 Quadrature Method of Moments (QMOM)
QBMMs constitute a particular class of very successful methods that overcome the
closure problem by using quadrature approximations. A general quadrature of N
nodes requires knowledge of N weights (wi) and N nodes (Li) with 1 ≥ i ≥ N
(Marchisio & Fox 2013).

For univariate systems the internal coordinate is a scalar; for M -variate sys-
tems the internal coordinate is a vector of length M . Using QMOM, the moment
equations are solved by estimating the source terms through the quadrature ap-
proximation. The quadrature approximation permits to overcome the closure prob-
lem. This approximation is determined from the available computed moments by
employing moment-inversion algorithms.

This method has a degree of accuracy higher than interpolation schemes of
the same order, as it makes use of a Gaussian quadrature approximation. This is
done by determining the sequence of polynomials orthogonal to the unknown NDF
from its moments. As the nodes of the quadrature approximation are the roots
of the polynomial of order N orthogonal to the NDF, the approximation can be
summarized as: ∫

f(ξ)n(ξ)dξ ≈
N∑
i=1

f(ξi)wi, (5.98)

where n(ξ) is the unknown NDF and ξ is here a generic internal coordinate, as for
example bubble size.

This approximation is exact if f(ξ) is a polynomial of order 2N − 1 or smaller
(Dette & Studden 1997). An interpolation formula with N equally spaced nodes
has a degree of accuracy of N − 1; a Gaussian quadrature has a degree of accuracy
of 2N − 1. For this reason, quadrature approximations are very interesting: their
degree of accuracy is essentially twice that of other formulas with the same number
of nodes.

A quadrature of order N is constructed by tracking the first 2N moments. If
the number of nodes is higher, the accuracy increases, but also the computation
cost increases. Moreover, numerical problems might arise when N increases. In
fact, transport equations for moments of higher order are more likely to make the
overall CFD simulation unstable and hinder convergence. The best compromise
for bubble columns is often to use three nodes for the quadrature approximation,
solving six additional moment equations for the gas phase:

∂

∂t
(ρgmk) +∇ · (ρgmkug) = ρgS̄mk

, (5.99)
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where ρg is the gas phase density, ug is the gas phase average velocity, mk is the
moment of order k of the BSD, S̄mk

is the normalized source term for the kth

moment due to coalescence and breakage.
The calculation of nodes and weights of the quadrature approximation is ob-

tained by the moment of order k:

mk =

∫ ∞

o

n(L)Lk dL ≈
N=3∑
i=1

wi L
k
i , (5.100)

where n(L) is the unknown BSD or NDF.
The moments can be normalized with respect to the local bubble volume frac-

tion, in order to simplify the implementation:

mk = μkαg; (5.101)

resulting in:
∂

∂t
(ρgαgμk) +∇ · (ρgαgμkug) = ρgS̄mk

. (5.102)

Summarizing moments are transported into the equations and weights and nodes
are used to calculate the source terms. It is necessary to use a procedure that
allows determining the N quadrature nodes and weights from the 2N moments of
the BSD. This is called inversion algorithm and will be detailed below (Marchisio
& Fox 2013).

Standard procedures could be used to solve these systems but these are not very
efficient. For the quadrature theory, the BSD must be non-negative and non-null in
the integration interval and all its moments must exist. An orthogonal polynomial
family {Pα(L)} ought to be defined in the interval of integration. The polynomials
are obtained using the following recurrence formula:

Pα+1(L) = (L− aα)Pα(L)− bαPα−1(L), (5.103)

where α varies from 0 to N and where

aα =

∫
Ln(L)Pα(L)Pα(L)dL∫
n(L)Pα(L)Pα(L)dL

, (5.104)

bα =

∫
n(L)Pα(L)Pα(L)dL∫

n(L)Pα−1(L)Pα−1(L)dL
. (5.105)

The initial conditions are P−1(L) = 0 and P0(L) = 1. For the bubble size, the
integration interval varies from 0 to +∞.

The recursive formula generates an orthogonal polynomial family that considers
the weight function (namely the BSD) in the interval of integration; it is also
possible to write the coefficients aα and bα in terms of the moments, e.g. the
following coefficients can be calculated using m0, m1, m2, and m3:

a0 =
m1

m0

, (5.106)

a1 =
m3m

2
0 +m3

1 − 2m1m0

m2m0 +m2
1 − 2m2

1m0

, (5.107)
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b1 =
m2m0 +m2

1 − 2m2
1m0

m2
0

. (5.108)

An important feature of orthogonal polynomials is that the internal coordinates
are always sampled into the domain of the BSD.

Using the recursive formula of the orthogonal polynomials, it is possible to find
weights and nodes by solving the following eigenvalue/eigenvector problem:

L

⎡⎢⎢⎢⎢⎢⎢⎢⎣

P0(L)
P1(L)
P2(L)

...
PN−2(L)
PN−1(L)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a0 1
b1 a1 1

b2 a2 1
. . . . . . . . .

bN−2 aN−2 1
bN−1 aN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

P0(L)
P1(L)
P2(L)

...
PN−2(L)
PN−1(L)

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...
0

PN(L)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

(5.109)
The zeros of PN(L) are the nodes of the quadrature approximation and they are the
eigenvalues of the tridiagonal matrix. With a diagonal similarity transformation
and preserving the eigenvalues, the matrix can be transformed into a symmetric
matrix called the Jacobi matrix:

J =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a0
√
b1√

b1 a1
√
b2√

b2 a2
√
b3

. . . . . . . . .√
bN−2 aN−2

√
bN−1√

bN−1 aN−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (5.110)

Calculating the eigenvalues of the Jacobi matrix is easier than calculating the eigen-
values of the initial matrix reported in Eq. (5.109) and the zeros of the polynomial
PN(L). As shown by Wilf (1962), the N weights could be computed as wα = m0 j

2
α1,

where jα1 represent the α-th of the jα1th eigenvector jα of the Jacobi matrix.
The coefficients aα and bα of the recursive formula can be computed by means

of the orthogonality condition and by using the moments. Two efficient methods
for calculating the Jacobi matrix from the moments are the Product-Difference
algorithm (Gordon 1981) and Wheeler algorithm (Wheeler 1974).

5.3.1 Product-difference algorithm

The product-difference (PD) algorithm, developed by Gordon (1981), is based on
the theory of continued fractions of Stieltjes. The first step is to construct a matrix
P with components Pα,β starting from the moments. It can be calculated as:

• Pα,1 = δα,1 for α = 1, . . . , 2N − 1, where δα,1 is the Kronecker delta;

• Pα,2 = (−1)α−1mα−1 for α = 1, . . . , 2N , where mα−1 is the α-th moment;

• Pα,β = Pα,β−1Pα+1,β−2 − P1,β−2Pα+1,β−1 for α = 1, . . . , 2N + 2 − β and β =
3, . . . , 2N + 1.
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Normalized moments m′
α = mα/m0 could be used: in this case the final weights

ought to be multiplied by m0.
The P matrix is used to compute the coefficients of the continued fraction ζα,

that in turn are used to calculate the coefficients aα and bα, imposing ζ1 = 0.

ζα =
P1,α+1

P1,αP1,α−1

α = 2, . . . , 2N ; (5.111)

aα = ζ2α + ζ2α−1 α = 1, . . . , N ; (5.112)

bα = −
√

ζ2α+1 + ζ2α α = 1, . . . , N. (5.113)

The PD algorithm generally becomes less stable when N increases. The stability
depends on the absolute values of the moments and typically problems appear when
N > 10 (Buffo 2012). The PD algorithm fails for distributions with mean equal
to zero, i.e. m1 = 0, as a division by zero is performed when ζα are computed,
but this problem is not significant when the bubble size is studied: the values of
internal coordinate are strictly higher than zero (Marchisio & Fox 2013).

5.3.2 Wheeler algorithm

The Wheeler algorithm is based on a different set of basic functions πα(L) to
represent the orthogonal polynomials, instead of the powers of L (Wheeler 1974).
The coefficients are obtained by the modified moments:

νk =

∫
πk(L)n(L) dL (5.114)

where k = 0, . . . , 2N − 1.
Assuming that:

π−1(L) = 0; (5.115)

π0(L) = 1; (5.116)

πα+1(L) = (L− a′α)πα(L)− b′απα−1(L). (5.117)

An efficient algorithm is available in order to calculate the coefficients of the Jacobi
matrix through some intermediate quantities:

σα,β =

∫
n(L)πα(L)πβ(L)dL (5.118)

with α, β ≥ −1.
The initialization is:

σ−1,α = 0 α = 1, . . . , 2N − 2 (5.119)

σ0,α = να α = 0, . . . , 2N − 1 (5.120)

a0 = a′0 +
ν1
ν0

(5.121)

b0 = 0 (5.122)
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The coefficients for the Jacobi matrix are computed as:

σα,β = σα−1,β+1−(ak−1−a′β)σα−1,β−bβ−1σα−2,β+b′β−1σα−1,β−1 β = α, . . . , 2N−α−1
(5.123)

aα = a′α − σα−1,α

σα−1,α−1

+
σα,α+1

σα,α

(5.124)

bα =
σα,α

σα−1,α−1

(5.125)

The Wheeler algorithm is more stable than the PD algorithm, both with normalized
moments m′

α = mα/m0 both with standard moments mα (Buffo 2012); this method
could be used also in the case of distributions with mean equal to zero, i.e. m1 = 0.
The Wheeler algorithm allows obtaining weights and abscissas for a set of realizable
moments. For unrealisable moment sets, this method fails; an adaptive version
proposed by Yuan & Fox (2011) of this algorithm could be used.

5.3.3 Correction algorithms

The original QMOM formulation, proposed by Marchisio et al. (2003b) has a sig-
nificant issue: errors due to spatial and time discretization are inevitable. During
the simulations, the moments could be corrupted, forming an unrealizable or in-
consistent moment set. An unrealizable moment set does not correspond to any
real BSD, as explained by Wright (2007). A revised QMOM version can be used in
order to solve this problem; this version allows correcting corrupted moment sets,
obtaining a more stable code.

A method for recovering a corrupted moment set is the Minimum Square Al-
gorithm proposed by McGraw (1997). This iterative method is based on the idea
of identifying and correcting only the moment that after adjustment maximizes
the smoothness of its logarithmic function, by using a minimization procedure.
The method can identify quickly the moments that ought to be corrected and the
corrected values that are valid. Details are reported in Petitti et al. (2010).

Sometimes, this method is not able to correct the moment set quickly and
then, after some iterations, a second correction procedure is adopted. This method
has been proposed by Wright (2007) and it restores the corrupted moments with
the moments calculated with the arithmetic mean of two log-normal distributions.
These log-normal distributions are obtained from the first four moments, keeping
fixed values for m0 (related to the number of bubbles per unit volume) and m3

(related to the volume fraction). Details are reported in Petitti et al. (2010).
These two algorithms have a key role in the simulations and in their stability,

avoiding negative nodes and moments. These correction algorithms mainly modify
the higher-order moments. The magnitude of these corrections are acceptable, thus
they do not affect largely the final results, while the stability is higher. This proced-
ure, proposed by Petitti et al. (2010), strongly influences the physical consistency
of the results and solves many stability issues.

5.3.4 Source term in QMOM

It is useful to discuss a bit more in details the functional form of the source term
appearing on the right-hand side of the moment transport equation, when mass
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transfer is neglected and only coalescence and breakage are considered. The right-
hand side term of Eq. (5.8), the source term for the kth moments Smk

is related to
coalescence and breakage and calculated with the nodes and weight of the quad-
rature formula. By using three nodes, the source terms can be written as:

Smk
=

1

2

N=3∑
i=1

wi

N=3∑
j=1

wjhij

[(
L3
i + L3

j

)k/3 − Lk
i − Lk

j

]
+

N=3∑
i=1

wigi
(
b̄ki − Lk

i

)
(5.126)

where:

• Li and Lj are the nodes of the quadrature approximation, that can be seen
as the size of the bubble “classes”;

• wi and wj are the weights of the quadrature approximation;

• hij = h (Li, Lj) is the coalescence kernel generated by the interaction between
bubbles of size Li and bubbles of size Lj;

• gi = g (Li) is the breakage kernel considering bubbles of size Li;

• b̄ki is the kth moment of the daughter distribution function of the daughter
bubble L, generated by the mother bubble Li. It is calculated as:

b̄ki =

∫ Lmax

Lmin

β (L, Li)L
k dL, (5.127)

where the daughter bubble has Lmin equal to zero and Lmax equal to the
mother bubble size (Li).

The final expression for Eq. (5.126) is therefore:

Smk
=

1

2

N=3∑
i=1

wi

N=3∑
j=1

wjhij

[(
L3
i + L3

j

)k/3 − Lk
i − Lk

j

]
+

+
N=3∑
i=1

wigi

((∫ Li

0

β (L, Li)L
k dL

)
− Lk

i

)
. (5.128)

The integral appearing in Eq. (5.128) can be solved analytically, when possible, or
by using another quadrature approximation, e.g. Gauss-Legendre with 6 nodes. In
this latter case the calculations require longer time and the error of the approxim-
ation often is non-negligible.

The integral of Eq. (5.127) has an analytical solution in the case of binary break-
age, starting with the daughter distribution function of Laakkonen et al. (2007)
(Eq. (5.29)), as observed by Petitti et al. (2010):

b̄ki =

∫ Li

0

(
180

(
L2

L3
i

)(
L3

L3
i

)2(
1− L3

L3
i

)2
)
Lk dL =

=
3240Lk

i

(k + 9)(k + 12)(k + 15)
. (5.129)

Given this analytical solution, the daughter distribution function proposed by
Laakkonen et al. (2007) is preferable in many cases.
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5.4 PBM implementation

5.4.1 CFD-PBM coupling

As mentioned before, in CFD simulations with the standard Eulerian-Eulerian
method, the bubbles are assumed to be monodispersed, i.e. with the same size. A
population balance model (PBM) can be coupled with CFD simulations in order
to overcome this limitation. In this work the Quadrature Method of Moments
(QMOM) with three nodes is employed, as the recommended option for univariate
PBM. With this method, six additional gas-phase transport equations are solved:

∂

∂t
(ρgαgμk) +∇ · (ρgαgμkug) = ρgSmk

(5.130)

where μk is the moment of order k normalized with respect to the local bubble
volume fraction and Smk

is the source term calculated with the quadrature formula
and reported in Eq. (5.126). To overcome stability issues, the correction algorithms
suggested by Petitti et al. (2010) are used.

The QMOM method can be implemented following this methodology:

• write a User Defined Function (UDF) that implements the QMOM method
and compile it;

• add 6 User Defined Scalars (UDS) for the gas dispersed phase, for which six
equations are solved;

• add memories (User Defined Memories - UDM) in order to check the different
parameters and values obtained by the QMOM;

• hook in macros/subroutines defined in UDF and for the source terms for the
scalars, where the source terms are calculated in the UDF. The Sauter mean
diameter is the bubble size considered in CFD simulations;

• set the boundary conditions for scalars of the moments. The bubbles are
initialized with a log-normal distribution centred on a mean value and with
a fixed variance, according to the work of Petitti et al. (2010);

• initialize the User Defined Scalars in the entire volume at the boundary values
through patch operation, in order to minimize the initial death time.

Different strategies can be used to couple QMOM with the Eulerian-Eulerian solver
in ANSYS Fluent. The three groups of bubbles can be considered as:

• a single phase moving with the same velocity, that is calculated by computing
the interfacial forces with the Sauter mean diameter d32 (Buffo et al. 2013);

• a single phase moving with a size-dependent velocity; generally, a quadratic
dependence of bubble velocity versus bubble size is assumed (Marchisio &
Fox 2013);

• three different phases, with their properties (Mazzei et al. 2012).
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The first choice is the cheapest in terms of computational time, whereas the last
one is the most expensive. This choice is really important and influences results
and computational cost. The main difference between the first and the second
option is due to the effect of the velocity on the drag force. The version of QMOM
that considers the same velocity for each bubble is extremely robust and allows
obtaining the bubble size and with a solving for the PBM with an increase of the
computational time, in comparison with the standard time with an increase in the
time for Eulerian-Eulerian simulations of just 30%.

5.4.2 Zero-dimensional simulations

Three-dimensional transient CFD simulations provide very accurate results. How-
ever for studying new breakage and coalescence kernels is necessary to carry out
many simulations for different operating conditions: several weeks are necessary
to obtain a correct kernel. To overcome this problem and to obtain preliminary
results, a zero-dimensional (0D) model can be used. An ideally mixed system is
assumed, even if the local flow conditions affect the population dynamics (De Bona
et al. 2016). In 0D models, spatial homogeneity and perfect mixing of the disperse
and continuous phases is assumed (Buffo et al. 2016).

The zero-dimensional lumped model considers the volume-average value of the
turbulent dissipation rate; it is implemented in MATLAB and it is computationally
very cheap (Buffo et al. 2016): in some seconds it is possible to carry out several
simulations. This model permits to study the evolution of the moments of the
BSD; the hydrodynamic properties and the parameters are introduced as input.
The turbulent dissipation rate and the other properties of interest show a spatial
dependence: under certain operating conditions this effect can be neglected and
the system evolution can be written in terms of volume-averaged properties.

The original population equation reads as follows:

∂n(t,x, L)
∂t

+
∂

∂x
· (ugn(t,x, L)) = S(t,x, L) (5.131)

and it can be volume-averaged. If the BSD is volume-averaged, according to the
following definition:

n̄(t, L) =
1

V

∫
V

n(t,x, L)dx (5.132)

and the PBE is volume-average the next equation is obtained:

∂n̄(t, L)

∂t
=

1

V

∫
V

S(t,x, L)dx = S̄(t, L). (5.133)

In case of lumped models and for systems where only breakage and coalescence are
considered Eq. (5.133) becomes:

∂n̄(t, L)

∂t
=

1

2

∫ L

0

h
(
ε̄,
(
L3 + λ3

)1/3
, λ
)
n̄
((

L3 + λ3
)1/3

, t
)
n̄(λ, t)dλ+

−n̄(L, t)

∫ ∞

0

h(ε̄, L, λ)n̄(λ, t)dλ+

+

∫ ∞

L

β(L′, L) g(ε̄, L′)n(L′, t)dL′ − g(ε̄, L)n̄(L, t), (5.134)
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and applying the moment transformation, it becomes:

dm̄k

dt
= S̄mk

, (5.135)

where S̄mk
is the source term. For the lumped 0D model, the source is evaluated

with the kernels calculated with the volume-averaged turbulent dissipation rate:

ε̄ =

∑
i εiVi

V
(5.136)

where εi is the turbulent dissipation rate in the ith cell of the CFD simulation and
Vi is the volume of this cell. The volume-averaged turbulent dissipation rate is
computed by CFD 3D simulations in the same operating conditions. The source
term expression is equal to Eq. (5.126), but the coalescence (hij) and breakage (gi)
kernels are calculated considering the volume-averaged properties, e.g. ε̄.

Some corrections could be applied in order to obtain more accurate results.
The volume-averaged turbulent dissipation rate could be computed by the CFD
simulations with an average that considers the turbulent dissipation rate seen by the
bubbles (Favre-like average seen by the bubbles) instead of a turbulent dissipation
rate seen by the continuous phase, as detailed in Annex C:

ε̄ ′ =

∑
i εiαgi∑
i αgi

(5.137)

where αgi is the gas fraction.
Also the spatial distribution of the turbulent dissipation rate could be con-

sidered, in a homogeneous 0D model. Calculating the source term, spatial integrals
appear in breakage and coalescence kernels. The assumption of volume-averaged
turbulent dissipation rate of the lumped 0D model is not always suitable, as the
dependency of the kernel on the turbulent dissipation rate is not linear. Buffo et al.
(2016) specified that the homogeneous 0D model provides better results than the
lumped 0D model. it is in fact more complex and it is more computationally ex-
pensive. It should be used only if the lumped 0D model provides inaccurate results
compared with the 3D CFD simulations for same operating conditions.

5.5 Test case description and setup

5.5.1 Experimental test cases

As detailed in Chapter 3 experiments were conducted in a 0.4 m diameter cyl-
indrical bubble column for a range of superficial gas velocities between 0.03 m/s
and 0.35 m/s. It allows studying both the homogeneous and the heterogeneous flow
regimes. Different hydrodynamic properties were measured: gas hold-up, local gas
fraction, liquid velocity and bubbles Sauter mean diameter. The gas is injected
through a perforated sparger at the bottom of the column. The sparger has 92
holes of 2 mm of diameter (Fig. 3.4b), ensuring a homogeneous distribution of the
gas. Subsequently, another perforated sparger is used (7 holes of 9 mm) (Fig. 3.4c):
this allows generating big bubbles and this data is used to decouple breakage and
coalescence phenomena.
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Experiments with different qualities of water (i.e. demineralised water, tap wa-
ter and demineralised water with small percentages of ethanol) allow considering
the effect of additives in the coalescence kernel. They strongly modify hydrodynam-
ics and bubble size, as reported by McClure et al. (2013, 2014, 2015). Gemello et al.
(2018a) stated that the presence of additives affects the mobility of the gas-liquid
interface, that influences the coalescence efficiency, while but it has little effect on
breakage. Additives at low concentrations did not modify significantly the surface
tension. This result suggests that coalescence is affected by the modification of
physical properties, but relevant descriptors are still not identified.

The turbulence model choice is investigated in this work. The turbulent dis-
sipation rate is an important parameter for breakage and coalescence kernels. It
has never been measured directly in heterogeneous bubbly flows, due to the lack
of a reliable measurement method. Forret (2003) studied the turbulent viscosity
in bubble columns in a wide range of operating conditions. A correlation for the
calculation of the turbulent viscosity in the column centre was proposed:

νt = 0.036D1.6u0.11
sg . (5.138)

where D is the column diameter (in m) and usg is the superficial gas velocity (in
m/s).

Furthermore, Forret (2003) studied its radial profile: it is flat until the nor-
malized radial position of 0.8 and after it decreases quickly to zero at the wall.
The turbulence kinetic energy is experimentally calculated by using a Pavlov tube
at 400 Hz for a superficial gas velocity of 0.16 m/s. By calculating the turbulent
viscosity, with the Forret (2003) correlation and profile, and by measuring the tur-
bulence kinetic energy, the turbulence dissipation rate can be approximated, as
detailed below (Eq. (5.143)).

5.5.2 CFD simulations setup

Simulations are performed using the commercial CFD code ANSYS Fluent 18.0.
Simulations are carried out using a Eulerian-Eulerian multiphase method, as de-
tailed Chapter 4. Classical CFD simulations presented in Chapter 4 are coupled
with the PBM, using the same geometry, mesh and setup. In this work, the Quad-
rature Method of Moments (QMOM) with three nodes is employed. To avoid
inconsistent moment sets, the QMOM version suggested by Petitti et al. (2010)
is used. For the PBM, six equations are added in Fluent (User Defined Scalars
- UDS). Initially, the simulations are carried out by approximating the 92-holes
sparger with a homogeneous porous plate. In the CFD simulations, the gas enters
the column already mixed with the liquid with a constant gas volume fraction.
The bubbles, that enter the system, have an initial log-normal distribution centred
on a mean value and with a fixed variance, according to the work of Petitti et al.
(2010). Initially, the inlet bubble size is imposed equal to 7.7 mm. Standard wall
function is used. The drag law of (Tomiyama 1998) is adopted, with the swarm
factor proposed in the previous chapter.

Turbulence property influence the coalescence and breakage kernels. The main
turbulence properties of interest are the turbulent viscosity, the turbulence kinetic
energy and the turbulence dissipation rate. The turbulence dissipation rate plays
a direct role in the coalescence and breakage kernels. Initially, the simulations are
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carried out by using the RNG k-ε model. In order to avoid convergence problems at
the interface, the Kato & Launder (1993) modification is applied in the k equation
and the turbulence dissipation rate is computed only where the gas volume fraction
is lower than 70%. Other turbulence models are also tested, comparing the tur-
bulence properties with experimental data and existing correlations. In this work,
several turbulence models are studied beside RNG k-ε such as standard k-ε and k-
ω. Subsequently, turbulence due to energy transfer from gas-phase to liquid-phase
is considered by adding a source term in the turbulence equations or by modifying
the liquid-phase visocsity (detailed in Section 4.2.3.5); it is coupled with the RNG
k-ε model and tested.

5.6 Results and discussion
Initially, simulations are carried out with the typical kernels developed for the
homogeneous regime:

• only collisions due to turbulent eddies are considered. The coalescence kernel
of Prince & Blanch (1990) is used;

• the coalescence efficiency is computed using the film drainage model, with
the expression proposed by Coulaloglou & Tavlarides (1977);

• it is assumed that breakage is due to turbulence; these simulations use the
breakage kernel of Coulaloglou & Tavlarides (1977);

• the daughter distribution function of Laakkonen et al. (2007) is considered.

This set of kernels will be referred to as "homogeneous" kernels in the remainder
of this work.

The first property for screening the quality of the kernel predictions is the Sauter
mean diameter. If this does not result in good agreement with experiments, the
kernels are certainly wrong. Experimental data suggest that the Sauter mean dia-
meter increases or remains constant when the superficial gas velocity is increased.
The homogeneous kernels provide a wrong behaviour: the Sauter mean diameter
decreases when the superficial gas velocity increases, as shown in Fig. 5.1. The
Sauter mean diameter is acceptably predicted only under the homogeneous regime
with these kernels althought it is underestimated.

The radial profile of Sauter mean diameter is wrong under the heterogeneous re-
gime, as the experimental profiles have a parabolic shape, whereas the CFD profiles
with homogeneous kernels are almost flat, as shown in Fig. 5.2. Results confirm
that the homogeneous breakage and coalescence kernels ought to be modified in
the case of the heterogeneous regime.

5.6.1 0D simulations

Many simulations need to be carried out in order to develop a kernel suitable for
bubble columns working under the heterogeneous regime: each kernel has to be
applied on simulations with different superficial gas velocities and column diamet-
ers. The realization of thousands of 3D CFD simulations is computationally too
heavy, even when using a super-computer with simultaneous parallel simulations.
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Figure 5.1: Volume-average Sauter mean diameter at different superficial gas
velocities at H/D=2.5. Experimental data (�) versus CFD results obtained with

homogeneous kernels (red line and ×).

To screen the proposed kernels, 0D simulations with MATLAB are carried out, by
using a lumped model, as explained in Section 5.4.2.

The spatial and time average of the hydrodynamics and turbulence properties
is used in this work. For calculating the time-average of the properties of interest,
the Favre-like average seen by the bubbles or the liquid may be used instead of the
Reynolds average. The effect of this choice is quite small and often negligible: the
radial profiles obtained with the Favre-like average are similar to those obtained
with the Reynolds average for every property, as detailed in Annex C.

0D results are then validated and refined with 3D CFD results. Within a few
minutes, it is possible to obtain the evolution of the Sauter mean diameter for
each column and superficial gas velocity. The simulation time is computed as the
residence time for a plug flow reactor:

t = 4
DC [m]

vsg[m/s]

αg

1− αg

(5.139)

A constant residence time is not physically correct, but it allows understandingof
the residence time effect. The differences between using the residence time of a
plug flow reactor or a constant sufficiently-long residence time are low. After a few
seconds, an equilibrium between breakage and coalescence is reached.

The obtained results lead to the conclusion that the homogeneous kernels are
not suitable in the heterogeneous regime. They predict a decrease in Sauter mean
diameter if the superficial gas velocity is increased, as shown in Fig. 5.3.

The breakage kernel of Coulaloglou & Tavlarides (1977) (see Eq. (5.18)) cannot
therefore be used: coupled with every coalescence kernel, the bubble size is almost
zero in the case of the heterogeneous regime (Fig. 5.3). The damping modification
of the breakage kernel of Coulaloglou & Tavlarides (1977) (see Eq. (5.19)) has
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Figure 5.2: Sauter mean diameter profile in the case of homogeneous (0.03 m/s)
and heterogeneous (0.16 m/s) flow regimes at H/D=2.5. Experimental data (�)

versus CFD results obtained with homogeneous kernels (dashed line).
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Figure 5.3: Averaged Sauter mean diameter at different superficial velocities with
0D simulations: experimental data (�) versus 0D simulations with the breakage
kernels of Coulaloglou & Tavlarides (1977) (dashed line and �), Coulaloglou &
Tavlarides (1977) with damping effect (dotted line and ×) and Laakkonen et al.

(2007) (solid line and �) coupled with the homogeneous coalescence kernels.

very little effect. The bubble size obtained with the breakage kernel of Laakkonen
et al. (2007) is slightly better, but still not acceptable if coupled with homogeneous
coalescence kernels.

In 0D simulations the coalescence and breakage kernels can be studied separ-
ately in order to understand the source of mismatch with the observed experimental
data. Closer observation of the simulation data reveal that the problem is the co-
alescence kernel that predict zero coalescence resulting in a decrease of the Sauter
mean diameter when the superficial gas velocity increases. These results confirm
that the coalescence kernel ought to be modified. The efficiency of Coulaloglou &
Tavlarides (1977) is not suitable for the heterogeneous regime, in fact the turbulent
dissipation rate is too high and the coalescence efficiency is almost zero for high ε.
Every coalescence efficiency obtained with the film drainage model is not suitable:
the Sauter mean diameter decreases if the superficial gas velocity grows (Fig. 5.4).
Therefore another model, more properly describing the phenomena involved during
bubble coalescence under the heterogeneous regime, must be used.

The critical approach velocity model proposed by Lehr et al. (2002) is then
tested. This coalescence kernel provides a correct behaviour for the Sauter mean
diameter: it increases with the superficial gas velocity, but the values are incorrect,
as shown in Fig. 5.5. This kernel looks interesting, but the constants have to
be modified and more accurate kernel constants can be obtained with 3D CFD
simulations.
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Figure 5.4: Averaged Sauter mean diameter at different superficial velocities
obtained with 0D simulations without breakage (only coalescence obtained with
the film drainage model), starting with an initial bubble size equal to 0.1 mm

(solid line and �).
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Figure 5.5: Averaged Sauter mean diameter at different superficial velocities with
0D simulations: experimental data (�) versus 0D simulations with the collision

frequency of Lehr et al. (2002), the coalescence efficiency of Lehr et al. (2002) and
the breakage kernel of Laakkonen et al. (2007) (solid line and ×).
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5.6.2 Kernel parameter identification with 3D CFD simula-
tions

Several combinations of breakage and coalescence kernels are studied. Different
models for the breakage kernel, collision frequency and coalescence efficiency are
tested, while the daughter distribution function of Laakkonen et al. (2007) is used,
because of its analytical solution. 0D simulation results allow excluding the co-
alescence efficiency kernels based on the film drainage model. Nevertheless, some
simulations by using the film drainage model are carried out in order to validate
the 0D simulations.

As detailed at the beginning of Chapter 5.6, "homogeneous" kernels cannot
be used in the case of bubble columns under the heterogeneous regime. Breakage
and coalescence phenomena can be studied separately to understand the causes
of discrepancy. The coalescence kernel predicts a Sauter mean diameter decrease
when the superficial gas velocity increases, as shown in Fig. 5.6. As reported above
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Figure 5.6: Sauter mean diameter at different superficial gas velocities:
experimental data (�) versus CFD results obtained with homogeneous kernels
(dashed line and ×), with film drainage velocity model and Laakkonen et al.

(2006) breakage (dash-dot line and �), with film drainage model without
breakage (dotted line and �) and with the critical approach velocity model and

the Laakkonen et al. (2006) breakage kernel (solid line and �).

in 0D simulations, coalescence efficiency of Coulaloglou & Tavlarides (1977) cannot
be used in the case of heterogeneous regime. The turbulent dissipation rate is too
high and the coalescence efficiency decreases too much for high turbulent dissipation
rates. The kernels of coalescence efficiency based on the film drainage model are not
suitable, as the Sauter mean diameter decreases when the superficial gas velocity
increases (Fig. 5.6). These results confirm that the film drainage model does not
well describe the heterogeneous flow regime, in accordance with 0D simulations.
The Sauter mean diameter profiles should be parabolic, whereas the CFD profiles
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with homogeneous kernels are completely flat for every operating condition, as
shown in Fig. 5.7. In order to further validate these results, some corrections
for high gas volume fractions are proposed. The breakage kernel of Coulaloglou
& Tavlarides (1977) with damping effect (Eq. (5.19)), coalescence efficiency of
Wang et al. (2005b) (Eq. (5.58)) and Coulaloglou & Tavlarides (1977) for high gas
fraction (Eq. (5.81)) have been tested. These corrections are not enough to obtain
acceptable results if they are used with a film drainage model coalescence efficiency.

The breakage kernel of Coulaloglou & Tavlarides (1977) with damping effect,
reported in Eq. (5.19), cannot be used: the Sauter mean diameter is too low for
both the homogeneous and heterogeneous regimes. By using the breakage kernel
proposed by Laakkonen et al. (2007), the results are in a better agreement with
experiments. As detailed above, the breakage kernel of Laakkonen et al. (2007)
could provide realistic results if coupled with a correct coalescence kernel.

The critical approach velocity model of Lehr et al. (2002) is then tested. The
critical approach velocity model results in a correct trend for the Sauter mean
diameter, that increases with the superficial gas velocity, although the numerical
absolute values are not exact. This kernel seems interesting but it is necessary to
modify the constants.

The objective is to obtain a model with a wider range of validity, suitable under
different operating conditions, with a focus on the heterogeneous regime. Under
the heterogeneous regime, the best results seem to be obtained by coupling the
collision frequency of Wang et al. (2005b), the coalescence efficiency of Lehr et al.
(2002), the breakage kernel of Laakkonen et al. (2006) and the daughter distribution
function of Laakkonen et al. (2007).

The critical approach velocity is equal to 0.08 m/s for pure water. The critical
approach velocity has a lower value for tap water (contaminated water). With
the collision frequency of Wang et al. (2005b), the bubble size increases with the
superficial gas velocity but its values are higher than in the experiments. As sug-
gested by Buffo (2012), the constant

√
2π/4 should be replaced with an empirical

constant that can be fitted with CFD simulations. This set of kernels provides a
space-averaged Sauter mean diameter that slightly increases with the superficial
gas velocity and its values are similar to experimental data if a constant equal to
0.16 is used, as demonstrated in Fig. 5.6.

The Sauter mean diameter profiles obtained with this model are compared with
the experimental data in Fig. 5.7 for different operating conditions. The radial
profiles of Sauter mean diameter are well-predicted. CFD and experimental profiles
are in a good agreement. The Sauter mean diameter profile is parabolic in case
of heterogeneous regime. These profiles are quite correct for every superficial gas
velocity. The main discrepancies appear next to the wall. The profile is almost flat
for a superficial gas velocity equal to 0.03 m/s, that corresponds to the homogeneous
regime. These preliminary results are in accordance with the experiments and they
must be validated by analysing the effects of turbulence, initial conditions and
scale-up.

The film drainage model cannot be used in the case of heterogeneous regime,
as the turbulence dissipation rate is too high. It causes a contact time than is too
low compared with the film drainage time and thus the efficiency is almost zero.
The critical approach velocity model does not consider contact and drainage time,
but the relative velocity between two colliding bubbles and then the efficiency is
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Figure 5.7: Sauter mean diameter profile at different superficial gas velocities at
H/D=2.5. Experimental data (�) versus CFD results obtained with critical

approach velocity model and Laakkonen et al. (2006) breakage.
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not zero in the case of heterogeneous regime. If two bubbles approach at a velocity
lower than the critical one, they coalesce also under the heterogeneous regime. The
critical approach velocity model is used in the following part of this work.

5.6.3 CFD-PBM simulations validation

5.6.3.1 Hydrodynamics validation

The hydrodynamics was well-predicted using a fixed bubble size, as detailed in
Chapter 4. CFD-PBM coupling allows to understand if the swarm factor proposed
in the previous chapter can be used also for poly-disperse systems. The drag law
can be modified in order to consider the effect of bubble size distribution as follows:

FD ≈ 3

4

αgρl
ρg

|urel|urel

∫
L2 CD (L) n dL∫

L3 n dL

≈ 3

4

αgρl
ρg

|urel|urel

∑3
i=1 wiL

2
i CD (L)∑3

i=1 wiL3
i

. (5.140)

With the operating conditions investigated in this work, the minimum value used in
Eq. (4.58) ought to be increased (hmin=0.3). The presence of small and big bubbles
increases the risk of huge accumulation of bubbles. The value of hmin here proposed
can be used both with a fixed bubble size (without PBM) and with a PBM. For the
biggest columns, i.e. φ 1 m and φ 3 m, the classical value of hmin=0.15 can be used
and then this value can be considered as suitable for industrial purposes. Since with
the column φ 0.4 m, with hmin=0.15 and in presence of a PBM, big accumulations
of bubbles occur for high gas volume fractions, a value of 0.30 is used in this
chapter. The choice of this value influences only the CFD hydrodynamics for very
high superficial gas velocities, i.e. equal to 0.25 m/s and 0.35 m/s, while the effect
is lower in the other cases.

CFD-PBM simulations using the default drag force and the drag force presented
in Eq. (5.140) are compared in the case of the heterogeneous regime. The effect of
the modification of the drag force is low, as observed in Fig. 5.8. It can be due to
the fact that the terminal velocity is almost constant in this size range (Gemello
et al. (2018b)). This drag force correction is robust and the computational time is
not affected. This effect could be important under presence of a class of bubbles
smaller than 2 mm or bigger than 10 mm. The CFD-PBM global hydrodynamics is
correct, as observed by Gemello et al. (2018b) without PBM: gas gold-up, local gas
fraction (Fig. 5.8a) and liquid velocity (Fig. 5.8b) are similar to the experimental
results. The swarm factor proposed by Gemello et al. (2018b) and detailed in
Chapter 4 can be considered as valid for poly-disperse systems.

5.6.4 Turbulence model effects

The turbulence properties (i.e. turbulent viscosity, turbulence kinetic energy and
turbulence dissipation rate) influence the coalescence and breakage kernels. In
particular, the turbulence dissipation rate plays a direct role in the coalescence
and breakage kernels. The simulations presented before are carried out by using
the RNG k-ε model. Other turbulence models ought to be tested, comparing
the turbulence properties with experimental data and existing correlations. In
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Figure 5.8: Effect of PBM on the hydrodynamics for a superficial gas velocity of
0.16 m/s. Experimental data (�) versus CFD results using a fixed bubble size

equal to 8 mm (without PBM) (dashed line) and considering PBM and corrected
drag force (Eq. (5.140)) (solid line).

this work several turbulence models are studied: RNG k-ε, standard k-ε and k-ω.
Contributions of the turbulence due to energy phase transfer, following the models
proposed by Yao & Morel (2004), Troshko & Hassan (2001), Simonin & Viollet
(1990) and Sato & Sekoguchi (1975) (detailed in Section 4.2.3.5), are coupled with
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the RNG k-ε model and tested.
Forret (2003) studied the turbulent viscosity in bubble columns in a wide range

of operating conditions. She proposed a correlation for the calculation of the tur-
bulent viscosity in the column centre:

νt = 0.036D1.6v0.11sg . (5.141)

Furthermore, Forret (2003) studied its radial profile. The radial profile should be
flat until a normalized radial position of 0.8 and then decrease quickly to zero at
the wall (see Fig. 5.9).

0

0.005

0.01

0.015

0 0.2 0.4 0.6 0.8 1

Ef
fe

ct
iv

e 
ki

ne
m

at
ic

 v
isc

os
ity

, m
2 /s

Radial position

Figure 5.9: Kinematic turbulent viscosity for the column φ 0.4 m with a
superficial gas velocity equal to 0.16 m/s at H/D=2.5. Data obtained by Forret
(2003) (�) versus CFD results with different turbulence models: RNG k-ε (black
solid line), standard k-ε (black dashed line), realizable k-ε (black dotted line),

standard k-ω (red solid line) and SST k-ω (red dashed line).

The standard k-ω model provides turbulent viscosity value closer to the correl-
ation, but a wrong radial profile in the case of heterogeneous regime. The RNG
k-ε model underestimates the turbulent viscosity, while the realizable k-ε model
overestimates it. The standard k-ε model strongly overestimates it. These results
are compared in Fig. 5.9.

In Chapter 4, different kinematic turbulent viscosity have been tested and com-
pred with CFD results, as shown in Fig. 4.20. The best agreement was obtained
with the correlation of Kawase & Moo-Young (1989), while higher discrepancies
appear with the correlations of Miyauchi & Shyu (1970) and Burns & Rice (1997).
By using the the correlation of Kawase & Moo-Young (1989), the RNG k-ε model
seems to provide the best results. The choice of the kinematic turbulent viscosity
correlation influences the comparison between the turbulence models.

The turbulence kinetic energy can be calculated using the fluctuating liquid
velocity components:

k =
1

2

(
(u′)2 + (v′)2 + (w′)2

)
. (5.142)
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The turbulence kinetic energy is experimentally calculated by using a Pavlov tube
at 400 Hz for a superficial gas velocity of 0.16 m/s, as reported in Fig. 5.10.
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Figure 5.10: Turbulence kinetic energy for the column φ 0.4 m with a superficial
gas velocity equal to 0.16 m/s at H/D=2.5. Experimental data obtained by

Forret (2003) (�) and in this work (�) versus CFD results with different
turbulence models: RNG k-ε (black solid line), Standard k-ε (black dashed line),
Realizable k-ε (black dotted line), Standard k-ω (red solid line) and SST k-ω (red

dashed line).

The experimental data are compared with CFD results in Fig. 5.10. The real-
izable k-ε and standard k-ω models provide the most similar turbulence kinetic
energy. The RNG k-ε and standard k-ε models provide quite acceptable results.

In order to consider the contribution of the turbulence due to energy transfer
from gas-phase to liquid-phase, different models have been compared, coupled with
the RNG k-ε model. They are detailed in Section 4.2.3.5. The results are reported
in Fig. 5.11. The strongest effect has been considered by Yao & Morel (2004), that
assumed that the entire gas-phase energy due to the drag force passes in the liquid-
phase turbulence, by adding turbulence source terms. By using the model of Yao
& Morel (2004), the calculated turbulence kinetic energy is the lowest one and the
furthest from the experimental data collected in this work. The models of Troshko
& Hassan (2001) and Simonin & Viollet (1990) considers that only a fraction of
the energy due to the drag force passes in the liquid-phase turbulence.With these
two models, the turbulence kinetic energy is similar to that calculated without the
effect of the turbulence due to energy transfer. The model of Sato & Sekoguchi
(1975), that modifies the liquid-phase viscosity, strongly increases the turbulence
kinetic energy.

By calculating the turbulent viscosity with the Forret (2003) correlation and
profile and by measuring the turbulence kinetic energy, as detailed above, the
turbulence dissipation rate can be approximated:

ε = Cμ
k2

νt
, (5.143)
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Figure 5.11: Turbulence kinetic energy for the column φ 0.4 m with a superficial
gas velocity equal to 0.16 m/s at H/D=2.5. Experimental data obtained in this

work (�) versus CFD results with RNG k-ε model (solid line) coupled with
different models for considering the turbulence due to energy transfer from

gas-phase to liquid-phase: Yao & Morel (2004) (dotted line), Troshko & Hassan
(2001) (dash-dot-dot line), Simonin & Viollet (1990) (dash-dot line) and Sato &

Sekoguchi (1975) (dashed line).

where Cμ is a numerical constant approximately equal to 0.09 in many cases and
equal to 0.085 in ANSYS Fluent.

Every turbulence model underestimates the turbulence dissipation rate. The
standard k-ε and standard k-ω models slightly underestimate the turbulence dissip-
ation rate, while the discrepancies are higher with the other models. All the other
models have turbulence dissipation rate values smaller than the experimental one
of about 20-40%. These results are reported in Fig 5.12.

Power consumption per unit of mass should equal to the loss of potential energy
per unit of mass, i.e. the turbulence dissipation rate considering an energy balance.
The power consumption per unit of volume (P/V ) can be calculated with the
following formula (Roels & Heijnen 1980, Menzel et al. 1990):

P/V =
1

H
pusg ln

(
1 + ρl

g H (1− ᾱg)

p

)
, (5.144)

where H is the operating liquid height, p is the external pressure, usg is the super-
ficial gas velocity, ρl is the density of the liquid phase, g is the gravity acceleration
and ᾱg is the global gas volume fraction.

Considering a superficial gas velocity equal to 0.16 m/s, with a global gas volume
fraction equal to 0.24, the turbulence dissipation rate should be equal to 1.08 m2/s3,
slightly bigger than the values presented in Fig. 5.12.

The contribution of the turbulence due to energy transfer from gas-phase to
liquid-phase on the turbulence dissipation rate is presented in Fig 5.13. Every
model tested in this work has a positive effect on the turbulence dissipation rate:
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Figure 5.12: Turbulence dissipation rate for the column φ 0.4 m with a superficial
gas velocity equal to 0.16 m/s at H/D=2.5. Data obtained with Eq. (5.143) (�)
versus CFD results with different turbulence models: RNG k-ε (black solid line),
Standard k-ε (black dashed line), Realizable k-ε (black dotted line), Standard k-ω

(red solid line) and SST k-ω (red dashed line).

it is higher than the one calculated without considering the turbulence due to
the energy transfer. The results are more similar to the data calculated with
Eq. (5.143).

The turbulence properties comparison strongly depends on the turbulent vis-
cosity correlation choice. The standard k-ω model seems to be the best choice if
the the turbulent viscosity is calculated with the Forret (2003) correlation, while
the RNG k-ε model seems to be the best one if the turbulent viscosity correlation
proposed by Kawase & Moo-Young (1989) is adopted. The contribution of the
turbulence due to energy transfer from gas-phase to liquid-phase has a positive
effect on the turbulence dissipation rate, while the effect on the turbulence kinetic
energy strongly depends on the model that is adopted.

The objective of this part of the work is not to compare the turbulent properties
or to suggest a better turbulence model, but understand the effect that turbulent
properties have on coalescence and breakage. The effect of the turbulence model
choice on the Sauter mean diameter is quite low, as shown in Fig. 5.14. Every tur-
bulence models provides similar results. The standard k-ε presents some differences
next to the wall, with a more pronounced profile. The effect of the turbulence due
to energy transfer from gas-phase to liquid-phase on the Sauter mean diameter is
low (Fig. 5.15).

It is possible to conclude that the coalescence and breakage kernels studied
in this work are suitable for many turbulence models and the best results are
obtained with the RNG k-ε, realizable k-ε and standard k-ω and SST k-ω models.
This set of kernel can be used also if the turbulence due to energy transfer from
gas to liquid is considered. One possible explanation is that using the critical
approach velocity model, the effect of the turbulence dissipation rate on the coalesce
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Figure 5.13: Turbulence dissipation rate for the column φ 0.4 m with a superficial
gas velocity equal to 0.16 m/s at H/D=2.5. Data obtained with Eq. (5.143) (�)

versus CFD results with RNG k-ε model (solid line) coupled with different
models for considering the turbulence due to energy transfer from gas-phase to

liquid-phase: Yao & Morel (2004) (dotted line), Troshko & Hassan (2001)
(dash-dot-dot line), Simonin & Viollet (1990) (dash-dot line) and Sato &

Sekoguchi (1975) (dashed line).
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Figure 5.14: Sauter mean diameter for the column φ 0.4 m with a superficial gas
velocity equal to 0.16 m/s at H/D=2.5. Experimental data obtained by Gemello
et al. (2018a) (�) versus CFD results with different turbulence models: RNG k-ε
(black solid line), Standard k-ε (black dashed line), Realizable k-ε (black dotted

line), Standard k-ω (red solid line) and SST k-ω (red dashed line).
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Figure 5.15: Sauter mean diameter for the column φ 0.4 m with a superficial gas
velocity equal to 0.16 m/s at H/D=2.5. Experimental data obtained by Gemello
et al. (2018a) (�) versus CFD results with RNG k-ε model (solid line) coupled

with different models for considering the turbulence due to energy transfer from
gas-phase to liquid-phase: Yao & Morel (2004) (dotted line), Troshko & Hassan
(2001) (dash-dot-dot line), Simonin & Viollet (1990) (dash-dot line) and Sato &

Sekoguchi (1975) (dashed line).

kernel is almost null under the operating conditions of the heterogeneous regime.
When the relative velocity is higher than the critical one, the relative velocity
appears in the numerator of the collision frequency and in the denominator of the
coalescence efficiency. By multiplying them, the relative velocity, that depends on
the turbulence dissipation rate, disappears under these operating conditions.

The simulations carried out with the RNG k-ε are the most stable and therefore
this method has been adopted. The constants of this work, i.e. the minimum value
of the swarm factor and the constant for the coalescence frequency of Wang et al.
(2005b), have been fitted considering the RNG k-ε model without the turbulence
due to energy transfer from gas to liquid. Similar constants would be obtained if
the best fittings are carried out with other turbulence methods.

5.6.5 Water contamination effects on bubble size

As seen in Chapter 3, additives and contaminants lower the Sauter mean diameter.
Only an empirical modification of the kernel is proposed here, as there is a lack of
physical descriptors that could explain more quantitatively the coalescence beha-
viour. In accordance with Lehr & Mewes (1999) water contamination effects can
be considered by lowering the critical approach velocity value.

In this work, several critical approach velocity values are tested, using the 0D
model. A linear correlation between the critical approach velocity value and the
volume-average Sauter mean diameter is shown in Fig. 5.16. The critical approach
velocity model is valid for contaminated systems, as shown in Fig. 5.17.
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Figure 5.16: Effect of the critical approach velocity value on the Sauter mean
diameter with a superficial gas velocity equal to 0.16 m/s.
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Figure 5.17: Ethanol effect on the Sauter mean diameter with a superficial gas
velocity equal to 0.16 m/s. Experimental data obtained by Gemello et al. (2018a)
with demineralised water (�), ethanol 0.01% (�) and ethanol 0.05% (�) versus
CFD results with different critical approach velocities: 0.08 m/s (demineralised

water) (solid line), 0.065 m/s (ethanol 0.01%) (dashed line) and 0.05 m/s
(ethanol 0.05%) (dotted line).

By knowing the space-averaged Sauter mean diameter, it is possible to obtain
the critical approach velocity model and this value can be used to study the Sauter
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mean diameter at different radial and axial positions with CFD-PBM simulations.
The volume-average Sauter mean diameter is affected by the concentration and by
the nature of the additive. The critical approach velocity values are obtained from
the experimental profile and using the values reported in Fig. 5.16. For the 0.05%
ethanol solution, a critical approach velocity equal to 0.05 m/s can be adopted,
while for the 0.01% ethanol solution and for tap water, a critical approach velocity
equal to 0.065 m/s can be used. The values obtained in this work can be used in
different bubble columns. More experiments and liquid properties data would be
useful to find a correlation that links these properties to the bubble size and obtain
a fully predictive tool, as partially suggested by Lehr & Mewes (1999).

5.6.5.1 Inlet bubble size effects on the final bubble size

The inlet BSD is important and can influence the bubble size in the entire bubble
column. In particular, it is important to remember to divide the values of the
moments imposed as inlet boundary conditions by the inlet gas volume fraction. If
not the system may perceive a fake bubble concentration, much lower than the real
one. Bubble breakage is due to the surrounding liquid and then is not largely af-
fected by this error. On the contrary, coalescence depends both on the surrounding
liquid and on the interactions between the bubbles; therefore, an incorrect bubble
density leads to an incorrect coalescence kernel.

As shown in Fig. 5.18 and in Fig. 5.19, the CFD-PBM model can manage small
variations of inlet bubble size inside the experimental range.
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Figure 5.18: Effect of the inlet bubble size on the radial profile at H/D=2.5 with
a superficial gas velocity equal to 0.16 m/s. Experimental data obtained by

Gemello et al. (2018a) with the 92-holes sparger (�) versus CFD results with a
homogeneous sparger and different inlet bubble sizes: 6.5 mm (dashed line),

7.7 mm (solid line) and 10 mm (dotted line).
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Figure 5.19: Effect of the inlet bubble size on the axial profile at the centre of the
column with a superficial gas velocity equal to 0.16 m/s. Experimental data
obtained by Gemello et al. (2018a) with the 92-holes sparger (�) versus CFD
results with a homogeneous sparger and different inlet bubble sizes: 6.5 mm

(dashed line), 7.7 mm (solid line) and 10 mm (dotted line).

By using an initial bubble size slightly lower than the previous one, equal to
6.5 mm, the bubble size is almost the same above a height of 1 m. By using an
initial bubble size equal to 10 mm, the bubble size is slightly higher, but it is still
acceptable. Small variations of initial bubble size are not very important, as the
system reaches an equilibrium between coalescence and breakage.

5.6.5.2 Sparger effects on the bubble size

Gemello et al. (2018a) realized experiments with two different spargers. Firstly, a
perforated sparger with several small holes (2 mm) is used. It generates bubbles
with a Sauter mean diameter between 5 mm and 10 mm. The profile close to the
bottom is almost flat, as detailed in Chapter 3. A sparger with 7 holes of 9 mm is
then used, in order to modify the inlet bubble size. It causes the formation of big
bubbles close to the bottom of the column, above the holes. The sparger choice
radically influences the bubble dimension in the lowest part of the column. A
perforated sparger with big holes causes the formation of big bubbles in the lowest
part of the column, above the holes. The breakage of the bubbles is the predominant
phenomenon if big bubbles are present. The bubble size decreases quickly along
the axial position and the bubbles are almost not affected by the sparger after some
centimetres. They reach quickly the equilibrium bubble dimension.

The previous simulations were realized by considering the high number of holes
of the first sparger (92 holes) as a homogeneous porous plate. In CFD-PBM simu-
lations, the gas enters the column already mixed with the liquid. A constant inlet
gas volume fraction is assumed. The initial Sauter mean diameter is fixed equal
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to 7.7 mm with a narrow log-normal bubble size distribution. These approxima-
tions are valid to simulate the sparger with 92 holes. Similar results are obtained
by using an initial homogeneous bubble size slightly smaller (6.5 mm) or bigger
(10 mm), as detailed above.

If the sparger with 7 holes is approximated with a homogeneous porous plate
with a high inlet Sauter mean diameter (e.g. 15 mm), the results are wrong and
the bubbles are bigger than the real ones for every column position, as observed in
Fig. 5.20. The Sauter mean diameter is not able to reach the final equilibrium size
obtained in the experiments. The CFD-PBM model cannot manage a homogeneous
inlet bubble size that is much bigger than the real one. It confirms that the inlet
boundary conditions are important in these systems.
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Figure 5.20: Effect of the sparger on the axial profile at the centre of the column
of the Sauter mean diameter with a superficial gas velocity equal to 0.16 m/s.

Experimental data obtained by Gemello et al. (2018a) with the 92-holes
sparger (�) and the 7-holes sparger (�) versus CFD results with different
spargers: homogeneous sparger with initial Sauter mean diameter equal to

7.7 mm (solid line) and 15 mm (dotted line) and non-homogeneous sparger with
maximum initial Sauter mean diameter equal to 45 mm (Fig. 5.21) (dashed line)

and 90 mm (dash-dot line).

New boundary conditions at the inlet (bottom) ought to be used. Spargers
with few big holes need to be modelled with non-homogeneous and more realistic
boundary conditions. The new sparger is created by using bubble size and gas
fraction measured close to the bottom with the 7-holes sparger. These properties
were measured at H=10 cm (H/D=0.25). Inlet bubble size and gas fraction depend
on radial and azimuthal positions, with maximum values in correspondence of the
real holes of the 7-holes sparger. The used inlet bubble size is reported in Fig. 5.21.
The inlet gas fraction is imposed equal to 100% in correspondence of the 7 holes
and equal to 0 in the other parts of the bottom. The inlet gas velocity magnitude
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is calculated in order to obtain a correct superficial gas velocity (iterative method),
and it depends on the imposed inlet gas fraction and on the used interpolation
method.
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Figure 5.21: Inlet Sauter mean diameter with the 7-holes sparger.

The effect of the 7-holes sparger is important close to the bottom, in CFD-PBM
simulations (Fig. 5.20). With this sparger, big bubbles appear close to the bottom.
These big bubbles disappear quickly and the sparger effect is almost null above
1 m. The behaviour is in good agreement with the experimental data. In CFD-
PBM simulations, the equilibrium size is reached a little slower, but the agreement
is still good. An important aspect is that, in the CFD simulations, the turbulence
dissipation rate is low next to the sparger. It might be used to study more in detail
the turbulence models, with a focus on the turbulence properties in the lowest part
of the column. A study on the effects of the inlet turbulence properties would be
useful to further validate the kernels proposed in this work.

Considering these results, the effects of breakage and coalescence can be par-
tially decoupled. Close to the bottom, the breakage is the main phenomenon and
the coalescence is negligible. In this region, where the breakage is the principal
phenomenon, the bubble size behaviour is quite correct, as the Sauter mean dia-
meter decreases quickly, in good agreement with the experimental data. If both the
breakage kernel and the final equilibrium bubble size are correct, the coalescence
model can be considered as correct. Breakage and coalescence kernels are valid
over a wide range of conditions.
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5.6.6 Scale-up effects

Raimundo (2015) collected experimental data with tap water by using bubble
columns at different scales: the column diameters were equal to 0.15 m, 0.4 m,
1 m and 3 m. The Sauter mean diameter does not change too much when the
column diameter changes. It may be assumed that the behaviour is the same with
demineralised water.

The initial rhomboidal cooper mesh with 40,000 cells, obtained and used with
the column φ 0.4 m, is scaled up, in order to analyse the scale-up effect on the
Sauter mean diameter in the CFD-PBM simulations. Grid-independent tests are
required and they confirm that this mesh can be used for scale-up purposes, as
reported in Chapter 4.

In the CFD-PBM simulations, the Sauter mean diameter is approximately the
same also if the column diameter changes (Fig. 5.22). CFD-PBM results are quite
in accordance with the experimental data of Raimundo (2015). Similar results are
obtained by using RNG k-ε and k-ω turbulence models, as shown in Fig. 5.22. It
means that the breakage and coalescence kernels proposed above can be used for
the scale-up of these systems, with different turbulence models.

The final goal of this work is the industrial scale-up of bubble columns under the
heterogeneous flow regime. Industrially, the Sauter mean diameter is not known a
priori and it is often difficult to obtain it. The four bubble columns are simulated
using different homogeneous inlet bubble sizes. The inlet Sauter mean diameter has
an important effect with the smallest bubble columns. As presented in Fig. 5.23, the
inlet bubble size partially influences the Sauter mean diameter at H/D=2.5 for the
column φ 0.4 m, while its influence is almost zero for the columns φ 1 m and φ 3 m.
The time needed for one bubble to reach H/D=2.5 is longer in the biggest columns
than in the smallest ones. It allows reaching the equilibrium bubble size with a
wider range of inlet Sauter mean diameters. The Sauter mean diameter obtained
with the CFD simulations are compared with the experimental data presented in
Chapter 3, that was obtained with demineralised water in the column φ 0.4 m
(Fig. 5.23). New experiments by using bubble columns at different scales should
be carried out in order to improve these models. Fortunately, industrial bubble
columns are usually large and it means that the lack of knowledge about the bubble
size close to the bottom does not strongly influence the final Sauter mean diameter.

5.7 Conclusions and perspectives

CFD simulations are frequently used for the study of bubble columns under indus-
trial operating conditions and bubble size plays a key role in the hydrodynamics
and transport phenomena for these systems. CFD simulations are coupled with
a population balance model (PBM) in order to consider coalescence and breakage
phenomena.

Coalescence and breakage phenomena are caused by different mechanisms and
the most important are linked to turbulent fluctuations in the continuous phase.
Breakage causes the formation of daughter bubbles and it is then necessary to
define both the breakage frequency (breakage kernel) and the daughter distribution
function. Coalescence rate is instead quantified by a kernel in turn divided into two
parts: a collision frequency and a coalescence efficiency. The collision frequency
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(a) RNG k-ε model.
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(b) Standard k-ω model.

Figure 5.22: Scale-up effect with a superficial gas velocity equal to 0.16 m/s and
different turbulence models on the radial profile of Sauter mean diameter at

H/D=2.5. Experimental data obtained by Gemello et al. (2018a) on the column
φ 0.4 m (�) versus CFD results with different bubble column: φ 0.4 m (solid

lines), φ 1 m (dashed lines) and φ 3 m (dotted lines).
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(a) φ 0.4 m

0

2

4

6

8

10

0 0.25 0.5 0.75 1

Sa
ut

er
 m

ea
n 

di
am

et
er

, m
m

Radial position

(b) φ 1 m
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Figure 5.23: Effect of inlet bubble size (homogeneous sparger) for different bubble
columns with a superficial gas velocity equal to 0.16 m/s on the radial profile of

Sauter mean diameter at H/D=2.5. Experimental data obtained by Gemello et al.
(2018a) on the column φ 0.4 m (�) versus CFD results with different inlet bubble

sizes: 6.5 mm (dashed lines), 7.7 mm (solid lines) and 10 mm (dotted lines).
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defines the number of collisions while the coalescence efficiency is the fraction of
colliding bubbles that actually coalesce. The latter one can be studied by using
different methods: film drainage model, energy model and critical approach velocity
model. The film drainage model is the most used for the homogeneous regime. The
work of this chapter suggests that the critical approach velocity model is the best
one for the heterogeneous regime. The best breakage kernels and the collision
frequency need to be coupled with the critical approach velocity model. The mean
bubble Sauter mean diameter predicted by the model in good agreement with
the experiments for both the homogeneous and the heterogeneous flow regimes if
the kernels are correctly fitted. Its radial profile has a parabolic shape under the
heterogeneous regime, while it is almost flat under the homogeneous regime.

The best set of breakage and coalescence kernels in the case of heterogeneous
regime seems to be the breakage kernel proposed by Laakkonen et al. (2006), the
daughter distribution function proposed by Laakkonen et al. (2007), the modi-
fied collision frequency proposed by Wang et al. (2005b) and the critical approach
velocity model for coalescence efficiency proposed by Lehr et al. (2002). These
equations are reported here:

• Breakage kernel - Laakkonen et al. (2006)

g(L) = c3ε
1/3 erfc

(√
c4

σ

ρlε2/3L5/3
+ c5

μl√
ρlρgε1/3L4/3

)
,

with c3 = 4.0, c4 = 0.04 and c5 = 0.01.

• Daughter distribution function - Laakkonen et al. (2007)

b̄ki =
3240Lk

i

(k + 9)(k + 12)(k + 15).

• Collision frequency - Wang et al. (2005b)

h0 (L1, L2) = C ′
2 γ Π(L1 + L2)

2 ε1/3
√

L
2/3
1 + L

2/3
2 ,

where C ′
2 = 0.16, while Π and γ are two correction factors:

– Wu et al. (1998), Π =

[
1− exp

(
−CΠ

α
1/3
maxα

1/3
g

α
1/3
max − α

1/3
g

)]
, with CΠ = 3;

– Wang et al. (2005b), γ =
αmax

αmax − αg

, with αmax = 0.8.

• Coalescence efficiency - Lehr et al. (2002)

λ (L1, L2) = min

(
ucrit

urel

, 1

)
,

with ucrit=0.08 m/s for demineralised water, lower for contaminated systems.
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Coalescence and breakage kernels are generally affected by turbulence properties.
Many turbulence models are tested: their effect on the bubble size seems fairly
small. The coalescence and breakage kernels proposed in this chapter can be used
with many turbulence models involved in Eulerian-Eulerian simulations. The con-
tribution of the turbulence due to the energy transfer from the gas-phase to the
liquid-phase is still an open question and it affects the turbulence properties. Its
effects on the bubble size is low, if the set of coalescence and breakage kernels pro-
posed in work is used. This set of kernels is suitable for several turbulence models
and even if the turbulence due to the energy transfer is considered.

The previous set of kernels has been obtained, under the heterogeneous regime,
with demineralised water using a homogeneous gas sparger. It is also valid for
less-coalescent liquids, i.e. contaminated water and ethanol solutions. Contamin-
ants and additives effects can be considered with an adjusted value of the critical
approach velocity. CFD-PBM simulations well predict hydrodynamics and bubble
size for these systems. More experiments with additives and experimental data
on the liquid properties are required to obtain a fully predictive tool, that con-
siders the additive effects a priori. The link between liquid physical properties and
coalescence needs to be clarified.

The CFD-PBM simulations with this set of kernels are not very sensitive to
the inlet bubble size. The results are in agreement with the experiments obtained
by using the sparger with many small holes. On the other hand, these simulations
cannot consider an inlet bubble size much larger than the experimental one. The
inlet boundary conditions are important. It is necessary to model the sparger with
few big holes with non-homogeneous and realistic inlet boundary conditions. In
this work, the sparger with few big holes is modelled using the experimental gas
fraction and bubble size measured in the lowest part of the column. It allows the
correct prediction of hydrodynamics and bubble size for this sparger.

The proposed set of kernels seems to be suitable also for the industrial scale-up
of bubble columns under the heterogeneous regime, but more studies and experi-
mental data are required.
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Chapter 6

Concluding remarks and future
works

The objective of this work is to correctly predict the bubble size distributions in
bubble columns and to study breakage and coalescence under industrial operating
conditions, focusing the attention on the heterogeneous flow regime.

To study these phenomena, new experimental data is required. Under the het-
erogeneous regime, the liquid recirculation is strong and the radial profiles of gas
volume fraction, liquid velocity and mean bubble size have a strong concavity. The
presence of contaminants and additives in the continuous phase, namely water,
(demineralized water, tap water and demineralised water with small quantities of
ethanol) has a strong effect on bubble size and coalescence. Bubbles in demin-
eralised water are significantly bigger than in tap water. The addition of small
quantities of ethanol into demineralised water greatly decreases the bubble size,
delays regime transition and increases the gas volume fraction under the hetero-
geneous flow regime. The presence of ethanol modifies the surface bubble mobility
and decreases bubble coalescence. The relevant physical properties, that cause
these differences, still need to be identified. Surface tension is one of them, but
its variation is not the only explanation for these differences and more studies
are required to understand the factors that prevent coalescence. The relationship
between the physical properties of liquids and coalescence kernels needs to be clari-
fied. More experiments with additives and experimental data on the relevant liquid
properties can be useful to consider them in the coalescence and breakage kernels
and to obtain a fully predictive tool.

The sparger choice strongly influences the bubble size and the hydrodynamics
close to the bottom. With a sparger perforated with big holes, there is an accumu-
lation of big bubbles in the lowest part of the column, in which bubble breakage
is the main phenomenon. The effects of ethanol and sparger were combined to
decouple coalescence and breakage phenomena. The presence of additives almost
does not influence breakage, while its effect is important on bubble coalescence, as
the surface mobility changes. For these reasons, in this thesis several experiments
have been carried out, that allow to study correctly Sauter mean diameter and
hydrodynamic properties in a wide range of operating conditions under the hetero-
geneous regime, in presence of contaminants and additives and by using different
perforated spargers.
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The study of bubble size distributions (BSD) could be interesting, but the cross-
correlation technique used in the present work is not able to measure the BSD, as it
calculates only the Sauter mean diameter. An interesting experimental perspective
could be to couple a classical optical probe method for BSD, that currently is not
suitable for the heterogeneous regime, with a cross-correlation technique for Sauter
mean diameter, in order to rescale the BSD under the heterogeneous regime.

The experimental results are used to carry out 3D URANS (Unsteady Reynolds-
averaged Navier-Stokes equations) CFD (Computational Fluid Dynamics) simula-
tions and the main results of this validation can be summarized as follows:

• Bubble column reactors under the heterogeneous flow regime are dominated
by interfacial forces and the drag force is the most important. Hydrodynamic
profiles have a strong link with interfacial forces and turbulence. A drag law
suitable for oblate bubbles, such as Tomiyama (1998), needs to be used. This
should be modified by considering a swarm factor, to incorporate the swarm
effect. It must decrease the drag force for high gas volume fractions. For very
high gas volume fractions, the swarm factor of Simonnet et al. (2008) causes
convergence issues and an incorrect instantaneous behaviour, with bubbles
that create unphysical huge accumulations of bubbles. By modifying the
swarm factor of Simonnet et al. (2008), CFD hydrodynamics is in agreement
with experimental data. A minimum value is added to the swarm factor of
Simonnet et al. (2008). The radial profiles of gas volume fraction and phases
velocity are well predicted. The scale-up effects on hydrodynamics are in-
vestigated and it is possible to state that this swarm factor can be assumed
suitable for industrial scale-up purposes. These results allow predicting cor-
rectly the hydrodynamics of bubble columns under the heterogeneous regime,
in the case of fixed bubble size.

• Turbulence has strong effects on these systems. Different turbulence models
are tested. An extra diffusion coefficient due to bubbles, as presented by
Alméras et al. (2015) is considered, in order to simulate the dispersion of a
scalar. The RNG k-ε turbulence model predicts turbulence properties and
scalar mixing reasonably, with good agreement with experimental data. The
extra diffusion coefficient due to bubbles cannot be neglected for the smallest
column, as it has a significant effect on scalar mixing (about 15%), while it is
negligible in other cases. The main contribution is due to the Shear Induced
Turbulence (SIT).

• CFD simulations coupled with a Population Balance Model (PBM) to predict
the bubble size distribution show that bubble size influences the hydrodynam-
ics and the BSD is required to estimate the interfacial area and the local heat
and mass transfer rate. Numerous mechanisms are involved in bubble coales-
cence and breakage. The existing models of breakage (Liao & Lucas 2009)
and coalescence (Liao & Lucas 2010), developed for the homogeneous regime,
are tested under the heterogeneous regime. The coalescence kernel can be di-
vided in collision frequency and coalescence efficiency. Breakage and collision
frequency mechanisms are linked to turbulent fluctuations. The coalescence
efficiency can be studied through the film drainage model under the homo-
geneous regime, while it is not suitable for the heterogeneous regime. The
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best model under the heterogeneous regime seems to be the critical approach
velocity model. The breakage model of Laakkonen et al. (2006), the collision
frequency model of Wang et al. (2005) with a modified constant and the crit-
ical approach velocity model for coalescence efficiency of Lehr et al. (2002)
are demonstrated in this work to be suitable for the heterogeneous regime.
The Sauter mean diameter of the bubbles predicted with this set of models
is in agreement with experimental data for both the homogeneous and the
heterogeneous regimes. The radial profile of the Sauter mean diameter is
parabolic under the heterogeneous regime and almost flat under the homo-
geneous regime, in agreement with experiments. Hydrodynamics is still well
predicted.

• Turbulence properties influence the coalescence and breakage kernels and,
in particular, the turbulence dissipation rate plays a direct role. Testing
different turbulence models, it is possible to conclude that the set of kernels
proposed in this work can be used with different classical turbulence models
involved in Eulerian-Eulerian simulations.

• The proposed set of kernels allows carrying out simulations that are able
to handle small changes in inlet bubble size. The CFD-PBM results are
in agreement with experimental data obtained with the sparger formed by
several small holes (homogeneous gas distribution). These simulations cannot
handle a homogeneous inlet bubble size much higher than the experimental
data. The sparger with a few big holes needs to be modelled with non-
homogeneous and more realistic inlet boundary conditions. In this work,
Experimental gas fraction and bubble size measured close to the bottom are
used to model this sparger. Hydrodynamics and bubble size are well predicted
by using realistic inlet boundary conditions.

• The set of kernels proposed in this work can be used for scale-up purposes, but
more experiments and CFD studies are necessary on this topic. Experimental
data with demineralized water, with or without alcohol addition at larger
scale can be useful to validate these CFD-PBM models for industrial scale-
up. CFD simulations with different geometries and meshes of industrial-scale
bubble columns should be carried out.

Some limits have not yet been overcome and different perspectives and future works
are possible:

• The swarm factor proposed in this work is able to correctly predict the hy-
drodynamics, but it has the limit to be empirical. The original swarm factor
of Simonnet et al. (2008) was obtained thanks to experimental data and the
correction proposed in this work is obtained thanks to a CFD fitting. A the-
oretical model might provide suitable results for different gas-liquid systems.
Moreover, the study of secondary interfacial forces, that are not considered
in this work, could be an interesting perspective.

• More studies on the cntribution of the turbulence due to energy transfer from
gas-phase to liquid-phase could be an important perspective. A comparison
between the effects of these models and the effects of the extra diffusivity
model of Alméras et al. (2015) should be carried out.
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• The critical approach velocity model of Lehr et al. (2002) has the advantage
that it can be successfully applied to less coalescent systems (alcohol solu-
tions). The effect of the additives can be considered with an adjusted critical
approach velocity. But the relevant physical properties that cause coalescence
diminution still need to be identified. Surface tension variation is too small
to justify the bubble size differences. The critical approach velocity model
should be based on a more solid theoretical foundation. As detailed above,
other experiments with additives and measurements of the liquid properties
are required.

• Moreover, a theoretical basis and DNS simulations could be used to obtain a
fully predictive set of kernels.

The ultimate goal would be to obtain completely a-priori industrial CFD-PBM
simulations, without the need for experiments.
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Appendix A

Experimental data

Superficial gas
velocity, m/s

Global gas volume fraction, %

DMW Tap water Ethanol 0.01% Ethanol 0.05%

0.01 3.50 3.50 3.15 3.50
0.02 7.69 6.96 6.72 8.22
0.03 10.78 10.93 10.98 12.49
0.04 12.73 13.34 13.54 16.69
0.05 14.83 15.23 15.37 19.63
0.06 15.50 16.72 17.13 21.79
0.07 16.61 18.94 18.94 23.26
0.08 18.10 20.15 20.15 25.27
0.09 18.93 20.17 21.41 26.65
0.10 19.75 20.25 22.37 27.97
0.11 20.94 21.44 23.49 29.25
0.12 21.52 22.02 23.86 30.34
0.13 22.29 22.79 25.11 31.39
0.14 23.00 23.72 26.32 32.26
0.15 23.70 25.31 27.10 32.98
0.16 24.60 26.02 27.44 33.54
0.17 25.00 26.37 28.26 34.64
0.18 25.55 26.55 29.44 35.17
0.20 26.74 27.74 29.77 36.35
0.22 27.41 27.91 31.15 38.22
0.24 28.39 28.39 31.76 39.64
0.25 28.86 28.86 32.64 40.17
0.26 29.18 29.68 33.22 40.67
0.28 30.11 30.61 33.80 41.46
0.30 30.72 31.72 34.92 42.23
0.32 31.46 32.46 36.00 42.89
0.35 33.18 34.18 37.08 45.12

Table A.1: Global hold-up for demineralised water (DMW), tap water, ethanol
0.01% and ethanol 0.05% for the column φ 0.4 m.
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Radial
position

Local gas volume fraction, %

0.03 m/s 0.06 m/s 0.09 m/s 0.16 m/s 0.25 m/s 0.35 m/s

0.00 12.99 21.07 25.01 31.32 38.36 46.09
0.20 12.89 21.16 24.51 31.65 39.42 45.23
0.40 12.07 20.88 22.16 29.43 36.21 41.39
0.60 12.54 20.80 19.08 24.98 29.76 36.29
0.80 12.37 18.62 16.99 20.07 24.04 29.42

Table A.2: Local gas volume fraction at H/D=2.5 with demineralised water.

Radial
position

Local gas volume fraction, %

0.03 m/s 0.06 m/s 0.09 m/s 0.16 m/s 0.25 m/s 0.35 m/s

0.00 12.6 21.5 23.4 30.7 37.7 43.0
0.20 13.0 20.5 22.8 30.0 34.1 43.4
0.40 12.2 20.0 22.4 27.7 34.1 42.0
0.60 12.3 20.5 20.5 25.6 30.4 36.2
0.80 12.2 19.0 15.8 20.8 23.7 26.6

Table A.3: Local gas volume fraction at H/D=2.5 with tap water.

Radial
position

Local gas volume fraction, %

0.03 m/s 0.06 m/s 0.09 m/s 0.16 m/s 0.25 m/s 0.35 m/s

0.00 12.95 22.75 26.90 34.06 40.50 48.00
0.20 12.70 22.38 26.66 34.05 41.50 46.60
0.40 12.26 22.46 24.64 31.48 38.20 43.50
0.60 12.30 22.44 21.54 27.06 32.00 38.00
0.80 12.23 20.58 18.80 22.19 26.00 31.00

Table A.4: Local gas volume fraction at H/D=2.5 with ethanol 0.01%.

Radial
position

Local gas volume fraction, %

0.03 m/s 0.06 m/s 0.09 m/s 0.16 m/s 0.25 m/s 0.35 m/s

0.00 12.88 26.12 29.73 37.43 43.65 51.23
0.20 12.33 24.81 29.89 36.14 44.60 48.68
0.40 12.65 25.62 28.37 33.65 39.15 46.54
0.60 11.82 25.71 25.23 29.57 33.05 40.10
0.80 11.95 24.50 21.50 23.31 28.15 33.40

Table A.5: Local gas volume fraction at H/D=2.5 with ethanol 0.05%.
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Axial
position

Local gas volume fraction, %

DMW Tap water Ethanol 0.05%

0.125 10.35
0.25 9.1 9.2 9.53
0.375 9.01 9.1 9.06
0.5 9.71 9.8 10.21

0.625 10.27
0.75 10.83 10.5 10.83
1 10.83 11 11.33

1.25 11.65348 11.5 12.04
1.875 12.27 12.15 12.77
2.5 12.6 12.7 12.88

3.125 12.6 12.75 13.04
3.75 13 13.02 13.12

Table A.6: Local gas volume fraction at the column centre at different axial
positions with a superficial gas velocity equal to 3 cm/s (homogeneous regime)

with demineralised water (DMW), tap water and ethanol 0.05%.

Axial
position

Local gas volume fraction, %

DMW Tap water Ethanol 0.05%

0.125 29.21 30.3 30.68
0.25 28.7 29.52 30.67
0.375 28.175 28.87 31.24
0.5 27.63 28.765 31.61

0.625 27.63 28.01
0.75 27.64 28.31 32.2
1 27.63 28.4 31.95

1.25 28.385 28.735 32.65
1.875 28.735 30.455 34.16
2.5 30.7 31.335 37.43

3.125 31.44 37.75
3.75 32.3 34.015 39.34

Table A.7: Local gas volume fraction at the column centre at different axial
positions with a superficial gas velocity equal to 16 cm/s (heterogeneous regime)

with demineralised water (DMW), tap water and ethanol 0.05%.
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Radial
position

Axial liquid velocity, m/s

0.03 m/s 0.06 m/s 0.09 m/s 0.16 m/s

0.00 0.20 0.51 0.81 0.88
0.20 0.15 0.49 0.67 0.66
0.40 0.18 0.38 0.41 0.50
0.60 0.14 0.28 0.24 0.23
0.75 0.12 -0.02 -0.10 -0.12
0.80 -0.06 -0.28 -0.28 -0.27
0.90 -0.18 -0.43 -0.46 -0.44
0.95 -0.35 -0.56 -0.59 -0.66

Table A.8: Axial liquid velocity at H/D=2.5 with demineralised water.

Radial
position

Axial liquid velocity, m/s

DMW Tap water Ethanol 0.05%

0.00 0.87 1.00 1.06
0.20 0.75 0.87 0.93
0.40 0.55 0.58 0.60
0.60 0.25 0.28 0.29
0.75 -0.13
0.80 -0.28 -0.35 -0.46
0.90 -0.48
0.95 -0.73 -0.49 -0.59

Table A.9: Axial liquid velocity at H/D=2.5 with a superficial gas velocity equal
to 16 cm/s (heterogeneous regime) with demineralised water (DMW), tap water

and ethanol 0.05%.
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Radial
position

Sauter mean diameter, mm

0.03 m/s 0.06 m/s 0.09 m/s 0.16 m/s 0.25 m/s 0.35 m/s

0.00 7.45 7.36 8.25 9.05 9.62 9.96
0.20 7.22 7.35 8.10 8.84 9.23 9.55
0.40 7.18 7.38 7.49 8.63 8.35 8.75
0.60 7.13 6.90 6.60 7.51 7.70 8.30
0.80 7.02 6.60 6.00 6.34 6.17 6.69

Table A.10: Sauter mean diameter at H/D=2.5 with demineralised water.

Radial
position

Sauter mean diameter, mm

0.03 m/s 0.09 m/s 0.16 m/s 0.25 m/s 0.35 m/s

0.00 5.68 6.74 7.11 7.41 7.62
0.20 5.58 6.24 6.97 7.53 8.07
0.40 6.38 5.87 6.83 7.22 7.49
0.60 5.56 5.54 5.67 6.17 6.06
0.80 5.33 4.35 4.07 4.76 5.14

Table A.11: Sauter mean diameter at H/D=2.5 with tap water.

Radial
position

Sauter mean diameter, mm

0.03 m/s 0.06 m/s 0.09 m/s 0.16 m/s 0.25 m/s 0.35 m/s

0.00 6.61 6.80 7.07 7.34 8.01 8.41
0.20 6.52 6.78 7.00 7.23 7.99 7.79
0.40 6.61 6.60 6.49 6.72 7.02 7.82
0.60 6.59 6.21 5.78 6.04 6.53 7.01
0.80 6.40 6.10 5.25 5.29 5.52 5.38

Table A.12: Sauter mean diameter at H/D=2.5 with ethanol 0.01%.

Radial
position

Sauter mean diameter, mm

0.03 m/s 0.06 m/s 0.09 m/s 0.16 m/s 0.25 m/s 0.35 m/s

0.00 5.83 5.85 5.88 6.07 6.66 6.92
0.20 5.98 5.85 5.83 5.99 6.78 6.76
0.40 6.01 5.71 5.33 5.56 5.68 6.40
0.60 6.08 5.87 4.94 5.00 4.94 5.72
0.80 5.83 5.82 4.46 4.38 4.47 3.99

Table A.13: Sauter mean diameter at H/D=2.5 with ethanol 0.05%.
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Axial
position

Sauter mean diameter, mm

DMW Ethanol 0.05%

0.125 8.80 8.05
0.25 8.75
0.375 8.67 8.91
0.50 7.29 8.17
0.625 7.52
0.75 7.62 6.93
1.00 6.98 6.95
1.25 7.26 7.52
1.875 6.99 6.84
2.50 7.30 6.79
3.125 7.20 6.76
3.75 6.85 7.04

Table A.14: Sauter mean diameter at the column centre at different axial
positions with a superficial gas velocity equal to 3 cm/s (homogeneous regime)

with demineralised water (DMW) and ethanol 0.05%.

Axial
position

Sauter mean diameter, mm

DMW Ethanol 0.05%

0.125 8.11 6.89
0.25 8.00 6.87
0.375 7.84 6.50
0.50 6.48
0.625 8.11 6.40
0.75 8.11 6.35
1.00 7.89 6.40
1.25 8.13 6.07
1.875 8.66 6.38
2.50 8.70 6.07
3.125 8.77 6.38
3.75 9.05 6.70
4.375 9.37
5.00 9.81

Table A.15: Sauter mean diameter at the column centre at different axial
positions with a superficial gas velocity equal to 16 cm/s (heterogeneous regime)

with demineralised water (DMW) and ethanol 0.05%.
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Local gas volume fraction, %

Axial
position

92-holes sparger 7-holes sparger

DMW Ethanol 0.05% DMW Ethanol 0.05%

0.125 1.80 10.35 3.82
0.25 9.10 4.15 9.53 4.76
0.375 9.01 4.58 9.06 4.51
0.50 9.71 5.06 10.21 5.71
0.625 10.27
0.75 10.83 6.55 10.83 6.28
1.00 10.83 6.88 11.33 7.49
1.25 11.65 7.72 12.04 8.36
1.875 12.27 8.43 12.77 9.49
2.50 12.60 8.99 12.88 10.03
3.125 12.60 10.21 13.04 11.23
3.75 13 11.03 13.12 12.14

Table A.16: Local gas volume fraction at the column centre at different axial
positions with a superficial gas velocity equal to 3 cm/s (homogeneous regime)
with demineralised water (DMW) and ethanol 0.05%: 92-holes sparger versus

7-holes sparger.

Local gas volume fraction, %

Axial
position

92-holes sparger 7-holes sparger

DMW Ethanol 0.05% DMW Ethanol 0.05%

0.125 29.21 39.58 30.68 48.55
0.25 28.7 39.95 30.67 44.48
0.375 28.175 29.14 31.24 32.84
0.50 27.63 26.11 31.61 29.5
0.625 27.63
0.75 27.64 26.01 32.2 29.16
1.00 27.63 31.95 29.07
1.25 28.39 25.68 32.65 29.37
1.875 28.74 27.8 34.16 30.62
2.50 30.7 30.08 37.43 35.87
3.125 31.44 31.84 37.75 36.36
3.75 32.3 32.48 39.34 38.9

Table A.17: Local gas volume fraction at the column centre at different axial
positions with a superficial gas velocity equal to 16 cm/s (heterogeneous regime)
with demineralised water (DMW) and ethanol 0.05%: 92-holes sparger versus

7-holes sparger.

193



Local gas volume fraction, %

Axial
position

92-holes sparger 7-holes sparger

DMW Ethanol 0.05% DMW Ethanol 0.05%

0.125 42.61 38.58 51.93
0.250 35.10 36.89
0.375 34.62 41.32 36.94 43.75
0.50 34.62 37.16 38.02 40.40
0.625 33.67 38.03
0.75 33.72 34.44 39.16 38.23
1.00 34.81 33.76 40.32 37.53
1.25 35.15 33.54 43.00 38.35
1.875 35.67 35.57 43.65 40.12
2.50 37.70 37.91 45.37 42.71
3.125 38.38 39.08 48.12 45.44
3.75 40.30 41.72 47.19

Table A.18: Local gas volume fraction at the column centre at different axial
positions with a superficial gas velocity equal to 25 cm/s (heterogeneous regime)
with demineralised water (DMW) and ethanol 0.05%: 92-holes sparger versus

7-holes sparger.
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Local gas volume fraction, %

Radial
position

92-holes sparger 7-holes sparger

H/D=2.50 H/D=0.25 H/D=2.50 H/D=0.25

0.00 12.99 9.01 9.20 9.01
0.20 12.89 7.77 9.25 7.77
0.40 12.07 8.50 9.42 8.50
0.60 12.54 7.21 8.60 7.21
0.80 12.37 7.74 7.27 7.74

Table A.19: Local gas volume fraction with a superficial gas velocity equal to 3
cm/s (homogeneous regime) with demineralised water at two different heights

(H/D=2.5 versus H/D=0.25): 92-holes sparger versus 7-holes sparger.

Local gas volume fraction, %

Radial
position

92-holes sparger 7-holes sparger

H/D=2.50 H/D=0.25 H/D=2.50 H/D=0.25

0.00 31.32 29.50 31.00 29.50
0.20 31.65 29.13 31.33 29.13
0.40 29.43 28.16 31.34 28.16
0.60 24.98 27.80 27.11 27.80
0.80 20.07 28.19 22.58 28.19

Table A.20: Local gas volume fraction with a superficial gas velocity equal to 16
cm/s (heterogeneous regime) with demineralised water at two different heights

(H/D=2.5 versus H/D=0.25): 92-holes sparger versus 7-holes sparger.
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Sauter mean diameter, mm

Axial
position

92-holes sparger 7-holes sparger

DMW Ethanol 0.05% DMW Ethanol 0.05%

0.125 8.80 8.05 14.72
0.250 8.75 10.77 10.61
0.375 8.67 7.92 8.91 7.44
0.500 7.29 7.50 8.17 8.27
0.625 7.52 7.60
0.750 7.62 7.30 6.93 7.77
1.000 6.98 7.60 6.95 7.30
1.250 7.26 7.03 7.52 7.31
1.875 6.99 7.53 6.84 7.36
2.500 7.30 7.25 6.79 6.63
3.125 7.20 7.00 6.76 6.90
3.750 6.85 7.10 7.04 6.46

Table A.21: Sauter mean diameter at the column centre at different axial
positions with a superficial gas velocity equal to 3 cm/s (homogeneous regime)
with demineralised water (DMW) and ethanol 0.05%: 92-holes sparger versus

7-holes sparger.

Sauter mean diameter, mm

Axial
position

92-holes sparger 7-holes sparger

DMW Ethanol 0.05% DMW Ethanol 0.05%

0.125 8.11 43.47 6.89 41.31
0.25 8.00 21.26 6.87 20.78
0.375 7.84 10.80 6.50 10.90
0.50 9.17 6.48 8.21
0.625 8.11 6.40
0.75 8.11 8.04 6.35 7.07
1.00 7.89 7.72 6.40 6.22
1.25 8.13 7.73 6.07 6.08
1.875 8.66 7.88 6.38 5.89
2.50 8.70 8.09 6.07 6.38
3.125 8.77 8.25 6.38
3.75 9.05 8.63 6.70

Table A.22: Sauter mean diameter at the column centre at different axial
positions with a superficial gas velocity equal to 16 cm/s (heterogeneous regime)

with demineralised water and ethanol 0.05%: 92-holes sparger versus 7-holes
sparger.
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Sauter mean diameter, mm

Axial
position

92-holes sparger 7-holes sparger

DMW Ethanol 0.05% DMW Ethanol 0.05%

0.125 8.97 24.11 6.77 22.97
0.25 8.86 26.88 6.54 24.11
0.375 8.70 12.46 6.38 11.15
0.50 8.84 9.33 6.43 8.33
0.625 8.97
0.75 8.97 7.99 6.33 6.77
1.00 8.74 7.63 6.48 6.45
1.25 8.98 7.89 6.65 6.07
1.875 9.21 8.35 6.92 6.28
2.50 9.56 8.58 6.66 6.63
3.125 9.62 8.59 7.24 6.88
3.75 9.58 8.97 7.23 6.89

Table A.23: Sauter mean diameter at the column centre at different axial
positions with a superficial gas velocity equal to 25 cm/s (heterogeneous regime)

with demineralised water and ethanol 0.05%: 92-holes sparger versus 7-holes
sparger.
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Sauter mean diameter, mm

Radial
position

92-holes sparger 7-holes sparger

H/D=2.50 H/D=0.25 H/D=2.50 H/D=0.25

0.00 7.25 8.30 6.81 8.30
0.20 6.80 8.12 6.96 8.12
0.40 7.18 7.74 6.79 7.74
0.60 7.13 7.05 6.40 7.05
0.80 7.02 7.37 6.23 7.37

Table A.24: Sauter mean diameter with a superficial gas velocity equal to 3 cm/s
(homogeneous regime) with demineralised water at two different heights
(H/D=2.5 versus H/D=0.25): 92-holes sparger versus 7-holes sparger.

Sauter mean diameter, mm

Radial
position

92-holes sparger 7-holes sparger

H/D=2.50 H/D=0.25 H/D=2.50 H/D=0.25

0.00 9.05 8.00 8.40 8.00
0.20 8.84 8.05 8.20 8.05
0.40 8.63 8.01 7.84 8.01
0.60 7.51 7.90 7.07 7.90
0.80 6.34 7.48 6.60 7.48

Table A.25: Sauter mean diameter with a superficial gas velocity equal to 16
cm/s (heterogeneous regime) with demineralised water at two different heights

(H/D=2.5 versus H/D=0.25): 92-holes sparger versus 7-holes sparger.
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Appendix B

Drag laws

B.1 Drag laws for spherical bubbles

The first drag law was formulated by Stokes (1851), for Reb << 1 and spherical
totally contaminated bubbles:

CD =
24

Reb
. (B.1)

Schiller & Naumann (1935) corrected this relation to extend the field until Reb ≤
800, and it is the most utilized for bubble columns in homogeneous regime:

CD =
24

Reb

(
1 + 0.15Re0.687b

)
. (B.2)

A constant value for Reb > 1000 is considered in order to use this correlation in a
larger field:

CD =

{
24
Reb

(1 + 0.15Re0.687b ) Reb ≤ 1000;

0.44 Reb ≥ 1000.
(B.3)

Subsequently, different correlations have been developed; in general the coefficient
depends on the Reynolds number.

Other important drag laws were proposed by Zhang & Vanderheyden (2002):

CD = 0.44 +
24

Reb
+

1

1 +
√
Reb

(B.4)

and by Fdhila & Duineveld (1996):

CD =
24

Reb

(
1 + 0.9135Re0.6305b

)
. (B.5)

B.2 Drag laws model for oblate bubbles

For a deformed bubble, the drag coefficient depends on the Reynolds, the Eötvös
and the Morton number:

CD = f(Reb, Eo, Mo). (B.6)

In certain cases, some authors use the Weber number or the Frounde number. Both
these numbers can be written in function of the Reynolds, Eötvös and Morton
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number. It is necessary to take three independent dimensionless numbers.

We =
ρq u

2
r deq
σ

= Re2b

(
Mo

Eo

)1/2

; (B.7)

Fr =

√
ρq v2r

Δρ g deq
=

√
We

Eo
(B.8)

where ur is the relative velocity between the two phases.
For different operating conditions, Fan et al. (1999) found an empirical correl-

ation to obtain directly the relative velocity. It can give a first idea for several
systems, with spherical and ellipsoidal bubbles:

ur =

(
σg

ρq

)1/4
[(

Mo−1/4

Kb

(
Δρ

ρq

)5/4

d′2
)−n

+

(
2 c

d′
+

Δρd′

2 ρq

)−n/2
]−1/n

(B.9)

with:

d′ = db

√
ρl g

σ
;

Kb = max
(
Kb0 Mo−0.038, 12

)
;

Kb0 = 10.2 for organic and 14.7 for aqueous solution;
n = 1.6 for clean and 0.8 for contaminated systems;
c = 1.2 for pure liquid and 1.4 for multi-composition liquid.

Maxworthy et al. (1996) proposed to use for deformed bubbles:

CD =

⎧⎪⎪⎨⎪⎪⎩
min

{4
3

Eo

Wec
,
8

3
Eo2/3

}
for Eo ≤ 7.12

8

3

4Eo

(9.5 + Eo)
for Eo ≥ 7.12

(B.10)

where:
Wec = max(0.517ln(Mo) + 7.624, 2.326) (B.11)

Tomiyama (1998) suggested to use for deformed bubbles:

CD =
8

3

Eo

(4 + Eo)
. (B.12)

This expression for Eo > 40 tends to a constant value of 8/3, as calculated by
Davies & Taylor (1950) for a regime of spherical cap.

In case of spherical bubbles Tomiyama (1998) used the drag law of Levich
(1962), available for Re >> 1:

CD =
48

Reb
. (B.13)

Tomiyama (1998) obtained a correlation usable for every regime:

CD = max

{
min

{
24

Reb

(
1 + 0.15Re0.687b

)
,
48

Reb

}
,
8

3

Eo

(4 + Eo)

}
. (B.14)
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Dijkhuizen et al. (2010) proposed a correlation suitable for spherical and deformed
bubbles:

CD =

√
CD

2 (Reb) + CD
2 (Eo); (B.15)

CD (Reb) =
16

Reb

(
1 +

Reb

8 + 0.5
(
Re+ 3.315Reb

0.5
)) ; (B.16)

CD (Eo) =
4Eo

(9.5 + Eo)
. (B.17)

Zhang et al. (2006) suggested a shorter correlation that gives results very similar
to the others:

CD =
2

3

√
Eo. (B.18)

In case of boiling regime, the most used correlation was proposed by Ishii & Zuber
(1979), considering the effect of the gas fraction inside:

CD =
8

3
(1− αg)

2. (B.19)

Tomiyama et al. (2002) coined also another correlation:

CD =
8

3

Eo

E2/3
(
1− E2

)−1
Eo+ 16E4/3

F−2 (B.20)

where:

F =
sin−1

(√
1− E2

)− E
(√

1− E2
)

(1− E2)
(B.21)

and E is the shape factor that is:

E =
1

1 + 0.163Eo0.757
. (B.22)

Hosokawa & Tomiyama (2009) calculated E starting by the E0, the shape factor
in an infinite medium.

E0 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 Ta ≥ 1;

{0.81 + 0.206 tanh [(0.8− log10 Ta) 2]}3 39.8 ≥ Ta;

0 39.8 ≥ Ta.

(B.23)

Using the Tadaki number:
Ta = Reb Mo0.23. (B.24)

Starting by E0, it is possible to obtain E:

E = E0 max
{
1− 0.35

y

D
, 0.65

}
(B.25)

where y is the distance by the wall and D the diameter of the column.
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Appendix C

Favre-like average

C.1 Favre-like average definition
The Favre-like or phase average, in two-fluid models, allows to make a time average
of the property of a phase by taking into account the instantaneous local volume
fraction of this phase (Favre 1965, O’Brien 2012). The Favre mean can replace the
Reynolds mean in multiphase flows (Burns et al. 2004).

A generic variable Θ, can be divided into a mean part Θ̃ and a fluctuating part
Θ′′ if a phase-fraction weighted average is used (O’Brien 2014):

Θ = Θ̃ + Θ′′, (C.1)

Θ̃ =

∫
αi(t)Θ(t)dt∫
αi(t)dt

, (C.2)

that is equal to:

Θ̃ =
αiΘ

αi

, (C.3)

where αi is the instantaneous local gas volume fraction of the phase i.
In this work different properties are calculated with both Reynolds and Favre-

like average: axial velocities of the two phases, Sauter mean diameter and turbu-
lence properties.

The gas volume fraction (and consequently the liquid volume fraction) is the
same by using Reynolds and Favre-like averages.

The axial gas velocity with the Favre-like average seen by the bubbles (ũg) is
calculated as follows:

ũg =
αgug

αg

, (C.4)

where ug is the instantaneous axial gas velocity and αg is the instantaneous gas
volume fraction.

Consequently, by using the Reynolds average, the axial gas velocity can be
divided into a mean part αg and a fluctuating part u′

g, as follows (O’Brien 2014):

αg = αg + α′
g, (C.5)

while, by using the Favre-like average, the axial gas velocity can be divided into a
mean part αg and a fluctuating part u′

g (O’Brien 2014):

αg = α̃g + α′′
g . (C.6)
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Concerning the axial liquid velocity, the Favre-like average seen by the liquid phase
should be considered (ũl):

ũl =
αlul

αl

, (C.7)

where ul is the instantaneous axial liquid velocity and αl is the instantaneous
liquid volume fraction, that is the complementary of the instantaneous gas volume
fraction.

The Sauter mean diameter with the Favre-like average seen by the bubbles
(d̃32,g) is defined as:

d̃32,g =
αgd32
αg

, (C.8)

where d32 is the instantaneous Sauter mean diameter.
The turbulence properties refer to the liquid, but they can affect bubble co-

alescence and breakage phenomena. For this reason, the Favre-like averages seen
by both the bubbles and the liquid are calculated. Concerning the turbulence kin-
etic energy, the Favre-like averages seen by the bubbles k̃g and the liquid k̃l are
calculated respectively as:

k̃g =
αgk

αg

(C.9)

and

k̃l =
αlk

αl

, (C.10)

where k is the instantaneous turbulence kinetic energy.
The Favre-like averages of the turbulence dissipation rate seen by the bubbles

ε̃g and liquid ε̃l

ε̃g =
αgε

αg

(C.11)

and
ε̃l =

αlε

αl

, (C.12)

where ε is the instantaneous turbulence dissipation rate.

C.2 Favre-like average effects

The effect of the Favre-like average on the properties listed above is studied in this
work by comparing the Reynolds averages with the Favre-like averages. In this part
of the work, the radial profiles, obtained with the column φ 0.4 m and a superficial
gas velocity equal to 0.16 m/s (heterogeneous regime) at H/D=2.5, are compared.

The effect of the Favre-like average on the axial liquid velocities is quite small
(Fig. C.1). The Favre-like average seen by the liquid is slightly smaller than the
Reynold average for every radial position, except at the wall, where the means are
identical.

The effect on the axial gas velocity could be considered. Expect at the wall, the
use of the Favre-like average, instead of the Reynolds average, causes an increase
of this property, as shown in Fig. C.2.
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Figure C.1: Radial profile of the axial liquid velocity for a superficial gas velocity
of 0.16 m/s at H/D=2.5. Experimental data (�) versus CFD results obtained by
considering the Reynolds average (solid line) and the Favre-like average seen by

the liquid (dotted line).
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Figure C.2: Radial profile of the axial gas velocity for a superficial gas velocity of
0.16 m/s at H/D=2.5. Experimental data (�) versus CFD results obtained by

considering the Reynolds average (solid line) and the Favre-like average seen by
the bubbles (dashed line).
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The Sauter mean diameter, if calculated with the Favre-like average seen by the
bubbles, has an increase lower than 10% . The radial profile shape is the same and
the discrepancies are lower close to wall. The radial profiles of the Sauter mean
diameter are reported in Fig. C.3.

0

2

4

6

8

10

12

0 0.25 0.5 0.75 1

Sa
ut

er
 m

ea
n 

di
am

et
er

, m
m

Radial position

Figure C.3: Radial profile of the Sauter mean diameter for a superficial gas
velocity of 0.16 m/s at H/D=2.5. Experimental data (�) versus CFD results
obtained by considering the Reynolds average (solid line) and the Favre-like

average seen by the bubbles (dashed line).

The effects of the Favre-like averages on the turbulence properties are almost
negligible, as shown in Fig. C.4 and C.5 for turbulence kinetic energy and tur-
bulence dissipation rate respectively. The radial profile calculated with Favre-like
average seen by the bubbles is slightly higher than the classical one, while those
calculated with the Favre-like average seen by the liquid is slightly lower.

For every property, the radial profile is slightly influenced by the Favre-like
average and its effect is often negligible. The Favre-like average seen by the bubbles
slightly increases every property, while the Favre-like average seen by the liquid has
the opposite effect.
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Figure C.4: Radial profile of the turbulence kinetic energy for a superficial gas
velocity of 0.16 m/s at H/D=2.5. Experimental data (�) versus CFD results
obtained by considering the Reynolds average (solid line) and the Favre-like

average seen by the bubbles (dashed line) and the liquid (dotted line).
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Figure C.5: Radial profile of the turbulence dissipation rate for a superficial gas
velocity of 0.16 m/s at H/D=2.5. Experimental data (�) versus CFD results
obtained by considering the Reynolds average (solid line) and the Favre-like

average seen by the bubbles (dashed line) and the liquid (dotted line).

207



Bibliography
Burns, A. D. B., Frank, T., Hamill, I. & Shi, J. M. (2004), The Favre averaged

drag model for turbulent dispersion in eulerian multi-phase flows., in ‘5th Inter-
national Conference on Multiphase Flow, ICMF-2004’, Yokohama, Japan.

Favre, A. (1965), ‘Equations des gaz turbulents compressibles. i. Formes générales.’,
Journal de Mécanique 4, 361–390.

O’Brien, T. (2012), A Favre-averaged turbulence model for gas-particle flows., in
‘2012 AIChE Annual Meeting’, Pittsburgh, Pennsylvania, USA.

O’Brien, T. (2014), A multiphase turbulence theory for gas-solids flows using Favre-
averaging., in ‘2014 NETL Workshop on Multiphase Flow Science’, Morgantown,
West Virginia, USA.

208



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


