
HAL Id: tel-02007847
https://theses.hal.science/tel-02007847

Submitted on 5 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Risk monitoring with intrusion detection for industrial
control systems

Steve Muller

To cite this version:
Steve Muller. Risk monitoring with intrusion detection for industrial control systems. Cryptography
and Security [cs.CR]. Ecole nationale supérieure Mines-Télécom Atlantique, 2018. English. �NNT :
2018IMTA0082�. �tel-02007847�

https://theses.hal.science/tel-02007847
https://hal.archives-ouvertes.fr

THESE DE DOCTORAT DE

L’ÉCOLE NATIONALE SUPERIEURE MINES-TELECOM ATLANTIQUE

BRETAGNE PAYS DE LA LOIRE - IMT ATLANTIQUE

COMUE UNIVERSITE BRETAGNE LOIRE

ECOLE DOCTORALE N° 601
Mathématiques et Sciences et Technologies
de l'Information et de la Communication
Spécialité : Informatique

Thèse en cotutelle avec l’Université du Luxembourg

Par

Steve MULLER

 Risk Monitoring with Intrusion Detection for Industrial Control Systems

Thèse présentée et soutenue à l’Université du Luxembourg, le 26 juin 2018
Unité de recherche : Irisa – Equipe OCIF
Thèse N° : 2018IMTA0082

 Composition du Jury :

Président : Jacques KLEIN Senior Research Scientist, Université du Luxembourg

Rapporteurs : Valérie VIET TRIEM TONG Maître de conférences (HDR), Centrale Supélec - Rennes

 Jean-Marie FLAUS Professeur, Université de Grenoble Alpes

Examinateurs : Romaric LUDINARD Maître de conférences, IMT Atlantique

Directeur de thèse : Jean-Marie BONNIN Professeur, IMT Atlantique

Co-directeur de thèse : Yves LE TRAON Professeur, Université du Luxembourg

iii

Résumé long

La technologie de l’information est devenue une partie importante de nom-
breux aspects de notre vie – nous comptons sur elle pour coordonner le
transport des marchandises et des personnes, pour contrôler les infrastruc-
tures, pour gérer les entreprises, pour communiquer et pour nous divertir.
Même si la technologie de l’information est un élément essentiel de la plu-
part des systèmes et des plates-formes, la sécurité n’a pas nécessairement
été prise en compte lors de leur conception, en particulier dans l’industrie.
Ce manque de sécurité n’a pas été un problème jusqu’à il y a quelques dé-
cennies, lorsque les technologies de l’information – ainsi que leur (probable-
ment) plus grand succès, Internet – ont été mises à la disposition du grand
public, et tout le monde pouvait accéder chaque système dans le monde
entier.

Beaucoup d’efforts ont été déployés pour sécuriser les systèmes vulnérables
depuis. Mais même aujourd’hui, beaucoup d’entre eux sont loin d’être pro-
tégés de manière raisonnable contre divers types de menaces. En consé-
quence, les utilisateurs et les opérateurs doivent être conscients des consi-
dérations de sécurité résultant de l’utilisation ou de la dépendance de tels
systèmes, et envisager des contrôles de sécurité appropriés pour les risques
les plus graves.

Pour une organisation, la sécurité doit être abordée à deux niveaux. D’un
point de vue technique, des mesures de protection appropriées doivent
être mises en œuvre pour que les services ou les composants du système
puissent fonctionner en toute sécurité. Des exemples typiques sont les so-
lutions de surveillance, les systèmes de détection et de prévention, ou les
contrôles d’accès. Du point de vue de la gestion, une stratégie de sécurité
globale doit être développée pour l’ensemble de l’organisation, qui est char-
gée de la bonne coordination de tous les processus de sécurité. Même si
les deux aspects sont indispensables pour un bon niveau de sécurité, ils
interagissent rarement les uns avec les autres : d’une part, la direction ne
comprend pas nécessairement les détails techniques, et d’autre part, les per-
sonnes sur le terrain n’ont pas nécessairement une vision globale du risque
pour l’ensemble de l’organisation.

L’objectif de cette thèse est de fusionner ces mondes complémentaires en
fournissant une interface entre les deux. Une telle approche a deux avan-
tages complémentaires. D’une part, les problèmes techniques peuvent être
instantanément traduits en notions de risque, ce qui aide la direction à com-
prendre ce qui se passe sur le terrain. D’autre part, elle présente les impli-
cations globales pour l’ensemble de l’organisation et aide ainsi le personnel
technique à comprendre les conséquences à grande échelle d’un incident.
Dans les deux cas, cette approche permettra des réactions rapides en cas
d’attaques ou de fautes.

Pour atteindre cet objectif, cette thèse vise à fournir des techniques qui
aident les responsables de la sécurité à passer d’une analyse de risque sta-
tique à une plateforme de surveillance des risques dynamique et en temps
réel. Elle procède en trois étapes, chacune d’elles décrivant un aspect de la
plateforme :

iv

• la collecte d’informations sur les risques provenant des sondes sur le
terrain,

• la communication des événements de sécurité de ces sondes à un em-
placement central, et

• l’inclusion de cette information en temps réel dans une analyse de
risque.

Les interactions entre ces modules sont illustrées dans la Figure 1.

MANUELAUTOMATIQUE

Analyse de risque dynamique
& consciente des dépendances

Analyse de
risque statique

Plateforme de surveillance de risques Modèle de
dépendances

Mises à jour
SONDE

Fichiers journaux
SONDE

IDS
SONDE

FIGURE 1 – Aperçu des composantes du système de sur-
veillance des risques.

En ce qui concerne la collecte d’informations sur les risques, trois exemples
concrets de sondes sont développés dans cette thèse. Le premier exemple,
un système de détection d’intrusion, détermine le risque que le réseau in-
terne soit compromis. Il applique des techniques d’apprentissage automa-
tique pour détecter les écarts par rapport au comportement “normal” des
dispositifs dans un réseau. Le second agent traite les fichiers journaux d’un
pare-feu et évalue ainsi le risque des menaces externes. Ces menaces sont
liées notamment aux problèmes de disponibilité et couvrent les attaques
par déni de service, les réseaux de bot et les renifleurs de port. Le dernier
candidat est donné par un outil qui analyse le niveau de vulnérabilité du
réseau global. Pour ce faire, il récupère la liste des logiciels installés et les
compare aux bases de données de vulnérabilités disponibles publiquement.

La deuxième partie de la thèse porte sur la création d’un lien entre la vi-
sion de gestion de haut niveau du risque et les solutions de surveillance
techniques. À cette fin, une plate-forme de surveillance des risques est dé-
veloppée, qui sert de référentiel central pour le stockage et la corrélation
des risques venant de plusieurs sources. C’est cette plateforme qui joue le
rôle de médiateur entre les sondes et l’analyse des risques. Afin d’être com-
patible avec une grande variété d’agents de risque, un modèle abstrait est
introduit qui sert de dénominateur commun pour la communication des

v

informations sur les risques de façon homogène et cohérente – ce qui est
nécessaire si le risque provenant de plusieurs sources doit être corrélé.

Du point de vue de la gestion des risques, il s’avère que les systèmes de
contrôle industriels sont caractérisés par la présence de nombreuses inter-
dépendances. Celles-ci proviennent principalement de la complexité tech-
nique et de la dimension géographique de l’infrastructure sous-jacente. Ce-
pendant, il serait fastidieux de prendre manuellement en considération toutes
ces dépendances dans une analyse de risque. Pour cette raison, cette thèse
élabore un modèle d’évaluation des risques qui peut être appliqué en plu-
sieurs méthodologies de risque existantes, et qui gère les dépendances. Une
approche semi-automatisée est présentée pour générer un tel modèle de dé-
pendance pour une organisation.

Finalement, le modèle de dépendance présenté et la plate-forme de moni-
tion des risques sont combinés pour former un système de surveillance des
risques en temps réel et sensible aux dépendances. Les concepts développés
dans cette thèse sont également appliqués à un outil d’analyse des risques
existant, TRICK Service, pour prouver la faisabilité de l’approche.

vii

Abstract

Risk Monitoring and Intrusion Detection for Industrial Control Systems

by Steve MULLER

Cyber-attacks on critical infrastructure such as electricity, gas, and water
distribution, or power plants, are more and more considered to be a relev-
ant and realistic threat to the European society. Whereas mature solutions
like anti-malware applications, intrusion detection systems (IDS) and even
intrusion prevention or self-healing systems have been designed for classic
computer systems, these techniques have only been partially adapted to the
world of Industrial Control Systems (ICS). This is most notably due to the
fact that these industrial systems have been deployed several decades ago,
when security was not such a big issue, and have not been replaced since.
As a consequence, organisations and nations fall back upon risk manage-
ment to understand the risks that they are facing.

Today’s trend is to combine risk management with real-time monitoring
to enable prompt reactions in case of attacks. This thesis aims at provid-
ing techniques that assist security managers in migrating from a static risk
analysis to a real-time and dynamic risk monitoring platform.

Risk monitoring encompasses three steps, each being addressed in detail
in this thesis: the collection of risk-related information, the reporting of se-
curity events, and finally the inclusion of this real-time information into a
risk analysis. The first step consists in designing agents that detect incid-
ents in the system. They can either interpret the output of existing secur-
ity appliances (such as firewalls), or monitor (part of) the system on their
own. In this thesis, an intrusion detection system is developed to this end,
which focuses on an advanced persistent threat (APT) that particularly tar-
gets critical infrastructures. The second step copes with the translation of
the obtained technical information in more abstract notions of risk, which
can then be used in the context of a risk analysis. In the final step, the in-
formation collected from the various sources is correlated so as to obtain
the risk faced by the entire system.

A novel dependency model ties all parts together and thus constitutes the
core of the risk monitoring framework developed in this thesis. The model
is loosely based on attack trees, and can be intuitively visualised with boxes
and arrows. Despite its visual simplicity, it allows risk assessors to encode
the interdependencies of complex risk scenarios, and to quantify the risk
originating from the former. While calculations in the model are compu-
tationally infeasible, this thesis presents a novel algorithm that provides
approximative values for the risk in a very efficient way. The said algorithm
opens an entire spectrum of possibilities for computing dynamic risk, which
was not possible before.

ix

Acknowledgements

I would first like to thank my supervisors, Prof. Yves Le Traon, Prof. Jean-
Marie Bonnin, Dr. Carlo Harpes, Dr. Jean Lancrenon, and Sylvain Gombault
for guiding me through the thesis. In particular, I give them great credit for
providing valuable and constructive feedback for my thesis, my papers,
and my research work in general.

I would also like to thank the members of the jury, Prof. Yves Le Traon, Prof.
Jean-Marie Bonnin, Dr. Jacques Klein, Dr. Romaric Ludinard, Dr. Valérie
Viet Triem Tong, Prof. Jean-Marie Flaus, and Dr. Carlo Harpes, who have
readily declared to concern themselves with the thesis.

I am particularly grateful to Jean and Sankalp for their spiritual support.
Our daily discussions helped me stay motivated whenever the thesis did
not progress as desired. Furthermore, I am indebted to Matthieu, who gave
me valuable tips and research ideas for my work.

Notwithstanding, I owe my deepest gratitude to my sisters, my parents,
and my friends. Without them, I would probably not have aimed for a
doctoral degree. Thank you!

This work was supported by the Fonds National de la Recherche,
Luxembourg (project reference 10239425).

This thesis was co-supervised and financially supported by itrust consult-
ing s.à r.l., who warmly welcomed me at their premises for the entire dura-
tion of the thesis and beyond. I’d like to thank them for preparing the topic
of this thesis and for enabling me to work in this area.

Their involvement in the national research project SGL Cockpit (co-funded
by the Ministry of Economy of Luxembourg) and the international research
projects TREsPASS and ATENA (both co-funded by the European Com-
mission) additionally allowed me to work with industrial partners and ex-
change knowledge with other experts of the domain.

xi

Contents

Résumé long iii

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Outline of the thesis . 1
1.2 Context . 3

1.2.1 Risk assessments . 3
1.2.2 Shortcomings . 5

It’s all manual . 5
Inconsistency leads to errors 5
A mere snapshot view of the risk 6
Insufficient and technical information 6

1.3 Objectives . 7
1.3.1 Aim for compatibility 8
1.3.2 Dependencies: more structure for risk assessments . 8

Modelling dependencies 9
Reducing the estimation workload 11

1.3.3 Risk assessment and monitoring combined? 12
Symbiosis . 12
Opportunities . 13
Mathematical challenges 13
Technical challenges 14
Conclusion . 15

1.3.4 Obtaining real-time risk information 15
Firewall logs . 15
Patch management . 16
Configuration checker 17
Intrusion detection . 17

1.4 Contributions . 18

2 State of the art 19
2.1 Dependency modelling . 19

2.1.1 Asset diagrams . 19
2.1.2 Attack trees, and related 20
2.1.3 Attack graphs . 21
2.1.4 Bayesian networks . 21
2.1.5 Cyclic dependencies 22

2.2 Dynamic risk analysis . 23
2.2.1 Theory . 23
2.2.2 Risk management systems 24

xii

2.3 Intrusion detection systems 25
2.4 Conclusion . 29

3 Risk dependency model 31
3.1 Introduction . 31

3.1.1 Motivation . 31
3.1.2 Approach . 31
3.1.3 Terminology . 32
3.1.4 Objective . 34
3.1.5 Outline . 34

3.2 Defining the model . 34
3.2.1 Risk . 35
3.2.2 Dependency graph . 37

Guidelines . 37
3.2.3 Degree of dependability 38
3.2.4 Risk in a dependency graph 40
3.2.5 Compatibility with standard risk methodologies . . . 43

3.3 Computations . 45
3.3.1 Probability distribution of acyclic graphs 46
3.3.2 Probability distribution for general graphs 47
3.3.3 Algorithm . 48
3.3.4 Numerical experiments 49

3.4 Sensitivity . 51
3.4.1 Aborting computation prematurely 52
3.4.2 Varying graph topology 53
3.4.3 Varying edge probabilities 54
3.4.4 Varying likelihoods and impacts 55

3.5 Building dependency graphs 55
3.5.1 Taxonomy . 56
3.5.2 DepOT . 58
3.5.3 Semi-automated generation 59

3.6 The ‘Smart Grid Luxembourg’ use-case 61
3.6.1 Compiling a dependency-aware inventory 63
3.6.2 Threat model . 64
3.6.3 Generating the dependency graph 64
3.6.4 Results . 65

3.7 Extensions and special cases 66
3.7.1 Boolean formulae . 66
3.7.2 Attack defence trees 67

Definitions . 68
Assumptions. 69
Rules of calculation . 69
Optimisation problem 70
Branch and bound algorithm 70
Performance . 72

3.8 Conclusion . 73

4 Risk monitoring 75
4.1 Introduction . 75

4.1.1 Motivation . 75
4.1.2 Objective . 76

xiii

4.1.3 Outline . 77
4.2 Measure risk in the field . 77

4.2.1 Common-denominator risk 78
4.2.2 Multiple alerts . 80
4.2.3 Fixed risk level . 81

4.3 Risk reporting . 82
4.3.1 Protocol . 83
4.3.2 Authentication . 83
4.3.3 Interaction with risk analysis 83
4.3.4 Aggregating risk levels 84

4.4 Dynamic risk computation . 85
4.4.1 Risk in matrix form . 85
4.4.2 Dynamic risk . 86
4.4.3 Algorithm . 87
4.4.4 Running time . 88

4.5 Risk monitoring platform . 89
4.5.1 Agents . 89
4.5.2 TRICK Service . 89
4.5.3 TRICK API . 91
4.5.4 DepOT . 91

4.6 Additional computations . 93
4.6.1 Determine the most critical risk 93
4.6.2 Determine the most likely cascade effect 93
4.6.3 Evolution of risk . 94

4.7 Conclusion . 98

5 Risk agents 99
5.1 Introduction . 99

5.1.1 Motivation . 99
5.1.2 Objective . 100
5.1.3 Outline . 100

5.2 Intrusion detection system . 101
5.2.1 Choice of strategy . 101
5.2.2 Threat model . 102

Network attacks and induced anomalies 103
Training attack . 104
Stealthy training attack 104

5.2.3 Detecting the training attack 105
Threshold and metric based strategies 105
Stream-clustering based strategies 107
Proposed IDS . 108

5.2.4 Choice of parameters 110
Decay parameter . 110
Clustering interval . 111
Density parameter . 112
Number of instances 114

5.2.5 Evaluation . 115
Detecting network attacks 115
Detecting the training attack 115
Detecting the stealthy training attack 117

5.2.6 Conclusion . 118

xiv Contents

5.3 Firewall log parser . 119
5.3.1 Log files format . 120
5.3.2 Reading log files . 121

Named pipes . 121
Manual approach . 121

5.3.3 Network scans . 122
5.3.4 Flooding attack . 124
5.3.5 Conclusion . 126

5.4 Patch management . 127
5.4.1 Work flow . 127
5.4.2 Criticality of an update 128
5.4.3 Patching deadline . 128
5.4.4 Performance of patch management 129

5.5 Conclusion . 131

6 Conclusion 133
6.1 Addressed topics . 133
6.2 Prospects . 134

A Proofs 135

B Data sets 139

List of Figures 141

List of Tables 145

Bibliography 147

1

Chapter 1

Introduction

Information technology has become an important part of many aspects of
our life – we rely on it to coordinate transport of goods and people, to
control infrastructures, to run businesses, to communicate, and to divert
ourselves. Even though information technology is a critical component of
most systems and platforms, security has not necessarily been taken into ac-
count when they have been designed, especially in industry [1]. This lack
of security has not been an issue until a few decades back, when inform-
ation technologies – as well as their (probably) greatest achievement, the
Internet – was made available to the wide public, and suddenly, everyone
could potentially access every system world-wide.

A lot of effort has been put into securing the vulnerable systems since. But
even today, many of them are far from being sensibly protected against
various kinds of threats [1]. As a consequence, users and operators need
to be aware of the security considerations resulting from using or relying
on such systems, and envision appropriate security controls for the most
serious risks.

1.1 Outline of the thesis

For an organisation, security needs to be addressed on two levels. From
a technical point of view, appropriate safeguards need to be implemented
so that the important business services or system components can operate
securely. Typical examples are monitoring solutions, detection and preven-
tion systems, or access control. From a management perspective, a global
security strategy needs to be developed for the whole organisation, which is
charged with the proper coordination of all security processes. Even though
both aspects are indispensable for a good level of security, they rarely in-
teract with each other: on the one hand, management does not necessarily
understand the technical details, and on the other hand, people on the field
do not necessarily have a global view of risk for the whole organisation.

The objective of this thesis is to merge these complementary worlds by
providing an interface between the two. To achieve this, risk assessment
methodologies are enhanced in such a way that they include the real-time
aspect of security appliances (such as intrusion detection systems, or log
files), thus rendering risk assessments dynamic. A risk monitoring tool is
designed and developed to this end. Moreover, the thesis elaborates several

2 Chapter 1. Introduction

MANUALAUTOMATED

Dynamic & dependency-aware
risk analysis

Static risk
analysis

Risk monitoring platform Dependency
model

Update check
PROBE

Log monitor
PROBE

IDS
PROBE

FIGURE 1.1 – Overview of the risk monitoring framework
and its components.

risk monitoring agents, including an intrusion detection system, that allow
security risk indicators to be reported to the risk monitoring platform.

That way, on the one hand, technical issues are translated into notions of
risk, which helps management to understand what is happening on the
field. On the other hand, it displays the global implications for the whole
organisation, and thus assists technical staff in comprehending the large-
scale consequences of an incident.

The components of the framework, and how they communicate with each
other, are depicted in Figure 1.1. This piece of work covers three major
contributions, each being addressed in a dedicated chapter.

• Chapter 1 (this chapter) introduces the reader to the context and the
problem setting, and gives a glance on the achievements made during
the thesis.

• Chapter 2 then puts this complete piece of work into the context of
other researcher’s work, by providing the state-of-the-art of risk mon-
itoring, dependency modelling, and risk reporting (including intru-
sion detection).

• Chapter 3 presents the risk dependency model developed in this the-
sis, that helps in associating technical issues to high-level processes.

• Chapter 4 continues the discussion and deliberates how to enhance
existing risk methodologies to include real-time aspects. Moreover,
this chapter also introduces a risk monitoring platform that translates
technical incidents into high-level notions of risk.

• Chapter 5 then deals with the concrete risk monitoring tools that pro-
vide the real-time risk information to the latter platform. In particular,

1.2. Context 3

a whole sub-chapter is dedicated to intrusion detection techniques
that serve this purpose.

1.2 Context

Perfectly securing a product or a system is practically infeasible, for mul-
tiple reasons. On the one hand, to err is human. Past incidents have re-
vealed that security vulnerabilities caused by erroneous implementation or
bad configuration are very common. According to [2], 43% of incidents
are attributed to malware, 20% to user error, 6% to software bugs); and the
complexer a system becomes, the more likely it is that it contains vulner-
abilities. This is even more true when components depend on each other.
On the other hand, appliances are deployed once and for all after they have
been developed, and generally do not evolve – very much in contrast to
hackers, who have all the time in the world to find potential attack vectors.
Indeed, many security issues are found and fixed only months or years
after they have slipped into a product (the average lifespan of a zero-day1

vulnerability being 130 days [3]).

However, even if it were possible, striving perfect security would not al-
ways be sensible. Sometimes the cost of reaching a good security level
never pays out, because it is disproportionate to the value that is to be
protected. For instance, installing ten different anti-virus solutions on an
average home computer would raise the security level (assuming that they
all work nicely together), but the added-value of the nine additional ones
would be so low that they were not worth the subscription fees. On the
contrary, encrypting a hard disk comes at almost no cost, but has consid-
erable security benefits in terms of confidentiality (no unauthorised person
can read its contents), so it definitely makes sense to encipher all storage
media that contain (or not) sensitive data.

1.2.1 Risk assessments

So, the question when a security measure shall be implemented and when
this does not make any sense, is not straight-forward. To begin with, one
first needs to know what damage can possibly occur. And this is where risk
assessments come into play.

Simply put, a risk assessment is a process that consists in determining all
possible risks that could occur, and in estimating their importance. The
latter importance is usually expressed in terms of:

• the likelihood of the risk;

• the impact that the risk entails, when it occurs.

Risk assessments can be conducted in either a quantitative or in a qualitative
fashion [4], but mixed strategies exist as well [5].

1A zero-day vulnerability is a vulnerability that is discovered before it is publicly dis-
closed.

4 Chapter 1. Introduction

low (1) medium (2) high (3)
low (1) 1 2 3

medium (2) 2 4 6
high (3) 3 6 9

FIGURE 1.2 – A very simple heat map based on 3-value im-
pact and 3-value likelihood scales. The risk importance is
defined as impact × likelihood. Risks are accepted when
their importance is 5 or less (depicted by a green cell); they

are to be mitigated otherwise (red cell).

Qualitative assessments describe the risks in words, often with the help
of simplified estimation scales for the likelihood and impact (such as ‘low’,
‘medium, ‘high’). The objective of such an assessment then primarily re-
sides in defining criteria that state which risks are accepted, and which risks
shall be reduced or mitigated (e.g. by implementing appropriate security con-
trols). Although such assessments can be done entirely with the use of
words, it is often more convenient to introduce the notion of risk or im-
portance, which is inferred from the estimated likelihood and impact. For
instance, a commonly adopted [6]–[9] (but also criticised [10]) approach is
to convert the scale levels to numbers (e.g. 1 to 3), and define the risk as

risk = likelihood · impact.

In this case, a risk acceptance criterion could be a threshold value for the
risk value (e.g. a risk is accepted if its value is higher than 20). That way,
one can visualise all the risks in a single matrix, a so-called heat map, where
one can immediately read off all the relevant information. Various guid-
ance exists on how to create heat maps in general (see e.g. ISO 27005 [11],
Appendix A) and for specific use-cases such as privacy impact assessments
[12]–[14]. Figure 1.2 shows an example of such a heat map.

Quantitative assessments adopt a more probability-theoretical approach.
Their main objective consists in quantifying the likelihood and impact, to
make them look like a probability and an expected value. For instance, the
likelihood can be expressed as a factor between 0% to 100%, or as the ex-
pected number of incidents per time range. The impact usually denotes the
financial impact (e.g. in Euro), but depending on the context it might also
be encoded as the number of affected people, the market share, or a repu-
tation score. The advantage of such an approach is that the overall risk can
be calculated in a very objective fashion. In contrast to qualitative assess-
ments, one does not only speak of accepting a risk, but one is also interested
in the residual risk that remains after security controls have (or have not)
been put into place. Since everything is quantified, security controls can be
modelled as means to reduce the risk by a given factor (along the lines of
“the presence of a firewall reduces the risk of an intrusion by 90%”).

Both methods are not mutually exclusive, although one typically prefers
one over the other – which method is more suitable, depends on the con-
text, though. In this spirit, a lot of risk assessment methodologies have been

1.2. Context 5

proposed, each having its own advantages and fields of application. Prom-
inent examples are CORAS [15], CRAMM [16], EBIOS [17], IT-Grundschutz
[18], MAGERIT [19], MEHARI [20], OCTAVE [21], RiskIT [22], but many
others exist [23]–[25].

1.2.2 Shortcomings

It’s all manual

Even though these methodologies simplify the task by giving advice on
how to organise the work, or by providing criteria to come up with good
estimates, assessing risk remains a manual process. This is mainly due to
the large diversity of organisations that use information systems, and who
have entirely different risks and priorities. To prevent risk assessors from
missing important risks, international experts have elaborated exhaustive
catalogues of risks scenarios. These exist for general information systems
[11], [19], [20], but also for more specific domains such as energy providers
[26], the Internet of Things (IoT) [27], or data processors [14]. Nevertheless,
these catalogues are quite generic and still need to be interpreted in the
context of the assessed systems.

Inconsistency leads to errors

There can be many factors which cause a risk scenario, either independ-
ently or jointly, so the estimated likelihood has to consider those, as well.
The causal chain can in fact be arbitrarily complex, as shows the example
of the Fukushima Daiichi Nuclear Power Plant disaster in 2011. Due to the
earthquake, the power plants were effectively cut off from the grid. Under
normal conditions, the reactors are supposed to automatically shut down
in that case. However, the accompanying tsunami also damaged the emer-
gency diesel generators, which were positioned too closely to the sea, thus
disabling the emergency power supply required to ensure a controlled cool-
down of the reactor rods. In consequence, the insufficient cooling lead to
nuclear meltdowns, explosions, and release of radioactive material. [28]

Similarly, incidents rarely impact a single part of a system. The former often
have additional effects on the environment, on dependent components, or
on provided services, which the estimated impact thus has to include.

Despite these facts, risk assessment methodologies don’t provide valuable
guidance on how risk assessors could encode overlapping risk scenarios,
secondary effects, or other forms of dependencies. In contrast, they leave a
lot of argumentative freedom and flexibility. As a consequence, the general
lack of consistency may lead to double-encoding of scenarios or incomplete
assessments, which distort the view on the risk situation of an organisation.

6 Chapter 1. Introduction

A mere snapshot view of the risk

Since a risk assessment demands a lot of efforts to be conducted properly,
frequent updating would neither be feasible nor economically tenable. For
this reason, they are generally scheduled on a regular, but large-scale basis
(such as once per year). Subsequently, the organisation only obtains a snap-
shot view of the risk, which may rapidly become obsolete, depending on
the context.

Moreover, although risk assessments are useful for determining and mitig-
ating the most critical risks, they are not primarily meant to infer the extent
of an incident when it occurs. So, if one wishes to gain a real-time view of
the current risk, more appropriate models need to be used that also provide
up-to-date information.

Insufficient and technical information

As previously noted, estimating the risk is a manual process, and thus sub-
ject to personal interpretation. Naturally, the more information is available
to the risk assessor, the more accurate his estimation will be.

Many components already provide relevant data that helps to infer the level
of risk. For instance, the firewall logs list blocked connections and the over-
all traffic load, and thus help to rate the exposure to network attacks. In
fact, almost any software produces log files, which can be used to detect the
overall reliability or threat level of the monitored systems. Furthermore, the
(non-) spreading of malware can provide an insight on the effectiveness of
cyber-attacks, and the general security awareness level in the organisation.
Moreover, the presence of vulnerabilities can be deduced from the version
numbers of the installed software and from publicly available exploit in-
formation (such as CVE2).

There already exist automatic tools that scan the system configuration for
security holes and vulnerabilities (e.g. Lynis3, Nessus4, or OpenVAS5). Nev-
ertheless, even though these tools produce relevant data for risk estimation,
actually deducing the risk level is non-trivial. There are three reasons for
this.

On the one hand, already processing the data is hard in practise. To start,
even if the log files are in an intelligible format, there is sometimes too much
data to process, or it contains too much noise so that the important inform-
ation gets lost. Also, if there is not enough context information, it will be
difficult to assess the importance of the risk. This is the case for anti-virus
systems, for example. Although the latter are prone to mistakes, they do not
provide the confidence that they have in their decision when they raise an
alert, which makes it difficult to tell false from true positives. Firewall logs
constitute a different example: blocked connections cannot be associated

2Common Vulnerabilities and Exposures, https://cve.mitre.org/
3https://cisofy.com/lynis/
4https://www.tenable.com/products/nessus/
5http://www.openvas.org/

https://cve.mitre.org/
https://cisofy.com/lynis/
https://www.tenable.com/products/nessus/
http://www.openvas.org/

1.3. Objectives 7

to network attacks in a sweeping fashion. That is, an alert does not neces-
sarily signal an intruder, but could also be attributed to a badly configured
program.

On the other hand, logging allows administrators to detect that a system
does not operate correctly, and what circumstances have lead to this state.
It does not usually hint at the general exposure to a risk or incidents that
may occur in the future. Further efforts have to be made to deduce this kind
of information. For instance, the use of statistics or machine learning would
allow a system to learn from past happenings and compute the likelihoods
of similar, future events.

Finally, risk analyses are meant to give a high-level view of the risk for
an organisation. They deal with ‘assets’, which cover everything that is
important to the organisation, including information, business processes,
provided services, and infrastructure. The sources of information presented
above, however, live in a very technical environment. As such, they are
generally bound to a specific hardware or software appliance, and do not
‘see’ beyond the scope which they operate in. Deducing the risk for the
whole infrastructure, with all its interdependencies, is then far from trivial.

1.3 Objectives

This thesis aims at providing a framework for dynamic and dependency-
aware risk analyses, which addresses the shortcomings mentioned above.
Three major steps are required to achieve this goal.

To begin with, this thesis develops a solid dependency model for encoding
related risk scenarios or cascade effects. The strength of the model lies in the
fact that it can be applied on top of an existent risk analysis, so that previous
assessments do not have to be discarded. Section 1.3.2 below introduces the
reader to the problem setting and provides a more detailed description of
the sub-objectives for the dependency model.

In a second step, a risk monitoring platform is elaborated, which is able to
automatically update a given risk analysis in real-time, thus rendering it
dynamic. The core of this framework will be the risk model developed in
the first part of the thesis, assuring that dependencies are properly taken
into account. The challenges of this task are exposed in the upcoming Sec-
tion 1.3.3.

Finally, all that remains is the real-time information itself, which is going
to be used to infer the real-time risk for the organisation. To this end, not
only appropriate tools (‘agents’) need to be designed that collect relevant
information from the field, but also a technique has to be found that allows
them to translate the (rather technical) data to notions of risk. Some can-
didates of such agents are already discussed in Section 1.3.4, together with
possibly relevant information that they provide.

8 Chapter 1. Introduction

1.3.1 Aim for compatibility

The focus of this thesis is clearly put on the development of new techniques
for conducting risk analyses, and not on the design of a new risk assessment
methodology. Methodologies describe the general work flow of a process
and specify the intermediate tasks and their respective outcomes. It is gen-
erally up to the actor to decide what work needs to be done, and how. In
contrast, techniques are concrete descriptions specifying how such an inter-
mediate task can be realised.

This thesis aims at developing techniques that specify how static risk ana-
lyses can be made dynamic and be updated in real-time. For maximum
usability, the assumptions made on the underlying methodology are delib-
erately low. That way, the thoughts developed in this thesis can be applied
to a large number of organisations, without requiring them to adapt their
processes significantly.

This property may be very important in some contexts, since changing a
risk management methodology might not be possible for legal or compli-
ance reasons. Moreover, a complete change of the approach would also
implicate that all former material (like existent risk assessments) be dis-
carded.

1.3.2 Dependencies: more structure for risk assessments

An important part of every risk assessment is the proper identification of
all relevant assets that are facing risks. The term ‘asset’ is used here to de-
scribe any good or service that is valuable to the organisation in question –
it can be information, software, material, infrastructure, business processes
or services, human resources, or intellectual property. Many, if not all, risk
management methodologies feature a description of the asset identification
process (see e.g. [15]–[22]). The international standard for guidance on risk
analyses, ISO/IEC 31000 [29], also recommends this process to be present.
It does not, however, impose to consider how these depend on each other,
and what implications these dependencies have in terms of risk. Although
this leaves a lot of freedom to the risk assessor, at the same time it does not
provide valuable guidance on how to account for dependencies, either.

The following simple example shows that dependencies need to be accoun-
ted for, in some way or another.
Example 1.1. For providers of natural gas there is, on the one hand, the small
yet devastating risk of a gas explosion in the transport infrastructure. Such det-
onations can cause immense material damage, and even casualties. On the other
hand, gas providers are bound to strict service layer agreements that require them
to deliver the promised amount of gas. In case of failure to do so, they risk to face
high fees. These two risk scenarios should definitely feature in any risk assessment
for gas providers, no matter the methodology.

However, one notices that although each of these two can happen independently of
the other, there is a chance that an explosion at a critical spot in the gas distribution
network would also infer the failure to provide enough gas to a dependent customer,
and thus additional financial losses. In the worst case, the cascade effect chain can

1.3. Objectives 9

even continue. For instance, if the latter customer runs gas turbines to produce
electricity, then an outage can be an imminent consequence.

Careful reflection brings up several possibilities to encode this dependence
using ‘traditional’ means:

• One could completely ignore the fact that one scenario may induce the
other, by arguing that cascade effects are much less likely, and thus
negligible with respect to the risk scenario itself. This, however, is
a questionable assumption; especially for critical infrastructures, cas-
cade effects are not so uncommon [30] and have serious consequences
[31]–[33].

• The scope of each risk scenario could be extended in such a way that
it would comprise all if its cascade effects. As a consequence, the risk
assessment will contain a lot of redundancy, since the effect chains of
different scenarios tend to overlap. Moreover, much effort is needed
to encode the cascade effects in such a way that they can be consist-
ently updated – if, for instance, the impact estimate changes after se-
curity controls have been put into place, one also has to make the
appropriate adaptations for each affected risk scenario individually.

• Cascade effects that are shared among multiple risk scenarios could
be encoded in a single scenario (e.g. the most suitable one) and be
omitted for the others. Even though this approach mitigates some
redundancy, it comes at the price of an incomplete risk assessment.

Neither of these methods is particularly satisfying, for they treat all risk
scenarios as independent units, and do not account for the case where one
incident in the risk analysis gives raise to the other. Moreover, if one wishes
to model the dependencies consistently, then extra care has to be taken so
that no substantial errors are made during this process. The existence of a
method that gives concrete advice will certainly be helpful in those matters.

Modelling dependencies

To add more structure to a possible complex description of the risk situ-
ations, dependencies consistent a promising candidate. Building a power-
ful dependency model is not straight-forward, though. Indeed, assum-
ing that the risk assessment process has identified all relevant assets along
with the associated risks, dependencies exist at multiple layers, all of which
should be covered.

First of all, individual assets can depend on each other to function properly.
For instance, a software cannot run if the underlying server machine does
not work (see Figure 1.3). To give another example, the billing service for
smart grids depends on the correct reading of the smart meters. Similarly,
an industrial infrastructure cannot be properly maintained if the required
human resources are unavailable, e.g. due to illness or vacation.

Secondly, some risk scenarios may be implicitly contained in other risk
scenarios. The loss of data constitutes a good example, which is, indeed,

10 Chapter 1. Introduction

Data Database Server

FIGURE 1.3 – Example of functionally dependent assets. An
arrow A→ B denotes that problems in A cause issues in B.

a risk scenario on its own – as it can be caused by accidental deletion, hack-
ers, or software errors. However, it also contained in the scenario of a nat-
ural disaster in a data centre, which involves the physical destruction of all
hardware, and thus also the loss of all data stored on the latter. See Fig-
ure 1.4.

Data loss Natural disaster

FIGURE 1.4 – Example of implicitly contained risk scen-
arios. In this case, ‘data loss’ is implicitly contained in the

‘natural disaster’ scenario.

Moreover, some security incidents can trigger one or even multiple risk
scenarios as a side effect, and may thus lead to a chain reaction. This phe-
nomenon is sometimes referred to as ‘interdependencies’ [31], and espe-
cially constitutes an issue for industrial systems. For example, an electric
power producer may depend on a steady supply of natural gas if he uses
gas turbines, and technical failures in the gas distribution network may im-
pact the reliability of the electric grid. This is illustrated in Figure 1.5.

Hacking
attack

Technical
failure

Power
outage

TELECOM GAS NETWORK POWER GRID

FIGURE 1.5 – Example of interdependencies resulting from
security incidents and its cascade effects. An arrow A → B

denotes that problems in A cause issues in B.

A final, yet important case constitute cyclic dependencies. These occur if
several appliances rely on each other in terms of security, and a breach at
one place has a knock-on effect on other components. In terms of faults, this
translates to missing redundancy or bad design; in terms of compromises, it
means that there are multiple vulnerabilities that can be exploited to penet-
rate a system. To give a concrete example, consider a poorly designed web
service hosting confidential and valuable data (e.g. medical information)
where the administrator can change any user passwords and can retrieve
any of the regularly made backups of the user account database. Then un-
authorised access to the administrator interface allows an attacker to fetch
a back-up, read out and disclose the user passwords, which again leads to
unauthorised access. This scenario is depicted in Figure 1.6: note the cycle
‘admin interface – backup location – user database’ (dotted lines).

In conclusion, the dependency model should be generic enough to cover all
of these cases. Chapter 3 will analyse the situation further and work out a

1.3. Objectives 11

unauthorised access to
admin web interface

password leak

disclosure of
database backup

access to
backup location

hackingmanipulation of
login data

users cannot
log in

FIGURE 1.6 – Situation where security events are cyclically
dependent.

model that does not only fit the needs, but that is also compatible with a
wide range of risk methodologies.

Reducing the estimation workload

Risk assessments can be tedious, especially when technical knowledge is re-
quired to understand the processes (and the associated risks) of the system,
or when the organisation in question is particularly large and complex. In
any case, considering dependencies in advance will help to better identify
and understand all implications of a risk scenario. This will also greatly
improve the consistency of the procedure, since all side effects will be ex-
plicitly encoded, helping to avoid redundancy and overlapping scenarios.

In parallel, dependencies already express, to a certain extent, the sever-
ity of a risk scenario: intuitively, the more side effects an incident has,
the more critical it should be. Also, the more incidents can trigger a risk
scenario, the likelier the latter should be. While this is a very rough inter-
pretation, it turns out that in an appropriate model (the one elaborated in
Chapter 3), these intuitions can be mathematically founded. The question
rises whether this information can also be used to semi-automatically de-
duce the impact and likelihood of dependent scenarios. If this was possible,
a decent amount of work can be saved when assessing the risk, since most
of it is already included in the dependency model. In terms of information
technology, one speaks of ‘inheritance’ – a set of rules that describe how
the impact and likelihood spread from one risk scenario to dependent ones.
The precise choice of rules needs to be properly motivated, though, so that
it matches reality.

12 Chapter 1. Introduction

1.3.3 Risk assessment and monitoring combined?

Security has many faces and exists in many contexts, including information
technology, the physical realm, politics, and economics. To name a few,
information security deals with protecting information from unauthorised
use, access, disclosure, manipulation, and destruction. Computer security
aims at preventing damage and disruption of computer systems and ser-
vices. Physical security covers the protection of unauthorised access, theft,
or physical damage of personnel, equipment, and entire facilities. National
security denotes the security of a nation’s citizens, economy, and infrastruc-
ture. Finally, economic security copes with solvency, financial stability, and
the standard of living.

Especially in information security, security operates on two distinct, but
equally important levels. It has a technical aspect, which is in charge of the
implementation of appropriate measures on the field; and an organisational
part, which makes sure that security is applied where necessary.

On the one hand, technical security usually acts on a specific component of
a system (such as a network, a device, an operating system, etc.). It aims
at protecting the latter from misuse or damage by accidental or intentional
circumstances. Examples include the detection and prevention of threats
(firewalls, anti-virus, intrusion detection), the limitation or prevention of
vulnerabilities (secure programming, penetration testing), and the striving
for resilience (security by design).

On the other hand, organisational security is located more on the man-
agement layer, and aims at improving the reliability and resilience of the
provided services. By analysing possible threats in advance, and by docu-
menting the procedures to follow, it strives for having all risks for the entire
organisation under control at all time. In contrast to its technical equival-
ent, the focus is put on the fact that security is implemented, and less about
how this is achieved.

Symbiosis

Despite their different nature, both disciplines are complementary; a sys-
tem can only be secure if both technical and organisational considerations
are taken into account. Indeed, just having deployed (technical) protection
tools is not sufficient; one also needs to make sure that they are effective.
For examples, an anti-virus solution is supposed to detect and neutralise
computer infections, but if the subscription is not renewed, or updates are
not installed, then the effectiveness of the appliance is very limited. And it
is precisely one of the tasks of information security to regularly verify that
the implemented security measures are maintained and functional.

In every day business, the effectiveness of a security tool is watched by a
responsible system administrator, who is also in charge to fix any issues
he encounters. Organisational security, however, is a much slower process,
for it requires long-sighted decisions and strategies. While the effective-
ness of the defence mechanisms is likely to change every day, with new
threats arising, and new vulnerabilities being discovered, risk assessments

1.3. Objectives 13

are comparatively static. In consequence, the risk depicted by such an as-
sessment is thus possibly flawed.

Opportunities

The strong contrast of the up-to-date natures of the two disciplines sug-
gests that linking them is not straight-forward. In fact, it is infeasible for
risk assessors to conduct a risk analysis on a short-termed basis, for this is
a manual and time-consuming task. However, there is the opportunity to
automate at least part of the assessment: since security appliances operate
autonomously, and provide threat information in real time, the question
rises if the live data cannot be used to automatically update the risk ana-
lysis, as well.

Such an approach opens up an entire spectrum of possibilities for risk man-
agement.

• First, it eases the work for risk assessors, because they do not need to
manually retrieve this information. Furthermore, any previously es-
timated (and thus subjective) quantities can now be turned into well-
founded values.

• The hitherto static risk analysis turns into a risk monitoring tool, that
can translate any incident (reported by technical appliances) to a no-
tion of risk. While it helps management staff to understand the con-
sequences of low-level issues, it is also useful to technical staff for
identifying the extent of an incident. That way, cascade effects can be
prematurely prevented.

• Additionally, a dynamic risk analysis can serve as a simulation tool
for determining the effects of hypothetical scenarios. With the help
of a dependency model, simulations could moreover identify single
point of failures in the infrastructure, or the most critical assets in the
organisation.

While solutions for making risk management more dynamic exist6, some
of them are very specific to the context they were developed in. Moreover,
to the best of our knowledge, none of the solutions fully address the chal-
lenges that are identified below.

Mathematical challenges

The main challenge in linking both worlds will consist in translating reports
of incidents to notions of risk exposure. Indeed, security appliances (such as
anti-virus engines or intrusion detection systems) report alerts when they
believe to have encountered a hostile circumstance. While such an alert
certainly hints at an increased exposure to a threat, the absence of any alerts
does not imply that there is no risk7. So the risk exposure cannot be entirely
deduced from the fact that an attack has or has not been detected.

6The state of the art of dynamic risk management is discussed in Section 2.2.
7Risk is about potential threats. When there is no attack going on right now, this does

not mean that a system is perfectly safe.

14 Chapter 1. Introduction

In addition, security appliances are programmed or trained to detect un-
desired states, but they are not entirely fail-safe. Common phenomena such
as false negatives (undetected malicious activity) or false positives (alert,
but no malicious activity) distort the output of such systems [34]. So, not
only does the output not correspond to a concrete risk level, but neither is it
particularly reliable. In consequence, unless a protection tool also outputs
the certainty of its decision, which can be used in the computation of risk,
one has to account for the small error in the risk predictions.

Moreover, some alerts do not signal an on-going attack, but rather hint at
suspicious behaviour – which may or may not be related. Examples include
an unusually high network traffic rate, failed authentication attempts, disk
I/O errors, etc. In contrast to deterministic alerts, such as the detection of
a file which is known to contain malware, these increase the overall risk
exposure only to a limited extent. When translating alerts to risk, one thus
needs to make a distinction between the two.

Technical challenges

Before real-time data can be automatically imported from any probes (such
as the security appliances) into a risk analysis, several hurdles need to be
overcome.

From a security perspective, any network connection from or to a critical
environment constitutes a risk in itself, and shall thus be avoided. How-
ever, the probes typically reside in (security-relevant) field networks, and
risk assessments are conducted in the less protected office environments.
A risk monitoring solution is thus likely to open a back-door for attacks or
data leaks, which is what it originally tries to prevent.

But also from a technical point of view, alerts cannot be reported directly
from the probes to the risk analysis. The reason is a very pragmatic one.
Once deployed in the field, the risk monitoring agents are out of control of
the risk assessor, and just passively report risk information to a previously
defined location. This implies in particular that the latter ‘location’ is not
supposed to change, and thus cannot be the risk assessment itself (which
may be versioned, updated, or replaced). It furthermore implies that the
reporting format must be clearly defined and cannot be altered at a later
stage (much in contrast to a risk analysis, where risk assessors may decide
to change the methodology).

For the reasons mentioned above, an intermediate risk monitoring platform
is required, that mediates between the two environments. It can, for in-
stance, be installed in the de-militarized zone8 and operates as follows. On
the one hand, it acts as a data storage for the raw data sent by the risk mon-
itoring agents (such as intrusion detection system, firewall, etc.). On the
other hand, it computes a level of risk for different scenarios, and serves as
repository of real-time information for risk analyses (which will fetch the
data they need).

8Originally a military term, the de-militarized zone (or DMZ) represents a computer
network that separates two environments in such a way that all communication between
the two latter pass through the DMZ.

1.3. Objectives 15

Conclusion

Monitoring tools consistent good candidates for providing relevant inform-
ation to risk assessments, which thus reflect the real-time risk faced by the
monitored system. Several hurdles need to be overcome, both in terms of
the mathematical model and in terms of the technical implementation.

Chapter 4 designs a risk monitoring platform that addresses all of these is-
sues. Like the dependency model, it aims to be compatible with as many
risk management methodologies as possible. To achieve its goal, it is con-
ceived to operate independently from other risk management processes,
and only interferes with the latter by providing appropriate input.

In contrast to approaches by other authors (see state of the art in Section 2.2),
the risk monitoring framework presented in this thesis natively supports
dependencies.

1.3.4 Obtaining real-time risk information

A risk analysis can be rendered dynamic with the help of probes (or agents)
that continuously monitor the real-time risk situation on the field. The
nature of such a probe depends a lot on the kind of risk that shall be re-
trieved (what risk scenario? what extent – likelihood, impact? what scope?).

Many opportunities exist to turn existent security tools into risk monitoring
agents.

• The most simple one consists in observing the log files of any soft-
ware, and raising alerts when errors (or other suspicious events) are
logged. It is to be noted, however, that depending on the quality of the
logged content, the obtained indicators may be more or less relevant
in terms of risk.

• Sometimes risk levels can also be inferred by actively retrieving data
from the environment. Examples include the update status of a soft-
ware or system, the health of a hardware device, the availability of a
service, and more.

• Moreover, it is occasionally necessary to aggregate and correlate risk
information from several different components to form an opinion on
the overall risk situation.

While it is infeasible to cover all possible situations, a few example cases are
presented below, which will be elaborated in greater detail in Chapter 5.

Firewall logs

The purpose of a firewall is to filter all undesired connections and thus to
prevent unauthorised people or software from accessing the protected net-
work(s). Firewalls serve as a shield against threats originating from the
Internet (in which case one speaks of an ‘external’ firewall), or as an addi-
tional protection inside a network (then referred to as ‘internal’ firewall).

16 Chapter 1. Introduction

Indeed, in advanced infrastructures, computer networks are often segreg-
ated into smaller parts, each serving a differing purpose (e.g. one for con-
trolling industrial controllers, one for office needs, one for storage, and so
on). A central (internal) firewall guarantees that no part can mingle with
another one, unless this is explicitly granted. One objective is notably to
avoid the spreading of malware from less important to critical parts of the
infrastructure.

Since the whole communication traffic flows through the firewall, the latter
can deduce very basic statistics so as to see if the bandwidth is saturated, or
not. Indeed, many simultaneous connections in a small time window might
hint at a so-called distributed denial-of-service (DDoS) attack [35]–[37]. The
latter targets at exceeding the capacities of the underlying infrastructure, so
as to render it non-operational. Steadily monitoring the number of parallel
connections may thus hint at the risk of such an attack.

In contrast to external firewalls, which practically expect to see intrusion
attempts, internal firewalls should rarely drop any connections, since the
external ones should have prevented any intruders from accessing the net-
work. As a consequence, any connection that has nevertheless been blocked
by an internal firewall should immediately raise a red flag and be investig-
ated. Indeed, such an alert could be attributed to the presence of an intruder
in the network, or another insider threat (such as a malicious employee).

Patch management

All major operating systems (even Microsoft Windows, to a certain extent9)
feature a central software repository that lists all programs that have been
installed on the device. On UNIX-like systems, packet managers (such as
apt, rpm, pacman) make it particularly easy to download, install, and update
software on the computer. In particular, verifying if all patches have been
applied, is straight-forward.

Moreover, auditing tools exist, such as linux-exploit-suggester10 and
windows-exploit-suggester11, that automatically retrieve a list of un-
patched vulnerabilities for an operating system.

While system updates are the alpha and omega of a secure environment, it
is not always granted that patch management is properly adopted in an or-
ganisation. Even worse, practise reveals that in industrial systems, patches
are often only applied in irregular or distant time intervals [1]. This can be
put down to several causes. Especially in industry, where bugs can have
serious or fatal consequences, engineers are reluctant to ‘touch a running
system’, since any change risks to introduce a dysfunction into the system.
For the same reason, one often encounters legacy hard- and software in
such environments, that is no longer maintained at all [1].

9While it does not feature a package manager, it still provides an API for retrieving a
list of all installed software.

10https://github.com/InteliSecureLabs/Linux_Exploit_Suggester. Ori-
ginally developed by PenturaLabs, the tool has been forked and improved many times
since.

11https://github.com/GDSSecurity/Windows-Exploit-Suggester. Inspired
by the related Linux Exploit Suggester, but for Windows operating systems.

https://github.com/InteliSecureLabs/Linux_Exploit_Suggester
https://github.com/GDSSecurity/Windows-Exploit-Suggester

1.3. Objectives 17

The combination of package managers, being able to retrieve the latest up-
dates, and a risk monitoring platform, being able to spotlight the urgency of
a patch, thus makes a perfect supporting tool for both patch management
and risk management.

Configuration checker

Vulnerabilities do not only originate from security bugs, but also from mis-
configuration. A typical example is an unprotected SSH daemon running
on a server, or any firewall ports left open. Especially in industrial control
systems, where proprietary and custom-developed software are the order
of the day, it is virtually impossible to automatically assess the security of
the configuration for a complete system. In most cases, a manual audit per-
formed by a domain expert is required. However, some tools exist that can
take generic or repetitive tasks: for instance, Lynis12 is an open-source secur-
ity auditing tool, available for most Linux distributions. It covers standard
tests regarding the security of the operating system and some commonly
installed applications.

Intrusion detection

Even though security appliances like firewalls, access control and anti-virus
theoretically protect a system from external threats, bugs and human failure
may lead to the extraordinary condition that the former appliances do not
work entirely as expected.

Intrusion detection systems (IDS) are meant to fill the gap between the ex-
pected and the real security level. The former continuously monitor a given
system (which may be a single machine, a network, or a whole infrastruc-
ture) and aim at finding irregularities in what they observe. Even though
they are not perfect, either, they constitute a sound tool for administrators
to check that other security measures are operating as expected. In addition,
when a threat is detected, they sometimes also act on their own and try to
neutralise a detected threat – in this case, on speaks of intrusion prevention
systems (IPS). Since this thesis does not cover risk mitigation, IPS are not
particularly considered in this thesis. It goes without saying that intrusion
detection systems are a perfect candidate for risk monitoring agents, since
their primary purpose indeed consists in spotting incidents prematurely.

Over the years, many intrusion detection strategies have been developed
[38], [39]. Apart from some hybrid approaches (e.g. [40], [41]), intrusion
detection systems use one of two modes of operation [42]: signature-based
solutions proceed by matching their observations with known undesired
content, whereas anomaly-based systems start by learning the ‘normal’ (be-
nign) behaviour, and report any deviations from the latter.

On the one hand, signature-based approaches can only recognise misbe-
haviour that they have been programmed to detect [43]. Their detection

12https://cisofy.com/lynis/

https://cisofy.com/lynis/

18 Chapter 1. Introduction

abilities is thus quite limited, especially when it comes to sophisticated at-
tacks. On the other hand, anomaly detection systems often use advanced
machine-learning techniques, whose decisions might be hard to understand
(this is often referred to as the ‘semantic gap’ [44]) and which can thus be
tampered with [45].

As it turns out, when it comes to integrating intrusion detection systems
into a risk analysis, several aspects suddenly become important.

• Most importantly, it should be possible to link an alert to a specific
risk scenario. Indeed, many machine-learning based systems can re-
cognise anomalous behaviour in a more or less reliable fashion – yet
they fail at stating what kind of attack it is, or what consequences it
will have.

• Second, the intrusion detection system should not only produce alerts
in case of attacks, but also continuously monitor the current situation
of risk. The idea is that it should ideally detect an intrusion before it
actually occurs (when and if this is possible).

• Moreover, since risk management involves decisions by humans, these
should also reflect in the intrusion detection techniques. As a matter
of fact, machine learning processes take decisions all the time, typic-
ally whether to accept a new behaviour or not. To some extent, risk
assessors may want to infer with these resolutions, as well.

1.4 Contributions

Parts of this thesis have already been disseminated in national [46] and in-
ternational [47]–[50] conferences and journals [51], [52].

• The risk dependency model presented in Chapter 3 has been already
published in [51] and improved upon in [48].

• Some insights on the risk monitoring platform (Chapter 4) have been
presented in [46], [47] and elaborated further in [48].

• Dissemination on an intrusion detection system that is capable of re-
porting risk information has been made in [52], which covers part of
Chapter 5.

The author of this thesis has additionally contributed to:

• the national research project ‘SGL Cockpit’,

• the Horizon 2020 project ‘ATENA’ (grant agreement number 700581),
partially funded by the European Commission, and

• the European Commission’s Seventh Framework Programme project
‘TREsPASS’ (grant agreement number 318003).

19

Chapter 2

State of the art

2.1 Dependency modelling

Many authors have identified the need to model dependencies and cascade
effects, and they have come up with different approaches. The latter can
be classified by the underlying model that is used. In the following, each
section introduces one of these and provides the state-of-the-art research
that is relevant in the context of this thesis.

2.1.1 Asset diagrams

Simply put, an asset diagram visually represents how assets are linked to
each other. In the simplest case, such a diagram is just a hierarchy that
serves a purely informational purpose.

In more complex cases, such diagrams can be used to infer risk. For in-
stance, Xiaofang et al. [53] classify assets into three layers, namely business,
information and system. On the lowest layer, risk is computed tradition-
ally as risk = impact × likelihood. Dependencies appear in the model
as weighted impact added to the risk of dependent higher-level assets.
However, the model is not flexible enough when it comes to modelling
the interdependencies of system components in an industry environment.
Moreover, the risk formula lacks any real-world interpretation.

The CORAS methodology [15] uses asset and threat diagrams to visually
depict and analyse the risk situation [54]. While the purely qualitative
approach can be incredibly helpful for identifying and understanding the
risk scenarios, some quantification is needed for risk monitoring. Also, the
CORAS model is too flexible in the sense that an automated system would
be unable to process the produced diagrams1.

Breier [55] improves on the idea to encode information security assets and
their dependencies in a tree structure. His model makes use of logical AND

and OR gates to make assets inherit the risk from their parent assets.

Other authors have also attempted to deduce risk notions from an asset
diagram. Among them, Liu et al. [56] impose additional structure on the
asset model and provide overly complex formulas to deduce the risk. Suh

1For instance, conditional dependence is encoded as free text in the diagram, which a
computer program would need to ‘understand’.

20 Chapter 2. State of the art

et al. [57] do not impose any structure on the asset diagram, and define the
risk as the maximum risk of all dependent assets. While this may be an
easy approach, it fails when complex (such as cyclic) interdependencies are
considered.

In conclusion, asset diagrams excel per se by their simplicity. However, in
practise, they are not flexible enough to support the encoding of multiple
risks per asset, in which case a complex framework has to be imposed in ad-
dition. Therefore, this thesis focuses on elaborating a full-featured model,
but describes how the latter can be reduced to a simplified version that is
only based on asset dependencies (see Section 3.5).

2.1.2 Attack trees, and related

The objective of an attack tree (also called fault tree) is the identification of
possible causes for an attack (or a fault in general). The root of such a tree
is one attack that one wishes to analyse; its direct children are refinements
of this attack in terms of possible causes that could infer it. The refinement
process can be iterated arbitrarily often. Child nodes can additionally be
combined using logical AND and OR gates.

Much related to fault trees is the analysis of event trees [58]. However,
in contrast the former, they analyse the possible consequences of an event,
rather than its causes – the general idea is the same, though. Another vari-
ant is the goal-risk model [59], [60]: instead of modelling an attack, it de-
scribes the business objective and analyses its requirements. Every threat
to a requirement is then also a risk for the overall goal.

Schneier [61] was the first to use attack trees in an information security con-
text. While Schneier only described the approach in words, Mauw et al. [62]
have formalised it using a mathematical framework. Evans et al. [63] exten-
ded the concepts with additional metrics and parameters (such as cost and
detectability). Schweitzer [64] and Kordy et al. [65] provide a more general
extension (named ‘attack-defence trees’) that allows even better integration
with risk frameworks. In fact, they include defence mechanisms that limit
the effects of an attack, and thus cover the risk mitigation part. Schweitzer
[64] additionally describes how such a tree can be extended with fuzzy lo-
gic to quantitatively compute the resulting risk. For large analyses, Baiardi
and Sgandurra [66] provide a randomised algorithm that computes the in-
volved probabilities in an efficient way. In fact, their algorithm can even be
generalised to arbitrary graphs (see Section 3.3.3 of this thesis).

Several authors have then built upon the idea to introduce further notions
of risk. For instance, Ingoldsby [67] shows how attack trees can be com-
bined with quantitative risk analyses, and expresses common risk notions
in terms of attack tree vocabulary. A comparable approach is taken by
Grunske et al. [68]; they show in addition how a full risk assessment (in-
cluding risk mitigation) could be conducted using their approach. Simil-
ary, Gadyatskaya et al. [49] demonstrate how attack–defence trees integrate
with an existing risk analysis that is based on risk-reduction factors. Edge
et al. [69] introduce the concept of protection trees, which add the notion

2.1. Dependency modelling 21

of bounded security budget to attack–defence trees and the associated risk
analysis.

2.1.3 Attack graphs

However, although attack trees describe causal chains (and thus dependen-
cies, to a certain extent), each attack tree can only cover a single risk scenario.
For a complete risk analysis, multiple attack trees are thus required. But in
order to express interdependencies between these risk scenarios, the model
needs to be further generalised to also allow edges between these mul-
tiple trees. The generalisation is sometimes referred to as ‘attack graphs’
(to highlight the link to attack trees), which in turn are just special cases of
Bayesian networks. The latter are addressed in greater detail in Section 2.1.4
below.

McQueen et al. [70] introduce ‘compromise graphs’, which serve a very
similar purpose. Instead of working with probabilities (which an attack
tree or Bayesian network would require), they analyse the time that it takes
to compromise a target (i.e., the time for an attack to succeed) for highly
dependent components in an industrial environment.

Similarly, the risk assessment methodology supported by the Spanish gov-
ernment, MAGERIT, also deals with asset dependencies, which are embed-
ded into a graph (see [19], Section 8 “Practical Advice”). But instead of link-
ing assets, it links their security objectives (such as confidentiality, integrity
and availability), whenever they have an impact on each other. While such
an approach is much closer to a real dependency-aware risk analysis, no ex-
plicit formulas are provided for quantifying the risk. This thesis will build
up on the idea, though.

A similar strategy is adopted in the case study by Utne et al. [71], who focus
on cascading effects in critical infrastructures. They proceed by analysing
the interdependencies between several high-level services (such as electri-
city) and their impact to the society. Their model is called ‘cascade graph’,
but it serves the same purpose than an attack graph. They also provide
a framework to quantise the several magnitudes involved in the risk as-
sessment, allowing an explicit computation of risk. Most interestingly, the
risk itself is expressed as expected number of people affected by an incid-
ent, showing that a quantitative analysis does not necessarily have to be
expressed in financial terms.

Kawn et al. [72] combine all of these ideas and provide a generic framework
for describing the interdependencies of project management risks. While
not directly related to information security, the same principles can be ap-
plied. They introduce ‘risk dependency graphs’ (based on attack graphs)
for computing the resulting risk with respect to multiple metrics.

2.1.4 Bayesian networks

Bayesian belief networks originate from probability theory, and primarily
serve to compute (conditional) probabilities for dependent events. They

22 Chapter 2. State of the art

use directed acyclic graphs (referred to as the ‘causal graph’) to represent
the events (the nodes) and their dependencies (the edges). Since attack trees
are a special case of a causal graph, a good part of the former theory can be
generalised to Bayesian networks.

Bayesian networks are an improvements over attack graphs, in the sense
that there is a mathematically sound framework for calculating probabilit-
ies. Dantu et al. [73] show how Bayesian networks can be used to compute
the success probability of an attack in an attack graph.

A risk analysis is not only about determining probabilities, though. Fenz et
al. [74] additionally describe a way of deducing the related risk from such
a Bayesian network. Rahmad et al. [75] then apply the latter findings also
on existing risk methodologies such as MAGERIT [19]. However, they use
an exhaustive list of threat scenarios instead of security objectives, which
considerably increases the size of the model. This thesis further generalises
this concept to arbitrary and user-definable security incidents.

Independently and in parallel, Poolsappasit et al. [76] provide a slightly
different approach of modelling risks in a Bayesian network. While also
relying on conditional probabilities, they additionally analyse the situation
when a particular event is known to happen (i.e. its probability being 1) –
because it has been observed, for example. This idea is also pursued in this
thesis.

2.1.5 Cyclic dependencies

As argued in Section 1.3.2, the dependency model should also support the
cyclic nature of interdependencies, which occur especially (but not exclus-
ively) in the industrial domain. However, in contrast to attack graphs,
Bayesian networks are restricted to acyclic graphs – a limit imposed by the
underlying mathematical model.

Bayesian networks can thus not be used as-is. Therefore, Homer et al. [77]
adapt the concepts and algorithms to the realm of risk assessments and ap-
ply a graph unfolding technique to generalise the model for cyclic depend-
ency graphs. Unfortunately, the running time of this process is exponen-
tially large in general, and thus only works for small or sparse graphs.

Another (but related) solution to this problem has been described by Kotza-
nikolaou et al. [78]. Instead of considering all possible dependencies at
once, they split them up into ‘n-order dependencies’, each occurring after
the other. That way, cycles are removed and normal Bayesian theory can be
applied. However, the approach involves a lot of additional manual work,
since a human has to furthermore specify the order of each dependency.

As a workaround to the entire problem, Wang et al. [79] provide a simpli-
fied (and efficiently computable) probability metric for Bayesian networks,
which can be generalised to cyclic graphs, as well. However, this comes at
the cost of poorly justified choices (in fact, their metric does not properly
take dependent events into account), resulting in probabilities that do not
necessarily reflect reality.

2.2. Dynamic risk analysis 23

Since workarounds seem to involve the loss of the mathematical soundness,
this thesis adopts a similar approach to Homer et al. [77], but improves on
it by generalising the approach and by providing efficient algorithms for
computing the risk. The details can be found in Section 3.3.

2.2 Dynamic risk analysis

Typically, a risk analysis is conducted once, and manually updated after-
wards if necessary. Dynamic risk management addresses the question how
the update process can be automated.

2.2.1 Theory

Based on Hidden Markov Models. Several authors have considered this
issue already, and came up with different solutions. Among them, Årnes et
al. [80] introduce a risk assessment model based on Hidden Markov Mod-
els (HMM). Each asset is represented by a finite state machine consisting of
three states – ‘good’, ‘under attack’, and ‘compromised’ –, each involving
a certain risk impact. Hidden Markov Models are then used to infer the
(probabilistic) current state from observations (such as alerts from an intru-
sion detection system), and thus to their risk level. While dependencies are
not supported, a later contribution by Haslum and Årnes [81] adds at least
support for multiple sensors.

Tan et al. [82] improve on Årnes’ findings by generalising the approach
to arbitrarily many states and continuous-time Hidden Markov Models;
moreover, they show how the method can be integrated into a complete
risk methodology.

In a similar spirit, Kanoun et al. [83] start from attack graphs, and model
each relevant sub-graph as a Hidden Markov Model. Observations from
several agents (including bot detections, spam engine, SIP entity discover)
are fed to the HMM to infer the probabilities for the specific sub-graph,
and thus also for the entire attack graph. Moreover, they describe how the
whole framework can be used for running attack simulations, and how it
serves as decision support for risk mitigation.

Based on attack graphs. Jahnke et al. [84] start from a dependency graph
that links all dependent components of a Voice-over-IP service (including
hard- and software). They express risk in terms of availability, integrity,
and confidentiality scores for each component – the respective quantity is
either measured by a monitoring utility (such as an intrusion detection sys-
tem), or calculated as a weighted average of its children if no such utility is
available.

Instead of coming up with a new approach, Noel et al. [85] generalise the
theory known from attack trees to arbitrary attack graphs. Moreover, they

24 Chapter 2. State of the art

provide a (randomised) algorithm which computes the probabilities of de-
pendent events – which is no longer straight-forward in the case of arbit-
rary graphs. The authors additionally define the notion of ‘return on in-
vestment’ that serves as decision support for risk management.

Poolsappasit et al. [76] improve on the previous work by fully integrating
the assessment of risk mitigation strategies, based on the question which
security controls are worth being implemented.

Xie et al. [86] tackle the issue using a different motivation. Indeed, instead
of rendering a risk assessment dynamic by augmenting it with real-time
alerts, they want to extend an intrusion detection system with a risk as-
sessment. In fact, they generate a Bayesian network from an attack graph
that models the detected intrusion, and rely on CVSS2 metrics to deduce a
related risk.

Based on satisfiability. A totally different approach is adopted by Homer
et al. [87]. They are less interested in the success probability of an attack,
but rather in the effectiveness of security controls. To that end, the latter
are first encoded in a special attack–defence graph (which they call a ‘proof
graph’) and then translated to a boolean formula. Each variable state if a
specific countermeasure shall be implemented, and each variable comes at
a cost. The objective is then to find an minimal-cost assignment of variables
that effectively blocks all attacks.

2.2.2 Risk management systems

Most research in the realm of dynamic risk management has consisted in
the elaboration of good descriptive models, and some applications in the
domain of intrusion detection (e.g. Rheostat [88], a risk-based intrusion de-
tection system for Java applications). Nevertheless, some work has also
been made on designing a complete (dynamic) risk monitoring system.

Paté-Cornell et al. [89] describe an entire dynamic risk management plat-
form that takes real-time signals from monitoring agents, feeds them into a
risk analysis, and outputs recommendations based on the determined risk.
Unfortunately, only a few details are given. In contrast to the outcome of
this thesis, the underlying risk model is a simple list of risk scenarios, which
is unable to take complex interdependencies into account.

Similarly, Kanoun et al. [90] show how alerts from intrusion detection sys-
tems can be incorporated into an existing risk methodology (in their case,
MEHARI). Whereas they rely on complex formulae for computation risk-
related quantities, their system is able to infer risk automatically after a
manual set-up phase.

Dynamic risk management products are often very specific to their realm
of application. For example, Giannakis et al. [91] build a real-time platform
that monitors the risk associated to supply chain management. When an

2Common Vulnerability Scoring System, https://www.first.org/cvss/.

https://www.first.org/cvss/

2.3. Intrusion detection systems 25

incident is detected somewhere in the supply chain (e.g. manufacturer, lo-
gistics), a risk assessment based on return-on-investment is automatically
conducted to decide if procurement from additional suppliers is needed,
customers shall be informed, or other measures shall be taken.

Similary, Jiang et al. [92] build a system that monitors the real-time risk of
pollution of China’s third largest river bed by chemical substances. They
rely on real-time data from a geographical information system (GIS) and
integrate them into a risk framework that is relevant for the health domain.

Although not entirely related to risk management, Dulac [93] designs a
framework for analysing the real-time impact of accidents in engineering
systems. He bases himself on an accident model (called STAMP) and shows
how it can be extended with monitoring agents.

The (on-going) European Commission’s Horizon 2020 project ‘ATENA’3

aims at developing a real-time risk monitoring system for industrial con-
trol systems in the energy, gas, and water sectors. Their approach is based
on a vulnerability management system that receives live risk data from sev-
eral software agents, including intrusion detection systems, CVE database,
and threat indicators on the deep/dark net.

To the best of our knowledge, no risk management system exists that sup-
ports both dynamic (real-time) risk and dependencies to a satisfactory ex-
tent (as described in Chapter 1). This thesis thus aims at combining the
state-of-the-art research in dependency modelling and in real-time risk, to
yield a dependency-aware risk monitoring platform.

2.3 Intrusion detection systems

Intrusion detection is a quite old research topic (the first papers being pub-
lished in the 1980’s [94] [95]), yet it still constitutes an actively researched
domain of computer security, especially in the field of cyber-physical sys-
tems such as Supervisory Control and Data Acquisition (SCADA) systems
or Advanced Metering Infrastructures (AMI) [96]. Over the past few years,
the increasing interest in machine learning techniques led to the develop-
ment of more sophisticated, so-called anomaly detection systems, which
learn the ‘typical’ behaviour of a monitored network or system. That way,
they are able to spot deviations from the normal behaviour and thus, to a
certain extent, detect previously unseen attacks.

Given the fact that a lot of different IDS strategies have been proposed over
the years [38], [42], it is important to choose the one that really suits the
needs. For instance, anomaly detection systems typically require the mon-
itored network to be sufficiently static and predictable. While this is not
necessarily the case for arbitrary computer networks, cyber-physical sys-
tems usually do meet this requirement, so a lot of research [96] has been
conducted over the past few years in developing and improving on intru-
sion detection techniques for cyber-physical systems [97].

3Grant agreement number 700581. https://www.atena-h2020.eu/

https://www.atena-h2020.eu/

26 Chapter 2. State of the art

As stated in the introduction (more precisely, in Section 1.3.4), risk-aware
intrusion detection systems should not only produce alerts, but also meas-
ure the risk level when no attack is being launched. To this end, it is im-
portant that the output of the IDS can be linked to specific risk scenarios.

According to Buczak and Guven [98], there exist (at least) the following
data mining techniques, suitable for intrusion detection.

• Artificial Neural Networks are excellent candidates for learning and
recognising previously learned patterns. However, it is very hard to
explain why a certain decision was taken by such a machinery.

• (Fuzzy) Association Rules learn causal correlations of the form ‘if A1

and A2 and A3 hold, then B holds as well’. While this approach
sounds promising when it comes to explaining why a certain alert
was raised, it it not efficient enough to be used in a real-time context
[99].

• Bayesian Networks based data mining techniques learn the graph
structure from a set of nodes. Unfortunately, the set of nodes strongly
depends on the context and need to be composed manually by a se-
curity expert.

• Clustering based algorithms aggregate similar patterns into groups.
These groups are typically labelled with an intelligible average value,
which summarises the group’s content. As such, these algorithms are
promising candidates for measuring risk, since they summarise the
data rather than inferring new knowledge in an obscure fashion.

• Decision Trees combine concepts from Association Rules and Cluster-
ing, in the sense that they use nested rule sets to classify behaviour
into groups matching these rules.

• Ensemble Learning is a class of algorithms for determining multiple
hypotheses that predict the data best. Unfortunately, these algorithms
require the training data to be labelled, and thus cannot be used in an
unsupervised mode.

• Evolutionary Computation, comprising genetic algorithms, is based
on the survival-of-the-fittest principle. As neural networks, their de-
cisions are very hard to explain.

• Hidden Markov Models try to model a system as a finite state ma-
chine, and to infer the current state from observations. Like Bayesian
networks, they require background knowledge from a security expert,
who needs to come up with a good description of a state machine.

• Inductive Learning proceeds in a very similar fashion than Decision
Trees, but infers possible causes instead of consequences (it is thus a
bottom-up approach, in contrast to the top-down approach adopted
by decision trees). Just as the former, it requires background know-
ledge to be defined beforehand. Moreover, whereas it can perfectly be
used to analyse an observed incident, it is less suitable for measuring
the risk of an intrusion at all times.

2.3. Intrusion detection systems 27

• Naïve Bayes applies basic Bayesian theory to learn conditional prob-
abilities of a pre-defined model. Again, this model needs to be elab-
orated manually.

• Support Vector Machines are a special case of clustering techniques,
since they separate data into two groups. As it turns out, normal be-
haviour cannot only be described by a single cluster. For instance,
when it comes to network traffic, one needs to distinguish between
several types of streams, including one-time connection, repetitive
pinging, data download, and flooding.

Among these, the best candidate for risk-based intrusion detection is data
clustering (or related methods), since it is the only technique that is fast
enough for real-time detection, that can be trained in an unsupervised man-
ner, and which is based on explainable decisions (i.e. can be translated to
notions of risk), at the same time. There are mainly two distinct approaches
for cluster analysis: distance-based methods which regroup all data points
that are close to each other (with respect to some metric), and density-based
methods which forms a cluster once enough data points are in the same
spot.

Portnoy et al. [100] were one of the first to describe how intrusion detection
can be achieved using cluster analysis in an autonomous fashion. They state
that unsupervised learning requires two assumptions; first, the majority of
the traffic must be normal, and second, malicious traffic must be statistically
different from benign one.

Distance-based. Intrusion detection systems that are built on distance-
based cluster analysis often make use of the so-called ‘k-means’ algorithm
or its variants [98]. The latter splits the data set into k clusters so that
the inter-cluster distances are the shortest possible. Since the algorithm re-
quires multiple iterations and is thus relatively slow, several authors have
combined it with other methods obtain better results in terms of perform-
ance [101]–[103].

In contrast, other authors developed a novel intrusion detection systems
that is merely based on the principle of k-means.

Among them, Almalawi [104] describes an advanced intrusion detection
system for SCADA devices in his Ph.D. thesis,. Before it can be deployed
to a SCADA network, the IDS requires a training phase, in which the ob-
servations are split into consistent (‘benign’) and inconsistent (‘malicious’)
behaviour using the distance-based ‘k-means’ clustering algorithm, which
serves as basis for building detection rules.

Elbasiony et al. [105] present a hybrid intrusion detection system that is
based on both signature and anomaly detection. For the latter part, they
use a variant of k-means that supports giving a different weight to each
data point, improving the performance of the algorithm (according to the
authors).

Tomlin et al. [106] also improve on the k-means clustering algorithm by
feeding the determined clusters into an additional inference system. While
the authors do not directly design an intrusion detection system, they apply

28 Chapter 2. State of the art

their enhanced algorithm on logs originating from power system compon-
ents, and show that their algorithm detects faults and attacks more reliably
than comparative methods.

Wang et al. [107] start from a relatively new clustering algorithm, Affin-
ity Propagation, which does not require a fixed number of clusters (as k-
means does). The algorithm is applied to self-collected HTTP traffic and
the commonly known KDD data set. They conclude that their approach
yields better results in terms of performance and efficiency than other clus-
tering methods.

Density-based. In contrast to k-mean and related, there is a whole class
of algorithms [98] that consider clusters to be spots in the data which have
a high density of points. The first method of its kind was DBSCAN [108];
as opposed to distance-based schemes, it supports arbitrarily shaped, and
a variable number of clusters.

Blowers et al. [109] show, for instance, how the DBSCAN algorithm can be
used to detect intrusions in a data set such as the KDD. Similarly, Sham-
shirband et al. [110] apply DBSCAN to wireless sensor networks to detect
denial-of-service attacks. To overcome some issues with the quality of DB-
SCAN, Amini et al. [111] present the HDC algorithm, an improved version
of DBSCAN. They show that its detection rate for network intrusions (from
the KDD data set) is higher than for competing algorithms.

However, other approaches exist. Leung et al. [112] introduce a novel den-
sity-based algorithm, called ‘pMAFIA’, that divides the space of data points
into a self-adapting grid. To overcome performance problems, they addi-
tionally rely on a tree structure for organising the data points in each cell of
the grid. The authors apply their algorithm on the KDD data set and con-
clude that it performs better than state-of-the art distance-based algorithms.

Furthermore, Hendry et al. [113] present a very simple density-based al-
gorithm, called ‘Simple Logfile Clustering Tool (SLCT)’, which they apply
to the KDD dataset in order to cluster similar data points. Their criterion
for telling benign and malicious behaviour apart is the degree of similar-
ity within a cluster: according to the authors, normal data is much harder
to describe than attacks, and is thus more heterogeneous. They therefore
introduce a homogeneity threshold based on which a cluster is labelled a
normal or suspicious.

Most interestingly, Wang et al. [114] show that one does not need to de-
cide between distance- and density-based. Indeed, they propose a hybrid
approach which makes use of aspects from density, k-mean, and k-nearest
neighbour. According to them, their approach can be effectively used for
intrusion detection; however, the mixture of multiple algorithms also re-
quires determining more parameters, which is not necessarily easy.

2.4. Conclusion 29

2.4 Conclusion

Risk monitoring is not a new concept. A decent amount of research has
been invested in the design and development of real-time risk analyses,
especially in the realm of industrial control systems (see Section 2.2). How-
ever, the developed solutions are often very specific to a use-case, and can-
not be easily generalised. Moreover, they often lack support for properly
encoding dependencies between arbitrary risk scenarios of assets. In that
sense, these platforms are typically meant to investigate a specific risk scen-
ario. In contrast, this thesis aims at creating a risk monitoring framework
that serves as a support for the risk management of an entire system.

However, when monitoring the risk of an entire system, the related risk
analysis will be large and complex. This applies especially to industrial
control systems, which may have a large and widespread network of in-
terconnected devices. Section 2.1 above discusses existing research efforts
spent on describing these interdependencies. However, they often fail at
finding a good balance between a mathematically sound model, and one
which can be described in simple terms. While attack graphs represent
a decent candidate that is both simple and sound, they lack the support
for mutual dependencies. This thesis thus focuses on generalising attack
graphs (which must be acyclic) to arbitrarily shaped graphs, so that even
cyclic dependencies can be properly encoded.

The last part of this thesis consists in designing agents that capture inform-
ation on the current risk in the field. The most prominent example of such
an agent are intrusion detection systems; however, the latter have not gen-
erally been designed to operate within a risk management system, but to be
deployed as a standalone tool, instead. The issue of integrating intrusion
detection alerts into a risk analysis is thus further analysed in this thesis.

31

Chapter 3

Risk dependency model

3.1 Introduction

3.1.1 Motivation

As argued in the introduction, cascade effects constitute a major issue for
industrial control systems, for they may have unforeseen and severe con-
sequences. For critical infrastructures this problem is even more emphas-
ised since an entire state relies on its operation. With the launch of ‘Smart
Grid Luxembourg’ – a project which started in 2012 and aims at deploying a
country-wide smart grid infrastructure – the Grand-Duchy of Luxembourg
is facing new and unexplored risks in the energy distribution domain. In-
deed, in contrast to other industrial systems, the electrical grid spreads over
a vast area and includes thousands of smart meters and related devices1, all
being interconnected and thus interdependent.

Like any IT infrastructure, smart grids have to face all standard kinds of
attacks – including network intrusions, (distributed) denial-of-service, code
injection, to name a few. In contrast to the former, however, part of the
infrastructure is located in the less protected field (e.g. data concentrators2)
and even the end-user’s household (which is case for every smart meter). In
consequence, the smart grid network does not profit from the same physical
access restrictions than a traditional data centre.

Since perfect security can never be guaranteed, smart grid operators have
to carefully analyse the consequences of a breach into the system, and its
impact on the remaining infrastructure components. The choice of the de-
pendency model is thus essential for conducting a proper and complete risk
analysis.

3.1.2 Approach

The risk dependency model introduced in this chapter is based on the prin-
ciple of attack graphs.

1In the case of Luxembourg, 300.000 smart meters have been or will be deployed.
2Data concentrators are intermediate devices that aggregate the smart meter readings

from an entire geographical area, and send the concentrated data to the central system.
Their main purpose is the avoidance of a denial-or-service resulting from thousands of
smart meters connecting to the central system at the same time.

32 Chapter 3. Risk dependency model

This choice has two major advantages over other candidates: first, it is
generic enough to cover all relevant cases (in contrast to attack trees), and
second, it can be represented in a simple, intelligible, and visual form (in
contrast to Bayesian networks and Markov models, which require a good
understanding of the underlying mathematical principles).

Attack graphs are often used as a purely informational mean to visualise
the involved dependencies. In fact, on their own, they are not equipped
with any mathematical model for computing the risk involved with the en-
coded scenarios. Although some authors (refer to Section 2.1.3 for details)
have extended them with metrics and formulae, none of the proposals per-
fectly meets all needs for conducting a risk analysis with support for (cyclic)
dependencies and real-time monitoring. Section 3.2 below will improve on
the work by these authors, and provide a flexible yet practical framework
for both modelling and computing risk resulting from dependencies.

Some Bayesian theory will be needed to deduce the current risk in real-time,
as monitoring agents report indicator values – this is elaborated further in
Chapter 4. It is to be noted that risk assessors are not required to have any
knowledge of Bayesian theory. The latter will only be used internally by
the risk monitoring platform to deduce the involved probabilities.

3.1.3 Terminology

This section defines the risk-related terms that are used throughout the
thesis. They are based on the ISO/IEC standard 31000 [29] and are adapted
to the concepts introduced in this thesis.

Scenarios and events. Intuitively, a risk scenario is the description of a
situation that could hypothetically occur in the future (and may have in
the past), including all consequences and side effects. In this context, an
incident refers to the situation where evidence exists that a risk scenario is
currently occurring or going to occur. While a risk scenario may be compre-
hensive and complex, it usually consists of small steps, each either contrib-
uting to the consequences of the whole scenario, or being one of its causes.
These ‘steps’ are referred to as (security) events. It is up to the risk assessor
to choose the level of detail when modelling the individual events. Several
events may be combined to a larger one, e.g. to reduce the size of the model
– at the cost of precision loss, of course.

In order to provide a better understanding for these notions, a simple ex-
ample is given below.
Example 3.1. For a smart grid operator, the availability of the electrical grid is of
first priority. It is endangered by many factors, though; since the grid is nowadays
controlled by computers, any problems in the data centre (be it of natural or human
origin), or configuration mistakes can have devastating impacts. But also physical
destruction, such as caused by earthquakes or lightnings, can destabilise the power
network.

In this example, the analysed risk scenario is the instability of the grid. Hacking
attempts, natural disaster, misconfiguration, and data centre in-operability, each

3.1. Introduction 33

Command
injection

Lightning,
Earthquake

Data centre
in-operability

Grid
instability

Incorrect
billing

Miscon-
figuration

Human
error

Infrastructure
destruction

‘grid
instability

’

risk
scen

ario

FIGURE 3.1 – Graphical representation of Example 3.1.

constitute an event. Note that the instability of the grid may also be an event for
a different risk scenario, for instance in case a third party is relying on electric
current.

Example 3.1 can easily be represented visually; Figure 3.1 shows how the
involved security events can be depicted using a dependency graph. In
this representation, risk scenarios are nothing more than sub-graphs, and
can thus be visualised by simply drawing a border around the involved
nodes. More on this in Section 3.2.

Assets. An asset is any item, physical or virtual, that is of some value to
an organisation ([11], §8.2.2). There can be many kinds of assets, including
but not limited to the following:

• Data or information can have an important legal, reputational, or op-
erational impact on the organisation when it is corrupted, stolen, lost,
or disclosed.

• Business processes may have high risks associated to them, especially
if they are part of the core activity of the organisation.

• Assets may also be concrete objects having a monetary value, such as
buildings, equipment, hard- and software, or similar.

• Human resources consist another type of assets that can be very valu-
able to an organisation. This is even more true if the respective job
positions own specific domain knowledge that cannot be easily re-
placed.

Since in most cases, risks are linked to a concrete asset, it is a sensible ap-
proach to systematically list all relevant assets and investigate the risks as-
sociated to common security aspects (such as confidentiality, integrity, or
availability) ([11], §8.2.3).

Security controls. A security control (or counter measure) is any mechan-
ism that increases the security of a specific asset or the entire organisation.
The purpose of implementing such a control consists in mitigating the oc-
currence of a risk scenario, or limiting its impact.

34 Chapter 3. Risk dependency model

3.1.4 Objective

The objective of this chapter consists in designing a dependency model that
can readily be used later on, in Chapter 4, when risk is calculated automat-
ically and in real-time. To this end, a decent amount of effort is also ded-
icated to the elaboration of meaningful formulae and efficient algorithms.
Since the model is meant to be used in the context of a risk assessment, this
thesis also documents the process of building the dependency graph from
existent material.

3.1.5 Outline

The chapter is organised as follows.

• Section 3.2 introduces the dependency model and equips it with no-
tions of risk.

• Section 3.3 provides formulae for determining risk in the context of
the dependency model, and presents algorithms for computing it nu-
merically.

• The sensitivity with respect to estimation uncertainties is inspected in
Section 3.4.

• Since establishing and maintaining the model might be time demand-
ing for large organisations, a scheme is developed in Section 3.5 for
generating it from existent documentation (such as an asset invent-
ory). This procedure can be automatised to a certain extent.

• Subsequently, the hitherto findings are applied to a real-world use-
case, namely the smart grid of Luxembourg, in Section 3.6.

• Further extensions and special cases are discussed in Section 3.7.

• The chapter is finally concluded in Section 3.8, highlighting the flexib-
ility of the developed model and its role in a risk monitoring platform.

3.2 Defining the model

A risk analysis consists, among others, in describing and understanding
the identified risk scenarios. The underlying risk assessment methodology
then dictates how the latter should be identified, evaluated, rated, classi-
fied, or sorted. The dependency model developed in this thesis is meant to
complement this methodology.

Even though dependencies can help in finding new risk scenarios, this
chapter is not about identifying them, but rather about analysing how they
interact. To this end, the causal chain of each scenario needs to be carefully
inspected, so as to extract the relevant intermediate steps. The latter are
then explicitly encoded as security events in the dependency model.

It is to be noted that the entire model is based on individual events, and
does not have a direct notion of risk scenarios. In particular, whenever

3.2. Defining the model 35

dependencies are mentioned, they refer to dependencies between security
events. Nevertheless, risk scenarios appear in the model as a collection
of events and their interactions. In other words, the dependency model
provides a more fine-grained description of risk scenarios. In that sense, it
is really just a tool extending an existent risk methodology, providing clari-
fication for the encoded information.

3.2.1 Risk

Risk is a three-fold abstract concept that is caused by the simultaneous pres-
ence of three circumstances:

• there is an external threat (something causing it);

• a vulnerability is exploited (something that is at risk);

• the risk has an actual impact.

If any of these is missing, the risk is effectively zero. For instance, run-
ning vulnerable software is fine if no one can access the computer (i.e. if no
threat is present). Similarly, if a software has been patched, it is generally
no longer vulnerable to the related exploits and the resulting risk becomes
low again. Finally, if vulnerable software is running on an isolated virtual
machine, exploits do not have any impact on the real system, so the risk for
the latter is comparatively low.

For that reason, risk is commonly defined as a combination of threat, vul-
nerability, and impact:

risk = threat× vulnerability× impact,

or after replacing each factor by its respective intrinsic property,

risk = likelihood× (1− security)× impact, (3.1)

where likelihood ∈ R+, security ∈ [0, 1] and impact ∈ Rn+ are further spe-
cified below.

Threat. In contrast to other methodologies, the likelihood is not defined
to be a probability-theoretic number between 0 and 1. In fact, it is mean-
ingless to say that a risk scenario occurs with a certain probability. Indeed,
consider the statement “there is a 1% chance of fire”, then it is clearly not
obvious to determine how often one expects it to happen. Moreover, it is
not clear what the upper bound (100%) imposed by probabilities should
represent. Instead, a far more intuitive approach consists in making statist-
ical statements, such as “there is a chance of fire for 1 out of 365 days in a
year”. However, in that case, one really speaks of an expected frequency
rather than a probability.

The likelihood is therefore defined to be the expected number of times that a
risk scenario occurs. This quantity is unbounded and can thus be arbitrarily
high. Moreover, it is compatible with Equation 3.1, for an expected frequency
times the impact yields an expected impact per time unit.

36 Chapter 3. Risk dependency model

Likelihoods play a central role in risk monitoring: indeed, any alerts raised
by risk agents (intrusion detection systems, firewalls, malware protection,
...) denote the presence of a threat, and thus an increased likelihood of
occurrence for the triggered risk scenario. Put differently, it is the likelihood
that risk monitoring agents continuously estimate for some specific security
events.

Vulnerability. Here, ‘security’ is a weighting factor between 0 (no secur-
ity, so maximum exposure to risk) and 1 (perfect security, so no risk). In
case one does not wish to bother about vulnerabilities, one can adopt a
pessimistic view and set ‘security := 0’, thus only concentrating on threats.

The ‘security’ parameter plays an important role for determining the risk
mitigation strategy. Indeed, the implementation of security controls in-
duces an increase of the ‘security’ parameter for the affected assets and re-
lated risks. Simulations can then reveal the extent to which a counter meas-
ure reduces the overall risk for the entire organisation. This allows risk
assessors to decide whether the implementation of that measure is worth
the investment and maintenance costs for reducing the risk.

Although risk mitigation is not directly covered by this thesis, Section 3.7.2
gives an insight how risk treatment can be performed with the help of the
model. Further details can be found in the literature. For example, Harpes
et al. [115] have elaborated a risk assessment method that determines the
effect of security controls on the return on security investment (ROSI). To
this end, they introduce risk reduction factors, which play a similar role
than the ‘security’ parameter mentioned above.

Impact. Finally, the impact denotes the costs of a risk scenario when it
happens. In theory, any unit may be used for specifying the costs. However,
most risk methodologies require the impact to be homogeneous throughout
the analysis, so as to add them up or compare them. For that reason, the
costs often expressed in financial terms (e.g., $ or €), which is considered as
some kind of common denominator. This restriction should not be mandat-
ory, though, because especially in critical infrastructures, safety and avail-
ability are far more important than any monetary losses. Several authors
[70], [71] have indeed shown that risk analyses can also be conducted in
other terms than money.

The model presented in this thesis does not put any restrictions on the im-
pact. In this model, a risk scenario may result in financial loss (unit: $ or €),
casualties (unit: number of people), and legal implications (unquantified)
at the same time. Section 3.2.4 formalises the impact in the context of de-
pendency graphs, and show that even inhomogeneous impacts can be used
in computations and comparisons.

3.2. Defining the model 37

3.2.2 Dependency graph

All security events are included in a single graph as nodes, and arrows
between them are used to represent the causal chains. Such an arrow al-
ways denotes a direct dependency – indirect effects are not explicitly indic-
ated, even though they can be read off from the graph by following arrows.
Some events do not have an antecedent; they are the root causes, that ul-
timately trigger all other events. In particular, these root causes are con-
sidered to be mutually independent.

The general idea behind the dependency graph is centred around the sim-
ulation of an incident. Incidents start at a root event, and cascade through
the graph, following the arrows. Despite its similarity to Markov chains, a
dependency graph does not depict the state of the entire system. Indeed,
in the dependency graph, multiple events can occur simultaneously, while
a Markov chain is always in a single state. The goal of the simulation is to
find out which secondary security events can be reached from that incident,
and to what extent.

Most notably, this approach implies that no risk scenario can be more likely
than the incident that causes it. Although it sounds trivial and somewhat
redundant, this invariant is not guaranteed to hold for all models, espe-
cially those that rely on dependency formulae which are based on linear
combinations of dependent events.

Formally, dependencies are encoded in a directed graph

G = (VG , EG) .

The set of vertices VG contains all security events that are relevant for the
risk analysis. The set of edges EG encodes the dependencies themselves;
it contains an edge (a, b) whenever a security event a ∈ VG can potentially
induce another event b ∈ VG . To ease the notation, write

a→ b ⇐⇒ (a, b) ∈ EG .

Since the model is built around the simulation of an incident, one is inter-
ested in all of its side effects. In graph language, this problem consists in
determining all vertices for which there is a path from that certain event.
In that spirit, an event a is said to be eventually causing event b iff there is a
directed path from a to b. Write

a b ⇐⇒ ∃x0, . . . , xn ∈ VG

∀i < n, xi → xi+1

x0 = a

xn = b.

Guidelines

In order to build the graph, one should first identify the risk scenarios that
are the most important to the organisation in question. For example, the
unavailability of a business-critical service generally features among them.

38 Chapter 3. Risk dependency model

For smart grids, this translates to the destabilisation of the electrical grid
(or power outages). Other risk scenarios may include theft of confidential
data, privacy issues, or break-down of expensive equipment (particularly
for industrial control systems).

Risk methodologies can support one on determining the risk scenarios.
There is an alternative approach that one can adopt. It consists in first list-
ing all assets that are valuable, in some way or another, to the organisation.
For each asset in this inventory, one can ask what happens if one of the ba-
sic security aspects – confidentiality, integrity, or availability – is violated,
and deduce the respective risk scenario. Formally, this amounts to picking
a subset

VG ⊆ A× S,

where A is the set of all identified assets, and S = {C, I,A} represents the
security aspects. To ease the notation, write a.s for (a, s) ∈ VG ⊆ A × S.
For example, using the syntax defined above, the dependency “hard disk
break-down causes loss of data” can be expressed as

HARDDISK.A→ DATA.A.

3.2.3 Degree of dependability

Dependencies may appear to several extents. An event may implicitly in-
duce another, in the sense that if it occurs, the other one is known to occur
as well. This is the case for a hard disk, for instance: if it is physically des-
troyed, then any data stored on it is permanently lost. An event may also
cause another one only part of the time (e.g., if the reasons are unspecified
or unknown). For example, hot and dry weather may cause forest fire, but
not always. Since the exact circumstances may be out of scope of the ana-
lysis, or just unknown, the effect can be approximated with a stochastic
process, having a certain probability to occur (between 0 and 1).

To encode the degree to which an event potentially causes another, define a
probability map

p : EG → [0, 1]

(a, b) 7→ p(a, b).

For a, b ∈ VG and x ∈ [0, 1], also introduce the notation

a
x→ b ⇐⇒ a→ b ∧ p(a, b) = x.

Using this terminology, Example 3.1 can be visualised in a dependency
graph as shown by Figure 3.2. Note that in this description, three incid-
ents (misconfiguration by human error, command injection by a hacker, or
natural catastrophes) have been identified to be the root causes of the ‘grid
instability’ risk scenario.

3.2. Defining the model 39

Misconf. by
human error

Command
injection

Lightning,
Earthquake

Miscon-
figuration

Data centre
in-operability

Infrastructure
destruction

Grid
instability

1 0.1 0.9 0.5 0.5

0.5 0.9 0.9

FIGURE 3.2 – Graphical example of a dependency graph
with probability values.

p(a, b) Interpretation
0.1 Event a may cause b, but this is judged unlikely.
0.5 Event a may cause b. This is the default.
0.9 Event a causes b in most cases.
1 Event b is implicitly contained in a.

TABLE 3.1 – Possible interpretation of probability values for
dependencies.

To ease the work with probabilities, it is recommended to fix a scale in ad-
vance, which guarantees that all probability estimations are made in a con-
sistent way. Moreover, the smaller the choice of possible values, the less
likely it is to produce inconsistent estimates. An example of such a scale is
given in Table 3.1.

It is to be noted that probability values of 1 imply that the dependent event
is implicitly covered by (so, contained in) its antecedent. An example would
be the break-down of a server, which intrinsically implies its incapacity to
operate properly and to provide a certain service. In contrast, even though
there is a high chance that a successful intrusion is followed by a takeover
of the affected server, it is not absolutely guaranteed that a hacker manages
to do so. Moreover, in terms of risk mitigation, it may be possible to set up
defensive mechanisms that prevent him from achieving his goal. In such
cases, it is recommended to put a probability value less than 1.

There is a reason why this map is called the probability map. Indeed, for two
events a, b ∈ VG , a causes b with a certain chance. This random experiment
can also be applied to the dependency model, by turning it into a random
graph G∗. The latter is like a normal graph, except that its edges are only
present with a certain probability – the one specified by p(·). In other words,
the new, probabilistic graph G∗ is equipped with a probability distribution
P such that

P[(a, b) ∈ EG∗] := p(a, b).

In what follows, no distinction will be made between the dependency graph
G and the associated randomised graph G∗, for convenience. The above

40 Chapter 3. Risk dependency model

probability can thus also be written

P[a→ b].

Similarly, one can deduce the probability that an event ultimately triggers
another, that is,

P[a b].

However, as it turns out, computing this quantity is highly non-trivial for
general graphs. Section 3.3 will discuss this probability further, and will
determine efficient algorithms for calculating its value.
Remark 3.2. Despite the parallels between a dependency graph and a Bayesian
network, they are not the same. Even though the vertices in a Bayesian network
also correspond to events, and its purpose also consists in determining the probabil-
ity of occurrence for these events, both models operate in a fundamentally different
way.

Bayesian networks are settled around conditional probabilities, which describe the
chance P[β |α] that a certain event β will occur if another event α has been previ-
ously observed. This is different from the definition of the probability map p(α, β)
introduced above, which indicates the probability that event α causes β. In the
literature [116], the latter is denoted P[β | do(α)] or P[β | set(α)].

To see why they are different, consider the following small example. In the chain
α

0.5→ β
0.5→ γ, the conditional probability P[γ |α] = 0.25, since if α occurs, there is

a 0.52 chance that γ will occur, as well. However, p(α, γ) = 0, because α does not
directly trigger γ.

Bayesian network are used to find out from statistical data which events depend on
each other, whereas the dependency graph already encodes this information expli-
citly.

3.2.4 Risk in a dependency graph

Likelihood. So far, dependency graphs are only centred around causality
and the related probabilities, but have nothing to do with risk. For conveni-
ence, introduce the map

L : VG → [0,+∞),

representing the likelihood of occurrence of each security event. Recall that
the latter is expressed as an expected frequency (see Section 3.2.1).

As announced in Section 3.2.2, dependency graphs are meant to simulate
an incident that starts at one of the root causes in the model. In that spirit,
consider such an incident that starts at α ∈ VG . In this specific simulation,
any other event β ∈ VG can only be eventually caused by α (if at all). The
probability that this happens is exactly P[α β]. Since α is expected to
occur at a rate of L(α) by definition, and each time β is triggered with prob-
ability P[α β], the expected frequency of β is consequently

P[α β] · L(α).

3.2. Defining the model 41

Fire
casualties
loss of knowledge
legal implications
financial loss

Fire
casualties

Loss of documents
loss of knowledge
legal implications

In-operability
financial loss

=⇒

FIGURE 3.3 – Split-up of a risk-scenario in multiple events,
with impact attached to the most appropriate one.

Since all root causes are assumed independent, the above finding can be
generalised to the complete graph, to yield

L(β) =
∑

α∈rt(VG)

P[α β] · L(α),

where rt(VG) ⊂ VG denotes the collection of root vertices (i.e., those without
an incoming edge).

Impact. In traditional risk analyses, the impacts of linked risk scenarios
tend to overlap, resulting in redundancy and thus in a distorted view of
the situation. To overcome this problem, impacts are defined directly for
the security event that is immediately responsible for it. Note that this may
result in splitting up an impact for a risk scenario, and in distributing it
among multiple causes.
Example 3.3. For example, a fire incident in an office environment has multiple
effects: in the worst case it can result in casualties, but it may also lead to tem-
porary in-operability of the service and loss of important documents, with possible
legal implications. Since documents can be lost and the service can be stopped for
different reasons as well, it may be sensible to extrapolate them in dedicated secur-
ity events. The overall impact for fire is then split up among the three as shown in
Figure 3.3.

As the example depicted in Figure 3.3 already suggests, the impact should
be defined in such a way that the definition does not impose any restrictions
on the unit. Indeed, an event may have an impact in terms of casualties, fin-
ancial, legal matters, or others, all of which cannot be easily compared to
one another. However, at the same time, the impact will be used in com-
putations and comparisons afterwards, which requires some compatibility
nevertheless.

To address the issue, each type of impact will be described by a set of al-
lowed values, respectively (such as the non-negative numbers R+). Here,
two impacts are considered to be of the same type if they can be compared
to some extent (e.g. if they have the same unit, or if one can be converted to
the other).

42 Chapter 3. Risk dependency model

Formally, introduce a collection of sets I1, . . . , In, each being linked to an
impact type. The impact is then defined to be a map

I : VG → I1 × · · · × In

that associates an impact for each impact type to every security event in the
graph. Note that for a given event, the impact is typically only specified
for one of the types. There are cases, however, where an event has multiple
impacts (such as in the example below).

In Example 3.3 above, there a four different impact types involved.

• Icas = R+, the number of casualties;

• Iknow = R+, the amount of knowledge, measured in number of hours
required to acquire it;

• Ileg = {yes,no}, whether it has legal implications (the group opera-
tion + being the boolean OR in this case);

• Ifin = R+, financial losses, specified in €.

An impact assessment could look as follows.

I : VG → Icas × Iknow × Ileg × Ifin

‘fire’ 7→ (20, 0,no, 0)

‘loss of documents’ 7→ (0, 160,yes, 0)

‘in-operability’ 7→ (0, 0,no, 50.000)

Risk. Recall from Section 3.2.1 that risk is defined as the combination of
likelihood and impact. Since impacts constitute general sets (and may only
consist of boolean values, true or false), they cannot be combined as-is
with likelihoods. Each impact space Ii thus needs to be equipped with a
map ri that relatives an impact with respect to a likelihood of occurrence. It
is required to be of the form

∗i : R+ × Ii → R+

and is supposed to turn a likelihood (expected frequency) and an impact
into an ‘expected impact per time unit’. Since for most impact types, the
space just equals Ii = R+, the corresponding map can be defined as

∗i : (l, i) 7→ l · i.

For boolean impact types, i.e. Ii = {true,false}, the map is defined as

∗i : (l, i) 7→
{
l if i = true

0 if i = false

3.2. Defining the model 43

These individual maps can be combined to a single map ∗ by component-
wise application. More precisely, it is defined as

∗ : R+ × (I1 × · · · × In)→ Rn+
(l, (i1, . . . , in)) 7→ (l ∗1 i1, . . . , l ∗n in).

Intuitively, the map ∗maps a likelihood and a combined impact to a combined
expected impact per time unit. Put differently, ∗ yields a real-valued vector,
each component representing the expected impact per time unit for each
impact type.

For example, for a likelihood l := 0.1/y (“expected to occur once every 10
years”), and an impact i := (100 k€, 20 casualties, legal consequences), the
resulting risk can be obtained by

l ∗ i = (10 k€/y, 2 casualties/y, legal consequences every 10 years).

Putting everything together, the risk associated to a single security event
α ∈ VG can be determined as ∑

v∈rt(VG)

P[v α] · L(v)

 ∗ I(α)

Note that by design, the latter expression covers exactly the risk coming
from the event itself – not from the side effects it may possibly have. There-
fore, the total risk of an entire risk scenario is precisely the sum of all even-
tually caused events. For a risk scenario described by an event σ, the total
risk is thus

∑
α∈ante(σ)

 ∑
v∈rt(VG)

P[v α] · L(v)

 ∗ I(α), (3.2)

where ante(σ) is the set of all security events that are eventually causing σ
(or in graph language, the set of all antecedents of σ), including σ itself.

Similarly, the risk for the entire organisation can be computed as

∑
α∈VG

 ∑
v∈rt(VG)

P[v α] · L(v)

 ∗ I(α).

Note that in this sum, every security event is accounted for exactly once. In
other words, it does not contain any redundant information.

3.2.5 Compatibility with standard risk methodologies

The work that was carried out during the thesis is supposed to be compat-
ible with any risk management process, no matter the methodology. While
this is an ambitious objective, and cannot be achieved for literally all meth-
odologies, a decent amount of work has been put into the design of the
framework, so that it can operate independently of the picked procedures.

44 Chapter 3. Risk dependency model

Context establishment

Risk identification

Risk analysis

Risk evaluation

Risk treatment

Risk acceptance

R
is

k
m

on
it

or
in

g

R
is

k
co

m
m

un
ic

at
io

n

R
is

k
as

se
ss

m
en

t

FIGURE 3.4 – The risk management process according to
ISO 27005.

That is why the framework is presented as an extension to risk assessments,
not a replacement thereof.

In fact, ISO 27005-compatible risk management processes are structured as
depicted in Figure 3.4 [11]. Although other methodologies exist, they all
require some form of risk assessment that is similar to the one of ISO 27005.

As is highlighted in Figure 3.5, the dependency model acts in parallel to
the normal risk assessment process, even though it exchanges information
with the latter. It additionally includes live data from the risk monitoring
process into the dependency graph. In consequence, the risk assessment is
no longer static and valid only for the moment when it was created, but it
encodes a mean to automatically updates itself.

Note that all other processes are not affected by the additional features, and
can be carried out just as usual.

A word on risk treatment. Although this thesis does not focus on risk
treatment and mitigation, some hints are provided on how the dependency
model can serve as decision criteria for implementing a security measure.
Indeed, according to Section 3.2.1,

risk = likelihood× (1− security)× impact.

The additional ‘security’ parameter accounts for the reduction in terms of
risk; intuitively, it reflects the degree to which counter measures have been

3.3. Computations 45

Context establishment

Risk identification Dependencies

Risk analysis Dep. graph

Risk evaluation

Risk treatment

Risk acceptance

R
is

k
m

on
it

or
in

g

R
is

k
co

m
m

un
ic

at
io

n

R
is

k
as

se
ss

m
en

t

FIGURE 3.5 – Dependencies as an extension to the risk man-
agement process.

implemented. To some extent, the risk monitoring process could also ‘meas-
ure’ the effectiveness of these security controls and thus update the risk ana-
lysis (more precisely, the ‘security’ parameter) automatically – again, this is
not within the scope of this thesis.

To determine the influence of counter measures, recall that the entire model
is built around simulations of incidents. If one is to check whether a security
control is worth being implemented, one can run the simulations twice –
once with the control, and once without – and compare the decrease of risk
with the associated costs. It is the risk acceptance criterion3 that dictates
how this comparison is made, and which risks shall be mitigated.

3.3 Computations

According to Equation 3.2 in Section 3.2.4, risk in a dependency graph is
expressed in terms of the likelihoods L, impacts I, and the probability map
p. While the first two parameters explicitly occur in the formulae, p hides in
the expression P[α β], denoting the probability that event α eventually
causes β. Unfortunately, computing this expression is non-trivial in general.

This section is thus dedicated to the numeric calculation of the probability
distribution of causal relationships between events. To that end, an efficient
algorithm is provided which can be used to update the involved probabil-
ities in real time.

3The risk acceptance criterion is decided upon in the context establishment phase, be-
fore the analysis is actually conducted. Its form depends on the underlying risk method-
ology; for instance, in quantitative financial risk analyses, risk is typically accepted if the
total costs of a security control outweigh its benefits, that is, its risk reduction.

46 Chapter 3. Risk dependency model

3.3.1 Probability distribution of acyclic graphs

If the dependency graph is acyclic, it turns out that well-established theory
can be used to mathematically express the full probability distribution. This
case has been extensively studied [76], [77], [117]. It is important to note that
already in this simpler case, it is computationally infeasible to determine the
full probability distribution of general Bayesian networks [118]. Although
some approximative algorithms exist [119], one needs to assume further
properties on the graph.

A directed acyclic graph is said to satisfy the local Markov property [120] iff
every node is independent from all of its non-descendants given its parents.
Mathematically,

∀v ∈ V v ⊥⊥ nd(v) | pa(v),

where ⊥⊥ denotes stochastic independence, pa(v) represents the set of im-
mediate parent nodes of v, and nd(v) := {v}∪ (V \ descendants(v)), the set
of non-descendants.

Intuitively, this property requires that all causal relationships have been
made explicit using edges. Note that this is the case if the dependencies
encoded in the graph are exhaustive.

Denote by Iα the indicator random variable4 of a security event α. For read-
ability, extend the notation to sets of events A as follows: IA : α 7→ Iα for
α ∈ A. One can prove that for graphs satisfying the local Markov property,
the following factorisation formula holds [121].

P [IV] =
∏
v∈V

P
[
Iv | Iparents(v)

]
.

By consequence, for any event v ∈ VG ,

P
[
Iv = 1 | Iparents(v)

]
(3.3)

= 1−
∏

x∈parents(v)
Ix=1

(1− p(x, v)) ,

which can be explicitly computed when p : EG → [0, 1] is known. Moreover,
for β ∈ VG ,

P [Iβ = 1] (3.4)

=
∑

π:V→{0,1}
π(β)=1

P [IV = π]

=
∑

π:V→{0,1}
π(β)=1

∏
v∈V

P
[
Iv = π(v)

∣∣∣ Iparents(v) = π|parents(v)

]
,

4That is, Iα = 1 if α occurs and 0 otherwise.

3.3. Computations 47

where in the last step the factorisation formula [116] has been applied. It can
even be shown5 that it is enough to iterate over all ancestors of β (including
β itself) instead of the whole vertex set V , which considerably reduces the
computation effort.

Given a root event α ∈ VG (that is, one without parent nodes), one can
condition on Iroots for both sides in (3.4) to get

P[α β]

= P
[
Iβ
∣∣ Iα = 1, Iroots\{α} = 0

]
=

∑
π:V→{0,1}
π(β)=1
π(α)=1

π(roots\{α})=0

∏
v∈V

P
[
Iv = π(v)

∣∣∣ Iparents(v) = π|parents(v)

]
.

Plugging in the result from (3.3) yields the explicitly computable probability
that an event β follows from α.

As can be observed in the final result, computing the expression requires
iterating over all possible assignments π : V → {0, 1} – thus the exponential
running time.

3.3.2 Probability distribution for general graphs

For cyclically related security incidents, computing their likelihoods consti-
tutes an even more delicate problem than it is already for acyclic ones.

In order to compute P[α β], one first needs to understand what it means
to ‘eventually trigger’ an event. Consider two nodes α 6= β ∈ VG . Re-
call that the dependency graph actually describes a simulation of incidents,
so each edge represents a possible cascade effect (with the probability spe-
cified by p).

In the most basic case, where α and β are directly connected, and no other
paths exist from α to β, the probability that α eventually causes β is just

P[α β] = p(α, β).

If a single path exists from α to β, with intermediate nodes x1, . . . , xn−1,

P[α β] = p(α, x1) · p(x1, x2) · · · p(xn−1, β),

since all edges are assumed to be independent.

If multiple paths exist from α to β, the situation is not so trivial any more.
For cyclic dependency graph, the issues becomes even more delicate.

However, from a probabilistic point of view, the dependency graph can
also be seen as a random graph where each edge is present with a certain
probability (the one specified by p). With that in mind, P[α β] is the
probability that in a random sampling of the edges (according to p), there
is a path from α to β.

5See Proposition A.1 in the appendix.

48 Chapter 3. Risk dependency model

A B

C

D

E F

FIGURE 3.6 – Simple example of cyclically dependent
events encoded in a graph.

Note how this perspective elegantly addresses the problem of cyclic de-
pendencies. In fact, two events being cyclically dependent means exactly
that each of them can (eventually) cause the other – but not more. In con-
sequence, the fact that there is path from one to the other is all that matters
– cycles don’t change anything to that.
Remark 3.4. Cyclic dependencies as introduced in this thesis cannot be used to
account for recurrent events. The dependency graph only encodes causal relation-
ships, and not actual behaviour over time. In other words, in the simulation of an
incident, each event is either triggered or not – it will not be activated multiple
times. In fact, likelihood is split up into two independent parts: a causal aspect (as
specified by the graph) and a statistical aspect (encoded as the expected frequency L
of the root causes), which should not be confused.

Figure 3.6 explains the concept with the help of a simple dependency graph.
EventE can be caused byC or F , but inspecting the situation in more detail,
E is only caused by either of the two event chains A → B → C → E or
F → E. In particular, E can only by triggered by C if C is not already
indirectly triggered by E (through the chain F → E → D → B → C).

As shown in this example, the probability that a risk scenario occurs cannot
only be expressed by the probability of its direct parents, but has to involve
all paths from a root node. Even worse, the computation effort for enu-
merating all such paths can be huge (in the worst case, namely in complete
graphs, the running time is exponential in the number of vertices). That is
also why any efforts of finding an efficient deterministic algorithm failed.
In contrast, we managed to design a probabilistic algorithm that is able to
yield a good approximation for the probabilities that shall be computed.
Since the algorithm is randomised, its output is not deterministic and may
be erroneous. However, we prove that the probability of returning a wrong
output is so low that it can be neglected for all practical purposes.

3.3.3 Algorithm

Algorithm 1 makes use of the Monte Carlo method7 to approximate the
likelihoods. Its running time is polynomial in its input data. More precisely,

6Sampling a random graph consists in creating a new graph with the same nodes, and
running a random experiment for each edge e, deciding whether it is included (with prob-
ability p(e)) or not.

7The Monte Carlo method consists in repeatedly sampling a probability distribution
(here: random graphs) to obtain numeric results via statistical methods.

3.3. Computations 49

Algorithm 1 Compute probability matrix

Input: Graph G = (V,E) with root nodes VR ⊂ V
Input: Probability map p : E → [0, 1]
Input: ε > 0, δ > 0
Output: Probabilities C : VR × V → [0, 1] that a root node causes a node,

each value with absolute error at most ε. The algorithm will fail with
probability at most δ.

1: ’ Determine number of simulations N
2: γ := ε

1+
√
ε

3: N := 6
ε2γ

ln
(

2n
δ

)
where n := |V |

4: for (vr, v) ∈ VR × V do
5: C(vr, v)← 0.
6: end for
7: loop N times
8: Sample6a random graph G′ from G according to p
9: for vr ∈ VR do

10: for v ∈ V (G′) do
11: if ∃ path in G′ from vr to v then
12: C(vr, v)← C(vr, v) + 1/N
13: end if
14: end for
15: end for
16: end loop

it is bounded by

O
(
n ·m · ln

(
2n

δ

)
· ε−3

)
,

where n is the number of vertices, m is the number of edges, δ is the prob-
ability that the algorithm output is wrong and ε is an upper bound for the
absolute error of the computed values. Observe the logarithmic depend-
ency on δ, which permits amplifying the algorithm accuracy without signi-
ficantly increasing its running time.

The proof of correctness, running time and error probability is given in Pro-
position A.2 in the appendix.

3.3.4 Numerical experiments

While Proposition A.2 gives an upper bound of the running time complex-
ity, one may also be interested in the actual time (in seconds) that it takes
to execute the algorithm. This section presents the various numerical ex-
periments that have been run in order to determine the dependence on the
input parameters.

When inspecting the algorithm, one notices that it involves repeating the
same random experiments over and over. Since all of these repetitions are
carried out in an independent manner, they can be perfectly run in parallel.

50 Chapter 3. Risk dependency model

200 400 600 800 1,000

2

4

6

8

10

12

number of nodes n

ex
ec

ut
io

n
ti

m
e

(s
)

FIGURE 3.7 – Execution time of Algorithm 1 in seconds, de-
pending on the graph size n, with ε = 0.1 and δ = 0.01 and

an average of 5 neighbours per node.

0.1 0.2 0.3 0.4 0.5

100

200

300

relative error ε

ex
ec

ut
io

n
ti

m
e

(s
)

FIGURE 3.8 – Execution time of Algorithm 1 in seconds, de-
pending on the precision ε of the results, with n = 500 and

δ = 0.01 and an average of 5 neighbours per node.

When doing so, one can profit from multi-threading capabilities of a CPU,
or apply distributed computing techniques.

To test the performance of the algorithm on ‘average’ graphs, dependency
graphs have been generated uniformly at random. A typical risk analysis
may cover up to 50 different assets8, each of which generally encounters
3–5 threats9, so a related graph is composed of a few hundred nodes. It is
sensible to assume that nodes are not connected (in average) to more than a
few edges, so a typical graph will consist of a few thousand edges at most.

The simulation was performed on a dual-core 2.5 GHz processor (i7-3537U).
The results are depicted in Figures 3.7, 3.8, 3.9 and 3.10 – as expected, they

8Based on experience from past risk analyses performed by itrust consulting.
9Most often, these threats include the criticality, integrity and availability aspects of each

asset, which can be further sub-divided (e.g. temporary unavailability vs. permanent loss).

3.4. Sensitivity 51

10−4 10−3 10−2 10−1
0

2

4

6

algorithm correctness δ

ex
ec

ut
io

n
ti

m
e

(m
s)

FIGURE 3.9 – Execution time of Algorithm 1 in seconds, de-
pending on the correctness δ of the algorithm output, with
n = 500 and ε = 0.1 and an average of 5 neighbours per

node.

reflect the running time computed in Proposition A.2 in the appendix. The
precise numbers can be found in Table B.1 in the appendix.

In order to compare the performance of Algorithm 1 to other approaches,
similar experiments have been conducted with for straight-forward determ-
inistic algorithms. For example, consider the simple recursive algorithm
which conditions on the existence of each edge. The former relies on the
mathematical observation that, for each edge e ∈ E,

Pr[∃ path v w] = p(e)·Pr[∃ path v w | e]
+(1− p(e))·Pr[∃ path v w | ¬ e],

which can easily be turned into a recursive algorithm, computing the prob-
ability that a path exists between any two nodes v and w. Unfortunately,
such algorithms have exponential running time and take more than a few
minutes already for small graphs (|V | ≥ 20, |E| ≥ 200).

All other attempts to solving the problem in a deterministic way resulted
in similarly bad execution times.

3.4 Sensitivity

It is commonly the case that some information is incomplete or unavailable
to the risk assessor when he sets up the risk context. In that case, he is
required to estimate or guess some of the parameters, such as the likelihood
or impact. While for traditional risk analyses, errors in these estimates only
influence a single risk scenario, dependencies can cause the error to spread
through the entire analysis.

Moreover, since automated processes yield values that are not necessar-
ily verified by human experts, it is also important to understand how the
model reacts to changes in the input.

52 Chapter 3. Risk dependency model

200
400

600
800 0 20,000

40,000
60,000

80,000
100,000

0

20

40

60

number of nodes n
number of edges m

ex
ec

ut
io

n
ti

m
e

(s
)

FIGURE 3.10 – Execution time of Algorithm 1 in seconds,
depending on the graph size n and m, with ε = 0.1 and

δ = 0.01.

This section is dedicated to analysing the extent to which the dependency
model is sensitive to uncertainties in the input data and to give bounds on
the engendered forward error.

3.4.1 Aborting computation prematurely

Algorithm 1 essentially works by repeating the simulation of a random ex-
periment, and by taking the average outcome. Although this way of pro-
ceeding only yields approximative results, Proposition A.2 proves that the
obtained values are precise enough for everyday use, if the experiment is
only run often enough.

In fact, the more often the experiment is repeated, the more precise the out-
put will get. In particular, the algorithm can be interrupted at any time, in
which case it yields a complete, but less precise solution. Since for large
risk analyses, the running time can have an order of magnitude of several
seconds or even minutes, one may be tempted to stop the computations
prematurely. For real-time applications, such as risk monitoring, one may
even be required to abort the algorithm.

In that case it is important to understand the meaningfulness of the (incom-
plete) results. Lemma 3.5 below address this question by proving an upper
bound for the relative error of the computed values.
Lemma 3.5. If Algorithm 1 is aborted after αN iterations, for 0 < α < 1, then
the relative error of the algorithm output increases at most by a factor α−

1
3 .

Proof. By definition, the algorithm is run N0 :=
1+
√
ε0

ε30
· 6 ln

(
2n
δ

)
times, for a

previously fixed relative error ε0. If instead of ε0, one would pick a relative

3.4. Sensitivity 53

error of ε := βε0, it would require

(1 +
√
ε)

ε3
· 6 ln

2n

δ

=
(1 +

√
β
√
ε0)

β3ε3
0

· 6 ln
2n

δ

= β−3 (1 +
√
β
√
ε0)

(1 +
√
ε0)

·N0

≤ β−3 ·N0

iterations instead, for any 0 < β < 1.

Since the outputs get preciser the longer the algorithm runs, running it pre-
cisely β−3N0 times will yield a relative error βε0 (or even better). Setting
β = α−

1
3 concludes the proof.

For instance, aborting the algorithm after half of the required steps (α = 1
2)

would cause the relative error to increase by(
1

2

)− 1
3

− 100% =
3
√

2− 100% ≈ 26%,

which is (of course) less precise, but still within the same order of mag-
nitude.

3.4.2 Varying graph topology

When building the graph, risk assessors need to be as concise as possible.
In particular, they should avoid encoding indirect relationships A→ C if A
actually causes C indirectly through B (i.e., A → B → C). Nevertheless, it
is sometimes not so easy to know if there is a direct or indirect relationship
between two events. Since errors in that respect are to be expected, it is
important to analyse the influence of the graph topology on the obtained
probabilities.

Lemma 3.6 below gives a rather pessimistic bound on the impact of an ad-
ditional edge in the graph. It essentially states that adding edges can only
increase the probabilities P, but that this increase is also bounded by the
probability of the edge itself. If, however, the latter probability is large (e.g.,
0.9 or even 1), then this statement is no longer useful.
Lemma 3.6. Let G = (V,E) be a dependency graph, and G′ = (V,E′) be the
same graph with one (any) additional edge e. Then for any two nodes α, β ∈ V ,

P[α G β] ≤ P[α G′ β] ≤ P[α G β] · (1− pG′(e)) + pG′(e).

Proof. The first inequality follows readily from the fact that additional edges
can only increase probabilities. The second inequality can be inferred from

54 Chapter 3. Risk dependency model

conditioning on the presence of the edge e:

P[α G′ β] = P[α G′ β | ¬e] · (1− pG′(e)) + P[α G′ β | e] · pG′(e)
≤ P[α G β] · (1− pG′(e)) + pG′(e)

since P[α G′ β | ¬e] = P[α G β] by assumption on G and G′.

Instead of analysing the situation for a general graph, one can come back
to the original problem. However, even for triangular relationships of the
form A → B → C,A → C (that correspond exactly to the direct/indirect
relationship problem mentioned above), we did not manage to find a better
estimate for the above.

3.4.3 Varying edge probabilities

Once the graph structure is fixed, the next step consists in determining the
edge probabilities. As the previous process, this task is subject to arbitrari-
ness of the risk assessor. Indeed, there is no intuitive difference between a
probability of 75% and 70%. However, Lemma 3.7 states that small changes
in the input data also reflect in small changes in the output data. In other
words, small errors will not be unexpectedly strengthened and create huge
deviations in the output.
Lemma 3.7. LetG = (V,E, p) be a dependency graph with probability map p. Let
e ∈ E be any edge. Consider the graph G′ = (V,E, p′) that entirely corresponds
to G except for p′(e) 6= p(e). Then for any α, β ∈ V ,

|P[α G β]− P[α G′ β]| ≤ |p(e)− p′(e)|.

Proof. Note that G and G′ only differ by the probability value for e. There-
fore, when conditioning on the presence of e, it actually holds that

P[α G′ β | e] = P[α G β | e],

and similarly for P[α G′ β | ¬e]. Moreover,

P[α G β] = P[α G β | e] · p(e) + P[α G β | ¬e] · (1− p(e))
= c1 · p(e) + c0 · (1− p(e)),

for constants 0 ≤ c0, c1 ≤ 1. Similarly for G′,

P[α G′ β] = c1 · p′(e) + c0 · (1− p′(e)).

The proof follows from

P[α G β]− P[α G′ β] = c1 · (p(e)− p′(e))− c0 · (p(e)− p′(e))
= (c1 − c0) · (p(e)− p′(e))

and from the fact that |c1 − c0| ≤ 1

3.5. Building dependency graphs 55

In extreme cases, an error of 10% for the input will also result in an error of
10% for the output. It is, for example, the case for the very simply depend-
ency graph consisting of only A→ B.

However, in practise, graphs are rather complex. In fact, the more paths
exist between two nodes, the less influence estimation errors will have on
the overall outcome. In other words, the error estimated by Lemma 3.7 will
be even smaller.

3.4.4 Varying likelihoods and impacts

A final question addresses how uncertainties in the likelihood or impact
estimations of risk scenarios reflect in the computed risk. Whereas the two
previous sections deal with the graph structure, this issue only concerns the
risk formula (3.2):

∑
α∈ante(σ)

 ∑
v∈rt(VG)

P[v α] · L(v)

 ∗ I(α).

It is to be observed that the risk formula above depends bilinearly on the
likelihoods and impacts of (a selection of) risk scenarios. Uncertainties in
the input (I, L) thus reflect linearly in the output.

Furthermore, the nature of the bilinear coefficient (which happens to be a
probability, and thus bounded by 1), guarantees that these uncertainties
appear in the risk only to a limited extent. For example, if the likelihood is
assessed with an error of ±0.1/y, then the resulting risk has an error of at
most ±0.1I/y.

Lastly, the influence of a single error is reduced even further as the de-
pendency graph grows. Indeed, since the summation in (3.2) goes over all
α ∈ ante(σ), each term contributes to the total sum only to a limited extent.
In fact, if the weightings are of the same order of magnitude (as recommen-
ded in Section 3.2.3), and dependency graphs are not too extreme (in the
sense that all causal chains are more or less equally long), then the probab-
ilities P[α β] are also of the same order of magnitude. In consequence,
each term in (3.2) contributes roughly 1

|ante(σ)| to the total risk. The larger
the graph, the larger the set of antecedents (causes), and thus the smaller
the influence of errors in the output.

3.5 Building dependency graphs

When confronted with the task of creating a dependency graph, risk as-
sessors might not know where to start. The objective of this section is
to provide guidance on identifying relevant assets, intermediate security
events, and finally the causal relationships that makes up such a depend-
ency model.

56 Chapter 3. Risk dependency model

INFORMATION BUSINESS PROCESS

APPLICATIONFLOW

SERVICE

HUMAN RESOURCE

DEVICE

NETWORK

B
U

SI
N

E
SS

L
A

Y
E

R

FU
N

C
T

IO
N

A
L

L
A

Y
E

R

O
P

E
R

A
T

IO
N

A
L

L
A

Y
E

R

P
H

Y
SI

C
A

L

L
A

Y
E

R

holds
required

by pr
ov

id
es

hosts

ho
st

s

hosts

required
by

m
anages

provides

hosts

provides
required by

se
nd

s

FIGURE 3.11 – Class diagram representing the taxonomy of
assets involved in a risk analysis, grouped by layer. Read

an edge ‘c1
predicate−−−−→ c2’ as ‘c1 predicate c2’.

To start, a taxonomy is presented that defines a systematic approach of go-
ing through the scope of a risk analysis, so as to determine all relevant assets
for the dependency graph.

3.5.1 Taxonomy

Most (yet not all) security events are related to a physical or digital asset.
For this reason, it makes sense to group assets facing similar threats, so as to
express the dependencies between asset classes as causal relations between
threats acting upon them. For instance, the natural dependence of sensitive
data on the confidentiality of its database is contained in the statement that
threats to any software also put any data at risk, that is managed by the
latter.

The following asset classes have been identified. Figure 3.11 shows the
same asset types together with their relationships in terms of risk; as for
the dependency model presented in Section 3.2, an edge α → β denotes
that an incident in α can cause another incident in β.

• A Service is an internal or external supporting or maintenance unit. It
is typically in charge of the well-functioning of the internal processes
of the organisation. Examples include IT, HR, physical security, or
external dependencies such as internet service providers and subcon-
tractors.

• A Human resource is any individual, group of individual, or job posi-
tion that is particular interest for an organisation. Examples include

3.5. Building dependency graphs 57

system administrators, members of management staff (CxO’s), heads
of department, etc.

• A Network is a closed environment of interconnected devices. Com-
munication to the outside is possible, but subject to rules (often im-
posed by a firewall). Compromising a network amounts to comprom-
ising the flows provided by devices inside that network.

• A Device is any physical hardware. Devices are subject to mechanical
damage and physical access.

• An Application is the functional (software) counterpart of a device.
Unlike a device, an application is threatened by software vulnerabilit-
ies and remote attacks. The idea is to separate the soft- and hardware
layer, since both are exposed to different risk scenarios.

• A Flow transports data from one application to another over a net-
work. Flows can be manipulated/blocked and tapped.

• Information comprises all kind of data, including raw data contained
in a database, keys, passwords and certificates. Information can be
destroyed, be tampered with or leak.

• A Business process consists, very abstractly, in a goal that an organ-
isation is pursuing. It can represent a department, a service that is
provided to externals (e.g., customers), compliance, or similar.

When designing a dependency graph, this taxonomy helps in determining
the assets in a exhaustive way. It is recommended to start at the business
layer and move on downwards in the taxonomy, following the relationships
depicted in Figure 3.11. The procedure is the following.

1. For each asset class, risk assessors should first create a list of all related
assets that are relevant for a risk analysis, i.e., which are important to
the organisation in questions, or have risks associated to them.

2. In a second step, possible security events should be determined for
each of the identified assets. A security event can be any fault, issue,
or problem that occurs for the asset in question, which is part of or can
give rise to a risk scenario. In order to systematically find all relevant
security events, one can go through the security properties of an as-
set (such as confidentiality, integrity, availability), and determine the
consequences when they are missing. Also see Table 3.2 for a list of
security aspects that are commonly considered.

3. Finally, the security events for each of these assets should be encoded
in the dependency graph, and be connected to their respective causes
via edges. As defined in Section 3.2, an edge α → β denotes the fact
that an event α may give rise to another event β.

Step 2 in the previous procedure can also be omitted, so that the depend-
ency graph contains assets as its nodes (instead of security events) and asset
dependencies as its edges (instead of causal relationships).

In such a case, the model can still be interpreted as a normal dependency
graph, if one equates a node to the totality of security incidents that can

58 Chapter 3. Risk dependency model

Symbol Property Scenarios
Alt Long-term

availability
Permanent loss, deletion, theft, or de-
struction. Can be caused accidentally or
intentionally.

Ast Short-term
availability

Temporary unavailability, downtime
(hard-/software), or sickness (human
resources).

C1 Secrecy Theft or disclosure of secret information.
May result in fraudulent access.

C∗ Confidentiality Public disclosure of confidential inform-
ation (such as personal data). Often has
impact on privacy. Can be accidental or
intentional.

Iin Intrinsic integ-
rity

Dysfunction, bug (hard-/software), data
corruption, dishonesty or corruption (hu-
man resources).

Iex External integ-
rity

Manipulation, intrusion (systems and
networks), social engineering (human re-
sources). Can originate from internal staff
or from externals.

TABLE 3.2 – Common security aspects that help in determ-
ining security events.

possibly occur to the asset represented by the node. While the pure as-
set dependency graph constitutes an oversimplified variant of the original
model, it still excels by its simplicity and the small amount of work required
to elaborate it.

3.5.2 DepOT

To demonstrate the compatibility of the model with casual risk methodolo-
gies, a small tool (‘DepOT’) has been developed in the context of the thesis,
which synchronises a dependency graph with TRICK10, an ISO 27005 com-
pliant risk methodology.

The web-based tool is written entirely in Javascript and HTML5, and pro-
vides drag-and-drop functionality to come up with a dependency graph
from nothing. Figure 3.12 shows a screenshot of the user interface.

In addition to saving and loading the graph to and from a JSON file, the
dependency graph can also be linked with the risk analysis tool ‘TRICK
Service’. That way, an existent risk analysis (that lacks dependencies) can
be imported into DepOT, which enables risk assessors to easily model the
dependency graph. If the risk analysis managed by ‘TRICK Service’ is up-
dated (e.g., new assets are added), the tool can also make these changes
reflect in the associated dependency graphs.

The DepOT tool is an example of a purely manual method to create a de-
pendency graph. Especially for large organisations, however, building such

10https://www.itrust.lu/trick-service/

https://www.itrust.lu/trick-service/

3.5. Building dependency graphs 59

FIGURE 3.12 – User interface of the DepOT tool.

a graph is tedious and repetitive, since many assets share the same threats.
To overcome the problem of redundant work, the next section presents a
semi-automated approach that generates a dependency graph from a small
set of rules (which still need to be elaborated manually).

3.5.3 Semi-automated generation

Dependency graphs can improve the readability of a risk analysis tremend-
ously, since they visually represent how assets or scenarios are linked to-
gether. However, as the graph grows in terms of nodes and edges, it also
loses some of its legibility. Figure 3.13 shows an example of a graph which
consists of so many nodes that the readability is entirely lost. Even worse,
since the probability map p needs to be manually estimated by an expert, a
large graph requires a considerable estimation overhead.

The fact that dependency graphs can quickly become large and complic-
ated constitutes an issue that needs to be addressed. Fortunately, the size
of the graph is often due to the fact that many assets share the same threats,
and thus give rise to a certain information redundancy in the graph. For
instance, an organisation may have several servers that serve different pur-
poses, but all of them feature the risk of prolonged downtime.

Instead of encoding the risk scenario for each server individually, a more
clever approach would be to encode it only once (for servers in general),
and copy the definition for each server identified in the risk analysis. The
main idea is then to use the taxonomy presented above to express risk de-
pendencies in terms of asset dependencies. For example, instead of encod-
ing the dependency

database server crash→ data loss,

the taxonomy specifies that

∀ server S, S crash→ loss of (data stored on S).

So, in particular it is true for S = database server.

60 Chapter 3. Risk dependency model

FIGURE 3.13 – Example of an overfull dependency graph.

Intuitively, one can think of the taxonomy as a template for dependency
graphs (as introduced in Section 3.2 above), that can be applied to all assets
of a specific type.

These risk dependency ‘templates’ are encoded in a simple mark-up lan-
guage that is based on the GraphViz11 DOT syntax. They are expressed as

"nodeA" -> "nodeB" [p = x];

which reads as

If nodeA occurs, it causes nodeB to occur with probability x;

where nodeA and nodeB are the IDs of the respective nodes in the depend-
ency graph, and x ∈ [0, 1]. The syntax is extended in such a way that the
node IDs can contain placeholders which match whole asset classes. Place-
holders are enclosed with angular brackets < and > and are of the following
form.

< assetclass >
< assetclass . selector . selector ... >
< assetclass # filter . selector ... >
< assetclass # filter . selector # filter ... >

where

• assetclass is one of net, dev, hr, svc, app, flow, inf, pro;
11GraphViz is an open-source graph visualization software. For more information on the

DOT language, see http://graphviz.org/content/dot-language.

http://graphviz.org/content/dot-language

3.6. The ‘Smart Grid Luxembourg’ use-case 61

• selector is one of these: held-inf, hosted-app, hosted-dev,
hosted-flow, managed-app, provided-flow, provided-pro,
provided-svc, requiring-app, requiring-svc, sent-inf, de-
pending on the context. The selector serves as place holder for de-
pendent assets, and thus allows to navigate through the class model
depicted in Figure 3.11;

• filter is a keyword restricting the choice of selected nodes (e.g. #fw
for only selecting firewall devices, #key for only selecting encryption
keys).

Moreover, if there are placeholders on both sides of the ‘->’, the asset class
on the right hand-side shall match the one on the left hand-side.

For instance, the following line encodes the fact that if an attacker has full
control over any application, there is a 10% chance that he gets access to
any associated secret keys.

"<app>.control" -> "<app.held-inf#key>.leak" [p = 0.1];

In order to be able to deduce the final dependency graph from the defin-
itions, an inventory describing the assets themselves needs to be created.
Note that organisations usually have such an inventory, especially if they
have a security management systems. The inventory itself can be encoded
as a directed graph in the DOT syntax as well.

Defining assets
"inf:cdat" [label = "Customer data"];
"app:db" [label = "Database"];

Defining relations
"app:db" -> "inf:cdat" [label~=~"held-inf"];

Node IDs should be prefixed by the asset class (e.g. inf: for information
assets) so that the class can be inferred from the ID. Edge labels show the
kind of relation which the first (left) node maintains to the second (right).
The relation is expressed in terms of one of the selectors from the list above.

Once the dependencies have been defined and the inventory has been es-
tablished, both inputs can be programmatically combined to yield the de-
pendency graph – the approach is described in Algorithms 2 and 3.

3.6 The ‘Smart Grid Luxembourg’ use-case

The ‘Smart Grid Luxembourg’ (SGL) project aims at innovating the elec-
tricity and gas transmission networks by deploying a nation-wide ‘smart’
grid infrastructure. By law, starting from July 2016, every new electricity
or gas meter deployed in Luxembourg will be a smart meter. At the end
of the project, by 2020, the system will count 380.000 smart meters. In the
following, the concepts presented in Section 3.5.3 are applied to SGL.

62 Chapter 3. Risk dependency model

Algorithm 2 Generate dependency graph from template and inventories

Input: Template dependency graph T = (VT , ET , pT)
Input: Inventory graph I = (VI , EI , sI), where sI(e) denotes the selector

represented by an edge e (defined in Section 3.5.3)
Output: Dependency graph G = (V,E, p)

1: V ← ∅
2: for vt ∈ VT do
3: V ← V ∪ resolve(vt, I,nil)
4: end for

5: E ← ∅
6: p : V × V → [0, 1], (u, v) 7→ 0
7: for et = (ut, vt) ∈ ET do
8: for u ∈ resolve(ut, I,nil) do
9: for v ∈ resolve(vt, I, u) do

10: E ← E ∪ {(u, v)}
11: p(u, v)← pT (ut, vt)
12: end for
13: end for
14: end for

15: return (V,E, p)

Algorithm 3 resolve(vt, I, c) used in Algorithm 2: Resolve a template node
to a set of nodes in the final dependency graph.

Input: Template node vt ∈ VT that shall be resolved
Input: Inventory graph I = (VI , EI , sI) as in Algorithm 2
Input: Context node c ∈ V or nil
Output: Set of resolved nodesR in the dependency graph

1: /* For starters, get all nodes that match the asset class */
2: S ← {x ∈ VI | assetclass(x) = assetclass(vt)}
3: if c is not nil then
4: S ← S ∩ {c}
5: end if
6: R ← S

7: /* Navigate through the model by processing selectors one-by-one */
8: for s ∈ selectors(vt) do
9: S ← ∅

10: /* Apply selector to each of the found nodes */
11: for r ∈ R do
12: S ← S ∪ {x ∈ VI | sI(r, x) = s}
13: end for
14: R ← S
15: end for

16: returnR

3.6. The ‘Smart Grid Luxembourg’ use-case 63

Internet
Firewall

Field
Firewall

Internal
Firewall

Switch

Switch

Switch

Zone 1

Zone 2

Zone 3

to DSO’s

to field
devices

INTERNAL NETWORKS

FIELD NETW.

INTERNETDMZ

FIGURE 3.14 – Anonymised network diagram of the cent-
ral system architecture showing devices and the their affin-
ity to the respective networks. DSO denotes a Distribution
System Operator; DMZ stands for DeMilitarised Zone; field

devices include data concentrators and smart meters.

Root CA 1

Web Services CA Certificates

Users CA Certificates

Root CA 2

Manufacturer CA Manufacturer
Certificate

Field Devices
Communication CA Certificates

Central System
Communication CA Certificates

FIGURE 3.15 – Anonymised hierarchy of certificates used in
the smart grid. CA denotes a Certificate Authority.

3.6.1 Compiling a dependency-aware inventory

In a first phase, the inventory of all relevant assets has been compiled, cov-
ering hard- and software, physical wiring, network flows, database tables
and their contents, certificates, other kinds of information and the services
provided by the various applications. Figures 3.14, 3.15 and 3.16 provide
anonymised variants of the complete, confidential graphs.

The Luxembourgish smart grid manages its own Public Key Infrastructure
(PKI), so as to guarantee complete independence of any external providers.
The certificates in a PKI bear a natural dependency hierarchy with them,
in the sense that compromising any certificate authority (CA) permits to
reproduce any dependent certificates and thus, ultimately, to undermine
an encrypted communication channel.

64 Chapter 3. Risk dependency model

Enterprise Service Bus

Business application

Inventory application

SIEM

Asset Management

Smart Meter Management

Firmware Update

FIGURE 3.16 – Excerpt of the matching between applica-
tions (solid boxes) and services (dashed boxes). SIEM de-
notes the Security Information and Event Management appli-

ance.

3.6.2 Threat model

The second phase consisted in identifying all possible threats faced by the
system and encoding them properly in a dependency graph (with place-
holders).

The elaborated threat model is based, on the one hand, on other research
work by Grochocki et al. [122] and ENISA [123], who determine the threats
faced by a smart grid infrastructure. On the other hand, the ‘Smart Grid
Luxembourg’-specific dependencies could be extracted from former risk
analyses and from documentation material that was kindly provided by
Luxmetering.

It turns out that a large portion of the threats can be expressed as a tuple
consisting of an asset (class) and an endangered security property (such
as confidentiality, integrity or availability). For instance, the generic risk
scenarios faced by applications comprehend malfunctioning, unauthorized
access (e.g. by faking login credentials), lose of control (e.g. due to code
injection) and denial of service. The remaining risk scenarios, which are
not directly associated to an asset (such as distributed denial-of-service or
fire incident), are added as singleton nodes to the graph.

3.6.3 Generating the dependency graph

Once the threat model was set up, the final dependency graph could be
programmatically derived from the inventory. For this purpose, a Python
implementation of Algorithm 2 reads in the dependency definitions and
applies them to the inventory (by replacing all placeholders by the respect-
ive IDs of the assets in the inventory).

Algorithm 1 permits then to identify all root causes, that is to say, to find
those events which are ultimately responsible for all risk scenarios in the
threat model. Moreover, it determines the probabilities that each of these
root causes eventually leads to each of the other events by cascading effect
– thus computing the probabilities P[α → β] involved in Equation 3.2 for
determining the total risk.

3.6. The ‘Smart Grid Luxembourg’ use-case 65

3.6.4 Results

The inventory consists of 12 different devices (each with multiplicity12), 9
networks, 37 applications, 43 flows, 14 data sets, 26 certificates, 9 sets of
credentials and 18 services. The generic dependency graph encoding the
threat model (with placeholders) has 53 nodes and 104 edges. The time
needed for conducting the risk analysis for Luxmetering is composed as
follows:

Gather asset inventory from documentation 18 h (2 md)
material and past (static) risk analyses
Define (generic) dependency graph 30 h (4 md)
Estimate P and L 9 h (1 md)
Fine-tuning of the model 7 h (1 md)
Total 64 h (8 man-days)

Since the generic dependency graph contains (almost) no SGL-specific in-
formation, it can be easily recycled for other, similar use-cases.

Computing the full final dependency graph (consisting of 502 nodes and
1516 edges) took 3.79 seconds on a 2.0 GHz dual-core processor (which in-
cludes the parsing time of the inventory files). The probabilities P[α → β]
have been computed using a C# implementation of Algorithm 1 (the chosen
parameters were ε = 0.1 and δ = 0.01); it is composed of 502 rows (as
many as nodes) and 25 columns (root causes), comprising thus a total of
12550 probability values. Its computation took 39.14 seconds (which is
3.11 ms per value) on the same machine.

The following 25 root causes were read off the model:

• phishing, social engineering,

• bad input validation, XSS, CSRF, broken authentication, buffer over-
flow,

• DDoS, jamming, smart meter intrusion, physical access to facility,

• data center incidents (fire ...), device construction faults, mechanical
attrition

• and 11 SGL-specific attacks.

The most critical risks identified by the algorithm were the following:

• manipulation of billing data,

• disclosure of customer data, requiring reporting to authorities and
informing customers,

• power outages,

• forensics,

• loss of smart meter configuration data, which involves reconfiguring
all 380.000 devices, and

12Some devices exist in redundant fashion (switches, servers) or in copies (smart meters).

66 Chapter 3. Risk dependency model

• loss of billing data.

In total, a yearly risk of an order of magnitude of 300 k€ was estimated.
The detailed risk analysis cannot be published, though, for confidentiality
reasons.

3.7 Extensions and special cases

3.7.1 Boolean formulae

The dependency graph is based on the concept of causality; that is, the par-
ents of a node represent alternative causes, each of which can engender the
consequential scenario. Formally, the dependency relationship of a vertex
v0 ∈ VG and its parent nodes Pv0 ⊂ VG can be expressed as a boolean for-
mula

ρ(v0) :=
∨

x∈Pv0

Ix,

where Ix denotes the boolean variable encoding whether the event x occurs
or not.

The beauty of Algorithm 1 lies in the fact that it does not depend at all on
the topology of the graph or on the form of the dependencies. In fact, gen-
eralising the ‘OR’ relations to arbitrary boolean expressions ρ(·) is straight-
forward and does not change the main lines nor the proof of the algorithm.

In contrast, the running time will increase by much, in general. Intuit-
ively, it is easy to determine whether a parent node triggers a child, for
it is enough to verify if the corresponding edge is present. However, for
arbitrary boolean formulae, more advanced theory (namely boolean satis-
fiability [124]) is required to decide whether a node is caused by its ante-
cedents, or not. In the worst case, the whole graph needs to be evaluated,
which may take a long time.

More precisely, the comparatively good running time of Algorithm 1 was
due to the fact that evaluating the probabilities P[α β] can be imple-
mented in an efficient way (line 10 of Algorithm 1). In fact, it is enough to
verify that the path from α to β is present. The underlying problem13 for the
boolean-formula variant, however, isNP-complete [124], which means that
there does not exist an efficient algorithm. In consequence, even determin-
istic (and error-free) algorithms could outperform the algorithm presented
in this thesis, which renders the latter useless.

Moreover, a second issue needs to be taken care of. In fact, it may be the case
that a recursive search is no longer possible; for example, Figure 3.17 shows
an endless loop in the evaluation of the boolean formula, which cannot be
easily resolved using logic. In fact, in order to evaluate A∧X , one needs to
evaluate both parents, including X and thus Y ∧ B and Y . But Y can only

13Given an arbitrary boolean formula ρ on variables x1, . . . , xn, the SAT problem consists
in determining whether there is an assignment α ∈ {0, 1}n such that ρ(x1 := α1, . . . , xn :=
αn) = 1.

3.7. Extensions and special cases 67

A A ∧X

Y

X

Y ∧B B

FIGURE 3.17 – Endless loop in dependencies for general
boolean formulae.

Hardware failure

Attrition

Anticipated
replacement

Health
monitoring

Construction fault

Purchase
quality

hardware

Destruction

Intended

Lock hard-
ware room

Steal room key

Accidental

FIGURE 3.18 – A sample attack–defence tree. The dashed
nodes correspond to defences that apply to the attack step

above them.

be evaluated if A ∧X is known already. It is not so clear how to proceed in
such a case: one solution is to set the likelihood to zero for all non-reachable
nodes, because in fact the cycle can never be entered; however, this might
not be sensible in all use-cases.

3.7.2 Attack defence trees

Attack trees were designed to understand an attack (or more generally, a
risk scenario) and identify its origins, and thus constitute, to a certain ex-
tent, a special case of dependency graphs. While deterministic computa-
tions in the latter are hard and potentially take a lot of time (see Section 3.3),
attack trees own much more structure and simplify the task by much. For
instance, determining the probability that an attack succeeds is straight-
forward and can be achieved in an efficient way [125].

Since computations in attack trees are easy, more advanced concepts can
be added, such as determining the optimal mediation for an attack, and its
effectiveness. The generalised model is often referred to as attack–defence
trees [126], since they do not only include the intermediate steps of the
global attack, but also the respective defensive mechanisms. The latter
model adopts the game-theoretic concept of two two players, opponent and
proponent, who alternately try to defeat each other [127]. Figure 3.18 shows
an example of an attack–defence tree.

Recent research work by Gadyatskaya et al. [49] shows how attack–defence
trees can be combined with existent libraries (such as ISO/IEC 27002 [128])

68 Chapter 3. Risk dependency model

to determine the security controls an organisation shall implement. Indeed,
when a given set of controls is implemented, it will reduce the success prob-
ability of the attack, and thus the overall risk, but it also comes at a certain
investment (namely implementation and maintenance costs of the respect-
ive solutions). The related optimisation problem consists in finding those
controls that have the best return on investment.

In their paper ([49]), the authors semi-automatically embed the security
controls from ISO/IEC 27002 [128] as defence nodes into an existing attack
tree. A simple brute-force program then iterates over all possible combin-
ations of implementing those security controls, trying to find the strategy
which maximises the return on investment. They have also developed a
tool, ‘ADTop’, to demonstrate the work flow described in their paper. How-
ever, such an approach is very resource-intensive, and thus only works for
very small input data. Instead, in the following, a different solution is ad-
opted.

Definitions

An attack–defence tree is defined [126] as a tree graph consisting of two
kinds of nodes:

• attack nodes, characterised by a name and a success probability p ∈
[0, 1];

• defence nodes, characterised by a name, an effectiveness e ∈ [0, 1]
and a cost c ≥ 0.

The parameters have the following meaning:

• The success probability expresses the likelihood that the attacker suc-
ceeds in accomplishing the attack. If the node is a leaf, the success
probability is part of the input. Otherwise, it is computed according
to the rules defined below.

• The effectiveness expresses the degree (as a factor) to which the coun-
termeasure reduces the attack probability. The value 0 indicates that
it is entirely useless, 1 represents complete mitigation of the attack.
The effectiveness is part of the input.

• The cost is expressed in financial terms and represents the cost en-
gendered by the implementation of the defence. The cost is also part
of the input.

The root node of an attack–defence tree is always an attack goal. Attack
nodes can have subordinated attacks (that add more refinement) and de-
fences (that defend against this attack). Defence nodes can only have sub-
ordinated attacks (that weaken the countermeasures).

Moreover, the set of child attacks can be ‘disjunctive’ or ‘conjunctive’, mean-
ing that the parent attack consists of achieving any or all of the child attacks,
respectively. Similarly, the set of child defences can be ‘disjunctive’ or ‘con-
junctive’, meaning that any or all of the defences are required to protect from
the attack, respectively.

3.7. Extensions and special cases 69

Assumptions.

All attacks and defences in the tree are assumed to be independent. This
assumption is generally made for attack (defence) trees, in order to simplify
the computations. It might not reflect reality; dependency graphs have to
be considered in the other case, instead.

Defences are allowed to protect from multiple attacks, possibly with differ-
ent effectiveness values. In that case, however, they are implemented on
a everywhere-or-nowhere basis, meaning that if it is implemented for one
attack, it is automatically present for all applicable attacks.

Rules of calculation

For an attack α, let p(α) denote its success probability. For a defence δ, let
c(δ) denote its cost, and e(δ) its effectiveness.

When no defence mechanisms are present, and assuming that all attacks
in the tree are independent, the following basic probability rules hold for a
non-leaf attack node α.

p(α) =

∏
i

p(i) if α is conjunctive

1−
∏
i

(1− p(i)) if α is disjunctive,

where i iterates over all child attack nodes of α. If a defence δ is in place, by
definition of the effectiveness, it reduces the success probability by a factor

1− e(δ).

Similarly, if a set of defences ∆ is in place, the success probability will be
reduced by 1− e(∆), where

e(∆) :=

∏
δ∈∆

e(δ) if ∆ is conjunctive

1−
∏
δ∈∆

(1− e(δ)) if ∆ is disjunctive,

assuming that defences reduce the success probability independently from
each other. So in summary, if a set ∆ is implemented for an attack α, the
recursive computation rule is given by

p(α) = (1− e(∆)) ·

∏
i

p(i) if α is conjunctive

1−
∏
i

(1− p(i)) if α is disjunctive.
(3.5)

The recursion ends at the leaf nodes, for which the probability is fixed and
part of the input.

70 Chapter 3. Risk dependency model

Optimisation problem

Implementing a defence δ reduces the success probability, but also comes at
a cost c(δ). It is not a-priori obvious whether it is profitable to implement a
specific defence, because it could be wiser to select one or several others that
come at a lower cost. The problem thus consists in finding those defences
that reduce the success probability by a decent amount, but still come at a
reasonably low cost.

In order to solve this multivariate optimisation problem, the Return On
Security Investment (ROSI) is chosen as score function. It is defined as

ROSI := impact · (initial probability− final probability)︸ ︷︷ ︸
return (risk reduction)

− sum of costs,︸ ︷︷ ︸
investment

(3.6)

where ‘initial’ and ‘final’ are understood to be before and after the imple-
mentation of all defences. A strategy is said to be optimal if it maximises
the ROSI.

For a set of defences ∆, the optimisation problem then reads as

Find a strategy x : ∆→ {0, 1}
that maximises ROSI(x),

where x(δ) = 1 denotes that defence δ should be implemented, and x(δ) = 0
denotes that it should not.

Branch and bound algorithm

The optimisation problem can be solved in several ways. One possibility
would be to turn ROSI(x) as defined in Equation (3.6) into a linear func-
tion and apply standard linear programming algorithms [129] on it. Such
an approach has been proposed and described by Roy et al. [130]. While
this technique works in theory, the size of the linear program exceeds the
practical limits of feasibility very quickly.

The proposed algorithm is given in Algorithm 4 and basically enumerates
all possible combinations of applying defences. However, it skips all sets
of combinations that are known not to contain any solutions. Note that it
will never skip a valid combination; this is proved below. The algorithm is
invoked with Dp := ∅ and an empty map x : ∅ → {0, 1}:

xopt = BNBA (T,D, e,Dp, x) .

The attack–defence tree T , the set of defencesD and the effectiveness values
e remain constant throughout the algorithms.

Note that if it was not for lines 1–3, Algorithm 4 were just a recursive brute-
force algorithm that tries out all possible ways of selecting defences. The
innovation (and performance optimisation) lies in the lines 1–3.

3.7. Extensions and special cases 71

Algorithm 4 Branch and bound algorithm BNBA

Input: Attack–defence tree T with attack nodes A
Input: Set of defences D
Input: Effectiveness values e : A×D → [0, 1]
Input: Set of already processed defences Dp ⊆ D
Input: Partial selection strategy x : Dp → {0, 1}
Output: Selection strategy xopt that maximises ROSI(·)

1: if there is δ ∈ Dp that is no longer profitable (cf. Algorithm 5) then
2: abort current recursion step
3: end if

4: if Dp = D then
5: v ← ROSI(x)
6: if v is largest ROSI seen so far then
7: xopt ← x
8: end if
9: else

10: δ ← any defence not in Dp

11: Dp ← Dp ∪ {δ}
12: ’ Try selecting the defence
13: x(δ)← 1
14: BNBA(T,D, e,Dp, x)

15: ’ Try not selecting the defence
16: x(δ)← 0
17: BNBA(T,D, e,Dp, x)

18: ’ Remove δ again; this allows the re-use of Dp among all recursive
calls

19: Dp ← Dp \ {δ}
20: end if

72 Chapter 3. Risk dependency model

Algorithm 5 Determine if a defence is profitable

Input: Defence δ
Input: Cost c(δ) of defence δ
Input: Impact I of risk scenario
Input: Partial selection strategy x : Dp → {0, 1}
Output: true if δ is profitable, false otherwise

1: if x(δ) = 0 then
2: return true
3: else
4: ’ Extend x to all of D
5: x(δ′)← 0 for all δ′ ∈ D \Dp

6: x(δ)← 0
7: v0 ← ROSI(x)

8: x(δ)← 1
9: v1 ← ROSI(x)

10: ’ δ is profitable iff the residual risk is lower when δ is implemented
11: if v1 · I + c(δ) < v0 · I then
12: return true
13: else
14: return false
15: end if
16: end if

The idea is to skip a recursion step whenever it is known that it cannot yield
a viable combination of selecting defences. The skip criterion in line 1 ori-
ginates from the following observation. Equation (3.5) reveals that when-
ever a defence is added to the attack–defence tree, the success probability
of any attack node will either decrease or at least remain the same. In par-
ticular, the same is true for the global success probability of the tree.

Note that whenever the algorithm enters a recursion step, all non-processed
defences are set to ‘unselected’; this is assured by the start condition and
line 16. Thus, all later (i.e. deeper) recursion steps will end up with a lower
or equal overall success probability for the attack–defence tree. By con-
sequence, once the probability is no longer sufficiently reduced to cover the
costs (i.e., once a defence is no longer profitable), it will not be profitable
for all later combinations, either. Which means that all subsequent combin-
ations are known to be invalid a-priori, so they can be skipped.

Performance

The performance gain depends on the structure of the attack–defence tree.
A stress test was conducted on a tree consisting of 81 nodes and 90 defences,
each of which is applied to every attack. The resulting attack–defence tree
has thus 81 · 90 = 7290 defence nodes. Note that in a concrete case, not
every defence would be applicable for every attack, and by consequence,
the problem would be simpler. The effectiveness values e : A ×D → [0, 1]
were chosen randomly.

3.8. Conclusion 73

If one comments out lines 1–3 in Algorithm 4, one obtains a pure brute-
force algorithm that tries out all 290 combinations. Executing it for the first
220 combinations took 107.42 seconds in our implementation; so it would
need 1.27 · 1023 seconds (4 · 1015 years) to finish. On contrast, the optimised
variant terminated within 895 seconds (15 minutes), having evaluated only
1, 748, 272 combinations (which is approximately a 10−21 part).

Algorithm 4 can be implemented in such a way that it uses constant memory
in the course of its execution. This can be achieved by using a stack data
structure for Dp and a fixed-size array for x; both Dp and x are shared
among all recursive calls of the algorithm. In our implementation, the mem-
ory usage was approximately 20 MiB for the tree described above.

The tests were conducted on a standard laptop with a i7-6700HQ processor
(2.6 GHz). Our implementation of the algorithm ran on a single core, al-
though it can be modified in such a way that it supports multi-threading,
as well.

3.8 Conclusion

This chapter introduced the dependency graph as a simple, visually speak-
ing, and lightweight tool to model relationships between risk scenarios or
assets. Since the graph is not assumed to be acyclic, the model can also
be used in environments with interdependencies, such as in industrial con-
trol systems or critical infrastructures. In that sense, it is more general than
competing models, and yet it can perfectly be used in parallel to most risk
methodologies.

Apart from dependency graphs themselves, a major contribution of this
chapter is Algorithm 1, which computes the risk described by such a graph
in a provably efficient way. Indeed, as it turned out, any deterministic ap-
proach that we could think of is computationally too complex to serve as a
basis for any usable algorithm, since their running time is exponential in the
number of nodes and edges. Experiments reveal that this rapidly becomes
a problem already for small graphs (|V | ≥ 30).

In order to help risk assessors building such a dependency model, a tax-
onomy has been introduced to ease the elaboration of a graph, and to in-
crease the consistence of the work. Moreover, a procedure is provided that
describes how a dependency model can be automatically derived from an
existing asset inventory. That way, the model cannot only adapt to changes
of the threat landscape, but also incorporate modifications of the risk con-
text in real time.

The model was developed with the intention of creating a tool that con-
tinuously computes and monitors the current risk faced by an organisation,
taking all dependencies into account. The next chapter will be in charge for
embedding the model into a risk monitoring framework, that allows it to
be automatically updated when the risk situation changes in the field.

75

Chapter 4

Risk monitoring

4.1 Introduction

When it comes to securing a system or an entire organisation, it is crucial
that security is a thought-out process, and does not only consist in deploy-
ing a tool or putting procedures into place. Instead, a good security strategy
covers mechanisms that act in every stage of a hazard: namely before it ar-
rives (preventive), when it occurs (detective, corrective), and after it has im-
pacted the system (limitative).

In all cases, it is however not enough to only have such defences in place.
Indeed, if they only work sporadically, or do not get triggered at all, the sys-
tem is effectively vulnerable. Therefore, the most important thing for any
successful security strategy is information; security responsibles should
own, at all time, an exhaustive view of the security level in an organisa-
tion. Indeed, the earlier an incident is detected, the better it can get mitig-
ated. And the longer a hazard or attack remains undetected, the longer an
organisation is exposed to an increased risk.

Logging, monitoring solutions, and security information and event man-
agement (SIEM) systems thus constitute an integral part of a good security
strategy. However, such sources of information are typically very technical
and require decent knowledge of the underlying technology. Security man-
agers, in contrast, adopt a high-level view and do not necessarily under-
stand the extent of all possible error codes yielded by an appliance. This is
even more applicable to industrial control systems, where status codes can
be cryptic or undocumented.

4.1.1 Motivation

This chapter aims at creating the link between the high-level management
view of risk, and the low-level and technical monitoring solutions. Since
risk analyses already constitute a helpful tool for identifying major security
issues in an organisation, the following sections will deliberate how this in-
formation can be turned into notions of risk, ready to be imported into the
risk analysis. That way, the latter provides a holistic view for both organ-
isational and technical issues.

Since logs are produced in real-time, the risk analysis essentially turns into
a risk monitoring tool. That way, it does not only display the current risk

76 Chapter 4. Risk monitoring

Context establishment

Risk identification Dependencies

Risk analysis Dep. graph

Risk evaluation

Risk treatment

Risk acceptance

R
is

k
m

on
it

or
in

g

R
is

k
co

m
m

un
ic

at
io

n

R
is

k
as

se
ss

m
en

t

FIGURE 4.1 – Risk monitoring making use of the depend-
ency model to automatically update the risk estimates in

real-time.

at any moment, but it also regards technical issues in the context of the
entire organisation. This will assist decision-makers in correctly assessing
the criticality of an incident when it occurs. Moreover, such a ‘dynamic’
risk analysis allows risk assessors to simulate a risk scenario and identify
the weakest part of their organisation.

4.1.2 Objective

The previous chapter has paved the way for a solid risk model, which ad-
ditionally accounts for all dependencies at various levels. In the following,
the very same model will be used to continuously update a risk analysis,
as new real-time information is available about the monitored organisation.
Figure 4.1 shows the subject of this chapter in the context of ISO 27005.

Whereas the model itself is generic enough to work with most risk meth-
odologies, the risk monitoring platform will be tightly bound to a risk ana-
lysis tool. This is due to the fact that the dependency model needs to be
able to interact with the latter, in order to update the risk analysis that is
conducted with it. This thesis will therefore focus on a specific tool, namely
TRICK Service1. It is to be noted, however, that the concepts developed in
the following are not very restrictive and can also be applied to other risk
management tools (possibly after source code modifications).

Particular care needs to be taken when importing logs, events, or alerts into
a risk management platform. In fact, the necessary information usually
originates from the field, a segregated network, an industrial environment,

1https://www.itrust.lu/trick-service/

https://www.itrust.lu/trick-service/

4.2. Measure risk in the field 77

or even from devices deployed outside the organisation’s premises (which
is the case for the smart grid, for instance). In such cases, any additional
communication channel from and to the internal network constitutes a non-
negligible risk of intrusion. Section 4.3 will present a non-intrusive strategy
that does not expose either the internal network, nor the (possibly critical)
field environment at a higher risk than usual.

Another major issue that needs to be addressed is the question how all
kinds of status information (logs, errors, events, alerts, etc.) can be under-
stood in homogeneous terms of risk. Indeed, some notifications will increase
the risk level, while others already measure the risk level (e.g., likelihood
of an intrusion) themselves. Section 4.2 will thus take care of providing a
common denominator solution for the majority of cases.

4.1.3 Outline

This chapter is organised as follows.

• Section 4.2 addresses the fashion how risk is measured in the field.
Most importantly, it describes the translation process of alerts and no-
tifications into notions of risk.

• Section 4.3, in contrast, introduces the risk monitoring platform, and
specifies how the ‘measured risk’ is reported from the field to the said
platform.

• Section 4.4 then describes the link between the dynamically measured
risk and the dependency model introduced in Chapter 3.

• Finally, the entire platform with all involved components is presented
in Section 4.5.

• Section 4.6 deliberates further computations and simulations that can
be made to obtain a deeper insight in the weakest links of the organ-
isation.

• Ultimately, the chapter is concluded in Section 4.7.

4.2 Measure risk in the field

The intention of this section is to use the track records from existing se-
curity controls to infer the overall risk situation of the monitored system.
These controls cover a complete spectrum of security appliances; examples
include firewalls, load balancers, intrusion detection systems, spam filters,
anti-virus suites, memory watchdogs, server uptime watchers, and many
more. While some of these act as an active security guard, and others do
not, all of them generate some kind of output which informs the respons-
ible administrator about suspicious behaviour, which hints at a potentially
increased risk exposure.

78 Chapter 4. Risk monitoring

Risk, however, is a combination of multiple factors. As seen in Section 3.2.1,
it is caused by the simultaneous presence of an external threat, a vulner-
ability, and an actual impact. In contrast, a monitoring tool can typically
determine only one of these aspects. When reporting risk, one thus has to
account for the situation where each of these is observed independently.

Moreover, another problem with the information reported by the security
appliances resides in its heterogeneity. Not only do the several tools use a
different format, but they also monitor different quantities: whereas some
provide deterministic alerts which unambiguously state that a risk has oc-
curred (such as the detection of an intrusion), others measure the riskiness
of a situation (such as a high memory usage, or the availability of important
updates).

On the one hand, due to that diversity, a dedicated utility needs to be de-
veloped for every security appliance, that reads the status information or
log file, converts it into notions of risk, and reports it to the risk monitoring
platform. On the other hand, for maximum flexibility, the latter platform
should not depend on the security appliances in place. Therefore, it is un-
avoidable to define an intermediary notion of risk that covers all use-cases
mentioned above.

4.2.1 Common-denominator risk

When risk is reported, several things need to be taken care of.

First, for security and confidentiality reasons, the risk reporting protocol
should be unidirectional (also see Section 4.3 below). That is to ensure that
the risk monitoring agent acts completely passive, and cannot comprom-
ise the possibly critical field network. This implies, however, that the risk
monitoring platform cannot ‘ask’ the probes about their current status, but
it needs to wait until the latter tell it.

Second, the reported risk should have an intrinsic notion of decay. Indeed,
if an appliance observes suspicious behaviour, it will emit a corresponding
notice – however, it will generally not tell if the situation is under control,
again. There are a few exceptions to this, such as those that continuously
measure risk (e.g., memory usage watchers), but for the majority of tools
it should thus be possibly to specify a ‘time of validity’ for alerts when
reporting risk.

Then, some alerts are more critical than others. Log files usually use the
keywords ‘info’, ‘warning’, ‘error’, ‘critical’, etc. Available patches are often
rated with the so-called Common Vulnerability Scoring System2 (CVSS), a
number between 0 and 10, with 10 being the most severe. Intrusion detec-
tion systems may yield a level of confidence. In all cases, more critical alerts
should result in a higher risk.

Finally, as stated already, risk is defined as

risk = threat× vulnerability× impact.

2https://www.first.org/cvss/

https://www.first.org/cvss/

4.2. Measure risk in the field 79

2

4

6

8

10

time

risk

FIGURE 4.2 – Example evolution of a dynamically reported
risk factor.

Since some tools measure the exposure to threats, while others rate the ex-
ploitability of the system itself, that difference should also be accounted for
when risk is reported.

The proposed solution, which takes care of all of the criteria above, is the
following. Each of the three risk factors (threat, vulnerability, impact) is
modelled as a step-wise exponentially decaying function. It adopts its high-
est value when risk is reported, and decreases until a new value is reported,
which then replaces the previous one. Figure 4.2 shows an example of such
an evolution, where risk is reported three times (with initial values 6, 9, and
2, respectively).

Risk is then reported with the help of notifications, each of which appear as
a peak in the risk evolution graph. More precisely, a notification is defined
using the following parameters.

• The type of risk factor: threat, vulnerability, or impact. Each notifica-
tion can describe only a single factor type. This choice does not cause
any restrictions: when multiple types need to be reported, additional
notifications can be sent.

• The severity s ≤ 0, which expresses the initial level of risk that the sys-
tem is exposed to. That value is understood in the context of threat,
vulnerability, or impact, respectively. For threat-type notifications, s
represents a likelihood and can be unbounded; for vulnerabilities,
it represents the security of the system and must be ≤ 1 (see Sec-
tion 3.2.1 on the components of risk).

• The half-life h > 0 states how fast the risk will decay, given that no
new notification is reported. The half-life is defined as the time in
seconds that needs to pass until the risk has decreased to exactly half
of its initial value.

80 Chapter 4. Risk monitoring

2

4

6

time

risk

FIGURE 4.3 – A notification overridden by another one, due
to the enforcement parameter being set (f=true).

For the parameters above, the risk factor will behave according to the func-
tion

t 7→ s · 2−(t−t0)/h

where t0 denotes the time when the notification was reported.

4.2.2 Multiple alerts

When multiple alerts are reported one after the other for the same type, it
is always the latest which dictates the behaviour; previous notifications are
discarded.

However, in some circumstances, this approach is not optimal. Consider
a monitoring utility, that observes a major breach and thus increases the
threat level to some high value. A few moments afterwards, another smal-
ler incident is detected, which consequently resets the threat level to a smal-
ler value; the breach is then hidden by some unimportant event.

To prevent such misbehaviour from occurring, an additional parameter is
added to the definition of notifications:

• The enforcement parameter f ∈ {true, false} indicates whether the
risk level described by the notification shall be enforced (f = true), or
whether it should be discarded if its initial value is smaller than the
residual risk from the previous notification (f = false).

The two possibilities are represented graphically in Figure 4.3 (f = true)
and Figure 4.4 (f = false), respectively.

For simplicity reasons, it is always assumed that a notification dictates the
‘new’ risk level. Multiple notifications that progressively raise the overall
risk level are not directly supported, for two reasons. First, the risk monit-
oring agent should be in control to specify the actual risk level (at least at

4.2. Measure risk in the field 81

2

4

6

time

risk

FIGURE 4.4 – A notification not overridden by another one,
due to its smaller value and the enforcement parameter not

being set (f=false).

the reporting times). It should not result from computations performed by
risk monitoring platform, since the latter does not necessarily have all in-
formation available and might thus distort the view. Second, a monitoring
tool might yield a lot of alerts for the same incident (firewalls are a good
example, when they are under attack). In such a case, if each alert raises
the risk level progressively, the resulting risk will be unbounded and thus
meaningless.

It is to be noted that the risk level originating from different tools can still be
combined. Section 4.4 will address this topic in greater detail.

4.2.3 Fixed risk level

Some appliances measure the risk level already on a regular basis, and do
not need any decaying functionality. For instance, when evaluating the
criticality of available patches, the risk level should stay high as long as the
patch is not applied.

This case is really a special case of the model introduced above, though. In
fact, by choosing an infinity half-life h := ∞, the decaying function looks
like

t 7→ s · 2−(t−t0)/∞ = s · 20 = s.

In words, infinite (or very large) half-lives exactly represent the case where
the risk level should stay at its position.

82 Chapter 4. Risk monitoring

Agent 1

Agent 2

Agent 3

Risk monitoring
platform

Risk analysis
tool

push

push

push

fetch

FIGURE 4.5 – An intermediary risk monitoring platform for
storing risk indicator values, separating agents from the risk

analysis.

4.3 Risk reporting

Rendering a risk analysis dynamic is not so easy than it seems. A naive
strategy would consist in the risk monitoring agents updating those parts
of the analysis which concern them. However, such an approach requires
the agents to know the structure of the risk analysis already in advance. If
a risk assessor decides at a later point to reorganise the analysis, all agents
potentially need to be reconfigured. However, monitoring tools usually
reside in critical networks; when they can be configured (so modified) from
the outside, the respective network is exposed to an unnecessary high risk.

Therefore, risk information collected by agents cannot be directly sent to the
risk analysis in question. Instead, an intermediary risk monitoring platform
is needed, which merely serves as a storage space for the recorded indicator
values. It is depicted in Figure 4.5. The platform acts purely passively and
thus constitutes a de-militarised zone: on the one hand, agents push the
latest risk information, and on the other hand, the risk analysis tool fetches
the values that it needs. That way, no direct communication is possible from
and to the agents (and thus the critical networks).

The principle is the following:

1. A monitoring tool records and estimates risk as in Section 4.2.

2. That risk information is reported to the risk monitoring platform, and
stored into a named parameter. The name is picked by the monitoring
agent and can be arbitrary, but should be used consistently. It does
not need to be unique; in contrast, different tools should even use the
same name if a similar quantity is reported, to enable risk aggregation
afterwards (see Section 4.3.4).

3. When risk is reported multiple times for the same named parameter
by the same agent, its value will be overridden according to Sec-
tion 4.2.2. Parameters reported by other agents are not affected by
this rule.

4.3. Risk reporting 83

4. Finally, risk assessors link the risk analysis tool with the monitoring
platform, so that the risk analysis uses these named parameters in-
stead of pre-filled risk information. This is further elaborated in Sec-
tion 4.4.

4.3.1 Protocol

The risk monitoring platform exposes an HTTP API3 which the agents can
connect to and report risk information to.

HTTP APIs have the advantage that they are widely supported by many
programming languages and tools, without requiring complicated or pro-
prietary libraries to be installed. Moreover, system administrators are rather
willing to open firewall ports for HTTP traffic which they understand, than
for cryptic protocols for which they cannot see what it transmitted.

The API defines a single method POST /notify that can be invoked with
the following parameters. When calling this method with risk information
as defined in Section 4.2, the latter will be stored as a named parameter.

Parameter Value Description
sender_id string A unique identifier for the monitoring

agent.
time number The UNIX timestamp when the risk

was reported. Typically corresponds to
now().

param string The name of the parameter that will hold
the risk information.

severity number The s parameter from Section 4.2.
half_life number The h parameter from Section 4.2.
force boolean The f parameter from Section 4.2.

4.3.2 Authentication

To prevent spoofing attempts, it is recommended to require authentication
from monitoring tools when they try to use a specified sender_id. The
risk monitoring platform can generate an API access token for each agent
that is expected to report risk, and bind it to a single sender_id. That way,
it is guaranteed that only verified tools can interfere with the risk manage-
ment process.

On the protocol-side, authentication can be achieved using the HTTP header
‘Authorization: Basic’.

4.3.3 Interaction with risk analysis

At the other side, the risk analysis tool retrieves those named parameters
in order to use their value in a risk analysis. That is, instead of manually

3Application Programming Interface, a set of defined methods for interacting with a
component.

84 Chapter 4. Risk monitoring

estimating the likelihood of a risk scenario, a risk assessor may link it with
a named parameter, so that the likelihood reported by a risk monitoring
agent is applied, instead.

Note that the low-level agents do not know anything about the risk man-
agement process. In particular, they do not have a notion of risk scenarios
and assets, and thus are not automatically linked to the appropriate place
in the risk analysis. It is thus the risk assessor’s task to associate the named
parameters with the corresponding assets and scenarios.

In fact, when risk is reported, it induces a value function v for each monit-
oring agent a ∈ A (identified by its sender_id) and each parameter p ∈ P ,

v : A×P × R+ → R
(a, p, t) 7→ va,p(t),

which associates the current risk value to every time t for a given agent and
parameter (a, p). The function t 7→ va,p(t) has the piece-wise exponentially
decaying shape described in Section 3.2 above.

Risk assessors then use the expression va,p(t) (for the appropriate parameter
(a, p)) in the risk analysis tool, which automatically retrieves the current
value (i.e., for t := now()) and plugs it into the risk analysis.

Mathematically speaking, the map t 7→ vs,n(t) constitutes a time series. As
will be discussed in Section 4.6, further properties can be determined from
historical values (such as an evolution of risk).

4.3.4 Aggregating risk levels

As argued before, the low-level monitoring agents are not supposed to co-
ordinate with one another for security (or technical) reasons. It may be of
interest, however, to aggregate the risk information from several sources.
For instance, if multiple intrusion detection system agents report intrusion
alerts, one would prefer to include all of them in the same spot in the risk
analysis.

The solution consists in allowing users of the risk analysis tool to not only
specify a named parameter s, n, but to also let them specify an aggrega-
tion operation (such as the minimum, maximum, sum, or average of given
named parameters).

Formally, an aggregation operation is defined as a 3-tuple (ā, p, o) consisting
of an identifier prefix ā, a parameter p, and a function o : R × · · · × R →
R. Examples for o are the sum, minimum or maximum of a sequence of
numbers. It proceeds as follows:

1. The set α = {a ∈ A | a startswith ā} is determined.

2. For each a ∈ α and p ∈ P , the current numeric value of va,p(tnow) is
determined.

3. All these numeric values are aggregated using the function o(·).

4.4. Dynamic risk computation 85

Intuitively, an aggregation combines risk information from all agents whose
identifier starts with the same given string. For that reason, the identifiers of
agents should be meaningfully structured. For example, multiple instances
of a distributed network intrusion detection system could be named

• datacenter/network/ids/1

• datacenter/network/ids/2

• datacenter/network/ids/3

and so on. In that case, all intrusion alerts could be aggregated, for instance,
using the aggregation operation

(datacenter/network/ids/, intrusion, max),

which would yield the maximum threat level for the ‘intrusion’ para-
meter reported by all IDS agents.

4.4 Dynamic risk computation

Once the risk values are measured in the field and reported to the risk mon-
itoring platform, they can be fetched by the risk analysis tool and used in
risk assessments. This section shows how the dependency model can be
rendered dynamic in the sense that it includes the risk indicators that are
being reported in real time.

4.4.1 Risk in matrix form

In Section 3.2.4, the risk of a scenario σ was determined to be

R(σ) :=
∑

α∈ante(σ)

 ∑
v∈rt(VG)

P[v α] · L(v)

 ∗ I(α). (4.1)

This formula involves the two maps L and I, referring to the likelihood and
impact of security events encoded in the graph, respectively. Moreover, it
contains the causing probabilities P[v α], denoting the probability that
an event v eventually causes another event α.

However, the expression above can also be written out in matrix form. In
fact, the involved functions

P : rt(VG)× VG → [0, 1] ⊂ R
L : rt(VG)→ R

I : VG → I

86 Chapter 4. Risk monitoring

can also be viewed as matrices and vectors

P ∈ Rrt(VG)×VG

L ∈ Rrt(VG)×1

I ∈ IVG×1.

Equation 4.1 then reads as

R(σ) :=
∑

α∈ante(σ)

(
L> · P

)
(α) ∗ I(α)

=
(
L> · P

) ∣∣∣
ante(σ)

∗ I
∣∣
ante(σ)

, (4.2)

where the vertical bar ·
∣∣
ante(σ)

denotes the restriction of the 1×VG and VG×1

matrices to the respective domains 1× ante(σ) and ante(σ)× 1.

R(σ) denotes the risk resulting from a single scenario σ; similarly, the total
risk for the entire organisation can be obtained by

R :=
∑
α∈VG

 ∑
v∈rt(VG)

P[v α] · L(v)

 ∗ I(α),

(note the sum over all vertices α ∈ VG). In matrix form:

R =
(
L> · P

)
∗ I.

4.4.2 Dynamic risk

In Equation 4.2 for the total risk of a scenario, all involved quantities can be
made dynamic. If fact, each of them matches one of the factors that risk is
composed of – threat, vulnerability, and impact.

• The likelihoods L correspond to the risk information for threats re-
ported by risk monitoring agents,

• while the vulnerabilities reflect in increased edge probabilities p(·) of
the dependency graph. Indeed, if a component is exploitable, then
there is an increased probability that the associated security event is
caused. Ultimately, increased edge weights p also result in higher
probabilities P, of course.

• Finally, the impacts I correspond exactly to the consequences accom-
panying a risk scenario.

When risk information is reported, it is thus enough to update the corres-
ponding value in either L, p(·), or I (whichever applies).

Risk assessors thus need to associate the L, p, I values in the risk model to
the respective dynamic parameters. This is achieved by typing the para-
meter name as a place holder (e.g. “intrusion”) instead of a number (e.g.
0.1/y), such that the appropriate value is retrieved from the risk monitoring
platform. For more information, see Section 4.3 that precedes.

4.4. Dynamic risk computation 87

4.4.3 Algorithm

Algorithm 6 outlines the procedure for computing the dynamic risk in real-
time; its running time is analysed below.

Intuitively, the algorithm first updates L, I, and p(·) by retrieving the latest
values from the risk monitoring platform according to Section 4.2. For
performance reasons, it will internally operate in a slightly different way.
A better approach consists in maintaining a cached version of the above
quantities, and only retrieve the latest notifications instead – if no new no-
tifications are available since the last execution of the algorithm, it will not
update anything.

After it is up to date with what has been reported, the algorithm proceeds
with inferring the eventually causing probabilities P from the probability map
p(·). Recall that p(α, β) denotes the probability that α causes β directly,
whereas P[α β] represents the probability that there is chain from α to β.

Finally, the algorithm re-computes the resulting risk according to Equa-
tion 4.2 above.

Algorithm 6 Compute dynamic risk.

1: for v ∈ rt(VG) do
2: if L(v) is a named parameter then
3: retrieve the latest notification for L(v)
4: calculate L(v) for t = tnow
5: end if
6: end for

7: for v ∈ VG do
8: if I(v) is a named parameter then
9: retrieve the latest notification for I(v)

10: calculate I(v) for t = tnow
11: end if
12: end for

13: for α ∈ rt(VG), β ∈ VG do
14: if p(α, β) is a named parameter then
15: retrieve the latest notification for p(α, β)
16: calculate p(α, β) for t = tnow
17: end if
18: end for

19: Run Algorithm 1 with the new probability map p(·) to obtain P

20: for each risk scenario σ ∈ VG do
21: Compute risk as risk(σ) =

(
L> · P

) ∣∣
ante(σ)

∗ I
∣∣
ante(σ)

22: end for

88 Chapter 4. Risk monitoring

4.4.4 Running time

To analyse the running time, it is assumed that the retrieved notifications
are appropriately cached in the implementation of Algorithm 6. That way,
unnecessary interactions between the risk analysis tool and the risk monit-
oring platform are avoided.
Proposition 4.1. Suppose the dependency graph consists of n nodes and m edges.
Then the running time of Algorithm 6 is

O
(
n3 + n ·m · ln

(
2n

δ

)
· ε−3

)
,

where ε and δ denote the relative error and the error probability from Algorithm 1,
respectively.

Proof. Suppose there are N pending notifications. Lines 1–6 in Algorithm 6
require at most max(N,n) iterations, since the loop is executed at most once
per node, and at most once for every notification (if the caching solution as
described above is implemented). Moreover, each iteration requires con-
stant running time, since calculating L(v) follows a deterministic formula
that can be imminently computed.

The same is true for lines 7–12 and 13–18, respectively, except that for the
latter, there are at most max

(
N,n2

)
iterations.

The running time of Algorithm 1 is given by Proposition A.2, namely

O
(
n ·m · ln

(
2n

δ

)
· ε−3

)
.

Finally, the risk is computed for each of the at most n risk scenarios. Since
the computation of risk consists of matrix multiplications, their running
times depend on the matrix dimensions. From Equation 4.2, one can see
that two sums hide behind the matrix product, so the running time isO

(
n2
)
.

The overall time for lines 20–22 is thus O
(
n3
)
.

The statement of the proposition follows from max
(
N,n2

)
∈ O

(
n3
)
.

In the few use-cases that were considered in the course of the thesis, de-
pendency graphs typically have 20–100 nodes and 50–300 edges. The error
parameters are typically chosen as ε = 0.1 and δ = 0.01. For these values,
n ·m · ln

(
2n
δ

)
· ε−3 � n3, so the overall running time simplifies to

O
(
n ·m · ln

(
2n

δ

)
· ε−3

)
.

For larger graphs (n = 100, m = 300) such simulations take around 30
seconds; for smaller graphs (n = 20, m = 50) the execution time is negli-
gible (less than 1 second).

4.5. Risk monitoring platform 89

FIELD NETWORK

INTERNAL NETWORK

NIDS Log reader Update checker

Firewall

TRICK API

DepOT TRICK Service

D
at

ab
as

e

User

FIGURE 4.6 – Interaction of risk monitoring components.

4.5 Risk monitoring platform

The overall risk monitoring platform thus consists of agents that report real-
time risk information to a central storage place, which can be accessed by
the risk analysis tool to keep all analyses up to date. The entire platform is
depicted in Figure 4.6.

4.5.1 Agents

Risk monitoring agents measure the current risk according to Section 4.2.
They typically reside in other networks, and need to pass a firewall to con-
nect to the risk monitoring platform. The said firewall needs to be con-
figured to let those flows pass. However, since the communication is uni-
directional, there is only a small additional risk that exposes the system to
new threats.

More words on concrete implementations of such agents will be spent in
Chapter 5. The most prominent use-case will be a network intrusion de-
tection system for industrial systems, that finds a particular family of ad-
vanced persistent threats (APT).

4.5.2 TRICK Service

The web-based tool ‘TRICK Service’4 is a full-featured risk management
tool that assists risk assessors throughout the entire risk assessment process.

4https://www.itrust.lu/trick-service/

https://www.itrust.lu/trick-service/

90 Chapter 4. Risk monitoring

FIGURE 4.7 – Linking a named parameter to a likelihood in
TRICK Service with the use of formulae.

It maintains an asset inventory together with a set of risk scenarios, and lets
users estimate the risk associated to each of them (see Figure 4.7).

In the context of this doctoral thesis, the risk analysis tool was extended to
also support dynamic risk. Indeed, the named parameters that are created
by the risk monitoring platform (see Sections 4.2 and 4.3) have been made
available in the tool. The principle is similar to the one known from spread-
sheet applications: instead of specifying a concrete (risk) value, users can
fill in an entire formula into the respective fields. For instance, Figure 4.7
shows a likelihood that has been bound to a named parameter through the
use of such a formula. In the example, the complete expression is

(max(internal_email_) + external_uptime_email) / 2

representing the average of the risk measured internally (by any agent on
the e-mail server) and the up-time of the server (determined by an external
service provider).

More complicated expressions are possible, that make use of:

• Common mathematical operations (+, -, *, /, ^).

• Parentheses for grouping operations (e.g., 5 · (1 + 2)).

• Named parameters that have been reported to the risk monitoring
platform.

• Pre-defined functions (such as min, max, avg) that aggregate risk
from several sources, as described in Section 4.3.4.

Algorithm 7 documents (in pseudo code) how such an expression can be
parsed. The keyword ‘resolve’ is used to retrieve a named parameter

4.5. Risk monitoring platform 91

(or a set thereof, in the case of aggregation) and to resolve it to the corres-
ponding value, according to the exponentially decaying model introduced
in Section 4.2.

4.5.3 TRICK API

The core part of the risk monitoring platform consists of the HTTP/JSON
API5 that receives risk information from the various sources. The procedure
thereof is described in Section 4.3. It mainly acts as a central storage place
for all notifications reported by the monitoring agents, and provides this
information to the risk analysis tool.

In the context of this thesis, risk monitoring is implemented as an add-on
for the risk analysis tool, since the latter already happened to feature an
API before dynamic risk was added. Therefore, the exchange between the
risk monitoring platform (‘TRICK API’) and the risk analysis tool (‘TRICK
Service’) is entirely done with the help of a shared database; since both
tools have (read/write) access to the same data, no further interaction is
necessary.

4.5.4 DepOT

The TRICK Service API features additional methods for retrieving and up-
dating information about a risk analysis. External tools may then fetch the
asset inventory linked to an analysis that is stored in TRICK Service. For
instance, dependency modelling tools (such as DepOT, presented in Sec-
tion 3.5.2) can integrate with the risk analysis tool and maintain a structured
representation of the inventory in parallel to the latter.

Since TRICK Service on its own does not support dependencies, computing
the dependency-aware risk (see Equation 4.2 in Section 4.4) as(

L> · P
) ∣∣∣

ante(σ)
∗ I
∣∣
ante(σ)

is not viable without significantly modifying the software. Instead, a lighter
approach was adopted.

Since TRICK Service was extended to support the use of formulae, DepOT
expresses the modelled dependencies L> · P explicitly as functions fi with

L[v1] = f1(L[v2],L[v3], . . . ,L[vn])

L[v2] = f2(L[v1],L[v3], . . . ,L[vn])

. . .

without computing their actual value. Since the matrix product is a lin-
ear operation, the expressions fi above only involve casual additions and
multiplications. The thus obtained formulae are then imported into TRICK
Service via its API.

5An application programming interface (API) that accepts data in JSON format over an
HTTP communication channel.

92 Chapter 4. Risk monitoring

Algorithm 7 Algorithm for parsing an expression that resolves named para-
meters to the represented dynamic risk.

func parse () :
return parse_sum ()

func parse_sum () :
val = parse_product ()
while next token i s "+" or "−" :

op = read token # e i t h e r + or −
val = val ‘op ‘ parse_product ()

return val

func parse_product () :
val = parse_power ()
while next token i s " * " or "/" :

op = read token # e i t h e r * o r /
val = val ‘op ‘ parse_power ()

return val

func parse_power () :
val = parse_parentheses ()
i f next token i s "^" :

read token # "^"
val = val ^ parse_parentheses ()

return val

func parse_parentheses () :
i f next token i s " (" :

read token # "("
val = parse_sum ()
read token # ")"

e lse :
val = p a r s e _ l i t e r a l ()

return val

func p a r s e _ l i t e r a l () :
tok = read token
Token can be a f u n c t i o n name ,
number , o r named p a r a m e t e r
i f next token i s " (" :

read token # "("
p r e f i x = read token
va ls = resolve ‘ pre f ix ‘
val = c a l l tok (va l s)
read token # ")"

e lse i f tok i s number :
val = tok

e lse : # o t h e r w i s e i t i s a p a r a m e t e r
val = resolve ‘ tok ‘

return val

4.6. Additional computations 93

Note how dependencies integrate nicely with the concept of dynamic risk
analyses. As a consequence, they also get automatically updated when new
risk information is reported.

4.6 Additional computations

4.6.1 Determine the most critical risk

In a risk analysis, one is typically interested in the total risk resulting from
a scenario. This has been thoroughly discussed in the previous sections,
notably in Section 3.3.

That way, one can easily determine the most critical risk scenarios. It is
enough to compute the total risk for each scenario σ as given by Equa-
tion 3.2, namely

∑
α∈ante(σ)

 ∑
v∈rt(VG)

P[v α] · L(v)

 ∗ I(α),

and sort the risk scenarios by decreasing risk.

Note that the latter equation only reveals the most severe symptoms. Not-
withstanding, it is evenly as important to understand where the problems
come from, especially when it comes to risk treatment. Fortunately, the
probability matrix P holds much more information than just the total risk.
For instance, in order to determine the most likely origin of security incid-
ents for a given scenario σ ∈ VG , it is enough to consider

arg max
c∈rt(VG)

P[c σ],

so the root cause c which eventually leads to σ with the highest probability.

Similarly, one can also determine the criticality of a root cause in terms of
risk. In contrast to the case for risk scenarios, one is not interested in the
effects of a particular incident, but rather in all possible incidents (and their
consequences) that can arise from a specific root cause. Very much in the
spirit of Equation 3.2, the risk associated to a root cause c ∈ rt(VG) can be
determined as ∑

α∈desc(c)

(P[c α] · L(c)) ∗ I(α),

where desc(c) denotes the set of all nodes that can be eventually caused by
c (or in graph language, the set of descendants from c), including c itself.

4.6.2 Determine the most likely cascade effect

Even though cascade effects are a major concern, especially in dependency-
rich environments such as industrial control systems, it is not trivial to fore-
see cascade effects at all, let alone identify the most critical one.

94 Chapter 4. Risk monitoring

When dependencies are correctly modelled, part of these questions can be
answered using the dependency graph G = (VG , EG , p). Indeed, a cascade
effect is a chain of causal relationships, which correspond to paths of edges
in the graph. The criticality of a chain then correlates with the accumulated
probability of the related path (v0, v1, . . . , vn), and is formally defined as

n∏
i=1

p (vi−1, vi) .

One may be either interested in the most critical cascade effect that starts at
a given root cause, or in the one that leads to a given risk scenario. Either
way, the problem consists in finding the path that has the largest probability
among all paths starting at (or ending in) a certain node.

To solve the problem, it is reduced to a ‘shortest path’ problem, for which
well-known solutions exist. First, define an alternative weighting map

p′(α, β) := − log (p(α, β)) ≥ 0.

for all nodes α, β ∈ VG . Then the probability of a path in (VG , EG , p) corres-
ponds exactly to the total weighting of the same path in (VG , EG , p

′), up to
the homomorphism x 7→ − log(x). Indeed,

− log

(
n∏
i=1

p (vi−1, vi)

)
︸ ︷︷ ︸

path probability

=
n∑
i=1

p′ (vi−1, vi)︸ ︷︷ ︸
path weighting

.

Since x 7→ − log(x) is order-reversing, a maximum probability path in the
original graph (VG , EG , p) corresponds to a minimum weight path in the ar-
tificial graph (VG , EG , p

′).

The problem can now be solved with any algorithm for determining the
shortest path in a graph, including Dijkstra [131], Fredman and Tarjan [132],
or Floyd–Warshall [133].

Algorithm 8 is based on Floyd–Warshall [133] and finds the most likely
cascade effect for a given root cause c.

4.6.3 Evolution of risk

With dynamic risk management, the risk analysis can get updated at any
time of the day. So it might be the case that incidents are reported when the
tool is not surveilled, for instance at night or over the week-end. Displaying
the historical risk thus helps security managers to assess the criticality of
past incidents, as well.

A time line is the simplest way of representing the evolution of risk over
time. However, incidents from a few months ago might not be as important
as very recent ones, even though they might still be relevant (e.g., in order
to compare a current incident with a past major breach). Since the screen
size only allows displaying a limited time period in a graph, a linear time

4.6. Additional computations 95

Algorithm 8 Algorithm for finding the most critical cascade effect.

Input: Dependency graph G = (V,E, p)
Input: A root cause c ∈ V
Output: A most probable path (c, v1, . . . , vm) starting at c

1: ’ Floyd–Warshall algorithm
2: Set d(i, j) :=∞ for all 1 ≤ i, j ≤ |V |
3: Set ξ(i, j) := nil for all 1 ≤ i, j ≤ |V |
4: for (vi, vj) ∈ E do
5: d(i, j) := − log p(vi, vj)
6: ξ(i, j) := j
7: end for
8: for k = 1 to |V | do
9: for i = 1 to |V | do

10: for j = 1 to |V | do
11: if d(i, j) > d(i, k) + d(k, j) then
12: d(i, j) := d(i, k) + d(k, j)
13: ξ(i, j) := ξ(i, k)
14: end if
15: end for
16: end for
17: end for

18: ’ Determine most likely consequence
19: σ := arg maxv∈V d(c, v)

20: ’ Determine shortest path from c to σ
21: Initialise list P := (c)
22: x := c
23: while x 6= σ do
24: x := ξ(x, σ)
25: P := P ∪ (x)
26: end while
27: return P

96 Chapter 4. Risk monitoring

−5h −4h −3h −2h −1h now

(A) Linear time line with high level of precision (minutes) and
small time coverage (5 hours).

−25d −20d −15d −10d −5d now

(B) Linear time line with low level of precision (days) and big time
coverage (1 month).

−25d −5d −1d −5h −1h now

(C) Logarithmic time line with both high level of precision
(minutes) for the recent past, and big time coverage (1 month).

FIGURE 4.8 – Comparison of linear and logarithmic time
lines.

line can only show events up to a certain point in the past. Logarithmic plots,
in contrast, can visualise the current situation with an appropriate level of
details in combination to the very distant past. The three possibilities are
depicted for comparison in Figure 4.8. For the reasons mentioned, option
(C) is the most appropriate one.

Since putting all historical data in a single graph would be infeasible from a
computational point of view, averaging techniques are applied beforehand
to reduce the amount of information to display.

Algorithm 9 Algorithm for computing the average risk in a logarithmic
time line.
Input: Time points t0 < t1 < · · · < tn
Input: List of risk notifications N sorted by reporting time
Output: Average risk Ri on each interval [ti−1, ti]

1: for i = 1 to n do
2: Ri := 0
3: for j = 1 to |N | do
4: ’ Tj denotes the time when (N)j was reported
5: ’ Hj denotes the half-life time of (N)j
6: ’ Sj denotes the severity of (N)j
7: if Tj < ti ∧ Tj+1 > ti−1 then
8: A := max{ti−1, Tj} ’ Left boundary
9: B := min{ti, Tj+1} ’ Right boundary

10: Ri := Ri − 1
ti−ti−1

· Sj · Hjln 2 ·
(

2
−
A−Tj
Hj − 2

−
B−Tj
Hj

)
11: end if
12: end for
13: end for

Algorithm 9 shows how the average risk can be computed for an arbitrary
time line. It proceeds by computing the integral of the risk induced by each
notification over time. According to Section 4.2, given such a notification,

4.6. Additional computations 97

FIGURE 4.9 – Evolution of (quantitative) risk visualised in a
logarithmic time line in TRICK Service.

its risk is given by

t 7→ S · 2−(t−T)/H

where T is the time when it was reported, H is its half-life time, and S
its severity. Since consecutive notifications override each other, the j-th
notification does not apply all the time, but only between time Tj and Tj+1.
Therefore, the total risk contributed by the j-th notification is given by∫ Tj+1

Tj

Sj · 2−(t−Tj)/Hjdt.

If one is interested in the average risk contributed by the j-th notification in
the time interval [ti−1, ti], one gets

1

ti − ti−1
·
∫ B

A
Sj · 2−(t−Tj)/Hjdt

=
1

ti − ti−1
· Sj ·

Hj

ln 2
·
(

2
−
A−Tj
Hj − 2

−
B−Tj
Hj

)
where [A,B] := [ti−1, ti] ∩ [Tj , Tj+1].

To conclude, the dynamic risk is obtained as follows:

1. Pick a time line (e.g. logarithmic) t1, t2, . . . , tn.

2. For each ti, retrieve the dynamic parameters p(ti), L(ti), and I(ti) for
the given time ti.

3. Deduce the matrices P(ti), L(ti), and I(ti) according to Section 4.4.

4. Deduce the risk r(ti) of the entire organisation (or of a specific scen-
ario) for the given time ti, according to Algorithm 9.

5. Add the point (ti, r(ti)) to the plot that depicts the risk evolution.

The result of this algorithm for a logarithmic time line is shown in Fig-
ure 4.9.

98 Chapter 4. Risk monitoring

4.7 Conclusion

Deploying security appliances is only one side of the coin. Since incid-
ents can never be fully avoided, it is at least equally as important to prop-
erly handle breaches when they occur. In order to be maximally effective,
proper incident response relies on knowledge of what happened where –
and this information needs to be made available to the security personnel
in charge as quickly as possible. Dynamic risk management is one prom-
ising candidate to gather all the relevant information in one spot, allowing
risk assessors to fall back upon (possibly technical) real-time information
from the underlying IT infrastructure.

This chapter presented a strategy for rendering risk assessments dynamic.
While hardly any assumptions have been made on the used risk method-
ology, the dependency model developed in Chapter 2 serves as basis for
the entire dynamic risk management process. Moreover, the framework is
illustrated with a concrete implementation of such a risk monitoring plat-
form, namely TRICK Service and its API.

In this chapter, the notion of risk was equipped with a decay over time, so
that risk monitoring agents cannot only specify the current risk, but also
give a hint at the evolution of the risk situation in the near future. That
way, the criticality of an otherwise technical alert can be judged better by
security managers. Moreover, such data permits to gain an insight on the
historic evolution of risk and the quality of incident response management
for encountered security issues.

The previous sections have only described how risk information from low-
level appliances can be provided to the risk monitoring platform, and how
it can be expressed in high-level notions of risk. So far, however, very little
attention has been drawn to these agents themselves. The next and final
chapter will, in contrast, focus more on the collection of risk information
on the field. Apart from discussing how existent monitoring tools can be
turned into agents for reporting risk, the major contribution of Chapter 5
will be the presentation of a novel network intrusion detection system. The
latter is able to detect a particular family of advanced persistent threats
that target static networks, such as those encountered in industrial environ-
ments.

99

Chapter 5

Risk agents

5.1 Introduction

Security appliances are in charge of protecting a system – be it anti-virus
solutions blocking malicious files, firewalls preventing externals from ac-
cessing internal services, or automatic updates fixing vulnerabilities.

However, none of them are perfectly accurate. To begin with, threats are
often very complicated, complex, and diverse, so that it is virtually im-
possible for these appliances to cover all possible cases of malware and
attacks. Second, once defensive mechanisms have been published and de-
ployed, hackers have all time on Earth to find new methods of bypassing,
tricking, or disabling them. The former can thus not be solely relied on;
security managers need to take several sources of information into account,
and have a good sense of security. Finally, humans make mistakes, on sev-
eral levels. Developers of the security appliances may accidentally intro-
duce flaws. Technical assistants who put these tools into place may con-
figure them in a wrong way. And administrators, who should keep them
under surveillance, may not do so out of laziness, lack of time, or lack of
knowledge.

Either way, it is crucial to not blindly rely on hardware and software solu-
tions to protect an organisation. While they definitely increase the level of
security, humans shall make sure that they actually behave as they should.
Therefore, it is a good practise to regularly review log files of these appli-
ances in order to detect suspicious behaviour – both in terms of misconfig-
uration and possible attacks.

Reviewing log files remains a manual task, however. And this is rightfully
the case, since the point of these audits is exactly that one cannot entirely
trust decisions made by computers. However, software can help security
managers to access the relevant information in an easier way. This is the
purpose of the risk monitoring platform, and the raison d’être of the risk
agents, some of which will be presented in this chapter.

5.1.1 Motivation

The previous chapter presented a risk monitoring platform that receives
low-level and technical information from the field, and expresses it in terms
of risk. It makes use of the dependency-aware risk model developed in

100 Chapter 5. Risk agents

Chapter 3. However, the latter platform relies on the fact that there exist
probes which report relevant information – without the latter, the monitor-
ing platform serves no purpose.

Unfortunately, the information that is made available by security appli-
ances is often technical and specific to the environment. Therefore, addi-
tional efforts have to be made to interpret alerts in the context of the entire
organisation, and to match it with a concrete risk.

As a simple example, an anti-virus solution raises an alert when it detects
a file that is known to be malicious. Since the anti-virus does not typically
provide more information on the damage caused by the malicious file, it is
not trivial to determine the exact risk which the organisation was exposed
to. Only by inferring the type of malware (e.g., ransomware, phishing, tro-
jan, keyloggers) from its name, one can provide more information to risk
assessors. Moreover, dependencies will help in determining the extent to
which the detected piece of malware could have infected other machines
and have thus spread in the organisation.

5.1.2 Objective

With the help of three concrete examples, this final chapter describes how
risk can be inferred from the low-level output of security appliances. In
particular, it addresses the question what consequences an alert has on the
entire organisation in terms of risk. The reflections are then used to describe
a procedure for deducing risk levels from the alerts and logs in real time.

The second objective of this chapter consists in providing guidance on how
to implement a risk agent for a concrete security appliance. Since it is virtu-
ally impossible to cover all possible tools, this thesis restricts itself to three
candidates that measure three different kinds of risk.

The first example, an intrusion detection system, determines the risk that
the internal network is compromised. It applies machine learning tech-
niques to detect deviations from the ‘normal’ behaviour of the devices in a
network.

The second agent processes log files of a firewall, and thus assesses the risk
of external threats. These threats are linked most notably to availability
issues, and cover denial-of-service attacks, bot nets, and port sniffing.

The last candidate is given by a tool that analyses the level of vulnerability
of the overall network. To do so, it retrieves the list of installed software
and compares them against publicly available vulnerability databases.

5.1.3 Outline

This chapter presents several risk agents, each in a dedicated section.

• In Section 5.2, an intrusion detection system (IDS) is presented, which
is able to detect a particular family of advanced persistent threats,
namely the so-called training attack.

5.2. Intrusion detection system 101

• Since intrusion detection systems only monitor the internal network,
typically the only way of assessing external threats (such as distrib-
uted denial-of-service attacks) consists in monitoring the firewall. Sec-
tion 5.3 describes a procedure that allows inferring the risk level from
log files produced by firewalls.

• While the previous sections focused on agents measuring the expos-
ure to threats, Section 5.4 presents an utility that assesses the risk ori-
ginating from vulnerabilities. It relies on package managers and pub-
licly available vulnerability databases.

• A conclusion is drawn in Section 5.5.

5.2 Intrusion detection system

The mission of intrusion detection systems (IDS) consists in spotting se-
curity breaches inside the monitored system (which may be a network, an
industrial component, or a computer). In contrast to other appliances like
firewalls who defeat against external threats, the purpose of an IDS is to
detect threats that have compromised (or are about to compromise) the in-
ternal system.

Therefore, intrusion detection systems are often deployed as secondary aux-
iliary that makes sure that the primary defences are effective. As such, they
are perfect candidates for measuring the residual risk originating from in-
ternal threats.

5.2.1 Choice of strategy

Intrusion detection systems can operate in two fundamentally distinct ways
[42]: those that rely on a black list of undesired content (called signature-
based solutions), and those that inspect a network, learn the normal beha-
viour, and detect any deviations from the latter.

The problem with signature-based systems is the fact that they can only
detect known malicious behaviour; whenever new attacks become popular,
the IDS needs to be updated accordingly. For industrial control systems,
this approach is not always viable: often the infrastructure is too critical
to allow the installation of automatic patches by an externals (such as the
IDS manufacturer). In these scenarios, self-learning appliances are the only
option.

However, automated learning systems commonly require a supervised ini-
tial training phase, during which it is faced with (manually labelled) benign
and malicious data so that it learns the difference between these two data
sets. Naturally, for optimal results, the learning process should be carried
out directly in the target network, and not in a lab. Nevertheless, many re-
searchers use recorded data sets (such as the KDD’99 [134] data set) to eval-
uate the performance of their anomaly detection algorithm. Unfortunately,
the latter data sets are too generic to be actually used to train and deploy
an intrusion detection system in a real network. This common practise can

102 Chapter 5. Risk agents

be explained by the fact that the used protocols are often proprietary or un-
known, and that the network infrastructure is too complex, undocumented,
or not available as a testing environment.

Moreover, an ideal intrusion detection system would spot undesirable con-
tent without requiring a training phase, since it can then be directly de-
ployed in any production environment that is not known beforehand. In
the machine-learning domain, some schemes already exist which autonom-
ously tell ‘normal’ data apart from outliers, and which are thus suitable for
intrusion detection [98]. For our purposes, clustering-based schemes seem
to be the most promising ones, since they are unsupervised, relatively light-
weight from a computation point of view (which is important if one wishes
to build a real-time intrusion detection system), and allow multiple beha-
viours to be modelled at the same time (in contrast to Bayesian statistics,
which merely splits the data into ‘normal’ and ‘abnormal’). Moreover, they
yield comprehensible results, in contrast to e.g. neural networks, where it
is not so clear why they gave a certain output.

For machine-learning based intrusion detection techniques, a lot of research
has been made over the years, that increased their performance, their reliab-
ility, and their scope. However, attacks are also becoming more and more
sophisticated. The most developed of them are referred to as advanced
persistent threats (APT): they cover all kind of hacking or spying activities
that are particularly stealthy and persistent [135]. Given the fact that most
networks and computer systems rely on anti-virus agents and intrusion de-
tection systems, a lot of money and effort is put now into evading these
security mechanisms [135]. Automated learning systems (and especially
those that continuously adapt to live data) are particularly affected by this
fact, because their learning process can often be manipulated in such a way
to make them progressively used to malicious data. This process is referred
to as the training attack.

It is virtually impossible to design an intrusion detection system that de-
fends against all modes of operation of APTs (and this is especially true
when they are targeted, and thus human-operated). Therefore, in order
to better understand how stealthy and long-term attacks act on a computer
network, this section focuses on a concrete example of an evasion technique
that may be used by an advanced persistent threat, namely the training at-
tack. To the best of our knowledge, very little research has been done to
date, that analyses the robustness of intrusion detection systems against
such evasion techniques.

5.2.2 Threat model

Intrusion detection systems cannot detect all kinds of attacks, and will al-
ways make mistakes. Therefore it is important to state precisely which at-
tacks shall be detected by the IDS, and which ones are not actively con-
sidered. The purpose of this section is to describe the threat model that is
targeted by the intrusion detection system.

First of all, the IDS is meant to be deployed in parallel to signature-based
detection engines (such as off-the-shelf anti-virus solutions), and will focus

5.2. Intrusion detection system 103

on network attacks, only. Due to the expected mass of data, and due to the
increasing use of encryption in network streams, our IDS does not intend
to inspect the payload. Instead, it will examine the meta data obtained by
modelling the ‘behaviour’ of the network flows.

Network attacks and induced anomalies

Some network attacks (examples given below) induce a change in the char-
acteristics of a network stream, that otherwise would not occur, or only
under rare circumstances. The most prominent example is the distributed
denial-of-service (DDoS) attack, which consists in increasing the number of
connections to a host, the amount of data sent to a host, the frequency of
connecting to a host, or possibly all of them. Note how all of these can be
measured independently of the used protocol or of encryption.

Brute forcing is somewhat related, although its goal consists in gaining el-
evated access rights, rather than bringing down a host. It operates similarly
to DDoS attacks, but in a less aggressive way (that is to say, with lower data
rates and less connections).

Another good example of abnormal behaviour is network scans. Whereas
they do not constitute an attack on their own, they still allow an attacker
to make out possible targets and collect information about open ports. In
order to launch such a scan, one unavoidably has to make a lot of out-going
connections, which are not usually seen on the network.

A fourth category covers all kinds of intrusion and routing attacks. They
primarily consist in deviating network streams to third parties (‘men in the
middle’), who sniff or manipulate the traffic. An IDS could detect such
intruders by keeping track of the connectivity graph, listing all pairs of ma-
chines that are known to communicate with each other. In cyber-physical
systems, many processes are regular and repetitive, so watching the timely
behaviour of connections might also reveal intruders.

Finally, a less frequent, yet important threat is computer worms. They
spread over the network by exploiting vulnerabilities of the host machines.
Detecting them is not trivial at all, since the attack pattern depends a lot on
the actual exploit; in fact, a single network packet might even suffice, but it
will go completely unnoticed in the sheer mass of traffic in busy networks.
However, sometimes worms use outdated or unused protocols, the mere
presence of which is already suspicious – in that case, a somewhat reliable
detection is possible.

All of these threats have good chances to be discovered if one monitors the
network flows between every two hosts, and watches out for deviations or
sudden changes in their behaviour. That behaviour is characterised exactly
by the meta data mentioned above. Following the research of Berthier et al.
[137], good candidates for being monitored include:

• the number of bytes transmitted over a certain time period (e.g. 10
seconds);

• the average packet size;

104 Chapter 5. Risk agents

time

datarate

FIGURE 5.1 – Illustration of a typical denial-of-service at-
tack. Note the abrupt ‘jumps’ for the measured data rate.
This example is based on the data sets recorded by Garcia

et al. [136].

• the number of concurrent connections;

• the pause since the last packet.

The first two are somewhat related and allow the IDS to detect abuse of
a network service; the third one is specifically meant to detect distributed
attacks; the last one will aid in finding injected (irregular) packets.

Training attack

Once an intrusion system is in place and learns the typical behaviour of the
network, attackers can and will try to evade it. Among the evasion tech-
niques is (what we call) the training attack, that is closely related to mimicry
and IDS evasion attacks ([45], [138]). In contrast to the latter, it does not
only consist in hiding from the IDS, but also manipulates the IDS perman-
ently. It does so by injecting packets that progressively increase any of the
monitored quantities, until the target objective has been reached. That way,
any future malicious traffic is also considered as normal. See Figure 5.2 for
an illustration.

The attack has been thoroughly discussed by Barreno et al. [45], who sug-
gest slowing down the learning process. Although this approach makes a
training attack exponentially harder, it will also render the IDS inert. This
thesis introduces another strategy that does not suffer from this drawback;
it is based on the idea to also consider the long-term evolution of the mon-
itored quantities (see Section 5.2.3).

Stealthy training attack

The training attack consists in slowly shifting the network behaviour to-
wards a malicious state. While these progressive and slow changes are
barely noticeable in a short term, they become visible when looked at on
a large time scale. However, in order to cover up the training attack even
in this scenario, an intruder can hide the malicious traffic by accompanying

5.2. Intrusion detection system 105

time

datarate

FIGURE 5.2 – Illustration of the training attack over time, for
the case of the data rate. An attacker proceeds by progress-
ively injecting more and more packets until he eventually

reaches the desired critical threshold.

time

datarate

FIGURE 5.3 – Illustration of the stealthy training attack over
time. Instead of only increasing the traffic load, an attacker
creates enough ‘normal’ data in-between, which outweighs

(and thus hides) the malicious traffic.

it with additional, but normal data. So instead of shifting the behaviour
towards a bad state, he increases the spectrum of behaviours to additionally
include the bad state. Figure 5.3 illustrates this.

5.2.3 Detecting the training attack

Several techniques have been proposed for detecting attacks in computer
networks. Section 2.3 gives an overview of the state-of-the-art intrusion
detection schemes.

Threshold and metric based strategies

Among them, the most simple strategy is to fix a threshold for the mon-
itored quantities in advance. It is to be noted that this approach is not based
on machine-learning, and thus requires a human to define the threshold(s)
for each and every flow in the network. Moreover, such a system is com-
pletely inert to changes in the network behaviour, so the thresholds need to
be continuously reviewed. This, however, makes the IDS also insensitive to
the training attack.

Instead of fixing the thresholds in advance, one could also learn them with
the aid of statistical quantities like average and variance. This solution is
not as simple as it seems, because it is not so clear what the precise threshold
should be. If one assumes that the network load follows a probabilistic dis-
tribution, then one can compute the probability that a monitored quant-
ity is according to the probabilistic law, and conversely, if it deviates too

106 Chapter 5. Risk agents

20

40

60

time

data rate (kB/s)

FIGURE 5.4 – Illustration of typical data rates for HTTP
traffic (thin black line). Note how the µ + 3 · σ threshold
value (thick red line) is not a good descriptor of ‘normal’
traffic and thus a bad candidate for detecting outliers in the
traffic. This is due to the fact that HTTP traffic is not even

closely normally distributed.

much. For instance, for a normally distributed quantity N (µ, σ2), 99.7% of
all samples lie within µ± 3σ.

Threshold-based approaches suffer from several drawbacks. For one, they
do not behave well with inhomogeneous traffic. Indeed, the data rate of
a network flow is typically characterised by (at least) two states: an idling
state where no communication is made (so data rate 0), and an active state
(with data rate δ). Computing the statistical properties of these two states,
one ends up with an average data rate of something in-between, which does
not yield the desired threshold at all. Experiments suggest that the situ-
ation gets worse if more than two states are involved: Figure 5.4 depicts the
outcome of such an experiment with real-world HTTP traffic (taken from
[139]).

Other machine-learning approaches (including support vector machines
and regression methods) that reduce the data to a single metric value suffer
from the same issue, for the same reasons.

Second, like any criterion that involves the standard deviation σ of statist-
ical data, the strategy adopted here will encounter stability problems if the
traffic approaches constant behaviour (in which case the standard deviation
σ is close to zero). One can circumvent the issue by assuming a minimal
value σ, but then one has to fall back upon a hard coded parameter again.

Third, this approach is vulnerable to the training attack: even when an at-
tacker uses the linearly increasing sequence of data points δt := a · t (for
any constant a > 0), a threshold-based IDS will not detect the attack. The
proof requires some tedious calculations and is therefore omitted, but one
can readily deduce from the definitions

µ(t) =

t∑
i=t−T

δi σ2(t) =
1

T
·

t∑
i=t−T

(δi − µ)2

5.2. Intrusion detection system 107

quantity 1

quantity 2

FIGURE 5.5 – Example of a two-dimensional state space di-
vided into a grid, at a particular time t. Bullets denote data
points; dense cells are hatched. In this example, there exist
4 clusters at time t. Quantity 1 and 2 could be the traffic rate
(in bytes per second) and packet size (in bytes per packet),

for example.

that indeed δt+1 < µ(t) + 3 · σ(t) for all t, so the IDS does not raise an alert
at any time. Here, T denotes the number of elements covered by the mean
and variance; its value does not have an influence on the statement.

Stream-clustering based strategies

In contrast to many other machine learning techniques, stream clustering
algorithms support inhomogeneous traffic quite well, since they particu-
larly aim at learning the different behavioural classes: from a sequence of
data points, they group similar (or close) ones together into a cluster.

Researchers have already put a lot of effort into designing stream clus-
tering algorithms [140] that categorise data streams in real-time. The al-
gorithm that fits the needs of our set-up best is D-Stream [141], since it is
parameter-less and supports arbitrarily-shaped clusters. It proceeds by di-
viding the state space into a grid, and continuously computes the density
of encountered data points per grid cell. A cell is called dense if it contains
a certain number of data points; clusters are then defined to be the connec-
ted components of dense cells. Figure 5.5 shows an example of such a grid;
further details can be found in the original paper by Chen et al. [141].

The clusters account for the several encountered classes of behaviour, while
outliers (data points which do not match any cluster) account for statistical
abnormalities. It is important to observe that it is not the objective of the IDS
to detect the outliers, but changes in the behaviour of the network streams
(which manifest themselves by changes in the clusters).

Udommanetanakit et al. [142] have extensively deliberated the possible op-
erations on the set of clusters and their implications. In short, there exist five
operations (appearance, disappearance, evolution, splitting, and merging

108 Chapter 5. Risk agents

Network

Feature
Extraction

Clustering Anomaly
detection

data
flows

meta data
(‘features’) clusters

changes

threat
level

alerts

FIGURE 5.6 – Work-flow of the intrusion detection system.

of clusters). Of those, an appearing cluster signals previously unseen beha-
viour, which indicates an attack or intrusion. Stream clustering algorithms
are typically able to detect new clusters in real-time, and are thus good can-
didates for detecting the network attacks discussed in Section 5.2.2. Regard-
ing the evolution of clusters, the issue is trickier. Although such algorithms
account for changes in the input data, they cannot tell small fluctuations
(e.g. due to statistical abnormalities) from long-term evolutions of a cluster
(e.g. caused by the training attack). So, raising an alert whenever a cluster
evolves either yields too many false positives, or forces one to introduce a
threshold value (which in turn, requires expert knowledge).

In our work, we improve on existing stream clustering techniques to also
detect the training attack, without requiring any additional parameters to
be set.

Proposed IDS

The proposed network intrusion detection system (NIDS) builds on top
of a stream clustering based IDS. It processes each flow between any two
hosts in the networks independently, extracts the relevant features (see Sec-
tion 5.2.2) and applies clustering techniques to the latter. In this context,
a flow comprises all network packets from all data streams sent from the
first peer to the second one at a specific TCP/UDP port; for instance, the
〈10.0.0.1, 10.0.0.2, 80〉 flow consists of the whole HTTP traffic between the
IP addresses 10.0.0.1 and 10.0.0.2 (not just one single HTTP connection).
Note that the IDS operates completely passively on the whole traffic of a
network; thus, it does not interfere with highly critical components of the
system, such as industrial control systems.

Figure 5.6 shows the work flow of the IDS. An alert is raised whenever a
new cluster is created.

The used data clustering algorithm is based on D-Stream [141]. It proceeds
by dividing the state space into a grid and keeps track of the density of

5.2. Intrusion detection system 109

+Γ +Γ +Γ +Γ

+Γ′ +Γ′
+Γ′′

FIGURE 5.7 – The several steps of the training attack and
how they appear at different time scales.

recorded data points for each obtained cell. The density includes an expo-
nential decaying over time, which enables the system to adapt to changes
in the network. The density dC(t) of a cell C at time t is defined by

dC(t) =
∑

p: data point in C

λt−tp

where tp is the time when a data point p was recorded. 0 < λ < 1 is called
the decay parameter and controls how fast the IDS forgets old data. Follow-
ing the definition in [141], Section 3.2, a cell C is called dense at time t if

dC(t) ≥ Cm
N(1− λ)

,

where N is the total number of cells in the grid, and Cm is a fixed constant.
The authors claim that Cm = 3 is a good choice; however, experiments (see
Section 5.2.5) and calculations (see Section 5.2.4) reveal that Cm := 10−5

serves our purposes much better. The huge difference can be explained
by the fact that they implicitly assume uniform background noise, whereas
our data is locally distributed with almost no noise. Finally, a cluster is a
maximal connected component of neighbouring dense cells.

The clustering algorithm consists of an on-line phase (during which the
densities are continuously updated) and an off-line phase (during which
the clusters are updated). In particular, alerts are raised only during the off-
line phase, since this is the only moment when new clusters may appear or
evolve. The latter phase is triggered at intervals of time Γ. In the following,
Γ is referred to as the clustering interval.

Detecting the training attack. Deployed as-is, the proposed IDS is still
vulnerable to the training attack. This is mainly due to the fact that it can
only detect sudden changes at a certain time scale (controlled by the λ and
Γ parameters).

However, if several clones of the IDS are launched in parallel, with different
λ and Γ parameters respectively, then each instance can detect changes at a
different scale. When observed at short time periods, the subtle change in
behaviour caused by the training attack may be hard to detect. However,
for a different instance that updates its clusters less often, the otherwise
slow evolution appears as a deletion together with a creation of a cluster,
and is thus detected – see Figure 5.7.

110 Chapter 5. Risk agents

Detecting the stealthy training attack. The classic training attack consists
in moving clusters; in contrast, the stealthy version does not touch a cluster,
but extends (enlarges) it in such a way that it also includes data points asso-
ciated to malicious behaviour. Since no new cluster is created, no alert will
be raised, either – regardless of the time granularity.

However, what does change is the size (number of covered cells) of the
clusters. Monitoring those sizes will allow the IDS to detect the stealthy
training attack, as well. One could now define a threshold size which a
cluster should not exceed, but there is a more elegant way. In fact, the same
discussion as the one on intrusion detection techniques above also applies
here. So the preferred solution is to apply yet another instance of our pro-
posed IDS, but this time on the output (that is, the size of the generated
clusters) of the actual IDS. That way, one truly obtains a ‘dual’ IDS.

Human interaction. Changes of the network behaviour can be natural.
For example, if the network topology changes, new machines are connec-
ted to the network, or the devices in the network are upgraded, then the
behaviour is even expected to change. The intrusion detection system is
designed in such a way that it will adapt to the new situation by learning
the new behaviour.

However, the same changes of the behaviour could also hint at malicious
activity. Even though an alert is raised, the IDS will still adapt to the new
situation and possibly miss other malicious behaviour in the future. To pre-
vent it from learning the ‘wrong’ network behaviour, one could let security
managers decide whether a specific alert was legitimate and thus, whether
the IDS should adapt to the new behaviour.

Such a strategy has two advantages: it first forces security managers to
review alerts; and second, it eliminates possible sources of errors for future
alerts, thus limiting the false positive rate. While the prototype IDS does
present such functionality, the human–machine interaction is not further
analysed in this thesis.

5.2.4 Choice of parameters

Decay parameter

The decay parameter 0 < λ < 1 influences the learning capabilities of the
IDS. The higher its value, the longer a data point will be ‘present’ in the grid
cell. Recall that the weight of a data point within its cell decays exponen-
tially with time (t 7→ λt−t0). If λ = 0, learning will be completely disabled.
Setting λ = 1 will give every data point ever recorded the same weight, so
the IDS will always take the whole history into account when computing
the clusters, and never forget anything.

The exact choice of the parameter depends on the environment where the
IDS is deployed. In an ideal world, where the infrastructure and behaviours
remain constant, one would indeed set λ := 1. Real-world set-ups are dif-
ferent; devices may join or leave the network, software updates may add

5.2. Intrusion detection system 111

new functionality yielding a change in behaviour of the network streams,
and so forth.

In order to determine a good value for λ, one needs to take into account the
estimated period T between (expected) significant changes in the network.
Data older than T should rightfully be ‘forgotten’ by the IDS. For cyber-
physical systems, this can be as large as three months. For home networks,
several days would be a more reasonable value. Proposition 5.1 provides a
maximal value for λ given T , which will be picked in the implementation
of the IDS for optimal results.

In the following, we deem that if a data point has ≤ 1% of the total weight
available, it is barely noticeable.
Proposition 5.1. Let T > 0. Let N be the number of grid cells. Suppose the data
points are recorded in regular time intervals. If λ ≤ 10−2/T , then all data points
older than T make up, in total, ≤ 1% of the whole weight available in the grid.

Proof. Denote the length of the regular time intervals by f . The cumulative
weight of all data points ever recorded is

∞∑
i=0

λi·f =
1

1− λf .

Similarly, the cumulative weight of all data points older than T is

∞∑
i=T/f

λi·f =
∞∑
i′=0

λ

(
i′+T

f

)
·f

= λT ·
∞∑
i′=0

λi
′·f =

λT

1− λf .

By assumption, λT ≤ 1
100 , which concludes the proof.

Clustering interval

The clustering interval parameter controls how often the data is clustered
and scanned for intrusions. If the interval is chosen too long, short-term
attacks go entirely unnoticed, since their footprint fades out before the clus-
tering takes place. If it is too short, the engine is unable to detect long-term
evolutions.

The strategy is thus two-fold. On the one hand, one needs to choose the
longest possible interval Γ so that all short-term attacks can still be noticed.
On the other hand, additional instances of the IDS (running with larger
clustering intervals, see Section 5.2.4) will make sure that long-term evol-
utions will not be missed, either. Proposition 5.2 gives a hint on how to
choose Γ for our purposes.
Proposition 5.2. Let 0 < p < 1. Let N be the number of grid cells. Suppose
the data points are recorded in regular time intervals. Assume λ = 1− ε for some
ε� 1.

Set Γ := N
p , then any data point younger than Γ makes up at least a p part of the

weight gained by a cell on average during time Γ.

112 Chapter 5. Risk agents

Proof. Denote the length of the regular time intervals by f . Then n := Γ
f

data points have been recorded after time Γ. Their cumulative weight is
then

n−1∑
i=0

λi·f =
1− λf ·n

1− λ =
1− λΓ

1− λ =
1− exp (Γ lnλ)

1− λ .

If λ ≈ 1 then lnλ ≈ 0 and thus exp (Γ lnλ) ≈ 1 + Γ lnλ. Further ln(λ) =
ln(1− ε) ≈ −ε. Using this, one gets

1− exp (Γ lnλ)

1− λ ≈ −Γ · lnλ
1− λ ≈ Γ · ε

ε
= Γ.

Thus, the average weight gained by a cell is ≈ Γ
N = 1

p . The proportion of
the weight of any data point younger than Γ with respect to the average is
at least

λΓ

1/p
≈ 1

1/p
= p.

Proposition 5.2 reveals that if the clustering interval Γ = 600s is chosen and
the state space is divided into N = 50 cells, then all data points recorded
between two off-line clustering processes will make out Γ

N ≈ 8% of the
average weight gain of a cell. That is, each of those data points still has a
considerable impact on the weight of the cell.

Our experiments also confirm that Γ = 600s = 10min is a good choice, see
Section 5.2.5.

Density parameter

A cell C is defined to be dense if dC(t) ≥ Cm
N(1−λ) . According to [141], a

good choice is Cm := 3, but this leads to no cell ever being marked as dense
in our set-up. This can be explained by the fact that they have much more
data points spread over the whole state space, whereas we deal with locally
condensed data. Proposition 5.3 suggests better values for Cm.
Proposition 5.3. Let Γ > 0 and Cm > 0. Let N be the number of grid cells.
Suppose the data points are recorded in regular time intervals. If Cm ≤ 1 − λΓ,
then any cell that received at least the average weight during time Γ, is dense.

Proof. Denote the length of the regular time intervals by f . Then n := Γ
f

data points have been recorded after time Γ. Their cumulative weight is

n−1∑
i=0

λi·f =
1− λf ·n

1− λ =
1− λΓ

1− λ ,

5.2. Intrusion detection system 113

0.2

0.4

0.6

0.8

1

t0 t0 + Γ

time

W
ei

gh
to

fa
si

ng
le

da
ta

po
in

t

(A) λ too small or Γ too large: data points can be missed between two clustering
times t0 and t0 + Γ.

0.2

0.4

0.6

0.8

1

t0 t0 + Γ

time

W
ei

gh
to

fa
si

ng
le

da
ta

po
in

t

(B) λ and Γ just right: impossible to miss data points missed between two cluster-
ing times t0 and t0 + Γ.

0.2

0.4

0.6

0.8

1

t0 t0 + Γ

time

W
ei

gh
to

fa
si

ng
le

da
ta

po
in

t

(C) λ too large or Γ too small: data points will not be missed, but distant history is
not forgotten fast enough, so that new data points are hidden by old ones.

FIGURE 5.8 – Influence of Γ and λ on the weight of a single
data point over time.

114 Chapter 5. Risk agents

+Γ +Γ

+2Γ

FIGURE 5.9 – The two (legitimate) steps that the training
attack consists of. Dense cells are hatched. If the intermedi-
ate clustering is omitted, the situation will look as if a new

cluster is created, and an alert will be raised.

so the average weight of a cell is 1−λΓ

N ·(1−λ) . If a cell C received at least the
average weight, then

dC(Γ) ≥ 1− λΓ

N · (1− λ)
≥ Cm
N · (1− λ)

,

so by definition, C is dense.

For instance, if λ = 0.011/1d and Γ = 10min, then Cm := 0.03 would be a
good choice. If λ = 0.011/30d and Γ = 10min, then opt for Cm := 0.001.

Number of instances

To the clustering-based IDS, the classic training attack as described in Sec-
tion 5.2.2 appears initially as an enlargement of the cluster, followed by a
splitting into two clusters (see Figure 5.9). Note that these are two legitim-
ate steps, so the IDS will not raise any alert.

However, if the off-line clustering between those two steps were omitted,
the single resulting step would be correctly identified as malicious, since
a new cluster is created. The strategy is thus to apply an additional, inde-
pendent clone of the IDS with clustering interval 2 · Γ. Similarly, the argu-
mentation can be applied recursively on the second IDS to require a third
one with clustering interval 4 · Γ, and so forth. Eventually they will cover a
time span 2n · Γ which is so long that an attacker will not bother trying; for
instance, if Γ equals 1 month, and 50 years should be covered by the IDS,
then one requires log2

(
50y
1m

)
≈ 9 instances.

The final intrusion detection system thus consists of (for instance) 9 inde-
pendent instances, each invoked with a different value for Γ. An alert by
any of these clones then results in an alert by the final IDS. Since the clones
are independent, they can be run on different CPUs or even on multiple
devices – no synchronisation is necessary. However, in order to avoid that
multiple clones are triggered by the same attack, one can account for only
one alert within a given time interval.

5.2. Intrusion detection system 115

5.2.5 Evaluation

We ran several different simulations on various data sets, including [139],
[143], and our own recordings of network traffic in an office network. For all
experiments that follow, the state space (describing the data rate) is divided
into a logarithmic scale of N = 50 values ranging from 100 B/s to 109 B/s.

Detecting network attacks

The objective of the first set of experiments is to verify if the proposed IDS
is actually able to detect classic network attacks (such as denial-of-service).
As argued in Section 5.2.4, using a decay parameter of λ := 0.01−10 days

guarantees that any data encountered will be forgotten after roughly ten
days. For the clustering interval, we choose Γ = 10 min.

Figure 5.10 depicts the simulation results on the data set [139], which con-
tains 24 hours of network traffic produced by personal computers. As can
be read off from the figure, the traffic is relatively low most of the time, and
sporadically features small peaks (e.g. (1)–(4) and (8) in Figure 5.10). How-
ever, most importantly, the data sets also contains peaks (see (5), (6) and
(7) in Figure 5.10) that may be worth being investigated. The objective of
the intrusion detection system is to be able to detect this kind of change in
behaviour.

Launching a prototype implementation of our IDS (written in Javascript
for NodeJS) on the data set [139], we notice that at first, several clusters
were created at the very beginning (which acts as a learning phase, so the
alerts were expected). The first major peak ((5) in Figure 5.10) is correctly
identified as new behaviour, and so is the second one (6). The third peak
(7) is classified to be in the same cluster than the previous one, so no alert
is raised. Any later traffic matches the expectations of the IDS and does not
lead to the creation of new clusters.

If the decay parameter is too low, clustering information will be forgot-
ten too fast. Setting λ := 0.01−1 day will cause the IDS to forget data after
roughly one day, which is also what is observed in the 24-hour simulation
depicted in Figure 5.11. In fact, this experiment proves the soundness of the
discussion on λ conducted in Section 5.2.4.

Detecting the training attack

We were unaware of any data set that has recorded a training attack, and
thus had to create one on our own. For this purpose, the ‘4SIC Geek Lounge’
data set [144] describing 18 hours of real SCADA traffic has been extended
(by looping it) to a one-year period so as to obtain a good basis of ‘regu-
lar’ data. Figure 5.12 shows the content of the data set. Note that the two
types of behaviour clearly prove the applicability of our intrusion detection
approach.

The IDS with parameters λ = 0.01−1/7days and Γ = 10min successfully
learns the behaviour of the traffic, raising no alerts. Experiments show that

116 Chapter 5. Risk agents

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

(1)(2)
(3)
(4) (5)

(6)

(7)

(8)

0.5

1

1.5
·106

time

data rate (B/s)

FIGURE 5.10 – Successful detection of unusually high out-
going traffic for one of the hosts in the [139] data set. The
triangles denote the times when new clusters were created
(thus alerts raised). Below the figure, the clusters are expli-
citly drawn for the snapshots (1) to (8): boxes represent the
cells in the one-dimensional state space; black boxes denote
dense cells. After the initial learning phase (1)–(4), a new
cluster is created at time (5), and an alert is raised. At time
(6), two further isolated clusters are created, and a further

alert is raised.

0.5

1

1.5
·106

time

data rate (B/s)

FIGURE 5.11 – A small decay parameter (λ = 0.01−1 day)
makes the IDS forget data too fast. The triangles denote the
times when new clusters were created (thus alerts raised);
note the additional final clustering at the very right of the

figure which occurs after approximately a day.

5.2. Intrusion detection system 117

200 400 600 800 1,000

200

400

600

800

elapsed time (min)

data rate (B/s)

FIGURE 5.12 – The ‘4SICS Geek Lounge’ data set recorded
on real SCADA equipment for 18 hours, starting at 5:52
p.m. One can clearly distinguish the night as a period of

low activity (7:42 p.m. to 8:30 a.m.).

λ = 0.01−1/1day is too low (it yields false positives) and λ = 0.01−1/30days

turns out to be too long in the following discussion (the training attack does
get detected, but only after almost one year).

In parallel, we crafted artificial data packets with a slowly increasing packet
size and frequency, and merged the obtained packets with the real data set.
The resulting data set contains the recording of an artificial, yet theoretically
feasible training attack. The caused increase in the data rate roughly follows
an exponential law (t 7→ 1.1t).

Following the discussion in Section 5.2.4, several IDS instances are launched
on that data set, each of which has a clustering interval twice as large as
the previous one. In this use-case, it results in 16 instances ranging from
Γ1 = 10min to Γ16 = 228d. As expected, the first few instances are unable
to detect the training attack. However, the long-term clones (Γ14,Γ15,Γ16)
successfully raise an alert after some initial learning phase – see Figure 5.13
for an illustration.

Two similar experiments have been conducted using a linearly increasing
data rate, and an initially increasing but eventually stagnating data rate. In
all cases, the longer-term instances were able to detect the attack, while the
shorter-term ones were not.

Detecting the stealthy training attack

A much more sophisticated version of the training attack consists in con-
tinuously injecting the complete spectrum between normal and malicious
traffic. To do so, an attacker repetitively increases the data rate until a
given threshold, drops back to normal, and slowly increases again (see Fig-
ure 5.14). As predicted in Section 5.2.2, simulations show that our IDS never
creates a new cluster, but increases the size of existing ones, instead; by con-
sequence, no alert is raised and the attack remains undetected.

118 Chapter 5. Risk agents

With Γ14 = 57d:
With Γ15 = 114d:
With Γ16 = 228d:

0.5

1

1.5

2

·104

time

data rate (B/s)

FIGURE 5.13 – The training attack combined with the [144]
data set. The triangles denote the times when new clusters
were created (thus alerts raised) for the instances with Γ =

57d, 114d, 228d, respectively.

As a counter-measure, we proposed to include the maximum cluster size in
the set of monitored quantities (in parallel with the data rate). In contrast to
previous simulations, where the maximum cluster size remained more or
less constant (it deviated by at most±3), it increased by a decent amount in
this case. Indeed, applying the same detection techniques on the maximum
cluster size (thus, on the output of the actual IDS) yields the desired results
– see Figure 5.14.

5.2.6 Conclusion

This chapter deliberates modern anomaly-based intrusion detection tech-
niques that learn the behaviour of network streams. It is to be noted that
the former can only reliably recognise attacks which induce a considerable
change in behaviour of the network. Traditional signature scanners per-
form much better when it comes to detecting specific malware, and should
be applied in parallel. While state-of-the-art intrusion detection systems
classify individual data packets as good or malicious, the IDS proposed
in this thesis rather focuses on grouping similar data packets and decides
upon each cluster if it is normal or not. The advantage of this approach is a
more stable behaviour with respect to statistical noise, since single outliers
do not immediately yield a (false) alert. In addition, the decision of the al-
gorithm can be retraced more intuitively than for other machine-learning
based approaches.

This chapter also provides evidence that live learning systems can be tricked
by interfering with the learning process, and presents the so-called training
attack that makes such a system eventually accept malicious behaviour. We
propose a detection scheme that is, to a certain extent, resistant to this kind
of attacks. It consists in considering the input at multiple time resolutions,
which considerably hardens long-term changes in the behaviour. In order
to provider a better understanding of the consequences of a fooled IDS, we

5.3. Firewall log parser 119

0

0.5

1

1.5

2

2.5

·107

time

d
a
ta

ra
te

(B
/
s)

0

10

20

30

40

50

cl
u
st
er

si
ze

FIGURE 5.14 – The stealthy training attack combined with
the [144] data set. The right graph depicts the data rate as
induced by the attack, while the left graph depicts the evol-
ution of the cluster size. Although no alert is raised for the
behaviour of the data rate, the dual IDS does identify the in-
crease of the cluster size (alerts marked with red triangles).

presented a stealthier variant of said attack and discussed how to counter it.
However, our research only scratched the surface of possible tricking tech-
niques, and there are probably further opportunities for attackers to evade
the IDS.

The solidity of our approach is validated, on the one hand, by a mathem-
atically sound choice of parameters, and on the other hand, by simulations
conducted on real network traffic from various sources. A prototype im-
plementation has been developed in Javascript for NodeJS, using the libp-
cap library for capturing the network traffic. Moreover, the IDS has been
installed on a Raspberry Pi 3, such that it can be connected to any com-
puter network in a plug-and-play fashion. The latter device was supposed
to be evaluated in the test environment of the Luxembourgish smart grid
operator; unfortunately, due to delays in the implementation of the latter
testbed, no live tests could be made.

5.3 Firewall log parser

Computer networks are often protected with firewalls, blocking illicit ac-
cess to internal services. In contrast to intrusion detection systems, who
monitor the internal network, firewalls see threats coming from the out-
side. Those attacks include intrusion attempts (e.g. from bot nets), network
scans, and denial-of-service attacks. Modern firewalls even provide flood
protection against some kinds of distributed denial-of-service attacks [145],
[146].

120 Chapter 5. Risk agents

Since firewalls are in touch with the threat landscape of the Internet, their
log files may give valuable insight on upcoming attacks targeted at the sys-
tem in question. For example, network scans may indicate reconnaissance
activities from hackers, and thus hint at an increased risk of intrusions in
the near future.

In this section, two external threats will be discussed: network scans and
flooding attacks.

Network scans allow malicious people to identify potential hacking targets.
A network scan basically consists in establishing a network connection for
all available ports, and in verifying if the targeted server replies; if it does,
then there is a corresponding service available at that port.

Flooding attacks, in contrast, aim at disrupting a service. By establishing
multiple connections in parallel, hackers try to use up all the resources of a
service, rendering it essentially unavailable.

5.3.1 Log files format

To the best of our knowledge, there does not exist any common standard
for log files. The approach described in this section will thus slightly differ
for other firewall appliances.

The firewall investigated in our use-case1 provides logs in comma-separated
text format, each line representing a connection. Entries are of the following
form (expanded to several lines for readability):

time=1496221744,
loc=4176575,
fileid=1496181541,
action=accept,
orig=172.16.255.94,
i/f_dir=inbound,
i/f_name=eth0.000,
has_accounting=1,
uuid=<00000000+00000000+00000000+00000000>,
product=VPN-1 & FireWall-1,
rule=12,
rule_uid={00000000-0000-0000-0000-000000000000},
src=10.76.251.12,
s_port=34505,
dst=10.76.251.4,
service=20200,
proto=tcp

Independently of the format, log files should feature the following inform-
ation.

• The time stamp when a connection was recorded (here: time=);

• the source IP address (here: src=);
1FireWall-1/VPN-1 by Check Point.

5.3. Firewall log parser 121

• the destination IP address (here: dst=);

• the destination port, identifying the targeted service (here: service=);

• whether the connection is incoming or outgoing (here: i/f_dir=);

• whether the connection was blocked by the firewall (here: action=).

Source and destination IP addresses identify the remote client and local
server, respectively, whereas the destination port represents the targeted
software (e.g. ‘443’ for HTTPS server, ‘22’ for remote shell, etc.).

5.3.2 Reading log files

In practise, processing a log file in real-time is not quite as simple as it
seems. A monitoring utility needs to periodically check if the file has been
changed, and when it has, determine what content is new. This can be time
and resource consuming for large files.

Named pipes

Instead of falling back upon files, one can make use of named pipes, which
are available on all Unix-like systems (such as Linux). Named pipes appear
as normal files in the file system, but behave like first-in-first-out (FIFO)
queues. Once created, a named pipe can be accessed by two processes: one
which acts as a writer, and one as a reader. Content that is written to the
pipe by the former can then be retrieved by the latter.

In Linux, a named pipe is created using the mkfifo command, for example:

mkfifo /var/log/fwlog

The configuration file of the firewall then needs to be adapted accordingly,
so that the logs are saved at the chosen destination (/var/log/fwlog in
this example). As for the risk monitoring agent, it opens the named pipe for
reading and waits for new content to arrive. The nature of the FIFO queue
guarantees that every line is processed exactly once.

Algorithm 10 Reading new content from a named pipe.
1: open named pipe for reading
2: for each read line L do
3: process L (see sections below)
4: end for

Manual approach

It may be the case that named pipes cannot be used as described above. This
is for instance the case when the path of the log file cannot be configured,
or when the logs are split over several files (also called log rotation).

In this case, the monitoring agent needs to be invoked in regular time in-
tervals (e.g. using cron). It then verifies each time if the file has changed,

122 Chapter 5. Risk agents

and what content has been added. To this end, however, it needs to keep
track of the last processed line, and skip all lines that have been processed
already. The procedure is described in Algorithm 11

Algorithm 11 Manually reading new content from multiple log files.
Input: identifier i (e.g. timestamp) of last read line

1: for each relevant log file do
2: open log file for reading
3: for each read line L do
4: if id(L) > i then
5: process L (see sections below)
6: end if
7: end for
8: end for

A slightly more efficient approach can be adopted if all logs entries are
saved in a single (eternally increasing) file. Indeed, in that case the mon-
itoring agent only needs to keep track of the file size and jump to the ap-
propriate place in the file. That way, the agent does not have to re-process
the entire file each time. Algorithm 12 shows the improved variant.

Algorithm 12 Manually reading new content from a single, eternally in-
creasing log file.
Input: file size s of the log file when agent was last invoked

1: open log file for reading
2: jump to position s
3: for each read line L do
4: process L (see sections below)
5: end for

5.3.3 Network scans

Network scan are characterised by several attempts to establish a connec-
tion on multiple ports. This is in strong contrast to the normal behaviour of
a client, who typically uses only one service (i.e., port) at a time. In order to
detect network scans, it is thus enough to observe the diversity of incoming
connections that have been blocked.

However, the monitoring agent must also be able to ‘forget’ connections
from long ago, because otherwise it can yield false positives. Indeed, sup-
pose a network scanning attack was detected. Then, for every (single)
blocked connection in the future, an alert will be raised again, even though
the connection is not necessarily part of another network scan. In order to
avoid this behaviour, the agent also needs to take the time in account, when
the connection was encountered.

In simple terms, a network scan can be defined as the attempt to establish
N connections (to N different ports, respectively) within a given time win-
dow T . Finding good values for N and T in the definition is non-trivial

5.3. Firewall log parser 123

[147], however. To detect scans, one keeps track of the last connections; if
there are at least N different ports within the last time T , a network scan
is occurring (by definition). An alert is raised whenever these N times fall
within the interval [tnow − T, tnow]. These alerts can then be reported to the
risk monitoring platform as described in Chapter 4. Algorithm 13 describes
the approach in greater detail.

More advanced algorithms exist that detect network scans more reliably
[147]–[149], and also handle stealthy scanners [150], [151]. These are out of
the scope of this thesis, though. Moreover, these algorithms typically need
more fine-grained data than just firewall logs.

Algorithm 13 Detecting network scans from firewall logs.
Input: N ∈ N (number of allowed connections)
Input: T > 0 (time window during which these connections are allowed)

1: t ∈ RN+
2: p ∈ {0 . . . 65535}N ’ A list of N ports
3: for i = 1 to N do
4: ti := 0
5: pi := 0
6: end for

7: for each logged connection c do
8: ’ Update the ‘last seen’ time for the port of this connection
9: for i = 1 to N do

10: if pi = port(c) then
11: ti := time(c)
12: end if
13: end for

14: ’ Handle over-saturated list of ports
15: if ∀i : port(c) 6= pi then
16: if ∃i : pi = 0 ∨ ti + T < time(c) then
17: ’ Port pi is no longer used
18: pi := port(c)
19: ti := time(c)
20: else
21: ’ Too many ports are simultaneously used
22: raise alert

23: ’ Replace the oldest connection by this one
24: j := arg minNi=1 ti
25: pj := port(c)
26: tj := time(c)
27: end if
28: end if
29: end for

Correctness The approach of Algorithm 13 is correct, because if N con-
nections to N different ports have been detected within an interval T , then
by definition a network scan is happening, indeed.

124 Chapter 5. Risk agents

Inversely, a network scan implies that there are N connections to N ports
within an interval T . It might be the case that there are additional connec-
tions not part of the network scan, though, possibly on other ports. There
are two cases. First, if such an additional connection is encountered on
a port that is also used by the network scan, then the respective time ti
in Algorithm 13 may be even more recent. Second, if there are additional
connections on ports not covered by the network scan, then Algorithm 13
replaces the respective times ti by more recent ones, as well. In any case, all
times ti are still within a interval T , and the network scan is thus detected.

A final note is to be made on the definition of a network scan. It might be the
case that two independent clients each establish N

2 legitimate connections
on distinct ports, so that Algorithm 13 detects a network scan, even though
this was not intended by either client. A server cannot tell the difference
though, for it does not know if the two clients are independent or secretly
collaborate.

So Algorithm 13 correctly identifies a network scan as it was defined above,
even though it might not be an actual network scan. However, if N is de-
cently large, then any activity that involves connections to ≥ N distinct
ports is suspicious, whether it originates from a scan or not.

Value of N and T The time interval T should be picked in such a way that
it covers the time that network scanning tools need to perform a scan. Lee
et al. [149] suggest T = N · 120 seconds, since “most port scanning tools set
the time between the packets to be much less than 120 seconds”.

The choice of N actually depends on the number of services that are ex-
posed to the public Internet. It should be large enough to allow the dis-
tinction between legitimate clients and scanners, but also low enough to
minimise the memory use. Data collected by Sridharan et al. [148] states
that for typical servers, N = 3 is already enough to statistically distinguish
between scans and legitimate connections. Indeed, according to the 2006
study, most servers have only one port exposed2. The results of the study
suggest that setting N := 1.5 · (number of opened ports) yields promising
results.

5.3.4 Flooding attack

The flooding attack consists in sending massive amount of data to a server
with the intention of exhausting its resources and thus taking down its
provided services. The effectiveness of the attack is increased a lot when
multiple such attacks are launched in parallel, in which case one refers to a
distributed denial-of-service (DDoS) attack.

DDoS attacks are still a huge concern for organisations today, as show the
reports of recent cases [152]. Detecting and mitigating these attacks are thus
of a critical importance, especially for industrial control systems that need
to be functional at all time.

2It is to be noted that not every server falls under this criterion. Also, with the rise of
the ‘Internet of Things’, the trend is typically towards opening more ports.

5.3. Firewall log parser 125

(Classic3) firewalls are neither particularly secure against these attacks [153],
nor can they successfully mitigate them [154]. This is due to the fact that
firewalls are typically stateful, meaning that they have to remember the
connection state for every client – which becomes problematic when there
are suddenly many clients. But firewalls were not designed for this pur-
pose; while their mission is to filter out illicit connections, DDoS attacks
typically consist in sending massive amounts of data to an allowed port.
Nevertheless, firewalls can still observe an on-going attack, to the extent that
they can handle the traffic.

Since DDoS protection is an entire research topic on its own, that issue is not
addressed here. Instead, the risk monitoring agent described in this section
will try to detect the occurrence of a flooding attack, and report it to the
monitoring platform. That way, it serve two purposes: first, it increases the
overall risk of unavailability for the affected assets in real time; and second,
it provides evidence for a later investigation, stating why a service went
down.

Some research has been conducted for the early detection [155]–[158] and
prevention [158] of massive flooding. However, the goal of this section is to
describe how existing hardware (such as firewalls) can be turned into risk
monitoring agents. Any appliance that more specifically detects flooding
attacks will yield more valuable results, of course. And as long as the latter
produces relevant output (log files), the concepts developed in this section
can be easily adapted to such an appliance as well.

In the context of this section, a very simple approach is adopted, due to
the limited information available in the log files, and due to possible con-
straints on the computing power of the risk monitoring agent. More ad-
vanced detection techniques can be used if further information is known
on the connections. For example, Lakhina et al. [158] compute the entropy
of the transferred bytes, Yu et al. [156] analyse the number and frequency
of packets within a connection, Jin and Yeung [155] compare the number of
opened connections against the number of closed connections, and Sekar
et al. [157] propose a two-staged scheme based on an initial filtering and a
final clustering phase.

The proposed approach, given in Algorithm 14, is based on a statistical
modelling of the number of connections over time. In contrast to other
intrusion detection schemes, this strategy allows the agent to not only raise
a deterministic alert, but to provide its belief (in probabilistic terms) that a
DDoS attack is being observed.

The algorithm proceeds by chopping the time into intervals of duration
T > 0, during which it counts the number of connections and thus obtains
a certain connection rate per second. The NH ∈ N most recent rates are
then kept in a queue H . Each newly measured connection rate δ is then
compared to the historical data H to yield the probability that δ matches
the statistical behaviour. Mathematically, this expression is given by the
error function x 7→ erf(x), which is defined to be the probability that a nor-
mally distributed random variable N (0, 1) lies within the interval [−x, x].

3Nowadays, commercial firewall solutions exist that additionally provide DDoS protec-
tion as an additional feature.

126 Chapter 5. Risk agents

Approximations exist for computing this value numerically (see e.g. [159]).
The thus obtained likelihood can then be directly communicated to the risk
monitoring platform as described in Chapter 4.

Algorithm 14 Compute likelihood of a distributed denial-of-service attack.
Input: Time window size T > 0
Input: Size of history NH ∈ N

1: H := empty queue
2: t0 := nil
3: n := 0

4: for each logged connection c do
5: if time(c)− t0 < T then
6: ’ Count number of connections in time window
7: n := n+ 1
8: else
9: ’ Compute connection rate in time window

10: δ := n
T

11: ’ Reset time window
12: t0 := time(c)
13: n := 1

14: ’ Compute average and standard deviation
15: µ := 1

|H|
∑

h∈H h

16: σ2 := 1
|H|−1

∑
h∈H(h− µ)2

17: p := P
[
|N (0, 1)| < |δ−µ|

σ

]
18: report p to risk monitoring platform

19: ’ Keep track of history
20: add δ to H
21: if |H| > NH then
22: remove oldest item from H
23: end if
24: end if
25: end for

A Python prototype has been developed that reads log files in CSV4 format,
and that computes the probability according to Algorithm 14.

5.3.5 Conclusion

Even though firewalls were not designed to defend against reconnaissance
and denial-of-service attacks, one can still observe the latter in the firewall
log files. It is to be noted that more sophisticated (and commercial) solu-
tions exist which detect (and even prevent) the attacks in a more reliable
way. However, the objective of this section consisted in showing how exist-
ing appliances can be incorporated into the risk monitoring system.

4Comma-separated values.

5.4. Patch management 127

5.4 Patch management

A vulnerability can undermine the security of a system, because it causes
basic assumptions to no longer hold, which can have devastating conse-
quences. For example, a recently discovered flaw allowed remote attackers
to execute arbitrary code on a firewall and thus gain full control over it
(CVE-2018-01015). The vulnerability thus does not only expose the firewall
itself at risk, but also the entire network behind it.

Is it therefore crucial to patch critical vulnerabilities as soon as possible.
Thankfully, on some systems (particularly Linux), updating has become
very easy with the rise of package managers. A package manager is a piece
of software that allows its users to request the installation, upgrade, patch-
ing or removal of software with a single command.

Even though package managers simplify the task a lot, patch management
still relies on human operators to check for updates, evaluate their effect-
iveness and possible side effects, and finally deploy them [160]. In con-
sequence, it may happen that the vulnerability is not immediately closed,
and that the system remains exposed to an increased risk.

This section will further analyse the risk resulting from unpatched vulner-
abilities. Moreover, it presents an agent that determines the performance
of the patch management process from the time that is needed to apply
security updates. The latter performance can then be reported to the risk
monitoring platform described in Chapter 4, and used as a vulnerability
parameter in a risk analysis.

5.4.1 Work flow

The patch management agent proceeds by listing all available updates and
by inferring an overall performance indicator for the patch management on
the given machine. A more precise work flow is given in Algorithm 15, and
the individual steps are described in the sections below.

Although the process described below is system-independent on principle,
for the sake of illustration this document focuses on Debian operating sys-
tems and the APT package managing utility.

Algorithm 15 Work flow of the patch management agent.

1: Obtain a list U of all available updates via apt list --upgradable
2: for u ∈ U do
3: Extract the release date ru from the description of u
4: Fetch the list Eu of CVE information related to u
5: Deduce performance Pu ∈ [0, 1] from Eu and ru
6: end for
7: Infer overall performance P := minu∈U Pu
8: Report P to the risk monitoring platform

5https://nvd.nist.gov/vuln/detail/CVE-2018-0101

https://nvd.nist.gov/vuln/detail/CVE-2018-0101

128 Chapter 5. Risk agents

5.4.2 Criticality of an update

When exploits become known for software packages, its maintainers or in-
dependent security researchers publish a notice on the newly created vul-
nerability, so that every user is aware of the risk that is faced by their
system. The de facto standard method for publishing such notices is the
Common Vulnerabilities and Exposures (CVE) system, maintained by the
non-profit MITRE Corporation6. MITRE also operates a repository that
maintains a list of such CVE reports, which is available at https://cve.
mitre.org/.

In parallel, the National Institute of Standards and Technology (NIST) main-
tains the National Vulnerability Database (NVD), which augments the CVE
list with additional information. In particular, they provide a standardised
method, CVSS7, for estimating the criticality of a vulnerability with the help
of a score, ranging from 0 (not critical) to 10 (very critical). The score of a
CVE record can then be retrieved directly from the National Vulnerability
Database. The patch management agent will mainly use this information
to assess the risk originating from a known vulnerability.

Deciding whether a vulnerability is applicable for a machine is hard, in
practise. Indeed, when a vulnerability exists in a auxiliary library, then one
cannot know from the CVE description alone whether a certain software
application is affected, or not. Moreover, it is sometimes not obvious what
software version or edition a CVE report refers to, and if the affected version
is installed on the system.

Fortunately, for the case of Debian, these issues have been addressed. More
precisely, the Debian security tracker8 associates CVE information to se-
curity patches that are available for Debian software packages. That way,
when fetching the list of available updates, one can additionally retrieve
CVE information about the associated vulnerabilities, and thus also the
CVSS score. This can either be achieved using simple HTTP requests to
the security track website, or by using available tools like debsecan9.

5.4.3 Patching deadline

Since risk is an interaction of threat and vulnerability, the mere presence of
a vulnerability does not suffice to put a system at risk. Without a corres-
ponding threat (which is a software exploit in this case), no incidents are to
be expected. Regarding exploits, time plays an important role for the secur-
ity of a system, starting at the moment when a vulnerability is disclosed.
According to the Microsoft Security Intelligence Report [161], most exploits
are observed within the first day of the disclosure of the vulnerability – in
which case one refers to a zero-day exploit. Moreover, hardly any exploit is
encountered 30 days after the disclosure of a vulnerability.

6https://www.mitre.org/
7Common Vulnerability Scoring System, https://nvd.nist.gov/vuln-metrics/

cvss.
8https://security-tracker.debian.org/
9https://wiki.debian.org/DebianSecurity/debsecan

https://cve.mitre.org/
https://cve.mitre.org/
https://www.mitre.org/
https://nvd.nist.gov/vuln-metrics/cvss
https://nvd.nist.gov/vuln-metrics/cvss
https://security-tracker.debian.org/
https://wiki.debian.org/DebianSecurity/debsecan

5.4. Patch management 129

Rating CVSS Patch deadline (in days)
Low 0.1 – 3.9 30 – 8
Medium 4.0 – 6.9 8 – 3
High 7.0 – 8.9 3 – 1.5
Critical 9.0 – 10.0 1.5 – 1

TABLE 5.1 – Qualitative rating of CVSS scale and proposed
deadline for applying patches.

It goes without saying that the longer a vulnerability has been known, the
higher will be the risk that an exploit exists in the wild. When it comes
to evaluate the performance of patch management, it is thus sensible to
consider the ages of available patches: the longer they have been available,
the more urgently they should be installed.

Given the results from the Security Intelligence Report [161], it is sensible
to require that highly critical vulnerabilities be patched the very same day,
and that less important security updates be installed within 30 days after
they have been released10. According to [162], critical vulnerabilities cor-
respond to CVSS scores ranging from 9.0 to 10.0, whereas scores less than
3.9 indicate low severity. Table 5.1 summarises all the reflections above.

There are many ways to interpolate the recommended patching deadline
D(s) for intermediate values of the CVSS score s – the most simple one be-
ing a linear regression. However, since high-severity vulnerabilities should
also be patched comparatively fast, we opted for an exponential regression
instead, given as follows.

D(s) = exp
(
−s

3

)
· 30 days

Note that D(0) = 30, D(4) ≈ 8, and D(7) ≈ 3 days. In contrast, a linear
regression would have yielded D̃(7) ≈ 10 and D̃(9) ≈ 4, which seems too
long for high-severity vulnerabilities.

5.4.4 Performance of patch management

In an ideal world, updates are evaluated and deployed almost instantly
after they have become available. This assumption is not realistic, though,
because delays can occur at any stage of the patch management process.
Brykczynski et al. [160] have identified four phases which the patch man-
agement process goes through:

• patch awareness delay, the “duration between the vendor publishing
the patch and the organization becoming aware of it”;

• patch evaluation latency, the “delay between the organization becom-
ing aware of a patch and beginning the evaluation”;

10Note that the discussion is about vulnerabilities and security patches, not about feature
updates.

130 Chapter 5. Risk agents

• patch evaluation duration, during which the organisation weighs the
risk (from side effects) against the benefits;

• patch implementation duration, the “period between the organization
becoming aware of the patch and implementing the patch fully”.

Depending on the complexity of the patch, each stage can take more or less
time. In any case, however, the performance of the entire process correlates
with the response time of the people in charge for taking the appropriate
decisions.

It is thus sensible to use the latter response time to evaluate the quality of
the entire process. In Section 5.4.3, a relation has been determined to deduce
a deadline from the criticality of an update. The idea is then to verify if the
deadline has been respected, and to judge the performance of the patch
management process based on the latter information.

The performance P (t) ∈ [0, 1] should satisfy the following (natural) require-
ments:

• When all patches are applied (i.e. no further updates are available), P
should be 100%.

• When an update becomes available, P should stay relatively high as
long as the deadline is respected.

• After the deadline, P should drop rapidly to a value close to 0.

• When there are multiple updates, P should depend on the most crit-
ical one. Indeed, the security of a system is only as strong as the weak-
est link in the chain [163].

Many curves fit these requirements, so the choice is quite arbitrary. Nev-
ertheless, we try to opt for a comparatively short one, which is continuous
over time and simple to compute. First pick two levels Λ and λ, represent-
ing the ‘relatively high’ and ‘close to 0’ levels from the requirements above.
The proposed performance indicator over time, P (t), is then given as

P (t) = min
u∈U

Pu(t)

Pu(t) =

1− (1− Λ) · t− ru

Du
if t− ru ≤ Du

Λ ·
(
λ

Λ

) t−ru
Du
−1

if t− ru > Du

where Du = D(su) represents the deadline as computed in Section 5.4.3
above, and ru denotes the release time of the update.

The proposed function Pu(t) essentially behaves like a linear function be-
fore the deadline, and like an exponential decay after the deadline. It is
depicted in Figure 5.15 for Λ = 90% and λ = 1%. One can verify that
Pu(Du) = Λ and Pu(2Du) = λ, and that P (t) indeed satisfies all criteria
mentioned above.

5.5. Conclusion 131

0.2

0.4

0.6

0.8

1

ru Du 2Du
time

pe
rf

or
m

an
ce

FIGURE 5.15 – Performance indicator over time for a single
update.

5.5 Conclusion

In this final chapter, several risk monitoring agents were presented which
provide input to the risk monitoring system, and thus the related risk ana-
lysis. They measure the risk of the monitored system at several levels:

• Section 5.2 develops an intrusion detection system that detects internal
threats;

• Section 5.3 presents a firewall log parser which assesses external threats;

• Section 5.4 describes an update checking tool that searches for known
vulnerabilities on Linux servers or workstations.

These agents are in charge of interpreting the technical information (con-
tained e.g. in logs) and convert them to equivalent notions of risk. In the
context of this thesis, these notions are expressed in terms of numerical val-
ues for the likelihood and impact of risk scenarios. The determined values
are then reported to the risk monitoring platform (specified in the previous
chapter), which takes care of passing it on to the appropriate risk analysis.

It is to be noted that the firewall and patch management agents have been
purposefully designed simple. The objective of these use-cases consisted in
showing that any existing device or software can be easily turned into a risk
monitoring agent, given that it provides sufficiently relevant information.
Naturally, the higher the sophistication level of the appliance, the more ac-
curate and precise the monitored risk will be. This has been shown with the
main use-case, an intrusion detection system, that is specifically conceived
for detecting unwanted flows within the monitored network.

133

Chapter 6

Conclusion

6.1 Addressed topics

This thesis deliberated a new approach to dynamically monitor risk for an
organisation, focusing on (but not limiting to) industrial control systems.
While some risk assessment methodologies exist that address the volatile
nature of risk, especially in time-critical environments such as found in the
industry, they are often designed for a very specific use-case and do not
depict the overall risk faced by the organisation.

The work presented in this thesis is divided into three parts, each of which
tackles one of the objectives set in the introduction.

The first objective was to provide an intuitive and easy-to-use framework
for modelling the complex structure of large organisations, such as indus-
trial control systems. The thesis identified a need for modelling the inter-
actions between the individual components in terms of risk dependencies.
The risk assessment model presented in Chapter 3 does not only provide
this possibility, but it is also compatible with a large variety of existing risk
management methodologies. Indeed, the dependency graph technique de-
scribed in Chapter 3 can be applied in parallel to a risk management sys-
tem, and improves the likelihood estimates that were made manually in the
latter.

The second objective consisted in developing a solution for reporting real-
time risk information into a risk analysis. While the proposed platform
was implemented to a specific risk management tool, TRICK Service, the
thoughts from Chapter 4 were purposefully held generic enough so that
they can be adapted to other risk analysis methodologies without greater
efforts.

The last objective dealt with obtaining the necessary information from tech-
nical sources, so as to evaluate the risk ‘on the field’. Several agents have
been developed in Chapter 5, the most prominent one being an intrusion
detection system that specialises on the detection of a certain class of ad-
vanced persistent threats (namely training attacks).

134 Chapter 6. Conclusion

6.2 Prospects

Apart from the description of the risk monitoring framework, this thesis
allowed the development of several tools that ease (and automate) the work
of a risk assessor. Those tools include:

• The risk monitoring platform ‘TRICK API’ as an extension to the re-
lated risk analysis tool ‘TRICK Service’, that is described in greater
detail in Section 4.5.3. The resulting piece of software can be used to
include dynamic risk indicators from external agents into a risk ana-
lysis. The tool was also developed in the context of the ‘SGL Cockpit’
project, which consisted in developing a tool suite that dynamically
monitors the risk in the Smart Grid of Luxembourg (SGL). It will be
deployed into the central system of the Luxembourgish smart grid
operator.

• The dependency modelling tool ‘DepOT’ (presented in Section 4.5.4),
that facilitates the creation of dependency graphs for risk assessors. It
features a functionality to allows the modelled graph to be imported
into the TRICK Service risk analysis tool. Nevertheless, it does not
necessarily have to be used within a context of dynamic risk monitor-
ing; instead, it can also be used as a tool to produce purely informative
content for traditional risk analyses.

• An intrusion detection system (IDS) that spots intrusions in a network
with statistically predictable flows. Such networks can be typically
found in industrial control systems which have very little interaction
with human users. The intrusion detection system does not only learn
the normal behaviour of the network, and raises alerts on deviations
from the normal state. It was additionally designed in such a way that
the risk originating from certain classes of attacks can be inferred in
real time, including but not limited to: denial of service, physical in-
trusion, sniffing, and the training attack. The IDS is planned to be de-
ployed at the Luxembourgish smart grid operator1. Moreover, due to
collaborations with the Horizon 2020 project ‘ATENA’2, the IDS will
also be integrated into other industrial environments in the electricity,
gas, and water distribution sectors.

• Two additional risk monitoring agents, whose purpose mainly con-
sisted in illustrating how existing security appliances can be turned
into sources of risk indicators.

The main strength of the outcome of this thesis is the modular nature of the
individual achievements. It is true that every tool, including the depend-
ency graph model, plays its part to the entire risk monitoring platform.
However, each of them can also be used separately, without depending on
the other tools or on the underlying risk management system. As a matter
of fact, organisations can choose to only implement that part of the plat-
form which concerns them, or which is sensible to them – a property which
is not necessarily guaranteed by state-of-the-art solutions.

1In a later stage though, due to delays linked to the implementation of the smart grid
infrastructure.

2Partially funded by the European Commission, grant agreement number 700581.

135

Appendix A

Proofs

Proposition A.1. Let G = G(V,E) be a causal graph. For ease of writing, if
v ∈ V and x ∈ {0, 1} and π : V → {0, 1}, set

fπ(v, x) := P
[
Iv = x

∣∣∣ Iparents(v) = π|parents(v)

]
.

Then ∑
π:V→{0,1}
π(α)=1

∏
v∈V

fπ(v, π(v)) =
∑

π:V→{0,1}
π(α)=1

∏
v∈parents(α)

fπ(v, π(v)).

Proof. Let G = (V,E) be a causal graph. Since G is in particular directed
and acyclic, there is an ordering of the vertices such that the parents of
every vertex v′ come after v′.

Fix α ∈ V . Let w be the first vertex in that ordering which is not an an-
cestor of α, so by definition it cannot have any children. As such, fπ(v)
only depends on w if v = w. Hence,∑

π:V→{0,1}
π(α)=1

∏
v∈V

fπ(v, π(v))

=
∑

π:V→{0,1}
π(α)=1

fπ(w, π(w))
∏

v∈V \{w}

fπ(v, π(v))

=
∑

π:V \{w}→{0,1}
π(α)=1

(fπ(w, 0) + fπ(w, 1))
∏

v∈V \{w}

fπ(v, π(v))

=
∑

π:V \{w}→{0,1}
π(α)=1

∏
v∈V \{w}

fπ(v, π(v)).

Note that in the penultimate line the sum goes over all assignments on V \
{w} instead of V – the extraction of the fπ(w, ·) term only works because w
does not appear in any of the other factors. The last line uses the fact that
the probabilities of complementary events sum up to 1.

The process yields another causal graph with one of the vertices removed;
re-applying the argument inductively concludes the proof.

136 Appendix A. Proofs

Proposition A.2. Algorithm 1 is correct with probability δ and terminates within
time

O
(
n ·m · ln

(
2n

δ

)
· ε−3

)
.

Moreover, each computed value lies within an interval of±ε around the true value.

Proof. Fix a root node vr ∈ VR. For v ∈ V and 1 ≤ i ≤ N , let Xi(v) be
the indicator variable that there is a path from vr to v in the i-th random
experiment. Observe that

1

N

N∑
i=1

E[Xi(v)] = E[X0(v)] = P[X0(v) = 1],

that is, the quantity approximated by the algorithm (left hand-side) equals
the probability that node v is reachable by vr. So if the random experiments
do not deviate too much from their expectations, the algorithm output is
correct up to a certain relative error, which is determined in the following.

Define γ and N as in the algorithm. Note that γ < ε < 1.

Fix v ∈ V . Suppose for now that µ(v) ≥ γ. Using a two-sided Chernoff
bound [164],

P

[∣∣∣∣∣
N∑
i=1

Xi(v)−Nµ(v)

∣∣∣∣∣ > Nµ(v)ε

]

≤ 2 exp

(
−ε

2

3
Nγ

)
=

δ

n2
. (by the choice of N)

If however µ(v) ≤ γ < ε, using a one-sided Chernoff bound,

P

[
N∑
i=1

Xi(v)/N > ε

]

= P

[
N∑
i=1

Xi(v) >

(
1 +

ε− µ(v)

µ(v)

)
Nµ(v)

]

≤ 2 exp

(
−
(
ε− µ(v)

µ(v)

)2 Nµ(v)

3

)

≤ 2 exp

(
−(ε− γ)2 N

3γ

)
= 2 exp

(
−
(
ε− γ
εγ

)2

ln(2n2/δ)

)
. (∗)

By the definition of γ it holds that ε − γ > εγ and thus (∗) ≤ δ
n2 . To sum-

marize, with probability at least δn−2 the following two statements hold:

Appendix A. Proofs 137

• If µ(v) ≥ γ then the relative error of the random experiment is at
most ε; however, since µ(v) < 1, this also implies that the absolute
error e(v) :=

∣∣∣∑N
i=1Xi(v)−Nµ(v)

∣∣∣ is at most ε.

• If µ(v) ≤ γ then the absolute error e(v) error is at most ε.

Note that the statements above hold for any fixed vertex v0 and any fixed
root node vr,0. Using a union bound,

P[∃vr∃v : e(v) > ε] ≤ n2 · P[e(v0) > ε] = δ

yielding the desired error probability for the algorithm.

Regarding the running time, note that the inner FOR-loop can be implemen-
ted (e.g. using a breadth-first search) in linear time O(m) for each of the at
most n root nodes, whereas the sampling requires time O(m), resulting in
a total execution time of O(n ·m ·N).

139

Appendix B

Data sets

TABLE B.1 – Results of the simulation experiments

(varying size of input graph)
|V | |E| ε δ Iterations Time (s)

100 515 0.1 0.01 57290 1.1163832

200 995 0.1 0.01 62764 1.8782055

300 1558 0.1 0.01 65966 3.4224201

400 2010 0.1 0.01 68238 4.0489518

500 2571 0.1 0.01 70000 5.2410411

600 2998 0.1 0.01 71440 6.290252

700 3463 0.1 0.01 72657 7.2129071

800 4079 0.1 0.01 73712 8.7000471

900 4499 0.1 0.01 74642 10.0516358

1000 5058 0.1 0.01 75474 11.1025155
(varying precision of algorithm output)

|V | |E| Iterations Time (s)

500 2523 0.5 0.01 726 0.0577856

500 2392 0.2 0.01 9620 0.72131

500 2541 0.1 0.01 70000 5.1170565

500 2464 0.05 0.01 520596 31.2303292

500 2557 0.02 0.01 7587969 274.7254227
(varying algorithm error probability)

|V | |E| Iterations Time (s)

500 2574 0.1 0.0001 88184 6.5013409

500 2521 0.1 0.001 79092 5.8744299

500 2479 0.1 0.01 70000 5.3008785

500 2540 0.1 0.1 60908 4.4340709
(varying average number of node neighbours)
|V | |E| Iterations Time (s)

100 508 0.1 0.01 57290 0.74860860

200 980 0.1 0.01 62764 1.74781950

200 2004 0.1 0.01 62764 2.57128770

200 3957 0.1 0.01 62764 3.36202100

200 10067 0.1 0.01 62764 5.74008430

200 19992 0.1 0.01 62764 9.95537590

300 1491 0.1 0.01 65966 3.10028020

300 2956 0.1 0.01 65966 3.62702600

300 6032 0.1 0.01 65966 5.28465980

140 Appendix B. Data sets

300 15068 0.1 0.01 65966 8.88317620

300 30075 0.1 0.01 65966 15.73896320

400 2002 0.1 0.01 68238 4.42690590

400 4007 0.1 0.01 68238 5.58108290

400 7993 0.1 0.01 68238 7.18062480

400 20094 0.1 0.01 68238 12.31568510

400 40110 0.1 0.01 68238 21.25638300

500 2497 0.1 0.01 70000 4.99750850

500 5091 0.1 0.01 70000 6.88772690

500 10048 0.1 0.01 70000 9.05478420

500 24883 0.1 0.01 70000 15.50143540

500 49828 0.1 0.01 70000 26.78152520

600 3012 0.1 0.01 71440 6.38884460

600 5897 0.1 0.01 71440 8.35841490

600 12163 0.1 0.01 71440 11.27393760

600 29795 0.1 0.01 71440 19.07167170

600 60180 0.1 0.01 71440 33.08584440

700 3393 0.1 0.01 72657 5.75831260

700 7078 0.1 0.01 72657 9.93901220

700 13910 0.1 0.01 72657 13.05916540

700 34940 0.1 0.01 72657 22.79221370

700 70164 0.1 0.01 72657 38.90024520

800 3936 0.1 0.01 73712 8.32702800

800 7963 0.1 0.01 73712 11.40233290

800 16012 0.1 0.01 73712 15.34878480

800 40093 0.1 0.01 73712 27.16270650

800 79989 0.1 0.01 73712 45.30316310

900 4426 0.1 0.01 74642 7.83409540

900 9219 0.1 0.01 74642 13.27833110

900 17995 0.1 0.01 74642 17.58192730

900 45347 0.1 0.01 74642 30.87114070

900 89958 0.1 0.01 74642 53.56402540

1000 5073 0.1 0.01 75474 11.19835840

1000 9867 0.1 0.01 75474 13.10751250

1000 20336 0.1 0.01 75474 19.48352650

1000 50238 0.1 0.01 75474 33.94672970

1000 99469 0.1 0.01 75474 58.11831390

141

List of Figures

1 Aperçu des composantes du système de surveillance des risques. iv

1.1 Overview of the risk monitoring framework and its compon-
ents. 2

1.2 A very simple heat map based on 3-value impact and 3-value
likelihood scales. The risk importance is defined as impact
× likelihood. Risks are accepted when their importance is
5 or less (depicted by a green cell); they are to be mitigated
otherwise (red cell). 4

1.3 Example of functionally dependent assets. 10
1.4 Example of implicitly contained risk scenarios. 10
1.5 Example of interdependencies resulting from security incid-

ents and its cascade effects. 10
1.6 Situation where security events are cyclically dependent. . . 11

3.1 Graphical representation of Example 3.1. 33
3.2 Graphical example of a dependency graph with probability

values. 39
3.3 Split-up of a risk-scenario in multiple events, with impact

attached to the most appropriate one. 41
3.4 The risk management process according to ISO 27005. 44
3.5 Dependencies as an extension to the risk management process. 45
3.6 Simple example of cyclically dependent events encoded in a

graph. 48
3.7 Execution time of Algorithm 1 in seconds, depending on the

graph size n, with ε = 0.1 and = 0.01 and an average of 5
neighbours per node. 50

3.8 Execution time of Algorithm 1 in seconds, depending on the
precision ε of the results, with n = 500 and = 0.01 and an
average of 5 neighbours per node. 50

3.9 Execution time of Algorithm 1 in seconds, depending on the
correctness of the algorithm output, with n = 500 and ε =
0.1 and an average of 5 neighbours per node. 51

3.10 Execution time of Algorithm 1 in seconds, depending on the
graph size n and m, with ε = 0.1 and = 0.01. 52

3.11 Class diagram representing the taxonomy of assets involved
in a risk analysis, grouped by layer. Read an edge ‘c1

predicate−−−−→
c2’ as ‘c1 predicate c2’. 56

3.12 User interface of the DepOT tool. 59
3.13 Example of an overfull dependency graph. 60

142 List of Figures

3.14 Anonymised network diagram of the central system archi-
tecture showing devices and the their affinity to the respect-
ive networks. DSO denotes a Distribution System Operator;
DMZ stands for DeMilitarised Zone; field devices include data
concentrators and smart meters. 63

3.15 Anonymised hierarchy of certificates used in the smart grid.
CA denotes a Certificate Authority. 63

3.16 Excerpt of the matching between applications (solid boxes)
and services (dashed boxes). SIEM denotes the Security In-
formation and Event Management appliance. 64

3.17 Endless loop in dependencies for general boolean formulae. 67
3.18 A sample attack–defence tree. The dashed nodes correspond

to defences that apply to the attack step above them. 67

4.1 Risk monitoring making use of the dependency model to
automatically update the risk estimates in real-time. 76

4.2 Example evolution of a dynamically reported risk factor. . . 79
4.3 A notification overridden by another one, due to the enforce-

ment parameter being set (f=true). 80
4.4 A notification not overridden by another one, due to its smal-

ler value and the enforcement parameter not being set (f=false). 81
4.5 An intermediary risk monitoring platform for storing risk in-

dicator values, separating agents from the risk analysis. . . . 82
4.6 Interaction of risk monitoring components. 89
4.7 Linking a named parameter to a likelihood in TRICK Service

with the use of formulae. 90
4.8 Comparison of linear and logarithmic time lines. 96
4.9 Evolution of (quantitative) risk visualised in a logarithmic

time line in TRICK Service. 97

5.1 Illustration of a typical denial-of-service attack. Note the ab-
rupt ‘jumps’ for the measured data rate. This example is
based on the data sets recorded by Garcia et al. [136]. 104

5.2 Illustration of the training attack over time, for the case of
the data rate. An attacker proceeds by progressively inject-
ing more and more packets until he eventually reaches the
desired critical threshold. 105

5.3 Illustration of the stealthy training attack over time. Instead
of only increasing the traffic load, an attacker creates enough
‘normal’ data in-between, which outweighs (and thus hides)
the malicious traffic. 105

5.4 Illustration of typical data rates for HTTP traffic (thin black
line). Note how the µ+3 ·σ threshold value (thick red line) is
not a good descriptor of ‘normal’ traffic and thus a bad can-
didate for detecting outliers in the traffic. This is due to the
fact that HTTP traffic is not even closely normally distributed. 106

5.5 Example of a two-dimensional state space divided into a grid,
at a particular time t. 107

5.6 Work-flow of the intrusion detection system. 108
5.7 The several steps of the training attack and how they appear

at different time scales. 109

List of Figures 143

5.8 Influence of Γ and λ on the weight of a single data point over
time. 113

5.9 The two (legitimate) steps that the training attack consists
of. Dense cells are hatched. If the intermediate clustering is
omitted, the situation will look as if a new cluster is created,
and an alert will be raised. 114

5.10 Successful detection of unusually high out-going traffic. . . . 116
5.11 A small decay parameter (λ = 0.01−1 day) makes the IDS for-

get data too fast. The triangles denote the times when new
clusters were created (thus alerts raised); note the additional
final clustering at the very right of the figure which occurs
after approximately a day. 116

5.12 The ‘4SICS Geek Lounge’ data set recorded on real SCADA
equipment for 18 hours, starting at 5:52 p.m. One can clearly
distinguish the night as a period of low activity (7:42 p.m. to
8:30 a.m.). 117

5.13 The training attack combined with the [144] data set. The
triangles denote the times when new clusters were created
(thus alerts raised) for the instances with Γ = 57d, 114d, 228d,
respectively. 118

5.14 The stealthy training attack combined with the [144] data set.
The right graph depicts the data rate as induced by the at-
tack, while the left graph depicts the evolution of the cluster
size. Although no alert is raised for the behaviour of the data
rate, the dual IDS does identify the increase of the cluster size
(alerts marked with red triangles). 119

5.15 Performance indicator over time for a single update. 131

145

List of Tables

3.1 Possible interpretation of probability values for dependencies. 39
3.2 Common security aspects that help in determining security

events. 58

5.1 Qualitative rating of CVSS scale and proposed deadline for
applying patches. 129

B.1 Results of the simulation experiments 139

147

Bibliography

[1] K. Stouffer, J. Falco and K. Scarfone, ‘Guide to industrial control sys-
tems (ics) security’, NIST special publication, vol. 800, no. 82, pp. 16–
16, 2011.

[2] R. J. Turk, ‘Cyber incidents involving control systems’, Idaho Na-
tional Laboratory (INL), Tech. Rep., 2005.

[3] M. A. McQueen, T. A. McQueen, W. F. Boyer and M. R. Chaffin, ‘Em-
pirical estimates and observations of 0day vulnerabilities’, in Sys-
tem Sciences, 2009. HICSS’09. 42nd Hawaii International Conference on,
IEEE, 2009, pp. 1–12.

[4] S. L. Laboratory. (3rd May 2012). Qualitative vs. quantitative risk as-
sessment, [Online]. Available: http://www.sans.edu/research/
leadership-laboratory/article/risk-assessment (vis-
ited on 11/01/2015).

[5] L. A. T. Cox, D. Babayev and W. Huber, ‘Some limitations of qual-
itative risk rating systems’, Risk Analysis, vol. 25, no. 3, pp. 651–662,
2005.

[6] P. R. Garvey and Z. F. Lansdowne, ‘Risk matrix: an approach for
identifying, assessing, and ranking program risks’, Air Force Journal
of Logistics, vol. 22, no. 1, pp. 18–21, 1998.

[7] M. Willhite, ‘Establishing a program risk baseline, an annotated brief-
ing’, The MITRE Corporation, Bedford, pp. 1–10, 1998.

[8] Q. Zhu, X. Kuang and Y. Shen, ‘Risk matrix method and its applic-
ation in the field of technical project risk management’, Engineering
Science, vol. 5, no. 1, pp. 89–94, 2003.

[9] H. Ni, A. Chen and N. Chen, ‘Some extensions on risk matrix ap-
proach’, Safety Science, vol. 48, no. 10, pp. 1269–1278, 2010.

[10] L. Anthony Tony Cox, ‘What’s wrong with risk matrices?’, Risk ana-
lysis, vol. 28, no. 2, pp. 497–512, 2008.

[11] International Organization for Standardization, ISO/IEC 27005: in-
formation security risk management, 2008.

[12] C. N. de l’Informatique et des Libertés (CNIL). (2018). Privacy im-
pact assessment (pia) 1 : methodology, [Online]. Available: https:
//www.cnil.fr/en/cnil-publishes-update-its-pia-
guides (visited on 22/03/2018).

[13] ——, (2018). Privacy impact assessment (pia) 2 : template, [Online].
Available: https://www.cnil.fr/en/cnil- publishes-
update-its-pia-guides (visited on 22/03/2018).

[14] ——, (2018). Privacy impact assessment (pia) 3 : knowledge bases,
[Online]. Available: https://www.cnil.fr/en/cnil-publishes-
update-its-pia-guides (visited on 22/03/2018).

[15] M. S. Lund, B. Solhaug and K. Stølen, Model-driven risk analysis: the
CORAS approach. Springer Science & Business Media, 2010.

http://www.sans.edu/research/leadership-laboratory/article/risk-assessment
http://www.sans.edu/research/leadership-laboratory/article/risk-assessment
https://www.cnil.fr/en/cnil-publishes-update-its-pia-guides
https://www.cnil.fr/en/cnil-publishes-update-its-pia-guides
https://www.cnil.fr/en/cnil-publishes-update-its-pia-guides
https://www.cnil.fr/en/cnil-publishes-update-its-pia-guides
https://www.cnil.fr/en/cnil-publishes-update-its-pia-guides
https://www.cnil.fr/en/cnil-publishes-update-its-pia-guides
https://www.cnil.fr/en/cnil-publishes-update-its-pia-guides

148 Bibliography

[16] Z. Yazar, ‘A qualitative risk analysis and management tool–cramm’,
SANS InfoSec Reading Room White Paper, 2002.

[17] A. nationale de la sécurité des systèmes d’information, EBIOS: ex-
pression des besoins et identification des objectifs de sécurité, 2010.

[18] B. für Sicherheit in der Informationstechnik, BSI-standard 200-3: risiko-
management, 2017.

[19] M. A. Amutio, J. Candau and J. Mañas, ‘Magerit–version 3, method-
ology for information systems risk analysis and management, book
i – the method’, Ministerio de administraciones públicas, 2014.

[20] CLUSIF and CLUSIQ, MEHARI: principes fondamentaux et spécifica-
tions fonctionnelles, 2010.

[21] C. J. Alberts and A. Dorofee, Managing information security risks: the
OCTAVE approach. Addison-Wesley Longman Publishing Co., Inc.,
2002.

[22] ISACA, The Risk IT framework, 2009.
[23] G. Antoniou, M.-C. Saravanou and V. Stavrou, ‘An overview of risk

assessment methods’, 2014. [Online]. Available: https://www.
infosec.aueb.gr/Publications/2014- Poster%20RA%
20Overview.pdf (visited on 22/01/2018).

[24] D. Ionita, ‘Current established risk assessment methodologies and
tools’, 2013.

[25] F. Macedo and M. M. Da Silva, ‘Comparative study of information
security risk assessment models’, Universidad Técnica de Lisboa, Lis-
boa,

[26] International Organization for Standardization, ISO/IEC 27019: in-
formation technology – security techniques – information security man-
agement guidelines based on ISO/IEC 27002 for process control systems
specific to the energy utility industry, 2013.

[27] European Union Agency for Network and Information Security, Baseline
security recommendations for iot, 2017.

[28] P. Y. Lipscy, K. E. Kushida and T. Incerti, ‘The fukushima disaster
and japan’s nuclear plant vulnerability in comparative perspective’,
Environmental science & technology, vol. 47, no. 12, pp. 6082–6088,
2013.

[29] International Organization for Standardization, ISO/IEC 31000: risk
management, 2018.

[30] E. Luiijf, A. Nieuwenhuijs, M. Klaver, M. van Eeten and E. Cruz,
‘Empirical findings on critical infrastructure dependencies in europe’,
in International Workshop on Critical Information Infrastructures Secur-
ity, Springer, 2008, pp. 302–310.

[31] S. M. Rinaldi, J. P. Peerenboom and T. K. Kelly, ‘Identifying, under-
standing, and analyzing critical infrastructure interdependencies’,
IEEE Control Systems, vol. 21, no. 6, pp. 11–25, 2001.

[32] R. G. Little, ‘Controlling cascading failure: understanding the vul-
nerabilities of interconnected infrastructures’, Journal of Urban Tech-
nology, vol. 9, no. 1, pp. 109–123, 2002.

[33] S. McGee, J. Frittmann, S. Ahn and S. Murray, ‘Risk relationship and
cascading effects in critical infrastructures: implications for the hy-
ogo framework (input paper prepared for the 2015 global assess-
ment report on disaster risk reduction)’, Geneva, Switzerland, UNISDR,
2014.

https://www.infosec.aueb.gr/Publications/2014-Poster%20RA%20Overview.pdf
https://www.infosec.aueb.gr/Publications/2014-Poster%20RA%20Overview.pdf
https://www.infosec.aueb.gr/Publications/2014-Poster%20RA%20Overview.pdf

Bibliography 149

[34] S. Axelsson, ‘The base-rate fallacy and the difficulty of intrusion de-
tection’, ACM Transactions on Information and System Security (TIS-
SEC), vol. 3, no. 3, pp. 186–205, 2000.

[35] T. Peng, C. Leckie and K. Ramamohanarao, ‘Proactively detecting
distributed denial of service attacks using source ip address monit-
oring’, in International Conference on Research in Networking, Springer,
2004, pp. 771–782.

[36] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker and S. Savage, ‘In-
ferring internet denial-of-service activity’, ACM Transactions on Com-
puter Systems (TOCS), vol. 24, no. 2, pp. 115–139, 2006.

[37] R. K. Chang, ‘Defending against flooding-based distributed denial-
of-service attacks: a tutorial’, IEEE communications magazine, vol. 40,
no. 10, pp. 42–51, 2002.

[38] A. Milenkoski, M. Vieira, S. Kounev, A. Avritzer and B. D. Payne,
‘Evaluating computer intrusion detection systems: a survey of com-
mon practices’, ACM Computing Surveys (CSUR), vol. 48, no. 1, p. 12,
2015.

[39] V. Chandola, A. Banerjee and V. Kumar, ‘Anomaly detection: a sur-
vey’, ACM computing surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

[40] M. Botha, R. Von Solms, K. Perry, E. Loubser and G. Yamoyany,
‘The utilization of artificial intelligence in a hybrid intrusion detec-
tion system’, in Proceedings of the 2002 annual research conference of
the South African institute of computer scientists and information techno-
logists on Enablement through technology, South African Institute for
Computer Scientists and Information Technologists, 2002, pp. 149–
155.

[41] C. Katar, ‘Combining multiple techniques for intrusion detection’,
Int J Comput Sci Network Security, vol. 6, no. 2B, pp. 208–218, 2006.

[42] S. Axelsson, ‘Intrusion detection systems: a survey and taxonomy’,
Technical report, Tech. Rep., 2000.

[43] H. Debar, M. Dacier and A. Wespi, ‘Towards a taxonomy of intrusion-
detection systems’, Computer Networks, vol. 31, no. 8, pp. 805–822,
1999.

[44] R. Sommer and V. Paxson, ‘Outside the closed world: on using ma-
chine learning for network intrusion detection’, in Security and Pri-
vacy (SP), 2010 IEEE Symposium on, IEEE, 2010, pp. 305–316.

[45] M. Barreno, B. Nelson, R. Sears, A. D. Joseph and J. D. Tygar, ‘Can
machine learning be secure?’, in Proceedings of the 2006 ACM Sym-
posium on Information, computer and communications security, ACM,
2006, pp. 16–25.

[46] S. Muller, ‘Risk monitoring in industrial control systems’, in Ad-
vanced Data Collection and Risks (ADaCoR) Workshop 2016, 2016.

[47] B. Fetler and S. Muller, ‘Dynamic risk analysis’, in Security Assess-
ment for Systems, Services, and Infrastructures (SASSI) Workshop 2015,
2015.

[48] S. Muller, C. Harpes, Y. Le Traon, S. Gombault, J.-M. Bonnin and
P. Hoffmann, ‘Dynamic risk analyses and dependency-aware root
cause model for critical infrastructures’, in Critical Information Infra-
structures Security: 11th International Conference, CRITIS 2016, Paris,
France, October 10–12, 2016, Revised Selected Papers, G. Havarneanu,
R. Setola, H. Nassopoulos and S. Wolthusen, Eds. Cham: Springer

150 Bibliography

International Publishing, 2017, pp. 163–175, ISBN: 978-3-319-71368-
7. DOI: 10.1007/978-3-319-71368-7_14. [Online]. Available:
https://doi.org/10.1007/978-3-319-71368-7_14.

[49] O. Gadyatskaya, C. Harpes, S. Mauw, C. Muller and S. Muller, ‘Bridging
two worlds: reconciling practical risk assessment methodologies with
theory of attack trees’, in Graphical Models for Security: Third Interna-
tional Workshop, GraMSec 2016, Lisbon, Portugal, June 27, 2016, Revised
Selected Papers, B. Kordy, M. Ekstedt and S. D. Kim, Eds. Springer
International Publishing, 2016, pp. 80–93, ISBN: 978-3-319-46263-9.
DOI: 10.1007/978-3-319-46263-9_5. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-46263-9_5.

[50] S. Muller, C. Harpes and C. Muller, ‘Fast and optimal countermeas-
ure selection for attack defence trees’, in Risk Assessment and Risk-
Driven Quality Assurance: 4th International Workshop, RISK 2016, Held
in Conjunction with ICTSS 2016, Graz, Austria, October 18, 2016, Re-
vised Selected Papers, J. Großmann, M. Felderer and F. Seehusen, Eds.
Cham: Springer International Publishing, 2017, pp. 53–65, ISBN: 978-
3-319-57858-3. DOI: 10.1007/978- 3- 319-57858-3_5. [On-
line]. Available: http://dx.doi.org/10.1007/978-3-319-
57858-3_5.

[51] S. Muller, C. Harpes, Y. L. Traon, S. Gombault and J.-M. Bonnin, ‘Ef-
ficiently computing the likelihoods of cyclically interdependent risk
scenarios’, Computers & Security, vol. 64, pp. 59–68, 2017, ISSN: 0167-
4048. DOI: http://dx.doi.org/10.1016/j.cose.2016.09.
008. [Online]. Available: http://www.sciencedirect.com/
science/article/pii/S0167404816301158.

[52] S. Muller, J. Lancrenon, C. Harpes, Y. L. Traon, S. Gombault and J.-M.
Bonnin, ‘A training-resistant anomaly detection system’, Computers
& Security, vol. 76, pp. 1–11, 2018, ISSN: 0167-4048. DOI: https://
doi.org/10.1016/j.cose.2018.02.015. [Online]. Available:
https://www.sciencedirect.com/science/article/
pii/S016740481830155X.

[53] X. Tong and X. Ban, ‘A hierarchical information system risk evalu-
ation method based on asset dependence chain’, International Journal
of Security and Its Applications, vol. 8, no. 6, pp. 81–88, 2014.

[54] F. Den Braber, I. Hogganvik, M. Lund, K. Stølen and F. Vraalsen,
‘Model-based security analysis in seven steps—a guided tour to the
coras method’, BT Technology Journal, vol. 25, no. 1, pp. 101–117, 2007.

[55] J. Breier, ‘Asset valuation method for dependent entities’, Journal of
Internet Services and Information Security (JISIS), vol. 4, no. 3, pp. 72–
81, 2014.

[56] N. Liu, J. Zhang and X. Wu, ‘Asset analysis of risk assessment for
iec 61850-based power control systems—part i: methodology’, IEEE
Transactions on Power Delivery, vol. 26, no. 2, pp. 869–875, 2011.

[57] B. Suh and I. Han, ‘The is risk analysis based on a business model’,
Information & Management, vol. 41, no. 2, pp. 149–158, 2003.

[58] ‘Event tree analysis (eta)’, IEC60300-3-9, Dependability Management
– Part 3: Application Guide – Section 9: Risk Analysis of Technological
Systems, first ed., 1995.

https://doi.org/10.1007/978-3-319-71368-7_14
https://doi.org/10.1007/978-3-319-71368-7_14
https://doi.org/10.1007/978-3-319-46263-9_5
http://dx.doi.org/10.1007/978-3-319-46263-9_5
https://doi.org/10.1007/978-3-319-57858-3_5
http://dx.doi.org/10.1007/978-3-319-57858-3_5
http://dx.doi.org/10.1007/978-3-319-57858-3_5
https://doi.org/http://dx.doi.org/10.1016/j.cose.2016.09.008
https://doi.org/http://dx.doi.org/10.1016/j.cose.2016.09.008
http://www.sciencedirect.com/science/article/pii/S0167404816301158
http://www.sciencedirect.com/science/article/pii/S0167404816301158
https://doi.org/https://doi.org/10.1016/j.cose.2018.02.015
https://doi.org/https://doi.org/10.1016/j.cose.2018.02.015
https://www.sciencedirect.com/science/article/pii/S016740481830155X
https://www.sciencedirect.com/science/article/pii/S016740481830155X

Bibliography 151

[59] P. Giorgini, J. Mylopoulos, E. Nicchiarelli and R. Sebastiani, ‘Formal
reasoning techniques for goal models’, J. Data Semantics, vol. 1, no. 1,
pp. 1–20, 2003.

[60] E. Navarro, P. Letelier, D. Reolid and I. Ramos, ‘Configurable satis-
fiability propagation for goal’, Advances in information systems devel-
opment: new methods and practice for the networked society, vol. 2, p. 167,
2007.

[61] B. Schneier, ‘Attack trees’, Dr. Dobb’s journal, vol. 24, no. 12, pp. 21–
29, 1999.

[62] S. Mauw and M. Oostdijk, ‘Foundations of attack trees’, in Icisc,
Springer, vol. 3935, 2005, pp. 186–198.

[63] S. Evans and J. Wallner, ‘Risk-based security engineering through
the eyes of the adversary’, in Information Assurance Workshop, 2005.
IAW’05. Proceedings from the Sixth Annual IEEE SMC, IEEE, 2005,
pp. 158–165.

[64] P. Schweitzer, ‘Attack-defense trees.’, PhD thesis, University of Twente,
Enschede, Netherlands, 2013.

[65] B. Kordy, S. Mauw, S. Radomirović and P. Schweitzer, ‘Attack–defense
trees’, Journal of Logic and Computation, vol. 24, no. 1, pp. 55–87, 2014.

[66] F. Baiardi and D. Sgandurra, ‘Assessing ICT risk through a Monte
Carlo method’, Environment Systems and Decisions, vol. 33, no. 4, pp. 486–
499, 2013.

[67] T. R. Ingoldsby, ‘Attack tree-based threat risk analysis’, Amenaza Tech-
nologies Limited, pp. 3–9, 2010.

[68] L. Grunske and D. Joyce, ‘Quantitative risk-based security predic-
tion for component-based systems with explicitly modeled attack
profiles’, Journal of Systems and Software, vol. 81, no. 8, pp. 1327–1345,
2008.

[69] K. S. Edge, G. C. Dalton, R. A. Raines and R. F. Mills, ‘Using attack
and protection trees to analyze threats and defenses to homeland se-
curity’, in Military Communications Conference, 2006. MILCOM 2006.
IEEE, IEEE, 2006, pp. 1–7.

[70] M. A. McQueen, W. F. Boyer, M. A. Flynn and G. A. Beitel, ‘Quantit-
ative cyber risk reduction estimation methodology for a small scada
control system’, in System Sciences, 2006. HICSS’06. Proceedings of the
39th Annual Hawaii International Conference on, IEEE, vol. 9, 2006,
pp. 226–226.

[71] I. B. Utne, P. Hokstad and J. Vatn, ‘A method for risk modeling of
interdependencies in critical infrastructures’, Reliability Engineering
& System Safety, vol. 96, no. 6, pp. 671–678, 2011.

[72] T. W. Kwan and H. K. Leung, ‘A risk management methodology for
project risk dependencies’, IEEE Transactions on Software Engineering,
vol. 37, no. 5, pp. 635–648, 2011.

[73] R. Dantu, K. Loper and P. Kolan, ‘Risk management using behavior
based attack graphs’, in Information Technology: Coding and Comput-
ing, 2004. Proceedings. ITCC 2004. International Conference on, IEEE,
vol. 1, 2004, pp. 445–449.

[74] S. Fenz, M. Hudec et al., ‘Ontology-based generation of Bayesian net-
works’, in Complex, Intelligent and Software Intensive Systems, 2009.
CISIS’09. International Conference on, IEEE, 2009, pp. 712–717.

152 Bibliography

[75] B. Rahmad, S. H. Supangkat, J. Sembiring and K. Surendro, ‘Model-
ing asset dependency for security risk analysis using threat-scenario
dependency’, International Journal of Computer Science and Information
Security, vol. 10, no. 4, p. 103, 2012.

[76] N. Poolsappasit, R. Dewri and I. Ray, ‘Dynamic security risk man-
agement using bayesian attack graphs’, IEEE Transactions on Depend-
able and Secure Computing, vol. 9, no. 1, pp. 61–74, 2012.

[77] J. Homer, X. Ou and D. Schmidt, ‘A sound and practical approach to
quantifying security risk in enterprise networks’, Kansas State Uni-
versity Technical Report, pp. 1–15, 2009.

[78] P. Kotzanikolaou, M. Theoharidou and D. Gritzalis, ‘Assessing n-
order dependencies between critical infrastructures’, International Journal
of Critical Infrastructures 6, vol. 9, no. 1-2, pp. 93–110, 2013.

[79] L. Wang, T. Islam, T. Long, A. Singhal and S. Jajodia, ‘An attack
graph-based probabilistic security metric’, in Data and applications
security XXII, Springer, 2008, pp. 283–296.

[80] A. Årnes, K. Sallhammar, K. Haslum, T. Brekne, M. E. G. Moe and
S. J. Knapskog, ‘Real-time risk assessment with network sensors and
intrusion detection systems’, in International Conference on Computa-
tional and Information Science, Springer, 2005, pp. 388–397.

[81] K. Haslum and A. Arnes, ‘Multisensor real-time risk assessment us-
ing continuous-time hidden markov models’, in Computational In-
telligence and Security, 2006 International Conference on, IEEE, vol. 2,
2006, pp. 1536–1540.

[82] X. Tan, Y. Zhang, X. Cui and H. Xi, ‘Using hidden markov models
to evaluate the real-time risks of network’, in Knowledge Acquisition
and Modeling Workshop, 2008. KAM Workshop 2008. IEEE International
Symposium on, IEEE, 2008, pp. 490–493.

[83] W. Kanoun, S. Dubus, S. Papillon, N. Cuppens-Boulahia and F. Cup-
pens, ‘Towards dynamic risk management: success likelihood of on-
going attacks’, Bell Labs Technical Journal, vol. 17, no. 3, pp. 61–78,
2012.

[84] M. Jahnke, C. Thul and P. Martini, ‘Graph based metrics for intru-
sion response measures in computer networks’, in Local Computer
Networks, 2007. LCN 2007. 32nd IEEE Conference on, IEEE, 2007, pp. 1035–
1042.

[85] S. Noel, S. Jajodia, L. Wang and A. Singhal, ‘Measuring security
risk of networks using attack graphs’, International Journal of Next-
Generation Computing, vol. 1, no. 1, pp. 135–147, 2010.

[86] P. Xie, J. H. Li, X. Ou, P. Liu and R. Levy, ‘Using bayesian networks
for cyber security analysis’, in Dependable Systems and Networks (DSN),
2010 IEEE/IFIP international conference on, IEEE, 2010, pp. 211–220.

[87] J. Homer and X. Ou, ‘Sat-solving approaches to context-aware enter-
prise network security management’, IEEE Journal on selected areas in
communications, vol. 27, no. 3, 2009.

[88] A. Gehani and G. Kedem, ‘Rheostat: real-time risk management’, in
RAID, Springer, 2004, pp. 296–314.

[89] M. Paté-Cornell, P. J. Regan et al., ‘Dynamic risk management sys-
tems: hybrid architecture and offshore platform illustration’, Risk
analysis, vol. 18, no. 4, pp. 485–496, 1998.

Bibliography 153

[90] W. Kanoun, N. Cuppens-Boulahia, F. Cuppens and F. Autrel, ‘Ad-
vanced reaction using risk assessment in intrusion detection sys-
tems’, in International Workshop on Critical Information Infrastructures
Security, Springer, 2007, pp. 58–70.

[91] M. Giannakis and M. Louis, ‘A multi-agent based framework for
supply chain risk management’, Journal of Purchasing and Supply Man-
agement, vol. 17, no. 1, pp. 23–31, 2011.

[92] J. Jiang, P. Wang, W.-s. Lung, L. Guo and M. Li, ‘A gis-based generic
real-time risk assessment framework and decision tools for chem-
ical spills in the river basin’, Journal of hazardous materials, vol. 227,
pp. 280–291, 2012.

[93] N. Dulac, ‘A framework for dynamic safety and risk management
modeling in complex engineering systems’, PhD thesis, Massachu-
setts Institute of Technology, 2007.

[94] J. P. Anderson et al., ‘Computer security threat monitoring and sur-
veillance’, James P. Anderson Company, Fort Washington, Pennsylvania,
Tech. Rep., 1980.

[95] D. E. Denning, ‘An intrusion-detection model’, IEEE Transactions on
software engineering, no. 2, pp. 222–232, 1987.

[96] R. Mitchell and I.-R. Chen, ‘A survey of intrusion detection tech-
niques for cyber-physical systems’, ACM Computing Surveys (CSUR),
vol. 46, no. 4, p. 55, 2014.

[97] B. Zhu and S. Sastry, ‘Scada-specific intrusion detection/prevention
systems: a survey and taxonomy’, in Proceedings of the 1st Workshop
on Secure Control Systems (SCS), vol. 11, 2010.

[98] A. L. Buczak and E. Guven, ‘A survey of data mining and machine
learning methods for cyber security intrusion detection’, IEEE Com-
munications Surveys & Tutorials, vol. 18, no. 2, pp. 1153–1176, 2016.

[99] H. Brahmi, I. Brahmi and S. B. Yahia, ‘Omc-ids: at the cross-roads
of olap mining and intrusion detection’, in Pacific-Asia Conference on
Knowledge Discovery and Data Mining, Springer, 2012, pp. 13–24.

[100] L. Portnoy, E. Eskin and S. Stolfo, ‘Intrusion detection with unlabeled
data using clustering’, in In Proceedings of ACM CSS Workshop on
Data Mining Applied to Security (DMSA-2001, Citeseer, 2001.

[101] Z. Muda, W. Yassin, M. Sulaiman and N. Udzir, ‘Intrusion detec-
tion based on k-means clustering and naive bayes classification’, in
Information Technology in Asia (CITA 11), 2011 7th International Con-
ference on, IEEE, 2011, pp. 1–6.

[102] V. Barot and D. Toshniwal, ‘A new data mining based hybrid net-
work intrusion detection model’, in Data Science & Engineering (ICDSE),
2012 International Conference on, IEEE, 2012, pp. 52–57.

[103] K. Sequeira and M. Zaki, ‘Admit: anomaly-based data mining for in-
trusions’, in Proceedings of the eighth ACM SIGKDD international con-
ference on Knowledge discovery and data mining, ACM, 2002, pp. 386–
395.

[104] A. Almalawi, ‘Designing unsupervised intrusion detection for scada
systems’, 2014.

[105] R. M. Elbasiony, E. A. Sallam, T. E. Eltobely and M. M. Fahmy, ‘A
hybrid network intrusion detection framework based on random
forests and weighted k-means’, Ain Shams Engineering Journal, vol. 4,
no. 4, pp. 753–762, 2013.

154 Bibliography

[106] L. Tomlin, M. Farnam and S. Pan, ‘A clustering approach to indus-
trial network intrusion detection’, in Proceedings of the 2016 Informa-
tion Security Research and Education (INSuRE) Conference (INSuRECon-
16), 2016.

[107] W. Wang, T. Guyet, R. Quiniou, M.-O. Cordier, F. Masseglia and
X. Zhang, ‘Autonomic intrusion detection: adaptively detecting an-
omalies over unlabeled audit data streams in computer networks’,
Knowledge-Based Systems, vol. 70, pp. 103–117, 2014.

[108] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., ‘A density-based al-
gorithm for discovering clusters in large spatial databases with noise.’,
in Kdd, vol. 96, 1996, pp. 226–231.

[109] M. Blowers and J. Williams, ‘Machine learning applied to cyber op-
erations’, in Network Science and Cybersecurity, Springer, 2014, pp. 155–
175.

[110] S. Shamshirband, A. Amini, N. B. Anuar, M. L. M. Kiah, Y. W. Teh
and S. Furnell, ‘D-ficca: a density-based fuzzy imperialist compet-
itive clustering algorithm for intrusion detection in wireless sensor
networks’, Measurement, vol. 55, pp. 212–226, 2014.

[111] A. Amini, H. Saboohi, T. Ying Wah and T. Herawan, ‘A fast density-
based clustering algorithm for real-time internet of things stream’,
The Scientific World Journal, vol. 2014, 2014.

[112] K. Leung and C. Leckie, ‘Unsupervised anomaly detection in net-
work intrusion detection using clusters’, in Proceedings of the Twenty-
eighth Australasian conference on Computer Science-Volume 38, Aus-
tralian Computer Society, Inc., 2005, pp. 333–342.

[113] G. R. Hendry and S. J. Yang, ‘Intrusion signature creation via cluster-
ing anomalies’, in Data Mining, Intrusion Detection, Information Assur-
ance, and Data Networks Security 2008, International Society for Op-
tics and Photonics, vol. 6973, 2008, p. 69730C.

[114] X. Wang, C. Zhang and K. Zheng, ‘Intrusion detection algorithm
based on density, cluster centers, and nearest neighbors’, China Com-
munications, vol. 13, no. 7, pp. 24–31, 2016.

[115] C. Harpes, A. Adelsbach, S. Zatti and N. Peccia, ‘Quantitative risk
assessment with isamm on esa’s operations data system’, Proceedings
of TTC, pp. 173–176, 2007.

[116] J. Pearl, Causality: Models, Reasoning, and Inference. New York, NY,
USA: Cambridge University Press, 2000, ISBN: 0-521-77362-8.

[117] N. Idika and B. Bhargava, ‘Extending attack graph-based security
metrics and aggregating their application’, Dependable and Secure Com-
puting, IEEE Transactions on, vol. 9, no. 1, pp. 75–85, 2012.

[118] G. F. Cooper, ‘The computational complexity of probabilistic infer-
ence using bayesian belief networks’, Artificial intelligence, vol. 42,
no. 2, pp. 393–405, 1990.

[119] N. L. Zhang and D. Poole, ‘A simple approach to bayesian network
computations’, in Proc. of the Tenth Canadian Conference on Artificial
Intelligence, 1994.

[120] H. Kiiveri, T. P. Speed and J. B. Carlin, ‘Recursive causal models’,
Journal of the Australian Mathematical Society (Series A), vol. 36, no. 01,
pp. 30–52, 1984.

[121] S. Russell, P. Norvig and A. Intelligence, ‘A modern approach’, Arti-
ficial Intelligence. Prentice-Hall, Egnlewood Cliffs, vol. 25, p. 27, 1995.

Bibliography 155

[122] D. Grochocki, J. H. Huh, R. Berthier, R. Bobba, W. H. Sanders, A. A.
Cárdenas and J. G. Jetcheva, ‘AMI threats, intrusion detection re-
quirements and deployment recommendations’, in Smart Grid Com-
munications (SmartGridComm), 2012 IEEE Third International Confer-
ence on, IEEE, 2012, pp. 395–400.

[123] ENISA. (2016). Communication network interdependencies in smart
grids, [Online]. Available: https://www.enisa.europa.eu/
publications/communication-network-interdependencies-
in-smart-grids (visited on 28/04/2016).

[124] P. Clote and E. Kranakis, Boolean functions and computation models.
Springer Science & Business Media, 2013.

[125] B. Kordy, S. Mauw, S. Radomirović and P. Schweitzer, ‘Attack–defense
trees’, Journal of Logic and Computation, exs029, 2012.

[126] ——, ‘Foundations of attack–defense trees’, in International Workshop
on Formal Aspects in Security and Trust, Springer, 2010, pp. 80–95.

[127] B. Kordy, S. Mauw, M. Melissen and P. Schweitzer, ‘Attack–defense
trees and two-player binary zero-sum extensive form games are equi-
valent’, in International Conference on Decision and Game Theory for Se-
curity, Springer, 2010, pp. 245–256.

[128] International Organization for Standardization, ISO/IEC 27002 – in-
formation technology – security techniques – code of practice for informa-
tion security management, 2013.

[129] D. G. Luenberger, Introduction to linear and nonlinear programming.
Addison-Wesley Reading, MA, 1973, vol. 28.

[130] A. Roy, D. S. Kim and K. S. Trivedi, ‘Scalable optimal countermeas-
ure selection using implicit enumeration on attack countermeasure
trees’, in IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN 2012), IEEE, 2012, pp. 1–12.

[131] E. W. Dijkstra, ‘A note on two problems in connexion with graphs’,
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[132] M. L. Fredman and R. E. Tarjan, ‘Fibonacci heaps and their uses
in improved network optimization algorithms’, Journal of the ACM
(JACM), vol. 34, no. 3, pp. 596–615, 1987.

[133] R. W. Floyd, ‘Algorithm 97: shortest path’, Communications of the
ACM, vol. 5, no. 6, p. 345, 1962.

[134] (1999). KDD Cup, [Online]. Available: http://kdd.ics.uci.
edu/databases/kddcup99/kddcup99.html (visited on 01/06/2017).

[135] E. Cole, Advanced persistent threat: understanding the danger and how to
protect your organization. Newnes, 2012.

[136] S. Garcia, M. Grill, J. Stiborek and A. Zunino, ‘An empirical com-
parison of botnet detection methods’, computers & security, vol. 45,
pp. 100–123, 2014.

[137] R. Berthier, D. I. Urbina, A. A. Cárdenas, M. Guerrero, U. Herberg,
J. G. Jetcheva, D. Mashima, J. H. Huh and R. B. Bobba, ‘On the
practicality of detecting anomalies with encrypted traffic in AMI’,
in Smart Grid Communications (SmartGridComm), 2014 IEEE Interna-
tional Conference on, IEEE, 2014, pp. 890–895.

[138] D. Wagner and P. Soto, ‘Mimicry attacks on host-based intrusion de-
tection systems’, in Proceedings of the 9th ACM Conference on Computer
and Communications Security, ACM, 2002, pp. 255–264.

https://www.enisa.europa.eu/publications/communication-network-interdependencies-in-smart-grids
https://www.enisa.europa.eu/publications/communication-network-interdependencies-in-smart-grids
https://www.enisa.europa.eu/publications/communication-network-interdependencies-in-smart-grids
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

156 Bibliography

[139] D. Corpora. (2009). M57 patents, [Online]. Available: http://digitalcorpora.
org/corpora/scenarios/m57-patents-scenario (visited
on 17/07/2017).

[140] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. de Carvalho
and J. Gama, ‘Data stream clustering: a survey’, ACM Computing
Surveys (CSUR), vol. 46, no. 1, p. 13, 2013.

[141] Y. Chen and L. Tu, ‘Density-based clustering for real-time stream
data’, in Proceedings of the 13th ACM SIGKDD international conference
on Knowledge discovery and data mining, ACM, 2007, pp. 133–142.

[142] K. Udommanetanakit, T. Rakthanmanon and K. Waiyamai, ‘E-stream:
evolution-based technique for stream clustering’, Advanced Data Min-
ing and Applications, pp. 605–615, 2007.

[143] D. Corpora. (2008). Nitroba university harassment scenario, [On-
line]. Available: http://digitalcorpora.org/corpora/scenarios/
nitroba-university-harassment-scenario (visited on 26/07/2017).

[144] N. AB. (2015). 4SICS geek lounge SCADA network capture, [On-
line]. Available: http://www.netresec.com/?page=PCAP4SICS
(visited on 26/07/2017).

[145] S. Mirzaie, A. K. Elyato and M. A. Sarram, ‘Preventing of syn flood
attack with iptables firewall’, in Communication Software and Networks,
2010. ICCSN’10. Second International Conference on, IEEE, 2010, pp. 532–
535.

[146] M. Ihde and W. H. Sanders, ‘Barbarians in the gate: an experimental
validation of nic-based distributed firewall performance and flood
tolerance’, in Dependable Systems and Networks, 2006. DSN 2006. In-
ternational Conference on, IEEE, 2006, pp. 209–216.

[147] J. Jung, V. Paxson, A. W. Berger and H. Balakrishnan, ‘Fast portscan
detection using sequential hypothesis testing’, in Security and Pri-
vacy, 2004. Proceedings. 2004 IEEE Symposium on, IEEE, 2004, pp. 211–
225.

[148] A. Sridharan, T. Ye and S. Bhattacharyya, ‘Connectionless port scan
detection on the backbone’, in Performance, Computing, and Commu-
nications Conference, 2006. IPCCC 2006. 25th IEEE International, IEEE,
2006, 10–pp.

[149] C. B. Lee, C. Roedel and E. Silenok, ‘Detection and characterization
of port scan attacks’, Univeristy of California, Department of Computer
Science and Engineering, 2003.

[150] L. Aniello, G. Lodi and R. Baldoni, ‘Inter-domain stealthy port scan
detection through complex event processing’, in Proceedings of the
13th European Workshop on Dependable Computing, ACM, 2011, pp. 67–
72.

[151] S. C. Lee and D. V. Heinbuch, ‘Training a neural-network based in-
trusion detector to recognize novel attacks’, IEEE Transactions on sys-
tems, man, and Cybernetics-Part A: Systems and Humans, vol. 31, no. 4,
pp. 294–299, 2001.

[152] A. Khalimonenko, O. Kupreev and K. Ilganaev, ‘Kaspersky ddos in-
telligence report for q4 2017’, Tech. Rep., 2018. [Online]. Available:
https://securelist.com/ddos-attacks-in-q4-2017/
83729/ (visited on 04/04/2018).

http://digitalcorpora.org/corpora/scenarios/m57-patents-scenario
http://digitalcorpora.org/corpora/scenarios/m57-patents-scenario
http://digitalcorpora.org/corpora/scenarios/nitroba-university-harassment-scenario
http://digitalcorpora.org/corpora/scenarios/nitroba-university-harassment-scenario
http://www.netresec.com/?page=PCAP4SICS
https://securelist.com/ddos-attacks-in-q4-2017/83729/
https://securelist.com/ddos-attacks-in-q4-2017/83729/

Bibliography 157

[153] D. Holmes, ‘The ddos threat spectrum’, Tech. Rep., 2012. [Online].
Available: https://f5.com/resources/white- papers/
the-ddos-threat-spectrum (visited on 04/04/2018).

[154] J. Jeong, H. Kim and J. Park, ‘Requirements for security services
based on software-defined networking’, IETF, 2014.

[155] S. Jin and D. S. Yeung, ‘A covariance analysis model for ddos attack
detection’, in Communications, 2004 IEEE International Conference on,
IEEE, vol. 4, 2004, pp. 1882–1886.

[156] S. Yu, W. Zhou and R. Doss, ‘Information theory based detection
against network behavior mimicking ddos attacks’, IEEE Commu-
nications Letters, vol. 12, no. 4, 2008.

[157] V. Sekar, N. G. Duffield, O. Spatscheck, J. E. van der Merwe and
H. Zhang, ‘Lads: large-scale automated ddos detection system.’, in
USENIX Annual Technical Conference, General Track, 2006, pp. 171–
184.

[158] A. Lakhina, M. Crovella and C. Diot, ‘Mining anomalies using traffic
feature distributions’, in ACM SIGCOMM Computer Communication
Review, ACM, vol. 35, 2005, pp. 217–228.

[159] W. Press, S. Teukolsky, W. Vetterling and B. Flannery, Numerical Re-
cipes in Fortran 77: The Art of Scientific Computing. Cambridge Univ.
Press, Cambridge, 1992.

[160] B. Brykczynski and R. A. Small, ‘Reducing internet-based intrusions:
effective security patch management’, IEEE software, vol. 20, no. 1,
pp. 50–57, 2003.

[161] Microsoft, ‘Microsoft security intelligence report’, Tech. Rep., 2013.
[162] I. FIRST.org. (2015). Common vulnerability scoring system v3.0: spe-

cification document, [Online]. Available: https://www.first.
org/cvss/specification-document (visited on 29/03/2018).

[163] I. Arce, ‘The weakest link revisited [information security]’, IEEE Se-
curity & Privacy, vol. 99, no. 2, pp. 72–76, 2003.

[164] R. Motwani and P. Raghavan, Randomized algorithms. Chapman &
Hall/CRC, 2010.

https://f5.com/resources/white-papers/the-ddos-threat-spectrum
https://f5.com/resources/white-papers/the-ddos-threat-spectrum
https://www.first.org/cvss/specification-document
https://www.first.org/cvss/specification-document

Liste des publications de Steve Muller

 S. Muller, C. Harpes, Y. Le Traon, S. Gombault, J.-M. Bonnin and P. Hoffmann, ‘Dynamic risk
analyses and dependency-aware root cause model for critical infrastructures’, in Critical
Information Infrastructures Security: 11th International Conference, CRITIS 2016, Paris,
France, October 10–12, 2016, Revised Selected Papers, G. Havarneanu, R. Setola, H.
Nassopoulos and S.Wolthusen, Eds. Cham: Springer International Publishing, 2017, pp. 163–
175, ISBN: 978-3-319-71368-7. DOI: 10.1007/978-3-319-71368-7_14.

 O. Gadyatskaya, C. Harpes, S. Mauw, C. Muller and S. Muller, ‘Bridging two worlds:
Reconciling practical risk assessment methodologies with theory of attack trees’, in Graphical
Models for Security: Third International Workshop, GraMSec 2016, Lisbon, Portugal, June 27,
2016, Revised Selected Papers, B. Kordy, M. Ekstedt and S. D. Kim, Eds. Springer
International Publishing, 2016, pp. 80–93, ISBN: 978-3-319-46263-9. DOI: 10.1007/978-3-319-
46263-9_5.

 S. Muller, C. Harpes and C. Muller, ‘Fast and optimal countermeasure selection for attack
defence trees’, in Risk Assessment and Risk-Driven Quality Assurance: 4th International
Workshop, RISK 2016, Held in Conjunction with ICTSS 2016, Graz, Austria, October 18, 2016,
Revised Selected Papers, J. Großmann, M. Felderer and F. Seehusen, Eds. Cham: Springer
International Publishing, 2017, pp. 53–65, ISBN: 978-3-319-57858-3. DOI: 10.1007/978-3-319-
57858-3_5.

 S. Muller, C. Harpes, Y. L. Traon, S. Gombault and J.-M. Bonnin, ‘Efficiently computing the
likelihoods of cyclically interdependent risk scenarios’, Computers & Security, vol. 64, pp. 59–
68, 2017, ISSN: 0167-4048. DOI: http://dx.doi.org/10.1016/j.cose.2016.09.008.

 Steve Muller, Jean Lancrenon, Carlo Harpes, Yves Le Traon, Sylvain Gombault, Jean-Marie
Bonnin, ‘A training-resistant anomaly detection system’, Computers & Security, vol. 76, pp. 1–
11, 2018, ISSN: 0167-4048. DOI: https://doi.org/10.1016/j.cose.2018.02.015.

Titre : Surveillance des risques avec détection d'intrusion pour les systèmes de contrôle industriels

Mots clés : Gestion de risque en temps réel, Surveillance des risques, Modélisation de dépendances,
Systèmes industriels, Détection d'intrusions

Résumé : Les cyberattaques contre les infrastructures critiques

telles que la distribution d'électricité, de gaz et d'eau ou les
centrales électriques sont de plus en plus considérées comme
une menace pertinente et réaliste pour la société européenne.
Alors que des solutions éprouvées comme les applications anti-
malware, les systèmes de détection d'intrusion (IDS) et même
les systèmes de prévention d'intrusion ou d'auto-cicatrisation
ont été conçus pour des systèmes informatiques classiques,
ces techniques n'ont été que partiellement adaptées au monde
des systèmes de contrôle industriel. En conséquence, les
organisations et les pays font recours à la gestion des risques
pour comprendre les risques auxquels ils sont confrontés. La
tendance actuelle est de combiner la gestion des risques avec
la surveillance en temps réel pour permettre des réactions
rapides en cas d'attaques. Cette thèse vise à fournir des
techniques qui aident les responsables de la sécurité à passer
d'une analyse de risque statique à une plateforme de
surveillance des risques dynamique et en temps réel.

La surveillance des risques comprend trois étapes, chacune étant
traitée en détail dans cette thèse: la collecte d'informations sur les
risques, la notification des événements de sécurité et, enfin,
l'inclusion de ces informations en temps réel dans une analyse
des risques. La première étape consiste à concevoir des agents
qui détectent les incidents dans le système. Dans cette thèse, un
système de détection d'intrusion est développé à cette fin, qui se
concentre sur une menace persistante avancée (APT) qui cible
particulièrement les infrastructures critiques. La deuxième étape
consiste à traduire les informations techniques en notions de
risque plus abstraites, qui peuvent ensuite être utilisées dans le
cadre d'une analyse des risques. Dans la dernière étape, les
informations collectées auprès des différentes sources sont
corrélées de manière à obtenir le risque auquel l'ensemble du
système est confronté. Les environnements industriels étant
caractérisés par de nombreuses interdépendances, un modèle de
dépendance est élaboré qui prend en compte les dépendances
lors de l'estimation du risque.

Title : Risk Monitoring with Intrusion Detection for Industrial Control Systems

Keywords: Real-time risk management, Risk monitoring, Dependency modelling, Industrial control systems,

Intrusion detection

Abstract: Cyber-attacks on critical infrastructure such as

electricity, gas, and water distribution, or power plants, are more
and more considered to be a relevant and realistic threat to the
European society. Whereas mature solutions like anti-malware
applications, intrusion detection systems (IDS) and even
intrusion prevention or self-healing systems have been
designed for classic computer systems, these techniques have
only been partially adapted to the world of Industrial Control
Systems (ICS). As a consequence, organisations and nations
fall back upon risk management to understand the risks that
they are facing. Today's trend is to combine risk management
with real-time monitoring to enable prompt reactions in case of
attacks. This thesis aims at providing techniques that assist
security managers in migrating from a static risk analysis to a
real-time and dynamic risk monitoring platform.

Risk monitoring encompasses three steps, each being addressed
in detail in this thesis: the collection of risk-related information, the
reporting of security events, and finally the inclusion of this real-
time information into a risk analysis. The first step consists in
designing agents that detect incidents in the system. In this thesis,
an intrusion detection system is developed to this end, which
focuses on an advanced persistent threat (APT) that particularly
targets critical infrastructures. The second step copes with the
translation of the obtained technical information in more abstract
notions of risk, which can then be used in the context of a risk
analysis. In the final step, the information collected from the
various sources is correlated so as to obtain the risk faced by the
entire system. Since industrial environments are characterised by
many interdependencies, a dependency model is elaborated
which takes dependencies into account when the risk is
estimated.

	Résumé long
	Abstract
	Acknowledgements
	Introduction
	Outline of the thesis
	Context
	Risk assessments
	Shortcomings
	It's all manual
	Inconsistency leads to errors
	A mere snapshot view of the risk
	Insufficient and technical information

	Objectives
	Aim for compatibility
	Dependencies: more structure for risk assessments
	Modelling dependencies
	Reducing the estimation workload

	Risk assessment and monitoring combined?
	Symbiosis
	Opportunities
	Mathematical challenges
	Technical challenges
	Conclusion

	Obtaining real-time risk information
	Firewall logs
	Patch management
	Configuration checker
	Intrusion detection

	Contributions

	State of the art
	Dependency modelling
	Asset diagrams
	Attack trees, and related
	Attack graphs
	Bayesian networks
	Cyclic dependencies

	Dynamic risk analysis
	Theory
	Risk management systems

	Intrusion detection systems
	Conclusion

	Risk dependency model
	Introduction
	Motivation
	Approach
	Terminology
	Objective
	Outline

	Defining the model
	Risk
	Dependency graph
	Guidelines

	Degree of dependability
	Risk in a dependency graph
	Compatibility with standard risk methodologies

	Computations
	Probability distribution of acyclic graphs
	Probability distribution for general graphs
	Algorithm
	Numerical experiments

	Sensitivity
	Aborting computation prematurely
	Varying graph topology
	Varying edge probabilities
	Varying likelihoods and impacts

	Building dependency graphs
	Taxonomy
	DepOT
	Semi-automated generation

	The `Smart Grid Luxembourg' use-case
	Compiling a dependency-aware inventory
	Threat model
	Generating the dependency graph
	Results

	Extensions and special cases
	Boolean formulae
	Attack defence trees
	Definitions
	Assumptions.
	Rules of calculation
	Optimisation problem
	Branch and bound algorithm
	Performance

	Conclusion

	Risk monitoring
	Introduction
	Motivation
	Objective
	Outline

	Measure risk in the field
	Common-denominator risk
	Multiple alerts
	Fixed risk level

	Risk reporting
	Protocol
	Authentication
	Interaction with risk analysis
	Aggregating risk levels

	Dynamic risk computation
	Risk in matrix form
	Dynamic risk
	Algorithm
	Running time

	Risk monitoring platform
	Agents
	TRICK Service
	TRICK API
	DepOT

	Additional computations
	Determine the most critical risk
	Determine the most likely cascade effect
	Evolution of risk

	Conclusion

	Risk agents
	Introduction
	Motivation
	Objective
	Outline

	Intrusion detection system
	Choice of strategy
	Threat model
	Network attacks and induced anomalies
	Training attack
	Stealthy training attack

	Detecting the training attack
	Threshold and metric based strategies
	Stream-clustering based strategies
	Proposed IDS

	Choice of parameters
	Decay parameter
	Clustering interval
	Density parameter
	Number of instances

	Evaluation
	Detecting network attacks
	Detecting the training attack
	Detecting the stealthy training attack

	Conclusion

	Firewall log parser
	Log files format
	Reading log files
	Named pipes
	Manual approach

	Network scans
	Flooding attack
	Conclusion

	Patch management
	Work flow
	Criticality of an update
	Patching deadline
	Performance of patch management

	Conclusion

	Conclusion
	Addressed topics
	Prospects

	Proofs
	Data sets
	List of Figures
	List of Tables
	Bibliography

