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Abstract

Combinatorial Optimization (CO) is an area of research that is in a constant progress.
Solving a Combinatorial Optimization Problem (COP) consists essentially in finding
the best solution (s) in a set of feasible solutions called a search space that is usually
exponential in cardinality in the size of the problem.

To solve COPs, several methods have been proposed in the literature. A distinction
is made mainly between exact methods and approximation methods.

Since it is not possible to aim for an exact resolution of NP-Complete problems when
the size of the problem exceeds a certain threshold, researchers have increasingly used
Hybrid (HA) or parallel computing algorithms in recent decades.

In this thesis we consider the COP class of Survivability Network Design Problems.
We present an approximation parallel hybrid algorithm based on a greedy algorithm,
a Lagrangian relaxation algorithm and a genetic algorithm which produces both lower
and upper bounds for flow-based formulations.

In order to validate the proposed approach, a series of experiments is carried out on
several applications: the k-Edge-Connected Hop-Constrained Network Design Problem
(kHNDP) when L = 2, 3, The problem of the Steiner k-Edge-Connected Network
Design Problem (SkESNDP) and then, two more general problems namely the kHNDP
when L ≥ 2 and the k-Edge-Connected Network Design Problem (kESNDP). The
experimental study of the parallelisation is presented after that.

In the last part of this work, we present two parallel exact algorithms: a distributed
Branch-and-Bound and a distributed Branch-and-Cut. A series of experiments has
been made on a cluster of 128 processors and interesting speedups has been reached in
kHNDP resolution when k = 3 and L = 3.

Key words : Branch-and-Bound, Branch-and-Cut, Combinatorial optimization,
hybridization, metaheuristic, network design, parallel computing.





Résumé

L’Optimisation Combinatoire (OC) est un domaine de recherche qui est en perpétuel
changement. Résoudre un problème d’optimisation combinatoire (POC) consiste es-
sentiellement à trouver la ou les meilleures solutions dans un ensemble des solutions
réalisables appelé espace de recherche qui est généralement de cardinalité exponentielle
en la taille du problème.

Pour résoudre des POC, plusieurs méthodes ont été proposées dans la littérature.
On distingue principalement les méthodes exactes et les méthodes d’approximation.

Ne pouvant pas viser une résolution exacte de problèmes NP-Complets lorsque la
taille du problème dépasse une certain seuil, les chercheurs on eu de plus en plus
recours, depuis quelques décennies, aux algorithmes dits hybrides (AH) ou encore au
calcul parallèle.

Dans cette thèse, nous considérons la classe POC des problèmes de conception d’un
réseau fiable. Nous présentons un algorithme hybride parallèle d’approximation basé
sur un algorithme glouton, un algorithme de relaxation Lagrangienne et un algorithme
génétique, qui produit des bornes inférieure et supérieure pour les formulations à base
de flots.

Afin de valider l’approche proposée, une série d’expérimentations est menée sur
plusieurs applications: le problème de conception d’un réseau k-arête-connexe avec
contrainte de borne (kHNDP) avec L = 2, 3, le problème de conception d’un réseau
fiable Steiner k-arête-connexe (SkESNDP) et ensuite deux problèmes plus généraux,
à savoir le kHNDP avec L = 2 et le problème de conception d’un réseau fi able k-
arête connexe kESNDP). L’étude expérimentale de la parallélisation est présentée par
la suite.

Dans la dernière partie de ce travail, nous présentons deux algorithmes parallèles
exacts: un Branch-and-Bound distribué et un Branch-and-Cut distribué. Une série
d’expérimentations a été menée sur une grappe de 128 processeurs, et des accélérations
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intéressantes ont été atteintes pour la résolution du problèmes kHNDP avec k = 3 et
L = 3.

Mots clés : Algorithme de Branch-and-bound, algorithme de Branch-and-cut, calcul
parallèle, conception de réseau, hybridation, métaheuristique, optimisation combina-
toire.



Parallélisation de métaheuristiques
hybrides pour la résolution de POC

Introduction

L’optimisation combinatoire (OC) est un domaine de recherche en mathématiques
appliquées et en informatique qui a fait d’énormes progrès au cours des dernières décen-
nies. Cette branche de l’optimisation est également étroitement liée à la programmation
mathématique linéaire et non linéaire, à la recherche opérationnelle, aux algorithmes
et à la théorie de la complexité.

Dans ce travail, nous étudions une classe de POC bien connue des problèmes de
conception de réseaux fiables (SNDP).

Les SNDPs sont des problèmes de conception de réseaux qui visent à concevoir des
réseaux qui continuent de fonctionner même en cas de défaillance/pannes. En effet, les
réseaux sont aujourd’hui d’une importance cruciale vu la place que ces derniers occu-
pent dans de nombreux (tous?) domaines (télécommunications, logistique, économie,
informatique, etc.).

Dans un premier temps, nous présentons une étude dans laquelle nous visons la
résolution approximative des SNDPs. Ainsi, nous présentons une approche hybride
et parallèle basé sur un algorithme glouton, un algorithme de relaxation Lagrangien
et un algorithme génétique qui produit à la fois des bornes inférieures et supérieures
pour des formulations à base de flots. Afin de valider l’approche proposée, une série
d’expériences est réalisée sur deux applications: le problème de conception de réseau
k-arête-connexe avec contrainte de borne (kHNDP) et le problème de conception de
réseau fiable k-arête-connexe (kESNDP).



ii Résumé long

Dans un second temps, nous étudions les SNDPs du point de vue de la résolution ex-
acte. Nous utilisons le calcul parallèle pour proposer deux algorithmes exactes efficaces:
un algorithme Branch-and-Bound et un algorithme Branch-and-Cut distribués. Une
étude expérimentale est aussi présentée pour valider ces deux algorithmes. Le problème
sélectionné pour cette phase est le problème de conception de réseau k-arête-connexe
avec contrainte de borne (kHNDP) quand L = 2, 3.

Notions de base

kESNDP

Soit G = (V,E) un graphe non orienté, D ⊆ V × V un ensemble de demandes, et
une fonction coût ω : E → R qui associe un coût ωuv à chaque arête uv ∈ E de
G. Le problème de conception d’un réseau fiable k-arête-connexe (kESNDP) consiste
à trouver un sous-graphe de G de coût minimum tel qu’il existe k st-chemins arête-
disjoints qui relient les terminaux de chaque demande {s, t} de D.

Le kESNDP peut être formulé comme un programme linéaire en nombre entiers basé
sur les flots (voir [193]).

Le kESNDP est équivalent à:

min
∑
uv∈E

ωuvxuv

s.t.

∑
v∈V \{u}

f stuv −
∑

l∈V \{u}

f stlu =


k, if u = s,

−k, if u = t,

0, if u ∈ V \ {s, t} ,


pour tout u ∈ V and {s, t} ∈ D, (1)

f stuv
f stvu

}
≤ xuv, pour tout uv ∈ E and {s, t} ∈ D, (2)

f stuv, f
st
vu ≥ 0, pour tout uv ∈ E and {s, t} ∈ D, (3)

xuv ≤ 1, pour tout uv ∈ E, (4)

xuv ∈ {0, 1}, pour tout uv ∈ E, (5)

f stuv, f
st
vu ∈ {0, 1}, pour tout uv ∈ E, {s, t} ∈ D. (6)
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kHNDP

Soit G = (V,E) un graphe non orienté, D ⊆ V × V un ensemble de demandes, et
une fonction coût c : E → R qui associe un coût c (e) à chaque arête e ∈ E de G.
Le problème de conception d’un réseau fiable k-arête-connexe avec contrainte de borne
(kHNDP) consiste à trouver un sous-graphe de G de coût minimum tel qu’il existe k
L-st-chemins arête-disjoints qui relient les terminaux de chaque demande {s, t} de D
et de longueur (nombre de sauts) maximum L fixée.

Le problème de kHNDP peut être formulé dans le cas où L = 3 comme suit:

min
∑
e∈E

c(e)x(e)

∑
a∈δ+(u)

f sta −
∑

a∈δ−(u)
f sta =


k if u = s

0 if u ∈ Ṽst\ {s, t}
−k if u = t

 , pour tout u ∈ Ṽst

f sta ≤ x(e), pour tout a ∈ Ãst(e), {s, t} ∈ D, e ∈ E
f sta ≤ 1, pour tout a = (u, u′), u ∈ V \ {s, t} , {s, t} ∈ D
f sta ≥ 0, pour tout a ∈ Ãst(e), {s, t} ∈ D
x(e) ≤ 1, pour tout e ∈ E

x ∈ ZE+ f st ∈ ZÃst+

(7)

La formulation par flots séparés (7) a été introduite par Diarrassouba et al. en
2013 [96] et met en œuvre un nombre polynomial de contraintes et de variables. Ceci
est possible en utilisant les flots dans |D| graphes en couche calculés à l’aide d’une
transformation appliquée au graphe G pour chaque demande {s, t} (Gouveia et Requejo
[139]).

Résolution approchée

Dans un premier temps, nous avons essayé de tirer profit de la structure en blocs de la
formulation (voir Figure 1). Nous présentons une approche parallèle basée sur la relax-
ation lagrangienne [154, 237], une heuristique dont l’idée de base est inspirée de la struc-
ture de la formulation du problème, ainsi qu’un algorithme génétique. Nous présentons
aussi une comparaison des résultats de notre approche, avec ceux de CPLEX.
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Figure 1: Dépendances des variables

Algorithme de la relaxation Lagrangienne

Dans notre approche, nous considérons les formulations à base de flots présentées au-
dessus et relâchons les contraintes de couplage. Soit λstuv, pour tout {s, t} ∈ D et tout
(u, v) ∈ A, soit le multiplicateur Lagrangien associé aux contraintes. Cela donne les
problèmes suivant:

kESNDP

min
∑
uv∈E

[
ωuv −

( ∑
{s,t}∈D

(λstuv + λstvu)

)]
xuv +

∑
{s,t}∈D

∑
uv∈E

(λstuvf
st
uv + λstvuf

st
vu)

∑
v∈V \{u}

fstuv −
∑

l∈V \{u}
fstlu =


k, if u = s,

−k, if u = t,

0, if u ∈ V \ {s, t} ,

 pour tout u ∈ V and {s, t} ∈ D,

0 ≤ fstuv, fstvu ≤ 1, pour tout uv ∈ E, {s, t} ∈ D,
xuv ≤ 1, pour tout uv ∈ E,

xuv ∈ {0, 1}, pour tout uv ∈ E,
fstuv ∈ {0, 1}, pour tout uv ∈ E, {s, t} ∈ D.
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kHNDP

min
∑
e∈E

c(e)−
 ∑

{s,t}∈D

∑
a∈Ãst(e)

λsta

x(e) + ∑
{s,t}∈D

∑
a∈Ãst(e)

λsta f
st
a

∑
a∈δ+(u)

fsta −
∑

a∈δ−(u)

fsta =


k if u = s

0 if u ∈ Ṽst\ {s, t}
−k if u = t

 ,pour tout u ∈ Ṽst

fsta ≤ 1, pour tout a = (u, u′), u ∈ V \ {s, t} , {s, t} ∈ D
fsta ≥ 0, pour tout a ∈ Ãst(e), {s, t} ∈ D
x(e) ≤ 1, pour tout e ∈ E
x ∈ ZE+

fst ∈ ZÃst
+

Sur la base des programmes obtenus, deux algorithmes (RLA et RLASH) ont été
conçus pour le kESNDP et le kHNDP. RLA et RLASH commencent par résoudre les |D|
problèmes de flot d’une manière parallèle en utilisant l’algorithme "Network Simplex"
[11, 77].

Pour fixer les multiplicateurs de Lagrange, nous utilisons l’algorithme du sous-gradient.
A remarquer que durant cette phase, dans les deux algorithmes conçus, nous utilisons
une heuristique dans le cas où le vecteur Xj ne constitue pas une solution réalisable
pour les formulations initiales, pour le transformer en Xj réalisable. Dans RLA, nous
utilisons une heuristique primale rapide pour arrondir à 1 chaque xj(e) qui viole une
contrainte de couplage. Dans RLASH, au lieu d’une heuristique primale, nous utilisons
l’heuristique SH que nous avons conçue et que nous allons expliquer par la section suiv-
ante.

Heuristique Gloutonne

L’idée principale de l’algorithme Greedy Successive Heuristic (SH) est inspirée par
la structure des formulations à base de flots. En fait, si un arc dans G̃st est sélectionné
dans la solution du problème de flot di = {s, t} (i.e. f sta mis à 1), l’arête correspon-
dante dans G sera sélectionnée dans la solution (par conséquent x(e) = 1) en raison
des contraintes de couplage. Ainsi, le meilleur choix à faire lors de la résolution du
problème de flot suivant est de sélectionner des arcs dont les arêtes correspondantes
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sont déjà sélectionnées et qui les rendent libres à être choisies pour la fonction objective
principale. En d’autres termes, l’idée est plutôt de résoudre séparément les problèmes
de flot maximum du réseau pour chaque {s, t} et après avoir superposé les solutions
pour construire une solution réalisable, nous résolvons chaque problème de flot i ayant
pris en compte les solutions obtenues pour les {0...i−1} problèmes de flot déjà résolus.
Le but de ce mouvement est d’augmenter la corrélation entre les problèmes de flot
{s, t}.

D’un point de vue pratique, avant de résoudre tout problème de flot {s, t}, nous
commençons par mettre le coût de tous les arcs qui appartiennent à la solution partielle
déjà calculée à 0 en superposant les {s, t} solutions de flots déjà calculées.

Algorithme génétique

Population

La population d’entrée de l’Algorithme Génétique (GA) que nous choisissons pour notre
algorithme hybride est composée des solutions réalisables (individus) des problèmes
kHNDP et kESNDP calculées par les algorithmes SH et RLA présentés auparavant.
En effet, dans RLA, et plus précisément dans la phase du sous-gradient, l’algorithme
produit à chaque itération i, une solution réalisable pour le problème traité (les dif-
férents Xj).

Chaque individu de la population est codé en un vecteur repsrésentant des valeurs xj,
un ensemble de |E| entiers indiquant si oui ou non (0 ou 1) une arête est sélectionnée
dans la solution. Un chromosome est lui défini comme un ensemble de |D| valeurs de
flot (gènes) relatives au G̃st.

Evaluation & Selection

L’évaluation des individus est faite en fonction de leur valeur de fonction objective Z.
Un "classement social" de la population est fait en se basant sur ce phénotype.

Pour chaque itération de GA, un tri fusion parallèle est appliqué sur le pool de
population pour trier les individus en fonction de leur classement social.

La sélection, par la suite, est faite aléatoirement mais selon une distribution de
probabiliste. Nous commençons par diviser la population en cinq catégories (A, B,
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C, D et E) en fonction de leur classement social (valeur de la solution), puis nous
sélectionnons 1

10
de la population à reproduire sachant que la probabilité qu’un parent

soit choisi est égale à 67%, et 19%, 10%, 3% et 1% respectivement à la catégorie sociale
A, B, C, D et E.

Crossover & Reproduction

Le croisement est généralement un opérateur binaire qui combine deux individus sélec-
tionnés (parents) afin de produire probablement une meilleure progéniture.

En tant que première version de notre GA, nous avons choisi de baser notre schéma
de reproduction sur le croisement à deux points. Deux points choisis au hasard dans
la permutation sont utilisés comme points de coupe. Chaque parent est utilisé une fois
en tant que premier parent et une fois en tant que deuxième parent. Deux descendants
sont formés en permutant les deux parents. Les composantes entre les deux points de
coupure dans la permutation sont héritées du premier parent et les valeurs restantes
sont remplies du second parent.

De plus, nous assignons à chaque paire de parents sélectionnés une mesure prédictive
de la qualité possible des enfants qui seront produits. Il est évident que si les deux
parents appartiennent à la classe sociale A, ces parents sont plus à même de produire
des enfants de bonne qualité que d’autres. Ainsi, selon la valeur de l’alchimie, nous
produisons plus de solutions (enfants) en fonction de différents croisements à deux
points choisis aléatoirement.

Hybridation

Dans notre algorithme général PHA, les trois algorithmes RLA, GA et SH fonctionnent
en parallèle. L’hybridation des trois algorithmes est faite de de la manière suivante:
Tout d’abord, les solutions générées par les algorithmes SH et RLA sont introduites
dans le pool de solutions (population) de GA. De plus, au début de PHA, la limite
supérieure globale ZUB est définie sur ∞. Ensuite, chaque fois que RLA, SH et GA
génèrent une solution réalisable, la valeur Z de cette solution est comparée à ZUB. Si
Z < ZUB, alors la meilleure limite supérieure ZUB est mise à jour avec la valeur de Z.
Notez que la valeur ZUB est utilisée par RLA pour mettre à jour les multiplicateurs de
Lagrange.
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A noter également que notre algorithme veuille à ce que GA continue de fonctionner
après la fin de la RLA et de SH afin de donner à GA suffisamment de temps pour
traiter les solutions de RLA et SH.

Enfin, notez qu’avec la limite supérieure globale ZUB, l’algorithme de relaxation La-
grangienne produit également une borne inférieure de la solution optimale du problème
traité. Ceci est capital vu qu’il nous permet d’avoir une idée sur combien on pourrait
améliorer notre borne primale.

La figure 2 ci-dessous décrit le schéma de communication de PHA.

Figure 2: PHA communication scheme
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Résolution exacte

Parallel B&B

Il est connu que la structure des arbres de dépendances des Branch-and-Bound B&B

contient très peu de dépendances, par conséquent l’algorithme est intrinsèquement
parallélisable. Néanmoins, les résultats de cette tâche peuvent être très mauvais si les
communications ne sont pas traitées efficacement. Cela est d’autant plus vrai lorsque
la mémoire est distribuée.

Ainsi, pour éviter d’avoir un surcoût important dû à l’architecture distribuée, le
schéma de parallélisation que nous avons conçu suit le modèle maître/esclave. En
fait, avoir une gestion centralisée des arbres réduit le nombre de communications à
effectuer. Par conséquent, le processus maître est le processus responsable de la gestion
de la recherche arborescente, de l’évaluation du nœud racine, de la gestion globale des
limites supérieure et inférieure et de la gestion de l’arrêt de l’algorithme. Les processus
esclaves sont responsables de l’évaluation des nœuds de l’arbre et du branchement. La
figure 3 décrit le schéma de communication de notre algorithme parallèle B&B.

Figure 3: Distributed B&B communication scheme

Ci-dessous, nous présentons les deux algorithmes maitre et esclave qui forment notre
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implémentation parallèle du B&B.

Algorithm 1: Processus maitre du B&B parallèle.
Data: Un graphe non orienté G = (V,E), ensemble de demandes D, deux entiers positifs

k ≥ 1 et L ≥ 2

Result: La solution optimale du problème traité, ou bien deux bornes supérieure et
inférieure pour le problème.

begin
ZUB ← SH();
dataroot ← SOLV E();
if IS_FRACTIONAL(dataroot) then

PRIMAL_HEURISTIC(dataroot);
P 1
LF , P

+2
LF ← BRANCHING(dataroot) ;

INSERT (TB&B , P
1
LF );

INSERT (TB&B , P
2
LF );

end
while TB&B is not empty do

AFFECT_TASKS(TB&B);
RECIEV E_RESULTS(resultsin);
if IS_INTEGER(resultsin) then

if Z(resultsin) < ZUB then
ZUB ← Z(resultsin);

end
else

if Z(resultsin) ≤ ZUB then
solIk ←MAKE_INTEGER(resultsin);
if Z(solIk) < ZUB then

ZUB ← Z(solIk);
end
UPDATE(TB&B , ZLB , Z(solk));
BRANCH_AND_INSERT (TB&B , resultsin);

end
end
if ZUB = ZLB then

stop;
end

end
return (ZLB , ZUB);

end

Parallel B&C

Comme pour l’algorithme B&B, le véritable défi dans un algorithme de recherche ar-
borescante parallèle est le choix de quoi, quand et combien de données échanger pendant
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Algorithm 2: Processus esclave du B&B parallèle.
Data: Un noeud TB&B , un ensemble de branchements
Result: La solution optimale di noeud, une solution entière, l’indice de la variable de

branchement.
begin

while True do
datain ← RECIEV E_TASK();
if IS_END_MSG(datain) then

stop;
end
DECODE_BRANCHINGS_SET ();
dataout ← SOLV E();
if IS_FRACTIONAL(dataout) then

PRIMAL_HEURISTIC(dataout);
BRANCHING(dataout) ;

end
SEND_RESULTS(dataout) ;

end
end

le processus d’optimisation. Cela est d’autant plus vrai dans un algorithme de Branch-
and-Cut B&C qui évalue un nœud en utilisant une résolution de programme linéaire
et des coupes de polyèdre.

Le B&C parallèle que nous avons conçu est basé sur le B&B parallèle que nous avons
présenté dans la section précédente. La contribution majeure apportée par l’algorithme
B&C est la gestion distribuées des coupes. En fait, une manière triviale de gérer les
coupes séparées serait de séparer les différentes familles de contraintes valides dans
les processus esclaves, puis de communiquer les contraintes séparées au maître. Cette
communication se produirait quand un esclave renvoie les résultats de l’évaluation du
nœud. Néanmoins, puisque nous ne sommes pas en mesure d’estimer le coût d’une
telle communication a priori, cette méthode peut provoquer un goulot d’étranglement
à l’application.

Pour répondre à cette limite, le B&C parallèle que nous avons conçu utilise, au-delà
du processus maître, un processus gestionnaire de pool qui se chargera de la gestion des
contraintes valides. La figure 4 montre le schéma de communication B&C distribué.

Ci-dessous, nous présentons les trois algorithmes maitre, gestionnaire de pool et
esclave qui forment notre implémentation parallèle du B&C.
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Figure 4: Distributed B&C communication scheme

Conclusion

Nous avons étudié, dans cette thèse, la parallélisation de métaheuristiques hybrides
pour des problèmes de conception de réseaux. Dans un premier temps, nous avons
proposé deux algorithmes hybrides et parallèles pour résoudre le problème de concep-
tion de réseaux Steiner k-arête-connexes (SkESNDP) et le problème de conception de
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Algorithm 4: Processus esclave du B&C parallèle.
begin

while True do
datain ← RECIEV E_TASK();
if IS_END_MSG(datain) then

stop;
end
DECODE_BRANCHINGS_SET ();
NBcons ← 0;
repeat

if NBcons = 0 then
UPDATE_POOL(poollcons);

else
SEND_CONSTRAINTS(dataout);
UPDATE_POOL(poollcons);

end
dataout, NBcons ← SOLV E();

until NBcons = 0;
if IS_FRACTIONAL(dataout) then

PRIMAL_HEURISTIC(dataout);
BRANCHING(dataout) ;

end
SEND_RESULTS(dataout) ;

end
end

réseaux fiables k-arête-connexes avec contraintes de bornes (kHNDP) quand L = 2, 3.
Nous avons étendu ce travail après cela pour problème de conception de réseaux k-arête-
connexes (kESNDP) et le problème de conception de réseaux fiables k-arête-connexes
avec contraintes de bornes (kHNDP) lorsque L ≥ 2. Les algorithmes sont basés sur
un algorithme de relaxation lagrangienne, un algorithme génétique et un algorithme
glouton, et visent à produire des bornes inférieures et supérieures pour le problème
traité. Les expérimentations menées ont montré que notre algorithme hybride surpasse
CPLEX en produisant de bonnes solutions réalisables, même pour des instances de
grande taille, et ce dans un temps CPU relativement court. Ils ont également mon-
tré que l’hybridation des trois composants surpassait, dans la plupart des cas, chaque
composant pris séparément. Enfin, nous avons montré que l’utilisation de plusieurs pro-
cesseurs à l’intérieur de chaque composant de l’algorithme hybride permet de réduire
le temps CPU de chaque composant.

Dans le dernier chapitre, nous avons présenté de nouvelles implémentations dis-
tribuées des algorithmes connus,Branch-and-Bound et Branch-and-Cut. Pour cela,
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Algorithm 5: Processus gestionnaire de pool du B&C parallèle.
begin

while True do
datain ← RECEIV E_REQUEST ();
if IS_END_MSG(datain) then

stop;
end
if IS_CLAIMANT_MSG(datain) then

SEND_CONSTRAINTS(datain, poolcons);
end
if IS_FEEDING_MSG(datain) then

SEND_CONSTRAINTS(datain, poolcons);
RECEIV E_CONSTRAINTS(datain, poolcons);

end
end

end

nous avons commencé par présenter un état de l’art des études de parallélisation de
ces méthodes. Nous avons également présenté deux algorithmes parallèles basés sur le
Branch-and-Bound et le Branch-and-Cut. Enfin, nous avons validé nos algorithmes en
présentant une étude expérimentale que nous avons menée sur un cluster de 128 pro-
cesseurs pour résoudre le kHNDP lorsque k = 3 et L = 3. Ces expérimentations ont
montré une accélération intéressante obtenue en exécutant nos algorithmes sur les 128
cœurs, et grâce à cette parallélisation, nous avons pu résoudre des instances à grande
échelle pour le kHNDP et produire de meilleurs écarts pour des instances ayant ' 500

sommets et ' 300 demandes.

Cependant, ce que nous avons pu observer dans toutes nos expérimentations, c’est
que les écarts entre les bornes inférieure et supérieure pour les instances à grande échelle
étaient assez importants (plus de 40% pour la plupart des instances). Ainsi, il serait
intéressant d’étudier plus en profondeur un moyen de produire de meilleures bornes
inférieures afin de savoir à quel point les solutions produites par les algorithmes sont
proches de la solution optimale.

Enfin, il serait également intéressant d’étudier la parallélisation des algorithmes et
l’utilisation d’architectures plus sophistiquées, telles que les GPUs.



Algorithm 3: Processus maitre du B&C parallèle.
Data: Un graphe non orienté G = (V,E), ensemble de demandes D, deux entiers positifs

k ≥ 1 et L ≥ 2

Result: La solution optimale du problème traité, ou bien deux bornes supérieure et
inférieure pour le problème.

begin
ZUB ← SH();
NBcons ← 0;
repeat

if NBcons > 0 then
SEND_CONSTRAINTS(dataout);

end
dataout, NBcons ← SOLV E();

until NBcons = 0;
if IS_FRACTIONAL(dataroot) then

PRIMAL_HEURISTIC(dataroot);
P 1
LF , P

+2
LF ← BRANCHING(dataroot) ;

INSERT (TB&B , P
1
LF );

INSERT (TB&B , P
2
LF );

end
while TB&B is not empty do

AFFECT_TASKS(TB&B);
RECIEV E_RESULTS(resultsin);
if IS_INTEGER(resultsin) then

if Z(resultsin) < ZUB then
ZUB ← Z(resultsin);

end
else

if Z(resultsin) ≤ ZUB then
solIk ←MAKE_INTEGER(resultsin);
if Z(solIk) < ZUB then

ZUB ← Z(solIk);
end
UPDATE(TB&B , ZLB , Z(solk));
BRANCH_AND_INSERT (TB&B , resultsin);

end
end
if ZUB = ZLB then

stop;
end

end
return (ZLB , ZUB);

end
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Introduction

Combinatorial Optimization (CO) is a research area in applied mathematics and com-
puter science that has made huge progress over the past few decades. This branch of
optimization is also closely linked to linear and nonlinear mathematical programming,
operational research, algorithms and complexity theory.

Solving a combinatorial optimization (COP) problem consists essentially in finding
the best solution(s) in a set of feasible solutions called the search space that is usually
exponential in cardinality in the size of the problem. As it happens, the majority
of COPs are NP-complete. Therefore, the determination of an optimal solution (by
enumeration of the feasible solutions among others) proves to be an extremely expensive
task, even impossible when the size of the problem exceeds a certain threshold.

In fact, to solve COPs, several methods have been proposed in the literature. A
distinction is made mainly between exact methods and approximation methods.

In the exact methods we try to achieve an optimal solution by partially enumerating
the elements (realizable solutions) of the search space via specific techniques such
as Dynamic Programming, Branch-and-Bound, Cutting planes, Branch-and-Cut, etc.
These methods are known for their effectiveness but they prove to be unusable in
practice beyond a certain size of the treated problem and this for their prohibitive
cost.

As an alternative, we are sometimes satisfied with an approximate solution con-
structed using heuristics, which are of two types: (i) constructive heuristics (often of
the Greedy type) which construct feasible solutions based on characteristics of the prob-
lem; (ii) more elaborate methods known as heuristics of improvement generally based
on metaheuristics whose principle is often borrowed from the modeling of natural phe-
nomena of physics or biology (eg. simulated annealing methods, genetic algorithms,
ant colony, etc.).

It should also be noted that hybrid algorithms (HA) are being used more and more
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in which several types of methods are combined within the same resolution strategy.

On the other hand, at the hardware level, spectacular progress in recent years has
challenged the way to design and especially to exploit the available computing re-
sources. Thus, the parallelization of methods of solving COPs and their implemen-
tation on massively parallel platforms is of increasing interest to researchers. Several
methods of resolution have been developed for different COPs since the 1980s and new
methods are still been developed. It should be emphasized that parallelization thus
makes it possible to solve, by polynomial approximation methods, instances of COP
of high sizes and even to implement, in certain cases, exact methods of exponential
complexity.

In this work we address a well known COP class of Survivable Network Design
Problems (SNDP).

SNDPs are those network design problems which aim in designing networks that are
still functionning even when failures occur. In fact, efficient networks are nowadays
of crucial importance since networks take a large place in many fields (telecommuni-
cations, logistics, economics, IT, etc.). Addressing network design issues has raised a
large class of problems.

As a first step, we approach the SNDPs from an approximation point of view.
Thereby, we present a parallel hybrid algorithm based on a greedy algorithm, a La-
grangian relaxation algorithm and a genetic algorithm which produces both lower and
upper bounds for flow-based formulations. In order to validate the approach pro-
posed, a series of experiments is conducted on two applications: the k-Edge-Connected
Hop-Constrained Network Design Problem (kHNDP) and the k-Edge-Connected Sur-
vivability Network Design Problem (kESNDP).

As a second step, we study the SNDPs from the exact solving point of view. To
accomplish this task we use parallel computing to fasten a Branch-and-Bound and a
Branch-and-Cut algorithms.

This dissertation is organized as follows:

In Chapter 1, we present basic notions of combinatorial optimization. This chapter
also includes a state-of-the-art on metaheuristics and parallel computing.

In Chapter 2, we present the Survivable Network Design Problems in general (SNDP)
and a state-of-the-art on the problems that we chose as applications. We present
a state-of-the-art on parallel Branch-and-Bound algorithms, parallel Branch-and-Cut
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algorithms, the taxonomies of hybridization and introduce after that the motivation of
the thesis.

In Chapter 3, we consider the k-Edge-Connected Network Design Problem (kESNDP).
We introduce a new approximation parallel and hybrid algorithm to solve flow-based
formulations and proceed to an experimental study on two variants of the problem.

In Chapter 4, we study the k-Edge-Connected Hop-Constrained Network Design
Problem (kHNDP). We present the application of the hybrid approach presented in
the previous chapter on the kHNDP and proceed to its experimental study.

In Chapter 5, we present the parallelization strategies we have applied to the Branch-
and-Bound and the Branch-and-Cut algorithms, and proceed to the experimental study
related to the kHNDP.
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In this Chapter we give some basic notions on combinatorial optimization, graph
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1.1 Combinatorial optimization

Combinatorial optimization is a branch of computer science and applied mathematics.
It concerns the problems that can be formulated as follows: Let E = {e1, . . . , en} a
finite set called basic set, where each element ei has a weight c(ei). Let S a family of
subsets of E. If S ∈ S, then c(S) =

∑
ei∈S

c(ei) is the weight of S. The problem is to

determine an element of S, with the smaller (or larger) weights. Such a problem is
called a combinatorial optimization problem. The set S is called the set of solutions of
the problem. In other words,

min(or max){c(S) : S ∈ S}.

The term combinatorial refers to the discrete structure of S. In general, this structure
is represented by a graph. The term optimization signifies that we are looking for the
best element in the set of feasible solutions. This set generally contains an exponential
number of solutions, therefore, one can not expect to solve a combinatorial optimization
problem by exhaustively enumerate all its solutions. Such a problem is then considered
as a hard problem.

Various effective approaches have been developed to tackle combinatorial optimiza-
tion problems. Some of these approaches are based on graph theory, while others use
linear and non-linear programming, integer programming and polyhedral approach.
Besides, several practical problems arising in real life, can be formulated as combina-
torial optimization problems. Their applications are in fields as diverse as telecommu-
nications, transport, industrial production planing or staffing and scheduling in airline
companies. Over the years, the discipline got thus, enriched by the structural results
related to these problems. And, conversely, the progress made in computed science
have made combinatorial optimization approaches even more efficient on real-world
problems.

In fact, combinatorial optimization is closely related to algorithm theory and compu-
tational complexity theory as well. The next Section introduces computational issues
of combinatorial optimization.

1.2 Computational complexity

Computational complexity theory is a branch of theoretical computer science and math-
ematics, whose study started with works of Cook [68], Edmonds [108] and Karp [171].
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Its objective is to classify a given problem depending on its difficulty. A plentiful lit-
erature can be find on this topic, see for instance [122] for a detailed presentation of
NP-completeness theory.

A problem is a question having some input parameters, and to which we aim to find
an answer. A problem is defined by giving a general description of its parameters,
and by listing the properties that must be satisfied by a solution. An instance of
the problem is obtained by giving a specific value to all its input parameters. An
algorithm is a sequence of elementary operations that allows to solve the problem for
a given instance. The number of input parameters necessary to describe an instance
of a problem is the size of that problem.

An algorithm is said to be polynomial if the number of elementary operations nec-
essary to solve an instance of size n is bounded by a polynomial function in n. We
define the class P as the class gathering all the problems for which there exists some
polynomial algorithm for each problem instance. A problem that belongs to the class
P is said to be "easy" or "tractable".

A decision problem is a problem with a yes or no answer. Let P be a decision
problem and I the set of instances such that their answer is yes. P belongs to the class
NP (Non-deterministic Polynomial) if there exists a polynomial algorithm allowing to
check if the answer is yes for all the instances of I. It is clear that a problem belonging
to the class P is also in the class NP . Although the difference between P and NP has
not been shown, it is a highly probable conjecture.

In the class NP , we distinguish some problems that may be harder to solve than
others. This particular set of problems is called NP-complete. To determine whether
a problem is NP-complete, we need the notion of polynomial reducibility. A decision
problem P1 can be polynomially reduced (or transformed) into another decision prob-
lem P2, if there exists a polynomial function f such that for every instance I of P1,
the answer is "yes" if and only if the answer of f(I) for P2 is "yes". A problem P in
NP is also NP-complete if every other problem in NP can be reduced into P in poly-
nomial time. The Satisfiability Problem (SAT) is the first problem that was shown to
be NP-complete (see [68]).

With every combinatorial optimization problem is associated a decision problem.
Furthermore, each optimization problem whose decision problem is NP-complete is
said to be NP-hard. Note that most of combinatorial optimization problems are NP-
hard. One of the most efficient approaches developed to solve those problems is the
so-called polyhedral approach.
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1.3 Graph theory

In this Section we will introduce some basic definitions and notations of graph theory
that will be used throughout the Chapters of this dissertation. For more details, we
refer the reader to [243].

1.3.1 Undirected graphs

An undirected graph is denoted G = (V,E) where V is the set of vertices or nodes and
E is the set of edges. If e is an edge between two vertices u and v, then u and v are
called the ends of E, and we write e = uv or e = {u, v}. If u is an extremity of e, then
u (resp. e) is said to be incident to e (resp. u). Similarly, two vertices u and v forming
an edge are said to be adjacent. Since the graph G may have multiple edges, it may
be that e = uv and f = uv but e 6= f .

Figure 1.1: An undirected graph G

If F ⊆ E is a subset of edges, then V (F ) represents the node set of edges of F . If
W ⊆ V is a subset of vertices, then E(W ) denotes the set of edges having their two
ends in W . Let V (H) and E(H) be the sets U and F , respectively.

A subgraph H = (U, F ) of G is a graph such that U ⊆ V and F ⊂ E. A subgraph
H = (U, F ) of G is called covering or spanning if U = V . LetW ⊆ V , H = (W,E(W ))

is said to be subgraph of G induced by W and will be denoted by G[W ].

If F ⊂ E (resp. W ⊂ V ), it is noted in G \ F (resp. G \W ) the graph obtained
from G by removing the edges of F (resp. nodes of W and the edges incident to W ).
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Figure 1.2: SubgraphH1 of G Figure 1.3: Spanning subgraph H2 of G

If F (resp. W ) is reduced to a single edge e (resp. a single vertex v), we write G \ e
(resp. G \ v). Let W ⊆ V , ∅ 6= W 6= V , a subset of vertices of V . The set of edges
having one end in W and the other in V \W is called cut and noted δ(W ). By setting
W = V \W , we have that δ(W ) = δ(W ). If W is reduced to a single vertex v, we
write δ(v). The cardinality of the cut δ(W ) of a subset W is called the degree of W
and noted d(W ). Given W and W ′ two disjoint subsets of V , then [W,W ′] represents
the set of edges of G which have one end in W and the other in W ′.

An edge e = v1v2 ∈ E is called a cut edge if G is connected and G\e is not connected,
with v1, v2 ∈ V .

If {V1, . . . , Vp}, p ≥ 2, is a partition of V , then δ(V1, . . . , Vp) is the set of edges having
one end in Vi and the other one in Vj and i 6= j.

The support graph of an inequality is the graph induced by the vertices of variables
having a non-zero coefficient in the inequality.

Let G = (V ∪ T,E) be a graph defined by a set of vertices V ∪ T where T is a set
of distinguished nodes and E is a set of edges. We denote by V (H), T (H) and E(H)

its sets of nodes, terminals and edges, respectively. We denote by t(G) the number of
terminal in G, i.e., |T (G)| = t(G).

A path P is a set of p distinct vertices v1, v2, . . . , vp such that for all i ∈ {1, . . . , p−1},
vivi+1 is an edge. P is called elementary if it passes more than once by the same node
(except for v0 and vk if they represent the same vertex in G). A basic chain is totally
identified with its set of edges.

Two paths between two nodes u and v are called edge-disjoint (resp. node-disjoint)
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if there is no edge (resp. no node different from of u and v) appearing in both chains.

Vertices v2, . . . , vp−1 are called the internal vertices of P . Given a path P between
two terminals t, t′ ∈ T such that P ∩ T = {t, t′}, the set of internal vertices of P will
be called a terminal path and denoted by Ptt′ . A terminal path is minimal if it does
not strictly contain a terminal path.

Given a graphG = (V ∪T,E) and two subgraphsG1 = (V1∪T1, E1), G2 = (V2∪T2, E2)

of G. Graph G1 is said to be completely included in G2, if V1 ∪ T1 ⊆ V2 ∪ T2.

1.3.2 Directed graphs

A directed graph is denoted D = (V,A) where V is the set of nodes and A the set of
arcs.

Figure 1.4: A directed graph D

If a ∈ A is an arc connecting a vertex u to vertex v, then u will be called initial end
and v final end and we write a = (u, v). We say that a is an outgoing arc of u and v of
an incoming arc. The vertices u and v are called ends of a. Vertex v (resp. a) is said
to be incident to a (resp. v) if v is an end (initial or final) of a.

If B ⊆ A is a subset of arcs, then V (B) represents the node set of arcs of B. If
W ⊆ V is a subset of vertices, A(W ) is the set of arcs having their ends in W .

A subgraph H = (U, F ) of D is a graph such that U ⊆ V and F ⊂ A. A subgraph
H = (U, F ) of D is said covering if U = V .
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Figure 1.5: Directed Sub-
graph H3 of D

Figure 1.6: Covering directed subgraph H4

of D

If F ⊂ A (resp. W ⊂ V ), we denote by D \F (resp. D \W ) the graph obtained from
D by removing the F arcs (resp. node of W and edges incident to W ). If F (resp. W )
is reduced to a single arc a (resp. a single vertex v), we write D \ a (resp. D \ v).

Let W ⊆ V , ∅ 6= W 6= V , a subset of vertices V . The set of arcs having their initial
end in W and their final nodes in V \W is called outgoing cut and denoted δ+(W ).
The cardinality of the outgoing cut δ+(W ) of a subset W is called outgoing degree of
W and denoted d+(W ). If u ∈ W and v ∈ V \W , then the outgoing cut is also called
uv-outgoing cut. If W is reduced to a single vertex v, we write respectively δ+(v) and
d+(v) instead of δ+({v}) and d+({v}). The set of arcs having the final end in W and
the initial end in V \W is called incoming cut and denoted δ−(W ). The cardinality
of the incoming cut δ−(W ) of a subset W is called incoming degree of W and denoted
d−(W ). If u ∈ W and v ∈ V \W , then the incoming cut is also known as uv-incoming
cut. If W is reduced to a single vertex v, we write respectively δ−(v) and d−(v) instead
of δ−({v}) and d−({v}).

The cut of a set W ⊆ V, ∅ 6= W 6= V , is denoted δ(W ) and is the union of the arcs
of the incoming cut and outgoing cut, i.e., δ(W ) = δ+(W ) ∪ δ−(W ). The cardinality
of the cut is called the degree of W and denoted d(W ). If u ∈ W and v ∈ V \W , then
the cut is also called uv-cut. If W is reduced to a single vertex v, we write respectively
δ(v) and d(v) instead of δ({v}) and d({v}). If all W associated with the outgoing cut
δ+(W ) contains the vertex u but not the vertex v, then we call it uv-outgoing cut.

Given disjoint subsets W1,W2, . . . ,Wk of V , then [W1,W2, . . . ,Wk] represents the set
of arcs of D having one end in Wi and the other in Wj, i 6= j.
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A directed graph D = (V,A) is weakly connected if no cut of D is empty. The graph
d is said to be k-connected graph if d−(W ) ≥ k for all W ⊆ V, ∅ 6= W 6= V . A vertex
v ∈ V is called cut vertex of D if the number of connected components of the graph
D \ v is strictly greater than the number of related components of D.

If a graph D = (V,A) does not contain circuit, then D is said acyclic.

1.4 Exact methods

1.4.1 Elements of polyhedral theory

The polyhedral method was initiated by Edmonds in 1965 [109] for a matching problem.
It consists in describing the convex hull of problem solutions by a system of linear
inequalities. The problem reduces then to the resolution of a linear program. In
most of the cases, it is not straightforward to obtain a complete characterization of
the convex hull of the solutions for a combinatorial optimization problem. However,
having a system of linear inequalities that partially describes the solutions polyhedron
may often lead to solve the problem in polynomial time. This approach has been
successfully applied to several combinatorial optimization problems. In this Section,
we present the basic notions of polyhedral theory. The reader is referred to works of
Schrijver [243] and [196].

We shall first recall some definitions and properties related to polyhedral theory.

Let n be a positive integer and x ∈ Rn. Let say that x is a linear combination of
x1, x2, . . ., xm ∈ Rn if there exist m scalar λ1, λ2, . . ., λm such that x =

∑m
i∈1 λixi. If∑m

i=1 λi = 1, then x is said to be a affine combination of x1, x2, . . ., xm. Moreover, if
λi ≥ 0, for all i ∈ {1, . . . ,m}, we say that x is a convex combination of x1, x2, . . ., xm.

Given a set S = {x1, . . . , xm} ∈ Rn×m, the convex hull of S is the set of points x ∈ Rn

which are convex combination of x1, . . ., xm (see Figure 1.7), that is

conv(S) = {x ∈ Rn|x is a convex combination of x1, . . . , xm}.
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Figure 1.7: A convex hull

The points x1, . . ., xm ∈ Rn are linearly independents if the unique solution of the
system

m∑
i=1

λixi = 0,

is λi = 0, for all i ∈ {1, . . . ,m}. They are affinely independent if the unique solution
of the system

m∑
i=1

λixi = 0,

m∑
i=1

λi = 0,

is λi = 0, i = 1, . . ., m.

A polyhedron P is the set of solutions of a linear system Ax ≤ b, that is P =
{x ∈ Rn|Ax ≤ b}, where A is a m-row n-columns matrix and b ∈ Rm. A polytope is a
bounded polyhedron. A point x of P will be also called a solution of P .

A polyhedron P is said to be of dimension p if it has at most p+1 affinely independent
solutions. We denote it by dim(P ) = p. We also have that dim(P ) = n − rank(A=),
where A= is the submatrix of A of inequalities that are satisfied with equality by all
solutions of P (implicit equalities). The polyhedron P is full dimensional if dim(P ) =
n.
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An inequality ax ≤ α is valid for a polyhedron P ⊆ Rn if for every solution x ∈ P ,
ax ≤ α. This inequality is said to be tight for a solution x ∈ P if ax = α. The
inequality ax ≤ α is violated by x ∈ P if ax > α. Let ax ≤ α be a valid inequality for
the polyhedron P . F = {x ∈ P |ax = α} is called a face of P . We also say that F is a
face induced by ax ≤ α. If F 6= ∅ and F 6= P , we say that F is a proper face of P . If
F is a proper face and dim(F ) = dim(P )− 1 , then F is called a facet of P . We also
say that ax ≤ α induces a facet of P or is a facet defining inequality.

If P is full dimensional, then ax ≤ α is a facet of P if and only if F is a proper
face and there exists a facet of P induced by bx ≤ β and a scalar ρ 6= 0 such that
F ⊆ {x ∈ P |bx = β} and b = ρa.

If P is not full dimensional, then ax ≤ α is a facet of P if and only if F is a proper
face and there exists a facet of P induced by bx ≤ β, a scalar ρ 6= 0 and λ ∈ Rq×n

(where q is the number of lines of matrix A=) such that F ⊆ {x ∈ P |bx = β} and
b = ρa+ λA=.

An inequality ax ≤ α is essential if it defines a facet of P . It is redundant if the
system A′x ≤ b′} obtained by removing this inequality from Ax ≤ b defines the same
polyhedron P . This is the case when ax ≤ α can be written as a linear combination
of inequalities of the system A′x ≤ b′. A complete minimal linear description of a
polyhedron consists of the system given by its facet defining inequalities and its implicit
equalities.

A solution is an extreme point of a polyhedron P if and only if it cannot be written
as the convex combination of two different solutions of P . It is equivalent to say that x
induces a face of dimension 0. The polyhedron P can also be described by its extreme
points. In fact, every solution of P can be written as a convex combination of some
extreme points of P .

Figure 1.8 illustrates the main definitions given is this Section.
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Figure 1.8: Valid inequality, facet and extreme points

Let Ax ≤ b be a linear system. The system Ax ≤ b is said to be Totally Dual Integral
(TDI) if for all integer c ∈ Zn, the linear program min{b>y : A>y ≥ c; y ≥ 0} has an
integer optimal solution, if such solution exists.

If Ax ≤ b is TDI and b is integral, then the polytope given by Ax ≤ b is integral.

1.4.2 Cutting plane method

Now let P be a combinatorial optimization problem, E its basic set, c(.) the weight
function associated with the variables of P and S the set of feasible solutions. Suppose
that P consists in finding an element of S whose weight is maximum. If F ⊆ E, then
the 0-1 vector xF ∈ RE such that xF (e) = 1 if e ∈ F and xF (e) = 0 otherwise, is called
the incidence vector of F . The polyhedron P (S) = conv{xS|S ∈ S} is the polyhedron
of the solutions of P or polyhedron associated with P. P is thus, equivalent to the linear
program max{cx|x ∈ P (S)}. Notice that the polyhedron P (S) can be described by a
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set of a facet defining inequalities. And when all the inequalities of this set are known,
then solving P is equivalent to solve a linear program.

Recall that the objective of the polyhedral approach for combinatorial optimization
problems is to reduce the resolution of P to that of a linear program. This reduction
induces a deep investigation of the polyhedron associated with P. It is generally not
easy to characterize the polyhedron of a combinatorial optimization problem by a
system of linear inequalities. In particular, when the problem is NP-hard there is a
very little hope to find such a characterization. Moreover, the number of inequalities
describing this polyhedron is, most of the time, exponential. Therefore, even if we
know the complete description of that polyhedron, its resolution remains in practice a
hard task because of the large number of inequalities.

Fortunately, a technique called the cutting plane method can be used to overcome
this difficulty. This method is described in what follows.

The cutting plane method is based on the so-called separation problem. This consists,
given a polyhedron P of Rn and a point x∗ ∈ Rn, in verifying whether if x∗ belongs
to P , and if this is not the case, to identify an inequality aTx ≤ b, valid for P and
violated by x∗. In the later case, we say that the hyperplane aTx = b separates P and
x∗ (see Figure 1.9).

Figure 1.9: A hyperplane separating x∗ and P
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Grötschel, Lovász and Schrijver [143] have established the close relationship between
separation and optimization. In fact, they prove that optimizing a problem over a
polyhedron P can be performed in polynomial time if and only if the separation problem
associated with P can be solved in polynomial time. This equivalence has permitted
an important development of the polyhedral methods in general and the cutting plane
method in particular. More precisely, the cutting plane method consists in solving
successive linear programs, with possibly a large number of inequalities, by using the
following steps. Let LP = max{cx,Ax ≤ b} be a linear program and LP ′ a linear
program obtained by considering a small number of inequalities among Ax ≤ b. Let
x∗ be the optimal solution of the latter system. We solve the separation problem
associated with Ax ≤ b and x∗. This phase is called the separation phase. If every
inequality of Ax ≤ b is satisfied by x∗, then x∗ is also optimal for LP . If not, let ax ≤ α

be an inequality violated by x∗. Then, we add ax ≤ α to LP ′ and repeat this process
until an optimal solution is found. Algorithm 6 summarizes the different cutting plane
steps.

Algorithm 6: A cutting plane algorithm
Data: A linear program LP and its system of inequalities Ax ≤ b

Result: Optimal solution x∗ of LP
Consider a linear program LP ′ with a small number of inequalities of LP ;
Solve LP ′ and let x∗ be an optimal solution;
Solve the separation problem associated with Ax ≤ b and x∗;
if an inequality ax ≤ α of LP is violated by x∗ then

Add ax ≤ α to LP ′;
Repeat step 2 ;

end
else

x∗ is optimal for LP ;
return x∗;

end

Note that at the end, a cutting-plane algorithm may not succeed in providing an
optimal solution for the underlying combinatorial optimization problem. In this case
a Branch-and-Bound algorithm can be used to achieve the resolution of the problem,
yielding to the so-called Branch-and-Cut algorithm.
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1.4.3 Branch-and-Cut algorithm

Consider again a combinatorial optimization problem P and suppose that P is equiv-
alent to max{cx|Ax ≤ b, x ∈ {0, 1}n}, where Ax ≤ b has a large number of inequali-
ties. A Branch-and-Cut algorithm starts by creating a Branch-and-Bound tree whose
root node corresponds to a linear program LP0 = max{cx|A0x ≤ b0, x ∈ Rn}, where
A0x ≤ b0 is a subsystem of Ax ≤ b having a small number of inequalities. Then,
we solve the linear relaxation of P that is LP = {cx|Ax ≤ b, x ∈ Rn} using a cut-
ting plane algorithm whose starting from LP0. Let x∗0 denote its optimal solution and
A′0x ≤ b′0 the set of inequalities added to LP0 at the end of the cutting plane phase.
If x∗0 is integral, then it is optimal. If x∗0 is fractional, then we perform a branching
phase. This step consists in choosing a variable, say x1, with a fractional value and
adding two nodes P1 and P2 in the Branch-and-Cut tree. The node P1 corresponds to
the linear program LP1 = max{cx|A0x ≤ b0, A

′
0x ≤ b′0, x

1 = 0, x ∈ Rn} and LP2 =
max{cx|A0x ≤ b0, A

′
0x ≤ b′0, x

1 = 1, x ∈ Rn}. We then solve the linear program LP 1

= max{cx|Ax ≤ b, x1 = 0, x ∈ Rn} (resp. LP 2 = max{cx|Ax ≤ b, x1 = 1, x ∈ Rn}) by
a cutting plane method, starting from LP1 (resp. LP2). If the optimal solution of LP 1

(resp. LP 2) is integral then, it is feasible for P. Its value is then a lower bound of the
optimal solution of P, and the node P1 (resp. P2) becomes a leaf of the Branch-and-Cut
tree. If the solution is fractional, then we select a variable with a fractional value and
add two children to the node P1 (resp. P2), and so on.

Note that sequentially adding constraints of type xi = 0 and xi = 1, where xi is a
fractional variable, may lead to an infeasible linear program at a given node of the
Branch-and-Cut tree. Or, if it is feasible, its optimal solution may be worse than the
best known lower bound of the problem. In both cases, that node is pruned from the
Branch-and-Cut tree. The algorithm ends when all nodes have been explored and the
optimal solution of P is the best feasible solution given by the Branch-and-Bound tree.

This algorithm can be improved by computing a good lower bound of the optimal
solution of the problem before it starts. The lower bound can be used by the algorithm
to prune the node which will not allow an improvement of this lower bound. This
would permit to reduce the number of nodes generated in the Branch-and-Cut tree,
and hence, reduce the time used by the algorithm. Furthermore, this lower bound
may be improved by comparing at each node of the Branch-and-Cut tree a feasible
solution when the solution obtained at the root node is fractional. Such a procedure is
referred to as a primal heuristic. It aims to produce a feasible solution for P from the
solution obtained at a given node of the Branch-and-Cut tree, when this later solution
is fractional (and hence infeasible for P). Moreover, the weight of this solution must be
as good as possible. When the solution computed is better than the best known lower
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bound, it may significantly reduce the number of generated nodes, as well as the CPU
time. Moreover, this guarantees to have an approximation of the optimal solution of
P before visiting all the nodes of Branch-and-Cut tree, for instance when a CPU time
limit has been reached.

The Branch-and-Cut approach has shown a great efficiency to solve various problems
of combinatorial optimization that are considered difficult to solve, such as the Travel-
ling Salesman Problem [20]. Note a good knowledge of the polyhedron associated with
the problem, together with efficient separation algorithms (exacts as well as heuristics),
might help to improve the effectiveness of this approach. Besides, the cutting plane
method is efficient when the number of variables is polynomial. However, when the
number of variables is large (for instance exponential), further methods, as column
generation are more likely to be used. In what follows, we briefly introduce the outline
of this method.

1.5 Metaheuristics

Approximation methods are generally based on two major phases; A constructive
heuristic and a phase of improvement.

A constructive heuristic constructs the solution by a series of partial and final choices.
It is called a greedy method when it seeks to make the most judicious choice at each
iteration. A greedy algorithm is thus called an algorithm which follows the principle
of making, step by step, an optimal choice locally, in the hope of obtaining an optimal
result globally. These algorithms have the advantage of being very fast however they
do not provide any guarantees as to the quality of the solution.

The improvement phase, as the name suggests, tends to improve the quality of a
fully constructed solution received as input by replacing at each iteration the solution
by another one belonging to its neighborhood but of better quality. This local search
generally leads to obtaining a local optimal solution.

Feignebaum and Feldman in 1963 [112], define a heuristic as an estimation rule, a
strategy, a trick, a simplification, or any other kind of system that drastically limits
the search for solutions in the space of possible configurations. In practice, heuristics
are generally known and targeted to a particular problem.

In the 70ies, metaheuristics has emerged as a new kind of approximate algorithm
that, in the other hand, takes place at a higher level and intervenes in all situations
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where the engineer knows no effective heuristics to solve a given problem or when he
considers that he does not have the necessary time to determine one.

In 1996, Osman and Laporte [214] defined metaheuristics as "an iterative genera-
tion process which guides a subordinate heuristic by combining intelligently different
concepts for exploring and exploiting the search space, learning strategies are used to
structure information in order to find efficiently near-optimal solutions."

Metaheuristics are based on two axes, namely diversification, and intensification.
Diversification generally refers to the exploration of the research space and thus the
gathering of information on the resolution of the COP concerned. The term intensifica-
tion refers to the exploitation of the accumulated search experience. Each metaheuristic
application is characterized by a balance between diversification and intensification.

There are different ways to classify and describe metaheuristics. The most common
and usefull for us in this work is to classify the metaheuristics into methods that
perform single point vs. population based Seach. It refers to the number of solutions
used by the metaheuristic at any iteration.

Algorithms that work on a single solution at any time are referred to as trajectory
methods. They comprise all metaheuristics that are based on local search, such as tabu
search, variable neighborhood search, etc. They all share the property that the search
process describes a trajectory in the search space. Population-based metaheuristics, on
the contrary, either perform search processes which can be described as the evolution
of a set of points in the search space (as for example in evolutionary computation), or
they perform search processes which can be described as the evolution of a probability
distribution over the search space (as for example in ant colony optimization).

In what follows, we give a brief outline of some of the most important methods.

1.5.1 Trajectory metaheuristics

1.5.1.1 Simulated Annealing

Simulated Annealing (SA) is one of the oldest (if not the oldest) metaheuristic. For
sure, SA is one of the first algorithms with an explicit strategy for escaping local
minima. The algorithm has its origins in statistical mechanics and the Metropolis
algorithm [203]. The idea of SA is inspired by the annealing process of metal and
glass, which assume a low energy configuration when first heated up and then cooled
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down sufficiently slowly. SA was first presented as a search algorithm for CO problems
in [183] and [57].

The fundamental idea is to allow moves to solutions with objective function values
that are worse than the objective function value of the current solution. This kind of
move is often called uphill move. At each iteration, an elementary modification of the
solution is carried out according to a well-defined model:

• If it lowers the temperature of the system ⇒ it is applied

• Otherwise ⇒ it is accepted at a probability p (calculated as a function of the
temperature Tk of the system)

Moreover, during a run of SA, the value of Tk generally decreases. In this way, the
probability of accepting a solution that is worse than the current one decreases during
a run.

1.5.1.2 Tabu Search

Like SA, Tabu Search (TS) [131] is one of the older metaheuristics. A description of
the method and its concepts can be found in [132].

The basic idea of TS is the explicit use of search history, noth to escape from local
optima and to have a mechanism for the exploration of the search space. It uses a
short-term memory, and on each iteration it makes the best change of the solution
(even if negative) by saving the positions already explored is an adjustable-size FIFO
queue (can be dynamic).

1.5.1.3 Iterated Local Search

Iterated Local Search (ILS) [247, 191] is a metaheuristic based on a simple but ef-
fective concept. Instead of repetitively applying a local search method on randomly
constructed solutions (the most intuitive idea of finding a good local minimum), an
ILS algorithm produces the starting point for the next iteration by a perturbation of
the local optimal solution obtained by the previous application of a local search.
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1.5.1.4 Variable neighborhood search

This metaheuristic was first proposed in [150, 151]. The main idea of this method
is based on the fact that a local optima solution of a problem corresponds to a well-
determined neighborhood function, is not necessarily optimal locally with respect to
different neighborhood function. The metaheuristic then performs at each iteration
the best change in the solution, and if the solution is no longer possible, the search
neighborhood is enlarged until a limit K is reached.

1.5.2 Population-based metaheuristics

Population-based methods deal at each iteration of the algorithm with a set of solutions
rather than with a single solution. They provide a natural way for the exploration of the
search space. Yet, the final performance strongly depends on the way the population
is manipulated. The most studied population-based metaheuristics are Evolutionary
Algorithms (EA) and Ant Colony Optimization (ACO).

1.5.2.1 Ant Colony

The Ant Colony Optimization metaheuristic [103] was inspired by the observation of
the shortest-path-finding behavior of natural ant colonies.

Initially, ants explore the area surrounding their nest in a random manner. As
soon as an ant finds a source of food, it evaluates quantity and quality of the food
and carries some of this food to the nest. During the return trip, the ant deposits a
chemical pheromone trail on the ground. The quantity of pheromone deposited, which
may depend on the quantity and quality of the food, will guide other ants to the food
source. The indirect communication between the ants via the pheromone trails allows
them to find shortest paths between their nest and food sources. This functionality of
real ant colonies is exploited in artificial ant colonies in order to solve hard optimization
problems.

In ACO algorithms the chemical pheromone trails are simulated via a parametrized
probabilistic model that is called the pheromone model. It consists of a set of model pa-
rameters whose values are called the pheromone values. These values act as the memory
that keeps track of the search process. The basic ingredient of ant colony optimization
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algorithms is a constructive heuristic that is used for probabilistically constructing so-
lutions using the pheromone values. In general, the ant colony optimization approach
attempts to solve a CO problem by iterating the following two steps:

• Solutions are constructed using a pheromone model, that is, a parametrized prob-
ability distribution over the solution space.

• The constructed solutions and possibly solutions that were constructed in earlier
iterations are used to modify the pheromone values in a way that is deemed to
bias future sampling toward high quality solutions.

1.5.2.2 Genetic Algorithms

Evolutionary computation (EC) can be regarded as a metaphor for building, applying,
and studying algorithms based on Darwinian principles of natural selection. The in-
stances of algorithms that are based on evolutionary principles are called evolutionary
algorithms (EAs) [25]. EAs can be characterized as computational models of evolu-
tionary processes. They are inspired by nature’s capability to evolve living beings well
adapted to their environment. At the core of each EA is a population of individuals. At
each algorithm iteration a number of reproduction operators is applied to the individ-
uals of the current population to generate the individuals of the population of the next
generation. EAs might use operators called recombination or crossover to recombine
two or more individuals to produce new individuals. They also can use mutation or
modification operators which cause a self-adaptation of individuals.

The driving force in EAs is the selection of individuals based on their fitness (which
might be based on the objective function, the result of a simulation experiment, or
some other kind of quality measure). Individuals with a higher fitness have a higher
probability to be chosen as members of the population of the next generation (or as
parents for the generation of new individuals). This corresponds to the principle of
survival of the fittest in natural evolution. It is the capability of nature to adapt itself
to a changing environment, which gave the inspiration for EAs.

There has been a variety of different EAs proposed over the decades. Three different
stands of EAs developed independently in the early years. These are Evolutionary
Programming (EP) as introduced by Fogel in [117] and Fogel et al. in [118], Evolution-
ary Strategies (ESs) proposed by Rechenberg in [232] and Genetic Algorithms (GAs)
initiated by Holland in [157, 158].
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1.6 Parallel computing

1.6.1 Hardware architectures

The evolution of parallel architectures over time has made possible the fact of pro-
ducing machines whose computing power grows faster and faster. A simple way to
understand the different types of architecture that are or have been the basis of these
powerful machines is to compare their main features. To this end, we will present
two complementary classifications known in the literature. The first is that of Flynn
[116, 107] based on the two dimensions given instructions. As for the second classifi-
cation, it identifies the different parallel architectures according to the interconnection
of their components.

1.6.1.1 Flynn taxonomy

In 1972, Flynn [116, 107] proposed a classification of parallel machines based on the
notion of stream(s) of data and stream(s) of instruction. It distinguishes four main
types basically:

• the Single Instruction Single Data architecture (SISD),

• the Single Instruction Multiple Data architecture (SIMD),

• the Multiple Instruction Single Data architecture (MISD),

• and the Multiple Instruction Multiple Data architecture (MIMD).

1.6.1.1.1 SISD architecture

In these machines, only one instruction is executed and only one data is processed
at any time. The treatments in this type of machines are therefore sequential (with-
out parallelism). This model corresponds to a conventional single-core Von Neumann
machine.
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1.6.1.1.2 SIMD architecture

In these machines, all processors are identical and are controlled by a single centralized
control unit. At each step, all processors execute the same instruction synchronously
but on different data. This type of machine is used for specialized calculations (e.g.
vector calculations). These machines correspond, for example, to graphic processors
(GPUs) or floating point units (FPUs).

1.6.1.1.3 MISD architecture

These machines can execute multiple instructions on the same data. This model in-
cludes some pipeline architectures and fault-tolerant architectures by computational
replication.

1.6.1.1.4 MIMD architecture

In this model, each processor is autonomous, has its own control unit, and runs its own
stream of instructions on its own data stream. These machines are the most common
today: one finds the machines with shared memory (SMP, MPP), the machines with
distributed memory and the machines with hybrid memory.

1.6.1.2 Other taxonomy

The difficulty of transposing the Flynn classification into real physical architectures
justifies the use of a second taxonomy [74, 30]. This second approach will give a
complementary view to that of Flynn and classifies the architectures according to the
interconnections of the processors and the memories. Five classes are often identified:

• the Symmetric MultiProcessors (SMP),

• the Massively Parallel Processors (MPP),

• the Multiple-cores,

• the Cluster,

• and the Grid.
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1.6.1.2.1 SMP

This architecture is composed of several identical processors sharing the same memory
(the processors read and write in the same memory, but generally have their own
cache). The memory access time is identical between processors. These machines that
access at the same speed all memory areas are also called UMA (Uniform Memory
Access) machines. However, access to memory constitutes a bottleneck on this type of
architecture as soon as the number of processors becomes important.

Figure 1.10: Example of an SMP architecture

1.6.1.2.2 MPP

In a multiprocessor architecture of MPP type, unlike SMP machines, processors do
not share either a single memory or inputs and outputs. Each processor has its own
memory and has a fast interconnection with other processors. It is therefore a MIMD
type architecture with distributed memory. Any processor in an MPP may have its
own operating system (OS), which makes it more difficult to implement a single-image
system. The use of standard components results in a good cost / performance rela-
tionship. MPP machines have no limit on the number of processors and are easily
expandable. However, due to the lack of a single-image OS, their programming is
more difficult than that of SMP machines. Thus, communication and inter-processor
coordination are explicit.

To overcome the deficiencies in the distributed memory of MPP architectures, an
evolution concerns the creation of parallel machines with Distributed Shared Memory
(DSM). Unlike SMP, access to the virtual memory commonly depends on the physical
location of the processor and the memory in the parallel machine. This is called a
NUMA (Non Uniform Memory Access) machine. However, in order not to complicate
the work of the programmer, it is also necessary that the different cache levels of the
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processors are synchronized with the memory addresses they represent. This is called
ccNUMA (Cache Coherency NUMA).

Figure 1.11: Example of an MPP architecture

1.6.1.2.3 Multiple-cores

A multi-core processor is composed of at least two computing units (cores) engraved
within the same chip. Processor cores in most cases are homogeneous (identical). But
IBM, Sony and Toshiba have exploited the case of heterogeneous (different) cores and
specialized in specific fields (audio, display, pure calculation). Since 2005, multi-core
processors have become predominent on the microprocessors market [160].

Figure 1.12: Two examples of multiple-cores architectures
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1.6.1.2.4 Cluster

A cluster is not a single parallel machine in the traditional sense but consists of a set
of nodes (single-processor machines, multi-core processors or SMPs) interconnected by
a local (and often fast) network. It is therefore a network of computers in general
of homogeneous character. One of the primary objectives of a cluster is to provide a
single-image environment for a single system for cluster-based applications. For this,
it is often associated with a shared virtual memory system. By its nature, a cluster
consists of only standard components and thus has a very good cost/performance ratio.
In addition, it is easily expandable and has become one of the most common parallel
architectures today.

The difference between a cluster and an MPP decreases more and more. The existence
of suitable environments now makes it possible to deploy a cluster with the same
computational power as an MPP or an SMP parallel server which are much more
expensive [73].

Figure 1.13: Example of a cluster architecture

1.6.1.2.5 Grid architecture

A grid is a set of clusters interconnected by a very high-speed network. It is a very
heterogeneous architecture since the materials and the systems which constitute it can
be very composite. Notice, for example, the unifying project of a grid for research in
France, called Grid 5000 [66].
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1.6.1.3 Summary

Among the classes cited, the most general and most used are those of the MIMD and
SIMD machines. In the MIMD class, Distributed Memory (DM) machines, Shared
Memory (SM) machines and Hybrid Memory (HM) machines are distinguished.

In the SM model, all the processors in the parallel machine share the same memory
space in which they can read and write independently and asynchronously. The memory
access costs can be identical for each of the processors (UMA: Uniform Memory Access)
or processor dependent and the addresses accessed (NUMA machines). Simultaneous
executions are performed by threads. The execution threads share the same memory
space and the data exchanges between them are simply made by reading / writing in
memory. It is therefore necessary to ensure that two execution threads do not modify at
the same time the value of a data item in the same area of the shared memory. This can
be done by using synchronization tools such as locks, semaphores, or synchronization
barriers.

In the DM model, each processor of the parallel machine has its own local memory,
and the processor memories are physically distant [188]. The data communication
between the processors is done by exchanging messages and also the synchronizations
between the processors. Communications can be synchronous. When a message is
sent by a transmitter, the receiver receives them and its response must be explicit.
Communications can be bipoint or collective, that is, by involving all processors in
the exchanges. The main disadvantage of this model is the cumbersome programming,
since a processor can only access data in its own memory. This architecture, which does
not allow direct access to a remote memory, is also known as NORMA (Non Remote
Memory Access) or distributed memory machines. Shared virtual memories (MVPs)
provide a vision of a global space (NUMA) from a paging memory [146].

To combine the advantage of interprocessor communication speed in a shared memory
machine and the high number of processors in the distributed memory architecture,
manufacturers have been thinking about a new shared-distributed hybrid architecture.
The machines of this type consist of nodes, called clusters, each of which is composed
of several processors sharing a common memory, all of these nodes being connected by
an interconnection network. Here, the intra-node shared memory architecture and the
inter-node distributed memory architecture are assembled [146].
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1.6.2 Modeling the program execution

In this section, we present the different representations of the execution of a parallel
algorithm. Generally, three graph families are used to represent the execution of parallel
programs: dependency graph, precedence graph and dataflow graph [128].

1.6.2.1 Dependency graph

A Dependency Graph (DG) is an undirected graph. The nodes of the graph represent
the tasks, or even the data of the program, and the edges represent the dependencies
between the tasks (bipoint communications), or between a task and a data item.

1.6.2.2 Precedence graph

A Precedence Graph (PG) is a circuit-free oriented graph (GOSC). The nodes of the
graph represent the tasks of the program and the edges represent the dependencies
between the tasks. Dependencies are introduced to set up data access conflicts. They
can be interpreted as communication between tasks. In this type of graph, a task is
considered ready as soon as all the tasks that precede it in the graph are completed.
This type of graph is used for dynamic parallel programs such as, for example, recursive
programs or programs containing parallel loops whose boundaries are not known before
execution.

1.6.2.3 Dataflow graph

Since the dependencies between tasks are considered to be data exchange communica-
tions, it is possible to add information on data communicated in the graph. A data
accessed by a task can be characterized by the type of operation that the task will
perform on it, as detailed below.

• Read-only: the task will not modify the data but will simply read its value

• Write Only: The task can only use the data to assign it

• Write in accumulation: several tasks will carry out an associative and commuta-
tive operation on a data in writing (a calculation of scalar product for example)
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• Change: The task will change the value of the data.

This graph is called a Dataflow graph (DFG). The difference between the previous
(PG) and dataflow (DFG) graphs is at the synchronization level. In a DFG, a task
is considered ready as soon as the data it has input is available. Note, however, that
a DFG contains information from a precedence graph. For load control, this type of
graph provides more information. Indeed, since the data communicated between the
tasks are identified, the sizes of the data can also be provided. This information can be
used to exploit the locality of the data during the placement of tasks or for the routing
of the data accessed to the site of the task execution.

1.6.3 Parallelization methodology

The main reason for designing a parallel algorithm is the expected gain in execution
time. There are essentially two methods for designing a parallel algorithm, one of which
consists in detecting and exploiting the inherent parallelism in an already existing
sequential algorithm, the other consisting in constructing a new algorithm dedicated
to the given problem. The design of a parallel algorithm for a given problem is much
more complex than that of a sequential algorithm. Several factors will have to be taken
into account, inter alia, that part of the corresponding program which can be processed
in parallel, how to distribute the data, data dependencies, charge distribution between
the processors, synchronizations between the processors, etc.

In fact, there is no simple and general recipe for obtaining parallel algorithms. How-
ever, a methodology can be proposed that organizes the process in four distinct stages:
(i) partitioning (segmentation), (ii) communication, (iii) agglomeration, and (iv) place-
ment [87]. The first two steps seek to develop competing and scalable algorithms. It
should be noted that the scalability of a parallel algorithm on a parallel architecture
refers to the ability of the algorithm-architecture combination to deliver increasing
speedups in proportion to the increase in the number of processors. As for the last two
stages, they focus on the locality and the performance problems [208].

1.6.3.1 Partitionning

Partitioning (or segmentation) refers to the decomposition of computing activities and
associated data on which it operates in several small tasks. The decomposition of data
associated with a problem is called domain/data decomposition, and the computational
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decomposition into disjoint tasks is called functional decomposition [208]. Various
paradigms that can be used in this stage have emerged in the literature, including the
famous Divide and Conquer Paradigm (DPR).

1.6.3.2 Communication

It focuses on the flow of information and coordination between the tasks that are
created during the partitioning step. The nature of the problem and the method of
decomposition determine the mode of communication between the cooperative tasks
of a parallel program. The four modes of communication commonly used in parallel
programs are (i) local/global, (ii) structured/unstructured, (iii) static/dynamic, and
(iv) synchronous/asynchronous.

1.6.3.3 Agglomeration

In this step, the tasks and communication structure defined in the first two steps
are evaluated based on performance requirements and implementation costs. If nec-
essary, tasks are grouped into larger tasks (large grains) to improve performance or
reduce development costs. Individual communications can be grouped into a super
communication. This will reduce communications costs by increasing computational
and communication granularities, gain flexibility based on scalability and investment
decisions, and reduce engineering software costs.

1.6.3.4 Placement

It involves assigning each task to a processor to maximize the use of system resources
(such as CPUs) while minimizing communication costs. Placement decisions can be
taken statically (at compile time and prior to execution of the program) or dynamically
during execution by load balancing methods. It should be noted that several major
challenge applications have been designed using the above methodology [87].

1.6.4 Performance metrics

Consider a parallel algorithm PA to implement on a multiprocessor machine M made
up of p identical processors. Let Tp be the execution time of PA on the p processors
and T1 the execution time on only 1 processor. We then define [128, 164, 208]:
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• the Cost Cp = pTp

• the Speedup Sp = T1
Tp

• the Efficiency Ep =
Sp
p
= T1

pTp
= T1

Cp

The notion of the cost of an algorithm is intended to take into account both the
execution time and the number of processors used to obtain it. Adding processors is
always expensive (purchase, installation, maintenance, etc.), for the same run time.
With a fixed duration, an algorithm that requires the use of fewer processors than
another is therefore always preferable.

The ideal speedup is equal to p. If we consider this function, the parallel algorithm
is all the more efficient as the curve of variations is close to the line of equation y = p.
In this case we will speak of linear speedup. To have good speedups, the extra cost of
parallelization in computation time, and especially in communication volume, must be
minimum. It is also necessary to apply to minimize the inactivity times of the processors
due to an imbalance in the distribution of the charges between the processors. In some
cases, the latter may be inevitable, in particular because of the inter-task precedences
or the heterogeneity of the processors.

Note that we can introduce the notion of relative speedup, as opposed to absolute
speedup, which does not take into account the intrinsically sequential (and therefore
nonparallelizable) parts of the algorithm. Sometimes, the speedup is greater than p. In
this case, we will say that it is super-linear [164]. This happens, for example, when the
parallel algorithm allows a better use of the memory hierarchies, and thus reduces the
total time. This is also possible if the sequential reference algorithm is not the same
as the algorithm used for parallelization and is less efficient.

The efficiency of a parallel algorithm is generally less than 1 (or 100% if defined as
a percentage). The closer the efficiency is to 1, the better the algorithm has good
parallel qualities. The most important factor in decreasing efficiency is the cost of
communication.

A parallel algorithm will be said of optimal cost if one has Cp = O(T1), which is
equivalent to Ep = O(1). We extend this definition for the purposes of our study by
considering that a parallel algorithm is said to be of optimal cost if we have: Cp

T1
−→ 1

when n −→∞, n being the size of the problem solved by PA.

On the other hand, in order to avoid confusion between the notion of cost of a parallel
algorithm that has just been presented (p×duration) and that of classical cost meaning
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duration or complexity, used fairly in the literature, we will designate, in the following,
the first (total work of the parallel algorithm) by the term cost Cp and the second
(execution time) by the term cost only.

The communication-computation ratio associated with PA is also defined by:

Pcc = Communication time
Calculation time

This ratio quantifies the overhead due to communications relative to the volume of
computation.

Conclusion

In this Chapter we presented some basic notions on combinatorial optimization, graph
theory and the theory of complexity. We then perform a brief summary of the elements
of polyhedral theory in order to introduce some combinatorial exact methods, some
metaheuristics and basics of parallel computing.
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In this Chapter we introduce the reader to a class of COPs known as Survivable Net-
work Design Problems (SNDPs). We present a state-of-the-art on two known problems
from this class that we chose as applications and talk about the main motivation of this
thesis. We introduce after that a state-of-the-art on hybridization taxonomies and a
brief state-of-the-art on the history of the parallel computing works on combinatorial
optimization.
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2.1 Survivable Network Design Problems

Designing efficient networks are nowadays of crucial importance since networks take
a large place in many fields (telecommunications, logistics, economics, IT, etc.). Ad-
dressing network design issues has raised a large class of problems.

2.1.1 Definition

Survivable Network Design Problems (SNDP) are those network design problems which
aim in designing networks that are still functionning even when failures occur. The
importance of survivabililty in networks has lead to a wide litterature on these prob-
lems, and several algorithms, both exact and heuristic methods, have been proposed
to address them.

We consider in this chapter two SNDP, namely, the k-Edge-Connected Survivable
Network Design Problem and the k-Edge-Connected Hop-Constrained Survivable Net-
work Design Problem (respectively kESNDP and kHNDP for short). The two problems
are defined as follows. Given a weighted undirected graph G = (V,E) where each edge
e has a weight ωe, a set of demands D ⊆ V × V , a positive integer k, the kESNDP is
to find a minimum weight subgraph of G such that for each demand {s, t} ∈ D, there
exist k edge-disjoint paths between s and t. If, in addition, we require that, for all
demand {s, t} ∈ D, there exist k edge-disjoint st-paths of length at most L, for some
integer L ≥ 2, the problem obtained is the kHNDP.

2.1.2 State of the art

Both kESNDP and kHNDP are NP-hard and have been investigated in the litterature.
The kESNDP is a particular case of a more general problem, called General Survivable
Network Design Problem (GSNDP for short) in which it is required that there exist rst
edge-disjoint paths between s and t, for all {s, t} ∈ D. This latter, and its variants,
have been studied by several authors (see for instance [246, 193, 256, 140, 142, 133]).
In [133], Goemans and Bertsimas studied a variant of the problem in which each node
u of the graph is given an integer ru ≥ 0 which corresponds to the minimum num-
ber of paths connecting u to the rest of the network, and proposed a heuristic to
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solve this problem. Grötschel and Monma [140], and Grötschel et al. [142] considered
the polytope associated with the GSNDP and gave some valid inequalities as well as
conditions for these inequalities to define facets. In [193] presented several integer pro-
gramming formulations for the GSNDP for both undirected and directed graphs. They
also discussed the efficiency of each formulation in terms of LP-relaxation. Kerivin and
Mahjoub in [176] presented a review of the main models associated with the GSNDP
as weel as the main associated polyhedral results. Another well known SNDP is the
so-called k-edge-connected subgraph problem (kECSP for short) in which it is required
that there exist k edge-disjoint paths between each pair of nodes of the graph. This
problem corresponds to the kESNDP where D = {{s, t}, for all s, t ∈ V with s 6= t},
and rst = k, for all {s, t} ∈ D. Several papers deal with the structural properties of
the solution of the kECSP. Among these, we mention the paper of Kerivin et al. [177]
and Bendali et al. [39] which proposed a polyhedral approach and Branch-and-Cut
algorithms for the kECSP, respectively when k = 2 and k ≥ 3.

The kHNDP has also been widely studied. Dahl [80] considers the k-edge-connected
hop-constrained path problem, that is the problem of finding between two distinguished
nodes s and t a minimum cost path with no more than L edges (L ≤ 3). In other words
he considered the kHNDP with k = 1 and |D| = 1, and a complete description of the
dominant of the polytope when L ≥ 3. Dahl and Gouveia [81] considered the directed
version of the problem. They described some valid inequalities and give a complete
description of the polytope of the problem when k = 1, |D| = 1 and L ≤ 3.

For the case where several pairs {s, t} of terminals have to be linked by k L-hop-
constrained paths, Dahl and Johannessen [83] study the 2-path network design problem
which consists in finding a minimum cost subgraph connecting each pair of terminal
nodes by at least one path of length at most 2. They proved also that the problem is
NP-Hard even when k = 1 and L = 2. Ribeiro and Rosseti in 2002 proposed a parallel
GRASP heuristic for the 2-path network design problem [233]. In [161], Huygens et
al. proposed a polyhedral approach for the kHNDP when k = 2, |D| ≥ 2 and L = 2, 3.
They introduced several valid inequalities and devised a Branch-and-Cut algorithm for
the problem. Diarrassouba et al. [97] investigated the kHNDP when L = 2, 3. They
presented several integer programming formulations based on graph transformations.
They also compared these formulations both in terms of LP-relaxation and in terms of
efficiency. In [49], Botton et al. present the first formulation of the k-HNDP for any k,
L ≥ 1 and use a Benders decomposition method to handle the big number of variables
and constraints. They present as well a computational study of various cutting plane
and branch-and-cuts algorithms.
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Diarrassouba et al. [100] also investigated a version of the kHNDP in which it is
required that the paths are node-disjoint. They presented some valid inequalities and
devised a Branch-and-Cut algorithm for this problem when k = 2.

2.2 Parallel computing and combinatorial optimiza-
tion

Traditionally, the emphasis in parallel computing has been put on numerical (linear)
problems due to the huge number of applications demand in computational aerody-
namics, weather forecasting, satellite image processing, military uses, etc.

We had to wait till the last of the 80s to see the first works on parallel combinatorial
optimization where in [179, 180, 181], Kindervater and Lenstra presented a review of
the literature on parallel computers and algorithms as far and discussed how its rele-
vantness for the area of combinatorial optimization. Roucairol, after that, in 1989 [236],
showed the interest and the impact of parallel computers on the field of non-numerical
(combinatorial) algorithms. Since then, due to the progress made in the parallelism
field (architectures, languages and algorithms) over the last decade has brought about
real advances in combinatorial optimization at the start of the 21st century. The re-
cent media "storm" following the solving of several hard instances of famous problems
like the traveling salesman or quadratic assignment is proof of this [75]. In fact, in a
continuation of his work since 1998, Peter Hahn from University of Pennsylvania used
parallel computing to solve the example called Krarup30a (size 30 elements to be as-
signed) [147, 148, 149], and the group Anstreicher, Brixiut, Goux and Linderoth from
the University of Iowa and the Argonne National Laboratory the examples Nugent27
and Nugent30 in [18, 19, 17]. Solving the instance of Nugent30 was reported widely
in the American press (Chicago Tribune, Chicago Sun Times, HPCWire, WNCSA Ac-
cess Magazine, etc.) and in a number of French papers and journals (InfoScience, Le
Monde, Transfert, etc.). The extent of the impact of this solution was as important as
that provoked by the victory of IMB’s chess-playing parallel machine DeepBlue against
the "human" world champion Gary Kasparov. Still in the years 1998-2000, the team,
Bixby, Chvátal and Cook [21] successively solved the instances usa13509 and d15112 of
the traveling salesman problem, and therefore instances of more than 10, 0000 cities,
on a platform composed of about 100 machines. Notice that in 2002, the team Brixius,
Goux and Linderoth [17] solved for the first time the instance Nugent30 on a platform
of 2510 machines with an average of around 700 active machines [75]. In Section 2.5



2.3 39

we give a more detailed view about the different parallelization strategies that can be
used with tree search algorithms and more precisely the Branch-and-Bound and the
Branch-and-Cut algorithms.

While the optimal solution of these problems was obtained for the first time thanks
to parallelism, proving its direct interest here, it is not always the same with other
applications.

In this context, metaheuristics have proved their worth in combinatorial optimiza-
tion when the problem to be treated is too large or too difficult to think about an
exact method. Many works have presented since their high time consumption is di-
rectly linked to the quality of the solution found, metaheuristics are very often paral-
lelized. The great number of metaheuristics multiplied by their hybridization possibil-
ities makes it an extremely prolific domain with an extensive literature. This is the
reason why we will give one of the most common classification of parallel metaheuristics
in Section 2.4 a bit further.

2.3 Hybridization

The concept of hybrid metaheuristics has been commonly accepted only in the middle
of the last two decades, even if the idea of combining different metaheuristic strate-
gies and algorithms dates back to the 1980s. Today, we can observe a generalized
common agreement on the advantage of combining components from different search
techniques and the tendency of designing hybrid techniques is widespread in the fields
of operations research and artificial intelligence. The consolidated interest around hy-
brid metaheuristics is also demonstrated by publications on classifications, taxonomies
and overviews on the subject [72, 47, 71, 110, 225, 224, 248, 167].

We will start in what follows to introduce a brief presentation of the most com-
monly used taxonomies of hybrid metaheuristics that resumes well, in our vision, the
hybridization literature.

Notice that we adopt the definition of hybrid metaheuristic in the broad sense of
integration of a metaheuristic related concept with some other techniques (possibly
another metaheuristic).
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2.3.1 Talbi’s taxonomy

In this classification, hybridization of metaheuristics is studied from two points of view:
design and implementation. From the design point of view, a hierarchical classification
in which four main classes are identified, is depicted in Figure 2.1. In the first level of
the hierarchical classification, the two classes low level and high level hybrids refer to the
functional composition of the hybridized metaheuristics. In low level hybrids, one of the
search algorithms is encapsulated by the second method, while in high level hybrids each
method is self contained and is viewed as a black box by the other method. The second
level of the hierarchical classification dresses the way the hybridized metaheuristics
interact with each other, or the way they are executed. The Relay class means the
metaheuristics are executed sequentially or in a pipeline fashion, which means the
output of one method is the input for the next method in the queue. The four basic
classes are then combined to form the following generic classes: Low level Relay Hybrid
(LRH), Low level Team-work Hybrid (LTH), High level Relay Hybrid (HRH) and High
level Team-work Hybrid (HTH).

Figure 2.1: Talbi’s hybrid metaheuristics classification scheme [248]

• LRH (low-level relay hybrid): In this class, a functional component in one
method is replaced by the other method and the two methods are executed in se-
quence. For example, this kind of hybridization can be found in a single-solution
metaheuristic embedding another single-solution metaheuristic algorithm in or-
der to intensify the search in some regions at the end of the search. The two
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methods are executed sequentially. Nevertheless, due to the similarity between
the two hybridized metaheuristics, this class of hybrids is not very used.

• LTH (low-level teamwork hybrid): The LTH scheme regroups hybrid methods
combining metaheuristics having divergent and complementary objectives. One
of the metaheuristics is embedded in the other one and each metaheuristic is
powerful either in exploration of new subspaces or in exploitation of good quality
solutions. For example, population-based metaheuristics such as GAs are known
to be powerful in exploration because of the use of multiple starting points leading
to a better sampling of the solution space. On the other hand, single-solution
metaheuristics are known for their exploitation capabilities. The combination of
these two classes of metaheuristics justifies by definition the creation of the new
class of hybrid metaheuristics whose the objective is to take advantage from the
points of strength of each method. For example, it has been shown in many works
that hybrid GAs combined with local search (or any s-metaheuristic such as tabu
search and simulated annealing) in place of mutation or crossover operators yields
much better results compared to standard GAs for combinatorial optimization
and real world problems. Yet, this kind of hybridizations is very common in the
literature [115, 105].

• HRH (high-level relay hybrid): In the HRH schemes, the hybridized metaheuris-
tics are self-contained and executed sequentially. This class contains hybrids in
which one of the methods is used either to generate initial solutions for the second
method or to improve its final solution. For example, for some problems, greedy
heuristics are used to construct a good quality feasible solution and this solution
is used as starting solution in the metaheuristic. The other possibility is to use
one metaheuristic to globally optimize the problem and use a different meta-
heuristic to optimize locally around the final best found solution in the global
optimization step. This last scheme is used for example to improve the best solu-
tions in the final population of a GA using a powerful intensifying metaheuristic
such as simulated annealing (SA) and tabu search (TS).

• HTH (high-level teamwork hybrid): This class of hybrids is also considered as
a parallel metaheuristic. It involves several self-contained metaheuristics which
cooperate together to solve the same problem. Each metaheuristic evolves in-
dependently from the others and exchanges information with neighboring meta-
heuristics following a given interconnection structure or topology. For example, a
set of cooperating GAs could be considered as a HTH scheme. Each GA is evolv-
ing a different subpopulation and communicates through a given topology with
neighboring GAs in order to exchange some individuals to diversify the search.
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The search operators and parameters used in each GA could be either the same
or different. This example is also known as GAs island parallel model in parallel
metaheuristics classifications [14]. In the island model even if the cooperating
metaheuristics are homogeneous (multiple processes of the same algorithm), it is
considered as a hybrid scheme because each island is performing an independent
search in a different region of the solution space. In the taxonomy proposed in
[248] there is a flat portion which refers to this last consideration (homogeneous
and heterogeneous hybridizations).

From the implementation point of view, the taxonomy starts by distinguishing whether
the hybrid metaheuristic is implemented on a specific or a general purpose computer.
Specific purpose computers are machines built specifically for metaheuristics using pro-
grammable logic devices, i.e. simulated annealing[9]; genetic algorithms [238], in [10] a
general architecture acting as a template for designing a number of specific machines
for different metaheursitics (SA, TS, etc.) has been proposed.

In the second place, the nature of the hybrid metaheuristic algorithm is distinguished
where most of the proposed hybrid metaheuristics are sequential programs, and accord-
ing to the size of problems, the parallel implementations of hybrid algorithms have been
considered instead. Using a hierarchical classification, Talbi continues by classifying
parallel algorithms using the different characteristics of the target parallel architecture:

– SIMD versus MIMD: In SIMD (Single Instruction stream, Multiple Data stream)
parallel machines, the processors are restricted to execute the same program.
They are very efficient in executing synchronized parallel algorithms that contain
regular computations and regular data transfers. When the computations or the
data transfers become irregular or asynchronous, the SIMD machines become
much less efficient. In parallel MIMD (Multiple Instruction stream, Multiple data
stream), the processors are allowed to perform different types of instructions on
different data.

– Shared-memory versus Distributed-memory: The advantages of parallel hybrids
implemented on shared memory parallel architectures are their simplicity. How-
ever, parallel distributed-memory architectures offer a more flexible and fault-
tolerant programming platform.

– Homogeneous versus Heterogeneous: Most massively parallel machines (MPP)
and cluster of workstations (COW) are composed of homogeneous processors.
The proliferation of powerful workstations and fast communication networks have
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shown the emergence of heterogeneous network of workstations as platforms for
high-performance computing.

Finally, Talbi underlines the fact that parallel heuristics fall into three categories
depending on whether the number and/or the location of work (tasks, data) depend
or not on the load state of the target parallel machine:

• Static: This category represents parallel heuristics in which both the number of
tasks of the application and the location of work (tasks or data) are generated
at compilation time (static scheduling). The allocation of processors to tasks (or
data) remains unchanged during the execution of the application regardless of the
current state of the parallel machine. Most of the proposed parallel heuristics
belong to this class.

• Dynamic: This class represents heuristics for which the number of tasks is fixed
at compilation time, but the location of work (tasks, data) is determined and/or
changed at run-time.

• Adaptive: Parallel adaptive programs are parallel computations with a dynami-
cally changing set of tasks. Tasks may be created or killed as a function of the
load state of the parallel machine. A task is created automatically when a node
becomes idle. When a node becomes busy, the task is killed.

2.3.2 Raidl’s taxonomy

In order to present a global hybrid metaheuristics classification scheme, Raidl presented
a taxonomy that combines different points of view dealt in the ones that are already
given in the litterature. In a large part of it we can see aspects from Talbi’s taxonomy
[248] with the points-of-view from Cotta [72] and Blum et al. [47]. Classification with
particular respect to parallel metaheuristics are partly adopted from El-Abd and Kamel
[110] and Cotta et al. [71] and with respect to the hybridization of metaheuristics with
exact optimization techniques from Puchinger and Raidl [224].

In this taxonomy we start by distinguishing what is hybridized, i.e. which kind
of algorithms; (a) different metaheuristic strategies, (b) metaheuristics with certain
algorithms specific for the problem we are considering, such as special simulations, or
(c) metaheuristics with other more general techniques coming from fields like operations
research (OR) and artificial intelligence (AI). Prominent examples for optimization
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methods from other fields that have been successfully combined with metaheuristics are
exact approaches like branch-and-bound, dynamic programming, and various specific
integer linear programming techniques on one side and soft computation techniques
like neural networks and fuzzy logic on the other side.

Figure 2.2: Raidl’s hybrid metheuristics classification scheme [225]
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Beside this differentiation, previous taxonomies of hybrid metaheuristics (i.e. Talbi’s
taxonomy presented above) primarily distinguish the level (or strength) at which the
different algorithms are combined: High-level combinations in principle retain the indi-
vidual identities of the original algorithms and cooperate over a relatively well defined
interface; there is no direct, strong relationship of the internal workings of the algo-
rithms. On the contrary, algorithms in low-level combinations strongly depend on each
other – individual components or functions of the algorithms are exchanged.

Another property by which we distinguish hybrid systems is the order of execution.
In the batch model, one algorithm is strictly performed after the other, and infor-
mation is passed only in one direction. An intelligent preprocessing of input data or
a postprocessing of the results from another algorithm would fall into this category.
Another example are multi-level problems which are solved by considering one level
after the other by dedicated optimization algorithms. On the contrary, we have the
interleaved and parallel models, in which the algorithms might interact in more so-
phisticated ways. Parallel metaheuristics are nowadays a large and important research
field for their own, see [13]. Detailed classifications of hybrid parallel metaheuristics
can be found in [110, 71]. Following general characterizations of parallel algorithms,
Raidl distinguishes the architecture (SIMD: single instruction, multiple data streams
versus MIMD: multiple instruction, multiple data streams), the granularity of paral-
lelism (fine- versus coarse-grained), the hardware (homogeneous versus heterogeneous),
the memory strategy (shared versus distributed memory), the task and data allocation
strategy (static versus dynamic), and whether the different tasks are synchronized or
run in an asynchronous way.

The taxonomy distinguishes hybrid metaheuristics according to their control strat-
egy aswell. Following [72, 224], there exist integrative (coercive) and collaborative
(cooperative) combinations.

In integrative approaches, one algorithm is considered a subordinate, embedded com-
ponent of another algorithm. This approach is extremely popular.

In collaborative combinations, algorithms exchange information, but are not part of
each other. For example, the popular island model [137] for parallelizing evolutionary
algorithms falls into this category. We can further classify the traditional island model
as a homogeneous approach since several instances of the same metaheuristic are per-
formed. In contrast, Talukdar et al. [249, 250] suggested a heterogeneous framework
called asynchronous teams (A-Teams). An A-Team is a problem solving architecture
consisting of a collection of agents and memories connected into a strongly cyclic di-
rected network. Each of these agents is an optimization algorithm and can work on
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the target problem, on a relaxation of it, i.e. a superclass, or on a subclass. The basic
idea of A-Teams is having these agents work asynchronously and autonomously on a
set of shared memories. Denzinger and Offermann [92] presented a similar multi-agent
based approach for achieving cooperation between search-systems with different search
paradigms, such as evolutionary algorithms and branch-and-bound.

In particular in collaborative combinations, a further question is which search spaces
are actually explored by the individual algorithms. According to [110] we can dis-
tinguish between an implicit decomposition resulting from different initial solutions,
different parameter values etc., and an explicit decomposition in which each algorithm
works on an explicitly defined subspace. Effectively decomposing large problems is
in practice often an issue of crucial importance. Occasionally, problems can be de-
composed in very natural ways, but in most cases finding an ideal decomposition into
relatively independent parts is difficult. Therefore, (self-)adaptive schemes are some-
times also used.

2.4 Parallel metaheuristics

The main aim of parallelizing a metaheuristic is to solve a large problem more quickly.
But, in the context of metaheuristics, parallelism opens other equally interesting pos-
sibilities:

• directly testing different values of the parameters at the same time, which enables
us to obtain more robust algorithms; and

• exploring the solution in parallel, and therefore more exhaustively, enabling us to
obtain solutions that are, if not of better quality, then at least of "better proven"
quality.

Classical criteria such as acceleration/speedup or effectiveness/efficiency are not well
suited as performance measures in the parallel metaheuristics domain. Explorations
carried out sequentially and in parallel can indeed be different. Furthermore, solutions
of different quality or even structure can be found. This is the reason why authors
in general proposed comparing the quality of solutions with fixed execution times, or
comparing execution times with fixed solution quality.

In order to classify parallel metaheuristics, Cung, Le Cun and Roucairol in [75] uses
the notion of "walks" introduced by Verhoven and Aarts in [253]:
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Theorem 2.1 (Independent walks theory) If Qp(t) is the probability of not finding a
solution that exceeds the optimum of ε in t units of time with p independent walks, and
if:

Q1(t) = e−
t
λ with λ ∈ R+

where Q1 is the complementary distribution function of a negative exponential distri-
bution then:

Qp(t) = Q1(pt)

In other words, the acceleration can be linear if the probability of finding a suboptimal
solution in t units of time is in the form of Q1(t). The term walk here refers to the
passage from solution to solution of a metaheuristic and in this way characterizes its
path in the solutions space. This space becomes a graph from the definition of the
neighborhoods of each method: if x is a solution and y a solution that belongs to the
neighborhood of x, (x, y) is an arc of this graph.

In the parallelization of metaheuristics, the authors mainly distinguish the paral-
lelization of one single walk and that of multiple walks. They only consider, in this
context, generic parallelizations, more exactly those that do not depend on a specific
application like that of evaluating a solution (see Figure 2.3).

Figure 2.3: Parallelization of metaheuristics [75]

With a single walk, it is generally interesting to parallelize the management of the
neighborhood in the case of a local search, or of the population in the case of an
evolutionary method (that is the neighborhood model). If the same neighborhood is
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conserved (or the same population respectively) with regard to the sequential method,
the aim of parallelization becomes the acceleration of the sequential walk using a quicker
exploration of the neighborhood (or the population respectively). On the other hand,
if a larger neighborhood (or a population respectively) or even several neighborhoods
are used in parallel, the walk can become more efficient because it is better guided.
Nevertheless, this is about exploiting a fine granularity parallelism (duration of the task
before synchronization), which requires a lot of communications between the parallel
tasks for their synchronization. It is therefore appropriate to choose only this type of
parallelization in the following cases:

• we have a material platform which allows rapid communications;

• we have to deal with extremely complex neighborhoods or cost variation calcu-
lations.

Note that for complex combinatorial optimization problems that have hard con-
straints, certain authors choose to decompose the problem in order to process parts of
solutions in parallel. The complete solution is then recomposed at each step. Cung, Le
Cun and Roucairol class also this type of parallelization in this single walk category.

With multiple walks, it is appropriate to distinguish the case where walks are inde-
pendent from the case where they are cooperative. It is this category that has seen the
most implementations in the literature in the last decades.

Independent walks are simple to implement; they have good potential accelerations,
are robust if different parameters are used, and do not generate any redundant work if
the solutions space is partitioned. On the other hand, this parallelization is certainly
"slightly simplistic" inasmuch as it is reproducible with a sequential algorithm of the
"multi-start" type (we restart the algorithm successively from different initial solu-
tions). No walk may benefit from the experience of the others. Nevertheless, this type
of parallelization can serve as a basic example for comparison with the other types.

Cooperative walks are harder to implement following the definition of data that are
exchangeable between the walks, but they are potentially much more interesting in
terms of "convergence speed" (number of iterations to obtain a good solution) and in
terms of solutions quality. The data exchanged can be, for example:

• the values of the parameters for robustness;
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• the value of the solutions to induce possible (local) diversifications for walks that
are situated in mediocre regions of the solutions space (no solution that gives
good values to the optimization criterion);

• the structure of the good solutions to intensify the search around these solutions;

• the frequencies of the (long-term memory) movements and/or the Tabu list that
allows global diversifications if these data are shared.

This type of parallelization includes the island model of evolutionary algorithms
where the evolution of a subpopulation is seen as a walk.

The major difficulty for cooperative walks lies in the choice of the information to
exchange, how it circulates, and the frequency of the exchanges.

Although for a given machine and a given problem a given strategy seems to give
good results, it will not necessarily be effective if we change machines or problems. All
these parameters therefore make the implementation of parallel metaheuristics difficult.
This is why, with regard to exact methods, programming environments have been and
are still being developed, which, for an implementation of problem solving, allow the
easy changing of types of parallelization.

2.5 Parallelization of exact methods

From now on, we denote for simplicity the Branch-and-Bound by B&B, and the Branch-
and-Cut by B&C.

2.5.1 Parallel Branch-and-Bounds literature

A large number of parallel Branch-and-Bound algorithms have been proposed in the
literature. Melab in 2005 [201] presented a taxonomy to classify them. This taxonomy
is based on the classifications proposed in [76] and [127]. Melab identified four models:

• the multi-parametric parallel model;

• the parallel evaluation of bounds model;

• the parallel evaluation of a bound model;

• the parallel tree exploration model.
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2.5.1.1 Multi-parametric parallel model

The multi-parametric parallel model is based on the use of several B&B algorithms,
with different parameterization, running in parallel. Several variants of the multi-
parametric parallel model may be considered according to the choice of one or more
parameter(s) of the B&B algorithm. In [205] for example, Miller and Pekny run mul-
tiple B&Bs that differ only by the branching operator. Janakiram and al. in [165]
run algorithms that use different selection operators. In [186], each algorithm uses a
different upper bound. The idea is that one algorithm uses the best upper bound found
while the others use this bound reduced by an ε value( ε-optimal, where ε > 0).

2.5.1.2 Parallel evaluation of bounds model

The parallel evaluation of bounds model allows the execution in parallel of the subprob-
lems bounding (generated by the branching operator). The model does not change the
order nor the number of explored subproblems in the parallel B&B algorithm compared
to the serial one. [223]

2.5.1.3 Parallel evaluation of a bound model

In this model, the bounding of each subproblem is parallelized. It does not change the
semantics of the algorithm because it is similar to the serial version except that the
bounding operator is faster. [219]

2.5.1.4 Parallel tree exploration model

The parallel tree exploration model consists of simultaneously exploring several sub-
problems that define different research subspaces of the initial problem [182, 89, 90,
189]. This means that selection, branching, bounding and pruning operators are exe-
cuted in parallel synchronously or asynchronously by different processes exploring these
subspaces.

Compared to other models, the parallel tree exploration model is more frequently
used and is the subject of abundant research for two main reasons. On the one hand,
the degree of parallelism of this model may be important when solving large problem
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instances justifying the use of multi-core computing or a high performance computing
system. On the other hand, the implementation of the model raises several issues that
constitute interesting research challenges in parallel computing. Among these issues,
we can include the placement and management of the set of subproblems to be solved,
the distribution and sharing of the load (generated subproblems), the communication
of the best solution found so far, detecting the termination of the algorithm, and fault
tolerance.

2.5.2 Parallel Branch-and-Cut’s literature

As we know, there was no parallel B&C algorithms for network design problems. In
general, there have been few works on the parallelization of this method, and this is
due to its irregularity as said before. The first study, we could find, dates back to 1995,
in which Ralphs in his thesis [228] presented a black box framework for implementing a
parallel B&C for the Vehicle Routing Problem (VRP). More details about this parallel
B&C can be found in [229] and an experimental study have been presented by running
the algorithm on a Beawulf Cluster (a high-performance parallel computing cluster
formed by interconnecting inexpensive personal computers).

In 1996, Christof et Reinelt [64] were interested in the parallelization of the search
for the violated constraints by assigning to each processor a separation algorithm of
the Symmetric Traveling Salesman Problem (STSP) facet family.

In 1998, Bouzgarrou [51] presented in his thesis three strategies to parallelize a B&C
for the Traveling Salesman Problem (TSP). Each strategy corresponds to a level of
granularity of parallelism. We will present three levels of parallelization: one paral-
lelization with a coarse grain, another with a medium grain and one with a fine grain.

The first strategy of parallelization corresponds to a coarse grain granularity and
consists in executing several B&C in parallel, i.e. performing competing explorations.
In each execution, one takes different choices of route, initialization or method of res-
olution. By exchanging information between executions to accelerate one or more ex-
plorations. The second strategy takes advantage from the fact that the B&C algorithm
is presented as a set of independent tasks. Thus in a parallelization of medium grain,
each process explores a part of the search space. In the third strategy, the evaluation
of each node of the B&C tree is done in parallel by several processes.

In his implementation, Bouzgarrou used the second strategy putting in practice a
master-slave centralized architecture that manages the construction and path of the
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B&C tree. The master process initializes the calculation, manages the branch and cut
tree path and the division of labor between solver processes. It also maintains the
value of the upper bound. And manages the termination of the algorithm. The solver
process takes care of the evaluation of the node of the tree assigned to it. It selects the
constraint or branch variable. It generates new child nodes, evaluates them and then
communicates them to the master process. When the solver no longer has a node to
process, it sends a request to the master to ask for work.

After that, Ralphs integrated his framework to the COIN-OR [67] repository under
the name SYMPHONY [227, 230] and in [226], he discussed the main issues that arise
in parallelizing the B&C algorithm for solving mixed-integer linear programs. He ex-
plained how designing an efficient parallelization scheme of this method requires careful
analysis of various tradeoffs involving the degree of synchronization, the degree of cen-
tralized storage of information, and the degree to which information discovered during
the algorithm is shared between processors. He presented also computational results
obtained solving, using a parallel B&C implemented with SYMPHONY, the Vehicle
Routing Problem (VRP) and the Set Partitionning Problem (SPP). These results il-
lustrated the degree to which various sources of parallel overhead affect scalability and
demonstrated that properties of the problem class itself dictate the effectiveness of the
methodology.

Ralphs et al. in [231, 260] presented the Abstract Library for Parallel Search (ALPS)
which is a generic framework for implementing parallel tree search algorithms and
included it to COIN-OR repository. This library is based on the previous work of
Ralphs (SYMPHONY) and provide new features for handling the data, specially the
ones needed for implementing data-intensive algorithms such as Branch-Cut-and-Price.

2.6 Motivation of the Thesis

Despite the continuous and significant development of computer’s calculation perfor-
mance, it remains difficult to solve to optimality, within a reasonable amount of time,
many combinatorial optimization problems (COPs) for a large scale input data as said
before. This remark is all true for SNDPs and more precisely kESNDP and kHNDP.
One of the main issues when solving to optimality with Branch-and-Cut or Branch-
and-Price algorithms is that solving even the linear relaxation of the considered integer
programming formulation can be time consuming for large scale instances. This may
prevent the Branch-and-Cut or Branch-and-Price algorithm from a good exploration
of the enumeration tree and finding good quality solutions (see for instance [100]).
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In this thesis, we address these two issues (excessive CPU time and good exploration
of the solutions space) by using both parallel computing and hybridization.

As seen in the literature of both class of problems, the main orientation of the re-
searchers was around studying the problem from a polyhedral aspect. Studies that
gave many important results that was able to improve along with hardware develop-
ment these COPs resolution. What intrigues us on the other hand is whether the use
of parallel computing and/or hybridization of methods can make us exceed the limits
of instances size that we see in literature.

To adress this problematic, in the first hand, we start by looking to our problems
from an approximation point of view. We devise for that a Lagrangian relaxation
algorithm for both the kESNDP and kHNDP and use parallel computing in order to
reduce the CPU time needed to obtain good lower bound for the problem, a parallel
population-based metaheuristic, namely a genetic algorithm, in order to ensure a good
exploration of the solutions space and a greedy heuristic for having simply and quickly
heuristic solutions of the problems. We then hybridize the three algorithms in order
to improve the quality of both the lower and upper bounds. As we will see below, the
algorithm takes advantage of the structure of the integer programming formulations
we consider for the two class of problems.

In a second hand, we look into the problems from an exact solving point of view. We
present and implement two distributed generic algorithms based on the Branch-and-
Bound and the Branch-and-Cut methods.
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In this chapter, we consider the k-Edge-Connected Survivable Network Design Prob-
lem (kESNDP) and its variant the Steiner k-Edge-Connected Survivable Network De-
sign Problem (SkESNDP). We propose a parallel hybrid algorithm which aims to pro-
duce good solutions for large scale instances of the two problems. Our approach is
based on a Lagrangian relaxation of a flow-based integer programming formulation of
the problem, a greedy and a genetic algorithms.
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In this chapter, we introduce a new parallel resolution approach for the k-Edge-
Connected Survivable Network Design Problem (kESNDP for short) and its variant
problem called Steiner k-Edge-Connected Survivable Network Design Problem (SkESNDP
for short) based on the hybridization of a Lagrangian relaxation algorithm, a greedy
algorithm and a genetic algorithm, used in a parallel computing framework. We test
the algorithms within an extensive computational study and compare their efficiency
for solving both kESNDP and SkESNDP against CPLEX.

The chapter is organized as follows. In Section 3.1, we present the two integer
programming formulations related to kESNDP and SkESNDP. Then, in Section 3.2,
we present the parallel hybrid algorithm, its main components. In Section 3.3, we
present the computational results for both problem variants.

3.1 Integer programming formulations

3.1.1 kESNDP

Let G = (V,E) be an undirected graph, D ⊆ V × V a set of demands given by
origin-destination pairs {s, t} ∈ D with s 6= t, and k a positive integer. The k-Edge-
Connected Survivability Network Design Problem (kESNDP for short) consists in
finding a minimum cost sub-graph of G such that there exist k edge-disjoint st-paths
between the terminals of each demand {s, t} of D.

The kESNDP can be formulated as a flow-based integer program (see [193]). For
each edge uv ∈ E, let xuv, be the 0 − 1 variable which takes value 1 if the edge uv
is in a solution of the problem and 0 otherwise. Also let G̃ = (V,A) be the directed
graph obtained from G by replacing each edge uv ∈ E by two arcs of the form (u, v)

and (v, u) (see Figure 3.1 for an illustration).

Finally, let f stuv be the flow variable associated with every arc (u, v) of G̃ and a pair
{s, t} ∈ D. The kESNDP is equivalent to
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Figure 3.1: Graph transformation for the kESNDP

min
∑
uv∈E

ωuvxuv

s.t.

∑
v∈V \{u}

fstuv −
∑

l∈V \{u}

fstlu =


k, if u = s,

−k, if u = t,

0, if u ∈ V \ {s, t} ,


for all u ∈ V and {s, t} ∈ D, (3.1)

fstuv
fstvu

}
≤ xuv, for all uv ∈ E and {s, t} ∈ D, (3.2)

fstuv, f
st
vu ≥ 0, for all uv ∈ E and {s, t} ∈ D, (3.3)

xuv ≤ 1, for all uv ∈ E, (3.4)

xuv ∈ {0, 1}, for all uv ∈ E, (3.5)

fstuv, f
st
vu ∈ {0, 1}, for all uv ∈ E, {s, t} ∈ D. (3.6)

The formulation is called "Undirected Flow Formulation" (UFP for short). Inequal-
ities (3.1) are the flow conservation constraints. Inequalities (3.2) are the linking con-
straints. They ensure that if an edge uv is not taken in the solution, then no st-flow
can use this edge. Inequalities (3.3) and (3.4) are the trivial inequalities.

One can easily see that the above formulation has a block structure.

Each block "Flow i" corresponds to the flow conservation constraints associated with
a demand {s, t} ∈ D.
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3.1.2 SkESNDP

Let G = (V,E) be an undirected graph, a subset of nodes S ⊆ V called terminals,
a weight function ω : E → R which associates the weight ωe with each edge e ∈ E.
The Steiner k-Edge-Connected Survivability Network Design Problem (SkESNDP for
short) is the problem of finding a minimum weight subgraph of G spanning S such that
between every two nodes u, v ∈ S, there are at least k edge-disjoint paths.

The Steiner k-Edge-Connected Survivable Network Design Problem (SkESNDP) is
a special case of a more general model, introduced by [246] and later called generalized
Steiner problem by [256].

The SkESNDP is well known to be NP-hard and is a generalization of the Steiner
tree problem in which it is required that the nodes of S are spanned by a Steiner tree
of minimum weight.

Several works have been done on the Steiner network problem and its variants.
Mahjoub and Kerivin [176] have presented a survey of the main variants of surviv-
able network design problems and integer programming formulations as well as some
polyhedral descriptions. Also, Magnanti and Raghavan [193] have presented differents
types of formulations for a quite more general problem, which includes the SkESNDP.
In particular, they have presented several formulations based on flow variables and
compare them in terms of LP-bounds.

To introduce the formulation proposed by Magnanti and Raghavan in [193], first,
we denote by D = {{s, t} | for all s, t ∈ S,with s 6= t}. We also let d = |D| =
|S|(|S| − 1)/2. For each edge uv ∈ E, let xuv be the 0 − 1 variable which takes value
1 if the edge uv is in the solution and 0 otherwise. Also let G̃ = {V,A} the directed
graph obtained from G by replacing each uv ∈ E by two arcs (u, v) and (v, u), and for
every pair {s, t} ∈ D, let f stuv be the flow variable associated with the arc (u, v) of G̃.
The SkESNDP is equivalent to
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min
∑
uv∈E

ωuvxuv

∑
v∈V \{u}

fstuv −
∑

l∈V \{u}

fstlu =


k, if u = s,

−k, if u = t,

0, if u ∈ V \ {s, t} ,

 for all u ∈ V and {s, t} ∈ D, (3.7)

fstuv
fstvu

}
≤ xuv, for all uv ∈ E and {s, t} ∈ D, (3.8)

fstuv, f
st
vu ≥ 0, for all uv ∈ E and {s, t} ∈ D, (3.9)

xuv ≤ 1, for all uv ∈ E, (3.10)

xuv ∈ {0, 1}, for all uv ∈ E, (3.11)

fstuv ∈ {0, 1}, for all uv ∈ E, {s, t} ∈ D. (3.12)

This formulation is called Undirected Flow Formulation. Inequalities (3.7) are the
flow conservation constraints. Inequalities (3.8) are the linking constraints. They
ensure that if an edge uv is not taken in the solution, then no st-flow can use this edge.
Inequalities (3.9) and (3.10) are the trivial inequalities.

3.2 Parallel hybrid optimization algorithm

Our algorithm relies on the usage of parallel computing for solving the kESNDP.
Namely, we devise a heuristic for the problem based on three algorithms

• a greedy heuristic (SH);

• a Lagrangian relaxation algorithm (RLA);

• a genetic algorithm (GA).

For our purpose, we run these three algorithms in a parallel computing framework.
Also, as we will see, each iteration of each algorithm is used to improve the other algo-
rithms, and hence, improve the whole algorithm. Moreover, we solve the Lagrangian
relaxation algorithm using parallel computing.

We describe, in the remain of the section, each algorithm in the following and the
communication between them.
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3.2.1 The greedy successive heuristic

Constructive heuristics are typically the fastest approximate methods. They generate
solutions from scratch by adding opportunely defined solution components to an ini-
tially empty partial solution. This is done until a solution is complete or other stopping
criteria are satisfied. A well-known class of constructive heuristics are greedy heuristics.
They make use of a weighting function that assigns at each construction step a positive
weight to each feasible solution component. The solution component with the highest
weight is chosen at each construction step to extend the current partial solution.

Our greedy algorithm (SH) for solving the kESNDP and the SkESNDP consists in
computing a series of minimum cost st-flows in the graph G̃, for all {s, t} ∈ D.

First, we sort the pairs of D in an arbitrary order, say {s1, t1}, ..., {sd, td}. We start
with the pair {s1, t1}, and compute a minimum cost s1t1-flow in G̃, where all the arcs
have capacity 1 and both arcs (u, v) and (v, u) are cost ωuv, for all uv ∈ E. Let A1

be the set of arcs that have a s1t1-flow value of 1, and E1 be the set of edges of G
corresponding to the arcs of A1. Then we choose the pair {s2, t2}, fix to ωuv the cost
of the arcs (u, v) and (v, u) for all uv ∈ E \ E1 and fix to 0 the cost of the arcs (u, v)
and (v, u), for all uv ∈ E1, and compute a minimum cost s2t2-flow. We build the arc
set A2 and the edge set E2, as before A1 and E1, and so on until all the pairs {si, ti}
have been explored. Finally, we build a solution of the kESNDP by considering the
edges of E1 ∪ E2 ∪ ... ∪ Ed.

3.2.2 The Lagrangian relaxation algorithm

3.2.2.1 Basics

Consider the following general zero-one problem (written in matrix notation):

Problem (P )


min cx

Ax ≥ b

Bx ≥ d

x ∈ (0, 1)

Note that although we deal with zero-one integer programs the approach presented
is equally applicable both to pure (general) integer programs and to mixed-integer
programs.
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A well known way to generate a lower bound on the optimal solution to problem
(P) is via the linear programming relaxation. This entails replacing the integrality
constraint x ∈ (0, 1)E to give the following linear program:

min cx

Ax ≥ b

Bx ≥ d

0 ≤ x ≤ 1

This linear program can be solved exactly using standard algorithm and the solution
value obtained gives a lower bound on the optimal solution to the original problem
(problem P).

In many cases however solving the linear programming relaxation of P is imprac-
ticable, typically because P involves a large (often extremely large) number of vari-
ables and/or constraints. We therefore need alternative techniques for generating lower
bounds.

Lagrangian relaxation was developed by Held and Karp in the early 1970’s [154] and
is today an indispensable technique for generating lower bounds for use in algorithms
to solve combinatorial optimisation problems. Note that a more detailed presentation
of the Lagrangian technique can be found in [34, 237].

We define the lagrangian relaxation of problem P with respect to the constraint set
Ax ≥ b by introducing a lagrange multiplier vector λ ≥ 0 which is attached to this
constraint set and brought into objective function to give:

min cx + λ(b− Ax)
Bx ≥ d

x ∈ (0, 1)

i.e. what we have done here is:

a) to have chosen some set of constraints in the problem for relaxation; and

b) attached lagrange multipliers to these constraints in order to bring them into the
objective function.

The key point is that the program we are left with after lagrangian relaxation, for
any λ ≥ 0, gives a lower bound on the optimal solution to the original problem P. In
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fact, since as λ ≥ 0 and (b − Ax) ≤ 0 we are merely adding a term which is ≤ 0 to
the objective function, and since removing a set of constraints from a minimisation
problem can only reduce the objective function value.

The program after lagrangian relaxation, namely:

P (λ)


L (λ) = min (c− λA)x+ λb

Bx ≥ d

x ∈ (0, 1)

can be called the lagrangian lower bound program (LLBP ) since, as shown above,
it provides a lower bound on the optimal solution to the original problem P for any
λ ≥ 0.

Besides the strategic issue of why we choose to relax the set of constraints Ax ≥ b

instead of the set Bx ≥ d, a key issue highlighted by the above lagrangian relaxation
is a tactical issue, namely how can we find numerical values for the multipliers.

In particular note here that we are interested in finding the values for the multipliers
that give the maximum lower bound, i.e. the lower bound that is as close as possible to
value of the optimal integer solution. This involves finding multipliers which correspond
to:

L∗ = max {L (λ) , λ ≥ 0}

This program is called the lagrangian dual program.

There are two basic approaches to deciding values for the lagrange multipliers (λi):

a) subgradient optimisation [155]; and

b) multiplier adjustment [114].

In what follows, we introduce a brief presentation of the subgradient optimisation.
However, more details about the two techniques can be found in [34].

The subgradient optimisation is an iterative procedure which, from initial set of
multipliers, involves generating further lagrange multipliers in a systematic fashion.
It can be viewed as a procedure which attempts to maximise the lower bound value
obtained from LLBP by suitable choice of multipliers.

Switching from matrix notation to summation notation, so that the relaxed con-
straints are

∑n
j=1 aijxj ≥ bi (i = 1, ...,m), the basic subgradient optimisation iterative

procedure is as follows:
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1) Let πi be a user decided parameter satisfying 0 < πi ≤ 2. Initialise ZUB (e.g. from
some heuristic for the problem). Decide upon an initial set (λi) of multipliers.

2) Solve LLBP with the current set (λi) of multipliers, to get a solution (Xj) of
value ZLB (not necessarily feasible for our initial program).

3) Define subgradients γi for the relaxed constraints, evaluated at the current solu-
tion, by:

γi =
∂L(x, λ)

∂λ
= bi −

n∑
j=1

aijXj i = 1, ...,m

4) Define a (scalar) step size ρi by ρi = πi
(ZUB−ZLB)∑n

j=1(γi)
2

This step size depends upon the gap between the current lower bound (ZLB) and
the upper bound (ZUB) and the user defined parameter πi (more of which below)
with the

∑n
j=1(γi)

2 factor being a scaling factor.

5) Update λi using λi = max(0, λi+ρiγi) i = 1, ...,m and go to 2) to resolve LLBP
with this new set of multipliers.

As currently set out the above iterative procedure would never terminate. In fact we
introduce a termination rule based upon either:

(a) limiting the number of iterations that can be done; or

(b) the value of π (reducing π during the course of the procedure and terminating
when π is small)

Ideally the optimal value of the lagrangian dual program (a maximisation program)
is equal to the optimal value of the original zero-one integer program (a minimisation
problem). If the two programs do not have optimal values which are equal then a
duality gap is said to exist, the size of which is measured by the (relative) difference
between the two optimal values.

3.2.2.2 A Lagrangian relaxation algorithm for the kESNDP

In our framework, we consider the Undirected Flow Formulation and relax the linking
constraints (3.2). Let λstuv, for all {s, t} ∈ D and all (u, v) ∈ A, be the Lagrangian
multiplier associated with constraints (3.2). This yields the following problem
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min
∑
uv∈E

[
ωuv −

( ∑
{s,t}∈D

(λstuv + λstvu)

)]
xuv +

∑
{s,t}∈D

∑
uv∈E

(λstuvf
st
uv + λstvuf

st
vu)

∑
v∈V \{u}

fstuv −
∑

l∈V \{u}
fstlu =


k, if u = s,

−k, if u = t,

0, if u ∈ V \ {s, t} ,

 for all u ∈ V and {s, t} ∈ D,

0 ≤ fstuv, fstvu ≤ 1, for all uv ∈ E, {s, t} ∈ D,
xuv ≤ 1, for all uv ∈ E,

xuv ∈ {0, 1}, for all uv ∈ E,
fstuv ∈ {0, 1}, for all uv ∈ E, {s, t} ∈ D.

One can easily see that if (f st, {s, t} ∈ D) is an optimal solution for problem (LR’),
then solution (x, f

st
, {s, t} ∈ D) where

x(uv) =

 1 if ωuv −
∑

{s,t}∈D
(λstuv + λstvu) < 0,

0 otherwise,
, for all uv ∈ E,

is optimal for problem (LR).

Also, it is not hard to see that problem (LR’) consists in |D| independent minimum
cost st-flow problems in graph G̃. Thus problem (LR’) can be solved by using any
combinatorial algorithm solving the minimum cost flow problem. The reader can refer
to [12] for more details on minimum cost flow problems and the associated algorithms.
Moreover, since the minimum cost flow problems of (LR’) are independent, we solve
(LR’) in a parallel multithreaded fashion. Thus, we can solve (LR) in time O(MF )

when using |D| processors, where O(MF ) is the runtime for solving a minimum cost
st-flow problem.

An issue to address in the Lagrangian relaxation algorithm is how the Lagrange
multipliers, λstuv, (u, v) ∈ A and {s, t} ∈ D, are updated. For this, we use the so-called
subgradient method explained before. Let, at iteration k of the Lagrangian relaxation
algorithm, λstuv,k be the vector of the current Lagrange multipliers, (x, f st, {s, t} ∈ D)

an optimal solution of problem (LR), zk the optimal value of (LR) and ZUB an upper
bound of the optimal solution of the original problem (UFP). Then, the Lagrange
multipliers at iteration k + 1 are given by

λstuv,k+1 = max{0, λstuv,k − ρkγstuv,k}
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where

γstuv,k = x∗uv − f
st

uv

γstuv,k = x∗uv − f
st

vu

}
, for all uv ∈ E,

ρk =
1

2k
ZUB − zk
‖ γk ‖2

.

The upper bound ZUB can be obtained by a heuristic running independently from
the Lagrangian relaxation algorithm. In our case, we produce a feasible solution to the
kESNDP at each iteration of the Lagrangian relaxation algorithm and choose ZUB as
the best value among all the solutions thus obtained. A feasible solution, say y ∈ RE,
to kESNDP can be obtained from the optimal solution of problem (LR) by chosing
yuv = max{f stuv, f

st

vu, for all {s, t} ∈ D}. Clearly, the solution (y, f
st
, {s, t} ∈ D) sat-

isfies constraints (3.1)-(3.6).

3.2.2.3 A Lagrangian relaxation algorithm for the SkESNDP [99]

For the SkESNDP, the Lagrangian relaxation is obtained by relaxing the linking con-
straints (3.8). We denote by λstuv, the Lagrange multipliers associated with the linking
constraints (3.8), for all {s, t} ∈ D and (u, v) ∈ A. The Lagrangian relaxation thus
obtained, denoted by (LR), is given by

min
∑
uv∈E

ωuv − ∑
{s,t}∈D

(
λstuv + λstvu

)xuv + ∑
{s,t}∈S

∑
uv∈E

(
λstuvf

st
uv + λstvuf

st
vu

)
s.t.

∑
v∈V

f stuv −
∑
l∈V

fstul =


k, if u = s,

−k, if u = t,

0, if u ∈ V \ {s, t} ,

 , for all u ∈ V and {s, t} ∈ D,

0 ≤ fstuv, fstvu ≤ 1, for all uv ∈ E, {s, t} ∈ D,
0 ≤ xuv ≤ 1, for all (u, v) ∈ E,
xuv ∈ Z, for all (u, v) ∈ E,
fstuv ∈ Z, for all (u, v) ∈ A, {s, t} ∈ D.
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Observe that, apart the objective function, the variable x appears in problem (LR)
only in the trivial constraints 0 ≤ xuv ≤ 1. Thus, solving problem (LR) reduces to
solving the problem (LR’) below

min
∑
{s,t}∈S

∑
uv∈E

(
λstuvf

st
uv + λstvuf

st
vu

)
s.t.

∑
v∈V

fstuv −
∑
l∈V

f stul =


k, if u = s,

−k, if u = t,

0, if u ∈ V \ {s, t} ,

 , for all u ∈ V and {s, t} ∈ D,

0 ≤ fstuv, fstvu ≤ 1, for all uv ∈ E, {s, t} ∈ D,
fstuv ∈ Z, for all (u, v) ∈ A, {s, t} ∈ D.

One can see that solving this relaxation consists in solving d independant minimum
cost st-flow problems in the graph G̃, for all {s, t} ∈ D. In fact, we can see that solving
the minimum cost st-flow problems gives the optimal value of the flow variables f stuuv,
and for the variables xuv, the optimal values are xuv = 1 if ωuv−

∑
{s,t}∈D

(λstuv + λstvu) > 0

and 0 otherwise.

Since the minimum cost st-flow problems are independant, they can be solved in
parallel using d processors.

For the Lagrangian relaxation algorithm, the Lagrangian multipliers are updated
using the subgradient method.

Also, notice that each iteration of the Lagrangian relaxation algorithm produces a
feasible solution. The solution is obtained by considering all the edges of G correspond-
ing to the arcs of G̃ that get at least once a flow value of 1 during the resolution of the
minimum cost st-flow problems. As we will see, the solution thus obtained are used as
input of the genetic algorithm, which is described below.

Finally, the Lagrangian relaxation algorithm stops either when a CPU time of 2 hours
is reached or the algorithm processes 2000 iterations or after 100 iterations without
improving the best known upper bound. The algorithm returns the best lower and
upper bounds obtained.
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3.2.3 The genetic algorithm

Now we turn our attention to the genetic algorithm. We recall that the genetic algo-
rithm consists in considering a set of solutions, feasible or not for the kESNDP, in order
to produce one or more new feasible solutions. The set of solutions is called the popula-
tion. The algorithm randomly chooses two solutions, called parents, in the population
and combine them to produce one or more new solutions, called children. For a general
combinatorial optimization problem, the children solutions may not be feasible for the
problem. In this case, the algorithm tries to transform them into feasible solutions
and put them into the population. In our case, we will see that the children solutions
we build are feasible for the kESNDP. The designing of a genetic algorithm takes into
account the following issues

• solution encoding and evaluation,

• the parent selection,

• the crossover (how the parent are combined),

• the population management,

• the stopping criterion.

For more details on genetic algorithms, the reader can refer to [248]. In the remainder
of this section, we discuss these issues for our genetic algorithm for the kESNDP.

3.2.3.1 Encoding and evaluation of a solution

A solution of the kESNDP can be represented in different ways, but in our algorithm,
we represent a solution by a set of 0 − 1 vectors (f

s1t1
, ..., f

sdtd
), where f siti is a flow

vector associated with demand siti.

The evaluation of a solution encoded by (f
s1t1

, ..., f
sdtd

) consists in giving the weight
of the subgraph of G corresponding to that solution. The weight of such a solution is
given by Z =

∑
uv∈E

ωuvxuv, where

xuv = max{f stuv, f
st

vu, for all {s, t} ∈ D}.
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3.2.3.2 Crossover and reproduction

The selection is made randomly according to a specific probability distribution scale.
We start by dividing the population into five categories (A, B, C, D and E) based on the
social ranking (fitness value), and then we select 1

10
of the population to be reproduced

knowing that the probability that a parent is chosen from the A social category for
example is equal to 67%, and respectively to the B, C, D and E are equal to 19%, 10%,
3% and 1%.

The generation of children solutions is done in the following way. For two solutions,
say P1 = (f

s1t1
, ..., f

sdtd
) and P2 = (gs1t1 , ..., gsdtd), we randomly choose two integers a

and b with 2 ≤ a < b ≤ d. Then, we cross P1 and P2 according to integers a and b,
and produce two solutions C1 and C2 such that

C1 = (f
s1t1

, ..., f
sa−1ta−1

, gsata , ..., gsb−1tb−1 , f
sbtb
, ..., f

sdtd
)

and
C2 = (gs1t1 , ..., gsa−1ta−1 , f

sata
, ..., f

sb−1tb−1
, gsbtb , ..., gsdtd).

Clearly, C1 and C2 are feasible for the kESNDP if P1 and P2 are feasible for the
kESNDP.

The children generation phase is done by applying the above procedure to 0.1Npool

pairs of solutions (P1, P2), where Npool is the number of elements into the pool before
the generation of the new solutions.

3.2.3.3 Population management

The pool of solutions is intialized with all the feasible solutions produced by the greedy
algorithm which is described in Section 3.2.1. During the algorithm, we ensure that
the pool of solutions contains no more than 100 solutions. The solutions are sorted
in increasing order w.r.t. their evaluation. For simplicity, we denote by N i

pool the
number of solutions in the pool after the generation of the new solutions at iteration
i. In the following we discuss the cases where the genetic algorithm runs simultane-
ously with the Lagrangian relaxation and greedy algorithms and when it is not the case.

We discuss first the case where the genetic algorithm is running simultaneously with
the Lagrangian relaxation and greedy algorithms. In this case, for every iteration i ≥ 1,
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we remove from the pool the N i
pool−100 worst solutions (starting with the duplicates),

if N i
pool ≥ 100. Otherwise, we do not remove any solution.

Now we consider the case where the genetic algorithm is not running simultaneously
with the Lagrangian relaxation and greedy algorithms. This is the case when both,
the Lagrangian relaxation and greedy algorithms, are terminated or when the genetic
algorithm is running separately from the hybridization. In this case, for every iteration
i such that 1 ≤ i ≤ 200, if N i

pool ≥ 100, then we remove the N i
pool−100 worst solutions.

When i > 200, if N i
pool ≥ 20, we remove from the pool the (N i

pool − N i−1
pool) + 5%N i−1

pool

worst solutions. If N i
pool < 20, then we remove the (N i

pool −N i−1
pool) + 1 worst solutions.

Note that this management strategy of the pool guarantees that the number of so-
lutions in the pool slowly decreases until it remains one solution in the pool, and this,
even in the hybridization or not.

3.2.3.4 Stopping criterion

The genetic algorithm stops either when the CPU time reaches 2 hours or the pool of
solutions contains only one solution. Note that in both cases, the first solution of the
pool is the best solution obtained by the algorithm.

3.2.4 The hybridization and parallelization scheme

Now we present the hybridization and parallelization scheme of the overall algorithm.
For simplicity, we denote the Lagrangian relaxation algorithm by LRA, the genetic
algorithm by GA and the greedy algorithm by SH. The parallel hybrid algorithm will
be denoted by PHA.

We remark that in PHA, the three algorithms LRA, GA and SH run in parallel. We
also hybridize the three algorithms in the following way. First, the solutions generated
by algorithms SH and LRA are introduced in the pool of solutions of GA. Also, at the
begining of PHA, the global upper bound ZUB is set to ∞. Then, each time LRA, SH
and GA generate a feasible solution, the value Z of this solution is compared to ZUB.
If Z < ZUB, then the best upper bound ZUB is updated with the value of Z. Note that
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the value ZUB is used by LRA to update the Lagrange multipliers.

We also ensure that GA continues running after LRA and SH are terminated. This
is done in order to give to GA enough time to process the solutions of LRA and SH.

Finally, notice that toghether with the global upper bound ZUB, the Lagrangian re-
laxation algorithm also produces a lower bound of the optimal solution of the SkESNDP.

The main operations in PHA are summarized below, in Algorithm 7, while Figure
3.2 describes the communication scheme of PHA.

Figure 3.2: PHA communication scheme

3.3 Experimental Study

In this section, we present the computational experiments we have conducted for the
kESNDP and the SkESNDP. The aim is to show the efficiency of our algorithm in
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Algorithm 7: Algorithm PHA for the kESNDP.
Data: An undirected graph G = (V,E), the demand set D, a positive integer k ≥ 1

Result: A lower and upper bounds of the optimal solution of the kESNDP
begin

ZUB ←∞;
Execute SH, LRA et GA in a parallel;

SH:
Computes |D| arbitrary ordering of the demands;
for each ordering on the demands do

Computing, using a series of minimum cost flow computation, a feasible solution
according to that ordering;

Add the new solution obtained into the pool of population. Let ZSH be its value;
if ZSH < ZUB then

ZUB ← ZSH ;
end

end
Inform GA that is has ended;

LRA:
for each iteration do

Compute the Lagrange multipliers using ZUB and the current solution of problem
(LR). Let z be the optimal value of (LR);

Compute a feasible solution from the solution of problem (LR). Let ZLRA be its
value;

Add this solution into the pool;
if ZLRA < ZUB then

ZUB ← ZRLA;
end
if z > ZLB then

ZLB ← z;
end

end
Inform GA that is has ended;

GA:
for each iteration do

Sort the solutions of the pool by increasing order w.r.t. to their weight;
Randomly choose several pairs of solutions from the pool and combine the solutions
of each pair in order to generate new solutions;

for every new solution do
Let ZGA be the value of the solution;
if ZGA < ZUB then

ZUB ← ZGA;
end
Add the solution to the pool of solutions;

end
Delete the worst solutions from the pool (according to the pool management
strategy);

end

return (ZLB , ZUB);
end
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producing solutions of good quality for the problem, and this, in a relatively short
computation time. To do this, we first compare the results obtained, for several in-
stances, by algorithm PHA against those obtained by solving the flow formulation with
CPLEX. Then, we compare each algorithm SH, LRA and GA against the overall PHA
algorithm for solving the kESNDP and SkESNDP. Notice that since one of the com-
ponents of parallel hybrid algorithm have stochastic components (e.g. the GA), each
PHA entry represents the mean of 5 runs on the same instance.

All the algorithms have been implemented in C++ using LEMON graph structures
[8] and we have used CPLEX [1] for solving the undirected flow formulation of the
kESNDP. The experiments have been conducted on a computer equiped with an Intel
i7 processor at 2.5 Ghz with 8 Gb of RAM, running under Linux. We have set the
maximum CPU time of all the algorithms, including CPLEX, to 2 hours.

We have used OpenMP library and the C++ inner parallel library std::thread
in order to manage the multithreading parallel computations. Also, in order to avoid
inconsistencies in the solutions pool, we use the C++ library std::mutex for the shared
memory management.

3.3.1 kESNDP

The test problems have composed of graphs from the [2] library, that are complete
Euclidean graphs. For the demands, we have considered single-source multi-destination
demand set (called rooted demands) and multi-source multi-destination demand set
(arbitrary demands). The number of nodes of the graphs are from 30 to 318 while the
number of demands varies from 3 to 15, for the rooted case, and from 10 to 159 for
arbitrary demands. We have also solved each instance with connectivity requirement
k = 3. Each instance is described by its name followed by the number of nodes of
the graph and the number of demands. When the demands are rooted, the number
of demands is preceded by “r" while arbitrary demands are indicated by “a" before
the number of demands. For example, berlin30-r10 denotes an instance composed of a
graph from TSPLIB with 30 nodes and 10 rooted demands, and st70-a35 denotes an
instances composed of a graph from TSPLIB with 70 nodes and 35 arbitrary demands.

We have also implemented the Undirected Flow Formulation using CPLEX 12.6
concert technology library and have solved the problem for the same instances. Tables
3.1 and 3.2 show the results for the kESNDP with k = 3 by both PHA and CPLEX
for rooted demands and arbitrary demands respectively. The entries of each tables are
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|V |: number of nodes of the graph,
|D|: number of demands,
UB: best upper bound achieved by PHA (resp. CPLEX),
LB: best lower bound achieved by PHA (resp. CPLEX),
Gap: relative error between the best upper and lower bounds

achieved by PHA (resp. CPLEX),
CPU: total CPU time in hours:min:sec achieved by

PHA (resp. CPLEX).

Remark that for some instances, CPLEX has not been able to solve even the linear
relaxation after the maximum CPU time (2 hours). The results for these instances are
indicated with “–".

From Table 3.1, we can observe that for the rooted instances, 2 instances over 22
have been solved to optimality by CPLEX while PHA produces an upper bound of the
optimal solution for all the instances. Also, for 9 instances, CPLEX produces a better
feasible solution than that obtained by PHA. However, for all the other instances, the
upper bound produced by PHA is better than that obtained by CPLEX after the max-
imum CPU time. For example, for instances st70-r35 and kroA100-r50, PHA produces
an upper bound of 1265 and 47454, respectively, while CPLEX produces an upper
bound of 1278 and 49323. We have also compared the lower bound achieved by PHA
with that obtained by CPLEX. For several instances (12 over 22), the lower bound ob-
tained by CPLEX after the maximum CPU time is better than that obtained by PHA.
This can be explained by the fact that CPLEX, during the resolution process, adds
several valid inequalities, such as Gomory cuts and General Upper Bound inequalities,
which allows strengthning the linear relaxation of the problem and improve the quality
of the lower bound.

For the arbitrary instances (see Table 3.2), the observations are almost the same.
PHA produces better upper bounds for 11 instances over 20. PHA is even able to
produce both lower and upper bounds for 5 instances where CPLEX has not been able
to solve the linear relaxation of the problem. Also, for 9 instances, PHA produces a
better lower bound than that obtained by CPLEX. For the other instances, the lower
bound achieved by CPLEX is better than that obtained PHA.

Finally, we compare CPLEX and PHA in terms of CPU time. We clearly see, from
Tables 3.1 and 3.2, that except 2 instances with rooted demands instances and with
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Table 3.1: Results for PHA and CPLEX for the kESNDP and rooted demands with
k = 3.

Instances PHA CPLEX

name |V | |D| UB LB Gap CPU UB LB Gap CPU

berlin 30 10 7168 6072.29 15.29 00:00:11 6241 6241 0 00:43:55
berlin 30 15 10970 7856.13 28.39 00:00:17 7982 7828 1.93 02:00:00
berlin 30 20 12173 8391.95 31.06 00:00:27 8510 8510 0 00:56:08
berlin 30 25 12805 8832.3 31.02 00:00:36 9040 9014.5 0.28 02:00:00
berlin 52 10 6815 4740.6 30.44 00:00:45 5399 4959.58 8.14 02:00:00
berlin 52 15 9871 6821.52 30.89 00:01:12 7505 6680.3 10.99 02:00:00
berlin 52 26 13033 7639.51 41.38 00:01:58 9270 8223.08 11.29 02:00:00

st 70 15 761 523.64 31.19 00:01:21 607 438.95 27.69 02:00:00
st 70 26 1077 707.24 34.33 00:02:24 928 612.011 34.05 02:00:00
st 70 35 1265 805.39 36.33 00:03:22 1278 707.5 44.64 02:00:00

kroA 100 20 26677 11864.8 55.52 00:05:52 22637 12354.3 45.42 02:00:00
kroA 100 35 39378 16182.3 58.91 00:10:12 32738 19189 41.39 02:00:00
kroA 100 50 47454 18875.4 60.22 00:15:03 49323 23501.4 52.35 02:00:00
kroA 150 30 36340 11596.3 68.09 00:19:09 43987 16106.5 63.38 02:00:00
kroA 150 50 47764 15774.2 66.97 00:33:04 64280 22374.3 65.19 02:00:00
kroA 150 75 57909 17742.1 69.36 00:50:48 418670 28031.4 93.3 02:00:00
kroA 200 40 41724 12080.4 71.05 00:45:44 65762 17020 74.12 02:00:00
kroA 200 75 59482 16096.8 72.94 01:28:01 – – – –
kroA 200 100 69462 18792.2 72.95 02:00:00 – – – –

lin 318 61 26723 6068.56 77.29 02:00:00 – – – –
lin 318 111 55000 8702.16 84.18 02:00:00 – – – –
lin 318 159 71464 8719.74 87.8 02:00:00 – – – –

arbitrary demands, CPLEX reaches the maximum CPU time for all the instances. On
the contrary, the CPU time achieved by PHA is relatively small for most of the in-
stances. Indeed, the CPU time is less than 6 minutes for 50% of the rooted demand
instances and less than 7 minutes for 45% of the arbitrary demand instances. Only 4
instances for both the rooted demands and arbitrary demands, have reached the max-
imum CPU time. This, together with the above observations, shows that PHA is able
to obtain better solutions than CPLEX, and this, in quite short CPU time.

Now we turn our attention to the efficiency of PHA w.r.t its components, that are
LRA, GA and SH. The aim is to see if each algorithm taken separately is more efficient
than the hybridization or not. For this, we compare the results obtained by LRA, GA
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Table 3.2: Results for PHA and CPLEX for the kESNDP and arbitrary demands with
k = 3.

Instances PHA CPLEX

name |V | |D| UB LB Gap CPU UB LB Gap CPU

berlin 30 10 10422 8216.0 21.17 00:00:15 9276 9276.0 0 00:00:08
berlin 30 15 12385 9716.2 21.55 00:00:24 10749 10655.2 0.87 02:00:00
berlin 52 10 10553 7772.5 26.35 00:00:42 8508 8256.9 2.95 02:00:00
berlin 52 15 13588 9141.0 32.73 00:01:23 10270 9870.4 3.89 02:00:00
berlin 52 20 15603 10347.5 33.68 00:01:37 11499 11499.0 0 00:30:04

st 70 15 1176 678.3 42.32 00:01:31 773 631.3 18.33 02:00:00
st 70 26 1531 979.5 36.02 00:02:56 1067 866.5 18.79 02:00:00
st 70 35 1888 1202.6 36.31 00:04:20 1534 1082.5 29.43 02:00:00

kroA 100 20 42845 19839.5 53.69 00:06:58 49089 19602.5 60.07 02:00:00
kroA 100 35 61802 26609.3 56.94 00:12:54 86377 28331.3 67.2 02:00:00
kroA 100 50 68537 31378.5 54.22 00:18:27 155967 33839.0 78.3 02:00:00
kroA 150 30 56725 22773.6 59.85 00:23:24 49126 24173.6 50.79 02:00:00
kroA 150 50 71392 29684.8 58.42 00:40:14 154870 32461.8 79.04 02:00:00
kroA 150 75 88672 36283.2 59.08 01:02:03 553614 42973.0 92.24 02:00:00
kroA 200 40 64500 23745.5 63.19 00:54:46 353805 26323.2 92.56 02:00:00
kroA 200 75 91687 32872.0 64.15 01:50:27 – – – –
kroA 200 100 102137 37932.2 62.86 02:00:00 – – – –

lin 318 61 49769 17303.4 65.23 02:00:00 – – – –
lin 318 111 86928 21634.2 75.11 02:00:00 – – – –
lin 318 159 121811 24089.2 80.22 02:00:00 – – – –

and SH separately with those obtained by PHA. The results are given by Tables 3.3
and 3.4 for rooted and arbitrary demands respectively.

We can see from Table 3.3 that the upper bounds produced by PHA for all the
instances with rooted demands are better than those obtained by LRA, SH and GA,
taken separately. Also, for the arbitrary demands (see Table 3.4), PHA outperforms
algorithms LRA, SH and GA taken separately. This clearly shows that, with both
rooted and arbitrary demands, the hybridization of the three components produce
better results than each component taken separately. When comparing PHA and LRA
in terms of lower bounds, we can see that for almost all the instances, with both rooted
and arbitrary demands, the lower bound obtained by LRA is better than that obtained
by PHA. Thus, clearly, the hybridization helps in producing better upper bounds for
most of the instances, but does not help in improving the lower bounds.
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Table 3.3: Results for PHA versus LRA, SH and GA for the kESNDP and rooted
demands with k = 3.

Instances PHA LRA SH GA

name |V | |D| UB LB UB LB UB UB

berlin 30 10 7168 6072.3 10543 6298.8 9128 7459
berlin 30 15 10970 7856.1 16661 8163.8 12930 10970
berlin 30 20 12173 8392.0 23165 8356.8 14271 12311
berlin 30 25 12805 8832.3 22521 8905.6 15355 13271
berlin 52 10 6815 4740.6 13012 5272.4 8668 7034
berlin 52 15 9871 6821.5 22157 6894.8 12212 10373
berlin 52 26 13033 7639.5 30418 8000.7 15257 13559

st 70 15 761 523.6 2068 539.0 933 789
st 70 26 1077 707.2 3445 809.6 1271 1095
st 70 35 1265 805.4 4304 899.0 1442 1368

kroA 100 20 26677 11864.8 71777 12605.4 34141 28204
kroA 100 35 39378 16182.3 114336 16922.2 47090 39857
kroA 100 50 47454 18875.4 160719 20416.9 53756 47531
kroA 150 30 36340 11596.3 101835 13239.7 44497 37824
kroA 150 50 47764 15774.2 170169 19149.2 53690 48303
kroA 150 75 57909 17742.1 224847 23497.4 66579 60797
kroA 200 40 41724 12080.4 154211 14451.4 51335 43110
kroA 200 75 59482 16096.8 277544 19038.9 69033 60606
kroA 200 100 69462 18792.2 361814 23728.7 80717 69929

lin 318 61 26723 6068.6 139868 7713.9 31788 27143
lin 318 111 55000 8702.2 375430 13495.8 56199 55559
lin 318 159 71464 8719.7 559326 14637.2 77340 75389

3.3.2 SkESNDP

For the SkESNDP, we have used the same environment as used for kESNDP. The test
problems have been obtained from the TSPLIB library [2]. Each test set consists in
complete graphs whose edge weights are the rounded Euclidean distance between the
edge vertices. In addition, for each graph, a set S of terminals is defined including the
first |S| nodes of G.

The results obtained for SkESNDP by all the algorithms are summarized in Table
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Table 3.4: Results for PHA versus LRA, SH and GA for the kESNDP and arbitrary
demands with k = 3.

Instances PHA LRA SH GA

name |V | |D| UB LB UB LB UB UB

berlin 30 10 10422 8216.0 11884 8384.9 12808 10597
berlin 30 15 12385 9716.2 18118 9683.7 15283 12584
berlin 52 10 10553 7772.5 14052 7691.9 12369 10725
berlin 52 15 13588 9141.0 19042 9210.8 15496 13771
berlin 52 20 15603 10347.5 22341 10364.2 17908 16152

st 70 15 1176 678.3 2236 692.1 1267 1208
st 70 26 1531 979.5 3277 1030.3 1743 1567
st 70 35 1888 1202.6 4673 1289.0 2137 1908

kroA 100 20 42845 19839.5 110812 20089.4 48435 44661
kroA 100 35 61802 26609.3 183685 27237.4 65024 61802
kroA 100 50 68537 31378.5 269704 31777.2 74250 69406
kroA 150 30 56725 22773.6 164720 23388.5 59947 56725
kroA 150 50 71392 29684.8 269616 30290.8 74614 71392
kroA 150 75 88672 36283.2 418821 38724.2 92894 89342
kroA 200 40 64500 23745.5 223326 24728.0 71033 66202
kroA 200 75 91687 32872.0 439205 35395.6 99364 92285
kroA 200 100 102137 37932.2 566823 42194.5 113464 102577

lin 318 61 49769 17303.4 74080 21788.7 53054 50168
lin 318 111 86928 21634.2 137343 31754.5 92973 89158
lin 318 159 121811 24089.2 206426 39037.3 129651 122911

3.5 whose entries are:

|V | : number of nodes of the graph,
|S| : number of terminals,
UB : best upper bound,
LB : best lower bound,
Gap : relative error between the best upper and lower bounds,
CPU : total CPU time in hours:min:sec.

The results of PHA algorithm are interesting (see Table 3.5).

First we can easily notice that the approach is able to improve, for all the instances,
the upper bounds given by SH and RLA. However we notice that, the upper bound
given by RLA is very weak as in 17 instances over 20.

Second, comparing PHA to CPLEX we can see that our algorithm produces better
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Table 3.5: Numerical results for the algorithms RLA, SH, PHA and CPLEX for k = 3
Instances RLA SH PHA CPLEX

name |V | |S| UB LB Gap CPU UB CPU UB LB Gap CPU UB LB Gap CPU

30 3 2539 2409.13 5.12 00:00:03 2800 00:00:00 2503 2285.98 8.67 00:00:00 2489 2489 0 00:00:00
30 5 5507 2993.18 45.65 00:00:06 4022 00:00:00 3638 2949.69 18.92 00:00:45 3191 3191 0 00:02:08

berlin 52 3 2536 1501.06 40.81 00:00:04 2871 00:00:00 1853 1653.38 10.77 00:00:03 1776 1776 0 00:00:02
52 5 11793 2201.2 81.33 00:00:20 3408 00:00:00 2971 2135.77 28.11 00:01:33 2462 2298.33 6.65 02:00:00
52 7 20400 3127.03 84.67 00:00:37 4761 00:00:00 4187 3006.06 28.2 00:03:19 3802 3389.61 10.85 02:00:00

70 5 1040 152.446 85.34 00:00:29 360 00:00:00 236 164.30 30.38 00:00:07 223 179 19.73 02:00:00
st 70 7 1548 172.465 88.86 00:00:43 408 00:00:00 364 204.73 43.76 00:03:02 252 225 10.71 02:00:00

70 9 2920 201.558 93.1 00:01:13 552 00:00:00 507 222.73 56.07 00:07:10 688 297.111 56.82 02:00:00

100 5 62059 5317.46 91.43 00:01:16 16366 00:00:00 13151 5085.76 61.33 00:05:10 15292 5812.28 61.99 02:00:00
100 7 106829 5418.4 94.93 00:02:32 19902 00:00:00 19469 5871.49 69.84 00:12:48 24360 6270.08 74.26 02:00:00
100 9 151739 5358.9 96.47 00:04:12 21614 00:00:00 19846 5270.00 73.45 00:24:35 49051 7821.06 84.06 02:00:00
150 7 106958 4248.35 96.03 00:05:38 19870 00:00:00 17882 4280.29 76.06 00:26:35 31512 5556.12 82.37 02:00:00

kroA 150 9 155197 5034.3 96.76 00:09:34 21345 00:00:00 20038 4826.98 75.91 00:52:44 51384 6582 87.19 02:00:00
150 11 240264 7681.11 96.8 00:14:15 24937 00:00:00 24016 7517.20 68.7 01:27:04 50323 8060.58 83.98 02:00:00
200 9 194591 6294.12 96.77 00:17:02 22947 00:00:00 20403 6088.26 70.16 01:33:39 117741 5458.25 95.36 02:00:00
200 11 296236 7472.18 97.48 00:22:48 27178 00:00:01 25195 7173.50 71.53 02:00:00 222560 6361.25 97.14 02:00:00
200 13 375741 9256.4 97.54 00:35:33 29989 00:00:01 26397 8525.46 67.7 02:00:00 294825 7890.25 97.32 02:00:00

318 11 34628 2848.95 91.77 00:54:49 6252 00:00:04 5671 1978.31 65.12 02:00:00 251507 0 100 02:00:00
lin 318 13 56637 3553.51 93.73 01:00:24 8051 00:00:05 7660 2656.36 65.32 02:00:00 93116900 0 100 02:00:00

318 15 75722 3369.12 95.55 01:37:53 9331 00:00:07 9017 2749.56 69.51 02:00:00 – – – –

upper bounds in 13 cases over 20 while CPLEX is able to solve to optimality three
instances. We can also see that for 14 instances, CPLEX produces a better lower bound
than PHA. Also, the gap produced by PHA is better than that produced by CPLEX
for 13 instances.

Now, we compare the algorithms SH, RLA and GA, taken separately, with algorithm
PHA. We can see that for all the instances, algorithm PHA produces a better upper
bound than SH and RLA. We can also observe that, for several instances, the lower
bound achieved by RLA taken separately is better than that obtained by PHA. These
two observations show that the combination of the three algorithms does not always
help in improving the lower bound, but clearly helps in improving the upper bound.

Finally, we can see that the CPU time of PHA is relatively small (less than 1h) for
13 instances over 20, while CPLEX reaches the maximum CPU time for almost all the
instances (18 instances over 20). Moreover, PHA has been able to produce an upper
bound for instance lin318-15 while CPLEX was not able to produce even a feasible
solution due to lack of memory.
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3.4 Conclusion

In this Chapter we considered the k-Edge-Connected Network Design Problem (kESNDP)
and its variant the Steiner k-Edge-Connected Network Design Problem (kESNDP). We
propose a parallel hybrid algorithm which aims to produce good solutions for large scale
instances of the two problems. Our approach is based on a Lagrangian relaxation of
a flow-based integer programming formulation of the problem, a greedy and a genetic
algorithms.
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In this chapter, we address the k-edge-connected hop-constrained network design
problem (kHNDP) which is known to be NP-hard. We apply and adapt the approach
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presented in the previous chapter for solving the kESNDP to the kHNDP. We test the
algorithms within an extensive computational study and compare their efficiency for
solving the kHNDP against CPLEX.

Let G = (V,E) be an undirected graph, a set of demands D ⊆ V ×V , a cost function
c : E → R which associates the cost c (e) with each edge e ∈ E. We recall that the
k-Edge-Connected Hop-Constrained Network Design Problem (kHNDP for short)
consists in finding a minimum cost sub-graph of G such that there exist k edge-disjoint
L-st-paths (st paths whose lengths are ≤ L) between the terminals of each demand
{s, t} of D.

In this chapter, we introduce a study on the kHNDP when k ≥ 2, |D| ≥ 1 and L ≥ 2.
In fact, while in the literature the focus was on the polyhedral point of view of the
kHNDP trying to solve to optimality the problem, we noticed that most algorithms
proposed could not solve the instances when |V | ≥ 50 and |D| ≥ 20. Thereby, we
introduce a new parallel hybrid approach based on a Lagrangian relaxation method,
a fast greedy algorithm and a genetic algorithm to solve in an approximate way the
kHNDP.

The chapter is organized as follows. In Section 4.1, we present the graph transforma-
tions, and the flow based formulations for the problem in both cases when L = 2, 3 and
L ≥ 4. In Section 4.2, we introduce the application of PHA on the different problem
formulations. Then, in the last section, we present some computational results and
proceed to a comparison between our results and those of CPLEX.

4.1 Integer programming formulations

4.1.1 When L = 2, 3

In this section, we present the integer programming formulation of the kHNDP, pro-
posed by Diarrassouba et al. [96], on which we based our study. This formulation use
a directed layered graph to model each hop-constrained subproblem.

4.1.1.1 Graph transformation

Let {s, t} ∈ D and G̃st = (Ṽst, Ãst) be the directed graph obtained from G using the
following procedure.
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Let Nst = V \ {s, t}, N ′st be a copy of Nst and Ṽst = Nst ∪ N ′st ∪ {s, t}. The copy in
N ′st of a node u ∈ Nst will be denoted by u′. To each edge e = st ∈ E, we associate an
arc (s, t) in G̃st with capacity 1. With each edge su ∈ E (resp. vt ∈ E), we associate
in G̃st the arc (s, u), u ∈ Nst (resp. (v′, t), v′ ∈ N ′st) with capacity 1. With each
node u ∈ V \ {s, t}, we associate in G̃st arc (u, u′) with an infinite capacity. Finally,
if L = 3 we associate with each edge uv ∈ E \ {s, t}, two arcs (u, v′) and (v, u′), with
u, v ∈ Nst and u′, v′ ∈ N ′st with capacity 1 (see Figure 4.1 for an illustration with
D = {s1, t1}, {s1, t2}, {s3, t3} and L = 3).

Figure 4.1: Construction of G̃st graphs

This transformation was first introduced by Gouveia and Requejo in [139].

Given a demand {s, t}, the associated graph G̃st = (Ṽst, Ãst), and for an edge e ∈ E,
we denote by Ãst(e) the set of arcs of G̃st corresponding to the edge e. It is not hard
to see that G̃st does not contain any circuit. Also, observe that any st-dipath in G̃st

is of length no more than 3. Moreover each L-st-path in G corresponds to an st-
dipath in G̃st and conversely. In fact, if L ∈ {2, 3}, every 3-st-path (s, u, v, t), with
u 6= v,u, v ∈ V \ {s, t}, corresponds to an st-dipath in G̃st of the form (s, u, v′, t) with
u ∈ Nst and v′ ∈ N ′st. Every 2-st-path (s, u, t), u ∈ V \ {s, t}, corresponds to an
st-dipath in G̃st of the form (s, u, u′, t).
We have the following lemma (see [96] for the proof).

Lemma 1 Let L ∈ {2, 3} and {s, t} ∈ D.

i) If two L-st-paths of G are edge-disjoint, then the corresponding st-dipaths in G̃st

are arc-disjoint.

ii) If two st-dipaths of G̃st are arc-disjoint, then the corresponding st-paths in G con-
tain two edge-disjoint L-st-paths.
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As a consequence of Lemma 1, for L ∈ {2, 3} and every demand {s, t} ∈ D, a set
of k edge-disjoint L-st-paths of G corresponds to a set of k arc-disjoint st-dipaths of
G̃st, and k arc-disjoint st-dipaths of G̃st correspond to k edge-disjoint L-st-paths of
G. Using these results, Diarrassouba et al. [96] introduced a flow-based formulation
for the kHNDP which rely on the transformed graphs G̃st. This formulation, called
separated flow formulation, is described in the next section.

Therefore we have the following corollary:

Corollary 1 Let H be a subgraph of G and H̃st, {s, t} ∈ D, the subgraph of G̃st obtained
by considering all the arcs of G̃st corresponding to an edge of H, plus the arcs of the
form (u, u′), u ∈ V \ {s, t}. Then H induces a solution of the kHNDP if H̃st contains k
arc-disjoint st-dipaths, for every {s, t} ∈ D. Conversely, given a set of subgraphs H̃st

of G̃st, {s, t} ∈ D, if H is the subgraph of G obtained by considering all the edges of
G associated with at least one arc in a subgraph H̃st, then H induces a solution of the
kHNDP only if H̃st contains k arc-disjoint st-dipaths, for every {s, t} ∈ D.

4.1.1.2 The separated flow formulation

The Corollary 1 suggests at once the following formulation for the kHNDP when L =

2, 3.

Let F ⊆ E be a subgraph of G. Given a demand {s, t}, we let f st ∈ RÃst be a flow
vector on G̃st of value k between s and t. Then f st satisfies the flow conservation

constraints.

min
∑
e∈E

c(e)x(e)

∑
a∈δ+(u)

f sta −
∑

a∈δ−(u)

f sta =


k if u = s

0 if u ∈ Ṽst\ {s, t}
−k if u = t

 (4.1)

f sta ≤ x(e) x ∈ ZE+; f st ∈ ZÃst+ (4.2)

f sta ≤ 1 f st ∈ ZÃst+ (4.3)

f sta ≥ 0 f st ∈ ZÃst+ (4.4)

x(e) ≤ 1 x ∈ ZE+ (4.5)
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(4.1) for all u ∈ Ṽst
(4.2) for all a ∈ Ãst(e), {s, t} ∈ D, e ∈ E
(4.3) for all a = (u, u′), u ∈ V \ {s, t} , {s, t} ∈ D
(4.4) for all a ∈ Ãst(e), {s, t} ∈ D
(4.5) for all e ∈ E

The separated flow formulation has been introduced firstly by Diarrassouba et al.
[96] and uses a polynomial number of variables and constraints. In fact, the formulation
uses flows in |D| graphs layered graphs obtained by applying a transformation on the
original graph G for each demand {s, t} (Gouveia and Requejo [139]).

4.1.2 When L ≥ 4

4.1.2.1 Graph transformation

For our purpose, we use the graph transformation proposed by Diarrassouba et al.
[101], which transforms the original graph G into a set of directed layered graphs.
This transformation is presented below. For each demand {s, t} ∈ D, first let V l

st =

{(u, l), for all u ∈ V \{s, t}}, l = 1, ..., L−1. Then, let G̃st = (Ṽst, Ãst) be the directed

graph where Ṽst =
L−1⋃
l=1

V l
st ∪ {s, t}. The arc set Ãst is obtained by adding in G̃st

• two arcs of the form ((u, l), (v, l+1)) and ((v, l), (u, l+1)), for all l ∈ {1, ..., L−2}
and every edge uv ∈ E such that u, v ∈ V \ {s, t},

• an arc of the form (s, (u, 1)), for every edge su ∈ E with u ∈ V \ {s, t},

• an arc of the form ((u, L− 1), t), for every edge ut ∈ E with u ∈ V \ {s, t},

• an arc of the form (s, t), for every edge st ∈ E,

• an arc of the form ((u, l), (u, l+1)), for every u ∈ V \{s, t} and l ∈ {1, ..., L−2}.

Figure 4.2 gives an illustration with D = {{s1, t1}, {s2, t2}} and L = 4.

Diarrassouba et al. [101] showed that every L-st-path of G corresponds to an st-path
in G̃st and vice-versa. Moreover, They showed that there exists k edge-disjoint L-st-
paths in G if and only if there exists k arc-disjoint st-paths in G̃st such that any pair
of arcs used in these paths corresponds to the same edge of G.
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Figure 4.2: Graph transformation for L = 4

4.1.2.2 The separated flow formulation

The transformation above yields to the following integer programming formulation
[101], called flow formulation, for the kHNDP when L ≥ 4. Let xe, for each edge
e ∈ E, be the 0 − 1 variable which takes value 1 if the edge e is in the solution and
0 otherwise. Let f sta be a flow variable associated with arc a of G̃st. The kHNDP is
equivalent to the following integer program

min
∑
uv∈E

ωuvxuv

s.t.

∑
a∈δ+(u)

fda −
∑

a∈δ−(u)

fda =


k if u = s

−k if u = t

0 if u ∈ Ṽst\ {s, t} ,

 ,

for all u ∈ Ṽst and {s, t} ∈ D, (4.6)∑
a∈Ast(e)

f sta ≤ xe, for all e ∈ E and {s, t} ∈ D, (4.7)

fsta ≥ 0, for all a ∈ Ãst and {s, t} ∈ D, (4.8)

xe ≤ 1, for all e ∈ E, (4.9)

xe ∈ {0, 1}, for all e ∈ E, (4.10)

fsta ∈ {0, 1}, for all a ∈ Ãst and {s, t} ∈ D. (4.11)
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4.2 The Parallel Hybrid Algorithm

In this section we introduce the application of the parallel, hybrid algorithm (PHA)
for solving the kHNDP. According to Talbi’s taxonomy, the approach consists in a
parallel, HTH (High-level, Teamwork) hybrid, approximation algorithm based on three
components; a lagrangian relaxation algorithm (RLA), a greedy successive heuristic
(SH) and a genetic algorithm (GA).

4.2.1 Greedy Successive Heuristic

Our greedy heursitic for the kHNDP works similarly to that we have devised for the
kESNDP. We start by randomly generating a set of |D| ordering of the demands. For
a given ordering, we let D = {{s1, t1}, {s2, t2}, ...{sd, td}} be the demands w.r.t that
ordering. For i ∈ {1, ..., |D|}, we denote by Ei the set of edges of G having a flow value
of 1 in a minimum cost siti-flow of value k in G̃siti . Moreover, in this flow at most one
arc corresponding to the same edge have a flow value of 1. The edge set Ei is computed
as follows. First, compute a minimum cost siti-flow of value k in G̃siti , where all the

arcs have capacity 1, all the arcs corresponding to an edge of
i−1⋃
j=1

Ej have a cost of 0,

and all the arcs corresponding to the edges e ∈ E\
i−1⋃
j=1

Ej have a cost ωe. Let f
siti be the

obtained flow vector and let Fsiti be the set of edges e ∈ E such that
∑

a∈Ãsiti (e)
f
siti
a > 1.

If Fsiti = ∅, then we let Ei be the set of edges e ∈ E such that
∑

a∈Ãsiti (e)
f
siti
a = 1. If

Fsiti 6= ∅, then, for each edge e ∈ Fsiti , we arbitrarily choose an arc a0 ∈ Ãsiti(e), give
him a capacity 1, give a capacity 0 to all the arcs of Ãsiti(e) \ {a0}, and compute min-
imum cost flow of value k in G̃siti with the same arc costs as before. Finally, if f ′st is
the new flow vector, then we let Ei be the set of edges e ∈ E such that

∑
a∈Ãsiti (e)

f
′st
a = 1.

Finally, it is not hard to see that the edge set
|D|⋃
j=1

Ej is a feasible solution for the

kHNDP. This procedure is repeated for all the ordering of the demands, yielding |D|
feasible solutions. The algorithm ends by finding the best one among these solutions.
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4.2.2 Lagrangian Relaxation

4.2.2.1 When L = 2, 3

Analysing the variable dependencies’s of the Separated F low Formulation presented
in the previous Section 4.1.1, we notice that if we apply the lagrangian relaxation on the
linking constraints set, solving the integer program will consist in solving |D| separated
flow problem.

Figure 4.3: Formulation variable dependencies

As we can see, in the first part of the LP we have |D| flow problems completely
independent. In the second part, we find the

∑
{s,t}∈D

|Ãst(e)| linking equations that

harden the problem solving. In other words, if we write the kHNDP in matrix notation:

min cx

Af ≥ b f ∈ Z
Df − Ex ≤ 0 f, x ∈ Z

0 ≤ f ≤ 1 f ∈ Z
x ≤ 1 x ∈ Z

We define the lagrangian relaxation of our problem with respect to the constraint set
Df − Ex ≤ 0 by introducing a lagrange multiplier vector λ ≥ 0 which is attached to
this constraint set and brought into objective function to get:
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min (c− λE)x+ λDf

Af ≥ b

0 ≤ f ≤ 1

x ≤ 1

f, x ∈ Z

Hence, switching back from matrix notation to summation notation, we obtain the
following P (λ):

min
∑
e∈E

c(e)−
 ∑
{s,t}∈D

∑
a∈Ãst(e)

λsta

x(e)+
∑
{s,t}∈D

∑
a∈Ãst(e)

λsta f
st
a

∑
a∈δ+(u)

f sta −
∑

a∈δ−(u)

f sta =


k if u = s

0 if u ∈ Ṽst\ {s, t}
−k if u = t


for all u ∈ Ṽst

f sta ≤ 1, for all a = (u, u′), u ∈ V \ {s, t} , {s, t} ∈ D
f sta ≥ 0, for all a ∈ Ãst(e), {s, t} ∈ D
x(e) ≤ 1, for all e ∈ E
x ∈ ZE+

f st ∈ ZÃst+

Based on the program obtained, two algorithms (RLA and RLASH) have been
designed for the kHNDP . RLA and RLASH start by solving the |D| flow problems
in a parallel multithreaded fashion using the Network Simplex algorithm [11, 77].

To fix the lagrange multipliers, the subgradient algorithm is used. In the subgradient
phase of both algorithms, we use a heuristic in case of having an Xj non feasable for
the initial kHNDP formulation to transform it to a feasible Xj. In RLA, we use a
fast primal heuristic to round to 1 each xj(e) that violates a f sta ≤ x(e) constraint. In
RLASH, instead of a primal heuristic, we use the heuristic SH that we designed. For
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each graph G̃st, the algorithm starts by setting up the cost of each arc related to an
edge already selected in the solution Xj (xj(e) = 1) to 0 and then solve the current
flow problem.

4.2.2.2 When L ≥ 4 [98]

As for the case when L = 2, 3, our Lagrangian algorithm is based on the relaxation of
the linking constraints (4.7). This yields the following linear program, called problem
(LR), where λstuv, for all uv ∈ E, are the Lagrange multipliers associated with the
linking constraints,

min
∑
uv∈E

ωuv − ∑
{s,t}∈D

λstuv

xuv +
∑
{s,t}∈D

∑
uv∈E

λstuv
∑

a∈Ãst(uv)

fsta

s.t.

∑
a∈δ+(u)

fda −
∑

a∈δ−(u)

fda =


k if u = s

−k if u = t

0 if u ∈ Ṽst\ {s, t} ,

 ,

for all u ∈ Ṽst and {s, t} ∈ D,

0 ≤ fsta ≤ 1, for all a ∈ Ãst and {s, t} ∈ D,
0 ≤ xe ≤ 1, for all e ∈ E,
xe ∈ {0, 1}, for all e ∈ E,

fsta ∈ {0, 1}, for all a ∈ Ãst and {s, t} ∈ D.

As before, one can easily see that solving problem (LR) reduces to solving |D| min-
imum cost st-flow of value k in graphs G̃st, which can be done in polynomial time.
Also, as for the kESNDP, the Lagrange multipliers are updated using the sub-gradient
method.

It should be noticed that, contrarily to the kESNDP, the solution y ∈ RE such that

ye = max{f sta , for all a ∈ Ãst(e) and {s, t} ∈ D}, for all e ∈ E,

may not be feasible for the kHNDP. Thus, at each iteration of the algorithm, we check
if y is feasible for the kHNDP, and if not, we transform y into a feasible solution. To
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see if y is feasible or not, it suffices to check if each flow vector f st, for every {s, t} ∈ D,
is such that

∑
a∈Ãst(e)

f
st

a ≤ ye. (4.12)

If y is not feasible for the kHNDP, then for each {s, t} ∈ D, we let Fst be the set of
edges of G for which an inequality (4.12) is violated. We build a new solution y′ ∈ RE

as follows. If for a demand {s, t} ∈ D, Fst = ∅, then we let gst be a flow vector such
that gst = f

st. If Fst 6= ∅, then for all e ∈ Fst, we arbitrarily choose an arc a0 ∈ Ãst(e),
give him a capacity 1, give a capacity 0 to all the arcs of Ãst(e) \ a0, and compute a
minimum cost st-flow of value k, each arc a ∈ Ãst(uv) having a cost ωuv, for all uv ∈ E.
We let gst be the value of that minimum cost flow. Finally, the solution y′ is such that

y′e = max{gsta , for all a ∈ Ãst(e) and {s, t} ∈ D}, all e ∈ E,

and is clearly feasible for the kHNDP when L ≥ 4.

4.2.3 Genetic Algorithm

Our genetic algorithm for the kHNDP follows the same lines that we have devised for
the kESNDP. The reader can refer to Section 3.2.3 for the details.

4.2.4 Hybridization

The hybridization and parallelization scheme for the parallel hybrid algorithm for the
kHNDP when are the same as that devised for the SkESNDP. We refer the reader to
Section 3.2.4 for the details.

4.3 Experimental Study

In this section we present a computational study of the different algorithms introduced
in this chapter. We aim to check their efficiency for solving the problem for large scale
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instances, and compare them to each other from a computational time, and solution
quality point of view.

The algorithms described in the previous section have been implemented in C++,
using LEMON graph structures [8]. They were tested on an Intel i7 2.5 Ghz with 8
Gb of RAM, running under Linux. We fixed the maximum CPU time to 2 hours. The
test problems were obtained by taking TSP test problems from the TSPLIB library [2].
The test set consists in complete graphs whose edge weights are the rounded Euclidean
distance between the edge’s vertices. In addition, for each instance, a set of |D| demand
in the form {i, i+ 1} is defined including the first 2|D| nodes.

4.3.1 When L = 2, 3

Table 4.1 exhibits computational results obtained for a set of 28 TSP test instances in
form of a comparison between our algorithms and CPLEX 12.6 [1] executed in parallel.
The results given are obtained for k = 3 and L = 3. Each instance is given by the
graph’s number of nodes and preceded by its name. Since one of the components of
parallel hybrid algorithm have stochastic components (e.g. the GA), each PHA entry
represents the mean of 5 runs on the same instance. Finally, note that empty entries
does not mean that the time needed to compute a feasible solution exceeded 2 hours,
but that the system was not able to charge the problem itself to memory.

|V | : number of nodes of the graph;
|D| : number of demands
UB : objective function value (best upper bound)
LB : best lower bound
Gap : relative error between the best upper and lower

bounds
CPU : total CPU time in hours:min:sec

First, by observing Table 4.1, we notice that for L = 3, the problem is solved to
optimality by parallel CPLEX in 4 instances (having |D| ≤ 10) over 28 (14.2%) and
just once by our approximating algorithms (RLASH algorithm).

We remark that our lagrangian relaxation algorithms outperforms parallel CPLEX
relatively to the solution cost (UB) in 13 instances over 28 (46.4%). The SH algorithm
outperforms CPLEX as well but in 19 cases out of 28 (67.8%). (See Figure 4.4 for the
solutions cost distribution).
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For PHA algorithm, the results have been encouraging (see Table 4.1), where the
approach has been able to improve the best upper bound obtained by the SH and RLA
algorithms in 16 instances over 28 (57.1%). PHA could also benefit from the efficiency
of the SH algorithm in cases where the graph is very large, and at least returns an
upper bound for our problem. However we notice that, due to the weak lower bound
obtained by the RLA algorithm, the gap is high relatively to the quality of the solution
as in 5 instances, PHA obtains better upper bounds than CPLEX but giving, on the
other hand, a weaker gap.

Figure 4.4: Solutions cost variation

Now, we turn our attention to the comparison of the algorithms in terms of CPU
time, we notice that for all the instances, the greedy successive heuristic (SH) could
give an upper bound to the kHNDP. In fact, it takes a bit more than 4 minutes to solve
a 575 nodes graph with 287 demands while CPLEX cannot charge the mathematical
programming model, for a graph of 318 nodes and 111 demands, into memory.

In Figure 4.5, we can see that for both RLA and RLASH, a range of 15 graphs
(number of nodes from 52 to 318, and number of demands from 15 to 61) exists, in
which they outperform CPLEX in computational time.

In the same way, we can see that PHA could in 11 instances over 28 (39.2%) produce
solutions faster than CPLEX, reach the limit of 2 hours as same as CPLEX in 5
instances (17.8%), and could solve 4 large instances that CPLEX could not charge in
memory.
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Figure 4.5: Computation time variation

4.3.2 When L ≥ 4

Tables 4.2, 4.3 and 4.4 give the results obtained by PHA and CPLEX for the kHNDP
with k = 3 and with L = 3, L = 4 and L = 5, respectively. The results presented here
are those obtained for the instance with arbitrary demands. The entries of the table
are

|V |: number of nodes of the graph,
|D|: number of demands,
UB: best upper bound achieved by PHA (resp. CPLEX),
LB: best lower bound achieved by PHA (resp. CPLEX),
Gap: relative error between the best upper and lower bounds

achieved by PHA (resp. CPLEX),
CPU: total CPU time in hours:min:sec achieved by

PHA (resp. CPLEX).

As before, when CPLEX does not solve the linear relaxation of the problem after the
maximum CPU time (2 hours), the results are indicated with “–".

From Table 4.2, we can see that when k = 3 and L = 3, CPLEX outperforms PHA
in producing upper bounds for the first 6 instances. For the others (14 over 20), PHA
produces better upper bounds than CPLEX. Also, for almost all of the instances (18
instances over 20), CPLEX reaches the maximum CPU time while PHA requires less
than 12 minutes for 9 instances.
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Table 4.2: Results for PHA and CPLEX for the kHNDP and arbitrary demands with
k = 3 and L = 3.

Instances PHA CPLEX

name |V | |D| UB LB Gap CPU UB LB Gap CPU

berlin 30 10 10695 9467,6 11.48 00:00:37 10254 10170.49 0.81 00:00:29
berlin 30 15 13743 11847.4 13.79 00:01:12 13429 12829.37 4.47 02:00:00
berlin 52 10 10298 9136 11.28 00:01:46 9919 9851.46 0.68 00:00:33
berlin 52 15 13416 11596.6 13.56 00:02:54 13278 12575.49 5.29 02:00:00
berlin 52 20 16534 13448.6 18.66 00:04:06 15891 14612.79 8.04 02:00:00

st 70 15 1389 971.2 30.07 00:03:21 1336 1119.59 16.20 02:00:00
st 70 26 2107 1312.4 37.72 00:07:09 2176 1610.73 25.98 02:00:00
st 70 35 2834 1714.4 39.50 00:11:37 5299 2142.75 59.56 02:00:00

kroA 100 20 62128 37704.6 39.31 00:12:47 66738 44958.93 32.63 02:00:00
kroA 100 35 103164 55049.4 46.64 00:26:12 348018 68944.14 80.19 02:00:00
kroA 100 50 144842 72889.6 49.68 00:40:42 558391 92782.7 83.38 02:00:00
kroA 150 30 93542 45123 51.76 00:48:19 204665 61908.4 69.75 02:00:00
kroA 150 50 144861 60073.2 58.53 01:39:41 – – – 02:00:00
kroA 150 75 209575 75856.6 63.80 02:00:00 – – – 02:00:00
kroA 200 40 114116 46091.6 59.61 02:00:00 442010 75495.36 82.92 02:00:00
kroA 200 75 212504 66209.2 68.84 02:00:00 – – – 02:00:00
kroA 200 100 274917 67317 75.51 02:00:00 – – – 02:00:00

lin 318 61 54721 20638.8 62.28 02:00:00 – – – 02:00:00
lin 318 111 100666 26664.8 73.51 02:00:00 – – – 02:00:00
lin 318 159 149070 32224.6 78.38 02:00:00 – – – 02:00:00

For the case where k = 3 and L = 4 (Table 4.3), we can see that CPLEX has reached
the maximum CPU time while the CPU time required by PHA does not exceed 15
minutes for 45% of the instances. Also, except 5 instances, PHA outperforms CPLEX
in producing good upper bounds. Moreover, CPLEX has been able to find even a
feasible solution after 2 hours of CPU time while PHA does.

For the case where k = 3 and L = 5 (see Table 4.4), the observations are quite
similar to the cases where L = 3 and L = 4. Indeed, it appears that PHA outperforms
CPLEX in producing good upper bound, and this, within a quite short CPU time.

Now we compare PHA with each of its components. We do this comparison only in
the case where k = 3 and L = 3, as our experiments lead to the same observations
when L = 4 and L = 5. Table 4.5 below gives the lower and upper bounds obtained by
PHA and LRA and the upper bounds obtained by GA and SH, for the kHNDP with
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Table 4.3: Results for PHA and CPLEX for the kHNDP and arbitrary demands with
k = 3 and L = 4.

Instances PHA CPLEX

name |V | |D| UB LB Gap CPU UB LB Gap CPU

berlin 30 10 10552 8836.4 16.26 00:00:22 9433 9433.0 0 01:46:10
berlin 30 15 13774 10638.4 22.76 00:00:39 11898 11194.7 5.91 02:00:00
berlin 52 10 10457 8396.0 19.71 00:01:24 9252 8903.7 3.76 02:00:00
berlin 52 15 13672 10283.6 24.78 00:02:20 12021 11011.2 8.4 02:00:00
berlin 52 20 16541 11844.6 28.39 00:03:12 15541 12787.4 17.72 02:00:00

st 70 15 1326 825.5 37.75 00:03:57 1346 910.4 32.37 02:00:00
st 70 26 2023 1043.2 48.43 00:07:13 2572 1263.9 50.86 02:00:00
st 70 35 2818 1209.6 57.08 00:08:44 5588 1613.4 71.13 02:00:00

kroA 100 20 60786 28152.7 53.69 00:14:11 71728 34511.5 51.89 02:00:00
kroA 100 35 100081 39413.7 60.62 00:25:33 – – – 02:00:00
kroA 100 50 141228 50301.7 64.38 00:37:25 386054 62125.6 83.91 02:00:00
kroA 150 30 89109 35455.9 60.21 00:50:58 204376 44932.4 78.01 02:00:00
kroA 150 50 141829 46229.2 67.40 01:27:57 – – – 02:00:00
kroA 150 75 204943 58525.0 71.44 02:00:00 – – – 02:00:00
kroA 200 40 107850 35872.6 66.74 02:00:00 – – – 02:00:00
kroA 200 75 209367 47121.1 77.49 02:00:00 – – – 02:00:00
kroA 200 100 269006 48113.7 82.11 02:00:00 – – – 02:00:00

lin 318 61 53359 17987.0 66.29 02:00:00 – – – 02:00:00
lin 318 111 98525 17786.1 81.95 02:00:00 – – – 02:00:00
lin 318 159 141712 15760.9 88.88 02:00:00 – – – 02:00:00

k = 3 and L = 3.

Table 4.5 clearly shows that PHA outperforms its LRA, GA and SH taken separately,
for all the instances. Indeed, the upper bound produced by PHA is better for all the
instances than that obtained by GA, LRA and SH. However, when comparing the lower
bounds obtained by PHA and LRA, except 2 instances (kroA200-a100 and lin318-a159),
the lower bound produced by LRA is better than that obtained by PHA. Consequently,
as before, the hybridization clearly helps in producing better feasible solutions for the
kHNDP but does not produce better lower bounds.
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Table 4.4: Results for PHA and CPLEX for the kHNDP and arbitrary demands with
k = 3 and L = 5.

Instances PHA CPLEX

name |V | |D| UB LB Gap CPU UB LB Gap CPU

berlin 30 10 9989 8527.6 14.63 00:00:47 8897 8897.0 0.00 00:06:24
berlin 30 15 12651 10156.4 19.72 00:01:11 11397 10647.4 6.58 02:00:00
berlin 52 10 9967 8073.6 19.00 00:02:39 8855 8511.1 3.88 02:00:00
berlin 52 15 12848 9737.3 24.21 00:04:36 11197 10466.3 6.53 02:00:00
berlin 52 20 15870 11211.8 29.35 00:05:59 14981 12051.5 19.55 02:00:00

st 70 15 1242 733.4 40.95 00:06:38 1187 827.2 30.31 02:00:00
st 70 26 1808 954.7 47.20 00:10:18 4257 1120.7 73.68 02:00:00
st 70 35 2525 1172.1 53.58 00:15:33 – – – 02:00:00

kroA 100 20 56668 25532.4 54.94 00:23:19 71110 30451.0 57.18 02:00:00
kroA 100 35 90788 34670.5 61.81 00:40:52 – – – 02:00:00
kroA 100 50 125022 43359.5 65.32 00:59:12 – – – 02:00:00
kroA 150 30 80854 29698.5 63.27 01:19:47 – – – 02:00:00
kroA 150 50 126533 39383.0 68.88 02:00:12 – – – 02:00:00
kroA 150 75 188290 47148.4 74.96 02:00:28 – – – 02:00:00
kroA 200 40 102520 29630.6 71.10 02:00:13 – – – 02:00:00
kroA 200 75 193169 38005.0 80.33 02:01:52 – – – 02:00:00
kroA 200 100 246339 39859.9 83.82 02:02:30 – – – 02:00:00

lin 318 61 50570 14214.8 71.89 02:03:02 – – – 02:00:00
lin 318 111 94004 13372.0 85.78 02:07:55 – – – 02:00:00
lin 318 159 137215 12026.7 91.24 02:13:49 – – – 02:00:00

4.4 The Impact of the Parallelization

In the previous sections, we have shown that using the Lagrangian relaxation, genetic
and greedy algorithms in parallel allows an improvment of the quality of the feasi-
ble solutions known for the kESNDP and kHNDP. However, an important question
is wether it is relevant to use parallel computing inside each component of PHA. In
this section, we investigate this question. Indeed, as mentioned above, solving each
sub-problem of the Lagrangian relaxation (i.e. LRA) and the greedy (i.e. SH) algo-
rithms reduces to |D| independent minimum cost flow problems, which can be done in
O(|E|2 log |V | + |E||V | log2 |V |) using |D| processors in parallel. Also, in the genetic
algorithm (i.e. GA), parallel computing is used in the reproduction phase at each
iteration, where, in parallel, we cross several pairs of parent solutions.
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Table 4.5: Results for PHA versus LRA, SH and GA for the kHNDP and arbitrary
demands with k = 3 and L = 3.

Instances PHA LRA SH GA

name |V | |D| UB LB UB LB UB UB

berlin 30 10 10695 9467,6 11914 9566 11756 11376
berlin 30 15 13743 11847,4 17198 12091 14854 14854
berlin 52 10 10298 9136 13715 9361 11359 10980
berlin 52 15 13416 11596,6 19042 11828 14508 14491
berlin 52 20 16534 13448,6 22341 13715 17633 17633

st 70 15 1389 971,2 2213 1038 1536 1424
st 70 26 2107 1312,4 3275 1421 2269 2192
st 70 35 2834 1714,4 4665 1822 2975 2957

kroA 100 20 62128 37704,6 110812 37839 66190 64081
kroA 100 35 103164 55049,4 183685 56581 111403 105224
kroA 100 50 144842 72889,6 269705 74624 151175 147820
kroA 150 30 93542 45123 165239 46682 101709 95986
kroA 150 50 144861 60073,2 270609 68616 149949 146986
kroA 150 75 209575 75856,6 420836 75891 214646 212735
kroA 200 40 114116 46091,6 223098 48169 117931 114989
kroA 200 75 212504 66209,2 437497 76827 218219 214878
kroA 200 100 274917 67317 565116 59827 278363 273934

lin 318 61 54721 20638,8 74755 21638,8 56285 55544
lin 318 111 100666 26664,8 137906 26664,8 103297 101115
lin 318 159 149070 32224,6 206681 30224,6 152685 150965

The question raised here is important since the CPU time needed to run an algorithm
using several processors (for instance for accessing a shared memory, for managing the
interactions with the operating system or between the processors, etc.) may exceed
the CPU time when using a single processor.

To answer this question for our parallel hybrid algorithm, we measure the CPU
time for each algorithm, LRA, SH and GA, regarding an increasing of the number of
processors used to run the algorithms. We use the algorithms devised for the kHNDP
with k = 3 and L = 3. Tables 4.6, 4.7 and 4.8 show the CPU time for LRA, SH and
GA, respectively, obtained for a subset of 10 test instances. The CPU computation
time presented corresponds to the mean of 5 runs CPU times. The different entries of
the tables are:
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p : number of processors(cores)
CPU : total CPU time in sec
S : speedup
E : efficiency

Figures 4.6, 4.7 and 4.8 below present the CPU time evolution curve for LRA, SH and
GA, respectively, as a function of the number of processors used to run the algorithms.

We have limited the number of processors to 8 since the computer we have used for
our experiments is equiped with a 8-cores processor.

Table 4.6: CPU computation time for LRA with p variation
LRA

name |V | |D|
p = 1 p = 2 p = 4 p = 6 p = 8

berlin 30 10 10.225 7.851 7.739 7.765 7.652
30 15 16.071 12.251 11.054 11.050 11.044
52 15 62.390 48.752 45.806 44.113 42.912
52 20 83.443 63.194 56.832 57.102 56.549

st 70 26 161.168 120.659 109.646 111.536 108.144
70 35 221.793 165.477 153.701 152.331 146.576

kroA 100 35 573.306 439.237 401.064 393.803 377.244
100 50 804.708 596.874 554.943 538.349 517.985
150 50 1842.480 1421.370 1284.303 1234.657 1188.387
150 75 2752.303 2023.787 1875.793 1835.800 1752.697

The three tables clearly show that, for the three algorithms, the CPU time decreases
when the number of processors increases. Moreover, using two processors significantly
decreases the CPU compared to the usage of a single processor. We can also notice

Table 4.7: CPU computation time for SH with p variation
SH

name |V | |D|
p = 1 p = 2 p = 4 p = 6 p = 8

berlin 30 10 0.055 0.028 0.022 0.019 0.017
30 15 0.116 0.063 0.045 0.042 0.031
52 15 0.348 0.194 0.150 0.097 0.098
52 20 0.604 0.320 0.227 0.186 0.151

st 70 26 1.815 0.959 0.645 0.559 0.474
70 35 3.312 1.711 1.143 0.967 0.814

kroA 100 35 7.060 3.687 2.308 1.978 1.747
100 50 14.185 7.332 4.889 3.858 3.383
150 50 32.607 16.875 11.720 9.740 9.184
150 75 72.581 37.480 24.576 19.415 17.141
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Table 4.8: CPU computation time for GA with p variation
GA

name |V | |D|
p = 1 p = 2 p = 4 p = 6 p = 8

berlin 30 10 12.367 8.122 7.593 7.534 7.618
30 15 32.067 20.201 18.682 18.185 18.445
52 15 114.795 70.800 66.572 62.597 61.592
52 20 194.075 119.378 108.149 103.086 102.124

st 70 26 374.256 220.177 192.523 188.955 176.743
70 35 711.533 416.747 362.847 356.526 335.136

kroA 100 35 1474.193 812.080 739.961 730.558 695.074
100 50 2532.300 1393.757 1268.620 1258.657 1191.080
150 50 5748.553 3161.837 2874.013 2804.983 2697.567
150 75 7325.273 4007.933 3606.080 3501.723 3359.725

Figure 4.6: The CPU time of LRA w.r.t. to the number of processors

that, even if the CPU time decreases as the number of the processors increases, the
gain of using height processors is not significant compared to using two processors.
In conclusion of these experiments, using several processors improve the CPU time of
each component of PHA, and using two processors seems to be the best choice.

It should be noticed that the above conclusion holds if we do not use more than height
processors, and depends on architecture of the computer used for the experiments.
Using a different architecture and more than height processors may lead to different
conclusions.
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Figure 4.7: The CPU time of SH w.r.t. to the number of processors

Figure 4.8: The CPU time of GA w.r.t. to the number of processors

4.4.1 Speedup & Efficiency

In what follows, we present the speedup and the efficiency results. Tables 4.9, 4.10
and 4.11 and Figures 4.9, 4.10 and 4.11 show the results and the evolution curve of the
speedup and the efficiency in function of p for respectively LRA, SH and GA.
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Table 4.9: LRA speedup and efficiency results
Speedup Efficiency

name |V | |D|
p = 2 p = 4 p = 6 p = 8 p = 2 p = 4 p = 6 p = 8

berlin 30 10 1.302 1.321 1.317 1.336 0.651 0.330 0.219 0.167
30 15 1.312 1.454 1.454 1.455 0.656 0.363 0.242 0.182
52 15 1.280 1.362 1.414 1.454 0.640 0.341 0.236 0.182
52 20 1.320 1.468 1.461 1.476 0.660 0.367 0.244 0.184

st 70 26 1.336 1.470 1.445 1.490 0.668 0.367 0.241 0.186
70 35 1.340 1.443 1.456 1.513 0.670 0.361 0.243 0.189

kroA 100 35 1.305 1.429 1.456 1.520 0.653 0.357 0.243 0.190
100 50 1.348 1.450 1.495 1.554 0.674 0.363 0.249 0.194
150 50 1.296 1.435 1.492 1.550 0.648 0.359 0.249 0.194
150 75 1.360 1.467 1.499 1.570 0.680 0.367 0.250 0.196

Figure 4.9: LRA speedup and efficiency

For a fixed graph and an increasing p, we remark that LRA speedup increases in the
most of the cases, exept for 3 instances over 10 (30%) while we pass from using 4 to 6
cores. On the other side, efficiency is strictly decreasing.

When we fix a number of cores and variate the input graphs, both metrics are increas-
ing when the input graph has greater numbers of nodes and demands, but decreases
for a bigger graph and an equal number of demands |D|, and this behavior is logical
because the number of parallelized tasks in every parallelized region of LRA depends
of |D|, so if the number of nodes increases and not |D|, the algorithm will have to
compute more, manage a bigger amount of data, without having more parallelism.

For SH, we remark that the speedup is always increasing for a fixed graph and an
increasing p, the efficiency on the other hand, is strictly decreasing.

When we fix a number of cores and variate the input graphs, same as said for LRA,
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Table 4.10: SH speedup and efficiency results
Speedup Efficiency

name |V | |D|
p = 2 p = 4 p = 6 p = 8 p = 2 p = 4 p = 6 p = 8

berlin 30 10 1.987 2.566 2.969 3.173 0.994 0.641 0.495 0.397
30 15 1.839 2.604 2.786 3.697 0.919 0.651 0.464 0.462
52 15 1.795 2.323 3.578 3.568 0.898 0.581 0.596 0.446
52 20 1.887 2.661 3.241 3.991 0.944 0.665 0.540 0.499

st 70 26 1.893 2.815 3.247 3.829 0.947 0.704 0.541 0.479
70 35 1.935 2.898 3.426 4.070 0.968 0.724 0.571 0.509

kroA 100 35 1.915 3.058 3.569 4.041 0.957 0.765 0.595 0.505
100 50 1.935 2.901 3.677 4.193 0.967 0.725 0.613 0.524
150 50 1.932 2.782 3.348 3.551 0.966 0.696 0.558 0.444
150 75 1.937 2.953 3.738 4.234 0.968 0.738 0.623 0.529

Figure 4.10: SH speedup and efficiency

for SH both metrics are increasing when the input graph has greater numbers of nodes
and demands, but decreases for a bigger graph and an equal number of demands |D|.
We notice also that SH in comparaison with LRA has a higher speedup, that is close
from reaching for the perfect case p = 2 having S ≈ p, and this is due to the higher
degree of parallelism of SH.

If we wanted to sort LRA, SH and GA’s parallelisation, GA would be in the second
position after SH. In fact, we can see that the results obtained in terms of speedup and
efficiency are better than LRA’s ones. Here again we can easily see that the speedup
is increasing for a fixed graph and an increasing p (we have only one irregular case,
berlin 30 10 with p from 4 to 6 cores) and that the efficiency is always decreasing.

However, for a fixed number of cores and a variant input graphs, GA’s speedup and
efficiency were always increasing. This behavior can be explained by the fact that the
number of parallel tasks depends from the solution population pool size (depends itself
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Figure 4.11: GA speedup and efficiency

from the number of nodes of a graph and the number of demands |D|) and not only
from the number of demands |D|.

Table 4.11: GA speedup and efficiency results
Speedup Efficiency

name |V | |D|
p = 2 p = 4 p = 6 p = 8 p = 2 p = 4 p = 6 p = 8

berlin 30 10 1.523 1.629 1.641 1.623 0.761 0.407 0.274 0.203
30 15 1.587 1.716 1.763 1.739 0.794 0.429 0.294 0.217
52 15 1.621 1.724 1.834 1.864 0.811 0.431 0.306 0.233
52 20 1.626 1.795 1.883 1.900 0.813 0.449 0.314 0.238

st 70 26 1.700 1.944 1.981 2.118 0.850 0.486 0.330 0.265
70 35 1.707 1.961 1.996 2.123 0.854 0.490 0.333 0.265

kroA 100 35 1.815 1.992 2.018 2.121 0.908 0.498 0.336 0.265
100 50 1.817 1.996 2.012 2.126 0.908 0.499 0.335 0.266
150 50 1.818 2.000 2.049 2.131 0.909 0.500 0.342 0.266
150 75 1.828 2.031 2.092 2.180 0.914 0.508 0.349 0.273

4.5 Conclusion

In this Chapter we considered the k-Edge-Connected Hop-Constrained Network Design
Problem (kHNDP). We presented the application of the approach PHA presented in the
previous chapter for solving the kESNDP to the kHNDP and we tested the algorithms
within an extensive computational study and compare their efficiency for solving the
kHNDP against CPLEX.
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We continue here our study of the k-edge connected Hop-constrained Network Design
Problem (kHNDP). In this study we aim optimal solving of the kHNDP. We devise
and present two distributed exact algorithms: a distributed Branch-and-Bound and a
distributed Branch-and-Cut. We present after that, an experimental study in which we
compare our algorithms to CPLEX.

The Branch-and-Bound and the Branch-and-Cut algorithms, are presented as a set
of tasks with very few, if any, data dependencies. This implies that the processes that
perform calculations on these data have few dependencies and can be scheduled in any
order. The only relationship that can exist between two tasks is that of kinship. Thus
the dependency graph is a tree that is not very usable. The computational times of
the nodes of the tree can not be evaluated a priori.

It is therefore not easy to parallelize such applications efficiently since its irregularity
prevents predicting the shape of the tree, its size and the amount of work that each
node represents in the tree.

In this chapter, we present two distributed exact algorithms (a distributed Branch-
and-Bound and a distributed Branch-and-Cut) to solve the k-Edge-Connected Hop-
Constrained Network Design Problem (kHNDP for short). We also discuss the paral-
lelization techniques and strategies that can be used to adapt the implementation we
present to solve more efficiently combinatorial optimization problems that has other
characteristics.

The chapter is organized as follows. In Section 5.1, we introduce the different paral-
lelization strategies that can be applied to both, Branch-and-Bound and Branch-and-
Cut algorithms. In Section 5.2, we present the kHNDP formulations and some valid
inequalities for the problem. Then, in Section 5.3, we describe our parallel Branch-
and-Bound and parallel Branch-and-Cut algorithms. Finally, in Section 5.4 we present
the related experimental study.

5.1 Parallelization strategies

To parallelize a B&B or a B&C algorithm, three major granularity levels can be dis-
tinguished (Bouzgarrou in [51]):
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• coarse grain granularity,

• medium grain,

• fine grain.

As more flexible but complicated schemes, one can think of a new parallelization
approach that uses a nested parallelization hierarchy. The main idea behind that is to
be able to hybridize two or more of the Bouzgarrou’s granularities in order to implement
a parallel algorithm in which the granularity can be adapted to the problem and/or
the hardware specifications. In what follows we describe how these parallelization
strategies can be applied on the B&B and the B&C algorithms.

5.1.1 Coarse grain

It consists in executing several B&C algorithms in parallel, one starting from an initial
feasable solution computed by a primal heuristic, and the second an initial solution
given by the approach PHA. During the execution the algorithms exchange informa-
tions aiming to accelerate one or both explorations.

Figure 5.1: Coarse grain parallelization scheme

5.1.2 Medium grain

Each process explores a part of the search space. In this case we can use SYMPHONY
to devise a parallel B&C in which we explore simultaneously multiple nodes of the
search tree. Two types of threads exist, the first is the Master thread which handles
the upper and lower bounds, the constraints pool and the sub-problems list. The
second will be nodes threads that will be created by the master thread and deployed
on a processor.
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Figure 5.2: Medium grain parallelization scheme

5.1.3 Fine grain

In this strategy the evaluation of each node of the B&C tree is done in parallel by
several processes. For this scheme we can handle simultaneously the separation of our
valid inequalities. One can also think about improving such algorithms by designing
new ones that can be massively parallel and implement them on GPUs.

Figure 5.3: Fine grain parallelization scheme

5.1.4 Nested parallelization strategies

What is remarkable in the previous strategies is that they are quite rigid. In other
words, these strategies are not and can not be efficient and adjusted according to the
structure of the parallel computer available. For example, a coarse grain parallelization
scheme of a B&B or a B&C for the kHNDP using multithreading techniques would not
be efficient for all input graph sizes in practice. In fact, in our experimental studies
presented in previous chapters, we have shown how exact approaches for the kHNDP
are greedy in terms of memory. For this reason, running multiple exact algorithms in
the same environment will probably slower down the algorithm and decrease probably
the instances size limit that could be solved.
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A different idea, that was not presented in the few works that studied the paralleliza-
tion of the B&C, could be to combine these classic strategies to obtain new ones. Fine
grain, for example, can be used with coarse grain. Another possible combination would
be the one that combines fine grain with medium grain parallelization schemes. This
later can be interesting for the kHNDP because of the amount of computation time and
memory requirements of the exact algorithms components. As a direct consequence of
this combination, the user would have the ability to adjust the deployment in function
of the instance size/its solving hardness and/or the architecture of the parallel machine
available for the computation.

Figure 5.4: Medium/Fine grain parallelization scheme

5.2 Formulations & Valid inequalities

We recall that as application of our parallel exact algorithms, we have chosen to con-
sider in this chapter the k-Edge-Connected Hop-Constrained Survivable Network De-
sign Problem (kHNDP) when L = 2, 3. We recall that the problem is defined as follows.
Given a weighted undirected graph G = (V,E) where each edge e has a weight ωe, a
set of demands D ⊆ V × V , a positive integer k, the kHNDP is to find a minimum
weight subgraph of G such that for each demand {s, t} ∈ D, there exist k edge-disjoint
paths of length at most L, for some integer L ≥ 2, between s and t.
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5.2.1 Formulations

Let G = (V,E) be an undirected graph, a set of demands D ⊆ V × V , a cost function
c : E −→ R, which associates the cost c(e) with each edge e ∈ E. We recall that
the k-Edge-Connected Hop-Constrained Network Design Problem (kHNDP for short)
consists in finding a minimum cost subgraph of G such that there exist k-edge-disjoint
L-st-paths between the terminals of each demand {s, t} of D.

We have shown in Section 4.1.1 that the problem kHNDP can be formulated using
some network flow sub-problems on transformed graphs when L = 2, 3. We have also
presented the generalized flow formulation in Section 4.1.2 for the same problem when
L ≥ 2. In this section we will present two other formulations from the literature.

Notice that in what follows, we will denote the flow formulation for kHNDP when
L = 2, 3 by kHNDP 2,3

flow, and the one for the problem when L =≥ 2 by kHNDPflow.

5.2.1.1 Natural formulation

Let L ≥ 2 andD = {{s1, t1}, ..., {sd, td}}, d ≥ 2, be the sets of demands. We will denote
by RD the set of terminal nodes of G, that is those nodes of G which are involved in
at least one demand. It is clear that the incidence vector xF of any solution (V, F ) of
the kHNDP satisfies the following inequalities:

x(δ(W )) ≥ k, for all st-cut, (s, t) ∈ D, (5.1)

x(T ) ≥ k, for all L-st-path-cut, (s, t) ∈ D, (5.2)

x(e) ≥ 0, for all e ∈ E, (5.3)

x(e) ≤ 1, for all e ∈ E. (5.4)

Conversely, any integer solution of the system defined by inequalities (5.1)-(5.4) is
the incidence vector of a solution of the kHNDP when L = 2, 3.

Recall that inequalities (5.1)-(5.2) and (5.3)-(5.4) are called respectively st-cut in-
equalities, L-st-path-cut inequalities and trivial inequalities.

It is not hard to see that the kHNDP can be formulated as a linear integer program.
The following lemma and theorem give this result.

Lemma 5.1 Let G = (V,E) be an undirected graph and s and t two nodes of V .
Suppose that there do not exist k edge-disjoint L-st-paths in G, with k ≥ 2. Then there
exists a set of at most k − 1 edges that intersects every L-st-path.
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Theorem 5.2 Let G = (V,E) be a graph, k ≥ 2 and L ∈ {2, 3}. Then the kHNDP is
equivalent to the following inter program

min{cx; subject to (5.1)− (5.4), x ∈ ZE}. (5.5)

Formulation (5.10) is called Natural formulation. We will denote by kHNDPNat. It
only uses the design variables.

5.2.1.2 Cut formulation

The Cut formulation is based on cuts in the graphs G̃st (see 4.1.1.1 for the transfor-
mation details), {s, t} ∈ D. Given a subgraph H̃st of G̃st, we let yH̃stst ∈ RÃst be the
incidence vector of H̃st, that is to say yH̃stst (a) = 1 if a ∈ H̃st and yH̃stst (a) = 0 if not. If a
subgraph H of G induces a solution of the kHNDP, then the subgraph H̃st contains at
least k arc-disjoint st-dipaths, for all {s, t} ∈ D, and conversely. Thus, for any solution
H of the kHNDP, the following inequalities are satisfied by yH̃stst , for all {s, t} ∈ D,

yst(δ
+(W̃ )) ≥ k, for all st-dicut δ+(W̃ ) of G̃st, (5.6)

yst(a) ≤ x(e), for all a ∈ Ãst, e ∈ E, (5.7)

yst(a) ≥ 0, for all a ∈ Ãst, (5.8)

x(e) ≤ 1, for all e ∈ E. (5.9)

where yst ∈ RÃst for all {s, t} ∈ D and x ∈ RE.

Inequalities (5.6) will be called directed st-cut inequalities or st-dicut inequalities and
inequalities (5.7) linking inequalities. Inequalities (5.7) indicate that an arc a ∈ Ãst
corresponding to an edge e is not in H̃st if e is not taken in H. Inequalities (5.8) and
(5.9) are called trivial inequalities.

We have the following result which is given without proof since it easily follows from
the above results.

Theorem 5.3 The kHNDP for L = 2, 3 is equivalent to the following integer program

min{cx; subject to (5.6)− (5.9), x ∈ ZE+, yst ∈ ZÃst+ }. (5.10)
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This formulation is called Cut formulation and denoted by kHNDPCu. It contains

|E|+
∑
{s,t}∈D

|Ãst| = |E|+ d(n− 2) +
∑
{s,t}∈D

|δ(s)|+
∑
{s,t}∈D

|δ(t)| −
∑
{s,t}∈D

|[s, t]|

variables if L = 2 and

|E|+
∑
{s,t}∈D

|Ãst| = |E|+ 2d|E|+ d(n− 2)−
∑
{s,t}∈D

|δ(s)| −
∑
{s,t}∈D

|δ(t)|+
∑
{s,t}∈D

|[s, t]|

variables if L = 3 (remind that d = |D|).

However, the number of constraints is exponential since the directed st-cuts are in
exponential number in G̃st, for all {s, t} ∈ D. As its is know that its linear relaxation
can be solved in polynomial time using cutting plane algorithm.

5.2.2 Valid inequalities [95]

5.2.2.1 Double cut inequalities

In the following we introduce a class of inequalities that are valid for the kHNDP
polytopes for L ≥ 2 and k ≥ 2. They are given by the following theorem.

Theorem 5.4 Let {s, t} be a demand, i0 ∈ {0, ..., L} and∏
= {V0, ..., Vi0−1, V 1

i0
, V 2

i0
, Vi0+1, ..., VL+1} a family of node sets of V such that π =

(V0, ..., Vi0−1, V
1
i0
, V 2

i0
∪ Vi0+1, Vi0+2, ..., VL+1) induces a partition of V. Suppose that

1) V 1
i0
∪ V 2

i0
induces an sj1tj1-cut of G with {sj1tj1} ∈ D and sj1 ∈ V 1

i0
or tj1 ∈ V 1

i0

(note that sj1 and tj1 cannot be simultaneously in V 1
i0

and are not in V 2
i0
. Also

note that V 2
i0
may be empty);

2) Vi0+1 induces an sj2tj2-cut of G with {sj2tj2} ∈ D (note that j1 and j2 may be
equal);

3) π induces an L-st-path-cut of G with s ∈ V0 (resp. t ∈ V0) and t ∈ VL+1 (resp.
s ∈ VL+1).

Let E = [Vi0−1, V
1
i0
] ∪ [Vi0+2, V

2
i0
∪ Vi0+1] ∪

(⋃
k,l 6∈{i0,i0+1},|k−l|>1[Vk, Vl]

)
and F ⊆ E

such that |F | and k have different parities.
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Let also Ê =
(⋃i0−2

i=0 [Vi, Vi+1]
)
∪
(⋃L

i=i0+2[Vi, Vi+1]
)
∪ F . Then, the inequality

x
(
δ(π) \ Ê

)
≥
⌈
3k − |F |

2

⌉
, (5.11)

is valid for kHNDPNat, kHNDPCu(G,D), kHNDP 2,3
flow(G,D) (recall that δ(π) is the

set of edges of the E having their end nodes in different elements of π).

5.2.2.2 Triple path-cut inequalities

Here is a further class of valid inequalities. We distinguish the cases where L = 2 and
L = 3. We have the following theorem.

Theorem 5.5 i) Let L = 2 and {V0, V1, V2, V 1
3 , V

2
3 , V

1
4 , V

2
4 } be a family of node sets of

V such that (V0, V1, V2, V 1
3 ∪ V 2

3 , V
1
4 ∪ V 2

4 induces a partition of V and there exist two
demands {s1, t1} and {s2, t2} with s1, s2 ∈ V0, t1 ∈ V 2

3 and t2 ∈ V 2
4 . The sets V 1

3 and
V 1
4 may be empty and s1 and s2 may be the same. Let also V3 = V 1

3 ∪V 2
3 , V4 = V 1

4 ∪V 2
4

and F ⊆ [V 2
3 , V1 ∪ V 1

4 ]∪ [V 1
3 , V

2
4 ] such that |F | and k have different parities. Then, the

inequality

2x([V0, V2]) + x([V0, V3 ∪ V4]) + x([V 2
4 , V1 ∪ V 2

3 ])

+ x(([V 2
3 , V1 ∪ V 1

4 ] ∪ [V 1
3 , V

2
4 ]) \ F ) ≥

⌈
3k − |F |

2

⌉
,

(5.12)

ii) Let L = 3 and {V0, ..., V3, V 1
4 , V

2
4 , V

1
5 , V

2
5 } be a family of node sets of V such

that (V0, ..., V3, V 1
4 ∪ V 2

4 , V
1
5 ∪ V 2

5 induces a partition of V and there exist two demands
{s1, t1} and {s2, t2} with s1, s2 ∈ V0, t1 ∈ V 2

4 and t2 ∈ V 2
5 . The sets V 1

4 and V 1
5 may

be empty and s1 and s2 may be the same. Let also V4 = V 1
4 ∪ V 2

4 , V5 = V 1
5 ∪ V 2

5

and F ⊆ [V2, V
2
4 ] ∪ [V3, V4 ∪ V5] such that |F | and k have different parities. Then, the

inequality

2x([V0, V2]) + 2x([V0, V3]) + 2x([V1, V3]) + x([V0 ∪ V1, V4 ∪ V5]) + x([V4, V5])

+ x([V2, V
2
5 ]) + x(([V2, V

2
4 ] ∪ [V3, V4 ∪ V5]) \ F ) ≥

⌈
3k − |F |

2

⌉
,

(5.13)

is valid for kHNDPNat, kHNDPCu(G,D), kHNDP 2,3
flow(G,D).
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5.2.2.3 Steiner-partition inequalities

Let (V0, V1, ..., Vp), p ≥ 2, be a partition of V such that V0 ⊆ V \ RD, where RD is the
set of terminal nodes of G, and for all i ∈ {1, ..., p} there is a demand {s, t} ∈ D such
that Vi induces an st-cut of G. Note that V0 may be empty. Such a partition is called
a Steiner − partition. With a Steiner-partition, we associate the inequality

x(δ(V0, V1, ..., Vp)) ≥
⌈
kp

2

⌉
, (5.14)

Inequalities of type (5.14) will be called Steiner-partition inequalities. We have the
following result.

Theorem 5.6 Inequality (5.14) is valid for kHNDPNat, kHNDPCu(G,D), kHNDP 2,3
flow(G,D).

Inequality (5.14) expreses the fact that, in a solution of the kHNDP, the multicut
induced by a Steiner-partition (V0, V1, ..., Vp), p ≥ 2, must contain at least

⌈
kp
2

⌉
edges,

since there must exist k edge-disjoint paths between every pair of nodes {s, t} ∈ D.

5.2.2.4 Steiner-SP -partition inequalities

Let π = (V1, ..., Vp), p ≥ 3, be a partition of V such that the graph Gπ = (Vπ, Eπ) is
series-parallel (Gπ is the subgraph of G induced by π). Suppose that Vπ = {v1, ..., vp}
where vi is the node of Gπ corresponding to the set Vi, i = 1, ..., p. The partition π is
said to be a Steiner− SP − partition if and only if π is a Steiner-partition and either

1) p = 3 or

2) p ≥ 4 and there exists a node vi0 ∈ Vπ incident to exactly two nodes vi0 − 1

and vi0 + 1 such that the partitions π1 and π2 obtained from π by contracting
respectively the sets Vi0 , Vi0−1 and Vi0 , Vi0+1 are themselves Steiner-SP-partitions.

The procedure to check if a partition is a Steiner-SP-partition is recursive. It stops
when the partition obtained after the different contractions is either a Steiner-partition
and of size three or it is not a Steiner-partition.
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In the following theorem, we give necessary and sufficient condition for a Steiner-
partition to be a Steiner-SP-partition. Remind that the demand graph is denoted by
GD = (RD, ED), where RD is the set of terminal nodes of G. The edge set ED is
obtained by adding an edge between two nodes of RD if and only if {u, v} ∈ D.

Theorem 5.7 Let π = (V1, ..., Vp), P ≥ 3, be a partition of V such that Gπ is series-
parallel. The partition π is a Steiner-SP-partition of G if and only if the subgraph of
GD induced by π is connected.

As a consequence of Theorem 5.7, if the demand graph is connected (this is the case
when, for instance, all the demands are rooted in the same node), then every Steiner-
partition of V inducing a series-parallel subgraph of G is a Steiner-SP -partition of
V .

With a Steiner-SP -partition (V1, ..., Vp), p ≥ 3, we associate the following inequality

x(δ(V1, ..., Vp)) ≥
⌈
k

2

⌉
p− 1, (5.15)

Inequalities of type (5.15) will be called Steiner-SP-partition inequalities. We have
the following.

Theorem 5.8 Inequality (5.15) is valid for kHNDPNat, kHNDPCu(G,D), kHNDP 2,3
flow(G,D).

Inequality (5.15) expresses the fact that in a solution of the kHNDP the multicut
induced by a Steiner-SP-partition contains at least

⌈
k
2

⌉
p− 1 edges, since this solution

contains k edge-disjoint paths between every pair of nodes {s, t} ∈ D.

5.3 Parallel algorithms for the kHNDP

5.3.1 Sequential algorithms

In this section, we describe our sequential B&B and sequential B&C implementations
on which our parallel algorithms are based.
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5.3.1.1 Implementation of the B&B algorithm

Let PLF be the linear relaxation of the undirected flow formulation (see Section 4.1.2
for more details). PLF is defined as:

PLF : min
∑
uv∈E

ωuvxuv

s.t.

∑
a∈δ+(u)

fda −
∑

a∈δ−(u)

fda =


k if u = s

−k if u = t

0 if u ∈ Ṽst\ {s, t} ,

 ,

for all u ∈ Ṽst and {s, t} ∈ D, (5.16)∑
a∈Ast(e)

fsta ≤ xe, for all e ∈ E and {s, t} ∈ D, (5.17)

fsta ≥ 0, for all a ∈ Ãst and {s, t} ∈ D, (5.18)

xe ≤ 1, for all e ∈ E, (5.19)

xe ∈ R, for all e ∈ E, (5.20)

fsta ∈ R, for all a ∈ Ãst and {s, t} ∈ D. (5.21)

It is obvious that the optimal solution of PLF constitutes a lower bound of the integer
kHNDP. Thus, to solve the kHNDP, our B&B algorithm starts by initializing the best
upper bound ZUB using the fast greedy algorithm SH presented in Section 4.2.1. Then,

it creates a root node problem P
n0
TB&B

=0

LF , and add it to the nodes queue TB&B that
represents the search tree (nkTB&B

represents the number of nodes in the tree search
TB&B at iteration k). A search tree which is handled by a BEST-FIRST algorithm.
Thus, this node is selected and solved using CPLEX as a black box LP solver. The
algorithm tests, as after each node evaluation, if the solution is integer or fractional. If
it is integer, the algorithm concludes updates the integer upper bound and continues
with the node selection if the queue is not empty. If the solution is fractional, it selects

a variable using a specific criteria, fixes it to 0 to obtain a new problem P
nkTB&B

+1

LF and

to 1 to get P
nkTB&B

+2

LF with i representing the number of nodes in the tree at iteration

k. Both P
nkTB&B

+1

LF and P
nkTB&B

+2

LF are added to the nodes queue. In addition, at each
iteration k, if the solution found is fractional, we apply a greedy heuristic to make
the solution integer and try to update/strengthen the global upper bound. Finally, we
precise that the algorithm runs as long as TB&B 6= ∅.
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Algorithm 8 summarizes our sequential Branch-and-Bound.

Algorithm 8: Sequential Branch-and-Bound for the kHNDP.
Data: An undirected graph G = (V,E), the demand set D, a positive integers k ≥ 1 and

L ≥ 2

Result: The optimal solution of the kHNDP, or a lower and upper bounds of it.
begin

ZUB ← SH();
INSERT (TB&B , P

0
LF );

while TB&B is not empty do
subproblem p ← SELECT_BEST (TB&B);
solk ← SOLV E(p);
if IS_INTEGER(solk) = True then

if Z(solk) < ZUB then
ZUB ← Z(solk);

end
else

if Z(solk) ≤ ZUB then
solIk ←MAKE_INTEGER(solk);
if Z(solIk) < ZUB then

ZUB ← Z(solIk);
end
UPDATE(TB&B , ZLB , Z(solk));

P
nk
TB&B

+1

LF , P
nk
TB&B

+2

LF ← BRANCHING(solk);

INSERT (TB&B , P
nk
TB&B

+1

LF );

INSERT (TB&B , P
nk
TB&B

+2

LF );
end

end
if ZUB = ZLB then

stop;
end

end
return (ZLB , ZUB);

end

Notice that for the branching rule, we have tested three strategies on different in-
stances: the first fractional xe variable; the fractional variable xe with the lowest
reduced cost; the fractional variable xe which is the closest to 0.5, and we have selected
the one third strategy because of it has given the best results.
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5.3.1.2 Implementation of the B&C algorithm

For the flow formulation, the optimization starts by considering the linear program
PLF presented in the previous section.

The optimal solution (x, f
s1t1

, ..., f
sdtd

) is feasible for kHNDP2,3
flow if (x, f s1t1 , ..., f sdtd)

is integral. If (x, f s1t1 , ..., f sdtd) is not feasible for the problem, then we generate, further
valid inequalities for kHNDP2,3

flow(G,D) that are violated by (x, f
s1t1

, ..., f
sdtd

). For this,
we look for the following inequalities, in this order,

1) st-dicut inequalities,

2) double cut inequalities,

3) triple path-cut inequalities,

4) Steiner-partition inequalities,

5) Steiner-SP -partition inequalities.

Notice that the whole search tree management is done by our implementation of the
the B&B algorithm presented in the previous section.

5.3.2 Parallel B&B

As mentioned above, the structure of the B&B contains very few dependencies, thus,
the algorithm is inherently parallelizable. Nevertheless, the results of this task may be
very bad if communications are not handled efficiently. That is all the more true when
the memory is distributed.

Thereby, to avoid having an important overhead due to the distributed architecture,
the parallelization scheme we have designed follows the master/slave model. In fact,
having a centralized tree management reduces the number of communications that
should be made. Therefore, the master process is the process responsible of the tree
search management, the root node evaluation, the global upper and lower bounds
management and the algorithm stopping management. The slave processes are the
ones responsible of evaluating the tree nodes and the branching. Figure 5.5 describes
the communication scheme of our parallel B&B algorithm.
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Figure 5.5: Distributed B&B communication scheme

In addition, to minimize the amount of data that is sent in each node assignment, we

code a problem P
nkTB&B
LF into 1+ 2 levelTB&B

(
P
nkTB&B
LF

)
scalars (levelTB&B

(P ) being the

level in TB&B of P ) that represent the level of the node in the tree and the branchings
set related to the TB&B path seperating Pi and the root node P0. Figure 5.6 describes
an example of node P5 affectation. From left to right, 3 represent the level of P5 and
the pairs (7, 1), (3, 1), (1, 0) the branchings.

Figure 5.6: B&B node coding in communication

In the other way back, when a slave communicates the node evaluation results to a
master, the message is essentially composed of 3 values: the Pi LP relaxation optimal
value (lower bound), the primal bound calculated with the heuristic if the solution is
fractional, and the variable on which we should branch if the node is not pruned by
the master.



122
Parallelizing Branch-and-Cut algorithms for some survivability network design

problems

In a master/slave paradigm, load balancing is fair if one considers that the sub-
problems (tasks) that are in the master’s queue are non preemptive and if the processors
are homogeneous. In fact, the master process gives work to the slaves according to a
FIFO (First In First Out) order: The first free process is first served, and each time a
process sends back results, the master responds with a new computation task.

Algorithm 9: Master process in parallel B&B for the kHNDP.
Data: An undirected graph G = (V,E), the demand set D, a positive integers k ≥ 1 and

L ≥ 2

Result: The optimal solution of the kHNDP, or a lower and upper bounds of it.
begin

ZUB ← SH();
dataroot ← SOLV E();
if IS_FRACTIONAL(dataroot) then

PRIMAL_HEURISTIC(dataroot);
P 1
LF , P

+2
LF ← BRANCHING(dataroot) ;

INSERT (TB&B , P
1
LF );

INSERT (TB&B , P
2
LF );

end
while TB&B is not empty do

AFFECT_TASKS(TB&B);
RECIEV E_RESULTS(resultsin);
if IS_INTEGER(resultsin) then

if Z(resultsin) < ZUB then
ZUB ← Z(resultsin);

end
else

if Z(resultsin) ≤ ZUB then
solIk ←MAKE_INTEGER(resultsin);
if Z(solIk) < ZUB then

ZUB ← Z(solIk);
end
UPDATE(TB&B , ZLB , Z(solk));
BRANCH_AND_INSERT (TB&B , resultsin);

end
end
if ZUB = ZLB then

stop;
end

end
return (ZLB , ZUB);

end

However, during the execution of a parallel B&B, the slaves are inactive during the
start of the algorithm and during its final phase. This inactivity is due to the limited
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Algorithm 10: Slave process in parallel B&B for the kHNDP.
Data: A TB&B node, a branchings set
Result: The optimal solution of the node, an integer solution, a branching variable index.
begin

while True do
datain ← RECIEV E_TASK();
if IS_END_MSG(datain) then

stop;
end
DECODE_BRANCHINGS_SET ();
dataout ← SOLV E();
if IS_FRACTIONAL(dataout) then

PRIMAL_HEURISTIC(dataout);
BRANCHING(dataout) ;

end
SEND_RESULTS(dataout) ;

end
end

number of sub-problems that can be executed in a parallel way for a more or less
important period of time. If such a phenomenon happens in practice, the main cause
would be the slowness of the evaluation of the LP relaxation for the input graph.

5.3.3 Parallel B&C

As for the B&B algorithm, the real challenge in a parallel tree search algorithm is
the choice of what, when and how many data we exchange during the optimization
process. This is all the more true in a B&C algorithm that evaluates a node using
linear program resolution(s) and polyhedron cutting.

The parallel B&C we have designed is based on the parallel B&B we introduced
in the previous section. The major contribution that the B&C algorithm brings is
the distributed cuts management. In fact, a trivial way to handle the separated cuts
would be to separate the different valid constraints families in the slaves processes and
then communicate the separated constraints to the master. This communication would
happen while a slave sends back the node evaluation results. Nevertheless, since we
are not able to estimate the cost of such a communication a priori, this method can
cause a bottleneck to the application.

To respond to this limit, the parallel B&C we have designed uses, beyond the master
process, a pool manager process that will be in charge of the cuts pool management.
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Figure 5.7 shows the distributed B&C communication scheme.

Figure 5.7: Distributed B&C communication scheme

In our parallel B&C, the master process is equivalent to the one presented for the
parallel B&B. The only change we have made consists in adding the cuts separation
for the root node evaluation. If this added step ends positively, the master sends the
new separated constraints to the pool manager.



5.3 125

Algorithm 11: Master process in parallel B&C for the kHNDP.
Data: An undirected graph G = (V,E), the demand set D, a positive integers k ≥ 1 and

L ≥ 2

Result: The optimal solution of the kHNDP, or a lower and upper bounds of it.
begin

ZUB ← SH();
NBcons ← 0;
repeat

if NBcons > 0 then
SEND_CONSTRAINTS(dataout);

end
dataout, NBcons ← SOLV E();

until NBcons = 0;
if IS_FRACTIONAL(dataroot) then

PRIMAL_HEURISTIC(dataroot);
P 1
LF , P

+2
LF ← BRANCHING(dataroot) ;

INSERT (TB&B , P
1
LF );

INSERT (TB&B , P
2
LF );

end
while TB&B is not empty do

AFFECT_TASKS(TB&B);
RECIEV E_RESULTS(resultsin);
if IS_INTEGER(resultsin) then

if Z(resultsin) < ZUB then
ZUB ← Z(resultsin);

end
else

if Z(resultsin) ≤ ZUB then
solIk ←MAKE_INTEGER(resultsin);
if Z(solIk) < ZUB then

ZUB ← Z(solIk);
end
UPDATE(TB&B , ZLB , Z(solk));
BRANCH_AND_INSERT (TB&B , resultsin);

end
end
if ZUB = ZLB then

stop;
end

end
return (ZLB , ZUB);

end

In the slaves processes, each time the process has to solve the node LP , he sends a
request to the pool manager to check if his local constraints pool is up to date. If not,
the pool manager sends back the missing constraints (that has been separated by the
other processes).
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Algorithm 12: Slave process in parallel B&C for the kHNDP.
begin

while True do
datain ← RECIEV E_TASK();
if IS_END_MSG(datain) then

stop;
end
DECODE_BRANCHINGS_SET ();
NBcons ← 0;
repeat

if NBcons = 0 then
UPDATE_POOL(poollcons);

else
SEND_CONSTRAINTS(dataout);
UPDATE_POOL(poollcons);

end
dataout, NBcons ← SOLV E();

until NBcons = 0;
if IS_FRACTIONAL(dataout) then

PRIMAL_HEURISTIC(dataout);
BRANCHING(dataout) ;

end
SEND_RESULTS(dataout) ;

end
end

In order to decrease the amount of data to be sent, we assumed that the global
constraints pool (stored in the pool manager memory) and the local constraints pools
(stored in the slaves memories) are stored in the same order. This information allows
the pool manager process to know, at any time, the size of the pool of each slave
process, and therefore what are the constraints that are missing in his local pool. For
such an assumption to be true, each slave has to update his local constraints pool
before adding to it any new separated constraint. The algorithm is presented in what
follows.

At a manager/slave communication point of view, the constraints are coded into
2nz(Ci)+3 scalars (nz(i) gives the number of the non-zero coefficients in the constraint
i), representing in order:

• the number of integers that has been sent;

• nz(Ci) pairs of scalars of the form {ci, i} indicating the non-zero coefficient of
the variable of index i;
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Algorithm 13: Pool manager process in parallel B&C for the kHNDP.
begin

while True do
datain ← RECEIV E_REQUEST ();
if IS_END_MSG(datain) then

stop;
end
if IS_CLAIMANT_MSG(datain) then

SEND_CONSTRAINTS(datain, poolcons);
end
if IS_FEEDING_MSG(datain) then

SEND_CONSTRAINTS(datain, poolcons);
RECEIV E_CONSTRAINTS(datain, poolcons);

end
end

end

• a scalar that represent the comparing sign;

• a scalar related to the right hand side of the constraint.

Figure 5.8: B&C constraint coding in communication
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5.4 Experimental study

All the algorithms have been implemented in C++ and we have used CPLEX (12.6)
for solving the undirected flow formulation for the kHNDP. The experiments have been
conducted on a cluster composed of: 1 master machine equipped with an Intel Xeon
E5-2603 v3 processor at 6× 1.60 Ghz with 126 Gb of RAM, and 9 homogenous slaves.
Each slave is equipped with Inter Xeon E5-2630 v3 processor at 16× 2.40 Ghz with 48

Gb of RAM. All the machines are interconnected with a Gigabit Ethernet (GbE), and
are running under Linux. We have set the maximum CPU time to 5 hours.

We recall that the test problems were obtained by taking TSP test problems from
the TSPLIB library [2]. The test set consists in complete graphs whose edge weights
are the rounded Euclidean distance between the edge’s vertices. In addition, for each
instance, a set of |D| demand in the form {i, i + 1} is defined including the first 2|D|
nodes.

5.4.1 kHNDP solving study

In this section we present the computational experiments we have conducted for the
kHNDP with k = 3 and L = 3. The aim is to show the efficiency of our algorithms in
solving mid/large size instances of the kHNDP. We recall that our comparaison criteria
sorted in increasing order priorities are: the UB, the Gap, the CPU time.

To do this, we compare our distributed B&B to the best known method in the
literature for these instances, which is CPLEX as a parallel black-box solver (with its
inner parallelism) applied on the compact kHNDP flow formulation.

The entries of the tables are

|V |: number of nodes of the graph,
|D|: number of demands,
UB: best upper bound achieved by parallel B&B (resp. CPLEX),
LB: best lower bound achieved by parallel B&B (resp. CPLEX),
Gap: relative error between the best upper and lower bounds

achieved by parallel B&B (resp. CPLEX),
CPU: total CPU time in hours:min:sec achieved by

parallel B&B (resp. CPLEX).
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Notice that when CPLEX or our algorithm do not solve the linear relaxation of the
problem after the maximum CPU time (5 hours), the results are indicated with “–".

5.4.1.1 Parallel B&B results

Tables 5.1 give the results obtained by parallel B&B and CPLEX for the kHNDP with
k = 3 and L = 3 and instances with arbitrary demands.

From Table 5.1, we can see that when k = 3 and L = 3, CPLEX was able to solve
to optimality 5 instances over 28, while our parallel B&B was able to solve just 4
(instance berlin_30_d15 reached 8.1% after 5 hours). Also, our parallel B&B outper-
forms CPLEX in producing upper bounds for 16 instances over 28. For the others 5
instances where CPLEX produced better upper bounds, the solutions produced by our
algorithm were close (at most 11.21% higher) to those obtained by CPLEX relatively
to the other way around (CPLEX upper bounds which are 88.46% higher than the ones
produced by our algorithm). From the lower bounds point of view, both our parallel
B&B and CPLEX outperformed equally each other in producing better lower bounds
in 5 instances over 28. We also notice that our parallel B&B was able to produce an
upper bound for 4 instances while CPLEX fails to do so, even after 5 hours of CPU time.

5.4.1.2 Parallel B&C results

Tables 5.2 and 5.3 give the results obtained by parallel B&C and CPLEX for the
kHNDP with k = 3 and L = 3 and instances with arbitrary demands.

5.4.1.2.1 Flow formulation

From Table 5.2, we can see that for the kHNDP when k = 3 and L = 3, CPLEX
was able to solve to optimality 5 instances over 28, while our parallel B&C applied to
the flow formulation was able to solve just 4 (instance berlin_30_d15 reached 6.21%

after 5 hours). We notice that our parallel B&C outperforms CPLEX in producing
upper bounds for 15 instances over 28. For the others 6 instances where CPLEX
produced better upper bounds, the solutions produced by our algorithm were close
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Table 5.1: Results for parallel B&B and CPLEX for the kHNDP with k = 3 and L = 3.
Instances Parallel B&B CPLEX

name |V | |D| UB LB Gap CPU UB LB Gap CPU

berlin 10 3 3678 3678.0 0 0.1 3678 3678.0 0 0.2
berlin 10 5 6019 6019.0 0 0.1 6019 6019.0 0 0.4
berlin 30 10 10254 10254.0 0 128.9 10254 10254.0 0 16.9
berlin 30 15 13584 12484.0 8.1 18004.7 13246 13244.7 0.01 6474.7
berlin 52 10 9919 9919.0 0 142.7 9919 9919.0 0 22.9
berlin 52 20 17000 14615.0 14.03 18122.4 15658 14750.8 5.79 18036.2
berlin 52 26 21991 18059.0 17.88 18244.3 20115 18136.6 9.84 18000.1

st 70 15 1442 1126.7 21.87 18070.6 1309 1131.2 13.58 18000.1
st 70 26 2230 1616.0 27.53 18735.8 1980 1606.6 18.86 18000.2
st 70 35 3013 2150.1 28.64 18697.1 3242 2142.9 33.9 18000.3

kroA 100 20 60216 45021.5 25.23 18842.5 62296 44859.8 27.99 18000.2
kroA 100 35 111458 69284.6 37.84 18244.3 115973 69083.6 40.43 18001.2
kroA 100 50 150382 92923.4 38.21 18646.7 318353 92958.0 70.8 18000.7
kroA 150 30 101756 62173.6 38.9 18450.3 116442 62086.9 46.68 18001.1
kroA 150 50 150210 92781.1 38.23 18075.6 382754 92781.1 75.76 18000.8
kroA 150 75 214773 130849.0 39.08 18429.7 552137 130849.0 76.3 18001.0
kroA 200 40 118001 75495.4 36.02 18105.6 292715 75495.4 74.21 18001.1
kroA 200 75 218351 0.0 100 18965.3 582242 0.0 100 18002.8
kroA 200 100 278531 0.0 100 18916.0 742827 0.0 100 18007.5

lin 318 61 56355 0.0 100 18280.8 488647 0.0 100 18006.4
lin 318 111 103453 0.0 100 18378.9 750205 0.0 100 18113.2
lin 318 159 152861 0.0 100 18580.1 – – – –

pr 439 99 137614 0.0 100 18716.5 – – – –
pr 439 151 198714 0.0 100 18776.7 – – – –
pr 439 219 361513 0.0 100 18774.3 – – – –

rat 575 121 – – – – – – – –
rat 575 201 – – – – – – – –
rat 575 287 – – – – – – – –

(at most 10.37% higher) to those obtained by CPLEX relatively to the other way
around (CPLEX upper bounds which are 88.47% higher than the ones produced by
our algorithm). From the lower bounds point of view, both our parallel B&C and
CPLEX outperformed almost equally each other in producing better lower bounds in
6 (our algorithm) and 5 (CPLEX) instances over 28. We also notice that our parallel
B&C was able to produce an upper bound for 4 instances while CPLEX fails to do so,
even after 5 hours of CPU time.
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Table 5.2: Results for parallel B&C (flow formulation) and CPLEX for the kHNDP
with k = 3 and L = 3.

Instances Parallel B&C Flow CPLEX

name |V | |D| UB LB Gap CPU UB LB Gap CPU

berlin 10 3 3678 3678.0 0.00 0.1 3678 3678.0 0.00 0.2
berlin 10 5 6019 6019.0 0.00 0.2 6019 6019.0 0.00 0.4
berlin 30 10 10254 10254.0 0.00 217.6 10254 10254.0 0.00 16.9
berlin 30 15 13593 12748.4 6.21 18000.0 13246 13244.7 0.01 6474.7
berlin 52 10 9919 9919.0 0.00 1697.6 9919 9919.0 0.00 22.9
berlin 52 20 16659 14741.7 11.51 18000.0 15658 14750.8 5.79 18036.2
berlin 52 26 21563 18208.4 15.56 18000.0 20115 18136.6 9.84 18000.1
st 70 15 1433 1130.3 21.12 18000.0 1309 1131.2 13.58 18000.1
st 70 26 2209 1643.7 25.59 18000.0 1980 1606.6 18.86 18000.2
st 70 35 3013 2147.3 28.73 18000.0 3242 2142.9 33.90 18000.3
kroA 100 20 66216 44949.6 32.12 18000.0 62296 44859.8 27.99 18000.2
kroA 100 35 111458 69124.5 37.98 18000.0 115973 69083.6 40.43 18001.2
kroA 100 50 150382 92826.0 38.27 18000.0 318353 92958.0 70.80 18000.7
kroA 150 30 98775 61976.1 37.26 18000.0 116442 62086.9 46.68 18001.1
kroA 150 50 150210 92781.8 38.23 18000.0 382754 92781.1 75.76 18000.8
kroA 150 75 214773 130849.0 39.08 18000.0 552137 130849.0 76.30 18001.0
kroA 200 40 118001 75497.5 36.02 18000.0 292715 75495.4 74.21 18001.1
kroA 200 75 218351 0.0 100.00 18000.0 582242 0.0 100.00 18002.8
kroA 200 100 278531 0.0 100.00 18000.0 742827 0.0 100.00 18007.5
lin 318 61 56355 0.0 100.00 18000.0 488647 0.0 100.00 18006.4
lin 318 111 103453 0.0 100.00 18000.0 750205 0.0 100.00 18113.2
lin 318 159 152861 0.0 100.00 18000.0 – – – –
pr 439 99 137614 0.0 100.00 18000.0 – – – –
pr 439 151 198714 0.0 100.00 18000.0 – – – –
pr 439 219 361513 0.0 100.00 18000.0 – – – –
rat 575 121 – – – – – – – –
rat 575 121 – – – – – – – –
rat 575 121 – – – – – – – –

From Table 5.3 can see that our parallel B&C outperforms our parallel B&B in
producing upper bounds in 5 instances over 28 while parallel B&B outperforms parallel
B&C in just 2 cases. In terms of lower bounds we notice that parallel B&C produces
better lower bounds in 8 instances over the 28, and parallel B&B in 5. What is
interesting also to see is that the 8 instances in which parallel B&C produced better
lower bounds where in majority the small-middle range instances. This is quite logic
because our algorithm tends to explore more rapidly the search tree and thus is able to
produce more violated constraints that strengthen the linear relaxation of the problem.
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Table 5.3: Comparaison of parallel B&C (flow formulation), parallel B&B and CPLEX
for the kHNDP with k = 3 and L = 3.

Instances Parallel B&B Parallel B&C Flow CPLEX

name |V | |D| UB LB Gap UB LB Gap UB LB Gap

berlin 10 3 3678 3678.0 0.00 3678 3678.0 0.00 3678 3678.0 0.00
berlin 10 5 6019 6019.0 0.00 6019 6019.0 0.00 6019 6019.0 0.00
berlin 30 10 10254 10254.0 0.00 10254 10254.0 0.00 10254 10254.0 0.00
berlin 30 15 13584 12484.0 8.10 13593 12748.4 6.21 13246 13244.7 0.01
berlin 52 10 9918 9918.0 0.00 9919 9919.0 0.00 9919 9919.0 0.00
berlin 52 20 17000 14615.0 14.03 16659 14741.7 11.51 15658 14750.8 5.79
berlin 52 26 21991 18059.0 17.88 21563 18208.4 15.56 20115 18136.6 9.84
st 70 15 1442 1126.7 21.87 1433 1130.3 21.12 1309 1131.2 13.58
st 70 26 2230 1616.0 27.53 2209 1643.7 25.59 1980 1606.6 18.86
st 70 35 3013 2150.1 28.64 3013 2147.3 28.73 3242 2142.9 33.90
kroA 100 20 66216 45021.5 32.01 66216 44949.6 32.12 62296 44859.8 27.99
kroA 100 35 111458 69284.6 37.84 111458 69124.5 37.98 115973 69083.6 40.43
kroA 100 50 150382 92923.4 38.21 150382 92826.0 38.27 318353 92958.0 70.80
kroA 150 30 101756 62173.6 38.90 98775 61976.1 37.26 116442 62086.9 46.68
kroA 150 50 150210 92781.1 38.23 150210 92781.8 38.23 382754 92781.1 75.76
kroA 150 75 214773 130849.0 39.08 214773 130849.0 39.08 552137 130849.0 76.30
kroA 200 40 118001 75495.4 36.02 118001 75497.5 36.02 292715 75495.4 74.21
kroA 200 75 218351 0.0 100.00 218351 0.0 100.00 582242 0.0 100.00
kroA 200 100 278531 0.0 100.00 278531 0.0 100.00 742827 0.0 100.00
lin 318 61 56355 0.0 100.00 56355 0.0 100.00 488647 0.0 100.00
lin 318 111 103453 0.0 100.00 103453 0.0 100.00 750205 0.0 100.00
lin 318 159 152861 0.0 100.00 152861 0.0 100.00 – – –
pr 439 99 137614 0.0 100.00 137614 0.0 100.00 – – –
pr 439 151 198714 0.0 100.00 198714 0.0 100.00 – – –
pr 439 219 361513 0.0 100.00 361513 0.0 100.00 – – –
rat 575 121 – – – – – – – – –
rat 575 201 – – – – – – – – –
rat 575 287 – – – – – – – – –

Finally we can see easily that the limit of producing lower bounds of our parallel
B&C is the same as for CPLEX and parallel B&B. This is basically due to the fact
that our algorithm is based on CPLEX as linear solver, and the lack of memory limit
using this formulation is the same because we use the same initial number of variables
and constraints with CPLEX.

5.4.1.2.2 Natural formulation

Table 5.4 shows that for the kHNDP when k = 3 and L = 3, while CPLEX solved to
optimality 5 instances over 28, our parallel B&C applied to the natural formulation
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Table 5.4: Results for parallel B&C (natural formulation) and CPLEX for the kHNDP
with k = 3 and L = 3.

Instances Parallel B&C Natural CPLEX

name |V | |D| UB LB Gap CPU UB LB Gap CPU

berlin 10 3 3678 3678.0 0.00 0.0 3678 3678.0 0.00 0.2
berlin 10 5 6019 6019.0 0.00 0.3 6019 6019.0 0.00 0.4
berlin 30 10 10891 7141.0 34.43 18000.0 10254 10254.0 0.00 16.9
berlin 30 15 14264 9318.3 34.67 18000.0 13246 13244.7 0.01 6474.7
berlin 52 10 11376 6824.0 40.01 18000.0 9919 9919.0 0.00 22.9
berlin 52 20 17657 7835.7 55.62 18000.0 15658 14750.8 5.79 18036.2
berlin 52 26 23242 8076.5 65.25 18000.0 20115 18136.6 9.84 18000.1
st 70 15 1548 588.3 62.00 18000.0 1309 1131.2 13.58 18000.1
st 70 26 2298 844.3 63.26 18000.0 1980 1606.6 18.86 18000.2
st 70 35 3013 796.6 73.56 18000.0 3242 2142.9 33.90 18000.3
kroA 100 20 66216 18668.2 71.81 18000.0 62296 44859.8 27.99 18000.2
kroA 100 35 111458 28380.7 74.54 18000.0 115973 69083.6 40.43 18001.2
kroA 100 50 150382 35170.2 76.61 18000.0 318353 92958.0 70.80 18000.7
kroA 150 30 101756 23347.5 77.06 18000.0 116442 62086.9 46.68 18001.1
kroA 150 50 150210 31409.7 79.09 18000.0 382754 92781.1 75.76 18000.8
kroA 150 75 214773 55676.4 74.08 18000.0 552137 130849.0 76.30 18001.0
kroA 200 40 118001 31118.8 73.63 18000.0 292715 75495.4 74.21 18001.1
kroA 200 75 218351 44778.9 79.49 18000.0 582242 0.0 100.00 18002.8
kroA 200 100 278531 51515.9 81.50 18000.0 742827 0.0 100.00 18007.5
lin 318 61 56355 19341.2 65.68 18000.0 488647 0.0 100.00 18006.4
lin 318 111 103453 34216.4 66.93 18000.0 750205 0.0 100.00 18113.2
lin 318 159 152861 47923.4 68.65 18000.0 – – – –
pr 439 99 137704 49855.8 63.79 18000.0 – – – –
pr 439 151 198714 72979.2 63.27 18000.0 – – – –
pr 439 219 361513 110875.0 69.33 18000.0 – – – –
rat 575 121 9033 3421.8 62.12 18000.0 – – – –
rat 575 201 14750 5584.3 62.14 18000.0 – – – –
rat 575 287 20642 7943.7 61.52 18000.0 – – – –

was able to solve just 2. On the other hand, our parallel B&C outperforms CPLEX
in producing upper bounds in 18 instances over 28. For the others 10 instances where
CPLEX produced better upper bounds, the solutions produced by our algorithm were
close (at most 15.44% higher) to those obtained by CPLEX relatively to the other
way around (CPLEX upper bounds which are 88.47% higher than the ones produced
by our algorithm). From the gap point of view, both our parallel B&C and CPLEX
outperformed equally each other in producing lower gaps. In 13 cases CPLEX (resp.
parallel B&C applied to the natural formulation) over 28 produced better gaps than
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the ones produced by parallel B&C (resp. CPLEX). Moroever, we can easily verify
that the distrubution of the best gaps was uniform, for the smallest graphs CPLEX was
better and from the instance kroA_150_50, parallel B&C performed better. Finally,
we notice that parallel B&C was able to produced both a lower and upper bound for
the 11 largest instances that CPLEX with the flow formulation was not able to charge
to memory.

5.4.2 Parallel study

As said by Cung, Le Cun and Roucairol in [75] when talking about parallel computing
in combinatorial optimization: "Classical criteria such as acceleration (ratio of the time
of the best sequential algorithm to the time of the parallel algorithm) or effectiveness
(the acceleration on the number of processors used) are not well suited as performance
measures in the metaheuristics domain. Explorations carried out sequentially and in
parallel can indeed be different. Furthermore, solutions of different quality or even
structure can be found. This is the reason why authors have proposed comparing the
quality of solutions with fixed execution times, or comparing execution times with fixed
solution quality.", we have noticed the same problems during this experimental study
of our parallel combinatorial optimization algorithms. In fact, we were not able to
do a common parallelization study due to the facts that we could not compare our
intrinsic parallel implementation of the algorithms to the sequential versions, that for
the hardest input graphs we could not let our algorithms compute beyond our 5 hours
limit and that our main validation criteria is the kHNDP solving.

For these reasons, to show the impact of the parallelization on our algorithms com-
putation time, we first start by introducing new metrics that will be used to sim-
plify/clarify the study that follows:

5.4.2.1 Pseudo metrics

Consider a parallel algorithm PA to implement on a multiprocessor machine M made
up of p identical processors. Let Tp be the execution time of PA on the p processors
and Tmin the execution time on the minimum number of processors. We then define:

• the R_Speedup RSp = Tmin
Tp

• the R_Efficiency REp =
RSp
p

= Tmin
pTp
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The main difference between these metrics and the common ones (speedup and effi-
ciency) is that the common ones underlign the difference of using the parallelism with
p processors and the sequentiel version, while the new ones underlign the use of p2
processors instead of p1.

It is easy to see that the ideal R_acceleration is equal to p2/p1. If we consider this
function, the parallel algorithm is all the more efficient as the curve of variations is
close to the line of equation y = p2/p1. In this case we will speak of linear acceleration.
To have good accelerations, the extra cost of parallelization in computation time, and
especially in communication volume, must be minimum. It is also necessary to apply to
minimize the inactivity times of the processors due to an imbalance in the distribution
of the charges between the processors. In some cases, the latter may be inevitable, in
particular because of the inter-task precedences or the heterogeneity of the processors.

The R_efficiency of a parallel algorithm is generally less than 1 (or 100% if defined
as a percentage). The closer the efficiency is to 1, the better the algorithm has good
parallel qualities. The most important factor in decreasing efficiency is the cost of
communication.

5.4.2.2 Impact of parallelism on the B&B

In order to measure the impact of the parallelization in the parallel B&B, we have
considered the CPU time for our algorithm used for the kHNDP with k = 3 and
L = 3. We have used p = 2, 8, 16, 32, 64, 128 processors. The choice of these numbers
is due to the fact that each node of the cluster contains 16 cores and running the
algorithms with these numbers can help algorithm to take full advantage from the
architecture.

Notice that our minimum number of processors here is 2. In fact for p = 2 the
behavior of our algorithm is very similar to a sequential version due to the fact that
the two processes are necessary to the main algorithm to end, and in the same time
these two processes does not do any simultaneous computation. Figure 5.9 shows an
example of a run.

Tables 5.5, 5.6 and 5.7 below exhibit respectively the CPU time, the speedup and
the efficiency obtained for a subset of 7 test instances. The CPU computation time
presented corresponds to the mean of 5 runs CPU times.

Figures 5.10, 5.11 and 5.12 shows respectively the CPU time, the R_Speedup and
the R_Efficiency variation in function of p and the input graphs.
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Figure 5.9: Parallel B&B run example when p = 2

Table 5.5: CPU computation time for Parallel B&B with p variation
CPU time

name |V | |D|
p = 2 p = 8 p = 16 p = 32 p = 64 p = 128

st 70 5 9.06 2.43 5.38 5.07 5.78 5.15
berlin 52 5 28.72 6.40 4.93 4.13 4.04 3.79
berlin 52 7 34.42 4.82 4.79 3.92 4.53 4.47
berlin 30 7 45.32 5.40 3.38 2.12 1.43 1.61
st 70 7 473.75 61.01 53.47 44.09 28.63 19.85

berlin 52 10 4123.36 508.29 438.68 334.32 226.72 142.71
berlin 30 10 9530.88 1021.92 897.29 631.11 265.46 128.94

Table 5.5 and Figure 5.10 clearly show that the CPU time is decreasing when p =

2, 8, 16, 32, 64 and 128 for the graphs berlin52_5, st70_7, berlin52_10 and berlin30_10.
But for instances st70_5, berlin52_7 and berlin30_7 the CPU time decreases until
reaching a limit (resp. p = 8, p = 32 and p = 64) and increases after that.
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Figure 5.10: Parallel B&B CPU Time

Table 5.6: Parallel B&B R_Speedup results
R_Speedup

name |V | |D|
p = 8 p = 16 p = 32 p = 64 p = 128

st 70 5 3.74 1.68 1.79 1.57 1.76
berlin 52 5 4.49 5.83 6.96 7.12 7.58
berlin 52 7 7.14 7.19 8.79 7.60 7.70
berlin 30 7 8.39 13.40 21.35 31.62 28.19
st 70 7 7.76 8.86 10.75 16.55 23.86

berlin 52 10 8.11 9.40 12.33 18.19 28.89
berlin 30 10 9.33 10.62 15.10 35.90 73.92

Same remarks for the R_Speedup in Table 5.6 and Figure 5.11. We can easily see that
the R_Speedup is strictly increasing for the graphs berlin52_5, st70_7, berlin52_10

and berlin30_10. But increases for instances st70_5, berlin52_7 and berlin30_7 after
reaching the limits (resp. p = 8, p = 32 and p = 64). This can be due to the fact
that reaching a certain point of improvement for some graphs, the communication
cost (in a time point of view) becomes more important than the parallel computation
improvement which increases the total CPU time. What is good overall, is that this
time deterioration is decreasing for an increasing input graph size (' 3.5s for st70_5,
' 1s for berlin52_7 and ' 0.2s for berlin30_7).

What is interesting to see also is that the R_Speedup increases for the same value of
p but for instances that are more time consuming. Except for the instance berlin30_7

which produces higher unexpected superlinear R_Speedups. This behavior is common
in the use of parallel computing in combinatorial optimization. It can be due to the
fact that, for this instance, the structure of the B&B tree is scattered in a way that
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Figure 5.11: Parallel B&B R_Speedup

is explored more efficiently when the parallelism is used. In other words, evaluating
the tree nodes in parallel increases much more our chance to explore the right tree
branches and thus produce better bounds earlier.

Table 5.7: Parallel B&B R_Efficiency results
R_Efficiency

name |V | |D|
p = 8 p = 16 p = 32 p = 64 p = 128

st 70 5 0.47 0.11 0.06 0.02 0.01
berlin 52 5 0.56 0.36 0.22 0.11 0.06
berlin 52 7 0.89 0.45 0.27 0.12 0.06
berlin 30 7 1.05 0.84 0.67 0.49 0.22
st 70 7 0.97 0.55 0.34 0.26 0.19

berlin 52 10 1.01 0.59 0.39 0.28 0.23
berlin 30 10 1.17 0.66 0.47 0.56 0.58

In Table 5.7 and Figure 5.12, the R_Efficiency is strictly decreasing with p except for
berlin30_10 where it increases for p = 64, 128. We can notice that in three situations
we had R_E > 1 which can be due to the B&B tree structure. What is interesting
to see also is the increasing behavior of the R_Efficiency for the same number of
processors but increasing problem size (in terms of needed computation time). This
later remark shows the importance of using the parallel computing techniques to solve
large size problems.
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Figure 5.12: Parallel B&B R_Efficiency

5.4.2.3 Impact of parallelism on the B&C

As for the parallel B&B, to study the impact of parallelism on the B&C we consider
the CPU time for our algorithm applied to the flow formulation used for the kHNDP
with k = 3 and L = 3. We have used p = 3, 8, 16, 32, 64, 128 processors.

For this case, when p = 3 the behavior of our algorithm is very similar to a sequen-
tial version due to the fact that the three processes (master, slave and pool manager
process) does not do any simultaneous computation. Figure 5.13 shows an example of
a run.

Tables 5.8, 5.9 and 5.10 below exhibit respectively the CPU time, the speedup and
the efficiency obtained for a subset of 7 test instances. The CPU computation time
presented corresponds to the mean of 5 runs CPU times.

Figures 5.14, 5.15 and 5.16 shows respectively the CPU time, the R_Speedup and
the R_Efficiency variation in function of p and the input graphs.

Table 5.8 and Figure 5.14 show that the CPU time is decreasing when p = 3, 8, 16, 32, 64

and 128 for all graphs except for st70_5. In fact for this instance, which is the easiest
to solve for the kHNDP when k = 3 and L = 3, the CPU time decreases until reaching
a limit (when p = 8) and increases after that.

The major point to raise, from these results, is that for instances berlin30_10,
berlin52_10 and st70_7, which are the hardest to solve, the algorithm was not able to
solve them to optimality unless we increase our parallelism. In fact, for berlin30_10

and p = 3, 8 (resp. berlin52_10, p = 3, 8 and st70_7, p = 3, 8, 16, 32) the CPU time
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Figure 5.13: Parallel B&C run example when p = 3

Table 5.8: CPU computation time for Parallel B&C with p variation
CPU time

name |V | |D|
p = 3 p = 8 p = 16 p = 32 p = 64 p = 128

st 70 5 22.34 5.09 6.04 7.08 6.85 7.10
berlin 52 7 147.89 11.82 10.74 8.18 5.84 5.13
berlin 30 7 335.52 52.99 35.71 23.18 12.05 5.94
berlin 52 5 695.20 107.05 73.60 41.34 21.87 9.21

berlin 30 10 18000.00 18000.00 2416.19 737.75 376.19 203.82
berlin 52 10 18000.00 18000.00 16219.19 7613.17 3929.98 2074.82
st 70 7 18000.00 18000.00 18000.00 18000.00 13405.19 8055.64

reached the limit of 5 hours of calculation, and the algorithm was stopped, while for
a greater number of processors the algorithms solved the instance to optimality. This
result is very satisfying since our first validation criteria is the kHNDP solving.

In Figure 5.14, we splitted the results into two graphics to show that for the first
set of the tables the CPU Time was strictly decreasing, while in the second the time
starts to increase just when we use enough processors to allow the algorithm to solve
the instance to optimality.
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Figure 5.14: Parallel B&C CPU Time

Notice that since the algorithms were stopped after 5 hours of calculation for some
values of p and specially for p = 3 on which the values of R_Speedup and R_Efficiency
are based, we will not base our study on them for these instances. We just keep them
in the tables in case the reader would be interested to see them but we think that
they are not precise enough to let us study the algorithm’s behavior. In consequence,
our R_Speedup and R_Efficiency study will be based on the results for the 4 firsts
instances that are st70_5, berlin52_7, berlin30_7, berlin52_5.

Table 5.9: Parallel B&C R_speedup results
R_Speedup

name |V | |D|
p = 8 p = 16 p = 32 p = 64 p = 128

st 70 5 4.38 3.70 3.15 3.26 3.15
berlin 52 7 12.51 13.77 18.08 25.34 28.81
berlin 30 7 6.33 9.39 14.47 27.84 56.50
berlin 52 5 6.49 9.45 16.82 31.79 75.49

berlin 30 10 1.00 7.45 24.40 47.85 88.31
berlin 52 10 1.00 1.11 2.36 4.58 8.68
st 70 7 1.00 1.00 1.00 1.34 2.23

For the R_Speedup in Table 5.9 and Figure 5.15 we notice the same remarks that
was seen for the CPU time. We can easily see that the R_Speedup is strictly increasing
for all the graphs of the first set with p. But deccreases for instances st70_5 for p > 8.
What is interesting to see also is that R_Speedup increases for the same value of p
but for instances that are more time consuming. Except for the instance berlin52_7

which produces unexpected (and even superlinear for p = 8) higher R_Speedups. This
behavior could be due to the same reason that we presented in Section 5.4.2.2. In fact,
for this instance, the structure of the B&C tree is probably scattered in a way that
the algorithm explores it more efficiently when the parallelism is used. In other words,
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Figure 5.15: Parallel B&C R_Speedup

evaluating the tree nodes in parallel increases much more our chance to explore the
right tree branches and then produce better bounds earlier.

Table 5.10: Parallel B&C R_Efficiency results
R_Efficiency

name |V | |D|
p = 8 p = 16 p = 32 p = 64 p = 128

st 70 5 0.55 0.23 0.10 0.05 0.02
berlin 52 7 1.56 0.86 0.57 0.40 0.23
berlin 30 7 0.79 0.59 0.45 0.44 0.44
berlin 52 5 0.81 0.59 0.53 0.50 0.59

berlin 30 10 0.13 0.47 0.76 0.75 0.69
berlin 52 10 0.13 0.07 0.07 0.07 0.07
st 70 7 0.13 0.06 0.03 0.02 0.02

In Table 5.7 and Figure 5.16, the R_Efficiency is strictly decreasing except for
berlin52_5 where it increases for p = 128. We can notice that in one situation we
had R_E > 1 which is related to the superlinear R_Speedup. It is interesting to see
also that R_E is strictly increasing when we fix the number of processors but increase
the problem size (in terms of needed computation time). This later remark shows the
importance of using the parallel computing techniques to solve large size problems.
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Figure 5.16: Parallel B&C R_Efficiency

5.5 Conclusion

We studied in this chapter the k-edge connected Hop-constrained Network Design
Problem (kHNDP) aiming optimal resolution. We presented two distributed exact
algorithms: a distributed Branch-and-Bound and a distributed Branch-and-Cut. We
presented after that, an experimental study in which we compare our algorithms to
CPLEX that shows that even if CPLEX is still the best solving method for small
graphs, our parallel Branch-and-Cut applied to the flow formulation is the best for mid-
range size graphs and our parallel Branch-and-Cut applied to the natural formulation
is the method to use for large ones.





Conclusion

In this dissertation, we have studied the parallelization of hybrid metaheuristics for net-
work design problems. In a first step, we have proposed two hybrid parallel algorithms
for solving the Steiner k-Connected Network Design Problem (SkESNDP), and the k-
Edge-Connected Hop-Constrained Survivable Network Design Problem (kHNDP) when
L = 2, 3. We have extended this work after that for the k-Edge-Connected Survivable
Network Design (kESNDP) and the k-Edge-Connected Hop-Constrained Survivable
Network Design Problem (kHNDP) when L ≥ 2. The algorithms are based on a La-
grangian relaxation algorithm, a genetic algorithm and a greedy algorithm, and aims
in producing both lower and upper bounds. The experiments conducted have shown
that our hybrid algorithm outperforms CPLEX in producing good feasible solutions,
even for large size instances, and this within a relatively short CPU time. They have
also shown that the hybridization of the three components outperforms, in most cases,
each component taken separately. Finally, we have shown that using several processors
inside each component of the hybrid algorithm helps in decreasing the CPU time for
each component.

The parallel computing framework we have proposed is generic and can be applied
to all the network design problems, and not only, which has the same block structure
as the problems studied. Also, the implementation we have proposed is quite simple
and can be easily adapted to other problems. For example, in the parallel hybrid al-
gorithm, one can replace the genetic algorithm by any population-based metaheuritic,
and obtain an identical framework.

It should be noticed that our algorithm PHA is heuristic, and contrarily to many
heuristics, is able to produce both upper and lower bounds of the optimal solution.
This can give an indication on the quality of the feasible solution obtained, in particular
when the gap between the lower and upper bounds is small. Indeed, a very small gap
(0% in the better case) implies that the solution is close to the optimal solution. We
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can observe that in all our experiments, that the gaps between the lower and upper
bounds are quite large (more than 40% for most of the instances). Thus, it would
be interesting to further investigate a way of producing better lower bounds in order
to know how close the solutions produced by algorithm PHA are from the optimal
solution.

In the last Chapter we have presented new distributed implementations of the well
known branch-and-bound and branch-and-cut algorithms. For that we started by in-
troducing a state of the art about the parallelization studies of the Branch-and-Bound
and the Branch-and-Cut methods. We have also presented two parallel algorithms
based on the Branch-and-Bound and the Branch-and-Cut. Finally we have validate
our algorithms by showing the experimental study we have conducted on a cluster of
128 processors for solving the kHNDP when k = 3 and L = 3. These experimenta-
tions showed an interesting speedup obtained by running our algorithms on the 128
cores, and through this parallelisation we was able to solve large scale instances for the
kHNDP and produce better gaps for instances with ' 500 nodes and ' 300 demands.

What we could observe that in all our experiments, that the gaps between the lower
and upper bounds for large scale instances were quite large (more than 40% for most of
the instances). Thus, it would be interesting to further investigate a way of producing
better lower bounds in order to know how close the solutions produced by algorithms
are to the optimal solution.

Finally it would also be interesting to further investigate the parallelization of algo-
rithms and the use of more sophisticated architectures, like GPUs.
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Résumé 

Mots Clés 

Abstract 

Keywords 

Dans cette thèse, nous considérons la classe
POC des problèmes de conception d'un réseau
fiable. Nous présentons un algorithme hybride
parallèle d'approximation basé sur un algorithme
glouton, un algorithme de relaxation
Lagrangienne et un algorithme génétique, qui
produit des bornes inférieure et supérieure pour
les formulations à base de flows.

Afin de valider l'approche proposée, une série
d'expérimentations est menée sur deux
applications: le Problème de conception d'un
réseau k-arête-connexe avec contrainte de
borne (kHNDP) et le problème de conception
d'un réseau fiable k-arête-connexe (kESNDP).
L'étude expérimentale de la parallélisation est
présentée après cela.

Dans la dernière partie de ce travail, nous
présentons deux algorithmes parallèles exacts:
un Branch-and-Bound distribué et un
Branch-and-Cut distribué. Une série
d'expérimentations a été menée sur une grappe
de 128 processeurs, et des accélérations
intéressantes ont été atteintes pour la résolution
du problèmes kHNDP avec k = 3 et L = 3.

In this thesis we consider the COP class of
Survivability Network Design Problems. We
present an approximation parallel hybrid
algorithm based on a greedy algorithm, a
Lagrangian relaxation algorithm and a genetic
algorithm which produces both lower  and upper
bounds for flow-based formulations.

In order to validate the approach proposed, a
series of experiments is condusted on two
applications: the k-Edge-Connected
Hop-Constrained Network Design Problem
(kHNDP) and the k-Edge-Connected
Survivability Network Design Problem
(kESNDP). The parallelization experimental
study is presented after that.

In the last part of this work, we present two
parallel exact algorithms: a distributed
Branch-and-Bound and a distributed
Branch-and-Cut. A series of experiments has
been made on a cluster of 128 processors and
interesting speedups has been reached in
kHNDP resolution when k=3 and L=3.

Algorithme de Branch-and-bound, algorithme de
Branch-and-cut, calcul parallèle, conception de
réseau,  hybridation, métaheuristique,
optimisation combinatoire.

Branch-and-Bound, Branch-and-Cut,
Combinatorial optimization, hybridization,
metaheuristic, network design, parallel
computing.
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