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their continuous support, not only for the technical suggestions about the finite elements

simulations with Code Aster, programing with Python, but also for interesting discussions

about the life of Ph.D. students, about the French and Chinese culture, etc.

Finally, I would like to express my sincere gratitude to my wife Yajie and my parents.

Without their support and encouragements, I cannot finish that easily all these years of

adventures in France and Germany. I will be very happy to be able to go back to China and

stay close with you.

In Paris, 12 September, 2018,

Zhiyi



iv



v

Abstract

Seismic probabilistic risk assessment (SPRA) is one of the most widely used methodologies

to assess and to ensure the performance of critical infrastructures, such as nuclear power

plants (NPPs), faced with earthquake events. SPRA adopts a probabilistic approach to

estimate the frequency of occurrence of severe consequences of NPPs under seismic conditions.

This PhD thesis is focused on the first two steps of the SPRA framework, namely seismic

fragility analysis and probabilistic seismic hazard analysis (PSHA).

A comprehensive seismic fragility analysis should account for various information in the

computation of fragility curves: numerical simulation results, experts judgments and post-

earthquake observations. This requires a methodology not only to integrate all these infor-

mation in the fragility analysis, but also to be able to reduce the computational burden of

numerical simulations by finite element method. On the other hand, the computation of the

ground motion prediction equations (GMPEs), which is the key element in PSHA, depends

to a certain extent on the proposed functional forms. However, this can be a limitation be-

cause one cannot ensure whether the existing functional forms can be generalized for a new

seismic intensity measure (IM). Considering these aspects, the application of methods based

on artificial neural networks (ANNs) has been investigated in the computation of fragility

curves and GMPEs in the thesis.

The thesis provides discussions on the following aspects: (i) Construction of metamodels

with ANNs to build the relations between seismic IMs and engineering demand parameters of

the structures, for the purpose of accelerating the fragility analysis. The uncertainty related

to the substitution of FEMs models by ANNs is investigated. (ii) Proposal of a Bayesian-

based framework with adaptive ANNs, to take into account different sources of information,

including numerical simulation results, reference values provided in the literature and damage

data obtained from post-earthquake observations, in the fragility analysis. (iii) Computation

of GMPEs with ANNs. The epistemic uncertainties of the GMPE input parameters, such as

the magnitude and the averaged thirty-meter shear wave velocity, are taken into account in

the developed methodology. (iv) Calculation of the annual failure rate by combining results

from the fragility and hazard analyses. The fragility curves are determined by the adaptive

ANN, whereas the hazard curves are obtained from the GMPEs calibrated with ANNs. The

proposed methodologies are applied to various industrial case studies, such as the KARISMA

benchmark and the SMART model.
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Résumé

L’étude probabiliste de sûreté (EPS) parasismique est l’une des méthodologies les plus

utilisées pour évaluer et assurer la performance des infrastructures critiques, telles que les

centrales nucléaires, sous excitations sismiques. L’EPS adopte une approche probabiliste

pour estimer la fréquence d’occurrence des conséquences graves des centrales nucléaires dans

les conditions sismiques. Cette thèse de doctorat porte sur les deux premières étapes de

l’EPS parasismique, à savoir l’analyse de la fragilité et l’évaluation de l’aléa sismique.

Un calcul complet de courbes de fragilité doit prendre en compte des informations diverses:

résultats de simulations numériques, jugements fournis par des experts et les observations

post-sismiques. Cela nécessite une méthodologie non seulement pour intégrer toutes ces

informations dans l’analyse de fragilité, mais aussi pour pouvoir réduire le coût de calcul

de simulations numériques par la méthode des éléments finis. En outre, dans l’évaluation

de l’aléa sismique, la méthode classique pour établir les lois d’atténuation, qui prédisent

les mouvements sismiques au sol, dépend des formes fonctionnelles proposées. Cependant,

cela peut être une limitation car il faut déterminer si les formes fonctionnelles existantes

peuvent être généralisées pour une nouvelle intensité sismique. Compte tenu de ces aspects,

l’application de méthodes basés sur les réseaux de neurones artificiels a été étudiée dans le

calcul de courbes de la fragilité et des lois d’atténuation dans la thèse.

La thèse discute sur les aspects suivants:

(i) Construction de méta-modèles avec les réseaux de neurones pour établir les relations

entre les intensités sismiques et les paramètres de demande des structures, afin d’accélérer

l’analyse de fragilité. Basé sur les résultats des simulations par la méthode des éléments

finis, les intensités sismiques les plus influentes sont identifiées par une procédure de sélection

pilotée par des coefficients de corrélation semi-partielle. L’incertitude liée à la substitution

des modèles des éléments finis par les réseaux de neurones est étudiée. Il a été découvert que

l’incertitude de prédiction du réseau de neurones se compose de deux parties. La première

partie est due à la simplification des excitations sismiques dans les entrées du réseau de

neurones, et elle est directement intégrée dans le calcul de la probabilité de défaillance.

D’autre part, la deuxième partie est l’incertitude statistique liée à la distribution des entrées

(c’est-à-dire les intensités sismiques). Cette dernière incertitude statistique est utilisée pour

le calcul des intervalles de confiance.

(ii) Proposition d’une méthodologie bayésienne avec réseaux de neurones adaptatifs, afin

de prendre en compte les différentes sources d’information, y compris les résultats des sim-

ulations numériques, les valeurs de référence fournies dans la littérature et les évaluations
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post-sismiques, dans le calcul de courbes de fragilité. Dans cette méthodologie, un réseau de

neurones est entrâıné de manière adaptative basé sur son incertitude de prédiction, afin de

mieux sélectionner un nombre réduit de mouvements sismiques représentant l’ensemble de

l’espace de signaux sismiques. Les paramètres de fragilité calculés par la simulation du réseau

de neurones donnent une estimation de la capacité médiane a priori et l’incertitude aléatoire.

Les données des observations post-sismiques sont utilisées pour construire la fonction de

vraisemblance.

(iii) Calcul des lois d’atténuation avec les réseaux de neurones. Les incertitudes épistémiques

des paramètres d’entrée de lois d’atténuation, tels que la magnitude et la vitesse moyenne

des ondes de cisaillement de trente mètres, sont prises en compte dans la méthodologie

développée. Un entrâınement ANN basé sur les moindres carrés généralisés est proposé pour

gérer les termes non diagonaux dans la maximisation de la fonction de vraisemblance. La

méthode proposée est validée sur une base de données simulée et est également appliquée à

la base de données RESORCE. Les résultats de l’application montrent que les écarts-types

des GMPE peuvent être réduits de 4 à 16%.

(iv) Calcul du taux de défaillance annuel en combinant les résultats des analyses de

fragilité et de l’aléa sismique. Les courbes de fragilité sont déterminées par le réseau de

neurones adaptatif, tandis que les courbes d’aléa sont obtenues à partir des lois d’atténuation

construites avec les réseaux de neurones. Les résultats de l’application montrent que, grâce à

la réduction des écarts-types de la loi d’atténuation avec la modélisation de l’incertitude des

entrées, un faible aléa sismique est obtenu. Ainsi, les valeurs de taux de défaillance annuels

sont plus faibles pour les endommagements considérés.
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Chapter 1

Introduction

Performance-based earthquake engineering (PBEE) aims at designing and constructing

civil facilities according to their performances under extreme seismic loads. Decisions of

the design of such structures depend not only on the construction cost, but also on their

performance related to the damage control and life safety [Ghobarah 2001]. Consistent with

the principle of PBEE, seismic probabilistic risk assessment (SPRA) is one of the most widely

used methodologies to assess and to ensure the performance of critical infrastructures, such

as nuclear power plants (NPPs), faced with earthquake events. SPRA adopts a probabilistic

approach to estimate the frequency of occurrence of severe consequences (radiological release,

etc.) of NPPs under seismic conditions. In the framework of SPRA, the uncertainties from

the earthquake randomness and physical variables are propagated through an engineering

model, to compute the frequency of failure. The methodology of SPRA consists of the

following four main steps [EPRI 1994], illustrated in Figure 1.1:

1. Probabilistic seismic hazard analysis (PSHA) which produces the hazard curves de-

scribing the annual frequency of exceeding one seismic intensity measure (IM).

2. Component fragility analysis which develops fragility curves, to estimate the conditional

probability of failure of one component of the NPP at a given seismic IM.

3. System and accident-sequence analysis to evaluate the influence of the failure of one

component on the key events (radiological release for example). This can be realized

with the event tree and the fault tree analyses.

4. Consequence analysis combining the hazard curves and the fragility curves to compute

the frequency of occurrence of the key events.

A complete SPRA covers a wide range of research areas, including (i) Seismology, which

evaluates the seismicity of a region of interest; (ii) Structural analysis, which computes the

response of a structure or its components under seismic loads; (iii) Uncertainty quantification,

which propagates the uncertainty from earthquake excitations and material properties of the

structure; (iv) Reliability and system engineering, which takes into account the interaction

and interdependence between components to estimate the probability of failure of the key

events. This thesis involves the first two aspects of the SPRA methodology, namely fragility

analysis and PSHA, to conduct the seismic risk assessment. Methods based on artificial

neural networks are employed, in order to (i) improve the computational efficiency of the
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Figure 1.1: Framework of seismic probabilistic risk assessment [EPRI 1994]

simulations and (ii) to provide more flexibility of the model of the ground motion prediction

equations. Bayesian updating is also combined with artificial neural networks to integrate

different sources of information in fragility analysis.

Fragility Analysis

The computation of fragility curves requires realistic estimation of the structure perfor-

mance subject to seismic excitations via the quantification and the propagation of uncer-

tainties. Kennedy et al. [1980] proposed in the 1980s a systematic methodology to develop

fragility curves based on safety factors. In this method, the uncertainties are divided into

two categories: aleatory (or inherent) uncertainties and epistemic uncertainties. Meanwhile,

a lognormal model is employed for the computation of the conditional probability of failure.

The aleatory uncertainty describes the randomness of the ground motion or the material

properties, whereas the epistemic uncertainty originates from the lack of knowledge and pro-

vides the confidence intervals for the fragility curves. Based on the lognormal assumption, the

computation of the fragility curves is simplified to determine two parameters: the median

capacity and the logarithmic standard deviation. However, one hypothesis hidden behind

the product of the safety factor is that the response relations are linear [Zentner et al. 2017],

which is not necessarily correct in the reality.

Numerical simulations based on finite element method (FEM) are widely used to conduct

fragility analysis. A simulation-based fragility estimation procedure needs a large number of

FEM simulations to evaluate the probability of failure at given values of IMs. The Monte

Carlo estimation is the most fundamental simulation-based approach to evaluate the proba-

bility of failure pointwisely at given seismic intensity measures, if sufficient simulation results

are available. Nevertheless, this is difficult to achieve in the reality, due to the complexity of

the FEM model of the industrial facility and the associated computational burden to carry
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out numerical analyses. One way to improve the computational efficiency is to construct

metamodels, which can be used to replace the time-consuming FEM models. Metamodels,

such as artificial neural networks, represent an ensemble of statistical algorithms which catch

input-output relations of physical models, and make predictions according to these relations.

With well-constructed metamodels, the computational cost of numerical simulations can be

largely reduced.

Statistical analysis can be also carried out to determine the fragility parameters if real

recorded data or experimental observations are provided [Straub and Kiureghian 2008; EPRI

2014]. Due to the fact that a numerical model cannot contain all the structural details and

damage mechanisms, these empirical data provide additional information about the behavior

of the structure and can be used for a more accurate estimation of fragility curves. Bayesian

statistics are often used in fragility analysis to integrate the empirical data.

Hazard Analysis

Apart from the vulnerability of the structure assessed from the fragility analysis, the

earthquake information that the structure should withstand is another indispensable element

in seismic risk assessment: which level of earthquake should be used to perform the analysis

for an area of interest? What is the annual occurrence of an earthquake which exceeds a

certain intensity level? All these questions are answered by seismic hazard analysis.

Rather than using a deterministic worst-case earthquake which a site of interest can en-

counter, the probabilistic hazard analysis adopts a probability-based framework to consider

all the earthquake events which may occur on this site [Baker 2008]. PSHA starts with the

identification of possible earthquake sources and the characterization of the distribution of

earthquake magnitude and source-to-site distance. The ground motions prediction equations

(GMPEs) are later constructed to compute the IM as a function of parameters of the earth-

quake source, path and site conditions. The total probability theorem is finally applied to

calculate the probability of exceedance of the IM with respect to fixed intensity levels.

One of the key steps of PSHA is the computation of the GMPEs. This latter task is often

achieved by employing a mixed-effects model with supposed functional forms. The particular

functional forms adopted in the GMPEs can be a limitation, since it is difficult to determine

whether the existing forms can be generalized for a new IM. Data-driven GMPE approaches

have been developed recently to overcome this difficulty [Derras et al. 2014; Hermkes et al.

2014]. In addition, the epistemic uncertainty associated to the earthquake magnitude and

the site soil condition V s30 is not accounted for in classical GMPE computations. Kuehn

and Abrahamson [2017] show that the ignorance of such uncertainty can lead to an over-

estimation of the GMPE variance, and this can, thus, impact the final hazard curves. The

Bayesian regression has been used by Kuehn and Abrahamson [2017] to consider the epistemic
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uncertainty associated to source and site-related parameters.

Objective and Organization of the Thesis

This PhD thesis aims at using data-driven artificial neural networks in the computation

of fragility curves and ground motion prediction equations. Bayesian updating is also used

for the consideration of post-earthquake evaluation data in the fragility analysis. It provides

discussions on the following aspects:

1. Construction of metamodels with ANNs to build the relations between seismic intensity

measures and structural damage measures. The metamodels are used to replace FEM

models to accelerate the fragility analysis. The uncertainty related to the substitution

of FEMs models by ANNs is investigated.

2. Proposal of a Bayesian-based framework to take into account different sources of in-

formation, including numerical simulation results, reference parameter values provided

in the literature and damage data obtained from post-earthquake observations, for the

computation of fragility curves.

3. Computation of GMPEs with ANNs. The epistemic uncertainties of the GMPE input

parameters, such as the magnitude and the averaged thirty-meter shear wave velocity,

are taken into account in the developed methodology.

4. Calculation of the annual failure rate by the convolution of the fragility curves and

hazard curves. The fragility curves are computed with the adaptive ANN, whereas the

hazard curves are obtained from the GMPEs calibrated with ANNs.

The subjects covered by the thesis is summarized in Figure 1.2. The thesis is organized

as follows: Chapter 2 presents fundamental theories of the artificial neural networks, more

precisely the multi-layer perceptron, which is used as a non-linear regression tool through-

out the thesis. Two other advanced ANN training techniques, namely ANN training with

correlated residuals and adaptive ANN training, are also explained. These ANN training

techniques will be applied in the chapters that follow.

Chapter 3 describes a methodology of simulation-based seismic fragility analysis which

employs ANNs to substitute FEM simulations. This methodology starts from the selection

of the most influential seismic IMs as the inputs of the ANN metamodel and ends with

the investigation of the impact of ANN prediction uncertainty on the fragility curves. The

fragility curves are finally computed by pointwise Monte-Carlo estimations with the fast-

running ANN metamodel.

Chapter 4 gives details of the Bayesian framework which incorporates simulation re-

sults, post-earthquake observations and parameters values referred in literature in the seismic

fragility analysis. The prior fragility parameters are estimated from the numerical simulation
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The corresponding paper of Chapter 3: Wang, Z., Pedroni, N., Zentner, I. and 

Zio, E. (2018).  Seismic fragility analysis with artificial neural networks: 

Application to nuclear  power plant equipment. Eng. Struct., 162:213-225.

The corresponding paper of Chapter 4: Wang, Z., Zentner, I. and Zio, E. (2018).  

A Bayesian framework for estimating fragility curves based on seismic damage 

data and simulations by adaptive neural networks. Nucl. Eng. Des., 338:232-246.

The corresponding paper of Chapter 5: Wang, Z., Zentner, I. and Zio, E. Ground

motion prediction equations by artificial neural networks with input uncertainties.

(submitted)

(Chapter 3)1(Chapter 4)2

Figure 1.2: Summary of the work accomplished in the PhD thesis

results provided by adaptive artificial neural networks, whereas the observational data are

used to construct the likelihood function. The posterior distribution of the seismic capacity

of the structure or equipment is obtained by applying Bayes’ theorem.

Chapter 5 deals with the computation of GMPEs with ANNs by taking into consideration

the epistemic uncertainties in the magnitude and V s30 values provided by the earthquake

database. The input epistemic uncertainty is modeled by the first order second moment
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approach. This latter modeling introduces additional off-diagonal element in the variance-

covariance matrix, which requires training the ANN based on generalized least-squares. The

GMPEs with the consideration of the input uncertainty are computed and compared to the

classical GMPEs, i.e. the GMPEs without considering the input uncertainty.

The annual failure rate is computed in Chapter 6. The fragility curves are computed

with the adaptive ANN proposed in Chapter 4. The hazard curves are constructed from

the GMPEs obtained in Chapter 5. After the consideration of the input uncertainties in the

GMPEs, the annual failure rate is calculated and compared with the failure rate which is

computed from the GMPEs without accounting for the input uncertainties.

Finally, the conclusion of the PhD thesis and the perspectives of future researches are

provided in the Conclusion chapter.
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Chapter 2

Artificial Neural Networks

As the main statistical tool used in the thesis, the basic theory of the artificial neural

networks (ANNs), in particular the multi-layer perceptron, is presented in this chapter.

The backward-propagation algorithm, which is used to compute the first order derivative

of the ANNs models, is briefly recalled in the first place. Furthermore, an ANN training

method, based on the generalized least-squares, is explained in order to consider correlated

residuals in the training process. Finally, the principle of the adaptive training of ANNs,

which is largely used by other metamodels such as Kriging in reliability analysis, is described.

These training methods will be used in the sequel of the thesis either in the construction

of metamodels for fragility analysis, or in the computation of the ground motion prediction

equations using ANNs.
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2.1 A Classical ANN model: Multi-layer Perceptron

2.1.1 Overview

Inspired by biological neural networks in human brains, the artificial neural network

(ANN) is one of the most widely statistical tools to perform regression and classification

analyses. The mathematical model of neural networks based on threshold logic was first

proposed by McCulloch and Pitts in 1943 [McCulloch and Pitts 1943; Hastie et al. 2008].

In the work of Rosenblatt [1962], the perceptron models, which are considered as the basic

units of the human brain, are explained in very detail, including the basic assumptions

and mathematical theories. Similar neural network models were used later as classifiers by

Widrow and Hoff [1960]. Since the mid 1980s, ANNs have been largely applied as non-linear

regression models, when the famous back-propagation algorithm was proposed by Rumelhart

et al. [1986]. However, other models such as support vector machines gradually took the

place of ANNs in machine learning due to the simplicity of the models and the efficiency to

conduct statistical analyses. ANNs regained their importance in the artificial intelligence in

the late 2000s because of the advent of the deep learning [LeCun et al. 2015]. They become

nowadays very powerful tools with very wide applications in robotics, cognitive recognition,

image identification, natural language processing, statistical classification and regression.

Basic types of neural networks are feed-forward neural networks (FNNs) and recurrent

neural networks (RNNs), shown in Figure 2.1. In FNNs, the information is propagated in

one direction, from the input side to the output side. Unlike FNNs, at least one feed-back

connection exists in the RNN, which means that the results of the hidden layer or the output

layer units are fed back into the input side for further computations, so that this structure

is in particular useful to construct models for dynamic time sequences. In this thesis, we are

focused on the application of multi-layer perceptrons (MLPs), the most fundamental model

of FNNs, to perform non-linear regressions in seismic risk assessment.

A MLP model structure consists of multiple neural layers and connections between every

two adjacent layers (Figure 2.2a). Weights and biases are associated to the connections to

determine the whole MLP performance. A neural layer contains one or several neural units

with their corresponding activation functions (Figure 2.2b). In general, the neural layers can

be divided into 3 categories:

1. Input layer. The input layer receives the input data from the training datasets, and

therefore takes the same number of neurons as the input parameters. A linear activation

function is associated to the units in the input layer.
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(a) Feed-forward neural network (b) Recurrent neural network

Figure 2.1: Basic artificial neural network structure

2. Output layer. The output layer returns the calculation results of the MLP model. The

number of the neurons is determined by the dimension of the outputs of the datasets.

Activation functions in the output layer units can be linear or sigmoid functions for

regression models, and softmax functions for classification models [Reed and Marks

1998].

3. Hidden layer. The hidden layer is not necessary in the single-layer perceptron network,

but should be present in the multi-layer perceptron. In most cases sigmoid functions are

applied in the hidden layer units. Possible sigmoid functions are the logistic function1

and the hyperbolic tangent function.

For the purpose of simplicity but without loss of generality, a m-input-1-output neural

network model is used to illustrate the working mechanism of a neural unit (Figure 2.3). m

inputs are multiplied with their respective weights before arriving at an adder. The adder

transmits the sum of the inputs and the bias to the activation function: a sigmoid function.

The sigmoid function can preserve the quasi-linearity when its entry remains small, and the

non-linearity shows up when its input value becomes larger. Therefore, the prediction of this

neural unit is calculated by

ŷk = ϕ(
m�

i=1

wkixi + bk) = ϕ(vk), (2.1.1)

where wki is the corresponding weight for the input component xi, bk represents the bias,

vk =
�m

i=1 wkixi+ bk denotes the weighted sum of the inputs arriving at the neuron, and ϕ(·)

1Logistic function is defined as f(x) =
1

1 + e−x
.
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Figure 2.2: Illustration of the multi-layer perceptron

Figure 2.3: Working mechanism of a neural unit [Haykin 2008]

is the selected sigmoid function. Therefore, the output ŷk of a MLP shown in Figure 2.2 is

computed by

ŷk =

q
�

j=1

wkj ŷj + bj

=

q
�

j=1

wkj(ϕ(

p
�

i=1

wjiŷi + bi)) + bj

=

q
�

j=1

wkj(ϕ(

p
�

i=1

wjixi + bi)) + bj,

(2.1.2)

in which p and q are the numbers of neurons in the input layer and hidden layer, respectively.
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In the sequel of this thesis, the vector2 w is used to represent all the model parameters,

including weights and biases. Before training the MLP, the MLP structure should be decided

first.

Concerning the MLP structure, one crucial problem is to determine the number of hidden

layers and the number of neurons in every hidden layer. Without enough hidden layer

elements, the MLP model cannot show sufficient non-linearity. In this case, the MLP model is

underfitted and the predictions of the model cannot well approximate the statistical tendency

of the data. Nevertheless, if the MLP model consists of too may neurons, it tends to be

overfitted: the model prediction is accurate for the training data; However, when it is used

to provide predictions for another independent dataset, its performance is very poor. It is

obvious that if the weight numbers exceed the total training data size, the MLP can return

exactly the target value (Figure 2.4). A MLP with appropriate hidden layer parameters is

thus decisive for a correct surrogate model. This can be certainly achieved by running MLP

with all the possible combinations of hidden layer counts and hidden layer size, and choose

the one with the minimal error, if the computational cost is affordable. However, there still

exit some conclusions which facilitate the decision of the MLP structure.

Figure 2.4: Quality of training of a MLP: underfitting (left); appropriate-fitting (center);
overfitting (right)

How many hidden layers should be adopted in a MLP? Lippmann [1987]; Lapedes and

Farber [1988] showed that two hidden layers are adequate to classify regions with any con-

vex shape and to approximate any bounded continuous function. In addition, Kolmogorov’s

theorem states that a continuous multivariate function can be represented by a superposi-

tion of one dimensional functions of the same input variables [Kolmogorov 1957; Sprecher

1965; Cybenko 1989], which indicates that one hidden layer should be sufficient for universal

approximation. However, several researchers pointed out some counterexamples where MLP

with single hidden layer does not give satisfactory non-linear regression results. One can

refer to Reed and Marks [1998] for these examples in detail. In spite of the existence of coun-

2In this thesis, we follow the French tensor notation for vectors and matrices. For example, a vector x is
denoted with one underline (x), whereas a matrix x is denoted with two underlines (x).
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terexamples, it is recognized that single hidden layer MLP can approximate most continuous

bounded functions.

How many hidden layer units should be used in a MLP model? The number of hidden

layer units depend on the input and output numbers, the number of training examples and

training algorithms. Compare to the number of the hidden layers, there exit less scientific

proofs to provide a clear answer. Some ‘rules of thumb’ are provided concerning the number

of hidden layer units. It is written in some literature and manual that the neuron number

in the hidden layer should be between number of the input and the output, their average

number for example. This statement is questionable because the size of training examples is

not taken into consideration. It is well recognized that, with conventional training algorithms,

the model is easy to be overfitted if the weight number is larger than the number of training

cases. However, according to Weigend [1994]; Tetko et al. [1995]; Sarle [1995], in using

regularization method such as the early stopping, the MLP tends to perform better with

larger hidden layer units number. But still, it does not make too much sense if the number of

unknown weights exceeds the size of the total training examples. For a MLP structure with

one hidden layer, it is possible to make a loop of different hidden unit numbers and the best

hidden number number is selected considering the prediction error on a validation dataset,

which is not used to train the MLP.

2.1.2 ANN Training

The performance of the ANN3 is evaluated by the error function, which calculates the

difference between the ANN predictions and the real simulation results. The most commonly

used error function in the ANN training is the sum-of-square error (SSE), which computes

the sum of square of prediction errors over all the input data [Bishop 1995]. For an ANN

with one single output, the SSE error writes

e(x;w) =
1

2

N�

p=1

(ŷk(x
p;w)− yk(x

p))2, (2.1.3)

where xp is the p-th input data4, ŷk(x
p;w) is the ANN prediction, in which the symbol

ˆ is used to denote all the results computed by ANNs. N is the total data size of the

input datasets. yk(x
p) is the ‘real’ results from observations, experiments or simulations of a

physical model. It is also call ‘target’ in many literatures. For a n-output ANN model, the

3It has to be mentioned that in the next parts of the thesis, without specification, the acronym ‘ANN’
stands for the MLP model.

4In this thesis, in order to make a clear description of datasets, the upper index is used to indicate a
specific data example in the datasets, whereas the lower index indicates one component, more specifically,
one feature of the dataset.
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SSE is calculated over all the output components (Eq.2.1.4):

e(x;w) =
1

2

N�

p=1

n�

k=1

(ŷk(x
p;w)− yk(x

p))2. (2.1.4)

The ANN is trained in order to minimize the SSE:

w∗ = argmin
w

(e(x;w)). (2.1.5)

The SSE function actually acts as an objective function from the optimization point of view.

As a result, the ANN training can be regarded as solving the optimization problem (Eq.2.1.5),

i.e. finding the optimal weights w∗ that minimize the SSE function. Therefore, Eq.2.1.5 can

be solved based on gradient-based optimization methods if the gradient vector g =
∂e(x;w)

∂w
can be obtained. The back-propagation algorithm, proposed by Rumelhart et al. [1986], helps

compute very efficiently the gradient vector g.

Let us consider an ANN composed of one input layer, one hidden layer and one output

layer. The configuration of this ANN is shown in Figure 2.2. The activation functions in the

input layer and the output layer are linear, whereas hyperbolic tangent sigmoid functions

are used in the hidden layer. The weights between the input layer i, the hidden layer j

are denoted by wji, and wkj are used for the weights between the hidden layer j and the

output layer k. The outputs for neural nodes in the layer i, j, k are called ŷi, ŷj, ŷk,

respectively. vj, vk represent the results after the adder in the hidden and the output layer

(Figure 2.2b). With the inputs of the ANN, one can calculate progressively the output ŷi, ŷj

of each layer, and finally the output ŷk of the network (Eq.2.1.2). This procedure is called

forward propagation, because the calculation flow starts from the inputs and propagates

towards the outputs.

As the SSE is a summation function over all the training cases, a SSE for every training

case can be defined separately:

e(x;w) =
�

p

ep(xp;w), (2.1.6)

ep(xp;w) =
1

2

n�

k=1

(ŷk(x
p;w)− yk(x

p))2. (2.1.7)

In this way, the derivative of the total SSE is also the sum of the derivative of the single SSE

for every training example:
∂e(x;w)

∂w
=
�

p

∂ep(xp;w)

∂w
. (2.1.8)
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Let us first focus on the computation of the derivative of ep(xp;w) with respect to the weights

wαβ between the layer α and the layer β 5. In the sequel, we will substitute the notation

ep(xp;w) by ep for simplicity.

Let us define a new variable δ =
∂ep

∂v
(v is the weighted sum of the neural outputs, as

shown in Figure 2.2b.). According to the back-propagation algorithm, the calculation flow

of δ is backwards:

δ :







δk = ŷk − yk For δ of the output layer k;

δj = ϕ�

j

�

k δkwkj For δ of the hidden layer j.
(2.1.9)

The details of the derivation of the back-propagation algorithm are explained in the Ap-

pendix. δ is initialized in the output layer, and transmitted back towards the input layer

with Eq.2.1.9 (Figure 2.5). It is the reason why this algorithm is called ‘back-propagation

algorithm’. This algorithm, in particular Eq.2.1.9 is also valid for multiple hidden layers.

Figure 2.5: Backward propagation of δ

Then the derivative
∂ep

∂wαβ

is calculated with 3 steps:

1. Apply a training case input vector xp to the network, and propagate forward the input

to get output ŷ at neurons on every layer.

2. On the output layer, compute δ for all nodes with δk = ŷk−yk. And backward propagate

δ according to Eq.2.1.9 from the output layer to the input layer.

3. Evaluate the derivative with the equation

∂ep

∂wαβ

= δαŷβ. (2.1.10)

5It is worth mentioning that Greek alphabets α, β are used to denote ANN weights between layer α and
β in a general way: They are not restricted in the case of one-hidden-layer ANN.



2.1 A Classical ANN model: Multi-layer Perceptron 19

In the end, the derivative for the total training dataset is computed by

gαβ =
∂e

∂wαβ

=
�

p

∂ep

∂wαβ

. (2.1.11)

With the computed gradient vector g, all the gradient-based first order optimization

methods (gradient descent, conjugated gradient descent, etc.) and second order methods

(Gauss-Newton algorithm, Levenberg-Marquardt algorithm and Broyden-Fletcher-Goldfarb-

Shanno algorithm, etc.) can be applied to train the ANN. These algorithms are explained in

very detail in the books of Bishop [1995]; Reed and Marks [1998].

To train an ANN, the total dataset is usually divided into two parts: a training dataset

and a test dataset. The ANN training is performed on the training dataset. Then, the

trained ANN is validated on the test dataset to check its capability of generalization. In

order to prevent overfitting, a commonly used strategy is to split again a validation dataset

from the initial training dataset. The ANN training is performed on the reduced training

dataset. During the ANN training, the performance and the error of the ANN are checked

on the validation set. The training of the ANN is stopped when the error of the validation

dataset reaches its minimum. This strategy is called early stopping. After applying the

early stopping strategy, the trained ANN is still needed to be tested on the test dataset.

2.1.3 Prediction Uncertainty

Like any regression model, there exist uncertainties associated to the predictions provided

by ANN models. One possibility to compute these prediction intervals (PIs) is to use boot-

strap [Efron 1982; Zio 2006]. Bootstrap is a method introduced by B. Efron to estimate the

property (mean, variance, etc.) of one statistic estimator if its probability distribution is

unknown. This method consists in running a series of simulations with data resampled from

the input space with replacement (so the same data patterns may appear several times in

the inputs) and estimating the statistical characteristics from the simulation results. This

method is the easiest way to evaluate the ANN PIs, but not the most efficient way.

Another approximate approach is the delta method, which is more efficient and can

give satisfactory estimations of the PIs. Assuming a normal distribution of the ANN training

error, this method relies on the linear Taylor expansion of the ANN model and estimates

the PIs of the corresponding linear model [Chryssoloiuris et al. 1996; Rivals and Personnaz

2000; Dybowski and Gant 2001; Hui 2011]. In this way, the Hessian matrix of the ANN is

approximated by the product of the Jacobian matrices.

Mathematically, the PIs are computed with the standard deviations (Stds) of the ANN

training error σANN and the gradient vector hk� =
∂ŷk�

∂w
, where the index k� stands for the k�th

ANN output, as defined in Eq.2.1.4. The computation of hi
k� for the ith training example
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can also be achieved with the backward-propagation algorithm:

δ̃ik�,k = δKron
kk� For δ̃ of the output layer k;

δ̃ik�,j = ϕ�

j

�

k[δ̃k�,k · wkj] For δ̃ of the hidden layer j;

hi
k�,αβ = δ̃ik�,α · ŷiβ,

(2.1.12)

where δKron
kk� represents the Kronecker delta applied to k and k�, namely it equals to 0 when

k �= k� and its value is 1 if k = k�. In the case that the ANN has only one single output, the

computation of h can be simplified as:

hi =
∂ŷi

∂w
=

∂ŷi

∂E(x;w)

∂E(x;w)

∂w
=

g

ŷi − yi
. (2.1.13)

The Jacobian matrix J of the ANN training data is, hence, constructed as

J =
�

h1 h2 · · · hi · · · hN
�T

, (2.1.14)

where J is a N × Q matrix, with N the number of the ANN training examples and Q the

number of the weighting parameters in the ANN, and T is used to denote matrix transpose.

Consequently, the prediction uncertainties of ANNs are calculated as

s2 = σ2
ANN + σ2

ANNh
T
test(J

TJ)−1htest, (2.1.15)

where s denotes the Std of the ANN predictions. Hence, the 100(1−γ)% PIs are ŷ±sqγ/2,N−Q,

in which qγ/2,N−Q denotes the (1−γ/2) quantile for a student distribution with N−Q degrees

of freedom.

The computation of PIs based on the delta method is tested on the following case: a

random noise with distribution N (0, σ2) is add to a sine function sin(x), so that

y(x) = sin(x) + ε, with ε ∼ N (0, σ2). (2.1.16)

An ANN model with one hidden layer and four hidden layer neural units is used to calibrate

the sine model. Datasets are generated with σ = 0.1, with x evenly distributed on the interval

[0, 2π]. Eighty generated (x, y) pairs (Figure 2.6a) are used to train the ANN, and another

100 datasets are used for the test and the prediction. The prediction intervals are computed

with the delta method. The results of the regression and the prediction intervals are shown

in Figure 2.6b.

From Figure 2.6b it can be observed that the regression model calibrated by the ANN is

satisfactory: the ANN returns a regression model which follows well the sine function. The
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(a) Sampling of y = sin(x) + ε, with σ = 0.1
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(b) Prediction intervals

Figure 2.6: An illustrative example for the estimation of ANN PIs with the delta method

calculated prediction intervals are also credible: Among 100 test datasets, 95 data are located

within the 95% prediction intervals, and 5 points are outside. This is reasonable because for

a 95% prediction interval, one prediction has 5% probability to be dropped outside the

interval. Therefore for 100 data, 5 points in average can be located outside. The concept of

the prediction intervals will be used later in the adaptive learning of an ANN metamodel.

2.2 Training of ANNs with Correlated Residuals

An assumption hidden behind the cost function of Eq.2.1.4 for the classical ANN training

is that the residuals ŷi − yi are statistically independent and identically distributed (IID).

In case that the residuals are correlated, this correlation should be accounted for in the cost

function of the ANN training. This section is dedicated to introduce a training method to

take into consideration the correlation between the residuals. The method will be eventually

used in the computation of the ground motion prediction equations, in which the variance-

covariance matrix of the residuals is not diagonal. The covariance matrix is assumed known

a priori in this section.

The cost function ẽ of the ANN with the correlated residuals reads as follows:

ẽ(x;w) =
1

2

n�

k=1

�

ŷ
k
(x;w)− y

k
(x)
�T �

C−1

k

� �

ŷ
k
(x;w)− y

k
(x)
�

. (2.2.1)

Different from Eq.2.1.4, the outputs and the targets of the ANN training are denoted in

the vector forms ŷ and y, respectively. C
k
is the known variance-covariance matrix of the

residuals for the kth output. In the traditional ANN training, C
k
= I

N
, in which I

N
is the

identity matrix of size N × N . Therefore, the training of the ANN is to find the weighting
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parameters that minimize the modified cost function:

w∗ = argmin
w

1

2

n�

k=1

�

ŷ
k
(x;w)− y

k
(x)
�T �

C−1

k

� �

ŷ
k
(x;w)− y

k
(x)
�

. (2.2.2)

In statistics, Eq.2.2.2 is a typical cost function of a generalized least-squares (GLS) problem.

The minimization of Eq.2.2.2 can be achieved by simply applying
∂ẽ

∂w
= 0:

∂ẽ

∂w
= 0 ⇒

n�

k=1

�

∂ŷ
k

∂w

�T
�

C−1

k

� �

ŷ
k
(x;w)− y

k
(x)
�

= 0. (2.2.3)

Recalling that the ANN prediction ŷ
k
is nonlinear with respect to w, computing the zero

roots of Eq.2.2.3 requires employing the iterative Newton-Raphson method. By linearizing

the ANN output at the (j + 1)th iteration: ŷ
k
(x;wj+1) = ŷ

k
(x;wj) + [

∂ŷ
k

∂w
|wj ](wj+1 − wj)

and omitting high order terms, Eq.2.2.3 becomes:

n�

k=1

�

J j

k

�T �

C−1

k

� �

J j

k
∆wj − rjk

�

= 0, (2.2.4)

in which the Jacobian matrix defined in Eq.2.1.13 is reused to denote the derivatives, ∆wj =

wj+1 − wj, and the residual vector rjk is calculated by rjk = y
k
− ŷ

k
(wj). In this way, the

updating of the weighting parameters ∆wj at the iteration j is computed by

∆wj =





n�

k=1

[J j

k
]T [C−1

k
][J j

k
]





−1 



n�

k=1

[J j

k
]T [C−1

k
][rjk]



 . (2.2.5)

Eq.2.2.5 is the Gauss-Newton optimization algorithm applied to a GLS problem. An ad-

ditional damping parameter λ, as used in the Levenberg–Marquardt algorithm, is added in

Eq.2.2.5 to stabilize the numerical optimization:

∆wj =





n�

k=1

[J j

k
]T [C−1

k
][J j

k
] + λI

Q





−1 



n�

k=1

[J j

k
]T [C−1

k
][rjk]



 . (2.2.6)

Eq.2.2.6 approaches the classical gradient descent for λ → +∞ [Marquardt 1963]. The value

of λ can either be set to a fixed value, or be varied for different iterations according to the

proposal of Marquardt [1963].

The proposed algorithm is validated with two simple test cases. The dataset used is a

generated database for the peak ground accelerations (PGAs). The dataset consists of 893
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sets of PGA values, as well as the information on the source, path and site of the corresponding

893 earthquakes, with the moment magnitude Mw, Joyner-Boore distance Rjb and the first

thirty shear-wave velocity V s30
6. Therefore, the ANN used for this dataset is constructed

with three input neurons and one output neuron.

In the first test case, the identity matrix I is assigned to C. Then, the training of

the corresponding ANN is the same as a classical neural network. The evolution of the cost

function with the proposed algorithm (Eq.2.2.6) is compared to that of the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) algorithm, which is a commonly used ANN training algorithm.

Five neural nodes are used in the hidden layer of the ANN. The comparison is illustrated in

Figure 2.7. It can be observed that the minimum value of the cost function (the mean square

error) computed by the proposed GLS ANN algorithm is almost the same as that calculated

by BFGS.
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Figure 2.7: Test case one: Comparison of the performance of the proposed algorithm
(generalized LM algorithm as legend) with BFGS

The second test case consists in training an ANN with a pre-assumed variance-covariance

matrix. A simple structure of the ANN is selected, so that we can write the analytical

expression of the ANN prediction and use an existing python package ‘Scipy.optimize’ (op-

tion BFGS) to perform the numerical minimization. The values of the weights and biases

computed from the GLS ANN training algorithm are compared to the results from Scipy.

The dataset used to train the ANN stays the same as the first case study. The matrix C is

constructed following the procedure of the construction of the variance-covariance matrix in

6The dataset is in fact the first realization in the generated database, which is explained in detail in
Chapter 5. One can refer to Chapter 5 for more descriptions about the data.
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the ground motion prediction equations, with τ = 0.2 and φ = 0.3. More details regarding

the construction of such matrix can be found in Chapter 5. The number of the hidden layer

neurons are chosen to be two. Therefore, the analytical expression of the ANN prediction

writes7:
ŷ =w2

11 ∗ tanh(w1
11 ∗Mw + w1

12 ∗ lnRjb + w1
13 ∗ lnV s30 + b11)+

w2
12 ∗ tanh(w1

21 ∗Mw + w1
22 ∗ lnRjb + w1

23 ∗ lnV s30 + b12) + b21.
(2.2.7)

The result of the comparison is reported in Table 2.1. It can be concluded that the ANN

parameters computed with the proposed GLS ANN training algorithm are almost the same

as those computed by Scipy. The accuracy of the GLS ANN training algorithm is thus

validated.

Table 2.1: Test case two: Comparison of the proposed GLS ANN training results to results
computed by Scipy optimization tool.

b11 b12 w1
11 w1

12 w1
13 w1

21 w1
22 w1

23 b21 w2
11 w2

12

ANN 2.138 0.646 -0.23 3.542 -1.394 0.313 -0.427 -0.081 -1.173 0.173 2.501
Scipy 2.138 0.646 -0.23 3.539 -1.392 0.313 -0.427 -0.081 -1.175 0.173 2.503

2.3 Adaptive Training of ANNs

2.3.1 State of the Art

Besides the classical training algorithms, adaptive training techniques of statistical meta-

models have been developed recently. The main idea is to build metamodels iteratively by

adding in the training dataset the samples selected by a learning function (e.g. with meta-

model prediction closest to the failure threshold). The iterative training is stopped until

the required accuracy is reached. The enrichment of the design of experiments (DoE) can

be achieved by a crude selection of candidates in the initial Monte-Carlo (MC) population

according to the learning function. Such enrichment strategy has been applied in AK-MCS

(Active Kriging - MC Simulation) [Echard et al. 2011; Zheng et al. 2017], adaptive support

vector machine (ASVM) [Pan and Dias 2017], adaptive polynomial chaos expansion (APCE)

[Marelli and Sudret 2018], etc. However, this strategy depends to a certain extent on the ini-

tial MC population: the estimated quantity of interest can be biased if the initial population

does not cover the area of interest. An alternative is to enrich the training data with advanced

sampling techniques. Additional training points are selected from the population generated

from importance sampling (IS), Markov chain Monte-Carlo (MCMC) or directional simula-

tion (DS) to better cover the region of interest. Typical works on the adaptive metamodeling

7The ANN inputs Mw, lnRjb and lnV s30 in Eq.2.2.7 are pre-processed in projecting them into [−1, 1]3

space.
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based on advanced sampling techniques are CQ2RS for polynomial response surfaces [Gayton

et al. 2003]; 2SMART [Bourinet et al. 2011], ASVR (Adaptive Support Vector Regression)

[Bourinet 2016] and other adaptive models based on SVM (Support Vector Machine) classi-

fication and regression [Hurtado 2001; Bourinet 2013]; Meta-IS [Dubourg et al. 2013; Cadini

et al. 2015], AK-IS [Echard et al. 2013], MetaAK-IS2 [Cadini et al. 2014] for Kriging, etc.

A few works have also been realized to combine the adaptive learning with ANNs. Or-

thogonal factorial designs are proposed by Shao and Murotsu [1997] to select learning data of

ANNs. However, a minimum distance between data has to be set in this method to prevent

the local concentration of the selected points. This critical distance varies from case to case,

and it is difficult in general to estimate this distance when the performance function is a

black box. The performance of ANNs combined with DS is investigated in more detail in

Hurtado and Alvarez [2001]. Both DS and IS are adopted in Schueremans and Gemert [2005]

to adaptively select training data. The difference of the radius between the ANN and the

limit state function is used in Schueremans and Gemert [2005] as a criterion to enrich the

DoE. Also based on DS, the learning function in Most and Bucher [2006] is the uncertainty of

the radius calculated by the ANNs trained repeatedly with the same training data. This idea

is in fact similar to the Bootstrap method but without the resampling of the training data.

The performance of adaptive ANNs trained based on IS is compared to MC-IS estimation in

Chojaczyk et al. [2015] to show its accuracy and computational efficiency. The application

of the subset simulation to the ANN adaptive learning is proposed in Papadopoulos et al.

[2012] and later further studied in Pedroni and Zio [2017] with IS to find the optimal instru-

mental probability density distribution. Xiao et al. have proposed an ANN adaptive training

strategy where the uncertainties of the ANN predictions with the Jackknifing resampling

[Xiao et al. 2018]. The learning function in this work is a combination of ANN prediction

uncertainties and a distance metric.

Despite these works, it seems that ANN adaptive learning is less used in practice com-

pared to Kriging and SVM. The reason stems from two aspects: (i) The uncertainty on the

ANN prediction is not straightforwardly provided, unlike Kriging and SVM. The prediction

uncertainty is directly given in the outputs of Kriging, and the most probable misclassified

point can be also easily identified in the SVM margin. Bootstrap [Efron 1982], as adopted

in APCE, is a universal approach to evaluate the prediction uncertainty. However, Boot-

strap requires a number of retrainings of the metamodel and can be, thus, computationally

demanding; (ii) In order to avoid overfitting, the number of training data should exceed the

number of unknown weighting parameters in the ANN. This makes ANNs less attractive be-

cause the size of the initial population in the ANN adaptive training could be large, especially

for high dimensional inputs.
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2.3.2 ANN Adaptive Training Strategy

The basic idea of the adaptive ANNs is the same as the adaptive strategies used in Kriging,

SVM and PCE. It aims to ensure the performance of the ANNs in the area of interest, for

example in the proximity of the failure threshold or in the region where the original ANN

shows poor performance, rather than to train the ANN with every sampling in the initial MC

population, which is not necessary and computationally costly. ANNs are trained iteratively

in the adaptive training strategy. The training dataset is enriched in every iteration by a

learning function U , i.e. a selection criterion, so that more and more data in the area of

interest are selected. The principle of the adaptive ANN, shown in Figure 2.8, is described

in what follows:

1. Generation of a large MC 

population and initialization 

of DoE

Numerical simulations

2. ANN Training and 

predictions

3. Selection of     next training data 

by a learning fuction

4. Stopping condition

fulfilled?

Yes

End

No 5. Update of DoE with 

      selected sample

  Numerical 

simulations

Figure 2.8: Basic principle of the adaptive ANN training

1. Generation of a large MC population and initialization of the DoE. A large size of

input samples of the ANN should be generated to provide candidates to be selected by the

adaptive learning. The size of the MC population is denoted by NMC. Moreover, an initial

DoE is required to perform the first training of the ANN. Among NMC inputs, N0 sets of

inputs are randomly selected to call the physical computational model. N0 should be larger

than the number of the unknown parameters (weights and biases) of the ANN. This forms

the first DoE to train the ANN.

2. Start of the iterative ANN training. For iteration k (k � 0), ANN is trained with the

training data of the DoE. The ANN predictions ŷk(x
i) can be computed. The values of the

learning function can also be calculated for every input data xi in the total MC population,
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with respect to the ANN trained at the current iteration.

3. Selection of next m training samples with the learning function. The learning function

U helps select the m next samples. These samples are added in the training dataset and

they will be used to train the ANN in the next training iteration. An example of the

typical learning functions is the U function of AK-MCS proposed by Echard et al. [2011] for

applications of structural reliability problems.

4. Stopping condition verification. A stopping condition should be set to check the

accuracy of the ANN. The iterative training is stopped if the stopping condition is fulfilled.

5. Update of DoE with m selected best points. If the stopping condition in step 4 is not

fulfilled, the DoE is enriched with the m best points selected in step 3. Then, m numerical

simulations of the physical computational model are performed, and the results are added to

train the ANN. After the DoE update, the total number of the available data to train the

ANN at the iteration k + 1 is: Nk+1 = Nk +m.

2.3.3 Application Examples

In this subsection, the ANN adaptive training is applied to three reliability problems

with a proposed learning function. These three examples are selected from Echard et al.

[2011]; Pan and Dias [2017] involving nonlinear performance functions and high dimensional

problems. In reliability analysis, the probability of failure of a system is evaluated based on

a function G representing the system performance, considering a vector of uncertain input

variables x. The state of the system is characterized by the sign of the performance function

G(x): A failure is indicated by a negative value. In this way, the probability of failure of the

system is computed as

Pf =

�

1[G(x) < 0]fX(x)dx, (2.3.1)

where fX(x) is the joint probability density function (PDF) of x and 1[G(x) < 0] is the

indicator function. Therefore, the limit state of the system is described by the surface G(x) =

0. Monte Carlo (MC) simulation is one of the most widely applied numerical resolutions to

estimate Pf . The probability of failure is calculated by the proportion of the failure counts

in the total number of MC simulations N :

P̂f =
1

N

N�

i=1

1[G(x) < 0]. (2.3.2)

When Pf is small, the computational efficiency of the MC simulation can be very low, since

it requires a large number of calls of the performance function G(x) to provide an accurate

evaluation of the probability of failure. To overcome this inconvenience, the adaptive training

of ANN is applied with the following learning function and stopping condition:
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1. Learning function: A searching zone Sk at the kth iteration is defined in order to avoid

the local concentration of the m samples to be selected. Sk is defined by the set of x

whose prediction uncertainty s(x) is larger than the maximum s of the training set:

Sk =
�
x : sk(x) > strain,k

�
, (2.3.3)

strain,k = max(sk(x) for x in the training set). (2.3.4)

The prediction uncertainty sk(x) can be computed with the delta method (Eq.2.1.15),

with respect to the ANN trained at the iteration k. K-means clustering [Hastie et al.

2008] is then applied to divide the input data in the searching zone Sk into m clusters.

The learning function used is the same as that proposed by Echard et al. [2011] in

AK-MCS:

U(x) =
|Ĝ(x)|

s(x)
=

|ŷ(x)− ycrit|

s(x)
, (2.3.5)

where Ĝ(x) is the performance function approximated by the ANN, whereas ycrit repre-

sents the failure threshold of the system. Afterwards, in each cluster, the sample with

the smallest U value is selected to be the next best point and is added to the DoE.

2. Stopping condition: A classical stopping condition of the adaptive ANN is applied:

ε =
|Pf,k−1 − Pf,k|

Pf,k

< εcrit. (2.3.6)

This criterion checks the convergence of the P̂f computed between two successive iter-

ations. εcrit is the convergence threshold depending on the specific test case. It can be

set to 0.5% for example.

The total workflow the ANN adaptive training with the proposed learning function and

stopping condition is illustrated in Figure 2.9. In the subsequent parts of this subsection,

the proposed adaptive ANN training is compared to other existing algorithms, including

AK-MCS, ASVM, IS-ANN, DS-ANN, etc., in terms of the computational efficiency and the

accuracy. In every example, the probability of failure with direct MC estimation is also

computed and serves as reference.
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6. Stopping 
condition fulfilled ? 

1. Generation of a large MC 
population and Initialization of DoE �0 numerical  simulations 

2. ANN training and 
prediction 

3. Definition of a searching zone {�: �(�) > �train} and 
partition of the zone into � clusters with K­means 

4. Selection of next � best 
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5. Computation of �̂� 

End 

No  7. Update of DoE with � selected points 

� numerical  
simulations 

Yes 

Figure 2.9: The adaptive ANN training algorithm for reliability problems

Example 1: A Four-branch Series System

A four-branch series system is used as the first example [Echard et al. 2011; Pan and Dias

2017]. The performance function of the system reads:

G(x) = min







3 + 0.1(x1 − x2)
2 − (x1 + x2)/

√
2

3 + 0.1(x1 − x2)
2 + (x1 + x2)/

√
2

(x1 − x2) + k/
√
2

−(x1 − x2) + k/
√
2







, (2.3.7)

where x1, x2 are independent random variables following the standard normal distribution

N (0, 1). The cases with k = 6 and k = 7 are considered. The ANN used in this example

has hidden layer neurons number h = 5, as in Most and Bucher [2006]. For the stopping

condition, εcrit is set to 0.5%. The DoE is initialized with N0 = 24, with m = 3 points to be

selected at every iteration for DoE update. The searching zone, clustering and the update of

the DoE are illustrated in Figure 2.10.

The performance of the adaptive ANN in both cases k = 6 and 7 is presented in Table

2.2 and Table 2.3, and compared to other advanced adaptive learning techniques used in

Echard et al. [2011]; Pan and Dias [2017]; Schueremans and Gemert [2005]. The comparison



30 2 Artificial Neural Networks

(a) Searching zone and clustering
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(b) Update of the DoE

Figure 2.10: Illustration of the selection of the next best points with the adaptive ANN
algorithm at iteration 3 for k = 7: (a) searching zone and its partition into 3 clusters. One
color represents one cluster. Ĝ = 0 is the limit state predicted by the ANN; (b) update of
DoE with red points selected at the current iteration. Blue points stand for the old DoE.
The region with a concentration of the training data indicated by the green circle is not

included in the searching zone in (a).

is with respect to the total number of calls to G(x) and the final estimated P̂f . We compute

also the relative error εPf
between the P̂f estimated by different metamodels and by direct

MC estimation. The training data selected by the adaptive ANN and the final prediction

of the adaptive ANN for k = 7 are shown in Figure 2.11 and Figure 2.12, respectively. The

evolutions of the probability of failure of both cases k = 6 and 7 are plotted in Figure 2.13.

For a better visualization, the probability of failure computed at every iteration in Figure

2.13 is normalized with respect to the final P̂f = 4.73× 10−3 for k = 6 and P̂f = 2.34× 10−3

for k = 7.

For k = 6, the adaptive ANN converges with 97 calls to the performance function. The

predicted probability of failure is 4.732×10−3, with 4.1% error relative to the P̂f calculated by

direct MC simulation with 106 calls. For the case k = 7, the adaptive ANN is stopped with 81

calls toG(x). The predicted probability of failure is 2.34×10−3, with 3.7% relative error to the

direct MC estimation with 106 calls. It can be concluded that the performance of the proposed

adaptive ANN is comparable to AK-MCS and ASVM-MCS: although it is less accurate than

AK-MCS and ASVM-MCS, the relative errors 4.1% and 3.7% are still satisfactory. Besides,

Kriging and SVM can be more accurate than ANNs for an analytical separable problem,

because Kriging is an exact interpolator of the training data, and hard-margin SVM can also

used to make zero classification error of the training samples. However, ANNs try to find an

average regression curve for the training samples, which may introduce some errors on the

signs of the predicted Ĝ(x). On the other hand, the adaptive ANN converges slightly faster

than AK-MCS and ASVM-MCS. Compared to other algorithms based on ANNs, the adaptive
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ANN-MCS proposed in this section shows clearly better performance in both computational

efficiency and prediction accuracy.

Table 2.2: Performance of the adaptive ANN for the four-branch series system: k = 6

Method Nc P̂f εPf
CoV Comments

MC 106 4.544× 10−3 - 1.48%
Adaptive ANN-MCS 97 4.732× 10−3 4.1% 1.45%

MC 106 4.40× 10−3 - 1.50% Pan and Dias [2017]
ASVM-MCS 99 4.46× 10−3 1.36% 1.50%

MC 106 4.416× 10−3 - 1.50% Echard et al. [2011]
AK-MCS 126 4.416× 10−3 0% 1.50%
IS-ANN 52 5.7× 10−3 22.5% -
DS-ANN 165 4.1× 10−3 7.2% -

Table 2.3: Performance of the adaptive ANN for the four-branch series system: k = 7

Method Nc P̂f εPf
CoV Comments

MC 106 2.256× 10−3 - 2.10%
Adaptive ANN-MCS 81 2.34× 10−3 3.7% 2.06%

MC 106 2.15× 10−3 - 2.15% Pan and Dias [2017]
ASVM-MCS 89 2.13× 10−3 0.93% 2.16%

MC 106 2.233× 10−3 - 2.11% Echard et al. [2011]
AK-MCS 96 2.233× 10−3 0% 2.11%
IS-ANN 125 2.9× 10−3 29.9% -
DS-ANN 67 1.0× 10−3 55.2% -

Concerning the limit state function Ĝ(x) = 0 predicted by the adaptive ANN (Figure

2.12), it provides a global satisfactory approximation to the original limit state G(x) = 0

except for the region close to the four corners. As stated in Pan and Dias [2017], this is

linked to the initial MC population in which few samples can be found in the proximity of

the four corners. From Figure 2.11 we can also see that, due to the definition of the searching

zone, the selected training data are quasi-uniformly distributed along the limit state. The

small concentration of the training data in the middle of the safety area (around the point

(0, 0)) is related to the N0 random selection of the initial DoE. As the number of the training

examples should always be larger than the number of weighting parameters in ANNs, this

phenomenon is difficult to be avoided in the adaptive ANN approach.

Example 2: Dynamic Response of a Mechanical Oscillator

The second example consists of a single degree-of-freedom undamped mechanical oscillator

(Figure 2.14), with 6 independently distributed random variables [Echard et al. 2011; Pan

and Dias 2017]. The parameters about the probability distributions of the 6 parameters are

listed in Table 2.4. The performance function of the oscillator reads:
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Figure 2.11: Example 1: The limit state
function prediction by the adaptive ANN
and the selected training data, k = 7

Figure 2.12: Example 1: Predictions on
the initial MC population with the

adaptive ANN, k = 7
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Figure 2.14: Example 2: A single degree of freedom oscillator

G(c1, c2,m, r, t1, F1) = 3r −
�
�
�
�
�

2F1

mω2
0

sin(
ω2
0t1
2

)

�
�
�
�
�
, (2.3.8)

where ω0 =

�
c1 + c2
m

.

In this example, h = 4 is selected for the number of neurons in the hidden layer of the
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ANN, according to an empirical rule of thumb h ≈ (ninput+noutput)/2. The size of the initial

MC population is 106. The number of the initial DoE is N0 = 40 and m = 3 data are added

into the DoE at every iteration. For the stopping condition, εcrit is set to be 0.5%. The results

of the adaptive ANN and the comparison with other models are given in Table 2.5, and the

convergence curve of the adaptive ANN algorithm for this example is shown in Figure 2.15.

Table 2.4: Example 2: Uncertain parameters

Parameter PDF Mean Standard Deviation
m Normal 1 0.05
c1 Normal 1 0.1
c2 Normal 0.1 0.01
r Normal 0.5 0.05
F1 Normal 1 0.2
t1 Normal 1 0.2

Similar to the first example, the proposed adaptive ANN shows satisfactory performance

also in this case study. The algorithm is stopped after 58 calls to the performance function

and the estimated probability of failure is 0.0282, with 0.7% error relative to the direct

MC estimation. In comparison with other methods, the performance of the adaptive ANN

is comparable to ASVM-MCS and AK-MCS. Besides, compared to other ANN adaptive

learning algorithms such as IS-ANN and DS-ANN, the adaptive ANN-MCS shows better

accuracy and efficiency. This example validates the proposed adaptive ANN-MCS algorithm

for a moderate dimensional problem.

Table 2.5: Example 2: Performance of the adaptive ANN for the mechanical oscillator

Method Nc P̂f εPf
CoV Comments

MC 106 0.0284 - 0.58%
Adaptive ANN-MCS 58 0.0282 0.70% 0.58%

MC 106 0.0287 - 0.58% Pan and Dias [2017]
ASVM-MCS 56 0.0279 2.87% 0.59%

MC 7× 104 0.0283 - 2.21% Echard et al. [2011]
AK-MCS 58 0.0283 0% 2.21%
IS-ANN 68 0.031 8.71% -
DS-ANN 86 0.028 1.06% -

Example 3: High Dimensional Example

The last example is a high dimensional example proposed in Rackwitz [2001]. It is used

to check whether the adaptive ANN can handle an analytical high dimensional problem. The
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Figure 2.15: Example 2: Convergence of the estimated P̂f

performance function of this problem is given by:

G(x1, ..., xn) = n+ 3σ
√
n−

n�

i=1

xi, (2.3.9)

where variables xi are mutually independent and they follow lognormal distributions with

unit means and standard deviation σ = 0.2. n is the dimension of the problem. Two n values

are considered in this study: n = 40 and n = 100. The initial MC population is 106, the

same as the previous two examples. The number of hidden layer neurons is chosen to be 5, in

order to provide a reasonable initial DoE size compared to AK-MCS and ASVM-MCS. For

the stopping condition, εcrit is again set to 0.5%. The initial DoE size is N0 = 250 for n = 40

and N0 = 600 for n = 100. For both cases, 10 data are added to DoE at every iteration.

The results for the adaptive ANN in these two problems are summarized in Table 2.6 and

compared to AK-MCS and ASVM-MCS. The convergence curve for n = 100 is plotted in

Figure 2.16.
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Figure 2.16: Example 3: Convergence of the estimated P̂f for n = 100
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Table 2.6: Example 3: Performance of the adaptive ANN for the high dimensional problem

Method n Nc P̂f εPf
CoV Comments

MC
40 106 2× 10−3 - 2.23%
100 106 1.782× 10−3 - 2.27%

Adaptive ANN-MCS
40 320 1.965× 10−3 1.75% 2.25%
100 760 1.691× 10−3 5.11% 2.43%

MC
40 106 1.82× 10−3 - 2.24% Pan and Dias [2017]
100 106 1.73× 10−3 - 2.40%

ASVM-MCS
40 341 1.78× 10−3 2.20% 2.37%
100 810 1.72× 10−3 0.58% 2.41%

MC
40 3× 105 1.813× 10−3 - 4.3% Echard et al. [2011]
100 3× 105 1.647× 10−3 - 4.5%

AK-MCS
40 112 1.813× 10−3 0% 4.3%
100 153 1.647× 10−3 0% 4.5%

The adaptive ANN converges with 320 calls to the G(x) for n = 40 and at 760 calls for

n = 100. The errors of the probability of failure are respectively 1.75% and 5.11% relative

to the direct MC estimates with 106 calls. In comparison to AK-MCS and ASVM-MCS,

all three methods lead to satisfactory estimation of the probability of failure, for both 40

and 100 dimensional cases. The adaptive ANN provides comparable performance to ASVM-

MCS. However, AK-MCS shows better convergence speed and accuracy than the other two

methods. Due to the interpolation property of Kriging, the relative error is zero and the con-

vergence speed is much higher than the adaptive ANN and ASVM. It has to be mentioned

that the initial MC population for AK-MCS is 3 × 105, less than 106 adopted in ASVM

and adaptive ANN. It can be also seen that Nc increases with the dimension of the problem

for adaptive ANNs because of the initial DoE size. With h = 5, the initial DoE size for

the adaptive ANN is already quite large. In contrast to AK-MCS in which the increase of

the dimension has little influence on the convergence speed [Echard et al. 2011], the size of

the initial DoE in the adaptive ANN depends on the dimension of the problem. If all the

input parameters are mutually independent and if no dimensionality reduction method can

be applied, adaptive ANNs are less attractive in terms of computational efficiency.

The proposed adaptive ANN training algorithm has been tested on three examples involv-

ing nonlinear multi-failure region, moderate dimension and high dimension problems, and its

performance has been compared to other advanced techniques. The results reveal that the

adaptive ANN-MCS shows satisfactory performance in terms of computational efficiency and

prediction accuracy, so that it can be a good alternative to other adaptive algorithms such

as AK-MCS and ASVM-MCS. Based on the obtained results, some discussions are provided

in this section:
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1. In both accuracy and efficiency, the performance of adaptive ANN-MCS is comparable

to AK-MCS and ASVM-MCS in the considered test cases, and it performs much better

than DS-ANN and IS-ANN. In addition, once the delta method has been implemented

to compute the prediction uncertainty of the ANN, the implementation of the proposed

adaptive ANN is straightforward.

2. The performance of the ANN is slightly less competitive than Kriging and SVM for

separable problems (e.g. the three mentioned case studies) in terms of accuracy, due to

its inherent regression property. Kriging is an exact interpolator of the training data,

whereas hard-margin SVMs can be adopted for zero misclassification of the training

data. In spite of that, the adaptive ANN-MCS provides satisfactory accuracy compared

to these two methods for the three considered test cases.

3. Without advanced samplings to generate additional candidates to approach the limit

state, the accuracy of the adaptive ANN-MCS depends to a certain degree on the initial

MC population. Therefore, the initial MC population should be large enough to cover

the limit state of the performance function. Otherwise, the ANN metamodel loses the

local detail of the limit state, e.g. the four sharp corners in the first example.

4. The stopping condition used in the adaptive ANN is less strict than AK-MCS and

ASVM. This makes ANN converge quickly despite the large initial size of DoE. If a

similar criterion is applied to AK-MCS and ASVM, their convergence speed could be

higher, as discussed in Echard et al. [2011]; Pan and Dias [2017].

2.4 Summary

Different training methods of artificial neural networks, which build the basis of the ap-

plications of ANNs in different subjects studied in this thesis, are summarized and presented

in this chapter. The chapter starts with the explanation of the classical training method

of ANNs based on gradient-based optimization methods. The gradient of the ANN cost

function can be computed efficiently by the back-propagation algorithm. The computation

of the uncertainty of the ANN predictions with the delta method is also discussed. This

prediction uncertainty will be further investigated when the ANN is used to substitute the

finite element model for the seismic fragility analysis in Chapter 3. Furthermore, consider-

ing correlated residuals, an ANN training algorithm based on the GLS principle is derived.

This latter GLS ANN training will be used for the computation of ground motion prediction

equations in Chapter 5. In the end, the basis of the adaptive training strategy of ANNs is

introduced. The principle of the ANN adaptive learning will be used in Chapter 4, for a

better selection of the training data to cover the whole input space.
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Appendix

2.A Back-propagation Algorithm

The back-propagation algorithm to compute the ANN gradient g is derived in what fol-

lows. Let us first focus on the computation of the derivative of ep(xp;w) with respect to the

weights wkj between the hidden layer and the output layer. In the sequel, we will substitute

the notation ep(xp;w) by ep for simplicity. With the chain rule, the derivative is calculated

by
∂ep

∂wkj

=
∂ep

∂vk

∂vk
∂wkj

. (2.A.1)

From our notation convention, vpk should have been used in Eq.2.A.1 because the derivative

is calculated for a specific training example p. This upper index is omitted here for simplicity

and it is also omitted in the following for ŷ.

Because vk =
�

j wkj ŷj (Figure 2.2b), the second term on the right of Eq.2.A.1 can be

computed easily:
∂vk
∂wkj

= ŷj. (2.A.2)

Let us introduce another notation for simplicity:

δk =
∂ep

∂vk
. (2.A.3)

By substituting Eqs.2.A.2,2.A.3 into Eq.2.A.1, we obtain

∂ep

∂wkj

= δkŷj. (2.A.4)

The chain rule is applied again for the computation of δk:

δk =
∂ep

∂ŷk

∂ŷk
∂vk

. (2.A.5)

According to Eq.2.1.7 and ŷk = vk in Figure 2.2b for the output layer, with one training

example p, the result of δk is written as:

δk = ŷk − yk. (2.A.6)

The same strategy is applied to compute the derivative of ep with respect to wji between

the input layer and the hidden layer:

∂ep

∂wji

=
∂ep

∂vj

∂vj
∂wji

= δj ŷi. (2.A.7)
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δj is calculated in a similar way as Eq.2.A.5:

δj =
∂ep

∂vj
=

∂ep

∂ŷj

∂ŷj
∂vj

. (2.A.8)

The second term of Eq.2.A.8 can be computed easily considering ŷj = ϕ(vj) (Figure 2.3):

∂ŷj
∂vj

= ϕ�(vj), (2.A.9)

where ϕ�(·) is the derivative of the hyperbolic tangent function ϕ(·). ϕ�(vj) is later denoted

by ϕ�

j for simplicity. The first term in Eq.2.A.8 can be expressed with δk:

∂ep

∂ŷj
=
�

k

∂ep

∂v̂k

∂vk
∂ŷj

=
�

k

δkwkj. (2.A.10)

Therefore, final expressions are derived for δj and
∂ep

∂wji

:

δj = ϕ�

j

�

k

δkwkj, (2.A.11)

∂ep

∂wji

= δj ŷi. (2.A.12)

From Eq.2.A.11 one can observe that, in order to compute δj in the hidden layer, it is

necessary to compute firstly δk in the output layer, where comes from the name of the

backward propagation algorithm.
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Chapter 3

Seismic Fragility Analysis with Artificial Neural Net-

work Metamodels

The conditional probability of failure, illustrated by means of fragility curves, is usually

computed adopting a lognormal assumption to reduce the computational cost. In this

chapter, an artificial neural network (ANN) is constructed to improve the computational

efficiency for the calculation of structural outputs. The following aspects are addressed: (a)

Selection of IMs as inputs of the ANN. The most relevant IMs are selected with a forward

selection approach based on semi-partial correlation coefficients; (b) Quantification and

investigation of the ANN prediction uncertainty computed with the delta method. It consists

of an aleatory component from the simplification of the seismic inputs and an epistemic

model uncertainty from the limited size of the training data. The aleatory component is

integrated in the computation of fragility curves, whereas the epistemic component provides

the confidence intervals; (c) Computation of fragility curves with Monte Carlo method and

verification of the validity of the lognormal assumption. This methodology is applied to

estimate the probability of failure of an electrical cabinet in a reactor building studied in

the framework of the KARISMA benchmark.

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Simulation-based Fragility Analysis . . . . . . . . . . . . . . . . . 46

3.2.1 Computation of the Engineering Demand Parameter . . . . . . . . 46

3.2.2 Computation of Fragility Curves . . . . . . . . . . . . . . . . . . . 47

3.3 Description of the ANN-based Seismic Fragility Analysis . . . . 48

3.3.1 Preparation of Data Set . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.3.3 ANN Training and Validation . . . . . . . . . . . . . . . . . . . . . 51

3.3.4 ANN Uncertainty Quantification . . . . . . . . . . . . . . . . . . . 51

3.3.5 Fragility Curves with ANN simulation results . . . . . . . . . . . . 52

3.4 Case Study: KARISMA benchmark . . . . . . . . . . . . . . . . . 54



44 3 Seismic Fragility Analysis with Artificial Neural Network Metamodels

3.4.1 Kashiwazaki-Kariwa FEM Analysis . . . . . . . . . . . . . . . . . . 54

3.4.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.3 Selection of Relevant IMs and Determination of ANN Structures . 58

3.4.4 Results of the ANN Training . . . . . . . . . . . . . . . . . . . . . 59

3.4.5 Fragility Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.6 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1 Introduction

In the seismic probabilistic risk assessment (SPRA) methodology, fragility curves are com-

puted as conditional probabilities of failure of structures, or critical components, for given

values of a seismic intensity measure (IM), such as the peak ground acceleration (PGA)

[EPRI 1994]. The core damage frequency of the plant is, then, calculated by the convolution

of the fragility curves with the hazard curves in fault tree and event tree analysis [EPRI

1994]. The computation of fragility curves requires a realistic estimation of the structure

performance subject to seismic excitations via the quantification and the propagation of un-

certainties existing in earthquake ground motions, structural material properties, etc. These

uncertainties are categorized into two groups [Kennedy et al. 1980]: aleatory uncertainties,

which reveal the inherent randomness of variables or stochastic processes, and epistemic un-

certainties, which originate from the lack of knowledge about the model and provide a family

of confidence interval curves for the fragility estimation.

In practice, a fragility curve is calculated as the conditional probability that the engineer-

ing demand parameter (EDP) exceeds a critical threshold, for a given seismic IM: [Mai et al.

2017; Zentner et al. 2017]:

Pf (α) = P (y > ycrit|α), (3.1.1)

where y is the EDP, such as inter-story drift, ycrit is the failure threshold and α represents

the seismic IM. This conditional probability can be evaluated pointwise for different α values

with the Monte Carlo method [Mai et al. 2017; Noh et al. 2015], as well as with methods

based on the lognormal hypothesis [Kennedy et al. 1980; Lallemant et al. 2015; Shinozuka

et al. 2000]. However, both methods require a few hundred heavy numerical simulations with

the finite element method (FEM).

One way to improve the computational efficiency consists in building a metamodel to

calibrate the statistical relation between seismic inputs and structural outputs. In fact, it is

difficult to directly use stochastic ground motions to construct the metamodels, because the

high-dimensionality of the inputs of such metamodels requires a very large size of training data
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to accurately approximate the input-output relation [Gidaris et al. 2015]. An alternative is to

use seismic IMs as inputs of the metamodels to represent ground motions. Various functional

models based on the calibration of IMs-EDP relation have been proposed [Cornell et al.

2002; Perrault 2013; Xu and Gardoni 2016]. According to these works, a nonlinear regression

metamodel seems more suitable to provide adequate nonlinearity in the IMs-EDP relation.

However, with this approach, the simplification of the continuous stochastic ground motion

by a small set of IMs may not allow to describe all the random variability in the earthquake

motion [Zentner and Borgonovo 2014]. Therefore, it cannot ensure the performance of the

metamodels.

Some studies regarding the application of metamodels in fragility analysis have been

realized recently. Most works focus on using seismic IMs to characterize earthquake acceler-

ations. Metamodels are constructed to calibrate the relation between EDPs and uncertain

inputs of the structural models, including IMs and material parameters. The construction of

the metamodels is either achieved by decomposing the nonlinear input-output relation with

high-dimensional model representation (HDMR) [Zentner and Borgonovo 2014; Unnikrish-

nan et al. 2013], or realized with polynomial regression [Buratti et al. 2010; Seo and Linzell

2013; Seo et al. 2012; Saha et al. 2016; Park and Towashiraporn 2014] or other more advanced

statistical tools, such as artificial neural networks (ANNs) [Lagaros and Fragiadakis 2007;

Lagaros et al. 2009; Mitropoulou and Papadrakakis 2011; Ferrario et al. 2015; Calabresea and

Lai 2013], LASSO regression [Mangalathu et al. 2017], Bayesian networks [Gehl and D’Ayala

2016], merging multivariate adaptive regression splines, radial basis function network, support

vector regression [Ghosh et al. 2013], Kriging [Gidaris et al. 2015; Jia and A.Taflanidis 2013;

Lopez-Caballero and Khalil 2018], etc. On the other hand, earthquake accelerations are also

used directly as inputs of the metamodel in Mai et al. [2016] to predict structural response

time histories. The construction of the metamodel is divided into two steps: the first step is

to extract the characteristics of earthquake motions with nonlinear auto-regression; then the

polynomial chaos expansion is applied to these characteristics to construct the metamodel.

EDPs are computed from the structural response time histories, and fragility curves can be

thus obtained. Although this method seems different from the classical metamodeling with

IMs, the idea remains the same: the nonlinear auto-regression serves as a tool to extract the

features of earthquake motions and past values of the structural displacement, whereas these

features are represented by the IMs in the classical approaches. Besides regression methods,

classification models like logistic regression, random forests and support vector machine are

utilized in Ataei and Padgett [2015] to predict directly the probability of failure from the

uncertain inputs. Despite the fact that seismic fragility analyses have been successfully per-

formed with different types of metamodels, the following two points are rarely discussed: (i)

Systematic selection of pertinent IMs to represent seismic ground motions; (ii) Quantification
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of the prediction uncertainty of the metamodels.

In this chapter, a computationally efficient methodology for the application of ANNs to

characterize the IMs-EDP relation is proposed, from the selection of the most relevant IMs to

the quantification of ANN prediction uncertainties. A more efficient feature selection method

based on the semi-partial correlation coefficient is proposed in this work. The uncertainty

in the ANN predictions is also investigated: it consists of an aleatory component from the

simplification of the seismic inputs and an epistemic uncertainty due to the paucity of the

training data. The former is considered in the computation of Pf (α), whereas the latter is

used in the estimation of confidence intervals.

3.2 Simulation-based Fragility Analysis

A simulation-based fragility analysis is composed of 3 main steps:

1. Structure modeling. This step consists in establishing a set of mathematical partial

differential equations to describe the mechanical behavior of the underlying model.

2. Numerical simulation and calculation of the EDP. Numerical simulations are performed

to propagate the uncertainties and to compute the EDP. FEM is the most widely used

numerical resolution method.

3. Computation of the conditional probability of failure of the structure. This step is

realized by applying a statistical analysis to the IM-EDP data cloud (α, y) computed

from the numerical simulation results.

In this section, the computation of the EDP and the calculation of the conditional probability

of failure are further discussed. Two commonly used methods for the computation of the

conditional probability are presented. These two methods will be applied to calculate the

fragility curves in an industrial complex case study in this chapter.

3.2.1 Computation of the Engineering Demand Parameter

Mechanical model The mechanical model to compute the EDP of a structure or a critical

component can be described as:

y = f(a(t)), (3.2.1)

where a(t) represents the seismic ground acceleration. The resolution of Eq.3.2.1 is usually

time-consuming, especially when the structural model is very complex. In this way, one needs

to resort to the metamodel to reduce the computational cost of the numerical simulations.
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Metamodel In this chapter, a metamodel established for IMs-EDP relation is desired. It

is used to replace the mechanical model in order to improve the computational efficiency:

ŷ = f̂(IM1, IM2, ..., IMk), (3.2.2)

where the symbol ‘∧’ denotes the results calculated from the metamodel. The regression of

the metamodel leads to a reduction of the variability in the metamodel prediction: y = ŷ+ε.

The existence of the residual ε not only comes from the lack-of-fit of the metamodel, but also

has more specific interpretations:

1. The metamodel cannot show sufficient nonlinearity to replace the mechanical model. The

residual value can be very high if a linear metamodel is wrongly selected to substitute a

nonlinear mechanical model.

2. IMs are adopted to represent the inherent randomness of ground motions a(t), which gives

rise to a loss of information in the input variables. Different ground motion time histories

with the same set of IM values lead to different structural responses, in contrast to a

deterministic response predicted by the metamodel. Consequently, ε should be present

for the training data in the metamodeling process. That is also the main reason why

a nonlinear regression model like ANN is preferred, rather than an exact interpolation

model, such as Kriging with classical kernels (Gaussian kernel, Matern kernel, etc.).

3. The number of the training data for the development of the metamodel is usually limited

due to the computational cost of FEM simulations.

These facts show the necessity of the quantification of the metamodel prediction uncertainty,

in order to provide reliable applications of metamodels to critical structures such as NPPs.

3.2.2 Computation of Fragility Curves

This section is dedicated to recall the basis of two methods in the computation of fragility

curves: the Monte Carlo Method and the regression method. These two methods can be ap-

plied to compute the conditional probability of failure when the data cloud (α, y) is provided.

Monte Carlo (MC) method In this method, N seismic records with the same IM level α

are collected. Structural analyses for allN seismic motions are performed, and the probability

of failure for the seismic IM level α is calculated as:

PMC(α) =
1

N

N�

i=1

1[ycrit − yi(α) < 0], (3.2.3)

where 1[ycrit − yi(α) < 0] equals 1 if ycrit − yi(α) < 0, otherwise it equals 0.
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Regression method with lognormal assumption The lognormal assumption is com-

monly adopted to compute the conditional probability of failure. The regression method

(Reg), or ‘cloud analysis’, is based on the linear regression of the data cloud (α, y) in the

log-log space [Zentner et al. 2017; Cornell et al. 2002; Ellingwood and Kinali 2009].

ln y = c lnα + ln b+ ε, (3.2.4)

where b and c are regression parameters determined from the data cloud (lnα, ln y), and the

residual ε follows a normal distribution N (0, β2
R|IM). βR|IM is calculated as:

βR|IM =

�
�N

i=0(ε
i − ε̄)2

N − 2
, (3.2.5)

in which ε̄ is the mean of the regression residuals and N denotes the size of the data (α, y).

The conditional probability of failure can be, thus, calculated:

Pf (α) = Φ(
ln bαc − ln ycrit

βR|IM

), (3.2.6)

whereΦ(·) is the cumulative distribution function of the standard normal distributionN (0, 1).

Both methods MC and Reg are used in the sequel of this paper to compute fragility

curves. In particular, the pointwise MCmethod serves to confirm the validity of the lognormal

assumption.

3.3 Description of the ANN-based Seismic Fragility Analysis

The global procedure for the estimation of the fragility curves with ANNs is illustrated in

Figure 3.1. The basic stages are: (1) Preparation of data set by performing FEM simulations.

(2) Feature selection to extract the most important IMs as inputs of the ANN. (3) ANN

training and validation. (4) ANN uncertainty quantification. (5) Computation of fragility

curves with ANN simulation results.

3.3.1 Preparation of Data Set

This step is achieved by conducting a series of numerical simulations with the FEM. The

soil-structure interaction (SSI) should be considered to offer a best estimate of the structural

response. The number of simulations is thus limited due to the computational complexity of

the FEM analysis, with the presence of the SSI. The basic working flow is divided into the

following 5 steps illustrated in Figure 3.2:

1. Generation of synthetic seismic motions at the bedrock. This can be realized by gener-
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Figure 3.1: Work flow for the computation of fragility curves with ANN

ating a set of seismic motions compatible with the spectral acceleration predicted by the

ground motion prediction equations (GMPEs).

2. Convolution of the bedrock accelerations to the free surface. The convolution is per-

formed using a 1D column of soil with the consideration of soil degradation. The degra-

dation of the soil during the earthquake is accounted for by the equivalent linear method

(ELM) based on the 1D soil column [Yoshida et al. 2002].

3. After the convolution, surface ground motions and their corresponding degraded soil

profiles are obtained. The ground motions obtained on the free surface are coherent

with the site-specific degraded soil profiles. The latter is utilized as the input of the SSI

analysis, whereas IMs of the ground motions on the free surface can be extracted.

4. SSI analysis is conducted and structural response time histories can be thus obtained.

5. The EDPs are computed by the post-processing of the structural response time histories.

Consequently, the data set IMs-EDP is available for the feature selection and further for the

construction of the ANN metamodel.

3.3.2 Feature Selection

Before the training of the ANNs, it is important to select a subset of IMs whose impact

on the EDP is dominant. This step, named feature selection, is crucial in the metamodel

construction phase to ensure the performance of the ANNs. On the one hand, an IM irrelevant

to the output should not be considered as a feature; on the other hand, with the limited size of

available training data, a smaller input dimension simplifies the ANN structure and improves

the generalization capacities of the network [Bishop 1995]. The feature selection approach
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applied in Ferrario et al. [2015] is a wrapper approach based on the genetic algorithm (GA).

The wrapper approach relies on the metamodel to select the best subset of the features (i.e.

relevant IMs) [Kohavi and John 1997]. However, one disadvantage of the wrapper approach is

its computational burden, because this method requires a large number of repeated trainings

of the ANNs.

Filter approach based on semi-partial correlation coefficients A filter approach

is proposed in this paper to improve the computational efficiency of the wrapper feature

selection. In machine learning, the filter approach describes a group of methods used to

select the features regardless of the metamodel. Therefore, it can be regarded as a sensitivity

analysis between inputs and outputs. In the context of fragility analysis, the main difficulty

in applying such an approach is the dependence between all the IMs. This correlation should

be considered in the execution of the filter approach to discard the redundant information.

For this purpose, a forward selection algorithm driven by semi-partial correlation coeffi-

cients (SPCCs) is used to rank the importance of the IMs. As shown in Figure 3.3, in order to

eliminate the dependence, the IM X2 is projected onto the orthogonal space of the reference

IM X1. The SPCC calculates the correlation (the cosine value of the angle θ) between the

projection U2 and Y . The orthogonal relation between random variables (RVs) is interpreted

by the statistical linear independence between them. Therefore, if IMs follow lognormal dis-

tributions, the orthogonal projections can be realized by means of Cholesky factorization on

the correlation coefficient matrix of the underlying normally distributed RVs [Ditlevesen and

Madsen 2005]. The adopted forward selection algorithm is as follows:

1. Define the input and the output of the algorithm: the input is the feature set S0 =

{X1, · · · , Xk} (Xi = ln IMi) and the output is ranked feature set S∗. Initialize the

output set S∗

0 = ∅.
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2. Begin the iteration i (i starts from 0): for each feature Xj in Si, compute the SPCC

between Xj and the Output Y (ln EDP), by projecting Xj onto the orthogonal space of

the ranked feature set S∗

i (i.e. conditional to S∗

i ). Select the feature with the largest

SPCC value:

j∗ = argmax
j

SPCC(Xj, Y |S∗

i ); (3.3.1)

RSP
i = SPCC(Xj∗ , Y |S∗

i ). (3.3.2)

When i = 0, SPCC(Xj, Y |∅) actually computes the linear correlation coefficient between

Xj and Y .

3. Subtract the selected Xj∗ from the feature set: Si �Xj∗ → Si+1, and add Xj∗ into the

output set: S∗

i ⊕Xj∗ → S∗

i+1.

4. Set i = i+ 1 and return to Step 2 until all the IMs are selected in S∗.

The IMs are ranked in S∗ according to their importance to the output, and one can select

the first few IMs to train the ANN.

3.3.3 ANN Training and Validation

For the ANN training, the available data set is divided into 3 independent subsets:

- Training subset (e.g. 60% of the total data), which is used to determine the optimal

weighting parameters w∗ that minimize the cost function of the ANN model.

- Validation subset (e.g. 20% of the total data), which supervises the training process. The

ANN training is stopped when the validation error reaches its minimum to avoid overfitting

[Bishop 1995; Pedroni et al. 2010]. This strategy is called early stopping.

- Test subset (e.g. 20% of the total data), which is independent of the training and

validation subsets. The test subset is not used in the ANN training, but used afterwards to

evaluate the generalization capacity of a trained ANN metamodel.

The ANN is suggested to be trained with IMs-EDP in log-log space to facilitate the

consideration of the ANN uncertainties into the fragility curves. The performance of the

ANN can be evaluated by the root-mean-square error (RMSE). Once trained and validated,

the ANN substitutes the FEM model to accelerate the computation process.

3.3.4 ANN Uncertainty Quantification

The prediction uncertainty s of the ANN is computed with the delta method described

in Chapter 2.1.3:

s2 = σ2
ANN + σ2

ANNh
T
test(J

TJ)−1htest. (3.3.3)

The source of the ANN prediction uncertainty comes from two aspects: (i) The selected
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IMs cannot completely represent the variability of the ground motion. This eventually reduces

the variability of the output. (ii) The ANN accuracy due to the limited size of data to train

ANNs. It is the statistical uncertainty linked to the ANN model. Let us return to the two

components in s2: the first fixed part σ2
ANN represents the ANN training error, and the second

part σ2
ANN,stat � σ2

ANNh
T
test(J

TJ)−1htest depends on the training and the test data.

1. The first term σ2
ANN estimates the difference between the FEM simulation results and the

predictions of the ANN. Given that a nonlinear regression returns a regular hyper-surface

in a high dimensional space, the predictions of the ANN show always less variability than

the original FEM data. As discussed in Section 3.2.1, this phenomenon is mainly due

to the loss of the inherent seismic randomness in the input variables, so that the nature

of σ2
ANN can be regarded as the aleatory uncertainty not explained by the ANN input

parameters.

2. The second term σ2
ANN,stat is the statistical uncertainty linked to the limited data used

to train and test the ANNs. The information of the training data is included in the J

matrix and htest incorporates the influence of the test data. It is thus considered as the

epistemic uncertainty, and it provides the confidence intervals of the fragility curves.

These two aspects are illustrated with a simple case study in Figure 3.4. In fact, σANN should

have contained also an epistemic uncertainty contribution from the insufficient nonlinearity

of the ANN. However, the high flexibility of the ANN architecture offers an universal approx-

imation capacity to continuous bounded functions [Reed and Marks 1999]. If the number

of the hidden layer units is correctly determined, the error from the ANN nonlinearity can

be considered less important compared to the aleatory randomness neglected in its inputs.

This can be observed from Figure 3.4: in spite of the existence of the unidentified input z,

the ANN regression curve stays very close to y = sin(x) curve in the training data region.

Consequently, this epistemic contribution is assumed negligible in this study. Next section

presents the computation of fragility curves with the consideration of these two uncertainties.

3.3.5 Fragility Curves with ANN simulation results

The marginal distributions of the IMs are known through the GMPEs [Campbell and

Bozorgnia 2008]. Correlation models are also available in the literature [Baker 2007]. Based

on GMPEs and correlation models, seismic IMs can be generated directly as inputs of the

ANN. One advantage of using IMs as inputs of metamodels is that no seismic ground motions

are in need for ANN simulations.

Given the large number of simulation results provided by ANN, fragility curves can be

computed with methods MC and Reg. This also allows confirming the validity of the lognor-

mal assumption used in the fragility analysis. It is important to take into account the ANN

prediction uncertainty, because the regression of the ANN reduces the statistical variability
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Figure 3.4: An illustrative example for ANN prediction uncertainties: (a) 80 sparse training
data y = sin(x) + z, with z ∼ N (0, 0.12). An ANN is trained with (x, y). z is assumed to
be the unidentified input. No training data are generated near x = 3, for the purpose of

checking the property of σANN,stat. (b) ANN is trained, with σANN = 0.0931, close to the Std
of z. The ANN is then tested on 100 uniformly regenerated data. (c) σANN,stat with a peak
near x = 3, where no training data exist. It can be concluded that σANN,stat captures the

scarcity of the training data.

of the EDPs, and thus the aleatory uncertainty of the fragility curves. As a consequence,

methods MC and Reg should be adapted with the consideration of the ANN prediction

uncertainty.

For the Reg method, as the ANN is trained in log-log space, the aleatory residual uncer-

tainty σ2
ANN can be integrated directly into the expression of the lognormal CDF (Eq.3.2.6).

The basic steps consist of:

1. Generation of IMs as inputs of the ANN. Select one IM α as the parameter of the fragility

curve.

2. Conduct ANN simulations with the generated IMs. The ANN outputs ŷ are obtained.

3. Apply Reg method on data (α, ŷ) and determine the regression parameters b, c, βANN
R|IM .
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4. Compute the conditional probability of failure with the consideration of σ2
ANN:

Pf (α) = Φ

�
ln bαc − ln ycrit

βTotal

�

= Φ






ln bαc − ln ycrit
�

(βANN
R|IM)2 + σ2

ANN




 . (3.3.4)

A similar idea concerning the consideration of this metamodel uncertainty has been used in

Gidaris et al. [2015] for Kriging.

For the MC estimation based on the ANN simulation data, no analytical expression can

be derived. One has to resort to the sampling of the residual, for both aleatory and epistemic

parts. The basic steps are:

1. Generation of N groups of seismic IMs as inputs of the ANN, conditional to the IM α

used as the independent parameter of the fragility curve.

2. Conduct ANN simulations with the generated IMs. The ANN outputs ŷ are obtained.

3. Sampling of N residuals εANN following N (0, σ2
ANN), and sampling of εγANN,stat, the γ

percentile of N (0, σ2
ANN,stat).

4. Computation of the conditional probability of failure PMC(α) and the γ confidence in-

terval P̃ γ
MC(α):

PMC(α) =
1

N

N�

i=1

1[ln ycrit < ln ŷi(α) + εiANN]; (3.3.5)

P̃ γ
MC(α) =

1

N

N�

i=1

1[ln ycrit < ln ŷi(α) + εiANN + ε
γ
ANN,stat]. (3.3.6)

5. Repeat the steps 1-4 for different α values.

PMC(α) can be compared with Pf (α) to confirm the assumption of lognormality of the fragility

curve. For the purpose of simplicity, the adapted Reg and MC methods in the ANN-based

fragility analysis are denoted as ‘Modified Reg’ and ‘Modified MC’, respectively. In the

sequel, the described methodology is illustrated with an industrial test case studied in the

KARISMA benchmark.

3.4 Case Study: KARISMA benchmark

3.4.1 Kashiwazaki-Kariwa FEM Analysis

In 2007, the Japanese Kashiwazaki-Kariwa (K-K) NPP was affected by the Niigataken-

Chuetsu-Oki earthquake (NCOE) with a magnitude Mw = 6.6 and an epicenter distance

of 16 km. The structure of the K-K NPP is shown in Figure 3.6. In this paper, we are

interested in the reliability of a hypothetical electrical cabinet located on the fifth floor of
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the Unit 7 reactor building of the NPP (Figure 3.6). The finite element model for the Unit 7

consists of 92,000 degrees of freedom with 10,700 nodes and 15,600 elements, including bar,

beam, and different shell elements. The constitutive law of the materials is considered as

linear. The NPP model is embedded 23 meters in the soil, which is accounted for in the SSI

analysis. The structural analyses are carried out with Code Aster, a finite element analysis

open-source software developed by EDF group 1, while the soil part is solved with MISS

based on the boundary element method (BEM) 2.

FEM analyses are performed according to the approach described in Chapter 3.3.1. 100

triplets of 3D synthetic ground motions are generated at the bedrock with V s30 = 720 m/s

and used for the uncertainty propagation. Given the NCOE scenario, the generation of the

synthetic ground motions are based on scenario spectra predicted by the Campbell-Bozorgnia

2008 (C&B 2008) GMPE Campbell and Bozorgnia [2008]. One example of the 3D generated

ground motions are shown in Figure 3.5. In order to obtain sufficient failure cases for the

fragility analysis, the synthetic seismic motions at the bedrock are scaled with a factor of

three. After analyses with ELM, 100 triplets of ground motions on the free surface and 100

degraded soil profiles are obtained.
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Figure 3.5: Example of generated 3D earthquake ground motions

The impedances of the soil and the seismic forces should have been computed for each

1Open-source Finite Element code developed by EDF group, http://www.code-aster.org.
2A software in earthquake engineering and structural dynamics developed by the laboratory MSSMAT,

Ecole Centrale Paris, http://www.mssmat.ecp.fr/miss.
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soil profile using BEM. However, the high complexity of the embedded foundation makes it

hard to achieve: it takes 24 hours to run the BEM simulation for one soil profile. In order

to reduce the computational cost, the 3D seismic signals at the bedrock are regrouped into

four soil classes according to their PGA values: i. PGA∈[0, 0.5g) ii. PGA∈[0.5g, 1.0g) iii.

PGA∈[1.0g, 1.5g) iv. PGA∈[1.5g, +∞). The degraded soil profiles are averaged within each

class and four soil profiles are obtained to represent four different degradation levels. The

SSI analyses are performed with the 100 ground motions on the free surface, as well as the

impedances and seismic forces calculated from the four soil profiles, to compute the floor

accelerations of the K-K NPP.

Anchorage failure of the electrical cabinet is considered in this study. The capacity is

given by the floor spectral acceleration of the anchorage point around 4Hz, the assumed

natural frequency of the cabinet. The maximum value of the floor spectral accelerations in

the two horizontal directions, averaged over a frequency interval around 4Hz to account for

the uncertainty, is defined as the EDP y:

y =
1

4.5− 3.5
max
i=X,Y

� 4.5

3.5

Se
a,i(f)df, (3.4.1)

where Se
a,i denotes the spectral acceleration of the electrical equipment in the i-th direction.

Figure 3.7 shows the 100 calculated EDPs as a function of the geometric mean of the PGAs

of the horizontal seismic motions on the free surface.

Figure 3.6: Location of the electrical
cabinet in the K-K model (indicated by

the star symbol)
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Figure 3.7: Point cloud of EDPs
(Eq.3.4.1) calculated with FEM

3.4.2 Data Analysis

The 100 IMs-EDP obtained from FEM simulations can be used for the construction and

the training of the ANN metamodel. Eight classical IMs are chosen as candidates for the

inputs of the ANN metamodel. The eight IMs include the commonly used seismic intensity
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indicators PGA, PGV, PGD, PSa(f0), CAV, Arias intensity IA, as well as the predominant

period Tp used in Stewart et al. [2001] and the ASA proposed in Biasio et al. [2015]. These

IMs are presented in detail in Table 3.1. The geometric means of IMs in the two horizontal

directions are used as scalar IMs for 3D ground motions. The integration domain of the ASA

is slightly modified compared to its initial definition in Biasio et al. [2015], to consider the

uncertainty on the natural frequency of the electrical cabinet. The correlation coefficients

Table 3.1: Definitions of classical seismic intensity measures

Intensity Measures Definitions Comments
PGA (peak ground acceleration) max |a(t)| a(t): seismic acceleration
PGV (peak ground velocity) max |v(t)| v(t): seismic velocity

PGD (peak ground displacement) max |u(t)| u(t): seismic displacement
PSa(f0) (pseudo-spectral acceleration) Spectral acceleration f0=4Hz, damping 5%
ASA (average spectral acceleration)

� 4.5

3.5
PSa(f)df f : frequency

Tp (predominant period) argmaxT PSa(
1
T
) T = 1/f

CAV (cumulative absolute velocity)
� tmax

0
|a(t)|dt tmax: total seismic duration

IA (Arias intensity) π
2g

� tmax

0
a(t)2dt g = 9.81m/s2

ρ between the eight IMs and the EDP defined by 3.4.1 are listed in Table 3.2. It can be

observed that, among all the eight chosen IMs, ASA is the most relevant IM to the EDP,

whereas there is a very weak correlation for Tp.

Table 3.2: Correlation coefficients between IMs and EDP

Intensity Measures PGA PGV PGD PSa ASA Tp CAV IA
ρ 0.913 0.693 0.420 0.920 0.950 0.093 0.889 0.890

The statistical distributions of the eight selected IMs are examined to check their lognor-

mality. The eight proposed IMs are normalized and compared to N (0, 1). The normalization

is realized by

αNorm =
lnα− µlnα

σlnα

, (3.4.2)

where µlnα and σlnα denote the mean and the Std of lnα, respectively. For simplicity of

illustration, the probability plots of three IMs (PGA, ASA and IA) are shown in Figure 3.8.

Besides, the values of the coefficients of determination R2 of the probability plots are given

in Table 3, for all the eight IMs: the closer to the lognormal distribution the IM is, the closer

to 1 the value of R2 will be. It can be concluded that it is reasonable to apply the lognormal

distribution model to all eight IMs.

Table 3.3: Coefficients of determination of the probability plots

Intensity Measures PGA PGV PGD PSa ASA Tp CAV IA
R2 0.9877 0.9970 0.9915 0.9866 0.9896 0.9823 0.9912 0.9913
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Figure 3.8: Probability plots for PGA, ASA and IA to check their lognormality

3.4.3 Selection of Relevant IMs and Determination of ANN Structures

Feature selection Due to the limited size of the data set (100 IMs-EDP), it is necessary

to apply feature selection to obtain a reliable ANN metamodel with good generalization

capabilities. A very complex ANN with a large number of unknown weights can easily to

be overfitted, given the underlying data set. The features (IMs) are selected with the SPCC

filter approach proposed in Section 3.3.2. The result after the feature selection with SPCC is

illustrated in Figure 3.9. From the forward selection result, ASA and IA are selected as the

relevant features because the RSP for the other IMs are less than 0.05, so that they can be

regarded as non-influential if ASA and IA have already been considered.
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Figure 3.9: Results of forward selection
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Figure 3.10: LOO cross-validation results
for different ANNs

The number of the neurons h in the hidden layer should be determined additionally. For

this purpose, the total set of 100 data is separated into 2 subsets: 80 data for training and

cross-validation (T-CV data), and 20 data for test. The 20 test data are not used to determine

the structure of the ANN, but used later to evaluate the generalization capacity of the trained
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ANN. 4-fold cross-validation based on 80 T-CV data is executed on ANNs with h = 1, 2, . . . 8

of hidden neurons, respectively, in order to select the optimal number: The ANN structure

with the smallest 4-fold cross-validation error is chosen for the final metamodel. The optimal

value of h determined by the described approach is 4.

Comparison of selected features We compare our results to the features selected with

the wrapper approach based on GA used in Ferrario et al. [2015]. The final feature subset

selected by GA is ASA and CAV, with h = 2 in the hidden layer. It can be observed that

both approaches select similar seismic IMs: ASA, the most efficient IM in this study (Table

3.2), and an IM concerning the integration of the ground motion acceleration over the signal

duration (IA or CAV).

In order to highlight the necessity of the feature selection, the leaving-one-out (LOO)

cross-validation is carried out with the ANN structures determined by the feature selection

procedures, as well as the ANN without dimensionality reduction (i.e. with all eight IMs. The

number of hidden nodes is h = 5). With random initializations of ANN weighting parameters,

100 LOO cross-validations have been performed. The box-plot of the LOO cross-validation

error is shown in Figure 3.10. From the results, one can observe that the ANN models

determined by feature selections show more accuracy. In addition, the ANN model with the

filter approach performs best in the LOO cross-validation.

Therefore, in the sequel of this paper, the ANN is trained with two inputs (ASA and IA),

four hidden layer nodes and one output, which is computed according to Eq. 3.4.1. Point

clouds and fragility curves will be plotted with ASA, which is the most efficient IM in this

study.

3.4.4 Results of the ANN Training

Training results Training based on the back-propagation algorithm is carried out with

the ANN structure determined by the filter approach. The ANN toolbox used in this study

is an open-source python package ‘Neurolab’ with the implemented delta method for the

quantification of ANN prediction uncertainties. The 80 T-CV data in Chapter 3.4.3 is again

divided into 2 subsets: 60 data for training and 20 data for validation. Early stopping is

applied on the validation set to avoid overfitting. The generalization capacity of the ANN is

examined on the 20 test data. The ANN is trained in log-log space. The results of the ANN

training are shown in Figure 3.11. From Figure 3.11, one can conclude that the training

results are satisfactory. Most of the results in the ‘prediction-target’ space are located in

the neighborhood of the dashed diagonal line. The point clouds of the ANN training and

test compared to the FEM output are shown in Figure 3.12a and Figure 3.12a, respectively.

Both reveal a globally satisfactory prediction quality: the ANN predictions remain coherent
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with the FEM results. In fact, with a regression model like ANN, it is not possible to obtain

the exact prediction results. In addition, it has to be pointed out that the dispersion of

the ANN predictions is reduced compared to the FEM results. This is due to the loss of the

aleatory uncertainty by reducing ground motions to two IMs in the ANN metamodeling. The

underestimated variability in the ANN predictions will reduce the uncertainty in the fragility

curve. The histogram of the normalized ANN training residuals is plotted in Figure 3.13. It

can be observed that its distribution is close to N (0, 1), so that the assumption of normality

of the ANN residuals in the delta method can be considered reasonable in this study.
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Figure 3.11: ANN training results
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(a) ANN training and validation point cloud
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(b) ANN test point cloud

Figure 3.12: Point Clouds of ANN predictions for 80 T-CV dataset and 20 test dataset

Comparison with other metamodels The training results of the ANN are compared

with those of other metamodels, including Kriging with Gaussian kernel (an interpolation

model), Kriging with Gaussian and White noise kernel (a regression model) and quadratic

response surface. The metamodels are constructed with 80 T-CV data and tested on 20 test
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Figure 3.13: Distribution of ANN training residuals

data, using the python toolbox scikit-learn. The RMSE between metamodel predictions and

FEM outputs is used to evaluate the accuracy of the different metamodels. The seismic IMs

used are ASA and IA, the same used for the ANN. The results are reported in Table 3.4.

Table 3.4: Training and test results for different metamodels

Model RMSE Training (80 data) RMSE Test (20 data)
ANN 0.141 0.135

Kriging interpolation3 0 0.43
Kriging regression4 0.153 0.145

Quadratic response surface 0.151 0.151

Several conclusions can be drawn from Table 3.4: (i) Kriging interpolation is not an ap-

propriate metamodel for this study, since the test error is much larger than other models. The

reason has already been discussed in Chapter 3.2.1: the zero residual in the training of Kriging

overfits the model. The generalization capability of the interpolation Kriging model is thus

very limited with the underlying data. (ii) Once the residual is present in the training data

of the Kriging regression, the performance of the Kriging is largely improved. (iii) Quadratic

response surface offers less nonlinearity than ANN, which is why its errors are larger. (iv)

Overall, ANN shows slightly better performance than other considered metamodels.

Consideration of ANN prediction uncertainties The ANN model is validated in the

previous subsections. Let us show in this part the necessity of the incorporation of the σANN

in the fragility curves. We focus on the 80 T-CV data used to train the ANN. Based on

3With Gaussian kernel.
4With a mixture of Gaussian kernel and white noise kernel.
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the same 80 seismic inputs, one can obtain 80 structural outputs y and ŷ, from FEM and

ANN simulations respectively. Fragility curves are computed with Reg method (Eq.3.2.6)

for data set (α, y) and (α, ŷ). The fragility curves are calculated for α =ASA and α = IA,

respectively, in order to provide further discussions. At the same time, the ‘modified Reg’

method (Eq.3.3.4) is applied to the data set (α, ŷ) to compute fragility curves, accounting for

the aleatory residual uncertainty of the ANN predictions. From Figure 3.14, it can be seen
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(a) Fragility curves computed with 80 T-CV
data as function of ASA
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(b) Fragility curves computed with 80 T-CV
data as function of IA

Figure 3.14: Fragility curves computed with 80 T-CV data

that:

- A clear difference between the fragility curves computed with FEM Reg and ANN Reg

can be observed. The difference is much less evident for IA than ASA. Nevertheless, this is

not due to the fact that the ANN metamodel is poorly calibrated, because the ANN accuracy

has been validated above and it is even better than other possible metamodels. If the fragility

curves calculated with Reg method are not coherent for the training data between FEM and

ANN, one can hardly trust the conditional probability of failure computed with the ANN

based on other test data.

- The difference is due to the aleatory part of the ANN prediction uncertainty σANN. It

represents the seismic inherent randomness not identified in the inputs (ASA and IA) of the

ANN metamodel. Once σANN is integrated in the computation of the conditional probability

with Eq.3.3.4 , the computed fragility curves almost coincide with the FEM Reg curves, for

both ASA and IA. The conditional probability with Eq.3.3.4 provides also satisfactory results

for the 20 test data (Figure 3.15).

- σANN has less influence when the fragility curves are plotted for IA. It is because IA is

less correlated to the output than ASA (Table 3.2). Consequently, βANN
R|IA

, which equals 0.326,

is larger than βANN
R|ASA (0.079), whereas σANN (0.094) stays the same. Considering Eq.3.3.4,

the impact of σANN is less evident on the IA curves than the ASA curves.
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(a) Fragility curves computed with 20 test data
as function of ASA
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(b) Fragility curves computed with 20 test
data as function of IA

Figure 3.15: Fragility curves computed with 20 test data

These analyses show the importance of the consideration of σANN in the computation of

the fragility curves, where EDP results are provided by ANN simulations. Otherwise, the

uncertainty in the fragility curves will be underestimated.

Besides, σANN,stat of the test data is also computed. Among the 20 test data, the positions

of the first four data with the highest σANN,stat values are visualized in the input space in

Figure 3.16. The numbers in the figure show the rank of their σANN,stat values in the 20 test

data: ‘1’ for the point with the highest σANN,stat value, ‘2’ for the second highest, etc. It can

be observed that the test data with high values of σANN,stat are located either at the lower

boundary of the training data, or at the places where the training data are sparse, which is

coherent with the property of σANN,stat shown in Figure 3.4.

3.4.5 Fragility Curves

After being trained, the ANN can be used to carry out fast-running simulations. For

this purpose, a large number of seismic IMs have to be generated to represent the seismic

motions. The following statistical properties of the lognormal distributions of ASA and IA

are obtained from the 100 triplets of seismic signals on the free surface (Table 3.5). The

assumption of lognormality of the selected IMs has been validated in Section 3.4.2. With the

large number of simulation results provided by the ANN, both methods presented in Section

3.3.5 can be applied for the computation of fragility curves.

Table 3.5: Statistics of ASA and IA on the free surface

IM Median Log. standard deviation ρ (ASA-IA)

ASA [g] 2.28 0.417
0.846

IA [m/s] 13.13 0.842
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For the lognormal based fragility curve, 10,000 ASA-IA samples are generated with the

statistics in Table 3.5. 10,000 ANN simulations are performed with these generated IMs, and

the conditional probability of failure is computed with Eq.3.3.4. The computed fragility curve

is described by ASA with median capacity 3.32g and uncertainty βTotal = 0.127, including

σANN = 0.094.

The pointwise fragility analysis is performed by conditional sampling of IA for a given

value of ASA, since a conditional bivariate normal distribution is also normally distributed.

In the analysis, the values of ASA are selected in [2.2g, 4.4g] with ∆ASA = 0.1g. For every

ASA value, 10,000 IA are generated. At every ASA, the probability of failure is computed

from Eq.3.3.5, and the CIs are determined with Eq.3.3.6. Fragility curves computed with

both methods are shown in Figure 3.17.

Regarding the fragility curves, although there exist some differences between the lognor-

mal based fragility curve and the MC estimation, the lognormal curve stays coherent with

the pointwise MC curve. The lognormal assumption can be thus confirmed in this study.

It is recalled that the source of the confidence intervals comes only from the paucity of the

training data of the ANN.
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Figure 3.16: Positions of test data with
highest σANN,stat
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Figure 3.17: Fragility curves with ANN

3.4.6 Discussions

The proposed ANN-based fragility analysis has been applied to the K-K NPP to compute

the fragility curve of an electrical cabinet. The assumptions made in this methodology are

discussed what follows. The computational cost of the FEM analyses is also provided.

1. This study only considers seismic randomness in the FEM simulation. Uncertainties on

structural parameters are not modeled. With other source of uncertainties, the seis-

mic IM is less correlated to the structural output, so that the influence of the aleatory

component of the metamodel uncertainty is less evident.
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2. Moreover, the variability in the responses of the considered electrical cabinet is dominated

by the seismic record-to-record randomness. To justify this, the material uncertainties

of concrete in Table 3.6 is considered for the first 50 seismic excitations. The values of

the coefficients of variation of Table 3.6 are selected according to our expertise. The

lognormal model of the material parameters has been suggested and used in Kennedy

et al. [1980]; Liel et al. [2009]; Calabresea and Lai [2013]; Buratti et al. [2010]; Ghosh

et al. [2013]. 50 FEM simulations are performed with the material uncertainties, with

the stochastic values of Table 3.6 applied to the entire structure. The corresponding

fragility curve is computed with Reg method. Meanwhile, a fragility curve is calculated

also with Reg method based on the first 50 FEM simulation results of this study (i.e.

without the consideration of material uncertainties). Seismic excitations for both cases

remain the same. The comparison of two fragility curves is shown in Figure 3.18. It can

be clearly observed that there is no obvious difference between the two fragility curves,

which implies that the impact of the material randomness can be neglected compared

to the earthquake randomness. That is another reason why material uncertainties are

not modeled in this study. With uncertainty uniquely from seismic ground motions, the

selection of IMs becomes therefore crucial to ensure the accuracy of the ANN.

Table 3.6: Uncertainties in material parameters of concrete in K-K NPP

Material parameters Distribution Median Coefficient of variation
Young’s modulus Lognormal 31,300 MPa 0.2
Poisson ratio Lognormal 0.2 0.1

Density Lognormal 2500 kg/m3 0.05
Modal damping ratio Lognormal 0.05 0.4
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Figure 3.18: Comparison between fragility curves with or without material uncertainties

3. The ANN training errors are assumed to follow a normal distribution. The validity of

this assumption is confirmed in this study. In addition, with a more mathematically
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rigorous derivation, the ANN prediction uncertainty should have followed a student t

distribution. This approximation by a normal distribution allows the decomposition of

the ANN prediction uncertainty into two normal aleatory and epistemic components.

4. The computational cost of the FEM simulations is listed in Table 3.7. Based on the soil

impedances computed by BEM, one single FEM analysis takes (120.02 + 66.86)/100 =

1.87 hours on an Intel Xeon E5-2600V2 CPU of 2.7GHz, which makes it almost un-

affordable to run a large number of FEM simulations for the pointwise MC fragility

analysis. However, once the ANN metamodel is established, the pointwise MC fragility

analysis can be conducted within 0.25 hours. It has to be noticed that the ANN

metamodel is constructed from the results of 100 FEM simulations, which means that

132.41 + 120.02 + 66.86 = 319.29 hours of mechanical simulations are the prerequisites

for the ANN metamodel construction.

Table 3.7: Computational cost for numerical analyses

Type of analyses Number of analyses Total computational time
BEM for soil impedances 4 132.41 hours

ELM analyses 100 120.02 hours
SSI analyses 100 66.86 hours

ANN simulations for MC fragility analysis 10,000 × 23 0.25 hours

3.5 Summary

A methodology of ANN metamodels for the computation of fragility curves has been

proposed in this chapter. The ANN metamodel is utilized to build the statistical relation

between the seismic intensity measures and the structural response. Once trained, the ANN

metamodel allows carrying out a large number of simulations for both parametric and non-

parametric fragility analyses, at negligible computational cost. Based on FEM simulation

results, this methodology mainly consists of:

- Selection of the most relevant seismic intensity measure features. A filter approach

based on semi-partial correlation coefficients is proposed in this study. It is compared with

a wrapper approach based on GA. In the case study considered, the filter selection method

shows slightly more advantages, in terms of accuracy and efficiency. Once the features have

been retained, the ANN is trained with early stopping to prevent overfitting.

- Identification of the aleatory uncertainty and the epistemic uncertainty components in

the ANN prediction uncertainties. The aleatory uncertainty is incorporated in the fragility

curve, while the epistemic uncertainty is used to compute the confidence intervals.

- Computation of fragility curves and their confidence intervals, with both lognormal

assumption and pointwise MC methods. The Reg and MC methods are adapted to take into
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account the ANN prediction uncertainties. The non-parametric MC fragility curve is used

to verify the lognormal assumption, which is widely adopted in the fragility analysis.

Instead of methods based on repeated ANN trainings realized in Ferrario et al. [2017],

more efficient algorithms for the feature selection and the ANN prediction uncertainty quan-

tification have been applied. Moreover, the ANN prediction uncertainty has been discussed

thoroughly. This methodology has been applied to an industrial complex case study, i.e.

Kashiwazaki-Kariwa nuclear power plant in Japan to evaluate the robustness of an electrical

cabinet. The fragility curve computed with the lognormal assumption is described by ASA

with median capacity 3.32g and uncertainty βTotal = 0.127. In addition, compared to the

results of the pointwise MC estimation in this study, it is reasonable to assume a lognormal

distribution for the fragility curves.
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Chapter 4

A Bayesian Framework for Integrating Damage Data in

Fragilities by Adaptive ANNs

The estimation of the parameters of the fragility curves requires to gather different sources

of information and to quantify the uncertainties coming from these sources. This chapter

is dedicated to describe a methodology for the computation of fragility curves for nuclear

power plant equipment with a Bayesian updating framework. Based on the fragility curves

determined by simulation-based methods explained in the previous chapters, this framework

allows integrating the damage data into the computation of the fragility curves. The results

of the numerical simulations provide a prior estimation of the seismic capacity of the equip-

ment. Damage data, collected from the in-situ observation and the database of the seismic

qualification utility group (SQUG), are used to construct the likelihood function for the

Bayesian updating. The posterior equipment capacity is evaluated by Markov chain Monte

Carlo simulation and posterior fragility curves are, then, obtained. The methodology is

applied to compute the fragility curves of a low-voltage switchgear of a nuclear power plant,

within the KARISMA benchmark.
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4.1 Introduction

The computation of fragility curves is typically realized by statistical analysis based on

different sources of information, including expert judgments, numerical simulations, empirical

damage data. The safety factor method [Kennedy et al. 1980; EPRI 1994], largely used in

nuclear engineering, depends on safety margins determined from simplified structural analyses

and experimental data. Uncertainties are evaluated from expertise of engineers or results of

qualification tests. The safety margins and their associated uncertainties are used to assess

the seismic capacity of structures and equipment. This method does not require numerical

simulations. However, the safety margins determined from the simplified approaches can be

conservative, and thus, cannot offer a best estimate of the fragility curves.

Numerical simulations are commonly applied in the current practice of fragility analysis,

e.g. by the finite element method (FEM) [Padgett and DesRoches 2008; Ellingwood and

Kinali 2009; Zentner 2010]. Different sources of aleatory and epistemic uncertainties can be

modeled and propagated through the numerical model. The conditional probability of failure

can be computed either by pointwise Monte Carlo estimation or by assuming a parametric

representation (e.g. lognormal) of fragility curves, as mentioned in Chapter 3. The underlying

parameters of the fragility curves are determined based on the results of the simulations.

However, because of the high complexity of numerical models, the computational cost of the

numerical analyses can be very high. One way to reduce the computational burden is to use

fast-running statistical metamodels, such as artificial neural networks (ANNs). Nevertheless,

due to the fact that a numerical model cannot contain all the structural details and damage

mechanisms, damage data of structures and equipment can be used for a more accurate

computation of fragility curves.

Damage data have been also widely used for seismic fragility analysis. The damage data

are obtained either from post-earthquake observations or from qualification tests. They are

used to describe the performance of structures or equipment under real seismic excitations.

Fragility analysis is, then, conducted by statistical analysis of the damage data. For example,

fragility curves for European-type reinforced concrete buildings are determined in Rossetto

and Elnashai [2003] with earthquake observational data. Using Italian seismic damage data,

fragility curves for different building typologies are built in Rota et al. [2008] to provide a

reliable estimate of the vulnerability of structures of different classes. In these works, the

fragility curves are obtained directly by fitting the damage data into a cumulative distribution
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function (CDF) of the lognormal distribution. Other studies adopt Bayesian statistics to

estimate the fragility parameters [Straub and Kiureghian 2008; Gardoni et al. 2009]. In

the Bayesian framework, prior distributions of the fragility parameters are assumed. Then,

damage data are used to build the likelihood function. The fragility parameters can be

generated by Markov chain Monte Carlo simulation (MCMC) [Hastings 1970], based on the

posterior distributions obtained from Bayesian updating. The advantage of the Bayesian

statistics is that it yields a probability distribution of the parameters to be estimated (so the

confidence intervals can be computed), rather than a single value for the estimation of these

parameters. Representative examples of the application of Bayesian statistics in seismic risk

assessment can be found in Singhal and Kiremidjian [1998], Koutsourelakis [2010], Jalayer

et al. [2010], EPRI [2014], Jaiswal et al. [2011], Beck and Taflanidis [2013], Buratti et al.

[2017], Noh et al. [2017], Jeon et al. [2017], EPRI [2017], among others.

The objective of this chapter is to propose a framework to take into consideration both

numerical simulation results and damage data in the computation of fragility curves. The

methodology is divided into two parts: (i) estimation of the prior parameters with numerical

simulations: to reduce the computational cost, an ANN metamodel is trained with an itera-

tive active learning algorithm to substitute the computationally expensive FEM simulation;

(ii) computation of the likelihood function with the damage data and execution of Bayesian

updating to obtain the posterior distribution of the seismic capacity of the equipment. Dif-

ferent sources of uncertainties (aleatory and epistemic) are quantified and integrated in the

computation of the fragility curves. Critical equipment of nuclear power plants are designed

with high safety standards. The low probability of failure of the equipment may lead to a

biased estimation of the fragility parameters, if the these parameters are solely determined

by the maximum likelihood estimation [Shinozuka et al. 2000]. This requires assessing the

confidence associated to the estimation, which can be achieved in the Bayesian framework.

This chapter is organized as follows. We start to describe the global methodology to

account for different sources of information in the computation of fragility curves. It consists

of the determination of the prior fragility curves with numerical simulations results and the

Bayesian updating with damage data. The proposed methodology is later applied to evaluate

the robustness of a low-voltage switchgear located in the Kashiwazaki-Kariwa nuclear power

plant in Japan. Final conclusions are given at the end.
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4.2 Description of the Methodology

4.2.1 Seismic Fragility Curves

Fragility curves compute the conditional probability that the engineering demand param-

eter (EDP) exceeds a failure threshold, for a given seismic IM:

Pf (α) = P (y > ycrit|α), (4.2.1)

where y is the EDP, such as inter-story drift, ycrit is the failure threshold and α represents the

seismic IM. The lognormal fragility model proposed in Kennedy et al. [1980] is often applied

in practice. In the lognormal assumption, the shape of the fragility curve is approximated

by the CDF of a lognormal distribution:

Pf (α) = Φ(
lnα− ln Âm

βR

) (4.2.2)

where Φ(·) is the CDF of the standard normal distribution N (0, 1), Âm denotes the median

capacity. The parameter βR represents the aleatory uncertainty related to the inherent

randomness. According to Kennedy et al. [1980], an epistemic uncertainty βU , resulting

from the lack of knowledge of the structural capacity, should be also considered:

Âm ∼ LogN(Am, β
2
U), (4.2.3)

where Am is the median of the lognormal distribution and LogN denotes a lognormal distri-

bution. Consequently, the γ ∈ [0, 1] non-exceedance confidence interval of the fragility curves

can be computed by [EPRI 1994]

P̃f (α, γ) = Φ(
lnα− lnAm + βUΦ

−1(γ)

βR

). (4.2.4)

Eq.4.2.4 allows computing the high confidence low probability of failure (HCLPF), defined

as the capacity where the probability of failure reaches 5% with 95% confidence:

AHCLPF = Ame
−1.645(βR+βU ) (4.2.5)

The mean fragility curve, which considers both aleatory and epistemic uncertainties, is defined

by

Pmean
f (α) = Φ(

lnα− lnAm
�

β2
R + β2

U

). (4.2.6)

The objective of the subsequent subsections is to describe the methodology to compute



4.2 Description of the Methodology 75

fragility curves for an equipment of interest located in a specific NPP structure, which is

named ‘target structure’ in the sequel. The numerical model of the target structure is avail-

able. The general workflow of the proposed methodology is illustrated in Figure 4.1. In this

framework, reference values of βprior
U and ycrit are obtained from the literature. To better

explain the methodology, we start with the determination of prior fragility parameters based

on numerical simulation results. Bayesian updating and MCMC are, then, executed with

damage data to obtain the posterior curves. The assumptions made in this methodology are:

1. The fragility curves in this paper are all calculated under lognormal distribution assump-

tions, namely (i) the fragility curves are computed by the lognormal CDFs (Eq.4.2.2) and

(ii) the epistemic uncertainty is considered lognormally distributed (Eq.4.2.3), in order

to facilitate the application of the Bayesian theorem based on the damage data.

2. The seismic record-to-record variability is considered as the only source of aleatory un-

certainty.

3. PGA is the IM parameter used to compute the fragility curves, since most damage data

are provided with given values of PGA.

4. Without different specification, the PGA used in the fragility curve stands for the PGA

value of the ground motion on the soil free surface in the proximity of the target structure.
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× 

Posterior Distribution of �መ�  MCMC  ��Post ��Post 
Figure 4.1: The Bayesian framework for fragility analysis
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4.2.2 Determination of Prior Fragility Curve Parameters with Adaptive ANNs

Prior fragility curve parameters are determined based on the results of numerical sim-

ulations. FEM is one of the most widely used numerical methods for structural analysis.

However, in case of a complex structure, the large number of degrees of freedom of the nu-

merical model makes the resolution process highly computationally expensive. In this case,

metamodels, calibrated from the existing simulation results, can be used to substitute the

mechanical model, in order to improve the computational efficiency. The ANN, as in Chapter

3, is adopted.

In this subsection, the method to determine the parameters of prior fragility curves is

explained. The adaptive training of ANN, explained in Chapter 2.3.2, is applied to optimize

the design of experience. With the adaptive enrichment, the quality of the training data is

largely improved by reducing its scarcity in the design space. Therefore, less FEM numerical

simulations are needed for the calibration of the ANN metamodel.

The ANN adaptive algorithm is based on the prediction uncertainty of ANNs computed

with the delta method. It adds iteratively in the training dataset the points at the location

where the performance of the metamodel is limited, with a large prediction uncertainty. The

iterative training of ANNs is stopped when a certain accuracy criterion is satisfied. Such

an enrichment strategy not only can select the training data that better cover the whole

input space, but also can enlarge the domain of the validity of the ANN metamodel, which is

determined by the boundary of the input data. The working mechanism of the ANN adaptive

learning algorithm is the same the one explained in Chapter 2.3.2 with the following learning

function and stopping condition.

Learning function: With the ANN trained at the iteration k, ANN predictions ŷik and

the associated prediction uncertainty sik can be obtained. At every iteration, the accuracy

metric δik and the accuracy threshold δcritk are computed:

sref,k =
1

Nk

Nk�

p=1

spk, for p in the training set (p = 1, ..., Nk); (4.2.7)

δik =
|sik − sref,k|

sref,k
, for every i in X (i = 1, ..., N); (4.2.8)

δcritk = max
p

(δpk), for p in the training set (p = 1, ..., Nk), (4.2.9)

in which N is the total number of data in the initial Monte Carlo population X and Nk

denotes the number of the ANN training data at the iteration k. The quantity sref,k is

the mean value of the prediction uncertainty of the training examples at the iteration k.



4.2 Description of the Methodology 77

It serves as the reference value to compute the accuracy metric. The accuracy metric δik

calculates the relative deviation of sik with respect to sref,k. A large value of δik indicates a

large prediction uncertainty sik, so that the corresponding ANN prediction is less reliable.

The accuracy threshold δcritk is set as the maximal relative deviation of prediction uncertainty

in the training dataset.

The set of test samples is defined by all the samples in X which are not used to train

the ANN. If the accuracy of the ANN is not satisfied according to the later defined stopping

condition, M samples in the test set with the largest δik values (i.e. with the largest prediction

deviations) are selected to run the FEM simulations. The results of the FEM simulations are

added to the ANN training data.

Stopping condition: When δik of every test sample is smaller than the accuracy threshold,

i.e. max(δtestk ) < δcritk , it can be considered that the samples in the ANN training set are

enough to cover the whole input space of the population X. So the ANN can be consid-

ered accurate enough for the whole population X. The iterative training can be, therefore,

stopped. Otherwise, a further enrichment of the training data is necessary.

The whole workflow of the adaptive ANN algorithm is summarized in Figure 4.2. With
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Figure 4.2: Workflow of the adaptive training of ANNs

a reasonable number of FEM simulations, an ANN is obtained at the end of the adaptive

training. Then, ANN simulations can be carried out for ground motions in the whole popu-

lation X to predict the structural EDPs ŷ.
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Prior fragility parameters βR and Aprior
m can be estimated from the ANN simulation results.

The failure threshold ycrit, informed from the reference value in the literature, provides an

estimation of Aprior
m . The Std of the ANN training error is integrated in the computation of

fragilities to consider the metamodel uncertainty with Eq.3.3.4. Such an idea has been used

in Gidaris et al. [2015] and Wang et al. [2018] to account for the metamodel error in the

lognormal based fragility models. Eq.3.3.4 is reformulated for coherence with Eq.4.2.2:

Pf (α) = Φ





c lnα− (ln ycrit − ln b)
�

σ̂2
R|IM + σ2

ANN




 = Φ





lnα− (ln ycrit − ln b)/c
�

σ̂2
R|IM + σ2

ANN/c




 . (4.2.10)

where σ̂R|IM is the Std of the linear regression applied to the dataset (α, ŷ). Therefore,

Aprior
m = c

�

ycrit/b and βR =
�

σ̂2
R|IM + σ2

ANN/c. The prior value of βU of the equipment capac-

ity is chosen in agreement with the literature, such as EPRI [2014]. With the computed value

of Aprior
m , the prior distribution of Âm is determined: fprior(Âm) ∼ LogN(Aprior

m , (βprior
U )2).

4.2.3 Bayesian Updating of Fragility Curves with Damage Data

Damage Database

The damage data z used in this study are taken from the seismic qualification utility

group (SQUG) database. The SQUG database [EPRI 2016], built by the Electric Power

Research Institute (EPRI), gathers seismic experience data related to seismic capacity of

equipment in industrial facilities (not limited to NPPs) [Starck and Thomas 1990]. The data

in the SQUG database are mostly obtained from post-earthquake inspections of equipment

in these industrial facilities. 32 earthquakes from 1971 to 2010 are registered in the SQUG

database with most of them taking place in the USA. Some strong earthquakes in Chile,

Japan, Turkey, etc. are also included. The equipment in the SQUG database is divided into

20 conventional classes, including switchgears, batteries, motor control centers. A list of the

20 equipment classes is summarized in Starck and Thomas [1990].

For the data collected in the SQUG database, each observation contains the information:

(i) equipment description (size, manufacturer, etc.); (ii) the earthquake and the PGA; (iii)

the industrial facility where the equipment is located; (iv) the elevation h of the equipment

in the facility structure; (v) the description of the performance of the equipment after the

earthquake. It has to be mentioned that no details on the supporting structures are provided

in the database, so that the FEM models for the structures in the SQUG database are

in general not available. In our study, the damage data for the low-voltage switchgear are

collected from the SQUG database. They are used in the application section for the Bayesian

updating of the fragility curves.
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Bayesian Framework in Fragility Analysis

Given the damage data z, the posterior distribution of Âm can be computed by the Bayes’

theorem:

fpost(Âm|z) = kL(z|Âm)f
prior(Âm) (4.2.11)

where L(z|Âm) is the likelihood function determined by the observed data, and k is a con-

stant to normalize the posterior distribution. Every observational data vector zi has two

components: the PGA value αi of the seismic excitation and the damage state xi of the

equipment of interest after the earthquake. This latter xi is modeled as a binary Bernoulli

variable: xi = 0 if no failure occurs and xi = 1 if the equipment fails. According to Shinozuka

et al. [2000], the likelihood function with given z is written as:

L(z|Âm) =

nobs�

i=1

[Pf (α
i)]x

i

[1−Pf (α
i)]1−xi

=

nobs�

i=1

�

Φ(
lnαi − ln Âm

βR

)

�xi �

1−Φ(
lnαi − ln Âm

βR

)

�1−xi

,

(4.2.12)

where nobs is the number of the empirical data. Substituting Eq.4.2.12 into Eq.4.2.11, one

can obtain the expression of the posterior distribution of Âm:

fpost(Âm|z) ∝ (

nobs�

i=1

[Pf (α
i)]x

i

[1− Pf (α
i)]1−xi

)fprior(Âm). (4.2.13)

Knowing L(z|Âm) and fprior(Âm), the MCMC simulation allows sampling efficiently the pos-

terior distribution without computing explicitly the constant k of Eq.4.2.11 [Hastings 1970].

Therefore, the essential part of the Bayesian updating is to determine the parameters in

L(z|Âm) to construct the likelihood function.

It appears that the computation of L(z|Âm) is straightforward. However, different kinds

of PGA values can be provided in the database. Before computing the likelihood function,

one has to ensure that the PGA values to plug in Eq.4.2.13 describe the free surface ground

motions near the target structure in which the equipment is located.

Determination of the Likelihood Function

Two groups of earthquake observational damage data are discussed in this study:

1. In-situ earthquake observational data zt = (αt, x) of the equipment of interest in the

target structure, where αt denotes the PGA level recorded on the free surface near the target

structure (Let us recall that the FEM model of the target structure is available).

2. SQUG earthquake observational data zs = (αs, x) of a similar equipment positioned in

other civil structures in the database, named SQUG structures in this paper. The quantity

αs denotes the PGA level recorded on the free surface near the SQUG structures.
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The total workflow of the determination of the likelihood function with damage data is

summarized in Figure 4.3.

Data 

Target 

Structure
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(Fail?)
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Data 
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a SQUG structure

Target 

Structure

Transformation via 

numerical simulation results
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amplification factors

+

Same floor excitation

Same state

Numerical model available

Figure 4.3: The workflow to compute the likelihood function

Likelihood function for zt Recalling that the PGA values in Eq.4.2.13 should be αt, data

of the first category can be directly inserted into Eq.4.2.13.

L(zt|Âm) =
nt�

i=1

�

Φ(
lnαi

t − ln Âm

βR

)

�xi �

1−Φ(
lnαi

t − ln Âm

βR

)

�1−xi

, (4.2.14)

where nt is the number of the in-situ observational data.

However, the use of the SQUG data is not straightforward. The purpose of the subsequent

part is to propose a method to integrate SQUG data in Eq.4.2.13, i.e. a method to transform

zs into zt with also the quantification of the associated uncertainty in the transformation.

The essential idea of the assumption is that the damage state of the equipment after the

earthquake depends on the PGA value of the floor acceleration.

Likelihood Function for zs The transformation from zs into zt consists of two steps:

1. Compute the peak floor acceleration (PFA) of the SQUG structure at the location of

the component, given the PGA on the free soil surface.

2. Considering that the equipment is positioned in the target structure with the same

floor acceleration, compute the PGA of the free surface ground motion of the target structure.

We start with the first step of the transformation. In general, the numerical model of

the SQUG structure is difficult to obtain, and only the elevation h of the location of the

equipment is provided in SQUG data. Without any information on the SQUG structure, the
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simple amplification factor model used in EPRI [2014] is adopted in this study:

αfl = λ(h)αs, (4.2.15)

where λ(h) is the amplification factor, which is a function of the elevation. αfl denotes

the PFA. The quantity λ(h) contains a median value λ̄(h) and a lognormal uncertainty ε̃:

λ(h) = λ̄(h)ε̃ with ε̃ ∼ LogN(1, β̃2). Here, a linear relation is selected for λ̄(h):

λ̄(h) = chh+ bh. (4.2.16)

The parameters ch and bh are determined according to the amplification factor values used

in EPRI [2014]:

λ̄ = 1 if h = 0; (4.2.17)

λ̄ = 1.5 if h = 12.192m. (4.2.18)

So far, the peak floor acceleration αfl and its associated uncertainty ε̃ have been computed.

The second step of the transformation is explained in what follows. The transformation of

αfl to αt is, in fact, the transformation of the PFA of the target structure into the free surface

PGA. This transformation can be realized with a statistical model established from the FEM

simulation results, which are used to train the adaptive ANN.

From the FEM simulation results of Section 4.2.2, the PFA values αFEM
f and PGA values

of the free surface ground motions αFEM
g of the target structure can be extracted. Let us

assume that both PFA and PGA values are lognormally distributed. This assumption is

checked later in our specific case study. The lognormal assumption allows building a bi-

variate normal distribution of lnαFEM
f and lnαFEM

g . The marginal distributions of lnαFEM
f

and lnαFEM
g are denoted by N(lnµFEM

f , (σFEM
f )2) and N(lnµFEM

g , (σFEM
g )2), respectively, with

the correlation coefficient ρ. According to the property of the conditional bi-variate normal

distribution, it can be shown that the median value of the transformed free surface PGA

αfl→t and its uncertainty βfl→t are calculated by

lnαfl→t = lnµFEM
g + ρ(lnαfl − lnµFEM

f )
σFEM
g

σFEM
f

; (4.2.19)

β2
fl→t = (1− ρ2)(σFEM

g )2. (4.2.20)

Combining Eqs.4.2.15, 4.2.19, 4.2.20 and considering the property of the normal distribution,

one can show that the median value of the transformed PGA lnαs→t on the free surface of
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the target structure is calculated by

lnαs→t = lnµFEM
g + ρ[ln(λ̄(h)αs)− lnµFEM

f ]
σFEM
g

σFEM
f

. (4.2.21)

and its related uncertainty is

β2
s→t = (

σFEM
g

σFEM
f

ρ)2β̃2 + β2
fl→t = (

σFEM
g

σFEM
f

ρ)2β̃2 + (1− ρ2)(σFEM
g )2. (4.2.22)

In the end, the likelihood function for data zs is derived:

L(zs|Âm) =
ns�

i=1

�

Φ(
lnαi

s→t − ln Âm
�

β2
R + β2

s→t

)

�xi �

1−Φ(
lnαi

s→t − ln Âm
�

β2
R + β2

s→t

)

�1−xi

. (4.2.23)

It is worth mentioning that the interpretations of βR and βs→t are different: the former

represents the record-to-record aleatory uncertainty when the ground motion time history

is characterized by a scalar PGA value, whereas the latter expresses the uncertainty of the

transformed PGA value due to the underlying statistical modeling.

Consequently, the total likelihood function for the two categories of data is computed by

L(z|Âm) = L(zs|Âm)L(zt|Âm). (4.2.24)

4.3 Case Study: Application to KARISMA Benchmark

This section is dedicated to apply the proposed methodology to an industrial case study.

Moreover, a sensitivity analysis is conducted at the end with respect to some uncertain pa-

rameters. The equipment of interest is a low-voltage switchgear (LVSG) in the Kashiwazaki-

Kariwa NPP (K-K NPP). In NPPs, the LVSG is a combination of electrical control units

such as circuit breaks and relays, etc., whose function is to ensure and protect the per-

formance of 480V-AC (alternative current) electrical systems. K-K NPP experienced the

strong Niigataken-Chuetsu-Oki (NCO) earthquake with magnitude Mw = 6.6 in 2007. In

this context, the KAshiwazaki-Kariwa Research Initiative for Seismic Margin Assessment

(KARISMA) benchmark was organized by the International Atomic Energy Agency (IAEA)

[IAEA 2013]. A post-earthquake inspection was carried out in order to check the performance

of the equipment in K-K NPP after the earthquake [EPRI 2007].

4.3.1 KARISMA Numerical Model

The FEM model of the K-K NPP Unit 7, shown in Figure 4.4, is reused in this study. The

LVSG of interest is located on the -1 floor of the K-K NPP building. The same procedures for
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FEM simulations are conducted as described in Chapter 3. Two strong earthquake scenarios,

which have affected the area of Kashiwazaki and Kariwa, are considered in this study: (i) the

2007 NCO earthquake scenario with Mw = 6.6 and source-to-site distance r = 16 km; (ii) the

2004 Chuetsu earthquake with Mw = 6.8 and source-to-site distance r = 29 km. Given the

NCO and Chuetsu scenarios, the generation of the synthetic ground motions at the bedrock

with V s30 = 720 m/s is based on the median and 1σ spectra given by the Campbell-Bozorgnia

2008 (C&B 2008) ground motion prediction equations [Campbell and Bozorgnia 2008]. 250

triplets of 3D synthetic ground motions are generated for each scenario (so 500 triplets in

total) and used for the uncertainty propagation. The generated motions in X direction for

the NCO scenario are shown in Figure 4.5. To obtain enough failure counts for the fragility

analysis, the synthetic seismic motions at the bedrock are scaled with a factor of two for the

NCO scenario and a factor of three for the Chuetsu scenario.

 

Figure 4.4: FEM model of the K-K
NPP Unit 7
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Figure 4.5: Generated motions for NCO
earthquake scenario and comparison with

the spectra predicted by C&B 2008

500 bedrock motions are convoluted on the free surface based 1D soil column reconvolution

with the equivalent linear method (ELM) [Yoshida et al. 2002]. Meanwhile, 500 degraded

soil profiles are obtained. In order to reduce the computational cost, the impedances of the

soil and the seismic forces have not been computed for each soil profile using BEM. The 3D

seismic signals at the bedrock are regrouped into four soil classes according to their PGA

values: i. PGA∈[0, 0.3g) ii. PGA∈[0.3g, 0.5g) iii. PGA∈[0.5g, 1.0g) iv. PGA∈[1.0g, +∞).

The degraded soil profiles are averaged within each class and 4 soil profiles are obtained to

represent four different degradation levels. The 500 ground motions on the free surface, as

well as the impedances and seismic forces calculated from the four soil profiles, are used as

inputs of the SSI analyses to compute the floor accelerations of the K-K NPP.

In this chapter, the failure is described by the non-operational state of the LVSG after

the earthquake. Reparation of the equipment is necessary. It can be caused by the fact that
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(i) relays or breakers cannot return to their operational state after the earthquake or (ii)

structural damage has occurred to the equipment, for example anchorage failure at its base

[EPRI 1991]. The capacity of the switchgear is given by the average floor spectral acceleration

in 5-9Hz, which covers the first natural frequency of the LVSG. The maximum value of the

floor spectral accelerations in the two horizontal directions, averaged over 5-9Hz is defined

as the EDP y:

y =
1

9.− 5.
max
i=X,Y

� 9Hz

5Hz

Se
a,i(f)df, (4.3.1)

where Se
a,i denotes the floor spectral acceleration of the LVSG in the i-th direction. A value of

1.8g is selected for ycrit according to EPRI [1991], in which the failure threshold of the floor

spectral acceleration Se
a,i(f) of the LVSG is a constant value 1.8g for the frequency range

[3Hz, 16Hz] (so its average for the frequency range [5Hz, 9Hz] is also 1.8g).

4.3.2 Prior Fragility Parameters

An ANN is trained iteratively with the algorithm explained in Section 4.2.2. The IMs of

the 500 convoluted seismic motions on the free surface of the K-K NPP can be extracted.

Three IMs are used as the inputs of the ANN: (i) PGA, which is widely used in fragility

analysis; (ii) ASA [Biasio et al. 2015], the average spectral acceleration in 5-9Hz; (iii) PGV

(peak ground velocity), a classical IM for the mid-frequency range. The geometric means

of IMs in the two horizontal directions are used as scalar IMs for 3D ground motions. The

number of the neurons in the hidden layer of the ANN is 4. In this way, the architecture of

the ANN is determined: 3 input parameters (PGA, ASA, PGV), 4 hidden layer nodes and

1 output parameter (EDP defined by Eq.4.3.1). N0 = 30 seismic motions from the total 500

signals are randomly selected for the initialization of the adaptive ANN training. M = 4

data are added in the DoE in every iteration. The ANN is trained in log-log space, i.e. with

ln(IMs) as inputs and ln(EDP) as outputs.

The adaptive training of the ANN is stopped after 62 calls of FEM simulations. To

visualize the DoEs determined by the proposed ANN algorithm, we plot the data cloud in

PGA-EDP space in Figure 4.6. The convergence curve of the adaptive ANN training is shown

in Figure 4.7. In this figure, the maximum value of δ of the test dataset is plotted against the

iteration number k. At iteration 8, the stopping condition is satisfied and the ANN iterative

training is stopped.

In order to show the advantage of the adaptive algorithm, 62 seismic motions are randomly

selected from the total 500 signals. FEM simulations are conducted for the 62 randomly

selected signals and the corresponding data cloud is plotted in PGA-EDP space in Figure

4.8. The PGA used in the horizontal axis is PGA on the free surface. From Figure 4.6 and

Figure 4.8, one can clearly observe the improvement of the DoEs with the ANN adaptive



4.3 Case Study: Application to KARISMA Benchmark 85

0 1 2 3 4 5 6

PGA [g]

−0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

D
M

 S
w

it
c
h
g
e
a
r 

[g
]

P int cl ud

Failure Thresh ld

��=30 initial data rand mly selected

32 data selected by the adaptive ANN

Figure 4.6: Data determined by the
adaptive algorithm from 500 seismic ground

motions plotted in PGA-EDP space

� � � � � � � � �

��������������������������������

��
��

��
�

��
�

��
�

�
��
�δ

�
�
�
�
�

��������������������������������

Figure 4.7: Convergence curve for the
adaptive ANN training

training algorithm. The data in Figure 4.6 are better distributed in the PGA-EDP space

than the data in Figure 4.8: too many data are concentrated in low PGA range in Figure

4.8, with only one point exceeding the failure threshold. On the contrary, more failures are

contained in the dataset obtained by the ANN adaptive training, which is more convenient

for the accuracy of the fragility analysis.
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The training results of the ANN are shown in Figure 4.9a. The ANN predictions of the

training dataset are compared to the real FEM results (target output) in log space. From

Figure 4.9a, one can conclude that the training results are satisfactory. Most of the results

in the ‘prediction-target’ space are located in the proximity of the dashed diagonal line.

Another 60 ground motions, which are different from the training dataset determined by the

adaptive algorithm, are selected to validate the constructed ANN model. FEM and ANN

simulations are performed for the 60 validation seismic signals, respectively. The validation
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results are plotted in Figure 4.9b. These validated the performance of the ANN trained from

the adaptive algorithm.
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(b) ANN validation results

Figure 4.9: Comparison of ANN results with FEM results. The comparison is conducted for
ln ŷ and ln y

A total of 500 ANN simulations are conducted for the whole ground motion population

with the constructed ANN metamodel: 500 pairs of PGA-EDP are, then, obtained. The

values of βR and Aprior
m are estimated from the ANN simulations results with the method

explained in Chapter 4.2.2, with Aprior
m = 2.46g and βR = 0.145. According to EPRI [2009,

2014], a reasonable estimation of βprior
U concerning the uncertainty of the equipment capacity

is 0.4. Consequently, the prior distribution of Âm follows LogN(2.46g, 0.42).

4.3.3 Determination of the Likelihood Function

The LVSG damage data can be divided into two groups: one in-situ observation zt for

K-K NPP and 78 post-earthquake inspection data zs for the LVSG in the SQUG structures.

Regarding the in-situ observation, the LVSG in the K-K NPP Unit 7 was not damaged

after the NCO earthquake with PGA = 0.69g. On the other hand, the total number of

SQUG damage data for the LVSG is 78, with only one failure observed in the El Centro

Steam Plant after the 1979 Imperial Valley Earthquake with local PGA value of 0.43g. After

the earthquake, it has been noticed that circuit breakers of the LVSG had refused to close.

However, according to the inspection report, it is not clear that the failure of the LVSG is

caused by the earthquake. It can be also due to the corrosion in the mechanical linkages, which

is not earthquake-related. Therefore in the present paper, we set xi = 0.5 for this potential

failure, meaning that with a probability of 50% the LVSG failed during the Imperial Valley

Earthquake. The local PGA values measured at different industrial structures are plotted in

Figure 4.10. A summary of the SQUG data for the low voltage switchgear is given in Table

4.1.
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Figure 4.10: PGA values of the SQUG data for the LVSG

Table 4.1: Summary of the SQUG data for the LVSG

Earthquake Number of the inspected LVSGs Number of failures
1971 San Fernando Earthquake 9 0
1973 Point Mugu Earthquake 1 0
1975 Ferndale Earthquake 1 0
1979 Imperial Valley Earthquake 5 0.5
1983 Coalinga Earthquake 1 0
1984 Morgan Hill Earthquake 1 0
1985 Chile Earthquake 4 0
1985 Mexico Earthquake 1 0
1986 Adak Earthquake 2 0
1986 Chalfant Valley Earthquake 1 0
1987 Bay of Plenty Earthquake 3 0
1987 Superstition Hills Earthquake 1 0
1987 Whitter Earthquake 7 0
1989 Loma Prieta Earthquake 7 0
1992 Cape Mendocino Earthquake 2 0
1992 Landers/Big Bear Earthquake 3 0
1993 Guam Earthquake 3 0
1994 Northridge Earthquake 19 0
1995 Manzanillo Earthquake 4 0
1999 Kocaeli Turkey Earthquake 1 0
2010 Baja California Earthquake 2 0

The likelihood function L(zt|Âm) for the K-K NPP in-situ observation is straightforward

with Eq.4.2.14. We focus on the computation of L(zs|Âm) in what follows.

We follow the two-step method described in Section 4.2.3 to calculate L(zs|Âm):

1. Step 1: computation of the PFA value of the SQUG structures with the amplification

factor model, given the PGA on the soil free surface. The median values λ̄(h) for the am-

plification factors can be obtained by Eqs. 4.2.16, 4.2.17, 4.2.18 with the elevation values
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h provided in the database. The uncertainty β̃ of the amplification factors is assumed to

be 0.2, so that the true values of the amplification factors λ(h) have a probability of 95%

to lie approximately between 2
3
λ̄(h) and 1.5λ̄(h). Therefore, the median PFA value and

its uncertainty can be determined.

2. Step 2: transformation of the PFA to the K-K NPP free surface PGA with the bi-variate

normal distribution model established from the 62 FEM simulation results.

First, the lognormal assumption of the marginal distributions of the PFA and PGA values

is checked for both floor accelerations and free field accelerations of the K-K NPP. These

values of PFAs and PGAs are obtained from 62 FEM simulation results. The medians µ

and logarithmic Stds σ of the assumed lognormal distributions are computed and listed in

Table 4.2. The ln(PFA) and ln(PGA) values are normalized with respect to the medians

and Stds and compared with N(0, 1) in Figure 4.11 to verify the lognormal assumption.

Table 4.2: Summary of parameters used in the transformation of PGA values

ch bh β̃ µFEM
g σFEM

g µFEM
f σFEM

f ρ

0.041 1 0.2 0.846 0.746 0.354 0.743 0.924
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(a) Probability plot of the PFA values of the -1
floor of the K-K NPP
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(b) Probability plot of the PGA values of the
soil free surface of the K-K NPP

Figure 4.11: Probability plot of the normalized PGA values of the -1 floor and the
normalized PGA values on the soil free surface of the K-K NPP

From the results of the probability plots, it can be concluded that the lognormal assump-

tion for both αFEM
g and αFEM

f can be considered acceptable. Additionally, from Table 4.2

it can be observed that the median of the soil PGA µFEM
g is larger than the median of
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the PFA µFEM
f : this is due to the fact that the LVSG is located on the -1 floor in the

K-K NPP.

Furthermore, the transformed PGA values αs→t on the K-K NPP free surface and the

relevant uncertainty βs→t due to the transformation are computed with Eqs.4.2.21, 4.2.22.

The transformed median PGA values αs→t are plotted in Figure 4.12. We can see an

increase of the PGA values after the transformation process due to the low elevation of

the target LVSG in the K-K NPP. In Figure 4.12, a linear tendency can be observed for

some (αs→t,αs) data values. This is because their corresponding LVSGs have the same

elevations h (in particular h = 0), so that their amplification factors in the transformation

step 1 are the same. In addition, as βs→t calculated with Eq.4.2.22 is independent of αs,

it stays the same for all 78 zs data, with βs→t = 0.299.
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Figure 4.12: PGA values αs→t after the transformation into K-K NPP free surface

In the end, the transformed αs→t are plugged into Eq.4.2.23 to compute the likelihood

function L(zs|Âm). We also justify the application of the fractional xi value 0.5 for the

potential failure case of El Centro steam plant. It can be regarded as two realizations of

earthquake observations, with one failure and one survival. Then, the likelihood function

established by the two realizations should be normalized to one observation by the square-

root operation:

L(zEl−Centro|Âm) =
�

[Pf (αEl−Centro)][1− Pf (αEl−Centro)] = [Pf (αEl−Centro)]
0.5[1−Pf (αEl−Centro)]

0.5.

(4.3.2)

The same procedure is also used by EPRI [2017]. As a result, the total likelihood function

is computed: L(z|Âm) = L(zt|Âm)L(zs|Âm)
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4.3.4 Posterior Fragility Curve

The posterior distribution fpost(Âm|z) is obtained based on the prior distribution and

the likelihood function, which are calculated in Section 4.3.2 and Section 4.3.3, respectively.

MCMC is used to generate 10,000 samples from fpost(Âm|z). A lognormal distribution is

approximated for fpost(Âm|z) with the median and logarithmic Std of the generated 10,000

samples. The MCMC sampling of fpost(Âm|z) and the approximated lognormal distribution

are shown in Figure 4.13. The posterior distribution of Âm has the median Apost
m = 2.70g

and the associated uncertainty β
post
U = 0.176. The comparison of fragility parameters of the

LVSG before and after Bayesian updating is reported in Table 4.3.

Table 4.3: Posterior fragility parameters for the LVSG in K-K NPP and comparison to the
prior parameters

βR Aprior
m β

prior
U Aprior

HCLPF Apost
m β

post
U Apost

HCLPF

0.145 2.46g 0.4 1.00g 2.70g 0.176 1.59g

��� ��� ��� ��� ��� ��� ��� ��� ��� ���

��
�
����

���

���

���

���

���

���

���

���

���

���

�
��
�
�
��
�
�
��
�

����������������������

����������������

������

Figure 4.13: MCMC sampling of the
posterior distribution of Âm
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Figure 4.14: Posterior fragility curves and
its confidence intervals

The posterior median and mean fragility curves are computed with Eqs.4.2.2, 4.2.6 respec-

tively. The 0.05 and 0.95 non-exceedance confidence intervals are calculated with Eq.4.2.4.

The computed fragility curves and the associated confidence intervals are shown in Figure

4.14. Compared to the prior fragility parameters, the median capacity Am increases after

Bayesian updating, because few failure cases (only one) have been observed in the post-

earthquake inspection for the LVSG. The epistemic uncertainty βU is reduced due to the

supplementary information from the observational data. Relatively large confidence bounds

have been shown in Figure 4.14, since despite the Bayesian updating, the value of βpost
U (0.176)

is still larger than the aleatory uncertainty βR = 0.145. Nevertheless, the HCLPF capacity,

computed by Eq.4.2.5, is largely increased after the Bayesian updating, mainly due to the

reduction of the epistemic uncertainty.
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Furthermore, the influence of the selected value of βprior
U on the posterior fragility curve

is investigated. Different values of βprior
U varying from 0.1 to 0.4 are taken for the prior Âm

distributions. With the same SQUG observational data, the likelihood function remains the

same. Posterior distributions of Âm are computed and plotted in Figure 4.15. It can be

observed from Figure 4.15 that βprior
U = 0.4 reveals in fact a relatively large uncertainty of the

median capacity compared to the likelihood function L(z|Âm) provided by the observational

data. Therefore, the contribution of L(z|Âm) to the posterior distribution is dominant if

β
prior
U = 0.4. On the other hand, if one is very certain about the median capacity estimated

from the numerical simulations (i.e. β
prior
U = 0.1), the influence of L(z|Âm) on the posterior

distribution is not that evident: the posterior median increases slightly in comparison with

the prior median, whereas the value of βU is hardly modified. For βprior
U = 0.2 and 0.3, the

posterior distribution is a trade-off between the prior distribution and the likelihood function,

which is a reasonable outcome from the Bayes’ theorem.
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Figure 4.15: Influence of the choice of βprior
U on the posterior fragility curve. Upper: prior

distributions of Âm with different βprior
U . Middle: likelihood function. Lower: posterior

distributions of Âm with different βprior
U .

Finally, we study the influence of the uncertain observational data of the El-Centro steam

plant. Other than the observational value xi = 0.5 applied in the previous sections, the

likelihood function is also computed with xi = 0 and xi = 1 for the El-Centro steam plant.

The posterior distributions with different levels of uncertainty on the El-Centro observational
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Figure 4.16: Influence of observational data of El-Centro steam plant. Upper: prior
distributions of Âm. Middle: likelihood function with different xi values for the El-Centro

steam plant. Lower: posterior distributions of Âm.

data are plotted in Figure 4.16. From the results of Figure 4.16, a complete failure of the

LVSG xi = 1 in the El-Centro steam plant makes decrease the posterior Âm, since the

equipment is more fragile according to the observational results. On the contrary, the LVSG

is more resistant if xi = 0 for the El-Centro steam plant, so that an increase of the posterior

Âm can be observed.

4.4 Summary

In this chapter, a Bayesian updating framework is proposed for integrating different

sources of information, including numerical simulations, damage data and reference criti-

cal values informed from the literature, in the computations of seismic fragility curves. In

the framework, the results from numerical simulations are used to determine the prior param-

eters of the fragility curves. Damage data are integrated to determine the likelihood function

for the Bayesian updating. Finally, MCMC is applied to sample the posterior distribution

of the updated equipment capacity. The main contributions of the work are: (i) an ANN

adaptive training algorithm is proposed for a more intelligent selection of the sample in the

DoEs; (ii) a method to construct the likelihood function is proposed to deal with existing

damage data from SQUG database.
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The methodology is applied to evaluate the fragility curve of a low-voltage switchgear in

a Japanese nuclear power plant Kashiwazaki-Kariwa. The application of the adaptive ANN

training provides an improved design of experiments to conduct FEM simulation. Then, the

construction of the likelihood function with SQUG damage data is realized by a two-step

PGA transformation. The uncertainty related to the transformation is also quantified and

integrated in the computation of the likelihood function. A sensitivity analysis is finally

conducted to investigate the influence of the subjectively determined prior parameters on the

posterior distribution of the equipment capacity.
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Chapter 5

Computation of Ground Motion Prediction Equations

with ANNs

Ground motion prediction equations (GMPEs) are used to describe seismic intensity mea-

sures as a function of source-, path- and site-related parameters. Although functional models

are still widely used for their computation, a fully data-driven approach has been recently

proposed based on artificial neural networks (ANNs). Moreover, the estimation errors of the

predictor parameters (e.g. the magnitude and V s30) should be accounted for in the devel-

opment of GMPEs. In this chapter, the uncertainty in the input parameters is considered

in the computation of GMPEs by ANNs. The ANN training based on the generalized least

squares principle is employed to compute the GMPEs. A simulated database is used to

validate the approach and to demonstrate the effect of the input parameter uncertainties on

the GMPEs. Finally, the proposed model is applied to the RESORCE data collected from

Pan-Europe earthquakes. Results show that, by the proper consideration of uncertainty on

the input parameters, the total GMPE uncertainties can be reduced by 4-16%, whereas the

median predictions remain similar.
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5.1 Introduction

Probabilistic seismic hazard analysis (PSHA) is performed to determine the seismic design

load of civil structures [Bommer and Abrahamson 2006]. Within PSHA, ground motion

prediction equations (GMPEs) provide median values, and associated uncertainty, of seismic

intensity measures (IMs), for given values of source-, path- and site-related parameters. With

the classical assumption of lognormal distributions of the IMs, seismic hazard curves can be

further determined.

The GMPEs are modeled by ‘mixed-effects model’ with particular functional forms. The

underlying model parameters are determined either by the one-stage regression [Abrahamson

and Youngs 1992] or by the two-stage regression [Joyner and Boore 1993]. This can be a

limitation if the computation of GMPEs for a new IM is required, as it is necessary to

develop new functional models or to determine whether the existing functional forms can be

generalized. Furthermore, if additional site proxies are considered, the functional forms need

to be adjusted. To overcome these difficulties, non-parametric data-driven methods haven

been applied to ground motion prediction. Hermkes et al. [2014] proposes GMPE models

based on Gaussian process regression for application to the European RESORCE database.

Models based on artificial neural networks (ANNs) have been developed in the past by Derras

et al., with applications to American NGA West database [Derras et al. 2016], RESORCE

database [Derras et al. 2014, 2016] and Japanese Kik-Net database [Derras et al. 2017]. In

Dhanya and Raghukanth [2017], the performance of ANNs is further improved by a genetic

algorithm in the computation of GMPEs. Variations of the neural network model, e.g.

general regression neural networks and adaptive neuro-fuzzy inference systems, have been

tested recently for applicability in the development of GMPEs [Stambouli et al. 2017; Ameur

et al. 2018]. An advantage of using ANNs for the development of GMPEs is that a vector

of IMs can be computed simultaneously, instead of having to develop a different functional

model for each individual IM and conduct regression for estimating its parameters.

On the other hand, the existing GMPEs models with ANNs do not consider the uncer-

tainty of input parameters (e.g. magnitude Mw and thirty-meter shear-wave velocity V s30).
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In practice, epistemic uncertainties can affect the source-, path- and site-related parameters

due to their determination procedures [Moss 2011]. Methods, which consider the epistemic

uncertainty of the input parameters, can be divided into three categories. Crude Monte-Carlo

simulations are used by Foulser-Piggott [2014], to propagate the uncertainties in the input

variables. The values of the uncertain input parameters are sampled from chosen distribu-

tions and a number of GMPE regression analyses are conducted with the generated inputs.

The variations of the model parameters and model output standard deviations, obtained

from the different GMPE models, are analyzed, showing that the GMPE total uncertainty

is little impacted by the uncertain inputs, whereas the influence on the GMPE medians can

be significant. The second category applies the first order second moment (FOSM) method

to the uncertain GMPE model. In this way, the variance-covariance matrix of the mixed-

effects model contains supplementary epistemic uncertainty terms. The maximum likelihood

problem can be solved by generalized least squares regression. This is the approach taken by

Rhoades [1997], Gehl et al. [2011], for treating the uncertainty in Mw and V s30, respectively.

The last category of methods consists in applying Bayesian regression in the development

of the GMPEs. The uncertainties in the input parameters are described by Bayesian prior

distributions. One can refer to Moss [2011], Stafford [2014], Kuehn and Abrahamson [2017]

for more details concerning the Bayesian approach. These studies show a reduction of the

total uncertainty σ, for example 5-10% in Moss [2011] and 1-13% in Kuehn and Abrahamson

[2017]. The reduction is explained by the epistemic uncertainty in the input parameters of

the GMPEs.

In this chapter, we aim to account for the input parameter uncertainties in the non-

parametric ANN-based GMPE models. The approach adopted is the FOSM approach. The

ANN training algorithm based on the generalized least squares principle, which is explained

in Chapter 2.2, is applied to compute the GMPEs. This allows taking into consideration the

non-diagonal variance-covariance matrix of the residuals in the ANN training. The proposed

method is first validated by a simulated database for verification and, then, applied to the

RESORCE database [Akkar et al. 2014b] for pan-European earthquakes.

In this chapter, we start with the mathematical modeling of the mixed effect model and

explain furthermore the method for considering of input uncertainties with ANNs. The

databases used in this chapter are later presented briefly. The proposed method is applied to

the simulated database, for the purpose of validation of the methodology and analysis of the

influence of the input uncertainties. For real applications, the effect of input uncertainties is

studied with respect to the RESORCE database.
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5.2 Treatment of input uncertainties with ANNs

5.2.1 Mixed-effects model with ANNs

We consider developing GMPEs model based on magnitude Mw, Joyner-Boore distance

Rjb and thirty-meter shear-wave velocity V s30:

yij := ln IMij = µ(Mw,i, lnRjb,ij, lnV s30,j; θ) + ηi + εij, (5.2.1)

where yij denotes the logarithmic values of the seismic IMs, the symbol ‘:=’ explains the

definition of the variable of its left side, µ represents the regression function, i.e. the median of

the GMPE model, ηi is the inter-event residual for the ith event, assumed following N (0, τ 2),

and εij is the intra-event residual for the jth earthquake signal of the ith event, assumed

following N (0,φ2). ηi and εij are assumed to be independently distributed. As an earthquake

event can be observed on different observation sites, we use this double index notation ij,

meaning that this is the seismic intensity measure (or other relevant parameters) of the

earthquake event i observed on the site j.

Figure 5.1: Explanation of the inter-event and intra-event residuals

The concepts of the inter- and intra-event residuals are explained with Figure 5.1. In

this figure, the PGA values of two different earthquake events observed on different sites are

collected and plotted with two different symbols. The inter-event residuals are the differences

between the median of each earthquake (dashed lines) and the median prediction function µ

(solid line). The intra-event residuals are the variations of data with respect to the median
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of their corresponding earthquake event.

Without loss of generality, the logarithmic values lnRjb and lnV s30 are used as the inputs

of the GMPE, as in Derras et al. [2014], and θ is the vector of the parameters of the assumed

functional or data-driven model. The total uncertainty σ of the GMPE is

σ =
�

τ 2 + φ2. (5.2.2)

In matrix form, Eq.5.2.1 becomes

y = µ+ Z η + ε, (5.2.3)

where y, µ, ε are N × 1 matrices, with N being the total number of earthquake records, η is

the M × 1 inter-event residual matrix, with M the total number of earthquake events, and Z

is a N ×M matrix, which allocates the inter-event residual to its corresponding earthquake

record. This latter matrix Z is of the form:

Z =











Z
n1

0 · · · 0

0 Z
n2

· · · 0
...

...
. . .

...

0 0 · · · Z
nM











, with Z
ni

=
�

1 1 · · · 1
�T

� �� �

ni elements

, (5.2.4)

where ni (i = 1, 2, · · · ,M) represents the number of earthquake records of the ith event, Z
ni

is a column vector with all the ni elements equal to one, and the index T denotes the matrix

transpose.

The solution of the mixed-effects problem (Eq.5.2.1) requires determining the model pa-

rameters θ, and the inter- and intra-event uncertainties τ and φ, by maximizing the following

log-likelihood function lnL:

lnL = −N

2
ln 2π − 1

2
ln |C|− 1

2
(y − µ)TC−1(y − µ), (5.2.5)

where C is the variance-covariance matrix of the inter- and intra-event residuals:

C = τ 2Z ZT + φ2I
N
=

M�

i=1

+(φ2I
ni
+ τ 21

ni
), (5.2.6)

in which I
N
is the identity matrix of size N ×N , the same for I

ni
. 1

ni
is the matrix of ones

of size ni ×ni,
�+ is the matrix direct sum operation following the notation of Abrahamson
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and Youngs [1992]. More precisely, C is a blockwise-diagonal matrix under the form:

C =











φ2I
n1

+ τ 21
n1

0 · · · 0

0 φ2I
n2

+ τ 21
n2

· · · 0
...

...
. . .

...

0 0 · · · φ2I
nM

+ τ 21
nM











, (5.2.7)

with every block being a ni × ni square matrix:

φ2I
ni
+ τ 21

ni
=










φ2 + τ 2 τ 2 · · · τ 2

τ 2 φ2 + τ 2 · · · τ 2

...
...

. . .
...

τ 2 τ 2 · · · φ2 + τ 2










� �� �

a ni×ni square matrix

. (5.2.8)

The maximization of Eq.5.2.5 is achieved by an iterative expectation-maximization (EM)

algorithm. The derivation of the algorithm proposed by Abrahamson and Youngs [1992] is

explained in detail in the Appendix.

Instead of functional models, ANNs can be used to perform data-driven regressions for

the determination of µ, τ 2 and φ2 of the GMPEs. In this study, we use classical feed-forward

ANNs, which consist of a set of model parameters θ and activation functions associated to

neuron nodes. The type of activation functions are selected following [Derras et al. 2014]:

hyperbolic tangent sigmoid functions are used for the hidden layer nodes and linear functions

are applied to the output nodes. The model parameters θ contain the ANN weights w and

biases b , which are adjusted by training to minimize the cost function, i.e. the square error

between y and µ:

θ∗ =




w∗

b∗



 = argmin
θ

1

2

�

i

[yi − µi(x; θ)]T [yi − µi(x; θ)], (5.2.9)

where x is used to denote the input parameters of ANNs. In the GMPEs computation

of Eq.5.2.1, this latter x represents the ground motion predictor parameters Mw, lnRjb

and lnV s30. The index i is the ith output of the ANN, i.e. the ith IM for the GMPEs.

The training of ANNs is typically achieved by gradient-based back-propagation algorithms

[Rumelhart et al. 1986; Bishop 1995] to find the optimal θ∗. It is worth mentioning that

one assumption of the validity of Eq.5.2.9 is that the ANN residuals should be statistically

independent and identically distributed (IID). If the residuals are correlated, this correlation

should be accounted for in the cost function, which gives rise to a generalized least squares
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(GLS) problem for the ANN training. This case of correlated ANN residuals is addressed in

detail later.

The ANN-based GMPEs computation is divided into the following steps [Derras et al.

2014]:

1. Initialization step: train an ANN to determine θ, using x and y as the inputs and

outputs of the ANN.

2. With µ computed from the determined θ, estimate τ 2 and φ2 in maximizing Eq.5.2.5.

3. Given µ, τ 2 and φ2, compute ηi using Eq.(10) in [Abrahamson and Youngs 1992]:

ηi =
τ 2
�ni

j=1 yij − µij

niτ 2 + φ2
. (5.2.10)

4. Train an ANN to determine θ, using x and y − η as the inputs and outputs of the

ANN.

5. Repeat the steps 2-4 until Eq.5.2.5 is maximized.

Normalization and denormalization procedures are performed before and after the ANN

training; one can refer to Derras et al. [2014] for more details about this.

Let us study further why a classical ANN training can be applied in this algorithm. By

subtracting ηi on both sides of Eq.5.2.1, only the residual term εij remains on the right-hand

side of the equation:

yij − ηi = µ(Mw,i, lnRjb,ij, lnV s30,j; θ) + εij. (5.2.11)

Therefore, the residuals are IID if x and y−η are used as the inputs and outputs of the ANN.

Then, the algorithm described above is valid when the variance-covariance C is under the

form of Eq.5.2.7. However, if additional terms appear on the right-hand side of Eq.5.2.1, i.e.

if C is not blockwise diagonal, a new algorithm is required to solve the mix-effects problem.

5.2.2 ANN GMPEs models with input uncertainties

The FOSM method, proposed in Rhoades [1997] and Gehl et al. [2011], is used in this

study for the consideration of input uncertainties in ANN-based GMPEs model. It consists

in introducing the first order Taylor expansion of the GMPE model with input uncertainties.

Considering uncertainty on input parameters, the model reads

yij = µ(Mw,i, lnRjb,ij, lnV s30,j)+ηi+ εij = µ(M̂w,i+ δMi, lnRjb,ij, ln V̂ s30,j + δV sj)+ηi+ εij.

(5.2.12)

Here,Mw,i is the true magnitude, M̂w,i denotes the observed magnitude (i.e. with uncertainty)

and δMi is the error related to the measurement. The same holds for V s30, V̂ s30 and δV sj,
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respectively. The observation errors are assumed to follow normal distributions: δMi ∼
N (0, σ2

M), δV sj ∼ N (0, σ2
lnV s). After applying the first order Taylor expansion to Eq.5.2.12,

one obtains

yij = µ(M̂w,i + δMi, lnRjb,ij, ln V̂ s30,j + δV sj) + ηi + εij

= µ(M̂w,i, lnRjb,ij, ln V̂ s30,j) + δMi
∂µ

∂Mw

|x̂ + δV sj
∂µ

∂ lnV s
|x̂ + ηi + εij,

(5.2.13)

where x̂ represents the vector of the observed inputs. Considering that δMi and δV sj are

independent from each other, the variance-covariance matrix C related to Eq.5.2.13 contains

the following elements:

1. Diagonal elements Ckk: τ
2 + φ2 + (

∂µ

∂Mw

|x̂k
)2σ2

M + (
∂µ

∂ lnV s
|x̂k

)2σ2
lnV s;

2. Off-diagonal elements Ce
kk� , for the records k and k� sharing the same earthquake event:

τ 2 + (
∂µ

∂Mw

|x̂k

∂µ

∂Mw

|x̂k�
)σ2

M ;

3. Off-diagonal elements Cs
kk� , for the records k and k� sharing the same observation site:

(
∂µ

∂ lnV s
|x̂k

∂µ

∂ lnV s
|x̂k�

)σ2
lnV s;

4. Zero for all the other elements.

Given the off-diagonal elements Cs
kk� , the variance-covariance matrix C is not blockwise-

diagonal, so that the EM approach used by Derras et al. [2014] is not applicable in this

case. Instead, as mentioned in Gehl et al. [2011], an approach based on the generalized least

squares (GLS) is required for the maximization of Eq.5.2.5.

Here, the algorithm proposed in Gehl et al. [2011] is adapted for the computation of

GMPEs by ANNs trained with correlated residuals. The variance-covariance matrix of the

residuals is computed according to the previous part. In the subsequent parts of this chapter,

the ANNs trained considering correlated residuals are called GLS ANNs. The cost function

for the GLS ANNs reads

E(θ) =
1

2

�

i

[yi − µi(x; θ)]T [C i]−1[yi − µi(x; θ)], (5.2.14)

where C i is the variance-covariance matrix for the ith IM. The minimization of Eq.5.2.14 can

be realized by the GLS ANN training algorithm Eq.2.2.6 mentioned in Chapter 2:

∆θk =




�

i

[J i

k
]T [C i

k
]−1[J i

k
] + λI

nθ





−1 


�

i

[J i

k
]T [C i

k
]−1[rik]



 . (5.2.15)

A proper choice of λ is realized by cross-validation in this study.

To obtain GMPEs models considering uncertain inputs, we propose the following algo-

rithm :
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1. Initialization step k = 0: randomly initialize an ANN, and initialize the first variance-

covariance matrix Ci with the identity matrix I.

2. Compute ∆θk according to Eq.5.2.15. Update the ANN model parameters θk+1 = θk+∆θk

3. With the current ANN parameters θk+1, estimate τ 2k+1 and φ2
k+1 in maximizing Eq.5.2.5.

The maximization is performed with existing numerical optimization tools.

4. Compute the variance-covariance matrix C
k+1

, as described before.

5. Repeat the steps 2-4 until convergence.

For the evaluation of the derivatives, we apply the finite difference method to approximate
∂µ

∂M
,

∂µ

∂ lnV s
, and the back-propagation algorithm [Rumelhart et al. 1986; Bishop 1995] to

compute the Jacobian matrices J .

5.2.3 Determination of inter-event and intra-event residuals

With the determined values of inter-event and intra-event uncertainties τ and φ, the

inter-event and intra-event residuals can be calculated for every earthquake record. The

computation is based on the theory of multi-variate Gaussian distributions. Let us consider

the joint distribution of y and η:




y

η



 ∼ N









µ

0



 ,




C τ 2Z

τ 2ZT τ 2I
M








 , (5.2.16)

where C is the variance-covariance matrix computed according to Section 5.2.2 with the

determined values of τ , φ and the assumed values of σM , σlnV s. Considering the properties of

multi-variate Gaussian distributions, the estimate of the inter-event residual vector η̂, defined

by the expectation of η given earthquake observations y, is calculated by

η̂ := E(η|y) = τ 2ZTC−1(y − µ), (5.2.17)

where E(·) is the mathematical operator used to calculate the statistical expectation. It is

worth mentioning that Eq.5.2.17 is a generalized form of Eq.5.2.10, when C is not block-

wise diagonal. If the epistemic uncertainties of Mw and V s30 are not modeled, namely if

C = τ 2Z ZT + φ2I
N

(Eq.5.2.7), Eq.5.2.10 can be easily derived by applying the relation

τ 2ZT (τ 2Z ZT + φ2I
N
)−1(y− µ) = (ZTZ + I

M
φ2/τ 2)−1ZT (y− µ) [Dempster et al. 1981] and

by performing block matrix multiplication.
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In the same way, the joint distribution of y and ε is written as




y

ε



 ∼ N









µ

0



 ,




C φ2I

N

φ2I
N

φ2I
N








 , (5.2.18)

and the estimate of the intra-event residual vector ε̂ is obtained by

ε̂ := E(ε|y) = φ2C−1(y − µ). (5.2.19)

5.3 Case study databases

5.3.1 RESORCE database

The RESORCE (Reference database for seismic ground motion in Europe) database col-

lects earthquake records in broader European areas for researches and applications in earth-

quake engineering. Current RESORCE database contains 5882 processed accelerograms,

collected from 1814 events and 1540 stations [Akkar et al. 2014b]. For the computation of

the GMPE, we select ground motion records with Mw ∈ [3.5, 7.6] and Rjb ∈ [0, 200]km. We

focus the analyses on shallow crustal earthquakes, with depth less than 30 km. V s30 is con-

sidered as the only site-related parameter in this study. Ground motions without V s30 or

Rjb values are not retained for the computation of the GMPEs. After applying these criteria,

the final dataset consists of 893 earthquake records, collected from 269 events. The selected

ground motion records were measured on 289 different stations. The distribution of Mw, Rjb

and V s30 of the selected dataset is illustrated in Figure 5.2. It can be observed that most

of the earthquake signals are concentrated in the range of Mw values from 4.5 to 6.5. More

near-fault earthquakes are selected than far-fault earthquakes. Few records are measured on

stations with V s30 > 720m/s.

We focus on the computation of GMPEs based on Mw, lnRjb and lnV s30, following Der-

ras et al. [2014]. The depth and the type of the fault are not included in the GMPE, since the

sensitivity analysis conducted by Derras et al. [2014] reveals that the contribution of these two

parameters to the IMs is negligible. Eighteen IMs are selected as the outputs of the GMPEs,

including PGA (peak ground acceleration), PGV (peak ground velocity) and sixteen different

5% damping spectral accelerations: Sa(0.3Hz), Sa(0.5Hz), Sa(0.67Hz), Sa(1Hz), Sa(1.3Hz),

Sa(2Hz), Sa(2.5Hz), Sa(3.3Hz), Sa(4.2Hz), Sa(5Hz), Sa(6.7Hz), Sa(10Hz), Sa(13.3Hz), Sa(20Hz),

Sa(33.3Hz) and Sa(100Hz). The geometrical mean of the two horizontal components is used

as the IM value.
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Figure 5.2: Distribution of Mw, Rjb and V s30 of the selected earthquake records in
RESORCE database. (a) Histogram of Mw of the selected RESORCE dataset; (b) Scatter
plot of the selected dataset in Mw-V s30 space; (c) Histogram of V s30; (d) Scatter plot of the

selected dataset in Mw-Rjb space; (e) Histogram of Rjb.

5.3.2 Simulated database

A simulated database is constructed to assess the methodology and to analyze in a con-

trolled way the effect of the input uncertainties on τ and φ. Based on the magnitude, distance

and site parameters in the RESORCE database, the simulated database is built with assumed

inter- and intra-event uncertainties τ = 0.2 and φ = 0.3. By comparing the values of τ and

φ computed by the proposed algorithm to those used to generate the database, the accuracy

of the methodology can be checked. In addition, we perform ten different realizations of

the Monte Carlo sampling of inter- and intra-event residuals. The purpose is to evaluate

the standard deviations linked to the estimation of inter- and intra-event uncertainties. The

construction of the simulated database has been done as follows:

1. From 893 selected RESORCE earthquake records, extract M̂w, Rjb and V̂ s30 values. The

parameters are denoted by the symbol ˆ since they are observed or measured values.

2. Sample δM and δV s with σM = 0.1, σlnV s = 0.3, respectively. The real values of Mw and

V s30 are obtained by Mw = M̂w + δM , lnV s30 = ln V̂ s30 + δV s.

3. Compute the median of the ln IM by the simplified GMPE model used by Koufoudi et al.
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[2015]. The values of relevant coefficients are listed in Table 5.1.

µ(ln IM) = a1+a2(Mw−c1)+a3(8.5−M2
w)+[a4+a5(Mw−c1)] ln

�

R2
jb + a26+b1 ln(

V s30
760

).

(5.3.1)

4. Sample inter-event residual ηi and intra-event residual εij with τ = 0.2, φ = 0.3, respec-

tively.

5. Compute the intensity measure values with ln IMij = µij(ln IM) + ηi + εij.

6. Repeat the steps 4-5 ten times for different realizations of residuals, so that ten groups of

simulated ln IM values are obtained.

A simulated database, generated by ten realizations of inter- and intra-event residuals, is

finally obtained.

Table 5.1: Values of coefficients used to build the simulated database. These values are
obtained by computing the GMPE model for RESORCE PGA values with the functional

form of Eq.5.3.1.

a1 a2 a3 a4 a5 a6 b1 c1
-3.26 1.557 0.1185 -2.565 0.2575 -7.53 -0.414 1.708

5.4 Application to the simulated database

The objective of this section is to verify the performance of the proposed algorithm in

Section 5.2.2 by means the simulated database, which is generated with assumed values of τ

and φ. The impact of the input uncertainties on the final determination of τ and φ is also

discussed.

Three types of analyses are conducted based on the simulated database:

1. Computation of the GMPE with respect to the real inputs Mw, lnRjb and lnV s30.

2. Computation of the GMPE with respect to the uncertain inputs M̂w, lnRjb and ln V̂ s30,

but without accounting for the uncertainties of on the input parameters.

3. Computation of the GMPE with respect to the uncertain inputs M̂w, lnRjb and ln V̂ s30,

modeling the input uncertainties with standard deviations σM = 0.1, σlnV s = 0.3 in the

computation of GMPEs. This analysis is name by ‘uncertain modeling’ in the sequel.

For each type of analysis, the computation of GMPE is conducted with two models, the

functional model of Eq.5.3.1 and a non-parametric ANN model. The ANN model consists

of 3 input nodes, 5 hidden layer nodes, and 1 output. The first two types of analyses are

performed with the algorithms of Abrahamson and Youngs [1992] and Derras et al. [2014],

applied to the functional model and ANN model, respectively. Regarding the uncertain
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models, the functional GMPE regression is based on the GLS algorithm of Gehl et al. [2011],

whereas the ANN uncertain model is built with the algorithm newly proposed in this study.

The value of the damping factors λ is set to 10, estimated from the 5-fold cross-validation

results of the GLS ANN training when C = I (Figure 5.3).
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Figure 5.3: 5-fold cross-validation results for different values of λ

The three types of analyses are carried out for all of the ten simulated datasets. We

estimate the mean values of the inter- and intra-event uncertainties, as well as their standard

deviations from the results of the ten datasets. The values of τ , φ and the total uncertainty

σ determined for different analyses are shown in Table 5.2. The values of τ and φ are

determined by the mentioned algorithms and σ is calculated by σ =
�

τ 2 + φ2. The values

of the standard deviations are reported after the ± symbol. The results of Table 5.2 show

Table 5.2: Results of inter-event uncertainties τ and intra-event uncertainties φ for the
simulated database

Analysis Model τ φ σ

Reference - 0.2 0.3 0.36

True input values
Functional model 0.195 ± 0.023 0.297 ± 0.007 0.356 ± 0.012

ANN 0.194 ± 0.023 0.296 ± 0.007 0.355 ± 0.012

Observed input values
Functional model 0.239 ± 0.021 0.322 ± 0.008 0.401 ± 0.013

ANN 0.235 ± 0.020 0.320 ± 0.009 0.397 ± 0.013

σM = 0.1, σlnV s = 0.3
Functional model 0.2 ± 0.024 0.297 ± 0.008 0.359 ± 0.014

ANN 0.198 ± 0.023 0.298 ± 0.008 0.358 ± 0.013

the influence of the input uncertainties on the values of τ and φ of the GMPEs computation.

It can be concluded that:
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1. Both ANNs and functional models provide similar estimates of the inter- and intra-event

uncertainties. As the functional model is the same as the one used to generate the synthetic

database, this means that the ANN can well approximate the real model in the considered

case study.

2. With the true input values of Mw and V s30, both the functional model and the ANN

provide good estimation of the inter- and intra-event uncertainties.

3. However, if the observed values of M̂w and V̂ s30 are used as the inputs of the GMPEs,

and if the uncertainties associated to the observed values are not modeled, the values of

τ and φ are overestimated (0.235 compared to 0.2 for τ , 0.320 compared to 0.3 for φ).

This is because the input uncertainties are propagated implicitly into the GMPE model

uncertainty during the GMPE computation procedure. In addition, the true values of τ

and φ fall outside the ±1 standard deviation range of values.

4. On the other hand, when the input uncertainty is taken into account, the overestimation is

corrected by the uncertainty modeling, for both the functional model and the ANN model.

This shows the necessity of modeling the input uncertainties in the GMPEs computation:

otherwise, it may lead to overestimation of the inter-event and intra-event uncertainties.

The proposed algorithm for the consideration of input uncertainties with ANN is also

validated.

5.5 Application to RESORCE database

For the application of the input uncertainty modeling to the RESORCE dataset, the 893

selected earthquake records are divided into two sets: A training set consisting of 720 ground

motions and a validation set with 173 records. The training set is used to compute the

GMPEs and the corresponding inter- and intra-event uncertainty. The computed GMPEs

model is validated on the validation set.

The ANN architecture used to compute the GMPEs is summarized as follows. The

ANN has three input parameters: M̂w, Rjb and V̂ s30. The magnitude and the shear-wave

velocity are denoted with ˆ , since they are considered as the observed uncertain input

parameters. Five hidden layer nodes are selected, the same as Derras et al. [2014]. The

damping factor λ is set to 100 from the 5-fold cross-validation executed on the 720 training

data with Ci = I (i = 1, 2, ..., 18). We assume constant uncertainties associated to M̂w and

ln V̂ s30 with σM = 0.1, σlnV s = 0.3, corresponding to the average of known values of the

uncertainties on the magnitude and the site information of the RESORCE dataset (0.1 and

0.265). The same values are taken in Kuehn and Abrahamson [2017] for the NGA records in

which the uncertainty information is missing. The natural logarithmic values of the eighteen

IMs are used as the outputs for the GMPEs computation. The damping ratio used to compute
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the spectral accelerations is 5%.

5.5.1 Results

Two analyses have been performed in the computation of the GMPEs: (i) A GMPE

computed directly from M̂w, lnRjb, ln V̂ s30 and 18 parameters of ln IM; (ii) A GMPE with

the same input-output parameters as the first one. The uncertainties on M̂w and ln V̂ s30 are

modeled with the algorithm proposed in Section 5.2.2. We compare the results of these two

analyses to those obtained with existing RESORCE GMPE models, including the models of

Akkar et al. [2014a], Bindi et al. [2014], Bora et al. [2014], Derras et al. [2014], Hermkes et al.

[2014]. The results of these five existing GMPEs are extracted from Douglas et al. [2014].

We first show the inter-event uncertainty τ , intra-event uncertainty φ and the total uncer-

tainty σ of the two analyses. The τ , φ, σ for the 16 frequency-dependent spectral accelerations

are illustrated in Figure 5.4. The legend ‘ANN with uncertainty’ means that the correspond-

ing results are computed by ANN with input uncertainty modeling. The reduction ratio

in Figure 5.4d calculates the relative reduction of the GMPE output standard deviations,

considering the uncertain input parameters. For example:

rσ =
σANN − σANN,uncertain

σANN

(5.5.1)

where rσ represents the reduction ratio of the total uncertainty σ. In addition, the GMPE

uncertainty values of PGA, PGV and three spectral accelerations Sa(0.5Hz), Sa(3.3Hz) and

Sa(20Hz), representing three different frequency ranges, are listed in Table 5.3.

Table 5.3: τ , φ and σ values for PGA, PGV, Sa(0.5Hz), Sa(3.3Hz) and Sa(20Hz)

IMs Uncertainties ANN ANN with uncertainty Reduction ratio r × 100%

PGA
τ 0.420 0.376 10.48%
φ 0.593 0.546 7.93%
σ 0.726 0.663 8.68%

PGV
τ 0.394 0.313 20.56%
φ 0.600 0.539 10.17%
σ 0.718 0.623 13.23%

Sa(0.5Hz)
τ 0.417 0.341 18.23%
φ 0.756 0.641 15.21%
σ 0.864 0.723 16.32%

Sa(3.3Hz)
τ 0.375 0.339 9.70%
φ 0.649 0.586 9.59%
σ 0.749 0.678 9.62%

Sa(20Hz)
τ 0.444 0.401 9.68%
φ 0.603 0.565 6.30%
σ 0.749 0.693 7.48%
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(b) Intra-event uncertainty for RESORCE data
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(c) Total uncertainty for RESORCE data
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Figure 5.4: Inter-event, intra-event and total uncertainties determined with the RESORCE
data

From the results of Figure 5.4 and Table 5.3, it can be clearly observed that:

1. The order of magnitude of the determined τ , φ and σ of both ANN models stays coherent

with other existing RESORCE GMPE models. The intra-event uncertainty is predominant

in comparison with the inter-event uncertainty. As different GMPEs are computed with

different data and different types of model, one cannot expect a perfect agreement between

the results in this study and the results from other GMPEs.

2. A clear reduction of τ , φ and σ can be seen with the input uncertainty modeling. This

is in agreement with the results obtained with the simulated database. The maximum rσ

can reach 0.16, i.e. 16% according to Figure 5.4d. The reduced part of τ , φ is, in fact,

explained by the epistemic uncertainties introduced in the magnitude and in the share-wave

velocity, which is modeled by the first order Taylor expansion with the FOSM modeling.

Qualitatively, the reduction is more significant in the low frequency range than in the high

frequency range. This phenomenon is further addressed in the ‘Discussion’ subsection.
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The median GMPEs predictions for both ANN models are also plotted with two different

scenarios: (i) Mw = 5, Rjb = 10km, V s30 = 760m/s and (ii) Mw = 7, Rjb = 10km, V s30 =

270m/s. The comparisons between the predictions of the ANN models and other existing

models are illustrated in Figure 5.5. The magnitude scaling and the distance decay of PGA

and Sa(1Hz) are shown in Figure 5.6 and Figure 5.7, respectively. The magnitude scaling

is computed with Rjb=30km, V s30=760m/s. The RESORCE data with Rjb = 30 ± 20km,

V s30 = 760 ± 100m/s are also visualized in Figure 5.6. For the distance decay of PGA

and Sa(1Hz), we choose Mw = 5, V s30 = 270m/s to demonstrate the impact of distance on

the median predictions. The data plotted in Figure 5.7 contain the earthquake motions of

Mw = 5± 0.2, V s30 = 270± 50m/s.
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(b) Mw = 7, Rjb = 10km, V s30 = 760m/s

Figure 5.5: Comparison of median predictions of the two ANN GMPEs to existing models

In addition, we compute the inter-event and intra-event residuals of the ANN model with

input uncertainty by Eq.5.2.17 and Eq.5.2.19. The results are compared to those of the

ANN model without input uncertainty in Figure 5.8 and Figure 5.9, for PGA and Sa(1Hz),

respectively.

Several conclusions can be drawn from Figures 5.5-5.9:

1. The ANN GMPE models, computed with or without the consideration of the input uncer-

tainties, provide similar median predictions. This is coherent with what has been observed

by Kuehn and Abrahamson [2017] using Bayesian regression. Additionally, the order of

magnitude of the median predictions is in agreement with existing GMPEs computed on

the basis of RESORCE database.

2. Both ANN models exhibit non-linear magnitude scaling behaviors. The effect of the mag-

nitude scaling is less evident for PGA (an IM for high frequency range) than Sa(1Hz) (an

IM for low frequency range). Although some differences exist between the ANN models

and other GMPEs, the ANN models remain in the range of predictions from the other GM-
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(a) Magnitude scaling of PGA,
Rjb = 30km, V s30 = 760m/s
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(b) Magnitude scaling of Sa(1Hz), Rjb = 30km,
V s30 = 760m/s

Figure 5.6: Magnitude scaling of PGA and Sa(1Hz). The data are selected from the
earthquake records with Rjb ∈ [10km, 50km] and V s30 ∈ [660m/s, 860m/s]
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(a) Distance decay of PGA,
Mw = 5, V s30 = 270m/s
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(b) Distance decay of Sa(1Hz), Mw = 5,
V s30 = 270m/s

Figure 5.7: Distance decay of PGA and Sa(1Hz). The data are selected from the
earthquake records with Mw ∈ [4.8, 5.2] and V s30 ∈ [220m/s, 320m/s]

PEs, as shown in Figure 5.6 and Figure 5.7. Besides, considering the data cloud plotted

in Figure 5.6 and Figure 5.7, the ANN models provide satisfactory regression results.

3. It can be clearly observed that the dispersion of the residuals is less important for the ANN

model with input uncertainty than the classical ANN model. This is due to the reduction

of the values of τ and φ resulting from the modeling of the input epistemic uncertainties.
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The reduction effect is more evident for Sa(1Hz) than PGA.
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(a) Inter-event residuals for PGA computed
from the ANN model with input uncertainties
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(c) Intra-event residuals for PGA computed
from the ANN model with input uncertainties
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(d) Intra-event residuals for PGA computed
from the ANN model without input

uncertainties

Figure 5.8: Inter-event and intra-event residuals of PGA of the ANN input uncertain
model, in comparison to the ANN model without input uncertainties

Finally, we validate the ANN model with input uncertainty using the 173 validation data.

We recall that the validation dataset is not used to train the ANN model in the training

process. Computed on the validation dataset, the value of the log-likelihood function of

the ANN model with input uncertainty is -3646.48, larger than -3673.78 obtained without

considering input uncertainty. The number of the validation data and the ANN architecture

are the same for both models. In consequence, a larger value of the log-likelihood results

in smaller values of AIC (Akaike information criterion [Akaike 1974]) and BIC (Bayesian

information criterion [Schwarz 1978]). Better models are characterized by smaller AIC and

BIC values, which shows the advantage of the uncertain input ANN model over the original

ANN model (Table 5.4). In Figure 5.10, the predictions of the uncertain input ANN model



116 5 Computation of Ground Motion Prediction Equations with ANNs

3 4 5 6 7 8

M
w

−1.0

−0.5

0.0

0.5

1.0

ln
(S
a
(1
H
z
))
: 
B
e
t 
e
e
n
��
�
�
�
�
��
�
�
��
�
�
�

�������

��������

�������������σ

(a) Inter-event residuals for Sa(1Hz) computed
from the ANN model with input uncertainties
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(b) Inter-event residuals for Sa(1Hz) computed
from the ANN model without input

uncertainties
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(c) Intra-event residuals for Sa(1Hz) computed
from the ANN model with input uncertainties
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(d) Intra-event residuals for Sa(1Hz) computed
from the ANN model without input

uncertainties

Figure 5.9: Inter-event and intra-event residuals of Sa(1Hz) of the ANN input uncertain
model, in comparison to the ANN model without input uncertainties

are compared to the original IM values of the database, for both PGA and Sa(1Hz). It can

be concluded that the data clouds are located in the neighborhood of the diagonal ’1-1’ line,

implying that the predictions of the uncertain input ANN model are satisfactory, for both

PGA and Sa(1Hz).

Table 5.4: Performance of ANN models with the validation dataset

Models Log-likelihood AIC BIC
ANN without input uncertainties -3673.78 7675.56 8192.70
ANN with input uncertainties -3646.48 7620.96 8138.10
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Figure 5.10: Comparison between predictions of the uncertain input ANN model and the
values of IMs of the database, for both training dataset and validation dataset

5.5.2 Discussions

Previous results show that the ANN model considering input uncertainties on Mw and

V s30 provides satisfactory regression performance with the RESORCE data. Moreover, a

reduction of the GMPE uncertainty can be obtained by modeling the input uncertainties.

However, there are some aspects which need to be discussed concerning this approach.

1. In our approach, we do not further separate the intra-event uncertainty into the single-

site uncertainty and the site-to-site uncertainty [Baltay et al. 2017], for being able to

compare the computed uncertainty values with those of existing RESORCE GMPE models.

Besides, the classical ANN training in the mixed-effects problem proposed by Derras et al.

[2014] does not allow a further decomposition of the intra-event uncertainty. This latter

decomposition, however, can be achieved by the GLS ANN training.

2. The present approach relies on a prior estimation of the input uncertainties. Different

estimations of the uncertainties associated to Mw and V s30 can impact the final values

of τ and φ. To analyze this, different values of σM are σlnV s are selected to conduct the

computation of uncertain input ANN GMPE models. First, we fix the value of σlnV s to

0.3. The value of σM is varied to 0.15 and 0.2. The corresponding reduction ratios with

the variation of σM are plotted in Figure 5.11. It can be observed that the inter-event

uncertainty τ decreases with increasing values of σM and that the variation of σM hardly

influences the intra-event uncertainty φ, which is consistent with the work of Rhoades

[1997]. However, when σM is set to 0.2, the reduction ratios of the inter-event uncertainty

can reach 50% to 70% in low frequency ranges. Different values of σM can give rise to

very different estimations of the inter-event uncertainty. A second analysis is performed

by fixing the value of σM to 0.1. Two additional values of σlnV s (0.1 and 0.2) are selected
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for uncertain input ANN regression. It can be seen from Figure 5.12 that the intra-event

uncertainty is mainly influenced by σlnV s.
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Figure 5.11: Influence of different values of σM on the reduction ratios of τ , φ and σ

3. It can be observed in Figure 5.4, Figure 5.11 and Figure 5.12 that, qualitatively, the reduc-

tion of the uncertainty is more important in the low frequency range than in the high fre-

quency range. One reason is that the absolute values of the derivatives
∂µ

∂Mw

and
∂µ

∂ lnV s30
are larger for low frequency spectral accelerations than high frequency ones [Abrahamson

and Silva 2007]. Considering the FOSM formulation of Eq.5.2.13, a large value of the

derivative results in a large adjustment of the residuals. We show the derivatives
∂µ

∂Mw

and
∂µ

∂ lnV s30
for Sa(0.5Hz), Sa(3.3Hz) and Sa(20Hz) in Figure 5.13. The negative values

of
∂µ

∂ lnV s30
are justified by the fact that the site effect is more evident if the soil is softer,

so that the seismic intensity measures increase. The derivatives in Figure 5.13 show higher

absolute values for the low frequency spectral acceleration than for the high frequency one.
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4. In spite of the similarity of the median predictions of the two ANN models, the fact that

the reduced value of σ, introduced by modeling the input uncertainty, can lead to different

results for the computation of the hazard curves, according to Bommer and Abrahamson

[2006]. This can eventually impact the results of seismic risk assessment and it shows the

necessity of considering input uncertainties, if they exist, for the development of GMPEs.

5. In contrast to the Bayesian regression used in Moss [2011] and Kuehn and Abrahamson

[2017], the approach proposed in this chapter does not allow an appropriate posterior

estimation of the true values of Mw and V s30. This can be regarded as a limitation of

the FOSM method compared to Bayesian regression. However, the application of Bayesian

regression to ANNs within the context of the mixed-effects model is not trivial.

5.6 Summary

In this chapter, an approach to consider input parameter uncertainties is presented on

the basis of non-parametric ANN regression for the computation of ground motion prediction

equations. Based on the first order second moment method, the variance-covariance matrix

contains off-diagonal terms which are introduced by the input parameter epistemic uncertain-

ties. An ANN training algorithm is proposed based on the generalized least squares principle,

to account for non-blockwise diagonal variance-covariance matrix in the ANN regression. The

proposed approach is applied to a generated synthetic database, in order to analyze the im-

pact of the input parameter uncertainty and to validate the proposed algorithm. It is, then,

applied to the shallow crustal earthquakes data in the RESORCE database. These two ap-

plications show an overestimation of the GMPE inter-event and intra-event uncertainties,

if the epistemic input parameter uncertainties are not taken into account. The proposed

approach relies on a prior estimation of the epistemic uncertainties of the input parameters

and the sensitivity analyses show the importance to assess correctly the input uncertainty

for the estimation of the GMPE inter-event and intra-event uncertainties. Based on the

input uncertainties σM = 0.1, σlnV s = 0.3, the reduction of the total RESORCE GMPE

uncertainty is 4-16%, depending on the frequency of the spectral accelerations, whereas the

median predictions are only slightly influenced. The uncertainty reduction is more significant

in low frequency ranges than in high frequency ranges.
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Appendix

5.A Expectation-Maximization Algorithm Applied to Mixed-effects

Problems

The maximization of Eq.5.2.5 is not trivial with the presence of η. One of the methods

to solve this problem is using an iterative expectation-maximization (EM) algorithm. In this

section we try to provide a theoretical derivation of the EM algorithm used by Abrahamson

and Youngs [1992]. The difficulty of the maximization of Eq.5.2.5 is the determination of

inter-event residual η. Knowing this residual, the determination of the model parameter θ can

be easily achieved by classical regression methods. The essential idea of the EM algorithm

is to provide an estimation of η given the earthquake observations y, and then conduct

regressions with estimated values of η. The iterative EM algorithm is divided into two main

steps, following Dempster et al. [1977]:

1. E-step (Expectation): Assuming knowing η, compute the expected value of the log-likelihood

function Eη|y[L] with the current model parameter θk, with respect to the conditional dis-

tribution of f(η|y).

Supposing that η is known, the log-likelihood function Eq.5.2.5 becomes

lnL = −N

2
ln 2π − 1

2
ln |φ2I

N
|− 1

2
(y − µ− Z η)T [φ2I

N
]−1(y − µ− Z η). (5.A.1)

Let us compute first the conditional distribution f(η|y). With the assumption of normal

distribution of η and ε, the joint distribution f(y, η) is a multi-variate normal distribution:




y

η



 ∼ f(y, η) = N









µ

0



 ,




C τ 2Z

τ 2ZT τ 2I
M








 . (5.A.2)

Considering the property of the multi-variate normal distribution, the conditional distri-

bution f(η|y) can be obtained:

f(η|y) = N
�

τ 2ZTC−1(y − µ), τ 2I
M

− τ 4ZTC−1Z
�

. (5.A.3)

Therefore, the expectation of η given earthquake observation data y is

Eη|y[η] = τ 2ZTC−1(y − µ). (5.A.4)

By applying the relation τ 2ZT (τ 2Z ZT + φ2I
N
)−1(y− µ) = (ZTZ + I

M
φ2/τ 2)−1ZT (y− µ)

[Dempster et al. 1981] and performing block matrix multiplications, Eq.5.A.4 can be further
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simplified:

Eη|y[ηi] =
τ 2
�ni

j=1 yij − µij

niτ 2 + φ2
. (5.A.5)

Now the expression of Eη|y[L] can be also derived:

Eη|y[L] =

� �

−N

2
ln 2π − 1

2
ln |φ2I

N
|− 1

2
(y − µ− Z η)T [φ2I

N
]−1(y − µ− Z η)

�

f(η|y)dη.

(5.A.6)

We do not perform further calculations of Eq.5.A.6 at the moment. We will see later in

the M-step that the calculations can be simplified.

2. M-step (maximization): Obtain the model parameters θk+1 by maximizing Eη|y(L):

θk+1 = argmax
θ

Eη|y[L]. (5.A.7)

The determination of θk+1 is realized by applying ∂Eη|y[L]/∂θ = 0. Noting that, in

Eq.5.A.6, only the model prediction µ is influenced by θ, the computation of the derivative

becomes

∂Eη|y[L]

∂θ
=

�
−1

2
(y − µ− Z η)T [φ2I

N
]−1(y − µ− Z η)f(η|y)dη

∂θ

=

�
�

∂µ

∂θ

�T

[φ2I
N
]−1(y − µ− Z η)f(η|y)dη

=

�
�

∂µ

∂θ

�T

[φ2I
N
]−1(y − µ)f(η|y)dη −

�
�

∂µ

∂θ

�T

[φ2I
N
]−1Z ηf(η|y)dη

=

�

∂µ

∂θ

�T

[φ2I
N
]−1(y − µ)

�

f(η|y)dη −
�

∂µ

∂θ

�T

[φ2I
N
]−1Z

�

ηf(η|y)dη.

(5.A.8)

Considering the relation
�
f(η|y)dη = 1 and

�
ηf(η|y)dη = Eη|y[η], Eq.5.A.8 becomes:

∂Eη|y[L]

∂θ
=

�

∂µ

∂θ

�T

[φ2I
N
]−1(y − µ)−

�

∂µ

∂θ

�T

[φ2I
N
]−1Z Eη|y[η]

=

�

∂µ

∂θ

�T

[φ2I
N
]−1
�

y − µ− Z Eη|y[η]
�

= 0.

(5.A.9)

Note that solving ∂Eη|y[L]/∂θ = 0 in Eq.5.A.9 is equivalent to solve the problem:

min
θ

1

2

�

y − µ− Z Eη|y[η]
�T

[φ2I
N
]−1
�

y − µ− Z Eη|y[η]
�

. (5.A.10)
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This implies that the model parameters determined from Eq. 5.A.7 are the ordinary least

squares estimates of the regression to find the model µ, with y − Z Eη|y[η] as outputs

of the regression problem. It has to be mentioned that, in the method described above,

there is no restriction imposed on the type of model selected for µ: It can be either a very

simple linear model, or a very complex non-linear one, such as an artificial neural network,

a random forest, etc.

The inter-event and intra-event uncertainties τ and φ can be computed once the new model

parameters θk+1 are obtained. The easiest way is to use an existing numerical optimization

solver to find the values of τ and φ, which minimize Eq.5.2.5 with the model µ determined

at the iteration k+1. Analytical solutions to determine τ and φ also exist. For the purpose

of simplicity, we do not go into details for the analytical solutions. Interested readers can

refer to Gumedze and Dunne [2011]; Hajjem et al. [2012] concerning this aspect.

The E-step and the M-step are iterated until the value of the log-likelihood of Eq.5.2.5 is

maximized. In this way, we have derived the EM algorithm of Abrahamson and Youngs

[1992] and Derras et al. [2014] used to solve the mixed-effects problem in the computation of

the GMPEs:

1. Initialization step: randomly initialize the model parameters θ0. Assuming η = 0,

conduct a regression using x and y as the inputs and outputs. θ1 is obtained.

2. Start iterations. For the iteration k (k � 1), estimate τ 2 and φ2 in maximizing Eq.5.2.5

with µ computed from the determined θk.

3. Given µ, τ 2 and φ2, compute ηi using Eq. (10) in Abrahamson and Youngs [1992]:

ηi =
τ 2
�ni

j=1 yij − µij

niτ 2 + φ2
(5.A.11)

4. Conduct a regression to determine θk+1, using x and y − η as the inputs and outputs,

respectively.

5. Set k = k + 1. Repeat the steps 2-4 until Eq.5.2.5 is maximized.
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Chapter 6

Towards the Annual Failure Rate in Seismic Risk As-

sessment

The annual failure rate can be computed if the fragility curve and the hazard curve are

provided. In this chapter, the methodology and the results from the previous chapters are

reused, for the calculation of the final annual failure rate. The structure of interest is a

nonlinear 3-story reinforced concrete model used in the project SMART 2013. The hazard

curves are computed from the ground motion prediction equations obtained in Chapter 5.

Both ground motion models, with and without the consideration of the epistemic uncer-

tainties of input parameters, are accounted for. The adaptive artificial neural network is

applied to conduct fragility analysis. The final annual failure rate is computed with respect

to three different damage levels of the inter-story drift and an assumed water storage tank,

which is located on the top floor of the SMART model.
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6.1 Introduction

In seismic risk assessment, the annual failure rate of structures and critical components is

computed by the convolution of the derivative of hazard curve and the fragility curve, based

on the total probability theory:

λ =

� +∞

0

|
dH(α)

dα
|Pf (α)dα, (6.1.1)

where λ denotes the annual rate of a consequence of interest, α represents the seismic intensity

measure (IM), H(α) is the hazard curve and Pf (α) is the fragility curve. The computation of

H(α) is based on the medians given by the ground motions prediction equations (GMPEs) and

the associated standard deviations (Stds), together with the distributions of the magnitude

and source-to-site distance of the earthquakes which the structure of interest can encounter.

This chapter is dedicated to provide a final application of the methodology and the model

explained in the previous chapters and to move forward to the computation of the annual

failure rate. The objective of this chapter is to (i) corroborate the methodology of fragility

analysis by applying to a structure with a nonlinear material constitutive law. Uncertainties

in material properties are also modeled; (ii) investigate the impact on the hazard curves from

the reduction of the Stds of the GMPEs, due to the modeling of the epistemic uncertainties

in the magnitude Mw and the site condition V s30.

This chapter is organized as follows. Firstly, we start with the presentation of the structure

model studied in this chapter. The fragility analysis is, then, conducted with an adaptive

ANN presented in Chapter 4. We continue to compute the hazard curves with the two GMPEs

obtained in Chapter 5, with and without the consideration of the epistemic uncertainties in

Mw and V s30. Finally, the final annual failure rates are computed, and we compare the

annual failure rates computed with different GMPEs.

6.2 Nonlinear SMART 2013 Structure Model

In 2011, a research program aiming at better quantifying the effects of torsion and non-

linearity on the dynamic response of reinforced concrete (RC) building was launched by

the French Atomic Energy and Sustainable Energies Commission (CEA) and Electricité de

France (EDF) [Richard et al. 2016]. In this project, a 1:4 scaled 3-story RC building was

built to represent a simplified nuclear electrical building. The in-plan dimension of the 1:4

scaled model is 3.1m×2.25m, and the height of the model is 3.65m. The thickness of the

shear wall on the lateral part of the building is 0.1m. The first two natural frequencies of the

SMART 2013 structure are around 5.7Hz and 6.4Hz, representing the deformation of the first

two eigenmodes in X and Y direction, respectively [Zentner et al. 2017]. The constructed 1:4
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scaled RC building (which is called SMART model in the sequel for simplicity), as well as

the finite element model, are shown in Figure 6.1.

(a) Constructed SMART 2013 model (b) Corresponding SMART 2013 FEM model

Figure 6.1: SMART 2013 1:4 scaled RC building model [Richard et al. 2016]

The finite element (FE) model of the SMART model consists of 22,000 degrees of freedom,

with 3230 nodes and 4400 elements, including 3D volumetric elements, 2D shell elements and

beam elements. Walls and floors are modeled by shell elements, whereas beam elements

are used to represent the central column. The impedances of the foundation are taken into

account by springs, whose properties are the same as the ones used by Zentner et al. [2017].

The constitutive law of the RC is a homogenized nonlinear model GLRC DM [Fayolle 2015].

Rayleigh damping is assumed, so that the damping ratio value of 3.5% can be obtained at

5Hz and 21Hz. The FE analysis of the SMART model is performed with Code Aster, an

in-house FE code developed by EDF R&D [Code Aster 2017]. Depending on the earthquake

level, the computation time for one single FE analysis can vary from 2h (almost linear RC

behavior) to 6 days (highly nonlinear RC behavior) on an Intel Xeon E5-2600V2 CPU of

2.7GHz.

The uncertainties on the material properties are considered in the FE simulations for

the fragility analysis. The uncertainty material parameters are: Young’s modulus of the RC

(ERC), Poisson ratio of the RC (νRC), density of the RC (ρRC), tensile elasticity limit of the

RC (σelas
RC, t) and elasticity limit of the steel (σelas

steel). The random material parameters are

generated according the statistical properties, such as probability density functions (PDF),

median values and coefficients of variation (CoV) reported in Table 6.1. These five parameters

are all considered statistically mutually independent. The values of the CoVs are taken from

Zentner et al. [2016] for ERC, νRC and ρRC. 0.1 is assigned to the CoV value of σelas
steel,
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considering the value used by Mangalathu et al. [2016]. The CoV of σelas
RC, t is set to 0.2, since

a similar value (0.19) is used for RC beams and columns in Liel et al. [2009].

Table 6.1: Uncertain material parameters and their probability distribution

Parameters PDF Median [Unit] CoV
ERC Lognormal 26.9 [GPa] 0.2
νRC Lognormal 0.18 [-] 0.1
ρRC Lognormal 2300 [kg/m3] 0.05
σelas
RC, t Lognormal 3.4 [MPa] 0.2
σelas
steel Lognormal 665 [MPa] 0.1

Two engineering demand parameters (EDPs) are used in this chapter to evaluate the

annual failure rates: (i) the inter-story drift (ISD) δISD of the SMART model. Three damage

states (light damage, controlled damage and extended damage) are investigated according to

Richard et al. [2016]. (ii) the floor spectral acceleration of an hypothetical water storage tank

(WST) located on the top floor of the SMART model. The first natural frequency of the

WST is assumed to be 1Hz. The average floor spectral acceleration in the frequency range

[0.9Hz, 1.1Hz] is computed to consider the uncertainty on the first natural frequency:

yWST =
1

1.1− 0.9
max
i=X,Y

� 1.1Hz

0.9Hz

SWST
a,i (f)df, (6.2.1)

where SWST
a,i denotes the floor spectral acceleration of the WST in the i-th direction. The

values of the failure threshold of the two EDPs are summarized in Table 6.2.

Table 6.2: Values of failure threshold for the computation of the annual failure rate

EDP Damage Failure threshold Comments

δISD
Slight damage 0.003m h/400, with h = 1.2m

Controlled damage 0.006m h/200, with h = 1.2m
Extended damage 0.012m h/100, with h = 1.2m

yWST WST damage 0.1g A supposed damage and failure threshold

6.3 Fragility Analysis

6.3.1 Configuration of the ANN

The methodology of the adaptive ANN described in Chapter 4.2.2 is applied to conduct

the fragility analysis of the SMART model. 600 synthetic 3D ground motions are generated

for twelve different earthquake scenarios. The twelve scenarios are created from the combi-

nation of four magnitudes Mw = 5, 5.5, 6 and 6.5 and three distances R = 10km, 20km and

30km. The ground motions are all generated with the site condition V s30 = 270m/s. For
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every scenario, fifty 3D ground motions are generated based on the median and 1σ spectra

in agreement with the Campbell-Bozorgnia 2008 (C&B 2008) GMPEs [Campbell and Bo-

zorgnia 2008], using the operator GENE ACCE SEISME in Code Aster [Zentner 2017]. The

correlation coefficient between the two horizontal components (in X and Y) is set to 0.2, with

the same value used in Zentner et al. [2017]. The vertical component is not correlated to the

horizontal ones. A vertical-to-horizontal ratio of 2
3
, suggested by Newmark and Hall [1978], is

applied in the generation of the 3D ground motions. The initial population is generated with

the 600 3D ground motions and 600 samples of the material parameters from the statistical

properties reported in Table 6.1.

Three seismic IMs are selected to be the inputs of the ANN, representing the record-to-

record randomness from the ground motions: (i) PGA; (ii) ASA(0.9-1.1Hz), to be consistent

with the frequency range of the WST; (iii) Arias intensity (IA). The two EDPs, ISD and

the averaged spectral acceleration between 0.9Hz and 1.1Hz of the WST, are the outputs

of the ANN. The number of the hidden layer neuron is set to five. The logarithmic values

of IMs and EDPs are used for the ANN training. Therefore, the final ANN architecture is

determined, with eight inputs (three IMs and five material parameters), five hidden layer

nodes and two outputs. Figure 6.2 shows a summary of the architecture of the ANN, which

will be training with the adaptive algorithm proposed in Chapter 4.

Input 

layer
Hidden

layer

Output

layer

Figure 6.2: The architecture of the ANN used for the SMART model
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6.3.2 Fragility Curves

Adaptive training is conducted on the ANN with the configuration of Figure 6.2. The

size N0 of the initial population of the adaptive training is 60, larger than the number of

the weights and bias (57) to be determined. At every iteration, M = 4 samples, with the

largest prediction uncertainties computed by the delta method, are added into the design of

the experiments (DoEs). Finally, the adaptive training is stopped after 15 iterations with

119 calls to the FE analysis 1. An trained ANN is therefore obtained. An additional 50

FE simulations are performed, with the ground motions and material parameters which are

not used to train the ANN. The predictions (in logarithmic values) of ANN on the training

and validation dataset are compared to the FE simulation results in Figure 6.3. It can be

observed that the quality of the training and the validation is satisfactory, since the point

clouds are located in the proximity of the ‘1-1’ diagonal line, for both δISD and yWST.
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(a) ANN training results for δISD
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(c) ANN training results for yWST
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(d) ANN validation results for yWST

Figure 6.3: Comparisons between ANN training/validation results and FEM results

1Only three data are with δ values larger than δcrit before starting the last iteration, so that in the last
iteration only these three samples are selected.
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δISD and yWST of the training dataset are also plotted against the PGA of the ground

motions in Figure 6.4 in log-log scale. It can be seen that, with the current SMART case

study, due to the increased nonlinearity with the earthquake level, a linear fit of the data in

log-log scale is not sufficient to describe the data trend: the EDPs increase faster than the

global linear increasing rate, in particular when the PGA values are larger than 0.15g. The

values of Am and βR may be biased if the linear regression is performed on the whole range

of PGA: the capacity Am can be overestimated whereas βR can be underestimated due to the

larger variability of the EDPs in high PGA ranges. To solve this problem, in this chapter,

the linear regression for the determination of Am and βR is performed for the earthquakes

with PGA values larger than 0.15g.
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(a) Point cloud of δISD as function of PGA
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(b) Point cloud of yWST as function of PGA

Figure 6.4: Point cloud of δISD and yWST as function of PGA

It should be noted that, the samples selected by the adopted adaptive training depend

on the generated initial population of the ground motions. With the selected scenarios, a

few ground motions with low IM values are also contained in the initial population, so that

some of them are retained by the adaptive ANNs. A better initial selection of the earthquake

scenarios is necessary for a further improvement of the final design of experiment.

The ANN simulations are conducted for all the 600 samples in the initial population.

Then, linear regression is executed on the ANN simulations results in log-log scale for the

earthquakes with PGA larger than 0.15g, as shown in Figure 6.5. The determination of the

Am and βR for different damage levels is achieved with Eq.3.3.4. The obtained values of the

fragility parameters are reported in Table 6.3. The fragility curves for the considered damage

levels are plotted in Figure 6.6.
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Table 6.3: Values of the parameters of the fragility curves of the SMART model

EDP δISD yWST

Damage Slight damage Controlled damage Extended damage Failure of WST
Am 0.325g 0.523g 0.842g 0.728g
βR 0.200 0.200 0.200 0.171
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(a) ANN simulation results: point cloud of
δISD as function of PGA
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(b) ANN simulation results: point cloud of
yWST as function of PGA

Figure 6.5: ANN simulation results: point cloud of δISD and yWST
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Figure 6.6: Fragility curves for the inter-story drift and the water storage tank

6.4 Hazard Curves and Annual Failure Rates

Hazard curves are used to describe the annual rate of exceeding a certain earthquake

level of a given site, for a seismic intensity measure such as PGA [Baker 2008]. Probabilistic

seismic hazard analysis (PSHA), is a widely applied approach for the computation of hazard

curves [Cornell 1968; McGuire 2008]. In this section, based on the GMPEs calibrated by the
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ANNs in Chapter 5, we aim to perform PSHA for some simplified earthquake scenarios. Basic

theories about the computation of hazard curves are presented first. Then hazard curves are

plotted to visualize the impact of the reduced GMPE Stds, resulting from the consideration

of the epistemic uncertainties in Mw and V s30. Finally, combining results from the hazard

analysis and the fragility analysis, the annual failure rates of the considered damage levels

described in Section 6.3 are calculated with Eq.6.1.1.

6.4.1 Hazard Analysis: Introduction

Hazard curves are used to estimate the annual rate of exceedance of a seismic intensity

level, for a given site of interest. Based on the hypothesis of the normality of the GMPEs

residuals, the probability of exceeding an IM level α, given the values of Mw and V s30, can

be computed by

P (IM > α|mw, rjb) = 1−Φ(
lnα− lnµIM(mw, rjb)

σIM

), (6.4.1)

whereΦ(·) is the cumulative distribution function (CDF) of the standard normal distribution,

µIM(mw, rjb) is the median prediction of the GMPEs at magnitude value of mw and distance

value of rjb, for a specific intensity measure IM, and σIM is the Std given by the GMPEs for

this IM. By employing the total probability of failure, the hazard curve is calculated by

H(α) = λ(IM > α) =
�

i

λi
source

�

mw

�

rjb

P (IM > α|mw, rjb)f
i
Mw

(mw)f
i
Rjb

(rjb)drjbdmw,

(6.4.2)

where λ(IM > α) is the annual rate for an IM exceeding the level α, λi
source is the annual

occurrence rate of the earthquake source i, f i
Mw

(mw) and f i
Rjb

(rjb) denote the distribution of

the magnitude Mw and the distance Rjb of this source, respectively. The Gutenberg-Richter

recurrence law [Gutenberg and Richter 1944] is often adopted to characterize the distribution

of the magnitude fMw
(mw). The upper limit of the earthquake magnitude is accounted for in

an improved version of the Gutenberg-Richter recurrence law, named bounded Gutenberg-

Richter recurrence law. These two laws are shown in Figure 6.7, along with some observed

data of the earthquake magnitude. With the bounded Gutenberg-Richter law, fMw
(mw) is

computed by

fMw
(mw) =

b ln(10)10−b(mw−mmin)

1− 10−b(mmax−mmin)
, mmin � mw � mmax, (6.4.3)

where b is the slope of the Gutenberg-Richter law, and mmin and mmax are the minimum and

maximum magnitudes of the considered earthquake source, respectively. The distribution of

the distance can have different forms, depending on the type of the earthquake source: area
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Figure 6.7: Gutenberg-Richter and bounded Gutenberg-Richter recurrence laws [Baker
2008]

source or line source. Let us take the area source as an example, as shown in Figure 6.8.

The earthquake source is randomly distributed in the area between [rmin, rmax] with equal

likelihood. Therefore, the probability of the earthquake, such that the source-to-site distance

is smaller than rjb(rjb � rmin), is computed by:

FRjb
(rjb) = P(Rjb � rjb) =

π(r2jb − r2min)

π(r2max − r2min)
=

r2jb − r2min

r2max − r2min

, (6.4.4)

where FRjb
(rjb) denotes the CDF of the Rjb. Therefore the probability density function

fRjb
(rjb) can be derived:

fRjb
(rjb) =

dFRjb
(rjb)

drjb
=

2rjb
r2max − r2min

, rmin � rjb � rmax. (6.4.5)

The hazard curve can be finally obtained when Eqs.6.4.3 and 6.4.5 are plugged into Eq.6.4.2.

6.4.2 Hazard Curves for the SMART Model

This subsection is focused on the computation of the hazard curves, with the GMPEs

determined by ANNs in Chapter 5. In this study, we suppose that the SMART model is

located on a soil profile with V s30 = 270m/s. Only one potential area earthquake source

with a value of 0.02 for λsource is considered. The magnitude of this earthquake is assumed

in the range of [4.5, 6.5] and the value of the parameter b in Eq.6.4.3 is set to 1, so that

the distribution of the magnitude can be obtained with the bounded Gutenberg-Richter

recurrence law (Eq.6.4.3). Two scenarios of distances are investigated in this study: (i)

Rjb = 30km without any uncertainty. In this way, the associated PDF of the distance is
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Source

Site

Figure 6.8: Illustration of an area source of an earthquake

fRjb
(rjb) = δ(rjb − 30), where δ(·) is the Dirac delta function. (ii) the value of Rjb is likely

between 20km and 40km. Then fRjb
(rjb) = rjb/600., obtained with Eq.6.4.5. Both GMPEs

obtained with ANNs, with and without the consideration of the uncertainties in Mw and

V s30, are used in the computation of the hazard curves. The hazard curves are computed

for PGA, shown in Figure 6.9. In the legend of Figure 6.9, the hazard curves computed

with the GMPEs without consideration of the uncertainties in Mw and V s30 are indicated

with the word ‘Certain’, whereas the hazard curves computed with the consideration of the

uncertainties are attributed with the word ‘Uncertain’.
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Figure 6.9: Hazard curves for the computation of PGA

In Figure 6.9, it can be concluded that, for both scenarios, the computed hazard curves

with GMPEs considering input uncertainties (i.e. with the legend ‘PGA Uncertain’) show

lower values of annual rate of exceedance, compared to those computed by GMPEs without
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considering input uncertainties, in particular in high PGA ranges. This is due to the reduced

GMPE Std, resulting from the modeling of the epistemic uncertainties in Mw and V s30 in

the computation procedure of the GMPEs.

In addition, we can also observe an increase in the annual rate of exceedance, if Rjb

is not a deterministic value 30km and the value of Rjb is extended to [20km, 40km]. To

better investigate the phenomenon, we compute the values of the median GMPEs values

of ln(PGA) at three different distances: 20km, 30km and 40km, shown in Table 6.4. The

relative differences between the values computed at 20km (or 40km) and the values at 30km

are also computed and indicated in the brackets in Table 6.4. We can see that for both

GMPE models, the decrease of ln(PGA) from 20km to 30km is larger than that from 30km

to 40km. In spite of a linear increase of fRjb
(rjb) from 20km to 40km, the stronger PGA

levels in shorter distance remain predominant in the computation of the hazard curves, which

explains qualitatively the increase of the annual rate of exceedance when Rjb is extended to

[20km, 40km].

Table 6.4: Values of ln(PGA) computed by GMPEs at different values of distances

GMPE Model ln(PGA) with input uncertainty ln(PGA) without input uncertainty
Rjb [km] 20 30 40 20 30 40

Mw = 5
-3.539

-4.100
-4.514 -3.5326

-4.052
-4.464

(13.68%) (-10.09%) (12.82%) (-10.15%)

Mw = 5.5
-2.892

-3.409
-3.829 -2.929

-3.435
-3.798

(15.17%) (-12.33%) (14.14%) (-10.58%)

Mw = 6
-2.374

-2.838
-3.191 -2.463

-2.910
-3.269

(16.36%) (-12.42%) (15.36%) (-12.33%)

6.4.3 Annual Failure Rates

In the end, we proceed with the computation of the annual failure rates with the damage

states defined in Section 6.3 and in Section 6.4.2. The annual failure rates are computed with

Eq.6.1.1. The final results of the annual failure rates computed with two different GMPEs

for different damage states are reported in Table 6.5.

Table 6.5: Annual failure rates for the considered damage levels

Rjb = 30km Rjb ∈ [20km, 40km]
GMPEs Model ANN Certain ANN Uncertain ANN Certain ANN Uncertain

ISD Slight Damage 1.591× 10−5 1.168× 10−5 1.989× 10−5 1.548× 10−5

ISD Controlled Damage 2.516× 10−6 1.563× 10−6 3.442× 10−6 2.348× 10−6

ISD Extended Damage 2.916× 10−7 1.432× 10−7 4.475× 10−7 2.522× 10−7

WST Failure 5.218× 10−7 2.701× 10−7 7.805× 10−7 4.599× 10−7

From Table 6.5, it can be concluded that the reduced Std from the modeling of the input
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uncertainty of the GMPEs leads to lower annual failure rates for the considered damage levels.

Comparing the two Rjb cases (Rjb = 30km and Rjb ∈ [20km, 40km]), the computed annual

failure rates is larger in the case of Rjb ∈ [20km, 40km]: this is because the potential seismic

hazard for Rjb ∈ [20km, 40km], shown in Figure 6.9, is higher than that of Rjb = 30km.

Besides, with a lower value of the median capacity in the fragility curves, the annual failure

rate of the slight damage for ISD is the highest among all the three damage levels, whereas

the annual failure rate of the extended damage for the SMART model is the lowest.

6.5 Summary

This chapter provides a final application of the proposed methodologies and models of

the previous chapters, for the computation of the annual failure rate of the consequences of

interest. The application case study is the structural model used in the SMART 2013 project.

A nonlinear material constitutive law is employed to model the behavior reinforced concrete.

An ANN is trained with the adaptive learning for the prediction of the inter-story drift

and the spectral acceleration of an hypothetical water storage tank around its first natural

frequency. Fragility curves are then computed for different damage levels with the predictions

of the ANN. On the other hand, hazard curves are computed from the GMPEs constructed

by means of ANNs, with and without the consideration of the input uncertainties. For the

SMART case, it is shown that, due to the reduced GMPEs Std resulting from the modeling

of the input uncertainty, lower seismic hazard is obtained, in particular for high PGA values.

This leads to lower values of annual failure rate for the damages of both the inter-story drift

and the water storage tank. However, it is worth mentioning again that the adopted adaptive

ANN training depends to a certain degree on the initial population of the ground motions.

In the SMART case study, a better quality of the initial population can further improve the

design of experiments for FEM simulations.
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Chapter 7

Conclusion

The main objective of the PhD thesis is to employ neural-network-based methods in

seismic risk assessment, in order to (i) Reduce the computational effort in seismic fragility

analysis; (ii) Compute seismic fragility curves with different sources of information, including

numerical simulation results, post-earthquake observational data and reference values from

the literature; (iii) Apply data-driven ground motion prediction equations (GMPEs), in par-

ticular considering the epistemic uncertainties of the magnitude Mw and the site condition

V s30. To achieve these objectives, methods based on artificial neural networks (ANNs) and

Bayesian statistics have been used in the work of the PhD thesis.

The work accomplished in this PhD thesis is divided into four parts. First, the application

of ANNs in the fragility analysis has been investigated. Based on the finite element (FE)

simulation results, the most influential seismic intensity measures (IMs) are identified by a

forward selection procedure, which is driven by semi-partial correlation coefficients. An ANN

is trained to establish a relation between seismic IMs and the structural engineering demand

parameters of interest. The influence of the ANN prediction uncertainty on the fragility

curves is also discussed. It has been found out that the ANN prediction uncertainty consists

of two parts. The first part is from the simplification of the seismic inputs and it is directly

integrated into the computation of the probability of failure. On the other hand, the second

part is the statistical uncertainty linked to the distribution of the inputs (i.e. the IMs). This

latter statistical uncertainty is used to provide the confidence intervals. In the end, a large

number of IMs are sampled and used to conduct ANN simulations. Point-wise fragility curves

can be computed with the results from fast-running ANN simulations. The methodology has

been applied to compute the fragility curve of an assumed electrical cabinet located in the

Kashiwazaki-Kariwa nuclear power plant.

In the second stage, the fragility analysis is conducted with different sources of informa-

tion: simulation results, observational data from post-earthquake inspections and reference

values provided in the literature. A Bayesian framework which integrates all the possible

information is proposed. In this framework, an ANN is trained adaptively based on the

ANN prediction uncertainty, in order to better select a reduced number of ground motions

that can represent the whole ground motion space. Fragility parameters computed from the
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ANN simulation results provide an estimation of the prior capacity parameter Aprior
m and

the aleatory uncertainty βR. The value of the prior epistemic uncertainty β
prior
U is selected

according to the literature. The damage data, collected from post-earthquake inspections,

are used to construct the likelihood function. A two-stage transformation of the IM, in par-

ticular the peak ground acceleration (PGA), is proposed to transfer the IM value registered

in the database to the free field of the structure of interest. The Bayesian updating is finally

performed to obtain the posterior distribution of the capacity. The framework is applied to a

low-voltage switchgear in the Kashiwazaki-Kariwa nuclear power plant, and the used damage

data are gathered from the database of seismic qualification utility group (SQUG). After the

Bayesian updating, it can be observed that the value of the epistemic uncertainty is reduced

with the additional information from the database, whereas the capacity of the low-voltage

switchgear has increased since few failure cases of low-voltage switchgear are observed in the

SQUG database.

The third part of the thesis is dedicated to the application of ANNs in the computation

of GMPEs. The uncertainty of the magnitude Mw and the averaged thirty-meter-shear-wave

velocity V s30 is accounted for in the computation of the GMPEs. The modeling of the

uncertainty related to Mw and V s30 relies on the first order second moment approximation,

which gives rise to the appearance of off-diagonal elements in the variance-covariance matrix

of the residuals. An ANN training based on the generalized least-squares is designed to

handle the off-diagonal terms for the maximization of the likelihood function. The proposed

method is validated on a simulated database and is also applied to the RESORCE database.

The application results show that the standard deviations of the GMPEs can be reduced by

4-16%, depending on the frequency of the spectral accelerations.

Finally, fragility analysis and hazard analysis are combined together to compute the an-

nual failure rate. A nonlinear SMART model is used as a final application example. Uncer-

tainties in the material properties are also modeled in this case study. The fragility analysis

is conducted by means of the adaptive ANN training. Hazard curves are computed with the

two obtained GMPE models, namely with and without the consideration of input uncertain-

ties. Annual failure rates are computed for three levels of damages of the inter-story drift, as

well as the failure of an assumed water storage tank. Application results in the considered

case study show that, due to the reduced GMPEs standard deviations resulting from the

modeling of the input uncertainty, lower seismic hazard is obtained, which leads to lower

values of annual failure rates for the considered damages.

For further researches, a better selection of the initial population for the SMART nonlinear

model can be used to improve the computation of the fragility curves of the SMART model.

Furthermore, rather than using different scenarios for the generation of the earthquake exci-
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tations, the deaggregation of seismic hazard can be conducted to identify the scenarios that

contribute the most to the seismic hazard. Then, fragility analysis can be performed based

on these scenarios. In addition, non-parametric Monte-Carlo based fragility curves can be

computed to consider the heteroscedasticity of the βR values for the SMART case study, also

because in this case the assumption of the linear regression in log-log scale is not complete

justified. The current approach to consider the uncertainty in the material parameters con-

sists in sampling their values from corresponding probability distributions. Then, the same

material parameter values are applied to the entire structure. One can also use the random

field approach and assign realizations of the random field of the material to the structure, so

that the material parameter values are different on different parts of the structure.

For the GMPE computation, other site- and fault-related parameters can be also inte-

grated as predictor parameters in the GMPE model. It would also be interesting to estimate

the error terms of δM and δV s, if possible.

ANNs can be used as a metamodel when the ground motion time histories are injected

directly as the inputs. Therefore, the prediction of the ANN is also the time history of a

physical quantity of interest. In this case, the recurrent neural network can be a good choice

to capture the dynamic temporal behavior, due to the existence of the inner loop in the ANN

architecture.

Another potential perspective is to perform vector-based fragility analysis and hazard

analysis. The annual failure rate can also be computed by the convolution of the fragility

surface and the joint probability density function of two IMs. The obtained annual failure

rate can be compared to that calculated from scalar-based seismic risk assessment.
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Abstract

The fragility curve is defined as the conditional probability of failure of a structure, or its critical components,

at given values of seismic intensity measures (IMs). The conditional probability of failure is usually computed

adopting a log-normal assumption to reduce the computational cost. In this paper, an artificial neural network

(ANN) is constructed to improve the computational efficiency for the calculation of structural outputs. The

following aspects are addressed in this paper: (a) Implementation of an efficient algorithm to select IMs

as inputs of the ANN. The most relevant IMs are selected with a forward selection approach based on

semi-partial correlation coefficients; (b) Quantification and investigation of the ANN prediction uncertainty

computed with the delta method. It consists of an aleatory component from the simplification of the seismic

inputs and an epistemic model uncertainty from the limited size of the training data. The aleatory component

is integrated in the computation of fragility curves, whereas the epistemic component provides the confidence

intervals; (c) Computation of fragility curves with Monte Carlo method and verification of the validity of the

log-normal assumption. This methodology is applied to estimate the probability of failure of an electrical

cabinet in a reactor building studied in the framework of the KARISMA benchmark.

Keywords: Seismic probabilistic risk assessment; Fragility curve; Artificial neural network; Feature

selection; Prediction uncertainty

1. Introduction

The seismic probabilistic risk assessment (SPRA) methodology has been applied worldwide for the esti-

mation of the seismic risk of nuclear power plants (NPPs) [1]. In the SPRA methodology, fragility curves

are computed as conditional probabilities of failure of structures, or critical components, for given values

of a seismic intensity measure (IM), such as the peak ground acceleration (PGA) [2]. The core damage

frequency of the plant is, then, calculated by the convolution of the fragility curves with the hazard curves

in fault tree and event tree analysis [2]. The computation of fragility curves requires a realistic estimation

of the structure performance subject to seismic excitations via the quantification and the propagation of

uncertainties existing in earthquake ground motions, structural material properties, etc. These uncertainties

are categorized into two groups [3]: aleatory uncertainties, which reveal the inherent randomness of variables

or stochastic processes, and epistemic uncertainties, which originate from the lack of knowledge about the

model and provide a family of confidence interval curves for the fragility estimation.
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In practice, a fragility curve is calculated as the conditional probability that the damage measure (DM)

exceeds a critical threshold, for a given seismic IM [4, 5]:

Pf (α) = P (y > ycrit|α) (1)

where y is the DM, such as inter-story drift, ycrit is the failure threshold and α represents the seismic IM.

This conditional probability can be evaluated pointwise for different α values with the Monte Carlo method

[4, 6], as well as with methods based on the log-normal hypothesis [3, 7, 8]. However, both methods require

a few hundred heavy numerical simulations with the finite element method (FEM).

One way to improve the computational efficiency consists in building a metamodel to calibrate the statis-

tical relation between seismic inputs and structural outputs. In fact, it is difficult to directly use stochastic

ground motions to construct the metamodels, because the high-dimensionality of the inputs of such meta-

models requires a very large size of training data to accurately approximate the input-output relation [9].

An alternative is to use seismic IMs as inputs of the metamodels to represent ground motions. Various

functional models based on the calibration of IMs-DM relation have been proposed [10, 11, 12]. According

to these works, a nonlinear regression metamodel seems more suitable to provide adequate nonlinearity in

the IMs-DM relation. However, with this approach, the simplification of the continuous stochastic ground

motion by a small set of IMs may not allow to describe all the random variability in the earthquake motion

[13]. Therefore, it cannot ensure the performance of the metamodels.

Some studies regarding the application of metamodels in fragility analysis have been realized recently.

Most works focus on using seismic IMs to characterize earthquake accelerations. Metamodels are constructed

to calibrate the relation between DMs and uncertain inputs of the structural models, including IMs and

material parameters. The construction of the metamodels is either achieved by decomposing the nonlinear

input-output relation with high-dimensional model representation (HDMR) [13, 14], or realized with polyno-

mial regression [15, 16, 17, 18, 19] or other more advanced statistical tools, such as artificial neural networks

(ANNs) [20, 21, 22, 23, 24], LASSO regression [25], Bayesian networks [26], merging multivariate adaptive

regression splines, radial basis function network, support vector regression [27], Kriging [9, 28], etc. On the

other hand, earthquake accelerations are also used directly as inputs of the metamodel in [29] to predict

structural response time histories. The construction of the metamodel is divided into two steps: the first step

is to extract the characteristics of earthquake motions with nonlinear auto-regression; then the polynomial

chaos expansion is applied to these characteristics to construct the metamodel. DMs are computed from the

structural response time histories, and fragility curves can be thus obtained. Although this method seems

different from the classical metamodeling with IMs, the idea remains the same: the nonlinear auto-regression

serves as a tool to extract the features of earthquake motions and past values of the structural displacement,

while these features are represented by the IMs in classical approaches. Besides regression methods, classifica-

tion models like logistic regression, random forests and support vector machine are utilized in [30] to predict

directly the probability of failure from the uncertain inputs. Despite the fact that seismic fragility analyses

have been successfully performed with different types of metamodels, the following two points are rarely

discussed: i) Systematic selection of pertinent IMs to represent seismic ground motions; ii) Quantification of

the prediction uncertainty of the metamodels.
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In this paper, a computationally efficient methodology for the application of ANNs to characterize the

IMs-DM relation is proposed, from the selection of the most relevant IMs to the quantification of ANN

prediction uncertainties. Most existing works take subjective choices of the IMs as inputs of metamodels

according to their expertise (e.g. PGA or PGA with other IMs). One IM is obviously not sufficient to

represent the seismic ground motion. More systematic approaches are proposed in [20, 23] to guide the

selection of IMs. Different sets of IMs are selected to train ANNs in [20] and the performances of the different

sets of IMs are analyzed with respect to their corresponding ANNs median training errors. Ferrario et al.

proposes a wrapper approach based on genetic algorithms in [23] to select the best subset of IMs. However,

these approaches can be time-consuming, because it requires repeated trainings of the metamodel. A more

efficient feature selection method is proposed in this work.

The uncertainty in the metamodel predictions is also investigated. The ANN prediction uncertainty

is considered to be epistemic in [31] to quantify the impact of the size of the used data. The prediction

uncertainty is determined by the bootstrap approach, in which retrainings of ANNs are necessary, and it

provides confidence intervals of fragility curves. On the contrary, other works integrate the metamodel

uncertainty completely into Pf (α) by modeling the standard deviation (Std) of the residual with a dual

metamodel (quadratic response surface, HDMR or Kriging) [9, 14, 18, 32]. The residual is sampled from

a corresponding normal distribution, and it is added to the mean structural DM predicted by the primal

metamodel. With this approach, the residual is an aleatory uncertainty, and the influence of the size of

the training data is not accounted for. In addition, the number of FEM simulations required by the dual

metamodel approach can be very large, because a number of FEM simulations should be performed at every

design point with different stochastic motions to obtain the Std. Therefore, it may not be applicable to a very

complex structure such as NPP. In this paper, a clearer insight of the ANN prediction uncertainty computed

with the delta method is provided: it consists of an aleatory component from the simplification of the seismic

inputs and an epistemic uncertainty due to the paucity of the training data. The former is considered in the

computation of Pf (α), whereas the latter is used in the estimation of confidence intervals.

Among various types of metamodels, ANNs are chosen due to their adequate nonlinearity and their

excellent universal approximation capability for continuous bounded functions [33, 34] (e.g. compared to

polynomial response surfaces). Firstly, rather than a classification model like a SVM classifier, which returns

only binary failed or survived information for the conditions of structures, an ANN regression model provides

predictive structural responses and offers more flexibility for the fragility analysis. Furthermore, the appli-

cability of the ANN does not depend on the probability distribution of input data, so it is a versatile model

with a very wide domain of application. Finally, a metamodel based on ANN is a regression rather than an

interpolation model. If representative seismic IMs are used to characterize the continuous seismic motions

as inputs of the metamodel, the IMs cannot fully represent the seismic randomness and this introduces a

residual term. However, an interpolation model predicts identical outputs as the original ground motions

for the training data: it may thus overfit the input-output relation. This point is addressed in detail in this

work.

This paper is organized as follows: in the next section, the basis about simulation-based fragility analysis

methods is briefly recalled. Section 3 presents the methodology for ANN-based fragility estimation. Feature
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selection techniques are highlighted in this methodology to select the most relevant seismic IMs for a better

accuracy of the metamodels. ANN prediction uncertainties are separated into aleatory and epistemic compo-

nents. These uncertainties are considered in the computation of the fragility curves and the related confidence

intervals. An application of the proposed methodology to the Kashiwazaki-Kariwa NPP is demonstrated in

Section 4 in the context of the KARISMA benchmark [35]. Conclusions are finally provided in Section 5.

Only the ground motion record-to-record variability is considered in this paper, to better study the impact of

the ANN prediction uncertainties on the fragility curves. In addition, without specification, the metamodel

mentioned in this paper represents regression or interpolation models, instead of binary classification models.

2. Simulation-based Fragility Analysis

A simulation-based fragility analysis is composed of 3 main steps:

1. Structure modeling. This step consists in establishing a set of mathematical partial differential equations

to describe the mechanical behavior of the underlying model.

2. Numerical simulation and calculation of the DM. Numerical simulations are performed to propagate

the uncertainties and to compute the DM. FEM is the most widely used numerical resolution method.

3. Computation of the conditional probability of failure of the structure. This step is realized by applying

a statistical analysis to the IM-DM data cloud (α, y) computed from the numerical simulation results.

In this section, the computation of the DM and the calculation of the conditional probability of failure are

further discussed. The concept of the residual of the metamodel is introduced and emphasized. This concept

will be later used throughout the next parts of the paper. Two commonly used methods for the computation

of the conditional probability are presented. These two methods will be applied to calculate the fragility

curves in an industrial complex case study in this paper.

2.1. Computation of the Damage Measure

Mechanical model. The mechanical model to compute the DM of a structure or a critical component can be

described as

y = f(a(t)) (2)

where a(t) represents the seismic ground acceleration. The resolution of Eq. 2 is usually time-consuming,

especially when the structural model is very complex. In this way, one needs to resort to the metamodel to

reduce the computational cost of the numerical simulations.

Metamodel. In this paper, a metamodel established for IMs-DM relation is desired. It is used to replace the

mechanical model in order to improve the computational efficiency:

ŷ = f̂(IM1, IM2, ..., IMk) (3)

where the symbol ‘∧’ denotes the results calculated from the metamodel. The regression of the metamodel

leads to a reduction of the variability in the metamodel prediction: y = ŷ + ε. The existence of the residual

ε not only comes from the lack-of-fit of the metamodel, but also has more specific interpretations:
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1. The metamodel cannot show sufficient nonlinearity to replace the mechanical model. The residual value

can be very high if a linear metamodel is wrongly selected to substitute a nonlinear mechanical model.

2. IMs are adopted to represent the inherent randomness of ground motions a(t), which gives rise to a

loss of information in the input variables. Different ground motion time histories with the same set of

IM values lead to different structural responses, in contrast to a deterministic response predicted by

the metamodel. Consequently, ε should be present for the training data in the metamodeling process.

That is also the main reason why a nonlinear regression model like ANN is preferred, rather than an

exact interpolation model, such as Kriging with classical kernels (Gaussian kernel, Matern kernel, etc).

3. The number of the training data for the development of the metamodel is usually limited due to the

computational cost of FEM simulations.

These facts show the necessity of the quantification of the metamodel prediction uncertainty, in order to

provide reliable applications of metamodels to critical structures such as NPPs.

2.2. Computation of Fragility Curves

This section is dedicated to recall the basis of two methods in the computation of fragility curves: the

Monte Carlo Method and the regression method. These two methods can be applied to compute the condi-

tional probability of failure when the data cloud (α, y) is provided.

Monte Carlo (MC) method. In this method, N seismic records with the same IM level α are collected.

Structural analyses for all N seismic motions are performed, and the probability of failure for the seismic IM

level α is calculated as

PMC(α) =
1

N

N
�

i=1

1[ycrit − yi(α) < 0] (4)

where 1[ycrit − yi(α) < 0] equals 1 if ycrit − yi(α) < 0, otherwise it equals 0.

Regression method with log-normal assumption. The log-normal assumption is commonly adopted to compute

the conditional probability of failure. The regression method (Reg), or ‘cloud analysis’, is based on the linear

regression of the data cloud (α, y) in the log-log space [5, 10, 36].

ln y = c lnα+ ln b+ ε (5)

where b and c are regression parameters determined from the data cloud (lnα, ln y), and the residual ε follows

a normal distribution N (0,β2
R|IM ). βR|IM is calculated as

βR|IM =

�

�N

i=0(ε
i − ε̄)2

N − 2
(6)

in which ε̄ is the mean of the regression residuals and N denotes the size of the data (α, y). The conditional

probability of failure can be, thus, calculated:

Pf (α) = Φ(
ln bαc − ln ycrit

βR|IM
) (7)

where Φ(·) is the cumulative distribution function of the standard normal distribution N (0, 1).

Both methods MC and Reg are used in the sequel of this paper to compute fragility curves. In particular,

the pointwise MC method serves to confirm the validity of the log-normal assumption.
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3. Description of the ANN-based Seismic Fragility Analysis

The global procedure for the estimation of the fragility curves with ANNs is illustrated in Figure 1. The

basic stages are: (1) Preparation of data set by performing FEM simulations. (2) Feature selection to extract

the most important IMs as inputs of the ANN. (3) ANN training and validation. (4) ANN uncertainty

quantification. (5) Computation of fragility curves with ANN simulation results.
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Figure 1: Work flow for the computation of fragility curves with ANN

3.1. Preparation of Data Set

This step is achieved by conducting a series of numerical simulations with the FEM. The soil-structure

interaction (SSI) should be considered to offer a best estimate of the structural response. The number of

simulations is thus limited due to the computational complexity of the FEM analysis, with the presence of

the SSI. The basic working flow is divided into the following 5 steps illustrated in Figure 2:

1. Generation of synthetic seismic motions at the bedrock. This can be realized by generating a set of

seismic motions compatible with the spectral acceleration predicted by the ground motion prediction

equations (GMPEs).

2. Convolution of the bedrock accelerations to the free surface. The convolution is performed using a

1D column of soil with the consideration of soil degradation. The degradation of the soil during the

earthquake is accounted for by the equivalent linear method (ELM) based on the 1D soil column [37].

3. After the convolution, surface ground motions and their corresponding degraded soil profiles are ob-

tained. The ground motions obtained on the free surface are coherent with the site-specific degraded

soil profiles. The latter is utilized as the input of the SSI analysis, whereas IMs of the ground motions

on the free surface can be extracted.

4. SSI analysis is conducted and structural response time histories can be thus obtained.

5. The DMs are computed by the post-processing of the structural response time histories.

Consequently, the data set IMs-DM is available for the feature selection and further for the construction of

the ANN metamodel.
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Figure 3: Computation of SPCC – cos(θ)

3.2. Feature Selection

Before the training of the ANNs, it is important to select a subset of IMs whose impact on the DM

is dominant. This step, named feature selection, is crucial in the metamodel construction phase to ensure

the performance of the ANNs. On the one hand, an IM irrelevant to the output should not be considered

as a feature; on the other hand, with the limited size of available training data, a smaller input dimension

simplifies the ANN structure and improves the generalization capacities of the network [33]. The feature

selection approach applied in [23] is a wrapper approach based on the genetic algorithm (GA). The wrapper

approach relies on the metamodel to select the best subset of the features (i.e. relevant IMs) [38]. However,

one disadvantage of the wrapper approach is its computational burden, because this method requires a large

number of repeated trainings of the ANNs.

Filter approach based on semi-partial correlation coefficients. A filter approach is proposed in this paper

to improve the computational efficiency of the wrapper feature selection. In machine learning, the filter

approach describes a group of methods used to select the features regardless of the metamodel. Therefore, it

can be regarded as a sensitivity analysis between inputs and outputs. In the context of fragility analysis, the

main difficulty in applying such an approach is the dependence between all the IMs. This correlation should

be considered in the execution of the filter approach to discard the redundant information.

For this purpose, a forward selection algorithm driven by semi-partial correlation coefficients (SPCCs) is

used to rank the importance of the IMs. As shown in Figure 3, in order to eliminate the dependence, the

IM X2 is projected onto the orthogonal space of the reference IM X1. The SPCC calculates the correlation

(the cosine value of the angle θ) between the projection U2 and Y . The orthogonal relation between random

variables (RVs) is interpreted by the statistical linear independence between them. Therefore, if IMs follow

log-normal distributions, the orthogonal projections can be realized by means of Cholesky factorization on the

correlation coefficient matrix of the underlying normally distributed RVs [39]. The adopted forward selection

algorithm is as follows:

1. Define the input and the output of the algorithm: the input is the feature set S0 = {X1, · · · , Xk}

(Xi = ln IMi) and the output is ranked feature set S∗. Initialize the output set S∗

0 = ∅.
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2. Begin the iteration i (i starts from 0): for each feature Xj in Si, compute the SPCC between Xj and

the Output Y (lnDM), by projecting Xj onto the orthogonal space of the ranked feature set S∗

i (i.e.

conditional to S∗

i ). Select the feature with the largest SPCC value:

j∗ = argmax
j

SPCC(Xj , Y |S∗

i ) (8)

RSP
i = SPCC(Xj∗ , Y |S∗

i ) (9)

When i = 0, SPCC(Xj , Y |∅) actually computes the linear correlation coefficient between Xj and Y .

3. Subtract the selected Xj∗ from the feature set: Si � Xj∗ → Si+1, and add Xj∗ into the output set:

S∗

i ⊕Xj∗ → S∗

i+1.

4. Set i = i+ 1 and return to Step 2 until all the IMs are selected in S∗.

The IMs are ranked in S∗ according to their importance to the output, and one can select the first few

IMs to train the ANN.

3.3. ANN Training and Validation

The structure of a classical, three-layer, feed-forward ANN is illustrated in Figure 4. Mathematically,

this ANN consists of activation functions (linear functions, and nonlinear tanh functions) and a set of model

parameters. The model parameters are the ANN weights w and biases b, which are adjusted by training to

minimize a cost function. The cost function computes the difference between the ANN predictions ŷ and the

targets y (e.g. FEM simulation results), summed over every training example i. For simplicity of notation,

in this paper, w is used to represent all parameters of the ANNs, including weights and biases.

E(x;w) =
1

2

N
�

i=1

(ŷi(x;w)− yi)2 (10)

where E(x;w) denotes the cost function which the ANN aims to minimize, N is the total number of ANN

training examples, and x is the ANN input vector. The ANN is trained based on the gradient vector g, which

can be computed efficiently by the back-propagation algorithm [33, 40]:

g =
∂E(x;w)

∂w
(11)

For the ANN training, the available data set is divided into 3 independent subsets:

- Training subset (e.g. 60% of the total data), which is used to determine the optimal weighting parameters

w∗ that minimize the cost function of the ANN model.

- Validation subset (e.g. 20% of the total data), which supervises the training process. The ANN training

is stopped when the validation error reaches its minimum to avoid overfitting [33, 41]. This strategy is called

early stopping.

- Test subset (e.g. 20% of the total data), which is independent of the training and validation subsets.

The test subset is not used in the ANN training, but used afterwards to evaluate the generalization capacity

of a trained ANN metamodel.

The ANN is suggested to be trained with IMs-DM in log-log space to facilitate the consideration of the

ANN uncertainties into the fragility curves. The performance of the ANN can be evaluated by the root-

mean-square error (RMSE). Once trained and validated, the ANN substitutes the FEM model to accelerate

the computation process.
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Figure 4: A multiple-layer perceptron model

3.4. ANN Uncertainty Quantification

Besides the ANN deterministic prediction ŷ, the confidence interval (CI) of this prediction can be also

estimated. The main methods to evaluate the prediction intervals (PIs) of ANNs are the bootstrap method,

the Bayesian approach and the delta method [42]. The delta method is adopted in this study due to its

computational efficiency because it does not require repeated trainings of the ANNs with the bootstrap

resampling[43]. Assuming a normal distribution of the ANN training error, this method relies on the linear

Taylor expansion of the ANN model and estimates the PIs of the corresponding linear model [43, 44, 45].

In this way, the Hessian matrix of the ANN is approximated by the product of the Jacobian matrices.

Mathematically, the PIs are computed with the Std of the ANN training error σANN and the gradient vector

h:

hi =
∂ŷi

∂w
=

∂ŷi

∂E(x;w)

∂E(x;w)

∂w
=

g

ŷi − yi
(12)

The Jacobian matrix J of the ANN training data is, hence, constructed as

J =
�

h1 h2 · · · hi · · · hN
�

(13)

where J is a Q × N matrix, with N the number of the ANN training examples and Q the number of the

weighting parameters in the ANN. Consequently, the prediction uncertainties of ANNs are calculated as

s2 = σ2
ANN + σ2

ANNh
T
test(JJ

T )−1htest (14)

where s denotes the Std of the ANN predictions.

The source of the ANN prediction uncertainty comes from two aspects: i) The selected IMs cannot

completely represent the variability of the ground motion. This eventually reduces the variability of the

output. ii) The ANN accuracy due to the limited size of data to train ANNs. It is the statistical uncertainty

linked to the ANN model. Let us return to the two components in s2: the first fixed part σ2
ANN represents

the ANN training error, and the second part σ2
ANN,stat � σ2

ANNh
T
test(JJ

T )−1htest depends on the training

and the test data.

1. The first term σ2
ANN estimates the difference between the FEM simulation results and the predictions of

the ANN. Given that a nonlinear regression returns a regular hyper-surface in a high dimensional space,
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the predictions of the ANN show always less variability than the original FEM data. As discussed in

Section 2.1, this phenomenon is mainly due to the loss of the inherent seismic randomness in the input

variables, so that the nature of σ2
ANN can be regarded as the aleatory uncertainty not explained by the

ANN input parameters.

2. The second term σ2
ANN,stat is the statistical uncertainty linked to the limited data used to train and

test the ANNs. The information of the training data is included in the J matrix and htest incorporates

the influence of the test data. It is thus considered as the epistemic uncertainty, and it provides the

confidence intervals of the fragility curves.
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(c) ANN statistical uncertainty

Figure 5: An illustrative example for ANN prediction uncertainties: (a) 80 sparse training data y = sin(x) + z, with z ∼

N (0, 0.12). An ANN is trained with (x, y). z is assumed to be the unidentified input. No training data are generated near

x = 3, for the purpose of checking the property of σANN,stat. (b) ANN is trained, with σANN = 0.0931, close to the Std of z.

The ANN is then tested on 100 uniformly regenerated data. (c) σANN,stat with a peak near x = 3, where no training data exist.

It can be concluded that σANN,stat captures the scarcity of the training data.

These two aspects are illustrated with a simple case study in Figure 5. In fact, σANN should have contained

also an epistemic uncertainty contribution from the insufficient nonlinearity of the ANN. However, the high

flexibility of the ANN architecture offers an universal approximation capacity to continuous bounded functions

[34]. If the number of the hidden layer units is correctly determined, the error from the ANN nonlinearity
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can be considered less important compared to the aleatory randomness neglected in its inputs. This can be

observed from Figure 5: in spite of the existence of the unidentified input z, the ANN regression curve stays

very close to y = sin(x) curve in the training data region. Consequently, this epistemic contribution is assumed

negligible in this study. Next section presents the computation of fragility curves with the consideration of

these two uncertainties.

3.5. Fragility Curves with ANN simulation results

The marginal distributions of the IMs are known through the GMPEs [46]. Correlation models are also

available in the literature [47]. Based on GMPEs and correlation models, seismic IMs can be generated

directly as inputs of the ANN. One advantage of using IMs as inputs of metamodels is that no seismic ground

motions are in need for ANN simulations.

Given the large number of simulation results provided by ANN, fragility curves can be computed with

methods MC and Reg. This also allows confirming the validity of the log-normal assumption used in the

fragility analysis. It is important to take into account the ANN prediction uncertainty, because the regression

of the ANN reduces the statistical variability of the DMs, and thus the aleatory uncertainty of the fragility

curves. As a consequence, methods MC and Reg should be adapted with the consideration of the ANN

prediction uncertainty.

For the Reg method, as the ANN is trained in log-log space, the aleatory residual uncertainty σ2
ANN can

be integrated directly into the expression of the log-normal CDF (Eq. 7). The basic steps consist of:

1. Generation of IMs as inputs of the ANN. Select one IM α as the parameter of the fragility curve.

2. Conduct ANN simulations with the generated IMs. The ANN outputs ŷ are obtained.

3. Apply Reg method on data (α, ŷ) and determine the regression parameters b, c, βANN
R|IM .

4. Compute the conditional probability of failure with the consideration of σ2
ANN:

Pf (α) = Φ

�

ln bαc − ln ycrit
βTotal

�

= Φ





ln bαc − ln ycrit
�

(βANN
R|IM )2 + σ2

ANN



 (15)

A similar idea concerning the consideration of this metamodel uncertainty has been used in [28] for Kriging.

For the MC estimation based on the ANN simulation data, no analytical expression can be derived. One

has to resort to the sampling of the residual, for both aleatory and epistemic parts. The basic steps are:

1. Generation of N groups of seismic IMs as inputs of the ANN, conditional to the IM α used as the

independent parameter of the fragility curve.

2. Conduct ANN simulations with the generated IMs. The ANN outputs ŷ are obtained.

3. Sampling of N residuals εANN following N (0,σ2
ANN), and sampling of εγANN,stat, the γ percentile of

N (0,σ2
ANN,stat).

4. Computation of the conditional probability of failure PMC(α) and the γ confidence interval P̃ γ

MC(α):

PMC(α) =
1

N

N
�

i=1

1[ln ycrit < ln ŷi(α) + εiANN] (16)

P̃ γ

MC(α) =
1

N

N
�

i=1

1[ln ycrit < ln ŷi(α) + εiANN + ε
γ

ANN,stat] (17)
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5. Repeat the steps 1-4 for different α values.

PMC(α) can be compared with Pf (α) to confirm the assumption of log-normality of the fragility curve. For

the purpose of simplicity, the adapted Reg and MC methods in the ANN-based fragility analysis are denoted

as ‘Modified Reg’ and ‘Modified MC’, respectively. In the sequel, the described methodology is illustrated

with an industrial test case studied in the KARISMA benchmark.

4. Case Study: KARISMA benchmark

4.1. Kashiwazaki-Kariwa FEM Analysis

In 2007, the Japanese Kashiwazaki-Kariwa (K-K) NPP was affected by the Niigataken-Chuetsu-Oki earth-

quake (NCOE) with a magnitude Mw = 6.6 and an epicenter distance of 16 km. The structure of the K-K

NPP is shown in Figure 6. In this paper, we are interested in the reliability of a hypothetical electrical

cabinet located on the fifth floor of the Unit 7 reactor building of the NPP (Figure 6). The finite element

model for the Unit 7 consists of 92,000 degrees of freedom with 10,700 nodes and 15,600 elements, including

bar, beam, and different shell elements. The constitutive law of the materials is considered as linear. The

NPP model is embedded 23 meters in the soil, which is accounted for in the SSI analysis. The structural

analyses are carried out with Code Aster, a finite element analysis open-source software developed by EDF

group [48], while the soil part is solved with MISS based on the boundary element method (BEM) [49].

FEM analyses are performed according to the approach described in Section 3.1. 100 triplets of 3D

synthetic ground motions are generated at the bedrock with V s30 = 720 m/s and used for the uncertainty

propagation. Given the NCOE scenario, the generation of the synthetic ground motions are based on scenario

spectra predicted by the Campbell-Bozorgnia 2008 (C&B 2008) GMPE [46]. In order to obtain sufficient

failure cases for the fragility analysis, the synthetic seismic motions at the bedrock are scaled with a factor

of three. After analyses with ELM, 100 triplets of ground motions on the free surface and 100 degraded soil

profiles are obtained.

The impedances of the soil and the seismic forces should have been computed for each soil profile using

BEM. However, the high complexity of the embedded foundation makes it hard to achieve: it takes 24 hours

to run the BEM simulation for one soil profile. In order to reduce the computational cost, the 3D seismic

signals at the bedrock are regrouped into four soil classes according to their PGA values: i. PGA∈[0, 0.5g) ii.

PGA∈[0.5g, 1.0g) iii. PGA∈[1.0g, 1.5g) iv. PGA∈[1.5g, +∞). The degraded soil profiles are averaged within

each class and four soil profiles are obtained to represent four different degradation levels. The SSI analyses

are performed with the 100 ground motions on the free surface, as well as the impedances and seismic forces

calculated from the four soil profiles, to compute the floor accelerations of the K-K NPP.

Anchorage failure of the electrical cabinet is considered in this study. The capacity is given by the floor

spectral acceleration of the anchorage point around 4Hz, the assumed natural frequency of the cabinet. The

maximum value of the floor spectral accelerations in the two horizontal directions, integrated over a frequency

interval around 4Hz to account for the uncertainty, is defined as the DM y:

y = max
i=X,Y

� 4.5

3.5

Se
a,i(f)df (18)
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where Se
a,i denotes the spectral acceleration of the electrical equipment in the i-th direction. Figure 7 shows

the 100 calculated DMs as a function of the geometric mean of the PGAs of the horizontal seismic motions

on the free surface.

Figure 6: Location of the electrical cabinet in the K-K

model (indicated by the star symbol)
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Figure 7: Point cloud of DMs (Eq. 18) calculated with

FEM

4.2. Data Analysis

The 100 IMs-DM obtained from FEM simulations can be used for the construction and the training of the

ANN metamodel. 8 classical IMs are chosen as candidates for the inputs of the ANN metamodel. The 8 IMs

include the commonly used seismic intensity indicators PGA, PGV, PGD, PSa(f0), CAV, Arias intensity IA,

as well as the predominant period Tp used in [50] and the ASA proposed in [51]. These IMs are presented in

detail in Table 1. The geometric means of IMs in the two horizontal directions are used as scalar IMs for 3D

ground motions. The integration domain of the ASA is slightly modified compared to its initial definition in

[51], to consider the uncertainty on the natural frequency of the electrical cabinet.

Table 1: Definitions of classical seismic intensity measures

Intensity Measures Definitions Comments
PGA (peak ground acceleration) max |a(t)| a(t): seismic acceleration
PGV (peak ground velocity) max |v(t)| v(t): seismic velocity

PGD (peak ground displacement) max |u(t)| u(t): seismic displacement
PSa(f0) (pseudo-spectral acceleration) Spectral acceleration f0=4Hz, damping 5%

ASA (average spectral acceleration)
� 4.5

3.5
PSa(f)df f : frequency

Tp (predominant period) argmaxT PSa(
1
T
) T = 1/f

CAV (cumulative absolute velocity)
� tmax

0
|a(t)|dt tmax: total seismic duration

IA (Arias intensity) π

2g

� tmax

0
a(t)2dt g = 9.81m/s2

The correlation coefficients ρ between the eight IMs and the DM defined by 18 are listed in Table 2. It

can be observed that, among all the eight chosen IMs, ASA is the most relevant IM to the DM, whereas there

is a very weak correlation for Tp.

Table 2: Correlation coefficients between IMs and DM

Intensity Measures PGA PGV PGD PSa ASA Tp CAV IA
ρ 0.913 0.693 0.420 0.920 0.950 0.093 0.889 0.890
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The statistical distributions of the eight selected IMs are examined to check their log-normality. The eight

proposed IMs are normalized and compared to N (0, 1). The normalization is realized by

αNorm =
lnα− µlnα

σlnα

(19)

where µlnα and σlnα denote the mean and the Std of lnα, respectively. For simplicity of illustration, the

probability plots of three IMs (PGA, ASA and IA) are shown in Figure 8. Besides, the values of the coefficients

of determination R2 of the probability plots are given in Table 3, for all the eight IMs: the closer to the

log-normal distribution the IM is, the closer to 1 the value of R2 will be. It can be concluded that it is

reasonable to apply the log-normal distribution model to all eight IMs.

This verification is performed because: i) For the selection of the subset of IMs in Section 3.2, the Cholesky

factorization is executed on the covariance matrix of Gaussian random variables (RVs). As a result, if the

IMs follow log-normal distributions, the Cholesky factorization can be directly applied to ln(IMs). ii) For the

generation of IMs in the ANN simulation part in Section 3.5, one needs to know the marginal distribution

of the IMs to be generated. In this way, it can be confirmed that the marginal distributions of the IMs are

effectively log-normal. If the IMs are not log-normally distributed, an additional Nataf transformation [39]

should be carried out, to transform arbitrary RVs to Gaussian RVs, in both Section 3.2 and Section 3.5.
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(c) Probability plot for IA

Figure 8: Probability plots for PGA, ASA and IA to check their log-normality

Table 3: Coefficients of determination of the probability plots

Intensity Measures PGA PGV PGD PSa ASA Tp CAV IA
R2 0.9877 0.9970 0.9915 0.9866 0.9896 0.9823 0.9912 0.9913

4.3. Selection of Relevant IMs and Determination of ANN Structures

Feature selection. Due to the limited size of the data set (100 IMs-DM), it is necessary to apply feature

selection to obtain a reliable ANN metamodel with good generalization capabilities. A very complex ANN

with a large number of unknown weights can easily to be overfitted, given the underlying data set. The

features (IMs) are selected with the SPCC filter approach proposed in Section 3.2. The result after the

feature selection with SPCC is illustrated in Figure 9. From the forward selection result, ASA and IA are
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selected as the relevant features because the RSP for the other IMs are less than 0.05, so that they can be

regarded as non-influential if ASA and IA have already been considered.
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Figure 9: Results of forward selection
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Figure 10: LOO cross-validation results for different ANNs

The number of the neurons h in the hidden layer should be determined additionally, because the filter

approach only selects the most relevant feature subset. For this purpose, the total set of 100 data is separated

into 2 subsets: 80 data for training and cross-validation (T-CV data), and 20 data for test. The 20 test

data are not used to determine the structure of the ANN, but used later in Section 4.4 to evaluate the

generalization capacity of the trained ANN. 4-fold cross-validation based on 80 T-CV data is executed on

ANNs with h = 1, 2, . . . 8 of hidden neurons, respectively, in order to select the optimal number: The ANN

structure with the smallest 4-fold cross-validation error is chosen for the final metamodel. The optimal value

of h determined by the described approach is 4.

Comparison of selected features. We compare our results to the features selected with the wrapper approach

based on GA used in [23]. The final feature subset selected by GA is ASA and CAV, with h = 2 in the

hidden layer. It can be observed that both approaches select similar seismic IMs: ASA, the most efficient

IM in this study (Table 2), and an IM concerning the integration of the ground motion acceleration over the

signal duration (IA or CAV).

In order to highlight the necessity of the feature selection, the leaving-one-out (LOO) cross-validation is

carried out with the ANN structures determined by the feature selection procedures, as well as the ANN

without dimensionality reduction (i.e. with all eight IMs. The number of hidden nodes is h = 5). With

random initializations of ANN weighting parameters, 100 LOO cross-validations have been performed. The

box-plot of the LOO cross-validation error is shown in Figure 10. From the results, one can observe that the

ANN models determined by feature selections show more accuracy. In addition, the ANN model with the

filter approach performs best in the LOO cross-validation.

Therefore, in the sequel of this paper, the ANN is trained with two inputs (ASA and IA), four hidden

layer nodes and one output, which is computed according to Eq. 18. The trained ANN is used for all runs

of ANN simulations. Point clouds and fragility curves will be plotted with ASA, which is the most efficient

IM in this study.
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4.4. Results of the ANN Training

Training results. Training based on the back-propagation algorithm is carried out with the ANN structure

determined by the filter approach. The ANN toolbox used in this study is an open-source python package

‘Neurolab’ with the self-implemented delta method for the quantification of ANN prediction uncertainties.

The 80 T-CV data in Section 4.3 is again divided into 2 subsets: 60 data for training and 20 data for

validation. Early stopping is applied on the validation set to avoid overfitting. The generalization capacity

of the ANN is examined on the 20 test data. The ANN is trained in log-log space. The results of the ANN

training, as well as the point clouds of the ANN outputs ŷ of the test data are shown in Figure 11 and Figure

12. From Figure 11, one can conclude that the training results are satisfactory. Most of the results in the

‘prediction-target’ space are located in the neighborhood of the dashed diagonal line. The ANN prediction

results for the test data set in Figure 12 reveal a globally satisfactory prediction quality: the ANN predictions

remain coherent with the FEM results. In fact, with a regression model like ANN, it is not possible to obtain

the exact prediction results. In addition, it has to be pointed out that the dispersion of the ANN predictions is

reduced compared to the FEM results. This is due to the loss of the aleatory uncertainty by reducing ground

motions to two IMs in the ANN metamodeling. The underestimated variability in the ANN predictions will

reduce the uncertainty in the fragility curve. The histogram of the normalized ANN training residuals is

plotted in Figure 13. It can be observed that its distribution is close to N (0, 1), so that the assumption of

normality of the ANN residuals in the delta method can be considered reasonable in this study.
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Figure 11: ANN training results

Comparison with other metamodels. The training results of the ANN are compared with those of other

metamodels, including Kriging with Gaussian kernel (an interpolation model), Kriging with Gaussian and

White noise kernel (a regression model) and quadratic response surface. The metamodels are constructed

with 80 T-CV data and tested on 20 test data, using the python toolbox scikit-learn. The RMSE between

metamodel predictions and FEM outputs is used to evaluate the accuracy of the different metamodels. The

seismic IMs used are ASA and IA, the same used for the ANN. The results are reported in Table 4.

Several conclusions can be drawn from Table 4: i) Kriging interpolation is not an appropriate metamodel

for this study, since the test error is much larger than other models. The reason has already been discussed
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Figure 12: ANN test point cloud

−4 −3 −2 −1 0 1 2 3 4
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40
�������������������������

N(0,1)

Normalized Error

Figure 13: Distribution of ANN training residuals

Table 4: Training and test results for different metamodels

Model RMSE Training (80 data) RMSE Test (20 data)

ANN 0.141 0.135

Kriging interpolation (Gaussian kernel) 0 0.43

Kriging regression (Gaussian+White noise kernel) 0.153 0.145

Quadratic response surface 0.151 0.151

in Section 2.1: the zero residual in the training of Kriging overfits the model. The generalization capability

of the interpolation Kriging model is thus very limited with the underlying data. ii) Once the residual is

present in the training data of the Kriging regression, the performance of the Kriging is largely improved. iii)

Quadratic response surface offers less nonlinearity than ANN, which is why its errors are larger. iv) Overall,

ANN shows slightly better performance than other considered metamodels.

Consideration of ANN prediction uncertainties. The ANN model is validated in the previous subsections.

Let us show in this part the necessity of the incorporation of the σANN in the fragility curves. We focus on

the 80 T-CV data used to train the ANN. Based on the same 80 seismic inputs, one can obtain 80 structural

outputs y and ŷ, from FEM and ANN simulations respectively. Fragility curves are computed with Reg

method (Eq. 7) for data set (α, y) and (α, ŷ). MC method could have also been used for FEM results.

However, the high complexity of the K-K model makes it very difficult to perform adequate FEM simulations

for the MC estimation. This is also one of the main motivations to construct a metamodel in this study: the

metamodel provides the possibility to conduct a non-parametric fragility analysis. The fragility curves are

calculated for α =ASA and α = IA, respectively, in order to provide further discussions. At the same time,

the ‘modified Reg’ method (Eq. 15) is applied to the data set (α, ŷ) to compute fragility curves, accounting

for the aleatory residual uncertainty of the ANN predictions. From Figure 14, it can be seen that:

- A clear difference between the fragility curves computed with FEM Reg and ANN Reg can be observed.

The difference is much less evident for IA than ASA. Nevertheless, this is not due to the fact that the ANN

metamodel is poorly calibrated, because the ANN accuracy has been validated above and it is even better

than other possible metamodels. If the fragility curves calculated with Reg method are not coherent for the

training data between FEM and ANN, one can hardly trust the conditional probability of failure computed
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(a) Fragility curves computed with 80 T-CV data as

function of ASA
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(b) Fragility curves computed with 80 T-CV data as

function of IA

Figure 14: Fragility curves computed with 80 T-CV data

with the ANN based on other test data.

- The difference is due to the aleatory part of the ANN prediction uncertainty σANN. It represents the

seismic inherent randomness not identified in the inputs (ASA and IA) of the ANN metamodel. Once σANN

is integrated in the computation of the conditional probability with Eq. 15 , the computed fragility curves

almost coincide with the FEM Reg curves, for both ASA and IA.

- σANN has less influence when the fragility curves are plotted for IA. It is because IA is less correlated

to the output than ASA (Table 2). Consequently, βANN
R|IA

, which equals 0.326, is larger than βANN
R|ASA

(0.079),

whereas σANN (0.094) stays the same. Considering Eq. 15, the impact of σANN is less evident on the IA

curves than the ASA curves.

These analyses show the importance of the consideration of σANN in the computation of the fragility

curves, where DM results are provided by ANN simulations. Otherwise, the uncertainty in the fragility

curves will be underestimated.

Besides, σANN,stat of the test data is also computed. Among the 20 test data, the positions of the first

four data with the highest σANN,stat values are visualized in the input space in Figure 15. The numbers in the

figure show the rank of their σANN,stat values in the 20 test data: ‘1’ for the point with the highest σANN,stat

value, ‘2’ for the second highest, etc. It can be observed that the test data with high values of σANN,stat are

located either at the lower boundary of the training data, or at the places where the training data are sparse,

which is coherent with the property of σANN,stat shown in Figure 5.

4.5. Fragility Curves

After being trained, the ANN can be used to carry out fast-running simulations. For this purpose, a large

number of seismic IMs have to be generated to represent the seismic motions. In this paper, the following

statistical properties of the log-normal distributions of ASA and IA are obtained from the 100 triplets of

seismic signals on the free surface (Table 5). The assumption of log-normality of the selected IMs has been

validated in Section 4.2. With the large number of simulation results provided by the ANN, both methods
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presented in Section 3.5 can be applied for the computation of fragility curves.

Table 5: Statistics of ASA and IA on the free surface

IM Median Log. standard deviation ρ (ASA-IA)

ASA [g] 2.28 0.417
0.846

IA [m/s] 13.13 0.842

For the log-normal based fragility curve, 10,000 ASA-IA samples are generated with the statistics in Table

5. 10,000 ANN simulations are performed with these generated IMs, and the conditional probability of failure

is computed with Eq. 15. The computed fragility curve is described by ASA with median capacity 3.32g and

uncertainty βTotal = 0.127, including σANN = 0.094.

The pointwise fragility analysis is performed by conditional sampling of IA for a given value of ASA, since

a conditional bivariate normal distribution is also normally distributed. In the analysis, the values of ASA

are selected in [2.2g, 4.4g] with ∆ASA = 0.1g. For every ASA value, 10,000 IA are generated. At every ASA,

the probability of failure is computed from Eq. 16, and the CIs are determined with Eq. 17. Fragility curves

computed with both methods are shown in Figure 16.

Regarding the fragility curves, although there exist some differences between the log-normal based fragility

curve and the MC estimation, the log-normal curve stays coherent with the pointwise MC curve. The log-

normal assumption can be thus confirmed in this study. It is recalled that the source of the confidence

intervals comes only from the paucity of the training data of the ANN.
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Figure 16: Fragility curves with ANN

4.6. Discussions

The proposed ANN-based fragility analysis has been applied to the K-K NPP to compute the fragility

curve of an electrical cabinet. The assumptions made in this methodology are discussed what follows. The

computational cost of the FEM analyses is also provided.

1. This study only considers seismic randomness in the FEM simulation. Uncertainties on structural

parameters are not modeled. With other source of uncertainties, the seismic IM is less correlated to

the structural output, so that the influence of the aleatory component of the metamodel uncertainty is

less evident.
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2. Moreover, the variability in the responses of the considered electrical cabinet is dominated by the

seismic record-to-record randomness. To justify this, the material uncertainties of concrete in Table

6 is considered for the first 50 seismic excitations. The values of the coefficients of variation of Table

6 are selected according to our expertise. The log-normal model of the material parameters has been

suggested and used in [3, 52, 24, 15, 27]. Additionally, the log-normal distribution can ensure that all the

values of material parameters are positive, in particular for small value parameters, such as the Poisson’s

ratio and the modal damping ratio. 50 FEM simulations are performed with the material uncertainties,

with the stochastic values of Table 6 applied to the entire structure. The material parameters do not

vary for elements within the structure. The corresponding fragility curve is computed with Reg method.

Meanwhile, a fragility curve is calculated also with Reg method based on the first 50 FEM simulation

results of this study (i.e. without the consideration of material uncertainties). Seismic excitations for

both cases remain the same. The comparison of two fragility curves is shown in Figure 17. It can be

clearly observed that there is no obvious difference between the two fragility curves, which implies that

the impact of the material randomness can be neglected compared to the earthquake randomness. That

is another reason why material uncertainties are not modeled in this study. With uncertainty uniquely

from seismic ground motions, the selection of IMs becomes therefore crucial to ensure the accuracy of

the ANN.

Table 6: Uncertainties in material parameters of concrete in K-K NPP

Material parameters Distribution Median Coefficient of variation

Young’s modulus Log-normal 31,300 MPa 0.2

Poisson ratio Log-normal 0.2 0.1

Density Log-normal 2500 kg/m3 0.05

Modal damping ratio Log-normal 0.05 0.4
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Figure 17: Comparison between fragility curves with or without material uncertainties

3. The ANN training errors are assumed to follow a normal distribution. The validity of this assumption

is confirmed in this study. In addition, with a more mathematically rigorous derivation, the ANN

prediction uncertainty should have followed a student t distribution. This approximation by a normal

distribution allows the decomposition of the ANN prediction uncertainty into two normal aleatory and
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epistemic components.

4. The computational cost of the FEM simulations is listed in Table 7. Based on the soil impedances

computed by BEM, one single FEM analysis takes (120.02 + 66.86)/100 = 1.87 hours on an Intel

Xeon E5-2600V2 CPU of 2.7GHz, which makes it almost unaffordable to run a large number of FEM

simulations for the pointwise MC fragility analysis. However, once the ANN metamodel is established,

the pointwise MC fragility analysis can be conducted within 0.25 hours. It has to be noticed that the

ANN metamodel is constructed from the results of 100 FEM simulations, which means that 132.41 +

120.02 + 66.86 = 319.29 hours of mechanical simulations are the prerequisites for the ANN metamodel

construction.

Table 7: Computational cost for numerical analyses

Type of analyses Number of analyses Total computational time

BEM for soil impedances 4 132.41 hours

ELM analyses 100 120.02 hours

SSI analyses 100 66.86 hours

ANN simulations for MC fragility analysis 10,000 × 23 0.25 hours

5. The applicability of the methodology is not limited to the K-K NPP case study. It can be generalized to

other structures, by adopting a proper FEM analysis for the structures in question. The same procedure

from Section 3.2 to Section 3.5 can be applied to conduct the fragility analysis. However, one should

pay attention to the log-normal hypothesis made in the feature selection (Section 3.2) and generation

of IMs (Section 3.5). If the log-normal assumption were not valid, an additional Nataf transformation

[39] of the probability distribution would have to be performed, to transform arbitrary RVs to Gaussian

RVs. It is also worth emphasizing that this methodology is not restricted to ANNs: the filter feature

selection is independent of the metamodel; the delta method can also be applied to other models (e.g.

polynomial response surfaces) to evaluate the metamodel uncertainty. The only difference is the way

to compute the gradient.

5. Summary & Conclusions

A methodology of ANN metamodels for the computation of fragility curves has been proposed in this

paper. The ANN metamodel is utilized to build the statistical relation between the seismic intensity measures

and the structural response. Once trained, the ANN metamodel allows carrying out a large number of

simulations for both parametric and non-parametric fragility analyses, at negligible computational cost.

Based on FEM simulation results, this methodology mainly consists of:

- Selection of the most relevant seismic intensity measure features. A filter approach based on semi-partial

correlation coefficients is proposed in this study. It is compared with a wrapper approach based on GA. In

the case study considered, the filter selection method shows slightly more advantages, in terms of accuracy

and efficiency. Once the features have been retained, the ANN is trained with early stopping to prevent

overfitting.

- Identification of the aleatory uncertainty and the epistemic uncertainty components in the ANN pre-

diction uncertainties. The aleatory uncertainty is incorporated in the fragility curve, while the epistemic
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uncertainty is used to compute the confidence intervals.

- Computation of fragility curves and their confidence intervals, with both log-normal assumption and

pointwise MC methods. The Reg and MC methods are adapted to take into account the ANN prediction

uncertainties. The non-parametric MC fragility curve is used to verify the log-normal assumption, which is

widely adopted in the fragility analysis.

Instead of methods based on repeated ANN trainings realized in [31], more efficient algorithms for the

feature selection and the ANN prediction uncertainty quantification have been applied. Moreover, the ANN

prediction uncertainty has been discussed thoroughly. This methodology has been applied to an industrial

complex case study, i.e. Kashiwazaki-Kariwa nuclear power plant in Japan to evaluate the robustness of an

electrical cabinet. The fragility curve computed with the log-normal assumption is described by ASA with

median capacity 3.32g and uncertainty βTotal = 0.127. In addition, compared to the results of the pointwise

MC estimation in this study, it is reasonable to assume a log-normal distribution for the fragility curves.
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Abstract

In seismic risk assessment, the fragility curve is used to estimate the reliability of structures and equipment

under seismic loads. The shape of fragility curves is usually approximated by the cumulative distribution

function of a lognormal distribution. The estimation of the parameters of the fragility curves requires gath-

ering different sources of information and quantifying the uncertainties coming from these sources. This

paper proposes a methodology for the computation of fragility curves for nuclear power plant equipment,

based on a Bayesian updating framework that combines the results of numerical simulations and damage

data. An artificial neural network is trained iteratively by optimizing its prediction uncertainties over the

ground motion sample space, and it is used to conduct numerical simulations. The results of the numerical

simulations provide a prior estimation of the seismic capacity of the equipment. The estimation of the un-

certainty related to the equipment capacity is taken from the literature. Damage data, collected from the

in-situ observation and the database of the seismic qualification utility group (SQUG), are used to construct

the likelihood function for the Bayesian updating. The posterior equipment capacity is evaluated by Markov

chain Monte Carlo simulation and posterior fragility curves are, then, obtained. The main contributions

of the work are: (i) proposal of an adaptive training algorithm of artificial neural networks to improve the

design of experiments for finite element simulations; (ii) proposal of a two-step transformation method to

construct the likelihood function with existing damage data from the SQUG database. The methodology

is applied to compute the fragility curves of a low-voltage switchgear of a nuclear power plant, within the

so-called KARISMA benchmark.

Keywords: Seismic fragility curve; Bayesian updating; Artificial neural networks; Damage data;

Uncertainty

1. Introduction

Seismic probabilistic risk assessment (SPRA) is a widely applied approach to estimate the seismic risk

of critical structures, such as nuclear power plants (NPPs). In the framework of SPRA, fragility analysis

is conducted to evaluate the fragility curves, i.e. the conditional probabilities of failure of structures or

components at given values of the seismic intensity measure (IM), e.g. the peak ground acceleration (PGA).
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The computation of fragility curves is typically realized by statistical analysis based on different sources of

information, including expert judgments, numerical simulations, empirical damage data.

The safety factor method (Kennedy et al., 1980; EPRI, 1994), largely used in nuclear engineering, depends

on safety margins determined from simplified structural analyses and experimental data. Uncertainties are

evaluated from expertise of engineers or results of qualification tests. The safety margins and their associated

uncertainties are used to assess the seismic capacity of structures and equipment. This method does not

require numerical simulations. However, the safety margins determined from the simplified approaches can

be conservative, and thus, cannot offer a best estimate of the fragility curves.

Numerical simulations are commonly applied in the current practice of fragility analysis, e.g. by the finite

element method (FEM) (Padgett and DesRoches, 2008; Ellingwood and Kinali, 2009; Zentner, 2010). Dif-

ferent sources of aleatory and epistemic uncertainties can be modeled and propagated through the numerical

model. The conditional probability of failure can be computed either by pointwise Monte Carlo estimation

or by assuming a parametric representation (e.g. lognormal) of fragility curves. The underlying parameters

of the fragility curves are determined based on the results of the simulations. However, because of the high

complexity of numerical models, the computational cost of the numerical analyses can be very high. One way

to reduce the computational burden is to use fast-running statistical metamodels. Various types of metamod-

els have been tested and applied in fragility analysis, such as Kriging (Gidaris et al., 2015), artificial neural

networks (ANNs) (Lagaros et al., 2009; Ferrario et al., 2017; Mangalathu et al., 2018; Wang et al., 2018),

quadratic response surfaces (Towashiraporn, 2004), polynomial chaos expansion (Mai et al., 2016), among

others. Nevertheless, due to the fact that a numerical model cannot contain all the structural details and

damage mechanisms, damage data of structures and equipment can be used for a more accurate computation

of fragility curves.

Damage data have been also widely used for seismic fragility analysis. The damage data are obtained

either from post-earthquake observations or from qualification tests. They are used to describe the perfor-

mance of structures or equipment under real seismic excitations. Fragility analysis is, then, conducted by

statistical analysis of the damage data. For example, fragility curves for European-type reinforced concrete

buildings are determined in Rossetto and Elnashai (2003) with earthquake observational data. Using Ital-

ian seismic damage data, fragility curves for different building typologies are built in Rota et al. (2008) to

provide a reliable estimate of the vulnerability of structures of different classes. In these works, the fragility

curves are obtained directly by fitting the damage data into a cumulative distribution function (CDF) of the

lognormal distribution. Other studies adopt Bayesian statistics to estimate the fragility parameters (Straub

and Kiureghian, 2008; Gardoni et al., 2009). In the Bayesian framework, prior distributions of the fragility

parameters are assumed. Then, damage data are used to build the likelihood function. The fragility param-

eters can be generated by Markov chain Monte Carlo simulation (MCMC) (Hastings, 1970), based on the

posterior distributions obtained from Bayesian updating. The advantage of the Bayesian statistics method is

that it yields a probability distribution of the parameter to be estimated (so the confidence intervals can be

computed), rather than a single value for the estimation of the parameter. Representative examples of the

application of Bayesian statistics in seismic risk assessment can be found in Singhal and Kiremidjian (1998),

Koutsourelakis (2010), Jalayer et al. (2010), EPRI (2014), Jaiswal et al. (2011), Beck and Taflanidis (2013),
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Buratti et al. (2017), Noh et al. (2017), Jeon et al. (2017), EPRI (2017), among others.

The objective of this paper is to propose a framework to take into consideration both numerical simulation

results and damage data in the computation of fragility curves. The methodology is divided into two parts:

(i) estimation of the prior parameters with numerical simulations: to reduce the computational cost, an ANN

metamodel is trained with an iterative active learning algorithm to substitute the computationally expensive

FEM simulation; (ii) computation of the likelihood function with the damage data and execution of Bayesian

updating to obtain the posterior distribution of the seismic capacity of the equipment. Different sources of

uncertainties (aleatory and epistemic) are quantified and integrated in the computation of the fragility curves.

Critical equipment of nuclear power plants are designed with high safety standards. The low probability of

failure of the equipment may lead to a biased estimation of the fragility parameters, if the these parameters

are solely determined by the maximum likelihood estimation (Shinozuka et al., 2000). This requires assessing

the confidence associated to the estimation, which can be achieved in the Bayesian framework.

This paper is organized as follows. Section 2 describes the global methodology to account for different

sources of information in the computation of fragility curves. It consists of the determination of the prior

fragility curves with numerical simulations results and the Bayesian updating with damage data. In Section

3, the proposed methodology is applied to evaluate the robustness of a low-voltage switchgear located in the

Kashiwazaki-Kariwa nuclear power plant in Japan. Final conclusions are given in Section 4.

2. Description of the Methodology

2.1. Seismic Fragility Curves

Fragility curves compute the conditional probability that the engineering demand parameter (EDP) ex-

ceeds a failure threshold, for a given seismic IM:

Pf (α) = P (y > ycrit|α) (1)

where y is the EDP, such as inter-story drift, ycrit is the failure threshold and α represents the seismic IM.

The lognormal fragility model proposed in Kennedy et al. (1980); Huang et al. (2011) is often applied in

practice. In the lognormal assumption, the shape of the fragility curve is approximated by the CDF of a

lognormal distribution:

Pf (α) = Φ(
lnα− ln Âm

βR

) (2)

where Φ(·) is the CDF of the standard normal distribution N (0, 1), Âm denotes the median capacity. The

parameter βR represents the aleatory uncertainty related to the inherent randomness. According to Kennedy

et al. (1980); Basu et al. (2017), an epistemic uncertainty βU , resulting from the lack of knowledge of the

structural capacity, should be also considered:

Âm ∼ LogN(Am,β2
U ) (3)

where Am is the median of the lognormal distribution and LogN denotes a lognormal distribution. Conse-

quently, the γ ∈ [0, 1] non-exceedance confidence interval of the fragility curves can be computed by (EPRI,

1994; Kwag et al., 2014; Zentner et al., 2017)

P̃f (α, γ) = Φ(
lnα− lnAm + βUΦ

−1(γ)

βR

) (4)
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Eq.4 allows computing the high confidence low probability of failure (HCLPF), defined as the capacity where

the probability of failure reaches 5% with 95% confidence:

AHCLPF = Ame−1.645(βR+βU ) (5)

The mean fragility curve, which considers both aleatory and epistemic uncertainties, is defined by

Pmean
f (α) = Φ(

lnα− lnAm
�

β2
R + β2

U

) (6)

The objective of the subsequent subsections is to describe the methodology to compute fragility curves

for an equipment of interest located in a specific NPP structure, which is named ‘target structure’ in the

sequel. The numerical model of the target structure is available. The general workflow of the proposed

methodology is illustrated in Figure 1. In this framework, reference values of βprior
U and ycrit are obtained

from the literature. To better explain the methodology, we start with the determination of prior fragility

parameters based on numerical simulation results. Bayesian updating and MCMC are, then, executed with

damage data to obtain the posterior curves. The assumptions made in this methodology are:

1. The fragility curves in this paper are all calculated under lognormal distribution assumptions, namely

(i) the fragility curves are computed by the lognormal CDFs (Eq.2) and (ii) the epistemic uncertainty is

considered lognormally distributed (Eq.3), in order to facilitate the application of the Bayesian theorem

based on the damage data.

2. The seismic record-to-record variability is considered as the only source of aleatory uncertainty.

3. PGA is the IM parameter used to compute the fragility curves, since most damage data are provided

with given values of PGA.

4. Without different specification, the PGA used in the fragility curve stands for the PGA value of the

ground motion on the soil free surface in the proximity of the target structure.

2.2. Determination of Prior Fragility Curve Parameters with Adaptive ANNs

Prior fragility curve parameters are determined based on the results of numerical simulations. FEM

is one of the most widely used numerical methods for structural analysis. However, in case of a complex

structure, the large number of degrees of freedom of the numerical model makes the resolution process highly

computationally expensive. In this case, metamodels, calibrated from the existing simulation results, can

be used to substitute the mechanical model, in order to improve the computational efficiency. The ANN is

adopted in this paper because of its excellent universal approximation capability (Reed and Marks, 1999;

Bishop, 1995).

In this subsection, the method to determine the parameters of prior fragility curves is explained. In order

to improve the computational efficiency, ANNs are adopted in this paper to characterize the seismic IMs-EDP

relation. With the adaptive enrichment, the quality of the training data is largely improved by reducing its

scarcity in the design space. Therefore, less FEM numerical simulations are needed for the calibration of the

ANN metamodel.
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Figure 1: The Bayesian framework for fragility analysis

2.2.1. ANN training and prediction uncertainty

The objective of the application of adaptive ANNs is to establish a non-linear statistical regression model

relating the seismic inputs and the EDP of interest:

ŷ = f̂(IM1, ..., IMk) (7)

where the symbol ˆ used in this paper denotes all the computation results relevant to ANNs: the non-linear

regression model f̂ constructed by ANNs and the EDP ŷ computed with ANNs.

A classical feed-forward ANN consists of activation functions (linear functions, or non-linear hyperbolic

tangent functions) and a set of weighting parameters w adjusted to minimize a cost function. The activation

functions are connected by the weighted links in a layered structure. There are three types of layers: (i)

input layer, which feeds the variables from which the ANN model is constructed; (ii) hidden layers, being

single or multiple, to add parameters and nonlinearity; (iii) output layer, which provides the results of the

ANN. The cost function E computes the square error between the ANN predictions ŷ and the targets y (e.g.

FEM simulation results), summed up over all training examples. The training of ANNs is typically realized

by gradient-based algorithms to find the optimal weighting parameters. The gradient vector g =
∂E

∂w
can be

computed efficiently by the back-propagation algorithm (Rumelhart et al., 1986; Bishop, 1995). One can refer

to Bishop (1995); Reed and Marks (1999) for detailed explanations on the basic theory about feed-forward

ANNs. More details on the applied approach are also given in Wang et al. (2018).

The prediction intervals (PIs) of ANNs are estimated by the delta method (Chryssoloiuris et al., 1996;

Zio, 2006). Assuming a normal distribution of the ANN training error, the standard deviation (Std) s of the

ANN prediction is calculated by (Rivals and Personnaz, 2000)

s = σANN

�

1 + hT
test(JJ

T )−1htest (8)
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where σANN is the Std of the ANN training errors. The Jacobian matrix J is constructed by the gradient

vectors hi =
∂ŷi

∂w
of the training examples; also hi can be computed based on the backward-propagation

method (Bishop, 1995). In Eq.8, htest is the h vector for the test example, and the upper index T denotes

the matrix transpose. One can refer to Rivals and Personnaz (2000) and Bishop (1995) for more details

regarding the computation of h and the delta method. An important property of the prediction uncertainty

computed by Eq.8 is that it shows large uncertainty at the locations where no enough training data are

available. This is originated from the term hT
test(JJ

T )−1htest, in which the information of the training data

is stored in the Jacobian matrix J . One can refer to Fig. 5 of Wang et al. (2018) for an illustration example.

2.2.2. Adaptive ANN algorithm

An ANN adaptive learning algorithm is proposed in this paper to improve the design of experiments

(DoEs) of FEM simulations. The algorithm is based on the prediction uncertainty of ANNs computed with

the delta method. The algorithm adds iteratively in the training dataset the points at the zone of interest

(e.g., at the location where the performance of the metamodel is limited, with a large prediction uncertainty).

The iterative training of ANNs is stopped when a certain accuracy criterion is satisfied. The principle of such

an algorithm has been used in Kriging for fragility analysis in Gidaris et al. (2015), but it is seldom used

with ANNs. In fact, adaptive learning is widely used for Kriging metamodels, e.g. in Jones et al. (1998);

Echard et al. (2011), because the prediction uncertainty is directly provided in the output, which is not the

case for other metamodels, such as ANNs or support vector machines. For this reason, the enrichment of

new training samples in most adaptive training procedures applied to ANNs is not based on the prediction

uncertainty. Rather, importance sampling, directional simulation or MCMC are typically used to create new

samples in the area of interest for an enriched adaptive training (Hurtado and Alvarez, 2001; Papadopoulos

et al., 2012; Pedroni and Zio, 2017). However, these approaches cannot be easily applied in fragility analysis,

since it is difficult to generate or to find an earthquake motion, conditional on required values of multiple

IMs (e.g. PGA and Irias intensity). An alternative is to generate a large population of initial samples and to

enrich the DoEs with samples in the initial population according to an enrichment criterion. Such a strategy

has been studied by Xiao et al. (2018) with ANNs, in which the computation of the prediction uncertainty is

based on cross-validations, requiring retrainings of ANNs. In this paper, we quantify the uncertainty linked

to ANN predictions with the delta method, which can be directly obtained once the ANN is trained, and

integrate the prediction uncertainty in the enrichment criterion of the DoEs, to ensure the performance of the

ANN on the whole input space, with less training data. The whole workflow of the adaptive ANN algorithm

is summarized in Figure 2. Combined with the FEM simulations, the ANN adaptive training algorithm is as

follows:

1. Initialization of the DoEs. To prepare for the adaptive learning algorithm, a population X composed of

N seismic signals should be generated. IMs are extracted for all N seismic ground motions. N0 seismic

motions are randomly selected from X to carry out FEM simulations. N0 should be larger than the

total number of the ANN parameters, including weights and biases.

2. Starting of the iterative ANN training. For iteration k (k � 0), the ANN is trained with Nk IMs and

EDP pairs in the current DoEs. Here Nk is used to denote the number of IMs-EDP data in the DoEs at
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Figure 2: Workflow of the adaptive training of ANNs

the iteration k. The ANN is suggested to be trained in the log-log space, i.e. with ln(IMs) and ln(EDP).

ANN simulation is, then, carried out for every IMs set in the total population X. Predictions ŷik and

the associated prediction uncertainty sik can be obtained with the ANN trained at the current iteration

k.

3. Computation of the accuracy metric δik and the accuracy threshold δcritk :

sref,k =
1

Nk

Nk
�

p=1

spk, for p in the training set (p = 1, ..., Nk) (9)

δik =
|sik − sref,k|

sref,k
, for every i in X (i = 1, ..., N) (10)

δcritk = max
p

(δpk), for p in the training set (p = 1, ..., Nk) (11)

The quantity sref,k is the mean value of the prediction uncertainty of the training examples at the

iteration k. It serves as the reference value to compute the accuracy metric. The accuracy metric

δik calculates the relative deviation of sik with respect to sref,k. A large value of δik indicates a large

prediction uncertainty sik, so that the corresponding ANN prediction is less reliable. The accuracy

threshold δcritk is set as the maximal relative deviation of prediction uncertainty in the training dataset.

4. Verification of the ANN accuracy. The set of test samples is defined by all the samples in X which

are not used to train the ANN. When δik of every test sample is smaller than the accuracy threshold,

i.e. max(δtestk ) < δcritk , it can be considered that the samples in the ANN training set are enough to

cover the whole input space of the population X. So the ANN is accurate enough for X. The iterative

training can be, therefore, stopped. Otherwise, a further enrichment of the training data is necessary.

5. Enrichment of the ANN training dataset. If the accuracy of the ANN is not satisfied, M samples in

the test set with the largest δik values (i.e. with the largest prediction deviations) are selected to run
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the FEM simulations. The results of the FEM simulations are added to the ANN training data. Set

k = k + 1, and go back to Step 2.

6. After being trained, the ANN is validated on another validation dataset, which is different from the

training dataset.

Due to the property of the prediction uncertainty s, some ground motions with high intensities, which are

often outside the validity domain of the ANNs in the first few iterations (so their prediction uncertainties are

very high), can be also automatically selected by the adaptive training. With a reasonable number of FEM

simulations, an ANN is obtained at the end of the adaptive training. Then, ANN simulations can be carried

out for ground motions in the whole population X to predict the structural EDPs ŷ.

2.2.3. Determination of Prior Fragility Parameters

Prior fragility parameters βR and Aprior
m can be estimated from the ANN simulation results. The failure

threshold ycrit, informed from the reference value in the literature, provides an estimation of Aprior
m . The

Std of the ANN training error is integrated in the computation of fragilities to consider the metamodel

uncertainty. Such an idea has been used in Gidaris et al. (2015) and Wang et al. (2018) to account for the

metamodel error in the lognormal based fragility models. Since a set of IMs, instead of the whole ground

motion, is used as the input of the ANN, there is a loss of information in the input. σANN is used to quantify

this loss of the ground motion randomness, which cannot be conveyed by the IM set and therefore cannot be

captured by the ANN. More details concerning the inclusion of σANN in the fragility analysis can be found

in Wang et al. (2018). More precisely, the determination of Aprior
m and βR is realized by:

1. Linear regression of the data cloud (α, ŷ) in log-log space (Cornell et al., 2002; Ellingwood and Kinali,

2009; Zentner et al., 2017). In the application of this paper, α denotes the PGA.

ln ŷ = c lnα+ ln b+ ε (12)

where b and c are regression parameters determined from the data cloud (lnα, ln ŷ) and the residual ε

follows a normal distribution N (0,σ2
R|IM ).

2. Computation of the conditional probability of failure, considering the Std of ANN training errors σANN.

Pf (α) = Φ





ln bαc
− ln ycrit

�

σ2
R|IM + σ2

ANN



 (13)

3. Reformulating Eq.13 for coherence with Eq.2.

Pf (α) = Φ





c lnα− (ln ycrit − ln b)
�

σ2
R|IM + σ2

ANN



 = Φ





lnα− (ln ycrit − ln b)/c
�

σ2
R|IM + σ2

ANN/c



 (14)

Therefore, Aprior
m = c

�

ycrit/b and βR =
�

σ2
R|IM + σ2

ANN/c.

The prior value of βU of the equipment capacity is chosen in agreement with the literature, such as EPRI

(2014). With the computed value of Aprior
m , the prior distribution of Âm is determined: fprior(Âm) ∼

LogN(Aprior
m , (βprior

U )2).
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2.3. Bayesian Updating of Fragility Curves with Damage Data

2.3.1. Damage Database

The damage data z used in this study are taken from the seismic qualification utility group (SQUG)

database. The SQUG database (EPRI, 2016), built by the Electric Power Research Institute (EPRI), gathers

seismic experience data related to seismic capacity of equipment in industrial facilities (not limited to NPPs)

(Starck and Thomas, 1990). The data in the SQUG database are mostly obtained from post-earthquake

inspections of equipment in these industrial facilities. 32 earthquakes from 1971 to 2010 are registered in

the SQUG database with most of them taking place in the USA. Some strong earthquakes in Chile, Japan,

Turkey, etc are also included. The equipment in the SQUG database is divided into 20 conventional classes,

including switchgears, batteries, motor control centers. A list of the 20 equipment classes is summarized in

Starck and Thomas (1990).

For the data collected in the SQUG database, each observation contains the information: (i) equipment

description (size, manufacturer, etc); (ii) the earthquake and the PGA; (iii) the industrial facility where the

equipment is located; (iv) the elevation h of the equipment in the facility structure; (v) the description of the

performance of the equipment after the earthquake. It has to be mentioned that no details on the supporting

structures are provided in the database, so that the FEM models for the structures in the SQUG database are

in general not available. The integration of the damage data in the Bayesian updating depends also on these

supporting structures. The method to construct the likelihood function with the damage data is explained

in detail in Section 2.3.3. In our study, the damage data for the low-voltage switchgear are collected from

the SQUG database. They are used in the Section 3 for the Bayesian updating of the fragility curves.

2.3.2. Bayesian Framework in Fragility Analysis

Given the damage data z, the posterior distribution of Âm can be computed by the Bayes’ theorem:

fpost(Âm|z) = kL(z|Âm)fprior(Âm) (15)

where L(z|Âm) is the likelihood function determined by the observed data, and k is a constant to normalize

the posterior distribution. Every observational data vector zi has two components: the PGA value αi of the

seismic excitation and the damage state xi of the equipment of interest after the earthquake. This latter

xi is modeled as a binary Bernoulli variable: xi = 0 if no failure occurs and xi = 1 if the equipment fails.

According to Shinozuka et al. (2000), the likelihood function with given z is written as:

L(z|Âm) =

nobs
�

i=1

[Pf (α
i)]x

i

[1− Pf (α
i)]1−xi

=

nobs
�

i=1

�

Φ(
lnαi

− ln Âm

βR

)

�xi
�

1−Φ(
lnαi

− ln Âm

βR

)

�1−xi

(16)

where nobs is the number of the empirical data. Substituting Eq.16 into Eq.15, one can obtain the expression

of the posterior distribution of Âm:

fpost(Âm|z) ∝ (

nobs
�

i=1

[Pf (α
i)]x

i

[1− Pf (α
i)]1−xi

)fprior(Âm) (17)

Knowing L(z|Âm) and fprior(Âm), the MCMC simulation allows sampling efficiently the posterior distribution

without computing explicitly the constant k of Eq.15 (Hastings, 1970). Therefore, the essential part of the

Bayesian updating is to determine the parameters in L(z|Âm) to construct the likelihood function.
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It appears that the computation of L(z|Âm) is straightforward. However, different kinds of PGA values

can be provided in the database. Before computing the likelihood function, one has to ensure that the PGA

values to plug in Eq.17 describe the free surface ground motions near the target structure in which the

equipment is located.

2.3.3. Determination of the Likelihood Function

Two groups of earthquake observational damage data are discussed in this study:

1. In-situ earthquake observational data zt = (αt, x) of the equipment of interest in the target structure,

where αt denotes the PGA level recorded on the free surface near the target structure (Let us recall that the

FEM model of the target structure is available).

2. SQUG earthquake observational data zs = (αs, x) of a similar equipment positioned in other civil

structures in the database, named SQUG structures in this paper. The quantity αs denotes the PGA level

recorded on the free surface near the SQUG structures.

The total workflow of the determination of the likelihood function with damage data is summarized in

Figure 3.

Data 

Target 

Structure

Equipment

(Fail?)

Soil

Data 

Observational data 

in the target structure

Observational data in 

a SQUG structure

Target 

Structure

Transformation via 

numerical simulation results

SQUG structure

Transformation via 

amplification factors

+

Same floor excitation

Same state

Numerical model available

Figure 3: The workflow to compute the likelihood function

Likelihood function for zt. Recalling that the PGA values in Eq.17 should be αt, data of the first category

can be directly inserted into Eq.17.

L(zt|Âm) =

nt
�

i=1

�

Φ(
lnαi

t − ln Âm

βR

)

�xi
�

1−Φ(
lnαi

t − ln Âm

βR

)

�1−xi

(18)

where nt is the number of the in-situ observational data.

However, the use of the SQUG data is not straightforward. The purpose of the subsequent part is to

propose a method to integrate SQUG data in Eq.17, i.e. a method to transform zs into zt with also the

quantification of the associated uncertainty in the transformation. The essential idea of the assumption is that

the damage state of the equipment after the earthquake depends on the PGA value of the floor acceleration.
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Likelihood Function for zs. The transformation from zs into zt consists of two steps:

1. Compute the PGA of the floor acceleration of the SQUG structure given the PGA on the free soil

surface.

2. Considering that the equipment is positioned in the target structure with the same floor acceleration,

compute the PGA of the free surface ground motion of the target structure.

We start with the first step of the transformation. In general, the numerical model of the SQUG structure

is difficult to obtain, and only the elevation h of the location of the equipment is provided in SQUG data.

Without any information on the SQUG structure, the simple amplification factor model used in EPRI (2014)

is adopted in this study:

αfl = λ(h)αs (19)

where λ(h) is the amplification factor, which is a function of the elevation. αfl denotes the PGA of the floor

acceleration. The quantity λ(h) contains a median value λ̄(h) and a lognormal uncertainty ε̃: λ(h) = λ̄(h)ε̃

with ε̃ ∼ LogN(1, β̃2). Here, a linear relation is selected for λ̄(h):

λ̄(h) = chh+ bh (20)

The parameters ch and bh are determined according to the amplification factor values used in EPRI (2014):

λ̄ = 1 if h = 0 (21)

λ̄ = 1.5 if h = 12.192m (22)

So far, the floor acceleration αfl and its associated uncertainty ε̃ have been computed. The second step of

the transformation is explained in what follows. The transformation of αfl to αt is, in fact, the transformation

of the floor PGA of the target structure into the free surface PGA. This transformation can be realized with

a statistical model established from the FEM simulation results, which are used to train the adaptive ANN.

From the FEM simulation results of Section 2.2, PGA values of the floor accelerations αFEM
f and the free

surface ground motions αFEM
g of the target structure can be extracted. Let us assume that both PGA values

are lognormally distributed. This assumption is checked later in our specific case study. The lognormal

assumption allows building a bi-variate normal distribution of lnαFEM
f and lnαFEM

g . The marginal distribu-

tions of lnαFEM
f and lnαFEM

g are denoted by N(lnµFEM
f , (σFEM

f )2) and N(lnµFEM
g , (σFEM

g )2), respectively,

with the correlation coefficient ρ. According to the property of the conditional bi-variate normal distribution,

it can be shown that the median value of the transformed free surface PGA αfl→t and its uncertainty βfl→t

are calculated by

lnαfl→t = lnµFEM
g + ρ(lnαfl − lnµFEM

f )
σFEM
g

σFEM
f

(23)

β2
fl→t = (1− ρ2)(σFEM

g )2 (24)

Combining Eqs.19, 23, 24 and considering the property of the normal distribution, one can show that the

median value of the transformed PGA lnαs→t on the free surface of the target structure is calculated by

lnαs→t = lnµFEM
g + ρ[ln(λ̄(h)αs)− lnµFEM

f ]
σFEM
g

σFEM
f

(25)
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and its related uncertainty is

β2
s→t = (

σFEM
g

σFEM
f

ρ)2β̃2 + β2
fl→t = (

σFEM
g

σFEM
f

ρ)2β̃2 + (1− ρ2)(σFEM
g )2 (26)

In the end, the likelihood function for data zs is derived:

L(zs|Âm) =

ns
�

i=1

�

Φ(
lnαi

s→t − ln Âm
�

β2
R + β2

s→t

)

�xi
�

1−Φ(
lnαi

s→t − ln Âm
�

β2
R + β2

s→t

)

�1−xi

(27)

It is worth mentioning that the interpretations of βR and βs→t are different: the former represents the record-

to-record aleatory uncertainty when the ground motion time history is characterized by a scalar PGA value,

whereas the latter expresses the uncertainty of the transformed PGA value due to the underlying statistical

modeling.

Consequently, the total likelihood function for the two categories of data is computed by

L(z|Âm) = L(zs|Âm)L(zt|Âm) (28)

3. Case Study: Application to KARISMA Benchmark

This section is dedicated to apply the proposed methodology to an industrial case study. Moreover, a

sensitivity analysis is conducted at the end with respect to some uncertain parameters. The equipment of

interest is a low-voltage switchgear (LVSG) in the Kashiwazaki-Kariwa NPP (K-K NPP). In NPPs, the LVSG

is a combination of electrical control units such as circuit breaks and relays, etc, whose function is to ensure

and protect the performance of 480V-AC (alternative current) electrical systems. K-K NPP experienced

the strong Niigataken-Chuetsu-Oki (NCO) earthquake with magnitude Mw = 6.6 in 2007. In this context,

the KAshiwazaki-Kariwa Research Initiative for Seismic Margin Assessment (KARISMA) benchmark was

organized by the International Atomic Energy Agency (IAEA). The objective of this benchmark is to compare

seismic responses calculated by numerical simulations to registered responses of K-K NPP Unit 7 (IAEA,

2013). In addition, a post-earthquake inspection was carried out in order to check the performance of the

equipment in K-K NPP after the earthquake (EPRI, 2007).

3.1. KARISMA Numerical Model

The FEM model of the K-K NPP Unit 7 is shown in Figure 4. The model consists of 92,000 degrees of

freedom with 10,700 nodes and 15,600 elements, including bars, beams, and different shell elements. The

constitutive law of the materials is considered linear. The NPP model is embedded 23 meters in the soil,

which is accounted for in the soil-structure-interaction (SSI) analysis. The LVSG of interest is located on the

-1 floor of the K-K NPP building. The structural analyses are carried out with the Code Aster, an open-

source FEM software developed by Electricity of France (Code Aster), while the soil part is solved with MISS

based on the boundary element method (BEM) using MISS3D (Clouteau, 2005) available with Code Aster

via Salome Meca platform (Salome Meca).

Two strong earthquake scenarios, which have affected the area of Kashiwazaki and Kariwa, are considered

in this study: (i) the 2007 NCO earthquake scenario with Mw = 6.6 and source-to-site distance r = 16 km;

(ii) the 2004 Chuetsu earthquake with Mw = 6.8 and source-to-site distance r = 29 km. Given the NCO
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Figure 4: FEM model of the K-K NPP Unit 7
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Figure 5: Generated motions for NCO earthquake scenario

and comparison with the spectra predicted by C&B 2008

and Chuetsu scenarios, the generation of the synthetic ground motions at the bedrock with V s30 = 720 m/s

is based on the median and 1σ spectra given by the Campbell-Bozorgnia 2008 (C&B 2008) ground motion

prediction equations (Campbell and Bozorgnia, 2008). 250 triplets of 3D synthetic ground motions are gen-

erated for each scenario (so 500 triplets in total) and used for the uncertainty propagation. The generated

3D ground motions of each scenario have the median and 84% percentile in agreement with the spectra pro-

vided by C&B 2008, using the operator GENE ACCE SEISME in Code Aster (Zentner, 2014). A correlation

coefficient of 0.2 is assumed for the two horizontal components (in X and Y), according to Zentner et al.

(2017). The vertical component is not correlated to the horizontal ones. A vertical-to-horizontal ratio of 2
3

is applied in the generation procedure, as suggested by Newmark and Hall (1978). The generated motions

in X direction for the NCO scenario are shown in Figure 5. To obtain enough failure counts for the fragility

analysis, the synthetic seismic motions at the bedrock are scaled with a factor of two for the NCO scenario

and a factor of three for the Chuetsu scenario.

500 bedrock motions are convoluted on the free surface based 1D soil column reconvolution with the

equivalent linear method (ELM) (Yoshida et al., 2002). Meanwhile, 500 degraded soil profiles are obtained.

In order to reduce the computational cost, the impedances of the soil and the seismic forces have not been

computed for each soil profile using BEM. The 3D seismic signals at the bedrock are regrouped into four soil

classes according to their PGA values: (i) PGA∈[0, 0.3g); (ii) PGA∈[0.3g, 0.5g); (iii) PGA∈[0.5g, 1.0g); (iv)

PGA∈[1.0g, +∞). The degraded soil profiles are averaged within each class and 4 soil profiles are obtained

to represent four different degradation levels. The 500 ground motions on the free surface, as well as the

impedances and seismic forces calculated from the four soil profiles, are used as inputs of the SSI analyses to

compute the floor accelerations of the K-K NPP.

In this paper, the failure is described by the non-operational state of the LVSG after the earthquake.

Reparation of the equipment is necessary. It can be caused by the fact that (i) relays or breakers cannot

return to their operational state after the earthquake or (ii) structural damage has occurred to the equipment,

for example anchorage failure at its base (EPRI, 1991). The capacity of the switchgear is given by the average

floor spectral acceleration in 5-9Hz, which covers the first natural frequency of the LVSG. The maximum
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value of the floor spectral accelerations in the two horizontal directions, averaged over 5-9Hz is defined as the

EDP y:

y =
1

9.− 5.
max
i=X,Y

� 9Hz

5Hz

Se
a,i(f)df (29)

where Se
a,i denotes the floor spectral acceleration of the LVSG in the i-th direction. A value of 1.8g is selected

for ycrit according to EPRI (1991), in which the failure threshold of the floor spectral acceleration Se
a,i(f) of

the LVSG is a constant value 1.8g for the frequency range [3Hz, 16Hz] (so its average for the frequency range

[5Hz, 9Hz] is also 1.8g).

3.2. Prior Fragility Parameters

An ANN is trained iteratively with the algorithm explained in Section 2.2.2. The IMs of the 500 convoluted

seismic motions on the free surface of the K-K NPP can be extracted. Three IMs are used as the inputs

of the ANN: (i) PGA, which is widely used in fragility analysis; (ii) ASA (Biasio et al., 2015), the average

spectral acceleration in 5-9Hz; (iii) PGV (peak ground velocity), a classical IM for the mid-frequency range.

The geometric means of IMs in the two horizontal directions are used as scalar IMs for 3D ground motions.

The number of the neurons in the hidden layer of the ANN is 4. In this way, the architecture of the ANN

is determined: 3 input parameters (PGA, ASA, PGV), 4 hidden layer nodes and 1 output parameter (the

EDP defined by Eq.29). N0 = 30 seismic motions from the total 500 signals are randomly selected for the

initialization of the adaptive ANN training. M = 4 data are added in the DoE in every iteration. The ANN

is trained in log-log space, i.e. with ln(IMs) as inputs and ln(EDP) as outputs.

The adaptive training of the ANN is stopped after 62 calls of FEM simulations. To visualize the DoEs

determined by the proposed ANN algorithm, we plot the data cloud in PGA-EDP space in Figure 6. The

PGA used in the horizontal axis is PGA on the free surface. The convergence curve of the adaptive ANN

training is shown in Figure 7. In this figure, the maximum value of δ of the test dataset is plotted against

the iteration number k. At iteration 8, the stopping condition is satisfied and the ANN iterative training is

stopped.
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Figure 6: Data determined by the adaptive algorithm from

500 seismic ground motions plotted in PGA-EDP space
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Figure 7: Convergence curve for the adaptive ANN training

In order to show the advantage of the adaptive algorithm, 62 seismic motions are randomly selected

from the total 500 signals. FEM simulations are conducted for the 62 randomly selected signals and the
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corresponding data cloud is plotted in PGA-EDP space in Figure 8. From Figure 6 and Figure 8, one can

clearly observe the improvement of the DoEs with the ANN adaptive training algorithm. The data in Figure

6 are better distributed in the PGA-EDP space than the data in Figure 8: too many data are concentrated

in low PGA range in Figure 8, with only one point exceeding the failure threshold. On the contrary, more

failures are contained in the dataset obtained by the ANN adaptive training, which is more convenient for

the accuracy of the fragility analysis.
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Figure 8: Data randomly selected from 500 seismic ground motions plotted in PGA-EDP space

The training results of the ANN are shown in Figure 9a. The ANN predictions of the training dataset

are compared to the real FEM results (target output) in log space. From Figure 9a, one can conclude that

the training results are satisfactory. Most of the results in the ‘prediction-target’ space are located in the

proximity of the dashed diagonal line. Another 60 ground motions, which are different from the training

dataset determined by the adaptive algorithm, are selected to validate the constructed ANN model. FEM

and ANN simulations are performed for the 60 validation seismic signals, respectively. The validation results

are plotted in Figure 9b: the validation results are also satisfactory.
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Figure 9: Comparison of ANN results with FEM results. The comparison is conducted for ln ŷ and ln y

A total of 500 ANN simulations are conducted for the whole ground motion population with the con-

15



structed ANN metamodel: 500 pairs of PGA-EDP are, then, obtained. The values of βR and Aprior
m are

estimated from the ANN simulations results with the method explained in Section 2.2.3, with Aprior
m = 2.46g

and βR = 0.145. According to EPRI (2009, 2014), a reasonable estimation of βprior
U concerning the uncertainty

of the equipment capacity is 0.4. Consequently, the prior distribution of Âm follows LogN(2.46g, 0.42).

3.3. Determination of the Likelihood Function

The LVSG damage data can be divided into two groups: one in-situ observation zt for K-K NPP and 78

post-earthquake inspection data zs for the LVSG in the SQUG structures. Regarding the in-situ observation,

the LVSG in the K-K NPP Unit 7 was not damaged after the NCO earthquake with PGA = 0.69g near the

Unit 7. As no detailed information on the performance of the K-K NPP equipment has been found after the

2004 Chuetsu earthquake in the SQUG database, the in-situ observational data contain only the one from

the 2007 NCO earthquake. On the other hand, the total number of SQUG damage data for the LVSG is 78,

with only one failure observed in the El Centro Steam Plant after the 1979 Imperial Valley Earthquake with

local PGA value of 0.43g. After the earthquake, it has been noticed that circuit breakers of the LVSG had

refused to close. However, according to the inspection report, it is not clear that the failure of the LVSG

is caused by the earthquake. It can be also due to the corrosion in the mechanical linkages, which is not

earthquake-related. Therefore in the present paper, we set xi = 0.5 for this potential failure, meaning that

with a probability of 50% the LVSG failed during the Imperial Valley Earthquake. The local PGA values

measured at different industrial structures are plotted in Figure 10. A summary of the SQUG data for the

low voltage switchgear is given in Table 1.
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Figure 10: PGA values of the SQUG data for the LVSG

The likelihood function L(zt|Âm) for the K-K NPP in-situ observation is straightforward with Eq.18. We

focus on the computation of L(zs|Âm) in what follows.

We follow the two-step method described in Section 2.3.3 to calculate L(zs|Âm):

1. Step 1: computation of the PGA value of the floor acceleration of the SQUG structures with the

amplification factor model, given the PGA on the soil free surface. The median values λ̄(h) for the
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Table 1: Summary of the SQUG data for the LVSG

Earthquake Number of the inspected LVSGs Number of failures

1971 San Fernando Earthquake 9 0

1973 Point Mugu Earthquake 1 0

1975 Ferndale Earthquake 1 0

1979 Imperial Valley Earthquake 5 0.5

1983 Coalinga Earthquake 1 0

1984 Morgan Hill Earthquake 1 0

1985 Chile Earthquake 4 0

1985 Mexico Earthquake 1 0

1986 Adak Earthquake 2 0

1986 Chalfant Valley Earthquake 1 0

1987 Bay of Plenty Earthquake 3 0

1987 Superstition Hills Earthquake 1 0

1987 Whitter Earthquake 7 0

1989 Loma Prieta Earthquake 7 0

1992 Cape Mendocino Earthquake 2 0

1992 Landers/Big Bear Earthquake 3 0

1993 Guam Earthquake 3 0

1994 Northridge Earthquake 19 0

1995 Manzanillo Earthquake 4 0

1999 Kocaeli Turkey Earthquake 1 0

2010 Baja California Earthquake 2 0

amplification factors can be obtained by Eqs.20, 21, 22 with the elevation values h provided in the

database. The uncertainty β̃ of the amplification factors is assumed to be 0.2, so that the true values of

the amplification factors λ(h) have a probability of 95% to lie approximately between 2
3 λ̄(h) and 1.5λ̄(h).

Therefore, the median PGA value of the floor acceleration and its uncertainty can be determined.

2. Step 2: transformation of the PGA of the floor acceleration to the K-K NPP free surface PGA with

the bi-variate normal distribution model established from the 62 FEM simulation results.

First, the lognormal assumption of the marginal distributions of the PGA values is checked for both

floor accelerations and free field accelerations of the K-K NPP. The values of PGAs are obtained from 62

FEM simulation results. The medians µ and logarithmic Stds σ of the assumed lognormal distributions

are computed and listed in Table 2. The ln(PGA) values are normalized with respect to the medians

and Stds and compared with N(0, 1) in Figure 11 to verify the lognormal assumption.

Table 2: Summary of parameters used in the transformation of PGA values

ch bh β̃ µFEM
g σFEM

g µFEM
f σFEM

f ρ

0.041 1 0.2 0.846 0.746 0.354 0.743 0.924

From the results of the probability plots, it can be concluded that the lognormal assumption for both

αFEM
g and αFEM

f can be considered acceptable. Additionally, from Table 2 it can be observed that the

median of the soil PGA µFEM
g is larger than the median of the floor PGA µFEM

f : this is due to the fact

that the LVSG is located on the -1 floor in the K-K NPP.

Furthermore, the transformed PGA values αs→t on the K-K NPP free surface and the relevant uncer-

tainty βs→t due to the transformation are computed with Eqs.25, 26. The transformed median PGA
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(a) Probability plot of the PGA values of the -1 floor of

the K-K NPP
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Figure 11: Probability plot of the normalized PGA values of the -1 floor and the normalized PGA values on the soil free

surface of the K-K NPP

values αs→t are plotted in Figure 12. We can see an increase of the PGA values after the transformation

process due to the low elevation of the target LVSG in the K-K NPP. In Figure 12, a linear tendency

can be observed for some (αs→t,αs) data values. This is because their corresponding LVSGs have the

same elevations h (in particular h = 0), so that their amplification factors in the transformation step 1

are the same. In addition, as βs→t calculated with Eq.26 is independent of αs, it stays the same for all

78 zs data, with βs→t = 0.299.
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Figure 12: PGA values αs→t after the transformation into K-K NPP free surface

In the end, the transformed αs→t are plugged into Eq.27 to compute the likelihood function L(zs|Âm).

We also justify the application of the fractional xi value 0.5 for the potential failure case of El Centro
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steam plant. It can be regarded as two realizations of earthquake observations, with one failure and

one survival. Then, the likelihood function established by the two realizations should be normalized to

one observation by the square-root operation:

L(zEl−Centro|Âm) =
�

[Pf (αEl−Centro)][1− Pf (αEl−Centro)] = [Pf (αEl−Centro)]
0.5[1− Pf (αEl−Centro)]

0.5

(30)

The same procedure is also used by EPRI (2017). As a result, the total likelihood function is computed:

L(z|Âm) = L(zt|Âm)L(zs|Âm)

3.4. Posterior Fragility Curve

The posterior distribution fpost(Âm|z) is obtained based on the prior distribution and the likelihood

function, which are calculated in Section 3.2 and Section 3.3, respectively. MCMC is used to generate 10,000

samples from fpost(Âm|z). A lognormal distribution is approximated for fpost(Âm|z) with the median and

logarithmic Std of the generated 10,000 samples. The MCMC sampling of fpost(Âm|z) and the approximated

lognormal distribution are shown in Figure 13. The posterior distribution of Âm has the median Apost
m = 2.70g

and the associated uncertainty β
post
U = 0.176. The comparison of fragility parameters of the LVSG before

and after Bayesian updating is reported in Table 3.

Table 3: Posterior fragility parameters for the LVSG in K-K NPP and comparison to the prior parameters

βR Aprior
m β

prior
U Aprior

HCLPF Apost
m β

post
U Apost

HCLPF

0.145 2.46g 0.4 1.00g 2.70g 0.176 1.59g
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Figure 13: MCMC sampling of the posterior distribution of

Âm
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Figure 14: Posterior fragility curves and its confidence

intervals

The posterior median and mean fragility curves are computed with Eqs.2, 6 respectively. The 0.05 and

0.95 non-exceedance confidence intervals are calculated with Eq.4. The computed fragility curves and the

associated confidence intervals are shown in Figure 14. Compared to the prior fragility parameters, the median

capacity Am increases after Bayesian updating, because few failure cases (only one) have been observed in the

post-earthquake inspection for the LVSG. The epistemic uncertainty βU is reduced due to the supplementary

information from the observational data. Relatively large confidence bounds have been shown in Figure 14,
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since despite the Bayesian updating, the value of βpost
U (0.176) is still larger than the aleatory uncertainty

βR = 0.145. Nevertheless, the HCLPF capacity, computed by Eq.5, is largely increased after the Bayesian

updating, mainly due to the reduction of the epistemic uncertainty.

Furthermore, the influence of the selected value of βprior
U on the posterior fragility curve is investigated.

Different values of βprior
U varying from 0.1 to 0.4 are taken for the prior Âm distributions. With the same

SQUG observational data, the likelihood function remains the same. Posterior distributions of Âm are

computed and plotted in Figure 15. It can be observed from Figure 15 that β
prior
U = 0.4 reveals in fact a

relatively large uncertainty of the median capacity compared to the likelihood function L(z|Âm) provided

by the observational data. Therefore, the contribution of L(z|Âm) to the posterior distribution is dominant

if βprior
U = 0.4. On the other hand, if one is very certain about the median capacity estimated from the

numerical simulations (i.e. β
prior
U = 0.1), the influence of L(z|Âm) on the posterior distribution is not that

evident: the posterior median increases slightly in comparison with the prior median, whereas the value of

βU is hardly modified. For β
prior
U = 0.2 and 0.3, the posterior distribution is a trade-off between the prior

distribution and the likelihood function, which is a reasonable outcome from the Bayes’ theorem.
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Figure 15: Influence of the choice of β
prior

U
on the posterior fragility curve. Upper: prior distributions of Âm with different

β
prior

U
. Middle: likelihood function. Lower: posterior distributions of Âm with different β

prior

U
.

Finally, we study the influence of the uncertain observational data of the El-Centro steam plant. Other

than the observational value xi = 0.5 applied in the previous sections, the likelihood function is also computed

with xi = 0 and xi = 1 for the El-Centro steam plant. The posterior distributions with different levels of

uncertainty on the El-Centro observational data are plotted in Figure 16. From the results of Figure 16, a

complete failure of the LVSG xi = 1 in the El-Centro steam plant makes decrease the posterior Âm, since the
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Figure 16: Influence of observational data of El-Centro steam plant. Upper: prior distributions of Âm. Middle: likelihood

function with different xi values for the El-Centro steam plant. Lower: posterior distributions of Âm.

equipment is more fragile according to the observational results. On the contrary, the LVSG is more resistant

if xi = 0 for the El-Centro steam plant, so that an increase of the posterior Âm can be observed.

3.5. Discussion

The proposed Bayesian framework has been applied to the K-K NPP to compute the fragility curve of a

low-voltage switchgear. Some assumptions made in the methodology and in the application are discussed as

follows:

1. As a first application of the proposed Bayesian framework, the assumption of linear material constitutive

law has been applied in the FEM simulation of the K-K NPP model, since the building reveals to be

very rigid and response remains mainly linear under the NCO earthquake (IAEA, 2013). However, it

should be noted that the results computed from the linear material assumption do not provide best

estimates of the structural responses for the higher load levels. A further step is to apply the proposed

method to a nonlinear structure model but with a smaller number of degrees of freedom.

2. The derivation of the likelihood function using the two-step transformation depends on the assumptions

of normality or lognormality. These assumptions are applied so that an analytical form of the final

likelihood function can be derived. In real applications, if synthetic ground motions are generated

from an earthquake scenario, the IMs at the free surface can be considered lognormally distributed.

Nevertheless, when the ground motions, which are used to perform FEM simulations, are selected by

the adaptive training, the initial lognormal distribution is disturbed. Therefore, one should be careful
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to check the lognormality of the free surface PGA and the floor PGA from FEM simulations for the

joint lognormal model in the second stage of the PGA transformation.

Despite this fact, it should be mentioned that, theoretically, any analytical statistical distributions can

be used to compute the transformed free surface PGA value and to quantify the uncertainty in the two-

step transformation. However, no analytical solution exists and Monte-Carlo simulations are needed

to calculate the transformed PGA value and its uncertainty. In addition, the value of Pf (α) cannot

be computed from a CDF of a normal distribution, if the uncertainty of the two-step transformation

is not assumed lognormally distributed. Again, in this case, the only way to evaluate this Pf (α) is the

Monte-Carlo simulation combined with the Nataf transformation (Eq.7.2.2 in Ditlevsen and Madsen

(2005)).

3. It is worth mentioning that the likelihood function computed from Eq.27 is, in fact, the ‘mean likelihood’

considering the PGA transformation uncertainty βs→t, analogue to the capacity in the mean fragility

curve of Eq.6. In a similar way of defining the non-exceedance confidence interval of fragility curves

(Eq.4), the confidence interval of the likelihood function L̃ can also be obtained:

L̃(zs, γ
�|Âm) =

ns
�

i=1

�

Φ(
lnαi

s→t + βs→tΦ
−1(γ�)− ln Âm

βR

)

�xi
�

1−Φ(
lnαi

s→t + βs→tΦ
−1(γ�)− ln Âm

βR

)

�1−xi

(31)

where γ�
∈ [0, 1] is the confidence level related to the transformed PGA value. This latter modeling

leads to the definition of a two-level confidence interval of the posterior fragility curves. The first level

is linked to the uncertainty βU of the capacity, whereas the second level is associated to the uncertainty

βs→t of the PGA transformation. Further explorations are necessary for this two-level confidence

interval modeling.

4. In the Bayesian updating, as the prior lognormal distribution of the capacity is not a conjugate prior

of the likelihood function computed by Eq.28, the posterior distribution fpost(Âm|z) cannot remain

lognormal. A lognormal fit is, thus, applied to fpost(Âm|z), to be able to provide the values of Apost
m and

β
post
U , which are widely used in engineering practice. In order to quantify the quality and the influence

of the lognormal fit, firstly, the probability plot of the true posterior distribution against the fitted

lognormal distribution is plotted. The probability plot, shown in Figure 17, compares the quantiles

between the true posterior and the fitted lognormal distribution. It can be observed that the quality of

the fitting, in terms of the quantile, is acceptable for Âpost
m between 2g and 4g. But the fitting quality

is not very satisfactory at the two ends of the distribution.

Furthermore, we investigate the influence of the lognormal fitting on the final fragility curves and the

confidence intervals. The posterior fragility curves and the confidence intervals can be computed with

the true posterior distribution. The computation of the confidence intervals is achieved by identifying

the quantiles of the true distribution of Âpost
m :

P̃True
f (α, γ) = Φ(

lnα− ln ÃTrue
m (γ)

βR

) (32)

where ÃTrue
m (γ) denotes the (1 − γ) quantile of the true Âpost

m . As for the mean fragility curve, no

analytical form can be derived when the lognormality of Âpost
m is not satisfied. Monte-Carlo simulation
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Figure 17: Probability plot of the true posterior distribution against the fitted lognormal distribution

has to be used to sample the aleatory uncertainty term εR. The computation of the mean fragility

curve with the true posterior distribution is as follows:

(i). Sample Npost aleatory uncertainty term εR, following LogN(1,β2
R), where Npost is the number of

the MCMC samples of Âpost
m .

(ii). Evaluate the probability of failure with a given value of α:

Pmean,true
f (α) =

1

Npost
1[α > Âpost

m εR] (33)

where 1[·] is the indicator function.

(iii). Select another value of α and return to the step (i).

The posterior fragility curves computed by Eqs.32, 33, shown in Figure 18, are compared to the ones

obtained with the lognormal fitting. It can be observed that the fragility curves do not show evident
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Figure 18: Comparison of fragility curves computed by the true posterior distribution and the fitted lognormal distribution

differences when γ is between 25% and 75%. However, when γ becomes very low (<5%) or very high

(>95%), discrepancies start to appear. This phenomenon is due to the difference of the quantiles at the
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two ends of the two distributions. Nevertheless, good coherence is obtained for the mean fragility curves:

the influence of the lognormal fitting on the mean fragility curve can be neglected in the considered

case study.

4. Conclusion

In this paper, a Bayesian updating framework is proposed for considering different sources of information,

including numerical simulations, damage data and reference critical values informed from the literature, in the

computations of seismic fragility curves. In the framework, the results from numerical simulations are used

to determine the prior parameters of the fragility curves. Damage data are, then, integrated to compute the

likelihood function for the Bayesian updating. Finally, MCMC is applied to sample the posterior distribution

of the updated equipment capacity.

The main contributions of the work are: (i) An ANN adaptive training algorithm is proposed for a more

intelligent experimental design to conduct FEM simulations. The adaptive training is based on the prediction

uncertainty computed by the delta method. Relying on a relatively large initial population of ground motions,

the adaptive ANN aims to select a representative subset of ground motions, which can ensure the performance

of the ANN over the whole population; (ii) A method to construct the likelihood function is proposed to

deal with existing damage data from the SQUG database. For post-earthquake observational data, the

computation of the likelihood function is achieved by estimating an amplification factor and by assuming a

joint lognormal distribution between floor PGA values and free surface PGA values. This latter lognormal

assumption allows providing an analytical form of the final likelihood function.

The methodology is applied to evaluate the fragility curve of a low-voltage switchgear in a Japanese nuclear

power plant Kashiwazaki-Kariwa. The application of the adaptive ANN training provides an improved

design of experiments, in which more failure cases have appeared in the FEM simulation results. Then,

the construction of the likelihood function with SQUG damage data is realized by the proposed two-stage

PGA transformation. The uncertainty related to the transformation is also quantified and integrated in the

computation of the likelihood function. Compared to the prior fragility parameters, the posterior capacity of

the low-voltage switchgear has increased due to few observed failure cases, whereas the epistemic uncertainty

is largely reduced with the additional information from the damage data. These two aspects give rise to a

higher value of the high confidence low probability of failure capacity of the studied low-voltage switchgear.

The sensitivity analysis has shown that, in this case study, the contribution of the likelihood function to the

posterior estimations is predominant, if the assumed value of βprior
U is larger than 0.2.
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Group. Opensource Finite Element code, http://www.code-aster.org.

Cornell CA, Jalayer F, Hamburger RO, Foutch DA. Probabilistic basis for 2000 SAC federal emergency

management agency steel moment frame guidelines. J Struct Eng 2002;128:526–33. doi:10.1061/(ASCE)

0733-9445(2002)128:4(526).

Ditlevsen O, Madsen H. Structural Reliability Methods, 2005.

Echard B, Gayton N, Lemaire M. AK-MCS: An active learning reliability method combining Kriging and

Monte Carlo simulation. Struct Saf 2011;33:145–54. doi:10.1016/j.strusafe.2011.01.002.

Ellingwood BR, Kinali K. Quantifying and communicating uncertainty in seismic risk assessment. Struct Saf

2009;31:179–87. doi:10.1016/j.strusafe.2008.06.001.

EPRI . Generic Seismic Ruggedness of Power Plant Equipment (Revision 1). Technical Report; Electric

Power Research Institute EPRI, Palo Alto, CA; 1991.

25



EPRI . Methodology for developing seismic fragilities. Technical Report; Electric Power Research Institute

EPRI, Palo Alto, CA; 1994. Report TR-103959.

EPRI . EPRI independent peer review of the TEPCO seismic walkdown and evaluation of the Kashiwazaki-

Kariwa nuclear power plants. Technical Report; Electric Power Research Institute EPRI, Palo Alto, CA;

2007. Report TR-1016317.

EPRI . Seismic Fragility Applications Guide Update. Technical Report; Electric Power Research Institute

EPRI, Palo Alto, CA; 2009. Report TR-1019200.

EPRI . Assessment of the Use of Experience Data to Develop Seismic Fragilities. Technical Report; Electric

Power Research Institute EPRI, Palo Alto, CA; 2014. Report 3002002933.

EPRI . SQUG seismic experience database. Electric Power Research Institute EPRI, Palo Alto, CA; 2016.

Http://esqug.epri.com/.

EPRI . Updated Equipment Seismic Capacities from Experience Data for Use in the Fragility Calculations.

Technical Report; Electric Power Research Institute EPRI, Palo Alto, CA; 2017. Report 3002011627.

Ferrario E, Pedroni N, Zio E, Lopez-Caballero F. Bootstrapped artificial neural networks for the seismic

analysis of structural systems. Struct Saf 2017;67:70–84. doi:10.1016/j.strusafe.2017.03.003.

Gardoni P, Mosalam KM, Kiureghian AD. Probabilistic seismic demand models and fragility estimates for

RC bridges. J Earthq Eng 2009;7:79–106. doi:10.1080/13632460309350474.

Gidaris I, Taflanidis AA, Mavroeidis GP. Kriging metamodeling in seismic risk assessment based on stochastic

ground motion models. Earthquake Eng Struct Dyn 2015;44:2377–99. doi:10.1002/eqe.2586.

Hastings WK. Monte carlo sampling methods using Markov chains and their applications. Biometrika

1970;57:97–105. doi:10.2307/2334940.

Huang YN, Whittaker A, Luco N. A probabilistic seismic risk assessment procedure for nuclear power plant:

(i) Methodology. Nucl Eng Des 2011;241:3966–4003. doi:10.1016/j.nucengdes.2011.06.051.

Hurtado JE, Alvarez DA. Neural-network-based reliability analysis: a comparative study. Comput Methods

Appl Mech Eng 2001;191:113–32. doi:10.1016/S0045-7825(01)00248-1.

IAEA . Review of Seismic Evaluation Methodologies for Nuclear Power Plants Based on a Benchmark

Exercise. Technical Report; International Atomic Energy Agency; 2013.

Jaiswal K, Wald D, D’Ayala D. Developing empirical collapse fragility functions for global building types.

Earthquake Spectra 2011;27:775–95. doi:10.1193/1.3606398.

Jalayer F, Iervolino I, Manfredi G. Structural modeling uncertainties and their influence on seismic assessment

of existing RC structures. Struct Saf 2010;32:220–8. doi:10.1016/j.strusafe.2010.02.004.

Jeon JS, Mangalathu S, Song J, DesRoches R. Parameterized seismic fragility curves for curved multi-frame

concrete box-girder bridges using Bayesian parameter estimation. J Earthq Eng 2017;0:1–26. doi:10.1080/

13632469.2017.1342291.

26



Jones DR, Schonlau M, Welch WJ. Efficient global optimization of expensive black-box functions. J Global

Optimiz 1998;13:455–92. doi:10.1023/A:1008306431147.

Kennedy R, Cornell C, Campell R, Kaplan S, Perla H. Probabilistic seismic safety study of an existing

nuclear power plant. Nucl Eng Des 1980;59:315–38. doi:10.1016/0029-5493(80)90203-4.

Koutsourelakis PS. Assessing structural vulnerability against earthquakes using multi-dimensional fragility

surfaces: A bayesian framework. Probab Eng Mech 2010;25:49–60. doi:10.1016/j.probengmech.2009.

05.005.

Kwag S, Lee JM, Oh J, Ryu JS. Development of system design and seismic performance evaluation for reactor

pool working platform of a research reactor. Nucl Eng Des 2014;266:199–213. doi:10.1016/j.nucengdes.

2013.10.025.

Lagaros ND, Tsompanakis Y, Psarropoulos PN, Georgopoulos EC. Computationally efficient seismic fragility

analysis of geostructures. Comput Struct 2009;87:1195–203. doi:10.1016/j.compstruc.2008.12.001.

Mai CV, Spiridonakos MD, Chatzi EN, Sudret B. Surrogate modelling for stochastic dynamical systems by

combining narx models and polynomial chaos expansions. International Journal for Uncertainty Quantifi-

cation 2016;6:419–30. doi:10.1615/Int.J.UncertaintyQuantification.v6.i4.

Mangalathu S, Heo G, Jeon JS. Artificial neural network based multi-dimensional fragility development of

skewed concrete bridge classes. Eng Struct 2018;162:166–76. doi:10.1016/j.engstruct.2018.01.053.

Newmark NM, Hall WJ. Development of criteria for seismic review of selected nuclear power plants. Technical

Report; Nuclear Regulatory Commission; 1978. NUREG/CR-0098.

Noh HY, Kiremidjian A, Ceferino L, So E. Bayesian updating of earthquake vulnerability functions with

application to mortality rates. Earthq Spectra 2017;33:1173–89. doi:10.1193/081216EQS133M.

Padgett JE, DesRoches R. Methodology for the development of analytical fragility curves for retrofitted

bridges. Earthquake Eng Struct Dyn 2008;37:1157–74. doi:10.1002/eqe.801.

Papadopoulos V, Giovanis DG, Lagaros ND, Papadrakakis M. Accelerated subset simulation with neural

networks for reliability analysis. Comput Methods Appl Mech Eng 2012;223–234:70–80. doi:10.1016/j.

cma.2012.02.013.

Pedroni N, Zio E. An Adaptive Metamodel-Based Subset Importance Sampling approach for the assessment of

the functional failure probability of a thermal-hydraulic passive system. Appl Math Model 2017;48:269–88.

doi:10.1016/j.apm.2017.04.003.

Reed RD, Marks RJ. Neural Smithing. MIT Press, 1999.

Rivals I, Personnaz L. Construction of confidence intervals for neural networks based on least squares

estimation. Neural Networks 2000;13:463–84. doi:10.1016/S0893-6080(99)00080-5.

Rossetto T, Elnashai A. Derivation of vulnerability functions for european-type RC structures based on

observational data. Eng Struct 2003;25:1241–63. doi:10.1016/S0141-0296(03)00060-9.

27



Rota M, Pennab A, C.L.Strobbia . Processing Italian damage data to derive typological fragility curves. Soil

Dyn Earthq Eng 2008;28:933–47. doi:10.1016/j.soildyn.2007.10.010.

Rumelhart D, Hinton G, Williams R. Learning Internal Representations by Error Propagation in Parallel

Distributed Processing: Explorations in the Microstructure of Cognition. The MIT Press, 1986.

Salome Meca . Opensource platform for numerical simulation including pre- and post-processing. EDF

Group. Https://www.code-aster.org/spip.php?article294.

Shinozuka M, Feng MQ, Lee J, Naganuma T. Statistical analysis of fragility curves. J Eng Mech

2000;126:1224–31. doi:10.1061/(ASCE)0733-9399(2000)126:12(1224).

Singhal A, Kiremidjian AS. Bayesian updating of fragilities with application to RC frames. J Struct Eng

1998;124:922–9. doi:10.1061/(ASCE)0733-9445(1998)124:8(922).

Starck RG, Thomas GG. Overview of SQUG generic implementation procedure (GIP). Nucl Eng Des

1990;123:225–31. doi:10.1016/0029-5493(90)90241-O.

Straub D, Kiureghian AD. Improved seismic fragility modeling from empirical data. Struct Saf 2008;30:320–

36. doi:10.1016/j.strusafe.2007.05.004.

Towashiraporn P. Building seismic fragilities using response surface metamodels. Ph.D. thesis; Georgia

Institute of Technology; 2004.

Wang Z, Pedroni N, Zentner I, Zio E. Seismic fragility analysis with artificial neural networks: Application

to nuclear power plant equipment. Eng Struct 2018;162:213–25. doi:10.1016/j.engstruct.2018.02.024.

Xiao NC, Zuo MJ, Zhou C. A new adaptive sequential sampling method to construct surrogate models for

efficient reliability analysis. Reliab Eng Syst Safe 2018;169:330–8. doi:10.1016/j.ress.2017.09.008.

Yoshida N, Kobayashi S, Suetomi I, Miura K. Equivalent linear method considering frequency dependent char-

acteristics of stiffness and damping. Soil Dyn Earthq Eng 2002;22:205–22. doi:10.1016/S0267-7261(02)

00011-8.

Zentner I. Numerical computation of fragility curves for NPP equipment. Nucl Eng Des 2010;240:1614–21.

doi:10.1016/j.nucengdes.2010.02.030.

Zentner I. A procedure for simulating synthetic accelerograms compatible with correlated and conditional

probabilistic response spectra. Soil Dyn Earthq Eng 2014;63:226–33. doi:10.1016/j.soildyn.2014.03.

012.

Zentner I, Gündel M, Bonfils N. Fragility analysis methods: Review of existing approaches and application.

Nucl Eng Des 2017;323:245–58. doi:10.1016/j.nucengdes.2016.12.021.

Zio E. A study of the bootstrap method for estimating the accuracy of artificial neural networks in predicting

nuclear transient processes. IEEE T Nucl Sci 2006;53:1460–78. doi:10.1109/TNS.2006.871662.

28



 

 

 

 

 

 

 

 

 

 

              

         

 

  

��������������������������������������������������������������������������������
���������� ��� ����������� ������� ��������� ����� ������ �������������� �������
��������



 



Ground motion prediction equations by artificial neural networks with input

uncertainties

Zhiyi Wanga,b,c, Irmela Zentnera,b, Enrico Zioc,d

aEDF Lab Saclay, France
bInstitute for Mechanical Sciences and Industrial Applications, CNRS-EDF-CEA-ENSTA, France

cChair on Systems Science and Energetic Challenge, European Foundation for New Energy of EDF, CentraleSupélec,
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Abstract

Ground motion prediction equations (GMPEs) are used to express seismic intensity measures as a function

of source-, path- and site-related parameters. Although functional models are still widely used for their

computation, a fully data-driven approach has been recently proposed based on artificial neural networks

(ANNs). Moreover, the estimation errors of the predictor parameters (e.g. the magnitude and V s30) should

be accounted for in the development of GMPEs. In the present study, the uncertainty in the input parameters

is considered in the computation of GMPEs by ANNs. For this, an algorithm is proposed based on the

generalized least squares principle applied to ANNs training. A simulated database is used to validate the

approach and to demonstrate the effect of the input parameter uncertainties on the GMPEs. Finally, the

proposed model is applied to the RESORCE data collected from Pan-Europe earthquakes. Results show

that, by the proper consideration of uncertainty on the input parameters, the total GMPE uncertainties can

be reduced by 4-16%, whereas the median predictions remain similar.

Keywords: Ground motion prediction equations; Artificial neural networks; Parameter uncertainty;

Generalized least squares; RESORCE database

1. Introduction

Probabilistic seismic hazard analysis (PSHA) is performed to determine the seismic design load of civil

structures (Bommer & Abrahamson, 2006). Within PSHA, ground motion prediction equations (GMPEs)

provide median values, and associated uncertainty, of seismic intensity measures (IMs), for given values of

source-, path- and site-related parameters. With the classical assumption of lognormal distributions of the

IMs, seismic hazard curves can be further determined.

The GMPEs are modeled by ‘mixed-effects model’ with particular functional forms. The underlying

model parameters are determined either by the one-stage regression (Abrahamson & Youngs, 1992) or by the

two-stage regression (Joyner & Boore, 1993). This can be a limitation if the computation of GMPEs for a

new IM is required, as it is necessary to develop new functional models or to determine whether the existing

functional forms can be generalized. Furthermore, if additional site proxies are considered, the functional

forms need to be adjusted. To overcome these difficulties, non-parametric data-driven methods haven been

applied to ground motion prediction. Hermkes et al. (2014) proposes GMPE models based on Gaussian

process regression for application to the European RESORCE database. Models based on artificial neural
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networks (ANNs) have been developed in the past by Derras et al., with applications to American NGA

West database (Derras et al., 2016), RESORCE database (Derras et al., 2014, 2016) and Japanese Kik-

Net database (Derras et al., 2017). In Dhanya & Raghukanth (2017), the performance of ANNs is further

improved by a genetic algorithm in the computation of GMPEs. Variations of the neural network model, e.g.

general regression neural networks and adaptive neuro-fuzzy inference systems, have been tested recently for

applicability in the development of GMPEs (Stambouli et al., 2017; Ameur et al., 2018). An advantage of

using ANNs for the development of GMPEs is that a vector of IMs can be computed simultaneously, instead

of having to develop a different functional model for each individual IM and conduct regression for estimating

its parameters.

On the other hand, the existing GMPEs models with ANNs do not consider the uncertainty of input

parameters (e.g. magnitude Mw and thirty-meter shear-wave velocity V s30). In practice, epistemic uncer-

tainties can affect the source-, path- and site-related parameters due to their determination procedures (Moss,

2011). Methods, which consider the epistemic uncertainty of the input parameters, can be divided into three

categories. Crude Monte-Carlo simulations are used by Foulser-Piggott (2014), to propagate the uncertainties

in the input variables. The values of the uncertain input parameters are sampled from chosen distributions

and a number of GMPE regression analyses are conducted with the generated inputs. The variations of

the model parameters and model output standard deviations, obtained from the different GMPE models,

are analyzed, showing that the GMPE total uncertainty is little impacted by the uncertain inputs, whereas

the influence on the GMPE medians can be significant. The second category applies the first order second

moment (FOSM) method to the uncertain GMPE model. In this way, the variance-covariance matrix of the

mixed-effects model contains supplementary epistemic uncertainty terms. The maximum likelihood problem

can be solved by generalized least squares regression. This is the approach taken by Rhoades (1997), Gehl

et al. (2011), for treating the uncertainty in Mw and V s30, respectively. The last category of methods consists

in applying Bayesian regression in the development of the GMPEs. The uncertainties in the input parame-

ters are described by Bayesian prior distributions. One can refer to Moss (2011), Stafford (2014), Kuehn &

Abrahamson (2017) for more details concerning the Bayesian approach. These studies show a reduction of

the total uncertainty σ, for example 5-10% in Moss (2011) and 1-13% in Kuehn & Abrahamson (2017). The

reduction is explained by the epistemic uncertainty in the input parameters of the GMPEs.

In this paper, we aim to account for the input parameter uncertainties in the non-parametric ANN-based

GMPE models. The approach adopted is the FOSM approach. With this method, we propose a new ANN

training algorithm based on the generalized least squares principle. This allows taking into consideration the

non-diagonal variance-covariance matrix of the residuals in the ANN training. The proposed algorithm is

first validated by a simulated database for verification and, then, applied to the RESORCE database (Akkar

et al., 2014b) for pan-European earthquakes.

The paper is organized as follows. Section 2 explains the mathematical modeling and the method for

considering of input uncertainties with ANNs. The databases used in this study are presented briefly in

Section 3. The proposed algorithm is applied to the simulated database in Section 4, for the purpose of

validation of the algorithm and analysis of the influence of the input uncertainties. For real applications, the

effect of input uncertainties in the RESORCE database is studied in Section 5. Final conclusions are provided
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in Section 6. It has to be pointed out that the objective of this study is to discuss the effect the consideration

of the input uncertainties on non-parametric GMPEs models, instead of proposing a new GMPE model for

the pan-European area.

2. Treatment of input uncertainties with ANNs

2.1. Mixed-effects model with ANNs

We consider developing GMPEs model based on the following parameters: magnitude Mw, Joyner-Boore

distance Rjb and thirty-meter shear-wave velocity V s30.

ln IMij � yij = µ(Mw,i, lnRjb,ij , lnV s30,j ;θ) + ηi + εij (1)

where yij denotes the logarithmic values of the seismic IMs, and µ represents the regression function, i.e. the

median of the GMPE model, ηi is the inter-event residual for the ith event, assumed following N (0, τ2), εij is

the intra-event residual for the jth earthquake signal of the ith event, assumed following N (0,φ2). ηi and εij

are assumed to be independently distributed. Without loss of generality, the logarithmic values lnRjb and

lnV s30 are used as the inputs of the GMPE, as in Derras et al. (2014), and θ is the vector of the parameters

of the assumed functional or data-driven model. The total uncertainty σ of the GMPE is

σ =
�

τ2 + φ2 (2)

In matrix form, Eq.1 becomes:

y = µ+Zη + ε (3)

where y, µ, ε are N × 1 matrices, with N being the total number of earthquake records, η is the M × 1

inter-event residual matrix, with M the total number of earthquake events, and Z is a N ×M matrix, which

allocates the inter-event residual to its corresponding earthquake record. This latter matrix Z is of the form:

Z =











Zn1
0 · · · 0

0 Zn2
· · · 0

...
...

. . .
...

0 0 · · · ZnM











, Zni
=

�

1 1 · · · 1
�T

� �� �

ni elements

(4)

where ni (i = 1, 2, · · · ,M) represents the number of earthquake records of the ith event, Zni
is a column

vector with all the ni elements equal to one, and the index T denotes the matrix transpose.

The solution of the mixed-effects problem (Eq.1) requires determining the model parameters θ, and the

inter- and intra-event uncertainties τ and φ, by maximizing the following log-likelihood function lnL:

lnL = −
N

2
ln 2π −

1

2
ln |C|−

1

2
(y − µ)TC−1(y − µ) (5)

where C is the variance-covariance matrix of the inter- and intra-event residuals:

C = τ2ZZT + φ2IN =

M�

i=1

+(φ2Ini
+ τ21ni

) (6)
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where IN is the identity matrix of size N ×N , the same for Ini
. 1ni

is the matrix of ones of size ni×ni,
�+

is the matrix direct sum operation following the notation of Abrahamson & Youngs (1992). More precisely,

C is a blockwise-diagonal matrix under the form:

C =











φ2In1
+ τ21n1

0 · · · 0

0 φ2In2
+ τ21n2

· · · 0

...
...

. . .
...

0 0 · · · φ2InM
+ τ21nM











(7)

with every block being a ni × ni square matrix:

φ2Ini
+ τ21ni

=











φ2 + τ2 τ2 · · · τ2

τ2 φ2 + τ2 · · · τ2

...
...

. . .
...

τ2 τ2 · · · φ2 + τ2











� �� �

a ni×ni square matrix

(8)

The maximization of Eq.5 is achieved by an iterative expectation-maximization (EM) algorithm. One can

refer to Abrahamson & Youngs (1992) for more details about the EM algorithm used to compute the GMPE

parameters.

Instead of functional models, ANNs can be used to perform data-driven regressions for the determination

of µ, τ2 and φ2 of the GMPEs. In this study, we use classical feed-forward ANNs, which consist of a set of

model parameters θ and activation functions associated to neuron nodes. The type of activation functions

are selected following (Derras et al., 2014): hyperbolic tangent sigmoid functions are used for the hidden

layer nodes and linear functions are applied to the output nodes. The model parameters θ contain the ANN

weights w and biases b , which are adjusted by training to minimize the cost function, i.e. the square error

between y and µ:

θ∗ =




w∗

b∗



 = argmin
θ

1

2

�

i

[yi
− µi(x;θ)]T [yi

− µi(x;θ)] (9)

where x is used to denote the input parameters of ANNs. In the GMPEs computation of Eq.1, this latter x

represents the ground motion predictor parameters Mw, lnRjb and lnV s30. The index i is the ith output of

the ANN, i.e. the ith IM for the GMPEs. The training of ANNs is typically achieved by gradient-based back-

propagation algorithms (Rumelhart et al., 1986; Bishop, 1995) to find the optimal θ∗. It is worth mentioning

that one assumption of the validity of Eq.9 is that the ANN residuals should be statistically independent and

identically distributed (IID). If the residuals are correlated, this correlation should be accounted for in the

cost function, which gives rise to a generalized least squares (GLS) problem for the ANN training. This case

of correlated ANN residuals is addressed in detail later.

The ANN-based GMPEs computation is divided into the following steps (Derras et al., 2014):

1. Initialization step: train an ANN to determine θ, using x and y as the inputs and outputs of the ANN.

2. With µ computed from the determined θ, estimate τ2 and φ2 in maximizing Eq.5.

3. Given µ, τ2 and φ2, compute ηi using Eq.(10) in (Abrahamson & Youngs, 1992):

ηi =
τ2

�ni

j=1 yij − µij

niτ2 + φ2
(10)
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4. Train an ANN to determine θ, using x and y − η as the inputs and outputs of the ANN.

5. Repeat the steps 2-4 until Eq.5 is maximized.

Normalization and denormalization procedures are performed before and after the ANN training; one can

refer to Derras et al. (2014) for more details about this.

Let us study further why a classical ANN training can be applied in this algorithm. By subtracting ηi on

both sides of Eq.1, only the residual term εij remains on the right-hand side of the equation:

yij − ηi = µ(Mw,i, lnRjb,ij , lnV s30,j ;θ) + εij (11)

Therefore, the residuals are IID if x and y − η are used as the inputs and outputs of the ANN. Then, the

algorithm described above is valid when the variance-covariance C is under the form of Eq.7. However, if

additional terms appear on the right-hand side of Eq.1, i.e. if C is not blockwise diagonal, a new algorithm

is required to solve the mix-effects problem.

2.2. ANN GMPEs models with input uncertainties

The FOSM method, proposed in Rhoades (1997) and Gehl et al. (2011), is used in this study for the

consideration of input uncertainties in ANN-based GMPEs model. It consists in introducing the first order

Taylor expansion of the GMPE model with input uncertainties. Considering uncertainty on input parameters,

the model reads:

yij = µ(Mw,i, lnRjb,ij , lnV s30,j) + ηi + εij = µ(M̂w,i + δMi, lnRjb,ij , ln V̂ s30,j + δV sj) + ηi + εij (12)

Here, Mw,i is the true magnitude, M̂w,i denotes the observed magnitude (i.e. with uncertainty) and δMi is

the error related to the measurement. The same holds for V s30, V̂ s30 and δV sj , respectively. The observation

errors are assumed to follow normal distributions: δMi ∼ N (0,σ2
M ), δV sj ∼ N (0,σ2

lnV s). After applying the

first order Taylor expansion to Eq.12, one obtains:

yij = µ(M̂w,i + δMi, lnRjb,ij , ln V̂ s30,j + δV sj) + ηi + εij

= µ(M̂w,i, lnRjb,ij , ln V̂ s30,j) + δMi

∂µ

∂Mw

|x̂ + δV sj
∂µ

∂ lnV s
|x̂ + ηi + εij

(13)

where x̂ represents the vector of the observed inputs. Considering that δMi and δV sj are independent from

each other, the variance-covariance matrix C related to Eq.13 contains the following elements:

1. Diagonal elements Ckk: τ
2 + φ2 + (

∂µ

∂Mw

|x̂k
)2σ2

M + (
∂µ

∂ lnV s
|x̂k

)2σ2
lnV s

2. Off-diagonal elements Ce
kk� , for the records k and k� sharing the same earthquake event: τ2+(

∂µ

∂Mw

|x̂k

∂µ

∂Mw

|x̂
k�
)σ2

M

3. Off-diagonal elements Cs
kk� , for the records k and k� sharing the same observation site: (

∂µ

∂ lnV s
|x̂k

∂µ

∂ lnV s
|x̂

k�
)σ2

lnV s

4. Zero for all the other elements.

Given the off-diagonal elements Cs
kk� , the variance-covariance matrix C is not blockwise-diagonal, so that the

EM approach used by Derras et al. (2014) is not applicable in this case. Instead, as mentioned in Gehl et al.

(2011), an approach based on the generalized least squares (GLS) is required for the maximization of Eq.5.

Here, the algorithm proposed in Gehl et al. (2011) is adapted for the computation of GMPEs by ANNs

trained with correlated residuals. The variance-covariance matrix of the residuals is computed according to
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the previous part. In the subsequent parts of this paper, the ANNs trained considering correlated residuals

are called GLS ANNs. The cost function for the GLS ANNs reads:

E(θ) =
1

2

�

i

[yi
− µi(x;θ)]T [Ci]−1[yi

− µi(x;θ)] (14)

where Ci is the variance-covariance matrix for the ith IM. By applying the gradient-based minimization
dE(θ)

dθ
= 0, and using Newton-Raphson iterative scheme to solve the non-linear equation, it can be derived

that

∆θk =

�
�

i

[J i
k]

T [Ci
k]

−1[J i
k]

�
−1 �

�

i

[J i
k]

T [Ci
k]

−1[rik]

�

(15)

where k is the number of iteration steps. J i
k =

∂yi
k

∂θ
is the Jacobian matrix of size N × nθ, with nθ being the

total number of unknown model parameters in the ANNs. rik = yi
k − µi

k denotes the prediction error at the

kth iteration. Furthermore, a damping factor λ, used in the Levenberg-Marquardt algorithm (Marquardt,

1963), is adopted here to stabilize the numerical resolution, yielding:

∆θk =

�
�

i

[J i
k]

T [Ci
k]

−1[J i
k] + λInθ

�
−1 �

�

i

[J i
k]

T [Ci
k]

−1[rik]

�

(16)

Eq.16 becomes a typical Gauss-Newton algorithm when λ = 0, and it approaches the classical gradient descent

for λ = +∞ (Marquardt, 1963). A small damping factor may lead to instability of the optimization process,

whereas a large λ slows down the convergence speed. A proper choice of λ is realized by cross-validation in

this study.

To obtain GMPEs models considering uncertain inputs, we propose the following algorithm :

1. Initialization step k = 0: randomly initialize an ANN, and initialize the first variance-covariance matrix

Ci with the identity matrix I.

2. Compute ∆θk according to Eq.16. Update the ANN model parameters θk+1 = θk +∆θk

3. With the current ANN parameters θk+1, estimate τ2k+1 and φ2
k+1 in maximizing Eq.5. The maximization

is performed with existing numerical optimization tools.

4. Compute the variance-covariance matrix Ck+1, as described before.

5. Repeat the steps 2-4 until convergence.

The proposed algorithm is developed based on the python open-source ANN package neurolab. To our

knowledge, no existing ANN tool-boxes support GLS ANN trainings, as developed in this paper. For the

evaluation of the derivatives, we apply the finite difference method to approximate
∂µ

∂M
,

∂µ

∂ lnV s
, and the

back-propagation algorithm (Rumelhart et al., 1986; Bishop, 1995) to compute the Jacobian matrices J .

2.3. Determination of inter-event and intra-event residuals

With the determined values of inter-event and intra-event uncertainties τ and φ, the inter-event and

intra-event residuals can be calculated for every earthquake record. The computation is based on the theory

of multi-variate Gaussian distributions. Let us consider the joint distribution of y and η:



y

η



 ∼ N








µ

0



 ,




C τ2Z

τ2ZT τ2IM







 (17)
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where C is the variance-covariance matrix computed according to Section 2.2 with the determined values of

τ , φ and the assumed values of σM , σlnV s. Considering the properties of multi-variate Gaussian distributions,

the estimate of the inter-event residual vector η̂, defined by the expectation of η given earthquake observations

y, is calculated by

η̂ � E(η|y) = τ2ZTC−1(y − µ) (18)

where E(·) is the mathematical operator used to calculate the statistical expectation. It is worth mentioning

that Eq.18 is the generalized form of Eq.10, when C is not blockwise diagonal. If the epistemic uncertainties

of Mw and V s30 are not modeled, namely if C = τ2ZZT + φ2IN (Eq.7), Eq.10 can be easily derived by

applying the relation τ2ZT (τ2ZZT + φ2IN )−1(y − µ) = (ZTZ + IMφ2/τ2)−1ZT (y − µ) (Dempster et al.,

1981) and by performing block matrix multiplication.

In the same way, the joint distribution of y and ε is written as



y

ε



 ∼ N








µ

0



 ,




C φ2IN

φ2IN φ2IN







 (19)

and the estimate of the intra-event residual vector ε̂ is obtained as

ε̂ � E(ε|y) = φ2C−1(y − µ) (20)

3. Case study databases

3.1. RESORCE database

The RESORCE (Reference database for seismic ground motion in Europe) database collects earthquake

records in broader European areas for researches and applications in earthquake engineering. Current RE-

SORCE database contains 5882 processed accelerograms, collected from 1814 events and 1540 stations (Akkar

et al., 2014b). For the computation of the GMPE, we select ground motion records with Mw ∈ [3.5, 7.6] and

Rjb ∈ [0, 200]km. We focus the analyses on shallow crustal earthquakes, with depth less than 30 km. V s30

is considered as the only site-related parameter in this study. Ground motions without V s30 or Rjb values

are not retained for the computation of the GMPEs. After applying these criteria, the final dataset consists

of 893 earthquake records, collected from 269 events. The selected ground motion records were measured on

289 different stations. The distribution of Mw, Rjb and V s30 of the selected dataset is illustrated in Figure

1. It can be observed that most of the earthquake signals are concentrated in the range of Mw values from

4.5 to 6.5. More near-fault earthquakes are selected than far-fault earthquakes. Few records are measured

on stations with V s30 > 720m/s.

We focus on the computation of GMPEs based on Mw, lnRjb and lnV s30, following Derras et al. (2014).

The depth and the type of the fault are not included in the GMPE, since the sensitivity analysis conducted by

Derras et al. (2014) reveals that the contribution of these two parameters to the IMs is negligible. Eighteen

IMs are selected as the outputs of the GMPEs, including PGA (peak ground acceleration), PGV (peak

ground velocity) and sixteen different 5% damping spectral accelerations: Sa(0.3Hz), Sa(0.5Hz), Sa(0.67Hz),

Sa(1Hz), Sa(1.3Hz), Sa(2Hz), Sa(2.5Hz), Sa(3.3Hz), Sa(4.2Hz), Sa(5Hz), Sa(6.7Hz), Sa(10Hz), Sa(13.3Hz),

Sa(20Hz), Sa(33.3Hz) and Sa(100Hz). The geometrical mean of the two horizontal components is used as

the IM value.
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Figure 1: Distribution of Mw, Rjb and V s30 of the selected earthquake records in RESORCE database. (a) Histogram of Mw of

the selected RESORCE dataset; (b) Scatter plot of the selected dataset in Mw-V s30 space; (c) Histogram of V s30; (d) Scatter

plot of the selected dataset in Mw-Rjb space; (e) Histogram of Rjb.

3.2. Simulated database

A simulated database is constructed to assess the methodology and to analyze in a controlled way the

effect of the input uncertainties on τ and φ. Based on the magnitude, distance and site parameters in

the RESORCE database, the simulated database is built with assumed inter- and intra-event uncertainties

τ = 0.2 and φ = 0.3. By comparing the values of τ and φ computed by the proposed algorithm to those

used to generate the database, the accuracy of the methodology can be checked. In addition, we perform

ten different realizations of the Monte Carlo sampling of inter- and intra-event residuals. The purpose is

to evaluate the standard deviations linked to the estimation of inter- and intra-event uncertainties. The

construction of the simulated database has been done as follows:

1. From 893 selected RESORCE earthquake records, extract M̂w, Rjb and V̂ s30 values. The parameters

are denoted by the symbol ˆ since they are observed or measured values.

2. Sample δM and δV s with σM = 0.1, σlnV s = 0.3, respectively. The real values of Mw and V s30 are

obtained by Mw = M̂w + δM , lnV s30 = ln V̂ s30 + δV s.

3. Compute the median of the ln IM by the simplified GMPE model used by Koufoudi et al. (2015). The

values of relevant coefficients are listed in Table 1.

µ(ln IM) = a1 + a2(Mw − c1) + a3(8.5−M2
w) + [a4 + a5(Mw − c1)] ln

�

R2
jb + a26 + b1 ln(

V s30
760

) (21)
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4. Sample inter-event residual ηi and intra-event residual εij with τ = 0.2, φ = 0.3, respectively.

5. Compute the intensity measure values with ln IMij = µij(ln IM) + ηi + εij .

6. Repeat the steps 4-5 ten times for different realizations of residuals, so that ten groups of simulated

ln IM values are obtained.

A simulated database, generated by ten realizations of inter- and intra-event residuals, is finally obtained.

Table 1: Values of coefficients used to build the simulated database. These values are obtained by computing the GMPE model

for RESORCE PGA values with the functional form of Eq.21.

a1 a2 a3 a4 a5 a6 b1 c1
-3.26 1.557 0.1185 -2.565 0.2575 -7.53 -0.414 1.708

4. Application to the simulated database

The objective of this section is to verify the performance of the proposed algorithm in Section 2.2 by

means the simulated database, which is generated with assumed values of τ and φ. The impact of the input

uncertainties on the final determination of τ and φ is also discussed.

Three types of analyses are conducted based on the simulated database:

1. Computation of the GMPE with respect to the real inputs Mw, lnRjb and lnV s30.

2. Computation of the GMPE with respect to the uncertain inputs M̂w, lnRjb and ln V̂ s30, but without

accounting for the uncertainties of on the input parameters.

3. Computation of the GMPE with respect to the uncertain inputs M̂w, lnRjb and ln V̂ s30, modeling the

input uncertainties with standard deviations σM = 0.1, σlnV s = 0.3 in the computation of GMPEs.

This analysis is name by ‘uncertain modeling’ in the sequel.

For each type of analysis, the computation of GMPE is conducted with two models, the functional model of

Eq.21 and a non-parametric ANN model. The ANN model consists of 3 input nodes, 5 hidden layer nodes,

and 1 output. The first two types of analyses are performed with the algorithms of Abrahamson & Youngs

(1992) and Derras et al. (2014), applied to the functional model and ANN model, respectively. Regarding

the uncertain models, the functional GMPE regression is based on the GLS algorithm of Gehl et al. (2011),

whereas the ANN uncertain model is built with the algorithm newly proposed in this study. The value of the

damping factors λ is set to 10, estimated from the 5-fold cross-validation results of the GLS ANN training

when C = I (Figure 2).

The three types of analyses are carried out for all of the ten simulated datasets. We estimate the mean

values of the inter- and intra-event uncertainties, as well as their standard deviations from the results of the

ten datasets. The values of τ , φ and the total uncertainty σ determined for different analyses are shown

in Table 2. The values of τ and φ are determined by the mentioned algorithms and σ is calculated by

σ =
�

τ2 + φ2. The values of the standard deviations are reported after the ± symbol. The results of Table

2 show the influence of the input uncertainties on the values of τ and φ of the GMPEs computation. It can

be concluded that:

9



��� � �� ���

����������λ

����

����

����

����

����

����

����
������������������������������

Figure 2: 5-fold cross-validation results for different values of λ

Table 2: Results of inter-event uncertainties τ and intra-event uncertainties φ for the simulated database

Analysis Model τ φ σ

Reference - 0.2 0.3 0.36

True input values
Functional model 0.195 ± 0.023 0.297 ± 0.007 0.356 ± 0.012

ANN 0.194 ± 0.023 0.296 ± 0.007 0.355 ± 0.012

Observed input values
Functional model 0.239 ± 0.021 0.322 ± 0.008 0.401 ± 0.013

ANN 0.235 ± 0.020 0.320 ± 0.009 0.397 ± 0.013

σM = 0.1, σlnV s = 0.3
Functional model 0.2 ± 0.024 0.297 ± 0.008 0.359 ± 0.014

ANN 0.198 ± 0.023 0.298 ± 0.008 0.358 ± 0.013

1. Both ANNs and functional models provide similar estimates of the inter- and intra-event uncertainties.

As the functional model is the same as the one used to generate the synthetic database, this means

that the ANN can well approximate the real model in the considered case study.

2. With the true input values of Mw and V s30, both the functional model and the ANN provide good

estimation of the inter- and intra-event uncertainties.

3. However, if the observed values of M̂w and V̂ s30 are used as the inputs of the GMPEs, and if the

uncertainties associated to the observed values are not modeled, the values of τ and φ are overestimated

(0.235 compared to 0.2 for τ , 0.320 compared to 0.3 for φ). This is because the input uncertainties are

propagated implicitly into the GMPE model uncertainty during the GMPE computation procedure. In

addition, the true values of τ and φ fall outside the ±1 standard deviation range of values.

4. On the other hand, when the input uncertainty is taken into account, the overestimation is corrected by

the uncertainty modeling, for both the functional model and the ANNmodel. This shows the necessity of

modeling the input uncertainties in the GMPEs computation: otherwise, it may lead to overestimation

of the inter-event and intra-event uncertainties. The proposed algorithm for the consideration of input

uncertainties with ANN is also validated.
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5. Application to RESORCE database

For the application of the input uncertainty modeling to the RESORCE dataset, the 893 selected earth-

quake records are divided into two sets: A training set consisting of 720 ground motions and a validation

set with 173 records. The training set is used to compute the GMPEs and the corresponding inter- and

intra-event uncertainty. The computed GMPEs model is validated on the validation set.

The ANN architecture used to compute the GMPEs is summarized as follows. The ANN has three input

parameters: M̂w, Rjb and V̂ s30. The magnitude and the shear-wave velocity are denoted with ˆ, since they

are considered as the observed uncertain input parameters. Five hidden layer nodes are selected, the same as

Derras et al. (2014). The damping factor λ is set to 100 from the 5-fold cross-validation executed on the 720

training data with Ci = I (i = 1, 2, ..., 18). We assume that uncertainties associated to M̂w and ln V̂ s30 are

σM = 0.1, σlnV s = 0.3, as in Kuehn & Abrahamson (2017). The natural logarithmic values of the eighteen

IMs are used as the outputs for the GMPEs computation. The damping ratio used to compute the spectral

accelerations is 5%.

5.1. Results

Two analyses have been performed in the computation of the GMPEs: (i) A GMPE computed directly

from M̂w, lnRjb, ln V̂ s30 and 18 parameters of ln IM; (ii) A GMPE with the same input-output parameters

as the first one. The uncertainties on M̂w and ln V̂ s30 are modeled with the algorithm proposed in Section

2.2. We compare the results of these two analyses to those obtained with existing RESORCE GMPE models,

including the models of Akkar et al. (2014a), Bindi et al. (2014), Bora et al. (2014), Derras et al. (2014),

Hermkes et al. (2014). The results of these five existing GMPEs are extracted from Douglas et al. (2014).

We first show the inter-event uncertainty τ , intra-event uncertainty φ and the total uncertainty σ of the

two analyses. The τ , φ, σ for the 16 frequency-dependent spectral accelerations are illustrated in Figure 3.

The legend ‘ANN with uncertainty’ means that the corresponding results are computed by ANN with input

uncertainty modeling. The reduction ratio in Figure 3d calculates the relative reduction of the GMPE output

standard deviations, considering the uncertain input parameters. For example:

rσ =
σANN − σANN,uncertain

σANN

(22)

where rσ represents the reduction ratio of the total uncertainty σ. In addition, the GMPE uncertainty

values of PGA, PGV and three spectral accelerations Sa(0.5Hz), Sa(3.3Hz) and Sa(20Hz), representing three

different frequency ranges, are listed in Table 3.

From the results of Figure 3 and Table 3, it can be clearly observed that:

1. The order of magnitude of the determined τ , φ and σ of both ANN models stays coherent with other

existing RESORCE GMPE models. The intra-event uncertainty is predominant in comparison with

the inter-event uncertainty. As different GMPEs are computed with different data and different types

of model, one cannot expect a perfect agreement between the results in this study and the results from

other GMPEs.

2. A clear reduction of τ , φ and σ can be seen with the input uncertainty modeling. This is in agreement

with the results obtained with the simulated database. The maximum rσ can reach 0.16, i.e. 16%

11



��
�

��
�

��
�

��������������

���

���

���

���

���

���

τ
��
�
��

�
�

������������τ��������������

�����������������

�����������������

������������������

����������������

�������������������

���

��������������������

(a) Inter-event uncertainty for RESORCE data
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(b) Intra-event uncertainty for RESORCE data
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(c) Total uncertainty for RESORCE data
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(d) Reduction ratio with the consideration of input

uncertainties

Figure 3: Inter-event, intra-event and total uncertainties determined with the RESORCE data

Table 3: τ , φ and σ values for PGA, PGV, Sa(0.5Hz), Sa(3.3Hz) and Sa(20Hz)

IMs Uncertainties ANN ANN with uncertainty Reduction ratio r × 100%

PGA

τ 0.420 0.376 10.48%

φ 0.593 0.546 7.93%

σ 0.726 0.663 8.68%

PGV

τ 0.394 0.313 20.56%

φ 0.600 0.539 10.17%

σ 0.718 0.623 13.23%

Sa(0.5Hz)

τ 0.417 0.341 18.23%

φ 0.756 0.641 15.21%

σ 0.864 0.723 16.32%

Sa(3.3Hz)

τ 0.375 0.339 9.70%

φ 0.649 0.586 9.59%

σ 0.749 0.678 9.62%

Sa(20Hz)

τ 0.444 0.401 9.68%

φ 0.603 0.565 6.30%

σ 0.749 0.693 7.48%

12



according to Figure 3d. The reduced part of τ , φ is, in fact, explained by the epistemic uncertainties

introduced in the magnitude and in the share-wave velocity, which is modeled by the first order Taylor

expansion with the FOSMmodeling. Qualitatively, the reduction is more significant in the low frequency

range than in the high frequency range. This phenomenon is further addressed in the ‘Discussion’

subsection.

The median GMPEs predictions for both ANN models are also plotted with two different scenarios: (i)

Mw = 5, Rjb = 10km, V s30 = 760m/s and (ii) Mw = 7, Rjb = 10km, V s30 = 270m/s. The comparisons be-

tween the predictions of the ANN models and other existing models are illustrated in Figure 4. The magnitude

scaling and the distance decay of PGA and Sa(1Hz) are shown in Figure 5 and Figure 6, respectively. The

magnitude scaling is computed with Rjb=30km, V s30=760m/s. The RESORCE data with Rjb = 30±20km,

V s30 = 760± 100m/s are also visualized in Figure 5. For the distance decay of PGA and Sa(1Hz), we choose

Mw = 5, V s30 = 270m/s to demonstrate the impact of distance on the median predictions. The data plotted

in Figure 6 contain the earthquake motions of Mw = 5± 0.2, V s30 = 270± 50m/s.
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(b) Mw = 7, Rjb = 10km, V s30 = 760m/s

Figure 4: Comparison of median predictions of the two ANN GMPEs to existing models

In addition, we compute the inter-event and intra-event residuals of the ANN model with input uncertainty

by Eq.18 and Eq.20. The results are compared to those of the ANN model without input uncertainty in Figure

7 and Figure 8, for PGA and Sa(1Hz), respectively.

Several conclusions can be drawn from Figures 4-8:

1. The ANN GMPE models, computed with or without the consideration of the input uncertainties, pro-

vide similar median predictions. This is coherent with what has been observed by Kuehn & Abrahamson

(2017) using Bayesian regression. Additionally, the order of magnitude of the median predictions is in

agreement with existing GMPEs computed on the basis of RESORCE database.

2. Both ANN models exhibit non-linear magnitude scaling behaviors. The effect of the magnitude scaling

is less evident for PGA (an IM for high frequency range) than Sa(1Hz) (an IM for low frequency

range). Although some differences exist between the ANN models and other GMPEs, the ANN models

remain in the range of predictions from the other GMPEs, as shown in Figure 5 and Figure 6. Besides,
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(a) Magnitude scaling of PGA,

Rjb = 30km, V s30 = 760m/s
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(b) Magnitude scaling of Sa(1Hz), Rjb = 30km,

V s30 = 760m/s

Figure 5: Magnitude scaling of PGA and Sa(1Hz). The data are selected from the earthquake records with Rjb ∈ [10km, 50km]

and V s30 ∈ [660m/s, 860m/s]
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(a) Distance decay of PGA, Mw = 5, V s30 = 270m/s
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(b) Distance decay of Sa(1Hz), Mw = 5, V s30 = 270m/s

Figure 6: Distance decay of PGA and Sa(1Hz). The data are selected from the earthquake records with Mw ∈ [4.8, 5.2] and

V s30 ∈ [220m/s, 320m/s]

considering the data cloud plotted in Figure 5 and Figure 6, the ANN models provide satisfactory

regression results.

3. It can be clearly observed that the dispersion of the residuals is less important for the ANN model with

input uncertainty than the classical ANN model. This is due to the reduction of the values of τ and φ

resulted from the modeling of the input epistemic uncertainties. The reduction effect is more evident

for Sa(1Hz) than PGA.
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(b) Inter-event residuals for PGA computed from the

ANN model without input uncertainties
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(c) Intra-event residuals for PGA computed from the

ANN model with input uncertainties
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(d) Intra-event residuals for PGA computed from the

ANN model without input uncertainties

Figure 7: Inter-event and intra-event residuals of PGA of the ANN input uncertain model, in comparison to the ANN model

without input uncertainties

Finally, we validate the ANN model with input uncertainty using the 173 validation data. We recall that

the validation dataset is not used to train the ANN model in the training process. Computed on the validation

dataset, the value of the log-likelihood function of the ANN model with input uncertainty is -3646.48, larger

than -3673.78 obtained without considering input uncertainty. The number of the validation data and the

ANN architecture are the same for both models. In consequence, a larger value of the log-likelihood results in

smaller values of AIC (Akaike information criterion (Akaike, 1974)) and BIC (Bayesian information criterion

(Schwarz, 1978)). Better models are characterized by smaller AIC and BIC values, which shows the advantage

of the uncertain input ANN model over the original ANN model (Table 4). In Figure 9, the predictions of

the uncertain input ANN model are compared to the original IM values of the database, for both PGA and

Sa(1Hz). It can be concluded that the data clouds are located in the neighborhood of the diagonal ’1-1’ line,

implying that the predictions of the uncertain input ANN model are satisfactory, for both PGA and Sa(1Hz).
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(a) Inter-event residuals for Sa(1Hz) computed from the

ANN model with input uncertainties
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(b) Inter-event residuals for Sa(1Hz) computed from the

ANN model without input uncertainties
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(c) Intra-event residuals for Sa(1Hz) computed from the

ANN model with input uncertainties
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(d) Intra-event residuals for Sa(1Hz) computed from

the ANN model without input uncertainties

Figure 8: Inter-event and intra-event residuals of Sa(1Hz) of the ANN input uncertain model, in comparison to the ANN model

without input uncertainties

Table 4: Performance of ANN models with the validation dataset

Models Log-likelihood AIC BIC

ANN without input uncertainties -3673.78 7675.56 8192.70

ANN with input uncertainties -3646.48 7620.96 8138.10

5.2. Discussions

Previous results show that the ANN model considering input uncertainties on Mw and V s30 provides sat-

isfactory regression performance with the RESORCE data. Moreover, a reduction of the GMPE uncertainty

can be obtained by modeling the input uncertainties. However, there are some aspects which need to be

discussed concerning this approach.

1. In our approach, we do not further separate the intra-event uncertainty into the single-site uncertainty

and the site-to-site uncertainty (Baltay et al., 2017), for being able to compare the computed uncertainty

values with those of existing RESORCE GMPE models. Besides, the classical ANN training in the
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Figure 9: Comparison between predictions of the uncertain input ANN model and the values of IMs of the database, for both

training dataset and validation dataset

mixed-effects problem proposed by Derras et al. (2014) does not allow a further decomposition of the

intra-event uncertainty. This latter decomposition, however, can be achieved by the GLS ANN training.

2. The present approach relies on a prior estimation of the input uncertainties. Different estimations

of the uncertainties associated to Mw and V s30 can impact the final values of τ and φ. To analyze

this, different values of σM are σlnV s are selected to conduct the computation of uncertain input ANN

GMPE models. First, we fix the value of σlnV s to 0.3. The value of σM is varied to 0.15 and 0.2. The

corresponding reduction ratios with the variation of σM are plotted in Figure 10. It can be observed

that the inter-event uncertainty τ decreases with increasing values of σM and that the variation of σM

hardly influences the intra-event uncertainty φ, which is consistent with the work of Rhoades (1997).

However, when σM is set to 0.2, the reduction ratios of the inter-event uncertainty can reach 50%

to 70% in low frequency ranges. Different values of σM can give rise to very different estimations of

the inter-event uncertainty. A second analysis is performed by fixing the value of σM to 0.1. Two

additional values of σlnV s (0.1 and 0.2) are selected for uncertain input ANN regression. It can be seen

from Figure 11 that the intra-event uncertainty is mainly influenced by σlnV s.

3. It can be observed in Figure 3, Figure 10 and Figure 11 that, qualitatively, the reduction of the

uncertainty is more important in the low frequency range than in the high frequency range. One

reason is that the absolute values of the derivatives
∂µ

∂Mw

and
∂µ

∂ lnV s30
are larger for low frequency

spectral accelerations than high frequency ones (Abrahamson & Silva, 2007). Considering the FOSM

formulation of Eq.13, a large value of the derivative results in a large adjustment of the residuals. We

show the derivatives
∂µ

∂Mw

and
∂µ

∂ lnV s30
for Sa(0.5Hz), Sa(3.3Hz) and Sa(20Hz) in Figure 12. The

negative values of
∂µ

∂ lnV s30
are justified by the fact that the site effect is more evident if the soil is

softer, so that the seismic intensity measures increase. The derivatives in Figure 12 show higher absolute

values for the low frequency spectral acceleration than for the high frequency one.

4. In spite of the similarity of the median predictions of the two ANN models, the fact that the reduced
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Figure 10: Influence of different values of σM on the reduction ratios of τ , φ and σ

value of σ, introduced by modeling the input uncertainty, can lead to different results for the compu-

tation of the hazard curves, according to Bommer & Abrahamson (2006). This can eventually impact

the results of seismic risk assesment and it shows the necessity of considering input uncertainties, if

they exist, for the development of GMPEs.

5. In constrast to the Bayesian regression used in Moss (2011) and Kuehn & Abrahamson (2017), the

approach proposed in this paper does not allow an appropriate posterior estimation of the true values

of Mw and V s30. This can be regarded as a limitation of the FOSM method compared to Bayesian

regression. However, the application of Bayesian regression to ANNs within the context of the mixed-

effects model is not trivial.

6. Summary & Conclusions

In this paper, an approach to consider input parameter uncertainties is presented on the basis of non-

parametric ANN regression for the computation of ground motion prediction equations. Based on the first

order second moment method, the variance-covariance matrix contains off-diagonal terms which are intro-

duced by the input parameter epistemic uncertainties. An ANN training algorithm is proposed based on the
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(b) Influence of σlnV s on the intra-event uncertainty φ
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(c) Influence of σlnV s on the total uncertainty σ

Figure 11: Influence of different values of σlnV s on the reduction ratios of τ , φ and σ
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Figure 12: Derivatives of ANN median predictions with respect to Mw and lnV s30

generalized least squares principle, to account for non-blockwise diagonal variance-covariance matrix in the
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ANN regression. The proposed approach is applied to a generated synthetic database, in order to analyze the

impact of the input parameter uncertainty and to validate the proposed algorithm. It is, then, applied to the

shallow crustal earthquakes data in the RESORCE database. These two applications show an overestimation

of the GMPE inter-event and intra-event uncertainties, if the epistemic input parameter uncertainties are not

taken into account. The proposed approach relies on a prior estimation of the epistemic uncertainties of the

input parameters and the sensitivity analyses show the importance to assess correctly the input uncertainty

for the estimation of the GMPE inter-event and intra-event uncertainties. Based on the input uncertainties

σM = 0.1, σlnV s = 0.3, the reduction of the total RESORCE GMPE uncertainty is 4-16%, depending on

the frequency of the spectral accelerations, whereas the median predictions are only slightly influenced. The

uncertainty reduction is more significant in low frequency ranges than in high frequency ranges.

Data and Resources

The data used in this study are collected from the RESORCE database (http://www.resorce-portal.eu/).

The approach developed in this study is developed based on the open-source python neurolab package

(https://pythonhosted.org/neurolab/), by implementing the evaluation of the Jacobian matrices and the

generalized least squares training.
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Résumé : L'étude probabiliste de sûreté (EPS) parasismique est l'une des méthodologies les plus utilisées 

pour évaluer et assurer la performance des infrastructures critiques, telles que les centrales nucléaires, 

sous excitations sismiques. La thèse discute sur les aspects suivants: (i) Construction de méta-modèles 

avec les réseaux de neurones pour construire les relations entre les intensités sismiques et les paramètres 

de demande des structures, afin d'accélérer l'analyse de fragilité. L'incertitude liée à la substitution des 

modèles des éléments finis par les réseaux de neurones est étudiée. (ii) Proposition d'une méthodologie 

bayésienne avec réseaux de neurones adaptatifs, afin de prendre en compte les différentes sources 

d'information, y compris les résultats des simulations numériques, les valeurs de référence fournies dans 

la littérature et les évaluations post-sismiques, dans le calcul de courbes de fragilité. (iii) Calcul des lois 

d'atténuation avec les réseaux de neurones. Les incertitudes épistémiques des paramètres d'entrée de lois 

d'atténuation, tels que la magnitude et la vitesse moyenne des ondes de cisaillement de trente mètres, sont 

prises en compte dans la méthodologie développée. (iv) Calcul du taux de défaillance annuel en combinant 

les résultats des analyses de fragilité et de l'aléa sismique. Les courbes de fragilité sont déterminées par 

le réseau de neurones adaptatif, tandis que les courbes d'aléa sont obtenues à partir des lois d'atténuation 

construites avec les réseaux de neurones. Les méthodologies proposées sont appliquées à plusieurs cas 

industriels, tels que le benchmark KARISMA et le modèle SMART. 
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Abstract : Seismic probabilistic risk assessment (SPRA) is one of the most widely used methodologies 

to assess and to ensure the performance of critical infrastructures, such as nuclear power plants (NPPs), 

faced with earthquake events. SPRA adopts a probabilistic approach to estimate the frequency of 

occurrence of severe consequences of NPPs under seismic conditions. The thesis provides discussions

on the following aspects: (i) Construction of meta-models with ANNs to build the relations between 

seismic IMs and engineering demand parameters of the structures, for the purpose of accelerating the 

fragility analysis. The uncertainty related to the substitution of FEMs models by ANNs is investigated. 

(ii) Proposal of a Bayesian-based framework with adaptive ANNs, to take into account different sources 

of information, including numerical simulation results, reference values provided in the literature and

damage data obtained from post-earthquake observations, in the fragility analysis. (iii) Computation of 

GMPEs with ANNs. The epistemic uncertainties of the GMPE input parameters, such as the magnitude 

and the averaged thirty-meter shear wave velocity, are taken into account in the developed methodology. 

(iv) Calculation of the annual failure rate by combining results from the fragility and hazard analyses. 

The fragility curves are determined by the adaptive ANN, whereas the hazard curves are obtained from 

the GMPEs calibrated with ANNs. The proposed methodologies are applied to various industrial case 

studies, such as the KARISMA benchmark and the SMART model. 

 

 
 

  


