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Figure 1 : Distribution des récifs coralliens. Source : Bryant et al., 1998.
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Tableau 1 : Diversité des coraux constructeurs de récifs. Modifié du site outremer.mnhn.fr 

Figure 2 : Le Triangle de Corail abritant la plus forte diversité de madrépores. Source : outremer.mnhn.fr
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Figure 3 : Bilan radiatif de la Terre. 

Source : calipsooutreach.hamptonu.edu.
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Figure 4 : Schématisation du cycle biogéochimique permettant la production de 

DMSP et de DMS et des groupes fonctionnels intervenant dans le cycle (couleur). 

Vert : Phytoplancton, Bleu : Zooplancton, Rouge : Bactéries, Noir : facteurs 
abiotiques. CCN : cloud-condensation nuclei, DOM : dissolved organic material, 

MeSH : methanethiol, MPA : mercaptopropionate, MMPA : 

methylmercaptopropionate, MSA : methanesulphonic acid. 

Source : Stefels et al., 2007. 
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Figure 5 : Les oiseaux marins détectent le 

DMS. Source : Espèces n°15. 
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Figure 6 : Blanchissement d’une même branche de Pocillopora damicornis. 

A : Tissus zooxanthellés. B : Tissus azooxanthellés. Echelle = 0.5 cm

A B 

Figure 7 : Rupture de la symbiose algue-corail. A : 

Fixation du carbone inorganique dissous et 

production de photosynthétats grâce à l'activité 

photosynthétique des zooxanthelles. B : 

Perturbation de la photosynthèse impactant 

l’autotrophie. Induction d’un stress oxydatif 

conduisant à l’expulsion des zooxanthelles et au 

phénomène de bleaching. 

Source : Wooldridge et al., 2012.
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Figure 8 : Evolution des concentrations en dioxyde de carbone en 

Antartique et à Hawaï. Source : rac-f.org.
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Figure 9 : Influence de la bathymétrie sur la dissolution du 

carbonate de calcium dans les différents bassins océaniques. 

Source : Feely et al., 2004.
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Figure 10 : Prédation d'Acanthaster planci. 
Source : ird.fr
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Figure 11 : Description d'Halofolliculina corallasia 
responsable de l'érosion squelettique. 

Source : Antonius et Lipscomb, 2000.
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Figure 12 : Recensement des maladies touchant les Scléractiniaires de Floride et des Caraïbes. 

Source : Hayes et Goreau, 1998.
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Figure 13 : Microplastique retrouvé dans les 

mésentéries de Dipsastrea pallida. 

Source : Hall et al., 2015.
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Figure 14 : Interactions entre les écosystèmes. Source : Moberg et Folk, 1999.
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Tableau 2 : Valeur économique des récifs coralliens. Source : Hoegh-Guldberg, 1999.

Figure 15 : Relations entre les intérêts politico-économiques, sociaux et environnementaux fournis par l'écosystème 

récifal. 

Source : De Groot et al., 2002.
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Figure 16 : Prinicpaux composés bio-actifs produits par les invertébrés marins. 

Source : Datta et al., 2015. 
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Figure 17 : Evolution temporelle de la couverture récifale à l’échelle globale. 

Source : GEO-EXTRA, Août-Octobre 2015.
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Figure 18 : Principales menaces anthropiques sur l'écosystème récifal. 

Source : Bryant et al., 1998.

Figure 19 : Menaces naturelles et anthropiques sur l'écosystème corallien.
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Figure 20 : Nucléation homogène de la molécule d’eau en 

fonction des conditions thermique et barométriques. 

Source : Debenedetti, 2003. 
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Figure 21 : Organisation des liaisons 

hydrogène entre les molécules d'eau de la 

phase liquide (a) à la phase cristalline (d) et 

(e). Le cercle jaune (b) indique une amorce 

nucléique. La configuration hexagonale est 

bien visible en (d) et (e). 

Source : Matsumoto et al., 2002.
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Figure 22 : Les températures rencontrées en cryoconservation. 

Source : Morris, 1981.
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Figure 23 : Détails des cryoprotecteurs pénétrants et non pénétrants les plus couramment utilisés.
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Figure 24 : Production photosynthétique nécessaire à la production de glycérol chez deux clades de Symbiodinium sp. 

Source : Suescun-Bolivar et al., 2012. 
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Tableau 3 : Excrétion osidique par les Symbiodinium sp.  hébergés dans trois espèces de Scléractiniaires. 

Source : Hagedorn et al., 2015.
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Figure 25 : Différences de productions des MAA entre quatre Scléractiniaires 14 

jours après incubation à 27°C (Test : +UV ; Témoin : -UV). 1 : Palythine-serine-
sulfate ; 2 : Mycosporine-glycine ; 3 : Shinorine ; 4 : Porphyra-334 ; 5 : Palythine ou 

Palythine-serine ; 6 : Mycosporine-NMA:serine ; 7 : Usujirene ; 8 : Palythene. 
Source : Ferrier-Pagès et al., 2007.

Figure 26 : Formules développées des mycosporines et des acides aminés de type mycosporine. 
Source : Oren et Gunde-Cimerman, 2007.



109 | P a g e  
 

Figure 27 : Production de DMSP chez Emiliania huxleyi en 

fonction de la température et de l'irradiance. 

Source : Stefels et al., 2007.
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Tableau 4 : Concentrations en DMSP chez 6 espèces d'Anthozoaires et 4 cultures de zooxanthellae provenant de la 

Grande Barrière de Corail. 

Source : Broadbent et al., 2002.
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Figure 28 : Classification de Pocillopora damicornis selon les critères ontogénétiques. 

Source : D'après la classification phylogénétique simplifiée de Lecointre et Guyader (2001).
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Figure 29 : Caractérisation des quatre classes des Cnidaires en 

fonction des stades libres et fixés. 

Source : Galliot, 2000. 



116 | P a g e  
 



117 | P a g e  
 



118 | P a g e  
 



119 | P a g e  
 

Figure 30 : Exemple de classification de Madréporaires élaborée à partir des éléments radiaires. 

Source : Beauvais, 1980.
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Figure 31 : Arbre phylogénétique construit à partir des données transcriptomiques illustrant les distances entre les 

familles de Scléractinaires dites complexes ou robustes, confrontées à un environnement stressant (méthode de 

parcimonie). 

Source : Traylor-Knowles et al., 2011. 

 

Figure 32 : Colonie de Pocillopora damicornis.
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Figure 33 : Schéma d'organisation d'un polype de Scléractiniaires 

coloniaux. 

Source : Grassé et al., 1987.
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Figure 34 :  Disposition céroïde (A) et 

plocoïde (B) des calices de Pocillopora 
damicornis.



123 | P a g e  
 

Figure 36 : Organisation des cristaux dans le squelette de Porites lutea. 
A : Structures cristallines rayonantes ou sphérulitiques. B : Croissance et 

évolution de la forme des cristaux (i) cubique, (ii) tabulaire, (iii) dendritique, 

(iv) sphérulitique grossier, (v) sphérulitique fin. 

Source : Cohen et McConnaughey, 2003.

Figure 35 : Elements calcaires constituant la corallite. 

Source : Sorauf, 1972.
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Figure 37 : Représentation schématique des cycles 

septaux d'un polype de Scléractiniaire. 

Source : Grassé et al., 1987. 
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Figure 39 : Différences de calcification des polypes de Scléractiniaires. 

Source : Goreau, 1959.

Figure 38 : Taux de calcification en fonction de la région 

squelettique d'Acropora cervicornis. 

Source : Goreau et Goreau, 1959.
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Figure 40 : Polypes de Pocillopora damicornis. 

A : Profil latéral du polype. Son disque oral est 

prolongé par 12 tentacules et les mésentéroïdes 

externes sont bien visibles sur la colonne 

murale. B : Vue apicale du disque oral divisé par 

les 12 tentacules et ouvert au centre par 

l’orifice bucco-anal.
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Figure 41 : Observations par SEM.  A : Tentacules 

balayants d’Erythropodium sp. B : Acrosphère chargé 

d’isorhizes holotriques. Echelle = 10 µm. 

Source : Kass-Simon et Scappaticci, 2002. 
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Figure 42 : Observations des acrosphères à l'extrémité des tentacules des polypes de Pocillopora damicornis. A : 

Coloration blanche caractéristique des acrosphères. B : Autofluorescence des acrosphères. C : Acrosphères en défense 

avec la rétractation du polype. D : Transparence des tentacules et opacité des acrosphères chargés d’isorhizes.
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Figure 44 : Filaments mésentériques hors 

de la cavité gastrique de deux polypes de 

Pocillopora damicornis.

Figure 43 : Fente buccale d'un polype de 

Pocillopora damicornis. 
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Figure 45 : Représentation schématique de l'organisation tissulaire chez 

Pocillopora damicornis. Cn : cnidocyte ; NA : nucleus cellule animale ; NV : 

nucleus zooxanthelles ; CL : chloroplaste ; PY: pyrénoïde. Echelle : 5 m. 

Source : Allemand et al., 2011.
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Figure 46 : Identification des Cnidocytes. Source : 
Östman, 2000.
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Figure 47 : Symbiose entre le corail et les bactéries dans le 

mucus. 

Source : Brown et Bythell, 2005.
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Figure 48 : Les différentes étapes du microbouturage au traitement cryoprotecteur. 

A : Acclimatation des branches de Pocillopora damicornis, B : Microbouturage des apex, C : Mise en 

culture des apex isolés, D : Exposition des apex aux solutions cryoprotectrices, E et F : Suivi post-

traitement.
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a b s t r a c t

In this study, we investigated the tolerance of Pocillopora damicornis apexes to treatments with solutions
containing penetrating and non-penetrating cryoprotective agents (CPAs). CPAs were employed individ-
ually or in binary, tertiary or quaternary solutions. In some experiments apexes were treated successively
with two CPA solutions with increasing total concentration. P. damicornis apexes withstood exposure for
up to 30 min to solutions containing 0.6–0.8 M sucrose (Suc) or trehalose (Tre). When apexes were trea-
ted with binary cryoprotectant solutions containing Suc and ethylene glycol (EG), methanol (Meth),
dimethyl sulfoxide (Me2SO) or glycerol (Gly), the CPAs employed in combination with Suc could be
ranked in the following order of decreasing tolerance: EG > Meth > Me2SO > Gly. P. damicornis apexes tol-
erated exposure to complex CPA solutions containing Suc, Me2SO, EG and/or Meth with a total molarity of
2.45 M. In experiments where two successive CPA solutions were employed, apexes withstood treatment
with the second, more concentrated solution at 0 °C for up to 10 min. These preliminary results pave the
way to the development of a cryopreservation protocol for P. damicornis apexes.

Ó 2014 Elsevier Inc. All rights reserved.

Introduction

During the 12th International Coral Reef Symposium in Cairns,
Australia, an emergency call was launched by the scientific com-
munity, aiming at urgently safeguarding coral ecosystems. Indeed,
human activities such as pollution (pesticides, herbicides, fertiliz-
ers, oils), ore mining, degradations, sampling, over-fishing, tourism
and natural aggressions including storms, earthquakes, predation
from the crown-of-thorns starfish (COTS) Acanthaster planci, global
warming and ocean acidification have led to an important reduc-
tion of the world’s coral cover [5,9,23]. This loss of coral abundance
has also had a negative impact on vertebrate and invertebrate spe-
cies restricted to coral ecosystems. Corals constitute food zones,
refuges, reproduction areas and nurseries for numerous marine
species [14,25,27]. For local human populations, coral reefs have
a high socio-economic importance and they also provide a natural
protection against insular erosion.

The inclusion, in 1981, of the Great Coral Reef in the UNESCO
World Heritage raised awareness of human populations on the

fragility of coral reefs. However, the measures taken to date to pro-
tect and restore coral ecosystems have proved insufficient to stop
reef degradation, which still takes place at an alarming rate, thus
threatening the sustainability of coral ecosystems [23,31,32].

Cryopreservation provides a safe and cost-effective option for
long-term conservation of animal, plant and micro-organism
biodiversity [12,22]. For marine invertebrate organisms, cryopres-
ervation was first employed to manage the production of commer-
cially important Mollusc and Arthropod species, using larvae and
reproduction products [11,33,48]. In a second stage, it was targeted
towards marine biodiversity conservation purposes and was ap-
plied to various Sponge, Echinoderm and Arthropod species
[33,47]. Compared to other phyla of marine invertebrates, cryo-
preservation of biological forms of Anthozoa species has been little
studied.

For a cryopreservation protocol to be successful, the parameters
of all its successive steps including conditioning of explants, appli-
cation of cryoprotective agents (CPAs), cooling and warming rates,
removal of CPAs, must be optimised. Another parameter of para-
mount importance is the selection of the developmental stage of
the organisms to be cryopreserved [6,12,34,47].

A broad range of CPAs, including penetrating and non-pene-
trating molecules, are available for cryopreservation. In
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cryopreservation studies of marine invertebrates, permeating
CPAs such as glycerol (Gly), dimethyl sulfoxide (Me2SO) and pro-
pylene glycol (PG) have been the most commonly employed
[33,45,47]. These compounds can be used separately [2,38] or in
combination with non permeating CPAs including sugars such
as trehalose (Tre) and glucose [1,24,29,35,37] or Heat Inactivated
Fetal Bovine Serum (HI-FBS) [19].

In most cases, gametes, embryos and larvae from marine inver-
tebrates have been cryopreserved using a slow cooling procedure
[33,45]. However, some authors suggested using the vitrification
technique for cryopreservation of sensitive species [15,21]. This
technique requires high concentrations of CPAs (up to 7 M) to in-
duce the vitrification (formation of an amorphous glassy state) of
intracellular solutes during cooling of explants. A vitrification pro-
cedure comprises the following successive steps. During the first
step, termed loading treatment, partial cell dehydration is induced
by exposing cells to a moderately concentrated CPA solution, the
loading solution (LS). The application of a concentrated vitrification
solution (VS) is the second step of the protocol. Exposure of ex-
plants to VSs leads to the removal of most or all intracellular crys-
tallisable water. As a result, intracellular vitrification is achieved
during rapid cooling of explants in liquid nitrogen (LN). After rapid
rewarming, explants are partially rehydrated in an unloading solu-
tion (ULS), which contains an intermediate CPA concentration, be-
fore their transfer to standard culture conditions.

The first report of successful cryopreservation for corals was
published by Franks et al. [13] who froze dissociated cells from
10 Anthozoan taxa. Two cryoprotectant solutions were used in this
work, including a combination of 80% phosphate buffered saline
(PBS adjusted to the pH of the seawater) with 2.5 M Me2SO and a
mixture of 80% Leibovitz cell medium (L15), 10% HIFBS and 1 M
Gly. Cells suspended in the CPA medium were placed for 2 h at
4 °C, transferred at ÿ70 °C for 24 h and then immersed in LN. After
rewarming, cells were resuspended in culture medium according
to Franks et al. (1994) and their proliferation started within 7 days.

More recently, Hagedorn et al. [18,19] cryopreserved sperm
cells of Fungia scutaria, Acropora tenuis, Acropora palmata and Acro-

pora milleopora and dissociated embryonic cells of F. scutaria, A.
tenuis and Acropora millepora using a slow cooling protocol. With
F. scutaria and A. palmata sperm cells, the highest survival was
achieved using a CPA solution containing 1.5 M Me2SO and cooling
rates of 20–30 °C/min [18]. The same protocol was used for A. ten-
uis sperm cells with an exposure to 1.5 M Me2SO for 20 min before
cooling (18 °C/min from 25 to ÿ80 °C) [19]. The highest post-
rewarming viability of F. scutaria embryonic cells was obtained fol-
lowing treatment with 1.5 M Me2SO for 20 min and cooling at
0.5 °C/min. For A. tenuis and A. millepora, embryonic cells were ex-
posed to 1.5 M Me2SO with 1% Bovine Serum Albumin (BSA) for
20 min and then cooled at 0.5 °C/min from 25 to ÿ80 °C [18,19].
Samples were rewarmed at 30 °C.

In case of Pocillopora damicornis, preliminary studies have been
performed using planulae and nubbins [15–17]. These studies eval-
uated the toxicity of CPA solutions, the protective effect of CPA
solutions against chilling and the chilling sensitivity of zooxanthel-
lae. Symbionts appeared very sensitive to cryopreservation, which
may increase the difficulty to cryopreserve coral planulae. Slow
cooling (0.1–4 °C/min) was not efficient for cryopreservation of P.
damicornis and F. scutaria larvae. Using the vitrification technique
may therefore offer an interesting alternative [16].

In this study, we investigated the tolerance of P. damicornis

apexes to exposure to solutions containing mixtures of penetrating
and non-penetrating CPAs, which have been employed for cryo-
preservation of plant [12] and animal [34] tissues and organs.
Apexes were chosen for the following reasons: they could be easily
and regularly sampled from coral branches raised in captivity, thus
avoiding the dependence on random production of reproductive

material; apexes represented an homogeneous material in terms
of size, developmental stage and genetic makeup; finally, apexes
could regrow directly after the treatments, without passing
through a larval settlement stage. After exposure to the different
CPA solutions, apex survival was evaluated by polyp redeployment,
tissue necrosis and expulsion of zooxanthellae.

Materials and methods

Biological material

Experiments were performed using the Scleractinian species P.

damicornis (Linaeus 1758) from Océanopolis, Brest Aquarium,
France (branches resulting from spontaneous reproduction on
CITES n IOX 01448/01450). The colonies were stalled for 2 months
before the start of experiments at the Oceanological Observatory
Arago, Pierre and Marie Curie University, Banyuls/mer, France.

Branch tips were cut in small fragments (maximal length: 0.5–
1.0 cm) with a scalpel blade (cleaned with 96% alcohol) and im-
mersed in Artificial Sea Water (ASW: temperature 25 °C, salinity:
35, pH: 8.4). The size of apexes was selected to allow their intro-
duction in 2 ml cryovials. Apexes were placed equidistantly in
square sterile plastic Petri dishes (N = 16 apexes/Petri dish) to
avoid disrupting healing of apexes. To prevent their adhesion on
the Petri dishes, these small coral pieces were moved weekly and
the plastic dishes were cleaned. Apexes were maintained in these
conditions for 2–3 weeks prior to trials to allow tissue colonisation
on the exposed skeleton and fresh cuts [43]. Only healthy apexes
were used for experiments.

Captivity conditions

Corals branches and apexes were maintained in the same cul-
ture conditions (water temperature: 25 °C; salinity: 35; pH 8.3;
water exchange rate: 90 L/week) in a 230 L aquarium with ASW
mixed with osmolated water (Reef Crystal salt, Aquarium System
label; Ca: 450 ppm; Mg: 1300 ppm; KH � 7). Corals were illumi-
nated with a constant irradiance of 170 lmol mÿ2 sÿ1 with two
10,000 K metal halide lamps (VENTUREÒLIGHTING, 250 W) with
a 12 h light: 12 h dark photoperiod and a natural radiance from
windows in the roof. The aquarium filter system was composed
of a biological filter, UV-C 11W clarifier (BOYUÒ) to sterilise the
water and a protein skimmer (Aquarium systems NEWA400).
Water circulation was maintained with two circulation pumps
(Aquarium systems NEWA2000 – 2200 L/h). On a daily basis, a
large quantity of Artemia salina (EG type) nauplii was distributed
to corals and apexes to ensure a permanent state of satiety.

Treatments with cryoprotectant solutions

Apexes were treated with different CPA solutions following var-
ious experimental procedures (see below – Experiments 1–6). Bio-
logical samples (N = 16 apexes/experimental condition) were
placed in a sterile plastic Petri dish and washed several times with
ASW. Apexes were placed in a 200 lm cell-straining basket to facil-
itate their manipulation. After treatment with a CPA solution,
apexes were drained on absorbent paper to eliminate any remain-
ing solution. Apexes were rinsed five times for 1 min each with
ASW (25 °C – Salinity: 35), then placed equidistantly on a new ster-
ile Petri dish. Apexes were maintained for 48 h in a 2 L ASW aquar-
ium at 25 °C. During stalling, apexes were not illuminated to avoid
stressing the animals and to prevent coral bleaching [39].
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Experimental solutions

In our experiments, CPAs were employed individually or in bin-
ary, tertiary or quaternary solutions. The following CPAs were
used: sucrose (Suc) (D (+) – Saccharose, VWR, AnalaR NORMAPUR),
trehalose (Tre) (D (+) – Trehalose dihydrate Biochemica, Appli-
Chem), dimethyl sulfoxide (Me2SO) (VWR, Analytical reagent, As-
say: 99.7%), methanol (Meth) (SIGMA–ALDRICH, ACS-reagent,
Assay: 99.8%), ethylene glycol (EG) (VWR, AnalaR NORMAPUR, As-
say: 100%) and glycerol (Gly) (CARLO ERBA, ACS-For Analysis, As-
say: 99.5%). CPA stock solutions were diluted by adding ASW
(pH: 8.4) to obtain the final concentrations tested in each
experiment.

Experiment 1

In this experiment, apexes were exposed to CPA solutions con-
taining 0.6–1.2 M Suc or Tre for 15–60 min at room temperature
(22 °C).

Experiment 2

In this experiment, apexes were exposed for 20, 30, 45 or
60 min to CPA solutions containing 1.0 or 1.5 M Me2SO, Meth, EG
or Gly + 0.5 M Suc or 2 M Me2SO, Meth, EG or Gly + 0.4 M Suc at
room temperature (22 °C). Apexes were then transferred to a
0.6 M Suc solution for 20 min before rinsing in ASW as described
above.

Experiment 3

In this experiment, apexes were treated for 20 min with a CPA
solution M1–M10 containing 0.6 M Suc, 0.25 M Me2SO and Meth
and/or EG at various concentrations at room temperature (22 °C)
(Table 1). Apexes were then transferred to a 0.6 M Suc solution
for 20 min before rinsing in ASW as described above.

Experiment 4

In this experiment, apexes were first treated for 20 min at room
temperature (22 °C) with a CPA solution containing 1.5 M
EG + 0.5 M Suc or 1.5 M Meth + 0.5 M Suc. They were then im-
mersed for 5 min at 0 °C in more concentrated CPA solutions S1–
S6 (Table 1). Apexes were then transferred to a 0.6 M Suc solution
for 20 min before rinsing in ASW as described above.

Experiment 5

In this experiment, apexes were first treated for 15, 30, 45 or
60 min at room temperature (22 °C) with a CPA solution containing
1.5 M EG + 0.5 M Suc or 1.5 M Meth + 0.5 M Suc, then held for
5 min at 0 °C in solutions S2, S5 or S6 (Table 1) before transfer to
a 0.6 M Suc solution for 20 min followed by rinsing in ASW as de-
scribed above.

Experiment 6

In this experiment, apexes were first treated for 20 min at room
temperature (22 °C) with a CPA solution containing 1.5 M
EG + 0.5 M Suc or 1.5 M Meth + 0.5 M Suc, then exposed to solu-
tions S2, S5 or S6 (Table 1) for 10 min at 0 °C before transfer to a
0.6 M Suc solution for 20 min followed by rinsing in ASW as de-
scribed above.

Evaluation of polyp viability

Apexes were identified using photographic monitoring (MOTIC
SMZ-168-TLED) before and after treatments to estimate the impact
of CPA treatments. Survival was followed and physical integrity of
apexes was examined based on non-degradation of the apex mem-
brane, expulsion of zooxanthellae, tissular necrosis and polyp
deployment. Zooxanthellae expulsion was evaluated using four
classes following an increasing gradient of zooxanthellae eviction
(Fig. 1). These four classes were used to evaluate apex viability
(termed ‘‘apex degradation’’, AD) 24 h after the cryoprotectant
treatment:

� Class 1: very low zooxanthellae expulsion. Apexes keep their
brown colour. Polyp tentacles are deployed and they keep their
zooxanthellae. The coenosarc shows no necrosis. Good retrac-
tion of polyp tentacles is observed. Apexes are viable.

� Class 2: moderate zooxanthellae expulsion. Some bleaching of
apexes is observed. Apexes display a pale brown colour due to
slightly more intense symbiont eviction. The tentacles spread
and retract quickly. The coenosarc shows no necrosis. Apexes
are viable.

� Class 3: large zooxanthellae expulsion. The apex coenosarc and
polyp tentacles are transparent. Apexes have lost their colour
due to very important loss of zooxanthellae. Some zooxanthel-
lae have colonised the apex tissues. Polyp tentacles are
deployed but retraction is slow. Apexes show no tissular necro-
sis. Survival of apexes is uncertain.

� Class 4: very large zooxanthellae expulsion and localised tissu-
lar necrosis. As for class 3, coral bleaching is important, result-
ing in coenosarc and polyp transparency. Polyp tentacles are
spread, little spread or retracted. Some parts of the apexes are
intact (polyps and coenosarcs transparent but entire) next to
degraded zones. Survival of apexes is uncertain.

Data analysis

All statistical analyses were carried out using the R software (R
Foundation for Statistical Computing, 2007). Graphs were con-

Table 1

CPA solutions used in Experiments 3–6. Me2SO, Dimethyl sulfoxide; Meth, Methanol;
EG, Ethylene glycol.

CPA
solution

Total CPA
concentration (M)

Composition

M1 2.10 0.6 M Suc, 0.25 M Me2SO, 1.25 M Meth
M2 2.35 0.6 M Suc, 0.25 M Me2SO, 1.5 M Meth
M3 2.85 0.6 M Suc, 0.25 M Me2SO, 2 M Meth
M4 2.10 0.6 M Suc, 0.25 M Me2SO, 1.25 M EG
M5 2.35 0.6 M Suc, 0.25 M Me2SO, 1.5 M EG
M6 2.85 0.6 M Suc, 0.25 M Me2SO, 2 M EG
M7 2.35 0.6 M Suc, 0.25 M Me2SO, 0.75 M Meth,

0.75 M EG
M8 2.85 0.6 M Suc, 0.25 M Me2SO, 1 M Meth,

1 M EG
M9 3.85 0.6 M Suc, 0.25 M Me2SO, 1.5 M Meth,

1.5 M EG
M10 4.85 0.6 M Suc, 0.25 M Me2SO, 2 M Meth,

2 M EG

S1 4.90 0.4 M Suc, 1.5 M Me2SO, 1.5 M Meth,
1.5 M EG

S2 2.45 0.2 M Suc, 0.75 M Me2SO, 0.75 M Meth,
0.75 M EG

S3 2.45 0.2 M Suc, 1.5 M Meth, 0.75 M EG
S4 2.45 0.2 M Suc, 0.75 M Meth, 1.5 M EG
S5 2.45 0.2 M Suc, 0.25 M Me2SO, 1.25 M Meth,

0.75 M EG
S6 2.45 0.2 M Suc, 0.25 M Me2SO, 0.75 M Meth,

1.25 M EG
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structed using the R software (experiments 1–4 and 6), and Micro-
soft Excel (version 2007) for experiment 5. Differences in living
apex percentages (LA) between samples were evaluated by Fisher’s
Exact Test and AD comparisons were performed by one-way anal-
ysis of variance with the Kruskal–Wallis test (non parametric anal-
yses). When groups were limited to two qualitative classes versus
numeric variables with no equal variances and lack of normality
distribution, the Wilcoxon test was used. Differences were
considered statistically significant with a 95% confidence level
(p values < 0.05).

Results

Experiment 1

Apexes did not withstand exposure to CPA solutions containing
Suc or Tre at concentrations equal to or above 1.0 M, whatever the
treatment duration (Fig. 2). Response to cryoprotectant treatment
was either 100% survival or 100% mortality.

The response of apexes to the various CPA solutions tested was
similar, resulting in either rapid degradation of the biological
material or in tolerance with various intensities of zooxanthellae
expulsion and extrusion of mesenterial filaments. Dead apexes
were identified by a strong zooxanthellae expulsion and an impor-
tant tissue loss.

For exposure times up to 60 min and for concentrations of 0.6
and 0.7 M Suc and Tre, apexes showed 100% survival but zooxan-

thellae expulsion (shown by the AD classes of apexes in Fig. 2) in-
creased in line with increasing sugar concentration.

For Suc and Tre solutions, exposure times and concentrations
values had separately a significant impact on LA percentage
(p < 0.05, Wilcoxon-test) and on AD (p < 0.05, Kruskal-test). These
two qualitative variables (exposure time and concentration) had
also a significant combined effect on AD (p < 0.05, Kruskal-test).
AD increased significantly with the combination of variables, expo-
sure times and concentration, for both disaccharides (p < 0.05,
Kruskal-test), resulting in an increase in the quantity of expelled
zooxanthellae and in the decrease of LA.

LA and AD were not significantly different for exposure times of
15, 20 and 30 min and sugar concentrations of 0.6, 0.7 and 0.8 M
(p > 0.05, Fisher’s Exact Test and p > 0.05, Kruskal-test, respec-
tively). For exposure durations of 45 and 60 min to sugar concen-
trations of 0.6–0.8 M, Tre induced higher AD compared to Suc
(p < 0.05, Wilcoxon-test). When sugars were employed at concen-
trations of 0.9 and 1.0 M, for exposure times of 15 and 20 min, Suc
produced higher AD compared to Tre (p < 0.05, Wilcoxon-test).

Based on the results of this first experiment, it could be con-
cluded that P. damicornis apexes could be treated with Suc and
Tre solutions at concentrations of 0.6–0.8 M and for exposure
times up to 30 min.

Experiment 2

AD and LA were significantly correlated (p < 0.05, Wilcoxon-
test) in Experiment 2. CPA concentration and exposure time had

Fig. 1. Illustration of the four classes defined to evaluate P. damicornis apex viability 24 h after the cryoprotectant treatment. A (class 1): intact apex, B (class 2): moderate
zooxanthellae expulsion (moderate damage), C (class 3): large zooxanthellae expulsion (arrows = transparent coenosarc). D (class 4): very large zooxanthellae expulsion and
localized tissular necrosis (skeleton apparent). a, acrosphere; c, ceonosarc; m, mesenteric capsizing; p, polyp; s, skeleton; t, tentacle; z: zooxanthellae.

L. Feuillassier et al. / Cryobiology 68 (2014) 96–106 99



a significant impact on AD and LA (p < 0.05, Kruskal-test and
p < 0.05, v2-test, respectively). The combination of these two qual-
itative variables had a significant effect on AD (p < 0.05, Kruskal-
test).

CPA solutions containing Gly + Suc were lethal in all experimen-
tal conditions tested (Fig. 3a). CPA solutions containing Me2-
SO + Suc were also lethal for treatment durations of 45 and
60 min and for a 30 min treatment duration when a 2.0 M Me2SO
concentration was employed (Fig. 3b). However, apexes tolerated
exposure to CPA solutions containing 1.0 M and 1.5 M Me2SO for
20 and 30 min. CPA solutions containing Meth + Suc were lethal
for 60 min exposure durations and for a 45 min treatment when
a 2.0 M Meth concentration was employed (Fig. 3c). For shorter
treatment durations (20 and 30 min), AD was high when the CPA
solution contained 2 M Meth but 100% LA and no AD were noted
with CPA solutions containing 1 or 1.5 MMeth. No survival was ob-
tained when apexes were treated for 45 or 60 min with a CPA solu-
tion containing 2 M EG + Suc (Fig. 3d). In all other treatments with

CPA solutions containing EG + Suc, 100% LA and no AD were ob-
tained (except after a 30 min treatment with a CPA containing
2 M EG + 0.4 M Suc, in which case a class 2 AD was noted).

Experiment 2 showed that EG was the less toxic of the four CPAs
tested (p < 0.05, v2-test), ensuring 100% LA after exposure times up
to 60 min at 1.0 and 1.5 M concentrations. No significant differ-
ences were noted for AD and LA between these two concentrations
(p > 0.05, v2-test). Unlike the other CPAs tested, a 2 M EG concen-
tration for 20 min was tolerated by the apexes without occurrence
of AD.

Experiment 3

In Experiment 3, CPA concentration was correlated with LA
(p < 0.05, Fisher’s Exact Test) and the combination of CPAs was cor-
related with zooxanthellae expulsion (p < 0.05, Fisher’s Exact Test).
When the CPA solutions contained 1.25–2.0 M Meth (M1–M3) or
1.25 M EG (M4), 100% LA was observed, without any zooxanthellae
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Fig. 2. P. damicornis apex degradation (AD) and percentage of living apexes (LA) following exposure for 15, 20, 30, 45 or 60 min to a CPA solution containing (a) sucrose (Suc)
or (b) trehalose (TRE) at various concentrations (0.6–1.2 M), at room temperature. AD (classes 1, 2, 3 or 4) was determined only for LAs.

100 L. Feuillassier et al. / Cryobiology 68 (2014) 96–106



expulsion (Fig. 4). When CPA solutions contained 1.5 (M5) or 2.0 M
(M6) EG, 100% LA was achieved but zooxanthellae expulsion oc-
curred. This showed that exposure of apexes to Meth was better
tolerated compared to EG at the highest concentrations tested.
When Meth and EG were used together, 100% LA with zooxanthel-
lae expulsion and tissular damage was observed for the lower CPA
concentrations of 0.75 M (M7) and 1.0 M (M8). Higher Meth and
EG concentrations of 1.5 M (M9) and 2.0 M (M10) led to apex
death.

Experiment 3 demonstrated the ability of P. damicornis apexes
to tolerate exposure to complex CPA solutions containing Suc, Me2-

SO, EG and/or Meth and showed that Meth was better tolerated
than EG when combined with other penetrating CPAs (alcohols,
Me2SO).

Experiment 4

The composition of the S solution employed was correlated
with AD (p < 0.05, Kruskal-Test) and LA (p < 0.05, Fisher’s Exact
Test).

Treatment of apexes with solution S1 was lethal but LAs were
obtained with solutions S2–S6 (Fig. 5). Exposure to solution S2,
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Fig. 3. P. damicornis apex degradation (AD) and living apexes (LA) 24 h after treatment with four CPA solutions (N = 16 apexes/treatment). Four CPA solutions: (a) glycerol
(Gly) + sucrose (Suc); (b) dimethyl sulfoxide (Me2SO) + Suc; (c) methanol (Meth) + Suc; and (d) ethylene glycol (EG) + Suc at different concentrations (2 M Gly/Me2SO/Meth/
EG + 0.4 M Suc, 1.5 M Gly/Me2SO/Meth/EG + 0.5 M Suc and 1 M Gly/Me2SO/Meth/EG + 0.5 M Suc) were employed for different exposure times (20, 30, 45 or 60 min) at room
temperature. AD classes (1, 2, 3 and 4) were determined only on living apexes.
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which included the same CPAs as S1 at half their molarity, led to
100% LA. Treatment of apexes with EG + Suc or Meth + Suc fol-
lowed by exposure to solution S2 did not induce any difference
in LA (p > 0.05, Fisher’s Exact Test) but higher AD was produced fol-
lowing treatment with Meth + Suc compared with EG + Suc
(p < 0.05, Kruskal-test).

Solutions S3 and S4 contained Meth and EG but with inverted
concentrations between the two S solutions. Treatment of apexes
with a CPA solution containing EG + Suc or Meth + Suc did not in-
duce any significant difference in their response to exposure to
solutions S3 and S4 (LA: p > 0.05, Fisher’s Exact-test and AD:
p > 0.05, Kruskal-test). Treatment with solution S3 induced signif-
icantly lower LA (p < 0.05, Fisher’s Exact Test) and higher AD
(p < 0.05, Kruskal-test) compared to solution S4.

With Solution S5, both LA and AD were significantly higher and
lower, respectively when the first CPA solution employed con-
tained Meth + Suc compared to EG + Suc (p < 0.05, Fisher’s Exact
Test and p < 0.05, Kruskal-test, respectively). By contrast, with
Solution S6, the LA percentage was significantly lower and AD sig-
nificantly higher when the first CPA solution employed contained
Meth + Suc compared to EG + Suc (p < 0.05, Fisher’s Exact Test
and p < 0.05, Kruskal-test, respectively).

This comparison between solutions S5 and S6 showed that
higher LA and lower AD were obtained when the first CPA solution
to which apexes were exposed contained the most concentrated
alcohol present in the S solution employed.

Experiment 4 showed that P. damicornis apexes could be treated
with a succession of two CPA solutions with progressively in-
creased concentration. As was observed in Experiment 2, Meth
was less tolerated by apexes compared to EG at high concentra-
tions. This experiment also demonstrated that P. damicornis apexes
withstood the thermal shock of exposure to S2–S6 at 0 °C.

Experiment 5

In Experiment 5, there was no significant difference in LA be-
tween the three S solutions tested but solution S2 induced a signif-
icantly different AD compared with solutions S5 and S6 (p > 0.05,
Fisher’s Exact Test and p < 0.05, Kruskal-test, respectively). No sig-
nificant differences in AD (p > 0.05, Wilcoxon-test) and LA
(p > 0.05, Fisher’s Exact Test) were noted between the two CPA
solutions containing 1.5 M EG + 0.5 M Suc or 1.5 M Meth + 0.5 M
Suc. Hundred% LA and no AD were obtained after 15 min exposure
to CPA solutions containing 1.5 M EG + 0.5 M Suc or 1.5 M
Meth + 0.5 M Suc followed by 5 min exposure to S2, S5 or S6 at
0 °C (Fig. 6). When exposure durations to CPA solutions containing
1.5 M EG + 0.5 M Suc or 1.5 M Meth + 0.5 M Suc increased, LA de-
creased and AD increased significantly (p < 0.05, Fisher’s Exact Test
and p < 0.05, Kruskal-test).

Experiment 5 showed that apexes could be exposed to S solu-
tions only if treatment with CPA solutions containing 1.5 M
EG + 0.5 M Suc or 1.5 MMeth + 0.5 M Suc was shorter than or equal
to 20 min. Higher LA and lower AD were obtained with solution S2,
compared to solutions S5 and S6.

Experiment 6

Treating apexes for 10 min at 0 °C with solutions S2, S5 or S6
was detrimental to LA percentage (Table 2). Indeed, LAs were ob-
tained only after treatment with a CPA solution containing 1.5 M
Meth + 0.5 M Suc followed by solution S5, and after treatment with
a CPA solution containing 1.5 M EG + 0.5 M Suc followed by solu-
tion S6. However, higher zooxanthellae expulsion was noted in
both cases.

Experiment 6 showed the detrimental effect on LA percentage
of increasing the duration of treatment with S solutions at 0 °C.

Discussion

This work is the first report on the response of coral apex expo-
sure to CPA solutions, as a preliminary study to cryopreservation
trials. In our experiments, we tested a range of penetrating and
non-penetrating CPAs including Suc, Tre, EG, Meth, Me2SO and
Gly. They were employed alone or in binary, ternary or quaternary
solutions. We also tested the successive application of CPA solu-
tions with progressively increasing concentration.

Tolerance of biological materials to CPAs depends on their nat-
ure, concentration, duration and temperature of exposure and on
their utilisation, individually or in mixtures [2,7,8,24,49]. In our
experiments, P. damicornis apexes withstood treatment with 0.6–
0.8 M and 0.9 M Suc and Tre solutions for up to 30 and 20 min,
respectively without any effect on LA and zooxanthellae expulsion.
Exposure durations of 45 min and sugar concentrations of 0.9 M
caused an increase in AD and LA. P. damicornis apexes did not with-
stand 1.0 M Suc and Tre concentrations.

Only few experiments have been performed with other marine
organisms to test the toxicity of Suc or Tre in single solutions. Sur-
vival of post-hatch A. salina nauplii decreased to 60% and 35% fol-
lowing exposure to 0.25 and 2.0 M Suc solutions, respectively [4].
Embryos and nauplius larvae of the penaeid shrimp Trachypenaeus

byrdi did not tolerate exposure to 0.25 M Suc solutions for more
than 20 min and a 1.0 M Suc solution was lethal [3]. Robertson
et al. [41] showed that Sciaenops ocellatus embryos and tail-bud-
stage embryos withstood treatment with 0.5 M Suc for 20 min.
The marine alga Attheya ussurensis was successfully cryopreserved
following treatment with 0.04 M Tre [33]. P. damicornis apexes tol-
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Fig. 4. Effect of a 20 min treatment at room temperature with different CPA
solutions on percentage of P. damicornis living apexes (LA), zooxanthellae expulsion
and tissular damage (N = 16 apexes/treatment). CPA solutions contained 0.6 M
sucrose (Suc) + 0.25 M dimethyl sulfoxide (Me2SO) + ethylene glycol (EG) and/or
methanol (Meth) at different concentrations (M1, 1.25 M Meth; M2, 1.5 M Meth;
M3, 2 M Meth; M4, 1.25 M EG; M5, 1.5 M EG; M6, 2 M EG; M7, 0.75 M
Meth + 0.75 M EG; M8, 1 M Meth + 1 M EG; M9, 1.5 M Meth + 1.5 M EG, M10, 2 M
Meth + 2 M EG).
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erated exposure to Suc and Tre solutions in a range of concentra-
tions similar to those employed with species of other phyla.

Cryopreservation studies performed with marine invertebrate
cells have demonstrated that when binary CPA solutions consisting
of one alcohol and one sugar were employed, the presence of the
sugar reduced the toxicity of the alcohol and limited cell damage
[21,26,40]. In our experiments, no survival was obtained after
treatments with CPA solutions containing Gly and Suc, for expo-
sure periods of 20 min and above. By contrast, P. damicornis tissular
explants withstood treatment with a CPA solution containing Gly
and Suc (unpublished results). P. damicornis and F. scutaria planu-
lae withstood exposure to 0.5 and 1.0 M Gly for 15 min [15]. Less
developed states (tissular explants) appeared more tolerant to
Gly than fixed forms (apexes).

Gly tolerance has been tested with other marine invertebrates.
Treatment with CPA solutions including Gly was toxic to Ostrea

edulis sperm cells [50] and Haliotis midae embryos [42]. By con-
trast, Gly employed alone had a positive effect for cryopreservation
of dissociated cells of the abalone Haliotis tuberculata [38] and of C.
gigas embryos [28]. Baust and Lawrence [4] demonstrated that
treatment of larvae of the crustacean A. salina with CPA solutions
including 1–4 M Gly increased their chilling tolerance. Survival of
spermatozoa of the scallop Chlamus farreri was high when Gly
was used alone but it decreased when Gly was employed in com-
bination with glucose or lactose [51].

Me2SO is one of the CPAs most widely used for cryopreservation
of animal and plant tissues and organs, as it is generally toxic only
when employed at high concentrations [33,48]. For cryopreserva-
tion of spermatozoa, embryos and larvae of several invertebrate
marine organisms, Me2SO was effective at concentrations between
0.7 and 2.0 M in combination with 0.45–1.0 M Tre
[1,8,21,26,29,49], 0.2 M Suc [7] or 0.15–0.3 M glucose [6,7,30]. Via-
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Fig. 5. P. damicornis apex degradation (AD) and living apexes (LA) 24 h after treatment for 20 min at room temperature to a CPA solution containing ethylene glycol
(EG) + sucrose (Suc) or methanol (Meth) + Suc at (1.5 M EG/Meth + 0.5 M Suc), followed by treatment with CPA solutions S1–S6 for 5 min at 0 °C (N = 16 apexes/treatment).
AD classes (1, 2, 3 and 4) were determined only for LAs. S1, 0.4 M Suc + 1.5 M Me2SO + 1.5 M Meth + 1.5 M EG; S2, 0.2 M Suc + 0.75 M Me2SO + 0.75 M Meth + 0.75 M EG; S3,
0.2 M Suc + 1.5 M Meth + 0.75 M EG; S4, 0.2 M Suc + 0.75 M Meth + 1.5 M EG; S5, 0.2 M Suc + 0.25 M Me2SO + 1.25 M Meth + 0.75 M EG; S6, 0.2 M Suc + 0.25 M
Me2SO + 0.75 M Meth + 1.25 M EG.
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bility of larvae of the sea urchin Evechinus chloroticus was achieved
with a CPA solution containing 1–2 M Me2SO and 0.03 M Tre [2].
Paredes et al. [36] obtained high survival after cryopreservation
of Paracentrotus lividus eggs following treatment with 1.0–1.5 M
Me2SO + 0.03–0.04 M Tre, but only when using last blastula stages.
By contrast, Acosta-Salmon et al. [1] demonstrated the cytotoxic
effect on C. gigas sperm cells of a CPA solution containing 2.0 M
Me2SO and 0.2 M glucose.

In case of corals, Hagedorn et al. [15,18,19] successfully cryo-
preserved F. scutaria, A. palmata, A. tenuis and A. millepora sperma-
tozoa cells and F. scutaria, A. tenuis and A. millepora dissociated
embryonic cells following treatment with 1.5 MMe2SO. P. damicor-

nis fragments withstood treatment with 1–2 M Me2SO [20].
In the present study, P. damicornis apex survival was obtained

after treatment for 20 and 30 min with CPA solutions containing

1.0 and 1.5 M Me2SO and 0.5 M of Suc. P. damicornis apexes thus
tolerated treatment with Me2SO at concentrations similar to those
employed with other invertebrate marine organisms.

In our experiments, EG and Meth employed in combination
with Suc were well tolerated by P. damicornis apexes, as they with-
stood exposure to 1.0–1.5 M alcohol for 20–30 min. EG could be
applied for up to 20 min at 2 M concentration, resulting in low
AD, while treatment with Meth at the same concentration resulted
in an increase in zooxanthellae expulsion. For some marine inver-
tebrates, EG, used alone or in combination with Suc or Tre, ensured
good survival after cryopreservation [8,10,11,21,37]. Adams et al.
[2] observed that sea urchin larvae tolerated treatment with EG
at 1–2 M for 30 min but no survival was achieved after cryopreser-
vation. By contrast, high toxicity to EG was noted with oocytes of
the hard coral Echinopora sp. for concentrations between 0.25
and 2.0 M [46]. Using embryos of the sea urchin P. lividus, Paredes
et al. [36] demonstrated that EG toxicity varied, depending on the
addition of Tre in the CPA solution and on the embryo development
stage. As regards Meth, Dong et al. [11], Roux et al. [42] and Tsai
et al. [46] indicated that it should be used at low concentration.
Tervit et al. [44] did not get any post-cryopreservation survival of
C. gigas oocytes after cryoprotective treatment with Meth. The
use of 3 M Meth was toxic for P. damicornis zooxanthellae [20].

Based on our experiments, it was possible to rank the CPAs em-
ployed in combination with Suc in the following order of decreas-
ing tolerance: EG > Meth > Me2SO > Gly. A similar ranking was
observed with C. gigas [40] and H. midae embryos [42]. In case of
Anthozoan Echinopora spp. oocytes Tsai et al. [46] noted the fol-
lowing order of decreasing tolerance: Meth > Me2SO > Propylene
glycol (PG) > EG. Xue et al. [51] observed the higher toxicity of
Gly compared to Me2SO, EG or Meth on C. farreri spermatozoa. In

Fig. 6. P. damicornis apex degradation (AD) and living apexes (LA) 24 h after treatment for 20 min at room temperature with a CPA solution containing 1.5 M EG + 0.5 M Suc or
1.5 M Meth + 0.5 M Suc for 15–60 min, followed by treatment with solutions S2, S5 or S6 for 5 min at 0 °C (N = 16 apexes/treatment). AD classes (1, 2, 3 and 4) were
determined only on LAs. S2, 0.2 M Suc + 0.75 M Me2SO + 0.75 M Meth + 0.75 M EG; S5, 0.2 M Suc + 0.25 M Me2SO + 1.25 M Meth + 0.75 M EG; S6, 0.2 M Suc + 0.25 M
Me2SO + 0.75 M Meth + 1.25 M EG.

Table 2

P. damicornis living apexes (LA) and zooxanthellae expulsion 24 h after treatment for
20 min at room temperature with a CPA solution containing 1.5 M EG + 0.5 M Suc or
1.5 M Meth + 0.5 M Suc followed by treatment for 10 min at 0 °C with solutions S2, S5
or S6 (N = 16 apexes/treatment). AD classes (1, 2, 3 and 4) were determined only on
LAs. S2, 0.2 M Suc + 0.75 M Me2SO + 0.75 M Meth + 0.75 M EG; S5, 0.2 M Suc + 0.25 M
Me2SO + 1.25 M Meth + 0.75 M EG; S6, 0.2 M Suc + 0.25 M Me2SO + 0.75 M
Meth + 1.25 M EG.

CPA solution Solution Living apexes
(%)

Zooxanthellae
expulsion

1.5 M EG + 0.5 M Suc S2 0 –
S5 81.25 Class 4
S6 0 –

1.5 M Meth + 0.5 M
Suc

S2 0 –
S5 0 –
S6 100 Class 4
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our experiments, at the same concentration, non-penetrating CPAs
(Suc or Tre) were more toxic to P. damicornis apexes compared to
penetrating ones (Me2SO, EG or Meth). Renard [40] demonstrated
the lower tolerance of C. gigas embryos to Suc compared to pene-
trating CPAs. Xue et al. [51] noted that adding Suc to the CPA solu-
tion had no positive effect on viability of C. farreri spermatozoa.

This study demonstrated that P. damicornis apexes could toler-
ate treatment with ternary or quaternary CPA solutions including
sugar, Me2SO and alcohol(s). Meth was generally less toxic than
EG and Me2SO was well tolerated when employed at low concen-
tration. Several reports [4,7,36] indicated that mixtures of CPAs
were generally more efficient than a single CPA employed at the
same total molarity. Apexes could also tolerate exposure to two
successive CPA solutions with progressively increased concentra-
tion. Such a step-wise treatment may allow reducing osmotic
shock, as demonstrated with other marine invertebrates [2,36,44]
and also allow reaching a higher final CPA concentration.

During this study, zooxanthellae expulsion was the first sign of
CPA toxicity. This confirms the sensibility of zooxanthellae to CPA
treatments and indicates that zooxanthellae expulsion constituted
a good biological indicator of stress incurred by exposure of coral
to CPA solutions. Hagedorn et al. [16,17] showed that symbiotic al-
gae of three Symbiodinium subtypes were sensitive to CPA treat-
ments. It should be noted that zooxanthellae expulsion does not
necessarily generate the death of the symbionts. Indeed, Ralph
et al. [39] observed that expelled zooxanthellae maintained their
photosynthetic activity.

The culture environment of coral is an important parameter to
increase their tolerance to CPA treatment and cryopreservation.
Adams et al. [2] suggested that the diet of sea urchins E. chloroticus
adults could influence gamete chilling sensitivity and ability to
withstand cryopreservation. With corals, adequate nutrient sup-
plements such as dissolved elements (amino acids, zooxanthellae
free) may increase recovery of apexes after CPA treatment. Lastly,
when investigating coral calcification using a 45Ca solution, Tam-
butté et al. [43] highlighted the importance of rinsing apexes to ex-
pel the 45Ca solution from the coelenteron and extracellular space.
In a similar manner, in CPA toxicity experiments with coral apexes,
extensive rinsing of treated explants should be performed, as
insufficient rinsing may induce CPA retention in explants, thus
allowing the extension of CPA action and leading to a toxic effect.

In conclusion, this study demonstrated that P. damicornis

apexes withstood exposure to complex CPA solutions containing
penetrating and non-penetrating CPAs. A decrease in apex survival
was observed when the total molarity of the CPA solution was
above 3 M. It also showed the necessity to follow a systematic ap-
proach for the elaboration of the optimal CPA solution and for the
establishment of the optimal cryoprotective treatment. This work
paves the way to the future utilisation of the vitrification technique
for cryopreserving P. damicornis apexes.
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Figure 49 : Production larvaire au cours d'une nuit de 

planulation pour Favia fragum. 

Source : Goodbody-Gringley, 2010.
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Figure 50 : Echantillon de taille de trois 

Pocilloporidés répartis en trois classes ; 

S : small, M : medium, L : Large. 

Source : Isomura et al., 2001.
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Figure 51 : Collecte des planulae de Pocillopora damicornis. A : Flacons isolant les planulae pour la fixation, B : 

Collecteurs, C : Larve de P. damicornis, D : Larve de P. damicornis arprès exposition au glycérol, E : Larve en cours de 

métamorphose et de fixation.  Echelle = 100 m. 
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Figure 52 : Cycle de planulation de Pocillopora damicornis en fonction du temps et du calendrier lunaire.
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Figure 53 : Cycle de ponte des planulae (gros spots : planulae, petits spots : pré-planulae). a : Euphyllia paradivisa, b : 

Favia fragum, c : Pavona cactus, d : Pocillopora damicornis, e : Pocillopora verrucosa, f : Porites sp, g : Seriatopora hystrix, 

h : Stylocoeniella guentheri, i : Stylophora pistillata. 

Source : Barthélémy, 2008. 
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Figure 54 : Tolérance des planulae de Pocillopora damicornis aux solutions cryoprotectrices binaires contenant 1.5 M EG, 

Gly ou Met + 0.5 M Sucrose (15 planulae/traitement) pendant 20 min à température ambiante.
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Figure 56 : Lames microscopiques en verre 

permettant la métamorphose et la fixation des 

larves de plusieurs Scléractiniaires. 

Source : Wyers et al., 1991. 

Figure 55 : Larves métamorphosées et fixées de 

Pocillopora damicornis sur feuille plastique érodée. 

Source : Hidaka, 1985.
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Figure 57 : Tuiles céramiques. Source : Petersen et al., 2005.
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Figure 58 : Application de la méthode OozoFix pour tester la tolérance des polypes primaires de Pocillopora damicornis 

aux solutions cryoprotectrices. A : Collecte d’une larve métamorphosée de moins de 1 h, B : Métamorphe détaché 

laissant une empreinte cristalline, C : Larve métamorphosée déposée sur un carré nylon, D-H : Fixation des larves en 

moins de 24 h, E-F : Polypes primaires de 3 jours fixés, G : Trois polypes primaires fixés sur le même carré nylon, I : 

Colonie de P. damicornis, J : Quatre colonies sur un seul carré nylon, K : Polypes primaires en culture, L : Colonie après 1 

mois de culture, M : Observations des polypes primaires sous binoculaire, N : Exposition des polypes primaires aux 

cryoprotecteurs, O : Séchage sur papier absorbant.
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Figure 59 : Balle tissulaire de Seriatopora hystrix. 

Source : Sammarco, 1982.
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Figure 60 : Polypes mobiles expulsés de Pocillopora damicornis. A : Vue de profil, B : Vue de dessous, C-D : Disque oral. 

Ac : Acrosphères, GV : cavité gastro-vasculaire, O : orifice oral, SP : sole pédieuse.
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Figure 61 : Différentes compositions d’eau de mer artificielle. 

Sources : Sverdrup et al., 1942 ; Rice, 1956. 
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a b s t r a c t

In this study, the tolerance of tissue balls (TBs, 100–300 lm in diameter) from the coral Pocillopora dami-

cornis produced using mechanical excision to exposure to cryoprotectant (CPA) solutions was tested. TBs

were treated for 20 min at room temperature with solutions of ethylene glycol (EG), methanol (Met),

glycerol (Gly) or dimethyl sulfoxide (Me2SO) at concentrations between 1.0 and 4.5 M. Two parameters

were used to evaluate the survival of TBs following CPA treatment. The Undamaged Duration of Tissue

Balls (expressed in h) corresponded to the time period during which the membrane surface of TBs

remained smooth and their motility was preserved. Tissue Ball Regression (expressed in lm/h) corre-

sponded to the size reduction of TBs over time. TBs tolerated exposure to all CPAs tested at the three

lower concentrations employed (1.0 M, 1.5 M and 2.0 M). No survival was achieved following exposure

to a 4.5 M CPA solution. At concentrations of 3.0 and 4.0 M, higher Undamaged Duration of Tissue Balls

and lower Tissue Ball Regression were obtained following treatment with EG compared to the other three

CPAs. Our experiments show that TBs constitute a good experimental material to evaluate CPA toxicity on

corals using large numbers of samples. Performing preliminary experiments with TBs may allow reducing

the number of tests carried out with less easily available coral forms such as planulae, thereby preserving

larval stocks.

Ó 2014 Published by Elsevier Inc.

Introduction

Coral reefs contain a remarkable diversity of species restricted

on limited surfaces. They are known as being among the world’s

most productive ecosystems. Over the last decades, the sustain-

ability of coral reefs has been threatened by environmental and

anthropogenic aggressions [13,15]. Coral reefs are among the most

sensitive and most severely impacted ecosystems. Urgent safe-

guard measures must thus be taken to protect them. Cryopreserva-

tion (liquid nitrogen, ÿ196 °C) can constitute a good strategy to

ensure the long-term ex situ conservation of this exceptional

biodiversity.

The first attempts to cryopreserve Anthozoa species were

initiated by Frank et al. in 1994 [24], followed by Hagedorn et al.

[27–33] from 2006 onwards, by Tsai et al. in 2010 and 2014

[62,63] and by Lin et al., in 2011–2014 [44–46]. Today, cryopreser-

vation has been successfully applied only to cell suspensions

[30,31] and spermatozoa [30–32] of several Scleractinian species

using the same cryopreservation protocol. The symbiosis between

coral and zooxanthellae and the lipid composition of cells have

been identified as the two main obstacles to the successful

cryopreservation of coral oocytes and larvae [28,62]. In addition,

the calcite structure of apexes makes coral cryopreservation more

difficult [22,33].

A range of coral biological forms may be employed for cryopres-

ervation, including larvae, isolated polyps or cell aggregates. Corals

are among the marine invertebrates, which are the most sensitive

to cryopreservation. In this context, new approaches to coral

cryopreservation must be explored.

Cnidarians have high regenerative properties. This faculty has

been more thoroughly investigated on others marine invertebrates

such as Sponges, Arthropods, Echinoderms and some Shellfish

classes [56].WithAnthozoa species, thefirst regeneration testswere

http://dx.doi.org/10.1016/j.cryobiol.2014.08.009
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performed in the 80s with the pioneering work of Sammarco [59]

andRichmond [55]. Theseauthorsuncovered thePolypBailOutphe-

nomenon or inverted metamorphosis for mature colonies [59] and

primary polyps from settled planulae [55]. This reverse metamor-

phosis improved our knowledge of coral regeneration ability. From

the 90s onwards, several publications were produced on tissue

and cellular dissociation on Cnidarians [25,60,61]. Spherical

aggregates expelled from the skeleton were generated after

stressing corals by exposing themtodegradedenvironmental condi-

tions [11,12,68]. In 1997, Kramarsky-Winter et al. [38] identified a

new mode of asexual reproduction, polyp expulsion from colonies.

Such separation abilities and polyp regeneration properties

offer numerous possibilities for research purposes. In 2004, suc-

cessful polyp separation from a Galaxea fascicularis colony was

achieved by Marshall and Clode [48]. These authors used a cal-

cium-free seawater solution based on Krishnaveni’s protocol

(1989) [40]. Fine and Tchernov [23] isolated polyps from two Scle-

ractinian species after treating corals with decreasing pH seawater

(pH �7.3–7.6) for 1 month [23]. More recently, polyps or tissue

cultures could be obtained from small tissue explants [39,65].

These tissue explants were described as spheroid and heterotypic

tissue balls [18,39,50,65]. This biological form was identified under

several denominations including tissue balls (TBs) [41,50], multi-

cellular endothelial isolates (MEIs) or tissue isolates [18,17,37].

TBs are divided in two distinct zones, a cortex and a central mass

[41]. A specific cell type distribution was observed between these

two zones, with the central mass containing mucocytes,

autophagosomes and zooxanthellae and the cortex containing

ciliated cells, cells with vesicles and cnidocytes [41]. TBs are char-

acterized by their smooth surface and rotation activity

[18,37,41,50]. Motility is induced by ciliated cells of the cortex

[41] and this rotary motion process may be used to follow survival

of TBs after experimental treatments [50]. Polyp tissue dissociation

to form TBs could be obtained using mechanical [24,39,50,54,65]

and chemical/enzymatic [6,18,17,24,25,34,37] techniques or it

could occur spontaneously [18,17,24,49].

The experiments performed with coral till today showed that

individual propagules such as spermatozoa or isolated cells could

withstand LN exposure, whereas cryopreservation of more

complex structures including planulae, metamorphosed primary

polyps, isolated polyps or apexes has not yet been achieved. TBs

represent propagules of intermediate complexity between these

two categories of explants. They offer an alternative to the use of

more complex structures such as apexes, which comprise a calcar-

eous skeleton. Apexes are not a very convenient material because,

after excision, they need a minimal period of recovery to allow for

tissue colonization on exposed skeleton before they can be used for

cryopreservation experiments. Moreover, coral species present dif-

ferent skeleton organizations and may thus require different

cryopreservation protocols. Finally, as TBs can be produced in large

quantities, they can be used to test numerous experimental

conditions. The best treatments selected can then be applied to less

easily available forms such as isolated polyps or larvae from peri-

odic releases. Finally, TBs have the same genetic origin and stable

biological quality.

In this work, we investigated the tolerance of TBs from the coral

Pocilloporadamicornis to solutions containing individual cryoprotec-

tive agents (CPAs), as a preliminary study before performing cryo-

preservation experiments. Two parameters were used to evaluate

the survival of TBs following CPA treatment. The Undamaged Dura-

tion of Tissue Balls corresponded to the time period during which

the membrane surface of TBs remained smooth and their motility

was preserved. Tissue Ball Regression corresponded to the size

reductionof TBs over time. In order to avoid any interactionbetween

chemical reactions, we used mechanical excision according to

Kramarsky-Winter et al. [39] and Vizel et al. [65] for TB production.

Materials and methods

Biological material

Experiments were performed with coral colonies of the Sclerac-

tinian P. damicornis originating from the Aquarium de Canet en

Roussillon, France (branches resulting from spontaneous reproduc-

tion on CITES number: O3584). Animals were maintained for

1 month prior to experiments at the Oceanological Observatory,

Pierre and Marie Curie University, Banyuls/mer, France, using the

captivity conditions described by Feuillassier et al. [22].

Tissue dissociation

Tissues were excised from coenosarc areas of coral branches

using a No. 24 scalpel blade (cleaned with 96% alcohol) at room

temperature (RT: 22 °C). Sampling of coenosarc was preferred to

sampling of polyps because new tissues could be regenerated from

the excised areas. Small tissue fragments were sampled without

scraping to preserve ectoderm and endoderm cells. Samples were

immersed in 3 ml wells of multiple well cluster plates for cell cul-

ture (CORNING, TC-Treated, Sterile) filled with 24 h-aged Artificial

Sea Water (ASW: temperature 25 °C, salinity: 35, pH: 8.4). ASW

was prepared with osmolated water mixed with Reef Crystal Salt

(Aquarium System label; PO4
3ÿ and NO3

ÿ free; Ca2+: 400 mg/L;

Mg2+: 1200 mg/L; KH �7). As already observed by Vizel et al.

[65], a large amount of mucus covered these tissue fragments

and incubation for 24 h was necessary to obtain moving TBs. Incu-

bation was performed in an incubator (temperature: 25 ± 1 °C,

hygrometry: 100%; light intensity: 20 lmol mÿ2 sÿ1). After 24 h

incubation, rotating TBs were rinsed five times with fresh 24 h-

ASW and transferred individually in wells of multiple well cluster

plates containing 3 ml fresh 24 h-ASW. TBs were isolated individ-

ually in wells to avoid the occurrence of fusion events.

Experimental procedures

Effect of TB size

Several branches from the P. damicornis colonies were used dur-

ing the CPA tests. To estimate the effect of size, TBs were divided in

three classes:

Class 1 (C1): TB diameter < 200 lm.

Class 2 (C2): 200 6 TB diameter < 400 lm.

Class 3 (C3): 400 lm 6 TB diameter.

Effect of CPA treatment

TBs with a diameter larger than 100 lm (Fig. 1) were used

immediately after rinsing. Samples of 30 treated TBs and 30 control

TBs were used for each experimental condition. TBs were exposed

for 20 min at RT (1.5 ml CPA/TB) to solutions of dimethyl sulfoxide

(Me2SO, VWR, analytical reagent, assay: 99.7%), glycerol (Gly, CAR-

LO ERBA, ACS-for analysis, assay: 99.5%), ethylene glycol (EG, VWR,

AnalaR NORMAPUR, assay: 100%) or methanol (Met, SIGMA–

ALDRICH, ACS-reagent, assay: 99.8%) at concentrations between

1.0 and 4.5 M.

After the CPA treatment, TBs were rinsed three times with 24 h-

ASW and placed in an incubator in the conditions employed for tis-

sue dissociation. Control TBs were exposed to 24 h-ASW. Water

was replaced daily with fresh 24 h-ASW.

Observations and measurements performed

Photographs of all TBs were taken before the CPA treatment

using a photographic monitoring device (MOTIC 257 SMZ-168-

TLED coupled with a numeric camera MOTICAM 580

L. Feuillassier et al. / Cryobiology 69 (2014) 376–385 377



SM7619-MG4EX-RPFWFT). After the CPA treatment, photographs

were taken daily until TB disruption, to measure the evolution of

TB size and to assess their survival. The size of TBs decreased grad-

ually until rapid TB disruption occurred, resulting in cell dispersion

(Fig. 1). Rotation of TBs was observed until their disruption. TBs

were thus considered surviving until TB disruption.

Two parameters, the Undamaged Duration of Tissue Balls and

the Tissue Ball Regression were measured after different Durations

Following Treatment (24, 48, 72, 96, 120, 144 and 168 h) to evalu-

ate the impact of CPA treatment on survival and size evolution of

control and treated TBs. The Undamaged Duration of Tissue Balls

(expressed in h) corresponded to the time period during which

the membrane surface of TBs remained smooth and their motility

was preserved. This qualitative variable allowed evaluating the

structural integrity of TBs over time. TBs had a spheroid or ovoid

shape. The Tissue Ball Regression corresponded to the size reduc-

tion of TBs over time. To calculate the cumulative Tissue Ball

Regression (expressed in lm/h), the perimeter of TBs was mea-

sured daily using the Motic Images (PLUS 2.0) software (Fig. 1).

High Tissue Ball Regression values indicated low tolerance of TB

to CPA solutions and low Tissue Ball Regression values high toler-

ance to CPA solutions.

Statistical analysis

Statistical tests were carried out using the R version 3.0.2 free

software (The R Foundation for Statistical Computing, 2013). Gra-

phic processing was performed with the R software and Microsoft

Excel (version 2007). The treatment effect was determined based

on differences between tested samples and their controls. These

data allowed to compare CPA impact and to evaluate TB evolution

depending on the quality of coral colonies. Tissue Ball Regression

differences between treatments were analyzed using the Wilcoxon

test. Undamaged Duration of Tissue Balls data were compared with

General Linear Models (GLM test) using the complementary bino-

mial logistic link function. Undamaged Duration of Tissue Balls was

considered as a logical factor and data were treated for each Dura-

tion Following Treatment as a binary outcome (0.0, 1.0). Then, the

significance of tests was checked with the Chisq test. The Spear-

man test was performed to evaluate the correlation between two

numeric and non-parametric variables while the Kruskal–Wallis

test was carried out to estimate the correlation between qualita-

tive (classes >2) and numeric variables. The significance of differ-

ences was considered with a 95% confidence level (p values <0.05).

Results

Effect of TB size

In this first experiment, TBs were divided in three size classes to

investigate the effect of size on TB survival. The Spearman test con-

firmed the significant correlation (p < 0.05) between the average

diameter of coral TBs and the cumulative Tissue Ball Regression

over time.

Cumulative Tissue Ball Regression was significantly different

between size classes (p < 0.05, Kruskal-test) (Fig. 2A). Cumulative

Tissue Ball Regression for C1 TBs was higher than for C2 and C3.

Comparison between samples of the same size class showed signif-

icant differences between the cumulative Tissue Ball Regression

values and samples (p < 0.05, Kruskal-test) (Fig. 2B).

Undamaged Duration of Tissue Balls values were higher for the

two higher size classes (C2 and C3) (Fig. 2C). Most Undamaged

Duration of Tissue Balls values were comprised between 50 and

100 h for C1 TBs, while they were comprised between 100 and

150 h for C2 TBs. As observed with cumulative Tissue Ball Regres-

sion values, Undamaged Duration of Tissue Balls values of C3 TBs

had the largest distribution and included both the lowest and high-

est values measured.

For this experiment, coral branches were cut from the same col-

onies and maintained under identical culture conditions. Despite

these measures, the analysis of the cumulative Tissue Ball Regres-

sion and Undamaged Duration of Tissue Balls parameters revealed

a heterogeneity between TBs. Tissue Ball Regression and Undam-

aged Duration of Tissue Balls were higher for TBs with a diameter

lower than 200 lm. TBs with a diameter P200 lm were thus

selected for further experiments. These first tests highlighted the

Fig. 1. In vitro production of tissue balls (TBs) from P. damicornis incubated 24 h after mechanical excision. (A) TB organization with S, smooth surface; Co, cortex and CM,

central mass containing the most of zooxanthellae. (B) Spheroid TB’s values identified with Motic software. (C) TB’s values with irregular form. (D) TB disruption with

unidentified coral cells and brown zooxanthellae (Z). (E) Size heterogeneity in TB sample. (F) Fusion between two TBs.
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importance of analyzing the results obtained with control samples

before making comparisons between treated samples. This preli-

minary analysis allowed taking into account the effect of coral

quality fluctuation on the production of TBs.

Effect of CPA treatment

With the four CPA solutions tested, Undamaged Duration of Tis-

sue Balls decreased significantly with increasing CPA concentra-

tions and conversely, Tissue Ball Regression values increased

significantly with increasing CPA concentrations up to 3.0 M

(p < 0.05, Kruskal-test).

Tissue Ball Regression was not significantly different (p > 0.05,

Wilcoxon-test) between treated and control TBs with the four

CPA solutions employed at the three lower CPA concentrations

tested (1.0, 1.5 and 2.0 M) (Fig. 3a–d). At these three concentra-

tions and for each CPA solution, no significant differences were

observed between Tissue Ball Regression of treated and control

samples for each Duration Following Treatment (24–168 h)

(p > 0.05, Wilcoxon-test). Significant differences were obtained

only for 24 h (for 1.0 M Met, 1.0 M Gly and 2.0 M Me2SO), 48 h

(1.0 M Me2SO) and 72 h (1.5 M Me2SO) (p < 0.05, Wilcoxon-test).

Tissue Ball Regression was significantly correlated with Undam-

aged Duration of Tissue Balls (p < 0.05, Kruskal-test). With all CPAs

tested, exposure of TBs to a 4.5 M solution was lethal (Fig. 3a–d).

The Tissue Ball Regression values of treated and control TBs

were not significantly different after exposure to a CPA solution

containing 3.0 M EG (p > 0.05, Wilcoxon-test) (Fig. 3a). The

Undamaged Duration of Tissue Balls values of treated and control

TBs were not significantly different after exposure to CPA solutions

containing 1.0–3.0 M EG (p > 0.05, GLM-test). Tissue Ball Regres-

sion and Undamaged Duration of Tissue Balls of treated TBs were

significantly higher and lower, respectively compared to control

TBs following treatment with 4.0 M EG (p < 0.05, Wilcoxon-test

and p < 0.05, GLM-test, respectively).

Treatment with 3.0 M and 4.0 M Met solutions induced signifi-

cantly higher Tissue Ball Regression values for treated samples

compared to controls (p < 0.05, Wilcoxon-test) (Fig. 3b). Signifi-

cantly lower Undamaged Duration of Tissue Balls values were

obtained with treated TBs compared to controls following expo-

sure to 1.0, 3.0 and 4.0 M Met (p < 0.05, GLM-test) (Fig. 3b).

The Tissue Ball Regression of TBs treated with 3.0 and 4.0 M

Me2SO was significantly higher compared to controls (p < 0.05,

Wilcoxon-test) (Fig. 3c). For the two lower Me2SO concentrations

tested (1.0 and 1.5 M), Undamaged Duration of Tissue Balls values

were not significantly different between treated and control sam-

ples. By contrast, after treatment with CPA solutions containing

2.0, 3.0 and 4.0 M Me2SO, the Undamaged Duration of Tissue Balls

of treated TBs was significantly lower compared to controls

(p < 0.05, GLM-test) (Fig. 3b).

Following treatment with CPA solutions containing Gly, Tissue

Ball Regression and Undamaged Duration of Tissue Balls values

were significantly higher and lower, respectively for TBs treated

with 3.0 and 4.0 M Gly, compared with control samples (p < 0.05,

Wilcoxon-test and p < 0.05, GLM-test, respectively) (Fig. 3d).

Comparison between the four CPAs tested

Similar cumulative Tissue Ball Regression values were obtained

with TBs exposed to CPA solutions containing 1.0, 1.5 M and 2.0 M

Fig. 2. Effect of TB size. (A) Cumulative regression from P. damicornis TBs over time at 25 °C (N = 1424 TBs). (B) Cumulative Tissue Ball Regression and (C) Undamaged

Duration of Tissue Balls from samples divided in three size classes (N = 1424 TBs). TBs were divided in C1, TB diameter <200 lm; C2, 200 6 TB diameter < 400 lm; C3,

400 lm 6 TB diameter.
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EG or Met for all Durations Following Treatment except 144 and

168 h (Fig. 4A and B). Tissue Ball Regression of TBs treated with

3.0 and 4.0 M Met increased more rapidly compared with EG

treatments. The Undamaged Duration of Tissue Balls values of

TBs treated with EG or Met tested at the three lower concentra-

tions employed (1.0, 1.5 M and 2.0 M) were not significantly differ-

ent for Durations Following Treatment between 24 and 72 h

(p > 0.05, GLM-test). However, significant differences in Undam-

aged Duration of Tissue Balls were observed following treatment

with EG and Met at these concentrations for Durations Following

Treatment between 96 and 168 h (p < 0.05 GLM-test). For Dura-

tions Following Treatment up to 72 h, Undamaged Duration of Tis-

sue Balls and Tissue Ball Regression values were higher and lower,

respectively following EG treatment compared to Met treatment.

For CPA concentrations of 3.0 and 4.0 M and for all Durations

Following Treatment tested, Undamaged Duration of Tissue Balls

values were significantly higher following EG treatment compared

with Met (p < 0.05, GLM-test) (Fig. 4a and b).

Cumulative Tissue Ball Regression values were comparable

between TBs treated with 1.0, 1.5 or 2.0 M EG and Me2SO

(Fig. 4A and C). Cumulative Tissue Ball Regression of TBs treated

with 3.0 M Me2SO was lower compared to 3.0 M EG. No significant

differences in Undamaged Duration of Tissue Balls were detected

between TBs treated with EG or Me2SO at the four lower concen-

trations tested (1.0, 1.5, 2.0 and 3.0 M) for Durations Following

Treatment between 24 and 72 h (p > 0.05, GLM-test) (Fig. 4a and

c). Higher Undamaged Duration of Tissue Balls values were

obtained for Durations Following Treatment over 72 h following

treatment with EG compared to Me2SO (p > 0.05, GLM-test). For a

CPA concentration of 4.0 M, lower cumulative Tissue Ball Regres-

sion and higher Undamaged Duration of Tissue Balls were achieved

with EG compared to Me2SO.
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Fig. 3. P. damicornis Tissue Ball Regression and Undamaged Duration of Tissue Balls after treatment for 20 min at room temperature with CPA solution (N = 30 TBs/treatment).

Four CPA solutions containing individually permeant CPA: (a) ethylene glycol (EG); (b) methanol (Met); (c) dimethyl sulfoxide (Me2SO) and glycerol (Gly) at different

concentrations (1, 1.5, 2, 3, 4 or 4.5 M).
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Cumulative Tissue Ball Regression values of TBs treated with EG

were significantly lower at all concentrations tested and for all

Durations Following Treatment compared to Gly (p < 0.05,

Wilcoxon-test) (Fig. 4A and D). At the three lower concentrations

tested and for Durations Following Treatment between 24 and

72 h, no significant differences were obtained in Undamaged Dura-

tion of Tissue Balls between TBs treated with EG or Gly (p > 0.05,

GLM-test) (Fig. 4a and d). For Durations Following Treatment

higher than 72 h, significantly higher Undamaged Durations of Tis-

sue Balls were noted following treatment with EG compared to Gly

(p < 0.05, GLM-test). For CPA concentrations of 3.0 and 4.0 M,

Undamaged Duration of Tissue Balls values were significantly

higher for all Durations Following Treatment following treatment

with EG compared with Gly (p < 0.05, GLM-test) (Fig. 4a and d).

At concentrations of 1.0 and 2.0 M, Tissue Ball Regression of TBs

treated with Me2SO was significantly higher compared to Met for

all Durations Following Treatment tested (p < 0.05, Wilcoxon-test)

(Fig. 4B and C). By contrast, at concentration 3.0 M and for all

Fig. 4. Cumulative Tissue ball Regression for: (A) ethylene glycol (EG), (B) methanol (Met), (C) dimethyl sulfoxide (Me2SO) and (D) glycerol (Gly) and Undamaged Duration of

Tissue Ball for: (a) ethylene glycol (EG), (b) methanol (Met), (c) dimethyl sulfoxide (Me2SO) and (d) glycerol (Gly) over Duration Following Treatment (24 – 264 h) subsequent

to exposures for 20 min with four CPA solutions at different concentrations (1, 1.5, 2, 3 and 4 M) at room temperature (N = 30 tissue balls/essay).
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Durations Following Treatment tested, Tissue Ball Regression of

TBs treated with Me2SO was lower compared to Met. Equal Tissue

Ball Regression values were obtained between Me2SO and Met

treatments concentrated to 4.0 M for all Durations Following

Treatment tested. Undamaged Duration of Tissue Balls values were

not significantly different following treatment of TBs with 1.0, 1.5

or 2.0 M Me2SO or Met for Durations Following Treatment of 24

and 48 h (p > 0.05, GLM-test) (Fig. 4b and c). For Durations Follow-

ing Treatment above 48 h, Undamaged Durations of Tissue Balls

were significantly higher following treatment with 1.0 MMet com-

pared to 1.0 M Me2SO (p < 0.05, GLM-test), not significantly differ-

ent following treatment with 1.5 M Met compared to 1.5 M Me2SO

tests, and significantly lower following treatment with 2.0 M Me2-
SO compared 2.0 M Met (p < 0.05, GLM-test). Higher Undamaged

Duration of Tissue Balls values were recorded following treatment

of TBs with 3.0 M Me2SO compared to 3.0 M Met for Durations Fol-

lowing Treatment between 24 and 72 h (p < 0.05, GLM-test) and

equivalent Undamaged Duration of Tissue Balls values were noted

following treatment of TBs with 4.0 M Me2SO or Met 4.0 M.

At concentrations of 1.0 and 2.0 M and for all Durations Follow-

ing Treatment tested, cumulative Tissue Ball Regression of TBs

treated with Gly was significantly higher compared to Met

(p < 0.05, Wilcoxon-test) (Fig. 4B and D). By contrast, Tissue Ball

Regression was not significantly different following treatment of

TBs with 3.0 or 4.0 M Met or Gly for all Durations Following Treat-

ment tested. Undamaged Duration of Tissue Balls values were not

significantly different following treatment with 1.0, 1.5 or 1.5 M

Met and Gly for Durations Following Treatment between 24 and

72 h (p > 0.05, GLM-test) (Fig. 4b and d). For Durations Following

Treatment between 96 and 168 h, Undamaged Duration of Tissue

Balls values were significantly higher following treatment of TBs

with 1.0 M Met compared to Gly (p < 0.05, GLM-test). Significantly

higher Undamaged Duration of Tissue Balls values were obtained

following treatment with 1.5 or 2.0 M Gly compared to Met

(p < 0.05, GLM-test). Undamaged Duration of Tissue Balls values

were not significantly different following treatment with 3.0–

4.0 M Met or Gly (p > 0.05, GLM-test).

Tissue Ball Regression of TBs treated with 1.0 or 1.5 M Me2SO

was significantly higher compared to 1.0 or 1.5 M Gly (p < 0.05,

Wilcoxon-test). No significant differences in Tissue Ball Regression

were recorded between TBs treated with 2.0, 3.0 or 4.0 MMe2SO or

Gly (p > 0.05, Wilcoxon-test) (Fig. 4C and D). The Undamaged

Duration of Tissue Balls of TBs treated with 1.0–2.0 M Me2SO or

Gly for 24–72 h was not significantly different except for 48 h with

1.5 M (p > 0.05, GLM-test) (Fig. 4c and d). For Durations Following

Treatment higher than 72 h, Undamaged Duration of Tissue Balls

was significantly higher for 1.0 M Gly compared to 1.0 M Me2SO

(p < 0.05, GLM-test), equal between 1.5 M Gly and 1.5 M Me2SO

until 120 h and significantly higher for 1.5 M Gly compared to

1.5 M Me2SO for Durations Following Treatment over 120 h

(p < 0.05, GLM-test). The Undamaged Duration of Tissue Balls

was significantly higher following treatment with 2.0 M Me2SO

compared to Gly for Durations Following Treatment up to 96 h

(p < 0.05, GLM-test) (Fig. 4c and d). The Undamaged Duration of

Tissue Balls was significantly higher for 3.0 M Me2SO compared

to Gly (p < 0.05, GLM-test) (Fig. 4c and d). No significant differences

were recorded between Undamaged Durations of Tissue Balls fol-

lowing treatment with 4.0 M Me2SO or Gly (p > 0.05, GLM-test).

Discussion

This study evaluated the tolerance of TBs to CPA solutions with

the objective of establishing a cryopreservation protocol for P.

damicornis. TBs were selected instead of other biological forms like

planulae, apexes or cell suspensions for several reasons. Despite

our advanced knowledge on P. damicornis planulation cycles in

captivity conditions [7,14], the monthly periodicity of larval

releases appeared as a limiting factor for our experiments. More-

over, larvae represent a genetically diverse material, which is not

appropriate to study the impact of CPA treatments. Also, this study

required large quantities of biological material. TBs represented a

genetically homogeneous material, which could be produced in

large quantities. Preliminary experiments performed with coral

apexes revealed that their large size and the presence of calcareous

skeleton made their cryopreservation difficult [22,33]. By contrast,

TBs had a small size, which was a positive parameter for the estab-

lishment of a cryopreservation protocol [35].

For TB production, mechanical excision was preferred in our

experiments to both chemical and enzymatic disruption. This sam-

pling procedure was chosen to limit chemical interactions with cell

compounds prior to CPA tests and to establish a methodology sui-

ted for field sampling. Moreover, the impact of mechanical sam-

pling on coral viability was minimal compared with the Polyp

Bail Out techniques which use calcium-free seawater or chemical

agents.

Despite the beneficial effects of CPA solutions, their toxicity is

considered as the main limiting factor in cryobiology and espe-

cially in vitrification protocols, which use high CPA concentrations

[21,35,51]. In our experiments, TBs were treated for 20 min at

room temperature with EG, Met, Gly or Me2SO solutions at concen-

trations between 1.0 and 4.5 M. EG was the best tolerated of the

CPAs tested. It was the only CPA for which intact TBs were obtained

after treatment with a 4.0 M solution and Tissue Ball Regression

values after treatment with 3.0 and 4.0 M EG solutions were lower

compared to the other CPAs tested. Several studies have shown

that cells, embryos or larvae of marine organisms exposed to EG

solutions displayed high survival. Crassostrea gigas [53] and Balanus

amphitrite larvae [3] showed higher tolerance to EG compared to

Me2SO and Gly. Litopenaeus vannamei embryos and larvae

could be treated with 0.7–5.4 M EG solutions with little toxicity

[19]. Cryopreservation of Hemicentrotus pulcherrinus and

Strongylocentrotus intermedius embryos was achieved using a

1.5 M EG solution [5]. By contrast, Evechinus chloroticus larvae

displayed high tolerance to EG treatment but no survival was

achieved following LN exposure [1]. Preston [52] demonstrated that

EG was not the best CPA compared to Met for cryopreservation of

Penaeus esculentus embryos and nauplii. With Anthozoan, Tsai

et al. [62] demonstrated EG toxicity for Echinopora sp. oocytes.

Exposure of oocytes to a 3.0 M EG solution was lethal whereas,

in our experiments, intact TBs were obtained after treatment with

the same EG concentration.

In our experiments, using Met solutions produced similar

results to EG at the three lower concentrations tested (1.0, 1.5

and 2.0 M). P. damicornis planulae withstood treatment with

1.0 M Met for 15 min but larval survival decreased after exposure

to 2.0 M Met [28]. Tsai et al. [62] reported that the highest survival

of Echinopora sp. oocytes was achieved following treatment with

1.0 M Met compared to Me2SO, EG and propylene glycol (PG).

Other studies performed on invertebrate marine organisms

showed good survival with Met solutions. With P. japonicus

embryos, nauplii and zoea, higher survival was obtained following

10–30 min treatment with 1.6–9.4 M Met solutions compared to

Me2SO, Gly, EG and PG [26]. With Scylla serrata spermatozoa,

Met was less toxic than Me2SO, EG and Gly but did not afford sig-

nificant protection against LN exposure [8]. With L. vannamei sper-

matozoa, viability after cryopreservation was compared between

Met, Me2SO, Gly and EG. Spermatozoa tolerated Met solutions up

to 9.4 M. The highest survival post-rewarming was recorded fol-

lowing exposure to 1.6 M Met [42]. Survival of Haliotis midae

embryos was higher after treatment with a Met solution compared

to Gly and Me2SO [58]. The hatching rate of P. esculentus nauplii
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was higher following a 20 min treatment with 1.0–2.0 M Met com-

pared to Me2SO and EG [52].

TBs showed higher tolerance to EG and Met treatments com-

pared to Me2SO at the same concentration. However, TBs with-

stood treatment with the three lower Me2SO concentrations

tested (1.0, 1.5 and 2.0 M) and these concentrations may be used

in further cryopreservation experiments. Despite the good toler-

ance of biological material to EG and Met solutions, some authors

reported the low efficiency of these two CPAs during a cryopreser-

vation protocol. Hagedorn et al. [28] obtained lower survival of P.

damicornis larvae after exposure to a 2.0 M Me2SO solution com-

pared to 1.0 and 1.5 M. However, these authors demonstrated that

treatment of Fungia scutaria spermatozoa with 1.5 M Me2SO pro-

duced lower osmotic damage compared to other CPAs at the same

concentration [27]. Successful cryopreservation of spermatozoa

from several Scleractinian species was achieved following treat-

ment with a 1.5 M Me2SO solution [30–32]. High Me2SO concen-

trations appeared more toxic than other CPAs but could be more

effective in protecting biological samples during a freeze–thaw

cycle. With gorgonian coral, higher tolerance of Junceella juncea

and Junceella fragilis sperm sacs was recorded after 20–40 min

treatment with 3.0 M Met or Me2SO compared to EG, Gly or PG

[63]. Adams et al. [1] demonstrated the efficiency of a treatment

with a 1.5 M Me2SO solution for cryopreserving E. chloroticus lar-

vae. Jeyalectumie et al. [36] and Bhavanishankar and Subramoniam

[9] showed that optimal protection of cryopreserved S. serrata

spermatozoa was achieved following treatment with a 1.5 M

Me2SO solution. Vitiello et al. [64] noted that Me2SO solutions with

a concentration lower than 2.0 M had no toxic effect on Ostrea

edulis spermatozoa, whereas more concentrated solutions were

lethal [64]. Liu et al. [47] reported the higher protective effect of

Me2SO on Haliotis laevigata spermatozoa compared to other CPAs

at the same concentration [47]. However, a treatment P. japonicus

[26], Penaeus monodom larvae [4], Trachypenaeus byrdi embryos [2]

and L. vannamei spermatozoa [42].

In our experiments, Gly solutions were tolerated by TBs at con-

centrations between 1.0 and 2.0 M but more concentrated Gly

solutions showed detrimental effects on TB survival. As for other

CPAs, the effect of Gly treatments on marine invertebrates varied

depending on the species, exposure duration, Gly concentration

and temperature of exposure. P. damicornis planulae did not toler-

ate exposure to a 2.0 M Gly solution [28] and F. scutaria spermato-

zoa were sensitive to 1.5 M Gly [27]. In case of gorgonian coral

J. juncea and J. fragilis sperm sacs, Gly solutions were more toxic

compared to other CPA solutions [63]. P. monodom embryos were

more tolerant to Me2SO and Gly exposure compared to EG and

Met [66]. By contrast, tolerance to Gly treatment was low in case

of T. byrdi embryos [2], H. pulcherrinus and S. intermedius embryos

[5], H. midae embryos [58] and O. edulis spermatozoa [64]. Liu et al.

[47] noted the extreme sensitivity of H. laevigata spermatozoa to

Gly concentrations as low as 0.5 M. However, Arun and Subramon-

iam [4] showed that Gly toxicity to prawn larvae could be reduced

by rinsing them several times with fresh seawater to remove the

CPA solution. In our study, survival of TBs treated for 20 min with

2.0 M Gly was higher than survival of P. damicornis larvae exposed

for 15 min at RT [28]. The lower structural complexity of TBs com-

pared to planulae may explain these differences.

In our experiments, better Tissue Ball Regression and Undam-

aged Duration of Tissue Balls results were sometimes obtained

with treated TBs compared to control TBs, especially after exposure

to the two lower CPA concentrations employed (1.0 and 1.5 M).

CPA exposure may be beneficial to TB survival by preventing bac-

terial and viral aggressions. Coral is considered as a holobiont via

the mutualism process associating this animal with microbe

communities like bacteria and viruses [10,57]. It is considered that

microbial partners of corals prevent pathogen aggressions and

modify metabolism intensity. However, coral diseases are caused

by several disturbed microbial partners and the Vibrionaceae fam-

ily represents the main bacterial pathogens impacting coral health

[10,69]. The CPA treatment may be considered as an efficient tool

against coral diseases caused by microbotia.

The higher survival obtained with treated samples compared to

control samples may also be due to the selection in TBs of cell types

with higher tolerance to CPA exposure. Such a selection phenome-

non is well documented in plant cryopreservation, whereby meri-

stematic cells, which are tolerant to desiccation and to LN

exposure, remain alive after CPA treatment and cryopreservation,

whereas more differentiated cells, which are sensitive to desicca-

tion and LN exposure, are killed by these treatments [20,67]. The

occurrence of such a selection process in coral TBs should be con-

firmed through additional investigations.

In this study, TBs tolerated higher CPA concentrations than

those reported for apexes [22]. However, the highest concentration

tolerated was 4.0 M only, which is not high enough to achieve vit-

rification upon cooling. Tolerance of J. juncea and J. fragilis sperm

sacs to CPA solutions decreased for concentrations above 4.0 M

[63]. Similarly, in case of barnacle larvae, the highest CPA concen-

trations employed during pretreatment (4.0–10.0 M) were not suf-

ficiently high to achieve vitrification and a slow cooling protocol

was thus employed [3]. Similar results were obtained by Preston

and Coman [52] for cryopreservation of P. esculentus embryos

and nauplii after exposition to CPA concentrations above 5.0 M.

In case of coral TBs, the high CPA toxicity observed may restrict

the application of vitrification protocols. Additional investigations

should be performed to decrease the toxicity of CPA solutions.

One possibility would be to employ mixtures of CPAs, which are

often less toxic than a single CPA solution at the same total molar-

ity [16,35]. In Anthozoan, tolerance of P. damicornis apexes to CPA

solutions increased using mixtures of CPAs [22]. Using associated

molecules such as the amide–Me2SO complex as CPA allowed

increasing tolerance during freezing of the rabbit renal cortex

[21]. Isachenko [35] demonstrated the possibility to cryopreserve

human spermatozoa without conventional CPAs. Odintsova and

Boroda [51] related in some cases the use of membrane stabilizing

agents, exogenous lipids, and antioxidants to replace Me2SO for

cryopreservation of some molluscan and echinoderms cells. This

method may provide an interesting alternative to reduce the sen-

sitivity of tissues and apexes from coral to the high CPA concentra-

tions used in vitrification protocols. Finally, decreasing the

temperature of CPA treatment may reduce CPA toxicity [62].

Several authors reported that spermatozoa and larval tolerance

to CPAs, and especially to Me2SO, increased when treatment was

performed at 0 °C instead of RT [5,8].

As suggested by some authors, TBs constitute an interesting

material to investigate coral ecotoxicology [18,37,41,50]. In this

study, TBs were produced using a mechanical technique to avoid

any chemical or enzymatic impact on cellular cohesion. A period

of 24 h was necessary to achieve TB formation, which facilitated

experimental planning. Nesa and Hidaka [50] used a similar

mechanical technique to generate TBs from Fungia sp. and Pavona

divaricata with the use of a water pick. Thus, survival results may

be compared between both studies. The culture conditions

employed in our study, with a temperature of 25 °C and the daily

renewal of ASW, allowed maintaining TBs in stable condition for

an average of 120 h (5 days) before disruption, with a maximal

duration of 264 h (11 days). Similar results were reported by Nesa

and Hidaka [50] with a survival duration of 100 h. With TBs which

were produced using a chemical and enzymatic process, similar

survival durations were described with periods between 72 h

[18] and 100 h for P. damicornis and 200–300 h for Acropora

micropthalma [37]. High survival durations were obtained in our

study without using a cell culture medium as performed by
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Domart-Coulon et al. [18] and Lecointe et al. [41]. Daily renewal of

seawater or cell culture medium may play an important role in

increasing the duration of TB survival. Coral enrichment before

TB production may also increase their tolerance to treatments.

Nesa and Hidaka [50] reported no significant correlations

between TB survival duration and size. However, our study showed

a correlation between TB diameter and their regression over time.

Smaller TBs were less competent over time than larger ones. The

cell aggregation process constitutes a cell pool which may be more

advantageous for larger TBs. However, the existing TB fusion

potential led to the production of larger TBs, with a diameter of

up to 600 lm. These large TBs were fragile, showing important dis-

ruption events and short survival durations. They were thus

excluded from the experiments. Our experiments allowed identify-

ing an optimal TB diameter in the range of 100–300 lm.

Nesa and Hidaka [50] noted that TB disruption started with the

arrest of rotation. By contrast, in our experiments, we observed the

continuous degradation of TBs despite their positive motility. Dif-

ferences in TB production techniques and captivity conditions

may explain such differences. Domart-Coulon et al. [18] identified

this degradation as a time-consuming process and Lecointe et al.

[41] described the autophagy process with the occurrence of auto-

phagosomes concentrated into the central mass.

In conclusion, despite their short-term culture, TBs constitute a

good experimental material to evaluate CPA toxicity on corals

using large numbers of samples. Performing preliminary experi-

ments with TBs may allow reducing the number of tests carried

out with less easily available coral forms such as isolated polyps

or planulae, thereby preserving larval stocks.
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a b s t r a c t

In this study, we tested the tolerance of tissue balls (TBs, 100–400 lm in diameter) from the coral
Pocillopora damicornis produced using mechanical excision to exposure to cryoprotectant (CPA) solutions.
TBs were treated for 20 min at room temperature with individual, binary, ternary or quaternary CPA solu-
tions with a total molarity from 2.0 to 5.0 M. Four CPAs were used: ethylene glycol (EG), dimethylsulfox-
ide (Me2SO), methanol (Met) and glycerol (Gly). In some experiments, the molarity of the CPA solutions
was increased and decreased in a stepwise manner. The tolerance of TBs following CPA treatment was
evaluated using two parameters. The Tissue Ball Regression (expressed in lm/h) measured the diameter
regression of TBs over time. The % Undamaged TBs quantified the proportion of TBs, which remained
intact over time after the CPA treatment. TBs tolerated exposure to binary solutions with a total molarity
of 4.0 M containing 2.0 M EG + 2.0 MMet and 2.0 M EG + 2.0 M Gly. TBs displayed tolerance to ternary
solutions with a total molarity up to 3.0 M, containing each CPA at 1.0 M. Quaternary solutions with a
total molarity of 4.0 M containing each CPA at 1.0 M were not tolerated by TBs. When the molarity of
the CPA solutions was increased and decreased in a stepwise manner, TBs withstood exposure to a
CPA solution with a total molarity of 4.5 M, containing 1.5 M EG + 1.5 M Gly + 1.5 MMe2SO. This study
confirmed the interest of using TBs to test CPA solutions, with the objective of developing a
vitrification-based cryopreservation protocol.

Ó 2015 Elsevier Inc. All rights reserved.

Introduction

Numerous safeguard programs have been developed to limit
population regression of coral reefs. Habitat protection measures
such as the establishment of marine reserves and artificial reef
structures [10,55,83] or strategies such as coral transplantation
and the gardening concept [72,75] have proved efficient to sustain
recovery of corals. However, despite these numerous restoration
measures, socio-economic, political and environmental pressures
impede efficient coral reef conservation [8,16]. New ex situ tools
such as cryopreservation must be developed to conserve these
threatened populations. Cryopreservation has already been used
to conserve rare and threatened plant and animal species,
including marine organisms [5,6,28,80].

Cryopreservation of invertebrate marine organisms has been
firstly investigated on commercially important phyla [20,30,59].
To date, a range of biomaterials have been successfully
cryopreserved such as spermatozoa, oocytes, dissociated cells,
embryos, tissue explants and different larval stages from various
Echinoderm [1,38,65,76], Mollusc [9,53,62,67,77] and Arthropod
species [2,19,69]. Cryopreservation has also been explored with
other marine invertebrate organisms such the Sponge Petrosia

ficiformis, larvae of the Polychaete Nereis virens and Ascidian cells
[56,59,86]. Coral cryopreservation is much less advanced com-
pared to other marine invertebrate phyla [59]. With coral, the main
emphasis has been on gamete cryopreservation. Hagedorn et al.
[37] and Ohki et al. [60] successfully cryopreserved coral sperma-
tozoa using a slow cooling protocol. Lin et al. [52] and Tsai et al.
[82] investigated the tolerance of oocytes and sperm sacs to cry-
oprotectant (CPA) exposure. Recently, several studies examined
the tolerance of more complex structures including planulae, tis-
sue balls (TBs) or apexes to CPA exposure [22,23,31,36]. Fungia

http://dx.doi.org/10.1016/j.cryobiol.2015.07.004
0011-2240/Ó 2015 Elsevier Inc. All rights reserved.
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scutaria planulae were sensitive to slow cooling [32]. Pocillopora
damicornis apexes showed chilling sensitivity [36] and did not tol-
erate exposure to individual CPA solutions with a molarity higher
than 2.0 M [23]. Hagedorn et al. [32] suggested investigating cry-
opreservation of planulae using a vitrification approach. The vitri-
fication technique, which comprises high cooling and warming
rates, can constitute an alternative for the cryopreservation of spe-
cies, which are sensitive to slow cooling procedures [11,30,45].

In contrast with the slow cooling techniques, the vitrification
technique uses high CPA concentrations and high cooling and
warming rates to avoid ice crystal formation in cells. During cool-
ing and warming, ice crystals can induce irreversible damage to
cell membranes. Cryopreservation techniques avoiding or limiting
crystallization such as vitrification make cell and tissue long-term
conservation easier and more efficient [42,48,66,88]. However, the
high CPA concentrations employed in vitrification protocols have
toxic effects on cells [42,48]. Therefore, before exposing biological
samples to liquid nitrogen (LN), it is necessary to evaluate their tol-
erance to the CPA solutions employed in vitrification protocols.

With the objective of developing a vitrification protocol for the
coral P. damicornis, we first tested the tolerance of apexes to vari-
ous CPAs [23]. Apexes tolerated exposure to complex CPA solutions
containing sucrose (Suc), dimethylsulfoxide (Me2SO), ethylene gly-
col (EG) and/or methanol (Met) with a total molarity of 2.45 M. We
then tested the tolerance of TBs to individual CPA solutions. TBs
tolerated exposure to 3.0 MMet, Gly and Me2SO solutions and to
a 4.0 M EG solution [22]. However, as vitrification of CPA solutions
upon cooling occurs at higher concentrations, e.g. 6.5 M for EG [3],
it is thus necessary to develop CPA solutions which have a higher
total molarity and which can be tolerated by P. damicornis TBs.
Numerous authors demonstrated the beneficial effect of exposing
biological materials to solutions consisting of combinations of sev-
eral CPAs [3,40,63,64,73,74]. For cryopreservation of plant materi-
als using a vitrification protocol, Sakai et al. (1990) developed a
CPA solution termed PVS2 which contained a mixture of EG,
Me2SO, Gly and Suc [73]. Similarly, Wang et al. (2011) used the
PVS2 solution to cryopreserve gametophytes of the alga Undaria

pinnatifida [85]. Vitrification of human oocytes was achieved using
solutions containing EG, Me2SO and Suc [4,61]. In marine organ-
isms, Chen and Tian (2005) accomplished vitrification of flounder
embryos using a combination of Me2SO and polyethylene glycol
(PEG) [11]. Rahman et al. (2008) cryopreserved Sillago japonica

embryos following treatment with a CPA mixture containing
propylene glycol (PG), Me2SO and Met or EG [70].

To date, the metamorphosis of TBs into polyps has been
reported for Fungia granulosa [47,84]. It provides encouraging data
for the production of TBs with other Scleractinian species.
Production of TBs has been reported with the corals Stylophora pis-

tillata, P. damicornis and Pavona divaricata [17,18,46,49,57]. Despite
their currently low survival after 1 month [18], it is expected that
the optimization of TB culture conditions will lead to the produc-
tion of new polyps. TBs may represent an interesting material
studying the coral-algal symbiosis [27], for producing coral cell
cultures and for investigating coral tolerance to various treatments
[22,57] and the physiology of coral tissues. Thus, cryopreservation
of TBs might represent a valuable means for long-term conserva-
tion of Scleractinian species and for the provision of reservoir
material for various investigations.

This study aimed at investigating the tolerance of TBs from the
coral P. damicornis to exposure to CPA mixtures with a total molar-
ity higher than 2.0 M. The CPA solutions employed were selected
based on the results of Feuillassier et al. (2014) on the tolerance
of P. damicornis TBs to individual CPAs and on previous studies per-
formed on the development of vitrification solutions for various
materials [11,70,73]. The tolerance of TBs to the CPA treatments
was evaluated using two parameters. TB Regression measured

the size reduction over time of TBs after CPA treatment [18]. The
% Undamaged TBs quantified the proportion of TBs, which
remained intact over time and conserved their motility after the
CPA treatment [22]. This parameter was based on the motility of
TBs after treatment, the conservation of the smooth aspect from
the membrane surface and the lack of disruptions.

Materials and methods

Biological material

Branches of colonies of the Scleratinian P. damicornis (L. 1758)
were sampled from the Aquarium of Canet en Roussillon, France
(branches resulting from spontaneous reproduction on CITES num-
ber: O3584). Experiments were conducted at the Oceanological
Observatory, Pierre and Marie Curie University, Banyuls/mer,
France. Prior to experiments, coral fragments were cultured for
1 month in a 230 L holding tank filled with Artificial Seawater
(ASW: Reef Crystal salt, Aquarium System label; Ca2+: 420 ppm;
Mg2+: 1300 ppm; KH � 7) under the cultural conditions selected
by Feuillassier et al. [22] (temperature: 25 °C; salinity: 35; pH:
8.3; PAR: 170 lmol mÿ2 sÿ1).

TBs of P. damicornis were prepared according to Feuillassier
et al. [22] using a mechanical dissociation technique. Briefly, tis-
sues were excised from coenosarc areas of coral branches using a
N° 24 scalpel blade (cleaned with 96% alcohol) at room tempera-
ture (RT: 22 °C). Small tissue fragments were sampled without
scraping to preserve ectoderm and endoderm cells. Samples were
immersed in 3 ml wells of multiple well cluster plates for cell
culture (CORNING, TC-Treated, Sterile) and incubated for 24 h
(temperature: 25 ± 1 °C, hygrometry: 100%; light intensity:
20 lmol mÿ2 sÿ1) in 24 h aged-Artificial Seawater (24 h-ASW).
Motile TBs were rinsed five times with 24 h-ASW and isolated indi-
vidually for CPA treatment in wells of multiple well cluster plates
for cell culture containing 3 ml fresh 24 h-ASW.

CPA solutions

Binary CPA solutions were used in Experiment 1 (Table 1,
‘‘Binary’’). Ternary and quaternary CPA solutions were employed
in Experiment 2 (Table 1,’’Ternary’’ and ‘‘Quaternary’’). In
Experiment 3, TBs were exposed to a succession of three individual
CPA solutions (Table 2). In Experiment 4 a succession of three bin-
ary or ternary CPA solutions was employed (Table 3). The CPAs
used in this study were Me2SO (VWR, Analytical reagent, Assay:
99.7%), Gly (CARLO ERBA, ACS-For Analysis, Assay: 99.5%), EG
(VWR, AnalaR NORMAPUR, Assay: 100%) and Met (SIGMA–
ALDRICH, ACS-reagent, Assay: 99.8%). CPA stock solutions were
diluted by adding ASW (pH: 8.4) to obtain the final concentrations
tested in each experiment.

Experimental procedures

CPA treatments were performed using motile TBs with a
diameter comprised between 100 and 400 lm (Fig. 1A).
Previous experiments had shown that TBs in this size range
displayed higher tolerance to CPA treatments compared to larger
TBs [22]. TBs were incubated individually in 1.5 ml CPA solution
at room temperature (RT: 22 °C). After the CPA treatment, TBs
were rinsed three times with 24 h-ASW and maintained in an
incubator (temperature: 25 ± 1 °C, hygrometry: 100%; light
intensity: 20 lmol mÿ2 sÿ1). Individual observations and mea-
surements started 24 h after the CPA treatment (Fig. 1A and B).
Seawater was replaced daily with fresh 24 h-ASW. For each
CPA solution tested, 30 untreated controls and 30 treated TBs
were employed.
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Experiment 1

In this experiment, TBs were exposed at RT for 20 min to the
binary CPA solutions listed in Table 1. This duration was selected

based on previous results obtained by Feuillassier et al. (2014)
which showed that exposure to CPA solutions for 20 min was well
tolerated by TBs. The total molarity of the CPAs used was 2.0, 3.0,
4.0 or 5.0 M.

Experiment 2

In this experiment, TBs were exposed for 20 min at RT to the
ternary or quaternary solutions listed in Table 1. The total molarity
of the ternary CPA solutions was 3.0, 4.5 or 5.0 M and that of the
quaternary CPA solution was 4.0 M. The CPA solutions selected for
Experiment 2 were based on the results obtained in Experiment 1.

Experiment 3

In this experiment, the molarity of the individual CPA solutions
was increased and decreased in a stepwise manner. TBs were first
treated for 5 min with a CPA solution with a molarity of 1.5 or
2.0 M (Table 2, solution 1), then for 10 or 20 min with a CPA solu-
tion at twice the concentration of solution 1, i.e. 3.0 or 4.0 M
(Table 2, solution 2), and then for an additional 5 min in solution
1 before rinsing in 24 h-ASW.

Table 1

Binary, ternary or quaternary CPA combinations used in Experiments 1 and 2. Me2SO = Dimethylsulfoxide, EG = Ethylene glycol, Gly = Glycerol, Met = Methanol.

CPA combination CPA concentration (M) Composition

Binary 2.0 0.5 M Gly + 1.5 M EG
Binary 2.0 0.5 MMet + 1.5 M EG
Binary 2.0 0.5 MMe2SO + 1.5 M EG
Binary 2.0 0.5 MMe2SO + 1.5 MMet
Binary 2.0 0.5 M Gly + 1.5 MMet
Binary 3.0 1.5 M EG + 1.5 M Met
Binary 3.0 1.5 M EG + 1.5 M Me2SO
Binary 3.0 1.5 M EG + 1.5 M Gly
Binary 3.0 1.5 MMet + 1.5 M Me2SO
Binary 3.0 1.5 MMet + 1.5 M Gly
Binary 3.0 1.5 MMe2SO + 1.5 M Gly
Binary 4.0 2.0 M EG + 2.0 MMet
Binary 4.0 2.0 M EG + 2.0 MMe2SO
Binary 4.0 2.0 M EG + 2.0 M Gly
Binary 4.0 2.0 MMet + 2.0 MMe2SO
Binary 4.0 2.0 MMet + 2.0 M Gly
Binary 4.0 2.0 MMe2SO + 2.0 M Gly
Binary 5.0 2.5 M EG + 2.5 M Met
Binary 5.0 2.5 M EG + 2.5 M Gly
Binary 5.0 3.0 M EG + 2.0 M Gly
Binary 5.0 3.0 M EG + 2.0 MMet
Ternary 3.0 1.0 M EG + 1.0 M Gly + 1.0 MMe2SO
Ternary 3.0 1.0 M EG + 1.0 M Gly + 1.0 MMet
Ternary 3.0 1.0 MMet + 1.0 M Gly + 1.0 MMe2SO
Ternary 4.5 1.5 M EG + 1.5 M Gly + 1.5 M Me2SO
Ternary 4.5 1.5 M EG + 1.5 M Gly + 1.5 M Met
Ternary 4.5 1.5 MMet + 1.5 M Gly + 1.5 M Me2SO
Ternary 5.0 2.0 M EG + 2.0 M Gly + 1.0 MMe2SO
Ternary 5.0 2.0 M EG + 2.0 MMet + 1.0 MMe2SO
Quaternary 4.0 1.0 M EG + 1.0 MMet + 1.0 M Gly + 1.0 MMe2SO

Table 2

CPA solutions employed in a stepwise manner in Experiment 3.
Me2SO = Dimethylsulfoxide, EG = Ethylene glycol, Gly = Glycerol, Met = Methanol.

Sequence of CPA solutions applied to TBs Exposure duration (min)

Sol. 1 Sol. 2 Sol. 1 Sol. 1 Sol. 2 Sol. 1

1.5 M EG 3.0 M EG 1.5 M EG 5 10 5
1.5 M Met 3.0 MMet 1.5 MMet 5 10 5
1.5 M Me2SO 3.0 MMe2SO 1.5 MMe2SO 5 10 5
1.5 M Gly 3.0 M Gly 1.5 M Gly 5 10 5
1.5 M EG 3.0 M EG 1.5 M EG 5 20 5
1.5 M Met 3.0 MMet 1.5 MMet 5 20 5
1.5 M Me2SO 3.0 MMe2SO 1.5 MMe2SO 5 20 5
1.5 M Gly 3.0 M Gly 1.5 M Gly 5 20 5
2.0 M EG 4.0 M EG 2.0 M EG 5 10 5
2.0 M Met 4.0 MMet 2.0 MMet 5 10 5
2.0 M Me2SO 4.0 MMe2SO 2.0 MMe2SO 5 10 5
2.0 M Gly 4.0 M Gly 2.0 M Gly 5 10 5

Table 3

CPA solutions employed in a stepwise manner in Experiment 4. Me2SO = Dimethylsulfoxide, EG = Ethylene glycol, Gly = Glycerol, Met = Methanol.

Tests Sequence of CPA solutions applied to TBs Exposure duration (min)

Sol. 1 Sol. 2 Sol. 1 Sol. 1 Sol. 2 Sol. 1

C1 0.5 MMe2SO + 1.5 M EG 1.5 M EG + 1.5 M Gly + 1.5 MMe2SO 0.5 M Me2SO + 1.5 M EG 5 10 5
C2 0.5 M Gly + 1.5 M EG 1.5 EG M + 1.5 M Gly + 1.5 M Me2SO 0.5 M Gly + 1.5 M EG 5 10 5
C3 0.5 M Gly + 1.5 M EG 1.5 M EG + 1.5 M Gly + 1.5 MMet 0.5 M Gly + 1.5 M EG 5 10 5
C4 0.5 MMet + 1.5 M EG 1.5 M EG + 1.5 M Gly + 1.5 MMet 0.5 M Met + 1.5 M EG 5 10 5
C5 0.5 MMe2SO + 1.5 MMet 1.5 MMet + 1.5 M Gly + 1.5 MMe2SO 0.5 M Me2SO + 1.5 MMet 5 10 5
C6 0.5 M Gly + 1.5 MMet 1.5 MMet + 1.5 M Gly + 1.5 MMe2SO 0.5 M Gly + 1.5 MMet 5 10 5
C7 1.0 M EG + 1.0 M Gly + 1.0 MMe2SO 1.5 M EG + 1.5 M Gly + 1.5 MMe2SO 1.0 M EG + 1.0 M Gly + 1.0 MMe2SO 5 10 5
C8 0.5 M Gly + 1.5 M EG 2.5 M EG + 2.5 M Gly 0.5 M Gly + 1.5 M EG 10 10 10
C9 1.5 M Gly + 1.5 M EG 2.5 M EG + 2.5 M Gly 1.5 M Gly + 1.5 M EG 10 10 10
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Experiment 4

In Experiment 4, the molarity of the CPA solutions used was also
increased and decreased in a stepwise manner. TBs were first trea-
ted for 5 or 10 min with a binary or ternary CPA solution with a
total molarity of 2.0 or 3.0 M (Table 3, solution 1), then for
10 min with a binary or ternary CPA solution with a total molarity
of 4.5 or 5.0 M (Table 3, solution 2), and then for an additional 5 or
10 min with solution 1 before rinsing in 24 h-ASW. The CPA solu-
tions selected for Experiment 4 were based on the results obtained
in Experiments 1 and 2.

Observations and measurements performed

Photographs of all TBs were taken daily until TB disruption
using a photographic monitoring device (MOTIC 257
SMZ-168-TLED coupled with a numeric camera MOTICAM 580
SM7619-MG4EX-RPFWFT). Two parameters were used to evaluate
the effect of the CPA treatments performed in Experiments 1–4 on
TB survival. The Tissue Ball Regression corresponded to the size
reduction of TBs over time [22]. To calculate Tissue Ball
Regression (expressed in lm/h), the diameter of TBs was measured
daily using the Motic Images (PLUS 2.0) software. The second
parameter, the % Undamaged TBs, allowed evaluating the struc-
tural integrity of TBs over time until TB disruption. This parameter
may be assimilated to a survival index. The % Undamaged TBs was
evaluated using macroscopic observation of the structural integ-
rity, the rotary movement and the smooth aspect of the surface
of TBs (Fig. 1C–E). In most cases, motility of TBs was observed until
TB disruption. High Tissue Ball Regression values and low percent-
ages of % Undamaged TBs indicated low tolerance of TBs to CPA
treatments.

Analysis of data

The results of experiments were analyzed using the R version
3.0.2 free software (The R Foundation for Statistical Computing
2013). Graphic processing was performed with Microsoft Excel
(2007 version). The treatment effect was determined based on

differences between treated samples and their untreated controls.
Tissue Ball Regression differences between treatments were ana-
lyzed using the Wilcoxon test. % Undamaged TBs were compared
using the Fisher’s Exact Test. The significance of differences was
considered with a 95% confidence level (p values < 0.05).

Results

Experiment 1

Comparison between treated and control TBs

For the five 2.0 M CPA solutions tested, Tissue Ball Regression
was not significantly different between treated and control sam-
ples for most durations (Fig. 2A). TBs displayed a comparable toler-
ance to the five 2.0 M CPA solutions tested.

No significant differences in % Undamaged TBs were observed
up to 120 h between treated and control samples (p > 0.05,
Fisher’s Exact Test), while significant differences (p < 0.05,
Fisher’s Exact Test) were noted for longer durations (Fig. 2A).
After 144 h, the % Undamaged TBs was 50% for controls whereas
it was between 73 and 99% for treated TBs. After 240 h,
Undamaged TBs were observed only with control samples (8%).

TBs were exposed to six CPA solutions with a total molarity of
3.0 M. Tissue Ball Regression of TBs were treated with a CPA solu-
tion containing 1.5 MMe2SO + 1.5 MMet was significantly higher
compared to non treated TBs for all durations (p < 0.05,
Wilcoxon-test) (Fig. 2B). Tissue Ball Regression of TBs exposed to
CPA solutions containing 1.5 MMet + 1.5 M EG, 1.5 MMe2SO +
1.5 M EG and 1.5 M Gly + 1.5 M EG was significantly higher
compared to non treated TBs after 24 h and 48 h (p < 0.05,
Wilcoxon-test). Except after 96 h and 120 h, no significant differ-
ences in Tissue Ball Regression were recorded between controls
and TBs treated with 1.5 MMe2SO MMe2SO + 1.5 M Gly and
1.5 M Gly + 1.5 MMet (p > 0.05, Wilcoxon-test).

Except for the CPA solution containing 1.5 MMe2SO +
1.5 MMet, the % Undamaged TBs were not significantly different
between treated and control TBs up to 96 h (p > 0.05, Fisher’s
Exact Test) (Fig. 2B). For 120 h, significant differences in %

Fig. 1. Views of damaged TBs during or following CPA treatment. (A) 24 h-old untreated TB. (B) Undamaged TB 336 h (14 days) after exposure to CPA solution. (C) Mass
expulsion of zooxanthellae from damaged TB after exposure to CPA solution. (D) Rapid disintegration of TB during CPA treatment. (E) TB with disrupted ectodermic surface
following CPA treatment. TB lost motility. (F) TB with localized ectoderm disruption and expulsion of CM in compact aggregate following CPA treatment. TB remained motile.
Ect = Ectoderm, CM = Central Mass, Zx = Zooxanthella. Scale bar = 100 lm.
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Undamaged TBs were noted between control (62%) and treated TBs
(�92%) (p > 0.05, Fisher’s Exact Test). After 192 h, 0% Undamaged
TBs was observed with treated TBs, while 10% Undamaged TBs
was still observed after 216 h with control TBs.

Among the six 4.0 M CPA solutions tested, only the solution
containing 2.0 MMet + 2.0 M EG produced no significant differ-
ences in Tissue Ball Regression between treated and control TBs
(p > 0.05, Wilcoxon-test) (Fig. 2C). With the CPA solution compris-
ing 2.0 M Gly + 2.0 M EG, Tissue Ball Regression of treated samples
was significantly higher compared to controls after 24–72 h

(p < 0.05, Wilcoxon-test). Tissue Ball Regression of TBs treated with
the four other CPA solutions tested was significantly higher
compared to control samples after all durations (p < 0.05,
Wilcoxon-test). The % Undamaged TBs decreased very rapidly for
these four CPA solutions (Fig. 2C). By contrast, the % Undamaged
TBs of samples treated with 2.0 M Gly + 2.0 M EG and
2.0 MMet + 2.0 M EG was 98% and 72% after 120 h, respectively
and it dropped to 0% after 144 and 192 h, respectively. The %
Undamaged TBs of control samples was still 10% after 192 h, and
it dropped to 0% after 216 h.

Fig. 2. Evolution of Tissue Ball Regression (lm/h) and of % Undamaged TBs (%) over time (24 h intervals) after treatment of TBs with binary or ternary CPA solutions for
20 min at room temperature (N = 30 TBs/treatment). Binary CPA solutions concentrated to (A) 2.0 M, (B) 3.0 M, (C) 4.0 M and ternary CPA solutions concentrated to (D) 3.0 M.
Me2SO = Dimethylsulfoxide, EG = Ethylene glycol, Gly = Glycerol, Met = Methanol. Only CPA treatments allowing survival of TBs after exposure to CPA solutions were
reported. Error bars represent standard deviations.
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When TBs were treated with 5.0 M CPA solutions, no survival
was achieved. As a result, Tissue Ball Regression and %
Undamaged TBs values were nil after 24 h.

Comparison between treatments

For the five 2.0 M CPA solutions tested, no significant differ-
ences in Tissue Ball Regression were observed over the whole
experiment duration (p > 0.05, Wilcoxon-test), except after 24
and 48 h for CPA solutions containing 0.5 MMe2SO +
1.5 MMet MMet and 0.5 M Gly + 1.5 M EG, which led to signifi-
cantly higher Tissue Ball Regression compared with other CPA
solutions (p < 0.05, Wilcoxon-test) (Fig. 2A). Between 0 and
120 h, no significant differences in % Undamaged TBs were noted
between treatments, with values over 80% (p > 0.05, Fisher’s
Exact Test) (Fig. 2A). Significant differences between treatments
were observed for longer durations. High % Undamaged TBs were
noted up to 192 h following treatment of TBs with 0.5 M Gly +
1.5 M EG or 0.5 M Gly + 1.5 M.

With most treatments, the highest Tissue Ball Regression values
and % Undamaged TBs were observed during the first 72 h. We
therefore ranked the CPA solutions based on their effect on TBs,
using the average values of Tissue Ball Regression obtained over
the first 72 h. The following ranking was obtained, starting from
the lowest Tissue Ball Regression values (i.e. the highest tolerance
to CPA treatment):

Control (1.4 ± 0.2 lm/h) < 0.5 MMe2SO + 1.5 M EG (2.1 ± 0.1
lm/h) < 0.5 MMet + 1.5M EG (2.3 ± 0.2 lm/h) < 0.5MGly + 1.5M EG
(2.6 ± 0.3 lm/h) = 0.5 M Gly + 1.5 MMet (2.6 ± 0.3 lm/h) < 0.5
MMe2SO + 1.5 MMet (2.9 ± 0.3 lm/h).

As regards the 3.0 M CPA solutions, the solutions containing
1.5 MMe2SO + 1.5 M Gly and 1.5 MMet + 1.5 M Gly produced sig-
nificantly lower Tissue Ball Regression values (p < 0.05,
Wilcoxon-test) compared with the other solutions tested
(Fig. 2B). The three CPA solutions containing 1.5 M Gly +
1.5 M EG, 1.5 MMe2SO + 1.5 M EG and 1.5 MMet + 1.5 M EG pro-
duced similar, intermediate Tissue Ball Regression values, which
were significantly different (p < 0.05, Wilcoxon-test) compared
with the other solutions used. Regressions values of TBs exposed
to 1.5 MMe2SO + 1.5 MMet were significantly higher (p < 0.05,
Wilcoxon-test), compared to the other solutions tested.

Up to 120 h after treatment, the % Undamaged TBs were not
significantly different between treatments (p > 0.05, Fisher’s
Exact Test) and remained over 80% with all CPA solutions except
with 1.5 MMe2SO + 1.5 MMet, for which it decreased rapidly.
Significant differences in % Undamaged TBs were observed from
144 h onwards (p < 0.05, Fisher’s Exact Test). Treatment with
1.5 MMet + 1.5 M EG and 1.5 M Gly + 1.5 MMe2SO led to %
Undamaged TBs of 75% after 144 h and 80% after 168 h, respec-
tively. No survival was obtained for longer treatment durations.
Based on the average values of Tissue Ball Regression obtained over
the first 72 h, the following ranking of 3.0 M CPA solutions was
obtained, starting from the lowest Tissue Ball Regression values
(i.e. the highest tolerance to CPA treatment):

1.5 M Gly + 1.5 MMet (0.7 ± 0.2 lm/h) = 1.5 MMe2SO + 1.5 M Gly
(0.7 ± 0.2 lm/h) < Control (1.3 ± 0.1 lm/h) < 1.5 MMe2SO + 1.5 M EG
(2.5 ± 0.3 lm/h) < 1.5 M Met + 1.5 M EG (2.5 ± 0.6 lm/h) <
1.5 M Gly + 1.5 M EG (2.7 ± 0.5 lm/h) < 1.5 MMe2SO + 1.5 MMet
(4.5 ± 0.7 lm/h).

In case of 4.0 M CPA solutions, the Tissue Ball Regression values
obtained with 2.0 MMe2SO + 2.0 M EG, 2.0 M Gly + 2.0 MMet,
2.0 MMe2SO + 2.0 MMet and 2.0 MMe2SO + 2.0 M Gly were sig-
nificantly higher (p < 0.05, Wilcoxon-test) compared with the two
other CPA solutions after 24 h and 48 h (Fig. 2C). Regression values
of TBs exposed to 2.0 M Gly + 2.0 M EG were significantly higher
compared to the values obtained with 2.0 MMet + 2.0 M EG
between 0 and 72 h following treatment (p < 0.05,

Wilcoxon-test). No significant differences were obtained between
these two CPA combinations after 72 h (p > 0.05, Wilcoxon-test).

Survival of TBs treated with 2.0 M Me2SO + 2.0 MMet,
2.0 MMe2SO + 2.0 M EG and 2.0 M Gly + 2.0 MMet did not
exceeded 72 h, with % Undamaged TBs significantly lower
(p < 0.05, Fisher’s Exact Test) compared to the % Undamaged TBs
of 2.0 M Gly + 2.0 M EG and 2.0 MMet + 2.0 M EG (Fig. 2C). With
the solution containing 2.0 M Gly + 2.0 MMe2SO, despite a high
value after 24 h (92%), the % Undamaged TBs decreased below
30% after 72 h. % Undamaged TBs were not significantly different
between 2.0 M Gly + 2.0 M EG and 2.0 MMet + 2.0 M EG up to
96 h (p > 0.05, Fisher’s Exact Test) with values over 80%. After
96 h, significant differences of % Undamaged TBs were recorded
between these two CPA solutions (p < 0.05, Fisher’s Exact Test).
With the solution containing 2.0 M Gly + 2.0 M EG the %
Undamaged TBs was nil after 144 h while it was nil after 192 h
for the solution containing 2.0 MMet + 2.0 M EG.

Only CPA solutions allowing survival of TBs for durations longer
than 72 h after treatment were ranked based on the TB tolerance.
Based on the average values of Tissue Ball Regression obtained over
the first 72 h, the following ranking of 4.0 M CPA solutions was
obtained, starting from the lowest Tissue Ball Regression values
(i.e. the highest tolerance to CPA treatment):

Control (1.2 ± 0.1 lm/h) < 2.0 MMet + 2.0 M EG (1.4 ± 0.1 lm/h) <
2.0 M Gly + 2.0 M EG (4.9 ± 0.4 lm/h) < 2.0 M Me2SO + 2.0 M Gly
(8.6 ± 0.6 lm/h).

CPA solutions of 4.5 M and 5.0 Mmolarity were not tolerated by
TBs.

The comparison of Tissue Ball Regression values of treated TBs
submitted to the CPA solutions tested allowed describing the effect
of the total molarity of the CPAs. For total molarities of 2.0 M and
3.0 M, similar Tissue Ball Regression values were obtained for
Me2SO + EG, Met + EG and Gly + EG (Fig. 3). The solution containing
Met + EG appeared as the best tolerated and inversely, the solution
containing Me2SO + Met was the least well tolerated by TBs. CPA
solutions with a molarity of 4.0 M were toxic to TBs.

Experiment 2

For all durations except 24 h, no significant differences in Tissue
Ball Regression were observed between treated and control TBs
(Fig. 2D). No significant differences in Tissue Ball Regression were
noted between the three CPA solutions (p > 0.05, Wilcoxon-test).
Despite the absence of significant differences in Tissue Ball
Regression, the CPA solution containing 1.0 M EG + 1.0 M Gly +
1.0 Met displayed the lowest Tissue Ball Regression value for
24 h with 2.8 ± 0.3 lm/h compared to 1.0 M EG + 1.0 M Gly +
1.0 Me2SO and 1.0 MMet + 1.0 M Gly + 1.0 Me2SO with 4.5 ± 0.5
and 5.3 ± 0.5 lm/h, respectively. No significant differences were
observed for % Undamaged TBs between the three CPA combina-
tions up to 144 h (p > 0.05, Fisher’s Exact Test) (Fig. 2D). TBs treated
with the solution containing 1.0 M EG + 1.0 M Gly + 1.0 Met
displayed % Undamaged TBs of 87% after treatment for 192 h and
reached 0% after 216 h.

TBs did not tolerate exposure to CPA combinations with a 4.5 M
total molarity.

Comparison between individual, binary and ternary solutions at the

same total molarity

The % Undamaged TBs at 72 h of all 3.0 M CPA solutions tested
was above 80% except for three individual solutions containing
3.0 M EG, 3.0 M Me2SO and 3.0 MMet (Fig. 4).

As regards Tissue Ball Regression, three groups of CPAs with
significantly different values could be identified (p < 0.05,
Wilcoxon-test). The first group, showing the highest Tissue Ball
Regression values, included three individual solutions (3.0 M EG,
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3.0 MMe2SO and 3.0 MMet) and one binary solution
(1.5 MMe2SO + 1.5 MMet). The second group, which displayed
intermediate Tissue Ball Regression values, consisted of three tern-
ary solutions (1.0 M EG + 1.0 M Gly + 1.0 MMe2SO, 1.0 M EG +
1.0 M Gly + 1.0 M Met and 1.0 MMet + 1.0 M Gly + 1.0 M Me2SO)
and of three binary solutions (1.5 M Gly + 1.5 M EG, 1.5 MMet +
1.5 M EG and 1.5 MMe2SO + 1.5 M EG). The third group, with the
lowest Tissue Ball Regression values, included two binary solutions
(1.5 M Gly + 1.5 MMet and 1.5 MMe2SO + 1.5 M Gly). The Tissue
Ball Regression value of the solution containing 3.0 M Gly was
intermediate between the first and second groups.

Experiment 3

When TBs were exposed for 10 min to individual CPA solutions
with a molarity of 3.0 M (Table 2, solution 2) following a stepwise
increase in molarity, Tissue Ball Regression values of TBs treated
with solutions containing EG, Met and Me2SO were significantly
higher compared to the untreated control (p < 0.05,
Wilcoxon-test) (Fig. 5A). By contrast, except for 24 h, no significant

differences were observed in Tissue Ball Regression values of TBs
treated with Gly and the untreated control (p > 0.05,
Wilcoxon-test). The % Undamaged TBs following treatment with
EG, Met and Me2SO decreased rapidly, reaching 0% after 48 h
(Fig. 5A). By contrast, the % Undamaged TBs following treatment
with Gly was significantly higher (p < 0.05, Fisher’s Exact Test) with
a value of 90% after 96 h and it reached 0% after 120 h. When the
duration of exposure of TBs to solution 2 was increased to 20 min,
Tissue Ball Regression values of TBs increased drastically, except
after treatment with EG (Fig. 5B). The % Undamaged TBs decreased
rapidly following treatment with the three solutions tested, reach-
ing 0% after 72 h (Fig. 5B). By contrast, the % Undamaged TBs of con-
trol TBs reached 0% after 192 h. Tissue Ball Regression of TBs treated
with the 4.0 M CPA solutions tested was very high (Fig. 5C). The %
Undamaged TBs reached 0% within 48 h (Fig. 5C).

Experiment 4

Experiment 4 consisted in exposing TBs to a series of binary or
ternary CPA solutions with a total molarity of 4.5–5.0 M following

Fig. 4. Average Tissue Ball Regression (lm/h) and % Undamaged TBs over the first 72 h following treatment of TBs treated with binary and ternary CPA solutions with a total
molarity of 3.0 M (N = 30 TBs/treatment). Me2SO = Dimethylsulfoxide, EG = Ethylene glycol, Gly = Glycerol, Met = Methanol. Error bars represent standard deviations.

Fig. 3. Average Tissue Ball Regression (lm/h) over the first 72 h following treatment of TBs treated with binary CPA solutions with a total molarity of 2.0, 3.0 and 4.0 M.
Me2SO = Dimethylsulfoxide, EG = Ethylene glycol, Gly = Glycerol, Met = Methanol. Error bars represent standard deviations.
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a stepwise increase in molarity. The Tissue Ball Regression values
and % Undamaged TBs were significantly different between treated
and control TBs (p > 0.05, Wilcoxon-test and p < 0.05, Fisher’s Exact
Test, respectively). Tissue Ball Regression values were recorded for
up to 72 h (Fig. 5D) and % Undamaged TBs for up to 72 h (C2) and
96 h (C1) (Fig. 5D) for only two conditions (C1: solution 1:
0.5 MMe2SO + 1.5 M EG, solution 2: 1.5 M EG + 1.5 M Gly +
1.5 MMe2SO; C2: solution 1: 0.5 M Gly + 1.5 M EG, solution 2:
1.5 M EG + 1.5 M Gly + 1.5 MMe2SO).

Discussion

Research in the field of coral cryopreservation has increased in
recent years [37]. As a result, spermatozoa from several coral
species were successfully cryopreserved [33–35,60]. Despite these
promising achievements, additional investigations must be per-
formed to develop cryopreservation protocols for other coral bio-
logical forms including oocytes [50,51,81] or multicellular
materials such as planulae [32], apexes [23,36] and TBs [22].

Fig. 5. Evolution of Tissue Ball Regression (lm/h) and of % Undamaged TBs (%) over time (24 h intervals) after exposure of TBs to individual, binary or ternary CPA solutions at
room temperature following a stepwise increase in molarity (N = 30 TBs/treatment). (A) Individual CPA solutions: treatment with solution 1 for 5 min and with solution 2 for
10 min (see Table 2); highest molarity 3.0 M. (B) Individual CPA solutions: treatment with solution 1 for 5 min and with solution 2 for 20 min (see Table 2); highest molarity
3.0 M. (C) Individual CPA solutions: treatment with solution 1 for 5 min and with solution 2 for 10 min (see Table 2); highest molarity 4.0 M. (D) Binary and ternary CPA
solutions, C1 and C2 (see Table 3). Only CPA treatments allowing survival of TBs are reported: treatment with solution 1 for 5 min and with solution 2 for 10 min; highest
molarity tested 4.5 M. Me2SO = Dimethylsulfoxide, EG = Ethylene glycol, Gly = Glycerol, Met = Methanol. Error bars represent standard deviations.
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These coral forms contain a high diversity of cellular types, which
makes the development of cryopreservation protocols more diffi-
cult. The vitrification technique has been mentioned as an interest-
ing alternative to slow cooling techniques for the cryopreservation
of sensitive or histologically complex specimens [11,48,66,88]. The
establishment of a cryopreservation protocol requires the opti-
mization of several parameters including the conditions of the cry-
oprotective treatment (nature and concentration of CPAs; duration
of exposure of samples to CPA solution) and the rate of cooling and
warming. TBs have been identified as a suitable material to test the
parameters of a cryopreservation protocol [22].

The vitrification technique requires the use of highly concen-
trated CPA solutions, which can be toxic for the different cell types
[29,48,88]. Several authors have demonstrated that solutions com-
bining several CPAs are less toxic than a solution of a single CPA at
the same total molarity for cryopreservation of embryos and larvae
of invertebrate species [9,13,14] and of other organisms such as
some parasitic protozoa, helminths and insect embryos [45]. By
contrast, Poncet and Lebel [68] showed the lower efficiency of
CPA mixtures compared to individual CPAs to protect Haliotis

tuberculata cells during cooling. We showed in a previous work
that, among four individual CPA solutions tested (Gly, Met,
Me2SO or EG) with molarities up to 3.0 M, P. damicornis TBs toler-
ated only exposure for 20 min to a solution containing 3.0 M EG
[22]. In this study, the tolerance of TBs to exposure to 2.0–5.0 M
CPA solutions for 20 min was investigated. TBs were exposed
directly to binary, ternary and quaternary solutions. Tolerance to
exposure to single, binary and ternary solutions after stepwise
increase in CPA solution molarity was also experimented. The
CPA solutions tested in this study were inspired from the vitrifica-
tion solutions developed for animal and plant materials [3,54,89].

Our experiments demonstrated the higher tolerance of TBs to
CPA solutions containing EG either in single solution or in combina-
tion with other CPAs. Among the binary solutions tested, the com-
bination of EG + Met provided the best results both in terms of
Tissue Ball Regression and of % Undamaged TBs. With this solution,
TBs could withstand exposure to a molarity of 4.0 M. The combina-
tion of EG + Gly was also tolerated to a 4.0 M molarity but Tissue
Ball Regression values were higher compared with EG + Met.
Among the binary combinations tested, Ali and Shelton [3] showed
that a CPA solution containing EG + Gly was the best tolerated by
mouse embryos. In view of the high tolerance of Crassostrea gigas

oocytes to EG, Tervit et al. [79] used this CPA as a basis for the com-
position of CPA solutions. By contrast, compared with other CPAs,
EG was more toxic to Paralichthys olivaceus embryos and provided
the lowest protection against cooling to ÿ15 °C [89].

In our experiments, TBs displayed low tolerance to exposure to
CPA solutions containing Me2SO combined with EG, Gly or Met at a
total molarity higher than 3.0 M. This observation was verified in
particular for the binary solution Me2SO + Met. Previous observa-
tion showed that P. damicornis TBs did not withstand exposure to
a Me2SO solution with a molarity higher than 2.0 M [22]. These
experiments highlighted the difficulty of associating Me2SO con-
centrations higher than 1.0 M to other CPAs without decreasing
TB tolerance. Mahmoud et al. [54] obtained the highest maturation
rate of vitrified Bubalus bubalis oocytes following treatment con-
taining 3.0 M EG + 3.0 MMe2SO. Other studies demonstrated the
toxicity of Me2SO for Eriocheir sinensis embryos [41] and the need
to associate Me2SO with other CPAs to reduce its toxicity
[39,42,44]. For CPA solutions with a total molarity of 4.0 M, the
combination of 2.0 M Gly + 2.0 M EG was well tolerated by P. dam-

icornis TBs but not the association of 2.0 M Gly with 2.0 MMet or
Me2SO. B. bubalis oocytes displayed low tolerance to treatment
with these CPA solutions [54]. The low cell permeability of Gly
and its high viscosity may require long exposure times to limit
damage to the cell ultrastructure during LN exposure [54].

Met, in association with EG in solutions up to 4.0 M molarity,
was well tolerated by TBs but this was not the case with Me2SO
or Gly. Met is considered as an efficient CPA because of its small
size and its rate of permeability similar that of water [3,42].
Zhang et al. [89] demonstrated that solutions including Met com-
bined with other CPAs had the highest protective effect on P. oli-

vaceus embryos.
The three ternary 3.0 M CPA solutions tested (consisting of three

CPAs at 1.0 M molarity each) were well tolerated by P. damicornis

TBs, with Tissue Ball Regression and % Undamaged TBs values sim-
ilar to those obtained after treatment with the best binary solutions
at the same total molarity. Treatment with a 4.0 M quaternary solu-
tion (consisting of EG, Met, Gly and Me2SO each at 1.0 M molarity)
was not tolerated by TBs, even though each of these CPAs employed
individually at a 1.0 Mmolarity was well tolerated [26]. Treatments
with three ternary 4.5 M CPA solutions (consisting of three CPAs at
1.5 M molarity each) were not tolerated by TBs. Two main conclu-
sions can be drawn from these results. Firstly, the use of CPA com-
binations allowed exposing TBs to concentrations up to 3.0 M.
Compared with previous results obtained by Feuillassier et al.
[22], the Tissue Ball Regression values were lower following treat-
ment with binary or ternary CPA than with individual solutions
for the same exposure durations. Except for 24 h after treatment,
the Tissue Ball Regression values of TBs treated with the most effi-
cient binary or ternary 3.0 M CPA solutions did not exceed 2 lm/h
compared to over 5 lm/h following treatmentwith individual solu-
tions at the samemolarity [22]. Secondly, tolerance of TBs to a 4.0 M
solution was achieved with two CPA combinations (2.0 M EG +
2.0 MMet; 2.0 M EG + 2.0 M Gly) but CPA solutions with higher
total molarity were not tolerated by TBs. In addition to CPA toxicity,
the osmotic shock caused by exposure of TBs to such highly concen-
trated CPA solutions may explain their low tolerance. Indeed, mito-
chondrial activity and membrane integrity can be impacted by
osmotic stress [26,78,87].

Treated TBs showed higher % Undamaged TBs compared to con-
trols after exposure to most binary solutions with a molarity of
2.0 M and 3.0 M. A similar trend was observed with TBs exposed
to 3.0 M ternary solutions. Such differences in survival between
treated and control TBs were also observed in previous experi-
ments with P. damicornis [22]. These differences may be due to
the selection of the most tolerant cell types by the CPA treatments.
In addition, the growth of microbiotia populations associated with
TBs such as bacteria may be slowed down by the CPA treatment,
thereby limiting their negative impact.

The last two experiments tested the effect of a stepwise
increase and decrease in the molarity of the CPA solutions
employed, with the objective of reducing osmotic shock. Using this
stepwise procedure, we were able to achieve tolerance of TBs to
ternary solutions with a total molarity of 4.5 M. The highest TB tol-
erance was recorded following treatment with the combination
EG + Gly + Me2SO. These results underline the interest of using
such progressive increase and decrease in the molarity of CPA solu-
tions, confirming the observations made by various authors with
different organisms [1,9,11,15,63,70,79].

Hagedorn et al. [32] demonstrated that the permeability of F.
scutaria planulae to Gly was 2.3 x 10ÿ4 cm/min and that planulae
contained 90% Gly after 25 min exposure. By contrast, permeability
of P. damicornis larvae to Gly was only 0.12 x 10ÿ4 cm/min [32].
Future experiments will be performed to study the permeability
of P. damicornis TBs to the best tolerated CPA solution, i.e.
EG + Gly + Me2SO.

This study revealed the difficulty to expose TBs to highly con-
centrated CPA solutions. To achieve vitrification upon cooling,
CPA solutions must have a total molarity above � 40% [24] corre-
sponding to 5.0 M for Me2SO and Gly [6], between 6.5 M and
8.0 M [3,7] for EG and up to 10.0 M for Met [3,45]. In our
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experiments, we were able to expose TBs to CPA solutions with a
total molarity of 4.0 M. Numerous chemicals have been already
employed in cryopreservation research on human cells [21],
microorganisms [43], parasitic protozoa or helminths [45], and
some marine invertebrates [58,59] such as C. gigas [71,79],
Paracentrotus lividus [63], E. sinensis [41]. These chemical agents
may be added to the four CPAs tested to increase the total molarity
of the CPA solution. These include amides such as acetamide, for-
mamide, urea, dimethylformamide or dimethylacetamide
[21,25,41,43,45], amino acids such as alanine, glycine and proline
[25,43], sugars such as sucrose, trehalose, glucose [25,43], alcohols
such as sorbitol, mannitol and polymers such as
polyvinyl-pyrrolidone [12,25,43,79]. Antioxidants such as
a-tocopherol and ascorbic acid [39,43] can also be added to CPA
solutions to limit their toxicity.

These experiments highlighted the interest of using TBs to test
the toxicity of CPA solutions. TBs have also been used in the frame-
work of ecotoxicological studies [17,22,27,46,49,57]. In our exper-
iments, their small size facilitated manipulations; only small
volumes of reagents were required and, after treatment, they could
be placed individually in wells of multiple well cluster plates for
cell culture, thereby facilitating their observation.

In most experiments, control TBs displayed constant %
Undamaged TBs for up to 72 h. The differences observed in %
Undamaged TBs of control samples between different experiments
revealed a variability of their biological quality, even though they
originated from branches of the same coral colonies. Variability
in culture conditions of P. damicornis such as the chemistry param-
eters of ASW and the state of stress of the animals might influence
the biologic quality of corals over time.

The mechanical technique employed to produce TBs did not
allow obtaining their remetamorphosis into polyps. In addition,
heterogeneity in size and zooxanthellae concentration was
observed between TBs. Fluctuations in zooxanthella content do
not allow investigating the density of symbionts following CPA
treatments. With the daily renewal of ASW, a temperature of
25 °C and a low light intensity, we were able to maintain TBs alive
for up to 216 h (9 days), with an average of 120 h (5 days). These
durations may be increased by using the conditions employed with
TBs of other species such as F. granulosa [27,47,84]. In particular,
modifications in light, temperature, medium enrichment and mov-
ing conditions may induce better TB performances.

In conclusion, this study demonstrated the efficiency of TBs to
tolerate CPA solutions with molarities up to 4.0 M using binary or
ternary combinations. TBs tolerated molarity of CPAs up to 4.5 M
after exposure using a stepwise procedure to limit osmotic shock.
Our results showed that a solution containing EG + Gly + Me2SO
may serve as a basis to develop new vitrifying solutions.
Moreover, in order to have a better understanding of the impact
of CPA treatment on the structural integrity of TBs, our future inves-
tigations will include cytological and histological approaches.
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Figure 62 : Balles tissulaires de 

Pocillopora damicornis (A) et de 

Stylophora pistillata (B). 

Source : Domart-Coulon et al., 2004.
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Figure 63 : Stratégies pour induire la métamorphose des Hydrozoaires. 

Source : Walther et al., 1996.
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Figure 64 : Solutions vitrifiantes testées sur les embryons de Paralichthys olivaceus. 

Source : Chen et Tian, 2005.
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