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Remember that all models are wrong;
the practical question is how wrong do they have to be to not be useful.

– Box G. and Draper N. (1987)
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Résumé

L’étude et la gestion des risques littoraux sont plébiscitées par notre société
au vu des enjeux économiques et écologiques qui y sont associés. Ces risques sont
généralement réponse à des conditions environnementales extrêmes. L’étude de
ces phénomènes physiques repose sur la compréhension de ces conditions rare-
ment (voire jamais) observées.
Dans un milieu littoral, la principale source d’énergie physique est véhiculée par
les vagues. Cette énergie est responsable des risques littoraux comme l’érosion
et la submersion qui évoluent à des échelles de temps différentes (long-terme ou
événementielle).
Le travail réalisé, situé à l’interface de l’analyse statistique, de la géophysique et
de l’informatique, vise à apporter des méthodologies et outils aux décideurs en
charge de la gestion de tels risques.
En pratique, nous nous intéressons à mettre en place des méthodes qui prennent
en compte non seulement un site ponctuel mais traitent les problématiques de
façon spatiale. Ce besoin provient de la nature même des phénomènes environne-
mentaux qui sont spatiaux, tels les champs de vagues.
L’étude des réalisations extrêmes de ces processus repose sur la disponibilité d’un
jeu de données représentatif à la fois dans l’espace et dans le temps, permet-
tant de projeter l’information au-delà de ce qui a déjà été observé. Dans le cas
particulier des champs de vagues, nous avons recours à la simulation numérique
sur calculateur haute performance (HPC) pour réaliser un tel jeu de données. Le
résultat de ce premier travail offre de nombreuses possibilités d’applications.
En particulier, nous proposons à partir de ce jeu de données deux méthodolo-
gies statistiques qui ont pour but respectif de répondre aux problématiques de
risques littoraux long-termes (érosion) et à celles relatives aux risques événemen-
tiels (submersion).
La première méthodologie s’appuie sur l’application de modèles stochastiques
dit max-stables, particulièrement adapté à l’étude des événements extrêmes. En
plus de l’information marginale, ces modèles permettent de prendre en compte
la structure de dépendance spatiale des valeurs extrêmes. Nos résultats montrent
l’intérêt de cette méthode au devant de la négligence de la dépendance spatiale
de ces phénomènes pour le calcul d’indices de risque.
La seconde approche est une méthode semi-paramétrique dont le but est de simu-
ler des champs spatio-temporels d’états-de-mer extrêmes. Ces champs, interprétés
comme des tempêtes, sont des amplifications contrôlées et bi-variées d’épisodes
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extrêmes déjà observés. Ils forment donc des tempêtes encore plus extrêmes. Les
tempêtes simulées à une intensité contrôlée alimentent des modèles physiques
événementiels à la côte, permettant d’aider les décideurs à l’anticipation de ces
risques encore non observés.
Enfin et depuis la construction de ces scenarii extrêmes, nous abordons la notion
de pré-calcul dans le but d’apporter en quasi-temps réel au décideur et en temps
de crise une aide à la décision sur le risque littoral.
L’ensemble de ce travail s’inscrit dans le cadre d’un besoin industriel d’aide à la
modélisation physique : chainage de modèles numériques et statistiques. La di-
mension industrielle de cette thèse est largement consacrée à la conception et au
développement d’un prototype de plateforme de modélisation permettant l’utili-
sation systématique d’un calculateur HPC pour les simulations et le chainage de
modèles de façon générique.
Autour de problématiques liées à la gestion du risque littoral, cette thèse dé-
montre l’apport d’un travail de recherche à l’interface de plusieurs disciplines.
Elle y répond en conciliant et proposant des méthodes de pointe prenant racine
dans chacune de ces disciplines.

Titre en français

Application du Calcul Scientifique et de l’Analyse Statistique à la ges-
tion du risque en milieu littoral

Mots-clés

— Risques Littoraux
— Analyse en valeurs Extrêmes
— Statistiques de Haute Performance
— Modélisation d’Etats de Mer



Abstract

Studies and management of coastal hazards are of high concerns in our society,
since they engage highly valuable economical and ecological stakes. Coastal haz-
ards are generally responding to extreme environmental conditions. The study
of these physical phenomena relies on the understanding of such environmental
conditions, which are rarely (or even never) observed.
In coastal areas, waves are the main source of energy. This energy is responsible
of coastal hazards developed at different time-scales, like the submersion or the
erosion.
This work, taking place at the interface between Statistical Analysis, Geophysics
and Computer Sciences, aiming at bringing forward tools and methods serving
decision makers in charge of the management of such risks.
In practice, the proposed solutions answer to the questionings with a considera-
tion of the spatial dimension rather than only punctual aspects. This approach
is more natural considering that environmental phenomena are generally spatial,
as the sea-waves fields.
The study of extreme realisations of such processes is based on the availability of
a representative data set, both in time and space dimensions, allowing to extrap-
olating information beyond the actual observations. In particular for sea-waves
fields, we use numerical simulation on high performance computational clusters
(HPC) to product such a data set. The outcome of this work offers many appli-
cation possibilities.
Most notably, we propose from this data set two statistical methodologies, hav-
ing respective goals of dealing with littoral hazards long-terms questionings (e.g.,
erosion) and event-scale questionings (e.g., submersion).
The first one is based on the application of stochastic models so-called max-stable
models, particularly adapted to the study of extreme values in a spatial context.
Indeed, additionally to the marginal information, max-stable models allow to take
into account the spatial dependence structures of the observed extreme processes.
Our results show the interest of this method against the ones neglecting the spa-
tial dependence of these phenomena for risk indices computation.
The second approach is a semi-parametric method aiming at simulating extreme
waves space-time processes. Those processes, interpreted as storms, are con-
trolled and bi-variate uplifting of already observed extreme episodes. In other
words, we create most severe storms than the ones already observed. These pro-
cesses simulated at a controlled intensity may feed littoral physical models in
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order to describe a very extreme event in both space and time dimensions. They
allow helping decision-makers in the anticipation of hazards not yet observed.
Finally and from the construction of these extreme scenarios, we introduce a pre-
computing principle in the goal of providing the decision-makers with a real-time
and accurate information in case of a sudden coastal crisis, without performing
any physical simulation.
This work fits into a growing industrial demand of modelling help. Most notably
a need related to the chaining of numerical and statistical models. Consequently,
the industrial dimension of this PhD. is mostly dedicated to the design and devel-
opment of a prototype modelling platform. This platform aims at systematically
using HPC resources to run simulations and easing the chaining of models.
Embracing solutions towards questionings related to the management of coastal
hazard, this thesis demonstrates the benefits of a research work placed at the
interface between several domains. This thesis answers such questionings by
providing end-users with cutting-edge methods stemming from each of those do-
mains.

Title in English

Application of Scientific Computing and Statistical Analysis to Ad-
dress Coastal Hazards

Keywords

— Coastal Hazards
— Extreme Value Analysis
— High Performance Analytics
— Wave Modelling



Rattachement

Laboratoire

LIRMM - Laboratoire d’Informatique, Robotique et Micro-électronique de Montpellier

Adresse

Université de Montpellier
UMR 5506 - LIRMM
CC477
161 rue Ada
34095 Montpellier Cedex 5 - France

Laboratoire

IMAG - Institut Montpelliérain Alexander Grothendiek

Adresse

Université de Montpellier
UMR 5149 - IMAG
CC051
Place Eugène Bataillon
34095 Montpellier Cedex 5 - France

Laboratoire

GM - Géosciences Montpellier

Adresse

Université de Montpellier
UMR 5243 - GM
CC060
Place Eugène Bataillon
34095 Montpellier Cedex 5 - France

xi



xii



Contents

Introduction 1

I Overview 7

1 Extreme Value Modelling 9
1.1 What is Stochastic Extreme Value Modelling . . . . . . . . . . . . 9
1.2 Univariate Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.1 Maxima Approach . . . . . . . . . . . . . . . . . . . . . . 10
1.2.2 Peaks Over Threshold Approach . . . . . . . . . . . . . . . 12
1.2.3 Others . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.4 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.3 Multivariate Modelling . . . . . . . . . . . . . . . . . . . . . . . . 16
1.3.1 Component-wise Maxima . . . . . . . . . . . . . . . . . . . 17
1.3.2 Threshold Excess Model . . . . . . . . . . . . . . . . . . . 20
1.3.3 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.4 Spatial modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.4.1 Max-stable Processes . . . . . . . . . . . . . . . . . . . . . 21
1.4.2 Generalised Pareto Process . . . . . . . . . . . . . . . . . . 29

1.5 Space-time Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2 Waves, from Physics to Numerical Modelling. 33
2.1 Introduction to Waves . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.1.2 Wave Analyses: Wave-wave versus Spectral . . . . . . . . . 35

2.2 Mathematical Description of Linear Waves . . . . . . . . . . . . . 36
2.2.1 Wave Motion . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.2.2 Towards Linear Waves . . . . . . . . . . . . . . . . . . . . 38

2.3 Fundamentals of Spectral Wave Analysis . . . . . . . . . . . . . . 40
2.3.1 Mathematical background . . . . . . . . . . . . . . . . . . 40
2.3.2 Parameters Reconstruction . . . . . . . . . . . . . . . . . . 41
2.3.3 Observation of Waves . . . . . . . . . . . . . . . . . . . . . 44

2.4 A Step Forward in Wave Physic: in brief . . . . . . . . . . . . . . 47
2.4.1 Spectral Balance . . . . . . . . . . . . . . . . . . . . . . . 47

xiii



CONTENTS xiv

2.4.2 Dominant and Limiting Factors . . . . . . . . . . . . . . . 47
2.4.3 Wind-Wave Interactions . . . . . . . . . . . . . . . . . . . 48
2.4.4 Non-linearity . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.4.5 Energy Dissipation in Infinite Depth . . . . . . . . . . . . 49
2.4.6 Littoral Physical Processes . . . . . . . . . . . . . . . . . . 49
2.4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.5 Numerical Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5.1 Numerical Modelling Families . . . . . . . . . . . . . . . . 50
2.5.2 Forcing Fields . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.5.3 Physical Parameterisation . . . . . . . . . . . . . . . . . . 51
2.5.4 Numerical Aspects . . . . . . . . . . . . . . . . . . . . . . 51
2.5.5 Spectral Discretisation . . . . . . . . . . . . . . . . . . . . 52
2.5.6 Spatial Discretisation . . . . . . . . . . . . . . . . . . . . . 52
2.5.7 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

II Applications 57

3 A 52-Year Wave Hindcast 59

3.1 The Gulf of Lions and waves observations . . . . . . . . . . . . . 59
3.2 The Wave Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Forcing Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3.1 Atmospheric Fields . . . . . . . . . . . . . . . . . . . . . . 63
3.3.2 Ocean Fields . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.3.3 Bathymetry . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.4 Computational Mesh . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.5 Model Parameterisation . . . . . . . . . . . . . . . . . . . . . . . 67
3.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4 Spatial Extreme Waves Modelling 83

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Preliminary Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3 Spatial Extreme Modelling . . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Marginal Transformation . . . . . . . . . . . . . . . . . . . 89
4.3.2 Model Inference . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.3 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . 92

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.5 Max-Stable Model at Work . . . . . . . . . . . . . . . . . . . . . 93

4.5.1 Simulation of Spatial Extreme Processes . . . . . . . . . . 93
4.5.2 Marginal Return Levels . . . . . . . . . . . . . . . . . . . . 96
4.5.3 Risk Analysis: Joint Probabilities of Exceedances . . . . . 97

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



xv CONTENTS

5 Space-time Extreme Waves Simulation 101
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.2 Preliminary Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3 Method of Simulation . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.3.1 Extreme Space-Time Processes . . . . . . . . . . . . . . . 106
5.3.2 Construction of Uplifted Storms . . . . . . . . . . . . . . . 107
5.3.3 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . 109
5.3.4 Remark and Directions . . . . . . . . . . . . . . . . . . . . 110

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.5 A Risk Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.5.1 Mass Flux of Littoral Energy . . . . . . . . . . . . . . . . 112
5.5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

III Industrial Implementation 123

6 Towards Decision Tools 125
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.1 Design of Experiments . . . . . . . . . . . . . . . . . . . . 129
6.2.2 Pre-Computations and Storage . . . . . . . . . . . . . . . 131
6.2.3 Query System . . . . . . . . . . . . . . . . . . . . . . . . . 131

6.3 First Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7 Platform Prototype 135
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
7.2 Platform Architecture and Components . . . . . . . . . . . . . . . 137

7.2.1 Data Storage . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.2.2 Workflow Control, Models Integration and Chaining . . . . 141
7.2.3 Systematic Use of HPC Resources . . . . . . . . . . . . . . 141

7.3 Sea State Modelling: a Case Study . . . . . . . . . . . . . . . . . 142
7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Conclusion 145

References 149



CONTENTS xvi



Introduction

Humanity in the 21st century is a consequence of the combination of end-
less possibilities, at various levels. Among them, exchanges of all kind played
a key-role. Exchanges of energy at the big-bang between components of what
we currently call the matter, then exchanges of processes, knowledges or wealth
between first human beings. These exchanges have brought us and our society to
a complex level that even Charles Darwin may have not consider.
An exchange is policed by an interface. In Geography, an interface is an area
between two limited countries in which people and goods transit. In Software En-
gineering, it is a piece of code allowing exchanging information between several
programs. Regarding coastal hazards, to explore, design and create tools and
methods aiming at helping the decision towards the anticipation and manage-
ment of those crises require also a role of interface. Indeed, many subjects have
to interact to give birth of cutting edge solutions able to address these hazards.
Most notably, solutions against erosion and submersion phenomena (see Fig-
ure 1) are questionings of high concerns considering economical and ecological
stakes engaged by coastal hazards.

The main factor responsible of such devastating physical phenomena is the
amount of energy present in littoral systems. What is remarkable is that sea-
waves can be physically reduced as a transport of energy. Hence the study of
their behaviour is paramount to quantify coastal hazards.
Coastal hazards respond to different time-scales. They may refer to climate scale
phenomena or to event scale phenomena. Climate-scale hazards refer to question-
ings of a long-term effect: where time is aggregated over long periods like several
years. This is for instance the time-scale evolution of the long-term shore-
line erosion. Event-scale hazards refer to questionings where the focus is on
the short-term time evolution of the physical phenomenon itself. Submersion
events are typical candidates of such questionings.
Whatever the kind of hazard and in regard of the complexity of such environmen-
tal processes, decision-makers demand tools and methods to help them in their
activities of anticipation and management of coastal crises. What it is expected
is not only the assessment of common behaviour of those physical processes, but
much more about rarely observed or even the unexpected ones, known as ex-
treme events.
As a matter of fact, we can state that extreme – rare but strong – events are
generally related to severely damaging coastal hazards.

1
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Figure 1: Schematic representation of two coastal hazards examples. A) Long-term shoreline
change caused by long-shore transport, which is a climate-scale hazard. B) Submersion caused
by extreme storm waves, observed at an event-scale.

Waves supply the major amount of energy that contributes to impact the coast.
This impact is therefore relative to waves extremeness. Extremeness of a wave
does not simply rely on its height but also on its direction and its period. There-
fore it is mandatory to assess the complex behaviour of extreme waves in the
final goal of explaining past hazards, managing on-going ones and anticipating
up-coming ones. Observations do not suffice to anticipate extreme events. New
techniques and tools have to be developed and applied. In particular, to model
up-coming extreme events is affordable by the use of stochastic modelling.

In practice, proposed solutions of this document answer to the questionings
with a consideration of the spatial dimension rather than dealing with only punc-
tual aspects. This approach is more natural considering that environmental phe-
nomena are generally spatial, as the sea-waves fields.
Since we want to quantify coastal hazards in regards of events that are likely to
occur once in several year or in several decade, and from wich information is lack-
ing, stochastic extreme value modelling has to be used. This is a well-accepted
theory used to model extreme values. Firstly introduced in the 1930’s, this the-
ory becomes nowadays particularly used in geo-statistics when questionings deal
with extreme environmental events. The extreme value modelling topic is largely
discussed later in this document. At this point it is important to understand the
overall goal of such modelling.
Above we highlight the will to anticipate extreme events. They can be events
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that are likely to appear but have not yet appeared or events that have not been
observed due to a technical lack. The extreme value theory provides a mathemat-
ical framework to extrapolate such information from historical time-series. The
quality of extrapolation depends on the availability and quality of the observed
extreme events. By definition, to observe extreme events is commonly a require-
ment that is hard to satisfy.
Even with such constraints, this mathematical framework is robust and can pro-
vide information up to long return period; A return period being associated to
a return level, which is a value reached once in means during its return period
interval.

Regarding the presented coastal questionings, to be able to model extreme
values contribute to understand the behaviour of events that are likely to cause
severe damages to ecological or economical assets of the littoral. Hence two of
the scientific challenges addressed in this thesis are to provide statistical extreme
value methodologies allowing responding to both a long-term scale questioning
and an event-scale questioning. The first one is based on the application of
stochastic models so-called max-stable models, particularly adapted to the study
of extreme values in a spatial context. Indeed, additionally to the marginal in-
formation, max-stable models allow to take into account the spatial dependence
structures of the observed extreme processes. Our results show the interest of this
method against the ones neglecting the spatial dependence of these phenomena
for risk indices computation.
The second approach is a semi-parametric method aiming at simulating extreme
waves space-time processes. Those processes, interpreted as storms, are con-
trolled and bi-variate uplifting of already observed extreme episodes. In other
words, we create most severe storms than the one already observed. These pro-
cesses simulated at a controlled intensity may feed littoral physical models in
order to describe a very extreme event in both space and time dimensions. They
allow helping decision-makers in the anticipation of hazards not yet observed.

To understand the behaviour of a random variable up to its very rare quanti-
ties, we need a reliable set of its realisations. There are several ways to observe
waves in modern sciences and engineering.

— In first position we can mention surface-buoys. They are instrumented
platforms lying on surface of oceans. Surface-buoys are able to measure
sea-states in situ before communicating the collected information. The
records are accurate but those sensors are relatively expensive to deploy
and maintain. Hence their time-series might be short or discontinued or
both.

— An alternative to surface-buoys are altimeters. Altimeters are embedded
into satellites observing surface oceans all around the earth on moving
tracks. Measures are accurate too, but their major drawback is the non-
regularity of their tracks through time and space around the globe. This
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can make their analyses challenging from a statistical point of view.
— Finally modern sciences provide a more numerical way to observe waves:

wave models. These consist in simulating the behaviour of seas and
oceans by solving complex physical equations. Those equations rest on
atmospheric and ocean boundary conditions, and are solved by numerical
schemes. In practice wave-modelling is widely used since the simulated
data-sets match both valuable criteria: such data-set contains long-times
series and are referenced on a refined-non-moving grid.

All those techniques might be explored further to fully understand their differ-
ences and their complementarity regarding the measuring methodology. In par-
ticular there are many numerical wave models relying on different concepts that
cannot be explored in this introduction. Even though, the reader should notice
that data issued by a numerical model come with a degree of incertitude. This in-
certitude is often higher than the ones coming with measures from surface-buoys
or altimeters. This statement remains valid even if every models keep improving
regarding their actual goal: to reflect the reality.
A general source of incertitude is the parameterisation of the models by the users.
Indeed it is sometimes hard to parameterise a model in order to reproduce the
entire spectrum of the observable values. This reflects the limits of the underlying
equations or their implementation, or both. Incertitude can also comes from the
inputs conditions of the model. Obviously if one input conditions (e.g., Wind)
does not reflect the reality, then the data produced from the wave-model will
have a high incertitude.
These remarks are important since highest biases generally appear when the mod-
elling focuses on extreme phenomena. Therefore one scientific challenge of this
thesis resides on the aim of providing sea-states conditions focusing on three
points: accuracy, spatial covering and historical period.

Whatever physical or statistical – or both – models we are using, they have
a computational cost. Those models generally require huge computational re-
sources, especially when the severity of events implies to quickly compute infor-
mation.
One can argue that the explosion of the computational capacity of nowadays
computers may solve this issue. However as soon as the computational capacity
is growing, models accuracy is raised by taking into account new physics or new
co-variables that were computationally unreachable before. Hence they are even
more resources demanding. From this remark, we can state that alternatives have
to be found to face coastal crises. An idea is to be able to pre-compute extreme
scenarios and store their results. Those results are then queried when a new crisis
arises to identify the degree of severity of the actual crisis.
This concept brings forward some scientific obstacles. In particular, since the
action of computing a scenario is a costly process, we can easily understand that
the main difficulty of the proposed solution will stay in the selection of the sce-
nario to (pre-)compute. The second concerns could be the definition of a distance
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function between the scenarios, which is a mandatory information to perform any
recommendation. The third point may concern a more technical aspect: what is
the best architecture to store and query the results of the pre-computations.

This thesis is articulated as follows and summed up in Figure 2. Chapter 1
provides an overview of the extreme value theory. Then Chapter 2 introduces
some bases about waves and their modelling. It is followed by Chapter 3, which
presents the construction and validation of the historical data-set of sea-states
conditions (A). From the construction of this data-set, Chapter 4 presents an
application of extreme value modelling in the context of long-term scale scientific
questionings (B1). This chapter is followed by the Chapter 5 focused on the con-
struction of a semi-parametric method to simulate space-time extreme processes
(B2). This method is demonstrated along an event-scale questioning: to model
impacts of the wave energy to the coast during severe extreme events. Leveraging
the approach of extreme space-time processes simulation, Chapter 6 introduces
the proposed principle of pre-computation aiming at helping the decision-making
on event-scale coastal hazards assessment (C). Finally the Chapter 7 demon-
strates a platform prototype aiming at easing the chaining of weather physical
modelling and environmental statistical – extreme – modelling (D). This platform
being a technical base of what we consider the next generation of decision helping
tools for coastal hazards.
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Figure 2: A schematic representation of axes of research of the presented thesis. A) First step
is to create a reliable wave data set. B) From this data set, stochastic extreme value modelling
are performed. Both in a spatial context (B1), and a space-time context (B2). The latter
allowing simulating very extreme scenarios. C) On the basis of the simulated extreme space-
time scenarios, a subset is derived. The creation of this subset is based on design of experiments
algorithms adapted regarding the questioning. Then, those selected scenarios are precomputed
on the targeted (heavy computational) physical model, as for instance an overland flood model.
Such computations allow the construction of a set of IO couples, from where information is
extracted in case of up-coming crises to ease the decision-making. D) Hydraulic modelling
are made user friendly and efficient by the development of an IT platform allowing to access
seamlessly huge computational resources and to chain models. This platform might be extended
to chain stochastic models as well.
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Chapter1
Extreme Value Modelling

Chapter Summary

Stochastic extreme value modelling is identified as a mandatory approach
to deal with questionings related to extreme events. This chapter presents
an overview of extreme value modelling. The concepts and methods are il-
lustrated with simple examples. Those examples are related to the context
of littoral hazard. In particular, the famous sea-state parameter named
the significant wave height (Hs) will be largely used a. At the end of this
chapter, the reader will have all technical and scientific background in ex-
treme value modelling to easily go through the rest of the document and
in particular through the statistical applications.

a. At this point the reader should understand that Hs is the most used variable to
describe sea-state conditions. Hs is traditionally computed from the mean of the highest
third of observed of the waves. This definition is discussed in Chapter 2.

1.1 What is Stochastic Extreme Value Modelling

Endorsed as a real expert of the discipline, Coles (2001) presents the Extreme
Value Theory (EVT) as a statistical approach to study the behaviour of a random
variable in its extreme realisations. Ones also describe EVT as an approach to
obtain information of events appearing in tails of distributions of random vari-
ables, as illustrated in Figure 1.1. As a major result, univariate EVT brings
a mathematical framework to compute return values associated to long return
periods, with confidence intervals. When extended to multivariate contexts, the

9
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main difference (and difficulty) of EVT is to assess the underlying dependence
structure of extreme events.
This mathematical approach keeps getting relevance in many disciplines. For
instance, insurers adjust their insurance rates regarding the Value at Risk (VaR)
– i.e. a return level corresponding to a high quantile – of their financial portfolio
(Gilli and Këllezi, 2006). Offshore petroleum stations are designed taking into
account wave and wind return-levels of several centenaries to make them durable
even when facing extreme storms Li et al. (2013); Ewans and Jonathan (2014).
Regarding the littoral hazard context, ones generally use EVT to design ports or
seawalls able to face extreme weather conditions.

All these applications need extrapolations of the information from observed
levels to unobserved ones. Such extrapolations require statistical models. The
following sections present justifications of those models and details on how to
model extreme events, from univariate case to more complex cases.

Figure 1.1: A density function of a random variable. EVT is used to extract information from
the behaviour of the random variable over a (very) high quantile, as for instance Qobs = 99%
(i.e. the probability p that a random variable exceeds Qobs is p = 0.01).

1.2 Univariate Modelling

1.2.1 Maxima Approach

Let us consider a random variable X which may represent the significant
wave height (Hs) at a single site s. Let X1, X2, . . . , Xn independent copies of
X. For each 1 ≤ i ≤ n, Xi corresponds to significant wave heights observed at
the day i. Ones are interested in the mean behaviour of X, denoted X̄n such as

X̄n = 1
n

n
∑

i=1
Xi. The well-known Central Limit Theorem (CLT) de Laplace (1810)

states that the distribution of X̄n, correctly normalised, converges to the Normal
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law.
In a similar reasoning, EVT introduced by Fisher and Tippett (1928); Gnedenko
(1943) is focused on the extreme behaviour of X. It can be seen as the study of
Mn = max

1≤i≤n
{Xi}. If the full behaviour of X is known then the behaviour of Mn

is also known. Unfortunately this is not the case in practice. To face this issue,
EVT states that if (an)n≥0 > 0 and (bn)n≥0 exist such as (Mn − bn)/an converges
to a non degenerate distribution G(·), then G is a GEV (Generalised Extreme
Value) distribution whose the cumulative distribution function (c.d.f) is given by

GEVµ,σ,ξ(x) = exp

{

−
[

1 + ξ
(x − µ

σ

)

]− 1
ξ

+

}

, (1.1)

where µ is a location parameter, σ is a scale parameter and ξ is a shape param-
eter. Also a+ denotes max(a, 0), µ ∈ R, σ > 0 and ξ ∈ R. This generalised
definition gathers three distribution families: Weibull if ξ < 0, Gumbel if ξ = 0
and Fréchet if ξ > 0 (see Figure 1.2). A noticeable property is that a GEV dis-
tribution is invariant while evaluating the distribution of its max – considering
eventual affine transformation. This property is named : max-stability.

Figure 1.2: Theoretical densities of distributions of the GEV family (GEVµ,σ,ξ) and the stan-
dard Normal law density N (0, 1). The Weibull density (GEV−1,1,−1) shows a finite endpoint.
The Gumbel density (GEV1,1,0) accepts to have some realisation in the tail. Finally the Fréchet
density (GEV1,1,1) has clearly the heaviest tail.

In practice, to fit such a model to data, a first technique consists in splitting
the time-series into blocks of the same size. Maxima are extracted from each
block. Assuming these maxima follow a GEV distribution, the three parameters
of the GEV are estimated to best fit these observations. Several ways of inference
can be used to estimate them. Among the inference techniques we can cite the
maximum likelihood estimation, which is one of the most used technique. This
is the technique used in the sequel.
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In the context of univariate extreme value modelling, the most interesting appli-
cation of a fitted model is to compute the T -block return level and associated
confidence intervals, where T denotes the period in year if dealing with yearly
maxima (the block size equals to a year). The T -year return value xT is defined
by GEVµ,σ,ξ(xT ) = 1 − 1/T . It can be interpreted as the value reached once in
average in a period of T years. In other terms, a return value xT corresponds to
the quantile 1 − 1/T of the given GEV distribution.

The methodology is presented in the following Example 1.2.1.

Example 1.2.1. In this example, we process the daily Hs values observed at the
Lion’s surface-buoy (N 42.06, E 4.64). The entire time-series (Figure 1.3(a))
stretches December 2001 to November 2013. Yearly maxima are extracted (Fig-
ure 1.3(b)) and a GEV model is fitted on. Quality of the fit is evaluated thanks
to a Quantile-Quantile plot (Figure 1.3(c)). Such a graph presents the observed
values on a plot opposing their position in terms of empirical quantiles against
in terms of the theoretical ones, i.e. provided by the fitted model. The more
the observations are placed on the diagonal line, the more the fit is good and the
extrapolations would be accurate. The return level plot (Figure 1.3(d)) gives what
would be the return levels against return periods (i.e. , level reached once in mean
for its associated return period). In this last graphic, return values modelled are
the red line and can be extrapolated for long return periods. Return periods are
given in block size unit, i.e. in years. Dots are the observed events and dashed
lines are the associated 95% confidence intervals obtained through simulation.
With such a fit an estimation of the return level for a return period of 25 years
is Rl25 = 13.60 ± 1.60 (m), where ±1.60 is the confidence interval computed from
the asymptotic normality property.

The main drawback of the block maxima approach is that much informa-
tion is gathered through the time dimension, therefore lost into each block. For
instance if we consider annual maxima (as commonly used in environmental ap-
plications such as in Example 1.2.1), the time-series may contain two very high
and independent values into the same year period. Only the highest is used in
the inference process. The second value is lost for inference purpose, even if it
contains information about the distribution of extremes.
Alternatives have been proposed to take into account the maximum of informa-
tion of extreme values. In particular one alternative is to detect the extreme
values as exceedances over a high threshold. Details on that method are given in
the following Section 1.2.2.

1.2.2 Peaks Over Threshold Approach

The aim of the peaks over threshold (POT) approach is still the study of the
extreme values behaviour. Let us consider the random variable X defined like
in the previous section. Pickands (1975) first introduces that for a large enough
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(a) Hs time-series observed at Lion’s
Buoy (61002).

(b) Extraction of annual maxima.

(c) Quantile quantile plot. Simulated
(non-parametric) confidence intervals are
given in dashed lines.

(d) Return values plot. Return periods
are in block size unit, i.e. years. Simu-
lated (non-parametric) confidence inter-
vals are given in dashed lines.

Figure 1.3: Procedure of a GEV fit with block maxima approach over the significant wave
height time-series observed at the Lion’s surface buoy.
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value u, the c.d.f of (X − u) conditional on X > u can be approximated by:

H(x) = 1 −
(

1 +
γx

σ̃

)− 1
γ

(1.2)

defined on x : x > 0 and (1 + γx/σ̃) > 0, where σ̃ = σ + γ(u − µ). The family of
distribution corresponding to the Equation 1.2 is called the Generalised Pareto
Distribution (GPD).

Maxima Mn correctly normalised converge to a GEV distribution when n →
∞, and excesses over a high thresholds u converge to a GPD one when u → xF ,
with xF = sup{x : F (x) < 1}. Both distributions are linked. Indeed the shape
parameter γ of the GPD distribution is equal to that of the corresponding GEV
distribution ξ.
In practice, one difficulty of the block maxima approach is to select a suitable
size of the block in order to do not gather too much information into each block.
In the threshold exceedances approach, the main difficulty is to determine what
is the threshold to use. Taking a too low threshold means that the asymptotical
assumptions are not verified any more and the formalism becomes wrong, imply-
ing bias. Taking a too high threshold results in having not enough data to fit the
model on, which leads to a high variance.

Example 1.2.2. To illustrate it, let us analyse the data set from Example 1.2.1
with the POT approach. We chose to take the empirical 95% quantile as threshold
u. Figure 1.4(a) illustrates the detection of exceedances in red. Since the data set
contains hourly Hs observations, observations are not independent and identically
distributed (IID) and it is not valid to fit a GPD on all those exceedances (see
Subsection 1.2.4). Therefore the data are first declustered to get IID exceedances,
as shown in Figure 1.4(b). This leads to use the highest values inside 310 clusters
instead of 4631 excesses. Those data are then used to fit a GPD distribution and
the resulting fit is evaluated thanks to the quantile-quantile plot in Figure 1.4(c).
As for the block maxima approach, the return levels are computed in the goal
of extrapolating information to longest time-series than the observed one. With
such a fit, an estimation of the return level for a return period of 25 years is
Rl25 = 17.50 ± 6.18 (m), where ±6.18 is the confidence interval computed from
the asymptotic normality property.

1.2.3 Others

Others approaches exist to model the extreme values. In particular, there is
an elegant way of characterizing the extreme value behaviour of a process due
to (Pickands, 1971) and known as the Point Process approach. Most notably,
it has the advantage of unifying the interpretation of extreme value behaviour
from methods introduced before and of enabling a more natural formulation of
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(a) Extracted exceedances over the 95%
quantile without declustering at Lion’s
Buoy (61002).

(b) Extraction of exceedances over the
95% quantile at Lion’s Buoy (61002),
declustered.

(c) Quantile quantile plot of declus-
tered exceedances. Simulated (non-
parametric) confidence intervals are given
in dashed lines.

(d) Return values plot of declustered ex-
ceedances. Return periods are expressed
in years. Simulated (non-parametric)
confidence intervals are given in dashed
lines.

Figure 1.4: Procedure of a GPD fit with the peaks over threshold approach over the significant
wave height time-series observed at the Lion’s surface buoy.
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non-stationarity in threshold excesses. The theory of Point Process is out of the
scope of this document but might be explored in Coles (2001).

1.2.4 Assumptions

The extreme value modelling relies on assumptions of stationarity and inde-
pendence. However the formalism is flexible enough to deal with non-stationarity
or dependent (or both) cases as briefly introduced in Example 1.2.2.
To deal with non-stationary processes, a GEV model can use time-varying ex-
pression in the definition of its parameters (e.g., µ(t),σ(t),ξ(t)). In case of GPD
fits and facing such an issue, an handy solution is to migrate from a fix threshold
u to a time-dynamic one u(t). In both cases and in presence of seasonality, one
may also choose to restrict the study on a single period of each season.
The other drawback arises from the independence of realisations of the random
variable studied. This is a mandatory condition to apply EVT, but in practice
it is generally an unrealistic assumption. Hence whether using block maxima ap-
proach or peaks over threshold one, those methods have to be able to deal with
a short-term dependence between realisations. The basic idea is to generalise the
definition of models applied on independent variables to stationary series. When
working with block maxima, a theoretical result shows that providing a station-
ary series X∗

1 , X∗
2 , . . . , X∗

n satisfying the D(un) condition (Leadbetter, 1983), the
maximum of this series (correctly normalised) denoted M∗

n converges to a distri-
bution G1, if and only if considering the independent series X1, X2, . . . , X∗

n having
the same marginal distribution, its maximum denoted Mn (correctly normalised)
converges to the distribution G2 with Gθ∗

1 = G2, for a constant 0 < θ∗ ≤ 1. It
is remarkable that those distributions are GEV from definition, and θ∗ denotes
the so-called extremal index. In practice, for a time-series having a weak enough
short-term dependency (i.e. D(un) condition satisfied), a GEV distribution could
be fitted directly on the data. In that case the role of the extremal index is
included in the estimation of the GEV parameters.
When working with excesses, similar arguments make the GPD approach valid
for the study of stationary series. However by definition of a stationary series ex-
cesses tend to cluster, which lead to falsify the initial log-likelihood definition. In
practice the user may consider to decluster the time-series. This step permits to
avoid considering peaks from the same extreme event, but only take into account
the highest value of each cluster, which are independent by definition making the
inference process valid.

1.3 Multivariate Modelling

The previous subsections deal with univariate extreme value models. In many
environmental questionings extreme values behaviour need to be known at several
locations or over an entire space. In the presented context it could be information
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required either along a coastline or over a regional coastline area.
Rather than univariate quantities, we now turn attention to multivariate ex-
tremes. In particular, the notion of dependence between variables in their ex-
treme realisation is paramount.
For instance, we can be interested in estimating the joint probability of random
variables Xsi

at two locations s1 and s2 to exceed their respective 100-year re-
turn value. Considering only univariate approaches applied on each site result
in masking the underlying dependence structure between those. If independence
is assumed, their joint probability is defined as the product of the margins. If
s1 is nearby s2, it is trivial to understand that this assumption of independence
is generally never reached. Respectively, considering their full dependence would
also be a mistake since distant sites could be almost independent even for extreme
realisations.

Therefore, to deal with both the dependence structure and the marginal dis-
tributions of random variables, multivariate approaches have been developed.
Theory of multivariate extremes is well developed, leading to the construction
of multivariate extreme models. Such models rely on multivariate approaches,
analogues to the presented univariate ones (e.g., block maxima or excess over
threshold).

To simplify the understanding of multivariate extremes, let us consider the
bivariate case with Xs1 and Xs2 defining two random variables at two distant
locations s1 and s2. Each marginal random variable Xsi

can be interpreted as
the random variable X of the previous univariate section.
We restrict this overview to the extensions of the block maxima and threshold
approaches.

1.3.1 Component-wise Maxima

Characterization of MEV model is based on component-wise maxima Mn =
(Mn,s1 , Mn,s2) and can be seen as an extension of the GEV approach. By con-
struction each marginal component of such Mn, correctly normalised, converges
to a GEV distribution. For convenience and because the limiting distribution is
invariant while transforming marginal distribution, margins are transformed to
unit Fréchet distributions, i.e. of c.d.f F (x) = e−1/x for x > 0. Placed in the
case where marginals are transformed to unit Fréchet and assuming that Mn/n
converges to a non-degenerate distribution, then Resnick (1987) states that such
a MEV distribution is characterized by :

G(x, y) = exp(−V (x, y)), x > 0, y > 0, (1.3)
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where

V (x, y) = 2
∫ 1

0
max

(

ω

x
,
1 − ω

y

)

dH(ω), (1.4)

and H is a distribution defined on [0, 1] verifying the constraint
∫ 1

0 ωdH(ω) = 1/2.
As in the univariate case, G(·) is max-stable. Since there is only one constraint,
the class of the possible limits is infinite. One way to proceed is to work on
parametric sub-families of distributions.

There are many parametric families of models to characterize such distribution
G due to the presence of H. Among them we can cite Gumbel (1960); Tawn
(1988, 1990); Coles and Tawn (1991). For instance, still in the bivariate case, the
logistic-Gumbel model is defined as

G(x, y) = exp
{

−
(

x−1/α + y−1/α
)}α

, (1.5)

with x > 0, y > 0 and 0 < α ≤ 1. The parameter α defines here the dependence in
the extreme of the two random variables with the total dependence case (α → 0)
and the independence one (α = 1).

In practice, one way to proceed is to assume that the component-wise maxima
vector converges to a distribution issued by one of the multivariate models. Hence
a set of multivariate models could be fitted to the data by conventional estimation
techniques. Fitted models are then sorted out in terms of goodness of fit. The
selection of the best model is performed via the use of statistical criterion, as the
Akaike Information Criterion (AIC) 1. The principal outcomes of multivariate
models are for instance the possibility to compute joint probabilities considering
the underlying dependence structure or to study the dependence structure itself
(e.g., presence of anisotropy). Marginals analyses are still available as well.

Example 1.3.1. To illustrate such bivariate modelling, let us consider the bivari-
ate process of both significant wave height (Hs) and mean wave period (Ts) time-
series, which are hourly observed at the Lion’s surface buoy. From expert advice
and to avoid measuring errors, we filter out couple of values where Hs < 0.2m.
Surface buoys can indeed record high Ts values when simultaneous Hs is too low
but in that case we are no more looking at the same physical waves (see next
Chapter). As in the univariate block maxima approach, the first step is to detect
maxima. Monthly maxima are extracted and are represented in Figure 1.5(b).
Something remarkable is that most of the maxima are not directly observed, but
are the combination of both Hs and Ts maxima within a month. We choose to fit
the eight bivariate models implemented in the evd R Package 2: logistic (Gumbel,
1960), asymmetric-logistic (Tawn, 1990), Husler-Reiss (Hüsler and Reiss, 1989),

1. Akaike Information Criterion (AIC) is a standard measure of the quality of a given model
for a dataset. AIC balances the goodness of the fit of a model and its complexity. By definition,
it relies on the full likelihood determination.

2. https://cran.r-project.org/web/packages/evd/evd.pdf.
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(a) Scatter plot of Hs/Ts times series at
Lion’s Buoy (61002).

(b) Extraction of bivariate montlhy max-
ima.

(c) Modelled dependence function
(straight line) versus empirical one.

(d) Quantile curves plot representing.
Curves represent respectively the quan-
tiles 85%, 90% and 95%.

Figure 1.5: Bivariate extreme value modelling using bilogistic model for Hs and Ts at Lion’s
surface buoy.
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negative logistic (Galambos, 1975), asymmetric negative logistic (Joe, 1990), bil-
ogistic (Smith et al., 1990), negative-bilogistic (Coles and Tawn, 1994), Coles-
Tawn (Coles and Tawn, 1991) and the symmetric mixed model (Tawn, 1988).
Once fitted, we compare their respective AIC (Akaike Information Criterion) to
select the best fitted model. According to this criterion, the best model is the one
having the lowest AIC. Indeed, the AIC penalises the likelihood of the model by
its number of parameters in order to promote the parsimonious models. The bil-
ogistic fit appears to be the better on the presented data. The Pickands function
A(t) represents the estimated dependence function and lies in the interval [0, 1].
This function measures the dependence between the two random variables. For the
complete dependence A(t) = 1 and A(t) = 0 for the full independence (Beirlant
et al., 2004). The empirical (estimated) dependence is compared to the modelled
dependence in Figure 1.5(c).
The skewness of the empirical curve reinforces the idea of using a model like the
bilogistic one, allowing an asymmetry in the characterisation of the bivariate de-
pendence structure. Another observation is that the model reduces the dependence
between the two variables, even if it remains important.
Finally we observe the bivariate quantile curves in Figure 1.5(d). Each quantile
curve qi issued by the bivariate model delimits the values for which the probability
of being simultaneously lower than those maxima-pair is qi.

1.3.2 Threshold Excess Model

The univariate peaks-over-threshold approach is extended by two main ap-
proaches to the multivariate (here bivariate) context, reviewed in Bacro and Gae-
tan (2014).
The first approach is to approximate the bivariate distribution F (x, y) when
x > ux and y > uy for large enough thresholds ux and uy, providing that marginal
distributions of F are of the form of (1.2).
If those margins are transformed to standard Fréchet distributions, it is possible
to show that for large enough ux and uy

F (x, y) ≈ G(x, y) = exp {−V (x̃, ỹ)} , x > ux, y > uy, (1.6)

with x̃ and ỹ defined in terms of x and y transformed to standard Fréchet scale.
One difficulty to deal with such model is that inference is complicated. Indeed,
(1.6) holds only when both x and y are above their marginal threshold. It means
that in the other regions it is necessary to censor the likelihood component, which
is well detailed for instance in Coles (2001) pages 155-156.
Rootzén and Tajvidi (2006) worked on the other approach. They consider a bi-
variate distribution of large values as well, but when at least one of the component
is large. From their result, we can assume that such distribution is a generali-
sation of the univariate Generalised Pareto distribution, suggesting the following
approximation:
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For large thresholds ux and uy as

P

(

X − ux

σux

≤ zx,
Y − uy

σuy

≤ zy

∣

∣

∣

∣

∣

X > ux or Y > uy

)

≈ H(zx, zy), (1.7)

with H(·, ·) the bivariate generalised Pareto distribution is of the form

H(zx, zy) = − 1

log(G(0, 0))

× log
G(zx, zy)

G(min((zx, zy), (0, 0))
(1.8)

for all (zx, zy) and with G max-stable. The result of Rootzén and Tajvidi (2006)
is actually valid to a dimension greater than two.

1.3.3 Limits

In the context of assessing coastal hazards, many questionings are related
to entire coastlines or to entire coastal regions. To address those questionings
with multivariate approaches could be quite delicate. A complex dependence
structure (number of sites >> 3) is hard to handle due to the lack of flexibility
of these models. Another drawback of such approaches is that they are restricted
to provide information only on the sites of observations. The following section
presents one solution to avoid such constraints.

1.4 Spatial modelling

1.4.1 Max-stable Processes

To overtake the multivariate induced drawbacks, a continuous spatial mod-
elling is introduced by de Haan (1984) with a new theory extending both the
GEV and MEV formalisms: max-stable processes. Let Zi(· ), i = {1, . . . , n} be
n independent copies of a spatial process of extremes. Let C(χ) be the space of
continuous real functions f defined on χ ⊂ R

d. de Haan (1984) states that the
random process {Z(x), x ∈ χ} is max-stable if an(x) > 0 and bn(x) ∈ R defined
on C(χ) exist such that,

{

max
i=1,...,n

Zi(x) − bn(x)

an(x)
, x ∈ χ

}

L
= {Z(x), x ∈ χ} . (1.9)

As a consequence of this definition any n-dimensional marginal distribution of
Z(·) satisfies the max-stability property. More specifically they are MEV. Hence,
univariate marginal distributions are GEV and there is no loss of generality in
assuming that they can always be unit Fréchet margins after rescaling and shift-
ing.
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Let Yi(·), i = {1, . . . , n} be n independent copies of a spatial process. de Haan
(1984) shows that if there exist normalizing functions an(x) > 0 and bn(x) ∈ R

such that

max
i=1,...,n

Yi(x) − bn(x)

an(x)

converges when x ∈ χ and n → ∞ to a non degenerated process Z(·), then the
limit process Z(·) belongs to the max-stable processes class.

In the literature, it exists several models to build such processes. Bacro and
Gaetan (2012) recall that two main approaches exist. Smith (1990); Schlather
(2002); de Haan and Pereira (2006) use events with a deterministic form but
moving randomly in the space.
Schlather (2002); Kabluchko et al. (2009) rely on events with a stochastic form
but keep the same spatial dependence structure. To better understand those dif-
ferences, let us describe one model of each approach in the following paragraphs.

Smith (1990)

The first model described is known as the Gaussian extreme value process
(Smith, 1990). It is often used for extreme rainfall modelling.
Without loss of generality and because we are dealing with spatial max-stable
processes, let us introduce the spaces S ⊂ R

2 and χ ⊂ R
2 used in the sequel.

Let us consider {(ξi, si), i ≥ 1} a Poisson process on (0, ∞) × S, with intensity
measure of ξ−2dξ × ν(ds), where ν is a measure defined on S. Moreover let us
consider {f(s, x), s ∈ S, x ∈ χ} a non-negative function, then the so-called storm
model, is defined by

Z(x) = max
i≥1

ξif(si, x), x ∈ χ. (1.10)

Under the constraint
∫

S f(s, x)ν(ds) = 1, for all x ∈ χ, Z(· ) is a max-stable
process with unit Fréchet margins that means a simple max-stable process.
As a basic interpretation, si is seen as the centre of the ith-storm situated in the
space S and ν their distribution. Each ξi represents the intensity of the storm and
ξif(si, x) the total amount of rainfall for the storm centred on si. Finally the max
operator allows to determine the maximum rain felt over n independent storms.
One example of max-stable process simulated by such a model is illustrated in
Figure 1.6.

Schlather (2002)

The former model is slightly different from the class often attributed to
Schlather (2002), which is in reality a special case of a more general representa-
tion stated by Penrose (1992). In this representation, Schlather (2002) considers
max-stable processes with a random shape instead of being defined from a deter-
ministic function.
Let {ξi, i ≥ 1} denote the points of a Poisson process on (0, ∞) with intensity
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Figure 1.6: A random max-stable process simulated from a Smith’s max-stable model. Many
possibilities of the function f(·) are available. Functions f(·) are probability density functions
defined on χ ⊂ R

d, with d = 2 in this spatial context. In this example, we chose the multivariate

Gaussian density function having the covariance matrix Σ =

(

1/12 0
0 1/12

)

.

measure of ξ−2dξ and {Wi(.)}i≥1 be independent copies of W (.) a stationary
process on R

2, with E(W (x)) = 1 for all x ∈ χ. Then the random process

Z(x) = max
i≥1

ξiWi(x), x ∈ χ, (1.11)

is a simple max-stable process (Schlather, 2002).
From this definition, Schlather (2002) defines the Extremal Gaussian process

as Z(· ) with Wi(x) =
√

2π max {0, εi(s)}, with εi(s) are IID stationary Gaussian
process. This model has a simple interpretation too: the ξW are spatial events
having the same dependence structure. They differ in their magnitude ξ. The
shape of the events may vary if the process W allows it. One example of max-
stable process simulated by such a model is illustrated in Figure 1.7.

Extremal Coefficient

One interest of modelling spatial extremes is on the understanding of the
underlying dependence structure of those processes. Generally the dependence
between two random variables uses to be computed by means of their correlation.
When focusing on extremes, this is inappropriate since such a method measures
the dependence about the mean values. Additionally some extreme value distri-
butions do not have moment of order two, making such a computation impossible.



CHAPTER 1. EXTREME VALUE MODELLING 24

Figure 1.7: A random max-stable process simulated from a Schlather’s max-stable model with
an arbitrary dependence structure based on the exponential correlation function.

A simple measure to assess the dependence between random variables having ex-
treme value distributions is the extremal coefficient (Smith, 1990).
Let us define a vector (X1, . . . , XN) of N dependent random variables that with-
out loss of generality are assumed to be transformed to the unit Fréchet scale. If
(X1, . . . , XN) has a MEV distribution,

P (X1 ≤ x, X2 ≤ x, . . . , XN ≤ x) = exp

(

−θ

x

)

, (1.12)

where θ is the extremal coefficient of (X1, X2, . . . , XN). Value of θ ranges between
1 and N the number of random variables into the multivariate vector. Limiting
case θ = 1 means that variables are strictly dependent, whereas θ = N represents
the full independence.
For a max-stable process Z(· ) we focus on the bivariate extremal coefficient
function (Schlather and Tawn, 2003) θ(· ), which is given by

P (Z(s) ≤ z, Z(s + h) ≤ z) = exp

(

−θ(h)

z

)

. (1.13)

In the context of max-stable models, the bivariate representation of the extremal
coefficient function is privileged because they can be simply derived from their
(known) bivariate distribution. As recalled in Bacro and Gaetan (2012) we get
for the former presented models:

— Gaussian extreme value process (Smith, 1990): θ(h) = 2φ
(√

h′Σ−1h
2

)

, where
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φ is the standard normal distribution and Σ the associated covariance
matrix;

— Extremal Gaussian process (Schlather, 2002): θ(h) = 1 +
√

(1 − ρ(h))/2,
where ρ is the correlation function of the stationary Gaussian process.

Estimation of Extremal Coefficient

Bacro and Gaetan (2012) states that for a single value θ(h) several estimators
are defined (Smith, 1990; Cooley et al., 2006; Bel et al., 2008). Some of them,
largely accepted in the literature, are introduced hereafter.
Let us consider K independent copies of the bivariate vector Zh = (Z(s), Z(s + h))′

having unit Fréchet margins and denoted Z
(k)
h =

(

Z
(k)
h,1 , Z

(k)
h,2

)′
, k = 1, . . . , K. A

first estimator comes from the introduction of a way to characterise the spatial
bivariate structure of a process Z(· ) by means of the madogram

ν(h) =
1

2
E|Z(s + h) − Z(s)|. (1.14)

Cooley et al. (2006) considers the madogram for transformed max-stable process
F (Z(· )) with F (· ) the unit Fréchet distribution, known as the Fmadogram. In
that case, Cooley et al. (2006) shows that

νF (Z)(h) =
1

2
E|F (Z(s + h)) − F (Z(s))| =

1

2

θ(h) − 1

θ(h) + 1
, (1.15)

which leads to the estimator:

θ̂(h) =
1 + 2ν̂F (Z)(h)

1 − 2ν̂F (Z)(h)
, (1.16)

where ν̂ is an empirical estimator.
Since 1/Z(s) has an exponential distribution and min(1/(Z(s), 1/Z(s + h)) has
an exponential distribution with rate θ(h), a second estimator of θ(h) is naturally
given by Smith (1990) as

θ̂(h) = K

/

K
∑

k=1

1

max
(

Z
(k)
h,1 , Z

(k)
h,2

) . (1.17)

It appears that in the context of threshold-based extreme value methods,
where realisations above a high threshold are considered as extreme ones, the
availability and interpretation of the extremal coefficient function θ remains
the same. Without loss of generality, let us consider IID random variables
Y (1), . . . , Y (N) defined with unit Fréchet distribution as before.
Let us then consider predetermined thresholds vectors (u

(1)
j , . . . , u

(N)
j ) and M IID

random vectors (Y
(1)

j , . . . , Y
(N)

j ), 1 ≤ j ≤ M , where each Y
(k)

j is observed only if
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Y
(k)

j > u
(k)
j ; otherwise Y

(k)
j is censored at u

(k)
j .

In this context, Smith in Caires et al. (2011) defines the following estimator of
the extremal coefficient function θ as:

θ̂ = m

/

M
∑

j=1

1

max(Yj, uj)
, (1.18)

where Yj and uj are defined as max
(

Y
(1)

j , . . . , Y
(N)

j

)

and max
(

u
(1)
j , . . . , u

(N)
j

)

,
respectively; m is the number of excesses Yj > uj.

Simulation

The simulation of max-stable processes is divided in two categories: uncon-
ditional and conditional simulation (Bacro and Gaetan, 2012; Ribatet, 2013).
Unconditional simulations stand for processes generated randomly, whereas con-
ditional simulations stand for processes where some observed data condition the
simulation. The later is particularly used when a quantity of interest (e.g., quan-
tiles, joint-probabilities of exceedances, . . .) is needed at other locations of the
already known (observed) sites.

Unconditional Simulation From (1.11), the simulation of a max-stable pro-
cess Z(· ) would consist in computing the point-wise maxima over an infinite
number of random processes. Fortunately, results show that in practice only a
few numbers of realizations can be generated to represent Z(· ), making the sim-
ulation of a max-stable process accessible.
Few methods exist to simulate max-stable processes in the literature. Among
those, the one relying on the spectral representation (1.11) of max-stable pro-
cesses and which is very efficient is described in the following algorithm 1 and
illustrated in Figure 1.8
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Algorithm 1: Unconditional simulation of max-stable processes having unit
Fréchet margins.

Input : An upper bound C > 0, a stochastic stationary process W (· ).
Output: One simulated max-stable process.

1 hasConverged ← false, k ← 0, T0 ← 0
2 while !hasConverged do
3 k ← k + 1
4 Ek ∼ Exp(1)
5 Tk ← Tk−1 + Ek

6 ξk ← T −1
k

7 Wk(· ) ∼ W (· )
8 if Cξk ≤ max1≤i≤k ξiWi(s) then
9 hasConverged ← true

10 return Z(s) = max1≤i≤k ξiWi(s)

(Ti)i≥1 is by construction a Poisson process on (0, ∞) with intensity measure
dt and (ξi)i≥1 is a Poisson process on (0, ∞) with the required intensity measure
x−2dx. Since ξk decreases to 0 as k → ∞, the algorithm converges. Here we
supposed that the stochastic process W (· ) is uniformly bounded by a finite and
positive constant C. An approximate algorithm has to be introduced if this con-
dition is not fulfilled. In that case, choosing P (W (s) > C) small enough does
show good performances.
More recently Lantuéjoul et al. (2011) introduced the exact simulation of the
Poisson storm process, exploiting specific properties of the random storms. How-
ever for some other max-stable models not introduced in previous section (e.g.,
Brown-Resnick), performing the simulation of processes is much more difficult.
In that case, more sophisticated procedures have to be considered to simulate the
processes (Oesting et al., 2012). Such a work is far from the main objectives of
this thesis. Hence those processes will not be used in the applications.

Conditional Simulation Conditional simulation of a max-stable process is as
useful as difficult to obtain.
If we consider x = (x1, . . . , xK), xk ∈ χ, a vector of locations and z = (z1, . . . , zK)
the expected values, the aim is to sample from

Z(x)|{Z(x1) = z1, . . . , Z(xK) = zK}, x ∈ χ, (1.19)

where Z is as simple max-stable process on χ, i.e. non degenerate with unit
Fréchet margins (de Haan and Pereira, 2006).
Only recently Wang and Stoev (2011) introduced a solution to construct such a
conditional process for max-linear processes. This work was followed by Dombry
et al. (2012); Dombry and Eyi-Minko (2013) who worked as well on a method to
construct conditional process but in a less restrictive case. They showed that is
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(a) Realisation of the
Poisson process ξ.

(b) Simulation of
bounded Gaussian pro-
cesses amplified by the
Poisson process: ξi × Wi.

(c) Red line is the re-
turned max-stable pro-
cess .

Figure 1.8: Illustration of the procedure to simulate a one-dimensional Gaussian extreme
value (max-stable) process.

possible to decompose the conditional max-stable process in two parts. The first
one is a set of random functions, called extremal functions, contributing to the
conditioning event Z(x) = z. The second part is a set of so-called sub-extremal
functions, which are random functions that do not contribute at the conditioning
points x but may contribute at other locations. The combination of simulations
from those two sets of random functions makes a conditional max-stable process.
Recently, Lantuéjoul and Bel (2014) introduced a new algorithm improving signif-
icantly the performances of the conditional simulations, allowing the simulation
of max-stable processes conditioned up to hundred of points.

Applications

Even if the mathematical framework to deal with spatial extreme values have
been discovered and justified years ago, only since few years such theory have
been applied on several topics and in particular in environmental contexts as pre-
sented in Toulemonde et al. (2015).
Performances of such stochastic modelling have been shown in several applica-
tions over various topics. Among others, one reference in the extreme value com-
munity for the use of max-stable processes is Blanchet and Davison (2011) who
study the heavy snow events in Alps. Gaume et al. (2013) work also on the same
topic with max-stable processes in a very pedagogic way. Similarly, Davison and
Gholamrezaee (2011) focus on the study of extreme heat-waves in Switzerland.
Oesting et al. (2013) use conditional simulation of bi-variate max-stable processes
to model extreme wind gusts in Germany by detecting the dependence structure
between the forecast events and their observations. Also performing conditional
simulation of max-stable processes from weather forecast models, Bechler et al.
(2015) are interested in the capacity of downscaling extreme values for floods
events in south of France.
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More related to the topic of this thesis, Raillard et al. (2013) model extreme sig-
nificant wave heights by fitting marginally a max-stable process along the time
dimension. From a more technical point of view, Wadsworth and Tawn (2012)
work notably on evaluating the limiting asymptotical dependence of the max-
stable processes and propose alternatives validated on same kind of data-set.
Closely related to the max-stable processes through the use of extreme value the-
ory, Weiss et al. (2014) develop an interesting approach relying on the formation
of homogeneous region for regional frequency analysis of significant wave heights.
Ewans and Jonathan (2014) develop conditional models to assess the extreme
significant wave heights as well.
This short review is far from being exhaustive but demonstrates the global and
recent efforts and interests of mathematical research aiming to modelling extreme
events in those environmental contexts.

1.4.2 Generalised Pareto Process

Generalised Pareto process is the natural extension of the univariate and mul-
tivariate generalised Pareto distribution. For the multivariate contexts, Rootzén
and Tajvidi (2006) showed that a generalised Pareto distribution is reached in
limit when considering normalised peaks-over-threshold conditioned to the fact
that at least one component is an exceedance (see Section 1.3.2). Ferreira and
de Haan (2014) introduced the framework of generalised Pareto processes by ex-
tending this multivariate approach to infinite dimensional spaces. To do so they
take into account the normalised and conditioned processes by its supremum over
the space. In particular they showed that for a stochastic process {X(t)}t∈T , if
it exists continuous normalising functions {an ≥ 0}{n≥1} and {bn}{n≥1} such that

X − bn

an

|
{

sup
t∈T

X(t) − bn(t)

an(t)
> 0

}

(1.20)

converges weakly in the space of continuous function, as n → ∞, then the limit is
a generalised Pareto process. Then Dombry and Ribatet (2013) leverage the ap-
proach by considering conditional events characterized through a continuous and
homogeneous risk function ℓ(·), leading to the characterisation of the ℓ-Pareto
process. More recently Thibaud and Opitz (2015) work on a new class of gen-
eralised Pareto processes, the elliptical-ℓ-Pareto process. They present it in a
more practical approach. Most notably, they provide efficient algorithms for the
inference of their model and to realise conditional and unconditional simulations.
To our knowledge, this is the most advanced practical demonstration of the gen-
eralised Pareto processes on real data set.
Regarding the global scope of the thesis that is focused on the development of a
full methodology aiming at easing the assessment of coastal hazards, generalised
Pareto processes are not directly considered in the following applications, but are
somehow linked (see Section 5.3.4). Besides this remark, one may state that it



CHAPTER 1. EXTREME VALUE MODELLING 30

would be a valuable add to work with such processes, most notably in terms of
physical interpretation of the simulated events, that is more natural. Such an
application represents actually the purpose of a future work.

1.5 Space-time Modelling

Studying and simulating space-time extreme events is mandatory as soon as
questionings considered are based on an event-scale, i.e. the evolution of extreme
event through time of its realisation is of importance.
Either max-stable processes or GPD processes are defined on R

d, with d ≥ 1. If
in the previous section d = 2, there is no theoretical restriction to rise the value
of d and be able to model space-time extreme processes with such approaches.
However, to deal with higher dimension problems implies (notably) to deal with
much more complex and resource demanding inference processes.
The promising works of Davis et al. (2013a,b); Huser and Davison (2014); Nicolet
et al. (2015) are ones of the very few and recent applications to the space-time
context. Due to the scarcity of such applications in the literature, ones can still
challenge the flexibility of these models to take into account complex space-time
dependence structure. Another remark is that the interpretation of a simulated
process from such models might be confused from a physical point of view.
Beside full-parametric models, alternatives exist to simulate such space-time pro-
cess. For instance, the semi-parametric presented in Caires et al. (2011); Groe-
neweg et al. (2012). From our knowledge, such an implementation is highly
promising as well.

1.6 Conclusion

Along this overview we have seen how to statistically model extreme events,
from a univariate context to higher-dimensional context. Justified from asymptot-
ical results, most of those methods becomes in practice widely used and accepted
to tackle extreme value modelling.

Recalling the initial questionings, we are looking for information of extreme
waves not only in a single location but along entire coastlines or within entire
coastal regions. To deal with such a complex spatial physical phenomenon, a
good practice is to take into account the underlying spatial dependence structure
to limit the underestimation or overestimation of extreme realisations.
The presented approaches in Section 1.4 are particularly relevant to model them.
However some improvements can still be realised. In particular models may rep-
resent much easily complex dependence structures, as the ones presenting asymp-
totical independence.
In case that the time evolution of an extreme event matters for the comprehen-
sion of the phenomenon, space-time approaches have to be considered. To deal
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with such space-time dimension problem is one of the challenge of this thesis and
is particularly discussed in Chapter 5.
Beyond the mathematical definition of models, any extreme values study – as
generally in stochastic modelling – rests on the availability of a good quality data
set. A good quality data set for such extreme modelling means a data set con-
taining accurate and (regular) long time-series. Adding the spatial context on
top of it, observations as to be spatially well represented.

This thesis is related to the assessment of coastal hazards in which extreme
waves are highly implied. In this sense, we are likely to apply the presented
Extreme Value Theory and its extensions to such an environmental phenomenon.
Before that, let us review in the following chapter the bases of sea-waves.
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Chapter2
Waves, from Physics to Nu-
merical Modelling.

Chapter Summary

This chapter focuses on the main data utilised in this thesis: the waves.
What is the motivation of using such data? Waves can be assimilated to the
main amount of energy in coastal areas. Since this PhD is likely to tackle
questionings related to littoral hazards (in extreme conditions), waves are
considered as the mandatory variable to consider.
In this chapter we overview the physic of waves and we discuss how such
data can be observed. Observation methods are particularly important
since we know from the previous chapter that accurate and long histori-
cal data sets are required to perform extreme value analyses. Among the
different sources of data, the numerical modelling of waves is presented in
detail.

2.1 Introduction to Waves

2.1.1 Generalities

Surfers are particularly familiar with waves: they ride them using their dy-
namic to move onto the water and enjoy the pleasure of water-skiing. A good
surfer uses to ride waves ranging from 0.5 m to 5 m. When they fall while riding
a 0.5 m, there is no consequence. On the other hand, falling from a 5 m wave
can be severely damaging, if not mortal. Both the motion of a surfer and the

33
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potential injuries issued by a fall are a slight overview of the embedded energy
of a wave. When writing this thesis, G. McNamara has set the world record in
2013, riding a wave of about 30 meters, almost the highest recorded waves (Liu
et al., 2008). This is straightforward to consider that such a wave is source of a
tremendous energy, and its impact to any asset (coastline, petroleum platform,
port, embankment) might be strongly damaging.
Naturally waves of all kind are of great interest and their study is focused on
their creation, propagation and dissipation.
Waves can be classified in function of their creation factor source as illustrated
in Figure 2.1 (Munk, 1950):

Figure 2.1: Classification of the spectrum of ocean waves according to wave period and factor
source of creation adapted from Munk (1950).

From Figure 2.1 we can see the most observed waves – and waves that we will
consider in the next chapters – are the ones directly or indirectly generated by the
wind. Their period T ranges from 0.1 s to 30 s and are generally called gravity
waves. This name stems from the characteristic of their propagation, mainly
ruled by the gravity force. As soon as the curvature of the wave is too important,
the surface tension (surface capillary force) governs the propagation. This tension
is only important for the small period waves, also called capillary-waves. In the
opposite side regarding wave-periods, waves generated by geophysical processes
(e.g., earthquake) have periods T reaching several hours as it has unfortunately
been observed recently in Indonesia (Lavigne et al., 2007) or Japan (Fujii et al.,
2011). Tide waves that are induced from astrophysical processes (e.g., Moon)
have even longer wave-periods.
When looking at the sea-surface of oceans, all waves are gathered. Fortunately
it is relatively simple to filter such a signal and distinguish the long wave-period
processes against the gravity waves. Capillarity waves are however harder to dis-
sociate but it is artificially done to simplify computations.
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Waves propagation is well known thanks to the work of Stokes, Airy, Rayleigh
and Boussinesq in the 19th century. The emergence of new technologies and in
particular numerical modelling (relying on the theories of cited scientists) has
largely contributed to the recent evolution on the understanding and forecasting
of the main characteristics of sea-states conditions. However the generation and
dissipation of waves are still imperfectly understood.

2.1.2 Wave Analyses: Wave-wave versus Spectral

Until the end of the World-War II, waves were only observed relatively to their
height. In particular sea-states were described by the maxima of the observed
waves. After 1945, variability of waves has started to be considered in observa-
tions and forecasts. By now we distinguished two kind of waves analyses: wave-
wave analysis and spectral analysis. Wave-wave analysis is particularly adapted
for studies focusing on phenomena linked to celerity thresholds or surface-curve
like the wave breaking. In the opposite the spectral approach is more adapted
for wave forecasting.
Unlikely the spectral analysis, which is the approach intensively used in this
document, the wave-wave analysis is shortly described here. The latter allows
introducing the basis of waves statistics. Wave-wave analysis relies on the defini-
tion of individual waves, delimited by the time interval between two consecutive
zero-down-crossing (i.e. the measure of the point crossing down the mean sea
level).
With such a definition, wave parameters (here called variables from a statistical
point of view) are defined. A wave has a height H, a period T , a direction θ, and
so forth.
Ones have been interested in modelling the distribution of those random variables.
In particular it has been shown that the N individual wave heights H1, H2, . . . , HN

of a certain time series follows a Rayleigh distribution (Figure 2.2), expressed here
with its survival

P (H > h) = e−(h/Hrms)2

, (2.1)

where Hrms =

√

1
N

N
∑

i=1
H2

i and the Hi denote the individual wave height in a cer-

tain time series.
The Rayleigh distribution is generally suitable for commonly observed waves. As
soon as the waves are quite high, the distribution of Tayfun (1980) must be con-
sidered. Tayfun (1980)’s distribution is more realistic since most of the non-linear
waves effects are taken into account. Indeed those non linear aspects are generally
responsible of dependences between wave variables and induces a skewness of the
distribution.
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To summarise such a sea-state distribution, a common variable named the
significant wave height Hs is determined. From wave-wave analysis, Hs is defined
as H1/3: the mean of the third highest waves of the time-series. It roughly
corresponds to what an experimented seaman would report in a same sea-state
stationary condition. Another variable used is Hmax which is the maximum wave
height observed, therefore highly depending on the length of the time series.
Note that the famous rogue waves are the observations for which their heights
H > 2.1H1/3.

Figure 2.2: Rayleigh density function f(H; 1.5). The red area is the third highest observed
waves in a certain time-series. The dashed line represents H1/3, the mean of the third highest
observed waves also assimilated to the significant wave height Hs.

In this thesis we focus on extreme waves. Recalling that a return period
T is associated to a return level xT , a level for which the probability of being
greater is 1/T (i.e. quantile 1 − 1/T of the max distribution law), we will be
interested in extreme waves corresponding to long return periods. For instance
the Netherlands Government requires to assess waves having a 10,000-year return
period (Caires et al., 2011) in order to construct their coastal flood defences. With
such quantities, the Rayleigh or even the Tayfun distribution (Tayfun, 1980) is
not suitable anymore. In this context, extreme-value modelling introduced in
Chapter 1 is the key component of any study.

2.2 Mathematical Description of Linear Waves

This section introduces the mathematical background of wave fluid motion
analysis. This step is required to understand where the spectral wave analysis
stems from. To go further from the briefly description of wave theory presented
here, the reader may consult Dalrymple and Dean (1991); Ardhuin (2011), which
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this introduction is inspired from.
As in any physical approach, the theory comes with some notations. In this
chapter, waves are described by several quantities as

— H the wave height,
— T the wave period,
— L the wave length,
— θ the direction,
— k = 2π/L the wavenumber,
— a the wave amplitude,
— ka the wave slope,
— h the water depth,
— ζ̄ the mean free surface level,
— D = h + ζ̄ the local water depth.

Those quantities are going to be discussed in an Eulerian environment. In this en-
vironment, the position is given by the horizontal vector having two components
x = (x, y) and the vertical position z. Celerities are their respective temporal
derivatives denoted u = (u, v) and w.

In this mathematical introduction, waves are isolated and other phenomena
like wind and current are not taken into account. This is to simplify the equations.
Our goal here is to describe the motion of uniform (linear) waves, the one for which
the wave slope is small (ka ≪ 1) and the quantity a/D as well (a/D ≪ 1). They
are named small-amplitude waves.

2.2.1 Wave Motion

The scheme starts from the application of the Navier-stokes equations, assum-
ing that the seawater is a perfect fluid:

∂u

∂t
+ u · ∇u + w

∂u

∂z
= − 1

ρw

∇p + ν

(

∇2
u +

∂2u

∂z2

)

, (2.2)

∂w

∂t
+ u · ∇w + w

∂w

∂z
= −g − 1

ρw

∂p

∂z
+ ν

(

∇2w +
∂2w

∂z2

)

, (2.3)

∇ · u +
∂w

∂z
= 0, (2.4)

where ρw is the water density, ∇ the horizontal gradient and ν the viscosity, g
the gravity constant and p the pressure.

To simplify the computation, we are assuming that

1. The pressure is known and uniform;

2. The fluid flow is incompressible and non-viscous;

3. The density is constant;

4. The bottom is horizontal.
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Moreover, the motion of the fluid is assumed irrotational. Hence celerity derives
from a potential φ, such that u = ∇φ and w = ∂φ

∂z
.

By replacing the potential φ instead of the celerities into (2.2) and (2.3), we
obtain the Bernouilli equation

∂φ

∂t
= −1

2

[

|∇φ|2 +

(

∂φ

∂z

2
)]

− p

ρw

− gz + C(t), (2.5)

where C(t) = 0 in the sequel.

We can state that the condition of continuous surface celerities is

w =
∂φ

∂z
= u · ∇ζ +

∂ζ

∂t
= ∇φ · ∇ζ +

∂ζ

∂t
, for z = ζ, (2.6)

and that (2.4) becomes equivalent to the Laplace equation for φ :

∇ · u +
∂w

∂z
= ∇2φ +

∂2φ

∂z2
= 0, for − h ≤ z ≤ ζ (2.7)

and for an horizontal bottom the equation of continuous vertical velocity is

w =
∂φ

∂z
= 0, for z = −h. (2.8)

Additionally, after few manipulations on (2.2) and (2.3) we obtain the beginning
of a wave equation :

∂2φ

∂t2
+ g

∂φ

∂z
= g∇φ · ∇ζ − 1

2

∂ζ

∂t

∂2φ

∂z∂t
−

(

∂

∂t
+

∂ζ

∂t

∂

∂z

) [

∇φ · ∇φ +

(

∂φ

∂z

2
)]

+ C(t), for z = ζ.

(2.9)

Equations (2.8) and (2.9) provide surface and bottom boundaries conditions for
(2.7). Therefore they allow to find solutions. These equations, (2.7)-(2.9), form
the so-called Euler equations. It is remarkable that the right term of the surface
condition (2.9) is non-linear.

2.2.2 Towards Linear Waves

In the context of small-amplitude waves, the wave slope is small (ka ≪ 1) and
the quantity a/D as well (a/D ≪ 1). Under this conditions, it has been proved
that the non-linear term of (2.9) can be ignored and that from a first order Taylor
development to get (2.9) for z = 0 instead of z = ζ, the linearised wave equation
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is

∂2φ

∂t2
+ g

∂φ

∂z
= 0, for z = 0. (2.10)

From a Fourier decomposition, then replacing the solution into the Laplace equa-
tion (2.7) and taking into account the bottom boundary condition, we obtain the
relation

∂2Φ

∂t2
+ gk tanh(kD)Φ = 0, (2.11)

having as solution

Φ(t) = R(Φke−iσt), (2.12)

with the dispersion relation given by Laplace (1776),

σ2 = gk tanh(kD). (2.13)

As highlighted in Dalrymple and Dean (1991), noting that by definition a prop-
agating wave travels a distance of one wave length L in one wave period T, and
recalling that σ = 2π/T and k = 2π/L, the speed of wave propagation C can be
expressed from (2.13) as

(

2π

T

)2

= g
2π

L
tanh kh. (2.14)

If elevation surface phase is defined as

Θ = k · x − σt + Θ0, (2.15)

with 0 ≤ Θ0 ≤ 2π and the amplitude

a = i
σ

g
Φk, (2.16)
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the solutions of Airy (1841) 1 for the free surface elevation, the horizontal and
vertical celerities and the pressure are

ζ = a cos Θ, (2.17)

u = a
k

k
σ

cosh(kz + kh)

sinh(kD)
cos Θ, (2.18)

w = σ
cosh(kz + kh)

sinh(kD)
sin Θ, (2.19)

p = p̄H + ρwga
cosh(kz + kh)

cosh(kD)
cos Θ, (2.20)

where the mean hydrostatic pressure p̄H = −ρwg(z − ζ̄) + p̄a with pa being the
atmospheric pressure. These is the linear approach of the wave propagation.

In reality the waves are not fully linear but Stokes (1849) extended the Airy’s
solution to take into account the neglected non-linear terms in (2.9). Even if the
latter improves the fit with actual observations of waves, the Airy’s solution is
a reliable approximation for deep-bottom waves propagation which are almost
irrotational, without being so far from the reality to the coast on wave-breaking
zones.

2.3 Fundamentals of Spectral Wave Analysis

2.3.1 Mathematical background

The analysis of the wave motion as described in the previous section becomes
sophisticated as soon as the area of study is larger than the wave length L,
implying the handling of irregularities and a consequent amount of variables for
each time and locations of observations.
Alternatively, a statistical analysis named Spectral Analysis has been fostered
since the 60’s, concurrently to the popularizing of the computer science and the
well-known Fast Fourier Transform (FFT) algorithm.
The water level (or sea free surface) elevation ζ is a highly irregular signal in any
location. Indeed waves are in reality not monochromatic (i.e.single frequency).
Thanks to the Fourier series and since waves are assumed to satisfy the linear
wave theory (locally), the water level signal can be decomposed into superposed
sine waves with well-known characteristics.
This statement stems from the decomposition of the water level as an infinite
series of sine and cosine functions oriented in all possible directions. The complex

1. Origins of this wave theory are well detailed in Craik (2004).
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notation is of the form

ζ(x, t) =
∑

k,s

Zs
k
ei[k·x−(k·uA+sσt)], (2.21)

where Zs
k

denote Fourier’s amplitudes and σ is given from k = |k| by the dis-
persion relation (2.13). From this decomposition and several mathematical ma-
nipulations, the wave spectrum corresponding to the variance of the free surface
elevation ζ can be obtained. For instance,

E =
∫ ∞

0

∫ 2π

0
E(k, θ)dkdθ, (2.22)

is the wavenumber-direction spectrum. Other expressions of the wave spectrum
are also used. In particular, wave-lengths and wave frequencies are interrelated
via the dispersion equation (2.13) and

E(k, θ)dkdθ = E(f, θ)dfdθ. (2.23)

The wave density spectrum (i.e. right side of (2.23)) defines the repartition of
the wave energy 2 along frequencies and direction. Unlike the signal of the free
surface elevation, the density spectrum is relatively regular and allows compress-
ing the information of the full signal. This is particularly suitable to numerical
computing and forecasting. Illustrations of such spectra 3 are presented in Fig-
ure 2.3 and Figure 2.4. The former represents an omni-directional wave spectrum
and the latter a directional-frequency one.

As recalled in Tolman (2014), without currents E is a conserved quantity.
In case of currents, spectral component is no longer conserved due to the work
done by current on the mean momentum transfer of waves. Hence, ones are also
interested in using the wave action spectrum A as

A(k, θ) =
E(k, θ)

σ
, (2.24)

which is conserved whatever the case (Whitham, 1965; Bretherton and Garrett,
1968).

2.3.2 Parameters Reconstruction

When needed, the signal is reconstructed from the spectrum definition by
statistical procedures, since the phases of the original signal are not conserved. As

2. Actually E, the variance of the water level elevation, is not precisely the wave energy.
The relation of the true wave energy is given as ρwgE, with ρw the water density and g the
gravity. As it is generally the case in the ocean community, E is abusively called energy in the
sequel.

3. Data were obtained from the HyMeX program, sponsored by Grants MISTRALS/HyMeX
and Météo-France.
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Figure 2.3: 1D (omnidirectional) spectrum of normalized wave energy observed from a drifting
surface buoy, 2012/09/25 06:00 GMT, (N42.495205;E5.506991), with a range of 40 frequencies
from 0.025 to 0.5 Hz, i.e. period from 2 to 40 s). The so-called wave energy corresponds to the
integration of the variance of the free surface elevation. The area under the curve is a measure
of the total energy in the wave field.

in the wave-wave analysis, the first quantity of interest is generally the significant
wave height Hs. From the spectrum we define

Hm0 = E1/2 = 4
[∫ ∞

0

∫ 2π

0
E(f, θ)dfdθ

]1/2

. (2.25)

In practice H1/3 ≃ Hm0 (Longuet-Higgins, 1952). Hm0 is therefore the spectral
representation of the significant wave height. The denotation m0 stands for the
zero moment of power spectrum, which is more generally defined for the order p
as

mp =
∫ ∞

0

∫ 2π

0
fpE(f, θ)dfdθ. (2.26)

Several other quantities often used in ocean engineering derive from the spectrum.
In particular, fp is the peak frequency, with E(fp) = Emax and the peak period
Tp = 1/fp. Other famous periods Tm0,1,Tm0,2 and Tm0,−1 stem from the period of
order p defined as

Tm0,p =

[
∫ fmax

0

∫ 2π
0 fpE(f, θ)dfdθ

∫ fmax

0 E(f)df

]−1/p

, (2.27)
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Figure 2.4: 2D spectrum of (normalized) wave energy from a drifting surface buoy, 2012/09/25
06:00 GMT, (N42.495205;E5.506991). The Energy is decomposed on directions (72) and fre-
quencies (40 interpolated to 120 for graphical concerns, from 0.025 to 0.5 Hz, i.e. period form
2 to 40 s). The graph is zoomed on frequencies from 0.025 to 0.35 Hz.The colour is the wave
spectral density. Lower frequencies (f = 1/T ) are situated in the centre of the graph. Here
the peak of the energy is observed for waves going towards (oceanographic convention) the
south-west (230 degrees) for a period of 1/0.132 = 7.57 (s).
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with fmax the highest frequency observed. Finally, if we define

a1(f) =
∫ 2π

0
E(f, θ) cos θdθ /

∫ 2π

0
E(f, θ)dθ, (2.28)

b1(f) =
∫ 2π

0
E(f, θ) sin θdθ /

∫ 2π

0
E(f, θ)dθ, (2.29)

then the mean wave direction for the frequency f is

θm(f) = arctan

(

b1(f)

a1(f)

)

. (2.30)

In particular, θm(fp) is the main wave direction (or peak wave direction). Ones
are also interested in the mean wave direction θM defined by integrating over the
direction as

θM = arctan

(
∫ ∞

0 b1(f)df
∫ ∞

0 a1(f)df

)

. (2.31)

To reconstruct the signal from a statistical approach as detailed here is valid
in mostly all applications. However a wave-wave analysis would be preferred for
applications when the phases of waves are of first interest, such as in the breaking
zone.

2.3.3 Observation of Waves

Many methods exist to observe waves. In this short overview we discuss five
of the most used ones.

The first one is surface-buoys (Figure 2.5(a)). Surface buoys are in charge of
monitoring the free surface elevation (e.g., Hamma and Goasguenb, 2004). Some
of them (or combination of them) have the capacity to record the directional
component of the waves propagation. Surface buoys are generally an accurate
source of data. However, since the installation and maintenance of such tools
are relatively expensive, the surface buoys network is quite sparse in the spa-
tial dimension. This is the same statement for length of time-series. Only few
surface-buoys have been installed on very long campaigns.

The first alternative considered here to observe the waves is the use of ADCPs
(Figure 2.5(b)), standing for Acoustic Doppler Current Profiler(s). ADCPs are
generally used within a network and are associated to the measure of pressure.
From this measure a very accurate estimation of the wave spectrum (2.23) can be
derived. Their (vertical and geographical) positions need to be perfectly known
in order to be consistent. This constraint and their relative high cost (roughly
tens of thousands of euros) make the ADCPs as an accurate tool but hard to
handle. They use to be utilised for short measurement campaign on very local
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areas.

(a) Replacement of the Lion’s surface
buoy (61002) (Photo Credits: SHOM).

(b) ADCP deployed at a beach in the
Saintes-Maries-de-la-Mer (France), for
the campaign code-named Rousty1412.

Figure 2.5: Tools to (directly or indirectly) measure waves in situ.

Satellite altimeters (Figure 2.6(a)) bring another alternative to measure the
sea surface (e.g., Fu, 1996). Measures provided by satellite altimeters are accu-
rate as well and time-series begin to be quite long (few decades). However the
use of such data sets implies two main drawbacks. Firstly, only the wave heights
are observed. This might be useful for validation but is generally a limiting factor
as soon as applications require to deal with other sea variables like the direction
or period of waves. Secondly, satellites tracks are non-regular through time and
space around the globe. It can therefore be a challenge to process such a data-set
when applications are on a specific region of the globe and require to have regular
time observation.

More recently, the use of Synthetic Aperture Radar (SAR) technology embed-
ded into satellites (e.g., ENVISAT Frappart et al., 2006) is fostered to measure
the sea-states. Such a measure is preferred to the altimeters since they can mea-
sure not only the wave height but the wave spectra. Those data sets are largely
used to perform data assimilation in the waves forecast. In the very near future,
even directional wave spectra will be available thanks to the enhancement of this
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technology and new satellites campaigns 4.

(a) TOPEX/POSEIDON satellite al-
timeter and orbit placement (Photo
Credits: NOAA).

(b) Octantio High Performance Cluster
(HPC) of HPC@LR centre. This is the
cluster used to perform waves numerical
modelling, which is a resource demanding
process.

Figure 2.6: Alternative tools to measure waves: remote measuring of sea-surface elevation
from satellite altimeter and numerical modelling.

The very last alternative to observe waves presented here are the numerical
modelling. They consist in a set of algorithms in charge of resolving the (coded)
physical equations of the wave theory. Waves fields are therefore simulated from
the numerical models. A simulation is used as a forecast, a hindcast or a reanal-
ysis. The forecast concerns the prevision of the future sea-states. An hindcast is
an historical data-set: the numerical model is used as in the forecast mode but
the forcing fields are known (because they have been already observed) for the full
period of the hindcast. A reanalysis is based on the same principle as the hind-
cast, but the simulation is conditioned to observation points of measure. In any
case, such simulated fields are convenient because their spatial representation is
controlled via the use of a computational grid serving the numerical resolution of
the equations. Another remark is that unlikely the previous way of observation,
(very) long historical data sets can be produced thanks to the climatic reanalysis
forcing fields. Numerical models are approximations of the reality. Hence they
are never perfect and sometimes the accuracy of such simulated data set can be
challenged. Before using a time-series issued by a numerical model, a precise

4. For instance please consult https://cfosat.cnes.fr/fr.
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validation step has to be performed, as detailed in Section 2.5.

Beside those solutions, other tools exist to measure ocean surface. We can
briefly cite the wave staffs, the High Frequency Radards or even camera records
as in Leckler et al. (2015), but they are out of scope of this short presentation.

2.4 A Step Forward in Wave Physic: in brief

Among other elements, we have introduced the theory of the linear waves
propagation, under hypotheses. We have also seen that the signal of waves can
be stored into a powerful mathematical tool: the wave density spectrum. Such
a spectrum represents the sea-states energy from which we can derive other vari-
ables related to the waves (e.g., Hs, Tp, θM , and so forth). In this section, let us
make a short introduction on the physical factors and properties that are respon-
sible of the perturbation of the sea-states. In the sequel, high frequencies waves
are set aside of those comments. Additional physic has to be taken into account
to explain their properties. In particular the role of the surface tension, which is
out of the scope from this introduction.

2.4.1 Spectral Balance

We have seen that (2.24) is a conserved quantity, even in the presence of
currents. Thanks to that definition we can express the wave propagation as

DA

Dt
=

S

σ
, (2.32)

where A is the action wave spectrum, D/Dt is here the total derivative and S
is the net effect of sources and sinks for the wave spectrum E. Since left part
of (2.32) considers linear wave propagation as presented before, any perturbing
effects are gathered in the expression of S. In the next subsection we identify
physical phenomena in charge of the balance of (2.32).

2.4.2 Dominant and Limiting Factors

First of all, a perfectly steady sea surface requires a physical perturbation to
produce waves. The dominant factor in charge of this creation is the wind.
Roughly speaking, when the stress of the wind over the sea surface is important
enough, waves are created (wind-waves) and then propagate (swell). The action
of wind is not the single one implied in the formation of waves. A second factor
as important as the wind is the distance on which the wind impacts the sea
surface. It is called the fetch distance (Figure 2.7). This is one of the reasons
that for equivalent winds, lakes have smaller waves than seas or oceans. The fetch
distance is generally linked to the fetch geometry area, also having a role in the
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Figure 2.7: Fetch distance represented for a wind of strength U with direction θ∗. Without
water depth consideration, the more the fetch distance the higher the waves.

creation of waves. They will behave differently if the wind blows over a straight
or over a free open surface.
Not only the area on which the wind has an exchange of energy to the free water
surface, but the duration of exposure to the wind is a limiting factor as well.
Water depth largely impacts the wave creation and propagation. We are going
to detail its role in the next subsections. As a limiting factor of wave creation,
we can cite for the moment the obvious reason concerning the amount of water
available in shallow water.
Few others physical parameters may contribute or limit the waves creation, as for
instance the temperature stability between the air and the water surfaces (sources
of wind gustiness), the effect of high currents and even the rain.

2.4.3 Wind-Wave Interactions

Waves are generated from a transfer of energy from the wind to the sea surface.
By creating pressure variation over the sea surface the wind might be a source
S > 1 of energy for the waves if U/(C cos θu − θ) > 1, where U and θu are
respectively the celerity and direction of the wind, C and θ still the celerity and
direction of the waves.
It can exist a damping effect due to the wind when waves are faster than the
wind or with an opposed direction. Waves are therefore a source of energy to the
wind when U/(C cos θu − θ) < 1.
From the wave energy spectrum point of view, the source term S is generally of
the form (e.g., Miles, 1957; Janssen, 1982; Ardhuin et al., 2010),

S = Sin(k, θ) + Sout(k, θ) = σβE(k, θ), (2.33)
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where β is known as non-dimensional growth parameter. Sin, the transfer of
energy from wind to waves is to oppose to Sout.

2.4.4 Non-linearity

In reality, ocean waves are not exactly linear. Sources from non-linearity
are numerous and will not be detailed here. However the main result of studies
over the non-linearity of waves is that two waves processes can give birth to a
third wave process at a different frequency. Exchanges of energy within the wave
spectrum are therefore continuous and are named the wave-wave interactions. In
shallow waters, application of this theory is not proven yet.
To balance the wave energy spectrum, a source term named Snl is introduced.

2.4.5 Energy Dissipation in Infinite Depth

Several physical mechanisms dissipate the energy of waves. For instance, the
conversion of the mechanic energy to heat is due to the viscosity of the fluid
(Lamb, 1932). Water turbulences at every scale are also responsible of a part of
the dissipation of the energy (Phillips, 1961). A considerable amount of energy
is also dissipated during the wave breaking process (including white capping).
Terms named Sdis and Sturb represent these sources of dissipation of energy from
the spectral point of view.

2.4.6 Littoral Physical Processes

Effects presented before assume that waves evolve in deep water. In case of
shallow water, additional processes have to be considered. Most notably wave-
bottom interactions Sbot (e.g., Shemdin et al., 1978) are responsible of a part of
the dissipation of energy but also influence the mechanic of waves.

Indeed, physical mechanisms as the refraction, diffraction and reflection avail-
able in area of shallow water have also an impact on the wave propagation.
Consequently they have to be included in the wave energy spectrum balance
equation. In extremely shallow water, depth induced breaking and so-called tri-
ads wave-wave (three-waves interactions) are additional interactions impacting
the equilibrium of the wave density spectrum.
For convenience, those last cited interactions use to be gathered in the non-linear
source term denoted Snl.

2.4.7 Summary

Finally, to better represent the real waves and therefore balance the spectral
relation of the wave propagation (2.32), the total source term S is defined here
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as

S = Sin + Sout + Snl + Sdis + Sturb + Sbot. (2.34)

2.5 Numerical Modelling

Numerical modelling is an alternative of the direct observation of waves. In
order to obtain accurate time-series of sea-states, several modelling steps have to
be performed. We review these key points in this section.

2.5.1 Numerical Modelling Families

There exist three main families of numerical wave models.

1. The first family of models include phase-resolving models. In these models
the sea surface is resolved. They are out of scope when the area of study
is to large since the (analytical) resolution of the equations are too costly.
Despite this constraint, they are perfectly suitable for studies focusing
on phenomena linked to celerity thresholds or surface-curve like the wave
breaking. Most notably, some phase-resolving models implement Boussi-
nesq’s equations and are by definition dedicated to the accurate simulation
of wave processes in shallow-waters (e.g., Filipot et al., 2013).

2. Then comes the family concerning the spectral wave models, also known
as the phase-averaged models. As presented before, these models rely
on the balance of the energy spectra of waves as (2.32). Since the very
first spectral wave model issued by the French Weather Service in 1956
(Gelci et al., 1956), three generations have been released. First generation
wave models did not consider non-linear wave interactions. They were
included in the second generation. The third generation (actual) spectral
wave models explicitly represent all the physics (e.g., non-linearity and
dissipation) relevant for the development of the sea-states in a spatial
dimension. The most-known are WaveWatchIII R© (WW3) (Tolman, 1991),
Simulating WAves Nearshore (SWAN) (Booij et al., 1999) or Tomawac
(Benoit et al., 1996).

3. Recently, a third alternative of the previous methods has raised. This is
the family of models based on particle analysis and named Smoothed Par-
ticle Hydrodynamics (SPH). For such an approach, the fluid is seen as a
sum of particles that are modelled one by one. The modelling scheme is
based on the mechanic interactions of these particles. The few applications
realised so far are impressive in their capability to reproduce the reality
(e.g., Larroude and Oudart, 2012; Lubin and Glockner, 2013). However
SPH methods are tremendously resources demanding from a computa-
tional point of view. By now, it seems unreachable to model wide areas by
SPH. However SPH modelling has to be taken into consideration to rise
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the accuracy of the modelling of the fluid motion, especially in extremely
shallow-waters, near the shore.

In the sequel we are only considering numerical wave model based on a spectral
resolution.

2.5.2 Forcing Fields

Waves generation, propagation and dissipation rest on major physical factors
as

— the wind,
— the surface currents,
— the fetch areas,
— the bathymetry.

Obviously, those forcing parameters need to be as accurate as possible in any
initiative heading to accurately model waves. Most notably, for the realisation
of an hindcast, atmospheric and ocean forcing fields issued from validated re-
analyses are the choice to favour.

2.5.3 Physical Parameterisation

The physic embedded into third generation wave spectral models is consid-
ered as reliable for the modelling of sea-states. Some limitations exist due to the
parameterisation. Source terms equations are mainly derived from empirical ob-
servations and are always parametric. The selection of those parameters for any
equation (named parameterisation) is a main source of bias in wave modelling.
Some of them have been validated for certain conditions or physical constraints,
but are not valid for the simulation of all kind of wave all around the world in
any situation. Those parameters may also be adapted in function of the forcing
fields considered. The modeller has therefore a high responsibility in the param-
eterisation step, which in this sense is as important as the embedded equations
themselves.

2.5.4 Numerical Aspects

In numerical modelling, the equations are transformed into algorithms in or-
der to be resolved. Several approaches exist in the literature. In particular, the
finite difference approach is one of the most used to resolve physical equations.
For this approach based on the discretisation in time and space of the problem,
two main schemes exist: explicit and implicit.
An explicit scheme is based on the computation of a time-step t+∆t from informa-
tion given at a time t. ∆t need to be relatively short, implying long computational
processes. A too high value of ∆t results in instability of the model. Usually,
numerical constraints are present to avoid the instability of the models.
In contrary, an implicit scheme is based on the resolution of a (generally complex)



CHAPTER 2. WAVES, FROM PHYSICS TO NUMERICAL MODELLING.52

equation involving both information at t and t + ∆t. Such a scheme is stable and
allows to work on higher value of time steps. However the equation might be
extremely complex to resolve and numerical diffusivity might be introduced.

2.5.5 Spectral Discretisation

The main scheme of a spectral wave model is to resolve the spectral energy
balance (2.32). Such relation implies integration of spectra over all frequencies
−∞ < f < +∞ and directions 0 ≤ θ < 2π. In practice, any model can use
neither an infinity of frequencies nor an infinity of directions. In this sense the
modeller needs to constraint the physics into a certain range of these parameters.
This is obviously a source of approximation of the reality.

2.5.6 Spatial Discretisation

To represent the space within a wave spectral model, we distinct three families
of computational grids which are the support of equations resolution.
The first family concerns the regular grids, as illustrated in Figure 2.8. Such
grids are easily created and ease the computations and models are generally stable
enough. However, if waves need to be accurately computed on a littoral areas
(e.g., coastline, islands), we need to nest low definition grids to high definition
grids (e.g., Michaud et al., 2012). Indeed, the wave spectrum is much more
variable and sensitive in littoral areas than offshore, and thus requires a high
definition of points to better represent the local sea-states behaviour. Since even
offshore hydrodynamics processes are impacting the littoral areas, such a high
definition grid would be extended to the full area of interest. This would be out
of reach for largely extended areas, from a computational point of view. Therefore
nesting is used to bring to the nearshore the boundaries conditions of the smallest
computational grid.
A second way to represent the space from a computational grid point of view
is through the use of the so-called curvilinear (or polar) grids, as illustrated in
Figure 2.9. One advantage is to avoid nesting grids but nevertheless obtain a high
density of computational points close to the area of interest, which is placed near
the pole of the grid. The gain of computational time is important since the model
has to be run only a single time. However, as for the regular grids family, some
offshore obstacle (like an island) might be totally masked by the low definition of
the grid at this scale. This could impact the accuracy of the waves simulation,
since without wind a swell can cross about 30,000 km.
Unstructured computational grids (also named meshes) like the one presented
in Figure 2.10 are a solution to avoid this drawback. As the curvilinear grids,
unstructured grids are refined to the area of interests. The main difference is that
area may be numerous. The unstructured grid allows representing perfectly any
obstacle all around the area of interest, but can be also coarse on offshore areas
where spectra are likely to be less variable. The major drawback of such a grid
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Figure 2.8: A regular grid (128 x 64 points) over the North Western Mediterranean sea. The
spatial resolution is 0.1811 degrees on longitude and 0.2143 degrees in latitude. Bathymetry is
plotted in colour.
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Figure 2.9: Curvilinear grid (822 x 322 points) for a regional modelling around Taiwan.
Spatial resolution stretches from 400m at the shoreline to 5km offshore. Bathymetry is plotted
in colour. This figure is extracted from Rétif (2015).
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Figure 2.10: Unstructured triangular grid (47086 points). Spatial resolution stretches from
1000m at the shoreline to 12km offshore. Bathymetry is plotted in colour.

is that it can be difficult to generate it, even with assisted tools. Moreover the
direct coupling (e.g., with circulation models) can be difficult as well. Curvilinear
grids are preferred in this context.

2.5.7 Validation

Validation is an important step of the simulation procedure. Modellers have
to validate the produced data sets in order to guarantee the accuracy of the cre-
ated observations. This action requires having measure-points at the physical
time of simulation and geographically situated within the studied area. For spec-
tral model, the spectrum is rarely compared directly. Generally, waves variables
derived from the spectrum (e.g., the significant wave Hs, the peak wave-period
Tp or the mean wave direction) are the data compared. As introduced before
in Section 2.3.3, sources of directly observed data might be diverse (e.g., surface
buoys or altimeters).

At this step, the principal information about both Extreme Value Theory and
sea-waves have been reviewed. In the following chapters we are going apply the
former onto the latter in the goal of providing new methods to assess coastal
hazards. Before that and in the next chapter, let us define the case study of this
thesis and present the data on which we are working on.
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Chapter3
A 52-Year Wave Hindcast

Chapter Summary

As schematised in Figure 3.1, this chapter covers the production of a reli-
able data set of historical sea-states conditions over the case study area: the
Gulf of Lions (GOL). This gulf is situated in the north-western Mediter-
ranean sea where waves observations are poorly provided regarding both
time and space dimensions. The challenge here is to get the most reliable
and long wave features data set. In Oceanography, a common approach
to deal with the scarcity of waves observations is the use of hindcast data
sets. When the system studied lacks direct observations, hindcast data sets
become the ideal candidates to apply extreme value modelling on (Chapter
1), in the goal of addressing coastal hazards.
In this chapter the area of interest is described before introducing the wave
spectral model used to build the 52-year sea-states hindcast. Forcing fields
and the model parameterisation is also discussed. Finally, results and their
validation against surface-buoys records are discussed.

3.1 The Gulf of Lions and waves observations

The Gulf of Lions (GOL) is a semi-closed French coast area located in the
north-western Mediterranean sea (NWM) as illustrated in Figure 3.2. This Gulf
was named in reference of the meteorological conditions hitting it, which are
considered as threatening as a lion Mistral (1979).

59
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Figure 3.1: Regarding the schematic representation of the presented thesis, the current Chap-
ter 3 covers the production of a reliable and historical waves data set.

In the GOL, weather conditions and sea-states use to change abruptly. This
is due to several factors. Among them, Millot (1990) describes the simultaneous
competition of many intense and variable phenomena (e.g., violent and surprising
winds).
This (relatively) hostile area is therefore a natural laboratory reproducing diver-
sified processes observable on several scales all around the world, and is subject
to trigger coastal hazards. This make it a region of interest in many disciplines.
For instance, Ferré et al. (2005); Leredde et al. (2007); Guizien (2009); Guerinel
et al. (2012); Michaud et al. (2012) testify to the general interest of this area.
As them, and since the GOL is subject to coastal hazards, we set it as the region
of interest of this Ph.D. Referring to Figure 2, we are likely to applied stochastic
approaches to model extreme waves events in the GOL on the basis of the (sim-
ulated) data in that region.

We recall that the quality of statistical extreme value studies relies on the
length and accuracy of the observed time-series. For spatial and space-time ap-
proaches, the modelling quality also relies on the spatial resolution of observation
sites. Unfortunately only few surface-buoys are deployed and maintained in the
GOL (see Figure 3.3).
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Figure 3.2: Spatial extension of the Gulf of Lions (straight box) within the North Western
Mediterranean sea (dashed box). Bathymetry is plotted in colour.

Even if the data are accurately measured, time-series are too short and sparsely
provided to accurately extrapolate information to long return periods and assess
coastal hazards along an entire coastline.
In Chapter 2 satellite-altimeter data sets are introduced as an alternative to
surface-buoys observations. However they only measure the significant wave
heights. It is a real limit if studies are not only focused on the significant wave
height variable but also on wave directions or wave periods. This issue is solved
by the use of satellites embedding SAR radars but are very new, and observed
time-series are short. Moreover since satellites tracks are non-regular through
time and space around the globe, any extreme statistical analysis considering
such data sets might be hard to handle, especially when the modelling concerns
a space-time event in a fixed and relatively short area.
Naturally we choose a third alternative being the observations from numerical
modelling, detailed hereafter. The requirements of the presented hindcast are to
be reliable and to provide long time-series on a set of locations that well-cover the
region of interest. In the literature, two wave hindcasts covering the GOL exist
to the best of our knowledge: the hindcast in Morellato and Benoit (2010) covers
the 1979-2008 period and its extension in Laugel et al. (2014) to the 1979-2010
period using CFSR (NCEP’s Climate Forecast System Reanalysis) winds and un-
structured meshes. Regarding them, we propose to realise a regional hindcast on
a longer historical period (1961-2012), with a finest spatial resolution and using
another cutting-edge wave model.
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Figure 3.3: Locations of surface-buoys available in the GOL.

Figure 3.4: Recording campaigns of the surface-buoys located in the GOL.
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From the literature, we can assume that any hydraulic process observed in the
GOL results from a combination of those present in the NWM area only, i.e. the
area extending from the Gibraltar’s strait to the south of Italy (Figure 3.2). This
statement provides the first parameter of this sea-states hindcast: the geograph-
ical envelope considered.

3.2 The Wave Model

To realise the hindcast, we use the WAVEWATCH III R© (WW3) (Tolman,
1991, 2002, 2008, 2014) wave model. This is a third generation wave model solv-
ing the random phase spectral action density balance equation for wavenumber-
direction spectrum (see (2.24) and (2.32)).
WW3 is supported by the NOAA/NWS/NCEP and known as one of the most
reliable wave spectral model. It is used in production for daily forecasting but
also for several hindcast and reanalyses. The model is suitable whether these
simulations are global or regional.
In its earlier releases, WW3 was mainly dedicated to the computation of offshore
waves. Since the version v3.14 (Tolman, 2008), the physic embedded into the
model (e.g., wave-breaking in surf zone) allows to better approximate shallow
water processes. The presented hindcast is produced with the very last version:
v4.18 (Tolman, 2014).

3.3 Forcing Fields

As far as the goal of the presented hindcast is to be used to perform extreme
values statistical studies, the longer the time series the better the extrapolation
to large return period. Hence we are only considering data set with long period
records. The geographical envelope considered (i.e. NWM) is relatively short.
The hindcast cannot rely on state-of-the-art global reanalyses because of their
incapacity of catching very local processes due to their weak resolution. In this
context, we need to use regional Climate and Ocean reanalyses to force the wave
model.

3.3.1 Atmospheric Fields

According to experts from CNRM 1, the best option to match our require-
ments while forcing the wave model is the data set from Herrmann and Somot
(2008), namely the ARPERA reanalysis. This reanalysis is built from a tilted
and stretched grid of the famous and widely used climate model named Arpege
(Déqué, 2007).

1. French National Meteorological Centre.
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Thanks to its zoom capacity, atmospheric data (e.g., winds) are given on a 50km-
resolution grid illustrated in the Figure 3.5. The time step of the reanalysis is
of 6 hours, from the 1st of January 1959 to the 31th December 2012. As far
as WW3 (v4.18) does not handle non-regular grids as forcing fields, the data is
interpolated to a regular grid 2. The resolution of the interpolated grid is 1/8˚to
fit the same resolution of the surface current data (presented in the next subsec-
tion). The interpolation is performed with a weighted-near-neighbour algorithm,
which consists in making a weighted average of the closest data, up to a selected
radius: 1/4˚ 3. This interpolation can be discussed, but it relies on the relative
linear smoothness of wind fields over sea areas.

3.3.2 Ocean Fields

In the literature the Mediterranean sea is often described as an Ocean lab-
oratory. The coastlines, islands, straits and shallow areas define its complexity.
To accurately represent the ocean circulation in this context, a 10 km resolution
model at least is needed. The reanalysis called NEMOMED-8-24 (Herrmann et
al., 2010), stemming from the development of Beuvier et al. (2010) by the CNRM
climate team, provides accurate surface ocean fields on the grid represented in
Figure 3.6(a). This reanalysis has a spatial resolution stretching between 9 to
12 km and a time resolution of 24 hours. Available for a long historical period
(1961-2012), NEMOMED-8-24 is forced by the atmospheric fields of ARPERA.
The association of the both fields are therefore the ideal candidate for our regional
hindcast.
Surface currents are extracted 4 from this grid with a small step of interpolation,
like for the atmospheric fields but with a smaller radius for the weighted-near-
neighbour algorithm.

3.3.3 Bathymetry

A reliable bathymetry is a mandatory input for wave simulations. Most no-
tably in littoral areas, where the bathymetry directly impacts the propagation of
waves.
It is observable that the bathymetry in the NWM region is highly variable. For
some places, the sea bottom is deep close to the shore (e.g., the French Rivera).
However it exists places at the contrary, like the GOL. Indeed the GOL is com-
posed of an inner-continental shelf observable in Figure 3.2. The dissipation of
waves are completely different in these both regions. It is therefore important to
rely on a reliable bathymetry.
For the production of the presented hindcast, we use the bathymetry constructed

2. See https://github.com/rc-34/mirmidon-toolbox/tree/master/scripts/convertMedAtmosFlux
3. This radius of 1/4˚is empirically chosen, in order to use enough data to avoid NaN but

not to many to keep a relevant information and avoid smoothing gusts observations.
4. See https://github.com/rc-34/mirmidon-toolbox/tree/master/scripts/convertMedOceanFlux.
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(a) The ARPERA computational (polar) grid, cen-
tred on Mediterranean sea. The spatial resolution of
the grid is about 50km.

(b) One time-step of winds field from ARPERA (20-
01-2012 18:00 UTC). ARPERA has a temporal res-
olution of 6 hours from 1959 to 2012.

Figure 3.5: ARPERA reanalysis.
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(a) The NEMOMED-8-24 computational grid, encompassing the Mediterranean sea. The
spatial resolution of the grid is from 9 to 12 km.

(b) One time-step of Zonal currents field from NEMOMED-8-24 (20-01-2012 18:00 UTC).
NEMOMED-8-24 has a daily temporal resolution from 1961 to 2012.

Figure 3.6: NEMOMED-8-24 reanalysis.
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by the SIROCCO TEAM 5, leveraging the famous GEBCO bathymetry with other
measures campaigns. This bathymetry has a resolution of 0.00833˚, which is
around 800 m in the GOL.

3.4 Computational Mesh

To better represent the irregularities of both the coastline and bathymetry,
and also the several obstacles (e.g., islands) existing in the NWM, the model
performs computations on an unstructured mesh. Figure 3.7 shows the finalised
grid on the NWM area and provides a zoom on the refined GOL area as well.
The computational mesh gets the following characteristics:

— The entire coastline and any islands in the area are segmented at a spatial
resolution of 1km.

— The largest edge between two points – at offshore – is of 12 km.
— The mesh is refined between 1 and 1000 m depth, which explains the node

density in such areas.
— A specific refinement appears in the GOL, with edges of the mesh up to

200 m long.
In total, the mesh is composed of 47086 computational nodes. They are 3944

for the GOL only.

3.5 Model Parameterisation

The wave spectral model WW3 uses a spatial and directional discretisation.
For the presented hindcast, the frequency discretisation is realised by taking
frequencies exponentially spaced from 0.0345 Hz to 0.5473 Hz at an increment
of 10% (i.e. wave period from 1.8 s to 29 s). The spectrum is computed for
24 directions (15˚increment). Several source terms can be activated to solve
(2.32). The ones used for this hindcast are listed in Table 3.1. Source terms
parameterisation stems from an adapted version of the test case T405 presented
in Tolman (2014) (Table 2.6). For more details on those, please consult Tolman
(2014).

3.6 Results

WW3 resolves (2.32) for each node of the computational mesh. Full spectra
are not conserved in the outputs since it would represent too many data. Instead,
derived sea-states (i.e. 20 variables like mean wave direction or peak wave period,
Figure 3.8) are stored at an hourly time step for any computational node of the
mesh and for the 52-year historical period (1961-2012).

5. http://sirocco.omp.obs-mip.fr/accueil/Accueil.htm.
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Figure 3.7: The computational unstructured mesh used for the hindcast modelling composed
of 47086 computational nodes, with a zoom on the GOL (refined area).
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Source term Switch WW3 Comments
Propagation Scheme PR3 + UQ Higher order schemes with Tolman (2002)

averaging technique and
Third order propagation scheme

Linear input SEED Spectral seeding of linear input
Input and dissipation ST4 Ardhuin et al. (2010) source term
Non linear interaction NL1 Discrete interaction approximation

(DIA) Hasselmann et al. (1985)
Bottom friction BT4 SHOWEX bottom friction formulation
Depth induced breaking DB1 Battjes and Janssen (1978)
Reflection REF1 Enables reflection of shorelines
Shallow water MLIM Use Miche-style shallow water limiter
Triad interaction TR0 No triad interaction used
Bottom scattering BS0 No bottom scattering used

Table 3.1: Parameterisation of the WW3 model defined for the presented hindcast.

Beside the results available at computational nodes, hourly full wave spectra
(Figure 3.8(a)) are stored for a list of 228 stations. These data are computed for
validation and comparison purpose. They can also be used to define boundary
conditions of smaller grids in that region.
To build the hindcast, WW3 is run in parallel on 30 nodes (240 CPUs) provided
by the HPC@LR’s HPC cluster 6. The overall simulation takes 31 days in a row 7.
The produced fields form a 1.2 To data set stored in binary files (NetCDF4 for-
mat).

Data simulated are validated against the 5 observation sites illustrated in
Figure 3.3. Four of them are near-shore surface-buoys and the remaining one is
offshore (Lion). Full simulated spectra are available at those locations but we val-
idate the variables of greatest interest for our applications: the significant wave
height, the mean and peak wave directions and the peak wave period. Only the
significant wave is investigated here.

To evaluate the performance of the hindcast, widely used statistical tools
are introduced. Those tools allow to compare two time-series: x1, x2, . . . , xn the
reference time-series and y1, y2, . . . , yn the simulated one. They are defined as
follows.

6. Hindcast was performed in the Octantio cluster of HPC@LR, a Center of Competence in
High-Performance Computing from the Languedoc-Roussillon region, funded by the Languedoc-
Roussillon region, the Europe and the University of Montpellier.

7. Scripts available at https://github.com/rc-34/mirmidon-
toolbox/tree/master/scripts/megagol-autorun
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(a) 2D spectrum of wave energy modelled by WW3 at 2012/01/01 00:00
GMT at the Lion’s surface-buoy location (one of the 228 validation
point). The simulated spectrum is decomposed onto 24 wave directions
and frequencies exponentially spaced from 0.0345 Hz to 0.5473 Hz at an
increment of 10%. The maximum of energy is at nearly 150˚, meaning
a wave propagation towards the south-east (oceanographic convention).

(b) Extracted field of significant wave height. Vectors are the
mean wave directions, interpolated to a 15km/15km grid to
ease the reading of the map. The black cross is the location
of the Lion’s surface buoy.

Figure 3.8: Example of hindcast output.
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Definition 1 (Correlation)

The Correlation coefficient (COR) expresses the linear dependency between
the two time-series and is defined as

COR =

∑N
i=1 (xi − x̄) (yi − ȳ)

√

∑N
i=1 (xi − x̄)2 ∑N

i=1 (yi − ȳ)2
, (3.1)

where 0 ≤ COR ≤ 1. The more COR approximate 1, the better the
simulated series is linked to the reference (observations).

Definition 2 (Relative difference)

RDIFF =
ȳ − x̄

x̄
, (3.2)

is the relative difference (RDIFF) between the two time-series. The more
RDIFF value is close to 0, the better the simulated time-series matches the
reference one, in mean. The divisor term allows to compare two RDIFF
values at different locations to assess their performances.

Definition 3 (Root Mean Squared Error)

The root mean squared error (RMSE) is a value expressed in the unit
of the time-series. In this sense it is easily interpretable and is a good
measure of accuracy of the simulated time-series against the reference one.
It represents the mean differences from one time-series (simulated) against
the other (reference). It is defined as

RMSE =

√

∑N
i=1(xi − yi)2

N
. (3.3)

One may also normalise the RMSE to gives the NRMSE, defined as
NRMSE = RMSE

ymax−ymin
. The marginal NRMSE might be compared from

each other to sea where the model is the more reliable.

Definition 4 (Scatter Index)

The scatter index (SI) is the relative value of the RMSE and is given by

SI =

√

√

√

√

∑N
i=1(xi − yi)2

∑N
i=1 x2

i

. (3.4)

It allows to compare indexes from different group of time-series. One may
compare the marginal SI to show where the model is the more reliable.
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Station COR RDIFF RMSE SI Period
Lion 0.942 -0.0857 0.428 0.223 2001-2012
Espiguette 0.908 -0.1540 0.275 0.311 2006-2012
Sete 0.908 -0.1810 0.289 0.351 2006-2012
Leucate 0.896 -0.0682 0.251 0.295 2006-2012
Banyuls 0.883 -0.0667 0.279 0.324 2007-2012

Table 3.2: Statistical validation parameters computed from the simulated time-series against
the observations from the 5 surface-buoys. For each location, these parameters are computed
from their respective campaign period.

These measures are computed to investigate the accuracy of the simulated
significant wave heights and are presented in Table 3.2. It is remarkable that the
significant wave height at the offshore location (Lion) is better represented than
the four near-shore locations, regarding both its correlation 0.942 and scatter
index 0.223 which are the best. This is in agreement with the complexity of
modelling waves in littoral areas. However, the performances of the model on
those four littoral locations are still suitable. For instance they present RMSE
values inferior to 0.30 m and correlation coefficient around 0.90. The high value
of the RMSE is partly explained by an additional investigation of the observed
time-series (from buoy) commented at the end of this section.

Additionally to the computed indexes, another diagnostic of validation is the
visual interpretation of the time-series as illustrated in Figures (3.9-3.13). Those
are the plotted time-series of significant wave height (m), peak wave period (s),
mean wave direction (˚) and peak wave direction (˚) for the 2012 year. These
figures demonstrate a fit of quality.
Only the simulation of peak wave periods is sometimes exploding for few time-
steps ( < 1 % of observations). The main explanation comes from the frequency
discretisation: when the frequencies are too high (capillarity waves), the model
is no more able to simulate them under our parameterisation. Frequencies out of
range of the parameterisation are arbitrary set by WW3 to 0 in the outputs and
periods (T = 1/f) becomes infinite. For the four littoral surface buoys presented
below, we post-process the time-series to set infinite periods values to NaN and
therefore not reveal them in the graphs.

The presented indexes are representative for the assessment of the mean be-
haviour of the modelled time-series against the observed ones. As far as we are
looking for assessing extreme waves, we need other diagnostics to show if the mod-
elling is reliable for rare events as well. In this sense and to validate the hindcast,
it is mandatory to have a look on the quantile-quantile plots of observed time-
series against modelled ones. Figure 3.14 shows these plots for locations of the
four nearshore surface-buoys of the GOL.
The plots emphasize a satisfactory fit quality for these near-shore locations. Even
so, both Espiguette and Sete locations seems to be slightly underestimated by
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Figure 3.9: Validation of modelled time-series against observation at Espiguette for 2012.
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Figure 3.10: Validation of modelled time-series against observation at Sete for 2012.
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Figure 3.11: Validation of modelled time-series against observation at Leucate for 2012.
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Figure 3.12: Validation of modelled time-series against observation at Banyuls for 2012.
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Figure 3.13: Validation of modelled time-series against observation at Lion for 2012.
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Figure 3.14: Quantile-quantile plot of observed time-series against modelled time-series for
the four littoral locations.
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the simulation for the high quantiles. In the opposite, data of Leucate station
are rather overestimated for these high quantiles. At Banyuls, significant waves
height > 3.8 m are overestimated but the fit is better for very high quantiles.

Regarding the Lion’s surface-buoy, a preliminary step has to be conducted to
remove outliers data but after computation of indexes from Table 3.2. Indeed a
set of values are abruptly changing from low values to very high, as referenced
in Table 3.3. From a physical point of view these data are not representative of
(standard) evolution of sea-states and these data are considered as outliers. Many
reason may explain those, like a boat passing by or a maintenance operation or
even a sensor issue.
The pointed peaks referenced in Table 3.3 are removed from the time-series before
displaying the quantile-quantile plot at Lion location in Figure 3.15. According
to this process, the hindcast modelling reinforces the quality of the direct obser-
vations.
This last quantile-quantile plot shows again a slight underestimation for high
quantile, but it is remarkable that the wave model is able to simulate very high
waves, since the highest significant wave height modelled at Lion surface buoy
location reaches 8.21 (m).

Figure 3.15: Quantile-quantile plot of observed time-series against modelled time-series for
the Lion surface buoy.

3.7 Conclusion

Along this chapter the hindcast alternative has been explored to get a reliable
data set over the GOL. A 52-year sea-states data set is built with cutting edge
models and regional reanalyses forcing fields. The data presented here are gener-
ally a little bit underestimated or more rarely overestimated for high quantiles.
In the case of the Lion’s surface buoy, some outliers data are identified. Presented
assumptions of error measure might be verified in using another source of obser-
vation, like for instance validating the data with the use of satellite-altimeters.
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Row Date Obs. Hs (m) Obs. Ts (s) Model Hs (m) Model Tp (s)
356 2001-12-22 12:00:00 2.0 6 1.413306 5.560783
357 2001-12-22 13:00:00 11.9 6 1.379559 5.512919
358 2001-12-22 14:00:00 1.7 6 1.355907 5.420606
11418 2003-04-13 17:00:00 1.1 4 0.8300802 3.870950
11419 2003-04-13 18:00:00 11.1 4 0.8826900 3.981634
11420 2003-04-13 19:00:00 1.3 5 0.9372973 4.161441
15512 2003-10-18 19:00:00 5.0 10 4.054460 9.864575
15513 2003-10-18 20:00:00 9.4 9 3.893597 9.798878
15514 2003-10-18 21:00:00 4.2 9 3.727370 9.692098
24455 2004-11-03 05:00:00 1.2 5 1.130726 4.564687
24456 2004-11-03 06:00:00 11.1 5 1.117556 6.514265
24457 2004-11-03 07:00:00 1.1 5 1.090516 6.643392
27364 2005-03-07 12:00:00 5.0 8 4.544047 8.984739
27365 2005-03-07 13:00:00 9.8 8 4.498085 8.952805
27366 2005-03-07 14:00:00 4.0 8 4.492004 8.927857
29410 2006-06-01 04:00:00 3.7 7 3.636850 8.028714
29411 2006-06-01 05:00:00 13.7 7 3.616661 8.024514
29412 2006-06-01 06:00:00 3.9 7 3.593398 8.017008
51064 2009-02-24 21:00:00 2.7 6 1.638565 6.221772
51065 2009-02-25 00:00:00 13.5 19 1.500213 5.943340
51066 2009-02-25 03:00:00 2.0 6 1.325276 5.718832
82353 2012-11-16 21:00:00 0.8 4 0.6338978 4.833770
82354 2012-11-16 22:00:00 10.8 4 0.6431389 4.793915
82355 2012-11-16 23:00:00 0.9 4 0.6539590 4.754400
51056 2009-02-23 13:00:00 2.5 6 4.567213 8.933917
51057 2009-02-23 18:00:00 10.7 2 4.346717 8.590184
51058 2009-02-24 03:00:00 3.7 7 4.113022 8.409851
51064 2009-02-24 21:00:00 2.7 6 1.6385646 6.221772
51065 2009-02-25 00:00:00 13.5 19 1.5002128 5.943340
51066 2009-02-25 03:00:00 2.0 6 1.3252755 5.718832
51067 2009-02-25 06:00:00 10.3 10 1.0896575 5.537393
51068 2009-02-25 12:00:00 5.8 15 0.7681069 4.650116
72491 2011-08-30 02:00:00 0.3 5 0.2636432 2.395410
72492 2011-08-30 03:00:00 10.4 5 0.2596883 2.421481
72493 2011-08-30 04:00:00 0.4 5 0.2543055 2.434690
79158 2012-06-30 06:00:00 0.8 4 0.4882389 3.934016
79159 2012-06-30 07:00:00 10.8 4 0.4991300 3.926865
79160 2012-06-30 08:00:00 0.8 4 0.5181398 3.917089
82169 2012-11-08 12:00:00 0.5 4 0.2791750 2.431106
82170 2012-11-08 13:00:00 10.5 4 0.2732719 2.465889
82171 2012-11-08 14:00:00 0.5 4 0.2618464 2.508744

Table 3.3: Outlier measures (highlighted) at the Lion buoy.
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Such a validation would reinforce the validation of the hindcast, on longer time-
series than the one observed by surface buoys. However it has not been performed
due to a lack of time.
Despite this remark, this hindcast data-set is considered in the sequel as satisfac-
tory to pursue the presented work.
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Chapter4
Spatial Extreme Waves Mod-
elling

Chapter Summary

This chapter presents a statistical extreme value study, aiming at address-
ing Climate-scale hazard questionings over an entire coastal zone (see Fig-
ure 4.1). This application relies on the use of the so-called max-stable
models, particularly adapted to the study of extreme values in a spatial
context.
Resting on the accurate historical data set of wave sea-states presented
in the previous chapter, the case study is the Gulf of Lions (GOL). A
preliminary study is first realised, particularly to diagnose the extremal
dependence embedded in the observed extreme processes.
Then, we discuss the fit of several max-stable models on the data, and pro-
ceed to the selection of the best one. A risk analysis is finally performed
in order to show the benefit of such spatial modelling in the assessment of
extreme value quantities of interest. Most notably, joint probabilities of ex-
ceedances are computed on several locations, outperforming the theoretical
results assuming the full dependence or the independence.

4.1 Introduction

We focus here on the development of a methodology to assess long-term coastal
hazard. This chapter is therefore largely inspired from Chailan et al. (2014), which

83
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Figure 4.1: This Chapter 4 embraces a statistical spatial extreme value study, aiming at
addressing Climate-scale coastal hazard questionings.

is the original work covering this topic.
Relying on the previously presented hindcast data set, we propose to apply the
max-stable theoretical framework (Section 1.4.1) in order to study extreme waves
of the Gulf of Lions, by modelling extreme significant wave heights (Hs), paying
attention to the spatial dependence.
The domain S of this case study is the GOL (Figure 4.2). In the sequel, {Z(s), s ∈ S ⊂ R

2}
denotes a spatial process of monthly maxima of significant wave heights over the
GOL, taking its values in R. Z is in fact observed at location s ∈ M ⊂ S where
M is the set of locations of the computational mesh nodes.

4.2 Preliminary Analysis

Before entering in the modelling methodology, let us introduce some charac-
teristics of the GOL.
Waves mainly originated from winds. In the GOL region, three prevailing winds
are observed. First, the Tramontane is a strong and gusty wind having a North-
West to South-East direction, which hits the west part of the GOL. Secondly, the
Mistral, also a strong and gusty wind but coming from the North to the South,



85 4.2. PRELIMINARY ANALYSIS

hits the north part of the GOL. Finally, the last dominant wind is the Marin,
which is a wind coming from the sea, i.e. East or South-East. Due to the lim-
ited fetch areas, the two first winds grow waves at off-shore locations only. In
the opposite, since the GOL has a specific orientation, with a South-East open
sea boundary with a large fetch area, the Marin is responsible of the creation
of the most energetic waves impacting the GOL coastline. However, as observed
in Guizien (2009), some locations may be protected thanks to the local coast-
line configuration. For instance south east waves would not directly impact the
Banyuls’ location because Cap de Creus provides a protection. In case of swells
coming from the East, this cap has no longer effect.

Figure 4.2: The Gulf of Lions, with an South-East open sea boundary and the observed
prevailing winds in that region, namely Tramontane (north-westerly), Mistral (northerly), and
Marin(south-easterly).

Another wave controlling parameter is the bathymetry. The GOL is composed
of an inner continental shelf. Since the wave physic changes between deep and
shallow water areas, the sea-bottom may be a factor revealing a spatial discrep-
ancy of the observed wave heights.
Like many environmental phenomena, the significant wave heights observed in
the GOL present a real seasonality (Figure 4.3), mostly due to the winds forcing:
the previously cited dominants winds are likely to occur between September to
April. Guizien (2009) talks also of a seasonality from October to March. As di-
rect consequence, the most energetic waves have been observed in the same time
interval since decades. In the sequel and to avoid this seasonality effect in the



CHAPTER 4. SPATIAL EXTREME WAVES MODELLING 86

modelling, only data through September to April are considered.

Figure 4.3: Time-series of the significant wave heights from the hindcast data set, at the
computational node 2342 and grouped by month. A clear seasonality is observable.

In spatial extreme modelling applications, a good practice is to plot bivariate
extremal dependence θ̂(h) for any pair of locations available, in order to feel what
kind of dependence structure rules the observed process (see Section 1.4.1). To
better represent the spatial evolution of the underlying dependence, one can plot
estimation of the extremal coefficients between a reference site and all possible
pairs, i.e. all θ̂(h), with h = (zref − zj), zref Ó= zj, zref and zj ∈ M. A basic
diagnostic is then to interpolate the result on the overall area of interest S, as
presented in Figure 4.5.
To do so, we first select a subset χ ⊂ M of locations. Borrowed from the domain
of numerical modelling exploration, a Latin Hypercube Sampling (LHS) method
(McKay et al., 1979) is used to randomly select 100 nodes from the computational
grid, with respect to a good spatial representation. Only wet sites of the grid are
considered. If two sites are close to a distance inferior to 1 km, only one of
those sites is conserved in the dataset. This scheme leads us to analyse 97 sites
presented in Figure 4.4.

From the extraction of monthly maxima values of significant wave heights,
the bivariate extremal dependence coefficient θ̂(h) is computed between a set of
reference sites and their associated pairs, using the estimator given in Equation
1.16 based on the Fmadogram measure. Then, results are interpolated over all
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Figure 4.4: The Gulf of Lions, its bathymetry and the computational grid. Crosses are sites
selected by an LHS algorithm to optimize the representation of the covered surface. This set
denoted χ represents stations used for extreme modelling in the sequel.

the area. Such maps are given in example in Figure 4.5. From those maps several
characteristics of the dependence structure can be highlighted.

Noticing that the particular orientation of the GOL allows swells from South-
East and East directions to be more easily generated, the plotted estimations
of extremal coefficient reveal an anisotropy along the orthogonal South-West /
North-East axis. In opposite, the dependence of extreme significant wave heights
along the North-Western / South-East axis appears to have a clear separation
while comparing pairs composed of one littoral site and one offshore site. The
first explanation might be the fetch distance induced by two of the prevailing
described winds, namely Tramontane and Mistral.
In those configurations, waves grow while propagating offshore, leaving the littoral
sites with a too short fetch for being well formed. Therefore, a weak dependence
between littoral sites and offshore sites becomes self-explanatory (Figures 4.5(a),
4.5(b), 4.5(e), 4.5(f)). When the reference location is taken in a way that it is
exposed swells in all directions as in Figure 4.5(c), the dependence persists both
for littoral and off-shore locations.
An other interpretation of the supposed anisotropy may include a more regional
explication due to circulation pattern. Indeed the coastline at the extremities of
the gulf use to block swells coming from South-West and North-East, which in
those conditions impact only offshore sites. Following this circulation reasoning,
some littoral areas (Grau du Roi, Beauduc) are far from dependent with some
very close stations, because less subject to be impacted by the very energetic
South-East swells.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.5: Interpolated bivariate extremal coefficient from observed hindcast data set θ̂(h),
with h = zref , zj , between a reference site (red-cross) zref and all possible pairs zj , with
zref Ó= zj , zref and zj ∈ χ. Extremal coefficient are estimated by (1.16). Such map allows to
feel the underlying dependence structure of extreme wave events of the Gulf of Lions.
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4.3 Spatial Extreme Modelling

In this extreme analysis application, we propose to model extreme significant
wave heights process, denoted {Z(s), s ∈ S}. This modelling has to pay attention
to the underlying spatial dependence behaviour of such processes (Section 1.4.1).
We propose to apply the max-stable theoretical framework (Section 1.4.1). The
fitting procedure of max-stable models is here decomposed in two steps. The first
one consists in finding an estimation of the GEV parameters in every locations of
the space. This is achieved by using the definition of response surfaces, generally
relying on co-variables as the longitude. If marginal GEV parameters are known
in all locations of the space, it allows to transform the data back and forth to unit
Fréchet margins. Such transformation gives access to the resolution of the second
step, being the estimation of the dependence structure. The max-stable models
used must be flexible enough to reach the behaviour of the observed dependence
structure.
The inference of the parametric max-stable models is hard to afford as soon as the
number of sites gets important. Therefore we do not use the entire set M ⊂ S
of computational node observations, but have to decrease the number of sites
considered. Therefore we restrict our methodology to the set χ ⊂ M of 97 sites
presented in the previous section.
One may investigate the sensitivity of the approach by increasing the number of
sites considered or move their location or both. Such sensitivity analysis remains
out of scope for this document.
To avoid seasonality effect, the former section outlines that summer months –
May, June, July, August – are ignored. Our data set is therefore composed of
n = 52 (years) × 8 (months) = 416 marginal observations denoted Zi(x), with i =
{1, . . . , n} and x ∈ χ.

4.3.1 Marginal Transformation

Let Z(s), s ∈ S be a random variable denoting the maximum of IID random
variables (e.g., significant wave heights) at a site s. Thanks to the robustness
of the univariate EVT results in the block-maxima approach applied on short-
term dependent series (see Section 1.2.4), we expect that at any site s ⊂ S, Z(s)
will follow approximately the well-known and formerly presented Generalised Ex-
treme Value distribution GEVµs,σs,ξs

(see Equation 1.1).
While studying the dependence structure of an extreme spatial process {Z(s), s ∈ S},
there is no loss of generality in assuming that its marginal laws can take a particu-
lar extreme value distribution. To simplify expressions and definitions of extreme
mathematical objects or models, we use to transform the realisations to a standard
extreme distribution. Since by definition an expression of the GEV distribution
is given at any site s ∈ S, for all s ∈ χ ⊂ S, we transform random variables Z(s)
to Fréchet distributed random variables Z∗(s) – i.e. P (Z∗(s) ≤ z) = exp(−1/z),
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z ≥ 0. To do so, GEV margins parameters have to be determined.
Several methods exist to define a continuous evolution of the GEV margins pa-
rameters through the area of interest.
In the one hand and because the computational grid of the hindcast is highly
refined, marginal fits at grid points may lead to a good description of the GEV
parameters spatial evolution. Even if this method could require a outliers iden-
tification routine due to the fit of models on numerous margins, the estimated
parameters could be interpolated through the space of interest to have an expres-
sion of the GEV parameters at any point s ∈ S.
In the other hand, one can provide response surfaces to compute the GEV
marginal parameters along potential covariates. Indeed while studying environ-
mental phenomena, marginal fits use to show that µ(s), σ(s) and ξ(s) are spa-
tially varying with covariates. For significant waves heights modelling, it could
be covariates such as bathymetry, latitude and longitude. Therefore the GEV
parameters may evolve as linear functions depending on those covariates. For
instance µ(s) may vary as

µ(s) = β0 + β1bathy(s) + β2lon(s) + β3lat(s). (4.1)

An other alternative is to fit radial-basis splines to model the evolution of the
marginal GEV parameters against a covariate. The model for radial-basis splines
of order p, p being odd and defined as p = 2m − 1 is defined as

f(s) = β0 + β1s + . . . + βm−1s
m−1 +

q
∑

j=1

βm+j |si − νj|2m−1, (4.2)

with kernels νj of the associated radial basis function βm+j.
Here, we do not compare those techniques but choose to work with response
surfaces to reason in term of region instead of a site-by-site analysis. Hence
we chose to fit the evolution of the GEV parameters with linear functions or
radial basis splines or both. The first approach is to use only linear functions,
as presented in Equation 4.1. Linear functions may be defined for the location
parameter, scale parameter, shape parameter or any combinations of those. The
second approach is to use radial basis splines to model the evolution of the GEV
parameters, as presented in Equation 4.2. Considering so, we end up with 300
combinations of those functions involved in the estimation of the spatial GEV
parameters.
We identify that best results stem from the use of radial basis splines – of order 3
– for both location and scale parameters, while the shape parameter keeps being
a linear trend along the bathymetry. These evolutions are illustrated by Figure
4.6. It appears that the evolution against the bathymetry covariate is much more
distinctive than along the longitude and latitude covariates. As described in the
preliminary analysis, this can be explained by the physical wave process itself: the
GOL presents an inner continental shelf, which directly controls wave formation
and propagation. Also, we can notice that marginal distributions of littoral sites
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(a) Location parameter. (b) Scale parameter. (c) Shape parameter.

Figure 4.6: Evolution of the GEV parameters along bathymetry covariate. Dots are the
marginal estimation of the GEV parameters from the 97 sites. Lines are the continuous functions
fitted to those parameters, which smooth the evolution of the parameters for any location of
the area.

have heavier tails than the distributions of offshore sites. The interpretation is
much more ambiguous. This discrepancy may come from the fact that in specific
(but unknown) configurations, moderate spectra are not transferred in the same
way when waves propagate to the inner continental shelf, resulting in observing
more energetic (extreme) spectra to the shore.

4.3.2 Model Inference

In this study, inference of the parametric models is performed thanks to the
likelihood function. By definition it requires the joint density of any associated
finite-dimensional multivariate distributions of the process.

Since the full likelihood is generally unreachable in this context, Padoan et
al. (2010) proposed to use a pairwise likelihood function instead. It has the
advantage of resting only on any bivariate distributions of the process modelled.
By now, composite likelihood has been largely adopted and validated for such
inference and the following describes how it works.
Let zik denotes a realisation of the process of maxima Z∗(· ) for the ith-period,
at location k. Let us still assume Z∗(· ) has standard unit Fréchet margins.
The inference step consists in finding the set Ψ = (ψ1, . . . , ψp) of parameters
maximizing the pairwise likelihood, which in log-form is

L(Ψ) =
n

∑

i=1

∑

k<l

log f(zik, zil; Ψ), (4.3)

where f(· , · ) is the bivariate density of the max-stable process Z∗(·). Under
suitable conditions, the maximum composite likelihood estimator Ψ̂ has a limiting
normal distribution as n → +∞, with mean Ψ and a covariance matrix estimable
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by H(Ψ̂)−1J(Ψ̂)H(Ψ̂)−1. The observed information matrix H and the squared
score statistic matrix J are respectively defined by

H(Ψ) = −
n

∑

i=1

∑

k<l

∂2 log f(zik, zil; Ψ)

∂Ψ∂ΨT
and (4.4)

J(Ψ̂) =
n

∑

i=1

∑

k<l

∂ log f(zik, zil; Ψ)

∂Ψ

∂ log f(zik, zil; Ψ)

∂ΨT
. (4.5)

4.3.3 Model Selection

Once all models are fitted, the best one must be selected. Generally, the
Akaike Information Criterion (AIC) is used to sort the models by balancing the
goodness of their fit against their complexity. This standard use to detect parsi-
monious model cannot be used in this case because AIC relies on the determina-
tion of the full likelihood. An extension of the AIC working with the composite
likelihood was introduced by Varin and Vidoni (2005), namely the Composite
Likelihood Information Criterion (CLIC). The CLIC is defined by

CLIC = −2L(Ψ̂) + 2tr
{

H(Ψ̂)−1J(Ψ̂)
}

, (4.6)

where H and J are still the observed information and the squared score statistic
matrices.
By definition, the lower the CLIC the better the model quality (goodness and
parsimony).

4.4 Results

Having previously defined continuous functions to retrieve the GEV parame-
ters over the area of interest (Section 4.3.1), we transform the marginal data to
unit Fréchet scale. To assess the dependence structure, several max-stable models
are fitted to these transformed data. The CLIC of the fitted models are reported
in Table 4.1.

This table presents two sections. The first one concerns a model fitting an
anisotropic dependence structure. The second one concerns models fitting an
isotropic dependence structure.
If we only consider isotropic fits, the Schlather model with powered-exponential
correlation function outperforms the other models. However the anisotropic
Smith model better fits the data than any isotropic model. This result confirms
the presence of an underlying anisotropic dependence structure, as discovered
thanks to the estimated extremal coefficient maps. Since the global objective of
this study is not to compare all existing max-stable models but rather to provide
a global methodology for the assessment of spatial extreme long-term coastal haz-
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Model (Corr. function) Isotropic CLIC
Smith anisotropic NO 14975454
Schlather (Bessel) YES 15106251
Schlather (Cauchy) YES 15106559
Schlather (Cauchy generalised) YES 15185107
Schlather (Powered exponential) YES 15098615
Smith YES 15116131
Schlather (Whittle-mattern) YES 15106561

Table 4.1: CLIC of fitted models.

ards, we choose to not furnish additional efforts to test other anisotropic models.
Thus we are going to use the Smith anisotropic fitted model for the following
sections.

We are interested in modelling the underlying spatial dependence structure.
In that case, one diagnostic of the fit of the model is to plot the bivariate ex-
tremal coefficient θ̂(h) estimated from the empirical Fmadogram, but unlike in
the preliminary analysis, the data used here are some realisations of max-stable
processes simulated from the selected model. Such maps are represented in Figure
4.7 and must be compared to the reference Figure 4.5 from preliminary analysis.
The first observation is that the presumed anisotropy revealed in Figure 4.5 is

well reproduced by the model. As expected from the definition of a Smith max-
stable model (since it cannot reach the asymptotic independence), the dependence
is much more conserved even for long distances in 4.7. However the model has
some difficulties to well reproduce the dependence in the previously spotted par-
ticular littoral areas (Grau du Roi, Beauduc). Generally, the performances of the
model is satisfactory.

4.5 Max-Stable Model at Work

Beyond the description of the spatial dependence of extreme events, the fitted
model can be used in several ways in order to assess coastal hazards of the studied
region. Some of those are presented in this section.

4.5.1 Simulation of Spatial Extreme Processes

As reviewed in Section 1.4.1, one use of the modelling would be to stochasti-
cally simulate extreme processes. Simulations might be conditional or uncondi-
tional depending of the questionings, but they are always seamlessly performed
at a low computational cost compared to the one of physical numerical modelling
used for the hindcast. Figure 4.8 presents four unconditional simulated processes
from the previously selected model. Each one represents a realisation of monthly
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(a) (b)

(c) (d)

(e) (f)

Figure 4.7: Interpolated bivariate extremal coefficient θ̂(h) estimated from the empirical
Fmadogram from 500 realisations of max-stable processes simulated from the best fitted model.
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(a) (b)

(c) (d)

Figure 4.8: Four simulated processes from the best fitted max-stable model.
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maxima significant wave heights over the GOL. These simulations takes into ac-
count the modelled underlying dependence structure of extremes.
One may feed physical littoral model responding to long-term questionings with
such processes. For instance, since sediment transport is calculated from explicit
formalisms that require waves features as main input parameters (e.g., Kam-
phuis, 1991), long-term shoreline change responding to extreme waves events can
be forced with such processes. One may validate the simulated processes in terms
of physics before.

4.5.2 Marginal Return Levels

(a) 10-year Return period (b) 20-year Return period

(c) 50-year Return period (d) 100-year Return period

Figure 4.9: Empirical marginal return levels computed from simulation of 5000 max-stable
processes simulated from the best fitted model.

In coastal engineering, another paramount quantity in the dimensioning of
structures or environmental studies are the return revels. From the simulated
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processes implicitly taking into account the modelled dependence structure, the
return levels are given at any location of the studied area, where site by site
analysis need interpolation to deliver maps of extreme return values. To perform
such report, we simulate 5000 max-stable processes and then empirically derive
the marginal return levels over the GOL. The results for 10, 20, 50 and 100 years
are presented in Figure 4.9.

4.5.3 Risk Analysis: Joint Probabilities of Exceedances

In risk analysis, a quantity of great importance is the survival joint probabil-
ities. Let us consider in this section that Z∗(· ) denotes a process representing
monthly maxima of Hs at the Fréchet scale. The survival joint probabilities are
defined as P

(

Z∗(s) > rt(s), s ∈ χL ⊂ SD
)

with rt(si) the return level of the tth-
period at site si, i.e. P (Z∗(si) > rt(si)) = 1/t. Such a survival joint probability
of exceedances may explain why the L selected sites are impacted (or not) by
waves at the same scale during extreme conditions. Indeed, this probability de-
termines whether those sites are more likely subject to observe exceedance of their
marginal return level in a same period or not.
We recall that sediment transport computations are based on explicit formalisms
requiring waves features as main input parameters. From joint probabilities of
exceedances, one can identify some patterns to argue the behaviour of cross-
shore or long-shore sediments transport responding to extremes. For instance,
two close sites with a low joint probability of exceedances may traduce a very
local behaviour of the extreme waves and therefore an amount of energy signifi-
cantly different. In the opposite, two sites far away from each other observing a
high joint probability of exceedances may represent a more regional behaviour of
waves. One can then discuss patterns of sediments transport at a regional and
long-term scale.
If we do not rely on a spatial extreme analysis, one may assume the indepen-
dence or full dependence of sites when computing any multivariate probability as
the joint probability of exceedances. Assuming margins are transformed in unit
Fréchet distribution, the theoretical joint probability of exceedances considering
a full dependence of sites is given by

P (Z∗(s) > rt(s), s ∈ χL) = P (Z∗(s) > rt, s ∈ χL)

= P (Z∗(s1) > rt, . . . , Z∗(sL) > rt)

= P (Z∗(sk) > rt), sk ∈ χ

= t−1, by definition,
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while for the total independence it is defined as

P (Z∗(s) > rt(s), s ∈ χL) = P (Z∗(s1) > rt) × . . . × P (Z∗(sL) > rt)

= P (Z∗(s) > rt)
L

= t−L,

with L the number of sites considered.

From several set of L sites, we compare the joint probabilities of exceedances
P (Z∗(s) > rt(s), s ∈ χL) computed from 1) the theoretical full dependence case;
2) the theoretical total independent case; 3) the observations from the hindcast
data set and 4) the best fitted max-stable model through the simulation of 5000
processes. The results are given in Figure 4.10.

Generally speaking the max-stable model outperforms the other theoretical
cases for any set of sites and distances considered. When considering littoral
sites altogether (Figure 4.10(a)), the model achieves to represent joint probabili-
ties relatively close to the dependent case, as outlined by the observations. When
sites are both picked-up in littoral area and offshore area (Figures 4.10(b), 4.10(c)
and 4.10(d)), the model still seems to represent correctly the dependence of the
observations. In that case the joint probabilities of exceedances lies in the very
between of the dependent and independent case. Finally, when considering sites
at any corner of the GOL and far away from each other (Figures 4.10(e) and
4.10(f)), joint probabilities of exceedances quickly drop to 0. It could be inter-
preted as the probability of having really extreme waves in each part of the GOL
within the same period is weak.
In regards to these results against the theoretical independence and full depen-
dence cases, we demonstrate the usefulness of modelling the underlying depen-
dence structure in the assessment of joint quantities in the extremes.

4.6 Discussion

Along this study we alert the reader on the importance of modelling the de-
pendence structure of extreme environmental physical phenomena. The method
presented here seems to outperform the univariate and multivariate approaches
by dealing with a continuous space. Direct benefits of such modelling are pre-
sented in the goal of being used in risks analyses. For instance we introduce
the possibility of stochastically model extreme events feeding models assessing
long-terms questionings the capacity to compute accurate joint probabilities of
exceedances.

The reliability of such stochastic modelling directly depends on the one of the
data set of observed random variables. In our example, the sea-states hindcast
must be representative and validated.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Joint probabilities of exceedance for different sites against return periods. Prob-
abilities from observations are dot points and green curve is the probabilities computed from
5000 max-stable simulations of the best fitted model (Smith anisotropic). The two remaining
lines correspond to theoretical independent and full dependent cases.
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One other limit is that our approach is described in two steps: first the GEV
margins parameters (with any kind of potential trends) and then the dependence
structure parameters are estimated in different inference steps. Those can be
estimated in a single step, having the advantage of getting a systematic way to
compare the fitted models (CLIC) and preserve the parsimony of the one selected.
Facing issues in the inference routine when dealing with all those parameters lead
us to do not consider this approach.

We restrict our study to a limited number of max-stable models regarding
the ones known in the literature. In particular we fit only one anisotropic model:
the Smith model. To pursue investigations in fitting most complex max-stable
models would be a valuable enhancement, most notably by using other models
able to handle anisotropic cases as well. However, in regard to the main objective
of the thesis, being the development of a methodology helping the assessment of
coastal hazards, we preferred to deal this few numbers of models. This choice is
reinforced because the selected model shows good performances, particularly in
the assessment of the dependence structures.

In preliminary analysis we state that along the bathymetry, direction of waves
origin and fetch distances are two controlling factors of extreme waves occurrence.
It would be a valuable add to investigate such covariate in the modelling, whether
by fixing it (i.e., one fit for one wave-direction sector) or by including it into the
model. The latter is one of our perspective research.
In this study, extremes contained in the data are identified through maxima over
block period. Like in the lower order cases, it would be worthwhile to use ex-
ceedances over threshold methods to catch more information from the extremes
observed and obtain a better inference process.

If a part of ocean engineering questionings could or ought to be assessed at a
long-term scale, some of them are not. Most notably, questionings where the time
evolution of the extreme events is of concerns (e.g., submersion). The proposed
method along this chapter is not suitable for such event-scale questioning due to
the limited physical interpretation of the simulated processes.
However, these event-scale questionings require efficient (prompt and accurate)
helps for decision making. In this sense and from an industrial point of view,
methods to help the assessment of event-scales questionings are paramount.
Even if some improvements can be realised in the proposed methodology, we
favour to move onto the space-time questionings challenge in the following.



Chapter5
Space-time Extreme Waves
Simulation

Chapter Summary

This chapter introduces a semi-parametric methodology to simulate space-
time scenarios of extreme waves (see Figure 5.1). Providing a control on
the extremeness of such simulated scenarios, they are intended to help
the anticipation of coastal hazards at an event-scale. From the proposed
methodology, assessment of hazards can include the time evolution of ex-
treme events additionally to their spatial behaviour, which are a mandatory
information in respect to those event-scale questionings.
In the following, the notion of extreme space-time processes defined from
a threshold-based method is detailed. We also detail our motivations of
simulation of those. To illustrate the benefits of the presented approach, a
case study is given. It still concerns extreme wave processes of the GOL
area. Observations used still stem from the proposed hindcast data set. On
the basis of these data, a (second) preliminary analysis is performed to pay
attention to the underlying dependence structure, but regarding the time
dimension within the observed processes as well.
Then, the methodology about the simulation of extreme space-time pro-
cesses is largely detailed and results of some simulated extreme scenarios
are discussed.
To go further, a risk analysis is performed, relying on these simulated sce-
narios and implying a simple coastal physical model.

101
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Figure 5.1: Chapter 5 presents a semi-parametric statistical methodology to simulate extreme
space-time processes from observed intense ones. The final goal being to feed coastal physical
model studying event-scale coastal hazard questionings, like the submersion phenomenon.

5.1 Introduction

Coastal hazards analyses are of prime importance in regard to the highly
valuable stakes involved in their anticipation and management. In this chap-
ter, largely inspired from our original work introduced in Chailan et al. (2015),
we propose to address event-scale questionings, like the submersion phenomenon
along an entire coastline.
Since they represent the main source of damaging energy, event-scale coastal haz-
ards are likely to occur when sea waves conditions are extremes. Our proposition
is therefore to obtain extreme wave processes which can be chained to other physi-
cal models as open boundary conditions, in order to study the selected event-scale
coastal hazard questioning.
One may remark that hydraulic boundary conditions of event-scale coastal phys-
ical models are generally defined by three variables describing the sea-states con-
ditions at an instant t: the mean wave direction ψ(t), the significant wave height
Hs(t) and the peak wave period Tp(t). Like in the previous chapter, we propose
to assess coastal hazards considering the spatial dimension of the questionings.
Therefore, since it is paramount to observe both the spatial behaviour and the
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time evolution of the analysed process, we are likely to deal with space-time ex-
treme wave processes (composed of Hs, Tp and ψ). Such a space-time process is
multivariate, but in the sequel it is defined as extreme when there is at least one
exceedance of site marginal threshold of Hs, meaning that a massive amount of
(damaging) energy may impact the coastline.

In the case of observable space-time extreme wave events, direct observation
methods suffer from the common drawbacks detailed in Chapter 2 (e.g., data
scarcity in space and time), plus measuring issues due to the extremeness of the
conditions (e.g., maintenance or sensors validity).
Such studies foster instead the use of wave numerical models since their reliability
still holds for observable space-time extreme events. As soon as we consider very
extreme events, the simulation from those models is generally unreachable. This
is due to a lack of knowledge on boundary conditions (atmospheric and ocean)
and also on the physical reliability of wave models for such extreme quantities.
As an alternative we propose here to use statistical approaches.
Some statistical approaches have been presented to construct extreme scenar-
ios of near-shore conditions like in Gouldby et al. (2014), but are generally not
spatial. With max-stable processes, we used in Chapter 4 an approach aiming
at addressing coastal long-terms questionings on an entire region or along a full
coastline. The restriction to the long-term questionings stems from the physical
interpretation of the fields simulated since those spatial extreme models deal with
data aggregated along the time dimension (e.g., annual or monthly maxima). As
stated in Section 1.5, ones introduced applications of max-stable processes to the
space-time context as Huser and Davison (2014). However those applications are
scarcely provided. Their capacity to model complex dependence structures can
still be challenged. The physical interpretation of the simulated space-time pro-
cesses issued by these models can be challenged as well.
In the proposed methodology we are focused on a semi-parametric approach stem-
ming from parts of the original work of Caires et al. (2011); Groeneweg et al.
(2012); Ferreira and de Haan (2014), summed up as follows.
Let {Z(s, t), s ∈ S, t ∈ T0} be a space-time process considered as extreme, with
s ∈ S ⊂ R

2 the area of interest and t ∈ T0 ⊂ R
+ the time dimension. For the

sake of simplicity these space-time processes are called storms in the following
sections.
The idea relies on three steps. First, Z has to be transformed from its original
scale to a standard scale as Z∗ = T (Z) where T is a site marginal transforma-
tion. Then the process is uplifted by a coefficient denoted ζ > 1, controlling the
extremeness of the simulated process. Finally this uplifted process is transformed
back to its original scale, making the process T ← (ζT (Z)) a more extreme pro-
cess.
This approach is mathematically justified. However it assumes that the space-
time dependence structure is constant in the extremes, as it is the case in the
context of max-stable process modelling. Caires et al. (2011); Groeneweg et al.
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(2012) use this methodology to simulate space-time extreme processes.
We leverage this approach to perform a bivariate simulation of such processes.
Indeed our main objective of having representative space-time extreme hydraulic
boundary conditions requires to obtain processes of Hs and Tp at extreme levels,
while assuming that site marginal mean wave directions are identical in the ex-
treme. We also developed a distinct strategy of selection of storms, also named
declustering. Finally and unlike those former studies, marginal distributions used
for the standardisation of the data is based on the work of Thibaud and Opitz
(2015).

To demonstrate the usefulness of such approach, the behaviour of simulated
space-time processes are discussed around a case-study: the quantification of the
long-shore mass flux of energy in the GOL coastal area during extreme storms.
Since the presented methodology is applied on a large multidimensional volume
of data, specific High Performance Analytics (HPA) algorithms are developed to
work on the data, which brings forward an additional technical dimension.

5.2 Preliminary Analysis

The case study is still the Gulf of Lions. Sections 3.1 and 4.2 present the main
physical characteristics of this region, where storm waves are likely to occur. In
this chapter we have recourse to the same sea-states hindcast data set. However
additional information need to be determined since we deal here with space-time
events.
Indeed, we recall that we are interesting in working with space-time processes
describing the mean wave direction ψ, the significant wave height Hs and the
peak wave period Tp. From the hindcast data set, those processes derive from the
computed wave energy spectra computed at each node of the mesh. For the GOL
only, these three variables represent 3 × 3944 × 24 × 365.25 × 62 = 6 430 597 344
observations and are stored in a binary file of 19 GB.

From expert advices and due to the huge amount of energy transported by
waves, storms relevant to study coastal hazards questionings are the one in which
Hs reaches high values (or exceed a high threshold) inside a very littoral area
denoted S∗. For the GOL, we choose the union of the determined areas (Fig-
ure 5.2(a)) that are set rectangular for technical constraints.
Like in the previous chapter and in order to observe the dependence structure
both in time and space, we estimate pairwise extremal coefficients using an es-
timator provided by Smith in Caires et al. (2011) (see Equation 1.18), which is
suitable in this specific context of threshold-based extreme values.

Relying on this estimator, two extremal coefficients θ̂(k) and θ̂(X, Y ) are in-
troduced and computed over the sea-states hindcast data set. They are computed
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(a) Littoral area S∗ ⊂ S is the union of
squared areas. From experts advice, if
Hs is high in S∗ the coastline is likely to
be impacted. Wave data are available at
the set of locations of the mesh nodes in
this area, which is denoted M∗ ⊆ S∗.

(b) Crosses points form a subset χ of
140 sites selected from the locations of
the computational mesh nodes. χ is con-
structed in manner of spatially represent-
ing all observations locations.

Figure 5.2: Spatial specification.

from a subset of 140 locations χ ⊂ S illustrated in Figure 5.2(b), selected in the
same way as in Section 4.2.
The marginal dependence through time is measured by estimating the extremal
coefficient θ̂(k) between observations of a random variable at a single site but sep-
arated by a time lag k. The dependence between two random variables (X, Y )
observed at a given site at the same time can also be assessed using the estimated
extremal coefficient θ̂(X, Y ).

Figure 5.3(a) presents the estimation θ̂(k) of θ(k) for pairs (Yj, Yj+k) where
k is the time lag. In this case, Yj = {max(Y

(s)
j ), s ∈ M∗ ⊂ S} with M∗ the

very littoral presented before. The arbitrary choice of M∗ is still related to the
final goal of the document: quantifying coastal hazard. Therefore only storms
impacting the shoreline area are considered in the measure. We can observe from
Figure 5.3(a) that θ̂(k) narrows 1.9 and becomes almost steady at k = 50. Hence,
we state the dependence within a storm impacting the littoral will be considered
as persistent only up to 50 hours.
Finally, Figure 5.3(b) is the estimation θ̂(X, Y ) between the two wave variables Hs

and Tp at locations from the subset χ. From this illustration we can deduce that
those two variables remain fairly dependent even within its extreme realisations.
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(a) Extremal coefficient estimated be-
tween pairs {Yt, Yt+k}, with Yt =
maxs∈M∗ {Yt,s} and k the lag in hour.
The straight line and its shadow enve-
lope are respectively a fitted polynomial
regression model and its 95% predict in-
terval.

(b) Extremal coefficient estimated between
pairs {Xs, Ys}, with X the significant wave
height (Hs) and Y the peak wave period
(Tp) at location s ∈ χ. Dots are the me-
dian values from yearly estimated pairwise
coefficients.

Figure 5.3: Estimations of coefficient extremal θ(·) (see Equation 1.18) estimated for the full
period (1961-2012) of the hindcast.

5.3 Method of Simulation

5.3.1 Extreme Space-Time Processes

In the sequel {X(s, t), s ∈ S, t ∈ T } denotes a random space-time process
with S a compact subset of R

2 and T a compact subset of R
+. Such a ran-

dom process represents a random variables collection indexed by both space
and time which is in the space of continuous real functions on S × T denoted
C(S × T ). We suppose that the stochastic process of interest is in the do-
main of attraction of a max-stable process. In other words, we suppose there
exist continuous functions an(s, t) positive and bn(s, t) such that the processes
{

max1≤i≤n
Xi(s,t)−bn(s,t)

an(s,t)

}

(s,t)∈S×T
with X1, . . . , Xn independent copies of X, con-

verge in distribution to a max-stable process η in C(S ×T ). Since convergence of
marginals and convergence of dependence structure can be split up, we consider
in the sequel the standardised process 1 /

(

1 − GX(s,t)(X(s, t))
)

where GX(s,t)

corresponds to the distribution of X(s, t). Such a process has marginal standard
Pareto distributions and belongs to the domain of attraction of unit Fréchet. Fol-
lowing Thibaud and Opitz (2015), it is convenient to fix a high threshold function
u(s, t) and to assume that marginal distributions of this process satisfy

P (X(s, t) > x) = [1 + ξ(s, t)(x − µ(s, t))/σ(s, t)]−1/ξ(s,t)
+ , x > u(s, t) (5.1)
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with real parameters µ(s, t) < u(s, t), σ(s, t) > 0 and γ(s, t), such that the right-
hand of (5.1) is less than unity.

As a consequence we can define more precisely the standardised process X∗

we consider as follows

X∗(s, t) = T (X(s, t)) = [1 + ξ(s, t)(x − µ(s, t))/σ(s, t)]1/ξ(s,t) . (5.2)

5.3.2 Construction of Uplifted Storms

As presented in the introduction, the outline of the methodology lays in four
steps. First, data are marginally transformed. It allows to manipulate the data
at a standard scale. Here we use a transformation to reach the standard Pareto
scale. Then we need to extract storms from the data-set. Once storms are ex-
tracted, the data are uplifted to higher values, with a control on the marginal
amplification coefficient. Finally the data are transformed back to their original
scale by inverting the transformation. In this subsection, details of this method-
ology are given.

The first step consists in standardising X(s, t) to a standard Pareto scale
according to (5.2). In practice, parameters are unknown and need to be esti-
mated. We suppose the threshold and the parameters to be constant over time,
depending only on space. One can alternatively use more sophisticated expres-
sions of those quantities to deal with a potential non-stationarity or periodicity
(or both) of the process. In each site, parameters estimations µ̂(s), σ̂(s), ξ̂(s) are
obtained by the maximum likelihood method using data above a high threshold
u(s). Since marginal data may have some short-term dependences they are there-
fore de-clustered before being used to estimate the parameters. This step allows
to reach the independence condition assumed in the estimation procedure. Using
such estimators in (5.2), let denote by

{

X̃∗(s, t), s ∈ S, t ∈ T
}

the considered
standardised process.

The second step consists in extracting storms at a standardised scale from the
data. Such a storm is a subset in the time dimension of

{

X̃∗(s, t), s ∈ S, t ∈ T
}

,

therefore defined as Z̃∗ =
{

X̃∗(s, t), s ∈ S, t ∈ T0 ⊂ T
}

.

Let
{

Z̃∗
i (s, t), i ∈ {1, . . . , p}

}

denotes a collection of such space-time processes
and represent the p highest storms available in the – transformed – data-set. To
detect those storms, the iterative scheme presented in Algorithm 2 is set up.

In this algorithm, δ is a time value allowing to set the size of a storm and ε is
a time value to guarantee the independence of the storms. Those two values are
generally defined from experts’ advice or from preliminary analyses or both. For
each iteration, the maximum value is searched over the subset of sites M∗ which
might be a single reference location, locations of the entire space S or locations
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Algorithm 2: Storm selection

Input :
{

X̃∗(s, t), s ∈ S, t ∈ T
}

, space-time observations at a standard
scale.
p′ the maximum of storms to select.

Output: {Z̃∗
i , i ∈ {1, . . . , p}} with p ≤ p′, a sorted collection of IID storms

1 begin
2 i = 1, δ ← Cst, ε ← Cst, T ← T , T ′ ← T

3 while (i ≤ p′) and (maxs∈M∗,t∈T ′ X̃∗(s, t) > 1) do

4 ti ← arg maxt

{

X̃∗(s, t)
}

// s ∈ M∗ ⊆ S and t ∈ T ′.

5 Z̃∗
i ← X̃∗(· , t) with t ∈ T ∩ [ti − δ, ti + δ]

6 T ′ ← T ′ \ [ti − δ − ε, ti + δ + ε]
7 i = i + 1

8 return {Z̃∗
1 , Z̃∗

2 , . . . , Z̃∗
p}

of some area in between.
One would notice that the stop condition of the algorithm implies that in each se-
lected storm, there is at least one exceedance of the site marginal threshold. The
algorithm would select storms until the required number of storms p′ is reached
or that the exceedance condition is no more satisfied.

The set
{

Z̃∗
i , i ∈ {1, . . . , p}

}

forms the collection of storms in the data-set at
a standardised scale. It is relevant to compare them from each other in term of
their extremeness.
In the sequel, the definition of extremeness of a so-called storm {Z∗(s, t), s ∈
S, t ∈ T0 ⊂ T } relies on the level corresponding to the within-storm maxima
zmax = maxs,t {Z∗(s, t), s ∈ M∗ ⊂ S, t ∈ T0 ⊂ T }. Consequently, a storm {Z∗

1}
is considered as more extreme than {Z∗

2} if z1,max > z2,max.
In extreme value theory, a return period m is associated to a return level rm of
probability of exceedance for the distribution of the max of 1/m. The level rm is
therefore reached once over the period m in mean. By definition this is no more
than a quantile of high probability of the distribution of the max. We define the
return period of a storm Z∗(s, t) equals to the marginal return period associated
to the within-storm maxima zmax observed at the location smax. The location smax

is whether fixed as reference site or defined as equal to arg maxs∈M∗

{

Z̃∗(s, t)
}

.

To obtain more severe storms (with longer return period), values of Z̃∗
i , i ∈

{1, . . . , p} are multiplied by a coefficient factor superior to unity and denoted
ζi. Hence ζiZ̃

∗
i (s, t), ζi > 1, i ∈ {1, . . . , p}, is the collection of the uplifted storms

at the standardised scale.
Finally, each uplifted storm is transformed back to its original scale by

Z̃i(s, t) = T̃ ←
(

ζiZ̃
∗
i (s, t)

)

, i ∈ {1, . . . , p} , (5.3)
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where T̃ ← (Y (s, t)) = µ̂(s) + σ̂(s)Y ξ̂(s)−1
ξ̂(s)

.
Therefore, through (5.2) to (5.3) we obtain a collection of heavier extreme storms
from a set of observed extreme storms.

It is important to highlight that an observed extreme storm Z∗
i (s, t) is defined

if and only if

max
s∈M∗

Z∗
i (s, t) > 1, (5.4)

meaning that there is at least one exceedance of the site marginal threshold. This
uplifting proposition relies on a mathematical justification given in the following
section.
There is actually no limitation in uplifting bivariate processes {Z∗

1,i, Z∗
2,i} condi-

tioned to (5.4) is satisfied for one of the margin, as described in the following
justification.

5.3.3 Justification

A mathematical justification of the storm uplift can be obtained through the
following asymptotic equivalence for conditional distributions.
Indeed, following Caires et al. (2011),

P

(

T ← (ζiZ
∗
i (s, t)) − bnζi

anζi

∈ A | max
s∈M∗

Z∗
i (s, t) > 1

)

(5.5)

has the same limit (as n → ∞) as

P

(

Zi(s, t) − bn

an

∈ A | max
s∈M∗

Z∗
i (s, t) > 1

)

, (5.6)

where Z∗
i (s, t) = [1 + ξ(s, t)(Zi(s, t) − bn(s, t))/an(s, t)]1/ξ(s,t) and T ←(y) = bn +

an
yξ−1

ξ
.

Let us drop both i and (s, t) indexes for the sake of simplicity in the left part of
the conditional probability. The former limit equivalence is valid since following
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Ferreira and de Haan (2014),

P

(

T ← (ζZ∗) − bnζ

anζ

∈ A | max
s∈M∗

Z∗
i (s, t) > 1

)

(5.7)

= P





an

anζ

[

ζξ
(

1 + ξ Z−bn

an

)]

− 1

ξ
− bnζ − bn

anζ

∈ A | max
s∈M∗

Z∗
i (s, t) > 1





= P





anζξ

anζ

1 + ξ Z−bn

an
− ζ−ξ

ξ
− bnζ − bn

anζ

∈ A | max
s∈M∗

Z∗
i (s, t) > 1





= P

(

anζξ

anζ

(

Z − bn

an

− ζ−ξ

[

bnζ − bn

an

− ζξ − 1

ξ

])

∈ A | max
s∈M∗

Z∗
i (s, t) > 1

)

= P

(

Z − bn

an

∈ anζζ−ξ

an

A + ζ−ξ

(

bnζ − bn

an

− ζξ − 1

ξ

)

| max
s∈M∗

Z∗
i (s, t) > 1

)

.

(5.8)

Since (de Haan and Ferreira, 2007)

anζζ−ξ

an

→ 1 and ζ−ξ

(

bnζ − bn

an

− ζξ − 1

ξ

)

→ 0 (5.9)

uniformly for (s, t) ∈ S × T as n → ∞ the result follows.
There is no limitation to extend this reasoning to the bivariate context. Hence
we can similarly show that

P





T ←
1

(

ζ1,iZ
∗
1,i(s, t)

)

− b1,nζi

a1,nζi

∈ A1,
T ←

2

(

ζ2,iZ
∗
2,i(s, t)

)

− b2,nζi

a2,nζi

∈ A2 | max
s∈M∗

Z∗
1,i(s, t) > 1



 ,

(5.10)
where T ←

1 (y) = b1,n + a1,n
yξ1 −1

ξ1
and T ←

2 (y) = b2,n + a2,n
yξ2 −1

ξ2
, has the same limit

(as n → ∞) as

P

(

Z1,i(s, t) − b1,n

a1,n

∈ A1,
Z2,i(s, t) − b2,n

a2,n

∈ A2 | max
s∈M∗

Z∗
1,i(s, t) > 1

)

. (5.11)

5.3.4 Remark and Directions

The storm uplift method we use comes from the asymptotically equivalence
between conditional distribution presented in the previous section. It appears to
be naturally linked to the GPD process framework (see Section 1.4.2).
We recall that Dombry and Ribatet (2013) generalise the framework of Ferreira
and de Haan (2014) by considering conditional events characterized through a
continuous and homogeneous risk function ℓ(·). The case from Ferreira and de
Haan (2014) corresponds to ℓ(f) = sups∈Sf(s) and the ℓ function we consider
here corresponds to ℓ(f) = maxjf(sj, t). In this sense, we state that the con-
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ditional distribution we consider here corresponds to the distribution of a GPD
process.
Other remarks can be done regarding the construction of the processes. First,
note that in (5.3), the coefficient ζi can be determined in several way as far as it
is superior of unity.
The first interpretation of the use of ζi is given by de Haan in Caires et al. (2011).
According to him, using a coefficient ζi comes down to uplift the threshold of the
peaks-over-threshold process Zi. In particular, if the process is conditioned to
maxs∈M∗ Z∗

i (s, t) > 1, that means to maxs∈M∗ Zi(s, t) > bn, the probability of Zi

to exceed bn is 1/n and the probability that Z̃i exceeds bnζi
is 1/(nζi).

We can also consider the special case ζi = T (zm)
T (zmax)

, where zmax is still the within-
storm maxima and zm is the return level corresponding to the m-year return
period at location where zmax is observed. Implemented in Groeneweg et al.
(2012), Smith in Caires et al. (2011) interprets such a transformation as an uplift
from a storm with a given return period to a storm with a return period equal to
m.
However, other choices for ζi could be proposed. For example, ζi, i = 1, . . . , p
could be proportional to independent realisations of standard Pareto distribu-
tion. In this specific configuration, our approach should be very similar to the
constructive representation of the Pareto process proposed by Dombry and Rib-
atet (2013).

Aware of these remarks, we apply this uplifiting methodology on the hindcast
data set. The results are given in the following section.

5.4 Results

We applied the method to our data set composed of the 52-year of sea-states
conditions. To afford the computational demand of dealing with around 4000 sites
locations, algorithms are implemented in a dedicated R code and is parallelised
via a MPI interface. All computations are performed on a cluster composed of
96 cores.
From now on and for the sake of simplicity, the definition of storm embraces the
multivariate space-time processes composed of Hs, Tp and directions ψ.
We worked on the 10 highest storms observed to uplift both Hs and Tp variables,
resting on the proposed bivariate approach. In our case study, Hs is the vari-
able that conditions the bivariate space-time processes selection. We justify this
choice to guarantee to obtain highly energetic wave processes because at list one
components in M∗ exceed its threshold.

Since we are looking at modelling storms impacting the coastline only, we
choose to set M∗ from Algorithm 2 equals to the coastline-band area illustrated
in Figure 5.2(a). This restriction in the area to detect storms prevents the se-
lection of offshore storms that are not propagating to the coast. From the pre-
liminary analysis in Section 5.2, we decide to consider that storms last about 49
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hours. Consequently, the selected value of δ is equal to 24 (hours). To select
only IID storms, the value of ε is equal to 49 (hours) as well. Both ζi,Hs

and ζi,Ts

are chosen to uplift original storms according to the two variables to the m-year
return period, considering a reference site for smax (node 2342 as illustrated in
Figure 5.7(d)). We observe the variability of storms with m ranging from 25 to
150, by 25. Some illustrations of the available storms are given in the following
Figures 5.4, 5.5 and 5.6.

Figures 5.4 and 5.5 illustrate three time-steps of one of the selected storms
and their corresponding uplifted processes towards the 100-year return period,
respectively for Hs and Tp.
Mean wave directions are not transformed during the uplift method. This assume
that the dependence structure for the mean wave direction within the extreme
remains the same.
Among the set of 10 scenarios, the variability of the fields observed are quite
large, but are non-surprisingly dominated by fluxes from South and SouthEast.
This is a direct consequence choosing M∗ as a very littoral area.

Figure 5.6 is the presentation of four instances of the same original storm
uplifted towards different return levels. Only the significant wave heights are
shown here. One may remark that the levels of Figure 5.6, given at the peak of
the uplifted storm, are very similar to the return levels presented in the previous
chapter in term of intensity of Hs. Physically speaking, the proposed space-
time processes look like processes that are likely to be observed, in terms of
both spatial and time-evolution dependences, which are actually conserved by
the uplift procedure. They seem physically valid to feed littoral physical models.

5.5 A Risk Analysis

5.5.1 Mass Flux of Littoral Energy

Coastal hazards such as submersion, erosion or beach contamination are usu-
ally quantified from formulae that require the computation of the mass flux of
energy towards the shoreline, given off the shoaling zone where waves do not
interact significantly with the sea bottom. One usually discriminates cross-shore
and long shore contributions, depending upon the goal of the application. For in-
stance, the calculation of the alongshore-sand transport (Bagnold, 1966; CERC,
1984) requires the long shore mass flux of energy. In the following, we strictly
consider the long shore impact φ of the deep water mass flux of energy Q to
the shoreline, which is a relevant expression to tackle any analysis of shoreline
dynamics. We model evolution of such a quantity during extreme wave storms.
For a given storm event S, we compute the impact φ

(S)
i,t at a location ci ∈ C and

at a time t of the mass flux of energy Qi,t coming from waves at a location li ∈ L
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(a) T0+10H. (b) T0+10H.

(c) T0+25H, the peak of the storm. (d) T0+25H, the peak of the storm.

(e) T0+49H. (f) T0+49H.

Figure 5.4: Illustration of some time-steps of a storm, for the Hs variable. The mean wave
direction ψ are the vector. On left the original storm available from the hindcast data set. On
right the corresponding storm uplifted at the 100-year return period.
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(a) T0+10H. (b) T0+10H.

(c) T0+25H, the peak of the storm. (d) T0+25H, the peak of the storm.

(e) T0+49H. (f) T0+49H.

Figure 5.5: Illustration of some time-steps of a storm, for the Tp variable. The mean wave
direction ψ are the vector. On left the original storm available from the hindcast data set. On
right the corresponding uplifted storm of 100-year return period.
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(a) 25-year return period. (b) 50-year return period.

(c) 100-year return period. (d) 150-year return period.

Figure 5.6: Illustration of the significant wave heights at the peak of the storm. It is the same
storm uplifted four times at different return levels.
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(see Figure 5.7(a). The longshore impact is calculated by :

φ
(S)
i,t = Qi,t sin (ωi,t) cos (ωi,t) (5.12)

where ωi,t represents the angle of the waves propagation at li at a time t as
illustrated in Figure 5.7 and is function of the wave direction ψi,t.
Practically, Q is derived from the variables Hs, Tp characterising the sea-state
conditions at various points along an iso-bathymetric baseline. Such a mass flux
of energy is classically given by:

Qi,t =
1

8
ρ g H2

si,t
Tpi,t

(5.13)

where Qi,t represents the mass flux energy at the location li and at a time t,
ρ denotes the water volumetric mass density and g the gravity constant. This
procedure can be performed both with the storms extracted from the hindcast
data-set to monitor the impact of the past events, or with the uplifted storms
to find out what would be the impact to the coast if the storms are more severe
than the ones already observed, as presented in the following section.

5.5.2 Results

Some of the uplifted storms are used to compute the long-shore impact under
these extreme conditions at any location ci, from the definition of the global mass
flux φ (see Equation 5.12). A set of 5 locations from the available ci, coloured in
Figure 5.7(d), have been peaked up as reference to discuss the assessment of the
long-shore impact at the coastline of the GOL under extreme conditions.
Regarding the angles presented in 5.7, a positive value of ψ is interpreted as a
long-shore contribution in the direction of þu. A negative value is therefore inter-
preted as a long-shore contribution in −þu.
Four figures are presented to give an overview of the various possibilities offered
by the simulation of storms in the assessment of long-shore impact. Firstly, Fig-
ure 5.8 shows the response of the impact model at the 5 reference locations to
the uplifted storm presented previously (see Figures 5.4-5.5), which is uplifted
at the 100-year return level. Regarding this figure, it is very clear that in this
configuration c2, c3 and c4 are impacted towards the West and South West direc-
tions, revealing the presence of a eastern wave forcing. What is very interesting
is that from such figure, the time evolution of the long-shore impact regarding
the simulated extreme process can be explored.
The behaviour of the point c1 seems to have a contribution towards the South
East. This could be explained by the automatised procedure that computes an-
gles at coastline, and which is not accurate when the shoreline is too irregular,
as it is the case for the point c1. It could be the explanation of this observed
signal. However since this section remains an illustration, no more efforts have
been dedicated to fix this issue.
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(a) (b)

(c) (d)

Figure 5.7: (a) A schematic representation of the baseline and the creation of the n profiles.
(b) Illustration of angles used to compute the impact of the wave energy flux at point li to its
coupled coast point ci. ωit denotes the angle of interest. It is the angle between the observed
direction of the waves þk at location li – at a time t – and the cross-shore direction at location
ci denoted þni. (c) The actual profiles construction over the GOL. Sea-states conditions are
picked-up from a set L = {l1, . . . , ln} of n points lying on an iso-bathymetric baseline. From
those locations, n profiles normal to the baseline are created. Intersections of those profiles
to the coastline form a set C = {c1, . . . , cn} denoting the reference locations where mass flux
energy are derived to. The number n is chosen to fit the resolution required along the shore.
(d) The selected four locations analysed in the risk analyses and the reference location from
where ζi coefficients are computed.
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Figure 5.8: Evaluation of the long-shore impact φ at the 5 locations ci for the 9th highest
observed storm, uplifted to the 100-year return period.

One may also look at the variability of the long-shore impact when storms are
varying in extremeness, as defined before. Figure 5.9 represents what could be
expected in terms of long-shore impact, at one location and for a given storm
uplifted to various return levels.

An other interesting information in the assessment of long-shore impact is to
look at the response ψ for several storms uplifted to the same return levels. This
is illustrated in Figure 5.10 for the point c5, which is situated at the very East
of the GOL. From this figure we can state that the long-shore impact is likely
to be towards the west (negative value of ψ), catching a consequent amount of
energy from the storm coming from the open sea boundary of the GOL (i.e. from
the East/ South East). This remark is in accordance with a physical observation
that is identified when looking at the shoreline: the formation of sandy spits.
However and still in Figure 5.10, one of the storm selected has a positive im-
pact during its realisation. This is not really surprising since as it is located at
the edge of the GOL, this shoreline location is also subject to be hit by South
and South-West storms, that are less frequent but even more damaging than the
Eastern ones.
Finally Figure 5.11 is a mix of the possible combinations. It provides a simul-

taneously preview for various return levels of the storm and at the 5 locations of
interest. Spatial patterns of long-shore impact regarding the intensity of a kind
of storm might be determined from such a figure.
To summarise this risk analysis, and even if only few results of what it is ac-
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Figure 5.9: Evaluation of the long-shore impact φ at the location c4, for uplifted storm to
the 25,50,75,100,125,150-year return periods, from the 9th highest observed storm. The impact
computed from values of the observed storm are given as well for reference.

Figure 5.10: Evaluation of the long-shore impact φ at the location c5 for a sample of observed
storms, uplifted to the 100-year return period.
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Figure 5.11: Evaluation of the long-shore impact φ at the 5 locations ci for the 9th highest
observed storm, uplifted to the 25,50,75,100,125,150-year return periods. The impact computed
from values of the observed storm are given as well for reference.

tually affordable to compute are presented here, we demonstrate the promising
potential of the presented semi-parametric methodology towards the assessment
of event-scale hazards.

5.6 Discussion

In this chapter we introduce a semi-parametric approach to simulate bi-variate
extreme space-time wave processes. Such simulated storms are constructed to feed
physical models assessing event-scale coastal hazards.
Like in the other chapters of this document, we apply the presented methodology
on a case study over the GOL area.
The result of the simulated events is relevant in regards to the spatial information
provided in the previous chapter, and what it is described in the literature about
the storm waves episodes in the GOL.
To demonstrate the benefits of such a method, some simulated storms are used
in a risk analysis. We show that thanks to the simulated processes on which a
control of the extremeness is provided, the variability of the littoral long-shore
impact can be assessed, both spatially and through the time evolution.

However some limits of the method and its implementation can be highlighted.



121 5.6. DISCUSSION

The first one is that the dependence structure of the variable are assumed as con-
served in the extremes, like it is the case in the max-stable context. It could
be a limit if this assumption is false and that very extreme scenarios are strictly
different from the ones observed.
In a more practical aspect, one can argue that the storm size in the Algorithm 2
is fixed and symmetric around the peak value of the storm. This may not reflect
the reality for all storms. Therefore replacing the current size by an adaptive one
might be of interest to better represent those storms.
Other parameters of the algorithm can be argued as the littoral area M∗. Even
if its definition is paramount to assess littoral hazards, it could be interesting to
test and find out the actual sensitivity of the storm detection regarding this space.

Beyond those few limits, we think that this method is promising and open
many perspectives. One perspective of work would be the comparison between
simulated storms issued by the presented semi-parametric approach and ones is-
sued by other parametric approaches, and in particular the GPD processes as
quickly introduced in Section 1.4.2. Such a comparison would be valuable since
both approaches present similarities.
In the same time and after having performed a small risk analysis using some
of the simulated extreme space-time waves events, one challenge is to use those
storms to feed heavy computational physical models assessing other coastal haz-
ards like flood overland models.
The use of such heavy models is motivated by the necessity of providing help
towards the decision making in such crises. This last notion is further explored
in the following chapter.
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Part III

Industrial Implementation
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Chapter6
Towards Decision Tools

Chapter Summary

This chapter presents a subject of openness towards the creation of (IT)
tools aiming at helping the decision in the anticipation and management
of coastal hazards (see Figure 6.1). Such tools may rely on the previously
introduced notions, and in particular the capacity of stochastically simulate
extreme processes, seen as scenarios at controlled extremeness levels.
Hence, this chapter introduces a methodology based on a pre-computing
principle, inspired from the subject of numerical model exploration and
of case based reasoning algorithms, to provide information to the decision-
maker without performing physical (and heavy) computation when an alert
is raised due to the forecast of extreme conditions. We finally discuss the
key points and the limits of this methodology in regards to its final goal of
helping decision-making.

6.1 Introduction

This chapter, largely inspired from our former study in Chailan et al. (2012),
introduces the proposed principle of pre-computation towards helping the decision-
making in the anticipation and management of event-scaled coastal hazards (see
Section 5.5.1).
When extreme conditions (e.g., storm waves) are forecast by weather agencies,
alerts are raised to inform local decision-makers of threat. The consequences of
such extreme conditions have to be accurately assessed, as quickly as possible.
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Figure 6.1: This Chapter 6 introduces the proposed principle of pre-computation to help
decision making against coastal hazards. We propose an efficient way to select extreme scenarios
to pre-compute, store the associated IO (Inputs and Outputs) couples and then query the system
in order to provide an approximation off the on-coming crisis, which is likely to exist in the
following few hours from the alert.

The notion of time is paramount. For instance in case of a potential submersion
phenomenon, heavy physical models must be run to forecast whether the ex-
treme conditions will involve or not the realisation of a devastating submersion.
However, even if these computations are performed on High Performance Cluster
(HPC) resources, they take time to be performed. This time can be longer than
the realisation of the physical phenomenon itself. Due to the promptitude of these
chained events and the stakes involved in their preventions, decision-makers must
be provided with alternatives than the direct physical simulation. One of them is
the presented pre-computation principle, inspired from Business Intelligence (BI)
techniques such as the materialized view selection methods.

The pre-computation principle consists in anticipating the computation of a
set of scenarios, in order to provide relevant information on a future crisis situa-
tion within a brief time. The information is provided whether by approximation
of the result or by providing the exact result. The latter is possible if the actual
crisis scenario matches one of the pre-computed scenarios.
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This concept brings forward some scientific obstacles. Hereafter is the formalisa-
tion of those challenges.

Let f be the black box (heavy computational) model, taking a list of n inputs
defined as X = (x1, x2, . . ., xn) ∈ DI = I1 × I2 × . . . × In and generates a list of
m outputs Y = (y1, y2, . . ., ym) ∈ DO = O1 × O2 × . . . × Om, such that,

f : DI −→ DO ; X −→ Y = f(X). (6.1)

Each deterministic simulation Y = f(X) is very time and resource demanding.
In the sequel, let us denote X as a scenario which is actually a realisation of
the former random variable. The so-called pre-computing workflow, illustrated
in Figure 6.2, consists in:

— Constructing a set of scenarios X = {X1, X2, . . . , }, from observed or
stochastically simulated scenarios.

— For each scenario X ∈ DI available in X , computing its result Y ∈ DO

and store the couple. Forming in fine a set Ψ of IO (Inputs and Outputs)
couples {(Xi, Yi), i = 1, 2, . . .}.

— Building an application f̄ that given an input X ∈ DI and a positive
integer k ∈ N

∗ ≤ cardX returns the k closest scenarios found in X and
thus forming a subset of X denoted X̄k

f̄k : DI −→ Dk
I

X −→ f̄k(X) = X̄k ⊆ X s.t. card(X̄k) = k

and ∀Z1 ∈ X̄k, Z2 ∈ X \ X̄k, d(Z1, X) < d(Z2, X)

(6.2)

where d : D2
I −→ R, D2

I defining DI ×DI , is a distance function to deter-
mine. The system finds the set of images pre-computed Yk = {Y1, Y2, . . . , Yk},
where Yi = f(Xi) and Xi ∈ X̄k. Then it aggregates them to provide an
approximation of the real simulation, denoted Ŷ ≈ f(X). Y = f(X) = Ŷ .
In case of one scenario from X is equal to the queried scenario X.

f̄k is evaluated very quickly and depends upon the number of scenarios of X .
We assume that the greater card(X ), the more accurate the results of f̄k, and
consequently Ŷ .

Therefore the pre-computing approach is composed of four main challenges:
to create a design of experiments to sample the scenarios to pre-compute, to
efficiently perform pre-computations from a technical and storage point of view,
to query the global system with a reference scenario Xref in order to approximate
its result with Ŷref via an aggregation function which is the last challenge. They
are detailed in the following.
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Figure 6.2: Schematic representation of the so-called pre-computing approach. It is composed
of two workflows, running at different time-scale. As a daily work, a set X of space-time scenar-
ios are selected (in a clever way) to be pre-computed. Their computations are performed with
f the black box heavy computational model, and results are stored along their corresponding
scenarios. They form a set Ψ of IO couples. When a crisis arises, a (real) scenario Xref is
provided by weather forecast agencies. On the basis of a distance function allowing to compare
the scenarios, a function (here a k-nearest neighbour algorithm denoted f̄k) is used to gather
a set of similar scenario outputs Yk and estimate from it what is the output f(Xref ): the
up-comping crisis.
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6.2 Method

To illustrate these sections, we assume in the sequel that the application f is
the one defined in Section 5.5.1, which is forced by a space-time extreme wave
scenario X, also named storm according to the definition at the end of the pre-
vious chapter. Thus, the storm X = X(s, t) is constructed from three random
processes Hs(s, t), Tp(s, t) and ψ(s, t) (respectively the significant wave height,
peak wave period and mean wave direction).
To tackle the challenges identified above, the proposed pre-computing principle
requires that any storm Xi ∈ X is indexed in an efficient way. Since each com-
ponent of a storm X is a space-time process, its indexing is hard to handle. We
reduce the dimension of the problem by indexing X by three characterising vari-
ables, being H̄s ∈ DHs

, T̄p ∈ DTp
and ψ̄ ∈ Dψ, with DHs

⊂ R
+, DTp

⊂ R
+ and

Dψ = [0, 360[. They are respectively the mean spatial values observed at the peak
of the storm of the significant wave heights, the peak wave periods and the mean
wave directions. However, even if they are indexed by those reduced-dimension
variables, manipulated scenarios here still represent space-time processes, as de-
fined in the previous chapter.
Let us also consider that the output Y = f(X) is the vector whose components
represent the mean long shore impact computed at each extracted coastal loca-
tion ci (see Figure 5.7) for the duration of the storm.
Finally and for illustration purpose, let us assume that f is a complex application
and that one computation of Y = f(X) requires huge computational and time
resources.

6.2.1 Design of Experiments

The first step of the method is the creation of the set X of space-time extreme
scenarios, taken from observed or simulated events.
Considering the method of simulation of extreme space-time processes presented
in the previous chapter and because H̄s and T̄p are continuously defined on R

+, we
have the possibility to obtain an infinity of scenarios by varying the choice of ζi,T p

and ζi,Hs but superior to unity. ψ̄ is continuously defined on [0, 360[ but we have
no control on its value in the previously presented semi-parametric approach.

The goal of a design of experiments is to obtain a subset being represen-
tative of the space of definition DI of X, that is the product of the domain
of definition of each of its variable. In our example X has been resumed to
D∗

I = DHs
× DTp

× Dψ = R
+ ×R

+ × [0, 360[. Most famous methods are reviewed
in Faivre et al. (2013). Let us introduce some of them.
A first idea is to use a full factorial plan (e.g., Montgomery, 2008) that would
consider all the combinations possible along the space of definition. This is clearly
out of scope with such continuously defined random variables. One may there-
fore use a factorial plan by subsetting the domain of definition of each variable,
making them discrete (see Figure 6.3(a)). However, criteria of subsetting may
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still be argued.
An alternative to full factorial plan is the so called Monte Carlo sampling (e.g.,
Lemieux, 2009). In this approach illustrated by Figure 6.3(b), a matrix of exper-
iments is constructed from the combination of random and independent samples
along the domain of definition of each variable of X.

If there is an a priori on the behaviour of the model f , quasi Monte Carlo

(a) Factorial plan. (b) Monte-Carlo Sam-
pling.

(c) Latin HyperCube
Sampling.

(d) Maximin. (e) Minimax.

Figure 6.3: (Top) Schematic (bi-variate) representation of the most used design of experiments
algorithms. (Bottom) Examples of criteria to optimise an LHS sampling.

sampling (Lemieux, 2009) would be preferred in order to obtain from the same
number of scenarios, a better performance on the representation of their outputs.

Latin Hypercube Sampling (LHS) (McKay et al., 1979; Stein, 1987) is a great
alternative to better discretise the space of definition. To do so, each domain
of definition of DI is divided into a subset of N segments of probability equal
to 1/N . Then a value is randomly sampled to each of those segments. Once a
value is placed into one of the segment, no more value can be sampled from this
segment. For instance, a bivariate case with N = 8 is shown in Figure 6.3(c). Ad-
ditionally to this sample techniques, a spatial recovering criterion can be utilised
to optimised it. When using the maximin criterion, the sampling of the values
within the Hypercube of the domain of definition is realised by maximising the
minimum distance between each value (see Figure 6.3(d)). In the opposite, using
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the minimax criterion would minimise the maximum distance between each value
(see Figure 6.3(e)). They form respectively the families of LHS Maximin (Morris
and Mitchell, 1995) and LHS low discrepancy (Minimax) (Jin et al., 2005).

One may also use sensitive analysis to diagnose for the scenarios Xi what are
the input variables affecting the most their corresponding responses Yi = f(Xi) in
term of variance. Such an analysis would allow to guide the design of experiments
as well by reducing the considered domain of definition of the less influencing
variables. For instance if the sensitivity analysis found out T̂ p is not so much
influencing the output, only a few discrete values of T̂ p should be available in
the design of experiments. Once selected the scenarios composing X have to be
computed as described in the following section.

6.2.2 Pre-Computations and Storage

The second step of the the pre-computation principle is to compute and store
the image Yi of the selected scenarios Xi. Physical models dealing with coastal
hazards are generally resources expensive. In that case, to compute any single
output Y = f(X) requires a dedicated HPC infrastructure. From this statement,
there is no optimisation to define the arrangement of the sequence of scenarios
to pre-compute, but the one from the job scheduler of the HPC cluster.

The pre-computed scenarios and their respective image via the model f rep-
resent a tremendous volume of data to store. The solution embedding a pre-
computing module may prefer to handle meta-data of those couples instead of
the couples themselves. Hence, one valuable asset of the proposed solution would
be the decoupling of these meta-data management and the physical data sets.

6.2.3 Query System

In a crisis configuration, a decision-maker must have the possibility to query
the system to obtain information on the upcoming crisis. The query system is
inspired from the so-called Case-Based Reasoning approaches. Practically, pro-
viding an input (crisis) scenario Xref which is a potential threat to the coast, the
solution must be able to diagnose the potential risks by finding what would be
the outcome Yref = f(Xref ). To do so, the stored set of IO couples Ψ must be
queried to return the suitable information from pre-computed scenarios that are
similar to Xref .

For this purpose, we rely on the so-called “case-based” and “instance-based”
reasoning. Several methods exist (Mitchell, 1997). In our work, we have consid-
ered the k-nearest neighbours method. In our context, the purpose is to find the
set of the k-nearest pre-computed scenarios from Xref denoted X̄k (see Figure
6.4).
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The k-nearest neighbour algorithm is based on the definition of a distance func-

Figure 6.4: Schematic representation of a k-nearest neighbour algorithm, where k = 3 in this
example. The green dot is the query Xref and the red ones are the selected 3-closest values
considering their distance d to the query, using here the euclidean distance.

tion d allowing comparing two scenarios. One valuable add would be to perform
a sensitivity analysis over the variables of a scenario, in order to provide infor-
mation and to weight the components of the distance function.
Then an estimation Ŷref of f(Xref ) has to be built from the set of pre-computed
scenario images Yk = {Y1, Y2, . . . , Yk}, where Yi = f(Xi) and Xi ∈ X̄k. One way
to proceed is to aggregate the results Yi of the k-closest scenarios pre-computed,
weighted by their distance to the query Xref . This aggregation can be tricky when
the variables are of high dimensions. From our example, it can be computed as

Ŷref =
∑

i:Xi∈X̄k

(

Yi ×
{

1 − d(Xref , Xi)
∑k

j=1 d(Xref , Xj)

})

. (6.3)

The weight of a pre-computed result Yi = f(Xi) of the ith closest scenario is
inversely proportional to its distance to the query Xref .
In our example, the interpretation of Ŷref is a vector of long shore impacts at
locations ci aggregated from the image Yi of the k closest storms Xi ∈ X .

One may propose to adapt the distance function in regards to both k and X .
Indeed, if those two values are close to each other, then the aggregation procedure
would use scenarios that could be far from similar than the request Xref .
An other remark is that using a mean function in the aggregation is subject
to smoothing out the expected outputs. Especially in the context of extreme
scenarios. Therefore one may use more sophisticated aggregation applications.
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6.3 First Results

A first prototype is implemented in Chailan et al. (2012) to validate the pre-
computing principle. More specifically, we show how the concept of pre-computed
scenarios can be used for early-warning alert system tools. This prototype is com-
plete enough to obtain good performances on a specific academic configuration.
However, the full implementation to deal with a real case modelling as an event-
scaled coastal hazard questioning, as presented in this chapter, is still on going.

6.4 Discussion

In this chapter we describe the pre-computing principle, aiming at easing the
decision-making in the assessment of event-scaled coastal hazards, when promp-
titude is determining.
Any technical steps of this principle presented here have been implemented and
validated in Chailan et al. (2012), but in simpler way. To go further in the in-
dustrialisation of the solution, this prototype had to be re-designed to be able to
seamlessly perform simulations and store their results. Another point to address
is to diagnose what are the best technical choices (software and hardware) to have
an efficient IO resource, allowing to store and query multidimensional data sets
in a clever way. These perspectives form the motivations of the next chapter.

Beyond the technical implementation, this pre-computing principle may be as-
sisted by other statistical tools in the recommendation towards decision-making.
In particular we can highlight the so-called meta-models. The role of such meta-
model is to deliver a function f̃ , which can mimic a black box model f by stochas-
tically learning from IO couples (X, Y = f(X)). Many works have been proposed
in the literature. However as soon as the domain of definitions of variables of the
scenarios and associated images reach high dimensions, meta-models become hard
to handle. Since we work on extreme scenarios, implementing such meta-model
applications are a real challenge.
In terms of decision-making helping tools, we decide to limit the focus of this
thesis on the pre-computation approach, although meta-modelling is a promising
axis of development for an early warning system.
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Chapter7
Platform Prototype

Chapter Summary

Ruled by studies involving resources demanding and complex chains of
physical et statistical (extremes) models, coastal hazards assessment ac-
tivities require efficient IT platform to ease their realisations and help the
decision making. This chapter is axed onto the demonstration of a platform
prototype aiming at easing the chaining of the models (see Figure 7.1), and
developed in the context of this thesis. From an industrial point of view,
this platform is a technical base of what we consider the next generation
of decision helping tools for coastal hazards.
After detailing our motivation to construct such a platform, its architecture
and main components are presented. Then a short case study of numerical
model chaining is given to demonstrate one valuable asset of the platform:
models chaining.

7.1 Introduction

Ocean engineers and scientists assessing coastal hazards work with complex
models which are generally resource consuming. For instance in previous chap-
ters we have presented several steps of modelling, either considering chaining of
physical numerical models or statistical ones.
Practically, such modelling process consists in 1) defining a model (f); 2) selecting
and formatting input fields in the model’s format (If ); 3) specifying parameters
of the model (Pf ); 4) running – heavy – calculations on an HPC environment; 5)

135



CHAPTER 7. PLATFORM PROTOTYPE 136

Figure 7.1: This Chapter focus on the description of the created platform prototype, aiming
at easing in particular the chaining of hydrodynamic numerical model and (extreme) statistical
ones.

analysing simulated outputs (Of ).
Deelman et al. (2009) discusses the recent emergence of Scientific Workflow Man-
agement Systems (SWfMS). Such a system gathers computational tools enabling
the composition and the automatic execution of complex modelling processes on
distributed resources. Beyond their technical implementation, existing SWfMS
(e.g., Callahan et al. (2006) or Deelman et al. (2007)) differ from each other on
their capabilities (e.g. monitoring execution, dynamic human interference, data
visualisation). We adapt and innovate parts of some existing SWfMS to build
a platform responding to all requirements of hydrodynamics modelling. For in-
stance, scientists needs to chain several models to compute water levels at a
coastal area. Therefore like Deelman et al. (2007) the proposed solution is able
to chain models without effort. This is based on a standardization of the IO data
sets. Like Hunter et al. (2005) the proposed platform is interfaced to an HPC
environment since computations of hydrodynamics models are time and resources
demanding. In the same idea of what is possible with Callahan et al. (2006), users
can explore the IO data sets stored into the remote environment.
Other features (e.g. monitoring workflow execution through web socket notifi-
cations) stem from other computational systems and nowadays technologies like
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social networks. This chapter, largely inspired from our original work in Chailan
and Rétif (2015), presents the architecture of the designed and developed solution
along a discussion on its implementation and use.

7.2 Platform Architecture and Components

The proposed solution is web-oriented (see Figure 7.2). Its design relies on the
decomposition of three layers. The Client Layer, the Business Layer and the In-
frastructure Layer. Let us understand the Figure 7.2 from a top down approach.
Communication between the Client layer and the Business layer is made through

Figure 7.2: Overall architecture of the solution.

a classic HTTP RESTFul API and a FTP server. The FTP server provides a
more suitable way to exchange large data files from and to the client side (Giga-
byte(s) for input data and Terabyte(s) for output data). Since the platform aims
to deal with geophysical model, it has the capacity to represent geospatial phe-
nomena on a map. To do so, standardized web services of the Open Geospatial
Consortium (OGC) are used, which supply standard HTTP requests to display
data sets on a map such as Web Map Service (WMS). Such service allows to
explore dynamically the input and output manipulated data sets.
The proposed solution is centred on the development of an API, so-called Mirmidon-
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API. This is a RESTfull API implemented with Play! Java Framework (Reelsen,
2011). The main components of Mirmidon-API are:

1. The Data Aggregator, which provides functions to convert data (If ) from
Proprietary Format to the Mirmidon Format and to insert converted data
into a geo-spatial database (Figure 7.3);

2. The Explorer, which delivers functions to display the geo-spatial database
records (in Mirmidon Format) on a map (Figure 7.4);

3. The Configuration builder, which gives access to functions to build a con-
figuration (Figure 7.5). A configuration defines a model (f), its binary
executable file, its input files (If ) (in Proprietary Format) and its config-
ured input parameters files (Pf ) ready to be executed;

4. The Command scheduler, which provides functions to execute a configu-
ration on HPC clusters;

5. The Conductor, which is in charge of the security, manages access of re-
sources for a given user;

6. And the Notification Centre, which transmits notifications to the client
side. Since tasks managed by Mirmidon-API are resources and time de-
manding, they are run asynchronously. Users have access to the notifica-
tions centre using web sockets (WS) to obtain information about the status
of those asynchronous tasks (e.g. data transformation or HPC jobs). And
all information is gathered into the user’s dashboard (Figure ).

Figure 7.3: Screenshot of the Aggregator module, from where the user can aggregate any data
set to the geo-spatial data base of the platform through the use of the Mirmidon Format.

Any data processing like file-format transformations, re-gridding or subtract-
ing data sets are executed behind the use of Web Processing Services (WPS)
respecting the OGC’s standards. It allows deporting such resource-consuming
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Figure 7.4: Screenshot of the Explorer module, from where the user can remotely consult the
data set aggregated into the platform.

Figure 7.5: Screenshot of the Configuration-builder module, from where the user can create
a new configuration (parametrised model and input files) ready to be submitted into the HPC
cluster hosting the solution.
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Figure 7.6: Screenshot of the Dashboard module. All information relative to actions of the
user is gathered into this dashboard.

processes onto a dedicated server in the same LAN. Those services are deployed
on a Spatial Data Infrastructure (SDI) server named Constellation SDI 1.

7.2.1 Data Storage

Two databases and a shared file system (FS) are used for data storage. The
first database is a standard PostGreSQL database dedicated to store conventional
applications information such as clients information and will not be discussed in
this document. Beside this resource management database, a geo-spatial database
named CoverageSQL is set up. CoverageSQL stems from the PostGIS extension
of PostGreSQL and has been firstly introduced by Desruisseaux (2004). Any
input and output data sets are converted in NetCDF binaries files (in Mirmidon
Format) by the Data Aggregator module, and then are stored on the FS. Meta-
data of those files like geographical envelope, variable unity, time stepping and a
link to the file is stored on the geo-spatial database. A major benefit of dealing
with a geo-spatial database is the flexibility of queries. Whether a user looks
after an input or an output data set, queries are composed of the variables (e.g.,
atmospheric pressure), the geographical envelop and the physical time range of
interest. The database automatically retrieves data, gathers them and extracts a
new standardized data set.
One remark is that a standard file (Mirmidon Format) follows the Climate and
Forecast conventions (CF). This standardization is particularly suitable since data
sets manipulated in hydrodynamics modelling (the one largely used in studies as-
sessing coastal hazards) are generally clearly representable by the CF conventions.

1. See www.constellation-sdi.org
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7.2.2 Workflow Control, Models Integration and Chain-
ing

The solution uses a hybrid execution control model, which is monitored by
the notification centre. Connections between data retrieving, data transforma-
tion and job submission are driven by a control-flow: a transfer of control from
the preceding task to the one that follows. Inside the model submission itself, the
control is data-driven: IO data represent the dependencies between each consec-
utive actions of the model (i.e. pre-processing, main processing, post-processing).
Each model (f) integrated into the solution must be delivered with a toolkit
composed of a Writer (Wf ) and a Reader (Rf ). The so-called Writer consists in
converting a data set from the Mirmidon Format to the Proprietary Format of
the given model. The converted data-set is denoted (If ). After computation by
the numerical model (f), the output data-set (Of ) is converted by the Reader
from the Proprietary Format into the Mirmidon Format and then, according to
the user, aggregated into the geo-spatial database. According to this workflow,
scientists are able to chain models, in an infinite combination as described by the
pseudo-code algorithm 3.

Algorithm 3: Chaining models.
Input :
A sorted list of model to chain: F = {f1, . . . , fn},
I1 the forcing fields of the first model.
Output: Output fields issue from the chaining of all models ∈ F .

1 begin
2

3 DB ← I1 // Aggregate data for 1st model

4 for fi ∈ F , i ∈ 1, . . . , n do
5 if i > 1 then // If is a chaining model, last output becomes input

6 Ii ← DB[Oi−1]

7 Ifi
← Wfi

(Ii) // Convert from standardized data

8 Ofi
← m

(Pi)
i (Ifi

) // Run model fi

9 Oi ← Rfi
(Ofi

) // Convert to standardized data

10 DB ← Oi // Aggregate output data

11 Serve_Data(On). // Serve data via WMS/WCS

7.2.3 Systematic Use of HPC Resources

Hydrodynamics modelling are resources and time demanding. To perform the
calculations, users use HPC environments. In this sense an efficient solution must
be connected to an HPC system.
Therefore the Business layer is instantiated on a service node of a targeted HPC
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cluster. A service node is – like a compute node – a node of the cluster but
is dedicated to offer services instead of computational resources. The core API
(Mirmidon-API) uses the DRMAA library Troger et al. (2007) as an interface con-
nection to submit calculation jobs on the HPC cluster. In this way, Mirmidon-API
can obtain information on the state of jobs, can proceed to their cancellation or
can pause it. DRMAA library provides a high level interface for several workload
schedulers of the HPC market. We have successfully tested the compatibility of
the presented solution with IBM Platform LSF, IBM Tivoli LoadLeveler and Sun
Grid Engine.

7.3 Sea State Modelling: a Case Study

We propose to illustrate the capabilities of the platform by modelling sea-
states 2 based on the chaining of a coastal circulation model (forced by atmo-
spheric conditions and global currents) and a wave model (see Figure 7.7). This
simulation is somehow similar to the one performed to create the hindcast data
set presented in chapter 3. Additionally to the atmospheric conditions forcing the
circulation model, surface currents and sea water level calculated by the circula-
tion model are used as input of the wave model. We obtain the significant wave
height. Assuming models are already implemented into the platform, the user

Figure 7.7: Demonstration workflow. Numbers reference the Algorithm 3.

can perform several simulation of significant wave heights without any concerns
about having to manage the heavy data set produced and interacting with the
HPC system. At the end of the simulation process, the user is notified and can

2. To go further, please consult the video recording of the platform demonstration at https:

//www.youtube.com/watch?v=st7MnO1QUec.
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easily explore the data remotely through the web client interface as illustrated
by the screen-shot in Figure 7.4.

7.4 Results

The detailed solution has been deployed on a private cluster during one year,
within a research and development project named LittoCMS 3. Two hydrody-
namics models have been chained to produce the accurate sea-states conditions
in extreme storms over the French Mediterranean coastline in a final goal of as-
sessing coastal hazards.
As expected the solution can be seen as a dynamic workflow engines. A typical
example is the procedure of validation of models chaining, which requires many
runs with slightly changes in model parameters. This is made user-friendly and
efficient for scientists by the capacity of switching from one workflow to another
without any difficulty.
The notification centre and the control-flow of tasks execution are mandatories
features in such solution. They alert on issues and allow making quicker deci-
sions on daily use. For instance they allow cutting off a workflow in which tasks
do not run correctly in terms or physics (e.g., divergence) or computing (e.g.,
computational resource crashing). Even if it is a well-known issue in SWfMS, we
observe that a lot of time is spent in the IO data transfer from the user-side to the
remote environment. Sometimes the transfer requires more time than the actual
computations. In this sense, in situ analysis is a necessary feature. Hence the
in-situ visualization through layered data access (e.g., WMS) is a real advantage
because only satisfying data is downloaded by end-users.

7.5 Discussion

The presented web-oriented architecture aims at easing numerical modelling
for coastal engineers and scientists. It is composed of decoupled and modular tools
supplying both a transparent access to HPC environments and a user-friendly way
of chaining models.
The solution is currently restricted in use to hydrodynamics numerical applica-
tions. Without high concerns, we can assume that this solution will perfectly
behave for other modelling chains, including the previously presented statistical
extreme value models.
On top of this solution and to leverage the approach presented in the previous
chapter, both a Design of Experiment and a query-system modules would be im-
plemented aside the presented prototype. They would allow to query the database
storing couples of configurations and results. Once added, this additional materi-
als would provide the users with what we consider the next generation of decision

3. Please consult the following website for further information on this industrial project:
http://brli.brl.fr/17-projet-litto-cms-36.html.
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helping tools for coastal hazards.

Because it has been spotted as a real bottleneck of the solution during the
experiments steps, our perspective of work is to obtain better performance over
the IO data transfer from and to the platform. From another technical point
of view, a second perspective of work is to implement the current solution in
a cloud infrastructure. The potential infinite scalability of such infrastructure
offers a lot of technical and use-cases perspectives. For instance a crisis mode
could be considered, in which the scientists may require the availability of huge
computational resources for a very short time window.



Conclusion

We have seen that coastal hazards are grouped in two families that correspond
to two different time-scales. They are respectively qualified of long-terms hazards
or event-scale ones. In both cases, the most damaging hazards are generally due
to extreme meteorological events.
The literature is scarcely provided with approaches to deal with such risk and
at these two different time-scales. This is even more verified when the question-
ings cover not only a single location but an entire region. Taking place at the
interface of three disciplines, the work of this thesis is highly motivated by the
challenge of creating and exploring new methods that are likely to cover all these
aspects, in the final goal of helping the decision-making towards the anticipation
and management of coastal hazards.

Since sea-waves are the main source of energy into a littoral system, we have
focused our study on this physical phenomenon. The first idea being to study the
waves behaviour and thus to extrapolate useful information easing the decision-
making on the anticipation and management of up-coming coastal hazards.

In order to quantify the hazards we have studied extreme events: events that
are likely to occur only once in years or decades, but that are critically damaging
for economical and ecological assets on the coast. Paradoxically, like in any study
of extremes, we are interested in values on which the information is the scarcest.
To extrapolate information and model extremes, we used a mathematical frame-
work (and its extensions) that is widely accepted in such a case and known as
the extreme value theory (EVT).

To apply EVT and extrapolate information to extreme quantities, the most
representative data set of the studied phenomena have to be defined. Regarding
our case study, namely the Gulf of Lions situated in the North Western Mediter-
ranean sea, the available time series describing the sea-states conditions were
scarce both in time and space dimensions. We therefore use an alternative to
reproduce historical time series of sea states conditions over this region, using the
cutting edge numerical wave models with their last parameterisations and several
detailed forcing fields. The hindcast data set produced embraces an historical
period of 52-year (1961-2012). Presenting a good performance in the validation
step, we have also seen that such modelling may be used to consolidate the avail-
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able time-series provided by surface-buoy campaigns.

Relying on this historical data set, we pursued our goal of creating method-
ologies to assess coastal hazards. Firstly we focused our work on providing long-
terms coastal hazards assessment methods. We applied stochastic tools named
max-stable processes to spatially model the extreme wave events present in the
GOL and provide information on coastal hazards at a spatial and long-term scale.
Our will of dealing with spatial processes stem from the definition of environmen-
tal phenomena that are generally spatially realised, as it is the case for the wave
processes. Clear patterns of extreme waves were identified, most notably by dis-
cussing the modelling of the underlying dependence structure of those extreme
values by the so-called max-stable models. Such a model was then used to tackle
a risk analysis concerning the evaluation of joint probabilities of exceedances of
high waves at several locations of the GOL. Their usefulness was demonstrated
in this context, which opened perspectives of work that are discussed hereafter.
Secondly we focus our work on approaches able to deal with event-scale coastal
hazards questionings. Those hazards are the ones for which the decision-making
is generally the most critical. Therefore, any methods provided to ease the as-
sessment of those is a valuable contribution.
We still considered the EVT and its extensions to spatially assess extreme events
responsible of event-scale coastal hazards, but the time evolution of an event has
to be handled as well in the methodology in order to tackle such questionings.
To do so we worked with a threshold-exceedances based approach that allows
to stochastically simulating space-time extreme processes of waves (significant
wave heights, peak periods and mean directions), of a controlled extremeness.
To demonstrate the usefulness of such an approach a second risk analysis is per-
formed. It concerns the long-shore impact to the shoreline from offshore mass flux
of energy, provided by the extreme waves processes. This study showed one of the
potential application of the simulation of such space-time processes by studying
the variability of the impact regarding the different storms and intensities used.

Whether to address long-terms or event-scale coastal hazards, one of the most
important result of the stochastic applications is the capacity of simulating ex-
treme events that are suitable to feed coastal physical models. Such a statement
allowed us to define the principle of pre-computing, aiming at helping the deci-
sion making, especially towards the anticipation and management of event-scale
hazards. The pre-computing principle directly uses the stochastically simulated
space-time extreme processes. It is inspired from techniques of numerical model
exploration and from case-based reasoning concepts.
A first IT platform prototype of the pre-computing principle was implemented.
From it we were able to validate this principle on academic data. For real case
studies and regarding to the complexity of the models used, of the necessity to
chain them onto High Performance computational Clusters and of the massive
multidimensional data set to handle, a second prototype have been designed and
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developed to tackle these constraints.
The current implementation of this second IT platform prototype could be used
in several ways. It was firstly used to ease the coupling of ocean and wave models.
However the platform is not finished enough to be used as expected as an early
warning system tool. Indeed, the development of the pre-computing module to
embed in the platform is still in progress.

We have reviewed the main contributions of this thesis, which naturally lead
us to at least as many perspectives of work.

The first result of the thesis is the hindcast data set of sea-states conditions
over the North Western Mediterranean sea, motivated by the need of having long
time-series but accurate as well. Indeed, we showed in this document that a rep-
resentative data set is paramount to study the extreme values.
Along surface current and wind, bathymetry has a great role in waves propa-
gation, especially in regions of shallow waters where dissipation and non-linear
effects are accentuated. In the GOL region, several measurement campaigns of
highly defined bathymetry have been realised in the last few years. Consequently
a new and more refined bathymetry has been released after the creation of the
presented hindcast. One perspective of work is to reinforce the accuracy of the
hindcast by constructing a new computational mesh based on this bathymetry
rather than on the former one. The computational mesh would be therefore re-
fined as well, with paying attention to the global computational cost induced by
such transformation. Thanks to this improvement, wave processes should be even
better represented by the numerical model in very littoral areas.

To assess the long-terms coastal hazards we use some of max-stable processes
available in the literature. It would be a valuable add to fit other known max-
stable models on the data and compare their performances. In particular the
ones that would allow to model an anisotropic underlying dependence structure
or other models allowing the asymptotical independence or both.
Still regarding the application of max-stable models, the definition of GEV mar-
gins parameters might be improved by the use of other co-variables. As we use
the bathymetry, both wave mean direction and fetch distance length are other
co-variables that would potentially lead to a better fit of the model.
We have seen that the use of those max-stable models allows simulating condi-
tionally or unconditionally extreme processes. To feed a physical model assessing
a long-term coastal hazard questioning with such processes is the purpose of a
future work.

Also, a promising perspective of work is to compare our presented results with
ones that we would obtain in using the mathematical GPD process framework,
being a threshold-based approach. By definition, the physical interpretation of
simulated GPD processes is more natural than max-stable models and would
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open new perspective in the chaining of models.

The semi-parametric approach is very promising to assess event-scale hazards,
as it has been shown in the risk analysis about long-shore impact of the mass flux
of energy transported by extreme waves processes. Further implementations of
such simulated processes feeding coastal physical models (e.g., overland flood
models) must be realised to leverage this approach. Also some physical criteria
might be included in the uplift method to improve and control the suitability of
the simulated processes. Such applications constitute a consequent perspective of
work as well, and would lead us to the consolidation of methods aiming at easing
the decision-making towards coastal hazards.

Finally, we have seen that the combination of the work presented in this
thesis could be embedded in an IT platform. The basis of this platform have
been developed. However some limitations are still existing and deserve to be
improved. Most notably the development of the pre-computing module has to
be finished. Once it is done, we view the challenge of creating meta-models in
respect to the extreme quantities handled as an interesting perspective.
In any case, if it is made possible by the fact that the platform is very modular
such an implementation lead us to new technical obstacles. We are likely to
face them in the near future in order to provide decision-makers with a complete
IT platform, wich would represent the next generation of coastal hazards alert
system tools.
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