Collègue Malek

Myriam Khaled

Ahmed Sarah

Mohamed Yassine

À Amine

Olfa, Monia, Sondess Mes Tantes Hedia

Wahida

Karim Yassine

Moncef

Cousines Omar

Baligh

Houssem Salim

Merwan, Sammy, Ilyes, Sirine 'adorable Wissem

Amir

Nader, Bilel, Mohammed, Iaad Soeurs Omar

Sophiane, Yousuf, Imrane, Mika, Kadjou, Ilyes, Mehdi, Steven, Mansour, Ayoub, Samir, Nicolas, Imen Alex Meriem

Hela

Monsieur A Ridha Mahjoub

Anissa Madame

Omran

Monsieur Denis Trystram

Je Tiens À Remercier Youcef

Mohamed Lamine

Mohammad Fabien

Mahdi, Thomas Raja Amin

Céline, Hossein, Boris, Ioannis, Meriem, Pedro, Yas- sine, Ons, Manel, Anaëlle, Diana, Hiba Ian-Christopher Haddad

la mémoire de ma grand-mère Khadija, À la mémoire de mon oncle Taoufik, À la mémoire de mon ami et

Keywords: Branch-and-Bound, Branch-and-Cut, Combinatorial optimization, hybridization, metaheuristic, network design, parallel computing

À mon cher ami Robert Jouanique et sa famille, Et surtout à mon adorable grand-mère BiBiBi ainsi que mes très chers parents Slah et Wassila, puissiez vous y trouver le fruit d'un peu de vos efforts et sacrifices. Je vous aime.

Je voudrais en premier lieu remercier tout particulièrement

Résumé

L'Optimisation Combinatoire (OC) est un domaine de recherche qui est en perpétuel changement. Résoudre un problème d'optimisation combinatoire (POC) consiste essentiellement à trouver la ou les meilleures solutions dans un ensemble des solutions réalisables appelé espace de recherche qui est généralement de cardinalité exponentielle en la taille du problème.

Pour résoudre des POC, plusieurs méthodes ont été proposées dans la littérature. On distingue principalement les méthodes exactes et les méthodes d'approximation.

Ne pouvant pas viser une résolution exacte de problèmes NP-Complets lorsque la taille du problème dépasse une certain seuil, les chercheurs on eu de plus en plus recours, depuis quelques décennies, aux algorithmes dits hybrides (AH) ou encore au calcul parallèle.

Dans cette thèse, nous considérons la classe POC des problèmes de conception d'un réseau fiable. Nous présentons un algorithme hybride parallèle d'approximation basé sur un algorithme glouton, un algorithme de relaxation Lagrangienne et un algorithme génétique, qui produit des bornes inférieure et supérieure pour les formulations à base de flots. Afin de valider l'approche proposée, une série d'expérimentations est menée sur plusieurs applications: le problème de conception d'un réseau k-arête-connexe avec contrainte de borne (kHNDP) avec L = 2, 3, le problème de conception d'un réseau fiable Steiner k-arête-connexe (SkESNDP) et ensuite deux problèmes plus généraux, à savoir le kHNDP avec L = 2 et le problème de conception d'un réseau fi able karête connexe kESNDP). L'étude expérimentale de la parallélisation est présentée par la suite.

Dans la dernière partie de ce travail, nous présentons deux algorithmes parallèles exacts: un Branch-and-Bound distribué et un Branch-and-Cut distribué. Une série d'expérimentations a été menée sur une grappe de 128 processeurs, et des accélérations Parallélisation de métaheuristiques hybrides pour la résolution de POC Introduction L'optimisation combinatoire (OC) est un domaine de recherche en mathématiques appliquées et en informatique qui a fait d'énormes progrès au cours des dernières décennies. Cette branche de l'optimisation est également étroitement liée à la programmation mathématique linéaire et non linéaire, à la recherche opérationnelle, aux algorithmes et à la théorie de la complexité.

Dans ce travail, nous étudions une classe de POC bien connue des problèmes de conception de réseaux fiables (SNDP).

Les SNDPs sont des problèmes de conception de réseaux qui visent à concevoir des réseaux qui continuent de fonctionner même en cas de défaillance/pannes. En effet, les réseaux sont aujourd'hui d'une importance cruciale vu la place que ces derniers occupent dans de nombreux (tous?) domaines (télécommunications, logistique, économie, informatique, etc.).

Dans un premier temps, nous présentons une étude dans laquelle nous visons la résolution approximative des SNDPs. Ainsi, nous présentons une approche hybride et parallèle basé sur un algorithme glouton, un algorithme de relaxation Lagrangien et un algorithme génétique qui produit à la fois des bornes inférieures et supérieures pour des formulations à base de flots. Afin de valider l'approche proposée, une série d'expériences est réalisée sur deux applications: le problème de conception de réseau k-arête-connexe avec contrainte de borne (kHNDP) et le problème de conception de réseau fiable k-arête-connexe (kESNDP).

ii

Résumé long

Dans un second temps, nous étudions les SNDPs du point de vue de la résolution exacte. Nous utilisons le calcul parallèle pour proposer deux algorithmes exactes efficaces: un algorithme Branch-and-Bound et un algorithme Branch-and-Cut distribués. Une étude expérimentale est aussi présentée pour valider ces deux algorithmes. Le problème sélectionné pour cette phase est le problème de conception de réseau k-arête-connexe avec contrainte de borne (kHNDP) quand L = 2, 3.

Notions de base kESNDP

Soit G = (V, E) un graphe non orienté, D ⊆ V × V un ensemble de demandes, et une fonction coût ω : E → R qui associe un coût ω uv à chaque arête uv ∈ E de G. Le problème de conception d'un réseau fiable k-arête-connexe (kESNDP) consiste à trouver un sous-graphe de G de coût minimum tel qu'il existe k st-chemins arêtedisjoints qui relient les terminaux de chaque demande {s, t} de D.

Le kESNDP peut être formulé comme un programme linéaire en nombre entiers basé sur les flots (voir [START_REF] Magnanti | Strong formulations for network design problems with connectivity requirements[END_REF]).

Le kESNDP est équivalent à:

min uv∈E ω uv x uv s.t. v∈V \{u} f st uv - l∈V \{u} f st lu =    k, if u = s, -k, if u = t, 0, if u ∈ V \ {s, t} ,    pour tout u ∈ V and {s, t} ∈ D, (1)
f st uv f st vu ≤ x uv , pour tout uv ∈ E and {s, t} ∈ D, (2)
f st uv , f st vu ≥ 0, pour tout uv ∈ E and {s, t} ∈ D, (3)

x uv ≤ 1, pour tout uv ∈ E, (4)
x uv ∈ {0, 1}, pour tout uv ∈ E,

f st uv , f st vu ∈ {0, 1}, pour tout uv ∈ E, {s, t} ∈ D.

Résumé long iii kHNDP Soit G = (V, E) un graphe non orienté, D ⊆ V × V un ensemble de demandes, et une fonction coût c : E → R qui associe un coût c (e) à chaque arête e ∈ E de G.

Le problème de conception d'un réseau fiable k-arête-connexe avec contrainte de borne (kHNDP) consiste à trouver un sous-graphe de G de coût minimum tel qu'il existe k L-st-chemins arête-disjoints qui relient les terminaux de chaque demande {s, t} de D et de longueur (nombre de sauts) maximum L fixée.

Le problème de kHNDP peut être formulé dans le cas où L = 3 comme suit:

min e∈E c(e)
x(e)

a∈δ + (u) La formulation par flots séparés (7) a été introduite par Diarrassouba et al. en 2013 [START_REF] Diarrassouba | Integer programming formulations for the k-edge-connected 3-hop-constrained network design problem[END_REF] et met en oeuvre un nombre polynomial de contraintes et de variables. Ceci est possible en utilisant les flots dans |D| graphes en couche calculés à l'aide d'une transformation appliquée au graphe G pour chaque demande {s, t} (Gouveia et Requejo [START_REF] Gouveia | A new lagrangean relaxation approach for the hopconstrained minimum spanning tree problem[END_REF]).

f st a - a∈δ -(u) f st a =      k if u = s 0 if u ∈ V st \ {s, t} -k if u = t      , pour tout u ∈ V st

Résolution approchée

Dans un premier temps, nous avons essayé de tirer profit de la structure en blocs de la formulation (voir Figure 1). Nous présentons une approche parallèle basée sur la relaxation lagrangienne [START_REF] Held | The traveling-salesman problem and minimum spanning trees: Part ii[END_REF][START_REF] Rush | A tutorial on dual decomposition and lagrangian relaxation for inference in natural language processing[END_REF], une heuristique dont l'idée de base est inspirée de la structure de la formulation du problème, ainsi qu'un algorithme génétique. Nous présentons aussi une comparaison des résultats de notre approche, avec ceux de CP LEX. v∈V \{u}

f st uv - l∈V \{u} f st lu =    k, if u = s, -k, if u = t, 0, if u ∈ V \ {s,
f st a - a∈δ -(u) f st a =      k if u = s 0 if u ∈ V st \ {s, t} -k if u = t      , pour tout u ∈ V st f st a ≤ 1,
pour tout a = (u, u), u ∈ V \ {s, t} , {s, t} ∈ D f st a ≥ 0, pour tout a ∈ A st (e), {s, t} ∈ D x(e) ≤ 1, pour tout e ∈ E x ∈ Z E + f st ∈ Z Ast + Sur la base des programmes obtenus, deux algorithmes (RLA et RLASH) ont été conçus pour le kESNDP et le kHNDP. RLA et RLASH commencent par résoudre les |D| problèmes de flot d'une manière parallèle en utilisant l'algorithme "N etwork Simplex" [START_REF] Ahuja | Network flows[END_REF][START_REF] Cunningham | A network simplex method[END_REF].

Pour fixer les multiplicateurs de Lagrange, nous utilisons l'algorithme du sous-gradient. A remarquer que durant cette phase, dans les deux algorithmes conçus, nous utilisons une heuristique dans le cas où le vecteur X j ne constitue pas une solution réalisable pour les formulations initiales, pour le transformer en X j réalisable. Dans RLA, nous utilisons une heuristique primale rapide pour arrondir à 1 chaque x j (e) qui viole une contrainte de couplage. Dans RLASH, au lieu d'une heuristique primale, nous utilisons l'heuristique SH que nous avons conçue et que nous allons expliquer par la section suivante.

Heuristique Gloutonne

L'idée principale de l'algorithme Greedy Successive Heuristic (SH) est inspirée par la structure des formulations à base de flots. En fait, si un arc dans G st est sélectionné dans la solution du problème de flot d i = {s, t} (i.e. f st a mis à 1), l'arête correspondante dans G sera sélectionnée dans la solution (par conséquent x(e) = 1) en raison des contraintes de couplage. Ainsi, le meilleur choix à faire lors de la résolution du problème de flot suivant est de sélectionner des arcs dont les arêtes correspondantes viii Résumé long A noter également que notre algorithme veuille à ce que GA continue de fonctionner après la fin de la RLA et de SH afin de donner à GA suffisamment de temps pour traiter les solutions de RLA et SH.

Enfin, notez qu'avec la limite supérieure globale Z U B , l'algorithme de relaxation Lagrangienne produit également une borne inférieure de la solution optimale du problème traité. Ceci est capital vu qu'il nous permet d'avoir une idée sur combien on pourrait améliorer notre borne primale.

La figure 2 ci-dessous décrit le schéma de communication de PHA. Il est connu que la structure des arbres de dépendances des Branch-and-Bound B&B contient très peu de dépendances, par conséquent l'algorithme est intrinsèquement parallélisable. Néanmoins, les résultats de cette tâche peuvent être très mauvais si les communications ne sont pas traitées efficacement. Cela est d'autant plus vrai lorsque la mémoire est distribuée.

Ainsi, pour éviter d'avoir un surcoût important dû à l'architecture distribuée, le schéma de parallélisation que nous avons conçu suit le modèle maître/esclave. En fait, avoir une gestion centralisée des arbres réduit le nombre de communications à effectuer. Par conséquent, le processus maître est le processus responsable de la gestion de la recherche arborescente, de l'évaluation du noeud racine, de la gestion globale des limites supérieure et inférieure et de la gestion de l'arrêt de l'algorithme. Les processus esclaves sont responsables de l'évaluation des noeuds de l'arbre et du branchement. La figure 3 décrit le schéma de communication de notre algorithme parallèle B&B. le processus d'optimisation. Cela est d'autant plus vrai dans un algorithme de Branchand-Cut B&C qui évalue un noeud en utilisant une résolution de programme linéaire et des coupes de polyèdre.

Le B&C parallèle que nous avons conçu est basé sur le B&B parallèle que nous avons présenté dans la section précédente. La contribution majeure apportée par l'algorithme B&C est la gestion distribuées des coupes. En fait, une manière triviale de gérer les coupes séparées serait de séparer les différentes familles de contraintes valides dans les processus esclaves, puis de communiquer les contraintes séparées au maître. Cette communication se produirait quand un esclave renvoie les résultats de l'évaluation du noeud. Néanmoins, puisque nous ne sommes pas en mesure d'estimer le coût d'une telle communication a priori, cette méthode peut provoquer un goulot d'étranglement à l'application.

Pour répondre à cette limite, le B&C parallèle que nous avons conçu utilise, au-delà du processus maître, un processus gestionnaire de pool qui se chargera de la gestion des contraintes valides. La figure 4 montre le schéma de communication B&C distribué.

Ci-dessous, nous présentons les trois algorithmes maitre, gestionnaire de pool et esclave qui forment notre implémentation parallèle du B&C.

Conclusion

Nous avons étudié, dans cette thèse, la parallélisation de métaheuristiques hybrides pour des problèmes de conception de réseaux. Dans un premier temps, nous avons proposé deux algorithmes hybrides et parallèles pour résoudre le problème de conception de réseaux Steiner k-arête-connexes (SkESNDP) et le problème de conception de réseaux fiables k-arête-connexes avec contraintes de bornes (kHNDP) quand L = 2, 3. Nous avons étendu ce travail après cela pour problème de conception de réseaux k-arêteconnexes (kESNDP) et le problème de conception de réseaux fiables k-arête-connexes avec contraintes de bornes (kHNDP) lorsque L ≥ 2. Les algorithmes sont basés sur un algorithme de relaxation lagrangienne, un algorithme génétique et un algorithme glouton, et visent à produire des bornes inférieures et supérieures pour le problème traité. Les expérimentations menées ont montré que notre algorithme hybride surpasse CPLEX en produisant de bonnes solutions réalisables, même pour des instances de grande taille, et ce dans un temps CPU relativement court. Ils ont également montré que l'hybridation des trois composants surpassait, dans la plupart des cas, chaque composant pris séparément. Enfin, nous avons montré que l'utilisation de plusieurs processeurs à l'intérieur de chaque composant de l'algorithme hybride permet de réduire le temps CPU de chaque composant.

Dans le dernier chapitre, nous avons présenté de nouvelles implémentations distribuées des algorithmes connus,Branch-and-Bound et Branch-and-Cut. Pour nous avons commencé par présenter un état de l'art des études de parallélisation de ces méthodes. Nous avons également présenté deux algorithmes parallèles basés sur le Branch-and-Bound et le Branch-and-Cut. Enfin, nous avons validé nos algorithmes en présentant une étude expérimentale que nous avons menée sur un cluster de 128 processeurs pour résoudre le kHNDP lorsque k = 3 et L = 3. Ces expérimentations ont montré une accélération intéressante obtenue en exécutant nos algorithmes sur les 128 coeurs, et grâce à cette parallélisation, nous avons pu résoudre des instances à grande échelle pour le kHNDP et produire de meilleurs écarts pour des instances ayant 500 sommets et 300 demandes.

Cependant, ce que nous avons pu observer dans toutes nos expérimentations, c'est que les écarts entre les bornes inférieure et supérieure pour les instances à grande échelle étaient assez importants (plus de 40% pour la plupart des instances). Ainsi, il serait intéressant d'étudier plus en profondeur un moyen de produire de meilleures bornes inférieures afin de savoir à quel point les solutions produites par les algorithmes sont proches de la solution optimale.

Enfin, il serait également intéressant d'étudier la parallélisation des algorithmes et l'utilisation d'architectures plus sophistiquées, telles que les GPUs.

Algorithm 3: Processus maitre du B&C parallèle.

Data: Un graphe non orienté G = (V, E), ensemble de

Introduction

Combinatorial Optimization (CO) is a research area in applied mathematics and computer science that has made huge progress over the past few decades. This branch of optimization is also closely linked to linear and nonlinear mathematical programming, operational research, algorithms and complexity theory.

Solving a combinatorial optimization (COP) problem consists essentially in finding the best solution(s) in a set of feasible solutions called the search space that is usually exponential in cardinality in the size of the problem. As it happens, the majority of COPs are NP-complete. Therefore, the determination of an optimal solution (by enumeration of the feasible solutions among others) proves to be an extremely expensive task, even impossible when the size of the problem exceeds a certain threshold.

In fact, to solve COPs, several methods have been proposed in the literature. A distinction is made mainly between exact methods and approximation methods.

In the exact methods we try to achieve an optimal solution by partially enumerating the elements (realizable solutions) of the search space via specific techniques such as Dynamic Programming, Branch-and-Bound, Cutting planes, Branch-and-Cut, etc. These methods are known for their effectiveness but they prove to be unusable in practice beyond a certain size of the treated problem and this for their prohibitive cost.

As an alternative, we are sometimes satisfied with an approximate solution constructed using heuristics, which are of two types: (i) constructive heuristics (often of the Greedy type) which construct feasible solutions based on characteristics of the problem; (ii) more elaborate methods known as heuristics of improvement generally based on metaheuristics whose principle is often borrowed from the modeling of natural phenomena of physics or biology (eg. simulated annealing methods, genetic algorithms, ant colony, etc.).

It should also be noted that hybrid algorithms (HA) are being used more and more in which several types of methods are combined within the same resolution strategy.

On the other hand, at the hardware level, spectacular progress in recent years has challenged the way to design and especially to exploit the available computing resources. Thus, the parallelization of methods of solving COPs and their implementation on massively parallel platforms is of increasing interest to researchers. Several methods of resolution have been developed for different COPs since the 1980s and new methods are still been developed. It should be emphasized that parallelization thus makes it possible to solve, by polynomial approximation methods, instances of COP of high sizes and even to implement, in certain cases, exact methods of exponential complexity.

In this work we address a well known COP class of Survivable Network Design Problems (SNDP).

SNDPs are those network design problems which aim in designing networks that are still functionning even when failures occur. In fact, efficient networks are nowadays of crucial importance since networks take a large place in many fields (telecommunications, logistics, economics, IT, etc.). Addressing network design issues has raised a large class of problems.

As a first step, we approach the SNDPs from an approximation point of view. Thereby, we present a parallel hybrid algorithm based on a greedy algorithm, a Lagrangian relaxation algorithm and a genetic algorithm which produces both lower and upper bounds for flow-based formulations. In order to validate the approach proposed, a series of experiments is conducted on two applications: the k-Edge-Connected Hop-Constrained Network Design Problem (kHNDP) and the k-Edge-Connected Survivability Network Design Problem (kESNDP).

As a second step, we study the SNDPs from the exact solving point of view. To accomplish this task we use parallel computing to fasten a Branch-and-Bound and a Branch-and-Cut algorithms. algorithms, the taxonomies of hybridization and introduce after that the motivation of the thesis.

In Chapter 3, we consider the k-Edge-Connected Network Design Problem (kESNDP). We introduce a new approximation parallel and hybrid algorithm to solve flow-based formulations and proceed to an experimental study on two variants of the problem.

In Chapter 4, we study the k-Edge-Connected Hop-Constrained Network Design Problem (kHNDP). We present the application of the hybrid approach presented in the previous chapter on the kHNDP and proceed to its experimental study.

In Chapter 5, we present the parallelization strategies we have applied to the Branchand-Bound and the Branch-and-Cut algorithms, and proceed to the experimental study related to the kHNDP. In this Chapter we give some basic notions on combinatorial optimization, graph theory, the theory of complexity. We then perform a brief summary of exact methods, metaheuristics and the basics of parallel computing.

Chapter 1 Preliminaries

Combinatorial optimization

Combinatorial optimization is a branch of computer science and applied mathematics. It concerns the problems that can be formulated as follows: Let E = {e 1 , . . . , e n } a finite set called basic set, where each element e i has a weight c(e i). Let S a family of subsets of E. If S ∈ S, then c(S) = The term combinatorial refers to the discrete structure of S. In general, this structure is represented by a graph. The term optimization signifies that we are looking for the best element in the set of feasible solutions. This set generally contains an exponential number of solutions, therefore, one can not expect to solve a combinatorial optimization problem by exhaustively enumerate all its solutions. Such a problem is then considered as a hard problem.

Various effective approaches have been developed to tackle combinatorial optimization problems. Some of these approaches are based on graph theory, while others use linear and non-linear programming, integer programming and polyhedral approach. Besides, several practical problems arising in real life, can be formulated as combinatorial optimization problems. Their applications are in fields as diverse as telecommunications, transport, industrial production planing or staffing and scheduling in airline companies. Over the years, the discipline got thus, enriched by the structural results related to these problems. And, conversely, the progress made in computed science have made combinatorial optimization approaches even more efficient on real-world problems.

In fact, combinatorial optimization is closely related to algorithm theory and computational complexity theory as well. The next Section introduces computational issues of combinatorial optimization.

Computational complexity

Computational complexity theory is a branch of theoretical computer science and mathematics, whose study started with works of Cook [START_REF] Cook | The complexity of theorem-proving procedures[END_REF], Edmonds [START_REF] Edmonds | Covers and packings in a family of sets[END_REF] and Karp [START_REF] Karp | Reducibility Among Combinatorial Problems[END_REF].

Its objective is to classify a given problem depending on its difficulty. A plentiful literature can be find on this topic, see for instance [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF] for a detailed presentation of NP-completeness theory.

A problem is a question having some input parameters, and to which we aim to find an answer. A problem is defined by giving a general description of its parameters, and by listing the properties that must be satisfied by a solution. An instance of the problem is obtained by giving a specific value to all its input parameters. An algorithm is a sequence of elementary operations that allows to solve the problem for a given instance. The number of input parameters necessary to describe an instance of a problem is the size of that problem.

An algorithm is said to be polynomial if the number of elementary operations necessary to solve an instance of size n is bounded by a polynomial function in n. We define the class P as the class gathering all the problems for which there exists some polynomial algorithm for each problem instance. A problem that belongs to the class P is said to be "easy" or "tractable".

A decision problem is a problem with a yes or no answer. Let P be a decision problem and I the set of instances such that their answer is yes. P belongs to the class NP (Non-deterministic Polynomial) if there exists a polynomial algorithm allowing to check if the answer is yes for all the instances of I. It is clear that a problem belonging to the class P is also in the class N P . Although the difference between P and N P has not been shown, it is a highly probable conjecture.

In the class N P , we distinguish some problems that may be harder to solve than others. This particular set of problems is called NP-complete. To determine whether a problem is NP-complete, we need the notion of polynomial reducibility. A decision problem P 1 can be polynomially reduced (or transformed) into another decision problem P 2 , if there exists a polynomial function f such that for every instance I of P 1 , the answer is "yes" if and only if the answer of f (I) for P 2 is "yes". A problem P in NP is also NP-complete if every other problem in NP can be reduced into P in polynomial time. The Satisfiability Problem (SAT) is the first problem that was shown to be NP-complete (see [START_REF] Cook | The complexity of theorem-proving procedures[END_REF]).

With every combinatorial optimization problem is associated a decision problem. Furthermore, each optimization problem whose decision problem is NP-complete is said to be NP-hard. Note that most of combinatorial optimization problems are NPhard. One of the most efficient approaches developed to solve those problems is the so-called polyhedral approach.

Graph theory

In this Section we will introduce some basic definitions and notations of graph theory that will be used throughout the Chapters of this dissertation. For more details, we refer the reader to [START_REF] Schrijver | Combinatorial Optimization : Polyhedra and Efficiency[END_REF].

Undirected graphs

An undirected graph is denoted G = (V, E) where V is the set of vertices or nodes and E is the set of edges. If e is an edge between two vertices u and v, then u and v are called the ends of E, and we write e = uv or e = {u, v}. If u is an extremity of e, then u (resp. e) is said to be incident to e (resp. u). Similarly, two vertices u and v forming an edge are said to be adjacent. Since the graph G may have multiple edges, it may be that e = uv and f = uv but e = f .

A subgraph H = (U, F) of G is a graph such that U ⊆ V and F ⊂ E. A subgraph H = (U, F) of G is called covering or spanning if U = V . Let W ⊆ V , H = (W, E(W))
is said to be subgraph of G induced by W and will be denoted by G[W].

If F ⊂ E (resp. W ⊂ V), it is noted in G \ F (resp. G \ W) the
graph obtained from G by removing the edges of F (resp. nodes of W and the edges incident to W). An

edge e = v 1 v 2 ∈ E is called a cut edge if G is connected and G\e is not connected, with v 1 , v 2 ∈ V . If {V 1 , . . . , V p }, p ≥ 2, is a partition of V , then δ(V 1 , . . . , V p)
is the set of edges having one end in V i and the other one in V j and i = j.

The support graph of an inequality is the graph induced by the vertices of variables having a non-zero coefficient in the inequality.

Let G = (V ∪ T, E) be a graph defined by a set of vertices V ∪ T where T is a set of distinguished nodes and E is a set of edges. We denote by V (H), T (H) and E(H) its sets of nodes, terminals and edges, respectively. We denote by t(G) the number of terminal in G, i.e., |T (G)| = t(G).

A path P is a set of p distinct vertices v 1 , v 2 , . . . , v p such that for all i ∈ {1, . . . , p-1}, v i v i+1 is an edge. P is called elementary if it passes more than once by the same node (except for v 0 and v k if they represent the same vertex in G). A basic chain is totally identified with its set of edges.

Two paths between two nodes u and v are called edge-disjoint (resp. node-disjoint) if there is no edge (resp. no node different from of u and v) appearing in both chains.

Vertices v 2 , . . . , v p-1 are called the internal vertices of P . Given a path P between two terminals t, t ∈ T such that P ∩ T = {t, t }, the set of internal vertices of P will be called a terminal path and denoted by P tt . A terminal path is minimal if it does not strictly contain a terminal path.

Given a graph G = (V ∪T, E) and two subgraphs

G 1 = (V 1 ∪T 1 , E 1), G 2 = (V 2 ∪T 2 , E 2) of G. Graph G 1 is said to be completely included in G 2 , if V 1 ∪ T 1 ⊆ V 2 ∪ T 2 .

Directed graphs

A directed graph is denoted D = (V, A) where V is the set of nodes and A the set of arcs.

Figure 1.4: A directed graph D

If a ∈ A is an arc connecting a vertex u to vertex v, then u will be called initial end and v final end and we write a = (u, v). We say that a is an outgoing arc of u and v of an incoming arc. The vertices u and v are called ends of a. Vertex v (resp. a) is said to be incident to a (resp. v) if v is an end (initial or final) of a.

If B ⊆ A is a subset of arcs, then V (B) represents the node set of arcs of B. If W ⊆ V is a subset of vertices, A(W) is the set of arcs having their ends in W . Let W ⊆ V , ∅ = W = V , a subset of vertices V . The set of arcs having their initial end in W and their final nodes in V \ W is called outgoing cut and denoted δ + (W). The cardinality of the outgoing cut δ + (W) of a subset W is called outgoing degree of W and denoted d + (W). If u ∈ W and v ∈ V \ W , then the outgoing cut is also called uv-outgoing cut. If W is reduced to a single vertex v, we write respectively δ + (v) and d + (v) instead of δ + ({v}) and d + ({v}). The set of arcs having the final end in W and the initial end in V \ W is called incoming cut and denoted δ -(W). The cardinality of the incoming cut δ -(W) of a subset W is called incoming degree of W and denoted d -(W). If u ∈ W and v ∈ V \ W , then the incoming cut is also known as uv-incoming cut. If W is reduced to a single vertex v, we write respectively δ -(v) and d -(v) instead of δ -({v}) and d -({v}).

A subgraph H = (U, F) of D is a graph such that U ⊆ V and F ⊂ A. A subgraph H = (U, F) of D is said covering if U = V .
The cut of a set W ⊆ V, ∅ = W = V , is denoted δ(W) and is the union of the arcs of the incoming cut and outgoing cut, i.e., δ(W) = δ + (W) ∪ δ -(W). The cardinality of the cut is called the degree of W and denoted d(W). If u ∈ W and v ∈ V \ W , then the cut is also called uv-cut. If W is reduced to a single vertex v, we write respectively δ(v) and d(v) instead of δ({v}) and d({v}). If all W associated with the outgoing cut δ + (W) contains the vertex u but not the vertex v, then we call it uv-outgoing cut.

Given disjoint subsets W 1 , W 2 , . . . , W k of V , then [W 1 , W 2 , . . . , W k] represents the set of arcs of D having one end in W i and the other in W j , i = j.

A directed graph D = (V, A) is weakly connected if no cut of D is empty. The graph d is said to be k-connected graph if d -(W) ≥ k for all W ⊆ V, ∅ = W = V . A vertex v ∈ V is called cut vertex of D if the
number of connected components of the graph D \ v is strictly greater than the number of related components of D.

If a graph D = (V, A) does not contain circuit, then D is said acyclic.

Exact methods

Elements of polyhedral theory

The polyhedral method was initiated by Edmonds in 1965 [START_REF] Edmonds | Maximum matching and a polyhedron with 0,1-vertices[END_REF] for a matching problem. It consists in describing the convex hull of problem solutions by a system of linear inequalities. The problem reduces then to the resolution of a linear program. In most of the cases, it is not straightforward to obtain a complete characterization of the convex hull of the solutions for a combinatorial optimization problem. However, having a system of linear inequalities that partially describes the solutions polyhedron may often lead to solve the problem in polynomial time. This approach has been successfully applied to several combinatorial optimization problems. In this Section, we present the basic notions of polyhedral theory. The reader is referred to works of Schrijver [START_REF] Schrijver | Combinatorial Optimization : Polyhedra and Efficiency[END_REF] and [START_REF] Mahjoub | Polyhedral Approaches[END_REF].

We shall first recall some definitions and properties related to polyhedral theory.

Let n be a positive integer and x ∈ R n . Let say that x is a linear combination of x 1 , x 2 , . . ., x m ∈ R n if there exist m scalar λ 1 , λ 2 , . . ., λ m such that x = m i∈1 λ i x i . If m i=1 λ i = 1, then x is said to be a affine combination of x 1 , x 2 , . . ., x m . Moreover, if λ i ≥ 0, for all i ∈ {1, . . . , m}, we say that x is a convex combination of x 1 , x 2 , . . ., x m . Given a set S = {x 1 , . . . , x m } ∈ R n×m , the convex hull of S is the set of points x ∈ R n which are convex combination of x 1 , . . ., x m (see Figure 1.7), that is λ i x i = 0, is λ i = 0, for all i ∈ {1, . . . , m}. They are affinely independent if the unique solution of the system

conv(S) = {x ∈ R n |x is a convex combination of x 1 , . . . , x m }.
m i=1 λ i x i = 0, m i=1 λ i = 0, is λ i = 0, i = 1, . . ., m.
A polyhedron P is the set of solutions of a linear system Ax ≤ b, that is P = {x ∈ R n |Ax ≤ b}, where A is a m-row n-columns matrix and b ∈ R m . A polytope is a bounded polyhedron. A point x of P will be also called a solution of P .

A polyhedron P is said to be of dimension p if it has at most p+1 affinely independent solutions. We denote it by dim(P) = p. We also have that dim(P) = n -rank(A =), where A = is the submatrix of A of inequalities that are satisfied with equality by all solutions of P (implicit equalities). The polyhedron P is full dimensional if dim(P) = n.

An inequality ax ≤ α is valid for a polyhedron P ⊆ R n if for every solution x ∈ P , ax ≤ α. This inequality is said to be tight for a solution x ∈ P if ax = α. The inequality ax ≤ α is violated by x ∈ P if ax > α. Let ax ≤ α be a valid inequality for the polyhedron P . F = {x ∈ P |ax = α} is called a face of P . We also say that F is a face induced by ax ≤ α. If F = ∅ and F = P , we say that F is a proper face of P . If F is a proper face and dim(F) = dim(P) -1 , then F is called a facet of P . We also say that ax ≤ α induces a facet of P or is a facet defining inequality.

If P is full dimensional, then ax ≤ α is a facet of P if and only if F is a proper face and there exists a facet of P induced by bx ≤ β and a scalar ρ = 0 such that F ⊆ {x ∈ P |bx = β} and b = ρa.

If P is not full dimensional, then ax ≤ α is a facet of P if and only if F is a proper face and there exists a facet of P induced by bx ≤ β, a scalar ρ = 0 and λ ∈ R q×n (where q is the number of lines of matrix A =) such that F ⊆ {x ∈ P |bx = β} and b = ρa + λA = .

An inequality ax ≤ α is essential if it defines a facet of P . It is redundant if the system A x ≤ b } obtained by removing this inequality from Ax ≤ b defines the same polyhedron P . This is the case when ax ≤ α can be written as a linear combination of inequalities of the system A x ≤ b . A complete minimal linear description of a polyhedron consists of the system given by its facet defining inequalities and its implicit equalities.

A solution is an extreme point of a polyhedron P if and only if it cannot be written as the convex combination of two different solutions of P . It is equivalent to say that x induces a face of dimension 0. The polyhedron P can also be described by its extreme points. In fact, every solution of P can be written as a convex combination of some extreme points of P .

Cutting plane method

Now let P be a combinatorial optimization problem, E its basic set, c(.) the weight function associated with the variables of P and S the set of feasible solutions. Suppose that P consists in finding an element of S whose weight is maximum. If F ⊆ E, then the 0-1 vector x F ∈ R E such that x F (e) = 1 if e ∈ F and x F (e) = 0 otherwise, is called the incidence vector of F . The polyhedron P (S) = conv{x S |S ∈ S} is the polyhedron of the solutions of P or polyhedron associated with P. P is thus, equivalent to the linear program max{cx|x ∈ P (S)}. Notice that the polyhedron P (S) can be described by a set of a facet defining inequalities. And when all the inequalities of this set are known, then solving P is equivalent to solve a linear program.

Recall that the objective of the polyhedral approach for combinatorial optimization problems is to reduce the resolution of P to that of a linear program. This reduction induces a deep investigation of the polyhedron associated with P. It is generally not easy to characterize the polyhedron of a combinatorial optimization problem by a system of linear inequalities. In particular, when the problem is NP-hard there is a very little hope to find such a characterization. Moreover, the number of inequalities describing this polyhedron is, most of the time, exponential. Therefore, even if we know the complete description of that polyhedron, its resolution remains in practice a hard task because of the large number of inequalities.

Fortunately, a technique called the cutting plane method can be used to overcome this difficulty. This method is described in what follows.

The cutting plane method is based on the so-called separation problem. This consists, given a polyhedron P of R n and a point x * ∈ R n , in verifying whether if x * belongs to P , and if this is not the case, to identify an inequality a T x ≤ b, valid for P and violated by x * . In the later case, we say that the hyperplane a T x = b separates P and x * (see Figure 1.9). Figure 1.9: A hyperplane separating x * and P 1. 4 Grötschel, Lovász and Schrijver [START_REF] Grötschel | The ellipsoid method and its consequences in combinatorial optimization[END_REF] have established the close relationship between separation and optimization. In fact, they prove that optimizing a problem over a polyhedron P can be performed in polynomial time if and only if the separation problem associated with P can be solved in polynomial time. This equivalence has permitted an important development of the polyhedral methods in general and the cutting plane method in particular. More precisely, the cutting plane method consists in solving successive linear programs, with possibly a large number of inequalities, by using the following steps. Let LP = max{cx, Ax ≤ b} be a linear program and LP a linear program obtained by considering a small number of inequalities among Ax ≤ b. Let x * be the optimal solution of the latter system. We solve the separation problem associated with Ax ≤ b and x * . This phase is called the separation phase. If every inequality of Ax ≤ b is satisfied by x * , then x * is also optimal for LP . If not, let ax ≤ α be an inequality violated by x * . Then, we add ax ≤ α to LP and repeat this process until an optimal solution is found. Algorithm 6 summarizes the different cutting plane steps.

Algorithm 6: A cutting plane algorithm

Data: A linear program LP and its system of inequalities Ax ≤ b Result: Optimal solution x * of LP Consider a linear program LP with a small number of inequalities of LP ; Solve LP and let x * be an optimal solution; Solve the separation problem associated with Ax ≤ b and x * ; if an inequality ax ≤ α of LP is violated by x * then Add ax ≤ α to LP ; Repeat step 2 ; end else

x * is optimal for LP ; return x * ; end Note that at the end, a cutting-plane algorithm may not succeed in providing an optimal solution for the underlying combinatorial optimization problem. In this case a Branch-and-Bound algorithm can be used to achieve the resolution of the problem, yielding to the so-called Branch-and-Cut algorithm.

Branch-and-Cut algorithm

Consider again a combinatorial optimization problem P and suppose that P is equivalent to max{cx|Ax ≤ b, x ∈ {0, 1} n }, where Ax ≤ b has a large number of inequalities. A Branch-and-Cut algorithm starts by creating a Branch-and-Bound tree whose root node corresponds to a linear program LP 0 = max{cx|A 0 x ≤ b 0 , x ∈ R n }, where A 0 x ≤ b 0 is a subsystem of Ax ≤ b having a small number of inequalities. Then, we solve the linear relaxation of P that is LP = {cx|Ax ≤ b, x ∈ R n } using a cutting plane algorithm whose starting from LP 0 . Let x * 0 denote its optimal solution and A 0 x ≤ b 0 the set of inequalities added to LP 0 at the end of the cutting plane phase. If x * 0 is integral, then it is optimal. If x * 0 is fractional, then we perform a branching phase. This step consists in choosing a variable, say x 1 , with a fractional value and adding two nodes P 1 and P 2 in the Branch-and-Cut tree. The node P 1 corresponds to the linear program

LP 1 = max{cx|A 0 x ≤ b 0 , A 0 x ≤ b 0 , x 1 = 0, x ∈ R n } and LP 2 = max{cx|A 0 x ≤ b 0 , A 0 x ≤ b 0 , x 1 = 1, x ∈ R n }. We then solve the linear program LP 1 = max{cx|Ax ≤ b, x 1 = 0, x ∈ R n } (resp. LP 2 = max{cx|Ax ≤ b, x 1 = 1, x ∈ R n }
) by a cutting plane method, starting from LP 1 (resp. LP 2). If the optimal solution of LP 1 (resp. LP 2) is integral then, it is feasible for P. Its value is then a lower bound of the optimal solution of P, and the node P 1 (resp. P 2) becomes a leaf of the Branch-and-Cut tree. If the solution is fractional, then we select a variable with a fractional value and add two children to the node P 1 (resp. P 2), and so on.

Note that sequentially adding constraints of type x i = 0 and x i = 1, where x i is a fractional variable, may lead to an infeasible linear program at a given node of the Branch-and-Cut tree. Or, if it is feasible, its optimal solution may be worse than the best known lower bound of the problem. In both cases, that node is pruned from the Branch-and-Cut tree. The algorithm ends when all nodes have been explored and the optimal solution of P is the best feasible solution given by the Branch-and-Bound tree. This algorithm can be improved by computing a good lower bound of the optimal solution of the problem before it starts. The lower bound can be used by the algorithm to prune the node which will not allow an improvement of this lower bound. This would permit to reduce the number of nodes generated in the Branch-and-Cut tree, and hence, reduce the time used by the algorithm. Furthermore, this lower bound may be improved by comparing at each node of the Branch-and-Cut tree a feasible solution when the solution obtained at the root node is fractional. Such a procedure is referred to as a primal heuristic. It aims to produce a feasible solution for P from the solution obtained at a given node of the Branch-and-Cut tree, when this later solution is fractional (and hence infeasible for P). Moreover, the weight of this solution must be as good as possible. When the solution computed is better than the best known lower bound, it may significantly reduce the number of generated nodes, as well as the CPU time. Moreover, this guarantees to have an approximation of the optimal solution of P before visiting all the nodes of Branch-and-Cut tree, for instance when a CPU time limit has been reached.

The Branch-and-Cut approach has shown a great efficiency to solve various problems of combinatorial optimization that are considered difficult to solve, such as the Travelling Salesman Problem [START_REF] Applegate | Implementing the dantzigfulkerson-johnson algorithm for large traveling salesman problems[END_REF]. Note a good knowledge of the polyhedron associated with the problem, together with efficient separation algorithms (exacts as well as heuristics), might help to improve the effectiveness of this approach. Besides, the cutting plane method is efficient when the number of variables is polynomial. However, when the number of variables is large (for instance exponential), further methods, as column generation are more likely to be used. In what follows, we briefly introduce the outline of this method.

Metaheuristics

Approximation methods are generally based on two major phases; A constructive heuristic and a phase of improvement.

A constructive heuristic constructs the solution by a series of partial and final choices. It is called a greedy method when it seeks to make the most judicious choice at each iteration. A greedy algorithm is thus called an algorithm which follows the principle of making, step by step, an optimal choice locally, in the hope of obtaining an optimal result globally. These algorithms have the advantage of being very fast however they do not provide any guarantees as to the quality of the solution.

The improvement phase, as the name suggests, tends to improve the quality of a fully constructed solution received as input by replacing at each iteration the solution by another one belonging to its neighborhood but of better quality. This local search generally leads to obtaining a local optimal solution. Feignebaum and Feldman in 1963 [START_REF] Feigenbaum | Computers and thought[END_REF], define a heuristic as an estimation rule, a strategy, a trick, a simplification, or any other kind of system that drastically limits the search for solutions in the space of possible configurations. In practice, heuristics are generally known and targeted to a particular problem.

In the 70ies, metaheuristics has emerged as a new kind of approximate algorithm that, in the other hand, takes place at a higher level and intervenes in all situations where the engineer knows no effective heuristics to solve a given problem or when he considers that he does not have the necessary time to determine one.

In 1996, Osman and Laporte [START_REF] Osman | Metaheuristics: A bibliography[END_REF] defined metaheuristics as "an iterative generation process which guides a subordinate heuristic by combining intelligently different concepts for exploring and exploiting the search space, learning strategies are used to structure information in order to find efficiently near-optimal solutions."

Metaheuristics are based on two axes, namely diversification, and intensification. Diversification generally refers to the exploration of the research space and thus the gathering of information on the resolution of the COP concerned. The term intensification refers to the exploitation of the accumulated search experience. Each metaheuristic application is characterized by a balance between diversification and intensification.

There are different ways to classify and describe metaheuristics. The most common and usefull for us in this work is to classify the metaheuristics into methods that perform single point vs. population based Seach. It refers to the number of solutions used by the metaheuristic at any iteration.

Algorithms that work on a single solution at any time are referred to as trajectory methods. They comprise all metaheuristics that are based on local search, such as tabu search, variable neighborhood search, etc. They all share the property that the search process describes a trajectory in the search space. Population-based metaheuristics, on the contrary, either perform search processes which can be described as the evolution of a set of points in the search space (as for example in evolutionary computation), or they perform search processes which can be described as the evolution of a probability distribution over the search space (as for example in ant colony optimization).

In what follows, we give a brief outline of some of the most important methods.

Trajectory metaheuristics

Simulated Annealing

Simulated Annealing (SA) is one of the oldest (if not the oldest) metaheuristic. For sure, SA is one of the first algorithms with an explicit strategy for escaping local minima. The algorithm has its origins in statistical mechanics and the Metropolis algorithm [START_REF] Metropolis | Equation of state calculations by fast computing machines[END_REF]. The idea of SA is inspired by the annealing process of metal and glass, which assume a low energy configuration when first heated up and then cooled 1.5 down sufficiently slowly. SA was first presented as a search algorithm for CO problems in [START_REF] Kirkpatrick | Optimization by simulated annealing[END_REF] and [START_REF] Černỳ | Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm[END_REF].

The fundamental idea is to allow moves to solutions with objective function values that are worse than the objective function value of the current solution. This kind of move is often called uphill move. At each iteration, an elementary modification of the solution is carried out according to a well-defined model:

• If it lowers the temperature of the system ⇒ it is applied

• Otherwise ⇒ it is accepted at a probability p (calculated as a function of the temperature T k of the system) Moreover, during a run of SA, the value of T k generally decreases. In this way, the probability of accepting a solution that is worse than the current one decreases during a run.

Tabu Search

Like SA, Tabu Search (TS) [START_REF] Glover | Future paths for integer programming and links to artificial intelligence[END_REF] is one of the older metaheuristics. A description of the method and its concepts can be found in [START_REF] Glover | Tabu Search[END_REF].

The basic idea of TS is the explicit use of search history, noth to escape from local optima and to have a mechanism for the exploration of the search space. It uses a short-term memory, and on each iteration it makes the best change of the solution (even if negative) by saving the positions already explored is an adjustable-size FIFO queue (can be dynamic).

Iterated Local Search

Iterated Local Search (ILS) [START_REF] Stützle | Local search algorithms for combinatorial problems: analysis, improvements, and new applications[END_REF][START_REF] Lourenço | Iterated local search[END_REF] is a metaheuristic based on a simple but effective concept. Instead of repetitively applying a local search method on randomly constructed solutions (the most intuitive idea of finding a good local minimum), an ILS algorithm produces the starting point for the next iteration by a perturbation of the local optimal solution obtained by the previous application of a local search.

Variable neighborhood search

This metaheuristic was first proposed in [START_REF] Hansen | An introduction to variable neighborhood search[END_REF][START_REF] Hansen | Variable neighborhood search: Principles and applications[END_REF]. The main idea of this method is based on the fact that a local optima solution of a problem corresponds to a welldetermined neighborhood function, is not necessarily optimal locally with respect to different neighborhood function. The metaheuristic then performs at each iteration the best change in the solution, and if the solution is no longer possible, the search neighborhood is enlarged until a limit K is reached.

Population-based metaheuristics

Population-based methods deal at each iteration of the algorithm with a set of solutions rather than with a single solution. They provide a natural way for the exploration of the search space. Yet, the final performance strongly depends on the way the population is manipulated. The most studied population-based metaheuristics are Evolutionary Algorithms (EA) and Ant Colony Optimization (ACO).

Ant Colony

The Ant Colony Optimization metaheuristic [START_REF] Dorigo | Ant colony optimization[END_REF] was inspired by the observation of the shortest-path-finding behavior of natural ant colonies.

Initially, ants explore the area surrounding their nest in a random manner. As soon as an ant finds a source of food, it evaluates quantity and quality of the food and carries some of this food to the nest. During the return trip, the ant deposits a chemical pheromone trail on the ground. The quantity of pheromone deposited, which may depend on the quantity and quality of the food, will guide other ants to the food source. The indirect communication between the ants via the pheromone trails allows them to find shortest paths between their nest and food sources. This functionality of real ant colonies is exploited in artificial ant colonies in order to solve hard optimization problems.

In ACO algorithms the chemical pheromone trails are simulated via a parametrized probabilistic model that is called the pheromone model. It consists of a set of model parameters whose values are called the pheromone values. These values act as the memory that keeps track of the search process. The basic ingredient of ant colony optimization algorithms is a constructive heuristic that is used for probabilistically constructing solutions using the pheromone values. In general, the ant colony optimization approach attempts to solve a CO problem by iterating the following two steps:

• Solutions are constructed using a pheromone model, that is, a parametrized probability distribution over the solution space.

• The constructed solutions and possibly solutions that were constructed in earlier iterations are used to modify the pheromone values in a way that is deemed to bias future sampling toward high quality solutions.

Genetic Algorithms

Evolutionary computation (EC) can be regarded as a metaphor for building, applying, and studying algorithms based on Darwinian principles of natural selection. The instances of algorithms that are based on evolutionary principles are called evolutionary algorithms (EAs) [START_REF] Bäck | Handbook of evolutionary computation[END_REF]. EAs can be characterized as computational models of evolutionary processes. They are inspired by nature's capability to evolve living beings well adapted to their environment. At the core of each EA is a population of individuals. At each algorithm iteration a number of reproduction operators is applied to the individuals of the current population to generate the individuals of the population of the next generation. EAs might use operators called recombination or crossover to recombine two or more individuals to produce new individuals. They also can use mutation or modification operators which cause a self-adaptation of individuals.

The driving force in EAs is the selection of individuals based on their fitness (which might be based on the objective function, the result of a simulation experiment, or some other kind of quality measure). Individuals with a higher fitness have a higher probability to be chosen as members of the population of the next generation (or as parents for the generation of new individuals). This corresponds to the principle of survival of the fittest in natural evolution. It is the capability of nature to adapt itself to a changing environment, which gave the inspiration for EAs.

There has been a variety of different EAs proposed over the decades. Three different stands of EAs developed independently in the early years. These are Evolutionary Programming (EP) as introduced by Fogel in [START_REF] Fogel | Toward inductive inference automata[END_REF] and Fogel et al. in [START_REF] Fogel | Artificial intelligence through simulated evolution[END_REF], Evolutionary Strategies (ESs) proposed by Rechenberg in [START_REF] Rechenberg | Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der biologischen Evolution[END_REF] and Genetic Algorithms (GAs) initiated by Holland in [START_REF] Holland | Outline for a logical theory of adaptive systems[END_REF][START_REF] Holland | Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence[END_REF]. The evolution of parallel architectures over time has made possible the fact of producing machines whose computing power grows faster and faster. A simple way to understand the different types of architecture that are or have been the basis of these powerful machines is to compare their main features. To this end, we will present two complementary classifications known in the literature. The first is that of Flynn [START_REF] Flynn | Some computer organizations and their effectiveness[END_REF][START_REF] Duncan | A survey of parallel computer architectures[END_REF] based on the two dimensions given instructions. As for the second classification, it identifies the different parallel architectures according to the interconnection of their components.

Flynn taxonomy

In 1972, Flynn [START_REF] Flynn | Some computer organizations and their effectiveness[END_REF][START_REF] Duncan | A survey of parallel computer architectures[END_REF] proposed a classification of parallel machines based on the notion of stream(s) of data and stream(s) of instruction. It distinguishes four main types basically:

• the Single Instruction Single Data architecture (SISD),

• the Single Instruction Multiple Data architecture (SIMD),

• the Multiple Instruction Single Data architecture (MISD),

• and the Multiple Instruction Multiple Data architecture (MIMD).

SISD architecture

In these machines, only one instruction is executed and only one data is processed at any time. The treatments in this type of machines are therefore sequential (without parallelism). This model corresponds to a conventional single-core Von Neumann machine.

1.6 25 1.6.1.1.2 SIMD architecture
In these machines, all processors are identical and are controlled by a single centralized control unit. At each step, all processors execute the same instruction synchronously but on different data. This type of machine is used for specialized calculations (e.g. vector calculations). These machines correspond, for example, to graphic processors (GPUs) or floating point units (FPUs).

MISD architecture

These machines can execute multiple instructions on the same data. This model includes some pipeline architectures and fault-tolerant architectures by computational replication.

MIMD architecture

In this model, each processor is autonomous, has its own control unit, and runs its own stream of instructions on its own data stream. These machines are the most common today: one finds the machines with shared memory (SMP, MPP), the machines with distributed memory and the machines with hybrid memory.

Other taxonomy

The difficulty of transposing the Flynn classification into real physical architectures justifies the use of a second taxonomy [START_REF] Culler | Parallel computer architecture: a hardware/software approach[END_REF][START_REF] Barney | What is parallel computing[END_REF]. This second approach will give a complementary view to that of Flynn and classifies the architectures according to the interconnections of the processors and the memories. Five classes are often identified:

• the Symmetric MultiProcessors (SMP),

• the Massively Parallel Processors (MPP),

• the Multiple-cores,

• the Cluster,

• and the Grid.

SMP

This architecture is composed of several identical processors sharing the same memory (the processors read and write in the same memory, but generally have their own cache). The memory access time is identical between processors. These machines that access at the same speed all memory areas are also called UMA (Uniform Memory Access) machines. However, access to memory constitutes a bottleneck on this type of architecture as soon as the number of processors becomes important.

.2 MPP

In a multiprocessor architecture of MPP type, unlike SMP machines, processors do not share either a single memory or inputs and outputs. Each processor has its own memory and has a fast interconnection with other processors. It is therefore a MIMD type architecture with distributed memory. Any processor in an MPP may have its own operating system (OS), which makes it more difficult to implement a single-image system. The use of standard components results in a good cost / performance relationship. MPP machines have no limit on the number of processors and are easily expandable. However, due to the lack of a single-image OS, their programming is more difficult than that of SMP machines. Thus, communication and inter-processor coordination are explicit.

To overcome the deficiencies in the distributed memory of MPP architectures, an evolution concerns the creation of parallel machines with Distributed Shared Memory (DSM). Unlike SMP, access to the virtual memory commonly depends on the physical location of the processor and the memory in the parallel machine. This is called a NUMA (Non Uniform Memory Access) machine. However, in order not to complicate the work of the programmer, it is also necessary that the different cache levels of the processors are synchronized with the memory addresses they represent. This is called ccNUMA (Cache Coherency NUMA).

.3 Multiple-cores

A multi-core processor is composed of at least two computing units (cores) engraved within the same chip. Processor cores in most cases are homogeneous (identical). But IBM, Sony and Toshiba have exploited the case of heterogeneous (different) cores and specialized in specific fields (audio, display, pure calculation). Since 2005, multi-core processors have become predominent on the microprocessors market [START_REF] Hughes | Transparent multi-core cryptographic support on niagara cmt processors[END_REF].

.2.4 Cluster

A cluster is not a single parallel machine in the traditional sense but consists of a set of nodes (single-processor machines, multi-core processors or SMPs) interconnected by a local (and often fast) network. It is therefore a network of computers in general of homogeneous character. One of the primary objectives of a cluster is to provide a single-image environment for a single system for cluster-based applications. For this, it is often associated with a shared virtual memory system. By its nature, a cluster consists of only standard components and thus has a very good cost/performance ratio. In addition, it is easily expandable and has become one of the most common parallel architectures today.

The difference between a cluster and an MPP decreases more and more. The existence of suitable environments now makes it possible to deploy a cluster with the same computational power as an MPP or an SMP parallel server which are much more expensive [START_REF] Creel | Multi-core cpus, clusters, and grid computing: A tutorial[END_REF].

.5 Grid architecture

A grid is a set of clusters interconnected by a very high-speed network. It is a very heterogeneous architecture since the materials and the systems which constitute it can be very composite. Notice, for example, the unifying project of a grid for research in France, called Grid 5000 [66].

1.6 29 1.6.1.3 Summary Among the classes cited, the most general and most used are those of the MIMD and SIMD machines. In the MIMD class, Distributed Memory (DM) machines, Shared Memory (SM) machines and Hybrid Memory (HM) machines are distinguished.

In the SM model, all the processors in the parallel machine share the same memory space in which they can read and write independently and asynchronously. The memory access costs can be identical for each of the processors (UMA: Uniform Memory Access) or processor dependent and the addresses accessed (NUMA machines). Simultaneous executions are performed by threads. The execution threads share the same memory space and the data exchanges between them are simply made by reading / writing in memory. It is therefore necessary to ensure that two execution threads do not modify at the same time the value of a data item in the same area of the shared memory. This can be done by using synchronization tools such as locks, semaphores, or synchronization barriers.

In the DM model, each processor of the parallel machine has its own local memory, and the processor memories are physically distant [START_REF] Lastovetsky | Parallel computing on heterogeneous networks[END_REF]. The data communication between the processors is done by exchanging messages and also the synchronizations between the processors. Communications can be synchronous. When a message is sent by a transmitter, the receiver receives them and its response must be explicit. Communications can be bipoint or collective, that is, by involving all processors in the exchanges. The main disadvantage of this model is the cumbersome programming, since a processor can only access data in its own memory. This architecture, which does not allow direct access to a remote memory, is also known as NORMA (Non Remote Memory Access) or distributed memory machines. Shared virtual memories (MVPs) provide a vision of a global space (NUMA) from a paging memory [START_REF] Hager | Communication characteristics and hybrid mpi/openmp parallel programming on clusters of multi-core smp nodes[END_REF].

To combine the advantage of interprocessor communication speed in a shared memory machine and the high number of processors in the distributed memory architecture, manufacturers have been thinking about a new shared-distributed hybrid architecture. The machines of this type consist of nodes, called clusters, each of which is composed of several processors sharing a common memory, all of these nodes being connected by an interconnection network. Here, the intra-node shared memory architecture and the inter-node distributed memory architecture are assembled [START_REF] Hager | Communication characteristics and hybrid mpi/openmp parallel programming on clusters of multi-core smp nodes[END_REF].

Modeling the program execution

In this section, we present the different representations of the execution of a parallel algorithm. Generally, three graph families are used to represent the execution of parallel programs: dependency graph, precedence graph and dataflow graph [START_REF] Gengler | Initiation au parallélisme: concepts, architectures et algorithmes[END_REF].

Dependency graph

A Dependency Graph (DG) is an undirected graph. The nodes of the graph represent the tasks, or even the data of the program, and the edges represent the dependencies between the tasks (bipoint communications), or between a task and a data item.

Precedence graph

A Precedence Graph (PG) is a circuit-free oriented graph (GOSC). The nodes of the graph represent the tasks of the program and the edges represent the dependencies between the tasks. Dependencies are introduced to set up data access conflicts. They can be interpreted as communication between tasks. In this type of graph, a task is considered ready as soon as all the tasks that precede it in the graph are completed. This type of graph is used for dynamic parallel programs such as, for example, recursive programs or programs containing parallel loops whose boundaries are not known before execution.

Dataflow graph

Since the dependencies between tasks are considered to be data exchange communications, it is possible to add information on data communicated in the graph. A data accessed by a task can be characterized by the type of operation that the task will perform on it, as detailed below.

• Read-only: the task will not modify the data but will simply read its value

• Write Only: The task can only use the data to assign it

• Write in accumulation: several tasks will carry out an associative and commutative operation on a data in writing (a calculation of scalar product for example)

1.6

• Change: The task will change the value of the data.

This graph is called a Dataflow graph (DFG). The difference between the previous (PG) and dataflow (DFG) graphs is at the synchronization level. In a DFG, a task is considered ready as soon as the data it has input is available. Note, however, that a DFG contains information from a precedence graph. For load control, this type of graph provides more information. Indeed, since the data communicated between the tasks are identified, the sizes of the data can also be provided. This information can be used to exploit the locality of the data during the placement of tasks or for the routing of the data accessed to the site of the task execution.

Parallelization methodology

The main reason for designing a parallel algorithm is the expected gain in execution time. There are essentially two methods for designing a parallel algorithm, one of which consists in detecting and exploiting the inherent parallelism in an already existing sequential algorithm, the other consisting in constructing a new algorithm dedicated to the given problem. The design of a parallel algorithm for a given problem is much more complex than that of a sequential algorithm. Several factors will have to be taken into account, inter alia, that part of the corresponding program which can be processed in parallel, how to distribute the data, data dependencies, charge distribution between the processors, synchronizations between the processors, etc.

In fact, there is no simple and general recipe for obtaining parallel algorithms. However, a methodology can be proposed that organizes the process in four distinct stages: (i) partitioning (segmentation), (ii) communication, (iii) agglomeration, and (iv) placement [START_REF] Darwish | A high scalability parallel algebraic multigrid solver[END_REF]. The first two steps seek to develop competing and scalable algorithms. It should be noted that the scalability of a parallel algorithm on a parallel architecture refers to the ability of the algorithm-architecture combination to deliver increasing speedups in proportion to the increase in the number of processors. As for the last two stages, they focus on the locality and the performance problems [START_REF] Nasri | Parallélisation d'algorithmes matriciels récursifs par le paradigme 'Diviser pour Paralléliser' dans des environnements homogène et hétérogène[END_REF].

Partitionning

Partitioning (or segmentation) refers to the decomposition of computing activities and associated data on which it operates in several small tasks. The decomposition of data associated with a problem is called domain/data decomposition, and the computational decomposition into disjoint tasks is called functional decomposition [START_REF] Nasri | Parallélisation d'algorithmes matriciels récursifs par le paradigme 'Diviser pour Paralléliser' dans des environnements homogène et hétérogène[END_REF]. Various paradigms that can be used in this stage have emerged in the literature, including the famous Divide and Conquer Paradigm (DPR).

Communication

It focuses on the flow of information and coordination between the tasks that are created during the partitioning step. The nature of the problem and the method of decomposition determine the mode of communication between the cooperative tasks of a parallel program. The four modes of communication commonly used in parallel programs are (i) local/global, (ii) structured/unstructured, (iii) static/dynamic, and (iv) synchronous/asynchronous.

Agglomeration

In this step, the tasks and communication structure defined in the first two steps are evaluated based on performance requirements and implementation costs. If necessary, tasks are grouped into larger tasks (large grains) to improve performance or reduce development costs. Individual communications can be grouped into a super communication. This will reduce communications costs by increasing computational and communication granularities, gain flexibility based on scalability and investment decisions, and reduce engineering software costs.

Placement

It involves assigning each task to a processor to maximize the use of system resources (such as CPUs) while minimizing communication costs. Placement decisions can be taken statically (at compile time and prior to execution of the program) or dynamically during execution by load balancing methods. It should be noted that several major challenge applications have been designed using the above methodology [START_REF] Darwish | A high scalability parallel algebraic multigrid solver[END_REF].

Performance metrics

Consider a parallel algorithm P A to implement on a multiprocessor machine M made up of p identical processors. Let T p be the execution time of P A on the p processors and T 1 the execution time on only 1 processor. We then define [START_REF] Gengler | Initiation au parallélisme: concepts, architectures et algorithmes[END_REF][START_REF] Jájá | An introduction to parallel algorithms[END_REF][START_REF] Nasri | Parallélisation d'algorithmes matriciels récursifs par le paradigme 'Diviser pour Paralléliser' dans des environnements homogène et hétérogène[END_REF]:

1.6 • the Cost C p = pT p • the Speedup S p = T 1 Tp • the Efficiency E p = Sp p = T 1 pTp = T 1

Cp

The notion of the cost of an algorithm is intended to take into account both the execution time and the number of processors used to obtain it. Adding processors is always expensive (purchase, installation, maintenance, etc.), for the same run time. With a fixed duration, an algorithm that requires the use of fewer processors than another is therefore always preferable.

The ideal speedup is equal to p. If we consider this function, the parallel algorithm is all the more efficient as the curve of variations is close to the line of equation y = p. In this case we will speak of linear speedup. To have good speedups, the extra cost of parallelization in computation time, and especially in communication volume, must be minimum. It is also necessary to apply to minimize the inactivity times of the processors due to an imbalance in the distribution of the charges between the processors. In some cases, the latter may be inevitable, in particular because of the inter-task precedences or the heterogeneity of the processors.

Note that we can introduce the notion of relative speedup, as opposed to absolute speedup, which does not take into account the intrinsically sequential (and therefore nonparallelizable) parts of the algorithm. Sometimes, the speedup is greater than p. In this case, we will say that it is super-linear [START_REF] Jájá | An introduction to parallel algorithms[END_REF]. This happens, for example, when the parallel algorithm allows a better use of the memory hierarchies, and thus reduces the total time. This is also possible if the sequential reference algorithm is not the same as the algorithm used for parallelization and is less efficient.

The efficiency of a parallel algorithm is generally less than 1 (or 100% if defined as a percentage). The closer the efficiency is to 1, the better the algorithm has good parallel qualities. The most important factor in decreasing efficiency is the cost of communication.

A parallel algorithm will be said of optimal cost if one has C p = O(T 1), which is equivalent to E p = O(1). We extend this definition for the purposes of our study by considering that a parallel algorithm is said to be of optimal cost if we have: Cp T 1 -→ 1 when n -→ ∞, n being the size of the problem solved by P A .

On the other hand, in order to avoid confusion between the notion of cost of a parallel algorithm that has just been presented (p×duration) and that of classical cost meaning duration or complexity, used fairly in the literature, we will designate, in the following, the first (total work of the parallel algorithm) by the term cost C p and the second (execution time) by the term cost only.

The communication-computation ratio associated with P A is also defined by:

P cc = Communication time

Calculation time

This ratio quantifies the overhead due to communications relative to the volume of computation.

Conclusion

In this Chapter we presented some basic notions on combinatorial optimization, graph theory and the theory of complexity. We then perform a brief summary of the elements of polyhedral theory in order to introduce some combinatorial exact methods, some metaheuristics and basics of parallel computing.

Chapter 2 In this Chapter we introduce the reader to a class of COPs known as Survivable Network Design Problems (SNDPs). We present a state-of-the-art on two known problems from this class that we chose as applications and talk about the main motivation of this thesis. We introduce after that a state-of-the-art on hybridization taxonomies and a brief state-of-the-art on the history of the parallel computing works on combinatorial optimization.

State-of-the-art and Motivation

Survivable Network Design Problems

Designing efficient networks are nowadays of crucial importance since networks take a large place in many fields (telecommunications, logistics, economics, IT, etc.). Addressing network design issues has raised a large class of problems.

Definition

Survivable Network Design Problems (SNDP) are those network design problems which aim in designing networks that are still functionning even when failures occur. The importance of survivabililty in networks has lead to a wide litterature on these problems, and several algorithms, both exact and heuristic methods, have been proposed to address them.

We consider in this chapter two SNDP, namely, the k-Edge-Connected Survivable Network Design Problem and the k-Edge-Connected Hop-Constrained Survivable Network Design Problem (respectively kESNDP and kHNDP for short). The two problems are defined as follows. Given a weighted undirected graph G = (V, E) where each edge e has a weight ω e , a set of demands D ⊆ V × V , a positive integer k, the kESNDP is to find a minimum weight subgraph of G such that for each demand {s, t} ∈ D, there exist k edge-disjoint paths between s and t. If, in addition, we require that, for all demand {s, t} ∈ D, there exist k edge-disjoint st-paths of length at most L, for some integer L ≥ 2, the problem obtained is the kHNDP.

State of the art

Both kESNDP and kHNDP are NP-hard and have been investigated in the litterature. The kESNDP is a particular case of a more general problem, called General Survivable Network Design Problem (GSNDP for short) in which it is required that there exist r st edge-disjoint paths between s and t, for all {s, t} ∈ D. This latter, and its variants, have been studied by several authors (see for instance [START_REF] Steiglitz | The design of minimum-cost survivable networks[END_REF][START_REF] Magnanti | Strong formulations for network design problems with connectivity requirements[END_REF][START_REF] Winter | Steiner problem in networks: a survey[END_REF][START_REF] Grötschel | Integer polyhedra arising from certain network design problems with connectivity constraints[END_REF][START_REF] Grötschel | Facets for polyhedra arising in the design of communication networks with low-connectivity constraints[END_REF][START_REF] Goemans | Survivable networks, linear programming relaxations and the parsimonious property[END_REF]). In [START_REF] Goemans | Survivable networks, linear programming relaxations and the parsimonious property[END_REF], Goemans and Bertsimas studied a variant of the problem in which each node u of the graph is given an integer r u ≥ 0 which corresponds to the minimum number of paths connecting u to the rest of the network, and proposed a heuristic to solve this problem. Grötschel and Monma [START_REF] Grötschel | Integer polyhedra arising from certain network design problems with connectivity constraints[END_REF], and Grötschel et al. [START_REF] Grötschel | Facets for polyhedra arising in the design of communication networks with low-connectivity constraints[END_REF] considered the polytope associated with the GSNDP and gave some valid inequalities as well as conditions for these inequalities to define facets. In [START_REF] Magnanti | Strong formulations for network design problems with connectivity requirements[END_REF] presented several integer programming formulations for the GSNDP for both undirected and directed graphs. They also discussed the efficiency of each formulation in terms of LP-relaxation. Kerivin and Mahjoub in [START_REF] Kerivin | Design of survivable networks: A survey[END_REF] presented a review of the main models associated with the GSNDP as weel as the main associated polyhedral results. Another well known SNDP is the so-called k-edge-connected subgraph problem (kECSP for short) in which it is required that there exist k edge-disjoint paths between each pair of nodes of the graph. This problem corresponds to the kESNDP where D = {{s, t}, for all s, t ∈ V with s = t}, and r st = k, for all {s, t} ∈ D. Several papers deal with the structural properties of the solution of the kECSP. Among these, we mention the paper of Kerivin et al. [START_REF] Kerivin | 1,2)-survivable networks: Facets and branch&cut[END_REF] and Bendali et al. [START_REF] Bendali | A branch-and-cut algorithm for the k-edge connected subgraph problem[END_REF] which proposed a polyhedral approach and Branch-and-Cut algorithms for the kECSP, respectively when k = 2 and k ≥ 3.

The kHNDP has also been widely studied. Dahl [START_REF] Dahl | Notes on polyhedra associated with hop-constrained paths[END_REF] considers the k-edge-connected hop-constrained path problem, that is the problem of finding between two distinguished nodes s and t a minimum cost path with no more than L edges (L ≤ 3). In other words he considered the kHNDP with k = 1 and |D| = 1, and a complete description of the dominant of the polytope when L ≥ 3. Dahl and Gouveia [START_REF] Dahl | On the directed hop-constrained shortest path problem[END_REF] considered the directed version of the problem. They described some valid inequalities and give a complete description of the polytope of the problem when k = 1, |D| = 1 and L ≤ 3.

For the case where several pairs {s, t} of terminals have to be linked by k L-hopconstrained paths, Dahl and Johannessen [START_REF] Dahl | The 2-path network problem[END_REF] study the 2-path network design problem which consists in finding a minimum cost subgraph connecting each pair of terminal nodes by at least one path of length at most 2. They proved also that the problem is NP-Hard even when k = 1 and L = 2. Ribeiro and Rosseti in 2002 proposed a parallel GRASP heuristic for the 2-path network design problem [START_REF] Ribeiro | A parallel grasp heuristic for the 2-path network design problem[END_REF]. In [START_REF] Huygens | The two-edge connected hop-constrained network design problem: Valid inequalities and branch-and-cut[END_REF], Huygens et al. proposed a polyhedral approach for the kHNDP when k = 2, |D| ≥ 2 and L = 2, 3. They introduced several valid inequalities and devised a Branch-and-Cut algorithm for the problem. Diarrassouba et al. [START_REF] Diarrassouba | Integer programming formulations for the k-edge-connected 3-hop-constrained network design problem[END_REF] investigated the kHNDP when L = 2, 3. They presented several integer programming formulations based on graph transformations. They also compared these formulations both in terms of LP-relaxation and in terms of efficiency. In [START_REF] Botton | Benders decomposition for the hopconstrained survivable network design problem[END_REF], Botton et al. present the first formulation of the k-HNDP for any k, L ≥ 1 and use a Benders decomposition method to handle the big number of variables and constraints. They present as well a computational study of various cutting plane and branch-and-cuts algorithms. Diarrassouba et al. [START_REF] Diarrassouba | Two node-disjoint hopconstrained survivable network design and polyhedra[END_REF] also investigated a version of the kHNDP in which it is required that the paths are node-disjoint. They presented some valid inequalities and devised a Branch-and-Cut algorithm for this problem when k = 2.

Parallel computing and combinatorial optimization

Traditionally, the emphasis in parallel computing has been put on numerical (linear) problems due to the huge number of applications demand in computational aerodynamics, weather forecasting, satellite image processing, military uses, etc.

We had to wait till the last of the 80s to see the first works on parallel combinatorial optimization where in [START_REF] Kindervater | A parallel branch and bound algorithm for the job shop problem, presentation[END_REF][START_REF] Kindervater | An introduction to parallelism in combinatorial optimization[END_REF][START_REF] Kindervater | Parallel computing in combinatorial optimization[END_REF], Kindervater and Lenstra presented a review of the literature on parallel computers and algorithms as far and discussed how its relevantness for the area of combinatorial optimization. Roucairol, after that, in 1989 [START_REF] Roucairol | Parallel computing in combinatorial optimization[END_REF], showed the interest and the impact of parallel computers on the field of non-numerical (combinatorial) algorithms. Since then, due to the progress made in the parallelism field (architectures, languages and algorithms) over the last decade has brought about real advances in combinatorial optimization at the start of the 21st century. The recent media "storm" following the solving of several hard instances of famous problems like the traveling salesman or quadratic assignment is proof of this [START_REF] Cung | Parallel Combinatorial Optimization[END_REF]. In fact, in a continuation of his work since 1998, Peter Hahn from University of Pennsylvania used parallel computing to solve the example called Krarup30a (size 30 elements to be assigned) [START_REF] Hahn | Lower bounds for the quadratic assignment problem based upon a dual formulation[END_REF][START_REF] Hahn | A branch-and-bound algorithm for the quadratic assignment problem based on the hungarian method[END_REF][START_REF] Hahn | Tree elaboration strategies in branch-and-bound algorithms for solving the quadratic assignment problem[END_REF], and the group Anstreicher, Brixiut, Goux and Linderoth from the University of Iowa and the Argonne National Laboratory the examples Nugent27 and Nugent30 in [START_REF] Anstreicher | A new bound for the quadratic assignment problem based on convex quadratic programming[END_REF][START_REF] Anstreicher | Solving quadratic assignment problems using convex quadratic programming relaxations[END_REF][START_REF] Anstreicher | Solving large quadratic assignment problems on computational grids[END_REF]. Solving the instance of Nugent30 was reported widely in the American press (Chicago Tribune, Chicago Sun Times, HPCWire, WNCSA Access Magazine, etc.) and in a number of French papers and journals (InfoScience, Le Monde, Transfert, etc.). The extent of the impact of this solution was as important as that provoked by the victory of IMB's chess-playing parallel machine DeepBlue against the "human" world champion Gary Kasparov. Still in the years 1998-2000, the team, Bixby, Chvátal and Cook [START_REF] Applegate | On the solution of traveling salesman problems[END_REF] successively solved the instances usa13509 and d15112 of the traveling salesman problem, and therefore instances of more than 10, 0000 cities, on a platform composed of about 100 machines. Notice that in 2002, the team Brixius, Goux and Linderoth [START_REF] Anstreicher | Solving large quadratic assignment problems on computational grids[END_REF] solved for the first time the instance Nugent30 on a platform of 2510 machines with an average of around 700 active machines [START_REF] Cung | Parallel Combinatorial Optimization[END_REF]. In Section 2.5 we give a more detailed view about the different parallelization strategies that can be used with tree search algorithms and more precisely the Branch-and-Bound and the Branch-and-Cut algorithms.

While the optimal solution of these problems was obtained for the first time thanks to parallelism, proving its direct interest here, it is not always the same with other applications.

In this context, metaheuristics have proved their worth in combinatorial optimization when the problem to be treated is too large or too difficult to think about an exact method. Many works have presented since their high time consumption is directly linked to the quality of the solution found, metaheuristics are very often parallelized. The great number of metaheuristics multiplied by their hybridization possibilities makes it an extremely prolific domain with an extensive literature. This is the reason why we will give one of the most common classification of parallel metaheuristics in Section 2.4 a bit further.

Hybridization

The concept of hybrid metaheuristics has been commonly accepted only in the middle of the last two decades, even if the idea of combining different metaheuristic strategies and algorithms dates back to the 1980s. Today, we can observe a generalized common agreement on the advantage of combining components from different search techniques and the tendency of designing hybrid techniques is widespread in the fields of operations research and artificial intelligence. The consolidated interest around hybrid metaheuristics is also demonstrated by publications on classifications, taxonomies and overviews on the subject [START_REF] Cotta-Porras | A study of hybridisation techniques and their application to the design of evolutionary algorithms[END_REF][START_REF] Blumi | 1 an introduction to metaheuristic techniques[END_REF][START_REF] Cotta | Parallel hybrid metaheuristics[END_REF][START_REF] El-Abd | A taxonomy of cooperative search algorithms[END_REF][START_REF] Raidl | A unified view on hybrid metaheuristics[END_REF][START_REF] Puchinger | Combining metaheuristics and exact algorithms in combinatorial optimization: A survey and classification[END_REF][START_REF] Talbi | A taxonomy of hybrid metaheuristics[END_REF][START_REF] Jourdan | Hybridizing exact methods and metaheuristics: A taxonomy[END_REF].

We will start in what follows to introduce a brief presentation of the most commonly used taxonomies of hybrid metaheuristics that resumes well, in our vision, the hybridization literature.

Notice that we adopt the definition of hybrid metaheuristic in the broad sense of integration of a metaheuristic related concept with some other techniques (possibly another metaheuristic).

Talbi's taxonomy

In this classification, hybridization of metaheuristics is studied from two points of view: design and implementation. From the design point of view, a hierarchical classification in which four main classes are identified, is depicted in Figure 2.1. In the first level of the hierarchical classification, the two classes low level and high level hybrids refer to the functional composition of the hybridized metaheuristics. In low level hybrids, one of the search algorithms is encapsulated by the second method, while in high level hybrids each method is self contained and is viewed as a black box by the other method. The second level of the hierarchical classification dresses the way the hybridized metaheuristics interact with each other, or the way they are executed. The Relay class means the metaheuristics are executed sequentially or in a pipeline fashion, which means the output of one method is the input for the next method in the queue. The four basic classes are then combined to form the following generic classes: Low level Relay Hybrid (LRH), Low level Team-work Hybrid (LTH), High level Relay Hybrid (HRH) and High level Team-work Hybrid (HTH). • LRH (low-level relay hybrid): In this class, a functional component in one method is replaced by the other method and the two methods are executed in sequence. For example, this kind of hybridization can be found in a single-solution metaheuristic embedding another single-solution metaheuristic algorithm in order to intensify the search in some regions at the end of the search. The two methods are executed sequentially. Nevertheless, due to the similarity between the two hybridized metaheuristics, this class of hybrids is not very used.

• LTH (low-level teamwork hybrid): The LTH scheme regroups hybrid methods combining metaheuristics having divergent and complementary objectives. One of the metaheuristics is embedded in the other one and each metaheuristic is powerful either in exploration of new subspaces or in exploitation of good quality solutions. For example, population-based metaheuristics such as GAs are known to be powerful in exploration because of the use of multiple starting points leading to a better sampling of the solution space. On the other hand, single-solution metaheuristics are known for their exploitation capabilities. The combination of these two classes of metaheuristics justifies by definition the creation of the new class of hybrid metaheuristics whose the objective is to take advantage from the points of strength of each method. For example, it has been shown in many works that hybrid GAs combined with local search (or any s-metaheuristic such as tabu search and simulated annealing) in place of mutation or crossover operators yields much better results compared to standard GAs for combinatorial optimization and real world problems. Yet, this kind of hybridizations is very common in the literature [START_REF] Fleurent | Genetic hybrids for the quadratic assignment problem[END_REF][START_REF] Drezner | Extensive experiments with hybrid genetic algorithms for the solution of the quadratic assignment problem[END_REF].

• HRH (high-level relay hybrid): In the HRH schemes, the hybridized metaheuristics are self-contained and executed sequentially. This class contains hybrids in which one of the methods is used either to generate initial solutions for the second method or to improve its final solution. For example, for some problems, greedy heuristics are used to construct a good quality feasible solution and this solution is used as starting solution in the metaheuristic. The other possibility is to use one metaheuristic to globally optimize the problem and use a different metaheuristic to optimize locally around the final best found solution in the global optimization step. This last scheme is used for example to improve the best solutions in the final population of a GA using a powerful intensifying metaheuristic such as simulated annealing (SA) and tabu search (TS).

• HTH (high-level teamwork hybrid): This class of hybrids is also considered as a parallel metaheuristic. It involves several self-contained metaheuristics which cooperate together to solve the same problem. Each metaheuristic evolves independently from the others and exchanges information with neighboring metaheuristics following a given interconnection structure or topology. For example, a set of cooperating GAs could be considered as a HTH scheme. Each GA is evolving a different subpopulation and communicates through a given topology with neighboring GAs in order to exchange some individuals to diversify the search.

The search operators and parameters used in each GA could be either the same or different. This example is also known as GAs island parallel model in parallel metaheuristics classifications [START_REF] Alba | Parallelism and evolutionary algorithms[END_REF]. In the island model even if the cooperating metaheuristics are homogeneous (multiple processes of the same algorithm), it is considered as a hybrid scheme because each island is performing an independent search in a different region of the solution space. In the taxonomy proposed in [START_REF] Talbi | A taxonomy of hybrid metaheuristics[END_REF] there is a flat portion which refers to this last consideration (homogeneous and heterogeneous hybridizations).

From the implementation point of view, the taxonomy starts by distinguishing whether the hybrid metaheuristic is implemented on a specific or a general purpose computer. Specific purpose computers are machines built specifically for metaheuristics using programmable logic devices, i.e. simulated annealing [START_REF] Abramson | A very high speed architecture for simulated annealing[END_REF]; genetic algorithms [START_REF] Salami | Genetic algorithm processor on reprogrammable architectures[END_REF], in [START_REF] Abramson | Application specific computers for combinatorial optimisation[END_REF] a general architecture acting as a template for designing a number of specific machines for different metaheursitics (SA, TS, etc.) has been proposed.

In the second place, the nature of the hybrid metaheuristic algorithm is distinguished where most of the proposed hybrid metaheuristics are sequential programs, and according to the size of problems, the parallel implementations of hybrid algorithms have been considered instead. Using a hierarchical classification, Talbi continues by classifying parallel algorithms using the different characteristics of the target parallel architecture:

-SIMD versus MIMD: In SIMD (Single Instruction stream, Multiple Data stream) parallel machines, the processors are restricted to execute the same program. They are very efficient in executing synchronized parallel algorithms that contain regular computations and regular data transfers. When the computations or the data transfers become irregular or asynchronous, the SIMD machines become much less efficient. In parallel MIMD (Multiple Instruction stream, Multiple data stream), the processors are allowed to perform different types of instructions on different data.

-Shared-memory versus Distributed-memory: The advantages of parallel hybrids implemented on shared memory parallel architectures are their simplicity. However, parallel distributed-memory architectures offer a more flexible and faulttolerant programming platform.

-Homogeneous versus Heterogeneous: Most massively parallel machines (MPP) and cluster of workstations (COW) are composed of homogeneous processors. The proliferation of powerful workstations and fast communication networks have shown the emergence of heterogeneous network of workstations as platforms for high-performance computing.

Finally, Talbi underlines the fact that parallel heuristics fall into three categories depending on whether the number and/or the location of work (tasks, data) depend or not on the load state of the target parallel machine:

• Static: This category represents parallel heuristics in which both the number of tasks of the application and the location of work (tasks or data) are generated at compilation time (static scheduling). The allocation of processors to tasks (or data) remains unchanged during the execution of the application regardless of the current state of the parallel machine. Most of the proposed parallel heuristics belong to this class.

• Dynamic: This class represents heuristics for which the number of tasks is fixed at compilation time, but the location of work (tasks, data) is determined and/or changed at run-time.

• Adaptive: Parallel adaptive programs are parallel computations with a dynamically changing set of tasks. Tasks may be created or killed as a function of the load state of the parallel machine. A task is created automatically when a node becomes idle. When a node becomes busy, the task is killed.

Raidl's taxonomy

In order to present a global hybrid metaheuristics classification scheme, Raidl presented a taxonomy that combines different points of view dealt in the ones that are already given in the litterature. In a large part of it we can see aspects from Talbi's taxonomy [START_REF] Talbi | A taxonomy of hybrid metaheuristics[END_REF] with the points-of-view from Cotta [START_REF] Cotta-Porras | A study of hybridisation techniques and their application to the design of evolutionary algorithms[END_REF] and Blum et al. [START_REF] Blumi | 1 an introduction to metaheuristic techniques[END_REF]. Classification with particular respect to parallel metaheuristics are partly adopted from El-Abd and Kamel [START_REF] El-Abd | A taxonomy of cooperative search algorithms[END_REF] and Cotta et al. [START_REF] Cotta | Parallel hybrid metaheuristics[END_REF] and with respect to the hybridization of metaheuristics with exact optimization techniques from Puchinger and Raidl [START_REF] Puchinger | Combining metaheuristics and exact algorithms in combinatorial optimization: A survey and classification[END_REF].

In this taxonomy we start by distinguishing what is hybridized, i.e. which kind of algorithms; (a) different metaheuristic strategies, (b) metaheuristics with certain algorithms specific for the problem we are considering, such as special simulations, or (c) metaheuristics with other more general techniques coming from fields like operations research (OR) and artificial intelligence (AI). Prominent examples for optimization methods from other fields that have been successfully combined with metaheuristics are exact approaches like branch-and-bound, dynamic programming, and various specific integer linear programming techniques on one side and soft computation techniques like neural networks and fuzzy logic on the other side.

Figure 2.2: Raidl's hybrid metheuristics classification scheme [START_REF] Raidl | A unified view on hybrid metaheuristics[END_REF] 2.3 Beside this differentiation, previous taxonomies of hybrid metaheuristics (i.e. Talbi's taxonomy presented above) primarily distinguish the level (or strength) at which the different algorithms are combined: High-level combinations in principle retain the individual identities of the original algorithms and cooperate over a relatively well defined interface; there is no direct, strong relationship of the internal workings of the algorithms. On the contrary, algorithms in low-level combinations strongly depend on each other -individual components or functions of the algorithms are exchanged.

Another property by which we distinguish hybrid systems is the order of execution. In the batch model, one algorithm is strictly performed after the other, and information is passed only in one direction. An intelligent preprocessing of input data or a postprocessing of the results from another algorithm would fall into this category. Another example are multi-level problems which are solved by considering one level after the other by dedicated optimization algorithms. On the contrary, we have the interleaved and parallel models, in which the algorithms might interact in more sophisticated ways. Parallel metaheuristics are nowadays a large and important research field for their own, see [START_REF] Alba | Parallel metaheuristics: a new class of algorithms[END_REF]. Detailed classifications of hybrid parallel metaheuristics can be found in [START_REF] El-Abd | A taxonomy of cooperative search algorithms[END_REF][START_REF] Cotta | Parallel hybrid metaheuristics[END_REF]. Following general characterizations of parallel algorithms, Raidl distinguishes the architecture (SIMD: single instruction, multiple data streams versus MIMD: multiple instruction, multiple data streams), the granularity of parallelism (fine-versus coarse-grained), the hardware (homogeneous versus heterogeneous), the memory strategy (shared versus distributed memory), the task and data allocation strategy (static versus dynamic), and whether the different tasks are synchronized or run in an asynchronous way.

The taxonomy distinguishes hybrid metaheuristics according to their control strategy aswell. Following [START_REF] Cotta-Porras | A study of hybridisation techniques and their application to the design of evolutionary algorithms[END_REF][START_REF] Puchinger | Combining metaheuristics and exact algorithms in combinatorial optimization: A survey and classification[END_REF], there exist integrative (coercive) and collaborative (cooperative) combinations.

In integrative approaches, one algorithm is considered a subordinate, embedded component of another algorithm. This approach is extremely popular.

In collaborative combinations, algorithms exchange information, but are not part of each other. For example, the popular island model [START_REF] Goldberg | Genetic algorithms in search optimization and machine learning[END_REF] for parallelizing evolutionary algorithms falls into this category. We can further classify the traditional island model as a homogeneous approach since several instances of the same metaheuristic are performed. In contrast, Talukdar et al. [START_REF] Talukdar | Asynchronous teams: Cooperation schemes for autonomous agents[END_REF][START_REF] Talukdar | Asynchronous teams. Handbook of Metaheuristics[END_REF] suggested a heterogeneous framework called asynchronous teams (A-Teams). An A-Team is a problem solving architecture consisting of a collection of agents and memories connected into a strongly cyclic directed network. Each of these agents is an optimization algorithm and can work on the target problem, on a relaxation of it, i.e. a superclass, or on a subclass. The basic idea of A-Teams is having these agents work asynchronously and autonomously on a set of shared memories. Denzinger and Offermann [START_REF] Denzinger | On cooperation between evolutionary algorithms and other search paradigms[END_REF] presented a similar multi-agent based approach for achieving cooperation between search-systems with different search paradigms, such as evolutionary algorithms and branch-and-bound.

In particular in collaborative combinations, a further question is which search spaces are actually explored by the individual algorithms. According to [START_REF] El-Abd | A taxonomy of cooperative search algorithms[END_REF] we can distinguish between an implicit decomposition resulting from different initial solutions, different parameter values etc., and an explicit decomposition in which each algorithm works on an explicitly defined subspace. Effectively decomposing large problems is in practice often an issue of crucial importance. Occasionally, problems can be decomposed in very natural ways, but in most cases finding an ideal decomposition into relatively independent parts is difficult. Therefore, (self-)adaptive schemes are sometimes also used.

Parallel metaheuristics

The main aim of parallelizing a metaheuristic is to solve a large problem more quickly. But, in the context of metaheuristics, parallelism opens other equally interesting possibilities:

• directly testing different values of the parameters at the same time, which enables us to obtain more robust algorithms; and

• exploring the solution in parallel, and therefore more exhaustively, enabling us to obtain solutions that are, if not of better quality, then at least of "better proven" quality.

Classical criteria such as acceleration/speedup or effectiveness/efficiency are not well suited as performance measures in the parallel metaheuristics domain. Explorations carried out sequentially and in parallel can indeed be different. Furthermore, solutions of different quality or even structure can be found. This is the reason why authors in general proposed comparing the quality of solutions with fixed execution times, or comparing execution times with fixed solution quality.

In order to classify parallel metaheuristics, Cung, Le Cun and Roucairol in [START_REF] Cung | Parallel Combinatorial Optimization[END_REF] uses the notion of "walks" introduced by Verhoven and Aarts in [START_REF] Verhoeven | Parallel local search[END_REF]:

Theorem 2.1 (Independent walks theory) If Q p (t) is the probability of not finding a solution that exceeds the optimum of in t units of time with p independent walks, and if:

Q 1 (t) = e -t λ with λ ∈ R +
where Q 1 is the complementary distribution function of a negative exponential distribution then:

Q p (t) = Q 1 (pt)
In other words, the acceleration can be linear if the probability of finding a suboptimal solution in t units of time is in the form of Q 1 (t). The term walk here refers to the passage from solution to solution of a metaheuristic and in this way characterizes its path in the solutions space. This space becomes a graph from the definition of the neighborhoods of each method: if x is a solution and y a solution that belongs to the neighborhood of x, (x, y) is an arc of this graph.

In the parallelization of metaheuristics, the authors mainly distinguish the parallelization of one single walk and that of multiple walks. They only consider, in this context, generic parallelizations, more exactly those that do not depend on a specific application like that of evaluating a solution (see Figure 2.3). With a single walk, it is generally interesting to parallelize the management of the neighborhood in the case of a local search, or of the population in the case of an evolutionary method (that is the neighborhood model). If the same neighborhood is conserved (or the same population respectively) with regard to the sequential method, the aim of parallelization becomes the acceleration of the sequential walk using a quicker exploration of the neighborhood (or the population respectively). On the other hand, if a larger neighborhood (or a population respectively) or even several neighborhoods are used in parallel, the walk can become more efficient because it is better guided. Nevertheless, this is about exploiting a fine granularity parallelism (duration of the task before synchronization), which requires a lot of communications between the parallel tasks for their synchronization. It is therefore appropriate to choose only this type of parallelization in the following cases:

• we have a material platform which allows rapid communications;

• we have to deal with extremely complex neighborhoods or cost variation calculations.

Note that for complex combinatorial optimization problems that have hard constraints, certain authors choose to decompose the problem in order to process parts of solutions in parallel. The complete solution is then recomposed at each step. Cung, Le Cun and Roucairol class also this type of parallelization in this single walk category.

With multiple walks, it is appropriate to distinguish the case where walks are independent from the case where they are cooperative. It is this category that has seen the most implementations in the literature in the last decades.

Independent walks are simple to implement; they have good potential accelerations, are robust if different parameters are used, and do not generate any redundant work if the solutions space is partitioned. On the other hand, this parallelization is certainly "slightly simplistic" inasmuch as it is reproducible with a sequential algorithm of the "multi-start" type (we restart the algorithm successively from different initial solutions). No walk may benefit from the experience of the others. Nevertheless, this type of parallelization can serve as a basic example for comparison with the other types.

Cooperative walks are harder to implement following the definition of data that are exchangeable between the walks, but they are potentially much more interesting in terms of "convergence speed" (number of iterations to obtain a good solution) and in terms of solutions quality. The data exchanged can be, for example:

• the values of the parameters for robustness; 2.5

• the value of the solutions to induce possible (local) diversifications for walks that are situated in mediocre regions of the solutions space (no solution that gives good values to the optimization criterion);

• the structure of the good solutions to intensify the search around these solutions;

• the frequencies of the (long-term memory) movements and/or the Tabu list that allows global diversifications if these data are shared.

This type of parallelization includes the island model of evolutionary algorithms where the evolution of a subpopulation is seen as a walk.

The major difficulty for cooperative walks lies in the choice of the information to exchange, how it circulates, and the frequency of the exchanges.

Although for a given machine and a given problem a given strategy seems to give good results, it will not necessarily be effective if we change machines or problems. All these parameters therefore make the implementation of parallel metaheuristics difficult. This is why, with regard to exact methods, programming environments have been and are still being developed, which, for an implementation of problem solving, allow the easy changing of types of parallelization.

Parallelization of exact methods

From now on, we denote for simplicity the Branch-and-Bound by B&B, and the Branchand-Cut by B&C.

Parallel Branch-and-Bounds literature

A large number of parallel Branch-and-Bound algorithms have been proposed in the literature. Melab in 2005 [START_REF] Melab | Contributions à la résolution de problèmes d'optimisation combinatoire sur grilles de calcul[END_REF] presented a taxonomy to classify them. This taxonomy is based on the classifications proposed in [START_REF] Cung | Parallel and distributed branch-and-bound/a* algorithms[END_REF] and [START_REF] Gendron | Parallel branch-and-branch algorithms: Survey and synthesis[END_REF]. Melab identified four models:

• the multi-parametric parallel model;

• the parallel evaluation of bounds model;

• the parallel evaluation of a bound model;

• the parallel tree exploration model.

Multi-parametric parallel model

The multi-parametric parallel model is based on the use of several B&B algorithms, with different parameterization, running in parallel. Several variants of the multiparametric parallel model may be considered according to the choice of one or more parameter(s) of the B&B algorithm. In [START_REF] Miller | The role of performance metrics for parallel mathematical programming algorithms[END_REF] for example, Miller and Pekny run multiple B&Bs that differ only by the branching operator. Janakiram and al. in [START_REF] Janakiram | A randomized parallel branch-and-bound algorithm[END_REF] run algorithms that use different selection operators. In [START_REF] Kumar | Parallel branch-and-bound formulations for and/or tree search[END_REF], each algorithm uses a different upper bound. The idea is that one algorithm uses the best upper bound found while the others use this bound reduced by an value(-optimal, where > 0).

Parallel evaluation of bounds model

The parallel evaluation of bounds model allows the execution in parallel of the subproblems bounding (generated by the branching operator). The model does not change the order nor the number of explored subproblems in the parallel B&B algorithm compared to the serial one. [START_REF] Pruul | Branch-and-bound and parallel computation: A historical note[END_REF]

Parallel evaluation of a bound model

In this model, the bounding of each subproblem is parallelized. It does not change the semantics of the algorithm because it is similar to the serial version except that the bounding operator is faster. [START_REF] Pekny | A parallel branch and bound algorithm for solving large asymmetric traveling salesman problems[END_REF]

Parallel tree exploration model

The parallel tree exploration model consists of simultaneously exploring several subproblems that define different research subspaces of the initial problem [START_REF] Kindervater | Experiments with parallel algorithms for combinatorial problems[END_REF][START_REF] Dehne | Parallel branch and bound on finegrained hypercube multiprocessors[END_REF][START_REF] Dehne | Parallel branch and bound on finegrained hypercube multiprocessors[END_REF][START_REF] Leroy | Parallel Branch-and-Bound revisited for solving permutation combinatorial optimization problems on multi-core processors and coprocessors[END_REF]. This means that selection, branching, bounding and pruning operators are executed in parallel synchronously or asynchronously by different processes exploring these subspaces.

Compared to other models, the parallel tree exploration model is more frequently used and is the subject of abundant research for two main reasons. On the one hand, the degree of parallelism of this model may be important when solving large problem instances justifying the use of multi-core computing or a high performance computing system. On the other hand, the implementation of the model raises several issues that constitute interesting research challenges in parallel computing. Among these issues, we can include the placement and management of the set of subproblems to be solved, the distribution and sharing of the load (generated subproblems), the communication of the best solution found so far, detecting the termination of the algorithm, and fault tolerance.

Parallel Branch-and-Cut's literature

As we know, there was no parallel B&C algorithms for network design problems. In general, there have been few works on the parallelization of this method, and this is due to its irregularity as said before. The first study, we could find, dates back to 1995, in which Ralphs in his thesis [START_REF] Ralphs | Parallel Branch and Cut for Vehicle Routing[END_REF] presented a black box framework for implementing a parallel B&C for the Vehicle Routing Problem (VRP). More details about this parallel B&C can be found in [START_REF] Ralphs | Parallel branch and cut for capacitated vehicle routing[END_REF] and an experimental study have been presented by running the algorithm on a Beawulf Cluster (a high-performance parallel computing cluster formed by interconnecting inexpensive personal computers).

In 1996, Christof et Reinelt [START_REF] Christof | Combinatorial optimization and small polytopes[END_REF] were interested in the parallelization of the search for the violated constraints by assigning to each processor a separation algorithm of the Symmetric Traveling Salesman Problem (STSP) facet family.

In 1998, Bouzgarrou [START_REF] Bouzgarrou | Parallélisation de la méthode du" Branch and Cut" pour résoudre le problème du voyageur de commerce[END_REF] presented in his thesis three strategies to parallelize a B&C for the Traveling Salesman Problem (TSP). Each strategy corresponds to a level of granularity of parallelism. We will present three levels of parallelization: one parallelization with a coarse grain, another with a medium grain and one with a fine grain.

The first strategy of parallelization corresponds to a coarse grain granularity and consists in executing several B&C in parallel, i.e. performing competing explorations.

In each execution, one takes different choices of route, initialization or method of resolution. By exchanging information between executions to accelerate one or more explorations. The second strategy takes advantage from the fact that the B&C algorithm is presented as a set of independent tasks. Thus in a parallelization of medium grain, each process explores a part of the search space. In the third strategy, the evaluation of each node of the B&C tree is done in parallel by several processes.

In his implementation, Bouzgarrou used the second strategy putting in practice a master-slave centralized architecture that manages the construction and path of the B&C tree. The master process initializes the calculation, manages the branch and cut tree path and the division of labor between solver processes. It also maintains the value of the upper bound. And manages the termination of the algorithm. The solver process takes care of the evaluation of the node of the tree assigned to it. It selects the constraint or branch variable. It generates new child nodes, evaluates them and then communicates them to the master process. When the solver no longer has a node to process, it sends a request to the master to ask for work.

After that, Ralphs integrated his framework to the COIN-OR [START_REF]Computational Optimization Infrastructure for Operations Research[END_REF] repository under the name SYMPHONY [START_REF] Ralphs | Symphony: A parallel framework for branch and cut[END_REF][START_REF] Ralphs | The Symphony Callable Library for Mixed Integer Programming[END_REF] and in [START_REF] Ralphs | Parallel branch and cut[END_REF], he discussed the main issues that arise in parallelizing the B&C algorithm for solving mixed-integer linear programs. He explained how designing an efficient parallelization scheme of this method requires careful analysis of various tradeoffs involving the degree of synchronization, the degree of centralized storage of information, and the degree to which information discovered during the algorithm is shared between processors. He presented also computational results obtained solving, using a parallel B&C implemented with SYMPHONY, the Vehicle Routing Problem (VRP) and the Set Partitionning Problem (SPP). These results illustrated the degree to which various sources of parallel overhead affect scalability and demonstrated that properties of the problem class itself dictate the effectiveness of the methodology. [START_REF] Ralphs | A library hierarchy for implementing scalable parallel search algorithms[END_REF][START_REF] Xu | Alps: A framework for implementing parallel tree search algorithms[END_REF] presented the Abstract Library for Parallel Search (ALPS) which is a generic framework for implementing parallel tree search algorithms and included it to COIN-OR repository. This library is based on the previous work of Ralphs (SYMPHONY) and provide new features for handling the data, specially the ones needed for implementing data-intensive algorithms such as Branch-Cut-and-Price.

Ralphs et al. in

Motivation of the Thesis

Despite the continuous and significant development of computer's calculation performance, it remains difficult to solve to optimality, within a reasonable amount of time, many combinatorial optimization problems (COPs) for a large scale input data as said before. This remark is all true for SNDPs and more precisely kESNDP and kHNDP. One of the main issues when solving to optimality with Branch-and-Cut or Branchand-Price algorithms is that solving even the linear relaxation of the considered integer programming formulation can be time consuming for large scale instances. This may prevent the Branch-and-Cut or Branch-and-Price algorithm from a good exploration of the enumeration tree and finding good quality solutions (see for instance [START_REF] Diarrassouba | Two node-disjoint hopconstrained survivable network design and polyhedra[END_REF]).

In this thesis, we address these two issues (excessive CPU time and good exploration of the solutions space) by using both parallel computing and hybridization.

As seen in the literature of both class of problems, the main orientation of the researchers was around studying the problem from a polyhedral aspect. Studies that gave many important results that was able to improve along with hardware development these COPs resolution. What intrigues us on the other hand is whether the use of parallel computing and/or hybridization of methods can make us exceed the limits of instances size that we see in literature.

To adress this problematic, in the first hand, we start by looking to our problems from an approximation point of view. We devise for that a Lagrangian relaxation algorithm for both the kESNDP and kHNDP and use parallel computing in order to reduce the CPU time needed to obtain good lower bound for the problem, a parallel population-based metaheuristic, namely a genetic algorithm, in order to ensure a good exploration of the solutions space and a greedy heuristic for having simply and quickly heuristic solutions of the problems. We then hybridize the three algorithms in order to improve the quality of both the lower and upper bounds. As we will see below, the algorithm takes advantage of the structure of the integer programming formulations we consider for the two class of problems.

In a second hand, we look into the problems from an exact solving point of view. We present and implement two distributed generic algorithms based on the Branch-and-Bound and the Branch-and-Cut methods.

Chapter 3

The k-Edge-Connected Network Design Problem In this chapter, we consider the k-Edge-Connected Survivable Network Design Problem (kESNDP) and its variant the Steiner k-Edge-Connected Survivable Network Design Problem (SkESNDP). We propose a parallel hybrid algorithm which aims to produce good solutions for large scale instances of the two problems. Our approach is based on a Lagrangian relaxation of a flow-based integer programming formulation of the problem, a greedy and a genetic algorithms.

In this chapter, we introduce a new parallel resolution approach for the k-Edge-Connected Survivable Network Design Problem (kESNDP for short) and its variant problem called Steiner k-Edge-Connected Survivable Network Design Problem (SkESNDP for short) based on the hybridization of a Lagrangian relaxation algorithm, a greedy algorithm and a genetic algorithm, used in a parallel computing framework. We test the algorithms within an extensive computational study and compare their efficiency for solving both kESNDP and SkESNDP against CPLEX.

The chapter is organized as follows. In Section 3.1, we present the two integer programming formulations related to kESNDP and SkESNDP. Then, in Section 3.2, we present the parallel hybrid algorithm, its main components. In Section 3.3, we present the computational results for both problem variants.

Integer programming formulations

kESNDP

Let G = (V, E) be an undirected graph, D ⊆ V × V a set of demands given by origin-destination pairs {s, t} ∈ D with s = t, and k a positive integer. The k-Edge-Connected Survivability N etwork Design P roblem (kESNDP for short) consists in finding a minimum cost sub-graph of G such that there exist k edge-disjoint st-paths between the terminals of each demand {s, t} of D.

The kESNDP can be formulated as a flow-based integer program (see [START_REF] Magnanti | Strong formulations for network design problems with connectivity requirements[END_REF]). For each edge uv ∈ E, let x uv , be the 0 -1 variable which takes value 1 if the edge uv is in a solution of the problem and 0 otherwise. Also let G = (V, A) be the directed graph obtained from G by replacing each edge uv ∈ E by two arcs of the form (u, v) and (v, u) (see Figure 3.1 for an illustration).

Finally, let f st uv be the flow variable associated with every arc (u, v) of G and a pair {s, t} ∈ D. The kESNDP is equivalent to

f st lu =    k, if u = s, -k, if u = t, 0, if u ∈ V \ {s, t} ,    for all u ∈ V and {s, t} ∈ D, (3.1)
f st uv f st vu ≤ x uv , for all uv ∈ E and {s, t} ∈ D, (3.2)
f st uv , f st vu ≥ 0, for all uv ∈ E and {s, t} ∈ D, (3.3)

x uv ≤ 1, for all uv ∈ E, (3.4)
x uv ∈ {0, 1}, for all uv ∈ E, (3.5)

f st uv , f st vu ∈ {0, 1}
, for all uv ∈ E, {s, t} ∈ D.

(3.6)

The formulation is called "Undirected Flow Formulation" (UFP for short). Inequalities (3.1) are the flow conservation constraints. Inequalities (3.2) are the linking constraints. They ensure that if an edge uv is not taken in the solution, then no st-flow can use this edge. Inequalities (3.3) and (3.4) are the trivial inequalities.

One can easily see that the above formulation has a block structure. Each block "Flow i" corresponds to the flow conservation constraints associated with a demand {s, t} ∈ D.

SkESNDP

Let G = (V, E) be an undirected graph, a subset of nodes S ⊆ V called terminals, a weight function ω : E → R which associates the weight ω e with each edge e ∈ E. The Steiner k-Edge-Connected Survivability Network Design Problem (SkESNDP for short) is the problem of finding a minimum weight subgraph of G spanning S such that between every two nodes u, v ∈ S, there are at least k edge-disjoint paths.

The Steiner k-Edge-Connected Survivable Network Design Problem (SkESNDP) is a special case of a more general model, introduced by [START_REF] Steiglitz | The design of minimum-cost survivable networks[END_REF] and later called generalized Steiner problem by [START_REF] Winter | Steiner problem in networks: a survey[END_REF].

The SkESNDP is well known to be NP-hard and is a generalization of the Steiner tree problem in which it is required that the nodes of S are spanned by a Steiner tree of minimum weight.

Several works have been done on the Steiner network problem and its variants. Mahjoub and Kerivin [START_REF] Kerivin | Design of survivable networks: A survey[END_REF] have presented a survey of the main variants of survivable network design problems and integer programming formulations as well as some polyhedral descriptions. Also, Magnanti and Raghavan [START_REF] Magnanti | Strong formulations for network design problems with connectivity requirements[END_REF] have presented differents types of formulations for a quite more general problem, which includes the SkESNDP. In particular, they have presented several formulations based on flow variables and compare them in terms of LP-bounds.

To introduce the formulation proposed by Magnanti and Raghavan in [START_REF] Magnanti | Strong formulations for network design problems with connectivity requirements[END_REF], first, we denote by D = {{s, t} | for all s, t ∈ S, with s = t}. We also let d = |D| = |S|(|S| -1)/2. For each edge uv ∈ E, let x uv be the 0 -1 variable which takes value 1 if the edge uv is in the solution and 0 otherwise. Also let G = {V, A} the directed graph obtained from G by replacing each uv ∈ E by two arcs (u, v) and (v, u), and for every pair {s, t} ∈ D, let f st uv be the flow variable associated with the arc (u, v) of G. The SkESNDP is equivalent to This formulation is called Undirected Flow Formulation. Inequalities (3.7) are the flow conservation constraints. Inequalities (3.8) are the linking constraints. They ensure that if an edge uv is not taken in the solution, then no st-flow can use this edge. Inequalities (3.9) and (3.10) are the trivial inequalities.

f st lu =    k, if u = s, -k, if u = t, 0, if u ∈ V \ {s,

Parallel hybrid optimization algorithm

Our algorithm relies on the usage of parallel computing for solving the kESNDP. Namely, we devise a heuristic for the problem based on three algorithms • a greedy heuristic (SH);

• a Lagrangian relaxation algorithm (RLA);

• a genetic algorithm (GA).

For our purpose, we run these three algorithms in a parallel computing framework. Also, as we will see, each iteration of each algorithm is used to improve the other algorithms, and hence, improve the whole algorithm. Moreover, we solve the Lagrangian relaxation algorithm using parallel computing.

We describe, in the remain of the section, each algorithm in the following and the communication between them.

The greedy successive heuristic

Constructive heuristics are typically the fastest approximate methods. They generate solutions from scratch by adding opportunely defined solution components to an initially empty partial solution. This is done until a solution is complete or other stopping criteria are satisfied. A well-known class of constructive heuristics are greedy heuristics. They make use of a weighting function that assigns at each construction step a positive weight to each feasible solution component. The solution component with the highest weight is chosen at each construction step to extend the current partial solution.

Our greedy algorithm (SH) for solving the kESNDP and the SkESNDP consists in computing a series of minimum cost st-flows in the graph G, for all {s, t} ∈ D.

First, we sort the pairs of D in an arbitrary order, say {s 1 , t 1 }, ..., {s d , t d }. We start with the pair {s 1 , t 1 }, and compute a minimum cost s 1 t 1 -flow in G, where all the arcs have capacity 1 and both arcs (u, v) and (v, u) are cost ω uv , for all uv ∈ E. Let A 1 be the set of arcs that have a s 1 t 1 -flow value of 1, and E 1 be the set of edges of G corresponding to the arcs of A 1 . Then we choose the pair {s 2 , t 2 }, fix to ω uv the cost of the arcs (u, v) and (v, u) for all uv ∈ E \ E 1 and fix to 0 the cost of the arcs (u, v) and (v, u), for all uv ∈ E 1 , and compute a minimum cost s 2 t 2 -flow. We build the arc set A 2 and the edge set E 2 , as before A 1 and E 1 , and so on until all the pairs {s i , t i } have been explored. Finally, we build a solution of the kESNDP by considering the edges of

E 1 ∪ E 2 ∪ ... ∪ E d .

The Lagrangian relaxation algorithm

Basics

Consider the following general zero-one problem (written in matrix notation):

P roblem (P)          min cx Ax ≥ b Bx ≥ d x ∈ (0, 1)
Note that although we deal with zero-one integer programs the approach presented is equally applicable both to pure (general) integer programs and to mixed-integer programs.

61

A well known way to generate a lower bound on the optimal solution to problem (P) is via the linear programming relaxation. This entails replacing the integrality constraint x ∈ (0, 1) E to give the following linear program:

min cx Ax ≥ b Bx ≥ d 0 ≤ x ≤ 1
This linear program can be solved exactly using standard algorithm and the solution value obtained gives a lower bound on the optimal solution to the original problem (problem P).

In many cases however solving the linear programming relaxation of P is impracticable, typically because P involves a large (often extremely large) number of variables and/or constraints. We therefore need alternative techniques for generating lower bounds.

Lagrangian relaxation was developed by Held and Karp in the early 1970's [START_REF] Held | The traveling-salesman problem and minimum spanning trees: Part ii[END_REF] and is today an indispensable technique for generating lower bounds for use in algorithms to solve combinatorial optimisation problems. Note that a more detailed presentation of the Lagrangian technique can be found in [START_REF] Beasley | Modern heuristic techniques for combinatorial problems. chapter Lagrangian Relaxation[END_REF][START_REF] Rush | A tutorial on dual decomposition and lagrangian relaxation for inference in natural language processing[END_REF].

We define the lagrangian relaxation of problem P with respect to the constraint set Ax ≥ b by introducing a lagrange multiplier vector λ ≥ 0 which is attached to this constraint set and brought into objective function to give:

min cx + λ(b -Ax) Bx ≥ d x ∈ (0, 1)
i.e. what we have done here is: a) to have chosen some set of constraints in the problem for relaxation; and b) attached lagrange multipliers to these constraints in order to bring them into the objective function.

The key point is that the program we are left with after lagrangian relaxation, for any λ ≥ 0, gives a lower bound on the optimal solution to the original problem P. In fact, since as λ ≥ 0 and (b -Ax) ≤ 0 we are merely adding a term which is ≤ 0 to the objective function, and since removing a set of constraints from a minimisation problem can only reduce the objective function value.

The program after lagrangian relaxation, namely:

P (λ)    L (λ) = min (c -λA)x + λb Bx ≥ d x ∈ (0, 1)
can be called the lagrangian lower bound program (LLBP) since, as shown above, it provides a lower bound on the optimal solution to the original problem P for any λ ≥ 0.

Besides the strategic issue of why we choose to relax the set of constraints Ax ≥ b instead of the set Bx ≥ d, a key issue highlighted by the above lagrangian relaxation is a tactical issue, namely how can we find numerical values for the multipliers.

In particular note here that we are interested in finding the values for the multipliers that give the maximum lower bound, i.e. the lower bound that is as close as possible to value of the optimal integer solution. This involves finding multipliers which correspond to:

L * = max {L (λ) , λ ≥ 0}
This program is called the lagrangian dual program.

There are two basic approaches to deciding values for the lagrange multipliers (λ i):

a) subgradient optimisation [START_REF] Held | Validation of subgradient optimization[END_REF]; and b) multiplier adjustment [START_REF] Fisher | A multiplier adjustment method for the generalized assignment problem[END_REF].

In what follows, we introduce a brief presentation of the subgradient optimisation. However, more details about the two techniques can be found in [START_REF] Beasley | Modern heuristic techniques for combinatorial problems. chapter Lagrangian Relaxation[END_REF].

The subgradient optimisation is an iterative procedure which, from initial set of multipliers, involves generating further lagrange multipliers in a systematic fashion. It can be viewed as a procedure which attempts to maximise the lower bound value obtained from LLBP by suitable choice of multipliers.

Switching from matrix notation to summation notation, so that the relaxed constraints are n j=1 a ij x j ≥ b i (i = 1, ..., m), the basic subgradient optimisation iterative procedure is as follows:

1) Let π i be a user decided parameter satisfying 0 < π i ≤ 2. Initialise Z U B (e.g. from some heuristic for the problem). Decide upon an initial set (λ i) of multipliers.

2) Solve LLBP with the current set (λ i) of multipliers, to get a solution (X j) of value Z LB (not necessarily feasible for our initial program).

3) Define subgradients γ i for the relaxed constraints, evaluated at the current solution, by:

γ i = ∂L(x, λ) ∂λ = b i - n j=1 a ij X j i = 1, ..., m 4
) Define a (scalar) step size ρ i by

ρ i = π i (Z U B -Z LB) n j=1 (γ i) 2
This step size depends upon the gap between the current lower bound (Z LB) and the upper bound (Z U B) and the user defined parameter π i (more of which below) with the n j=1 (γ i) 2 factor being a scaling factor.

5) Update λ i using λ i = max(0, λ i +ρ i γ i) i = 1, ..., m and go to 2) to resolve LLBP with this new set of multipliers.

As currently set out the above iterative procedure would never terminate. In fact we introduce a termination rule based upon either:

(a) limiting the number of iterations that can be done; or (b) the value of π (reducing π during the course of the procedure and terminating when π is small) Ideally the optimal value of the lagrangian dual program (a maximisation program) is equal to the optimal value of the original zero-one integer program (a minimisation problem). If the two programs do not have optimal values which are equal then a duality gap is said to exist, the size of which is measured by the (relative) difference between the two optimal values.

A Lagrangian relaxation algorithm for the kESNDP

In our framework, we consider the Undirected Flow Formulation and relax the linking constraints (3.2). Let λ st uv , for all {s, t} ∈ D and all (u, v) ∈ A, be the Lagrangian multiplier associated with constraints (3.2). This yields the following problem

f st lu =    k, if u = s, -k, if u = t, 0, if u ∈ V \ {s, t} ,    for all u ∈ V and {s, t} ∈ D, 0 ≤ f st uv , f st vu ≤ 1, for all uv ∈ E, {s, t} ∈ D, x uv ≤ 1, for all uv ∈ E, x uv ∈ {0, 1}, for all uv ∈ E, f st uv ∈ {0, 1}, for all uv ∈ E, {s, t} ∈ D.
One can easily see that if (f st , {s, t} ∈ D) is an optimal solution for problem (LR'), then solution (x, f st , {s, t} ∈ D) where

x(uv) =    1 if ω uv - {s,t}∈D (λ st uv + λ st vu) < 0, 0 otherwise,
, for all uv ∈ E, is optimal for problem (LR). Also, it is not hard to see that problem (LR') consists in |D| independent minimum cost st-flow problems in graph G. Thus problem (LR') can be solved by using any combinatorial algorithm solving the minimum cost flow problem. The reader can refer to [START_REF] Ahuja | Network Flows: Theory, Algorithms, and Applications[END_REF] for more details on minimum cost flow problems and the associated algorithms. Moreover, since the minimum cost flow problems of (LR') are independent, we solve (LR') in a parallel multithreaded fashion. Thus, we can solve (LR) in time O(M F) when using |D| processors, where O(M F) is the runtime for solving a minimum cost st-flow problem.

An issue to address in the Lagrangian relaxation algorithm is how the Lagrange multipliers, λ st uv , (u, v) ∈ A and {s, t} ∈ D, are updated. For this, we use the so-called subgradient method explained before. Let, at iteration k of the Lagrangian relaxation algorithm, λ st uv,k be the vector of the current Lagrange multipliers, (x, f st , {s, t} ∈ D)

an optimal solution of problem (LR), z k the optimal value of (LR) and Z U B an upper bound of the optimal solution of the original problem (UFP). Then, the Lagrange multipliers at iteration k + 1 are given by

λ st uv,k+1 = max{0, λ st uv,k -ρ k γ st uv,k } 3.2 65
where

γ st uv,k = x * uv -f st uv γ st uv,k = x * uv -f st vu
, for all uv ∈ E,

ρ k = 1 2 k Z U B -z k γ k 2 .
The upper bound Z U B can be obtained by a heuristic running independently from the Lagrangian relaxation algorithm. In our case, we produce a feasible solution to the kESNDP at each iteration of the Lagrangian relaxation algorithm and choose Z U B as the best value among all the solutions thus obtained. A feasible solution, say y ∈ R E , to kESNDP can be obtained from the optimal solution of problem (LR) by chosing y uv = max{f

A Lagrangian relaxation algorithm for the SkESNDP [99]

For the SkESNDP, the Lagrangian relaxation is obtained by relaxing the linking constraints (3.8). We denote by λ st uv , the Lagrange multipliers associated with the linking constraints (3.8), for all {s, t} ∈ D and (u, v) ∈ A. The Lagrangian relaxation thus obtained, denoted by (LR), is given by

min uv∈E   ω uv - {s,t}∈D λ st uv + λ st vu   x uv + {s,t}∈S uv∈E λ st uv f st uv + λ st vu f st vu s.t. v∈V f st uv - l∈V f st ul =      k, if u = s, -k, if u = t, 0, if u ∈ V \ {s, t} ,     
, for all u ∈ V and {s, t} ∈ D,

0 ≤ f st uv , f st vu ≤ 1, for all uv ∈ E, {s, t} ∈ D, 0 ≤ x uv ≤ 1, for all (u, v) ∈ E, x uv ∈ Z, for all (u, v) ∈ E, f st uv ∈ Z, for all (u, v) ∈ A, {s, t} ∈ D.
Observe that, apart the objective function, the variable x appears in problem (LR) only in the trivial constraints 0 ≤ x uv ≤ 1. Thus, solving problem (LR) reduces to solving the problem (LR') below

min {s,t}∈S uv∈E λ st uv f st uv + λ st vu f st vu s.t. v∈V f st uv - l∈V f st ul =      k, if u = s, -k, if u = t, 0, if u ∈ V \ {s, t} ,     
, for all u ∈ V and {s, t} ∈ D,

0 ≤ f st uv , f st vu ≤ 1, for all uv ∈ E, {s, t} ∈ D, f st uv ∈ Z, for all (u, v) ∈ A, {s, t} ∈ D.
One can see that solving this relaxation consists in solving d independant minimum cost st-flow problems in the graph G, for all {s, t} ∈ D. In fact, we can see that solving the minimum cost st-flow problems gives the optimal value of the flow variables f st uuv , and for the variables x uv , the optimal values are x uv = 1 if ω uv -{s,t}∈D (λ st uv + λ st vu) > 0 and 0 otherwise.

Since the minimum cost st-flow problems are independant, they can be solved in parallel using d processors.

For the Lagrangian relaxation algorithm, the Lagrangian multipliers are updated using the subgradient method. Also, notice that each iteration of the Lagrangian relaxation algorithm produces a feasible solution. The solution is obtained by considering all the edges of G corresponding to the arcs of G that get at least once a flow value of 1 during the resolution of the minimum cost st-flow problems. As we will see, the solution thus obtained are used as input of the genetic algorithm, which is described below.

Finally, the Lagrangian relaxation algorithm stops either when a CPU time of 2 hours is reached or the algorithm processes 2000 iterations or after 100 iterations without improving the best known upper bound. The algorithm returns the best lower and upper bounds obtained.

67

The genetic algorithm

Now we turn our attention to the genetic algorithm. We recall that the genetic algorithm consists in considering a set of solutions, feasible or not for the kESNDP, in order to produce one or more new feasible solutions. The set of solutions is called the population. The algorithm randomly chooses two solutions, called parents, in the population and combine them to produce one or more new solutions, called children. For a general combinatorial optimization problem, the children solutions may not be feasible for the problem. In this case, the algorithm tries to transform them into feasible solutions and put them into the population. In our case, we will see that the children solutions we build are feasible for the kESNDP. The designing of a genetic algorithm takes into account the following issues

• solution encoding and evaluation,

• the parent selection,

• the crossover (how the parent are combined),

• the population management,

• the stopping criterion.

For more details on genetic algorithms, the reader can refer to [START_REF] Talbi | A taxonomy of hybrid metaheuristics[END_REF]. In the remainder of this section, we discuss these issues for our genetic algorithm for the kESNDP.

Encoding and evaluation of a solution

A solution of the kESNDP can be represented in different ways, but in our algorithm, we represent a solution by a set of 0 -1 vectors (f

s 1 t 1 , ..., f s d t d), where f s i t i is a flow vector associated with demand s i t i .
The evaluation of a solution encoded by (f

s 1 t 1 , ..., f s d t d) consists

Crossover and reproduction

The selection is made randomly according to a specific probability distribution scale. We start by dividing the population into five categories (A, B, C, D and E) based on the social ranking (fitness value), and then we select 1 10 of the population to be reproduced knowing that the probability that a parent is chosen from the A social category for example is equal to 67%, and respectively to the B, C, D and E are equal to 19%, 10%, 3% and 1%.

The generation of children solutions is done in the following way. For two solutions, say P 1 = (f s 1 t 1 , ..., f s d t d) and P 2 = (g s 1 t 1 , ..., g s d t d), we randomly choose two integers a and b with 2 ≤ a < b ≤ d. Then, we cross P 1 and P 2 according to integers a and b, and produce two solutions C 1 and C 2 such that

C 1 = (f s 1 t 1 , ..., f s a-1 t a-1 , g sata , ..., g s b-1 t b-1 , f s b t b , ..., f s d t d) and C 2 = (g s 1 t 1 , ..., g s a-1 t a-1 , f sata , ..., f s b-1 t b-1 , g s b t b , ..., g s d t d).
Clearly, C 1 and C 2 are feasible for the kESNDP if P 1 and P 2 are feasible for the kESNDP.

The children generation phase is done by applying the above procedure to 0.1N pool pairs of solutions (P 1 , P 2), where N pool is the number of elements into the pool before the generation of the new solutions.

Population management

The pool of solutions is intialized with all the feasible solutions produced by the greedy algorithm which is described in Section 3.2.1. During the algorithm, we ensure that the pool of solutions contains no more than 100 solutions. The solutions are sorted in increasing order w.r.t. their evaluation. For simplicity, we denote by N i pool the number of solutions in the pool after the generation of the new solutions at iteration i. In the following we discuss the cases where the genetic algorithm runs simultaneously with the Lagrangian relaxation and greedy algorithms and when it is not the case.

We discuss first the case where the genetic algorithm is running simultaneously with the Lagrangian relaxation and greedy algorithms. In this case, for every iteration i ≥ 1, we remove from the pool the N i pool -100 worst solutions (starting with the duplicates), if N i pool ≥ 100. Otherwise, we do not remove any solution.

Now we consider the case where the genetic algorithm is not running simultaneously with the Lagrangian relaxation and greedy algorithms. This is the case when both, the Lagrangian relaxation and greedy algorithms, are terminated or when the genetic algorithm is running separately from the hybridization. In this case, for every iteration i such that 1 ≤ i ≤ 200, if N i pool ≥ 100, then we remove the N i pool -100 worst solutions. When i > 200, if N i pool ≥ 20, we remove from the pool the (N i pool -N i-1 pool) + 5%N i-1 pool worst solutions. If N i pool < 20, then we remove the (N i pool -N i-1 pool) + 1 worst solutions.

Note that this management strategy of the pool guarantees that the number of solutions in the pool slowly decreases until it remains one solution in the pool, and this, even in the hybridization or not.

Stopping criterion

The genetic algorithm stops either when the CPU time reaches 2 hours or the pool of solutions contains only one solution. Note that in both cases, the first solution of the pool is the best solution obtained by the algorithm.

The hybridization and parallelization scheme

Now we present the hybridization and parallelization scheme of the overall algorithm. For simplicity, we denote the Lagrangian relaxation algorithm by LRA, the genetic algorithm by GA and the greedy algorithm by SH. The parallel hybrid algorithm will be denoted by PHA.

We remark that in PHA, the three algorithms LRA, GA and SH run in parallel. We also hybridize the three algorithms in the following way. First, the solutions generated by algorithms SH and LRA are introduced in the pool of solutions of GA. Also, at the begining of PHA, the global upper bound Z U B is set to ∞. Then, each time LRA, SH and GA generate a feasible solution, the value Z of this solution is compared to Z U B . If Z < Z U B , then the best upper bound Z U B is updated with the value of Z. Note that the value Z U B is used by LRA to update the Lagrange multipliers.

We also ensure that GA continues running after LRA and SH are terminated. This is done in order to give to GA enough time to process the solutions of LRA and SH.

Finally, notice that toghether with the global upper bound Z U B , the Lagrangian relaxation algorithm also produces a lower bound of the optimal solution of the SkESNDP.

The main operations in PHA are summarized below, in Algorithm 7, while Figure 3.2 describes the communication scheme of PHA.

Experimental Study

In this section, we present the computational experiments we have conducted for the kESNDP and the SkESNDP. The aim is to show the efficiency of our algorithm in producing solutions of good quality for the problem, and this, in a relatively short computation time. To do this, we first compare the results obtained, for several instances, by algorithm PHA against those obtained by solving the flow formulation with CPLEX. Then, we compare each algorithm SH, LRA and GA against the overall PHA algorithm for solving the kESNDP and SkESNDP. Notice that since one of the components of parallel hybrid algorithm have stochastic components (e.g. the GA), each PHA entry represents the mean of 5 runs on the same instance.

All the algorithms have been implemented in C++ using LEMON graph structures [START_REF]COIN-OR library for efficient modeling and optimization in networks lemon[END_REF] and we have used CPLEX [1] for solving the undirected flow formulation of the kESNDP. The experiments have been conducted on a computer equiped with an Intel i7 processor at 2.5 Ghz with 8 Gb of RAM, running under Linux. We have set the maximum CPU time of all the algorithms, including CPLEX, to 2 hours.

We have used OpenMP library and the C++ inner parallel library std::thread in order to manage the multithreading parallel computations. Also, in order to avoid inconsistencies in the solutions pool, we use the C++ library std::mutex for the shared memory management.

kESNDP

The test problems have composed of graphs from the [2] library, that are complete Euclidean graphs. For the demands, we have considered single-source multi-destination demand set (called rooted demands) and multi-source multi-destination demand set (arbitrary demands). The number of nodes of the graphs are from 30 to 318 while the number of demands varies from 3 to 15, for the rooted case, and from 10 to 159 for arbitrary demands. We have also solved each instance with connectivity requirement k = 3. Each instance is described by its name followed by the number of nodes of the graph and the number of demands. When the demands are rooted, the number of demands is preceded by "r" while arbitrary demands are indicated by "a" before the number of demands. For example, berlin30-r10 denotes an instance composed of a graph from TSPLIB with 30 nodes and 10 rooted demands, and st70-a35 denotes an instances composed of a graph from TSPLIB with 70 nodes and 35 arbitrary demands.

We have also implemented the Undirected Flow Formulation using CPLEX 12.6 concert technology library and have solved the problem for the same instances. Tables 3.1 and 3.2 show the results for the kESNDP with k = 3 by both PHA and CPLEX for rooted demands and arbitrary demands respectively. The entries of each tables are Remark that for some instances, CPLEX has not been able to solve even the linear relaxation after the maximum CPU time (2 hours). The results for these instances are indicated with "-".

From Table 3.1, we can observe that for the rooted instances, 2 instances over 22 have been solved to optimality by CPLEX while PHA produces an upper bound of the optimal solution for all the instances. Also, for 9 instances, CPLEX produces a better feasible solution than that obtained by PHA. However, for all the other instances, the upper bound produced by PHA is better than that obtained by CPLEX after the maximum CPU time. For example, for instances st70-r35 and kroA100-r50, PHA produces an upper bound of 1265 and 47454, respectively, while CPLEX produces an upper bound of 1278 and 49323. We have also compared the lower bound achieved by PHA with that obtained by CPLEX. For several instances (12 over 22), the lower bound obtained by CPLEX after the maximum CPU time is better than that obtained by PHA. This can be explained by the fact that CPLEX, during the resolution process, adds several valid inequalities, such as Gomory cuts and General Upper Bound inequalities, which allows strengthning the linear relaxation of the problem and improve the quality of the lower bound.

For the arbitrary instances (see Table 3.2), the observations are almost the same. PHA produces better upper bounds for 11 instances over 20. PHA is even able to produce both lower and upper bounds for 5 instances where CPLEX has not been able to solve the linear relaxation of the problem. Also, for 9 instances, PHA produces a better lower bound than that obtained by CPLEX. For the other instances, the lower bound achieved by CPLEX is better than that obtained PHA.

Finally, we compare CPLEX and PHA in terms of CPU time. We clearly see, from Tables 3.1 and 3.2, that except 2 instances with rooted demands instances and with arbitrary demands, CPLEX reaches the maximum CPU time for all the instances. On the contrary, the CPU time achieved by PHA is relatively small for most of the instances. Indeed, the CPU time is less than 6 minutes for 50% of the rooted demand instances and less than 7 minutes for 45% of the arbitrary demand instances. Only 4 instances for both the rooted demands and arbitrary demands, have reached the maximum CPU time. This, together with the above observations, shows that PHA is able to obtain better solutions than CPLEX, and this, in quite short CPU time.

Now we turn our attention to the efficiency of PHA w.r.t its components, that are LRA, GA and SH. The aim is to see if each algorithm taken separately is more efficient than the hybridization or not. For this, we compare the results obtained by LRA, GA and SH separately with those obtained by PHA. The results are given by Tables 3.3 and 3.4 for rooted and arbitrary demands respectively.

We can see from Table 3.3 that the upper bounds produced by PHA for all the instances with rooted demands are better than those obtained by LRA, SH and GA, taken separately. Also, for the arbitrary demands (see Table 3.4), PHA outperforms algorithms LRA, SH and GA taken separately. This clearly shows that, with both rooted and arbitrary demands, the hybridization of the three components produce better results than each component taken separately. When comparing PHA and LRA in terms of lower bounds, we can see that for almost all the instances, with both rooted and arbitrary demands, the lower bound obtained by LRA is better than that obtained by PHA. Thus, clearly, the hybridization helps in producing better upper bounds for most of the instances, but does not help in improving the lower bounds.

SkESNDP

For the SkESNDP, we have used the same environment as used for kESNDP. The test problems have been obtained from the TSPLIB library [2]. Each test set consists in complete graphs whose edge weights are the rounded Euclidean distance between the edge vertices. In addition, for each graph, a set S of terminals is defined including the first |S| nodes of G.

The results obtained for SkESNDP by all the algorithms are summarized in Table The results of PHA algorithm are interesting (see Table 3.5).

First we can easily notice that the approach is able to improve, for all the instances, the upper bounds given by SH and RLA. However we notice that, the upper bound given by RLA is very weak as in 17 instances over 20.

Second, comparing PHA to CPLEX we can see that our algorithm produces better upper bounds in 13 cases over 20 while CPLEX is able to solve to optimality three instances. We can also see that for 14 instances, CPLEX produces a better lower bound than PHA. Also, the gap produced by PHA is better than that produced by CPLEX for 13 instances. Now, we compare the algorithms SH, RLA and GA, taken separately, with algorithm PHA. We can see that for all the instances, algorithm PHA produces a better upper bound than SH and RLA. We can also observe that, for several instances, the lower bound achieved by RLA taken separately is better than that obtained by PHA. These two observations show that the combination of the three algorithms does not always help in improving the lower bound, but clearly helps in improving the upper bound.

Finally, we can see that the CPU time of PHA is relatively small (less than 1h) for 13 instances over 20, while CPLEX reaches the maximum CPU time for almost all the instances (18 instances over 20). Moreover, PHA has been able to produce an upper bound for instance lin318-15 while CPLEX was not able to produce even a feasible solution due to lack of memory.

79

Conclusion

In this Chapter we considered the k-Edge-Connected Network Design Problem (kESNDP) and its variant the Steiner k-Edge-Connected Network Design Problem (kESNDP). We propose a parallel hybrid algorithm which aims to produce good solutions for large scale instances of the two problems. Our approach is based on a Lagrangian relaxation of a flow-based integer programming formulation of the problem, a greedy and a genetic algorithms.

presented in the previous chapter for solving the kESNDP to the kHNDP. We test the algorithms within an extensive computational study and compare their efficiency for solving the kHNDP against CPLEX.

Let G = (V, E) be an undirected graph, a set of demands D ⊆ V × V , a cost function c : E → R which associates the cost c (e) with each edge e ∈ E. We recall that the k-Edge-Connected Hop-Constrained N etwork Design P roblem (kHNDP for short) consists in finding a minimum cost sub-graph of G such that there exist k edge-disjoint L-st-paths (st paths whose lengths are ≤ L) between the terminals of each demand {s, t} of D.

In this chapter, we introduce a study on the kHNDP when k ≥ 2, |D| ≥ 1 and L ≥ 2. In fact, while in the literature the focus was on the polyhedral point of view of the kHNDP trying to solve to optimality the problem, we noticed that most algorithms proposed could not solve the instances when |V | ≥ 50 and |D| ≥ 20. Thereby, we introduce a new parallel hybrid approach based on a Lagrangian relaxation method, a fast greedy algorithm and a genetic algorithm to solve in an approximate way the kHNDP.

The chapter is organized as follows. In Section 4.1, we present the graph transformations, and the flow based formulations for the problem in both cases when L = 2, 3 and L ≥ 4. In Section 4.2, we introduce the application of PHA on the different problem formulations. Then, in the last section, we present some computational results and proceed to a comparison between our results and those of CPLEX.

Integer programming formulations

When L = 2, 3

In this section, we present the integer programming formulation of the kHNDP, proposed by Diarrassouba et al. [START_REF] Diarrassouba | Integer programming formulations for the k-edge-connected 3-hop-constrained network design problem[END_REF], on which we based our study. This formulation use a directed layered graph to model each hop-constrained subproblem.

Graph transformation

Let {s, t} ∈ D and G st = (V st , A st) be the directed graph obtained from G using the following procedure.

Let N st = V \ {s, t}, N st be a copy of N st and V st = N st ∪ N st ∪ {s, t}. The copy in N st of a node u ∈ N st will be denoted by u . To each edge e = st ∈ E, we associate an arc (s, t) in G st with capacity 1. With each edge su ∈ E (resp. vt ∈ E), we associate in G st the arc (s, u), u ∈ N st (resp. (v , t), v ∈ N st) with capacity 1. With each node u ∈ V \ {s, t}, we associate in G st arc (u, u) with an infinite capacity. Finally, if L = 3 we associate with each edge uv ∈ E \ {s, t}, two arcs (u, v) and (v, u), with u, v ∈ N st and u , v ∈ N st with capacity 1 (see Figure 4.1 for an illustration with D = {s 1 , t 1 }, {s 1 , t 2 }, {s 3 , t 3 } and L = 3). Given a demand {s, t}, the associated graph G st = (V st , A st), and for an edge e ∈ E, we denote by A st (e) the set of arcs of G st corresponding to the edge e. It is not hard to see that G st does not contain any circuit. Also, observe that any st-dipath in G st is of length no more than 3. Moreover each L-st-path in G corresponds to an stdipath in G st and conversely. In fact, if L ∈ {2, 3}, every 3-st-path (s, u, v, t), with u = v,u, v ∈ V \ {s, t}, corresponds to an st-dipath in G st of the form (s, u, v , t) with u ∈ N st and v ∈ N st . Every 2-st-path (s, u, t), u ∈ V \ {s, t}, corresponds to an st-dipath in G st of the form (s, u, u , t). We have the following lemma (see [START_REF] Diarrassouba | Integer programming formulations for the k-edge-connected 3-hop-constrained network design problem[END_REF] for the proof).

Lemma 1 Let L ∈ {2, 3} and {s, t} ∈ D.

i) If two L-st-paths of G are edge-disjoint, then the corresponding st-dipaths in G st are arc-disjoint.

ii) If two st-dipaths of G st are arc-disjoint, then the corresponding st-paths in G contain two edge-disjoint L-st-paths.

As a consequence of Lemma 1, for L ∈ {2, 3} and every demand {s, t} ∈ D, a set of k edge-disjoint L-st-paths of G corresponds to a set of k arc-disjoint st-dipaths of G st , and k arc-disjoint st-dipaths of G st correspond to k edge-disjoint L-st-paths of G. Using these results, Diarrassouba et al. [START_REF] Diarrassouba | Integer programming formulations for the k-edge-connected 3-hop-constrained network design problem[END_REF] introduced a flow-based formulation for the kHNDP which rely on the transformed graphs G st . This formulation, called separated flow formulation, is described in the next section.

Therefore we have the following corollary:

Corollary 1 Let H be a subgraph of G and H st , {s, t} ∈ D, the subgraph of G st obtained by considering all the arcs of G st corresponding to an edge of H, plus the arcs of the form (u, u), u ∈ V \ {s, t}. Then H induces a solution of the kHNDP if H st contains k arc-disjoint st-dipaths, for every {s, t} ∈ D. Conversely, given a set of subgraphs H st of G st , {s, t} ∈ D, if H is the subgraph of G obtained by considering all the edges of G associated with at least one arc in a subgraph H st , then H induces a solution of the kHNDP only if H st contains k arc-disjoint st-dipaths, for every {s, t} ∈ D.

The separated flow formulation

The Corollary 1 suggests at once the following formulation for the kHNDP when L = 2, 3.

Let F ⊆ E be a subgraph of G. Given a demand {s, t}, we let f st ∈ R Ast be a flow vector on G st of value k between s and t. Then f st satisfies the f low conservation constraints.

min e∈E c(e)x(e) a∈δ + (u) f st a - a∈δ -(u) f st a =      k if u = s 0 if u ∈ V st \ {s, t} -k if u = t      (4.1) f st a ≤ x(e) x ∈ Z E + ; f st ∈ Z Ast + (4.2) f st a ≤ 1 f st ∈ Z Ast + (4.3) f st a ≥ 0 f st ∈ Z Ast + (4.4)
x(e) ≤ 1 The separated f low f ormulation has been introduced firstly by Diarrassouba et al. [START_REF] Diarrassouba | Integer programming formulations for the k-edge-connected 3-hop-constrained network design problem[END_REF] and uses a polynomial number of variables and constraints. In fact, the formulation uses flows in |D| graphs layered graphs obtained by applying a transformation on the original graph G for each demand {s, t} (Gouveia and Requejo [START_REF] Gouveia | A new lagrangean relaxation approach for the hopconstrained minimum spanning tree problem[END_REF]).

x ∈ Z E + (4.5)
4.1.2 When L ≥ 4

Graph transformation

For our purpose, we use the graph transformation proposed by Diarrassouba et al. [START_REF] Diarrassouba | Integer programming formulations for k-node-connected hop-constrained survivable network design problem[END_REF], which transforms the original graph G into a set of directed layered graphs. This transformation is presented below. For each demand {s, t} ∈ D, first let

V l st = {(u, l), for all u ∈ V \ {s, t}}, l = 1, ..., L -1. Then, let G st = (V st , A st) be the directed graph where V st = L-1 l=1 V l
st ∪ {s, t}. The arc set A st is obtained by adding in G st

• two arcs of the form ((u, l), (v, l +1)) and ((v, l), (u, l +1)), for all l ∈ {1, ..., L-2} and every edge uv ∈ E such that u, v ∈ V \ {s, t},

• an arc of the form (s, (u, 1)), for every edge su ∈ E with u ∈ V \ {s, t},

• an arc of the form ((u, L -1), t), for every edge ut ∈ E with u ∈ V \ {s, t},

• an arc of the form (s, t), for every edge st ∈ E,

• an arc of the form ((u, l), (u, l + 1)), for every u ∈ V \ {s, t} and l ∈ {1, ..., L -2}. Diarrassouba et al. [START_REF] Diarrassouba | Integer programming formulations for k-node-connected hop-constrained survivable network design problem[END_REF] showed that every L-st-path of G corresponds to an st-path in G st and vice-versa. Moreover, They showed that there exists k edge-disjoint L-stpaths in G if and only if there exists k arc-disjoint st-paths in G st such that any pair of arcs used in these paths corresponds to the same edge of G. The transformation above yields to the following integer programming formulation [START_REF] Diarrassouba | Integer programming formulations for k-node-connected hop-constrained survivable network design problem[END_REF], called flow formulation, for the kHNDP when L ≥ 4. Let x e , for each edge e ∈ E, be the 0 -1 variable which takes value 1 if the edge e is in the solution and 0 otherwise. Let f st a be a flow variable associated with arc a of G st . The kHNDP is equivalent to the following integer program

min uv∈E ω uv x uv s.t. a∈δ + (u) f d a - a∈δ -(u) f d a =      k if u = s -k if u = t 0 if u ∈ V st \ {s, t} ,      , for all u ∈ V st and {s, t} ∈ D, (4.6) a∈Ast(e)
f st a ≤ x e , for all e ∈ E and {s, t} ∈ D,

f st a ≥ 0, for all a ∈ A st and {s, t} ∈ D,

x e ≤ 1, for all e ∈ E, (4.9)

x e ∈ {0, 1}, for all e ∈ E, (4.10)
f st a ∈ {0, 1}, for all a ∈ A st and {s, t} ∈ D. (4.11)

The Parallel Hybrid Algorithm

In this section we introduce the application of the parallel, hybrid algorithm (PHA) for solving the kHNDP. According to Talbi's taxonomy, the approach consists in a parallel, HTH (High-level, Teamwork) hybrid, approximation algorithm based on three components; a lagrangian relaxation algorithm (RLA), a greedy successive heuristic (SH) and a genetic algorithm (GA).

Greedy Successive Heuristic

Our greedy heursitic for the kHNDP works similarly to that we have devised for the kESNDP. We start by randomly generating a set of |D| ordering of the demands. For a given ordering, we let D = {{s 1 , t 1 }, {s 2 , t 2 }, ...{s d , t d }} be the demands w.r.t that ordering. For i ∈ {1, ..., |D|}, we denote by E i the set of edges of G having a flow value of 1 in a minimum cost s i t i -flow of value k in G s i t i . Moreover, in this flow at most one arc corresponding to the same edge have a flow value of 1. The edge set E i is computed as follows. First, compute a minimum cost s i t i -flow of value k in G s i t i , where all the arcs have capacity 1, all the arcs corresponding to an edge of i-1 j=1 E j have a cost of 0, and all the arcs corresponding to the edges e ∈ E \ i-1 j=1 E j have a cost ω e . Let f s i t i be the obtained flow vector and let F s i t i be the set of edges e ∈ E such that a∈ As i t i (e)

f s i t i a > 1.
If F s i t i = ∅, then we let E i be the set of edges e ∈ E such that a∈ As i t i (e)

f s i t i a = 1. If F s i t i = ∅,
then, for each edge e ∈ F s i t i , we arbitrarily choose an arc a 0 ∈ A s i t i (e), give him a capacity 1, give a capacity 0 to all the arcs of A s i t i (e) \ {a 0 }, and compute minimum cost flow of value k in G s i t i with the same arc costs as before. Finally, if f st is the new flow vector, then we let E i be the set of edges e ∈ E such that

a∈ As i t i (e) f st a = 1.
Finally, it is not hard to see that the edge set

|D| j=1
E j is a feasible solution for the kHNDP. This procedure is repeated for all the ordering of the demands, yielding |D| feasible solutions. The algorithm ends by finding the best one among these solutions.

Lagrangian Relaxation

min cx Af ≥ b f ∈ Z Df -Ex ≤ 0 f, x ∈ Z 0 ≤ f ≤ 1 f ∈ Z x ≤ 1 x ∈ Z
We define the lagrangian relaxation of our problem with respect to the constraint set Df -Ex ≤ 0 by introducing a lagrange multiplier vector λ ≥ 0 which is attached to this constraint set and brought into objective function to get:

min (c -λE)x + λDf Af ≥ b 0 ≤ f ≤ 1 x ≤ 1 f, x ∈ Z
Hence, switching back from matrix notation to summation notation, we obtain the following P (λ):

min e∈E   c(e) -   {s,t}∈D a∈ Ast(e) λ st a     x(e)+ {s,t}∈D a∈ Ast(e) λ st a f st a a∈δ + (u) f st a - a∈δ -(u) f st a =      k if u = s 0 if u ∈ V st \ {s, t} -k if u = t      for all u ∈ V st f st a ≤ 1, for all a = (u, u), u ∈ V \ {s, t} , {s, t} ∈ D f st a ≥ 0, for all a ∈ A st (e), {s, t} ∈ D x(e) ≤ 1, for all e ∈ E x ∈ Z E + f st ∈ Z Ast +
Based on the program obtained, two algorithms (RLA and RLASH) have been designed for the kHN DP . RLA and RLASH start by solving the |D| flow problems in a parallel multithreaded fashion using the N etwork Simplex algorithm [START_REF] Ahuja | Network flows[END_REF][START_REF] Cunningham | A network simplex method[END_REF].

To fix the lagrange multipliers, the subgradient algorithm is used. In the subgradient phase of both algorithms, we use a heuristic in case of having an X j non feasable for the initial kHNDP formulation to transform it to a feasible X j . In RLA, we use a fast primal heuristic to round to 1 each x j (e) that violates a f st a ≤ x(e) constraint. In RLASH, instead of a primal heuristic, we use the heuristic SH that we designed. For each graph G st , the algorithm starts by setting up the cost of each arc related to an edge already selected in the solution X j (x j (e) = 1) to 0 and then solve the current flow problem.

When L ≥ 4 [98]

As for the case when L = 2, 3, our Lagrangian algorithm is based on the relaxation of the linking constraints (4.7). This yields the following linear program, called problem (LR), where λ st uv , for all uv ∈ E, are the Lagrange multipliers associated with the linking constraints,

min uv∈E   ω uv - {s,t}∈D λ st uv   x uv + {s,t}∈D uv∈E λ st uv a∈ Ast(uv) f st a s.t. a∈δ + (u) f d a - a∈δ -(u) f d a =      k if u = s -k if u = t 0 if u ∈ V st \ {s, t} ,     
, for all u ∈ V st and {s, t} ∈ D, 0 ≤ f st a ≤ 1, for all a ∈ A st and {s, t} ∈ D, 0 ≤ x e ≤ 1, for all e ∈ E, x e ∈ {0, 1}, for all e ∈ E, f st a ∈ {0, 1}, for all a ∈ A st and {s, t} ∈ D.

As before, one can easily see that solving problem (LR) reduces to solving |D| minimum cost st-flow of value k in graphs G st , which can be done in polynomial time. Also, as for the kESNDP, the Lagrange multipliers are updated using the sub-gradient method.

It should be noticed that, contrarily to the kESNDP, the solution y ∈ R E such that y e = max{f st a , for all a ∈ A st (e) and {s, t} ∈ D}, for all e ∈ E, may not be feasible for the kHNDP. Thus, at each iteration of the algorithm, we check if y is feasible for the kHNDP, and if not, we transform y into a feasible solution. To see if y is feasible or not, it suffices to check if each flow vector f st , for every {s, t} ∈ D,

is such that a∈ Ast(e) f st a ≤ y e . (4.12)
If y is not feasible for the kHNDP, then for each {s, t} ∈ D, we let F st be the set of edges of G for which an inequality (4.12) is violated. We build a new solution y ∈ R E as follows. If for a demand {s, t} ∈ D, F st = ∅, then we let g st be a flow vector such that g st = f

st . If F st = ∅, then for all e ∈ F st , we arbitrarily choose an arc a 0 ∈ A st (e),

give him a capacity 1, give a capacity 0 to all the arcs of A st (e) \ a 0 , and compute a minimum cost st-flow of value k, each arc a ∈ A st (uv) having a cost ω uv , for all uv ∈ E.

We let g st be the value of that minimum cost flow. Finally, the solution y is such that y e = max{g st a , for all a ∈ A st (e) and {s, t} ∈ D}, all e ∈ E, and is clearly feasible for the kHNDP when L ≥ 4.

Genetic Algorithm

Our genetic algorithm for the kHNDP follows the same lines that we have devised for the kESNDP. The reader can refer to Section 3.2.3 for the details.

Hybridization

The hybridization and parallelization scheme for the parallel hybrid algorithm for the kHNDP when are the same as that devised for the SkESNDP. We refer the reader to Section 3.2.4 for the details.

Experimental Study

In this section we present a computational study of the different algorithms introduced in this chapter. We aim to check their efficiency for solving the problem for large scale instances, and compare them to each other from a computational time, and solution quality point of view.

The algorithms described in the previous section have been implemented in C++, using LEMON graph structures [START_REF]COIN-OR library for efficient modeling and optimization in networks lemon[END_REF]. They were tested on an Intel i7 2.5 Ghz with 8 Gb of RAM, running under Linux. We fixed the maximum CPU time to 2 hours. The test problems were obtained by taking TSP test problems from the TSPLIB library [2]. The test set consists in complete graphs whose edge weights are the rounded Euclidean distance between the edge's vertices. In addition, for each instance, a set of |D| demand in the form {i, i + 1} is defined including the first 2|D| nodes.

When L = 2, 3

Table 4.1 exhibits computational results obtained for a set of 28 TSP test instances in form of a comparison between our algorithms and CPLEX 12.6 [1] executed in parallel. The results given are obtained for k = 3 and L = 3. Each instance is given by the graph's number of nodes and preceded by its name. Since one of the components of parallel hybrid algorithm have stochastic components (e.g. the GA), each PHA entry represents the mean of 5 runs on the same instance. Finally, note that empty entries does not mean that the time needed to compute a feasible solution exceeded 2 hours, but that the system was not able to charge the problem itself to memory.

|V |

: number of nodes of the graph; |D| : number of demands U B

: objective function value (best upper bound) LB : best lower bound Gap : relative error between the best upper and lower bounds CP U : total CPU time in hours:min:sec First, by observing Table 4.1, we notice that for L = 3, the problem is solved to optimality by parallel CPLEX in 4 instances (having |D| ≤ 10) over 28 (14.2%) and just once by our approximating algorithms (RLASH algorithm).

We remark that our lagrangian relaxation algorithms outperforms parallel CPLEX relatively to the solution cost (U B) in 13 instances over 28 (46.4%). The SH algorithm outperforms CPLEX as well but in 19 cases out of 28 (67.8%). (See Figure 4.4 for the solutions cost distribution).

For PHA algorithm, the results have been encouraging (see Table 4.1), where the approach has been able to improve the best upper bound obtained by the SH and RLA algorithms in 16 instances over 28 (57.1%). PHA could also benefit from the efficiency of the SH algorithm in cases where the graph is very large, and at least returns an upper bound for our problem. However we notice that, due to the weak lower bound obtained by the RLA algorithm, the gap is high relatively to the quality of the solution as in 5 instances, PHA obtains better upper bounds than CPLEX but giving, on the other hand, a weaker gap. Now, we turn our attention to the comparison of the algorithms in terms of CPU time, we notice that for all the instances, the greedy successive heuristic (SH) could give an upper bound to the kHNDP. In fact, it takes a bit more than 4 minutes to solve a 575 nodes graph with 287 demands while CPLEX cannot charge the mathematical programming model, for a graph of 318 nodes and 111 demands, into memory.

In Figure 4.5, we can see that for both RLA and RLASH, a range of 15 graphs (number of nodes from 52 to 318, and number of demands from 15 to 61) exists, in which they outperform CPLEX in computational time.

In the same way, we can see that PHA could in 11 instances over 28 (39.2%) produce solutions faster than CPLEX, reach the limit of 2 hours as same as CPLEX in 5 instances (17.8%), and could solve 4 large instances that CPLEX could not charge in memory. As before, when CPLEX does not solve the linear relaxation of the problem after the maximum CPU time (2 hours), the results are indicated with "-".

From Table 4.2, we can see that when k = 3 and L = 3, CPLEX outperforms PHA in producing upper bounds for the first 6 instances. For the others (14 over 20), PHA produces better upper bounds than CPLEX. Also, for almost all of the instances (18 instances over 20), CPLEX reaches the maximum CPU time while PHA requires less than 12 minutes for 9 instances. For the case where k = 3 and L = 4 (Table 4.3), we can see that CPLEX has reached the maximum CPU time while the CPU time required by PHA does not exceed 15 minutes for 45% of the instances. Also, except 5 instances, PHA outperforms CPLEX in producing good upper bounds. Moreover, CPLEX has been able to find even a feasible solution after 2 hours of CPU time while PHA does.

For the case where k = 3 and L = 5 (see Table 4.4), the observations are quite similar to the cases where L = 3 and L = 4. Indeed, it appears that PHA outperforms CPLEX in producing good upper bound, and this, within a quite short CPU time. Now we compare PHA with each of its components. We do this comparison only in the case where k = 3 and L = 3, as our experiments lead to the same observations when L = 4 and L = 5. Table 4.5 below gives the lower and upper bounds obtained by PHA and LRA and the upper bounds obtained by GA and SH, for the kHNDP with k = 3 and L = 3. Table 4.5 clearly shows that PHA outperforms its LRA, GA and SH taken separately, for all the instances. Indeed, the upper bound produced by PHA is better for all the instances than that obtained by GA, LRA and SH. However, when comparing the lower bounds obtained by PHA and LRA, except 2 instances (kroA200-a100 and lin318-a159), the lower bound produced by LRA is better than that obtained by PHA. Consequently, as before, the hybridization clearly helps in producing better feasible solutions for the kHNDP but does not produce better lower bounds. The question raised here is important since the CPU time needed to run an algorithm using several processors (for instance for accessing a shared memory, for managing the interactions with the operating system or between the processors, etc.) may exceed the CPU time when using a single processor.

To answer this question for our parallel hybrid algorithm, we measure the CPU time for each algorithm, LRA, SH and GA, regarding an increasing of the number of processors used to run the algorithms. We use the algorithms devised for the kHNDP with k = 3 and L = 3. Tables 4 We have limited the number of processors to 8 since the computer we have used for our experiments is equiped with a 8-cores processor. The three tables clearly show that, for the three algorithms, the CPU time decreases when the number of processors increases. Moreover, using two processors significantly decreases the CPU compared to the usage of a single processor. We can also notice that, even if the CPU time decreases as the number of the processors increases, the gain of using height processors is not significant compared to using two processors. In conclusion of these experiments, using several processors improve the CPU time of each component of PHA, and using two processors seems to be the best choice.

It should be noticed that the above conclusion holds if we do not use more than height processors, and depends on architecture of the computer used for the experiments. Using a different architecture and more than height processors may lead to different conclusions.

Speedup & Efficiency

In what follows, we present the speedup and the efficiency results. Tables 4.9, 4.10 and 4.11 and Figures 4.9 For a fixed graph and an increasing p, we remark that LRA speedup increases in the most of the cases, exept for 3 instances over 10 (30%) while we pass from using 4 to 6 cores. On the other side, efficiency is strictly decreasing.

When we fix a number of cores and variate the input graphs, both metrics are increasing when the input graph has greater numbers of nodes and demands, but decreases for a bigger graph and an equal number of demands |D|, and this behavior is logical because the number of parallelized tasks in every parallelized region of LRA depends of |D|, so if the number of nodes increases and not |D|, the algorithm will have to compute more, manage a bigger amount of data, without having more parallelism.

For SH, we remark that the speedup is always increasing for a fixed graph and an increasing p, the efficiency on the other hand, is strictly decreasing.

When we fix a number of cores and variate the input graphs, same as said for LRA, We notice also that SH in comparaison with LRA has a higher speedup, that is close from reaching for the perfect case p = 2 having S ≈ p, and this is due to the higher degree of parallelism of SH.

If we wanted to sort LRA, SH and GA's parallelisation, GA would be in the second position after SH. In fact, we can see that the results obtained in terms of speedup and efficiency are better than LRA's ones. Here again we can easily see that the speedup is increasing for a fixed graph and an increasing p (we have only one irregular case, berlin 30 10 with p from 4 to 6 cores) and that the efficiency is always decreasing.

However, for a fixed number of cores and a variant input graphs, GA's speedup and efficiency were always increasing. This behavior can be explained by the fact that the number of parallel tasks depends from the solution population pool size (depends itself

Conclusion

In this Chapter we considered the k-Edge-Connected Hop-Constrained Network Design Problem (kHNDP). We presented the application of the approach PHA presented in the previous chapter for solving the kESNDP to the kHNDP and we tested the algorithms within an extensive computational study and compare their efficiency for solving the kHNDP against CPLEX.

Parallelizing Branch-and-Cut algorithms for some survivability network design problems

We continue here our study of the k-edge connected Hop-constrained Network Design Problem (kHNDP). In this study we aim optimal solving of the kHNDP. We devise and present two distributed exact algorithms: a distributed Branch-and-Bound and a distributed Branch-and-Cut. We present after that, an experimental study in which we compare our algorithms to CPLEX.

The Branch-and-Bound and the Branch-and-Cut algorithms, are presented as a set of tasks with very few, if any, data dependencies. This implies that the processes that perform calculations on these data have few dependencies and can be scheduled in any order. The only relationship that can exist between two tasks is that of kinship. Thus the dependency graph is a tree that is not very usable. The computational times of the nodes of the tree can not be evaluated a priori.

It is therefore not easy to parallelize such applications efficiently since its irregularity prevents predicting the shape of the tree, its size and the amount of work that each node represents in the tree.

In this chapter, we present two distributed exact algorithms (a distributed Branchand-Bound and a distributed Branch-and-Cut) to solve the k-Edge-Connected Hop-Constrained Network Design Problem (kHNDP for short). We also discuss the parallelization techniques and strategies that can be used to adapt the implementation we present to solve more efficiently combinatorial optimization problems that has other characteristics.

The chapter is organized as follows. In Section 5.1, we introduce the different parallelization strategies that can be applied to both, Branch-and-Bound and Branch-and-Cut algorithms. In Section 5.2, we present the kHNDP formulations and some valid inequalities for the problem. Then, in Section 5.3, we describe our parallel Branchand-Bound and parallel Branch-and-Cut algorithms. Finally, in Section 5.4 we present the related experimental study.

Parallelization strategies

To parallelize a B&B or a B&C algorithm, three major granularity levels can be distinguished (Bouzgarrou in [START_REF] Bouzgarrou | Parallélisation de la méthode du" Branch and Cut" pour résoudre le problème du voyageur de commerce[END_REF]):

• coarse grain granularity,

• medium grain,

• fine grain.

As more flexible but complicated schemes, one can think of a new parallelization approach that uses a nested parallelization hierarchy. The main idea behind that is to be able to hybridize two or more of the Bouzgarrou's granularities in order to implement a parallel algorithm in which the granularity can be adapted to the problem and/or the hardware specifications. In what follows we describe how these parallelization strategies can be applied on the B&B and the B&C algorithms.

Coarse grain

It consists in executing several B&C algorithms in parallel, one starting from an initial feasable solution computed by a primal heuristic, and the second an initial solution given by the approach PHA. During the execution the algorithms exchange informations aiming to accelerate one or both explorations.

Medium grain

Each process explores a part of the search space. In this case we can use SYMPHONY to devise a parallel B&C in which we explore simultaneously multiple nodes of the search tree. Two types of threads exist, the first is the Master thread which handles the upper and lower bounds, the constraints pool and the sub-problems list. The second will be nodes threads that will be created by the master thread and deployed on a processor. problems

Fine grain

In this strategy the evaluation of each node of the B&C tree is done in parallel by several processes. For this scheme we can handle simultaneously the separation of our valid inequalities. One can also think about improving such algorithms by designing new ones that can be massively parallel and implement them on GPUs.

Nested parallelization strategies

What is remarkable in the previous strategies is that they are quite rigid. In other words, these strategies are not and can not be efficient and adjusted according to the structure of the parallel computer available. For example, a coarse grain parallelization scheme of a B&B or a B&C for the kHNDP using multithreading techniques would not be efficient for all input graph sizes in practice. In fact, in our experimental studies presented in previous chapters, we have shown how exact approaches for the kHNDP are greedy in terms of memory. For this reason, running multiple exact algorithms in the same environment will probably slower down the algorithm and decrease probably the instances size limit that could be solved.

A different idea, that was not presented in the few works that studied the parallelization of the B&C, could be to combine these classic strategies to obtain new ones. Fine grain, for example, can be used with coarse grain. Another possible combination would be the one that combines fine grain with medium grain parallelization schemes. This later can be interesting for the kHNDP because of the amount of computation time and memory requirements of the exact algorithms components. As a direct consequence of this combination, the user would have the ability to adjust the deployment in function of the instance size/its solving hardness and/or the architecture of the parallel machine available for the computation.

Formulations & Valid inequalities

We recall that as application of our parallel exact algorithms, we have chosen to consider in this chapter the k-Edge-Connected Hop-Constrained Survivable Network Design Problem (kHNDP) when L = 2, 3. We recall that the problem is defined as follows. Given a weighted undirected graph G = (V, E) where each edge e has a weight ω e , a set of demands D ⊆ V × V , a positive integer k, the kHNDP is to find a minimum weight subgraph of G such that for each demand {s, t} ∈ D, there exist k edge-disjoint paths of length at most L, for some integer L ≥ 2, between s and t.

Parallelizing Branch-and-Cut algorithms for some survivability network design problems

Formulations

Let G = (V, E) be an undirected graph, a set of demands D ⊆ V × V , a cost function c : E -→ R, which associates the cost c(e) with each edge e ∈ E. We recall that the k-Edge-Connected Hop-Constrained Network Design Problem (kHNDP for short) consists in finding a minimum cost subgraph of G such that there exist k-edge-disjoint L-st-paths between the terminals of each demand {s, t} of D.

We have shown in Section 4.1.1 that the problem kHNDP can be formulated using some network flow sub-problems on transformed graphs when L = 2, 3. We have also presented the generalized flow formulation in Section 4.1.2 for the same problem when L ≥ 2. In this section we will present two other formulations from the literature.

Notice that in what follows, we will denote the flow formulation for kHNDP when L = 2, 3 by kHN DP 2,3 f low , and the one for the problem when L =≥ 2 by kHN DP f low .

Natural formulation

Let L ≥ 2 and D = {{s 1 , t 1 }, ..., {s d , t d }}, d ≥ 2, be the sets of demands. We will denote by R D the set of terminal nodes of G, that is those nodes of G which are involved in at least one demand. It is clear that the incidence vector x F of any solution (V, F) of the kHNDP satisfies the following inequalities:

x(δ(W)) ≥ k, for all st-cut, (s, t) ∈ D, (5.1)

x(T) ≥ k, for all L-st-path-cut, (s, t) ∈ D, (5.2)
x(e) ≥ 0, for all e ∈ E,

x(e) ≤ 1, for all e ∈ E.

(5.4)

Conversely, any integer solution of the system defined by inequalities (5.1)-(5.4) is the incidence vector of a solution of the kHNDP when L = 2, 3.

Recall that inequalities (5.1)-(5.2) and (5.3)-(5.4) are called respectively st-cut inequalities, L-st-path-cut inequalities and trivial inequalities.

It is not hard to see that the kHNDP can be formulated as a linear integer program. The following lemma and theorem give this result. Lemma 5.1 Let G = (V, E) be an undirected graph and s and t two nodes of V . Suppose that there do not exist k edge-disjoint L-st-paths in G, with k ≥ 2. Then there exists a set of at most k -1 edges that intersects every L-st-path.

| A st | = |E| + 2d|E| + d(n -2) - {s,t}∈D |δ(s)| - {s,t}∈D |δ(t)| + {s,t}∈D |[s, t]| variables if L = 3 (remind that d = |D|).
However, the number of constraints is exponential since the directed st-cuts are in exponential number in G st , for all {s, t} ∈ D. As its is know that its linear relaxation can be solved in polynomial time using cutting plane algorithm.

Valid inequalities [95]

Double cut inequalities

In the following we introduce a class of inequalities that are valid for the kHNDP polytopes for L ≥ 2 and k ≥ 2. They are given by the following theorem.

Theorem 5.4 Let {s, t} be a demand, i 0 ∈ {0, ..., L} and = {V 0 , ...,

V i 0 -1 , V 1 i 0 , V 2 i 0 , V i 0 +1 , ..., V L+1 } a family of node sets of V such that π = (V 0 , ..., V i 0 -1 , V 1 i 0 , V 2 i 0 ∪ V i 0 +1 , V i 0 +2 , ..., V L+1) induces a partition of V. Suppose that 1) V 1 i 0 ∪ V 2 i 0 induces an s j 1 t j 1 -cut of G with {s j 1 t j 1 } ∈ D and s j 1 ∈ V 1 i 0 or t j 1 ∈ V 1 i 0
(note that s j 1 and t j 1 cannot be simultaneously in V 1 i 0 and are not in V 2 i 0 . Also note that V 2 i 0 may be empty);

2) V i 0 +1 induces an s j 2 t j 2 -cut of G with {s j 2 t j 2 } ∈ D (note that j 1 and j 2 may be equal);

3) π induces an L-st-path-cut of G with s ∈ V 0 (resp. t ∈ V 0) and t ∈ V L+1 (resp. s ∈ V L+1). Let E = [V i 0 -1 , V 1 i 0] ∪ [V i 0 +2 , V 2 i 0 ∪ V i 0 +1] ∪ k,l ∈{i 0 ,i 0 +1},|k-l|>1 [V k , V l] and F ⊆ E such that |F | and k have different parities.
Parallelizing Branch-and-Cut algorithms for some survivability network design problems

Steiner-partition inequalities

Let (V 0 , V 1 , ..., V p), p ≥ 2, be a partition of V such that V 0 ⊆ V \ R D , where R D is the set of terminal nodes of G, and for all i ∈ {1, ..., p} there is a demand {s, t} ∈ D such that V i induces an st-cut of G. Note that V 0 may be empty. Such a partition is called a Steiner -partition. With a Steiner-partition, we associate the inequality

x(δ(V 0 , V 1 , ..., V p)) ≥ kp 2 , (5.14)
Inequalities of type (5.14) will be called Steiner-partition inequalities. We have the following result. Inequality (5.14) expreses the fact that, in a solution of the kHNDP, the multicut induced by a Steiner-partition (V 0 , V 1 , ..., V p), p ≥ 2, must contain at least kp 2 edges, since there must exist k edge-disjoint paths between every pair of nodes {s, t} ∈ D.

Steiner-SP -partition inequalities

Let π = (V 1 , ..., V p), p ≥ 3, be a partition of V such that the graph G π = (V π , E π) is series-parallel (G π is the subgraph of G induced by π). Suppose that V π = {v 1 , ..., v p } where v i is the node of G π corresponding to the set V i , i = 1, ..., p. The partition π is said to be a Steiner -SP -partition if and only if π is a Steiner-partition and either 1) p = 3 or 2) p ≥ 4 and there exists a node v i 0 ∈ V π incident to exactly two nodes v i 0 -1 and v i 0 + 1 such that the partitions π 1 and π 2 obtained from π by contracting respectively the sets V i 0 , V i 0 -1 and V i 0 , V i 0 +1 are themselves Steiner-SP-partitions.

The procedure to check if a partition is a Steiner-SP-partition is recursive. It stops when the partition obtained after the different contractions is either a Steiner-partition and of size three or it is not a Steiner-partition.

In the following theorem, we give necessary and sufficient condition for a Steinerpartition to be a Steiner-SP-partition. Remind that the demand graph is denoted by G D = (R D , E D), where R D is the set of terminal nodes of G. The edge set E D is obtained by adding an edge between two nodes of R D if and only if {u, v} ∈ D.

Theorem 5.7 Let π = (V 1 , ..., V p), P ≥ 3, be a partition of V such that G π is seriesparallel. The partition π is a Steiner-SP-partition of G if and only if the subgraph of G D induced by π is connected.

As a consequence of Theorem 5.7, if the demand graph is connected (this is the case when, for instance, all the demands are rooted in the same node), then every Steinerpartition of V inducing a series-parallel subgraph of G is a Steiner-SP -partition of V .

With a Steiner-SP -partition (V 1 , ..., V p), p ≥ 3, we associate the following inequality

x(δ(V 1 , ..., V p)) ≥ k 2 p -1, (5.15)
Inequalities of type (5.15) will be called Steiner-SP-partition inequalities. We have the following. Inequality (5.15) expresses the fact that in a solution of the kHNDP the multicut induced by a Steiner-SP-partition contains at least k 2 p -1 edges, since this solution contains k edge-disjoint paths between every pair of nodes {s, t} ∈ D.

Parallel algorithms for the kHNDP

Sequential algorithms

In this section, we describe our sequential B&B and sequential B&C implementations on which our parallel algorithms are based.

Parallelizing Branch-and-Cut algorithms for some survivability network design problems

Implementation of the B&B algorithm

Let P LF be the linear relaxation of the undirected flow formulation (see Section 4.1.2 for more details). P LF is defined as:

P LF : min uv∈E ω uv x uv s.t. a∈δ + (u) f d a - a∈δ -(u) f d a =      k if u = s -k if u = t 0 if u ∈ V st \ {s, t} ,      , for all u ∈ V st and {s, t} ∈ D, (5.16) a∈Ast(e)
f st a ≤ x e , for all e ∈ E and {s, t} ∈ D, (5.17)

f st a ≥ 0, for all a ∈ A st and {s, t} ∈ D,

x e ≤ 1, for all e ∈ E,

)

x e ∈ R, for all e ∈ E, (5.20)
f st a ∈ R, for all a ∈ A st and {s, t} ∈ D.

(5.21)

It is obvious that the optimal solution of P LF constitutes a lower bound of the integer kHNDP. Thus, to solve the kHNDP, our B&B algorithm starts by initializing the best upper bound Z U B using the fast greedy algorithm SH presented in Section 4.2.1. Then, it creates a root node problem P n 0 T B&B =0 LF , and add it to the nodes queue T B&B that represents the search tree (n k T B&B represents the number of nodes in the tree search T B&B at iteration k). A search tree which is handled by a BEST-FIRST algorithm. Thus, this node is selected and solved using CPLEX as a black box LP solver. The algorithm tests, as after each node evaluation, if the solution is integer or fractional. If it is integer, the algorithm concludes updates the integer upper bound and continues with the node selection if the queue is not empty. If the solution is fractional, it selects a variable using a specific criteria, fixes it to 0 to obtain a new problem P

+2

LF are added to the nodes queue. In addition, at each iteration k, if the solution found is fractional, we apply a greedy heuristic to make the solution integer and try to update/strengthen the global upper bound. Finally, we precise that the algorithm runs as long as T B&B = ∅.

Parallelizing Branch-and-Cut algorithms for some survivability network design problems

Implementation of the B&C algorithm

For the flow formulation, the optimization starts by considering the linear program P LF presented in the previous section.

The optimal solution (x, f Notice that the whole search tree management is done by our implementation of the the B&B algorithm presented in the previous section.

s 1 t 1 , ..., f s d t d) is feasible for kHNDP 2,3 f low if (x, f s 1 t 1 , ..., f s d t d) is integral. If (x, f s 1 t 1 , ...,

Parallel B&B

As mentioned above, the structure of the B&B contains very few dependencies, thus, the algorithm is inherently parallelizable. Nevertheless, the results of this task may be very bad if communications are not handled efficiently. That is all the more true when the memory is distributed. Thereby, to avoid having an important overhead due to the distributed architecture, the parallelization scheme we have designed follows the master/slave model. In fact, having a centralized tree management reduces the number of communications that should be made. Therefore, the master process is the process responsible of the tree search management, the root node evaluation, the global upper and lower bounds management and the algorithm stopping management. The slave processes are the ones responsible of evaluating the tree nodes and the branching. Figure 5.5 describes the communication scheme of our parallel B&B algorithm. In the other way back, when a slave communicates the node evaluation results to a master, the message is essentially composed of 3 values: the P i LP relaxation optimal value (lower bound), the primal bound calculated with the heuristic if the solution is fractional, and the variable on which we should branch if the node is not pruned by the master. In our parallel B&C, the master process is equivalent to the one presented for the parallel B&B. The only change we have made consists in adding the cuts separation for the root node evaluation. If this added step ends positively, the master sends the new separated constraints to the pool manager. problems

Experimental study

All the algorithms have been implemented in C++ and we have used CPLEX (12.6) for solving the undirected flow formulation for the kHNDP. The experiments have been conducted on a cluster composed of: 1 master machine equipped with an Intel Xeon E5-2603 v3 processor at 6 × 1.60 Ghz with 126 Gb of RAM, and 9 homogenous slaves. Each slave is equipped with Inter Xeon E5-2630 v3 processor at 16 × 2.40 Ghz with 48 Gb of RAM. All the machines are interconnected with a Gigabit Ethernet (GbE), and are running under Linux. We have set the maximum CPU time to 5 hours.

We recall that the test problems were obtained by taking TSP test problems from the TSPLIB library [2]. The test set consists in complete graphs whose edge weights are the rounded Euclidean distance between the edge's vertices. In addition, for each instance, a set of |D| demand in the form {i, i + 1} is defined including the first 2|D| nodes.

kHNDP solving study

In this section we present the computational experiments we have conducted for the kHNDP with k = 3 and L = 3. The aim is to show the efficiency of our algorithms in solving mid/large size instances of the kHNDP. We recall that our comparaison criteria sorted in increasing order priorities are: the UB, the Gap, the CPU time.

To do this, we compare our distributed B&B to the best known method in the literature for these instances, which is CPLEX as a parallel black-box solver (with its inner parallelism) applied on the compact kHNDP flow formulation. best lower bound achieved by parallel B&B (resp. CPLEX), Gap: relative error between the best upper and lower bounds achieved by parallel B&B (resp. CPLEX), CPU: total CPU time in hours:min:sec achieved by parallel B&B (resp. CPLEX).

129

Notice that when CPLEX or our algorithm do not solve the linear relaxation of the problem after the maximum CPU time (5 hours), the results are indicated with "-".

Parallel B&B results

Tables 5.1 give the results obtained by parallel B&B and CPLEX for the kHNDP with k = 3 and L = 3 and instances with arbitrary demands.

From Table 5.1, we can see that when k = 3 and L = 3, CPLEX was able to solve to optimality 5 instances over 28, while our parallel B&B was able to solve just 4 (instance berlin_30_d15 reached 8.1% after 5 hours). Also, our parallel B&B outperforms CPLEX in producing upper bounds for 16 instances over 28. For the others 5 instances where CPLEX produced better upper bounds, the solutions produced by our algorithm were close (at most 11.21% higher) to those obtained by CPLEX relatively to the other way around (CPLEX upper bounds which are 88.46% higher than the ones produced by our algorithm). From the lower bounds point of view, both our parallel B&B and CPLEX outperformed equally each other in producing better lower bounds in 5 instances over 28. We also notice that our parallel B&B was able to produce an upper bound for 4 instances while CPLEX fails to do so, even after 5 hours of CPU time.

Parallel B&C results

Tables 5.2 and 5.3 give the results obtained by parallel B&C and CPLEX for the kHNDP with k = 3 and L = 3 and instances with arbitrary demands.

Flow formulation

From Table 5.2, we can see that for the kHNDP when k = 3 and L = 3, CPLEX was able to solve to optimality 5 instances over 28, while our parallel B&C applied to the flow formulation was able to solve just 4 (instance berlin_30_d15 reached 6.21% after 5 hours). We notice that our parallel B&C outperforms CPLEX in producing upper bounds for 15 instances over 28. For the others 6 instances where CPLEX produced better upper bounds, the solutions produced by our algorithm were close the ones produced by parallel B&C (resp. CPLEX). Moroever, we can easily verify that the distrubution of the best gaps was uniform, for the smallest graphs CPLEX was better and from the instance kroA_150_50, parallel B&C performed better. Finally, we notice that parallel B&C was able to produced both a lower and upper bound for the 11 largest instances that CPLEX with the flow formulation was not able to charge to memory.

Parallel study

As said by Cung, Le Cun and Roucairol in [START_REF] Cung | Parallel Combinatorial Optimization[END_REF] when talking about parallel computing in combinatorial optimization: "Classical criteria such as acceleration (ratio of the time of the best sequential algorithm to the time of the parallel algorithm) or effectiveness (the acceleration on the number of processors used) are not well suited as performance measures in the metaheuristics domain. Explorations carried out sequentially and in parallel can indeed be different. Furthermore, solutions of different quality or even structure can be found. This is the reason why authors have proposed comparing the quality of solutions with fixed execution times, or comparing execution times with fixed solution quality.", we have noticed the same problems during this experimental study of our parallel combinatorial optimization algorithms. In fact, we were not able to do a common parallelization study due to the facts that we could not compare our intrinsic parallel implementation of the algorithms to the sequential versions, that for the hardest input graphs we could not let our algorithms compute beyond our 5 hours limit and that our main validation criteria is the kHNDP solving.

For these reasons, to show the impact of the parallelization on our algorithms computation time, we first start by introducing new metrics that will be used to simplify/clarify the study that follows:

Pseudo metrics

Consider a parallel algorithm P A to implement on a multiprocessor machine M made up of p identical processors. Let T p be the execution time of P A on the p processors and T min the execution time on the minimum number of processors. We then define: The main difference between these metrics and the common ones (speedup and efficiency) is that the common ones underlign the difference of using the parallelism with p processors and the sequentiel version, while the new ones underlign the use of p2 processors instead of p1.

It is easy to see that the ideal R_acceleration is equal to p2/p1. If we consider this function, the parallel algorithm is all the more efficient as the curve of variations is close to the line of equation y = p2/p1. In this case we will speak of linear acceleration. To have good accelerations, the extra cost of parallelization in computation time, and especially in communication volume, must be minimum. It is also necessary to apply to minimize the inactivity times of the processors due to an imbalance in the distribution of the charges between the processors. In some cases, the latter may be inevitable, in particular because of the inter-task precedences or the heterogeneity of the processors.

The R_efficiency of a parallel algorithm is generally less than 1 (or 100% if defined as a percentage). The closer the efficiency is to 1, the better the algorithm has good parallel qualities. The most important factor in decreasing efficiency is the cost of communication.

Impact of parallelism on the B&B

In order to measure the impact of the parallelization in the parallel B&B, we have considered the CPU time for our algorithm used for the kHNDP with k = 3 and L = 3. We have used p = 2, 8, 16, 32, 64, 128 processors. The choice of these numbers is due to the fact that each node of the cluster contains 16 cores and running the algorithms with these numbers can help algorithm to take full advantage from the architecture.

Notice that our minimum number of processors here is 2. In fact for p = 2 the behavior of our algorithm is very similar to a sequential version due to the fact that the two processes are necessary to the main algorithm to end, and in the same time these two processes does not do any simultaneous computation. Figure 5.9 shows an example of a run. Tables 5.5, 5.6 and 5.7 below exhibit respectively the CPU time, the speedup and the efficiency obtained for a subset of 7 test instances. The CPU computation time presented corresponds to the mean of 5 runs CPU times. 5.10 clearly show that the CPU time is decreasing when p = 2, 8, 16, 32, 64 and 128 for the graphs berlin52_5, st70_7, berlin52_10 and berlin30_10. But for instances st70_5, berlin52_7 and berlin30_7 the CPU time decreases until reaching a limit (resp. p = 8, p = 32 and p = 64) and increases after that. Same remarks for the R_Speedup in Table 5.6 and Figure 5.11. We can easily see that the R_Speedup is strictly increasing for the graphs berlin52_5, st70_7, berlin52_10 and berlin30_10. But increases for instances st70_5, berlin52_7 and berlin30_7 after reaching the limits (resp. p = 8, p = 32 and p = 64). This can be due to the fact that reaching a certain point of improvement for some graphs, the communication cost (in a time point of view) becomes more important than the parallel computation improvement which increases the total CPU time. What is good overall, is that this time deterioration is decreasing for an increasing input graph size (3.5s for st70_5, 1s for berlin52_7 and 0.2s for berlin30_7).

What is interesting to see also is that the R_Speedup increases for the same value of p but for instances that are more time consuming. Except for the instance berlin30_7 which produces higher unexpected superlinear R_Speedups. This behavior is common in the use of parallel computing in combinatorial optimization. It can be due to the fact that, for this instance, the structure of the B&B tree is scattered in a way that 5.12, the R_Efficiency is strictly decreasing with p except for berlin30_10 where it increases for p = 64, 128. We can notice that in three situations we had R_E > 1 which can be due to the B&B tree structure. What is interesting to see also is the increasing behavior of the R_Efficiency for the same number of processors but increasing problem size (in terms of needed computation time). This later remark shows the importance of using the parallel computing techniques to solve large size problems. For this case, when p = 3 the behavior of our algorithm is very similar to a sequential version due to the fact that the three processes (master, slave and pool manager process) does not do any simultaneous computation. Figure 5.13 shows an example of a run. Tables 5.8, 5.9 and 5.10 below exhibit respectively the CPU time, the speedup and the efficiency obtained for a subset of 7 test instances. The CPU computation time presented corresponds to the mean of 5 runs CPU times. Figures 5.14,5.15 and 5.16 shows respectively the CPU time, the R_Speedup and the R_Efficiency variation in function of p and the input graphs. Table 5.8 and Figure 5.14 show that the CPU time is decreasing when p = 3, 8, 16, 32, 64 and 128 for all graphs except for st70_5. In fact for this instance, which is the easiest to solve for the kHNDP when k = 3 and L = 3, the CPU time decreases until reaching a limit (when p = 8) and increases after that.

The major point to raise, from these results, is that for instances berlin30_10, berlin52_10 and st70_7, which are the hardest to solve, the algorithm was not able to solve them to optimality unless we increase our parallelism. In fact, for berlin30_10 and p = 3, 8 (resp. berlin52_10, p = 3, 8 and st70_7, p = 3, 8, 16, 32) the CPU time Parallelizing Branch-and-Cut algorithms for some survivability network design problems reached the limit of 5 hours of calculation, and the algorithm was stopped, while for a greater number of processors the algorithms solved the instance to optimality. This result is very satisfying since our first validation criteria is the kHNDP solving.

In Figure 5.14, we splitted the results into two graphics to show that for the first set of the tables the CPU Time was strictly decreasing, while in the second the time starts to increase just when we use enough processors to allow the algorithm to solve the instance to optimality. Notice that since the algorithms were stopped after 5 hours of calculation for some values of p and specially for p = 3 on which the values of R_Speedup and R_Efficiency are based, we will not base our study on them for these instances. We just keep them in the tables in case the reader would be interested to see them but we think that they are not precise enough to let us study the algorithm's behavior. In consequence, our R_Speedup and R_Efficiency study will be based on the results for the 4 firsts instances that are st70_5, berlin52_7, berlin30_7, berlin52_5. For the R_Speedup in Table 5.9 and Figure 5.15 we notice the same remarks that was seen for the CPU time. We can easily see that the R_Speedup is strictly increasing for all the graphs of the first set with p. But deccreases for instances st70_5 for p > 8. What is interesting to see also is that R_Speedup increases for the same value of p but for instances that are more time consuming. Except for the instance berlin52_7 which produces unexpected (and even superlinear for p = 8) higher R_Speedups. This behavior could be due to the same reason that we presented in Section 5.4.2.2. In fact, for this instance, the structure of the B&C tree is probably scattered in a way that the algorithm explores it more efficiently when the parallelism is used. In other words, 5.16, the R_Efficiency is strictly decreasing except for berlin52_5 where it increases for p = 128. We can notice that in one situation we had R_E > 1 which is related to the superlinear R_Speedup. It is interesting to see also that R_E is strictly increasing when we fix the number of processors but increase the problem size (in terms of needed computation time). This later remark shows the importance of using the parallel computing techniques to solve large size problems.

Conclusion

We studied in this chapter the k-edge connected Hop-constrained Network Design Problem (kHNDP) aiming optimal resolution. We presented two distributed exact algorithms: a distributed Branch-and-Bound and a distributed Branch-and-Cut. We presented after that, an experimental study in which we compare our algorithms to CPLEX that shows that even if CPLEX is still the best solving method for small graphs, our parallel Branch-and-Cut applied to the flow formulation is the best for midrange size graphs and our parallel Branch-and-Cut applied to the natural formulation is the method to use for large ones.

Conclusion

In this dissertation, we have studied the parallelization of hybrid metaheuristics for network design problems. In a first step, we have proposed two hybrid parallel algorithms for solving the Steiner k-Connected Network Design Problem (SkESNDP), and the k-Edge-Connected Hop-Constrained Survivable Network Design Problem (kHNDP) when L = 2, 3. We have extended this work after that for the k-Edge-Connected Survivable Network Design (kESNDP) and the k-Edge-Connected Hop-Constrained Survivable Network Design Problem (kHNDP) when L ≥ 2. The algorithms are based on a Lagrangian relaxation algorithm, a genetic algorithm and a greedy algorithm, and aims in producing both lower and upper bounds. The experiments conducted have shown that our hybrid algorithm outperforms CPLEX in producing good feasible solutions, even for large size instances, and this within a relatively short CPU time. They have also shown that the hybridization of the three components outperforms, in most cases, each component taken separately. Finally, we have shown that using several processors inside each component of the hybrid algorithm helps in decreasing the CPU time for each component.

The parallel computing framework we have proposed is generic and can be applied to all the network design problems, and not only, which has the same block structure as the problems studied. Also, the implementation we have proposed is quite simple and can be easily adapted to other problems. For example, in the parallel hybrid algorithm, one can replace the genetic algorithm by any population-based metaheuritic, and obtain an identical framework.

It should be noticed that our algorithm PHA is heuristic, and contrarily to many heuristics, is able to produce both upper and lower bounds of the optimal solution. This can give an indication on the quality of the feasible solution obtained, in particular when the gap between the lower and upper bounds is small. Indeed, a very small gap (0% in the better case) implies that the solution is close to the optimal solution. We can observe that in all our experiments, that the gaps between the lower and upper bounds are quite large (more than 40% for most of the instances). Thus, it would be interesting to further investigate a way of producing better lower bounds in order to know how close the solutions produced by algorithm PHA are from the optimal solution.

In the last Chapter we have presented new distributed implementations of the well known branch-and-bound and branch-and-cut algorithms. For that we started by introducing a state of the art about the parallelization studies of the Branch-and-Bound and the Branch-and-Cut methods. We have also presented two parallel algorithms based on the Branch-and-Bound and the Branch-and-Cut. Finally we have validate our algorithms by showing the experimental study we have conducted on a cluster of 128 processors for solving the kHNDP when k = 3 and L = 3. These experimentations showed an interesting speedup obtained by running our algorithms on the 128 cores, and through this parallelisation we was able to solve large scale instances for the kHNDP and produce better gaps for instances with 500 nodes and 300 demands.

What we could observe that in all our experiments, that the gaps between the lower and upper bounds for large scale instances were quite large (more than 40% for most of the instances). Thus, it would be interesting to further investigate a way of producing better lower bounds in order to know how close the solutions produced by algorithms are to the optimal solution.

Finally it would also be interesting to further investigate the parallelization of algorithms and the use of more sophisticated architectures, like GPUs.

 e), pour tout a ∈ A st (e), {s, t} ∈ D, e ∈ E f st a ≤ 1, pour tout a = (u, u), u ∈ V \ {s, t} , {s, t} ∈ D f st a ≥ 0, pour tout a ∈ A st (e), {s, t} ∈ D x(e) ≤ 1, pour tout e ∈ E x ∈ Z E + f st ∈ Z Ast + (7)

Figure 1 :

 1 Figure 1: Dépendances des variables

 u ∈ V and {s, t} ∈ D,0 ≤ f st uv , f st vu ≤ 1, pour tout uv ∈ E, {s, t} ∈ D, x uv ≤ 1, pour tout uv ∈ E, x uv ∈ {0, 1}, pour tout uv ∈ E, f st uv ∈ {0, 1}, pour tout uv ∈ E, {s, t} ∈ D.

Figure

 Figure 2: PHA communication scheme

Figure 3 :

 3 Figure 3: Distributed B&B communication scheme

Figure 4 :

 4 Figure 4: Distributed B&C communication scheme

Contents 1 . 1

 11 Combinatorial optimization 1.2 Computational complexity 1.3 Graph theory . 1.3.1 Undirected graphs . 1.3.2 Directed graphs . 1.4 Exact methods . 1.4.1 Elements of polyhedral theory 1.4.2 Cutting plane method . 1.4.3 Branch-and-Cut algorithm . 1.5 Metaheuristics . 1.5.1 Trajectory metaheuristics . 1.5.2 Population-based metaheuristics 1.6 Parallel computing . 1.6.1 Hardware architectures . 1.6.2 Modeling the program execution 1.6.3 Parallelization methodology 1.6.4 Performance metrics .

 e i ∈S c(e i) is the weight of S. The problem is to determine an element of S, with the smaller (or larger) weights. Such a problem is called a combinatorial optimization problem. The set S is called the set of solutions of the problem. In other words, min(or max){c(S) : S ∈ S}.

Figure 1

 1 Figure 1.1: An undirected graph G

 Figure 1.2: Subgraph H 1 of G Figure 1.3: Spanning subgraph H 2 of G

Figure 1 . 5 :

 15 Figure 1.5: Directed Subgraph H 3 of D

1. 4 Figure 1

 41 Figure 1.7: A convex hull

Figure 1 . 8

 18 Figure 1.8 illustrates the main definitions given is this Section.

1. 4 Figure 1 . 8 :

 418 Figure 1.8: Valid inequality, facet and extreme points

Figure 1 . 10 :

 110 Figure 1.10: Example of an SMP architecture

Figure 1 . 11 :

 111 Figure 1.11: Example of an MPP architecture

Figure 1 . 12 :

 112 Figure 1.12: Two examples of multiple-cores architectures

Figure 1 . 13 :

 113 Figure 1.13: Example of a cluster architecture

 Contents 2.1 Survivable Network Design Problems 2.1.1 Definition . 2.1.2 State of the art . 2.2 Parallel computing and combinatorial optimization 2.3 Hybridization . 2.3.1 Talbi's taxonomy . 2.3.2 Raidl's taxonomy . 2.4 Parallel metaheuristics . 2.5 Parallelization of exact methods 2.5.1 Parallel Branch-and-Bounds literature 2.5.2 Parallel Branch-and-Cut's literature 2.6 Motivation of the Thesis .

Figure 2

 2 Figure2.1: Talbi's hybrid metaheuristics classification scheme[START_REF] Talbi | A taxonomy of hybrid metaheuristics[END_REF]

Figure 2 . 3 :

 23 Figure 2.3: Parallelization of metaheuristics[START_REF] Cung | Parallel Combinatorial Optimization[END_REF]

Contents 3 . 1

 31 Integer programming formulations 56 3.1.1 kESNDP . 3.1.2 SkESNDP . 3.2 Parallel hybrid optimization algorithm 59 3.2.1 The greedy successive heuristic 3.2.2 The Lagrangian relaxation algorithm 3.2.3 The genetic algorithm . 3.2.4 The hybridization and parallelization scheme 3.3 Experimental Study . 70 3.3.1 kESNDP . 3.3.2 SkESNDP . 3.4 Conclusion . 79

Figure 3 . 1 :

 31 Figure 3.1: Graph transformation for the kESNDP

 st uv , f st vu , for all {s, t} ∈ D}. Clearly, the solution (y, f st , {s, t} ∈ D) satisfies constraints (3.1)-(3.6).

 in giving the weight of the subgraph of G corresponding to that solution. The weight of such a solution is given by Z = uv∈E ω uv x uv , where x uv = max{f st uv , f st vu , for all {s, t} ∈ D}.

Figure 3

 3 Figure 3.2: PHA communication scheme

Figure 4 . 1 :

 41 Figure 4.1: Construction of G st graphs

(4 .

 4 1) for all u ∈ V st (4.2) for all a ∈ A st (e), {s, t} ∈ D, e ∈ E (4.3) for all a = (u, u), u ∈ V \ {s, t} , {s, t} ∈ D (4.4) for all a ∈ A st (e), {s, t} ∈ D (4.5) for all e ∈ E

Figure 4 .

 4 Figure 4.2 gives an illustration with D = {{s 1 , t 1 }, {s 2 , t 2 }} and L = 4.

Figure 4 . 2 :

 42 Figure 4.2: Graph transformation for L = 4

4. 2

 2 .2.1 When L = 2, 3 Analysing the variable dependencies's of the Separated F low F ormulation presented in the previous Section 4.1.1, we notice that if we apply the lagrangian relaxation on the linking constraints set, solving the integer program will consist in solving |D| separated flow problem.

Figure 4 . 3 :

 43 Figure 4.3: Formulation variable dependencies

Figure 4 . 4 :

 44 Figure 4.4: Solutions cost variation

10 Figure 4 . 5 :

 1045 Figure 4.5: Computation time variation

Figure 4 .

 4 Figure 4.6: The CPU time of LRA w.r.t. to the number of processors

Figure 4 .

 4 Figure 4.7: The CPU time of SH w.r.t. to the number of processors

Figure 4 . 8 :

 48 Figure 4.8: The CPU time of GA w.r.t. to the number of processors

 , 4.10 and 4.11 show the results and the evolution curve of the speedup and the efficiency in function of p for respectively LRA, SH and GA.

Figure 4 . 9 :

 49 Figure 4.9: LRA speedup and efficiency

Figure 4 . 10 :

 410 Figure 4.10: SH speedup and efficiency

Figure 4 .

 4 Figure 4.11: GA speedup and efficiency

Figure 5 . 1 :

 51 Figure 5.1: Coarse grain parallelization scheme

Figure 5 . 2 :

 52 Figure 5.2: Medium grain parallelization scheme

Figure 5 .

 5 Figure 5.3: Fine grain parallelization scheme

Figure 5 . 4 :

 54 Figure 5.4: Medium/Fine grain parallelization scheme

Theorem 5 . 6

 56 Inequality (5.14) is valid for kHNDP N at , kHN DP Cu (G, D), kHN DP 2,3 f low (G, D).

Theorem 5 . 8

 58 Inequality (5.15) is valid for kHNDP N at , kHN DP Cu (G, D), kHN DP 2,3 f low (G, D).

 the number of nodes in the tree at iteration k. Both P

Figure 5 . 5 :

 55 Figure 5.5: Distributed B&B communication scheme

Figure 5 .

 5 Figure 5.6: B&B node coding in communication

Figure 5 .

 5 Figure 5.7 shows the distributed B&C communication scheme.

Figure 5 .

 5 Figure 5.7: Distributed B&C communication scheme

•

 the R_Speedup RS p = T min Tp • the R_Efficiency RE p = RSp p = T min pTp

Figures 5. 10

 10 Figures 5.10, 5.11 and 5.12 shows respectively the CPU time, the R_Speedup and the R_Efficiency variation in function of p and the input graphs.

Figure 5 . 9 :

 59 Figures 5.10, 5.11 and 5.12 shows respectively the CPU time, the R_Speedup and the R_Efficiency variation in function of p and the input graphs.

Figure 5 .

 5 Figure 5.10: Parallel B&B CPU Time

Figure 5 .

 5 Figure 5.11: Parallel B&B R_Speedup

Figure 5 .

 5 Figure 5.12: Parallel B&B R_Efficiency

Figure 5 . 13 :

 513 Figure 5.13: Parallel B&C run example when p = 3

Figure 5 . 14 :

 514 Figure 5.14: Parallel B&C CPU Time

Figure 5 .

 5 Figure 5.15: Parallel B&C R_Speedup

Figure 5 .

 5 Figure 5.16: Parallel B&C R_Efficiency

 ≥ 2 Result: La solution optimale du problème traité, ou bien deux bornes supérieure et inférieure pour le problème. B&B , Z LB , Z(sol k)); BRAN CH_AN D_IN SERT (T B&B , results in); Comme pour l'algorithme B&B, le véritable défi dans un algorithme de recherche arborescante parallèle est le choix de quoi, quand et combien de données échanger pendant Processus esclave du B&B parallèle. Un noeud T B&B , un ensemble de branchements Result: La solution optimale di noeud, une solution entière, l'indice de la variable de branchement.

	Résumé long	xi
	Algorithm 2: begin
	while True do
		data in ← RECIEV E_T ASK();
	begin	if IS_EN D_M SG(data in) then
	Z U B ← SH(); stop;
	data root ← SOLV E(); end
	if IS_F RACT ION AL(data root) then DECODE_BRAN CHIN GS_SET ();
	P RIM AL_HEU RIST IC(data root); data out ← SOLV E();
	P 1 LF , P +2 LF ← BRAN CHIN G(data root) ; if IS_F RACT ION AL(data out) then
	IN SERT (T B&B , P 1 LF); P RIM AL_HEU RIST IC(data out);
	IN SERT (T B&B , P 2 LF); BRAN CHIN G(data out) ;
	end	end
	k) < Z U B then SEN D_RESU LT S(data out) ; end while T if Z(sol I end
		Z U B ← Z(sol I k);
		end
	U P DAT E(T end
	end	
	if Z U B = Z LB then
	stop;
	end	
	end	
	return (Z LB , Z U B);
	end	
	Parallel B&C

B&B is not empty do AF F ECT _T ASKS(T B&B); RECIEV E_RESU LT S(results in); if IS_IN T EGER(results in) then if Z(results in) < Z U B then Z U B ← Z(results in); end else if Z(results in) ≤ Z U B then sol I k ← M AKE_IN T EGER(results in);

Data:

 Processus esclave du B&C parallèle.

	Résumé long	xiii
	Algorithm 4: begin	
	while True do	
	data in ← RECIEV E_T ASK();	
	if IS_EN D_M SG(data in) then	
	stop;	
	end	
	DECODE_BRAN CHIN GS_SET ();	
	N B cons ← 0;	
	repeat	
	if N B cons = 0 then	
	U P DAT E_P OOL(pool l cons);	
	else	
	SEN D_CON ST RAIN T S(data out);	
	U P DAT E_P OOL(pool l cons);	
	end	
	data out , N B	

cons ← SOLV E(); until N B cons = 0; if IS_F RACT ION AL(data out) then P RIM AL_HEU RIST IC(data out); BRAN CHIN G(data out) ; end SEN D_RESU LT S(data out) ; end end

 cela, Processus gestionnaire de pool du B&C parallèle. _M SG(data in) then SEN D_CON ST RAIN T S(data in , pool cons); end if IS_F EEDIN G_M SG(data in) then SEN D_CON ST RAIN T S(data in , pool cons); RECEIV E_CON ST RAIN T S(data in , pool cons);

	xiv	Résumé long
	Algorithm 5: begin	
	while True do	
	data in ← RECEIV E_REQU EST ();	
	if IS_EN D_M SG(data in) then	
	stop;	
	end	
	if IS_CLAIM AN T end	
	end	
	end	

 demandes D, deux entiers positifs k ≥ 1 et L ≥ 2 Result: La solution optimale du problème traité, ou bien deux bornes supérieure et inférieure pour le problème. begin Z U B ← SH(); N B cons ← 0; repeat if N B cons > 0 then SEN D_CON ST RAIN T S(data out); end data out , N B cons ← SOLV E(); until N B cons = 0; if IS_F RACT ION AL(data root) then P RIM AL_HEU RIST IC(data root); P 1 B&B , Z LB , Z(sol k)); BRAN CH_AN D_IN SERT (T B&B , results in); Variable neighborhood search 1.5.2 Population-based metaheuristics 1.5.2.1 Ant Colony . 1.5.2.2 Genetic Algorithms . 1.6 Parallel computing . 1.6.1 Hardware architectures . MISD architecture . 25 1.6.1.1.4 MIMD architecture . 25 1.6.1.2 Other taxonomy . 25 1.6.1.2.1 SMP . 26 1.6.1.2.2 MPP . 26 1.6.1.2.3 Multiple-cores . 27 1.6.1.2.4 Cluster . 28 1.6.1.2.5 Grid architecture . 28 1.6.1.3 Summary . 29 1.6.2 Modeling the program execution 30 Parallel computing and combinatorial optimization 38 2.3 Hybridization . 39 2.3.1 Talbi's taxonomy . 40 2.3.2 Raidl's taxonomy . 43 2.4 Parallel metaheuristics . 46 2.5 Parallelization of exact methods . 49 2.5.1 Parallel Branch-and-Bounds literature 49 2.5.1.1 Multi-parametric parallel model 50 2.5.1.2 Parallel evaluation of bounds model 50 Parallel Branch-and-Cut's literature 2.6 Motivation of the Thesis . 3 The k-Edge-Connected Network Design Problem 3.1 Integer programming formulations . 3.1.1 kESNDP . 3.1.2 SkESNDP . 3.2 Parallel hybrid optimization algorithm 3.2.1 The greedy successive heuristic 3.2.2 The Lagrangian relaxation algorithm The separated flow formulation 4.1.2 When L ≥ 4 . 4.1.2.1 Graph transformation 4.1.2.2 The separated flow formulation 4.2 The Parallel Hybrid Algorithm . 4.2.1 Greedy Successive Heuristic . When L = 2, 3 . 88 4.2.2.2 When L ≥ 4 [98] . 90 4.2.3 Genetic Algorithm . 91 4.2.4 Hybridization . 91 4.3 Experimental Study . 91 4.3.1 When L = 2, 3 . 92 4.3.2 When L ≥ 4 . 95 4.4 The Impact of the Parallelization . 98 4.4.1 Speedup & Efficiency . 102 4.5 Conclusion . 105 Parallelization strategies . 108 Parallel algorithms for the kHNDP . 117 5.3.1 Sequential algorithms . 117 5.3.1.1 Implementation of the B&B algorithm 118 5.3.1.2 Implementation of the B&C algorithm 120 5.3.2 Parallel B&B . 120 5.3.3 Parallel B&C . 123 5.4 Experimental study . .

	CONTENTS	xix
	2.5.2 5 Parallelizing Branch-and-Cut algorithms for some survivability net-
	work design problems	107
	5.1	
	if Z(sol I k) < Z U B then	
	Z U B ← Z(sol I k);	
	end	
	U P DAT E(T end	
	end	
	if Z U B = Z LB then	
	stop;	
	end	
	end	
	return (Z LB , Z U B);	
	end	

LF , P +2 LF ← BRAN CHIN G(data root) ; IN SERT (T B&B , P 1 LF); IN SERT (T B&B , P 2 LF); end while T B&B is not empty do AF F ECT _T ASKS(T B&B); RECIEV E_RESU LT S(results in); if IS_IN T EGER(results in) then if Z(results in) < Z U B then Z U B ← Z(results in); end else if Z(results in) ≤ Z U B then sol I k ← M AKE_IN T EGER(results in); Introduction 1 Preliminaries 1.1 Combinatorial optimization . 1.2 Computational complexity . 1.3 Graph theory . 1.3.1 Undirected graphs . 1.3.2 Directed graphs . 1.4 Exact methods . 1.4.1 Elements of polyhedral theory 1.4.2 Cutting plane method . 1.4.3 Branch-and-Cut algorithm . 1.5 Metaheuristics . 1.5.1 Trajectory metaheuristics . 1.5.1.1 Simulated Annealing 1.5.1.2 Tabu Search . 1.5.1.3 Iterated Local Search 1.5.1.4 1.6.1.1 Flynn taxonomy . 1.6.1.1.1 SISD architecture . 1.6.1.1.2 SIMD architecture . xviii CONTENTS 1.6.1.1.3 1.6.2.1 Dependency graph . 30 1.6.2.2 Precedence graph . 30 1.6.2.3 Dataflow graph . 30 1.6.3 Parallelization methodology . 31 1.6.3.1 Partitionning . 31 1.6.3.2 Communication . 32 1.6.3.3 Agglomeration . 32 1.6.3.4 Placement . 32 1.6.4 Performance metrics . 32 2 State-of-the-art and Motivation 35 2.1 Survivable Network Design Problems 36 2.1.1 Definition . 36 2.1.2 State of the art . 36 2.2 2.5.1.3 Parallel evaluation of a bound model 50 2.5.1.4 Parallel tree exploration model 50 3.2.2.1 Basics . 3.2.2.2 A Lagrangian relaxation algorithm for the kESNDP . . 3.2.2.3 A Lagrangian relaxation algorithm for the SkESNDP [99] 3.2.3 The genetic algorithm . 3.2.3.1 Encoding and evaluation of a solution 3.2.3.2 Crossover and reproduction 3.2.3.3 Population management 3.2.3.4 Stopping criterion . 3.2.4 The hybridization and parallelization scheme 3.3 Experimental Study . 3.3.1 kESNDP . 3.3.2 SkESNDP . 3.4 Conclusion . 4 The k-Edge-Connected Hop-Constrained Network Design Problem 4.1 Integer programming formulations . 4.1.1 When L = 2, 3 . 4.1.1.1 Graph transformation 4.1.1.2 4.2.2 Lagrangian Relaxation . xx CONTENTS 4.2.2.1 5.1.1 Coarse grain . 109 5.1.2 Medium grain . 109 5.1.3 Fine grain . 110 5.1.4 Nested parallelization strategies 110 5.2 Formulations & Valid inequalities . 111 5.2.1 Formulations . 112 5.2.1.1 Natural formulation 112 5.2.1.2 Cut formulation . 113 5.2.2 Valid inequalities [95] . 114 5.2.2.1 Double cut inequalities 114 5.2.2.2 Triple path-cut inequalities 115 5.2.2.3 Steiner-partition inequalities 116 5.2.2.4 Steiner-SP -partition inequalities 116 5.3 . 128 5.4.1 kHNDP solving study . 128

Table 3 .

 3 1: Results for PHA and CPLEX for the kESNDP and rooted demands with k = 3.

		Instances		PHA			CPLEX
	name |V | |D|	U B	LB	Gap	CP U	U B	LB	Gap	CP U
	berlin 30 10 7168 6072.29 15.29 00:00:11	6241	6241	0 00:43:55
	berlin 30 15 10970 7856.13 28.39 00:00:17	7982	7828 1.93 02:00:00
	berlin 30 20 12173 8391.95 31.06 00:00:27	8510	8510	0 00:56:08
	berlin 30 25 12805 8832.3 31.02 00:00:36	9040 9014.5 0.28 02:00:00
	berlin 52 10 6815 4740.6 30.44 00:00:45	5399 4959.58 8.14 02:00:00
	berlin 52 15 9871 6821.52 30.89 00:01:12	7505 6680.3 10.99 02:00:00
	berlin 52 26 13033 7639.51 41.38 00:01:58	9270 8223.08 11.29 02:00:00
	st	70 15	761 523.64 31.19 00:01:21	607 438.95 27.69 02:00:00
	st	70 26 1077 707.24 34.33 00:02:24	928 612.011 34.05 02:00:00
	st	70 35 1265 805.39 36.33 00:03:22	1278	707.5 44.64 02:00:00
	kroA 100 20 26677 11864.8 55.52 00:05:52 22637 12354.3 45.42 02:00:00
	kroA 100 35 39378 16182.3 58.91 00:10:12 32738	19189 41.39 02:00:00
	kroA 100 50 47454 18875.4 60.22 00:15:03 49323 23501.4 52.35 02:00:00
	kroA 150 30 36340 11596.3 68.09 00:19:09 43987 16106.5 63.38 02:00:00
	kroA 150 50 47764 15774.2 66.97 00:33:04 64280 22374.3 65.19 02:00:00
	kroA 150 75 57909 17742.1 69.36 00:50:48 418670 28031.4 93.3 02:00:00
	kroA 200 40 41724 12080.4 71.05 00:45:44 65762	17020 74.12 02:00:00
	kroA 200 75 59482 16096.8 72.94 01:28:01	-	-	-	-
	kroA 200 100 69462 18792.2 72.95 02:00:00	-	-	-	-
	lin	318 61 26723 6068.56 77.29 02:00:00	-	-	-	-
	lin	318 111 55000 8702.16 84.18 02:00:00	-	-	-	-
	lin	318 159 71464 8719.74 87.8 02:00:00	-	-	-	-

Table 3 .

 3 2: Results for PHA and CPLEX for the kESNDP and arbitrary demands with k = 3.

		Instances		PHA				CPLEX
	name |V | |D|	U B	LB	Gap	CP U	U B	LB	Gap	CP U
	berlin 30 10422 8216.0 21.17 00:00:15	9276 9276.0	0 00:00:08
	berlin 30 12385 9716.2 21.55 00:00:24 10749 10655.2 0.87 02:00:00
	berlin 52 10553 7772.5 26.35 00:00:42	8508 8256.9 2.95 02:00:00
	berlin 52 13588 9141.0 32.73 00:01:23 10270 9870.4 3.89 02:00:00
	berlin 52 15603 10347.5 33.68 00:01:37 11499 11499.0	0 00:30:04
	st	70	1176	678.3 42.32 00:01:31	773	631.3 18.33 02:00:00
	st	70	1531	979.5 36.02 00:02:56	1067	866.5 18.79 02:00:00
	st	70	1888 1202.6 36.31 00:04:20	1534 1082.5 29.43 02:00:00
	kroA 100 42845 19839.5 53.69 00:06:58 49089 19602.5 60.07 02:00:00
	kroA 100 61802 26609.3 56.94 00:12:54 86377 28331.3 67.2 02:00:00
	kroA 100 68537 31378.5 54.22 00:18:27 155967 33839.0 78.3 02:00:00
	kroA 150 56725 22773.6 59.85 00:23:24 49126 24173.6 50.79 02:00:00
	kroA 150 71392 29684.8 58.42 00:40:14 154870 32461.8 79.04 02:00:00
	kroA 150 88672 36283.2 59.08 01:02:03 553614 42973.0 92.24 02:00:00
	kroA 200 64500 23745.5 63.19 00:54:46 353805 26323.2 92.56 02:00:00
	kroA 200 91687 32872.0 64.15 01:50:27	-	-	-	-
	kroA 200 102137 37932.2 62.86 02:00:00	-	-	-	-
	lin	318 49769 17303.4 65.23 02:00:00	-	-	-	-
	lin	318 86928 21634.2 75.11 02:00:00	-	-	-	-
	lin	318 121811 24089.2 80.22 02:00:00	-	-	-	-

Table 3 .

 3 3: Results for PHA versus LRA, SH and GA for the kESNDP and rooted demands with k = 3.

		Instances	PHA		LRA		SH	GA
	name |V | |D|	U B	LB	U B	LB	U B	U B
	berlin 30 10 7168 6072.3 10543 6298.8 9128
	berlin 30 15 10970 7856.1 16661 8163.8 12930
	berlin 30 20 12173 8392.0 23165 8356.8 14271
	berlin 30 25 12805 8832.3 22521 8905.6 15355
	berlin 52 10 6815 4740.6 13012 5272.4 8668
	berlin 52 15 9871 6821.5 22157 6894.8 12212
	berlin 52 26 13033 7639.5 30418 8000.7 15257
	st	70 15	761	523.6	2068	539.0	933
	st	70 26 1077	707.2	3445	809.6 1271
	st	70 35 1265	805.4	4304	899.0 1442
	kroA 100 20 26677 11864.8 71777 12605.4 34141
	kroA 100 35 39378 16182.3 114336 16922.2 47090
	kroA 100 50 47454 18875.4 160719 20416.9 53756
	kroA 150 30 36340 11596.3 101835 13239.7 44497
	kroA 150 50 47764 15774.2 170169 19149.2 53690
	kroA 150 75 57909 17742.1 224847 23497.4 66579
	kroA 200 40 41724 12080.4 154211 14451.4 51335
	kroA 200 75 59482 16096.8 277544 19038.9 69033
	kroA 200 100 69462 18792.2 361814 23728.7 80717
	lin	318 61 26723 6068.6 139868 7713.9 31788
	lin	318 111 55000 8702.2 375430 13495.8 56199
	lin	318 159 71464 8719.7 559326 14637.2 77340

 Table 3.4: Results for PHA versus LRA, SH and GA for the kESNDP and arbitrary demands with k = 3. Gap : relative error between the best upper and lower bounds, CP U : total CPU time in hours:min:sec.

	3.3						
		Instances	PHA		LRA		SH	GA
	name |V | |D|	U B	LB	U B	LB	U B	U B
	berlin 30 10 10422 8216.0 11884 8384.9 12808
	berlin 30 15 12385 9716.2 18118 9683.7 15283
	berlin 52 10 10553 7772.5 14052 7691.9 12369
	berlin 52 15 13588 9141.0 19042 9210.8 15496
	berlin 52 20 15603 10347.5 22341 10364.2 17908
	st	70 15	1176	678.3	2236	692.1	1267
	st	70 26	1531	979.5	3277 1030.3	1743
	st	70 35	1888 1202.6	4673 1289.0	2137
	kroA 100 20 42845 19839.5 110812 20089.4 48435
	kroA 100 35 61802 26609.3 183685 27237.4 65024
	kroA 100 50 68537 31378.5 269704 31777.2 74250
	kroA 150 30 56725 22773.6 164720 23388.5 59947
	kroA 150 50 71392 29684.8 269616 30290.8 74614
	kroA 150 75 88672 36283.2 418821 38724.2 92894
	kroA 200 40 64500 23745.5 223326 24728.0 71033
	kroA 200 75 91687 32872.0 439205 35395.6 99364
	kroA 200 100 102137 37932.2 566823 42194.5 113464
	lin	318 61 49769 17303.4 74080 21788.7 53054
	lin	318 111 86928 21634.2 137343 31754.5 92973
	lin	318 159 121811 24089.2 206426 39037.3 129651
	3.5 whose entries are:					
	|V |	: number of nodes of the graph,		
	|S|	: number of terminals,			
	U B	: best upper bound,			
	LB	: best lower bound,				

Table 3 .

 3 5: Numerical results for the algorithms RLA, SH, PHA and CPLEX for k = 3

	Instances		RLA			SH			PHA			CPLEX
	name |V | |S|	U B	LB	Gap	CP U	U B	CP U	U B	LB	Gap	CP U	U B	LB	Gap	CP U
		318 11 34628 2848.95 91.77 00:54:49 6252 00:00:04 5671 1978.31 65.12 02:00:00	251507	0	100 02:00:00
	lin	318 13 56637 3553.51 93.73 01:00:24 8051 00:00:05 7660 2656.36 65.32 02:00:00 93116900	0	100 02:00:00
		318 15 75722 3369.12 95.55 01:37:53 9331 00:00:07 9017 2749.56 69.51 02:00:00	-	-	-	-

Table 4 .

 4 2: Results for PHA and CPLEX for the kHNDP and arbitrary demands with k = 3 and L = 3.

		Instances		PHA				CPLEX
	name |V | |D|	U B	LB	Gap	CP U	U B	LB	Gap	CP U
	berlin 30 10 10695 9467,6 11.48 00:00:37 10254 10170.49 0.81 00:00:29
	berlin 30 15 13743 11847.4 13.79 00:01:12 13429 12829.37 4.47 02:00:00
	berlin 52 10 10298	9136 11.28 00:01:46	9919 9851.46 0.68 00:00:33
	berlin 52 15 13416 11596.6 13.56 00:02:54 13278 12575.49 5.29 02:00:00
	berlin 52 20 16534 13448.6 18.66 00:04:06 15891 14612.79 8.04 02:00:00
	st	70 15	1389	971.2 30.07 00:03:21	1336 1119.59 16.20 02:00:00
	st	70 26	2107 1312.4 37.72 00:07:09	2176 1610.73 25.98 02:00:00
	st	70 35	2834 1714.4 39.50 00:11:37	5299 2142.75 59.56 02:00:00
	kroA 100 20 62128 37704.6 39.31 00:12:47 66738 44958.93 32.63 02:00:00
	kroA 100 35 103164 55049.4 46.64 00:26:12 348018 68944.14 80.19 02:00:00
	kroA 100 50 144842 72889.6 49.68 00:40:42 558391 92782.7 83.38 02:00:00
	kroA 150 30 93542	45123 51.76 00:48:19 204665 61908.4 69.75 02:00:00
	kroA 150 50 144861 60073.2 58.53 01:39:41	-	-	-02:00:00
	kroA 150 75 209575 75856.6 63.80 02:00:00	-	-	-02:00:00
	kroA 200 40 114116 46091.6 59.61 02:00:00 442010 75495.36 82.92 02:00:00
	kroA 200 75 212504 66209.2 68.84 02:00:00	-	-	-02:00:00
	kroA 200 100 274917	67317 75.51 02:00:00	-	-	-02:00:00
	lin	318 61 54721 20638.8 62.28 02:00:00	-	-	-02:00:00
	lin	318 111 100666 26664.8 73.51 02:00:00	-	-	-02:00:00
	lin	318 159 149070 32224.6 78.38 02:00:00	-	-	-02:00:00

Table 4 .

 4 3: Results for PHA and CPLEX for the kHNDP and arbitrary demands with k = 3 and L = 4.

		Instances		PHA				CPLEX
	name |V | |D|	U B	LB	Gap	CP U	U B	LB	Gap	CP U
	berlin 30 10 10552 8836.4 16.26 00:00:22	9433 9433.0	0 01:46:10
	berlin 30 15 13774 10638.4 22.76 00:00:39 11898 11194.7 5.91 02:00:00
	berlin 52 10 10457 8396.0 19.71 00:01:24	9252 8903.7 3.76 02:00:00
	berlin 52 15 13672 10283.6 24.78 00:02:20 12021 11011.2	8.4 02:00:00
	berlin 52 20 16541 11844.6 28.39 00:03:12 15541 12787.4 17.72 02:00:00
	st	70 15	1326	825.5 37.75 00:03:57	1346	910.4 32.37 02:00:00
	st	70 26	2023 1043.2 48.43 00:07:13	2572 1263.9 50.86 02:00:00
	st	70 35	2818 1209.6 57.08 00:08:44	5588 1613.4 71.13 02:00:00
	kroA 100 20 60786 28152.7 53.69 00:14:11 71728 34511.5 51.89 02:00:00
	kroA 100 35 100081 39413.7 60.62 00:25:33	-	-	-02:00:00
	kroA 100 50 141228 50301.7 64.38 00:37:25 386054 62125.6 83.91 02:00:00
	kroA 150 30 89109 35455.9 60.21 00:50:58 204376 44932.4 78.01 02:00:00
	kroA 150 50 141829 46229.2 67.40 01:27:57	-	-	-02:00:00
	kroA 150 75 204943 58525.0 71.44 02:00:00	-	-	-02:00:00
	kroA 200 40 107850 35872.6 66.74 02:00:00	-	-	-02:00:00
	kroA 200 75 209367 47121.1 77.49 02:00:00	-	-	-02:00:00
	kroA 200 100 269006 48113.7 82.11 02:00:00	-	-	-02:00:00
	lin	318 61 53359 17987.0 66.29 02:00:00	-	-	-02:00:00
	lin	318 111 98525 17786.1 81.95 02:00:00	-	-	-02:00:00
	lin	318 159 141712 15760.9 88.88 02:00:00	-	-	-02:00:00

Table 4 .

 4 4: Results for PHA and CPLEX for the kHNDP and arbitrary demands with k = 3 and L = 5.In the previous sections, we have shown that using the Lagrangian relaxation, genetic and greedy algorithms in parallel allows an improvment of the quality of the feasible solutions known for the kESNDP and kHNDP. However, an important question is wether it is relevant to use parallel computing inside each component of PHA. In this section, we investigate this question. Indeed, as mentioned above, solving each sub-problem of the Lagrangian relaxation (i.e. LRA) and the greedy (i.e. SH) algorithms reduces to |D| independent minimum cost flow problems, which can be done in O(|E| 2 log |V | + |E||V | log 2 |V |) using |D| processors in parallel. Also, in the genetic algorithm (i.e. GA), parallel computing is used in the reproduction phase at each iteration, where, in parallel, we cross several pairs of parent solutions.

		Instances		PHA				CPLEX
	name |V | |D|	U B	LB	Gap	CP U	U B	LB	Gap	CP U
	berlin 30	9989 8527.6 14.63 00:00:47 8897 8897.0 0.00 00:06:24
	berlin 30 12651 10156.4 19.72 00:01:11 11397 10647.4 6.58 02:00:00
	berlin 52	9967 8073.6 19.00 00:02:39 8855 8511.1 3.88 02:00:00
	berlin 52 12848 9737.3 24.21 00:04:36 11197 10466.3 6.53 02:00:00
	berlin 52 15870 11211.8 29.35 00:05:59 14981 12051.5 19.55 02:00:00
	st	70	1242	733.4 40.95 00:06:38 1187	827.2 30.31 02:00:00
	st	70	1808	954.7 47.20 00:10:18 4257 1120.7 73.68 02:00:00
	st	70	2525 1172.1 53.58 00:15:33	-	-	-02:00:00
	kroA 100 56668 25532.4 54.94 00:23:19 71110 30451.0 57.18 02:00:00
	kroA 100 90788 34670.5 61.81 00:40:52	-	-	-02:00:00
	kroA 100 125022 43359.5 65.32 00:59:12	-	-	-02:00:00
	kroA 150 80854 29698.5 63.27 01:19:47	-	-	-02:00:00
	kroA 150 126533 39383.0 68.88 02:00:12	-	-	-02:00:00
	kroA 150 188290 47148.4 74.96 02:00:28	-	-	-02:00:00
	kroA 200 102520 29630.6 71.10 02:00:13	-	-	-02:00:00
	kroA 200 193169 38005.0 80.33 02:01:52	-	-	-02:00:00
	kroA 200 246339 39859.9 83.82 02:02:30	-	-	-02:00:00
	lin	318 50570 14214.8 71.89 02:03:02	-	-	-02:00:00
	lin	318 94004 13372.0 85.78 02:07:55	-	-	-02:00:00
	lin	318 137215 12026.7 91.24 02:13:49	-	-	-02:00:00
	4.4 The Impact of the Parallelization		

Table 4 .

 4 5: Results for PHA versus LRA, SH and GA for the kHNDP and arbitrary demands with k = 3 and L = 3.

		Instances	PHA		LRA		SH	GA
	name |V | |D|	U B	LB	U B	LB	U B	U B
	berlin 30 10 10695 9467,6 11914	9566 11756
	berlin 30 15 13743 11847,4 17198	12091 14854
	berlin 52 10 10298	9136 13715	9361 11359
	berlin 52 15 13416 11596,6 19042	11828 14508
	berlin 52 20 16534 13448,6 22341	13715 17633
	st	70 15	1389	971,2	2213	1038	1536
	st	70 26	2107 1312,4	3275	1421	2269
	st	70 35	2834 1714,4	4665	1822	2975
	kroA 100 20 62128 37704,6 110812	37839 66190
	kroA 100 35 103164 55049,4 183685	56581 111403
	kroA 100 50 144842 72889,6 269705	74624 151175
	kroA 150 30 93542	45123 165239	46682 101709
	kroA 150 50 144861 60073,2 270609	68616 149949
	kroA 150 75 209575 75856,6 420836	75891 214646
	kroA 200 40 114116 46091,6 223098	48169 117931
	kroA 200 75 212504 66209,2 437497	76827 218219
	kroA 200 100 274917	67317 565116	59827 278363
	lin	318 61 54721 20638,8 74755 21638,8 56285
	lin	318 111 100666 26664,8 137906 26664,8 103297
	lin	318 159 149070 32224,6 206681 30224,6 152685

 .6, 4.7 and 4.8 show the CPU time for LRA, SH and GA, respectively, obtained for a subset of 10 test instances. The CPU computation time presented corresponds to the mean of 5 runs CPU times. The different entries of the tables are:

	p	: number of processors(cores)
	CP U : total CPU time in sec
	S	: speedup
	E	: efficiency
	Figures 4.6, 4.7 and 4.8 below present the CPU time evolution curve for LRA, SH and
	GA, respectively, as a function of the number of processors used to run the algorithms.

Table 4 .

 4 6: CPU computation time for LRA with p variation

	LRA

Table 4 .

 4 7: CPU computation time for SH with p variation SH name |V | |D| p = 1 p = 2 p = 4 p = 6 p = 8

	berlin 30 10	0.055 0.028 0.022 0.019 0.017
		30 15	0.116 0.063 0.045 0.042 0.031
		52 15	0.348 0.194 0.150 0.097 0.098
		52 20	0.604 0.320 0.227 0.186 0.151
	st	70 26	1.815 0.959 0.645 0.559 0.474
		70 35	3.312 1.711 1.143 0.967 0.814
	kroA 100 35	7.060 3.687 2.308 1.978 1.747
		100 50 14.185 7.332 4.889 3.858 3.383
		150 50 32.607 16.875 11.720 9.740 9.184
		150 75 72.581 37.480 24.576 19.415 17.141

Table 4 .

 4 8: CPU computation time for GA with p variation

	GA

Table 4 .

 4 9: LRA speedup and efficiency results Speedup Efficiency name |V | |D| p = 2 p = 4 p = 6 p = 8 p = 2 p = 4 p = 6 p = 8 berlin 30 10 1.302 1.321 1.317 1.336 0.651 0.330 0.219 0.167 30 15 1.312 1.454 1.454 1.455 0.656 0.363 0.242 0.182 52 15 1.280 1.362 1.414 1.454 0.640 0.341 0.236 0.182 52 20 1.320 1.468 1.461 1.476 0.660 0.367 0.244 0.184 st 70 26 1.336 1.470 1.445 1.490 0.668 0.367 0.241 0.186 70 35 1.340 1.443 1.456 1.513 0.670 0.361 0.243 0.189 kroA 100 35 1.305 1.429 1.456 1.520 0.653 0.357 0.243 0.190 100 50 1.348 1.450 1.495 1.554 0.674 0.363 0.249 0.194 150 50 1.296 1.435 1.492 1.550 0.648 0.359 0.249 0.194 150 75 1.360 1.467 1.499 1.570 0.680 0.367 0.250 0.196

Table 4 .

 4 10: SH speedup and efficiency results Speedup Efficiency name |V | |D| p = 2 p = 4 p = 6 p = 8 p = 2 p = 4 p = 6 p = 8 berlin 30 10 1.987 2.566 2.969 3.173 0.994 0.641 0.495 0.397 30 15 1.839 2.604 2.786 3.697 0.919 0.651 0.464 0.462 52 15 1.795 2.323 3.578 3.568 0.898 0.581 0.596 0.446 52 20 1.887 2.661 3.241 3.991 0.944 0.665 0.540 0.499 st 70 26 1.893 2.815 3.247 3.829 0.947 0.704 0.541 0.479 70 35 1.935 2.898 3.426 4.070 0.968 0.724 0.571 0.509 kroA 100 35 1.915 3.058 3.569 4.041 0.957 0.765 0.595 0.505 100 50 1.935 2.901 3.677 4.193 0.967 0.725 0.613 0.524 150 50 1.932 2.782 3.348 3.551 0.966 0.696 0.558 0.444 150 75 1.937 2.953 3.738 4.234 0.968 0.738 0.623 0.529

Table 4 .

 4 11: GA speedup and efficiency results Speedup Efficiency name |V | |D| p = 2 p = 4 p = 6 p = 8 p = 2 p = 4 p = 6 p = 8

	berlin 30 10 1.523 1.629 1.641 1.623 0.761 0.407 0.274 0.203
		30 15 1.587 1.716 1.763 1.739 0.794 0.429 0.294 0.217
		52 15 1.621 1.724 1.834 1.864 0.811 0.431 0.306 0.233
		52 20 1.626 1.795 1.883 1.900 0.813 0.449 0.314 0.238
	st	70 26 1.700 1.944 1.981 2.118 0.850 0.486 0.330 0.265
		70 35 1.707 1.961 1.996 2.123 0.854 0.490 0.333 0.265
	kroA 100 35 1.815 1.992 2.018 2.121 0.908 0.498 0.336 0.265
		100 50 1.817 1.996 2.012 2.126 0.908 0.499 0.335 0.266
		150 50 1.818 2.000 2.049 2.131 0.909 0.500 0.342 0.266
		150 75 1.828 2.031 2.092 2.180 0.914 0.508 0.349 0.273

 Parallelizing Branch-and-Cut algorithms for some survivability network design problemsThis formulation is called Cut formulation and denoted by kHNDP Cu . It contains

	|E| +	| A st | = |E| + d(n -2) +	|δ(s)| +	|δ(t)| -	|[s, t]|
	{s,t}∈D	{s,t}∈D	{s,t}∈D	{s,t}∈D	
	variables if L = 2 and			
	|E| +				
	{s,t}∈D				

 f s d t d) is not feasible for the problem, then we generate, further valid inequalities for kHNDP 2,3 f low (G, D) that are violated by (x, f s 1 t 1 , ..., f s d t d).

	For this,
	we look for the following inequalities, in this order,
	1) st-dicut inequalities,
	2) double cut inequalities,
	3) triple path-cut inequalities,
	4) Steiner-partition inequalities,
	5) Steiner-SP -partition inequalities.

Table 5 . 5

 55 4123.36 508.29 438.68 334.32 226.72 142.71 berlin 30 10 9530.88 1021.92 897.29 631.11 265.46 128.94

	st	70	5	9.06	2.43	5.38	5.07	5.78	5.15
	berlin 52	5	28.72	6.40	4.93	4.13	4.04	3.79
	berlin 52	7	34.42	4.82	4.79	3.92	4.53	4.47
	berlin 30	7	45.32	5.40	3.38	2.12	1.43	1.61
	st	70	7	473.75	61.01	53.47	44.09	28.63	19.85
	berlin 52 10						

: CPU computation time for Parallel B&B with p variation CPU time name |V | |D| p = 2 p = 8 p = 16 p = 32 p = 64 p = 128

Table 5 .

 5 5 and Figure

Table 5 .

 5 6: Parallel B&B R_Speedup results R_Speedup name |V | |D| p = 8 p = 16 p = 32 p = 64 p = 128

	st	70	5	3.74	1.68	1.79	1.57	1.76
	berlin 52	5	4.49	5.83	6.96	7.12	7.58
	berlin 52	7	7.14	7.19	8.79	7.60	7.70
	berlin 30	7	8.39	13.40	21.35	31.62	28.19
	st	70	7	7.76	8.86	10.75	16.55	23.86
	berlin 52 10	8.11	9.40	12.33	18.19	28.89
	berlin 30 10	9.33	10.62	15.10	35.90	73.92

Table 5 .

 5 7: Parallel B&B R_Efficiency results R_Efficiency name |V | |D| p = 8 p = 16 p = 32 p = 64 p = 128

	st	70	5	0.47	0.11	0.06	0.02	0.01
	berlin 52	5	0.56	0.36	0.22	0.11	0.06
	berlin 52	7	0.89	0.45	0.27	0.12	0.06
	berlin 30	7	1.05	0.84	0.67	0.49	0.22
	st	70	7	0.97	0.55	0.34	0.26	0.19
	berlin 52 10	1.01	0.59	0.39	0.28	0.23
	berlin 30 10	1.17	0.66	0.47	0.56	0.58
	In Table 5.7 and Figure						

Table 5 . 8

 58

				p = 3	p = 8	p = 16	p = 32	p = 64 p = 128
	st	70	5	22.34	5.09	6.04	7.08	6.85	7.10
	berlin 52	7	147.89	11.82	10.74	8.18	5.84	5.13
	berlin 30	7	335.52	52.99	35.71	23.18	12.05	5.94
	berlin 52	5	695.20	107.05	73.60	41.34	21.87	9.21
	berlin 30 10 18000.00 18000.00 2416.19	737.75	376.19	203.82
	berlin 52 10 18000.00 18000.00 16219.19 7613.17 3929.98 2074.82
	st	70	7 18000.00 18000.00 18000.00 18000.00 13405.19 8055.64

: CPU computation time for Parallel B&C with p variation CPU time name |V | |D|

Table 5 .

 5 9: Parallel B&C R_speedup results R_Speedup name |V | |D| p = 8 p = 16 p = 32 p = 64 p = 128

	st	70	5	4.38	3.70	3.15	3.26	3.15
	berlin 52	7	12.51	13.77	18.08	25.34	28.81
	berlin 30	7	6.33	9.39	14.47	27.84	56.50
	berlin 52	5	6.49	9.45	16.82	31.79	75.49
	berlin 30 10	1.00	7.45	24.40	47.85	88.31
	berlin 52 10	1.00	1.11	2.36	4.58	8.68
	st	70	7	1.00	1.00	1.00	1.34	2.23

Table 5 .

 5 10: Parallel B&C R_Efficiency results R_Efficiency name |V | |D| p = 8 p = 16 p = 32 p = 64 p = 128

	st	70	5	0.55	0.23	0.10	0.05	0.02
	berlin 52	7	1.56	0.86	0.57	0.40	0.23
	berlin 30	7	0.79	0.59	0.45	0.44	0.44
	berlin 52	5	0.81	0.59	0.53	0.50	0.59
	berlin 30 10	0.13	0.47	0.76	0.75	0.69
	berlin 52 10	0.13	0.07	0.07	0.07	0.07
	st	70	7	0.13	0.06	0.03	0.02	0.02
	In Table 5.7 and Figure					

Remerciements

Algorithm 7: Algorithm PHA for the kESNDP.

Data: An undirected graph G = (V, E), the demand set D, a positive integer k ≥ 1 Result: A lower and upper bounds of the optimal solution of the kESNDP begin Z U B ← ∞; Execute SH, LRA et GA in a parallel;

SH:

Computes |D| arbitrary ordering of the demands; for each ordering on the demands do Computing, using a series of minimum cost flow computation, a feasible solution according to that ordering; Add the new solution obtained into the pool of population. Let Z SH be its value;

Inform GA that is has ended;

LRA: for each iteration do

Compute the Lagrange multipliers using Z U B and the current solution of problem (LR). Let z be the optimal value of (LR); Compute a feasible solution from the solution of problem (LR). Let Z LRA be its value; Add this solution into the pool;

Inform GA that is has ended;

GA: for each iteration do

Sort the solutions of the pool by increasing order w.r.t. to their weight; Randomly choose several pairs of solutions from the pool and combine the solutions of each pair in order to generate new solutions; for every new solution do Let Z GA be the value of the solution; if Z GA < Z U B then Z U B ← Z GA ; end Add the solution to the pool of solutions; end Delete the worst solutions from the pool (according to the pool management strategy); end return (Z LB , Z U B); end Theorem 5.2 Let G = (V, E) be a graph, k ≥ 2 and L ∈ {2, 3}. Then the kHNDP is equivalent to the following inter program min{cx; subject to (5.1) -(5.4), x ∈ Z E }.

(5.5) Formulation (5.10) is called Natural formulation. We will denote by kHNDP N at . It only uses the design variables.

Cut formulation

The Cut formulation is based on cuts in the graphs G st (see 4.1.1.1 for the transformation details), {s, t} ∈ D. Given a subgraph H st of G st , we let y Hst st ∈ R Ast be the incidence vector of H st , that is to say y Hst st (a) = 1 if a ∈ H st and y Hst st (a) = 0 if not. If a subgraph H of G induces a solution of the kHNDP, then the subgraph H st contains at least k arc-disjoint st-dipaths, for all {s, t} ∈ D, and conversely. Thus, for any solution H of the kHNDP, the following inequalities are satisfied by y Hst st , for all {s, t} ∈ D,

y st (a) ≤ x(e), for all a ∈ A st , e ∈ E, (5.7)

x(e) ≤ 1, for all e ∈ E.

(5.9)

where y st ∈ R Ast for all {s, t} ∈ D and x ∈ R E .

Inequalities (5.6) will be called directed st-cut inequalities or st-dicut inequalities and inequalities (5.7) linking inequalities. Inequalities (5.7) indicate that an arc a ∈ A st corresponding to an edge e is not in H st if e is not taken in H. Inequalities (5.8) and (5.9) are called trivial inequalities.

We have the following result which is given without proof since it easily follows from the above results.

Theorem 5.3 The kHNDP for L = 2, 3 is equivalent to the following integer program min{cx; subject to (5.6) -(5.9), x ∈ Z E + , y st ∈ Z Ast + }.

(5.10)

is valid for kHNDP N at , kHN DP Cu (G, D), kHN DP 2,3 f low (G, D) (recall that δ(π) is the set of edges of the E having their end nodes in different elements of π).

Triple path-cut inequalities

Here is a further class of valid inequalities. We distinguish the cases where L = 2 and L = 3. We have the following theorem.

4 induces a partition of V and there exist two demands {s 1 , t 1 } and {s 2 , t 2 } with s

4 may be empty and s 1 and s 2 may be the same. Let also

ii) Let L = 3 and {V 0 , ...,

5 induces a partition of V and there exist two demands {s 1 , t 1 } and {s 2 , t 2 } with s 1 , s 2 ∈ V 0 , t 1 ∈ V 2 4 and t 2 ∈ V 2 5 . The sets V 1 4 and V 1 5 may be empty and s 1 and s 2 may be the same. Let also

is valid for kHNDP N at , kHN DP Cu (G, D), kHN DP 2,3 f low (G, D).

Algorithm 8 summarizes our sequential Branch-and-Bound.

Algorithm 8: Sequential Branch-and-Bound for the kHNDP.

Data: An undirected graph G = (V, E), the demand set D, a positive integers k ≥ 1 and L ≥ 2 Result: The optimal solution of the kHNDP, or a lower and upper bounds of it. begin

Notice that for the branching rule, we have tested three strategies on different instances: the first fractional x e variable; the fractional variable x e with the lowest reduced cost; the fractional variable x e which is the closest to 0.5, and we have selected the one third strategy because of it has given the best results.

Parallelizing Branch-and-Cut algorithms for some survivability network design problems

In a master/slave paradigm, load balancing is fair if one considers that the subproblems (tasks) that are in the master's queue are non preemptive and if the processors are homogeneous. In fact, the master process gives work to the slaves according to a FIFO (First In First Out) order: The first free process is first served, and each time a process sends back results, the master responds with a new computation task.

Algorithm 9: Master process in parallel B&B for the kHNDP.

Data: An undirected graph G = (V, E), the demand set D, a positive integers k ≥ 1 and L ≥ 2 Result: The optimal solution of the kHNDP, or a lower and upper bounds of it. begin

However, during the execution of a parallel B&B, the slaves are inactive during the start of the algorithm and during its final phase. This inactivity is due to the limited number of sub-problems that can be executed in a parallel way for a more or less important period of time. If such a phenomenon happens in practice, the main cause would be the slowness of the evaluation of the LP relaxation for the input graph.

Parallel B&C

As for the B&B algorithm, the real challenge in a parallel tree search algorithm is the choice of what, when and how many data we exchange during the optimization process. This is all the more true in a B&C algorithm that evaluates a node using linear program resolution(s) and polyhedron cutting.

The parallel B&C we have designed is based on the parallel B&B we introduced in the previous section. The major contribution that the B&C algorithm brings is the distributed cuts management. In fact, a trivial way to handle the separated cuts would be to separate the different valid constraints families in the slaves processes and then communicate the separated constraints to the master. This communication would happen while a slave sends back the node evaluation results. Nevertheless, since we are not able to estimate the cost of such a communication a priori, this method can cause a bottleneck to the application.

To respond to this limit, the parallel B&C we have designed uses, beyond the master process, a pool manager process that will be in charge of the cuts pool management.

In the slaves processes, each time the process has to solve the node LP , he sends a request to the pool manager to check if his local constraints pool is up to date. If not, the pool manager sends back the missing constraints (that has been separated by the other processes). In order to decrease the amount of data to be sent, we assumed that the global constraints pool (stored in the pool manager memory) and the local constraints pools (stored in the slaves memories) are stored in the same order. This information allows the pool manager process to know, at any time, the size of the pool of each slave process, and therefore what are the constraints that are missing in his local pool. For such an assumption to be true, each slave has to update his local constraints pool before adding to it any new separated constraint. The algorithm is presented in what follows.

At a manager/slave communication point of view, the constraints are coded into 2 nz(C i)+3 scalars (nz(i) gives the number of the non-zero coefficients in the constraint i), representing in order:

• the number of integers that has been sent;

• nz(C i) pairs of scalars of the form {c i , i} indicating the non-zero coefficient of the variable of index i; • a scalar that represent the comparing sign;

• a scalar related to the right hand side of the constraint.

(at most 10.37% higher) to those obtained by CPLEX relatively to the other way around (CPLEX upper bounds which are 88.47% higher than the ones produced by our algorithm). From the lower bounds point of view, both our parallel B&C and CPLEX outperformed almost equally each other in producing better lower bounds in 6 (our algorithm) and 5 (CPLEX) instances over 28. We also notice that our parallel B&C was able to produce an upper bound for 4 instances while CPLEX fails to do so, even after 5 hours of CPU time.

From Table 5.3 can see that our parallel B&C outperforms our parallel B&B in producing upper bounds in 5 instances over 28 while parallel B&B outperforms parallel B&C in just 2 cases. In terms of lower bounds we notice that parallel B&C produces better lower bounds in 8 instances over the 28, and parallel B&B in 5. What is interesting also to see is that the 8 instances in which parallel B&C produced better lower bounds where in majority the small-middle range instances. This is quite logic because our algorithm tends to explore more rapidly the search tree and thus is able to produce more violated constraints that strengthen the linear relaxation of the problem.

Parallelizing Branch-and-Cut algorithms for some survivability network design problems Finally we can see easily that the limit of producing lower bounds of our parallel B&C is the same as for CPLEX and parallel B&B. This is basically due to the fact that our algorithm is based on CPLEX as linear solver, and the lack of memory limit using this formulation is the same because we use the same initial number of variables and constraints with CPLEX.

Natural formulation

Table 5.4 shows that for the kHNDP when k = 3 and L = 3, while CPLEX solved to optimality 5 instances over 28, our parallel B&C applied to the natural formulation In this thesis we consider the COP class of Survivability Network Design Problems. We present an approximation parallel hybrid algorithm based on a greedy algorithm, a Lagrangian relaxation algorithm and a genetic algorithm which produces both lower and upper bounds for flow-based formulations.

In order to validate the approach proposed, a series of experiments is condusted on two applications: the k-Edge-Connected Hop-Constrained Network Design Problem (kHNDP) and the k-Edge-Connected Survivability Network Design Problem (kESNDP). The parallelization experimental study is presented after that.

In the last part of this work, we present two parallel exact algorithms: a distributed Branch-and-Bound and a distributed Branch-and-Cut. A series of experiments has been made on a cluster of 128 processors and interesting speedups has been reached in kHNDP resolution when k=3 and L=3.

Algorithme de Branch-and-bound, algorithme de Branch-and-cut, calcul parallèle, conception de réseau, hybridation, métaheuristique, optimisation combinatoire.

Branch-and-Bound, Branch-and-Cut, Combinatorial optimization, hybridization, metaheuristic, network design, parallel computing.