
HAL Id: tel-02007839
https://theses.hal.science/tel-02007839v1

Submitted on 5 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Extending type theory with syntactic models
Simon Pierre Boulier

To cite this version:
Simon Pierre Boulier. Extending type theory with syntactic models. Logic in Computer Science
[cs.LO]. Ecole nationale supérieure Mines-Télécom Atlantique, 2018. English. �NNT : 2018IMTA0110�.
�tel-02007839�

https://theses.hal.science/tel-02007839v1
https://hal.archives-ouvertes.fr


THESE DE DOCTORAT DE 

L’ÉCOLE NATIONALE SUPERIEURE MINES-TELECOM ATLANTIQUE

BRETAGNE PAYS DE LA LOIRE - IMT ATLANTIQUE 
COMUE UNIVERSITE BRETAGNE LOIRE 

ECOLE DOCTORALE N° 601  
Mathématiques et Sciences et Technologies 
de l'Information et de la Communication  
Spécialité : Informatique 

Extending Type Theory with Syntactic Models 

Thèse présentée et soutenue à Nantes, le 29 novembre 2018 
Unité de recherche : LS2N 
Thèse N° : 2018IMTA0110 

Par 

Simon BOULIER 

Rapporteurs avant soutenance : 

Thierry Coquand Professor, University of Gothenburg 
Hugo Herbelin  Directeur de Recherche, INRIA Paris 

Composition du Jury : 

Président : 

Examinateurs :  

Dir. de thèse : Nicolas Tabareau 

Assistant Professor, Eötvös Lorand University 
Chargée de Recherche, INRIA Rennes
Professor, University of Gothenburg 
Directeur de Recherche, INRIA Paris

Chargé de Recherche, INRIA Rennes

Ambrus Kaposi
Assia Mahboubi
Thierry Coquand 
Hugo Herbelin  

Pierre Cointe Professeur, IMT Atlantique





Thanks to Coline for the drawing



Abstract

This thesis is about the metatheory of intuitionistic type theory. We consider variants of
Martin-Löf type theory or of the Calculus of Constructions, and we pay attention to two recur-
ring questions: the coherence of these systems and the independence of axioms with respect to
them. We address this kind of problems by constructing syntactic models, which are models
reusing type theory to interpret type theory.
In a first part, we introduce type theory through a minimal system with several possible exten-
sions. We also define a few notions of homotopy type theory. Last, we introduce Categories
with Families which are models of type theory. We recall two examples of such models: the
standard model and the setoid model.
In a second part, we introduce a particular class of models: syntactic models given by a program
translation. In this paradigm, a term is translated to a term, a type to a type and a context to a
context. These models are simple in that a lot of constructions are reinterpreted by themselves.
We give several program translations:

– the times bool translations which are used to negate some extensionality principles by
adding a boolean in the right place,

– a translation implementing pattern-matching on the universe,

– several variants of parametricity.
For each one, we precise which axioms are negated or preserved by the translation.
In a third part, we present Template-Coq, a plugin for metaprogramming in Coq. This plugin
provides a reification of Coq syntax and typing derivations. We demonstrate how to use it to
implement directly some syntactic models.
Last, we consider type theories with two equalities: a strict one and a univalent one. We pro-
pose a re-reading of works of Coquand et. al. and of Orton and Pitts on the cubical model
by introducing degenerate fibrancy. This notion of fibrancy has a defect: the universe of de-
generately fibrant types is not univalent. Nonetheless, degenerate fibrancy seems worthy of
attention, in particular because it admits a fibrant replacement. We show how the fibrant re-
placement can be used to interpret some Higher Inductive Types and to define a model structure
on the universe. This last result is then reinterpreted as the construction of a model structure
on the category of cubical sets.

Formalizations

Several formalizations, either in Coq or in Agda, are presented in this thesis. They are available
at the following address, each one in a separate folder:

https://gitlab.inria.fr/sboulier/thesis-formalizations

Each time that we quote a file, it will refer to this repository. The names are clickable and are
direct link to the repository.
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Résumé (en français)

Cette thèse s’intéresse à la métathéorie de la théorie des types intuitionniste. Nous considérons
des variantes de la théorie des types de Martin-Löf ou du Calcul des Constructions, et portons
notre attention sur deux questions récurrentes: la cohérence de ces systèmes et l’indépendance
d’axiomes par rapport à ces systèmes. Nous attaquons ces questions par la construction de
modèles syntaxiques, qui sont des modèles qui réutilisent la théorie des types pour interpréter
la théorie des types.
Dans une première partie, nous introduisons la théorie des types à l’aide d’un système minimal
et de plusieurs extensions potentielles. Nous définissons aussi quelques notions de théorie des
types homotopique. Enfin, nous introduisons les Catégories de Famille qui sont des modèles
de la théorie des types. Nous redonnons deux exemples de tels modèles : le modèle standard
et le modèle setoïde.
Dans une seconde partie, nous introduisons une classe de modèles particuliers : les modèles
syntaxiques donnés par traduction de programme. Dans ce paradigme, un terme est traduit par
un terme, un type par un type et un contexte par un contexte. Ces modèles sont simples au sens
où de nombreuses constructions sont réinterprétées par elles-mêmes. Nous donnons plusieurs
traductions de programme :

– les traductions croix bool qui permettent de nier des principes d’extensionalité en ajoutant
un booléen au bon endroit,

– une traduction qui implémente le pattern-matching sur l’univers,

– différentes variantes de la parametricité.
À chaque fois, nous précisons quels sont les axiomes niés ou préservés par ces traductions.
Dans une troisième partie, nous présentons Template-Coq, un plugin de métaprogrammation en
Coq. Ce plugin fournit une réification de la syntaxe et des dérivations de typage de Coq. Nous
montrons comment l’utiliser pour implémenter directement certains modèles syntaxiques.
Enfin, dans une dernière partie, nous considérons des théories des types avec deux égalités :
une stricte et une univalente. Nous proposons une relecture des travaux de Coquand et. al.
et Orton et Pitts sur le modèle cubique en introduisant la notion de fibrance dégénérée. Cette
notion de fibrance a un défaut : l’univers des types dégénérément fibrants n’est pas univa-
lent. Néanmoins, la fibrance dégénérée semble digne d’intérêt, notamment car elle admet une
notion de remplacement fibrant. Nous montrons comment le remplacement fibrant peut être
utilisé pour interpréter certains types inductifs supérieurs (HITs) et pour définir une structure
de modèle sur l’univers. Ce dernier résultat est ensuite réinterprété comme la construction
d’une structure de modèle sur la catégorie des types cubiques.

Formalisations

Plusieurs formalisations, soit en Coq soit en Agda, sont présentées dans cette thèse. Elles sont
disponibles à l’adresse suivante, chacune dans un dossier séparé:

https://gitlab.inria.fr/sboulier/thesis-formalizations
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Introduction (en français)

Cette thèse s’inscrit dans le cadre de l’étude de la théorie des types intuitionniste, un forma-
lisme qui est à la fois un système logique et un langage de programmation. C’est un système
logique : on y définit ce qu’est un énoncé mathématique (une proposition) et quelles sont les
règles de raisonnement valables qui permettent de constituer une preuve d’une proposition. En
cela, la théorie des types intuitionniste est une proposition de fondement des mathématiques,
alternative au traditionnel tandem logique du premier ordre / théorie des ensembles. Mais la
théorie des types intuitionniste est aussi un véritable langage de programmation dans lequel
on peut écrire des programmes, que l’on peut ensuite exécuter pour calculer des valeurs. Ce
langage de programmation est statiquement typé, chaque expression a un type qui décrit ce
qu’elle dénote (un entier , un booléen, . . .) et la théorie des types s’inspire donc — si ce n’est
fait partie — de la programmation fonctionnelle.
Ce sont justement les types qui font la jonction entre système logique et langage de program-
mation. Ainsi, une proposition est représentée par un type et une preuve de cette proposition est
une expression de ce type. Cette correspondance entre preuves et programmes est appelée cor-
respondance de Curry-Howard, même si elle doit aussi à de nombreux autres auteurs. C’est un
des résultats majeurs de l’informatique théorique. Depuis cette découverte dans les années 60,
logique mathématique et théorie des langages de programmation s’enrichissent l’une l’autre.
La correspondance de Curry-Howard fait correspondre un langage de programmation à chaque
système logique. Ainsi, dans le cas le plus simple, elle met en correspondance les programmes
du λ-calcul simplement typé avec les preuves en logique propositionnelle intuitionniste. Ce qui
fait la force de cette correspondance c’est qu’elle s’étend à de nombreux systèmes logiques.
Au point que, quand l’on considère un nouveau système logique, il est devenu courant de se
demander quel est le calcul sous-jacent. Par exemple, le calcul correspondant à la logique
intuitionniste du second ordre est le Système F de Girard, des systèmes correspondants à la
logique classique sont des calculs avec opérateurs de contrôle, etc.
Ce que nous appelons théorie des types intuitionniste fait référence à un système introduit par
Martin-Löf dans les années 70 qui étend notamment la correspondance de Curry-Howard à la
logique d’ordre supérieur. Dans la logique d’ordre supérieur, il est possible de quantifier à l’aide
des quantificateurs « pour tout » ∀ et « il existe » ∃, sur les objets mais aussi sur les prédicats,
les relations, . . . (les objets « supérieurs »). La contrepartie des quantificateurs côté langage de
programmation est l’utilisation de types dépendants avec des produits dépendants Π (version
dépendante du type des fonctions →) et des sommes dépendantes Σ (version dépendante du
produit cartésien ×).
Nous appellerons ce système : théorie des types Martin-Löf (MLTT), théorie des types dépen-
dants, théorie des types intuitionniste, ou tout simplement : théorie des types. La théorie des
types telle que nous la connaissons aujourd’hui doit aussi beaucoup au Calcul des Construc-
tions de Coquand et Huet qui introduit un univers des propositions. Ce système est à la base
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Introduction (en français)

de l’assistant de preuve Coq, nous y reviendrons. Le Calcul des Constructions a ensuite connu
plusieurs évolutions, dont le Calcul des Constructions Inductives qui ajoute la gestion des types
inductifs généraux.
Il existe de nombreuses variantes, tant dans la présentation que dans le fond, de la théorie des
types intuitionniste. Aussi, par ce nom, nous ne nous référons pas à un système précis mais
plutôt à un paradigme. Les constructions que l’on considère doivent ensuite être adaptées à
chaque variante.

Assistants de preuves Cette thèse n’aurait pas été la même sans l’utilisation massive d’as-
sistants de preuve. Un assistant de preuve est un logiciel dans lequel on peut formaliser un
énoncé mathématique puis en fournir une preuve de façon interactive. Une telle démarche per-
met de s’assurer que la preuve est correcte dans les moindres détails et que l’on n’a pas fait
d’erreur ou d’oubli.
Les assistants de preuve que nous avons utilisés sont Coq et Agda qui implémentent tous les
deux des variantes de la théorie des types de Martin-Löf. Il en existe plusieurs autres, comme
Lean par exemple, ainsi que pour d’autres systèmes logiques — par exemple HOL Light pour
la logique d’ordre supérieur, Mizar pour une théorie des ensembles, etc.
Depuis quelques années des preuves conséquentes sont arrivées à portée des assistants de
preuve. Ainsi, en 2012, une équipe menée par Georges Gonthier a annoncé l’achèvement de
la formalisation complète du théorème de Feit-Thomson en Coq. Ce théorème des années 60
est un résultat difficile de théorie des groupes et sa démonstration fait plusieurs centaines de
pages. Aujourd’hui, de plus en plus de travaux en théorie des langages de programmation sont
formalisés et cela donne une certaine confiance en leur correction. Cette pratique reste toutefois
encore minoritaire.
Une autre application importante de la théorie des types et des assistants de preuve est la cer-
tification de programmes. Un programme certifié est un logiciel pour lequel il a été prouvé
mathématiquement qu’il satisfait une certaine spécification. Par exemple, une équipe menée
par Xavier Leroy a développé CompCert, un compilateur C écrit en Coq pour lequel il a été
prouvé (en Coq aussi) qu’il préserve la sémantique des programmes compilés. L’autre grand
exemple de certification de programme est la création de logiciels prouvés sans bug (division
par zéro, dépassement de tableaux, . . .), ce qui est intéressant pour les logiciels critiques dont
notre société est aujourd’hui envahie.
Dans notre cas, nous avons utilisé à la fois Coq et Agda pour formaliser des preuves et s’as-
surer qu’elles étaient correctes. Mais nous les avons également utilisés comme de véritables
assistants de preuve au sens où nous avons réalisé de nombreuses preuves directement en la
formalisant. Nous laissons alors Coq ou Agda nous guider en nous montrant ce qu’il reste à
démontrer et nous le guidons en retour en lui expliquant comment faire.

Métathéorie de MLTT Dans cette thèse, nous nous intéressons à la métathéorie de la théo-
rie des types. C’est-à-dire que nous ne cherchons pas à démontrer des théorèmes à l’intérieur

de la théorie des types mais nous démontrons des théorèmes qui parlent de ce système. Nous
étudions donc la théorie des types comme un objet mathématique en lui-même.
Cela dit, puisque la théorie des types est notre formalisme de prédilection, nous l’utiliserons
aussi comme métathéorie. C’est-à-dire que nous prouvons, en théorie des types, des théorèmes
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Introduction (en français)

qui parlent (d’un encodage profond) de la théorie des types. Remarquons qu’une part encore
non négligeable de travaux en théorie des types utilise la théorie des ensembles comme méta-
théorie.
Les questions « métathéoriques » auxquelles nous cherchons à répondre sont notamment celles
de la cohérence d’un système, de sa terminaison et de l’indépendance d’axiomes. La cohérence
d’un système logique est une propriété cruciale, si ce n’est la plus importante, car elle corres-
pond au fait de ne pas pouvoir démontrer n’importe quel énoncé, notamment les énoncés ma-
nifestement faux tels que « 12 + 2 = 15 ». On cherche donc à montrer cette propriété pour tout
nouveau système que l’on introduit. Le théorème d’incomplétude de Gödel refrène cependant
un peu nos ardeurs : il énonce qu’un système logique ne peut montrer sa propre cohérence.
Autrement dit, étant donné une théorie des types T , si l’on formalise T dans T elle-même,
alors nous ne pourrons pas démontrer que T est cohérente. Une des façons de contourner ce
théorème dans une certaine mesure, est d’introduire une chaîne de théories T0, T1, . . . telle
que chaque théorie démontre la cohérence de la précédente. C’est notamment possible si l’on
introduit des théories qui ont de plus en plus d’univers.
À propos de l’indépendance d’axiomes, le but est cette fois de répondre aux questions qui sont
le pain quotidien des théoriciens des types. Par exemple :

– « Peut-on prouver que (∀ x. f x = g x) → f = g ? »

– « Quand P et Q sont des propositions, quelle est la différence entre P ↔ Q et P = Q ? »

– « Peut-on prouver qu’un terme de type ∀A. A → A est nécessairement l’identité ? »

Traditionnellement, il existe deux principales voies pour étudier la métathéorie d’un système
logique :

la voie syntaxique On montre que le système a de bonnes propriétés syntaxiques « directe-
ment » : la réduction du sujet, la terminaison forte, l’élimination des coupures, . . . On
manipule donc directement des termes et des arbres de dérivation.

la voie sémantique On traduit le système logique considéré dans une autre structure mathé-
matique. Et, en étudiant comment se comporte la version traduite du système, on peut
faire remonter des propriétés et en déduire que le système satisfait telle ou telle propriété.
On dit alors que l’on construit un modèle de notre système dans lequel on l’interprète.
L’art de construire des modèles s’appelle la sémantique dénotationnelle.

Dans cette thèse, nous cherchons une voie intermédiaire en construisant des modèles très syn-
taxiques. La construction de modèles syntaxiques pour la théorie des types de Martin-Löf est
un des leitmotivs de cette thèse. Ainsi, dans le chapitre 2, nous développons des modèles syn-
taxiques donnés par traduction de programme. Dans le chapitre 3, nous montrerons comment
implémenter certains modèles syntaxiques dans l’assistant de preuve Coq. Et dans le chapitre
4, nous donnons un modèle pour une théorie des types avec deux égalités.
Plusieurs des modèles que l’on présente dans cette thèse ont trait à l’interprétation de l’égalité
en théorie des types. Celle-ci est en effet pleine de subtilité et il n’est pas encore établi quelles
sont les propriétés que l’on doit attendre d’elle. Récemment, l’avènement de la théorie des
types homotopique a mis en lumière le fait qu’il existe au moins deux égalités bien différentes :
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Introduction (en français)

l’égalité stricte qui vérifie UIP — Uniqueness of Identity Proofs — et se rapproche de l’égalité
utilisée en théorie des ensembles, et l’égalité univalente qui vérifie l’axiome d’univalence, un
principe puissant qui permet de transporter les propriétés entre deux objets isomorphes. Cette
distinction égalité stricte / égalité univalente est l’autre fil rouge de cette thèse.

Chapitre 1

Dans le premier chapitre, nous introduisons la théorie des types que nous utiliserons tout au
long de cette thèse ainsi que quelques constructions typiques. Nous donnerons la syntaxe et la
sémantique d’un système précis que nous appellerons λΠω. Ce système est assez minimal :
il ne possède que des produits dépendants et une hiérarchie d’univers. Ce système doit être
considéré comme une brique de base que l’on retrouve au cœur des variantes plus riches de
la théorie des types. Nous présenterons d’ailleurs quelques unes des extensions possibles de
λΠω : l’η-conversion, l’univers imprédicatif Prop, la cumulativité, les types inductifs et coin-
ductifs, etc. Ces extensions permettent de se rapprocher d’une théorie plus réaliste telle celles
implémentées par Coq ou Agda.

HoTT Dans ce chapitre, nous introduirons aussi des notions de théorie des types homoto-
pique (HoTT). Comme déjà évoqué, la théorie des types homotopique est une branche récente
de la théorie des types dans laquelle on étudie la structure des types égalité

t = u

En effet, malgré leur apparente simplicité ceux-ci possèdent une structure très riche : celle d’∞-
groupoïde. En théorie des types homotopique, on s’intéresse aux types identité itérés : étant
donné deux preuves d’égalité p et q de t = u , on s’intéresse au type p = q . Puis, étant donné
deux preuves d’égalité e et f de p = q , on s’intéresse au type e = f , etc. Les types identité
successifs ne sont pas forcément habités par contre cette itération leur donne une structure
d’∞-groupoïde. Cette structure est révélée par l’interprétation homotopique de la théorie des
types : un type est interprété par un espace topologique et une preuve d’égalité par un chemin
dans cet espace topologique. Deux éléments du type sont alors égaux s’il existe un chemin
de l’un à l’autre, deux preuves d’égalité sont égales s’il existe une homotopie (un chemin de
chemin) entre les deux chemins correspondants et ainsi de suite.
Cette interprétation homotopique a été rendue précise par le modèle simplicial de Voevodsky
où un type est interprété par un ensemble simplicial, puis par le modèle cubique de Coquand
et. al. où, cette fois, l’on utilise des ensembles cubiques.
La théorie des types homotopique est notamment articulée autour de l’axiome d’univalence
qui implique que deux types équivalents (penser « isomorphes ») sont égaux. Ce principe est
très puissant puisqu’il permet de transporter toutes les propriétés d’un objet à un autre objet
isomorphe. Par exemple, si un groupe G1 est isomorphe à un groupe G2 et que l’on sait que G1

est résoluble alors G2 l’est aussi. En effet, l’axiome d’univalence implique que deux groupes
isomorphes sont en fait égaux pour l’égalité univalente. Pour des structures plus compliquées
que celle de groupe, cette technique peut même permettre de s’assurer que l’on a trouvé la
bonne notion d’isomorphisme.
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Catégorie de familles Enfin, nous introduirons les catégories de familles qui sont un forma-
lisme usuel pour décrire ce qu’est un modèle de la théorie des types. Les catégories de familles
ont été introduites par Dybjer en 1995. Dybjer en a donné la définition à la fois en théorie des
ensembles et en théorie des types, nous suivrons donc naturellement cette seconde approche.
Par contre, contrairement à lui, nous utiliserons une égalité stricte (qui se rapproche beaucoup
de celle de la théorie des ensembles), ce qui nous permet de nous passer de setoïdes.
Les catégories de familles ont aussi reçu un nouvel éclairage avec les travaux de Altenkirch et
Kaposi qui ont montré que l’on peut construire une catégorie de familles initiale à l’aide d’un
type inductif quotient (QIT) et que cette catégorie initiale se révèle être la syntaxe « intrin-
sèquement typée » de la théorie des types. C’est-à-dire une syntaxe dans laquelle il n’est pas
possible d’écrire un terme mal typé. Par opposition, nous appellerons syntaxe « extrinsèque »,
la syntaxe habituelle dans laquelle on définit d’abord les termes non typés puis une relation de
typage. Nous verrons que l’interprétation de la syntaxe extrinsèque dans la syntaxe intrinsèque
n’est pas aussi évidente qu’il n’y paraît.
Nous donnerons deux exemples de catégories de familles : le modèle standard qui est un modèle
trivial donné par l’identité, et le modèle setoïde de Altenkirch qui est un modèle de l’égalité
stricte. Nous présenterons plusieurs contributions à ce modèle : une définition alternative des
familles de setoïde, l’interprétation d’un univers clos par produits dépendants, et une preuve
que l’extensionnalité des fonctions vérifie des règles de réduction dans ce modèle.

Chapitre 2

Le second chapitre est consacré aux modèles syntaxiques donnés par traduction de programme.
Une traduction de programme est la traduction d’une théorie des types source vers une théorie
des types cible, à la façon d’une phase de compilation. Un terme est traduit par un terme, un
type par un type et un contexte par un contexte.
Les traductions de programme sont donc des modèles sauf que, plutôt que d’interpréter notre
théorie cible dans une structure éloignée de la théorie des types (un espace vectoriel, une ca-
tégorie à poils bleus, . . .), on l’interprète dans une structure très proche : une autre théorie
des types. L’avantage d’avoir une théorie des types pour cible est que l’on peut interpréter la
substitution et la conversion par elles-mêmes :

[M{x ≔ N}] = [M]
{
x ≔ [N]

}
M ≃β N ⇒ [M] ≃β [N]

Une autre caractéristique des traductions de programme est qu’elles sont définies sur la pré-
syntaxe (les programmes non forcément bien typés). On peut alors se passer du cadre des
catégories de familles et montrer directement un théorème de correction qui prend la forme de
préservation du typage :

Γ ⊢ t ∶ A ⇒ ⟦Γ ⟧ ⊢ [t] ∶ ⟦A⟧

Chaque traduction n’a pas vocation à justifier entièrement une théorie des types puisque la
théorie cible est généralement proche de la source. Par contre, le but est d’avoir une chaîne de
compilation

T0 ←→ T1 ←→ … ←→ Tn
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où chaque traduction justifie un principe logique additionnel. Ultimement Tn est une théorie
« minimale » qu’il faut justifier de façon syntaxique (avec une preuve de normalisation).
Les traductions de programme ont plusieurs avantages par rapport aux catégories de familles :

elles donnent des modèles simples Les traductions permettent de construire des modèles
à peu de frais car beaucoup de constructions sont interprétées de façon transparente :
la conversion par la conversion, les univers par les univers, etc. Certaines traductions
sont même très « locales » : elles agissent sur un constructeur et laissent tous les autres
inchangés.

elles n’utilisent que la théorie des types Si la théorie des types se veut un nouveau fon-
dement des mathématiques, elle doit être capable de s’étudier elle-même : « type theory
should eat itself » 1. Les traductions de programme permettent de construire des mo-
dèles sans recourir à la théorie des ensembles, que ce soit dans la cible ou la métathéorie
utilisée. On appelle cette approche moniste : le seul paradigme que l’on utilise est celui
de la théorie des types.

elles sont flexibles Les traductions se composent et s’étendent facilement. En outre, elles
sont compatibles avec de nombreuses variations (par exemple, univers à la Tarski vs.

univers à la Russell) du moment que les théories source et cible utilisent le même para-
digme.

elles sont implémentables Étant donné un terme, il est direct de calculer sa traduction.
Nous avons d’ailleurs développé un plugin pour Coq qui réalise cela. Ce n’est pas si
simple pour les modèles traditionnels formulés à l’aide de catégories de familles car
cela nécessite la traduction « extrinsèque vers intrinsèque ».

elles utilisent une métathéorie faible Contrairement aux catégories de famille, la distinc-
tion entre la métathéorie et la théorie cible est claire et la métathéorie nécessaire pour
les traductions de programme que l’on donne est vraiment très faible. Essentiellement,
la métathéorie doit permettre de faire des inductions sur la syntaxe mais guère plus.

Les traductions de programme sont présentes depuis bien longtemps en théorie des types. Elles
puisent leurs racines dans les traductions logiques — traduction de Gödel, traduction CPS de
Lafont-Streicher-Reus, etc. — et l’on en aperçoit des fragments dans de nombreux articles —
par exemple le subset model de Hofmann. Mais c’est surtout dans des travaux récents qu’elles
apparaissent de façon plus explicite : par exemple, dans des travaux sur le forcing, Dialectica,
ou encore la paramétricité. Aussi, nous ne prétendons pas inventer ou découvrir les traductions
de programmes mais notre but est de leur donner un cadre pour populariser cette façon élégante
de construire des modèles.
Dans ce travail, nous présentons plusieurs exemples de traductions s’appliquant à λΠω :

– Les traductions « croix bool » qui permettent de nier des principes d’extensionnalité
en ajoutant simplement un booléen au bon endroit. Avec cette technique nous montrons
comment nier l’extensionnalité des fonctions, l’extensionnalité sur les streams et l’ex-
tensionnalité propositionnelle.

1Titre de l’article [Cha09] de Chapman.
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– Une traduction qui justifie une forme de polymorphisme ad-hoc via un opérateur de
pattern-matching sur les types. À l’aide de cet opérateur, on peut par exemple définir
une fonction de type ΠA. A → A dont le comportement dépend du type A passé en
argument.

– La traduction de paramétricité. Nous donnons plusieurs variantes dans les façons de la
formuler, dont une, la variante « généreuse » qui nie l’univalence.

Nous montrerons aussi comment ces traductions nient ou préservent certains axiomes tels l’uni-
valence, l’extensionnalité des fonctions, etc.
Ce chapitre a été en grande partie publié dans l’article The next 700 syntactical models of type

theory (Boulier, Pédrot, Tabareau) [BPT17] publié à CPP 2017.

Chapitre 3

Dans un troisième chapitre nous présentons Template-Coq, un plugin de métaprogrammation
pour l’assistant de preuve Coq, ainsi que son application à l’implémentation des traductions
de programme.
La métaprogrammation est l’art d’écrire des programmes — écrits dans un métalangage —
qui manipulent d’autres programmes — écrits dans un langage objet. Dans le contexte de la
théorie des types dépendants, le langage est suffisamment riche pour décrire sa propre syntaxe,
langage objet et métalangage peuvent donc être les mêmes. Template-Coq est un plugin pour
Coq, originellement développé par Malecha, qui donne une représentation des termes de Coq
sous la forme d’un inductif et fournit un mécanisme pour passer d’un terme Coq à sa syntaxe
(quoting) et réciproquement (unquoting).
La représentation de la syntaxe est aussi proche que possible de celle réellement implémen-
tée par Coq. Cela permet de programmer en Coq des fonctions manipulant des termes Coq
comme il est courant de faire en Lisp. Par exemple, on peut programmer une fonction géné-
rant le code d’une fonction show — qui convertit un terme d’un inductif vers une chaîne de
caractère — à partir de la représentation de l’inductif. Cette approche peut être vue comme une
version en théorie des types de designs de programmation fonctionnelle tels Template Haskell
ou MetaML.
Récemment, la réification de Template-Coq a été étendue au typage et aux commandes de
Coq. Le typage, ainsi que la réduction, sont donnés sous la forme de familles inductives qui
expriment que deux termes sont convertibles ou que, dans un contexte Γ , un terme t est de type
A. Cela permet de donner une réelle sémantique aux termes réifiés.
Cela se rapproche des travaux de Altenkirch et Kaposi et de Chapman qui décrivent la syntaxe
et la sémantique d’une théorie des types en Agda. Dans ces travaux, seuls les termes bien typés
font partie de la syntaxe et l’on travaille directement sur les arbres de dérivation du jugement de
typage plutôt que sur des termes non typés. Cependant, l’utilisation de types inductifs-inductifs
dans un cas et inductifs-quotient dans l’autre nécessite un métalangage avec ces possibilités,
ce qui n’est pas le cas de Coq. Mais surtout, et cela est plus problématique en pratique, l’en-
capsulation du typage dans la syntaxe rend son utilisation difficile car une fonction qui produit
un terme doit obligatoirement venir avec une preuve qui assure qu’elle respecte le typage.
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Comme exemple de fonction manipulant la syntaxe, Template-Coq implémente une fonction
d’inférence de type (cette fonction prend en entrée un contexte et un terme et fournit le type du
terme si celui-ci est inférable) et une fonction de typechecking.
L’implémentation de ces fonctions suit leur implémentation en OCaml dans le code source de
Coq. Elle est donc un premier pas vers le bootstrap (i.e. écrire Coq en Coq). Le bootstrap n’est
pas intéressant seulement pour le principe mais parce qu’il permettrait de certifier réellement
des parties du noyau de Coq. Par exemple, l’on pourrait certifier que si la fonction d’inférence
renvoie un type alors son argument est effectivement typable par ce type. Barras a déjà fait un
travail similaire pour un petit sous-ensemble de Coq.
Template-Coq réifie aussi des commandes de Coq à l’aide d’une monade. Les commandes sont
les opérations qui permettent de modifier l’état global courant de Coq : ajouter une définition
globale, déclarer un inductif, changer un paramètre de configuration, . . . La réification des
commandes ouvre un nouveau champ des possibles puisqu’elle permet l’écriture de plugins
Coq en Coq, ce qui rend l’écriture de plugin plus simple. Nous donnerons un exemple de
plugin : un plugin qui ajoute un constructeur à un inductif.
Enfin, nous utiliserons Template-Coq pour implémenter un plugin pour les traductions de pro-
gramme. Ce plugin permet, étant donné un terme ou un type, de calculer son interprétation
dans le modèle syntaxique considéré. Cela permet de justifier des axiomes que l’on ajoute à
Coq en vérifiant que leur interprétation est bien habitée. La réification du typage fournie par
Template-Coq permet de certifier qu’une traduction préserve bien le typage. Implémenter les
traductions en Template-Coq permet de n’avoir qu’une seule implémentation qui est à la fois
utilisable et certifiable. Pour l’instant nous avons implémenté quelques traductions simples
dont la paramétricité mais nous ne les avons pas encore certifiées.
Ce chapitre a été publié en grande partie dans l’article Towards Certified Meta-Programming

with Typed Template-Coq (Abhishek Anand, Simon Boulier, Cyril Cohen, Matthieu Sozeau
and Nicolas Tabareau) [ABC+18] publié à ITP 2018.

Chapitre 4

Dans ce dernier chapitre, nous nous intéresserons à la théorie des types homotopique, HoTT,
et plus précisément aux théories « à deux niveaux » permettant de faire cohabiter une égalité
stricte et une égalité univalente.
Comme déjà évoqué, il y a deux égalités radicalement opposées mais toutes les deux intéres-
santes en théorie des types : l’égalité stricte et l’égalité univalente. L’égalité stricte est très
syntaxique : deux objets sont égaux s’ils sont syntaxiquement les mêmes. À l’inverse, l’égalité
univalente est plus sémantique : deux objets sont égaux s’ils sont isomorphes. Malheureuse-
ment ces deux égalités sont incompatibles.
Voevodsky a été le premier à proposer une théorie qui fait cohabiter les deux en introduisant
la notion de type fibrant. Ce système, appelé Homotopy Type System, reflète en fait ce qui
se passe dans le modèle simplicial de la théorie des types homotopiques. Dans celui-ci, les
types sont interprétés par des ensembles simpliciaux qui sont fibrants et l’égalité homotopique
s’applique à ceux-ci. L’égalité stricte est interprétée par l’égalité de la métathéorie.
La même interprétation des égalités peut être faite dans le modèle cubique de Coquand et. al.

où les ensembles simpliciaux fibrants sont remplacés par des ensembles cubiques fibrants.
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Récemment, Orton et Pitts ont reformulé le modèle cubique dans une théorie des types suppor-
tant un intervalle, c’est-à-dire une théorie avec un type clos I satisfaisant neuf axiomes. On peut
alors, dans cette théorie, définir une catégorie de familles qui correspond au modèle cubique.
Pour cela, il faut définir la notion de fibrance à partir de l’intervalle, l’interprétation des types
identité, etc.
Dans une première partie de ce chapitre, nous proposons une relecture du travail de Orton et
Pitts. En mettant en avant la notion de fibrance dégénérée, nous remarquons qu’ils est possible
d’interpréter directement une variante de Homotopy Type System dans la théorie des types
avec intervalle, sans passer par une catégorie de familles.
La notion de fibrance dégénérée a un autre avantage : elle admet un remplacement fibrant. Dans
une seconde partie, nous définissons ce remplacement fibrant et en explorons les conséquences.
En particulier, nous définissons une structure de modèle sur l’univers des prétypes. Ce qui, à
travers l’interprétation dans le modèle cubique, donne une caractérisation d’une structure de
modèle sur la catégorie des ensembles cubiques. Au passage, nous montrerons comment le
remplacement fibrant peut être utilisé pour donner l’interprétation de certains types inductifs
supérieurs (HIT) dans le modèle cubique.
La fibrance dégénérée a cependant une grosse faiblesse qui est que l’univers des types dégé-
nérément fibrants n’est pas univalent. Donc pour avoir l’univalence, l’on a toujours besoin de
l’univers des types pleinement fibrants, et celui-ci n’est pas définissable de façon interne dans
la théorie des types avec un intervalle.

Formalisations

Plusieurs formalisations, soit en Coq soit en Agda, sont présentées dans cette thèse. Elles sont
disponibles à l’adresse suivante, chacune dans un dossier séparé :

https://gitlab.inria.fr/sboulier/thesis-formalizations

À chaque fois que nous citons un fichier, cela se réfère à ce dépôt. Les noms sont cliquables et
sont des liens direct vers ce dépôt.
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1. Our ship, Martin Löf Type
Theory

This chapter introduces Martin Löf Type Theory: its syntax, some constructions in it, and
some of its models. First, we give a formal system, λΠω, which is a core system for Martin
Löf Type Theory. It is quite minimal: it features only dependent products and a hierarchy of
universes. Section 1.1 is devoted to its introduction. We then consider several separate exten-
sions of this system: some inductive types, cumulativity, an impredicative universe, . . . We
present them in a modular way in Section 1.2. And we quickly compare our idealized system
with the theories implemented by Coq and Agda in Section 1.3. Throughout this thesis, we
will often refer to Homotopy Type Theory and some of its constructions. We introduce them
in Section 1.4. Last we will introduce Categories with Families, a framework of models for
λΠω (Section 1.5) and give an account of a model which we are particularly interested in: the
setoid model (Section 1.6).

This chapter is not intended to be an introduction to the presented results, but rather: 1. a place
to fix notations (that’s unavoidable). 2. a recollection of results which make sense together.

1.1. λΠω

Let us introduce λΠω, our minimal type theory featuring onlyΠ types and universes. Its name
comes from the λΠ-calculus—the system corresponding to first order logic through the Curry-
Howard correspondence—which has only Π types, or dependent products, and from the fact
it has ω universes. We use the framework of Pure Type Systems (PTS), which is a popular
formalism introduced in 80s to study several λ-calculi in a unified framework.
A PTS is a type system parametrized by a set of sorts S and two relations:

– A ⊆ S × S the axioms of the system, used to type sorts

– R ⊆ S × S × S the rules, used to type dependent products

In a Pure Type System, terms and types belong to the same syntactic category, their syntax is
given by:

A, B, M, N ⩴ x | s | M N | λ x ∶ A. M | Π x ∶ A. B (types and terms)

Γ , ∆ ⩴ ⋅ | Γ , x ∶ A (contexts)

where s ∈ S is a sort and x is a variable name. We will say preterms, or raw syntax, when we
want to emphasize the fact that the terms are not necessarily well-typed.
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There is a notion of computation on preterms given by the β-reduction. It is the compatible
closure of:

(λ x ∶ A. M)N →β M{x ≔ N}

The conversion relation M ≃β N is the least equivalence relation containing →β.
The typing rules of a PTS are standard (see e.g. [SU06]), they are given by:

⊢ ⋅

Γ ⊢ A ∶ s

⊢ Γ , x ∶ A

⊢ Γ (x ∶ A) ∈ Γ

Γ ⊢ x ∶ A

⊢ Γ (s, s′) ∈ A

Γ ⊢ s ∶ s′

Γ ⊢ A ∶ s Γ , x ∶ A ⊢ B ∶ s′ (s, s′, s′′) ∈ R

Γ ⊢ Π x ∶ A. B ∶ s′′

Γ , x ∶ A ⊢ M ∶ B Γ ⊢ Π x ∶ A. B ∶ s

Γ ⊢ λ x ∶ A. M ∶ Π x ∶ A. B

Γ ⊢ M ∶ Π x ∶ A. B Γ ⊢ N ∶ A

Γ ⊢ M N ∶ B{x ≔ N}

Γ ⊢ M ∶ B Γ ⊢ A ∶ s A ≃β B

Γ ⊢ M ∶ A

We write A → B for Π x ∶ A. B when x does not occur free in B.

Now, λΠω is the PTS given by the following signature:

S ≔ U0, U1, U2, … (Ui for i ∶ ℕ)

A ≔ (U0 ∶ U1), (U1 ∶ U2), …

R ≔ (Ui, Uj , Umax(i,j))

A few remarks about λΠω:

– λΠω is a full PTS: for all s, s′ ∈ S there exists s′′ ∈ S such that (s, s′, s′′) ∈ R (i.e.

all products are well sorted), and every sort has a sort: for all s ∈ S , there exists s′ ∈ S

such that (s, s′) ∈ A. As such, λΠω enjoys a strong form of type correctness:

If Γ ⊢ M ∶ A then ∃ s, Γ ⊢ A ∶ s

Also, the right premise in the rule of the λ is unnecessary. See for example [Pol92,
Section 4].

– λΠω is a functional PTS: for all s ∈ S , there is at most one s′ ∈ S such that (s, s′) ∈ A

and for all s, s′ ∈ S , there is at most one s′′ ∈ S such that (s, s′, s′′) ∈ R. As such,
λΠω enjoys type uniqueness:

If Γ ⊢ M ∶ A and Γ ⊢ M ∶ A′ , then A ≃β A′.

This property will be weakened when we will introduce cumulativity.

18



1. Our ship, Martin Löf Type Theory

Typed vs untyped conversion In some presentation of type theory, the conversion is typed.
There is a judgment:

Γ ⊢ M ≃β N ∶ A

meaning that M and N are terms of type A and are convertible. For Pure Type Systems, it has
been shown that the two presentations are equivalent by Herbelin and Siles [SH12] relying on
previous works by Adams. This result is far from being trivial because in the untyped setting,
conversion can go through ill-typed terms.
However, the typed conversion can be unavoidable when considering some extensions. For
instance, the η-rule of unit type:

Γ ⊢ M, N ∶ 1

Γ ⊢ M ≃β N ∶ 1

Judgment for type well-formedness In some presentations of type theory, there is a judg-
ment to express that a type is well formed:

Γ ⊢ A

Often, it comes with the fact that terms and types do not belong to same syntactic category.
Such a presentation is heavier (all rules for types have to be duplicated in presence of universes).
However, it is simpler to interpret such a type theory in models, because it decorrelates well-
formedness (the judgment Γ ⊢ A ) and smallness properties (the fact of being in Ui rather that
inUj). We will make the assumption that such a presentation, with a corresponding embedding,
can always be found.

Russell vs Tarski universes There are two ways to introduce universes in Martin Löf Type
Theory, either à la Russell or à la Tarski. In Tarski style, a distinction is made between types
and terms inhabiting a universe while they are the same in Russell style.
In Russell style, we thus have:

Γ ⊢ A ∶ Ui

Γ ⊢ A

Γ ⊢ A ∶ Ui Γ , x ∶ A ⊢ B ∶ Uj

Γ ⊢ Π x ∶ A. B ∶ Uk

Γ ⊢

Γ ⊢ Ui ∶ Ui+1

While in Tarski style, we have:

Γ ⊢ a ∶ Ui

Γ ⊢ Eli a

Γ ⊢ a ∶ Ui Γ , x ∶ Eli a ⊢ b ∶ Uj

Γ ⊢ πi,j,k (x ∶ Eli a). b ∶ Uk

Γ ⊢

Γ ⊢ ui ∶ Ui+1

Elk (πi,j,k (x ∶ Eli a). b) ≃β Π x ∶ Eli a. Elj b Eli+1 ui ≃β Ui

In Tarski style, elements of a universe U are called codes and the operator El is the decoding

function. Pure Type System use Russell style and there is even no judgment to express that a
type is well-formed (Γ ⊢ A).
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Russell style is often seen as informal style and Tarski style as its formal version. In [Ass14],
Assaf proves that they are indeed equivalent. The result still holds in presence of cumulativity
but much care has to be taken in the design of coercions (see below).
Type systems often use Russell style (it is the case for λΠω, Coq and Agda) but models of-
ten use Tarski style (Categories with Families for instance, see Section 1.5) that’s why the
translation of Assaf from Russell to Tarski is very useful.

1.2. Extensions of λΠω

λΠω is a minimal framework, and usable type theories, such as those implemented by proof
assistants, always enjoy much more features. We review here some of such extensions.

1.2.1. Core extensions

Cumulativity

Cumulativity is the fact that any type at level i is also a type at level j for j greater than i. With
cumulativity, Ui is not only of type Ui+1:

Ui ∶ Ui+1

but also included in it:
Ui ⊆ Ui+1

Cumulativity is studied in the framework of Cumulative Type Systems introduced by Bar-
ras [Bar99, BG05]. In this setting, cumulativity is defined with a subtyping relation. Here we
will only consider a weaker notion of cumulativity given by the rule:

Γ ⊢ A ∶ s

Γ ⊢ A ∶ N (s)

where for each sort s, N (s) is the unique sort such that (s, N (s)) ∈ A. It is weaker because
we don’t have that a term of type A → s is also of type A → N (s).
We will write λΠω+ ⊆ to denote our system extended with cumulativity.

Remark. In Tarski style, cumulativity is introduced by coercion functions ↑i∶ Ui → Ui+1.

Γ ⊢ a ∶ Ui

Γ ⊢ ↑i a ∶ Ui+1

To preserve the equivalence between Russell and Tarski styles, equations on coercions have to
be considered such as:

π1,1,1 (x ∶ El1 a). ↑1 b ≃β π1,0,1 (x ∶ El1 a). b

See [Ass14] for the complete set of rules.
In Russell style, the cumulativity rule is not syntax-directed. On the contrary, thanks to coer-
cions, it is the case in Tarski style.
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η-conversion

The conversion relation ≃β that we introduced so far only considers β-reduction. However, it
is common to consider richer relations. And first of all, the η-reduction:

λ x ∶ A. (M x) →η M

We write M ≃βη N for the least congruence containing →β and →η.
Unfortunately, η-conversion breaks the Church-Rosser property on preterms. Here is a well-
known example due to Nederpelt. Let M be λ x ∶ A. (λ y ∶ B. y) x, then M →β λ x ∶ A. x

and M →η λ y ∶ B. y. Both terms are in normal form but they are not convertible if A and B

are not. Hopefully, Church-Rosser remains true on well-typed terms in strongly normalizing
systems such as λΠω. See [Geu92] for a more detailed account.
The η-conversion also interacts badly with cumulativity: the combination of both breaks sub-
ject reduction: if f is of type U1 → U0, then λ x ∶ U0. f x is of type U0 → U1 and η-reduces
to f of type U1 → U0 (example taken from [Her09]).

Remark. The η-conversion makes the type checking harder, that’s why many works on the
topic use a typed conversion. In Coq, conversion is untyped. To deal with η-conversion, Coq
implements the rules:

M ≃βη N x

λ x ∶ A. M ≃βη N

M x ≃βη N

M ≃βη λ x ∶ A. N

[Gog05] reviews several algorithms to deal with ≃βη.

There is also a notion of η-reduction for some other type constructors such as dependent sums
and unit, we will introduce them later.

Impredicative universe

We introduce a new sort ℙ called “Prop” the universe of propositions:

S ≔ … ∣ ℙ

This universe has type U0 (that is why it is sometimes noted U−1)1:

A ≔ … ∣ (ℙ ∶ U0)

This universe features impredicativity, meaning that, whatever the universe level of A, if B
lives in ℙ, so does Π x ∶ A. B:

R ≔ … ∣ (ℙ,Ui,Ui) ∣ (s,ℙ,ℙ) for any sort s

The system λΠω+ ⊆ + ℙ is called CC!, the Calculus of Construction with ! universes, in
reference to the Calculus of Constructions of Coquand and Huet [CH86]. There are several
variants of CC! depending on whether the cumulativity passes under products or not.

1In Coq, ℙ has type U1 for historical reasons.

21



1. Our ship, Martin Löf Type Theory

There are two features which can be expected for an impredicative universe: proof irrelevance
and propositional extensionality. Proof irrelevance is the fact that all proofs of a proposition
are equal:

PI ≔ Π (A ∶ ℙ) (p, q ∶ A). p =A q

Propositional extensionality is the fact that logically equivalent propositions are equal:

PropExt ≔ ΠA B ∶ ℙ. (A → B) → (B → A) → A =ℙ B

Proposition extensionality implies proof irrelevance because an inhabited proposition is equal
to ⊤ (or any other contractible type) which has all its inhabitants equal.
Both axioms are independent of λΠω. For propositional extensionality, a proof of indepen-
dence is given in Section 2.2.3.

1.2.2. Inductive types

To do some interesting mathematics, we need some data structures to reason about them. The
main way to introduce new data structures in type theory are inductive types. Some others are
definitions (in particular with impredicative encodings) and coinductive types. Inductive types
are generated by constructors, and their eliminators allow to reason on them by structural
induction. There are some general schemes describing mutual inductive families [Tea], or
induction-recursion [Dyb00]. We will not bother with such a generality and only consider
some examples.

Natural numbers The type of natural numbers is the archetype of inductive types. ℕ is a
closed type which has two constructors zero, written 0, and successor, writtenS. It is described
by the following typing rules:

Γ ⊢

Γ ⊢ ℕ ∶ Ui

Γ ⊢

Γ ⊢ 0 ∶ ℕ

Γ ⊢

Γ ⊢ S ∶ ℕ → ℕ

Γ ⊢ P ∶ ℕ → s Γ ⊢ t0 ∶ P 0 Γ ⊢ tS ∶ Π n ∶ ℕ. P n → P (S n)

Γ ⊢ nat_ind(P , t0, tS ) ∶ Π n ∶ ℕ. P n

The β-reduction for ℕ is given by the rules:

nat_ind(P , t0, tS ) 0 →β t0 nat_ind(P , t0, tS ) (S t) →β tS (nat_ind(P , t0, tS ) t)

We chose to haveℕ of typeUi and not onlyU0—that is to say to haveℕ universe polymorphic—
in order to be usable even without cumulativity (as in Agda for instance).

0, 1 and 2 We will need the empty type 000, the unit type 1 and the type of booleans B. They
have respectively zero, one and two elements.
The empty type has no constructor and its eliminator allows to define a term of every type:

Γ ⊢

Γ ⊢ 000 ∶ Ui

Γ ⊢ A ∶ s Γ ⊢ t ∶ 000

Γ ⊢ !At ∶ A
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The unit type as only one constructor tt:

Γ ⊢

Γ ⊢ 1 ∶ Ui

Γ ⊢

Γ ⊢ tt ∶ 1

Γ ⊢ P ∶ 1 → s Γ ⊢ ttt ∶ P tt

Γ ⊢ unit_ind(P , ttt) ∶ Π t ∶ 1. P t

unit_ind(P , ttt) tt →β ttt

The type of booleans has two constructors, its eliminator is written with an if-then-else notation
(although dependently typed):

Γ ⊢

Γ ⊢ B ∶ Ui

Γ ⊢

Γ ⊢ true ∶ B

Γ ⊢

Γ ⊢ false ∶ B

Γ ⊢ b ∶ B Γ ⊢ P ∶ B → s Γ ⊢ ttrue ∶ P true Γ ⊢ tfalse ∶ P false

Γ ⊢ if b ret P then ttrue else tfalse ∶ P b

if true ret P then ttrue else tfalse →β ttrue if false ret P then ttrue else tfalse →β tfalse

Σ types Σ types, or dependent sums, generalize the (non-dependent) cartesian productA×B.
They are the first example of parametrized inductive types, i.e. inductive type in a non-empty
context. Here we introduce negative Σ types which have two projections π1 and π2. Positive

Σ types would have only one eliminator given by pattern-matching.

Γ ⊢ A ∶ Ui Γ , x ∶ A ⊢ B ∶ Uj

Γ ⊢ Σ x ∶ A. B ∶ Umax(i,j)

Γ ⊢ M ∶ A Γ ⊢ N ∶ B{x ≔ N} Γ , x ∶ A ⊢ B ∶ Ui

Γ ⊢ (M, N) ∶ Σ x ∶ A. B

Γ ⊢ M ∶ Σ x ∶ A. B

Γ ⊢ π1(M) ∶ A

Γ ⊢ M ∶ Σ x ∶ A. B

Γ ⊢ π2(M) ∶ B
{
x ≔ π1(M)

} π1( (M, N) ) →β M π2( (M, N) ) →β N

We write A × B for Σ x ∶ A. B when x does not occur in B.
At some point, we will also consider the η-rule of Σ types:

(π1(M), π2(M)) →η M

This rule is called surjective pairing.
The Extended Calculus of Constructions (ECC) of Luo [Luo89] is λΠω+ ⊆ + ℙ + Σ.

1.2.3. Propositional equality

Equality is one of the intricate features of type theory, and it is still heavily investigated. We
distinguish propositional equality M = N which is the relation induced by a notion of identity
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types (which are the types of proofs of this equality), from definitional equality M ≃β N ,
the relation induced by conversion, which is much more syntactic. In general, definitional
equality implies propositional equality but the converse does not hold, except in Extensional
Type Theory where they coincide (see below).
Identity types were first introduced by Martin-Löf and then reformulated as an inductive family
by Paulin-Mohring. Using a Coq syntax, this inductive family is given by:

Inductive eq (A ∶ U) (x ∶ A) ∶ A → U ≔

∣ ref l= ∶ eq A x x

This can be rephrased by the following rules:

Γ ⊢ A ∶ Ui Γ ⊢ t, u ∶ A

Γ ⊢ t =A u ∶ Ui

Γ ⊢ t ∶ A

Γ ⊢ ref l= t ∶ t =A t

Γ ⊢ p ∶ t =A u Γ , y ∶ A, q ∶ t =A y ⊢ P ∶ Ui Γ ⊢ v ∶ P
{
y ≔ t, q ≔ ref l= t

}

Γ ⊢ J=(y.q.P , p, v) ∶ P {y ≔ u, q ≔ p}

J=(y.q.P , ref l= t, v) →β v

The only constructor is ref l= which asserts that two convertible terms are propositionally
equal. J= is the elimination principle, it contains the non-dependent elimination principle
called, Leibniz principle, or transport:

transportA ∶ Π (P ∶ A → s) (x, y ∶ A). x =A y → P x → P y

We will write p #P u ≔ transport P _ _ p u the transport of u along p in P .
Even if the constructor only allows to equate convertible terms, propositional equality is already
more powerful than conversion because of the ability to refer to the type of equalities and to
make equality assumptions. For instance we can prove equalities like:

Π n ∶ ℕ. n + 0 =ℕ n

which does not hold definitionally if + is defined by induction on its left argument. The proof
goes by induction on the natural number.

While already powerful, we can ask for more. They are two main directions in which propo-
sitional equality can be pushed: toward a strict equality or toward a univalent equality. Strict
equality enjoys UIP while the univalent one enjoys univalence. In the rest of this thesis we
write M ≡A N , ref l≡ and J≡ for a propositional equality intended to be strict (even it does
not satisfy any additional axioms) and M =A N , ref l= and J= for one intended to be univa-
lent. The notation # will refer to transport of either one equality or the other depending on the
context.
In Chapter 4 we will introduce Two Level Type Theory, a type theory in which strict and
univalent equalities live together.
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Strict equality

Strict equality is an equality close to conversion. In the empty context, it holds when the
compared terms are syntactically the same.
The typical feature of strict equality is Uniqueness of Identity Proofs (UIP), this principle as-
serts that all proofs of strict equality are equal. It can be stated as the following axiom:

UIPi ≔ Π (A ∶ Ui) (M, N ∶ A) (p, q ∶ M ≡A N). p ≡M≡N q

This axiom is universe polymorphic as it depends on the universe level i. So, in fact, it is rather
an axiom schema, intended to hold for each level. It will be the same for many other axioms.
UIP has been shown to be independent of Martin Löf Type Theory by Hofmann and Stre-
icher [HS98] with the groupoid interpretation of type theory. In this model, each type is in-
terpreted by a groupoid (a category in which every morphism is invertible) and identity types
are interpreted by the sets of morphisms. This model negates UIP because there are groupoids
with non-equal parallel arrows.
It is worth remarking that UIP looks like proof irrelevance. And indeed, in Coq, the equality is
typed in ℙ (whatever the sort of A). This requires singleton elimination to enable elimination
of a proof of equality toward a type which is not in ℙ. See the the Coq Manual [Tea] for details.

Another axiom which can be required for strict equality is function extensionality, meaning
that two pointwise equal functions are equal (which is the way functions are compared in set
theory):

FunExti,j ≔ Π (A ∶ Ui) (B ∶ A → Uj) (f, g ∶ Π x ∶ A. B x). (Π x. f x ≡ g x) → f ≡ g

Extensional Type Theory We emphasized the fact that strict equality is “close to conver-
sion”. Extensional Type Theory (ETT) pushes all the way this principle and includes strict
equality in the conversion by the reflection rule:

Γ ⊢ e ∶ M ≡A N

Γ ⊢ M ≃β N ∶ A

The reflection rule can greatly simplify some proof terms. But alas, the reflection rule makes
type checking undecidable. That is why few proof assistants try to implement ETT. Conversely,
a type theory without the extension rule is called Intensional Type Theory.
It has been shown that Extensional Type Theory can be translated toward Intensional Type
Theory by Oury [Our05] and Winterhalter et. al. [WST18]. In this last work, from a typing
derivation Γ ⊢ETT t ∶ A, they get Γ ′, t′ and A′—which are decorated versions of the original
terms with some transports—such that Γ ′ ⊢ t′ ∶ A′ is derivable in Martin Löf Type Theory
with a strict equality enjoying FunExt and UIP. The need for FunExt and UIP in the target
theory is unavoidable because both axioms follow from the reflection rule.
In light of this result, conversion can be seen as a subset of strict equality that is taken as big as
possible while retaining a decidable type checking. Remark: in between, there is conversion
with η on recursive types (e.g. ℕ).
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Univalent equality

More recently, equality has been pushed in another, totally different, direction: the beautiful
world of Homotopy Type Theory (HoTT). This time, equality is very semantical and this notion
of equality is close to the notion of isomorphism. This intuition is especially valid for equality
between types because univalence axiom implies that an equality between two types A =U B

is an equivalence, i.e. an “isomorphism of types”.
In HoTT, we don’t have UIP anymore so we can have two proofs of an equality which are not
necessarily equal:

p, q ∶ x =A y p ≟ q

This corresponds to the fact that between two types, there can be several equivalences which
are not equal.
The distinctive feature of a univalent equality is, of course, the univalence axiom. We will
introduce it in section 1.4. Let’s remark here that univalence implies function extensionality.
FunExt is hence a common feature of strict and univalent equality. Propositional extensionality
is a form of univalence for propositions of ℙ.

Different notions of equivalence The different notions of equality implies different no-
tions of equivalence between types. Let f ∶ A → B be a map such that there exists g ∶ B → A

such that
g◦f ⋈ idA and f◦g ⋈ idB

We will say that f is:

– a type isomorphism if ⋈ is the conversion ≃β.

We will write A ≅β B. E.g. A × B ≅β B × A (with surjective pairing).

– a strict equivalence if ⋈ is the strict equality ≡.

We will write A ≅ B. E.g. ℕ ≅ list B .

– an equivalence if ⋈ is the univalent equality =.

We will write A ≃ B. E.g. (A → U) ≃ (ΣB ∶ U. B → A) .

Additionally, A andB will be said logically equivalent, writtenA ↔ B, if the two mapsA → B

and B → A exist without further requirements. This is especially meaningful when A and B

are propositions or h-propositions.
In fact, we will redefine the equivalences with a logically equivalent definition, see Section 1.4.

1.2.4. Streams

Let’s introduce streams, which will be our example of coinductive type. Streams of type A are
infinite lists of elements of type A. They have two destructors head and tail and can be built
by corecursion.
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Γ ⊢ A ∶ Ui

Γ ⊢ stream A ∶ Ui

Γ ⊢ M ∶ stream A

Γ ⊢ hdM ∶ A

Γ ⊢ M ∶ stream A

Γ ⊢ tl M ∶ stream A

Γ ⊢ S ∶ Ui Γ ⊢ M0 ∶ S → A Γ ⊢ M1 ∶ S → S Γ ⊢ N ∶ S

Γ ⊢ stream_corec S M0 M1 N ∶ stream A

hd (stream_corec S M0 M1 N) →β M0 N

tl (stream_corec S M0 M1 N) →β stream_corec S M0 M1(M1 N)

Propositional equality often behaves quite poorly on coinductive types, and two streams which
are morally the same cannot be proved equal. Therefore, we introduce another notion of equal-
ity for streams: bisimulation. Two streams are bisimilar when their heads are propositionally
equal and their tails are themselves bisimilar.
Bisimulation is thus the coinductive family given by:

Γ ⊢ A ∶ Ui Γ ⊢ M, N ∶ stream A

Γ ⊢ bisim A M N ∶ Ui

Γ ⊢ M ∶ bisim A N1 N2

Γ ⊢ hdb M ∶ hdN1 =A hdN2

Γ ⊢ M ∶ bisim A N1 N2

Γ ⊢ tlb M ∶ bisim A (tlN1) (tl N2)

Γ ⊢ S ∶ stream A → stream A → Ui

Γ ⊢ M0 ∶ Π s0 s1 ∶ stream A. S s0 s1 → hd s0 =A hd s1
Γ ⊢ M1 ∶ Π s0 s1 ∶ stream A. S s0 s1 → S (tl s0) (tl s1) Γ ⊢ N ∶ S P0 P1

Γ ⊢ bisim_corec S M0 M1 P0 P1 N ∶ bisim A P0 P1

hdb (bisim_corec S M0 M1 P0 P1 N) →β M0 P0 P1 N

tlb (bisim_corecSM0 M1 P0 P1 N) →β bisim_corecSM0 M1 (tlP0) (tlP1) (M1 P0 P1 N)

In general, bisimulation does not imply propositional equality, we call stream extensionality

this fact:

StreamExti ≔ Π (A ∶ Ui) (s1 s2 ∶ stream A). bisim A s1 s2 → s1 =streamA s2

We will prove in section 2.2.2 that StreamExt is independent of λΠω.

1.3. Coq and Agda

Coq and Agda are two proof assistants implementing some variants of Martin Löf Type Theory.
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Inductive nat : Set ≔
| O : nat

| S : nat → nat.

Fixpoint plus (n m : nat) : nat

≔ match n with

| O ⇒ m

| S n ⇒ S (plus n m)

end.

data nat : Set where

O : nat

S : nat → nat

plus : (n m : nat) → nat

plus O m = m

plus (S n) m = S (plus n m)

Figure 1.1.: Coq and Agda definitions of nat and plus

Both have all inductive types, inductive families and even more (coinductive types, inductive-
inductive types for Agda, . . . ). In Coq, elimination of inductive types is given by pattern-
matching and fixpoints. In Agda, pattern-matching and recursion are only accessible “at top-
level” when defining a function (as in Haskell for instance). We give the example of natural
numbers inductive type and plus function in Figure 1.1. Agda pattern-matching is more pow-
erful than the one of Coq because, except in presence of --witout-K option, it can proves UIP.

In both proof assistants implicit arguments are written in curly braces { }. It doesn’t look like
it but implicit arguments and their inference constitute a crucial feature for making a depen-
dently typed language usable. When we write type theory on paper, we will often omit some
“implicit arguments” even if we did not declare it.

Agda as an explicit hierarchy of universes:

Set : Set1 : Set2 . . .

This hierarchy is not cumulative. Universe polymorphism has to be introduced by hand with a
quantification over Level. For instance polymorphic unit type is introduced by:

data unit {l : level} : Set l where

tt : unit

Agda used to not have a Prop universe but recently2 Cockx reintroduced it in Agda. This Prop
universe enjoys definitional proof irrelevance. We did not have time to try to use it.
In Coq, the hierarchy is cumulative. The universe levels are hidden and handled automatically,
this gives “type-in-type in practice”, but avoiding Girard paradox. Hence we have

Type : Type

but in fact the two Types refer to different universes. The universe “Type0” at the bottom of the
hierarchy is the only one directly accessible and is written Set. There is also an impredicative

2Commit 7dda192 on Agda repository, on 2018, May 21
See also https://gist.githubusercontent.com/jespercockx/d7e0885f2078e0c0a54de99117226ac4/raw/da623c143c8922a8459ba136075e6be506b6ba28/

PropRezz.agda

28

https://github.com/agda/agda/commit/7dda192
https://gist.githubusercontent.com/jespercockx/d7e0885f2078e0c0a54de99117226ac4/raw/da623c143c8922a8459ba136075e6be506b6ba28/PropRezz.agda
https://gist.githubusercontent.com/jespercockx/d7e0885f2078e0c0a54de99117226ac4/raw/da623c143c8922a8459ba136075e6be506b6ba28/PropRezz.agda


1. Our ship, Martin Löf Type Theory

universe Prop.

We will also use some records, both in Agda and Coq. Records are likeΣ types but with named
fields. There are used to introduce mathematical structures (groups, categories, . . . ).
Both proof assistants have η-conversion for functions. Agda have η-conversion for all records.
In Coq, η-conversion for records is only available for some of them. First, the record has to
be declared with Set Primitive Projections option. And moreover, as the conversion is
untyped in Coq, it is not available for empty and unit records.

To help distinguishing Coq and Agda code we use background colors and .

1.4. Homotopy Type Theory

As we have said, Homotopy Type Theory is the investigation of worlds with higher equalities.
We devote it a section because several intuitions of this thesis come from HoTT. Moreover one
of the goals of the last chapter of this thesis is to describe the cubical model of Homotopy Type
Theory. The unavoidable reference for Homotopy Type Theory is the “HoTT book” [Pro13]
which was collectively written.

Dependent elimination gives to identity types a groupoid, and even an ∞-groupoid, structure.
Composition and symmetry are written this way:

p ∶ x =A y ⊢ p-1 ∶ y =A x

p ∶ x =A y, q ∶ y =A z ⊢ p · q ∶ x =A z

And they obey groupoidal laws such as “p · p-1 = ref l= ”. There are tons of such groupoidal
laws and one difficulty when formalizing theorems in HoTT is to find the right one at each
time. Let’s emphasize two laws which are particularly useful:

ap ∶ Π (A, B ∶ Ui) (f ∶ A → B) (x, y ∶ A). x =A y → f x =B f y

apD ∶ Π (A ∶ Ui) (B ∶ A → Uj) (f ∶ Π x. B x) (x, y ∶ A) (p ∶ x =A y). p #B f x =B y f y

ap10 ∶ Π (A, B ∶ Ui) (f, g ∶ A → B) (x ∶ A). f =A→B g → f x =B g x

h-Levels A type can have non-trivial higher identity types, to quantify how high they are,
HoTT introduces the notion of homotopy level.

– A type A is contractible, or (-2)-truncated, if it is inhabited and all its elements are equal:

Σ x ∶ A. Π y ∶ A. x =A y

We write Contr A . Famous examples of contractible types are unit and singleton types:

Σ x ∶ A. x =A x0 and Σ x ∶ A. x0 =A x

This is known as contractibility of singletons.
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– A type A is an h-proposition, or (-1)- truncated, if all its elements are equal:

Π x, y ∶ A. x =A y

– A type A is an h-set, or 0-truncated, if its identity types are h-propositions:

Π (x, y ∶ A) (p, q ∶ x =A y). p =x=y q

Types with a decidable equality (such as ℕ, B, . . . ) are h-sets, this is Hedberg theorem.

The equivalences preserve h-levels: if A ≃ B and if A is n-truncated, then B is n-truncated.
The hierarchy is cumulative (if A is n-truncated, then it is (n + 1)-truncated) and goes on for
n ≥ −2. See Chapter 7 of the HoTT book.

Equivalences We have already defined equivalences in Section 1.2.3 but there was some-
thing missing in the definition. A map f ∶ A → B is said to be an equivalence when the
following type is inhabited:

IsEquiv(f ) ≔

Σ (g ∶ B → A) (η ∶ Π x. g (f x) = x) (ε ∶ Π x. f (g x) = x). Π x. ap f (η x) = ε (g x)

This type is logically equivalent to the previous definition but the additional coherence makes
it an h-proposition, which is nice because it makes its inhabitants irrelevant.
An equivalent characterization of equivalences is that they have their fibers contractible:

IsEquiv′(f ) ≔ Π y ∶ B. Contr (Σ x ∶ A. f x =B y)

We will use this definition in chapter 4.

We say that two types A and B are equivalent, written A ≃ B, when there exists a map form
A to B which is an equivalence:

A ≃ B ≔ Σf ∶ A → B. IsEquiv(f )

For every type A the identity map A → A is an equivalence and thus provides:

idequivA ∶ A ≃ A

And thus, given a proof of A =U B we can get an equivalence A ≃ B by transport:

paths_to_equivA,B ∶ A =U B → A ≃ B

≔ λ p. p #λB. A≃B idequivA

At last, we can state univalence which asserts that the only way to build an equality proof
between two types is, up to equivalence, to give an equivalence:

Univalencei ≔ ΠA, B ∶ Ui. IsEquiv (paths_to_equivA,B)

Univalence is an axiom full of very interesting consequences. Let’s only mention one of them:

Proposition 1. Univalence implies function extensionality.

Proof. See [Pro13, Section 4.9].
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1.4.1. Higher Inductive Types and Quotient Inductive Types

Another important concept of Homotopy Type Theory is Higher Inductive Types. Higher

Inductive Types (HITs) are inductive types which have constructors not only for elements of
the type but also for equalities between elements of the type. Quotient Inductive Types (QITs)
are their counterpart for strict equality.
The first reference for Higher Inductive Types is still the HoTT book, Chapter 6 this time.
Higher Inductive Types are a very active topic of research. Indeed, both the syntax and the
semantics of HITs is still uncertain. They are hence introduced through examples.
One of the simplest examples of HIT is the circle:

HIT S
1 ∶ U0 ≔

∣ base ∶ S
1

∣ loop ∶ base =S1 base

The circle S1 is a closed type. The constant base is an element of S1 and loop an equality
between base and itself. The elimination principle of such an HIT is as follows:

⊢ P ∶ S
1 → U ⊢ base′ ∶ P base ⊢ loop′ ∶ loop #P base′ ≡P base base

′

⊢ S
1_ind(P , base′, loop′) ∶ Πw ∶ S

1. P w

S
1_ind(P , base′, loop′) base →β base′ apD (S1_ind(P , base′, loop′)) loop = loop′

Here the computation rule on loop is stated with the univalent equality. However when a strict
equality is available it is often this one which is used.
Then, there are more complicated HITs. For instance the recursive ones, like propositional
truncation for A ∶ Ui :

HIT ‖A‖ ∶ Ui ≔

∣ ι ∶ A → ‖A‖
∣ eq ∶ Π x, y ∶ ‖A‖. x =‖A‖ y

The difficulty here is that the quantification in the type of eq is on ‖A‖, the type being defined.
And some introduce higher equalities like the torus:

HIT T
2 ∶ U0 ≔

∣ b ∶ T
2

∣ p ∶ b =T 2 b

∣ q ∶ b =T 2 b

∣ s ∶ p ·q =b=b q ·p

QITs Quotient Inductive Types are the counterpart of HITs for strict equality. They are
introduced following the same schema. However, higher equalities are pointless because of
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UIP. They satisfy similar elimination principles where univalent equalities are replaced by
strict ones.
Particular examples of QIT are Quotient Types. Quotient Types were introduced by Hofmann
in his thesis [Hof12]. They are as follows. Let A ∶ Ui be a type and R ∶ A → A → Ui a
relation, then A∕R is the quotient of A by the equivalence relation generated by R.

Quotient A∕R ∶ Ui ≔

∣ ι ∶ A → A∕R

∣ eq ∶ Π x, y ∶ A. Rx y → ι x ≡A∕R ι y

A∕R is a type of Ui, ι is the projection in the quotient, it is of type A → A∕R , and eq is of
type Π x, y ∶ A. Rx y → ι x ≡A∕R ι y and asserts that the elements of the same equivalence
class are equal.
The quotient satisfies the following elimination principle:

⊢ P ∶ A∕R → U

⊢ ι′ ∶ Π x ∶ A. P (ι x) ⊢ eq′ ∶ Π (x, y ∶ A) (r ∶ R x y). (eq r) # (ι′ x) ≡ ι′ y

⊢ quo_ind(P , ι′, eq′) ∶ Πw ∶ A∕R. P w

quo_ind(P , ι′, eq′) (ι x) →β ι′ x

Hence Quotient Types are a simple form of QIT where the relation has to be previously defined.
In Section 4.2.2, we will us a QIT which is not a Quotient Type.

Both HITs and QITs break canonicity. This is one of the issues restraining their implementation
in proof assistants. Let us notice that Lean proof assistant implements quotient types (at the
price of losing canonicity) [AdK15]. However, they are not expected to endanger consistency.
For instance, Li [Li15] has shown that the setoid model of Altenkirch [Alt99] supports quotient
types.
Let’s finish with a remarkable fact. In presence of Quotient Types, FunExt (for ≡) is derivable.
And similarly in presence of HITs, FunExt for = is derivable. See for example the HoTT book
Section 6.3 for a proof.
A nice overview of the triad HITs / QITs / QTs can be found in Kaposi’s thesis [Kap17]. An
account of QITs (and even QIITs) has been recently published by Altenkirch et. al. [ACD+18].

1.5. Semantic models of λΠω

In this section we review what is a model of Martin Löf Type Theory, that is to say, what is
the structure needed on a space (generally, a category) to interpret a dependent type theory
like λΠω in it. In particular, a model has to describe how to interpret the conversion and the
substitution which are at the heart of dependent type theory.
Display map categories, Categories with attributes, . . . there are lots of notions of categori-
cal models for type theory. See [NLaa] for a list, and [ALV17] for a comparison of some of
them. In this thesis, we will use one of the closest to the syntax of Martin Löf Type Theory:

32



1. Our ship, Martin Löf Type Theory

Categories with Families. A Category with Families (CwF) is a category which models con-
texts equipped with more structure to model types, terms and context morphisms. They were
introduced by Dybjer in [Dyb95], see also [Hof97] for a good presentation.
Here, we introduce Categories with Families in a very pedestrian way, and let the reader refer
to the presentations of Dybjer and Hofmann for a more abstract point of view. The presenta-
tion we choose is the one of Altenkirch and Kaposi [AK16b]. In this work, they build an initial
CwF, we present it in Section 1.5.2. We heavily rely on Kaposi’s formalization [Kap] and the
following code is directly borrowed from there. Kaposi initially conducted its formalization
in Agda but we replayed some parts in Coq to formalize the Setoid model in a version of Coq
with definitional proof irrelevance. So we start in Agda and will switch to Coq in Section 1.6.

A Category with Families is given by four type families:
– Con the type of well-formed contexts

– Ty Γ the type of well formed types in the context Γ

– Tms Γ ∆ the type of context morphisms between Γ and ∆

– Tm Γ A the type of terms of type A
equipped with some operations. The structure of category is then given by Con (the objects)
and Tms (the morphisms).
By context morphisms, between Γ and ∆, we mean a tuple of terms (t0, … , tn) such that if ∆
is x0 ∶ A0, … , xn ∶ An then:

Γ ⊢ t0 ∶ A0

Γ ⊢ t1 ∶ A1

{
x0 ≔ t0

}

⋯

Categories with Families interpret the conversion by the propositional equality of the metathe-
ory (which here is ≡, the propositional equality of Agda).

Below are the type families and operations that define a CwF, all gathered in a record3:

record CwF {l} : Set l where

field

Con : Set l

Ty : Con → Set l

Tms : Con → Con → Set l

Tm : (Γ : Con) → Ty Γ→ Set l

∙ : Con

_,_ : (Γ : Con) → Ty Γ→ Con

_[_]T : ∀{Γ ∆} → Ty ∆→ Tms Γ ∆→ Ty Γ

id : ∀{Γ } → Tms Γ Γ

3Maybe “brutish” should be more accurate than “pedestrian” . . .
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_◦_ : ∀{Γ ∆Σ } → Tms ∆Σ→ Tms Γ ∆→ Tms Γ Σ

ε : ∀{Γ } → Tms Γ ∙

_,s_ : ∀{Γ ∆}(σ : Tms Γ ∆){A : Ty ∆}

→ Tm Γ (A [ σ]T) → Tms Γ (∆ , A)

π1 : ∀{Γ ∆}{A : Ty ∆} → Tms Γ (∆ , A) → Tms Γ ∆

_[_]t : ∀{Γ ∆}{A : Ty ∆} → Tm ∆A → (σ : Tms Γ ∆)

→ Tm Γ (A [ σ]T)

π2 : ∀{Γ ∆}{A : Ty ∆}(σ : Tms Γ (∆ , A))

→ Tm Γ (A [ π1σ ]T)

[id]T : ∀{Γ }{A : Ty Γ } → A [ id ]T ≡A
[][]T : ∀{Γ ∆Σ }{A : Ty Σ }{σ : Tms Γ ∆}{δ : Tms ∆Σ }

→ (A [ δ]T [ σ]T) ≡(A [ δ ◦ σ ]T)

idl : ∀{Γ ∆}{δ : Tms Γ ∆} → (id ◦δ) ≡δ
idr : ∀{Γ ∆}{δ : Tms Γ ∆} → (δ ◦id) ≡δ
ass : ∀{∆ ΓΣΩ}{σ : Tms ΣΩ}{δ : Tms Γ Σ }

{ν : Tms ∆Γ }

→ ((σ ◦δ) ◦ν) ≡(σ ◦ (δ ◦ ν))

,◦ : ∀{Γ ∆Σ }{δ : Tms Γ ∆}{σ : Tms Σ Γ }{A : Ty ∆}

{a : Tm Γ (A [ δ]T)}

→ (δ ,s a) ◦σ

≡ (δ ◦ σ) ,s coe (TmΓ = [][]T) (a [ σ]t)

π1β : ∀{Γ ∆}{A}{δ : Tms Γ ∆}{a : Tm Γ (A [ δ]T)}

→ (π1 (δ ,s a)) ≡δ
πη : ∀{Γ ∆}{A : Ty ∆}{δ : Tms Γ (∆ , A)}

→ (π1 δ,s π2 δ) ≡δ
εη : ∀{Γ }{σ : Tms Γ ∙}

→ σ≡ ε

π2β : ∀{Γ ∆}{A}{δ : Tms Γ ∆}{a : Tm Γ (A [ δ]T)}

→ (π2 (δ ,s a))

≡[ TmΓ = (ap (λ z → A [ z ]T) π1β) ]≡ a

We thus have three levels of objects:
– the four type families (Con to Tm)

– the constructors (∙ to π2) enabling to inhabit the type families

– and the equalities ([id]T to π2β) which are supposed to hold on the terms of the type
families.

For the moment, we can only interpret substitution and conversion but no type or term former.
This part is called the substitution calculus. To interpret richer theories, the CwF needs more
structure, which can be assumed in a modular way, in the same spirit that when we considered
extensions of λΠω.
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A CwF is said to support Π types if it comes with the following additional structure:

Π : ∀{Γ }(A : Ty Γ )(B : Ty (Γ , A)) → Ty Γ

Π[] : ∀{Γ ∆}{σ : Tms Γ ∆}{A : Ty ∆}{B : Ty (∆ , A)}

→ ((Π A B) [ σ]T) ≡(Π (A [ σ]T) (B [ σ^ A ]T))

lam : ∀{Γ }{A : Ty Γ }{B : Ty (Γ , A)} → Tm (Γ , A) B

→ Tm Γ (Π A B)

app : ∀{Γ }{A : Ty Γ }{B : Ty (Γ , A)} → Tm Γ (Π A B)

→ Tm (Γ , A) B

lam[] : ∀{Γ ∆}{δ : Tms Γ ∆}{A : Ty ∆}{B : Ty (∆ , A)}

{t : Tm (∆ , A) B}

→ ((lam t) [ δ]t)

≡[ TmΓ = Π[] ]≡ (lam (t [ δ^ A ]t))

Πβ : ∀{Γ }{A : Ty Γ }{B : Ty (Γ , A)}{t : Tm (Γ , A) B}

→ (app (lam t)) ≡t
Πη : ∀{Γ }{A : Ty Γ }{B : Ty (Γ , A)}{t : Tm Γ (Π A B)}

→ (lam (app t)) ≡t

A CwF is said to support a universe (à la Tarski) if it comes with the following additional
structure:

U : ∀{Γ } → Ty Γ

U[] : ∀{Γ ∆}{σ : Tms Γ ∆} → (U [ σ]T) ≡U
El : ∀{Γ }(a : Tm Γ U) → Ty Γ

El[] : ∀{Γ ∆}{σ : Tms Γ ∆}{a : Tm ∆U}

→ (El a [ σ]T) ≡(El (coe (TmΓ = U[]) (a [ σ]t)))

A CwF is said to support Σ types if it comes with the following additional structure:

Σ ’ : ∀{Γ }(A : Ty Γ )(B : Ty (Γ , A)) → Ty Γ

Σ [] : ∀{Γ ∆}{σ : Tms Γ ∆}{A : Ty ∆}{B : Ty (∆ , A)}

→ (Σ ’ A B) [ σ]T ≡Σ ’ (A [ σ]T) (B [ σ^ A ]T)

_,,_ : ∀{Γ }{A : Ty Γ }{B : Ty (Γ , A)}(a : Tm Γ A)

→ Tm Γ (B [ < a > ]T) → Tm Γ (Σ ’ A B)

π1 : ∀{Γ }{A : Ty Γ }{B : Ty (Γ , A)}(w : Tm Γ (Σ ’ A B))

→ Tm Γ A

π2 : ∀{Γ }{A : Ty Γ }{B : Ty (Γ , A)}(w : Tm Γ (Σ ’ A B))

→ Tm Γ (B [ < π1w > ]T)

Σβ1: ∀{Γ }{A : Ty Γ }{B : Ty (Γ , A)}{a : Tm Γ A}
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{b : Tm Γ (B [ < a > ]T)}

→ π1 (a ,, b) ≡a
Σβ2: ∀{Γ }{A : Ty Γ }{B : Ty (Γ , A)}{a : Tm Γ A}

{b : Tm Γ (B [ < a > ]T)}

→ π2 (a ,, b)

≡[ TmΓ = (ap (λ z → B [ < z > ]T) Σβ1) ]≡ b

,Σ [] : ∀{Γ }{A : Ty Γ }{B : Ty (Γ , A)}{a : Tm Γ A}

{b : Tm Γ (B [ < a > ]T)}{θ}{σ : Tms θΓ }

→ (a ,, b) [ σ]t ≡[ TmΓ = Σ [] ]≡
(a [ σ]t) ,, coe (TmΓ = (… )) (b [ σ]t))

More extensions can be found in Kaposi’s formalization.
Of course, a CwF supportingΠ types and a universe is not enough to interpret λΠω, it requires
more universes and more codes in the universes (at least that they are closed under Π types).
We will not try to make a complete list of what is required to interpret λΠω in this work, we
will only use CwFs as a first step towards a full model of λΠω.

Remark. In [Dyb95], Dybjer makes the distinction between external Categories with Families,
which are CwFs in a set theoretic setting, and internal one, which are CwFs in a type theoretic
setting. To formalize the later, he uses setoids, taking inspiration from a formalization of
category theory by Huet and Saïbi. Here we don’t bother with setoids because we use a strict
equality (which is a kind of set-theoretic flavor in a type-theoretic setting).

The metatheory we live in In this whole thesis we use type theory as our metatheory. We
won’t be very precise on this type theory but we need at least a strict equality to interpret the
previous constructions. We will also suppose that we have inductive types, records, . . . which
means that we are working in Coq or Agda. In Section 1.5.2 we will use a Quotient Inductive-
Inductive Type (QIIT) to define an initial Category with Families. In Section 1.6 we will use
a definitional impredicative universe ℙ to define the Setoid model. In Chapter 4 we will use
some Quotient Inductive Types to define the presheaf interpretation of the fibrant replacement
in Cubical Type Theory.

1.5.1. Example: the standard model

Let’s describe the simplest example of model: the standard model. In this model:
– a context is interpreted by a type using Σ types to “pack” the types of the context

– a type is interpreted by a type family over the context

– and a term by a section of this type family.

StandardModel : CwF

StandardModel = record

{ Con = Set1
; Ty = λ Γ → Γ→ Set1
; Tms = λ Γ ∆→ Γ→ ∆

; Tm = λ Γ A → (γ : Γ ) → (A γ)
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; ∙ = Lift 1

; _,_ = λ Γ A → Σ Γ A

; _[_]T = λ A δ γ → A (δ γ)

; id = λ γ → γ

; _◦_ = λ δ σ γ → δ (σ γ)

; ε = λ _ → tt

; _,s_ = λ δ t γ→ δ γ ,Σ t γ

; π1 = λ δ γ → proj1 (δ γ)

; _[_]t = λ t δ γ → t (δ γ)

; π2 = λ δ γ → proj2 (δ γ)

; [id]T = refl

; [][]T = refl

; idl = refl

; idr = refl

; ass = refl

; ,◦ = refl

; π1β = refl

; πη = refl

; εη = refl

; π2β = refl

; U = λ _ → Set

; U[] = refl

; El = λ a γ→ Lift (a γ)

; El[] = refl

; Π = λ A B γ→ (x : A γ) → B (γ ,Σ x)

; Π[] = refl

; lam = λ t γ→ λa → t (γ ,Σ a)

; app = λ t γ→ t (proj1 γ) (proj2 γ)

; lam[] = refl

; Πβ = refl

; Πη = refl

}

Lift is an explicit coercion from Set to Set1.
All equalities are provided by refl, meaning that conversion is in fact interpreted by conver-
sion of the metatheory. This requires the metatheory to have some η-rules:

– η-rules for Π and Σ types (to interpret πη for instance)

– η-rule for 1 to interpret εη. Unfortunately such a rule is available in Agda but not in
Coq.

Those η-rules can also be replaced by FunExt but we then lose the fact that all equalities come
from the conversion of the metatheory.
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Although simple, the standard model is remarkable for two reasons:

– It justifies MLTT with n universes in MLTT with n + 1 universes.
Here we interpreted one universe and we needed to use Set1 the second universe of our
metatheory to interpret contexts and types. We could generalize and add more universes
as long as there is one more in the metatheory to type contexts and types. This model
gives thus a trivial4 proof that MLTT with n universe is consistent, in a metatheory with
n + 1 universes.

– It is a model of Extensional Type Theory.
Indeed, the reflection rule can be interpreted as long as the metatheory has FunExt. It
thus provides a trivial5 model for ETT. This fact was noticed to me by Kaposi.

The formalization of the standard model can be found in Kaposi’s formalization [Kap]6. We
also provide a formalization in Coq in the file CwF-Coq/StandardModel.v, unfortunately the
η-rule on unit is lacking at some point.

1.5.2. The initial model

Altenkirch and Kaposi have defined a type theory which amounts to be an initial Category with
Families. Their construction uses a Quotient Inductive-Inductive type (QIIT).
QIITs take the best of Quotient Inductive Types and Inductive-Inductive Types. Inductive-
Inductive Types are mutually defined type families in which the second type family can depend
on the first one (and so on). A typical example is the type of well-formed contexts and well-
formed types:

Inductive Ctx ∶ U0 ≔

∣ empty ∶ Ctx

∣ cons ∶ ΠΓ ∶ Ctx. Ty Γ → Ctx

with Inductive Ty ∶ Ctx → U0 ≔

∣ nat ∶ ΠΓ ∶ Ctx. Ty Γ

∣ Pi ∶ Π (Γ ∶ Ctx) (A ∶ Ty Γ ) (B ∶ Ty (cons Γ A)). Ty Γ .

See [NF13] for a treatment of Inductive-Inductive Types.
In the type theory of Altenkirch and Kaposi all terms are well-typed: there is no notion of
preterm and only well-typed terms can be written down. Additionally, terms are identified up
to βη-equivalence, hence there is no notion of conversion.
To achieve this, the syntax is dependently typed and heavily mutually recursive. The idea is to
reproduce the definition of CwF with operations as base constructors and equalities as higher
constructors. Hence the following types are defined mutually:

– Con the type of well-formed contexts

– Ty Γ the type of well formed types

4Not so trivial in fact . . . See coming Section 1.5.3 on the interpretation map.
5Idem.
6
https://bitbucket.org/akaposi/tt-in-tt/src/378848c2886fa007579b1a1479bbe1b601440e47/StandardModel/?at=master
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– Tms Γ ∆ the type of context morphisms

– Tm Γ A the type of well-typed terms
Here is the construction for the substitution calculus. QIITs are not implemented in Agda so
the following code is some “idealized Agda”.

data Con : Set

data Ty : Con → Set

data Tms : Con → Con → Set

data Tm : (Γ : Con) → Ty Γ→ Set

data Con where

∙ : Con

_,_ : (Γ : Con) → Ty Γ→ Con

data Ty where

_[_]T : ∀{Γ ∆} → Ty ∆→ Tms Γ ∆→ Ty Γ

data Tms where

id : ∀{Γ } → Tms Γ Γ

_◦_ : ∀{Γ ∆Σ } → Tms ∆Σ→ Tms Γ ∆→ Tms Γ Σ

ε : ∀{Γ } → Tms Γ ∙

_,s_ : ∀{Γ ∆}(σ : Tms Γ ∆){A : Ty ∆} → Tm Γ (A [ σ]T)

→ Tms Γ (∆ , A)

π1 : ∀{Γ ∆}{A : Ty ∆} → Tms Γ (∆ , A) → Tms Γ ∆

data Tm where

_[_]t : ∀{Γ ∆}{A}(t : Tm ∆A)(σ : Tms Γ ∆)→ Tm Γ (A [ σ]T)

π2 : ∀{Γ ∆}{A}(σ : Tms Γ (∆ , A)) → Tm Γ (A [ π1σ]T)

data Ty where

[id]T : ∀{Γ }{A : Ty Γ } → A [ id ]T ≡A
[][]T : ∀{Γ ∆Σ }{A : Ty Σ }{σ : Tms Γ ∆}{δ : Tms ∆Σ }

→ (A [ δ]T [ σ]T) ≡(A [ δ ◦ σ ]T)

data Tms where

idl : ∀{Γ ∆}{δ : Tms Γ ∆} → (id ◦δ) ≡δ
idr : ∀{Γ ∆}{δ : Tms Γ ∆} → (δ ◦id) ≡δ
ass : ∀{∆ ΓΣΩ}{σ : Tms ΣΩ}{δ : Tms Γ Σ }{ν : Tms ∆Γ }

→ ((σ ◦δ) ◦ν) ≡(σ ◦ (δ ◦ ν))

,◦ : ∀{Γ ∆Σ }{δ : Tms Γ ∆}{σ : Tms Σ Γ }{A : Ty ∆}

{a : Tm Γ (A [ δ]T)}

→ (δ ,s a ◦σ)

≡ (δ ◦ σ) ,s coe (TmΓ = [][]T) (a [ σ]t)

π1β : ∀{Γ ∆}{A : Ty ∆}{δ : Tms Γ ∆}{a : Tm Γ (A [ δ]T)}

→ (π1 (δ ,s a)) ≡δ
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λΠω
typed

conversion
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type theory C
? initiality

Figure 1.2.: From λΠω to a CwF C. The arrow ? is difficult to give.

πη : ∀{Γ ∆}{A : Ty ∆}{δ : Tms Γ (∆ , A)}

→ (π1 δ,s π2 δ) ≡δ
εη : ∀{Γ }{σ : Tms Γ ∙}

→ σ≡ ε

data Tm where

π2β : ∀{Γ ∆}{A : Ty ∆}{δ : Tms Γ ∆}{a : Tm Γ (A [ δ]T)}

→ π2 (δ ,s a) ≡[ TmΓ = (ap (λ z → A [ z ]T) π1β) ]≡ a

The object that is defined is a type theory: there is a notion of term, of context, etc. but it also
organizes as a CwF. The eliminator of the QIIT gives that there is a unique morphism of CwFs
into any other CwF, and hence, it is an initial CwF.
There is no notion of reduction for this type theory as convertible terms are identified up to
equality. However a metatheory for this type theory still has to be developed. For instance, a
notion of normal form (or value) can be defined as a mutual inductive type together with neutral
terms. Altenkirch and Kaposi showed that every term has a normal form by normalization by
evaluation [AK16a].

1.5.3. On the interpretation map

Well, Categories with Families are models of type theory. Hence, of course, type theory can
be interpreted in a CwF. But . . . that’s not so easy! It is surprising but we don’t know how to
realize this interpretation map in a type theoretic setting.

Let’s try to interpret λΠω in a Category with Families. By initiality, we can restrict to the
initial CwF. We suppose that we consider CwFs which supports enough universes and which
have universes closed under Π types
First, we have to translate λΠω to a type theory closer to CwF. Here are the main changes
required:

– Move from untyped conversion to a typed conversion:

M ≃β N vs Γ ⊢ M ≃β N ∶ A

Adams [Ada06], Herbelin and Siles [SH12] have shown that such a translation is possible
for all PTS.

– Move from Russell universes to Tarski universes and, if considered, replace the cumu-
lativity by explicit coercions. Assaf developed such a translation in [Ass14].

– Add explicit substitutions.
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This suggests a hypothetical compilation chain summed-up in Figure 1.2. But the difficult part
is what is remaining. Kaposi calls extrinsic type theory the type theory at which we arrived,
that is, a type theory with preterms and a typing judgment, and intrinsic type theory the initial
CwF, that is, an almost identical type theory, but where all terms of the syntax are intrinsically
well-typed.
It remains to translate a term with its typing derivation to an intrinsically typed term, we call
this the extrinsic to intrinsic translation. Of course, this translation is morally the identity.
Nevertheless, it is difficult because we have to show that the produced term does not depend
on its typing derivation at the same time. At the time of writing, we were not able to complete
such a definition.
Streicher gave such an interpretation map in a set theoretic setting [Str91, Def. 3.2], see
also [Hof97]. But he uses highly set theoretic features: its interpretation maps are partial and,
if we try to give them an intuitive type, even their types are partially defined! This is difficult
to reproduce in type theory.

1.6. The setoid model

In this section we take the opportunity of the setting of CwFs to give a formal account of the
setoid model of Altenkirch [Alt99], a model for a strict equality enjoying FunExt and UIP in
a metatheory without equality. Almost 20 years later, this model remains important as it is a
model of the following intuitive idea:

“every type should come with its equality”

As such, it is at the basis of Observational Type Theory [AMS07]. Last, this model can be
viewed as a truncated version of the cubical model [CCHM16] in which a type, not only comes
with its equality, but also with the higher equalities.

In this model, a context is interpreted by a setoid, that is to say, by a type equipped with an
equivalence relation (that we take valued in ℙ). Hence, we will define a CwF whose first
component is the type of setoids.

SetoidModel : CwF

SetoidModel = record

{ Con = Setoid

; Ty = SetoidFam

; Tms = SetoidMap

; Tm = FamSection

…

The setoid model has a strong requirement on the metatheory, it needs a universe of proposi-
tions ℙ for which proof irrelevance holds definitionally:

Γ ⊢ P ∶ ℙ Γ ⊢ p, q ∶ P

Γ ⊢ p ≃β q ∶ P
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Let’s remark that such a type theory requires the conversion algorithm to be typed. To exper-
iment with such a metatheory, we use a modified version of Coq by Gilbert [Gil] instead of
Agda. This version implement a universe of propositions with definitional proof irrelevance
which is written SProp. We also switch to Coq in the presentation here. Kaposi have conducted
a similar formalization7 in Agda but using h-sets instead of proof irrelevance.
We don’t give the definitions of all the fields of the CwF but only the most interesting ones.
The others can be found in the formalization. The formalization that we present here can be
found in the file CwF-Coq/SetoidModel.v. It uses the modified version of Coq by Gilbert8.

Contexts are interpreted by setoids. A setoid is a type equipped with an equivalence relation
valued in SProp:

Record Setoid ≔
{ carrier : Type;

eq : carrier → carrier → SProp;

refl : ∀ x, eq x x;

sym : ∀ {x y}, eq x y → eq y x;

trans : ∀ {x y z}, eq x y → eq y z → eq x z }.

Coercion carrier : Setoid ↣ Sort class.

Notation " γ ∼ γ’ " ≔ (eq _ γ γ’) (at level 20).

The coercion makes that, when Γ is a setoid, we can write Γ instead of carrier Γ and Coq
automatically inserts the coercion.
Thanks to definitional proof irrelevance, the groupoidal laws for the relation hold for free. For
instance, we have p · p-1 = 1 by reflexivity:

Check (λ Γ γ γ’ p ⇒ eq_refl

: ∀ (Γ : Setoid) (γ γ’ : Γ ) (p : γ ∼ γ’), trans p (sym p) = refl γ).

Context morphisms are interpreted by morphisms of setoids which are maps between the car-
riers respecting the relations:

Record SetoidMap (Γ ∆ : Setoid) ≔
{ map : Γ → ∆;

map_eq : ∀ {γ γ’}, γ ∼ γ’ → map γ ∼ map γ’ }.

Coercion map : SetoidMap ↣ Funclass.

Types are interpreted by families of setoids which are “coherently dependent setoids”:

Record SetoidFam (Γ : Setoid) ≔
{ Fam : Γ → Setoid;

subst : ∀ {γ γ’}, γ ∼ γ’ → SetoidMap (Fam γ) (Fam γ’);

refl* : ∀ {γ} x, subst (refl γ) x ∼ x;

trans* : ∀ {x y z} (p : x ∼ y) (q : y ∼ z) u,

subst q (subst p u) ∼ subst (trans p q) u }.

7
https://bitbucket.org/akaposi/tt-in-tt/src/e904d3b257070bc6508a8ae347b1430660bd16ec/Setoid/?at=master

8
https://github.com/SkySkimmer/coq/tree/sprop
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Each type family comes with subst, a transport along the equality in its base type. It is how the
transport of propositional equality is interpreted in this model: “by induction onP ”. refl* and
trans* assert that transport preserves reflexivity and transitivity. Thanks to proof irrelevance,
they are enough to derive that transport respects symmetry:

Definition sym* {Γ } {A: SetoidFam Γ } {γ γ’: Γ } (p : γ ∼ γ’) (x : A γ)

: subst (sym p) (subst p x) ∼ x

≔ trans (trans* p (sym p)) (refl* x).

Terms are interpreted by sections of setoid families:

Record FamSection Γ (A : SetoidFam Γ ) ≔
{ tm : ∀ γ, Fam A γ;

resp : ∀ γ γ’ (p : γ ∼ γ’), subst p (tm γ) ∼ tm γ’ }.

Context extension is interpreted by Σ types together with the Σ of the relations:

Definition cons (Γ : Con) (A : Ty Γ ) : Con

≔ {| carrier ≔ {γ : Γ & A γ};

eq ≔ λ x y ⇒ { p : x.1 ∼ y.1 s& ι p x.2 ∼ y.2} ;

refl ≔ … ;

sym ≔ … ;

trans ≔ … |}.

where { x : A s& B x } is the Σ type with A and B in SProp.

Functions are interpreted by functions respecting the relations:

Σf ∶ A → B. Π x, x′ ∶ A. x ∼ x′ → f x ∼ f x′

And two functions f , g of this type are in relation f ∼ g if we have:

Π x, x′ ∶ A. x ∼ x′ → π1(f ) x ∼ π1(g) x
′

More formally, the interpretation of Π types is given by:

Definition Π {Γ } (A : Ty Γ ) (B : Ty (Γ , A)) : Ty Γ

≔ {| Fam ≔ λ γ ⇒

{| carrier ≔ {f : ∀ (x : A γ), B (γ; x) s|

∀ x y (p : x ∼ y), ι … (f x) ∼ (f y)};

eq ≔ λ f g⇒ ∀ x y (p: x ∼ y), ι … (val f x) ∼ (val g y);

refl ≔ … ;

sym ≔ … ;

trans ≔ … |};

subst ≔ … ;

refl* ≔ … ;

subst* ≔ … |}.

where {x : A & B x} is the usual Σ type (in Type) and {x : A s| B x} is the Σ type with
A in Type and B in SProp (subset type).
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Thanks to definitional proof irrelevance, all identities of the CwF hold definitionally (as for the
standard model). This is quite remarkable.

Let’s now have a look at how propositional equality is interpreted:

Definition Eq {Γ } (A: Ty Γ ) (t u : Tm _ A) : Ty Γ

≔ {| Fam ≔ λ γ ⇒

{| carrier ≔ sBox (t γ ∼ u γ) ;

eq ≔ λ _ _ ⇒ sUnit ;

refl ≔ λ _ ⇒ stt ;

sym ≔ λ _ _ _ ⇒ stt;

trans ≔ λ _ _ _ _ _ ⇒ stt |};

subst ≔ … ;

refl* ≔ λ _ _ ⇒ stt ;

subst* ≔ λ _ _ _ _ _ _ ⇒ stt |}.

sBox is the embedding of SProp into Prop, sUnit is the unit type in SProp and stt is its
unique element.
The equality on A is interpreted by the relation coming with A. The equality of equalities is
interpreted by unit and thus validates UIP. Then reflexivity comes from the reflexivity of the
relation ∼ and transport along a family P comes from the subst component of P. This model
validates FunExt by the definition of equality on function types.
A weakness of this model is that transport only weakly computes, that is, transport refl u

is only propositional equal to u and not definitionally. In contrast, as we will see in a moment,
some definitional equalities hold for FunExt.

We let the reader refer to the formalization to have all the details of the model. In the following
we will highlight a few of its particularities.

1.6.1. SetoidFam and SetoidFam’

The definition of a setoid family SetoidFam is the original one of Altenkirch (or, at most, a
slight rephrasing). There is another notion of family we could have used, using heterogeneous
relations. We show here that the two notions are equivalent. This alternative definition was
introduced by Kaposi in his formalization9.
This time, a setoid family is a “heterogeneous setoid”, still with coercion functions:

Record SetoidFam’ (Γ : Setoid) ≔
{ Fam’ : Γ → Type ;

eq’ : ∀ {γ γ’}, γ ∼ γ’ → Fam’ γ → Fam’ γ’ → SProp ;

coe’ : ∀ {γ γ’}, γ ∼ γ’ → Fam’ γ → Fam’ γ’ ;

coh’ : ∀ {γ γ’} (p : γ ∼ γ’) x, eq’ p x (coe’ p x) ;

Frefl’ : ∀ γ x, eq’ (refl γ) x x ;

Fsym’ : ∀ γ γ’ (p : γ ∼ γ’) x y, eq’ p x y → eq’ (sym p) y x ;

Ftrans’: ∀ γ γ’ γ’’ (p : γ ∼ γ’) (q : γ’ ∼ γ’’) x y z,

9
https://bitbucket.org/akaposi/tt-in-tt/src/e904d3b257070bc6508a8ae347b1430660bd16ec/Setoid/Decl.agda?at=master
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eq’ p x y → eq’ q y z → eq’ (trans p q) x z ;

}.

We formalized the following:

Proposition 2. For every setoid Γ , SetoidFam Γ and SetoidFam’ Γ are equivalent.

The proof is easy, we let the interested reader refer to the formalization. The proofs of section
and retraction require FunExt and propositional extensionality for SProp.

1.6.2. FunExt computes

The setoid model is a model of function extensionality, we exhibit here a nice behavior of
FunExt in this model: some computation rules hold definitionally.
Let’s assume that we have f and g two functions which are pointwise equal:

f, g ∶ Π x ∶ A. B x

e ∶ Π x ∶ A. f x = g x

Then, FunExt(e) is a proof of f = g.
Now, let’s assume that x0 is a point of A, P a predicate over B x0 and u a proof of P (f x0):

x0 ∶ A

P ∶ B x0 → U

u ∶ P (f x0)

Then there are two ways to get a proof of P (g x0): either by transporting along e or along
FunExt(e):

v1, v2 ∶ P (g x0)

v1 ≔ e x0 #
P u

v2 ≔ FunExt(e) #λ f. P (f x0) u

Proposition 3. In the setoid model, v1 and v2 are convertible.

Proof. The proof is by reflexivity:

Check (eq_refl : v1 = v2).

See the formalization for the construction of FunExt(e), v1 and v2.

1.6.3. Universe closed under Π types

The last construction in the setoid model that we want to discuss is the universe. In [Alt99],
Altenkirch introduced a universe closed only under non-dependent function types. We show
here how it is possible to build a universe closed under Π types and lower universes.

45



1. Our ship, Martin Löf Type Theory

Internal universes We first recall what is an internal universe. Internal universes are In-
ductive-Recursive types which define universes à la Tarski. They are called “internal” because
the construction can be carried in the type theory in which we are working (Agda for example)
as long as it features induction-recursion. Inductive-Recursive types and their use to define
internal universes were introduced by Dybjer in [Dyb00].
Here is a simple example of internal universe closed only under ℕ and Π types:

Inductive U ∶ U0 ≔

∣ nat ∶ U

∣ pi ∶ Π (a ∶ U) (b ∶ El a → U). U

with El ∶ U → U0 ≔

El nat = ℕ

El (pi a b) = Π x ∶ El a. El (b x)

Of course it is possible to enrich U with more codes.

Internal universe for the setoid model We come back to the setoid model. The idea is to
define an internal universe (U, El) by induction recursion but we also provide enough structure
so that U is a setoid and so on.
Equality between two codes of U is interpreted by syntactic equality between the codes, hence
two codes are equal when they are “the same”, not when they denote two equivalent setoids.

We give here the interpretation for a first universe U0, closed under natural numbers and
Π types. Afterward, we will sketch the interpretation of a second universe U1 to show how
to handle the hierarchy. For U0 we get a model for the following rules:

⊢ U0 a ∶ U0 ⊢ El a ⊢ n ∶ U0

⊢ a ∶ U0 x ∶ El a ⊢ b ∶ U0

⊢ π x ∶ El a. b ∶ U0

El n ≃β ℕ El (π x ∶ a. b) ≃β Π x ∶ El a. El b

Let’s remark that such a construction does not provide a complete universe, meaning that we
can’t interpret this kind of rules:

⊢ A A small

⊢ ⌈A⌉ ∶ U0

El(⌈A⌉) ≃β A

Such rules would require to interpret the universe by the type of setoids but this type is not
itself a setoid: it is a groupoid. Hence, we don’t have a complete universe but still complete
enough to interpret all types “coming from the syntax”.

The following is the construction of U0. The construction heavily uses induction-recursion
which is not available in Coq so we switch back to Agda. To emulate the definitional proof
irrelevance, we use irrelevant arguments [AS12]. Irrelevant arguments are marked with a dot

46



1. Our ship, Martin Löf Type Theory

. in the signature of functions. They are not taken in account when convertibility of applied
functions is checked but the result of the function cannot depend on them. See the Agda Man-
ual10 for more details. The formalization presented in this section is available in the folder
SetoidUniverse-Agda.
Let’s start by the signatures of our objects. First, we need a type U0 which is a setoid:

data U0 : Set

_≡u_ : U0 → U0 → Set

≡urefl : (a : U0) → a ≡ua

≡usym : {a a’ : U0} → .(a ≡ua’) → a’ ≡ua

≡utrans : {a b c : U0} → .(a ≡ub) → .(b ≡uc) → a ≡uc

Then, we need El0 to be a family of setoid indexed over U0:

El0 : U0 → Set

_∼ _ : {a : U0} → El0 a → El0 a → Set

∼ refl : {a : U0} → (x : El0 a) → x ∼ x

∼ sym : {a : U0} → {x y : El0 a} → .(x ∼ y) → y ∼ x

∼ trans : ∀ {a} {x y z : El0 a} → .(x ∼ y) → .(y ∼ z) → x ∼ z

We need coercion functions (the subst field of SetoidFam):

subst : {a a’ : U0} → .(p : a ≡ua’) → El0 a → El0 a’

subst* : ∀ {a a’} → (p : a ≡ua’) → {x y : El0 a} → x ∼ y

→ subst p x ∼ subst p y

And the fact that subst preserves reflexivity and transitivity:

refl* : {a : U0} → (x : El0 a) → subst (≡urefl a) x ∼ x

trans* : ∀ {a0 a1 a2} (p : a0 ≡ua1) (q : a1 ≡ua2) (x: El0 a0)

→ subst q (subst p x) ∼ subst (≡utrans p q) x

As we have seen, sym* is always derivable, we will use it in definitions:

sym* : {a0 a1 : U0} → (p : a0 ≡ua1) → (x : El0 a0)

→ subst (≡usym p) (subst p x) ∼ x

sym* p x = ∼ trans (trans* p (≡usym p) x) (refl* x)

We now define those 14 objects. This is a lot, but all definitions mutually depend on each other.
We are in fact redefining all the setoid model. Let’s start with U0:

data U0 where

n : U0
π : ∀ (a : U0) (b : El0 a → U0)

(b1 : ∀ {x y : El0 a} (p : x ∼ y) → b x ≡ub y) → U0

U0 has a code for ℕ and one for Π types. The interesting thing is the component b1 which is a
witness that b is a setoid map between El0 a and U0.
Now we can define El0. The interpretation of Π types is functions preserving the equalities.

10http://agda.readthedocs.io/en/latest/language/irrelevance.html
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El0 n = ℕ

El0 (π a b b1) =

Σ ((x : El0 a) → El0 (b x))

(λ f → ∀{x y} (p : x ∼ y) → subst (b1 p) (f x) ∼ f y)

Note that the Σ used here is in fact a subset type.
The equality on U0 is the syntactic equality, defined by pattern-matching:

n ≡u n = ⊤

π a b b1 ≡uπ a’ b’ b1’ = Σ (a ≡ua’) (λ p → ∀x → b x ≡ub’ (subst p x))

_ ≡u _ = ⊥

The equality thus enjoys reflexivity, symmetry and transitivity:

≡urefl n = tt

≡urefl (π a b b1) = ≡urefl a , λx → b1 (∼ sym (refl* x))

≡usym = (… )

≡utrans = (… )

The setoid structure on types of the form El0 a is given by case analysis on a and is guided by
the equalities El n ≃β ℕ and El (π x ∶ a. b) ≃β Π x ∶ El a. El b :

_∼ _ {n} m1 m2 = if eq-nat-dec m1 m2 then ⊤ else ⊥

_∼ _ {π a b b1} (f , f1) (g , g1) =

∀(x y : El0 a)(p : x ∼ y) → subst (b1 p) (f x) ∼ g y

∼ refl {n} = eq-nat-refl

∼ refl {π a b b1} (f , f1) x y p = f1 p

∼ sym = (… )

∼ trans = (… )

Remain subst and the proofs that it respects ∼ , refl and trans. In every case, this is defined
by induction on codes and little choice is left for the definitions. We let the interesting reader
dive into the formalization to have all the details.

Let’s sketch the interpretation of the next universe. The construction is essentially the same
but there are more cases:

data U1 where

↑0 : U0 → U1
u0 : U1
π01 : (a : U0) → (b : El0 a → U1)

→ (b1 : ∀{x y : El0 a}(p : x ∼ y) → b x ≡u1b y) → U1
π10 : (a : U1) → (b : El1 a → U0)

→ (b1 : ∀{x y : El1 a}(p : x ∼ 1y) → b x ≡ub y) → U1
π11 : (a : U1) → (b : El1 a → U1)

→ (b1 : ∀{x y : El1 a}(p : x ∼ 1y) → b x ≡u1b y) → U1

↑0 c is the embedding of U0 in U1, this coercion give explicit cumulativity à la Assaf [Ass14].
u0 is the code of U0 (to interpret U0 ∶ U1 ). π01, π10 and π11 are codes for the different
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dependent products, this interprets a type theory with annotated products (see Section 2.3 for
an example of such annotations).
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2. Program translations as syntactic
models of λΠω

In this chapter we introduce program translations, which are a method to give a model of
Martin Löf Type Theory without making use of Categories with Families. In a first section,
we give a general setting for program translations and then we give several examples:

– three “times bool” translations

– the ad-hoc polymorphism translation

– several variations of unary parametricity translation.
In a last section, we compare program translations and more semantical models such as CwFs.
We will see that most of good properties of program translations extend to a more general class
of syntactic models whose description is still not very precise.
This part was largely published in the article The next 700 syntactical models of type theory

(Boulier, Pédrot, Tabareau) [BPT17] published at CPP 2017. There are some additions: the
treatment of several axioms, the fact that weak univalence does not imply full univalence, the
presentation of parametricity translations, etc. In general, this chapter owes much to numerous
discussions with Pédrot and Tabareau.

2.1. General setting

A program translation is a translation of terms of a source theoryS to terms of a target theory T .
For us, S and T will always be variations of λΠω with more or less expressivity.
There are two different views of a program translation:

– A program translation is a syntactic model, that is, it is the interpretation of a type the-
ory S into a mathematical object T , which turns out to be another type theory. This
interpretation can be used to justify some new constructs.

– A program translation is a compilation phase from a dependently typed language to
another. This compilation phase can be used to implement some constructs of S in
terms of constructs of T .

The program translations that we will present all follow the same scheme. Given a source type
theory S and a target type theory T :

– a term M of S is translated into a term [M] of T

– a type A of S is translated into a type ⟦A⟧ of T
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– and a context Γ of S is translated into ⟦Γ ⟧ of T

where the translation of types is defined in function of the translation of terms:

⟦A⟧ ≔ El [A] with El of type ⟦U⟧ → U

and where contexts are translated pointwise:

⟦ ⋅ ⟧ ≔ ⋅

⟦Γ , x ∶ A⟧ ≔ ⟦Γ ⟧, x ∶ ⟦A⟧

Program translations generalize the PTS morphisms (see for instance [Las12]) which are pro-
gram translations only changing sorts and not the other term formers.

Remark. The El map corresponds to the interpretation of the El type former when universes
are considered à la Tarski:

Γ ⊢ a ∶ Ui

Γ ⊢ El a

Indeed, ⟦A⟧ is the translation when A is considered as a type, and [A] when it is considered
as a term (i.e. a code of Ui).

Let ⊥S and ⊥T represent the absurd in S and T (for instance the empty type 000, the false propo-
sition ⊥, its impredicative encoding ΠX ∶ U. X, . . . ). For λΠω, we will take ΠX ∶ Ui. X.
We will say that a type theory is consistent if its absurd type is not inhabited in the empty
context.
The expected properties of a translation are then the following:

typing soundness If Γ ⊢ M ∶ A then ⟦Γ ⟧ ⊢ [M] ∶ ⟦A⟧ .

consistency preservation If ⟦⊥S⟧ is inhabited in the empty context then so is ⊥T .

In general, consistency preservation is given by a map of type ⟦⊥S⟧ → ⊥T in T . Under
those two conditions the consistency of T implies the one of S .

Proposition 4. Let [ _ ] be a translation from S to T satisfying typing soundness and consis-
tency preservation. Then, if T is consistent, so is S .

Proof. The consistency of a type theory is defined by the non-existence of a closed term of
type ⊥. We thus have to show that, given a closed term t of type ⊥S in S , we can construct a
term t′ of type ⊥T in T . By typing soundness, [t] is of type ⟦⊥S⟧. We thus get t′ by applying
consistency preservation to [t].

For a given translation, the proof of typing soundness always relies on the following lemmas:

substitution lemma For all M and N , [M{x ≔ N}] ≃β [M]
{
x ≔ [N]

}
.

computational soundness If M ≃β N then [M] ≃β [N] .

The former being needed to prove the later, and the later being needed to handle the case of
the conversion rule in the proof of typing soundness.
In some translations, the reduction is preserved (if M → N then [M] →+ [N]) which is
stronger than computational consistency. This gives the strong normalization for S if T enjoys
it.
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FunExt Univalence weakUnivalence UIP

times bool on Π types negates negates preserves preserves

times bool on U preserves negates negates preserves

cheap parametricity preserves preserves ? preserves

generous parametricity preserves negates negates preserves

Figure 2.1.: Axioms preservation

Translations and axioms The source theory S can have more logical principles than T as
long as they have a translation in T . By logical principle we mean a set of syntactic constructs
together with reduction and typing rules. Among them, we will distinguish:

– an operator, which is a constant of closed type with some reduction rules

– an axiom, which is a constant of closed type without reduction rules

In practice, S is often of the form T +axiom and the translation ensures that the axiom can be
assumed without breaking the coherence of the system. In such a case, the trivial translation
from T to T + axiom (the injection) gives the equiconsistency between the two theories.
Let ⟦ _ ⟧ be a translation from S to T and ax an axiom of closed typed Ax which can be stated
both in S and T . We will say that:

– The translation proves or gives a computational content to ax if ⟦Ax⟧ is inhabited.

In this case the translation extends to S + ax → T

– The translation negates ax if ⟦¬Ax⟧ is inhabited.

In this case the translation extends to S + ¬ax → T

– The translation preserves ax if Ax → ⟦Ax⟧ is inhabited (in T ).

In this case the translation extends to S + ax → T + ax

Remark. Correct program translations respect logical implication:

If A → B then ⟦A⟧ → ⟦B⟧

The term of type ⟦A⟧ → ⟦B⟧ is given by λ x ∶ ⟦A⟧. [t x] .
As a consequence, if Ax and Ax′ are two axioms such that Ax implies Ax′:

– If ⟦ _ ⟧ proves Ax, then it also proves Ax′.

– If ⟦ _ ⟧ negates Ax′, then it also negates Ax.

We recollect in Figure 2.1 some of the preservation results that we will show in this section.
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2.2. Times bool

“Times bool” . . . by this mysterious name we refer to a technique to negate various extension-
ality principles. It consists in adding a dummy boolean on the type former for which you want
to negate extensionality.

– Add it to Π types and you will negate function extensionality

– Add it to stream types and you will negate extensionality of streams

– Add it to all types and you will negate univalence

– Add it to propositions and you will negate propositional extensionality . . .

We detail the three first examples in this section. They will be our first examples of translations.

2.2.1. Times bool on Π

The first translation that we consider is a translation from λΠω to λΠω+ Σ + B which negates
function extensionality (FunExt). Let’s have a look at the translation:

[Π x ∶ A. B]f ≔ (Π x ∶ ⟦A⟧f . ⟦B⟧f ) × B

[λ x ∶ A. M]f ≔ (λ x ∶ ⟦A⟧f . [M]f , true)

[M N]f ≔ π1([M]f ) [N]f

The translation is defined by induction on the syntax of terms. The subscript f is only here
to indicate that we are referring to this particular translation. To negate FunExt, a function
is translated by a pair of a function and a boolean. The application throws away the boolean
(because of the π1). But as the application is the only way to observe a function, the boolean
can never be observed. And thus two identical functions wearing different booleans will be
observationally the same although not identical as functions in the target theory.
To complete the definition of the translation, we have to define the translation on variables,
sorts and types:

[x]f ≔ x

[Ui]f ≔ Ui

⟦A⟧f ≔ [A]f

In this translation, particularly simple, terms and types have the same translation (⟦A⟧f is
equal to [A]f ), and the double brackets are only here to make a “moral” distinction between
terms and types. This is only possible because [Ui]f = Ui (and thus El is the identity).
We first check that the translation enjoys the substitution lemma:

Proposition 5 (formalized). For all terms M,N and variable x we have:

[M{x ≔ N}]f = [M]f
{
x ≔ [N]f

}
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With which we can prove reduction preservation and then typing soundness:

Proposition 6 (formalized). If M →β N then [M]f →+
β
[N]f .

Theorem 7 (formalized). If Γ ⊢ M ∶ A then ⟦Γ ⟧f ⊢ [M]f ∶ ⟦A⟧f .

The proofs of those properties are not difficult: substitution lemma is by induction on M , com-
putational soundness is by induction on the derivation of the conversion judgment and typing
soundness is by induction on the typing derivation. However the number of cases is relatively
important, that is why we formalized them in Coq. The formalization can be found in the
TimesBoolCorrectness-Coq folder. We do not present the formalization in this thesis, but
such a presentation is available in the CPP article [BPT17].

Last, as ⟦ΠX ∶ Ui. X⟧f = (ΠX ∶ Ui. X) × B, we get:

Theorem 8. The translation [ _ ]f from λΠω to λΠω+ Σ + B preserves consistency.

This translation is quite simple but yet, it implies strictly more than λΠω: thanks to the boolean
we can discriminate between two functions which are extensionally equal. Let’s remark that
the boolean worn by a function is always true when the function comes from the source theory,
but can be arbitrary when the function comes from a quantification over a Π type.
To negate FunExt, we first extends the translation to propositional equality:

[M =A N]f ≔ [M]f =⟦A⟧f [N]f

[ref l=M]f ≔ ref l= [M]f

[J=(y.q.P , e, u)]f ≔ J=(y.q.⟦P⟧f , [e]f , [u]f )

This extensions preserves typing soundness, making [ _ ]f a translation from λΠω+ = to
λΠω+ Σ + B + =.

Theorem 9. Let’s recall that we defined FunExt as:

FunExti,j ≔ Π (A ∶ Ui) (B ∶ A → Uj) (f, g ∶ Π x ∶ A. B x). (Π x. f x = g x) → f = g

Then for all levels i, j, there is a closed term of type:

⟦FunExti,j → ⊥⟧f
Proof. Let’s instantiate A and B by a type X (assumed to be both in Ui and Uj), and f

and g by (λ x ∶ X. x, true) and (λ x ∶ X. x, false). We do have ⟦Π x ∶ A. f x = g x⟧f be-
cause the application does not look at the boolean. From which we get (λ x ∶ X. x, true) =

(λ x ∶ X. x, false) and thus true = false. Hence a contradiction.

Remark. It is quite hard to unfold the whole definition of ⟦FunExti,j → ⊥⟧f on paper. But
when this type is automatically computed and injected in a proof assistant, it becomes very easy
to inhabit it. In the CPP article, we developed a specific plugin for Coq to realize this opera-
tion. In next chapter, we will present a more general plugin working for several translations. In
particular, we implemented the translation [ _ ]f , see Section 3.6. The formalization of the pre-
vious proof can thus be found in the file TemplateCoq/translations/times_bool_fun.v.
We warmly encourage the interested reader to replay the formalization to better understand the
previous proof.
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This model shows thus that: if λΠω+ Σ + B + = is consistent, then FunExt is not derivable
in λΠω+ = . As FunExt holds in set models of type theory, we conclude that it is independent
from λΠω+ = .

Remark. It is possible to define a variant of this translation where the boolean is added inside
the Π type instead of outside:

[Π x ∶ A. B]f ′ ≔ Π x ∶ ⟦A⟧f ′ . (⟦B⟧f ′ × B)

The two translations seem to share most of their properties.

Compatibility with extensions of λΠ
ω

Let’s review how this translation interacts with the several extensions of λΠω.

Inductive types The translation extends easily to inductive types. Indeed most of induc-
tive types are translated by themselves, adding some “( _ , true)” where needed. For
instance, here is the translation for natural numbers:

[ℕ]f ≔ ℕ

[0]f ≔ 0

[S]f ≔ (S, true)

We implemented the translation of a wide class of inductives in the plugin presented in
Section 3.6.

Eta rules The translation negates the η-rule for Π types (even propositionally). The proof
goes as for FunExt: take f to be (λ x ∶ 1. x, false), then λ x ∶ 1. f x is translated to
(λ x ∶ 1. x, true).

Cumulativity The translation trivially preserves cumulativity: it extends to a translation
λΠω+ ⊆ ←→ λΠω+ Σ + B+ ⊆.

UIP The translation does not touch equality types, we can thus see that it preserves UIP.

Prop The translation does not validate impredicativity: (ΠA. P ) × B is never of type ℙ.
Hence, it does not extend to λΠω+ ℙ. Let’s remark that ℙ is expected to enjoys proof
irrelevance which is incompatible with the negation of FunExt on Π types living in ℙ.

Univalence and Weak Univalence

We conclude this section by a nice result: the translation shows that weak univalence (A ≃

B → A = B) does not imply full univalence, and even not function extensionality.
Let’s recall that univalence is defined by:

Univalencei ≔ ΠA, B ∶ Ui. IsEquiv (paths_to_equivA,B)

asserting that a particular map A = B → A ≃ B is an equivalence.
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We define weak univalence as the weaker assumption that there only exists a map from A ≃ B

to A = B :
weakUnivalencei ≔ ΠA, B ∶ Ui. A ≃ B → A = B

Of course, univalence implies weak univalence but the converse does not holds. Shulman
asked for a model distinguishing them on the HoTT mailing list1 and the only answer was the
one was of Oliveri:

“Why wouldn’t a skeletal LCCC be a model of [weak univalence] + UIP?”

This is a beautiful illustration of a case where a syntactic model can give a much simpler proof
of independence than a categorical model: “times bool” does the job!
First, we have that the translation preserves weak univalence.

Proposition 10. The translation ⟦ _ ⟧f extends to:

λΠω+ = +weakUnivalence ←→ λΠω+ Σ + B+ = +weakUnivalence

Proof. The idea is that an element of type ⟦A ≃ B⟧f is enough to build an equivalence between
A and B (we even throw away all the booleans). And we have A = B → ⟦A = B⟧f .
See the formalization in the file TemplateCoq/translations/times_bool_fun.v for the
details.

On the contrary the translation negates full univalence.

Proposition 11. The translation ⟦ _ ⟧f extends to:

λΠω+ = +¬Univalence ←→ λΠω+ Σ + B+ = +Univalence

Proof. Let’s first remark that we can’t conclude that the translation negates univalence from
the fact that univalence implies FunExt. Indeed, the proof that we know uses η rules which are
invalidated by the translation. To circumvent this issue, we could inhabit the translated type
⟦Univalence → FunExt⟧.
Here we chose to directly inhabit ⟦¬Univalence⟧. We use Univalence in the target but this
assumption can probably be weakened.
We consider the equivalence given by univalence on unit:

⟦1 ≃ 1⟧f ⟦1 = 1⟧f

By univalence in the target the type ⟦1 = 1⟧f is contractible. But ⟦1 ≃ 1⟧f is not: we can
have several elements by tweaking the booleans.
Again, see the formalization for the details.

Hence the translation ⟦ _ ⟧f gives a model of weakUnivalence ∧ ¬Univalence as long as
λΠω+ Σ + B + Univalence is consistent, which holds by, e.g. the simplicial model.

1[HoTT] Weaker forms of univalence, July 20, 2017
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2.2.2. Times bool on streams

Let’s now focus on streams, the coinductive type introduced in Section 1.2.4. We have seen
that there are two notions of equality for streams: the one induced by identity types and the
one given by bisimilarity. Stream extensionality (StreamExt) is the fact that these notions of
equality coincide:

StreamExti ≔ Π (A ∶ Ui) (s1 s2 ∶ stream A). bisim A s1 s2 → s1 =streamA s2

We use here the “times bool technique” to show that stream extensionality is not derivable in
Martin Löf Type Theory. The technique is the same that for FunExt: a stream is translated by
a pair of a stream and a boolean (always true when coming from the source). The boolean is
thrown away when accessing the head and threaded when accessing the tail. Bisimilarity only
observe streams through hd, and thus it cannot discriminate between two identical streams
wearing two different booleans.
The translation [ _ ]s from λΠω+ = + stream to λΠω+ = + stream + Σ + B is defined by:

[Ui]s ≔ Ui

[x]s ≔ x

[stream A]s ≔ (stream ⟦A⟧s) × B

[hd M]s ≔ hd (π1([M]s))

[tlM]s ≔ (tl (π1([M]s)), π2([M]s))

[stream_corec S M0 M1 N]s ≔ (stream_corec [S]s [M0]s [M1]s [N]s, true)

[bisim A M N]s ≔ bisim ⟦A⟧s [M]s [N]s

[hdb M]s ≔ hdb [M]s

[tlb M]s ≔ tlb [M]s

[bisim_corec S M0 M1 P0 P1 N]s ≔ bisim_corec
(
λs0 s1. [S]s (s0, (π2 [P0]s)) (s1, (π2 [P1]s))

)
(
λs0 s1 s. [M0]s (s0, (π2 [P0]s)) (s1, (π2 [P1]s)) s

)
(
λs0 s1 s. [M1]s (s0, (π2 [P0]s)) (s1, (π2 [P1]s)) s

)
(
π1 [P0]s

) (
π1 [P1]s

)
[N]s

[… ]s ≔ …

⟦A⟧s ≔ [A]s

In unspecified cases, the translation commutes with the corresponding syntax constructor. As
the previous translation, [ _ ]s verifies the substitution lemma, computational soundness and
finally typing soundness:

Theorem 12 (formalized). If Γ ⊢ M ∶ A then ⟦Γ ⟧s ⊢ [M]s ∶ ⟦A⟧s .

Remark. This theorem is correct only when surjective pairing (η-rule for Σ types) holds. It is
needed to show that typing rule of bisim_corec is indeed preserved.

Even more directly than for dependent functions, absurd is translated into itself because the
translation does not act on dependent products, so that we can derive consistency preservation
directly.
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Theorem 13. In λΠω+ = + stream + Σ + B , there is a closed term of type:

⊢ ⟦StreamExt → ⊥⟧s

As a consequence, if λΠω+ = + stream + Σ + B is consistent, StreamExt is not derivable in
λΠω+ = + stream .

Proof. Once again, equality observes the boolean in the translated streams but bisimilarity
does not. Given a type X and x ∶ X we can define the constant stream idx ≔ (x, x, …). We
then instantiate StreamExt with (idx, true) and (idx, false). It follows true = false.

Π types and identity types are not touched by the translation, hence the translation preserves
univalence. It thus extends to:

λΠω+ = + stream + ¬ StreamExt +Univalence

←→ λΠω+ = + stream + Σ + B + Univalence

As a consequence we have:

Proposition 14. Univalence does not imply stream extensionality.

This result is not contradictory with the works of Ahrens et. al. [ACS15]. In this paper they
prove stream extensionality in a univalent setting. However, they are working with defined
streams (from natural numbers) and not “primitive” ones. For instance, their streams validate
theβ-rule only propositionally. In a blog post2 on homotopytypetheory.orgLicata suggests
a proof of stream extensionality, this one is also only valid for “defined streams”. On the
contrary, it seems that stream extensionality for primitive streams is derivable in cubical type
theory, see the implementation in Cubical-Agda3.

2.2.3. Times bool on types

Let’s use a last time the times bool trick. This time, we add a boolean to all types, this negates
both propositional extensionality and univalence (the former being univalence for proposi-
tions).
The translation [ _ ]t from λΠω+ ⊆ + = + ℙ to λΠω+ ⊆ + = + ℙ + Σ +B is defined by:

[s]t ≔ (s × B, true)

[x]t ≔ x

[Π x ∶ A. B]t ≔ (Π x ∶ ⟦A⟧t. ⟦B⟧t, true)
[M =A N]t ≔ ([M]t =⟦A⟧t [N]t, true)

[… ]t ≔ …

⟦A⟧t ≔ π1([A]t)

2
https://homotopytypetheory.org/2014/02/17/another-proof-that-univalence-implies-function-extensionality/

3
https://github.com/Saizan/cubical-demo/blob/master/examples/Cubical/Examples/Stream.agda
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The sort s is either Ui or ℙ. In unspecified cases, the translation commutes with the corre-
sponding syntax constructor.
Every type is translated by the pair of this type and a boolean (always true when coming from
the source). When seen as a term, a type wears a boolean, but when seen as a type, the boolean
is lost.
For the first time, the universe is not translated by itself. The typing rule Ui ∶ Ui+1 is preserved
because:

[Ui]f = (Ui × B, true) ∶ ⟦Ui+1⟧f = π1(Ui+1 × B, true) ≃β Ui+1 × B

As for previous times bool translations, we have:

Theorem 15 (formalized). The translation [ _ ]t verifies the substitution lemma, reduction
preservation, typing soundness and consistency preservation.

Consistency preservation comes from the fact that ⟦ΠX ∶ Ui. X⟧t = ΠX ∶ Ui × B. π1(X)

which is logically equivalent to ΠX ∶ Ui. X .

Remark. The typing soundness proof uses the following lemmas:

– Γ ⊢ t ∶ A ⇒ ∃ s, Γ ⊢ A ∶ s (type correctness)

– Γ ⊢ Π x ∶ A. B ∶ s′′ ⇒ ∃ s s′, Γ ⊢ A ∶ s , Γ , x ∶ A ⊢ B ∶ s′ and R(s, s′, s′′)

Although the translation is simple, the proof of typing soundness is very long when carried
in details. That’s where the formalization becomes interesting, it forces to check all well-
formedness conditions of contexts and types which are always said to be “obviously true”.

Theorem 16. Let’s recall that propositional extensionality is given by:

PropExt ≔ ΠA B ∶ ℙ. (A → B) → (B → A) → A =ℙ B

Then, there is a closed term of type:

⊢ ⟦PropExt → ⊥⟧s

Consequently, PropExt is not derivable in λΠω+ ⊆ + = + ℙ + Σ +B as long as the type
theory λΠω+ ⊆ + = + ℙ is consistent.

Proof. As previously, instantiating A and B by (X, true) and (X, false) for any proposition
X ∶ ℙ .

Remark. It is often said that univalence implies propositional extensionality. Without cumu-
lativity, this is only true if univalence is taken directly on the universe ℙ. In general, we can
tweak the translation to show that univalence on a sort s does not imply univalence on other
sorts. To do this, annotate the products (as in Section 2.3) and add booleans only on other
sorts than s. This gives a translation which preserves univalence on s and negates univalence
on other sorts. Of course, when cumulativity holds the trick does not work anymore.
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2.3. Ad-hoc polymorphism

The main advantage of times bool translations lies in their simplicity, that’s why they are a good
example to introduce program translations. Unfortunately they negate useful principles (Fu-
nExt, StreamExt, . . . ) instead of inhabiting them. We present here a translation which inhabits
something useful: ad-hoc polymorphism. By ad-hoc polymorphism, we refer to an operator,
univ_rec, allowing to pattern-match on the normal form of a type. With this operator, we can
define a function whose behavior depends on the type of its arguments. For instance (with a
pattern matching notation):

λA ∶ U0. match A with

| B ⇒ λ b. not b

| _ ⇒ λ x. x

This function has the type of polymorphic identity ΠA ∶ U0. A → A, but it discriminates on
A to be the negation on bool and the identity otherwise. We yet see that this extension is not
compatible with parametricity. The first apparition of such an operator comes back to [NPS90,
Section 14.2].
The idea of the translation is to interpret each type by its code in an internal universe TYPE ,
and to translate pattern matching on types to pattern matching on codes. We make here the
hypothesis of a “closed world” meaning that no new inductive or coinductive type can be added
to the universe on the fly. Contrarily to previous translations, the added principle, univ_rec,
is not only an axiom but a true operator in the sense that it has some reduction rules.

In this section, the translation depends on the universe level of types. In order to have the
translation independent of the typing derivation, we use λΠa

ω
, an annotated version of λΠω .

The syntax and the typing rules of λΠa
ω

are defined in Figure 2.2. Annotations are added such
that given a typing statement Γ ⊢ M ∶ A the sort of A is known. When we write x ∶i A (in
contexts and binders) it means that A is of sort Ui, the j annotation on Π types means that B
is of sort j. And last, the judgment Γ ⊢ M ∶i A means that M is of type A and A of sort Ui.
We will omit some annotations which are obvious (especially in the → notation).
In order to be able to write our example of “non identity function” (and to have a non-empty
universe), we add booleans to the source theory. We then have to add a universe annotations on
B and on the return type of boolean pattern matching. The typing rules for booleans in λΠa

ω

are given in Appendix B. Of course, the translation extends to richer universes.

Our target theory will be λΠω enriched with some internal universes (TYPEi, Elti)i∶ℕ. Those
internal universes are defined by induction-recursion, as in Section 1.6.3. We give here the two
first onesTYPE0 andTYPE1 in Agda and the formation and introduction rules for general case
in Figure 2.3. The typing rules of the eliminator TYPE_rec are postponed to Appendix B.
In Agda, TYPE0 and TYPE1 are defined as follows. Those definitions can also be found in
the attached file TYPE.agda.

data TYPE0 : Set

El0 : TYPE0 → Set
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A, B, M, N ⩴ x | Ui | M N | λ x ∶i A. M | Πj x ∶i A. B

Γ , ∆ ⩴ ⋅ | Γ , x ∶i A

⊢ ⋅

Γ ⊢ A ∶i+1 Ui

⊢ Γ , x ∶i A

Γ ⊢ (x ∶i A) ∈ Γ

Γ ⊢ x ∶i A

Γ ⊢

Γ ⊢ Ui ∶i+2 Ui+1

Γ ⊢ A ∶i+1 Ui Γ , x ∶i A ⊢ B ∶j+1 Uj k = max(i, j)

Γ ⊢ Πj x ∶i A. B ∶k+1 Uk

Γ , x ∶i A ⊢ M ∶j B k = max(i, j)

Γ ⊢ λ x ∶i A. B ∶k Π
j x ∶i A. B

Γ ⊢ M ∶k Π
j x ∶i A. B Γ ⊢ N ∶i A k = max(i, j)

Γ ⊢ M N ∶j B{x ≔ N}

Γ ⊢ M ∶i B Γ ⊢ A ∶i+1 Ui A ≃β B

Γ ⊢ M ∶i A
(λ x ∶i A. M)N ≃β M{x ≔ N}

Figure 2.2.: Typing rules for λΠa
ω

(congruence rules for ≃β omitted)

Γ ⊢

Γ ⊢ TYPEi ∶ U0

Γ ⊢

Γ ⊢ Elti ∶ TYPEi → U0

Γ ⊢

Γ ⊢ bi ∶ TYPEi

Γ ⊢

Γ ⊢ ui ∶ TYPEi+1

Γ ⊢

Γ ⊢ πi,j ∶ ΠA ∶ TYPEi. (Elti A → TYPEj) → TYPEmax(i,j)

Figure 2.3.: Formation and introduction rules for TYPEi internal universe
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data TYPE0 where

π00 : (a : TYPE0) → (b : El0 a → TYPE0) → TYPE0
b0 : TYPE0

El0 (π00 a b) = (x : El0 a) → El0 (b x)

El0 b0 = B

data TYPE1 : Set

El1 : TYPE1 → Set

data TYPE1 where

π01 : (a : TYPE0) → (b : El0 a → TYPE1) → TYPE1
π10 : (a : TYPE1) → (b : El1 a → TYPE0) → TYPE1
π11 : (a : TYPE1) → (b : El1 a → TYPE1) → TYPE1
b1 : TYPE1
u0 : TYPE1

El1 (π01 a b) = (x : El0 a) → El1 (b x)

El1 (π10 a b) = (x : El1 a) → El0 (b x)

El1 (π11 a b) = (x : El1 a) → El1 (b x)

El1 b1 = B

El1 u0 = TYPE0

The translation [ _ ]T from λΠa
ω
+ B to λΠω+ B + (TYPEi)i∈ℕ is defined by:

[x]T ≔ x

[Ui]T ≔ ui

[Πj x ∶i A. B]T ≔ πi,j [A]T (λ x ∶ ⟦A⟧i
T
. [B]T )

[λ x ∶i A. M]T ≔ λ x ∶ ⟦A⟧i
T
. [M]T

[M N]T ≔ [M]T [N]T

[Bi]T ≔ bi

[true]T ≔ true

[false]T ≔ false

[if M retj P then N1 else N2]T ≔ if [M]T ret (Eltj◦[P ]T ) then [N1]T else [N2]T

⟦A⟧i
T

≔ Elti [A]T

⟦ ⋅ ⟧T ≔ ⋅

⟦Γ , x ∶i A⟧T ≔ ⟦Γ ⟧T , x ∶ ⟦A⟧i
T

Theorem 17. The translation [ _ ]T verifies the substitution lemma, computational soundness
and typing soundness:

If Γ ⊢ M ∶i A then ⟦Γ ⟧T ⊢ [M]T ∶ ⟦A⟧i
T
.
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It is important that Elti+1 ui is indeed TYPEi and not Ui, otherwise we would not have the
fixpoint for universes.

Remark. We did not succeed in defining a unique internal universe TYPE indexed over ℕ
and containing all (TYPEi)i∈ℕ. However, this does not seem out of reach, it would mean
that MLTT with induction-recursion and one universe is more powerful than MLTT with ω
universes.

The translation gives access to the family of operators (univ_recj
i
)i,j∈ℕ where i is the universe

level of the type which is pattern-matched and j is the universe level of the return predicate.
They are defined in λΠa

ω
+ B by:

Γ ⊢ P ∶j+1 U0 → Uj Γ ⊢ b′
0
∶j P B

0 Γ ⊢ π′
0,0

∶ H0,0

Γ ⊢ univ_recj
0
(P , b′

0
, π′

0,0
) ∶j ΠA ∶ U0. P A

Γ ⊢ P ∶ Ui+1 → Uj Γ ⊢ b′
i+1

∶ P B
i+1

Γ ⊢ u′
i+1

∶ P Ui Γ ⊢ π′
0,0

∶ H0,0 … Γ ⊢ π′
i+1,i+1

∶ Hi+1,i+1

Γ ⊢ univ_recj
i+1

(P , b′
i+1

, π′
0,0
, … , π′

i+1,i+1
, u′i) ∶ ΠA ∶ Ui+1. P A

where Hi0,i1
is:

Π (A ∶ Ui) (B ∶ A → Ui). P A → (Π x ∶ A. P (B x)) → P (Πi x ∶i A. B x) when i0 = i1 = i

Π (A ∶ Ui0
) (B ∶ A → Ui1

). (Π x ∶ A. P (B x)) → P (Πi1 x ∶i0 A. B x) when i0 < i1

Π (A ∶ Ui0
) (B ∶ A → Ui1

). P A → P (Πi1 x ∶i0 A. B x) when i0 > i1

and where in dots of last rule there are all π′
i0,i1

such that max(i0, i1) = i + 1.

univ_recj
i
(P , b′i, π

′
0,0
, …) B

i ≃β b′i

univ_recj
i+1

(P , b′
i+1

, π′
0,0
, … , u′i) Ui ≃β u′i

univ_recj
i
(P , b′i, π

′
0,0
, …) (Πi x ∶i A. B) ≃β π

′
i,i A (λ x. B) (univ_recj

i
(P , b′i, π

′
0,0
, …) A)

(λ x. univ_recj
i
(P , b′i, π

′
0,0
, …) B)

univ_recj
i
(P , b′i, π

′
0,0
, …) (Πi x ∶j A. B) ≃β π

′
j,i A (λ x. B) (λ x. univ_recj

i
(P , b′i, π

′
0,0
, …) B)

univ_recj
i
(P , b′i, π

′
0,0
, …) (Πj x ∶i A. B) ≃β π

′
i,j A (λ x. B) (univ_recj

i
(P , b′i, π

′
0,0
, …) A)

where i > j in the two last rules.

The operator univ_recj
i

allows to directly observe the normal form of a type inUi. The function
on U0 which is the negation on boolean and the identity otherwise is defined by:

f ∶ ΠA ∶ U0. A → A

f = univ_rec0
0
(λA. A → A, neg, id)
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Proposition 18. The translation [ _ ]T gives a computational meaning to the family of operators
(univ_recj

i
)i,j∶ℕ.

Proof. We can extend the translation with:

[univ_recj
i
(P , b′i, π

′
0,0
, …)]T ≔ TYPE_reci(Eltj◦[P ]T , [b

′
i]T , [π

′
0,0
]T , …)

and we check that typing and conversion rules of univ_recj
i

are indeed preserved.

When the source theory has an empty type 000, we can extends the translation by adding a code
for 000 in TYPE0, consistency is then preserved because ⟦000⟧0

T
= 000.

But without an empty type, consistency preservation is less clear. Indeed, ⟦Πi A ∶i+1 Ui. A⟧T
is equal to ΠA ∶ TYPEi. Elti A and there is no evident code to feed to this type so that we
get an inconsistency. For instance, if we try to give the code of ΠX ∶ U. X we get back the
same type.

Proposition 19. The system λΠa
ω

+ B + 000 +(univ_recj
i
)i,j is consistent provided that

λΠω+ B + 000 + (TYPEi)i∈ℕ (with codes for 000) is so.

We have remarked earlier that ad-hoc polymorphism contradicts parametricity. Let’s make this
more precise.

Proposition 20. Let IdParam be the parametricity statement of ΠA ∶ U0. A → A :

IdParam ≔ Π (f ∶ ΠA ∶ U0. A → A) (A ∶ U0) (At ∶ A → U0) (x ∶ A) (xt ∶ At x). At (f x)

Then, as long as λΠω+ B + 000 + (TYPEi)i∈ℕ is consistent, IdParam is not derivable in λΠa
ω

.

Proof. The function f which is the negation on bool and the identity otherwise allows to con-
struct a closed term of type:

IdParam → ⊥

Hence, IdParam is not derivable in λΠa
ω

+ B + 000 +(univ_recj
i
)i,j .

2.4. Parametricity

Parametricity was introduced by Reynolds [Rey83], and then Wadler [Wad89], for System F
as a logical relation. It is a tool to derive free theorems for terms of polymorphic types. The
Hello World of parametricity is for instance to show that a function f of type

∀A, A → A

can, in System F, only be a polymorphic identity function. This is given by the fact that the
free theorem for the type ∀A, A → A is

∀(A ∶ U)(At ∶ A → U)(x ∶ A)(xt ∶ At x), At (f x)

and that every closed term f of type ∀A, A → A satisfies it.
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Parametricity has then been extended to several systems, and in particular to dependent types
and inductive types by Bernardy et. al. [BJP10], [BL11]. For System F, a logic has to be
introduced to state and prove the free theorems. But for rich systems like λΠω, the free theo-
rems can be stated and proved in the same system4. In those systems parametricity can thus be
seen . . . as a program translation! And indeed, many recent works on parametricity have been
carried in a setting close to ours. With respect to previous translations, the “syntactic model”
point of view is less accurate for this translation because it does not add any logical power. It
is however an important translation which has many other uses.

unpacked ⟦Γ , x ∶ A⟧ = ⟦Γ ⟧, x ∶ [A]0, xt ∶ [A]1 x

packed ⟦Γ , x ∶ A⟧ = ⟦Γ ⟧, x ∶ Σ x0 ∶ [A]0. [A]1 x0

cheap [Π x ∶ A. B]0 = Π x ∶ [A]0. [B]0

generous [Π x ∶ A. B]0 = Π (x ∶ [A]0) (xt ∶ [A]1 x). [B]0

Figure 2.4.: Two variations of the parametricity translation

In this section we review the traditional parametricity translation for λΠω and then introduce
two variations: the pack / unpack variation, and the cheap / generous one. We focus on unary

parametricity, also called the the logical predicate interpretation. That is, a type is interpreted
by a predicate, i.e. a unary relation. All results are expected to be generalizable to n-ary para-
metricity.

2.4.1. Original translation

We present here the original translation introduced for Pure Type Systems in [BJP10], [BL11],
[KL12]. As far as we know, all other works relying on the parametricity translation use this
presentation (for instance [Las14]) and the two variations that we will introduce after seem
little known.

The translation has two components [ _ ]0 and [ _ ]1. For a type A, [A]1 is a predicate over [A]0.
And for a termM , [M]1 is the proof that [M]0 is parametric, i.e. a proof that [A]1 [M]0 holds.
As usual, the two maps are defined by induction on untyped syntax:

[M]0 ≔ M

[x]1 ≔ xt

[Π x ∶ A. B]1 ≔ λf ∶ [Π x ∶ A. B]0. Π (x ∶ [A]0) (xt ∶ [A]1 x). [B]1 (f x)

[λ x ∶ A. t]1 ≔ λ (x ∶ [A]0) (xt ∶ [A]1 x). [t]1

[Ui]1 ≔ λA ∶ Ui. A → Ui

⟦Γ , x ∶ A⟧ ≔ ⟦Γ ⟧, x ∶ [A]0, xt ∶ [A]1 x

4See [BJP10] for conditions on a Pure Type System such that it enjoys this property.
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In the case of variable, xt is assumed to always be a fresh name. For Π types, the predicate
is the fact that functions are morphisms: if x satisfies the predicate of A then f x satisfies the
predicate of B. The universe fixpoint is respected because:

[Ui]1 = λA ∶ Ui. A → Ui ∶ [Ui+1]1 Ui = Ui → Ui+1

The first component [ _ ]0 is the identity in a named setting. In a De-Bruijn setting each index of
free variables is doubled because [t]0 is intended to be typed in the context ⟦Γ ⟧. See Section 3.5
for an implementation of this translation.

Theorem 21. The translation verifies the substitution lemma, computational soundness and
typing soundness:

If Γ ⊢ M ∶ A then ⟦Γ ⟧ ⊢ [M]0 ∶ [A]0 and ⟦Γ ⟧ ⊢ [M]1 ∶ [A]1 [M]0.

2.4.2. Packed translation

Let’s introduce a first variation. In the previous translation, there were two translation functions
[ _ ]0 and [ _ ]1 for terms and one ⟦ _ ⟧ for types. This does not fit very well in the setting of
program translations spelled out in Section 2.1 in which there is only one translation function
for terms. To recover this setting we can pack the two components using Σ types:

[M] ≔ ([M]0, [M]1)

⟦A⟧ ≔ Σ x ∶ [A]0. [A]1 x

The translation now becomes:

[M]0 ≔ M
{
x ≔ π1(x) for x free in M

}

[x]1 ≔ π2(x)

[λ x ∶ A. M]1 ≔ λ x ∶ ⟦A⟧. [M]1

[M N]1 ≔ [M]1 [N]

[Π x ∶ A. B]1 ≔ λf. Π x ∶ ⟦A⟧. [B]1 (f π1(x))
[Ui]1 ≔ λA ∶ Ui. A → Ui

[x] ≔ x

[M] ≔ ([M]0, [M]1) in other cases

⟦A⟧ ≔ Σ x0 ∶ [A]0. [A]1 x0

⟦Γ , x ∶ A⟧ ≔ ⟦Γ ⟧, x ∶ ⟦A⟧

The two functions [ _ ]0 and [ _ ]1 are only auxiliary functions used to define [ _ ] and ⟦ _ ⟧. The
first component of the translation [ _ ]0 is not the identity anymore because variables come now
with their proof of parametricity in the context. We thus have to distinguish between variables
bound by the λ and Π and those bound by the context (this mismatch will be fixed in next
translation).
We define [x] to be x instead of ([x]0, [x]1) to avoid an unnecessary η-expansion. Let’s remark
that the application in the definition of ⟦A⟧ also makes some unnecessary β-redexes appear.
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In the context of CPS translations, such βη-redexes are called administrative redexes and it
is standard to avoid introducing them, see e.g. [DF92, DN05]. A simple improvement in our
setting is to define ⟦A⟧ as:

⟦A⟧ ≔ Σ x0 ∶ [A]0. [A]1 @ x0

where @ is a smart application operator defined on preterms by:

(λ x ∶ A. t) @ u ≔ t{x ≔ u}

t @ u ≔ t u in other cases

In several works, for instance [BL11], a notation t ∶ [A]1 is used and has the same effect.

This variant still enjoys typing soundness:

Theorem 22. If Γ ⊢ M ∶ A then Γ ⊢ [M]0 ∶ [A]0 and Γ ⊢ [M]1 ∶ [A]1 [M]0 . As a con-
sequence:

⟦Γ ⟧ ⊢ [M] ∶ ⟦A⟧
Now that we have gone back to our setting, we can investigate about the logical power of this
translation. The result is a bit disappointing:

Proposition 23. The packed parametricity translation [ _ ] is conservative:

If ⟦A⟧ is inhabited in the closed context then A was already inhabited.

Proof. The proof if trivial: if M is of type ⟦A⟧ then π1(M) is of type [A]0 and [A]0 is A

because it has no free variables.

Of course, this does not mean that parametricity translation is not interesting, only that we can
not use it as a syntactic model to extend the logical power of our system.

In [Las14], Lasson says that an axiom of closed type Ax is provably parametric if the type
Πℎ ∶ Ax. [Ax]1 ℎ is inhabited. For propositions or h-propositions, this condition is equivalent
to the fact that the translation preserves the axiom in sense of Section 2.1. Indeed, axiom
preservation is the fact that Ax → Σℎ ∶ Ax. [Ax]1 ℎ is inhabited. The preservation of an
axiom Ax means that the parametricity translation can be extended to λΠω+ Ax.

Remark. It is not because the translation is conservative ( ⟦Ax⟧ → Ax ) that it preserves every
axiom (Ax → ⟦Ax⟧ ).

In his article, Lasson proved that FunExt and UIP are provably parametric.

Proposition 24. FunExt and UIP are provably parametric.

But he left open the question whether univalence is provably parametric. We formalized that
it is indeed the case:

Proposition 25. Univalence is provably parametric.

It means that parametricity translation can be extended to λΠω+ Univalence. The proof does
not seem very informative, “it just works”. We let the reader refer to the formalization for the
details. It can be found in the file TemplateCoq/translations/param_original.v.
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2.4.3. Generous translation

In the previous translation, there was a mismatch between free (or global) and bound (or local)
variables. The former come with a parametricity witness, while the later does not. We can
solve this mismatch by making the parametricity witness available in the first component of
the translation. This gives the following translation:

[x]0 ≔ π1(x)

[λ x ∶ A. M]0 ≔ λ x ∶ ⟦A⟧. [M]0

[M N]0 ≔ [M]0 [N]

[Π x ∶ A. B]0 ≔ Π x ∶ ⟦A⟧. [B]0
[Ui]0 ≔ Ui

[ _ ]1, [ _ ] and ⟦ _ ⟧ are unchanged (but rely on the new [ _ ]0)

We call this variant generous, because the proof of parametricity of the argument is available in
translation [ _ ]0 of functions ( x ∶ ⟦A⟧ instead of x ∶ [A]0 ). On the contrary, we call cheap,
the parametricity translation of previous section. This variant still enjoys the same typing
soundness theorem.
There is now something quite surprising: although the translation looks very similar to the
previous one, it is logically more powerful. Indeed, this translation negates univalence.

Proposition 26. The translation [ _ ] negates weak univalence.
Let notUnivalence be the type:

ΣAB ∶ U. (A ≃ B) × ΣP ∶ U → U. P A × ¬(P B)

then there exists a closed term of type ⊢ ⟦notUnivalence⟧.

Proof. As always, the construction of the term is better understood using a proof assistant.
Such a formalization is present in file param_generous_packed.v.
The intuition is as follows:

– A type is given by a type and a predicate on it. So, take A to be (B, λ _. 1).
(or, equivalently, ⟦B⟧)

– Take B to be (1, λ _. B).

– They are equivalent because we can use the second component to build the functions
(⟦A → B⟧ ≅ ⟦A⟧ → ⟦B⟧).

– Now take P to be “having two distinct elements on the first component”. It is satisfied
by B but not by A.

Remark. We could define an “unpacked generous translation” with:

[Π x ∶ A. B]0 ≔ Π (x ∶ [A]0) (xt ∶ [A]1 x). [B]0

[Π x ∶ A. B]1 ≔ λf. Π (x ∶ [A]0) (xt ∶ [A]1x). [B]1 (f x xt)

This translation seems to share most of the properties of the packed generous translation.
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2.4.4. N-parametricity

We define here a N-parametricity translation which is a kind of parametricity translation it-
erated N times for any N ∶ ℕ . In this translation, a type is interpreted by a tower of a type
equipped with N successive predicates, which we call a N-cube. Again, we can do a cheap or
a generous translation, here we give the generous one.
The logical power of this translation remains to be studied. Our hope is that this translation
would inspire anω-parametricity translation using coinductive types to representω-cubes.
All construction of this section are universe polymorphic, we omit universe levels for simplic-
ity.

Cubes We define Cuben ∶ U and Eln ∶ Cuben → U :

Cube0 ≔ U

Cuben+1 ≔ ΣC ∶ Cuben. Eln C → U

El0 C ≔ C

Eln+1 C ≔ Σ x ∶ Eln π1(C). π2(C) x

Hence, a n-cube is a type equipped with a tower of predicates over it which are packed using
Σ types (associating on left). Eln gives the type of inhabitants of such a cube: a point in the
base type and proofs that the successive predicates hold.
For instance, the first cubes are:

Cube1 = ΣA0 ∶ U. A0 → U

El1 (A0, A1) = Σ x0 ∶ A0. A1 x0

Cube2 = Σ (A0, A1) ∶ (ΣA0 ∶ U. A0 → U). (Σ x0 ∶ A0. A1 x0) → U

El2 ((A0, A1), A2) = Σ x01 ∶ (Σ x0 ∶ A0. A1 x0). A2 x01

We now define Typen ∶ Cuben the n-cube of n-cubes. The definition is made such that we
have Eln Typen ≃β Cuben .

Type0 ≔ U

Typen+1 ≔ (Typen, λC ∶ Cuben. Eln C → U)

Translation Let N be in ℕ. We can now define the N-parametricity translation. To do this
we define N + 1 translation maps [ _ ]0, [ _ ]1, … , [ _ ]N by induction on the term and on n.
We will write ⟦A⟧n for Eln [A]n , [A] for [A]N and ⟦A⟧ for ⟦A⟧N . We will ensure:

∀ n ≤ N, Γ ⊢ M ∶ A ⇒ ⟦Γ ⟧ ⊢ [M]n ∶ ⟦A⟧n
where contexts are translated pointwise by ⟦ _ ⟧.
We will also ensure the following invariant:

π1([M]n+1) ≃β [M]n (⋆)

which means that to define the n+1 component of the translation from the n one, we only have
to give a proof for the last predicate.
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Universe is translated by:
[U]n ≔ Typen

and hence for all n ∶ ℕ, ⟦U⟧n ≃β Cuben.

Product types are translated by:

[Π x ∶ A. B]0 ≔ Π x ∶ ⟦A⟧. [B]0
[Π x ∶ A. B]n+1 ≔ ([Π x ∶ A. B]n, λf ∶ ⟦Π x ∶ A. B⟧n. Π x ∶ ⟦A⟧. π2([B]n+1 (evn f x))

where evn (f0, … , fn) x = (f0 x, … , fn x) :

ev0 f x ≔ f x

evn+1 f x ≔ (evn π1(f ) x, π2(f ) x)

This operator is typed as follows:

If Γ ⊢ f ∶ ⟦Π x ∶ A. B⟧n then Γ , x ∶ ⟦A⟧ ⊢ evn f x ∶ ⟦B⟧n

The translation is generous because the translation [ _ ]n of Π types involves ⟦A⟧ instead of
[A]n.

Functions

[λ x ∶ A. M]0 ≔ λ x ∶ ⟦A⟧. [M]0

[λ x ∶ A. M]n+1 ≔ ([λ x ∶ A. M]n, λ x ∶ ⟦A⟧. π2([M]n+1))

we can check than evn [λ x ∶ A. M]n x ≃β [M]n (using the invariant (⋆) ).

Application is translated by:

[M N]n ≔ evn [M]n [N]

Variables
[x]n ≔ pn(x)

where pn(M) = π1(π1(…M)) = πN−n
1

(M) (pn ∶ CubeN → Cuben).

The translations maps satisfy the substitution lemma and computational soundness (it requires
η-conversion and surjective pairing). Hence we have:

Proposition 27. If Γ ⊢ t ∶ A then for all n ≤ N :

⟦Γ ⟧ ⊢ [M]n ∶ ⟦A⟧n
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All Models Category with Families

Syntactic Model CwF where all equalities are refl
Defined on raw syntax

Program translation A context is translated by a context,
a term by a term, . . .

Figure 2.5.: Different kind of models for type theory

2.5. The emergence of syntactic models

We want to compare program translations with respect to more traditional ways of giving mod-
els of type theory like Categories with Families.

The main advantage of program translations is that they bypass the problem of defining the
interpretation map discussed in Section 1.5.3. Indeed, for translations, the interpretation is
defined on untyped syntax and type soundness is checked afterward. This is only possible
because the target is untyped syntax, which is not the case with CwFs.
The program translations also provide relatively simple models. This is in particular due to the
fact that many constructions are interpreted transparently: contexts by contexts, universes by
universes, etc. Among those constructions there is the conversion rule. The conversion rule
is the only rule that is not syntax directed in λΠω and program translation does not try to do
anything with it: they interpret conversion by conversion.
Program translations also seem to be quite flexible. For instance, for universes, they can ac-
count both for Tarski style and Russell style, as long as it is the same style in the source and in
the target.
Last, with respect to CwF, program translations require a very weak metatheory because all the
requirements are made on the target theory and not on the metatheory. For instance, to define
a model of a type theory with many universes we assume that the target theory has many
universes but the translation can be defined and proved correct in a very weak metatheory. On
the contrary, to define the corresponding CwF in the metatheory we need all those universes
in it.
We realized that some models which are not program translations share several of those prop-
erties. For instance, for the standard model, it is possible to define an interpretation map on
raw syntax. A context is mapped to a type, a type to a type family and a term to a term (Fig-
ure 2.6). Type soundness can be checked afterward. We propose to name this kind of models
syntactic models. For the standard model, let’s remark that the translation of a term depends
on the context, so with respect to program translations, the valuable property of locality is lost.
It seems that we can do the same for the setoid model with definitional ℙ: a raw context is
interpreted by a raw term and we show afterward that if the context is well-formed the term
is of type Setoid. In both models, conversion is interpreted conversion. And indeed, in the
CwFs corresponding to those two models all the equalities were given by reflexivity. On the
contrary, for the setoid model with h-propositions, all the equalities are not given by reflexivity
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⟦ ⋅ ⟧ ≔ 1

⟦Γ , x ∶ A⟧ ≔ Σγ ∶ ⟦Γ ⟧. ⟦A⟧Γ γ
⟦Π x ∶ A. B⟧Γ ≔ λγ ∶ ⟦Γ ⟧. Π x ∶ ⟦A⟧Γ γ. ⟦B⟧Γ , x∶A (γ, x)

[λ x ∶ A. M]Γ ≔ λ (γ ∶ ⟦Γ ⟧) (x ∶ ⟦A⟧Γ γ). [M]Γ , x∶A (γ, x)

[M N]Γ ≔ λγ ∶ ⟦Γ ⟧. [M]Γ γ ([N]Γ γ)

[Ui]Γ ≔ λ _ ∶ ⟦Γ ⟧. Ui

[xn]Γ ≔ λγ ∶ ⟦Γ ⟧. π2(πn1(γ)) if xn is the nth variable of Γ

Figure 2.6.: Standard model as a syntactic model

and it does not seem possible to define it on raw syntax.
Categories with Families are used to interpret substitution and conversion (the “substitution
calculus” part) in mathematical structure where there are not necessarily present. In the case
of syntactic models (including program translations), substitution and conversion are inter-
preted by themselves so the use of a CwF is superfluous. Let’s remark that by postcomposing
a program translation by the standard model, we always get a new CwF where all equalities
are given by reflexivity.

The precise definition of syntactic models remains to be given but some criteria are emerging:
– they are defined on raw syntax

– they give rise to a CwF where all equalities are given by reflexivity
The definition of syntactic model could be the following. However, this definition does not
encompasses program translations (where a precontext is translated to a precontext), hence a
more general definition should probably be given.
A syntactic model from source S to target T is given by:

– a map ⟦ _ ⟧ from precontexts of S to preterms of T

– a map ⟦ _ ⟧ from pretypes of S to preterms of T

– a map [ _ ] from preterms of S to preterms of T

– a closed type Ctx in T

– a type family Ty ∶ Ctx → U in T

– a type family Tm ∶ ΠΓ . Ty Γ → U in T

And the expected typing soundness property is:

Γ ⊢ ⇒ ⋅ ⊢ ⟦Γ ⟧ ∶ Ctx

Γ ⊢ A ⇒ ⋅ ⊢ ⟦A⟧ ∶ Ty ⟦Γ ⟧
Γ ⊢ M ∶ A ⇒ ⋅ ⊢ [M] ∶ Tm ⟦Γ ⟧ ⟦A⟧
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In this chapter we present Template Coq, a reification plugin for Coq which reifies the syntax,
the typing and some commands. In the first section we present the reification of the syntax.
Template Coq provides a representation of Coq terms as an inductive type, as close as possible
as the original implementation, and functions to move from terms to syntax and back. Then, we
present the reification of the typing. This one is given as an inductive family over the terms. A
type checking algorithm is also provided. Next comes the reification of some commands, with
the application of writing Coq plugins directly in Coq. Last, we will focus on a translation
plugin that we defined using Template Coq. This plugin allows to define and use program
translations, as defined in the previous chapter, directly in Coq.
This chapter is heavily based on the article Towards Certified Meta-Programming with Typed

Template-Coq (Abhishek Anand, Simon Boulier, Cyril Cohen, Matthieu Sozeau and Nicolas
Tabareau) [ABC+18] published at ITP 2018. It is mainly Section 3.4 on the translation plugin
which is more detailed.

3.1. Reification of Coq Terms

Reification of syntax. The central piece of Template Coq is the inductive type term defined
in Figure 3.1 which represents the syntax of Coq terms. This inductive follows directly the
constr datatype of Coq terms in the OCaml code of Coq, except for the use of OCaml’s
native arrays and strings. An upcoming extension of Coq [AGST10] with such features should
solve this mismatch.
Constructor tRel represents variables bound by abstractions (introduced by tLambda), depen-
dent products (introduced by tProd) and local definitions (introduced by tLetIn), the natural
number is a De Bruijn index. The name is a printing annotation.
Sorts are represented with tSort, which takes a universe as argument. A universe is the
supremum of a (non-empty) list of level expressions, and a level is either Prop, Set, a global
level or a De Bruijn polymorphic level variable.

Inductive level ≔ lProp | lSet | Level (_ : string) | Var (_ : ℕ).

Definition universe ≔ list (level * bool). (* level+1 if true *)

The application (introduced by tApp) is n-ary. The three constructors tConst, tInd and
tConstruct represent references to constants (definitions or axioms), inductives, and con-
structors of an inductive type. The universe_instances are non-empty only for universe
polymorphic constants. Finally, tCase represents pattern-matchings, tProj primitive projec-
tions, tFix fixpoints and tCoFix cofixpoints.
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Inductive term : Set ≔
| tRel : ℕ → term

| tVar : ident → term

| tEvar : ℕ → list term → term

| tSort : universe → term

| tCast : term → cast_kind → term → term

| tProd : name → term → term → term

| tLambda : name → term → term → term

| tLetIn : name → term → term → term → term

| tApp : term → list term → term

| tConst : kername → universe_instance → term

| tInd : inductive → universe_instance → term

| tConstruct: inductive → ℕ → universe_instance → term

| tCase : inductive * ℕ → term → term → list (ℕ * term) → term

| tProj : projection → term → term

| tFix : mfixpoint term → ℕ → term

| tCoFix : mfixpoint term → ℕ → term.

Figure 3.1.: Representation of the syntax in Template Coq

Quoting and unquoting of terms. Template Coq provides a lifting from concrete syntax
to reified syntax (quoting) and the converse (unquoting). It can reify and reflect all kernel Coq
terms.
The command Quote Definition reifies the syntax of a term. For instance,

Quote Definition f ≔ (λ x ⇒ x + 0).

generates the term f defined as

f = tLambda (nNamed "x") (tInd {| inductive_mind ≔ "Coq.Init.Datatypes

.nat"; inductive_ind ≔ 0 |} [ ]) (tApp (tConst "Coq.Init.Nat.add"

[ ]) [tRel 0; tConstruct {| inductive_mind ≔ "Coq.Init.Datatypes.

nat"; inductive_ind ≔ 0 |} 0 [ ]) : term

On the converse, the command Make Definition constructs a term from its syntax. This
example below defines zero to be 0 of type ℕ.

Make Definition zero ≔ tConstruct (mkInd "Coq.Init.Datatypes.nat" 0)

0 [ ].

where mkInd na k is the kth inductive of the mutual block of the name na.

Reification of environment. In Coq, the meaning of a term is relative to an environment,
which must be reified as well. Environments consist of three parts: (i) a graph of universes (ii)
declarations of definitions, axioms and inductives (iii) a local context registering types of De
Bruijn indexes.
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As we have seen in the syntax of terms, universe levels are not given explicitly in Coq. Instead,
there are level variables and constraints between level variables are registered in a graph of

universes. This is the way typical ambiguity is implemented in Coq. A constraint is given by
two levels and a constraint_type (Lt, Le or Eq):

Definition univ_constraint ≔ Level * constraint_type * Level.

Then the graph is given by a set of level variables and a set of constraints. Sets, coming from
the Coq standard library, are implemented using lists without duplicates. LevelSet.t means
the type t of the module LevelSet.

Definition uGraph ≔ LevelSet.t * ConstraintSet.t.

Functions to query the graph are provided. For the moment, they rely on a naive implementa-
tion of the Bellman-Ford algorithm. check_leq u1 u2 checks if the graph enforces u1 ≤ u2

and no_universe_inconsistency checks that the graph has no negative cycle.
Constant and inductive declarations are grouped together, properly ordered according to depen-
dencies, in a global context global_ctx, which is a list of global declarations global_decl.

Inductive global_decl ≔
| ConstantDecl : ident → constant_decl → global_decl

| InductiveDecl : ident → minductive_decl → global_decl.

Definitions and axioms just associate a name to a universe context, and two terms for the
optional body and type. Inductives are more involved:

(* Declaration of one inductive type *)

Record inductive_body ≔ { ind_name : ident;

ind_type : term; (* closed arity *)

ind_kelim : list sort_family; (* allowed elimination sorts *)

(* names, types, number of arguments of constructors *)

ind_ctors : list (ident * term * nat);

ind_projs : list (ident * term) (* names and types of projections *)}.

(* Declaration of a block of mutual inductive types *)

Record minductive_decl ≔ { ind_npars : nat; (* number of parameters *)

ind_bodies : list inductive_body; (* inductives of the mutual block *)

ind_universes : universe_context (* universe constraints *) }.

In Coq internals, there are in fact two ways of representing a declaration: either as a “dec-
laration” or as an “entry”. The kernel takes entries as input, type-check them and elaborate
them to declarations. In Template Coq, we provide both, and provide an erasing function
mind_decl_to_entry from declarations to entries for inductive types.
Finally, local contexts are just lists of local declarations: a type for lambda bindings, and a type
and a body for let bindings.

Quoting and unquoting the environment Template Coq provides the command Quote
Recursively Definition to quote an environment. This command crawls the environment
and quotes all declarations needed to typecheck a given term.
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The other way, the commands Make Inductive allows declaring an inductive type from its
entry. For instance, the following redefines a copy of ℕ:

Make Inductive (mind_decl_to_entry

{| ind_npars ≔ 0; ind_universes ≔ [ ];

ind_bodies ≔ [{|

ind_name ≔ "nat";

ind_type ≔ tSort [(lSet, false)];

ind_kelim ≔ [InProp; InSet; InType];

ind_ctors ≔ [("O", tRel 0, 0);

("S", tProd nAnon (tRel 0) (tRel 1), 1)];

ind_projs ≔ [ ] |}] |} ).

More examples of use of quoting/unquoting commands can be found in the Template Coq
repository in th file template-coq/demo.v.

3.2. Type Checking Coq in Coq

In Figure 3.2, we present (an excerpt of) the specification of the typing judgment of the kernel
of Coq using the inductive family typing. It represents all the typing rules of Coq1. This
includes the basic dependent lambda calculus with lets, global references to inductives and
constants, the match construct and primitive projections. Universe polymorphic definitions
and the well-formedness judgment for global declarations are dealt with as well.
The only ingredients missing are the guard check for fixpoint and productivity of cofixpoints
and the positivity condition of mutual (co-)inductive types. They are work-in-progress.
The typing judgment typing is mutually defined with typing_spine to account for n-ary
applications. Untyped reduction red1 and cumulativity cumul can be defined separately.

Implementation. To test this specification, we have implemented the basic algorithms for
type-checking in Coq. In particular, we implemented type inference: given a context and a
term, output its type or produce a type error. All the rules of type inference are straightforward
except for cumulativity. The cumulativity test is implemented by comparing head normal forms
for a fast-path failure and potentially calling itself recursively, unfolding definitions at the head
in Coq’s kernel in case the heads are equal. We implemented weak-head reduction by mimick-
ing Coq’s kernel implementation, which is based on an abstract machine inspired by the KAM.
Coq’s machine optionally implements a variant of lazy, memoizing evaluation (which can have
mixed results, see Coq’s PR #555 for example), that feature has not been implemented yet.
The main difference with the OCaml implementation is that all of the functions are required
to be shown terminating in Coq. One possibility could be to prove the termination of type-
checking separately but this amounts to prove in particular the normalization of CIC which is
a complex task. Instead, we simply add a fuel parameter to make them syntactically recursive
and make OutOfFuel a type error.

1We do not treat metavariables which are absent from kernel terms and require a separate environment for their
declarations.
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Inductive cumul (Σ : global_ctx) (Γ : context) : term → term → Prop

≔ | cumul_refl t u : leq_term (snd Σ) t u = true → Σ ; Γ ⊢ t ≤ u

| cumul_red_l t u v : red1 Σ Γ t v → Σ ; Γ ⊢ v ≤ u → Σ ; Γ ⊢ t ≤ u

| cumul_red_r t u v : Σ ; Γ ⊢ t ≤ v → red1 Σ Γ u v → Σ ; Γ ⊢ t ≤ u

where " Σ ; Γ ⊢ t ≤ u " ≔ (cumul Σ Γ t u).

Inductive typing (Σ : global_ctx) (Γ : context) : term → term → Set

≔ | type_Rel n : ∀ (H : n < List.length Γ ),

Σ ; Γ ⊢ tRel n : lift0 (S n) (safe_nth Γ (exist _ n H)).(decl_type

)

| type_Sort (l : level) :

Σ ; Γ ⊢ tSort (Universe.make l) : tSort (Universe.super l)

| type_Prod n t b s1 s2 :

Σ ; Γ ⊢ t : tSort s1 → Σ ; Γ , vass n t ⊢ b : tSort s2 →

Σ ; Γ ⊢ tProd n t b : tSort (max_universe s1 s2)

| type_App t l t_ty t’ :

Σ ; Γ ⊢ t : t_ty → typing_spine Σ Γ t_ty l t’ →

Σ ; Γ ⊢ tApp t l : t’

| …

where " Σ ; Γ ⊢ t : T " ≔ (typing Σ Γ t T)

with typing_spine Σ Γ : term → list term → term → Prop ≔
| type_spine_nil ty : typing_spine Σ Γ ty [ ] ty

| type_spine_const hd tl na A B B’ T :

Σ ; Γ ⊢ T ≤ tProd na A B → Σ ; Γ ⊢ hd : A →

typing_spine Σ Γ (subst0 hd B) tl B’ →

typing_spine Σ Γ T (cons hd tl) B’

Figure 3.2.: Typing judment for terms, excerpt
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Bootstrapping it. We can extract this checker to OCaml and reuse the setup described in the
previous section to connect it with the reifier and easily derive a (partialy verified) alternative
checker for Coq’s .vo object files. Our plugin provides a new command Template Check for
typechecking definitions using the alternative checker, that can be used as follows:

Require Import Template.TemplateCoqChecker List. Import ListNotations.

Definition foo ≔ List.map (λ x ⇒ x + 3) [0; 1].

Template Check foo.

3.3. Reification of Coq Commands

Coq plugins need to interact with the environment, for example by repeatedly looking up defi-
nitions by name, declaring new constants using fresh names, or performing computations. It is
desirable to allow such programs to be written in Coq (Gallina) because of the two following
advantages. Plugin-writers no longer need to understand the OCaml implementation of Coq
and plugins are no longer sensitive to changes made in the OCaml implementation.
In general, interactions with the environment have side effects—e.g. the declaration of new
constants—which must be described in Coq’s pure setting. To overcome this difficulty, we use
the standard “free” monadic setting to represent the operations involved in interacting with the
environment, as done for instance in Mtac [ZDK+15].
TemplateMonad is an inductive family (Figure 3.3) such that TemplateMonad A represents
a program which will finally output a term of type A. There are special constructors tmReturn
and tmBind to provide (freely) the basic monadic operations. We use the monadic syntactic
sugar x ← t ; u for tmBind t (λ x ⇒ u) .
The other operations of the monad can be classified in two categories:

– the traditional Coq operations (tmDefinition to declare a new definition, etc.)

– the quoting and unquoting operations to move between Coq term and their syntax or to
work directly on the syntax (tmMkInductive to declare a new inductive from its syntax
for instance).

An overview of available commands is given in Table 3.1.
A program prog of type TemplateMonad A can be executed with the command:

Run TemplateProgram prog.

This command is thus an interpreter for TemplateMonad programs, implemented in OCaml
as a traditional Coq plugin. The term produced by the program is discarded but, and it is the
point, a program can have many side effects like declaring a new definition or a new inductive
type, printing something, . . .

Let’s look at some examples. The following program adds two definitions foo ≔ 12 and
bar ≔ foo + 1 to the current context.

Run TemplateProgram (foo ← tmDefinition "foo" 12 ;

tmDefinition "bar" (foo +1)).
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Inductive TemplateMonad : Type → Type ≔
(* Monadic operations *)

| tmReturn : ∀ {A}, A → TemplateMonad A

| tmBind : ∀ {A B},

TemplateMonad A → (A → TemplateMonad B) → TemplateMonad B

(* General operations *)

| tmPrint : ∀ {A}, A → TemplateMonad unit

| tmFail : ∀ {A}, string → TemplateMonad A

| tmEval : reductionStrategy → ∀ {A}, A → TemplateMonad A

| tmDefinition : ident → ∀ {A}, A → TemplateMonad A

| tmAxiom : ident → ∀ A, TemplateMonad A

| tmLemma : ident → ∀ A, TemplateMonad A

| tmFreshName : ident → TemplateMonad ident

| tmAbout : ident → TemplateMonad (option global_reference)

| tmCurrentModPath : unit → TemplateMonad string

(* Quoting and unquoting operations *)

| tmQuote : ∀ {A}, A → TemplateMonad term

| tmQuoteRec : ∀ {A}, A → TemplateMonad program

| tmQuoteInductive: kername → TemplateMonad mutual_inductive_entry

| tmQuoteConstant : kername → bool → TemplateMonad constant_entry

| tmMkDefinition : ident → term → TemplateMonad unit

| tmMkInductive : mutual_inductive_entry → TemplateMonad unit

| tmUnquote : term → TemplateMonad {A : Type & A}.

| tmUnquoteTyped : ∀ A, term → TemplateMonad A

Figure 3.3.: The monad of commands
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Vernacular
command

Reified command with
its arguments

Description

Eval tmEval red t
Returns the evaluation of t following the evalua-
tion strategy red (cbv, cbn, hnf, all or lazy)

Definition tmDefinition id t
Makes the definition id ≔ t and returns the cre-
ated constant id

Axiom tmAxiom id A
Adds the axiom id of type A and returns the created
constant id

Lemma tmLemma id A
Generates an obligation of type A, returns the cre-
ated constant id after all obligations close

About or Locate tmAbout id

Returns Some gr if id is a constant in the current
environment and gr is the corresponding global
reference. Returns None otherwise.

tmQuote t
Returns the syntax of t (of type term)

tmQuoteRec t
Returns the syntax of t and all the declarations on
which it depends

tmQuoteInductive kn
Returns the declaration of the inductive kn

tmQuoteConstant kn

b

Returns the declaration of the constant kn, if b is
true the implementation bypass opacity to get the
body of the constant

Make

Definition

tmMkDefinition id

tm

Adds the definition id ≔ t where t is denoted by
tm

Make Inductive tmMkInductive d Declares the inductive denoted by the declaration d

tmUnquote tm
Returns the pair (A;t) where t is the term whose
syntax is tm and A it’s type

tmUnquoteTyped A tm
Returns the term whose syntax is tm and checks
that it is indeed of type A

Table 3.1.: Main Template Coq commands

80



3. Template Coq and the translation plugin

The program below asks the user to provide an inhabitant ofℕ (here we provide 3 * 3), records
it in the lemma foo, prints its normal form, and records the syntax of its normal form in
foo_nf_syntax (hence of type term). We use Program’s obligation mechanism2 to ask for
missing proofs. And the rest of the program is running when the obligation is closed. This
allows the implementation of interactive plugins.

Run TemplateProgram (foo ← tmLemma "foo" ℕ ;

nf ← tmEval all foo ;

tmPrint "normal form: " ; tmPrint nf ;

nf_ ← tmQuote nf ;

tmDefinition "foo_nf_syntax" nf_).

Next Obligation. exact (3 * 3). Defined.

3.3.1. Writing Coq plugins in Coq

The reification of syntax, typing and commands of Coq allow writing a Coq plugin directly
inside Coq, without requiring another language like OCaml and an external compilation phase.
We develop here a toy example to show the methodology of writing plugins in Template Coq.
This example is a plugin which adds a new constructor to an existing inductive type. In next
section, we will present a more involved plugin, the translation plugin.

Given an inductive type I, we want to declare a new inductive type I’ which corresponds to I

plus one more constructor. For instance, let’s say that we have a syntax for lambda calculus:

Inductive tm : Set ≔
| var : nat → tm | lam : tm → tm | app : tm → tm → tm.

And that in some part of our development, we want to consider a variation of tm with a new
constructor, e.g. a “let-in” constructor. Then we declare tm’ with the plugin by:

Run TemplateProgram

(add_constructor tm "letin" (λ tm’ ⇒ tm’ → tm’ → tm’)).

This command has the same effect as declaring the inductive tm’ by hand:

Inductive tm’ : Set ≔
| var’ : nat → tm’ | lam’ : tm’ → tm’

| app’ : tm’ → tm’ → tm’ | letin : tm’ → tm’ → tm’.

but with the benefit that if tm is changed, for instance by adding one new constructor, then tm’
is automatically changed accordingly. We provide other examples, e.g. with mutual inductives,
in the file test-suite/add_constructor.v of the Template Coq repository.

We will see that it is fairly easy to define this plugin using Template Coq. The main function
is add_constructor which takes an inductive type ind (whose type is not necessarily Type

2In Coq, a proof obligation is a goal which has to be solved to complete a definition. Obligations were introduced
by Sozeau [Soz07] in the Program mode.
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if it is an inductive family), a name idc for the new constructor and the type ctor of the new
constructor, abstracted with respect to the new inductive.

Definition add_constructor {A} (ind : A) (idc : ident) {B} (ctor : B)

: TemplateMonad unit

≔ tm ← tmQuote ind ;

match tm with

| tInd ind0 _ ⇒

decl ← tmQuoteInductive (inductive_mind ind0) ;

ctor ← tmQuote ctor ;

d’ ← tmEval lazy (add_ctor decl ind0 idc ctor) ;

tmMkInductive d’

| _ ⇒ tmFail "The provided term is not an inductive"

end.

It works in the following way. First the inductive type ind is quoted, the obtained term tm is
expected to be a tInd constructor otherwise the function fails. Then the declaration of this
inductive is obtained by calling tmQuoteInductive, the constructor is reified too, and an
auxiliary function is called to add the constructor to the declaration. After evaluation, the new
inductive type is added to the current context with tmMkInductive.
It remains to define the add_ctor auxiliary function to complete the definition of the plugin.
It takes a minductive_decl which is the declaration of a block of mutual inductive types and
returns another minductive_decl.

Definition add_ctor (mind : minductive_decl) (ind0 : inductive)

(idc : ident) (ctor : term) : minductive_decl

≔ let i0 ≔ inductive_ind ind0 in

{| ind_npars ≔ mind.(ind_npars) ;

ind_bodies ≔ map_i (λ (i : nat) (ind : inductive_body) ⇒

{| ind_name ≔ tsl_ident ind.(ind_name) ;

ind_type ≔ ind.(ind_type) ;

ind_kelim ≔ ind.(ind_kelim) ;

ind_ctors ≔
let ctors ≔ map (λ ’(id, t, k) ⇒ (tsl_ident id, t, k))

ind.(ind_ctors) in

if Nat.eqb i i0 then

let n ≔ length mind.(ind_bodies) in

let typ ≔ try_remove_n_lambdas n ctor in

ctors ++ [(idc, typ, 0)]

else ctors;

ind_projs ≔ ind.(ind_projs) |})

mind.(ind_bodies) |}.

The declaration of the block of mutual inductive types is a record. The field ind_bodies

contains the list of declarations of each inductive of the block. We see that most of the fields of
the records are propagated, except for the names which are translated to add some primes and
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ind_ctors, the list of types of constructors, for which, in the case of the relevant inductive
(i0 is its number), the new constructor is added.

3.4. The translation plugin

Let’s plug program translations of previous chapter and Template Coq together. We present
here a plugin that we developed in order to compute the translation of a Coq term given a
program translation.
We suppose a translation ([ _ ], ⟦ _ ⟧) from Coq to Coq given. The plugin provides four com-
mands Translate, TranslateRec, Implement and ImplementExisting.

– Translate computes the translation [M] of a term M .

– TranslateRec computes the translation of a term and of all constant on which it de-
pends.

– Implement computes the translation ⟦Ax⟧ of a type Ax, then asks the user to inhabit
⟦Ax⟧ in proof mode. Finally, if the user succeeded, it declares an axiom of type Ax. If
the program translation is correct (cf. Section 2.1), it ensures that the axiom does not
break consistency.

– ImplementExisting is used to provide the translation of some terms “by hand”. It can
be used to “implement” an existing axiom, but it is mainly useful to experiment with
partial translations. Defining complete translation is indeed difficult and this command
can be used, for instance, to provide the translation of an inductive type.

To work, the plugin needs a translation. A translation is given by the following record:

Class Translation ≔
{ tsl_id : ident → ident ;

tsl_tm : tsl_context → term → tsl_result term ;

tsl_ty : option (tsl_context → term → tsl_result term) ;

tsl_ind : tsl_context → string → kername → mutual_inductive_body

→ tsl_result (tsl_table * list mutual_inductive_body) }.

This record is a Class so that, using type classes inference, when a translation is provided, it
is automatically found by Coq.

– tsl_ident is how identifiers are translated, it will always be (λ id ⇒ id ++ "t")

for us.

– tsl_tm is the main translation function implementing [ _ ]. It takes a term and returns
a term. The translation context contains the global environment and the previously
translated constants, see below. The result is in the monad tsl_result which is an
error monad:
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Inductive tsl_error ≔
| NotEnoughFuel

| TranslationNotFound (id : ident)

| TranslationNotHandeled

| TypingError (t : type_error).

The returned term can be of any type. tsl_tm is used by the commands Translate
and TranslateRec.

– tsl_ty is the function translating types ⟦ _ ⟧. The returned term is expected to be a
type. This function is used by the commands Implement and ImplementExisting,
if it is not provided they are not available. This is the case for models which does not
translate a type by a type (for instance, the standard model, the setoid model, . . . ).

– Last, tsl_ind is the function translating inductive types. It returns:

– an extended translation table with the translations of the inductive type and its
constructor

– a list of inductive declarations which are used in the translation of the inductive
type. Generally, an inductive is translated either by itself (in which case the list is
empty), or by a new inductive whose constructors are the the original constructors
translated (in which case the list is of length one).

The second argument of tsl_ind is technical: it is the path to the module in which the
new inductives will be declared.

Translation context In the translation plugin, the constants (definitions, axioms, inductive
type or constructor), are translated one by one. They are recorded in a translation table so that
the constants are not retranslated each time they appear. The table is the list of the translated
constants together with their translation.

Definition tsl_table ≔ list (global_reference * term).

Thus, the tConst case in the tsl_tm function is generally implemented by:

| tConst s univs ⇒ lookup_tsl_table’ E (ConstRef s)

and similarly for tInd and tConstruct.
Some translation that we implemented need to access the global environment in which the
considered term makes sense (see Section 3.6). That’s why we define a translation context to
be a global environment and a translation table:

Definition tsl_context ≔ global_context * tsl_table.

3.5. Parametricity

Let’s describe the use of the plugin for the parametricity translation. It provides an alternative
implementation of Keller and Lasson’s plugin ParamCoq [LK]. For the moment, only the
unary case is implemented.
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[M]0 = M

[x]1 = xt
[Π x ∶ A. B]1 = λf. Π (x ∶ [A]0) (xt ∶ [A]1 x). [B]1 (f x)

[λ x ∶ A. M]1 = λ (x ∶ [A]0) (xt ∶ [A]1 x). [M]1
[Ui]1 = λA ∶ Ui. A → Ui

⟦Γ , x ∶ A⟧ = ⟦Γ ⟧, x ∶ [A]0, xt ∶ [A]1 x

Γ ⊢ M ∶ A

⟦Γ ⟧ ⊢ [M]0 ∶ [A]0

⟦Γ ⟧ ⊢ [M]1 ∶ [A]1 [M]0

Figure 3.4.: Unary parametricity translation and soundness theorem, excerpt from Sec-
tion 2.4.1

The parametricity translation that we use here is the “original one”, described in Section 2.4.1.
It is reminded in Figure 3.4. The two components of the translation [ _ ]0 and [ _ ]1 are imple-
mented by two recursive functions tsl_param0 and tsl_param1.

Fixpoint tsl_param0 (n : nat) (t : term) {struct t} : term ≔
match t with

| tRel k ⇒ if k >= n then (* global variable *) tRel (2*k-n+1)

else (* local variable *) tRel k

| tProd na A B ⇒ tProd na (tsl_param0 n A) (tsl_param0 (n+1) B)

| _ ⇒ …

end.

Fixpoint tsl_param1 (E : tsl_table) (t : term) : term ≔
match t with

| tRel k ⇒ tRel (2 * k)

| tSort s ⇒ tLambda (nNamed "A") (tSort s)

(tProd nAnon (tRel 0) (tSort s))

| tProd na A B ⇒

let A0 ≔ tsl_param0 0 A in let A1 ≔ tsl_param1 E A in

let B0 ≔ tsl_param0 1 B in let B1 ≔ tsl_param1 E B in

tLambda (nNamed "f") (tProd na A0 B0)

(tProd na (lift0 1 A0)

(tProd (tsl_name na) (subst_app (lift0 2 A1) [tRel 0])

(subst_app (lift 1 2 B1) [tApp (tRel 2) [tRel 1] ])))

| tConst s univs ⇒ lookup_tsl_table’ E (ConstRef s)

| _ ⇒ …

end.

On Figure 3.4, the translation is presented in a named setting. As a consequence, the introduc-
tion of new variables does not change references to existing ones and that’s why [ _ ]0 is the
identity. In the De Bruijn setting of Template Coq, the translation has to take into account the
shift induced by the duplication of the context. Therefore, the implementation tsl_param0
of [ _ ]0 is not the identity anymore. The argument n of tsl_param0 represents the De Bruijn
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level from which the variables have to be duplicated. There is no need for such an argument in
tsl_param1, the implementation of [ _ ]1, because in this function all variables are duplicated.
The implemented cases include pattern matching. Fixpoints should be supported soon.
Given those two functions, we can yet translate some terms. For example, the translation of
the type of polymorphic identity functions can be gotten by:

Definition ID ≔ ∀ A, A → A.

Run TemplateProgram (Translate emptyTC "ID").

emptyTC is the empty translation context. This defines IDt to be:

λ f: ∀ A, A → A ⇒ ∀ A (At : A → Type) (x : A), At x → At (f A x)

We have also implemented the translation of inductives types. For instance, the translation of
the equality type eq produces the following inductive:

Inductive eqt A (At : A → Type) (x : A) (xt : At x)

: ∀ H, At H → x = H → Prop ≔
| eq_reflt : eqt A At x xt x xt eq_refl.

Then [eq]1 is given by eqt and [eq_refl]1 by eq_reflt.

Given tsl_param0 and tsl_param1 the translation of the declaration of a block of mutual
inductive types is not so hard to get. Indeed, such a declaration mainly consists of the arities
of the inductives and of the types of constructors. And the aritiy and the types of the translated
inductive are produced by translation of the original ones. We let the motivated reader refer to
the implementation of the tsl_mind_body.

Definition tsl_mind_body (E : tsl_table) (mp : string) (kn : kername)

(mind : mutual_inductive_body) : tsl_table * list

mutual_inductive_body.

All put together, the translation is declared by:

Instance param : Translation ≔
{| tsl_id ≔ λ id ⇒ id ++ "t" ;

tsl_tm ≔ λ ΣE t ⇒ ret (tsl_param1 (snd ΣE) t) ;

tsl_ty ≔ None ;

tsl_ind ≔ λ ΣE mp kn mind ⇒ ret (tsl_mind_body (snd ΣE) mp kn

mind) |}.

For each constant c of type A, it is [c]1 (of type [A]1 [c]0) which is recorded in the translation
table. There is no implementation of tsl_ty because there is no meaningful function ⟦ _ ⟧ for
this presentation of parametricity.

3.5.1. Example

With this translation, the only commands that can be used are Translate and TranslateRec.
Here is an illustration of their use coming from the work of Lasson on the automatic proofs of
(!-)groupoid laws using parametricity [Las14]. We show that all functions which have type
Π (A ∶ U) (x, y ∶ A). x = y → x = y are identity functions. Let IDp be this type:
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[x]f ∶= x [λ x ∶ A. M]f ∶= (λ x ∶ [A]f . [M]f , true)

[M N]f ∶= π1([M]f ) [N]f [Π x ∶ A. B]f ∶= (Π x ∶ [A]f . [B]f ) × B

Figure 3.5.: Times bool translation on Π types, excerpt from Section 2.2.1

Definition IDp ≔ ∀ A x y, x = y → x = y.

First we compute the translation of IDp using TranslateRec.

Run TemplateProgram (table ← TranslateRec emptyTC "IDp" ;

tmDefinition "table" table).

The second line define table to be the obtained translation table, so that we can reuse it later.
Then we show that every parametric function on IDp is pointwise equal to the identity using
the predicate λ y. x = y .

Lemma param_IDp (f : IDp) : IDpt f → ∀ A x y p, f A x y p = p.

Proof.

intros H A x y p. destruct p.

destruct (H A (λ y ⇒ x = y) x eq_refl

x eq_refl eq_refl (eq_reflt _ _)).

reflexivity.

Qed.

Let’s define a function myf ≔ p → p · p-1 · p and get its parametricity proof using the plugin.

Definition myf: IDp ≔ λ A x y p ⇒ eq_trans (eq_trans p (eq_sym p)) p.

Run TemplateProgram (TranslateRec table "myf").

We reuse here table in which the translation of equality have been recorded. It is then possible
to deduce automatically that p · p-1 · p = p for all p:

Definition free_thm_myf : ∀ A x y p, myf A x y p = p

≔ param_IDp myf myft.

3.6. Times bool on Π

The implementation of times bool translations is a bit trickier. We describe the one for the
translation on Π types. It will give an example of the use of the command Implement. The
translation is reminded in Figure 3.5. See Section 2.2.1 for a complete description.
Even if the translation is very simple, this time, going from the ideal world of λΠω to the real
world of Coq is not as simple as for parametricity. Indeed, when written in Coq, the translation
is no longer fully syntax directed. Contrarily to pairs (M, N) of λΠω, pairs are typed in Coq,
meaning that the constructor of Σ types does not only have M and N as arguments but also
their types:
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pair : ∀ (A B : Type), A → B → A × B

Hence, in the case of lambdas in the definition of the translation, those types have to be pro-
vided:

[λ (x:A) ⇒ t] ≔ pair (∀ x:[A]. ?T) bool (λ (x:[A]) ⇒ [t]) true

true is always of type bool, but for the left term, we cannot recover the type ?T from the
source term. There is thus a mismatch between the lambdas which are not fully annotated and
the pairs which are. There is a similar issue with applications and projections, but this one can
be circumvented using Coq primitive projections which are untyped.
A solution is to use the type inference algorithm of Section 3.2 implemented on Template Coq
terms to recover the missing information.

[λ (x:A) ⇒ t] ≔ let B ≔ infer Σ (Γ , x:[A]) t in

pair (∀ (x:[A]). B) bool (λ (x:[A]) ⇒ [t]) true

Here we need to have kept track of the global context Σ and of the local context Γ .
The translation function [ _ ]f is thus implemented by:

Fixpoint tsl_rec (fuel : nat) (Σ : global_context) (E : tsl_table)

(Γ : context) (t : term) {struct fuel}

: tsl_result term ≔
match fuel with

| O ⇒ raise NotEnoughFuel

| S fuel ⇒

match t with

| tRel n ⇒ ret (tRel n)

| tSort s ⇒ ret (tSort s)

| tProd n A B ⇒ A’ ← tsl_rec fuel Σ E Γ A ;

B’ ← tsl_rec fuel Σ E (Γ , vass n A) B ;

ret (timesBool (tProd n A’ B’))

| tLambda n A t ⇒ A’ ← tsl_rec fuel Σ E Γ A ;

t’ ← tsl_rec fuel Σ E (Γ , vass n A) t ;

match infer Σ (Γ , vass n A) t with

| Checked B ⇒

B’ ← tsl_rec fuel Σ E (Γ , vass n A) B ;

ret (pairTrue (tProd n A’ B’) (tLambda n A’ t’))

| TypeError t ⇒ raise (TypingError t)

end

…

end

end.

We use some fuel because of the non-structural recursive call on B in the case of lambdas.
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We also implemented the translation of some inductive types. For instance, the translation of
the inductive foo generates the new inductive foot:

Inductive foo ≔
| bar : (nat → foo) → foo.

Inductive foot ≔
| bart : (natt → foot) × bool → foot

and the translation is extended by:

[ foo ] = foot

[ bar ] = (bart ; true)

3.6.1. Example

Let’s demonstrate how to use the plugin to negate function extensionality.
The type of the axiom we will add to our theory is:

Definition NotFunext ≔
(∀ A B (f g : A → B), (∀ x:A, f x = g x) → f = g) → False.

We use TranslateRec to get the translation of eq and False and then we use Implement to
inhabit the translation of the NotFunext:

Run TemplateProgram (TC ← TranslateRec emptyTC NotFunext ;

Implement TC "notFunext" NotFunext).

Next Obligation.

tIntro H.

tSpecialize H unit. tSpecialize H unit.

tSpecialize H (λ x ⇒ x; true). tSpecialize H (λ x ⇒ x; false).

tSpecialize H (λ x ⇒ eq_reflt _ _; true).

inversion H.

Defined.

The Implement command generates an obligation whose type is the translation of NotFunext,
that is:

((∀ A, (∀ B, (∀ f : (A → B) × bool, (∀ g : (A → B) × bool,

((∀ x : A, eqt B (π1 f x) (π1 g x)) × bool

→ eqt ((A → B) × bool) f g)

× bool) × bool) × bool) × bool) × bool

→ Falset) × bool

There is a lot of “× bool”, that’s why it is convenient that this type is automatically computed.
We fill the obligation with the tactics tIntro and tSpecialize which are variants of intro
and specialize dealing with the boolean:
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Tactic Notation "tSpecialize" ident(H) uconstr(t)

≔ apply π1 in H; specialize (H t).

Tactic Notation "tIntro" ident(H)

≔ refine (λ H ⇒ _; true).

After the obligation being closed (and not before), an axiom notFunext of type NotFunext

is declared in the current environment, as it would have been done by:

Axiom notFunext : NotFunext.

A constant notFunextt whose body is the term provided in the obligation is also declared and
the mapping (notFunext, notFunextt) is added in the translation table.
If the translation is correct, the consistency of Coq is preserved by the addition of this axiom.
Let’s remark that here it is not fully the case because Coq, our source theory, has η-conversion,
which is incompatible with this translation.

3.7. Other uses

Here is a very quick review of some of our other implementations using the translation plugin.
They all can be found in the repository translations.

Standard model We implemented the standard model as a “syntactic model” (see Sec-
tion 2.5).
Let’s have a look at a small example.

Definition toto ≔ λ (f : ∀ A, A → A) ⇒ f Type.

Run TemplateProgram (Translate emptyTC "toto").

This defines totot to be the following term:

λ (γ : unit)

(f : ∀ (A : Type) (H : π2 {| π1 ≔ γ; π2 ≔ A |}),

π2 (π1 {| π1 ≔ {| π1 ≔ γ; π2 ≔ A |}; π2 ≔ H |})) ⇒

π2 {| π1 ≔ γ; π2 ≔ f |} Type

and whose type is:

unit → (∀ A : Type, A → A) → Type → Type

Other parametricity translations We implemented the cheap and the generous transla-
tions that we presented in Sections 2.4.2 and 2.4.3 and we used them to check the axiom
preservation results.
For instance, we formalized that univalence is provable parametric, meaning that it is preserved
by the cheap translation:

Theorem Ua_provably_parametric : ∀ h : Univalence, Univalencet h.

Or, on the contrary, that the generous translation negates univalence:
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Run TemplateProgram (ΣE ← TranslateRec emptyTC equiv ;

ΣE ← TranslateRec ΣE ∃ ;

Implement ΣE "notUnivalence"

(∃ A B, equiv A B × ∃ P, P A × (P B → False))).

Let’s conclude this section by mentioning that Pujet and Annenkov are currently working on
reimplementing the forcing plugin of Pédrot [P´] with the translation plugin. The forcing plugin
implement the forcing translation [JLP+16].
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4. Adventures in Cubical Type
Theories

Up to here, we have encountered two interesting equalities: strict equality and univalent equal-
ity. Unfortunately, having both naively in a type theory causes them collapse and is thus in-
consistent. However, there exists a way to have them cohabiting: the introduction of fibrant

types. Fibrant types restrict the types on which the univalent equality can be eliminated and
thus avoid the collapsing of the two equalities. Such a type theory with two equalities and a
mechanism of fibrant types is called Two Level Type Theory. The first to introduce this setting
was Voevodsky to reflect what happens in the simplicial model of Homotopy Type Theory.
This chapter is two fold: first, we want to introduce a two level type theory and give a model
for it. Second, we take advantage of a type theory that we will discover on the way—Interval

Type Theory—to prove a categorical result: we give a description of a model structure on the
category of cubical sets.
A preliminary version of this chapter was available as a public draft: Model structure on the

universe in a two level type theory (Simon Boulier, Nicolas Tabareau) [BT17]. It is now out-
dated and this chapter supersedes it.
This chapter owes much to long and numerous discussions with Huber, A. Lafont, Leena Sub-
ramaniam, Pujet and Tabareau.

4.1. Two Level Type Theory

Two Level Type Theory is a type theory with two equalities, a strict one and a univalent one,
and a mechanism of fibrant types to make them cohabit. The story of Two Level Type Theory
(TLTT) starts with Homotopy Type Theory which is a type theory with one equality enjoying
univalence. HoTT turns out to be the fibrant fragment of Two Level Type Theory, meaning that
the restriction to the fibrant types and to the univalent equality is HoTT. Thus, the univalent
equality of TLTT has to be thought as the equality of HoTT.
The first model of Homotopy Type Theory was the simplicial model of Voevodsky. In this
model a type is interpreted by a Kan simplicial set—the category of Kan simplicial sets is a
model of well-behaved topological spaces—and univalent equality is interpreted by paths in
those topological spaces. But there is another notion of equality in this model: the equality of
the metatheory (which, for us, means an equality with FunExt and UIP). This one is reflected
by the strict equality of TLTT. Voevodsky was the first to propose a type theory with those two
equalities [Voe13] and called this type theory Homotopy Type System.
Later Altenkirch et. al. gave the first clear presentation of Two Level Type Theory and gave it
this name [ACK16, Cap17]. They used it to get some results about Reedy Fibrant Diagrams
and Complete Semi-Segal Types. They formalized some of them in Lean. There are a few
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HoTT

CubicalTT

TLTT

TLCubicalTT CCHM model

Figure 4.1.: Inclusions of Homotopy Type Theories. TLCubicalTT is hypothetical.

differences between their presentation and Homotopy Type System on which we will come
back later. By Two Level Type Theory we will mean the paradigm which encompasses both
presentations as well as the presentation that we will give in Section 4.1.1.

In parallel of this, Coquand et. al. developed another model for HoTT: the cubical model, in
which a type is interpreted by a cubical set. There are two variants of this model, depending
on the cube category chosen:

– for cubes without connections, it is called the BCH model (from the initials of its au-
thors) [BCH14, BCH17]

– for cubes with connections, it is called the CCHM model [CCHM16, CHM18]

In those works, they not only developed a model of HoTT but also an intermediate language to
carry syntactically some constructions of the model: Cubical Type Theory [Cub]. A distinctive
feature of CubicalTT is the introduction of dimensions:

Γ ⊢

Γ , i ∶ I ⊢
i is a dimension variable

I is the interval, the “type of dimensions”, but it is not possible to refer to it in the type theory.
A dimension variable i can be specialized in two points: 0 and 1, the endpoints of the interval.
In this type theory an equality between two points x, y ∶ A is a path between those two points.
That is to say, a map I → A whose endpoints are x and y:

Γ , i ∶ I ⊢ t ∶ A t{i ≔ 0} ≃β x t{i ≔ 1} ≃β y

Γ ⊢ ⟨i⟩. t ∶ x∼A y

The constructs of HoTT can be defined as “macros” in CubicalTT and HoTT can be embedded
in CubicalTT.

Although it has not been spelled out, we could perfectly imagine “TLCubicalTT”, a two level
cubical type theory mixing both approaches. The intended inclusions between the mentioned
systems are summed up in Figure 4.1. Those inclusions are “moral”: if one would want to carry
them in practice, the presentations of the involved type theories should probably be changed a
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bit to fit well one with the other.

Last, Orton and Pitts developed a new abstraction layer for the CCHM model [OP17]. As
Martin Löf Type Theory can be interpreted in any presheaf category (and even any topos),
they identified nine axioms which are valid through the interpretation in the CCHM model and
which are enough to carry several constructions of the model (basically all but the universe of
fibrant types). So in the end, they use the type theoretic setting to define the CCHM model. This
is very interesting because it makes the cubical model much more accessible to type theorists
(including us!).
Technically, to define the CCHM model, Orton and Pitts define a category with families whose
types are defined in their type theory and are afterward interpreted as fibrant presheaves (re-
covering the CCHM model). In the following we propose to explore an alternative way. We
will consider the type theory that they define on its own, we will call it Interval Type Theory

(ITT), and define enough macros in it so that we can embed a modified version of Two Level
Type Theory.

MLTTF
2 ITT CCHM model

In this type system, which we write MLTTF
2

, the notion of fibrancy does not apply to types
anymore but to type families. In this way, we have a finer control on fibrancy. In our interpre-
tation, fibrant type families won’t always be interpreted as fully fibrant presheaf families but
sometimes as degenerately fibrant families.
Our approach is not yet fully working and in particular the universe of fully fibrant types (the
universe which is univalent) does not fit very well in our setting. However, we believe that it is
worth the while to explore consequences of degenerate fibrancy. We recently got a confirma-
tion of this because degenerate fibrancy and the degenerate fibrant replacement (that we will
introduce in a next section) seem to take an important part in the definition in Higher Inductive
Types [CHM18].

4.1.1. MLTT2

Let us introduce Two Level Type Theory. We will write MLTT2 for our presentation of TLTT.
As previously said, in Two Level Type Theory there are both the strict equality ≡ and the
univalent one =.
As univalence and UIP are contradictory [Pro13, ex 3.1.19], TLTT requires a mechanism to
prevent the strict equality and the univalent equality from collapsing. This is achieved by
introducing the notion of fibrant types. Once again, it reflects what happens in the model:
types along which one can transport are interpreted by fibrant simplicial sets (also called Kan
simplicial sets).
In the end, MLTT2 consists of λΠω+ ≡ (MLTT with a strict equality) enriched with:
1. A new judgment Γ ⊢ A Fib which expresses that a type is fibrant.
All usual types are fibrant, except strict equality types. The rules to derive fibrancy are given
in Figure 4.2. A non-fibrant type is called a pretype.
2. A univalent equality whose elimination is restricted to fibrant types. The typing rules are
given in Figure 4.3. The restriction ensures that we have t ≡ t′ → t = t′ but never the
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Γ ⊢ Ui Fib

Γ ⊢ A ∶ UF i

Γ ⊢ A Fib

Γ ⊢ A Fib Γ , x ∶ A ⊢ B Fib

Γ ⊢ Π x ∶ A. B Fib

Γ ⊢ A Fib Γ , x ∶ A ⊢ B Fib

Γ ⊢ Σ x ∶ A. B Fib

Figure 4.2.: Rules for fibrancy in MLTT2

converse: t = t′ ↛ t ≡ t′.

Γ ⊢ A ∶ Ui Γ ⊢ t, t′ ∶ A Γ ⊢ A Fib

Γ ⊢ t =A t′ ∶ Ui

Γ ⊢ t ∶ A Γ ⊢ AFib

Γ ⊢ ref l= t ∶ t =A t

Γ ⊢ A Fib Γ ⊢ t, t′ ∶ A

Γ ⊢ t =A t′ Fib

Γ ⊢ A Fib Γ ⊢ t, t′ ∶ A Γ ⊢ p ∶ t =A t′

Γ , y ∶ A, q ∶ t =A y ⊢ P Fib Γ ⊢ u ∶ P
{
y ≔ t, q ≔ ref l= t

}

Γ ⊢ J=(y.q.P , p, u) ∶ P
{
y ≔ t′, q ≔ p

}

Figure 4.3.: Typing rules of the fibrant equality in MLTT2

3. A new hierarchy UF0, UF1, … of universes of fibrant types is also introduced:

Γ ⊢ A ∶ Ui Γ ⊢ A Fib

Γ ⊢ A ∶ UF i

Γ ⊢ A ∶ UF i

Γ ⊢ A ∶ Ui Γ ⊢ UF i Fib

There are two main differences between the presentation of Voevodsky and the one of Al-
tenkirch et. al. We chose to live between them.
1. Altenkirch et. al. introduce two versions of each positive inductive type. For instance, ℕs

living in the strict fragment and ℕ living in the fibrant fragment. There is a map ℕs → ℕ but
elimination in the other direction is restricted. The main advantage of adding this stratification
is to get a conservativity result for the fibrant fragment over HoTT [Cap17]. We won’t consider
such a stratification.
2. Voevodsky considered in its system the reflection rule:

Γ ⊢ e ∶ t ≡A u

Γ ⊢ t ≃β u ∶ A
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This is perfectly safe because it reflects what happens in the model: strict equality and con-
version are interpreted in the same way (by the equality of the metatheory). However neither
Altenkirch et. al. nor us will consider it because it makes type-checking undecidable. In light
of the ETT to ITT translation (see Section 1.2.3), we know that HTS with the reflection rule is
conservative over HTS without it, hence “we don’t lose anything”.
There is another reason why we do not consider the reflection rule. For the moment the presheaf
model of type theory is formulated as a Category with Families (see Section 4.1.5) and it inter-
prets the reflection rule (as the standard model). However, we hope that, at some point, it will
be refined as a syntactic model. This time, it would not interpret the reflection rule anymore. A
promising work in this direction is the forcing translation [JLP+16] which is a syntactic model
and which is very close to a presheaf interpretation.

We found a way to emulate Two Level Type Theory in the Coq proof assistant, we describe it
in Appendix A. Altenkirch et. al. used a similar technique to formalize their results in Lean.

4.1.2. Interval Type Theory

We now introduce Interval Type Theory, the type theory designed by Orton and Pitts [OP17]
and intended to be an internal language for the CCHM model of Cubical Type Theory.
The presheaf model is a standard model of Martin Löf Type Theory (more on this in Sec-
tion 4.1.5) and we have that the category of presheaves Ĉ over a category C is a category with
families. The CCHM model is based on a presheaf model ◻̂ for a particular cube category ◻.
In their article, Orton and Pitts spelled out nine axioms such that, if they are validated by the
interpretation in Ĉ, then, we can define a subcategory of Ĉ of fibrant presheaves. This subcate-
gory is still a CwF and supports many type formers of Cubical Type Theory. The construction
of this CwF is carried internally using Interval Type Theory as a syntactic language. Then,
most of Cubical Type Theory can be interpreted in every presheaf category supporting those
nine axioms. The only part which cannot be defined within the syntax of Interval Type Theory
is the universe of fibrant types, because the type theory is not precise enough to carry this con-
struction. This problem was treated in [LOPS18] but it requires to move to a more complicated
setting that we won’t detail here.
The nine axioms of Orton and Pitts are formulated in Martin Löf Type Theory enriched with
an interval and a universe of cofibrant propositions. In the following we consider this type
theory on its own and call it ITT, for Interval Type Theory. In this type theory, we can define

a univalent equality. It thus can be seen as an intermediate language to interpret MLTT2. Un-
fortunately, the universe of fibrant types does not fit in our setting. This is a weakness and it is
not clear to us to which extent it invalidates our approach.

Interval Type Theory is Martin Löf Type Theory (let’s say λΠω+ η) with:

– a strict equality ≡ enjoying FunExt and UIP

– an impredicative universe of propositions ℙ enjoying Proof Irrelevance and Proposi-
tional Extensionality

– usual inductive types (Σ, ℕ, 1, . . . )
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– some quotient inductive types

– an interval I

– a universe of cofibrant propositions Cof

The famous nine axioms are related to the interval and to the universe of cofibrant propositions,
we detail them below.
As the strict equality enjoys UIP we will suppose that it is typed in ℙ:

Γ ⊢ x, y ∶ A

Γ ⊢ x ≡A y ∶ ℙ

In this way we stick to the Coq formalization (in Coq eq is typed in Prop) and we get UIP from
proof irrelevance.
In the rest of this chapter we will often omit the contexts in inference rules. For instance, the
above rule will be written:

⊢ x, y ∶ A

⊢ x ≡A y ∶ ℙ

Also, we will not deal with universe levels, we suppose that we have two universes ℙ and U

with:

ℙ ∶ U ℙ ⊆ U U ∶ U

Our work can be replayed in a type theory with a universe hierarchy.
Following Orton and Pitts approach we formalized our development about Interval Type The-
ory in Coq, see Section 4.1.3 for a description of the formalization. It can be found in folder
InternalCubical-Coq. For each paragraph we give a direct link to the corresponding file.

Interval [InternalCubical-Coq/Interval.v]
The interval I is the first distinguishing feature of Interval Type Theory. It is a closed type
which has two endpoints 0 and 1, and supports min and max operations. It is required to
satisfy axioms given in Figure 4.4.

⊢ I ∶ U ⊢ 0, 1 ∶ I ⊢ ⊓ ∶ I → I → I ⊢ ⊔ ∶ I → I → I

The elements of the interval are called dimensions and having a dimension i ∶ I in the context
correspond to going one dimension up. An element of a type a ∶ A represent a point:

∙ a

A function p ∶ I → A represents a line in A, also called a path, between the two points p 0

and p 1 :

∙p 0 ∙ p 1 i
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ax1 ∶ ΠP ∶ I → ℙ. (Π i ∶ I. P i ∨ ¬(P i)) → P 0 ≡I P 1

ax2 ∶ ¬ 0 ≡ 1

ax3 ∶ Π i ∶ I. (0 ⊓ i ≡ i ⊓ 0 ≡ 0) ∧ (1 ⊓ i ≡ i ⊓ 1 ≡ i)

ax4 ∶ Π i ∶ I. (0 ⊔ i ≡ i ⊔ 0 ≡ i) ∧ (1 ⊔ i ≡ i ⊔ 1 ≡ 1)

Figure 4.4.: Axioms satisfied by the interval I

The constant function λ _ ∶ I. a is the constant path from a to a. It is written idpath a .
A two variable function p ∶ I → I → A represents a square in A:

∙p 0 1
p i 1

p i i

i
j

For instance, the up left point is p 0 1 , the upper side is the line λ i. p i 1 and the upward
diagonal is λ i. p i i . We can’t represent the other diagonal because we don’t have the negation.
A last example. If p ∶ I → A is a line between a and b:

∙a ∙ b

Then λ i, j. p (i ⊔ j) is the following square:

idpath b

p

idpath bp

∙a ∙ b

∙b ∙ b

p (i ⊔ j)

i
j

The axioms ensure that the interval is connected (ax1), that the two endpoints are distinct for
strict equality (ax2) and that min and max give a path algebra structure to I (ax3 and ax4). A
path algebra structure is like a bounded lattice but without associativity, commutativity and
absorption law.
An important difference with the cubical model CCHM is that the interval does not have nega-
tion not ∶ I → I . We could add it, restricting slightly the presheaf models in which we can
interpret our theory. But here we stick to Orton and Pitts approach and do without negation.
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ax5 ∶ Π i ∶ I. cof (i ≡ 0) ∧ cof (i ≡ 1)

ax6 ∶ Πφ, ψ ∶ ℙ. cof φ→ cof ψ → cof (φ ∨ψ)

ax7 ∶ Πφ, ψ ∶ ℙ. cof φ→ (φ→ cof ψ) → cof (φ ∧ψ)

ax8 ∶ Πφ ∶ I → ℙ. (Π i ∶ I. cof (φ i)) → cof (Π i ∶ I. φ i)

ax9 ∶ Π (φ ∶ Cof ) (A ∶ φ→ U) (B ∶ U) (s ∶ Π u ∶ φ. A u ≅ B).

Σ (B′ ∶ U) (s′ ∶ B′ ≅ B) (e ∶ Π u ∶ φ. A u ≡ B′). Π u ∶ φ. e u # s u ≡ s′

join ∶ Π (A ∶ U) (φ, ψ ∶ Cof ) (f ∶ φ→ A) (g ∶ ψ → A).

(Π (u ∶ φ) (v ∶ ψ). f u ≡ g v) → φ ∨ψ → A

Π u ∶ φ. join(f, g) (inl u) ≡ f u Π v ∶ ψ. join(f, g) (inr v) ≡ g v

Figure 4.5.: Axioms satisfied by Cof

Cofibrant propositions [InternalCubical-Coq/Cof.v]
The other important feature of ITT is the universe of cofibrant propositions Cof . It is a subtype
of ℙ defined by a predicate cof asserting that a proposition is cofibrant, and it satisfies the
axioms of Figure 4.5.

cof ∶ ℙ → ℙ Cof ≔ ΣP ∶ ℙ. cof P

Cofibrant propositions represent formulas restricting the introduced dimensions. A typical
cofibrant proposition is for instance:

(i ≡ 0) ∨ ((i ≡ 1) ∧ (j ≡ 0))

We have seen that a function p ∶ I → I → A is a square. Now a function restricted by this
formula

p′ ∶ Π i, j ∶ I. (i ≡ 0) ∨ ((i ≡ 1) ∧ (j ≡ 0)) → A

represents the following subsquare:

∙

∙

∙ i
j

The axioms assert that Cof contains endpoint equality (ax5), is closed under disjunction, de-
pendent conjunction and universal quantification over I (ax6, ax7 and ax8). The last axiom is
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a strictness axioms asserting that under some conditions, a type can be replaced by a strictly
equivalent type satisfying additional strict equalities. It is a consequence of a stronger axiom,
the decidability of Cof :

Πφ ∶ Cof . φ + ¬φ

Decidability holds in the CCHM model but we don’t assume it in ITT.
Axiom 5 together with propositional extensionality ensures that true and false proposition ⊤,
⊥ are cofibrant. For φ and ψ in Cof , we will continue writing φ ∧ ψ for the element of Cof
associated to the proposition π1(φ) ∧ π1(ψ). The same for φ ∨ ψ, i ≡ 0, ⊥, . . . We will also
blithely write φ instead of π1(φ).
Last, the universe of cofibrant propositions allows forming the join of two partial elements.
A partial element is a map φ→ A of domain φ ∶ Cof . Given two cofibrant propositions
φ, ψ ∶ Cof and two partial elements which agree where there are both defined:

f ∶ φ→ A g ∶ ψ → A Π (u ∶ φ) (v ∶ ψ). f u ≡ g v

The join of f and g is a partial element

f ∨ g ∶ φ ∨ψ → A

such that f ∨ g (inl u) ≡ f u and f ∨ g (inr v) ≡ g v . The existence of the join is also a
consequence of the decidability of Cof .

Paths [InternalCubical-Coq/Paths.v]
Now that we have specified what is Interval Type Theory, we can carry the first constructions
inside. A fundamental one is the construction of paths. A path between two points is a line with
these points at its ends. We write a∼A b the type of paths between a and b in A. Reflexivity is
given by a constant path.

a∼A b ≔ Σ p ∶ I → A. p 0 ≡A a ∧ p 1 ≡A b

idpathA a ∶ a∼A a

≔ (λ _ ∶ I. a, ref l≡ a, ref l≡ a)

Path types are not directly the types by which we will interpret the univalent equality because
their transport does not compute strictly. Instead we will use identity types, which are built on
top of them.
A type is contractible if it is inhabited and if all its elements are path-equal.

Contr A ≔ Σ a ∶ A. Π x ∶ A. a∼A x

The fact that paths are functions has nice consequences. For instance, function extensionality
for paths becomes trivial: it is only a change in the order of the arguments of the path seen as a
function. If p is a proof of type Π x ∶ A. f x∼B g x then λ i. λ x ∶ A. p x i is a path between
f and g.
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In the same spirit, paths enjoy contractibility of singletons. For every type A and x ∶ A , the
type of singletons in x is contractible:

Contr (Σ y ∶ A. x∼A y)

The center of contraction is (x, idpathA x) and the path between (x, idpathA x) and (y, p) is
given by:

λ i. (p i, λ j. p (i ⊓ j))

Fibrancy [InternalCubical-Coq/Fibrations.v]
Now that we have Path types, we want to transport along them. Transport is only allowed along
fibrant type families so we have to define fibrancy.
Let’s first define the type of partial elements of a type A ∶ U. A partial element is an element
of A only specified on a restricted face of the current context. For instance, if there are two
dimensions i, j ∶ I in the context, a partial element can be defined only on the subsquare given
by (i ≡ 0) ∨ ((i ≡ 1) ∧ (j ≡ 0)) :

∙

∙

∙

We write ◻A the type of partial elements of A:

◻A ≔ Σφ ∶ Cof . φ→ A

Let a ∶ A be an element of A and (φ, u) be a partial element, we say that a extends (φ, u) if
they coincide where u is defined:

(φ, u) ↗ a ≔ Πw ∶ φ. u w ≡A a

There is always the empty inhabitant of ◻A:

(⊥, ⊥−elim) ∶ ◻A

It is the partial element of A which is specified nowhere. Every partial element of A turns out
to be path-equal to it, hence the type ◻ A is always contractible:

Contr (◻A)

A type has an extension structure if all its partial elements can be extended:

Ext A ≔ Π a ∶ ◻A. Σ a1 ∶ A. a ↗ a1

Fibrancy is a weaker condition than having an extension structure where the partial element is
required to be specified in at least one endpoint.
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To overcome the lack of negation, Orton and Pitts parametrize their definition of fibrancy by
the direction in which the extension is done. To do this we introduce the inductive type OI

which has two elements O and I.
OI ≔ O ∣ I

And we define ι ∶ OI → I the conversion in the interval to the corresponding endpoint by
ι O ≔ 0 and ι I ≔ 1. In the following, we will suppose that this coercion is always implicitly
inserted where needed. We will also use the negation ! ∶ OI → OI which is defined by:

! O ≔ I

! I ≔ O

A type A ∶ U is said to be fibrant, if the following type is inhabited:

Fib A ≔ Π (e ∶ OI) (φ ∶ Cof ) (a ∶ Π i ∶ I. φ ∨ i ≡ e → A). Σ a1 ∶ A. (φ, a !e ◦ inl) ↗ a1

It means that every partial element specified at least in i ≡ e can be extended.
This type is not exactly the one proposed by Orton and Pitts but is strictly equivalent. For
reference, they use:

Π (e ∶ OI) (φ ∶ Cof ) (a ∶ I → φ→ A). (Σ a0 ∶ A. (φ, a e) ↗ a0) → (Σ a1 ∶ A. (φ, a !e) ↗ a1)

Our variant is more compact and will allow defining the fibrant replacement in a simpler way.
Fibrancy is weaker than having an extension structure:

Ext A → Fib A

In fact, it turns out that a type has an extension structure if and only if it is fibrant and con-
tractible:

Ext A ↔ Fib A × Contr A

It is not a strict equivalence a priori.

Fibrancy generalizes to type families in the following way.

Definition 1. A type family P ∶ A → U is said to be regularly fibrant if the following type is
inhabited:

RFib P ≔ Π (e ∶ OI) (a ∶ I → A) (φ ∶ Cof ) (p ∶ Π i ∶ I. φ ∨ i ≡ e → P (a i)).

Σ p1 ∶ P (a !e). (φ, p !e ◦ inl) ↗ p1

The operation to which the fibrancy gives access is called composition. If P ∶ A → U is
regularly fibrant we write:

compP ∶ Π (e ∶ OI) (a ∶ I → A) (φ ∶ Cof ) (p ∶ Π i ∶ I. φ ∨ i ≡ e → P (a i)). P (a !e)

And for all w ∶ φ we have that:

compP e a φ p ≡ p !e (inl w)

A typeA amounts to be fibrant if and only if the constant family over unit λ _ ∶ 1. A is regularly
fibrant.
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For a type family P ∶ A → U, it is not equivalent to be regularly fibrant and that for every x,
P x is fibrant. The later is weaker than the former. We will say that a type family is degenerately

fibrant or pointwise fibrant if we only have the weaker condition:

DFib P ≔ Π x ∶ X. Fib (P x)

For a two variables type family P ∶ Π x ∶ X. A x → U we will write RFib2 P if the type
family over the sigma is regularly fibrant:

RFib2 P ≔ RFib (λ z ∶ Σ x ∶ X. A x. P π1(z) π2(z))

A useful remark is that regular fibrancy is stable under precomposition:

RFib P → RFib (P ◦ f )

Orton and Pitts proved the following propositions, which interpret the fibrancy rules of Two
Level Type Theory.

Proposition 28.

Fib 1 and Fib ℕ

Proposition 29. For A ∶ X → U and B ∶ Π x ∶ X. A x → U, if RFib A and RFib2 B then

RFib (λ x ∶ X. Π a ∶ A x. B x a)

RFib (λ x ∶ X. Σ a ∶ A x. B x a)

Proposition 30. For A ∶ X → U, if RFib A then _∼A _ ∶ Π x ∶ X. A x → A x → U is
regularly fibrant as a three variables type family. That is to say:

RFib PathsA

where PathsA ∶ Σ x ∶ X. A x × A x → U ≔ λ (x, (a, b)). a∼Ax b

See Orton and Pitts’ article for the proofs.
We also have that the universe of pretypes is fibrant. In fact, it even has an extension structure.
This is quite surprising because it means that for all types A and B there is a path connecting
A and B:

A∼U B

However, this won’t be enough to transport along it and get a map A → B because the type
family λX ∶ U. X is not regularly fibrant.

Proposition 31. The universe has an extension structure, and hence is fibrant:

Ext U

Proof. Let A ∶ φ→ U be a partial type (i.e. a partial element of U). We have to give B′ ∶ U

such that for all w ∶ φ, A w ≡ B′.
B′ is given by the strictness axiom in A. There are two choices for the B appearing in the
axiom: either Πw ∶ φ. A w or Σw ∶ φ. A w , both work.
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From the composition operation we can get a richer operation: Kan filling.

Proposition 32. If P ∶ A → U is regularly fibrant then we can define an operation f illP

f illP ∶ Π (e ∶ OI) (a ∶ I → A) (φ ∶ Cof ) (p ∶ Π i ∶ I. φ ∨ i ≡ e → P (a i)). Π i ∶ I. P (a i)

such that for all e, φ, a and p f ill agrees with p on φ ∨ i ≡ e and with comp in e:

Π (i ∶ I) (w ∶ φ ∨ i ≡ e). f illP e a φ p i ≡ p i w

f illP e a φ p !e ≡ compP e a φ p

This is a notable feature of the CCHM model that Kan filling can be defined from composition,
it is not the case in BCH for instance. Again, see Orton and Pitts’ article for the proof.

Transport [InternalCubical-Coq/Paths.v]
Now that we have defined fibrancy we can at last define transport along a path.

Proposition 33. Let P ∶ A → U be a regularly fibrant type family, p ∶ a∼A b a path
between two points of A and u of type P a. Then u can be transported along p to get an
element of type P b :

transport(P , p, u) ∶ P b

Proof. The transport is given by:

compP O ⊥ ⊥−elim u

modulo rewriting by strict equalities.

Transport together with contractibility of singletons give the dependent elimination for Path
types (still restricted to regularly fibrant families).
However paths have a great defect, the transport does not compute on reflexivity. For all a ∶ A

and u ∶ P a we have a path

transport(P , idpathA a, u) ∼P a u

but this equality does not hold strictly a priori. To remedy this, we will use identity types.

With the transport and the dependent elimination we can recover all the groupoidal laws satis-
fied by a univalent equality. First of them are inverse and concatenation:

_ -1 ∶ x∼A y → y∼A x

_ · _ ∶ x∼A y → y∼A z → x∼A z

There are some operations which are proven with a transport in HoTT setting but which does
not need the fibrancy structure in the cubical setting. They can be defined directly using the
cubical definition of paths. For instance:

apf ∶ x∼A y → f x∼B f y

ap10x ∶ f ∼A→B g → f x∼B g x

To a path p the first associates the path λ i. f (p i) and the second the path λ i. (p i) x. It is the
same phenomenon that for the definition of function extensionality: as Path type is a richer
type than in HoTT, some definitions are simpler.
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Identity Types [InternalCubical-Coq/Id.v]
Identity types are a modified version of Path types to recover the strict equality for the transport
of reflexivity. They were introduced by Swan [Swa16] and reused in the CCHM model [CCHM16].
An element of an identity type is a path together with a cofibrant proposition indicating “where
the path is refl”. We will note x =A y the identity types.

x =A y ≔ Σ (p ∶ x∼A y) (φ ∶ Cof ). φ→ Π i ∶ I. p i ≡A x

Reflexivity is given by the constant path with the proposition “true”:

ref l= x ∶ x =A x

≔ (idpathA x, ⊤, λw i. ref l≡ x)

Identity types and paths are logically equivalent. From identity types to paths there is a “forget”
map, and in the other direction we use the proposition “false”.

id2paths ∶ x =A y → x∼A y

≔ λ (p, _, _). p

paths2id ∶ x∼A y → x =A y

≔ λ p. (p, ⊥, ⊥−elim)

id2paths sends “refl to refl” (i.e. ref l= to idpath), but paths2id does not send idpath to
ref l= .
Given the extra propositionφ asserting where the path is refl, it is possible to define a dependent
eliminator for identity types which “computes” strictly on ref l= .

⊢ P ∶ Π y ∶ A. t =A y → U

⊢ H ∶ RFib2 P ⊢ p ∶ t =A t′ ⊢ u ∶ P t (ref l= t)

⊢ J=(P , H, p, u) ∶ P t′ u

J=(P , H, ref l= t, u) ≡ u

To conclude this section, let us remark that the CCHM model justifies some rules which are a
bit stronger than what we gave for MLTT2. In the rules of identity types Figure 4.3 (formation,
introduction and elimination rules), there is no need for the fibrancy condition on A and only
the condition on P in the elimination rule is enough. A priori they can be needed for other
models such as the simplicial model or the BCH model.

4.1.3. Formalization in Coq

Interval Type Theory can be simulated in Coq. We use:

– The equality eq of Coq for the strict equality. It is typed in Prop.

– The Prop universe for ℙ. Proof irrelevance and propositional extensionality are postu-
lated as axioms.
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Axioms (I : Type)

(zero one : I)

(zero_one : ∼ zero = one)

(inf sup : I → I → I)

(connected : ∀ (P : I → Prop), (∀ (i : I), P i \/ ∼ (P i))

→ P zero = P one).

Notation "0" ≔ zero.

Notation "1" ≔ one.

Axioms (zero_inf : ∀ {i}, inf 0 i = 0)

(one_inf : ∀ {i}, inf 1 i = i)

(inf_zero : ∀ {i}, inf i 0 = 0)

…

Figure 4.6.: Begining of the definition of the interval in Coq

– The usual inductive types of Coq.

– Quotient inductive types are implemented with a private inductive type. This is the way
Higher Inductive Types are usually implemented in Coq.

– The interval and the universe of cofibrant propositions are postulated as axioms. And
the nine axioms are postulated too. See Figure 4.6.

We essentially replayed Orton and Pitts’ Agda formalization [OP18] in Coq. Hence, it will be
interesting mainly for the next section about the model structure on the universe.
We formalized all the constructions of the previous parts except for the fibrancy rules of Π,
Σ and Id types (which were formalized by Orton and Pitts). A small example of what our
formalization looks like is given in Figure 4.7.
The formalization in Coq goes pretty well, the only painful thing is to rewrite all strict equalities
by hand. The advantage of Coq over Agda is that we can use the tactics. On the other hand,
Orton and Pitts used some “rewrite rules” to add the equalities of the path algebra structure
(like “i ∨ 0 ≡ i” . . . ) as definitional. This simplifies a bit the proofs by avoiding some strict
rewritings.

4.1.4. Modified Two Level Type Theory

We propose to interpret MLTTF
2

, a modified version of Two Level Type Theory, in Interval
Type Theory. The constructions defined above (fibrancy and identity types) are used to inter-
pret fibrancy rules and the univalent equality.
We do not detail MLTTF

2
here and only sketch what it would look like. In this type theory,

the primitive notion of fibrancy would not be attached to type anymore but to type families.
Hence, there would be a judgment

Γ ⊢ x ∶ A. P RFib
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Definition Itransport {A} (P : A → Type) {H : RFib P} {x y}

(p : Id A x y) (u : P x) : P y.

Proof.

destruct p as [p ϕ].

unshelve refine (let XX ≔ H O’ (λ i ⇒ p i) ϕ.1 _ _ in _).

- intros i f; cbn. refine (_ E# u).

symmetry; now apply ϕ.2.

- unshelve econstructor. refine (_ E# u).

exact p.2.1^E.

intro w; cbn in *.

eapply Eap10, Eap, uip.

- cbn in XX.

refine (_ E# XX.1).

exact p.2.2.

Defined.

Figure 4.7.: Excerpt of the formalization: transport for identity types

asserting that a type family is regularly fibrant.
⊢ A Fib would be a notation for ⊢ _ ∶ 1. A RFib.
The fibrancy rules would look like:

Γ ⊢ x ∶ X. A RFib Γ ⊢ (x, a) ∶ Σ x ∶ X. A. B RFib

Γ ⊢ x ∶ X. Π a ∶ A. B RFib

and the elimination rule of univalent equality would be guarded by a regular fibrancy condition
Γ ⊢ x ∶ A. P RFib. In MLTTF

2
, a degenerate fibrant replacement is admissible as we will

see in the next section.

However our interpretation suffers from several defects.
1. The major defect of our system is that the univalent universe of the cubical model (UF in
MLTT2) does not fit very well in our setting. We can add it with the following rules:

Γ ⊢

Γ ⊢ UF

Γ ⊢ A ∶ UF

Γ ⊢ A ∶ U

Γ , x ∶ A ⊢ P ∶ UF

Γ ⊢ x ∶ A. P RFib

⋅ ⊢ x ∶ A. P RFib

x ∶ A ⊢ P ∶ UF

But the rules do not seem very natural. In particular the right one, which makes appear an
empty context.
2. In our setting, fibrancy is a structure and not a property: its inhabitants are meaningful. In
the formalization, we managed to avoid all situations where we have two different derivations
of the same fibrancy judgment but we wonder if it can always be the case. In the current state,
it is misleading to “hide” the proof of fibrancy which has to be in the arguments of transport
and J=.
3. Last, if we don’t consider the reflection rule, we get very few computational rules. Even if
all desired equalities hold for the strict equality, this is not as computational as it should be.
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4.1.5. The presheaf model

To complete the presentation of Interval Type Theory, we discuss a bit its intended model
(CCHM) which is a presheaf model over a cube category.
The presheaf model of dependent type theory is a refinement of the standard model. Instead of
being interpreted by a type, a context is interpreted by a presheaf which is a type parametrized
by the objects of a category C. Presheaves are used to model notions such as “variation over
time”, “resource availability” and, in our case, “dimension”.
The first account of this model goes back to Hofmann [Hof97] although it seems to have been
known before. A nice and recent presentation is also given in Huber’s thesis [Hub]. Tradition-
ally, and it is the case in those two references, the presheaf model is given in a set theoretic
setting: definitions of categories, functors, etc. are given in set theory. However, nothing pre-
vents us from presenting the presheaf model in type theory with a strict equality. And indeed
one can show that Ĉ, the category of presheaves over a category C, is a category with families
and hence a model of dependent type theory (see Section 1.5). Kaposi formalized in Agda that
Ĉ forms a CwF supporting Π types [Kap]1.
The CCHM model is thus a presheaf model over the cube category ◻. The goal of this section
is mainly to see how degenerate fibrancy is interpreted in the category of cubical sets. We will
only give the basic definitions of the presheaf model and of the interpretation. In particular,
we won’t redefine the cube category ◻, nor the interpretation of the interval I or the face lattice
F . We let the reader refer to [CCHM16] for them. Also, for simplicity, we will suppose that
the universe of cofibrant propositions Cof is interpreted by the face lattice F , instead of being
defined from a predicate “being cofibrant”.

Let’s recall the rudiments of presheaf models, they start with categories. Defining the right
notion of category in HoTT with a relevant equality is quite intricate as several choices can be
made to tame higher coherences. There is no such shilly-shallying in a type theory where the
equality is irrelevant, as already noticed in [ACK16]. In fact, everything takes place exactly as
in set theory.

Definition 2. A category consists of:
– a type C of objects,

– for all I, J ∶ C , a type Hom(I, J ) of arrows

– for all I ∶ C , an identity arrow idA ∶ Hom(I, I)

– for all I, J , K ∶ C , a composition function
_◦_ ∶ Hom(J ,K) → Hom(I, J ) → Hom(I,K)

– for all f ∶ Hom(I, J ) , a proof of f◦ idI ≡ f and idJ ◦f ≡ f

– for all f ∶ Hom(I, J ), g ∶ Hom(J ,K), ℎ ∶ Hom(K,L), a proof of
ℎ ◦ (g ◦ f ) ≡ (ℎ ◦ g) ◦ f

We often write C both for the category and the type of its objects. In the following the compo-
sition of arrows g ◦ f is simply written gf .

1
https://bitbucket.org/akaposi/tt-in-tt/src/378848c2886fa007579b1a1479bbe1b601440e47/PSh/?at=master
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With this definition, each universe U forms a category where Hom(A,B) is given by A → B.
Identity and composition are those of functions and the laws are given by βη-conversion. We
write Type this category, it plays the same role as the category Set in set theory.

A presheaf over C is a functor from Cop to Type. They interpret contexts.

Definition 3. A presheaf over the category C is given by:
– Γ ∶ C → U a type family over the objects of C

– some restriction maps Π I, J ∶ C. Hom(J , I) → Γ (I) → Γ (J )

– respecting identity Π (I ∶ C) (ρ ∶ Γ (I)). Γ idI ρ ≡ ρ

– and respecting composition:
Π (f ∶ Hom(J , I)) (g ∶ Hom(K, J )) (ρ ∶ Γ (I)). Γ f◦g ρ ≡ Γ g (Γ f ρ)

We write Γ both for the presheaf and the associated type family. We write Γ f the restriction
map induced by an arrow f , and ρf its action on an element ρ ∶ Γ (I). Last we write Γ ⊢̂ to
indicate that Γ is a presheaf.

The presheaf families are “dependent” presheaves, varying over another presheaf Γ . They
interpret type families.

Definition 4. Let Γ ⊢̂ be a presheaf. A presheaf family over Γ is given by:
– a type family A ∶ Π (I ∶ C) (ρ ∶ Γ (I)). U

– some restriction maps Π (I, J ∶ C) (f ∶ Hom(J , I)) (ρ ∶ Γ (I)). Aρ→ A(ρf )

– respecting identity Π (I ∶ C) (ρ ∶ Γ (I)) (x ∶ Aρ). AidI
x ≡ x

– and respecting composition:
Π (f ∶ Hom(J , I)) (g ∶ Hom(K, J )) (ρ ∶ Γ (I)) x. Af◦g x ≡ Ag (Af x)

We write A both for the type family and the presheaf family. We write Aρ the type family taken
in (I, ρ) and Af the restriction map induced by an arrow f . Its action on an element x ∶ Aρ

is again written xf . We write Γ ⊢̂ A to indicate that A is a presheaf family over Γ .

Last, we define the sections of a presheaf family, they interpret terms.

Definition 5. Let Γ ⊢̂ A be a presheaf family. A section of A consists of:
– a section of the type family t ∶ Π (I ∶ C) (ρ ∶ Γ (I)). Aρ

– which is invariant by restrictions Π (f ∶ Hom(J , I)) (ρ ∶ Γ (I)). (tρ)f ≡ t(ρf )

We write t both for the section of the type family and the section of the presheaf family. We
write tρ the term taken in (I, ρ). Last we write Γ ⊢̂ t ∶ A to indicate that t is a section of the
presheaf family Γ ⊢̂ A.

The presheaves over C form a category written Ĉ. This category can be made into a category
with families using presheaf families and sections. The empty context is interpreted by 1

the constant presheaf equal to unit, and context extension is interpreted by Σ types. Then, a
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presheaf family in the empty context is then the same thing as a presheaf2. C.f. the mentioned
references for further details.
The presheaf model supports Π types and Σ types [Hof97]. It also supports universes. This
construction is due to Hofmann and Streicher [HS97]. Let Ui be a universe included in the
universe U of the definition of presheaves (in the sense that we have Ui ∶ U). Then Ui can be
interpreted in Ĉ as the following presheaf (it is a closed type):

Ui(I) ≔ Σ(A ∶ Π (J ∶ C) (f ∶ Hom(J , I)). Ui)

(α ∶ Π (f ∶ Hom(J , I)) (g ∶ Hom(K, J )). Af → Afg)

Π I, x. x idI ≡ x × Πf, g, ℎ, x. xgℎ ≡ (xg)ℎ

where the action of α f g on x ∶ Af is once again written xg. The restriction maps are given
by postcomposition.
Hence, if the metatheory has n + 1 universes, n universes can be built in the presheaf model
(exactly as for the standard model). Let’s remark that the interpretation of ℙ seen as a universe
is:

ℙ(I) ≔ Σ(A ∶ Π (J ∶ C) (f ∶ Hom(J , I)). ℙ)

(α ∶ Π (f ∶ Hom(J , I)) (g ∶ Hom(K, J )). Af → Afg)

… (always true by proof irrelevance) …

This presheaf amounts to be the presheaf of sieves which is the subobject classifier in a presheaf
category (see [MM12]).
To interpret Interval Type Theory it remains to check that the presheaf model preserves Func-
tion Extensionality, Propositional Extensionality, Proof Irrelevance and Quotient Inductive
Types. It is true for the three axioms. It should also be the case for QITs but we did not
do the formal verification.

Remark. The requirement of having Propositional Extensionality in the metatheory is very
strong. It seems that the use of this axiom could be avoided by working with the face lattice
F of CCHM instead of the cofibrancy predicate cof (the definition Cof ≔ ΣP ∶ ℙ. cof P

has really a set theoretic flavor). As we said, it is in fact the assumption that we make in this
section.

ITT as an internal language

Interval Type Theory can be used as a subset of the internal language of Ĉ, meaning that the
syntax of ITT can be used to carry constructions in Ĉ. Indeed, in the presheaf model, no one
interpretation of rule makes the assumption that the premises of the rule are “coming from the
syntax”. For instance, the interpretation of the formation rule of Π types can be carried for
arbitrary presheaf families Γ ⊢̂ A and Γ , A ⊢̂ B , even if they are not the interpretation of a
type of ITT :

Γ ⊢̂ A Γ , A ⊢̂ B

Γ ⊢̂ ΠAB

2The two types are isomorphic provided η on unit.
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Hence, for any arbitrary presheaf family Γ ⊢̂ A , we can form the presheaf family Γ ⊢̂ Fib A

by unfolding the definition of the Fib type former. Taking the “proposition-as-types” point of
view, we say that the proposition Fib A holds if the presheaf family Γ ⊢̂ Fib A has a section.

Degenerate Fibrancy

With this “internal language” point of view, Fib induces a notion of fibrancy on all presheaf
families. In this paragraph, we compare this notion of fibrancy with the one introduced in the
CCHM model.
Even if we don’t want to detail here the definition of the cube category ◻, we need to know a
little about it. Its objects are written I , J , . . . and are morally finite sets of dimensions. For
each object I there exists a fresh dimension not in I written i # I giving rise to an object I, i
which is “one dimension up”. There are two arrows I → I, i written (i = 0), (i = 1) and called
face maps. And in the other direction, there is an arrow sI ∶ I, i → I called a degeneracy. We
have sI (i = 0) ≡ sI (i = 1) ≡ idI .

Let us recall the definition of fibrancy introduced in CCHM model [CCHM16]—we only
rephrased it to use Orton and Pitts’ trick to avoid negation3.

Definition 6 (CCHM fibrancy). Let Γ ⊢̂ A be a presheaf family. Then A is fibrant if it is
equipped with a composition structure meaning that, for each e ∶ OI, I ∶ ◻, i # I , ρ ∶ Γ (I, i),
φ ∶ F (I), u partial element in Aρ of extent φ, a0 ∶ Aρ(i = e) such that for all f ∶ J → I

with φf ≡ 1F , a0f ≡ u(i=e)f , we have an element

comp(e, I, i, ρ, φ, u, a0) ∶ Aρ(i = !e)

such that for any f ∶ J → I and j # J ,

(comp(e, I, i, ρ, φ, u, a0))f ≡ comp(e, J , j, ρ(f, i = j), φf, u(f, i = j), a0f )

and comp(e, I, i, ρ, 1F , u, a0) ≡ u(i=!e).

Now if we unfold our definition of fibrancy we get the following.

Proposition 34. Let Γ ⊢̂ A and Γ , A ⊢̂ P be presheaf families. Then there is a section of
Γ ⊢̂ RFib P if and only if, for each e ∶ OI, I ∶ ◻, i # I , ρ ∶ Γ (I), x ∶ A(ρsI ), φ ∶ F (I), u
partial element in P (ρsI , x) of extent φ, p0 ∶ P (ρ, x(i = e)) such that for all f ∶ J → I with
φf ≡ 1F , p0f ≡ u(i=e)f , we have an element

comp(e, I, i, ρ, x, φ, u, p0) ∶ P (ρ, x(i = !e))

such that for any f ∶ J → I and j # J ,

(comp(e, I, i, ρ, x, φ, u, p0))f ≡ comp(e, J , j, ρf, x(f, i = j), φf, u(f, i = j), p0f )

and comp(e, I, i, ρ, x, 1F , u, p0) ≡ u(i=!e).

3and in type theory of course!
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This unfolding makes appear a degenerate part (the ρ) and a regular part (the x). Thus, we
will say that P is regularly fibrant with respect to A and degenerately fibrant with respect to Γ ,
or simply that P is regularly fibrant.
For a presheaf family, we thus get several notions of fibrancy depending on where we put the
limit between the degenerate and the regular part.

– If all the dependency is put in the regular part, we recover the CCHM notion of fibrancy.
It corresponds to the fact that, in the empty context, ⋅ ⊢̂ RFib P has a section where
P is considered as a family over Γ , A in the empty context. We will say that P is fully

fibrant.

– If all the dependency is put in the degenerate part, we get something weaker which cor-
responds to the fact that Γ , A ⊢̂ Fib P has a section, or equivalently that Γ ⊢̂ DFib P

has a section. We will say that P is degenerately fibrant.

We can remark that the fibrancy hypothesis in the transport rule

Γ ⊢̂ t, t′ ∶ A Γ ⊢̂ p ∶ t =A t′ Γ , y ∶ A ⊢̂ ℎ ∶ Fib P Γ ⊢̂ u ∶ P {y ≔ t}

Γ ⊢̂ transport(P , p, u) ∶ P
{
y ≔ t′

}

is minimal in the sense that only what is needed to interpret the transport is required to be in
the regular part.

The notion of regular fibrancy has been generalized to damped horn inclusions by Nuyts
in [Nuy18]. It is called contextual fibrancy there. In particular, Nuyts has shown that there
is always a fibrant replacement for contextual fibrancy. We will demonstrate this for our par-
ticular case in Section 4.2.2.

4.2. Model category on cSet

In homotopy theory, model categories are a standard setting of “place to do homotopy theory”.
A model category is a category equipped with three classes of arrows—the fibrations, the
cofibrations and the weak equivalences—enjoying several properties. In particular, they have
to give rise to two weak factorization systems. Fibrations can be seen as “nice surjections”,
cofibrations as “nice injections” and weak equivalence as “homotopy equivalences”. Typical
examples of model categories areTop, the category of topological spaces, sSet, the category of
simplicial sets, an cSet, the category of cubical sets. Model categories are of great importance
to compare those different “places to do homotopy” with the notion of Quillen equivalence.
In this section, we use ITT as an internal language of the presheaf category Ĉ in which it is
interpreted and show that this one is a model category. In particular it gives a description of a
model structure on cSet the category of cubical sets with connections (the one of the CCHM
model).
The construction goes in two steps: first we show internally in ITT that there is a model struc-
ture on U the universe. Then we remark that the interpretation of this result in Ĉ gives the
desired model structure.
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It has already been shown in Homotopy Type Theory that there is a pre-model structure on
the universe. The first factorization system was given by Gambino and Garner [GG08] using
homotopy fibers and the second one by Lumsdaine [Lum11] using mapping cylinders. As
HoTT is the fibrant fragment of Two Level Type Theory, this result has to be understood as
a pre-model structure on the universe of fibrant types UF (and not U). Our work is thus a
generalization to the universe of arbitrary types. It makes appear the fibrant replacement, which
was unneeded in the fibrant case as all types were fibrant.
A description of a model structure on the category of cubical sets has recently been given by
Sattler [Sat17] and it should be interesting to compare its model structure with the one given
by the interpretation of our internal model structure in ITT in the cubical sets model.

4.2.1. Model category

Here we present what is a model category in a type theoretic setting, see [Hir09, Hov07] (which
are standard references) for a set theoretic account. In the following we fix C a category (always
defined with the strict equality).

Definition 7. Let f ∶ Hom(X, Y ) and g ∶ Hom(X′, Y ′) be arrows of C. We say that f is a
retract of g if there exist4 arrows s, r, s′ and r′ such that the following diagram commutes:

X X′ X

Y Y ′ Y

s

f

id

r

g f

s′

id

r′

By a class of arrows of C, we simply mean a predicate P ∶ ΠX, Y ∶ A. Hom(X, Y ) → U.
We write f ∈ P for all function such that P f is inhabited. If Q is another class, we write
P ⇿ Q if we have ΠX, Y . Πf ∶ Hom(X, Y ). P f ↔ Qf ; and P ∩Q for the conjunction of
the two classes.

Definition 8. A class P of arrows of C satisfies the 2-out-of-3 property if, for all arrows

X Y Z
f g

such that two of f , g and g ◦ f belong to P , so does the third. More
precisely, it means that we have three functions:

– Πf, g. P f → P g → P (g ◦ f )

– Πf, g. P (g ◦ f ) → P f → P g

– Πf, g. P g → P (g ◦ f ) → P f

Definition 9. Let f ∶ Hom(X, Y ) and g ∶ Hom(X′, Y ′) be arrows of C. It is said that f
has the left lifting property (LLP) with respect to g (and that g has the right lifting property

(RLP) with respect to f ) if, for all arrows F ∶ Hom(X,X′) and G ∶ Hom(Y , Y ′) such that
the square below commutes, there exists an arrow γ ∶ Hom(Y ,X′) making the two triangle

4“exist” is always understood in the constructive sense, i.e. as a sigma type and not as the squashed sigma type.
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commute:

X X′

Y Y ′

F

f g

G

γ

We then say that an arrow f has the LLP (resp. the RLP) with respect to a class of arrows P
if it has it with respect to all arrows of P . We write LLP(P ) (resp. RLP(P ) ) the class of such
arrows.

Definition 10. A weak factorization system (wfs) on C consists of two classes of arrows L and
R such that:

1. every arrow f of C can be factorized as f ≡ r ◦ l with l ∈ L and r ∈ R

2. L is exactly the class of arrows of C which have the LLP with respect to R:

L ⇿ LLP(R)

3. R is exactly the class of arrows of C which have the RLP with respect to L:

R ⇿ RLP(L)

The classes L and R of a weak factorization system enjoy several good properties: they contain
all isomorphisms, they are closed under retract, L is closed under pushouts, R is closed under
pullbacks, . . .

We can now define what is model category.

Definition 11. A pre-model structure on C consists of three classes of arrows F , C and W ,
the fibrations, the cofibrations and the weak equivalences, such that:

1. W satisfies the 2-out-of-3 property

2. (AC , F ) and (C , AF ) are two weak factorization systems,
where AC ≔ C ∩W and AF ≔ F ∩W .

The arrows of AC (resp. AF ) are called the acyclic cofibrations (resp. acyclic fibrations).

If C has a terminal object 1, we say that an object X is fibrant if the map X → 1 is a fibration.

Definition 12. A model category is a category equipped with a pre-model structure which is
complete (it has all small limits) and cocomplete (it has all small colimits).

In the following, we will show that there is a pre-model structure on the category U. For this
we first need two constructions: the fibrant replacement and the mapping cylinders.
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4.2.2. Fibrant Replacement

Fibrant Replacement for full fibrancy As fibrancy is a predicate on types in Two Level
Type Theory, it would be satisfying to have a fibrant replacement for it acting like a modality.
It would have the following rules:

Γ ⊢ A

Γ ⊢ A

Γ ⊢ A

Γ ⊢ A Fib

Γ ⊢ A

Γ ⊢ η ∶ A → A

Γ ⊢ f ∶ A → B Γ ⊢ B Fib

Γ ⊢ repl_rec(f ) ∶ A → B

repl_rec(f ) (η x) ≃β f x

However, it has been remarked by several authors that adding such a fibrant replacement is in-
consistent with the existence of types which are not h-sets [Cap17] or with an interval [NLab].
We repeat here the proof of the nLab for reference.

Let’s suppose I that is a type with (at least) two elements 0, 1 ∶ I , such that 0 =I 1 and
¬(0 ≡I 1). For all x ∶ I we have that 0 ≡I x is fibrant. Hence, by transporting η ref l≡ along
the equality 0 =I 1 we get an element of type 0 ≡I 1.
But ⊥ is fibrant so we can factorize 0 ≡I 1 → ⊥ as:

0 ≡I 1 ⊥

0 ≡I 1

Thus, from the element of type 0 ≡I 1 we get a proof of False.

Degenerate Fibrant Replacement [InternalCubical-Coq/FibRepl.v]
Things go nicer in our setting because we use degenerate fibrancy. It turns out that a “degener-
ate fibrant replacement” is admissible. In fact, it can be defined in Interval Type Theory, using
a quotient inductive type.
The fibrant replacement is the (strict) quotient inductive type defined as follows:

Quotient A ≔

∣ η ∶ A → A

∣ hcomp ∶ Π (e ∶ OI) (φ ∶ Cof ) (a ∶ Π i ∶ I. φ ∨ i ≡ e → A). A

∣ eq ∶ Π e, φ, (a ∶ Π i ∶ I. φ ∨ i ≡ e → A) (w ∶ φ). a !e (inl w) ≡ hcomp e φ a

η is the embedding of A into A, hcomp freely adds the compositions needed so that A is
(degenerately) fibrant, and eq assert than hcomp e φ a extends (φ, a !e ◦ inl).
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It enjoys the following elimination principle:

⊢ P ∶ A → U ⊢ η′ ∶ Π a ∶ A. P (η a)

⊢ hcomp′ ∶ Π e, φ, (a ∶ Π i ∶ I. φ ∨ i ≡ e → A) (a′ ∶ Π i, w. P (a i w)). P (hcomp e φ a)

⊢ eq′ ∶ Π e, φ, a, a′, w. eq e φ a w #P a′ !e (inl w) ≡ hcomp′ e φ a a′

⊢ repl_ind(P , η′, hcomp′, eq′) ∶ Π z ∶ A. P z

repl_ind(P , η′, hcomp′, eq′) (η a) ≃β η
′ a

repl_ind(P , η′, hcomp′, eq′) (hcomp e φ a)

≃β hcomp′ e φ a (λ i, w. repl_ind(P , η′, hcomp′, eq′)(a i w))

From this “raw elimination principle” generated by the quotient, we can prove that the fibrant
replacement has another elimination principle, which the one expected for a fibrant replace-
ment.

Proposition 35. The degenerate fibrant replacement satisfies the following elimination prin-
ciple:

⊢ P ∶ A → U ⊢ η′ ∶ Π a ∶ A. P (ηa) ⊢ H ∶ RFib P

⊢ repl_ind′(P , η′, H) ∶ Π z ∶ A. P z

repl_ind′(P , η′, H) (η a) ≃β η
′ a

Proof. repl_ind′(P , η′, H) is defined by induction on the quotient (using repl_ind). In the
case of hcomp e φ a , modulo strict rewritings, the provided term is given by a composition
in P :

compP e a0 φ p0

with a0 ≔ λ i. hcomp e (φ ∨ (i ≡ e)) (λ j w. a (i ⊓e j) (… # w))

and p0 ≔ λ i w. (… ) # w

where ⊓O ≔ ∧ and ⊓I ≔ ∨.

Instantiated with a constant type family λ _ ∶ A. B we get the non-dependent elimination prin-
ciple asserting for every map f ∶ A → B, if B is fibrant, then f can be factorized as:

A B

A

f

η repl_rec(f )
(Fib B)

and the triangle commutes definitionally.
With this non-dependent elimination principle we can lift every map f ∶ A → B to a map
f ∶ A → B and we have the following equalities:

f (η x) ≃β η (f x) g ◦ f ≡ g ◦ f idA ≡ id
A
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The two strict equalities are proven by induction on the quotient, using the first elimination
principle repl_ind.
Last, as U is fibrant (it even has an extension structure), every type family P ∶ A → U can be
lifted to a type family over A:

P̃ ∶ A → U

≔ repl_rec(P )

For the following, we will need the property the if P is regularly fibrant then P̃ is regularly
fibrant too. We call the property the extension rule. Although we got the intuition that it holds,
we didn’t succeed in proving it for the moment.

Conjecture 1 (extension rule). For all type family P ∶ A → U we have:

RFib P → RFib P̃

The extension rule has a very strong consequence, it allows transporting along an equality
η x = η y to get a map P x → P y if P is regularly fibrant. Indeed, in this case, P̃ is also
fibrant. Hence transport provides:

η x = η y → P̃ (η x) → P̃ (η y)

And we have P̃ (η x) ≃β P x and P̃ (η y) ≃β P y.

One of the reasons making us believe that the extension rule holds is that it is valid in the empty
context. The proof uses the univalent universe UF of “fully fibrant families”.
Let P ∶ A → U be a regularly fibrant family in the empty context. Since the context is empty,
P is in fact fully fibrant, hence it can be lifted to a map

P ′ ∶ A → UF

But the universe UF is itself fibrant, hence we have the map:

repl_rec(P ′) ∶ A → UF

By the fibrancy rule of UF , we have that repl_rec(P ′) ∶ A → U is fully fibrant, and hence
regularly fibrant. We check that this map is indeed P̃ .

4.2.3. (AC, F)-WFS [InternalCubical-Coq/Model_structure.v]

The fibrant replacement allows us to define the first factorization system, given by homotopy
fibers, and weak equivalences. Our design choices are guided by the following definition of
fibrations.
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Definition 13. A function f ∶ A → B is said to be a fibration if there exists a regularly

fibrant type family P ∶ X → U such that f is a retract of π1 ∶ Σ x ∶ X. P x → X .

A Σ x. P x A

B X B

f

id

π1 f

id

We write F the class of fibrations. The class of acyclic cofibrations is defined to be LLP(F )

for the moment, we will check that it coincides with C ∩W afterward.

For a map f ∶ A → B, let’s define its homotopy fiber in y ∶ B to be:

f iberf y ≔ Σ x ∶ A. f x = η y

In Homotopy Type Theory (the fibrant fragment of Two Level Type Theory), the fiber is defined
as Σ x ∶ A. f x =B y. We add the fibrant replacement so that for every map f the type family
λ y ∶ B. f iberf y is always regularly fibrant (because the identity type is taken in B).
Then every function f ∶ A → B factorizes through its fibers:

A B

Σ y ∶ B. f iberf y

f

f ′ π1

with f ′ ≔ λ x ∶ A. (f x, η x, ref l= (η (f x))).

Proposition 36. (LLP(F ), F ) is a weak factorization system on U.

Proof. We have to check that:

– for all f , f ′ ∈ LLP(F )

– RLP(LLP(F )) ⊆ F

We only give the proof of the first point. All other proofs of this section are similar and can be
found in the formalization.
As the lifting property is stable under retracts, to show that f ′ ∈ LLP(F ) we only have to
solve the following lifting problem:

A Σ x ∶ X. P x

Σ y ∶ B. f iberf y X

F

f ′ π1

G

γ
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with P a regularly fibrant family.
The map γ is defined as the composition:

Σ y ∶ B. f iberf y Σ y ∶ B. P (G y) Σ x ∶ X. P x
(id,α) �

where β(w, z) ≔ (G w, z) . To provide α, we need a map of type:

Π (y ∶ B) (x′ ∶ A) (p ∶ f x′ = η y). P (G (y, x′, p))

By induction on the fibrant replacement (P is regularly fibrant) we need:

Π (y ∶ B) (x ∶ A) (p ∶ η (f x) = η y). P (G (y, η x, p))

Then by using the path-induction principle given by the extension rule:

Π x ∶ A. P (G (f x, η x, ref l= ))

which is given by F .
We see here that the extension rule is crucial to have the lifting.

4.2.4. Weak equivalences [InternalCubical-Coq/Equivalences.v]

To define weak equivalences we use HoTT equivalences. Let’s recall that they are defined by:

IsEquiv(f )

≔ Σ (g ∶ B → A) (η ∶ Π x. g (f x) = x) (ε ∶ Π x. f (g x) = x). Π x. ap f (η x) = ε (g x)

In [OP17], Orton and Pitts use Path types to define equivalences. Here we choose to use iden-
tity types because it implies less conversions between paths and identity types in the following.
Of course, the two types are logically equivalent but we do not know which one is more mean-
ingful.

Definition 14. A map f ∶ A → B is a weak equivalence if f ∶ A → B is an equivalence:

W (f ) ≔ IsEquiv f

Here the fibrant replacement seems to play a role similar to geometric realization. In homotopy
theory, the usual model structure on cubical sets has for weak equivalences the maps whose
geometric realization in Top are weak equivalences.

Remark. If we look at the characterization of equivalences with contractibility of fibers for f
we get:

Π y′ ∶ B. Contr (Σ x′ ∶ A. f x′ = y′)

But by induction on the fibrant replacement (the predicate is regularly fibrant), this is equivalent
to:

Π y ∶ B. Contr (Σ x′ ∶ A. f x′ = η y)

It means that we recover the contractibility of fibers of f for our definition of f iberf .
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4.2.5. Cylinder [InternalCubical-Coq/Cylinder.v]

For the second factorization system, we need cylinders, which are the dual of fibers. We define
cylinders from homotopy pushouts, so let’s first define homotopy pushouts.

Pushout

In Homotopy Type Theory, homotopy pushouts are an instance of Higher Inductive Types
(HIT). Recently, Coquand et. al. gave the interpretation of several HIT including pushouts
in [CHM18]. We replay here their construction in light of the fibrant replacement.
Let’s fix the following span of which we want to construct the pushout:

A C

B

f

g

The pushout of f and g is the following HIT:

HIT B ⊔A C ≔

∣ pol ∶ B → B ⊔A C

∣ por ∶ C → B ⊔A C

∣ poq ∶ Π x ∶ A. pol (f x) =B⊔AC
por (g x)

Remark. The homotopy pushout should not be confused with the strict pushout given by a
strict quotient.

Now we want to define this HIT in ITT. The construction goes in two steps: first we define a
“naive” strict quotient and then we take the fibrant replacement. Let PO0 to be the following
strict quotient:

Quotient PO0 ≔

∣ pol0 ∶ B → PO0

∣ por0 ∶ C → PO0

∣ poq0 ∶ A → I → PO0

∣ poql ∶ Π x ∶ A. poq0 x 0 ≡PO0
pol0 (f x)

∣ poqr ∶ Π x ∶ A. poq0 x 1 ≡PO0
por0 (g x)

pol0 and por0 interpret pol and por, and poq0 x is a path from pol0 (f x) to por0 (g x). The
endpoints agree thanks to the strict equalities by which we quotient. We will write PO0_ind
the eliminator generated by the strict quotient.
Unfortunately this type is never fibrant and hence we take the fibrant replacement:

B ⊔A C ≔ PO0

pol ∶ B → B ⊔A C ≔ η ◦ pol0
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por ∶ C → B ⊔A C ≔ η ◦ por0

poq ∶ Π x ∶ A. pol (f x) ∼B⊔AC
por (g x) ≔ apη (poq0, poql, poqr)

Let’s remark that poq is a path and not an inhabitant of an identity type. Hence, if we want to
recover an identity type we have to apply paths2id. In general, the interaction between HIT
and identity types remains to be studied.
As in the case of the fibrant replacement, we can define the expected elimination principle from
the “raw elimination principle”:

Proposition 37. B ⊔A C satisfies the following elimination principle.

⊢ P ∶ B ⊔A C → U ⊢ H ∶ RFib P

⊢ pol′ ∶ Π b ∶ B. P (pol b) ⊢ por′ ∶ Π c ∶ C. P (por c)

⊢ poq′ ∶ Π x ∶ A. transport(P , poq x, pol′ (f x)) ∼P (por (g x)) por
′ (g x)

⊢ PO_ind(P , H, pol′, por′, poq′) ∶ Πw ∶ B ⊔A C. P w

PO_ind(P , H, pol′, por′, poq′) (pol b) ≃β pol′ b

PO_ind(P , H, pol′, por′, poq′) (por c) ≃β por′ c

The transport in poq′ is a transport along a path.

Proof. The proof goes by induction on the fibrant replacement using repl_ind’ (P is regularly
fibrant) and then by induction on the quotient with PO0_ind. A two-dimensional Kan filler (in
P ) is needed to complete the case of the poq0. See the formalization.

Remark. For the non-dependent eliminator we have a strict computational rule on poq:

apPO_rec(P ,H, pol′, por′, poq′) (poq x) ≡ poq′ x

Even if we expect it, we don’t know, at the time of writing, if a similar strict equality holds for
the dependent eliminator.

Pushout satisfies the following fibrancy rule.

Proposition 38. If A, B, C ∶ X → U are regularly fibrant type families over X. Then for all
maps f ∶ Π x ∶ X. A x → B x and g ∶ Π x ∶ X. A x → C x , the type family given by the
pushout λ x ∶ X. B x ⊔Ax C x is regularly fibrant.

⊢ A RFib ⊢ B RFib ⊢ C RFib

⊢ λ x ∶ X. B x ⊔Ax C x RFib

This property is quite remarkable because, in the general case, the pointwise fibrant replace-
ment λ x. A x has no hope to be regularly fibrant. However, it is the case for this particular fam-
ily λ x. PO0 x . The secret lies in a decomposition of regular fibrancy into degenerate fibrancy
and transport structure. This decomposition was discovered by Coquand et. al. [CHM18].
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Definition 15. A transport structure on a type family P ∶ A → U is an inhabitant of the
following type:

Trans P ≔ Π (e ∶ OI) (a ∶ I → A) (φ ∶ Cof ) (cst ∶ φ→ Π i ∶ I. a e ≡ a i)(p0 ∶ P (a e)).

Σ p1 ∶ P (a !e). Πw ∶ φ. cst w !e # p0 ≡ p1

It means that there is a composition operation along all paths a which are constant on the face
φ considered.

Proposition 39. A type family P is regularly fibrant if and only if it is degenerately fibrant
and has a transport structure:

RFib P ↔ DFib P × Trans P

Proof. See [CHM18].

Proposition 40. The fibrant replacement preserves the transport structure:

Trans P → Trans (λ x. P x)

Proof. The following argument comes from Cavallo and Orton5.
This property is true for any endofunctor6 on U, that is to say, for any operator R ∶ U → U

such that there is an operator

F ∶ ΠA, B ∶ U. (A → B) → (RA → RB)

with F idA ≡ idRA and F (g ◦ f ) ≡ F g ◦F f . We have seen that such equalities hold for the
fibrant replacement.
The transport operation on P gives a map P (a e) → P (a !e) . By applying F we get a map
R (P (a e)) → R (P (a !e)) . The fact that F preserves identity maps is enough to show that it
actually gives a transport structure on R ◦P .

The pushout is degenerately fibrant (because of the fibrant replacement), hence it remains to
show that it has a transport structure.

Proposition 41. λ x. PO0 x has a transport structure.

Proof. See [CHM18] or the formalization in InternalCubical-Coq/Cylinder.v.

Cone

For any type A, the cone of A is the following homotopy pushout:

A 1

A cone A

id

5
https://github.com/IanOrton/cubical-topos-experiments/blob/master/src/hcomp-trans.agda

6In fact, we don’t even need that fact that the functor preserves composition, only that it preserves identity maps.
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So we define cone A ≔ A ⊔A 1 . It can also be seen directly as an HIT:

HIT cone A ≔

∣ inc ∶ A → cone A

∣ point ∶ cone A

∣ eq ∶ Π x ∶ A. inc x =cone A point

Cones satisfy the following elimination principle:

⊢ P ∶ cone A → U ⊢ H ∶ RFib P ⊢ inc′ ∶ Π x ∶ A. P (inc x)

⊢ point′ ∶ P point ⊢ eq′ ∶ Π x ∶ A. transport(P , eq x, inc′ x) ∼ point′

⊢ cone_ind(P , H, inc′, point′, eq′) ∶ Πw ∶ cone A. P w

The cone enjoys the expected fibrancy rule RFib A → RFib (λ x. cone (Ax)).

Proposition 42. A cone is always contractible. For any type A we have:

Contr (cone A)

Proof. By induction with cone_ind.

Cylinder

At last, we define the mapping cylinder.
Let f ∶ A → B be a map and y ∶ B . The mapping cylinder of f in y is:

Cylf y ≔ cone (Σ x ∶ A. f x = y)

Then, the cylinder satisfies the following introduction and elimination rules:

top ∶ Π x ∶ A. Cylf (f x)

≔ λ x ∶ A. inc (x, ref l= (f x))

base ∶ Π y ∶ B. Cylf y

≔ λ y ∶ B. point

cyleq ∶ Π x ∶ A. top x∼Cyl (f x) base (f x)

≔ λ x ∶ A. eq (x, ref l= (f x))

⊢ P ∶ Π y ∶ B. Cylf y → U ⊢ H ∶ RFib2 P

⊢ top′ ∶ Π x ∶ A. P (f x) (top x) ⊢ base′ ∶ Π y ∶ B. P y (base y)

⊢ cyleq′ ∶ Π x ∶ A. transport(P , cyleq x, top′ x) ∼ base′ (f x)

⊢ cyl_ind(P , H, top′, base′, cyleq′) ∶ Π (y ∶ B) (w ∶ Cylf y). P y w

Proposition 43. Let A and B be regularly fibrant families X → U. Then Cyl is regularly
fibrant as a three variables type family:

RFib (λ (x, f , y) ∶ Σ (x ∶ X) (f ∶ Ax → B x) (y ∶ B x). Cylf y. )

Last, as a cylinder is cone, all cylinders Cylf y are contractible.
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4.2.6. (C, AF)-WFS [InternalCubical-Coq/Model_structure.v]

We can now describe the second factorization system. Every function f factorizes as:

A B

Σ y ∶ B. Cyl
f
(η y)

f

top′ π1

∼

where top′ ≔ λ x. (f x, topf (� x)).
With respect to the factorization that Lumsdaine gave for the fibrant fragment [Lum11], the
fibrant replacement is added. It is added so that the family λ y. Cyl

f
(η y) is regularly fibrant.

The need for the contractibility of cylinders comes from the following characterization of
acyclic fibrations.

Proposition 44. A map f ∶ A → B is an acyclic fibration (i.e. both a fibration and a weak
equivalence) if and only if there exists a regularly fibrant type family P ∶ X → U with
contractible fibers (Π x ∶ X.Contr (P x)) such that f is a retract of π1 ∶ Σ x ∶ X. P x → X .

A Σ x. P x A

B X B

f

id

π1 f

id

We write AF the class of acyclic fibrations. The class of cofibrations is defined as LLP(AF ).

We can check that we have indeed a weak factorization system.

Proposition 45. (LLP(AF ), AF ) is a weak factorization system on U.

4.2.7. Model structure on U

We check that we have taken a correct characterization of acyclic fibrations.

Proposition 46. A map f ∶ A → B is in LLP(F ) if and only if it is both a weak equivalence
and in LLP(AF ).

As a consequence, if we plug the two weak factorization systems together we have a pre-model
structure.

Theorem 47. Under the assumption that the extension rule is correct, there is a pre-model
structure on U with the weak equivalences, fibrations and cofibrations as previously defined.
Σ types and strict equality give all small limits and strict quotients give small colimits. Hence
U is a model category.
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f ∈ F iff
A Σy f iberf y A

B

f ′

id

f

j

π1
f

f ∈ AF iff

A Σy Cyl
f
(η y) A

B

top′

id

f

j

π1
f

f ∈ C iff

A

B Σy Cyl
f
(η y) B

f f
top′

j

id

π1

f ∈ AC iff
A

B Σy f iberf y B

f f
f ′

j

id

π1

Figure 4.8.: Diagrammatic illustration of Proposition 49

With the internal language point of view (Section 4.1.5), the model structure on the universe
is exactly translated as a model structure on the presheaf category. Hence we can have the
following interpretation of the theorem:

Corollary 48. Let ◻ be a cube category such that ◻̂ enjoys the nine axioms of Figures 4.4 and
4.5 and such that the extension rule holds. Then there is a model structure on the category of
cubical sets ◻̂ with the classes as previously defined.

Remark. As remarked by Coquand, the proof of the theorem 47 only uses the extension rule
in the empty context which, in this case, follows from the fibrancy of UF .

4.2.8. Characterization of the classes

On the way of proving the previous theorem we (re)discovered some characterizations of the
four classes of maps F , C , AF and AC .
The two factorization systems give prototypical examples of maps which are (acyclic) fibra-
tions and (acyclic) cofibrations. We proved that, in fact, all (acyclic) fibrations and (acyclic)
cofibrations arise as retracts, in a canonical sense, of such maps.

Proposition 49. Let A and B be arbitrary types and f ∶ A → B a map. Then we have:

– f is a fibration if and only if there exists j ∶ Σ y. f iberf y → A such that
f ◦ j ≡ π1 and j ◦ f ′ ≡ idA

– f is an acyclic fibration if and only if there exists j ∶ Σ y. Cyl
f
(η y) → A such that

f ◦ j ≡ π1 and j ◦ top′ ≡ idA

– f is a cofibration if and only if there exists j ∶ B → Σ y. Cyl
f
(η y) such that

j ◦ f ≡ top′ and π1 ◦ j ≡ idB
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– f is an acyclic cofibration if and only if there exists j ∶ B → Σ y. f iberf y such that
j ◦ f ≡ f ′ and π1 ◦ j ≡ idB

where f ′ is λ x. (f x, η x, ref l= (η (f x))) and top′ is λ x. (f x, topf (� x)).

Gambino and Garner already gave the characterization of fibrations (in the fibrant case) and
call such maps type-theoretic normal isofibration [GG08].
Acyclic cofibrations have an even better description. As already noticed by Gambino and
Garner, they are the injective equivalences. We generalize their definition to encompass non-
fibrant types.

Proposition 50. Let A and B be arbitrary types and f ∶ A → B a map. Then f is an acyclic
cofibration if and only if it is an injective equivalence, i.e. if and only if there exists r ∶ B → A

and

– θ ∶ Π x ∶ A. r (f x) ≡ ηA x

– ε ∶ Π y ∶ B. f (r y) = ηB y

– α ∶ Π x ∶ A. strict2id (ap≡ f (θ x)) = ε (f x).

where strict2id is the map x ≡ y → x = y.
The last condition means that ε (f x) is “identity-equal” to ref l= modulo strict equality rewrit-
ings.

4.2.9. Formalization

All the results of this section have been formalized in Coq using the implementation described
in Section 4.1.3.
As a small example, fibrations are defined by the following record:

Record IsFib {A B} (f : A → B) ≔
{ fib_A : Type ;

fib_P : fib_A → Type ;

fib_Fib : RFib fib_P;

fib_H : f RetractOf (π1 fib_P) }.

The statement of the main theorem is very short:

Theorem type_model_structure : model_structure TYPE.

And the statements of the characterizations look like this:

Definition F_caract {A B} {f: A → B} :

IsFib f

↔ ∃ (g : sigT (fiber f) → A), f o g == pr1 × g o (f’ f) == idmap.

The axioms on which the formalization is relying can be get with the Print Assumptions

command. This command crawls recursively the environment and looks for the axioms or
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admitted lemmas on which a definition is relying. Its output for the main theorem and the
four characterizations is given in Figures 4.9 and 4.10. The first group of Figure 4.9 is the
set of assumptions on the equality of the metatheory (Propext, Proof Irrelevance and FunExt).
The second group is the set of axioms used to model Interval Type Theory and the last group
is the set of axioms used to implement strict quotient types (for the fibrant replacement and
homotopy pushouts). On Figure 4.10, the first and second groups are admitted lemmas. The
two first are the standard properties of equivalences on fibrant types. The three others are the
fibrancy rules, they were already formalized by Orton and Pitts in Agda. The last assumption
is the only true hypothesis of our development, it is the extension rule (Conjecture 1).
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propext : ∀ A B : Prop, A ↔ B → A = B

proof_irr : ∀ (P : Prop) (x y : P), x = y

funext : ∀ A (P : A → Type) (f g : ∀ x : A, P x), f == g → f = g

I : Type

zero : I

one : I

sup : I → I → I

inf : I → I → I

zero_one : 0 ≠ 1

zero_sup : ∀ i : I, sup 0 i = i

zero_inf : ∀ i : I, inf 0 i = 0

sup_zero : ∀ i : I, sup i 0 = i

sup_one : ∀ i : I, sup i 1 = 1

one_sup : ∀ i : I, sup 1 i = 1

one_inf : ∀ i : I, inf 1 i = i

inf_zero : ∀ i : I, inf i 0 = 0

inf_one : ∀ i : I, inf i 1 = i

cof_or : ∀ P Q : Prop, cof P → cof Q → cof (P ∨ Q)

cof : Prop → Prop

cof1 : ∀ i : I, cof (i = 1)

cof0 : ∀ i : I, cof (i = 0)

strictness : ∀ (ϕ : Cof) (A : ϕ → Type) B (s : ∀ u, SEquiv (A u) B),

∃ B’ (s’ : SEquiv B’ B) (e : ∀ u, A u = B’),

∀ u, Etransport (λ X, SEquiv X B) (e u) (s u) = s’

join : ∀ A ϕ ϕ’, cof ϕ → cof ϕ’ → ∀ (f : ϕ → A) (g : ϕ’ → A),

(∀ (u : ϕ) (v : ϕ’), f u = g v) → ϕ ∨ ϕ’ → A

join_r : ∀ A ϕ ϕ’ (Hϕ : cof ϕ) (Hϕ’ : cof ϕ’) f g H (v : ϕ’),

join f g H (or_intror v) = g v

join_l : ∀ A ϕ ϕ’ (Hϕ : cof ϕ) (Hϕ’ : cof ϕ’) f g H (v : ϕ’),

join f g H (or_introl u) = f u

qq : ∀ A (e : OI) (ϕ : Cof) (a : ∀ i : I, ϕ ∨ i = e → repl A),

extends (ϕ; λ x, a !e (or_introl x)) (hcomp e ϕ a)

push_l : ∀ A B C (f : A → B) (g : A → C) (x : A),

push x 0 = pol (f x)

push_r : ∀ A B C (f : A → B) (g : A → C) (x : A),

push x 1 = por (g x)

Figure 4.9.: Assumptions on which the formalization rely (1/2)
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two_out_of_three_IsEquiv

: two_out_of_three (λ (A B : TYPEH) (f : A ←→ B), IsEquiv f)

isequiv_adjointify : ∀ A B, Fib A → Fib B →

∀ (f : A → B) (g : B → A), f o g I∼ ∼ idmap → g o f I∼ ∼ idmap

→ IsEquiv f

UFib_forall : ∀ A (B : A → Type) (C : ∀ x : A, B x → Type),

UFib B → UFib2 C → UFib (λ x : A, ∀ y : B x, C x y)

UFib_sigma : ∀ A (B : A → Type) (C : ∀ x : A, B x → Type),

UFib B → UFib2 C → UFib (λ x : A, ∃ y, C x y)

UFib_paths : ∀ A (B : A → Type), UFib B

→ UFib (λ x : ∃ x : A, B x × B x, fst x.2 ∼ snd x.2)

UFib_Id : ∀ A (B : A → Type), UFib B

→ UFib (λ x : ∃ x : A, B x × B x, fst x.2 I∼ snd x.2)

extension_rule : ∀ (A : Type) (P : A → Type), UFib P → UFib (lift P)

Figure 4.10.: Assumptions on which the formalization rely (2/2)
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System in Coq

We describe here a way to emulate Two Level Type Theory in the Coq proof assistant using
typeclass inference. This development can be found in the folder HTS-Coq.

First we define a typeclass Fibrant to keep track of fibrant types. The same technique has
already been used in the HoTT library [BGL+16] to keep track of the use of functional exten-
sionality and univalence axioms.

Axiom Fibrant : Type → Type.

Existing Class Fibrant.

As Fibrant is declared as an axiom, the only way to inhabit this class is to use postulated
fibrancy rules. For instance, the rule for the dependent product and universe is:

Axiom fibrant_∀ : ∀ (A : Type) (B : A → Type),

Fibrant A → (∀ x, Fibrant (B x)) → Fibrant (∀ x, B x).

Axiom fibrant_Type : Fibrant Type.

They are then declared as instances so that fibrancy is always inferred automatically:

Existing Instance fibrant_∀.

Existing Instance fibrant_Type.

And each time a new inductive type is declared, an axiom corresponding to its fibrancy rule
has to be added.
Then we define the identity types as a private inductive type. The private inductive types
forbid to use pattern matching for this inductive type outside of the module where it is defined.
It gives an additional layer of abstraction. They have been introduced in Coq to define Higher
Inductive Types which behave correctly. Here we use them to forbid the use of the elimination
principle of univalent equality when the predicate and the type are not fibrant.

Module Export PathsDefinition.

Private Inductive paths {A : Type} (x : A) : A → Type ≔
| idpath : paths x x.

Definition paths_ind {A} {x : A} (P : ∀ y : A, paths x y → Type)

{HP : ∀ y p, Fibrant (P y p)} (u : P x idpath) {y} (p : paths x y)

: P y p

≔ match p with

| idpath ⇒ u
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end.

End PathsDefinition.

Then we can for instance define transport outside of the module PathsDefinition.

Definition transport {A} (P : A → Type) {HP : ∀ y, Fibrant (P y)}

{x y} (p : paths x y) (u : P x) : P y

≔ paths_ind (λ y _ ⇒ P y) u p.

The fibrancy conditions are then checked automatically each time that we use transport (or
any other lemma) by typeclass inference.
A nice point with private inductive types is that we retain the computational rule of the induc-
tive type:

paths_ind P u idpath ≃β u

The universe of fibrant types is defined using a record and we include it into Type using a
coercion:

Record TypeF ≔ { TypeF_T : Type ; TypeF_F : Fibrant TypeF_T}.

Coercion TypeF_T : TypeF ↣ Sortclass.

The only drawback with this implementation is that the use of a private inductive type breaks
some Coq tactics to reason on equality, especially destruct and rewrite.
With the help of Pédrot, we wrote a small plugin to enforce that rewrite uses the lemmas
defined from paths_ind (cf. the file Overture.v of the formalization). And we defined a
tactic destruct_path which tries to emulate destruct.

Remark. Contrarily to MLTT2, here we do not enforce A to be fibrant in the formation / intro-
duction / elimination rules of paths but, of course, this additional requirement it can be added.

Remark. We can use the same technique to implement MLTTF
2

. This time, the fibrancy type-
class does not refer to types but to type families:

Axiom RFibrant : ∀ {A : Type}, (A → Type) → Type.

Existing Class RFibrant.
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B. Typing rules for the ad-hoc
polymorphism translation

B.1. Booleans in λΠa
ω

Γ ⊢

Γ ⊢ B
i ∶i+1 Ui

Γ ⊢

Γ ⊢ true ∶i B
i

Γ ⊢

Γ ⊢ false ∶i B
i

Γ ⊢ b ∶i B
i Γ ⊢ P ∶ B

i → Uj Γ ⊢ ttrue ∶j P true Γ ⊢ tfalse ∶j P false

Γ ⊢ if b retj P then ttrue else tfalse ∶j P b

B.2. Definition of TYPEi internal universes

Γ ⊢

Γ ⊢ TYPEi ∶ U0

Γ ⊢

Γ ⊢ Elti ∶ TYPEi → U0

Γ ⊢

Γ ⊢ bi ∶ TYPEi

Γ ⊢

Γ ⊢ ui ∶ TYPEi+1

Γ ⊢

Γ ⊢ πi,j ∶ ΠA ∶ TYPEi. (Elti A → TYPEj) → TYPEmax(i,j)

Γ ⊢ P ∶ TYPE0 → Uj Γ ⊢ b′
0
∶ P b0 Γ ⊢ π′

0,0
∶ H0,0

Γ ⊢ TYPE_rec0(P , b
′
0
, π′

0,0
) ∶ Π a ∶ TYPE0. P a

Γ ⊢ P ∶ TYPEi+1 → Uj Γ ⊢ b′
i+1

∶ P bi+1
Γ ⊢ u′i ∶ P ui Γ ⊢ π′

0,0
∶ H0,0 … Γ ⊢ π′

i+1,i+1
∶ Hi+1,i+1

Γ ⊢ TYPE_reci+1(P , b
′
i+1

, π′
0,0
, … , π′

i+1,i+1
, u′i) ∶ Π a ∶ TYPEi+1. P a

where Hi0,i1
is:

Π (a ∶ TYPEi) (b ∶ Elti a → TYPEi). P a → (Π x ∶ Elti a. P (b x)) → P (πi,i a b) when i0 = i1 = i

Π (a ∶ TYPEi0
) (b ∶ Elti0 a → TYPEi1

). Π x ∶ (Elti0 a. P (b x)) → P (πi0,i1 a b) when i0 < i1

Π (a ∶ TYPEi0
) (b ∶ Elti0 a → TYPEi1

). P a → P (πi0,i1 a b) when i0 > i1
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and where in dots of last rule there are all π′
i0,i1

such that max(i0, i1) = i + 1.

Elti bi ≃β B

Elti+1 ui ≃β TYPEi

Eltk (πi,j a b) ≃β Π x ∶ Elti a. Eltj (b x)

TYPE_reci(P , b
′
i, π

′
0,0
, …) bi ≃β b′i

TYPE_reci+1(P , b
′
i+1

, π′
0,0
, … , u′i) ui ≃β u′i

TYPE_reci(P , b
′
i, π

′
0,0
, …) (πi,i a b) ≃β π

′
i,i a b (TYPE_reci(P , b

′
i, π

′
0,0
, …) a)

(λ x. TYPE_reci(P , b
′
i, π

′
0,0
, …) (b x))

TYPE_reci(P , b
′
i, π

′
0,0
, …) (πj,i a b) ≃β π

′
j,i a b (λ x. TYPE_reci(P , b

′
i, π

′
0,0
, …) (b x))

TYPE_reci(P , b
′
i, π

′
0,0
, …) (πi,j a b) ≃β π

′
i,j a b (TYPE_reci(P , b

′
i, π

′
0,0
, …) a)

where i > j in the two last rules.
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Titre : Etendre la théorie des types à l'aide de modèles syntaxiques 

Mots clés : théorie des types, modèles, traduction de programme, métaprogrammation, théorie des 
types homotopique, modèle cubique 

Résumé : 
Cette thèse s'intéresse à la métathéorie de la 

théorie des types intuitionniste. Les systèmes 
que nous considérons sont des variantes de la 
théorie des types de Martin-Löf ou du Calcul des 
Constructions, et nous nous intéressons à la 
cohérence de ces systèmes ou encore à 
l'indépendance d'axiomes par rapport à ces 
systèmes. Le fil rouge de cette thèse est la 
construction de modèles syntaxiques, qui sont 
des modèles qui réutilisent la théorie des types 
pour interpréter la théorie des types. 
Dans une première partie, nous introduisons la 

théorie des types à l'aide d'un système minimal 
et de plusieurs extensions potentielles 
 
 

  Dans une seconde partie, nous introduisons 
les modèles syntaxiques donnés par traduction 
de programme et donnons plusieurs exemples. 
  Dans une troisième partie, nous présentons 
Template-Coq, un plugin de 
métaprogrammation pour Coq. Nous montrons 
comment l'utiliser pour implémenter 
directement certains modèles syntaxiques. 
  Enfin, dans une dernière partie, nous nous 
intéressons aux théories des types à deux 
égalités : une égalité stricte et une égalité 
univalente. Nous proposons une relecture des 
travaux de Coquand et. al. et Orton et Pitts sur 
le modèle cubique en introduisant la notion de 
fibrance dégénérée. 

 

Title : Extending type theory with syntactic models 

Keywords :  type theory, models, program translation, metaprogramming, homotopy type theory, 
cubical model 

Abstract : 
  This thesis is about the metatheory of 
intuitionnistic type theory. The considered 
systems are variants of Martin-Löf type theory or 
of Calculus of Constructions, and we are 
interested in the coherence of those systems 
and in the independence of axioms with respect 
to those systems. The common theme of this 
thesis is the construction of syntactic models, 
which are models reusing type theory to 
interpret type theory. 
  In a first part, we introduce type theory by a 
minimal system and several possible 
extensions. 

  In a second part, we introduce the syntactic 
models given by program translation and give 
several examples. 
  In a third part, we present Template-Coq, a 
plugin for metaprogramming in Coq. We 
demonstrate how to use it to implement directly 
some syntactic models. 
  Last, we consider type theories with two 
equalities: one strict and one univalent. We 
propose a re-reading of works of Coquand et. 
al. and of Orton and Pitts on the cubical model 
by introducing degenerate fibrancy. 
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