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We center our interest in the Population Balance Equation (PBE). This equation describes the time evolution of systems of colloidal particles in terms of its number density function (NDF) where processes of aggregation and breakage are involved. The NDF depends on physical and morphological properties (size, volume, circularity...) of the particles forming the system. We studied also the representation of the PBE as a differential equation in terms of the moments of the NDF. The description of the time evolution of systems, both in terms of the NDF and in terms of a finite set of standard moments of the NDF, is relevant in disciplines like computational fluid dynamics simulation and has applications like in water treatment.

Several researches have investigated about what are the most important variables in order to better describe the behavior of the system in terms of the NDF through the PBE ? The interest of this is to find a set of physical and morphological variables relevant in the description of the evolution of the system and keeping a degree of interpretability. In (Vlieghe 2014), several experiments were done using Bentonite as material, and the granulometry was done for the initial particle population as well as for the populations vii
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Résumé

Nous concentrons notre intérêt sur l'Équation du Bilan de la Population (PBE). Cette équation décrit l'évolution, au fil du temps, des systèmes de particules colloïdales en fonction de sa fonction de densité en nombre (NDF) où des processus d'agrégation et de rupture sont impliqués. La NDF dépend des propriétés physiques et morphologiques des particules formant le système. Nous avons également étudié la représentation du PBE comme une équation différentielle en termes des moments de la NDF. La description au fil du temps des systèmes, à la fois en termes de la NDF et en termes d'un ensemble fini des moments standardes de la DNF, est pertinent dans des disciplines comme la simulation de la mécanique des fluides numérique et a des applications comme dans le traitement de l'eau.

Plusieurs recherches ont été destinées à trouver un ensemble de variables pertinentes dans la description de l'évolution du système et de maintenir un degré d'interprétation. Dans [START_REF] Vlieghe | Agrégation et rupture de flocs sous contraites turbulentes[END_REF], plusieurs expériences ont été effectuées en utilisant de la Bentonite comme matière, et la granulométrie a été effectuée pour la population de particules initiale ainsi que pour les populations résultant des différentes conditions hydrodynamiques. En utilisant v des techniques exploratoires comme l'analyse en composantes principales, le partitionnement de donneés et l'analyse discriminante, nous avons étudié la formation de groupes et l'importance relative de ces variables dans la formation des ces groupes. Nous avons utilisé ce schéma d'analyse pour la population initiale de particules ainsi que pour les populations résultantes sous différentes conditions hydrodynamiques.

L'étude d'un ensemble fini de moments standard de le NDF est pertinente pour connaître plusieurs aspects physiques du système de particules. Dans les recherches récentes, il existe de nombreuses méthodes développées pour résoudre ce problème. L'une de ces méthodes est la méthode en quadrature des moments (QMOM) qui utilise une application de l'algorithme Produit-Différence. Nous avons étudié l'Extrapolation Minimale Généralisée (GME) afin de récupérer une mesure discrète non-négative, etant donnée un ensemble fini de ses moments standard. De plus, nous avons étudié l'utilisation de la PBE en fonction des moments de la NDF, et les méthodes QMOM et GME, afin de récupérer l'évolution, d'un ensemble fini de moments standard de la NDF.

La PBE est une équation intégro-différentielle impliquant la NDF ainsi que des noyaux représentant la fréquence d'agrégation et de rupture. Ces noyaux dépendent également d'un vecteur de paramètre. Afin de trouver une approximation numérique de la solution de la PBE, nous avons proposé un schéma de discrétisation. Nous avons utilisé trois cas où la solution analytique est connue (Silva et al. 2011) afin de comparer la solution théorique à l'approximation trouvée avec le schéma de discrétisation. Nous avons comparé l'approximation numérique à la NDF empirique estimée en utilisant les données expérimentales. Nous avons utilisé les noyaux et les paramètres identifiés dans cette recherche.

Il est intéressant d'estimer les paramètres apparaissant dans la modélisation des processus d'agrégation et de rupture impliqués dans la PBE. Nous avons proposé une méthode pour estimer les paramètres impliqués dans ces processus, en utilisant l'approximation numérique trouvée à travers le système de discrétisation, ainsi que le Extended Kalman Filter, car les données expérimentales donnent lieu à la fonction de distribution volumique des particules, mais la NDF n'est pas disponible. La méthode estime iterativement les paramètres à chaque instant du temps, en utilisant un estimateur de Moindres Carrés. Nous avons produit plusieurs simulations utilisant les noyaux identifiés. Nous avons également utilisé des données expérimentales réelles obtenues à partir de microparticules de latex (Gerin 2016) en appliquant notre méthode pour estimer le vecteur de paramètres dans ces cas. vi resulting at different hydrodynamic conditions. Using exploratory techniques like principal component analysis, cluster analysis and discriminant analysis, we investigated the formation of groups using the available variables and the relative importance of these variables in the formation of the groups. We used this scheme of analysis for the initial population of particles as well as in the resulting populations under different hydrodynamics conditions.

The study of a finite set of standard moments of the NDF is relevant for knowing several physical aspects of the system of particles. In recent research, there are many methods developed in order to solve this problem. One of these methods is the Quadrature Method of Moments (QMOM) which uses an application of the Product-Difference algorithm. We studied the Generalized Minimal Extrapolation (GME) in order to recover a discrete non-negative measure given a finite set of its standard moments. Also, we studied the use of the PBE in terms of the moments of the NDF, and the QMOM and GME methods, in order to recover the time evolution of a finite set of standard moments of the NDF.

The PBE is an integro-differential equation involving the NDF as well as kernels representing the frequency of aggregation and breakage. Those kernels also depend on a vector of parameter. In order to find a numerical approximation to the solution of the PBE, we proposed an discretization scheme. We used three cases where the analytical solution is known (Silva et al. 2011) in order to compare the theoretical solution to the approximation found with the discretization scheme. We compared the numerical approximation to the empirical NDF estimated using the experimental data from the experiments in [START_REF] Vlieghe | Agrégation et rupture de flocs sous contraites turbulentes[END_REF]). We used the kernels and parameters identified in this research.

It is of interest to estimate the parameters appearing in the modelisation of the aggregation and breakage processes involved in the PBE. We proposed a method for estimate the parameters involved in those processes, using the numerical approximation found through the discretization scheme, as well as the Extended Kalman Filter, because usually experimental data results in the volume distribution function of the particles, but the NDF is not available. The method estimates iteratively the parameters at each time, using an Least Square Estimator. We produced several simulations using the kernels identified in [START_REF] Vlieghe | Agrégation et rupture de flocs sous contraites turbulentes[END_REF]) for different initial parameter estimation. We also used real experimental data obtained from latex microparticles (Gerin 2016) applying our method for estimate the parameter vector in these case. 12 Frequency polygons comparing the two data sets obtained under 90 rpm. Each size variable is represented under a logarithmic transformation. The aim is to evaluate the replicability of the experimental results. Again, the two distributions are almost overlapped . . . . . . . . . . . . . . . . . . . . . . . . . 1.13 Frequency polygons comparing the two data sets obtained under 90 rpm. Each shape variable is represented. The aim is to evaluate the replicability of the experimental results. As before, the two distributions are almost overlapped as in the precedent set of variables. . . . . . . . . . . . . . . . . . . . . 1.14 Frequency polygons comparing the populations obtained under 30, 50, 70, and 90 rpm. Each size variable is represented under a logarithmic transformation. In general, we observed an increase of the size of the flocks when the level of rpm increase. The group of small flocks also decrease when the rpm increase. This tendency is observed in all size variables . . . . 1.15 Box and whiskers comparing the populations obtained under 30, 50, 70, and 90 rpm. Each size variable is represented under a logarithmic transformation. We observe that the median augment when the level of rpm does. Also, the number of flocks with large size augment when the speed of mixing does. 1.16 Frequency polygons comparing the populations obtained under 30, 50, 70, and 90 rpm. Each shape variable is represented. The roundness of the flocks decrease when the level of rpm augment. Also, lower is the level of rpm, the more elongated are the flocks. When the level of rpm augment, more irregular are the flocks in terms of concavity and roughness. . . . . . . . 1.17 Box and whiskers comparing the populations obtained under 30, 50, 70, and 90 rpm. Each Shape variable is represented. For Circularity, the quantity of individuals marked as outliers is larger at 30 rpm than the others levels of speed of mixing. About Aspect ratio, the distribution of the measures are more separated from 1 than at lower levels of rpm. The presence of outliers with low values of these variables is bigger when the level of rpm decrease. For the shape variables Circularity, Convexity and Solidity, the groups of individuals marked as outliers behaves like another population in terms of those variables . . Preliminary empirical data analysis and model formulation

Introduction

Analysis of a particulate system seeks to synthesize the behavior of the population of particles and its environment from the behavior of single particles in their local environments. The population is described by the density of a suitable extensive variable, usually the number of particles, but sometimes (with better reason) by other variables such as the mass or volume of particles [START_REF] Ramkrishna | Population Balances. Theory and Applications to Particulate Systems in Engineering[END_REF].

Population balances are essential to scientists and engineers of widely variety of disciplines. In the application of population balances, one is more interested in the distribution of particle populations and their effect on the system behavior. Another feature of this systems is that they contain particles which are continually being created and destroyed by processes such as particles breakage and agglomeration. The particles of interest can be distinguished by its internal and external coordinates. The internal coordinates provide quantitative characterization of its distinguishing traits other than its localization while the external coodinates denote the location of the particles in the physical space. The joint space of internal and external coordinates will be called particle state space. These coordinates can be either discrete or continuous [START_REF] Marchisio | Quadrature Method of Moments for Population-Balance Equations[END_REF].

One application where we can find such kind of systems is in water treatment, specifically in the problem of removing colloidal particles. Turbidity (colloidal particles) originates from clay, microscopic organisms, municipal waters, color compounds, and organic water. A colloidal particle ranges in size from 1-500 nanometers (nm) or millimicrons (mm). Their small size results in an extremely slow settling time and causes them to pass through a typical filter. For example, a colloidal particle with 1nm diameter has a settling velocity of 3 meters per million years. Because of the health and aesthetic issues they must be removed. [Saf] Colloidal particles are removed from drinking water by flocculation. Chemicals (coagulants) are added to the water to allow the colloidal particles to agglomerate or come together to form floc. Different chemicals or coagulants may be added depending on the characteristics of the colloidal particles to be removed.

Hydrophobic colloidal particles remain suspended in solution because they repel each other due to the like charges they have adsorbed from solution and that remain on their surfaces. The magnitude of the particles repulsive forces is called the zeta potential. Destabilization occurs with the addition of chemicals that reduce the repulsive forces between the particles or lower the zeta potential. Destabilization takes advantage of the natural attraction between any two masses known as Van der Waals force. Without Destabilization, the particles repel each other and do not agglomerate into large particles that can settle out of solution [START_REF] Cabana | La coagulation, la floculation et l'agitation[END_REF].

There are several mechanisms that allow the coagulant to destabilize colloids. In one, the coagulant increases the ionic strength of the water and compresses the thickness of the charged layer around each colloidal particle through repulsion. This allows the Van der Waal forces to draw the particles together to form a floc. Some coagulants directly neutralize the surface charge of the colloidal particles allowing the Van der Waals forces to predominate and pull the particles together. In another mechanism, the coagulant removes the colloidal particles by sweeping or bridging them into a precipitate mass.

Coagulants are divalent or trivalent cations (they have a +2 or +3 charge, respectively) or polymers. The most commons trivalent cations usually aluminum and iron salts. The most common trivalent coagulants include aluminum sulfate or alum, A12(SO4)3, ferrous sulfate, FeSO4. Lime, Ca(OH)2, is the most common divalent coagulant. Polymers can also be used as coagulants, but they are more commonly use as coagulant aids. They result in larger flocs that are tougher, or less likely to disintegrate [Saa], [START_REF] Tripathy | Flocculation : A New Way to Treat the Waste Water[END_REF].

These coagulants and an aid can be used singly or in combination to treat water. Sometimes additional turbidity (clay) is also added to allow for more rapid flock formation. To select the proper coagulant and dose, depend on the physical and chemical characteristics of water including pH, alkalinity, organic content, and original turbidity. However, the selection and dose must be optimized through jar testing.

The most common problems associated with coagulation are weak flocks that do not stay together long enough to settle completely or flocks that settle poorly. Coagulant aides may be added to reduce or eliminate these problems. Depending on the specific characteristics of the water, it is not necessary to always use an aid. The addition of a coagulant aid may also reduce the amount of coagulant that is required. Coagulant aids may be nonionic or anionic polymers, sodium aluminate, activated silica, clay, acids, or alkalis.

To achieve coagulation/flocculation, 3 basins are used. The first is rapid mixing, used to mix the coagulant with the water. Next, the colloidal solids are allowed to flock together to form heavier, larger solids. These solids are settled out in a basin. Alternatively, all three steps can be achieved in one unit, a flocculating clarifier.

Rapid mixing is used to contact the coagulant with the water to be treated, typically using mechanical mixing or, less often, a hydraulic jump. Complete blending should occur in 10-30 seconds. In general, a square tank is the best.

Once flocculation is complete, the water flows into a sedimentation basin to permit the flock to settle out. The solids are wasted though the bottom and the water flows out of the basin via weirs.

The discussion thus far described the three units needed for coagulation/flocculation. It uses a system of three independent tanks. An alternative is a flocculator-clarifier which is also known as a solids contact unit or an up-flow tank. Mixing, flocculation, and sedimentation all occur in one tank. These units require less space that separate tanks but offer less operating flexibility.

Once the coagulant and any desired coagulation aids have been blended using rapid mixing, flocculation begins. During flocculation, the water is slowly agitated to allow the colloidal particles to bump into each other and agglomerate into larger and heavier flocks. Mixing can be achieved with paddle flocculation, flat blade turbines, and vertical turbine miwers. Based on experience, it has been determined that the optimal flocculation system should consist of a minimum of three tanks, in series, or three sections within one tank. In either case, there should be progressively slower mixing throughout the tank or tanks. The water should travel at a velocity of 0.5-1.5 feet/minute and at least 30 minutes should be allowed for flocculation.

The U.S. EPA has recently developed a protocol for enhanced coagulationflocculation that calls for jar testing to optimize the coagulation-flocculation process. This is designed to maximize pathogen removal by maximizing turbidity removal. As a result, the aesthetic quality is also improved. The best coagulant, coagulant aid, chemical dosage, mixing speed, and flocculation time can be evaluated through a laboratory jar test. In jar test, a paddle stirrer is used to blend and slowly agitate multiple samples. Rapid mixing occurs at a speed of 60-80 rpm for 1 minute and slow agitation occurs at a speed of 30 rpm for approximately 15 minutes. Part of the purpose of the jar testing, however, is to optimize these values.

The removal of colloidal solids from potable water is critical for two reasons. Some colloidal solids are pathogens, including protozoa such as cryptosporidium. Larger microorganisms are difficult to disinfect. Further, colloidal solids also can shelter attached pathogens making disinfection difficult. If very clear water is not produced, there is a probability that pathogens are present. Colloidal solids may also be organic materials that can be precursors for the formation of disinfection byproducts that can be carcinogens. Disinfection byproducts are synthesized when chlorine is added. They are regulated down to very low levels. Minimizing the organic materials minimizes the production of these dangerous byproducts

Formulation of the model

Introduction

There are a wide variety of applications in physics and chemistry that involve systems of particles in their nature. More precisely, systems of micro-particles are important in the study of flocculation and coagulation processes, as long as in other processes like crystallization. Such kind of processes are found in important industrial applications like treatment of water for human beings and pharmaceutical applications.

The description of population of particles and its evolution in time has been formulated through the Population Balance Equation (PBE). The PBE is an integral-differential equation involving of the number distribution of particles in function of one or several of its morphological properties. These properties allow to describe each particle in terms of its size (or mass) and its shape (geometrically and about its surface). The time evolution of the population particles is formulated through the integral-differential equation involving the derivative of the number distribution with respect to time and the different processes which have an effect on the formation (or destruction) of particles.

The solution of this integral-differential equation is essential for Computational Dynamics Simulations of processes as flocculation. The solution of the PBE results in the evolution in time of the number distribution or, the evolution in time of some moments of this distribution allowing to characterize the particles population. This section is divided into three parts. At first, we are going to explain the usual model formulation using the PBE having the volume of the particle as main property. After that, in the second subsection, this model will be presented in terms of the size of the particle which is used frequently due its direct physic interpretation. We are going to consider this last model in order to present the time evolution of the moments of the number distribution from the PBE in third subsection.

Formulation of the model

We are concerned with systems consisting of particles dispersed in an environmental phase which we shall refer to as the continuous phase. The particles may interact between themselves as well as with the continuous phase. Such behavior may vary from particle to particle depending upon a number of "properties" that may be associated with the particle. Continuous variables may be encountered more frequently in population balance analysis. The external coordinates denoting the position vector of (the centroid of) a particle describing continuous motion through space represent continuous variables.

The temporal evolution of the particulate system: We shall regard time as varying continuously and inquire into the rate of change of the particle state variables. It is convenient to deal with continuous variables in this regard. A fundamental assumption here is that the rate of change of state of any particle is a function only of the state of the particle in question and the local continuous phase variables. Thus we exclude the possibility of direct interactions between particles, although indirect interaction between particles via the continuous phase is indeed accounted for because of the dependence of particle behavior on the "local" continuous phase variables. In order to enable such a local characterization of the continuous phase variables, it is necessary to assume that the particles are considerably smaller than the length scale in which the continuous phase quantities vary. The continuous phase variables may be assumed to satisfy the usual transport equations with due regard to interaction with the particulate phase. Thus, such transport equations will be coupled with the population balance equation.

Particle state vector We are concerned with particle phase variables that are continuous. In general, the choice of the particle state is determined by the variable needed to specify:

• The rate of change of those of direct interest to the application, and

• The birth and death processes.

The particle state may generally be characterized by a finite dimensional vector.

• External coordinate r ≡ (r 1 , r 2 , r 3 ) denote the position (of the centroid) of the particle.

• Internal coordinates x ≡ (x 1 , • • • , x d )
representing d different quantities associated with the particle.

The particle state vector (x, r) accounts for both internal and externals coordinates. We shall let Ω x represent the domain of internal coordinates and Ω r be the domain of external coordinates, which is the set of points in physical space in which the particles are present. These domains may be bounded or may have infinite boundaries.

The particle population may be regarded as being randomly distributed in the particle state space, which include both external or internal coordinates.

Our concern will be about large populations, which will display relatively deterministic behavior because the random behavior of individual particles will be averaged out.

The continuous phase vector. The continuous phase variables may be collated into a finite c-dimensional vector field. The continuous phase variables affect the behavior of each particle.

We define a continuous phase vector.

Y (r, t) = [Y 1 (r, t) , • • • , Y c (r, t)
] which is clearly a function only of the external coordinate r and time t.

The evolution of this field in space and time is governed by the laws of transport and interaction with the particles.

In some applications, a continuous phase balance may not be necessary because interactions between the population and the continuous phase may not bring about any (or a substantial enough) change in the continuous phase. In such case, analysis of the population involves only the population balance equation.

The number density function. We postulate that there exist an average number density function defined on the particle state space, E [n (x, r, t)] ≡ n 1 (x, r, t) with x ∈ Ω x and r ∈ Ω r , where E [n (x, r, t)] denote the expectation or the average of the actual number density n (x, r, t), while n 1 (x, r, t) denotes the average number density. This definition implies that the average number of particles in the infinitesimal volume dV x dV r (in the particle state space) about the particle state (x, r) is n 1 (x, r, t) dV x dV r . However, we will refer to particles in volume dV x dV r about the particle state (x, r).

The average number density n 1 (x, r, t) is assumed to be sufficiently smooth to allow differentiation with respect to any of its arguments as many times as may become necessary.

The (average) number density allows one to calculate the (average) number of particles in any region of particle state space. Thus, the (average) total number of particles in the entire system is given by

Ωx dV x Ωr dV r n 1 (x, r, t)
where dV x and dV r are infinitesimal volume measures in the spaces of internal and external coordinates respectively.

The local (average) number density in physical space, i. e. the (average) total number of particles per unit volume of physical space, denoted N (r, t) is given by

N (r, t) = Ωx dV x n 1 (x, r, t) .
Other densities such as volume or mass density may also be defined for the particle population. Thus, if v (x) is the volume of the particle of internal state x, then the volume density may be defined as v (x) f 1 (x, r, t).

The volume fraction density φ (x, r, t) of a particle state is defined by

φ (x, r, t) = 1 Φ (r, t) v (x) n 1 (x, r, t) where Φ (r, t) = Ωx dV x v (x) f 1 (x, r, t)
the denominator above represents the total volume fraction of all particle. Similarly, mass fractions can also be defined. For the case of scalar interval state using volume, the volume fraction density of particles of volume v becomes

φ (v, r, t) = vn 1 (v, r, t) Φ (r, t)
where

Φ (r, t) = ∞ 0 vn 1 (v, r, t) dv.
In contrast with number density, volume or mass denote the amount of dispersed phase material.

The rate of change of particle state vector We observed earlier that particle state might vary in time. We are concerned with smooth changes in particle state describable by some vector field defined over the particle state space both internal and external coordinates.

While changes of external coordinates refers to motion through physical space, that of internal coordinates refers to motion through an abstract property space (for example size).

We had collectively referred to them as convective processes for the reasons that they might be likened to physical motion.

It will be convenient to define "velocity" Ṙ (x, r, Y, t) for internal coordinates and Ẋ (x, r, Y, t) for external coordinates. These functions are assumed to be as smooth as necessary.

The velocity just defined may be random processes in space and time. Thus, n 1 (x, r, t) Ṙ (x, r, Y, t) represents the particle flux through physical space and n 1 (x, r, t) Ẋ (x, r, Y, t) is the particle flux through internal coordinate space.

The Population balance equation. Consider a population of particles distributed according to their size x which we shall take to be the mass of the particle and allow it to vary between 0 and ∞.

The particles are uniformly distributed in space so that the number density is independent of external coordinates. Further, we assume fot the present that the environment does not play any explicit role in particle behavior.

We let Ẋ (x, t) be the growth rate of the particle size x and let n 1 (x, t) denote the number density. All functions involved are assumed to be sufficiently smooth. Thus, we have the population balance equation

∂n 1 (x, t) ∂t + ∂ Ẋ (x, t) n 1 (x, t) ∂x = 0. (1.1)
In the above derivation, we did not take in account the birth and death of particles. To asses the rates of this contributions detailed modeling of breakage and aggregation processes will be needed. Let h (x, t) dx the net rate of generation of particles in the size range x to x+dx, where the identity of h (x, t) would depend on the models of breakage and aggregation. In this case, the population balance equation becomes

∂n 1 (x, t) ∂t + ∂ Ẋ (x, t) n 1 (x, t) ∂x = h (x, t) (1.2)
The preceding equation must be supplemented with initial and boundary conditions. The initial condition must clearly stipulate the distribution of particles in the particle state space.

The Population Balance Equation (PBE) is an equation that describes the evolution of one population of particles in colloidal systems. Changes in this kind of population are due to aggregation or breakage processes that can be seen as processes of birth and death. The formulation of PBE is traditionally made in terms of the particle's volume as Size property.

Thus, in the case of populations of particles in colloidal systems, the PBE is formulated modeling h (x, t) in function of processes of birth due to aggregation B a (v; t), death due to aggregation D a (v; t), birth due to breakage B b (v; t), and death due to breakage D b (v; t). For the populations of particles in colloidal systems, the particle flux through size coordinate is constant so

∂ Ẋ (x, t) n 1 (x, t) ∂x = 0.
Let's denote η (v; t) the number density in function of the particle's volume as Size property. In the case considered, the PBE have the form

∂η (v; t) ∂t = B a (v; t) -D a (v; t) + B b (v; t) -D b (v; t) . (1.3) 
This four terms at the right side of the equation are the corresponding processes of birth and death due to aggregation or breakage. This equation is expressed like Definition 1.1. Population Balance Equation in terms of the particle's volume. The equation governing the evolution in time of the number distribution of a population of colloidal particles is known as Population Balance Equation in terms of the particle's volume, and it is defined as

∂η (v; t) ∂t =B a (v; t) -D a (v; t) + B b (v; t) -D b (v; t) = 1 2 v 0 φ (v -, ) η (v -; t) η ( ; t) d -η (v; t) ∞ 0 φ (v, ) η ( ; t) d + ∞ v ψ ( ) ρ (v/ ) η ( ; t) d -ψ (v) η (v; t) , (1.4) 
where • φ (v, ): aggregation kernel using volume as coordinate,

• B a (v; t) = 1 2 v 0 φ (v -, ) η (v -; t)
• ψ (v): breakage kernel using volume as coordinate,

• ρ (v/ ): distribution function of fragments.

In some applications, it is interesting to express the PBE in terms of the Length of Diameter particle instead of the volume. Because of this, we are going to see how we can transform the PBE using the particle's volume as distribution variable to the PBE using the particle's size as distribution variable. We can see that this formulation is Proposition 1.2. The PBE in terms of particle's size coordinate. The PBE can be formulate in terms of the length coordinate like

∂n (L, t) ∂t =B a (L; t) -D a (L; t) + B b (L; t) -D b (L; t) = L 2 2 L 0 β (L 3 -λ 3 ) 1/3 , λ (L 3 -λ 3 ) 2/3 n L 3 -λ 3 1/3 , t n (λ, t) dλ -n (L, t) ∞ 0 β (L, λ) n (λ, t) dλ + ∞ L a (λ) b (L | λ) n (L, t) dλ -a (L) n (L, t) , (1.5) 
where where and where

• B a (L; t) = L 2 2 L 0 β (L 3 -λ 3 ) 1/3 ,λ (L 3 -λ 3 ) 2/3 n (L 3 -λ 3 ) 1/3 ,
• B b (v; t) = ∞ L a (λ) b (L | λ) n (L,
• n (L; t): number density function using length as coordinate,

• β (L, λ): aggregation kernel using length as coordinate,

• a (L): breakage kernel using length as coordinate,

• b (L/λ): distribution function of fragments.

Proof. To write the equation (3.1) in therms of the size particle instead of the volume coordinate, we need to assume that v ∝ L 3 . Therefore, we can propose the variable transformation

v =L 3 dv =3L 2 dL,
and we can write the number density distribution in terms of particle's length n (L; t) dL from the distribution in terms of the volume η (v; t) like η (v; t) dv = η L 3 ; t 3L 2 dL = n (L; t) dL, also, we can write the aggregation kernel, breakage kernel and the distribution function of fragments in terms of the particle's length if we take v = L 3 and = λ 3 like

• φ (v, ) = φ (L 3 , λ 3 ) = β (L, λ), • ψ (v) = ψ (L 3 ) = a (L), • ρ (v| ) = ρ (L 3 |λ 3 ) 3L 2 = b (L|λ).
Using the factor 3L 2 in both sides of the equation (3.1) and taking again v = L 3 and = λ 3 we have, for the left side

∂η (v; t) ∂t = ∂η (L 3 ; t) 3L 2 ∂t = ∂n (L; t) ∂t ,
and for the right side, we can write each process involved into the PBE respectively like:

• Birth process due to aggregation. We are going to define

B a (v, t) 3L 2 = B a L 3 , t 3L 2 = B a (L; t) .
From the definition 3.1 we have

B a (v; t) = 1 2 v 0 φ (v -, ) η (v -; t) η ( ; t) d ,
if we multiply this term by the factor 3L 2 and we use the variable transformation

v =L 3 dv =3L 2 dL =λ 3 d =3λ 2 dλ
we obtain

B a L 3 ; t 3L 2 = 3L 2 2 L 0 β L 3 -λ 3 1/3 , λ η L 3 -λ 3 ; t η λ 3 ; t 3λ 2 dλ = 3L 2 2 L 0 β L 3 -λ 3 1/3 , λ η L 3 -λ 3 ; t × = 3 (L 3 -λ 3 ) 2/3 3 (L 3 -λ 3 ) 2/3 n (λ; t) dλ = L 2 2 L 0 β (L 3 -λ 3 ) 1/3 , λ (L 3 -λ 3 ) 2/3 n L 3 -λ 3 1/3 ; t n (λ; t) dλ,
then, we get the term corresponding the birth aggregation processes in function of the particle's length like

B a (L; t) = L 2 2 L 0 β (L 3 -λ 3 ) 1/3 , λ (L 3 -λ 3 ) 2/3 n L 3 -λ 3 1/3 ; t n (λ; t) dλ.
(1.6)

• Death processes due to aggregation. Similarly, we are going to define

D a (v, t) 3L 2 = D a L 3 , t 3L 2 = D a (L; t) .
From the definition 3.1 we have

D a (v; t) = η (v; t) ∞ 0 φ (v, ) η ( ; t) d ,
if we multiply this term by the factor 3L 2 and we use the variable transformation

v =L 3 dv =3L 2 dL =λ 3 d =3λ 2 dλ
we obtain

D a L 3 ; t 3L 2 =η L 3 ; t 3L 2 ∞ 0 φ L 3 , λ 3 η λ 3 ; t 3λ 2 dλ =n (L; t) ∞ 0 β (L; λ) n (λ; t) dλ.
(1.7) then, we get the term corresponding the death aggregation processes in function of the particle's length like

D a (L; t) = n (L; t) ∞ 0 β (L; λ) n (λ; t) dλ.
(1.8)

• Birth processes due to breakage. Similarly, we are going to define

B b (v; t) 3L 2 = B b L 3 ; t 3L 2 = B b L 3 ; t .
From the definition 3.1 we have

B b (v; t) = ∞ v ψ ( ) ρ (v/ ) η ( ; t) d
if we multiply this term by the factor 3L 2 and we use the variable transformation

v =L 3 dv =3L 2 dL =λ 3 d =3λ 2 dλ we obtain B b (v; t) 3L 2 = 3L 2 ∞ L ψ λ 3 ρ L 3 |λ 3 η λ 3 ; t 3λ 2 dλ = ∞ L ψ λ 3 ρ L 3 |λ 3 3L 2 n (λ; t) dλ = ∞ L a (λ) b (L/λ) n (λ; t) dλ,
then, we get the term corresponding the birth breakage processes in function of the particle's length like

B b (L; t) = ∞ L a (λ) b (L/λ) n (λ; t) dλ
• Death processes due to breakage. Finally, we are going to define

D b (v; t) 3L 2 = D b L 3 ; t 3L 2 = D b L 3 ; t .
From the definition 3.1 we have

D b (v; t) = ψ (v) η (v; t) , (1.9) 
if we multiply this term by the factor 3L 2 and we use the variable transformation

v =L 3 dv =3L 2 dL we obtain D b (v; t) 3L 2 =ψ (v) η (v; t) 3L 2 a (L) n (L, t) ,
then, we get the term corresponding the death breakage processes in function of the particle's length like

D b (L; t) = a (L) n (L, t) .
(1.10) Finally, we can formulate the PBE in terms of the particle's length like

∂n (L, t) ∂t =B a (L; t) -D a (L; t) + B b (L; t) -D b (L; t) = L 2 2 L 0 β (L 3 -λ 3 ) 1/3 , λ (L 3 -λ 3 ) 2/3 n L 3 -λ 3 1/3 , t n (λ, t) dλ -n (L, t) ∞ 0 β (L, λ) n (λ, t) dλ + ∞ L a (λ) b (L | λ) n (L, t) dλ -a (L) n (L, t)
The Population Balance Equation in terms of particle's size will be used throughout the next chapters for modeling the time evolution of the number density function.

Moments equations for aggregation and breakage

For some applications, it is convenient to study the evolution in time of a finite number of standard moments of the number density function. In this case, the properties of the particle's population of interest are fully known as a function of a few set of standard moments. Although, an equation like the Population Balance Equation can be used for studying the time evolution of the standard moments.

In the precedent section 1.3, we introduced the Population Balance Equation describing the time evolution of the number density function in terms of the particle's size coordinate like it was shown in proposition 3.2 and equation (3.2). Also, from that equation (3.2) it is possible to find an equivalent PBE describing the time evolution of the standard moments of the number density in terms of the particle size coordinate as it can be seen in the next proposition.

Proposition 1.3. The Population Balance Equation describing the time evolution of the standard moments of the number density in terms of the particle size coordinate can be expressed like

∂m k (t) ∂t = 1 2 L 0 n (λ; t) ∞ 0 β (u, λ) n (u; t) u 3 + λ 3 k/3 du dλ - ∞ 0 L k n (L; t) ∞ 0 β (L, λ) n (λ; t) dλ dL + ∞ 0 L k ∞ 0 a (λ) b (L/λ) n (λ; t) dλ dL - ∞ 0 a (λ) n (L; t) L k dL (1.11)
Proof. We begin with the transformations of moments [START_REF] Marchisio | Quadrature method of moments for aggregation-breakage processes[END_REF] 

m k (t) = ∞ 0 n (L; t) L k dL (1.12)
If we introduce this transformation into the PBE in the form of equation (3.2) we get

∂n (L; t) ∂t =B a (L; t) -D a (L; t) + B b (L; t) -D b (L; t) ∂ ∞ 0 n (L; t) L k dL ∂t = ∞ 0 B a (L; t) -D a (L; t) + B b (L; t) -D b (L; t) L k dL ∂m k (t) ∂t = ∞ 0 B a (L; t) L k dL - ∞ 0 D a (L; t) L k dL + ∞ 0 B b (L; t) L k dL - ∞ 0 D b (L; t) L k dL (1.13) now, if we denote 1. B a k = ∞ 0 B a (L; t) L k dL 2. D a k = ∞ 0 D a (L; t) L k dL 3. B b k = ∞ 0 B b (L; t) L k dL 4. D b k = ∞ 0 D b (L; t) L k dL then, we get ∂m k (t) ∂t = B a k -D a k + B b k -D b k (1.14)
Now, we can get the expressions for these new components

B a k = ∞ 0 B a (L; t) L k dL k = ∞ 0   L 2 2 L 0 β (L 3 -λ 3 ) 1/3 , λ (L 3 -λ 3 ) 2/3 n L 3 -λ 3 1/3 ; t n (λ; t) dλ   L k dL if we use the change u 3 = L 3 -λ 3 and dL = u 2 L 2 du we get B a k = ∞ 0 L 2 2 L 0 β (u, λ) u 2 n (u; t) n (λ; t) dλ L k dL = 1 2 ∞ 0 L 0 β (u, λ) n (u; t) n (λ; t) dλ L 2 u 2 L k u 2 L 2 du
and we have that u -→ 0 as L -→ 0, and u -→ ∞ as L -→ ∞. Then we can write

B a k (t) = 1 2 L 0 n (λ; t) ∞ -λ β (u, λ) n (u; t) u 3 + λ 3 k/3 du dλ B a k (t) = 1 2 L 0 n (λ; t) ∞ 0 β (u, λ) n (u; t) u 3 + λ 3 k/3 du dλ D a k (t) = ∞ 0 n (L; t) ∞ 0 β (L, λ) n (λ; t) dλ L k dL D a k (t) = ∞ 0 L k n (L; t) ∞ 0 β (L, λ) n (λ; t) dλ dL B b k (t) = ∞ 0 ∞ L a (λ) b (L/λ) n (λ; t) dλ L k dL B b k (t) = ∞ 0 L k ∞ 0 a (λ) b (L/λ) n (λ; t) dλ dL D b k (t) = ∞ 0 a (λ) n (L; t) L k dL (1.15)
1.4 Preliminary Empirical Data

Introduction

In the first part of this chapter we formulated the model describing the population of particles in terms of the PBE. This formulation involves the number distribution in function of one main property (size of volume). But often, this information is not enough for completely describe the population. The shape of the particle (for example, general geometric shape of shape of the surface of the particle) affects the hydrodynamic properties of the system and then affects the formation or destruction of particles in the system. One better description of this kind of systems will involve a Population Balance Equation in terms of properties of size and shape. This kind of equations are not straightforward and often there are several morphological properties available and it is not clear which set of then describes better the population.

Several studies have been proposed in order to better understand how morphological properties can describe a population and how to incorporate this information to the PBE. One of this studies was ( [START_REF] Vlieghe | Agrégation et rupture de flocs sous contraites turbulentes[END_REF]), in which experimental data was obtained from a population of Bentonite particles using a Taylor-Couette reactor and several properties were measured using diffraction laser. In this study, the authors recovered data from one initial population. Then, they measured the properties in populations obtained using different hydrodynamic conditions. They proposed the reduction of the set of measures into two properties, one size property and one shape property. They use a Principal Components Analysis (PCA) for proposing this set of variables.

We are going to use this experimental data in order to study this morphological properties. We are going to do an analysis to the initial distribution of particles and data from several hydrodynamic conditions.

About the data sets 1.4.3 Materials and methods

In this section, we apply a set of statistical tools for analyzing the datasets get from the experiments with the Bentonite. This data-sets were gotten from the different experiments under different hydrodynamic conditions, producing different populations of flocs. We distinguish between the initial population, and the populations changing the rate of speed of rotation.

In all cases, the granulometry by lasser diffraction are used to get a set of measures characterizing the morphology of flocs [Mor]. Those measures can be classified into Size measures and Shape measures.

We begin with a descriptive analysis for the Size measures and the Shape measures including univariate, bivariate and multivariate exploratory techniques. The objective is to describe the main characteristics of the population, including the presence of outliers. Also we want to observe the relations between the variables of the same group (Size variables and Shape variables), and the relation between the variables of different groups. We want to answer the following questions:

• What are the main characteristics of the populations of Bentonite flocs by each variable measured?

• Do we find outliers in the populations?

• What are the relationships between the variables in the same group of classification (Size and Shape)?

• What are the relationships between the variables of different groups?

• Does this relationships change in time?

• Do we find different groups of flocs in the same population? If we do find this groups, can we characterize those groups?

The experimental data are obtained by image's treatment. The images containing the flocs are taken in gray's scale. The MATLAB software used implements a smoothing step and a binarization step in order to get appropriate data. This software change the color in images from gray scale to black or withe binary scale. Also, the software fills the images of objects containing less than 10 pixels. The resulting images are appropriate for measuring the characteristics describing the flocs.

The image treatment of the experimental data sets will result in measures quantifying the morphology of flocs. Morphology is the set of characteristics related to the size and the shape of flocs, distinguishing the size properties measured in length units (or surface units) and the shape properties in general dimensionless.

Properties related to the size of the flocs -Area and Circle Equivalent Diameter

The Area (A) is obtained automatically by counting the pixels belonging to the floc's image and measured in µm by convention. The Circle Equivalent Diameter (CED) is the diameter of the circle having an equivalent area A.

-Major and Minor axes

Taking in account the relative position of pixels, the software gets the length of the major (L) and minor (l) axes of the ellipse having the having the equivalent inertia.

-Hull Convex It is the smallest polygon enclosing the image of the floc. Convex Hull is characterized by its area (A ch ) and its perimeter (P ch ). Those measures allow to calculate the solidity and the convexity of the shape, by comparison with the actual area and perimeter of the floc.

-Perimeter

In order to estimate the Perimeter of the floc's image, the sum of the distances between the centers of the pixels forming the contour of the image is calculated. Then a layer of pixels are added to the contour region and the sum of the distances between the centers of those pixels are computed. The Perimeter estimation (P ) is the mean of these two measures.

-

Radius of Gyration

The Radius of Gyration (Rg) is a characteristic size taking account the relatives position of pixels. It is computed like the quadratic mean of distances between the pixels and the barycenter.

Properties related to the shape of the flocs

The properties describing the shape of the flocs were chosen such that they take the value of 1 when the shape is a circle.

-Solidity and Aspect Ratio

The solidity (S) compares the area of the floc A to the convex area A ch . If A = A ch then solidity is equal to 1. Solidity is inferior to 1 in presence of concavities in the shape

S = A A ch .
The Aspect Ratio (AR) is the ratio between the length of the major L and minor axes l of the ellipse equivalent. This property takes the value of 1 if the ellipse equivalent is a circle, and it is inferior to 1 if the floc has a elongated shape

AR = l L
-Circularity and Convexity

The circularity and the convexity takes in account the perimeter of the floc. Both properties takes values between 0 and 1, and it is 1 in the case of a circle.

The Circularity (C I ) is the ratio between the perimeter of the circle equivalent P ch (having the same area) and the actual perimeter

P C I = √ 4πA P .
The Convexity (C V ) is the relation between the convex perimeter P ch and the actual perimeter P . This property quantifies the presence of concavities and roughness in the flocs These characteristics measure then the similarity to the circle in all the scales. The convexity takes the same value if the figure is a circle or a square for example (in both cases, the convexity is 1). Although, the circularity does discriminate between a circle and a square, then circularity is more sensitive to various geometries.

C V = P ch P .

Properties of Size

Metodology

In order to answer those questions, we are going to use the following statistic techniques:

• Univariate descriptive statistic

• Exploratory bivariate statistics

• Exploratory multivariate statistcs

Univariate descriptive statistic techniques

For describing each population considered, a set of classical univariate techniques are used. This techniques include graphical representation and main numerical statistical indexes. We use the graphics for having a global idea of the distribution of the population according to each variable. The numerical statistics are used to knowing one specific feature of interest of those populations like the average value, the dispersion or the asymmetry. Also, a combination of those graphical and numerical statistics allow to determine the presence of outliers or different groups in the same population.

Histogram and Box and whiskers plot ([HS15]

). The boxplot is a graphical technique that displays the distribution of variables. It helps as to see the location, skewness, spread, tail length and outlying points. It is particularly useful in comparing different batches. The boxplot is a graphical representation of the Five Number Summary. In te Five Number Summary, we calculate the upper quartile Q 3 , the lower quartile Q 1 , the median M , the minimum and the maximum. The Q-spread, d Q is defined as

d Q = Q 3 -Q 1 .
The outside bars

O U =Q 3 + 1.5d Q O L =Q 1 -1.5d Q
are the borders beyond which a point is regarded as an outlier. For the construction of the boxplot, we have:

1. Draw a box with borders (edges) at Q 1 ans Q 3 (i.e. 50% of the data are in the box).

2. Draw the median as a solid line.

3. Draw "whiskers" from each end of the box to the most remote point that is not an outlier.

Show outliers as "points" depending on if they are outside of [O

L ; O U ].
The histograms are density estimates. A density estimates gives a good impression of the distribution of the data. In contrast to boxplots, density estimates show possible multimodality of the data. The idea is locally represent the data density by counting the number of observations in a sequence of consecutive intervals (bins) with origin x 0 . Let B j (x 0 , h) denote the bin of length h which is the element of a bin grid starting at x 0 :

B j (x 0 , h) = [x 0 + (j -1) h, x 0 + jh) , j ∈ Z
where, [•, •) denotes a left closed and right open interval. If {x} n i=1 is an i.i.d. sample with density f , the histogram is defined as follows:

fh (x) = n -1 h -1 j∈Z n i=1 I{x i ∈ B j (x 0 , h) I{x ∈ B j (x 0 , h)} (1.16)
where in (1.16) the first indicator function I{x i ∈ B j (x 0 , h)} counts the number of observations falling into bin B j (x 0 , h). The second indicator function is responsible for "localizing" the counts around x. The parameter h is a smoothing or localizing parameter and controls the width of the histogram bins. One "optimal" h parameter for n observations is given by:

h opt = 24 √ π n 1/3

Experimental distributions

In order to compute the empirical experimental distribution of each property the variation rang was divided into n c classes. For shape properties, linear classes were constructed using

L i = L 1 + (i -1) (L nc+1 -L 1 ) /n c
and the abscissa representing each class, denoted by Li , was its arithmetic mean, for i = 1, • • • , n c . For size properties geometrical classes were constructed using

L i = L 1 × exp ln L nc+1 L 1 /n c
and the abscissa representing each class, Li , was its geometric mean, for

i = 1, • • • , n c .
Then, The empirical experimental distribution of each property were computed counting the frequency (proportion of the population) in each class N i , and this quantity was assigned to the abscissa Li . The frequencies are computed as (1.17) [Sal07]

N i = N F j=1 Q (j) N F j=1 Z (j) (1.17)
where

Q (j) = Z (j) , if L (j) ∈ [L i , L i+1 [ 0, othewise
where L (j) is the size of the j-th floc, for j = 1, • • • , N F , and N F is the total number of flocs considered. For a number distribution, the function Z (j) = 1 is taken and N i represents the fraction in number of flocs belonging to the class i.

The empirical moments of the distribution m k are computed using the density n (l), where

n (l) = N i L i+1 -L i , ∀l ∈ [L i , L i+1 [ .
We can see the empirical moments as an approximation of the standard moments of the number distribution

m k = +∞ 0 x k n (L) dL = i L i+1 L i L k n (L) dL ≈ i N i L i+1 -L i L i+1 L i L k dL m k ≈ i N i L i+1 -L i L k+1 i+1 -L k+1 i k + 1 .

Simple Flocculation Experiments

A series of simple flocculation experiments (under controlled hydrodynamic conditions) were performed using Bentonite in a Taylor-Couette reactor. The measure of several morphological parameters was done using image analysis.

The experiments performed by [START_REF] Vlieghe | Agrégation et rupture de flocs sous contraites turbulentes[END_REF], describe the Bentonite flocculation (30 mgL -1 with aluminum sulfate at a concentration 3.5 × 10 -5 molL -1 ) under four rotation speeds. Each experiment starts as follows:

• The reactor is filled to three quarters of its capacity with demineralized water and switched on with a rotation speed of the inner cylinder N = 100 rpm. Then, the suspension is poured, followed by demineralized water until the reactor is almost full. Finally, the flocculant is added. The rotation speed is maintained at 100 rpm during 3 min. This step produces a population of initial aggregates, which is the initial population considered afterwords.

• Then, the speed rotation is set at the desired value (30, 50, 70, or 90 rpm) for 4 h.

• 70 photographs are taken every 2 min at the beginning of an experiment, then every 5 and 10 min.

• Only aggregate images composed of 10 pixels or more were taken into account, thus the smallest aggregates analyzed have a CED of 26 µm, Rg of 9 µm, and L of 28 µm.

Results of the univariate description

Now, the results of the univariate description of the data sets will be presented. It will be organized in three parts, each one corresponding to a different data set. In the first part will be described the initial population of Bentonite flocks obtained at a speed of mixing of 50 revolutions per minute (rpm). The second part will contain the results of the univariate description for different populations of flocks obtained at different hydrodynamic conditions (30, 50, 70, and 90 rpm). Finally, the third part will contain the description of several populations obtained under the same hydrodynamic conditions through the time. Several data set were available from different speed of mixing (30, 50, 70, 90, and 100 rpm).

Initial population of Bentonite flocks. In this part, the initial population of Bentonite flocs are described. We are going to begin with the univariate descriptive analysis. This will be a characterization of each size and shape variables in terms of numerical descriptive statistics and graphic description (histograms and box-plots), taking special attention to the outliers univariates.

The description was performed for data obtained for the speed of mixing of 50 rpm. In this data set were measured 36854 flocs. We describe the size and shape variables using histograms with the rectangles representing the density of floc's frequency divided by the amplitude of each class. We present the size measures in logarithmic scale, because the great variability in the flocs, as usually in granulometry analysis (granulometry).

The initial summary of numerical descriptive statistics are shown in the table 1.3 and 1.4

We can see in table 1.3 the description of the set of variables representing the size of the flock or "Size variables". We can observe that the range of variation in all the variables is wide. Also the the particles in the "50% The same kind of analysis was performed for the variables representing the shape of the particles or "Shape variables". By definition, these variables are limited to the range [0, 1]. We observe that for the Circularity, the flocks in the 50% between the 1st and the 3rd quantile are distributed in the center of the range. It could represent flocks with a non-regular surface but even so smooth. The mean value of the Circularity also indicates that the geometry shape of the flocks tend to a circle. In the case of Convexity and Solidity, their behavior is very similar. The 1st quantile is in both variables near to the value of 0.85. It means that the 75% of the flocks present values for these two variables very close to 1. It means that the flocks present little concavity and smooth surface. Finally, the Elongation presents values very close to 0. The 3rd quantile is approximately 0.38 and then, the 75% of the flocks have Elongation inferior to this value. Then, the flocks tend to have an elongated shape.

We use graphics like histograms and box-plots for having an idea of the distribution (proportion of individuals in each class) for the size variables and shape variables. For the size variables, the properties are not well represented because the large variability of this measures. In figure 1.1 we can find the histograms for the five variables representing the size of the flocks. The first class of the histogram is grouping a large quantity of individuals and the graphic is not informative. In order to avoid this, the classes were constructed using a geometrical construction.

The variables representing the size of the flocks are transformed using a logarithmic transformation. This information is presented in the histograms in figure 1.2. We can observe that the behavior of all the variables is the same. The flocks are very asymmetrically distributed with positive skewness. This distribution is unimodal. The most of the flocks are grouped in the beginning of the range. There are a large percentage of individuals having small or average size. Also there exists a set of flocks having very large dimensions compared to those first described.

We complement the graphical analysis of the size variables with box and whiskers plots. Those plots are presented in the figure 1.3. In the box-plots we note that, for all the variables representing size, the 50% of the values between the 1st and the 3rd quantile are placed at the beginning of the range of the variables. The variability in this 50% of the flocks is small compared to the values out of the box. Also, there are large amount of flocks with elevate value for size measures. More than outliers, they behave like a different population of flocks. Those individuals are presented like blue dots in the graphics.

For the shape variables, we have construct histograms and box-plots using natural scale for classes. The graphic representation is observed in figure 1.4. The shape variables takes values between 0 and 1. We can observe in the case of Circularity, a negative skewness, where the measures are distributed more or less in the larger values of the property and they have an unimodal distribution. The Convexity and Solidity present a behavior very similar. Both distributions are asymmetric, with negative skewness, where the most of the flocks present values near to or equal to 1. The distribution is unimodal in both cases. The elongation present a distribution asymmetric, with positive skewness, where the most part of the flocks are distributed more or less in the inferior part of the range.

In a similar manner, we complement the graphical analysis with box and whiskers plots. Those plots are presented in figure 1.5. In the case of Circularity, the box is placed oriented near to the larger values of the range. The size of the box is wide indicating large variability in that 50%. The behavior of the variables Convexity and Solidity is similar. In both cases, the box representing the 50% interquantile is placed at the bottom of the range. It means that, 75% of the individuals have values very close to 1. The variability in that 50% of the population is small. There are an important number of individuals with very small values of these two characteristics, indicating a very different shape between the population and those "outliers" which seem to have the behavior of another population.

Populations of Bentonite flocks under different hydrodynamic conditions. In this part, we analyze a set of measures from populations of particles obtained from different hydrodynamic conditions. Those hydrodymanic conditions are represented by the speed of mixing at 30, 50, 70, and 90 rpm. The data sets are compound by two populations obtained under the same hydrodynamic conditions and the same time of evolution of the process. Those data sets were obtained in order to evaluate the replicability of the results under the same experimental conditions using the Bentonite as material.

First, we will compare the univariate distributions of each pair of data sets, in order to see the differences in the experimental results. Then, the two datasets are gathered and used as the measures of one population. The different populations are compared with frequency polygons and box and whiskers for each variable, in order to see the differences between the measures of each population.

The variables measured in this case were:

• Representing particle's size: Area, Major Axis, Minor Axis, Perimeter.

• Representing particle's shape: Extent, Solidity, Aspect Ratio, Convexity, Circularity.

Population under 30 rpm. Following the univariate analysis descriptive of the data sets, we are going to compare the frequency polygons of the variables representing particle's size, under a logarithmic transformation, in order to compare the distribution of the two data sets one variable at time.

We can observe in figure 2.2 that the frequency polygons corresponding each data set are almost overlapped. It indicate that, in terms of the size variables point of view, the experimental results are repicable. The distributions of the population of flocks have, a similar behavior for the variables Area, Perimeter and Minor axis. The distribution presents positive skewness, with large amount of flocks with small size. Then, there are groups of flocks with more important size at the end of the distribution. In the case of the variable Mayor axis, the distribution presents a large amount of flocks of small size, but we can observe the presence of flocks of medium size. The distribution is almost bimodal because of these groups of flocks. In similar In a similar way, we are going to represent the frequency polygons for the shape. In the graphic, the two data sets obtained at 30 rpm are compared one variable at time.

For the variables representing the particle's shape, the frequency polygons of the two data sets are almost overlapped in each case, and are shown in figure 2.3. For the Circularity, the measures of the flocks are more concentrated in the values close to 1, indicating a geometric shape rounded but not as a perfect circle. The frequency polygons of the Aspect ratio shows that the most of the flocks takes 1 as value of this characteristic, indicating that those flocks have a contour or surface very smooth and with shape very rounded. Although, the presence of a group of flocks in the center of the distribution shows the presence of flocks with surface more irregular and shape more elongated.The distributions shown in the case of Convexity and Solidity are very similar. The most of the flocks take values close to or equal to 1. It indicates that the flocks do not present concavities or roughness important. A less important group of flocks are found more at the center of the distribution, showing the presence of concavities in some flocks.

Population under 50 rpm. In a similar way, we are going to compare the frequency polygons of the variables representing particle's size, under a logarithmic transformation, in order to compare the distribution of the two data sets one variable at time. These results were obtained under a speed of mixing of 50 rpm.

As before, we can observe in figure 1.8 that the frequency polygons corresponding each data set are almost overlapped. It indicate that, in terms of the size variables point of view, the experimental results are repicable. The distributions of the population of flocks have, a similar behavior for the variables Area, Perimeter and Minor axis. The distribution presents positive skewness, with large amount of flocks with small size. Then, there are groups of flocks with more important size, but in this case, the groups are more close to the group of small particles, in contrast with the case of 30 rpm. In the case of the variable Mayor axis, the distribution presents a large amount of flocks of small size, but we can observe the presence of flocks of medium size. The distribution is almost bimodal because of these groups of flocks. In similar way, there are groups of flocks with more important size, but again, this group of particles are closer to the small ones. Now, we represent the frequency polygons for the shape. In the graphic, the two data sets obtained at 50 rpm are compared one variable at time. For the variables representing the particle's shape, the frequency polygons of the two data sets are almost overlapped in each case, and are shown in figure 1.9. For the Circularity, the measures of the flocks are more concentrated in the values close to 1, indicating a geometric shape rounded but not as a perfect circle. The frequency polygons of the Aspect ratio shows that the most of the flocks takes 1 as value of this characteristic, indicating that those flocks have a contour or surface very smooth and with shape very rounded. Although, the presence of an important group of flocks in the center of the distribution shows the presence of flocks with surface more irregular and shape more elongated.The distributions shown in the case of Convexity and Solidity are very similar. The most of the flocks take values close to or equal to 1. It indicates that the flocks do not present concavities or roughness important. A less important group of flocks are found more at the center of the distribution, showing the presence of concavities in some flocks. These groups of flocks are closer to the value of 1 than the precedent case.

Population under 70 rpm. In a similar manner, we compare the frequency polygons of the variables representing particle's size, under a logarithmic transformation, in order to compare the distribution of the two data sets one variable at time. These results were obtained under a speed of mixing of 70 rpm.

As before, we can observe in figure 1.10 that the frequency polygons corresponding each data set are almost overlapped. It indicate that, in terms of the size variables point of view, the experimental results are repicable. The distributions of the population of flocks have, a similar behavior for the variables Area, Perimeter and Minor axis. The distribution presents positive skewness, with large amount of flocks with small size. Then, there are groups of flocks with more important size, but in this case, the groups are more close to the group of small particles, in contrast with the cases precedents. In the case of the variable Mayor axis, the distribution presents a large amount of flocks of small size, but we can observe the presence of flocks of medium size. The distribution is almost bimodal because of these groups of flocks. In similar way, there are groups of flocks with more important size, but again, this group of particles are closer to the small ones. Now, we represent the frequency polygons for the shape. In the graphic, the two data sets obtained at 70 rpm are compared one variable at time.

For the variables representing the particle's shape, the frequency polygons of the two data sets are almost overlapped in each case, and are shown in figure 1.11. For the Circularity, the measures of the flocks are more con- centrated in the values close to 1, indicating a geometric shape rounded but not as a perfect circle. The frequency polygons of the Aspect ratio shows that the most of the flocks takes 1 as value of this characteristic, indicating that those flocks have a contour or surface very smooth and with shape very rounded. Although, the presence of an important group of flocks in the center of the distribution shows the presence of flocks with surface more irregular and shape more elongated.The distributions shown in the case of Convexity and Solidity are very similar. The most of the flocks take values close to or equal to 1. It indicates that the flocks do not present concavities or roughness important. A less important group of flocks are found more at the center of the distribution, showing the presence of concavities in some flocks. These groups of flocks are closer to the value of 1 than the precedent case.

Population under 90 rpm. Finally, we compare the frequency polygons of the variables representing particle's size, under a logarithmic transformation, in order to compare the distribution of the two data sets one variable at time. These results were obtained under a speed of mixing of 90 rpm.

In a similar way, we can observe in figure 1.12 that the frequency polygons corresponding each data set are almost overlapped. It indicate that, in terms of the size variables point of view, the experimental results are repicable. The distributions of the population of flocks have, a similar behavior for the variables Area, Perimeter and Minor axis. The distribution presents positive skewness, with large amount of flocks with small size. Although, there are groups of flocks with more important size, but in this case, the groups are more close to the group of small particles and is more important in number, in contrast with the cases precedent. In the case of the variable Mayor axis, the distribution presents a large amount of flocks of small size, but we can observe the presence of an important number of flocks of medium size. In similar way, there are groups of flocks with more important size, but again, this group of particles are closer to the small ones. Now, we represent the frequency polygons for the shape. In the graphic, the two data sets obtained at 90 rpm are compared one variable at time.

For the variables representing the particle's shape, the frequency polygons of the two data sets are almost overlapped in each case, and are shown in figure 1.13. For the Circularity, the measures of the flocks are more concentrated in the values close to 1, indicating a geometric shape rounded but not as a perfect circle. The frequency polygons of the Aspect ratio shows that the most of the flocks takes 1 as value of this characteristic, indicating that those flocks have a contour or surface very smooth and with shape very rounded. Although, the presence of an important group of flocks in the center of the distribution shows the presence of flocks with surface more irregular and shape more elongated. This group is more important in number than in the cases precedent. The distributions shown in the case of Convexity and Solidity are very similar. The most of the flocks take values close to or equal to 1. It indicates that the flocks do not present concavities or roughness important. A less important group of flocks are found more at the center of the distribution, showing the presence of concavities in some flocks. These groups of flocks are closer to the value of 1 than the precedent case.

Comparison of the univariate distributions under different levels of rpm. As we could observe in the precedent part, the two set of data are similar in all the variables, so they are going to form a single data set for each level of rpm. We are going to use again the frequency polygons and the box and whiskers plot for comparing the distributions of each variable under different hydrodynamics conditions.

We present first the variables representing the particle's size and then the variables representing the particle's shape.

In figure 1.14, we find the frequency polygons in the same graphic for the populations of particles obtained under different levels of rpm. The representation was done one variable at time. Here, for the size variables, we use a logarithmic transformation in order to better describe the data. We observed a positive skewness in all four variables. In general, there are an important number of flocks with small size. There are also a group of flocks of medium size in the center of the distribution. we observed an increase of the size of the flocks when the level of rpm increase. The group of small flocks also decrease when the rpm increase. This tendency is observed in all size variables.

If we compare the distribution of the size variables with the box and whiskers plot, like in figure 1.15, we observe that the 50% inter-quantile is always placed at the low values of the distribution. We can see also an augmentation in the variability of the measures when the level of rpm augment. The presence of large flocks in the lowest level of rpm (30 rpm) is remarked. The median of the distribution augment when the level of rpm does. Also, the number of flocks with large size augment when the speed of mixing does.

In a similar manner, the distributions of the variables representing the particle's shape are shown using frequency polygons in figure 1.16. In the graphs, we observe that the measures of Circularity of flocks tend to the values close to 1. It indicates that the geometric shape of the flocks tend to be rounded but they do not achieve the perfect sphere shape. The variability seem to decrease when the level of rpm augment. For the Aspect ratio, we find a large number of particles having a measure close to 1 for this characteristic. Also, there are groups of flocks taking values at the center of the distribution of this variable. It represents groups of flocks with an elongated form. Lower is the level of rpm, the more elongated are the flocks. In the case of Convexity and Solidity, the most of the flocks have values very close to 1 for both measures. It means that the flocks do not present important concavities of roughness. Although, there are a group of flocks taking values near to 0.9, representing flocks more irregular in shape. When the level of rpm augment, more irregular are the flocks in terms of concavity and roughness.

In the figure 1.17, the distribution of the variables representing the particle's shape are shown using box and whiskers plots. In the case of Circularity, the boxes representing the 50% inter-quantile, have a similar behavior in central tendency and in variability. All distributions present negative skewness, and the predominant values in the populations are close to 1. However, the quantity of individuals marked as outliers is larger at 30 rpm than the others levels of speed of mixing. It seems that flocks with less rounded shape are present in populations obtained under lower levels of rpm. About Aspect ratio, the distributions present negative skewness too, and the values are placed at the end of the distribution. The variability in this variable decrease when the level of rpm augment. For the level of 90 rpm, the distribution of the measures are more separated from 1 than at lower levels of rpm. For Convexity and Solidity, the behavior is of the distributions are similar in both cases. The distributions present a marked negative skewness and the most of the individuals are concentrated close to 1. The presence of outliers with low values of these variables is bigger when the level of rpm decrease. For the shape variables Circularity, Convexity and Solidity, the groups of individuals marked as outliers behaves like another population in terms of those variables.

Populations of Bentonite flocks under different hydrodynamic conditions and through time. In this part, we analyse a set of measures from populations of particles obtained from different hydrodynamic conditions. Those hydrodymanic conditions are represented by the speed of mixing at 30, 50, 70, 90, and 100 rpm. The data sets are compound of the measures of size and shape characteristics from populations of particles obtained under the same speed of mixing but at different instants of time.

We are going to analyze the distribution of each variable, comparing the Figure 1.17: Box and whiskers comparing the populations obtained under 30, 50, 70, and 90 rpm. Each Shape variable is represented. For Circularity, the quantity of individuals marked as outliers is larger at 30 rpm than the others levels of speed of mixing. About Aspect ratio, the distribution of the measures are more separated from 1 than at lower levels of rpm. The presence of outliers with low values of these variables is bigger when the level of rpm decrease. For the shape variables Circularity, Convexity and Solidity, the groups of individuals marked as outliers behaves like another population in terms of those variables frequency polygons of populations obtained at different instant of time. Also, we are going to compare the distributions using box and whiskers plot. The analysis is performed at each level of speed of mixing.

Population under 30 rpm.

Exploratory multivariate statistics

The Principal Components Analysis (PCA). The Principal Components Analysis or PCA has as main objective the reduction of dimension of data. That is, to describe precisely the values of p variables by a smaller subset r < p of them, losing a little amount of information. Given n observations of p variables the PCA analyses if it is possible to represent accurately this information with a smaller number of variables build as a linear combination of the original ones. This technique lets to represent optimally observations of an p-dimensional space in an space of low dimension. Further, it allows to transform the original variables, generally correlated, into new variables, making easier the interpretation of data.

This technique can be seen through different perspectives. The first one is the descriptive approach consisting of finding a subspace of dimension less than p, so that when we project the observations, they conserve the essential of its structure with the least possible distortion. Specifically, we search to conserve the relative distance in the original space between the observations. In an statistical approach, the technique looks for the observation projection verifying this property, minimizing the orthogonal distances, so that the new variables generating the new subspace are orthogonal. It also can be seen geometrically as if the data points cloud are in an ellipsoid where the best approximation is provided by its projection on the mayor axes of the ellipsoid. This is equivalent to minimizing the orthogonal distance.

Computation of the Principal Components. It can be shown that the r-dimensional space that better represents the observations is defined as the eigenvectors associated to the r largest eigenvalues of the Variance and Covariance matrix S. Those directions are named Principal Directions and they define the new variables named Principal Components.

Let's denote data matrix X defined by n observations of p variables. Generally, the matrix X has rang equals to p (and in consequence, also the matrix S). Then, there exists as many Principal Components as variables. This Principal Components are calculate using the characteristic roots λ 1 , • • • , λ p of S through:

|S -λI| = 0 (1.18)
and they associated vectors are

(S -λ i I) a i = 0 (1.19)
where the terms λ i are positive reals, because the matrix S is symmetric and definite positive. If we have p -r variables as linear combination of the rest variables, the matrix S is semi definite positive and we have r real positive characteristic roots and the other p -r roots are zero.

Properties of the Principal Components. The Principal Components are new variables with the following properties:

• They conserve the initial variability. The sum of the variances of the Principal Components is equal to the sum of variances of the original variables, and the generalized variance of the Components is also equal to the generalized variance of the original variables.

• The proportion of explicated variance by a component is the quotient between its variance, the associated eigenvalue and the sum of the eigenvalues of S.

• The covariances between each Principal Component and one original variable X i is given by the product of the coordinates of the eigenvector multiplied by its eigenvalue.

• The correlations between a Component and one original variable X i is proportional to the coefficient of that variable in the definition of the Component and the standard deviation of the variable.

Corr (Z i , X j ) = λ i a ij λ i S 2 j = a ij √ λ i S j .
• The r Principal Components provide the optimal linear prediction with r variables of the original set X.

• If we standardize the Principal Components, we obtain the multivariate standardization of the original data set.

CPA analysis of the Correlation matrix. Since the Principal Components are obtained maximizing the variance of the projection, if some variable has variance so much large than the others, the first Principal Component tends to coincide to that variable. When the variables are expressed in different measure units this property is not desirable. If we want to avoid that problem, it is convenient to standardize the variables before the CPA. In this way, we obtain the normed Principal Components or equivalently, we can obtain the normed Principal Components computing the eigenvalues and eigenvectors of the correlation matrix R.

The properties of the Principal Components extract from R are:

• i λ R i = trace (R) = p.
• The proportion of explained variability by each Component is

λ R i p .
• The correlation between each Component Z j and the original variable X i is a j λ j , where Z j = Xa j .

Interpretation of the Principal Components. If the variables have large positive correlations, the first Component is a weighted average of all variables. This kind of situation leads to an interpretation of the first Component as a "Size" Component. The others Components oppose groups of variables and they are often interpreted as "Shape" Components.

When the original variables are transformed using a logarithmic transformation, the Components can be represented often as ratios of geometric means of variables.

Selection of the number of Principal Components r Several approach can be regarded when we are going to select the dimension of the representation r. Those approaches include to select the number of Components explaining a required proportion of variance or to reject those Components which eigenvalue associated is less than a fixed quote, this quote is usually taken as the mean of the eigenvalues.

Graphic representation. In order to represent the individuals, often we use a projection into an space of dimension 2. This projection is directly calculate as the value of the Principal Component using the eigenvectors.

To represent the original variables , we use the correlation coefficient between then and the Principal Components as coordinates. The vector of correlations between the first component and the original variables is given by

λ 1 a 1 D
where D is a diagonal matrix having in the principal diagonal the inverses of the standard deviations of each variable.

Selection of relevant size and shape properties using PCA

In order to properly choose one size variable and one shape variable to monitor, Principal Components Analysis (PCA) was used. The PCA performs an orthogonal transformation that provides a new set of uncorrelated variables called Principal Components (PC). This variables are the eigenvalues of the correlation matrix. The first principal component is the one that explains most of the variability of the original system. A graphical interpretation of the principal components is obtained by plotting the circle of correlation, where the abscissa and ordinate of each point are the correlation coefficients between one property and respectively the first and second principal component. The correlation coefficient of the i th PC and the j th variable is

r (P C i , j) = P C i V i (j) ,
where V i is the i th eigenvector.

PCA performed with all the size properties and shape properties confirm that these two groups of variables are naturally related. Then, a PCA analysis was performed with the size variables as one group and shape variables as another group. Perimeter was the most important property related to the first PC and after that the Rg. Circularity and Convexity are the properties more related to the second PC.

Outlier identification in high dimension

In the data coming from population of particles, we can find group of individuals that behave atypically. This kind of populations are formed by a large number of individual and also can be observed a large variation in the particles properties.

In order to study the presence of outlier individuals from a multivariate perspective, we are going to use a computational procedure proposed by [START_REF] Filzmoser | Outlier identification in high dimensions[END_REF])( [START_REF] Filzmoser | Outlier identification in high dimensions[END_REF]) and the package mvoutlier ( [START_REF] Filzmoser | mvoutlier: Multivariate Outlier Detection Based on Robust Methods[END_REF]) in the R language ([R C17]). This algorithm utilizes simple properties of principal components analysis to identify outliers in the transformed space.

The algorithm consists of two basic parts: a first phase that aims to detect location outliers, and a second phase that aims to detect scatter outliers.

Scatter outliers possess a different scatter matrix than the rest of the data, while location outliers are described by a different location parameter.

To start, the authors propose to robustly rescale or sphere each component using the coordinatewise median and the median absolute deviation (MAD), according to

x * i j = x i j -med (x 1 j , • • • , x n j ) M AD (x 1 j , • • • , x n j ) , , j = 1, • • • , p, (1.20) 
and where the median absolute deviation (MAD) defined for a sample

{x 1 , • • • , x n } ∈ R is computed like M AD (x 1 j , • • • , x n j ) = 1.4826 med j |x j -med i x i |. (1.21)
Other kind of estimators of location and scale are given by the class of Sestimators, Starting with the rescaled data x * i j , a weighted covariance matrix is calculated, and from this matrix, the eigennvalues and the eigenvectors are computed and hence a semi-robust principal component decomposition. Only those eigenvectors/values that contribute to at least 99% of the total variance; call this new dimension p * . For the case p >> n, this also solves the singularity problem since p * < n. For the p * × p * matrix of eigenvectors V , the matrix of principal components is computed as

Z = X * V, (1.22)
where X * is the matrix with the elements x * i j . The principal components are rescaled by the median and the MAD similar to (1.20),

z * i j = z i j -med (z 1 j , • • • , z n j ) M AD (z 1 j , • • • , z n j ) , , j = 1, • • • , p * . (1.23)
After the above pre-processing steps, the location outlier phase is initiated by calculating the absolute value of a robust kurtosis measure for each component according to:

w j = 1 n n i=1 (z * i j -med(z * 1 j ,••• ,z * n j )) 4 M AD(z * 1 j ,••• ,z * n j ) 4 -3 , j = 1, • • • , p * . (1.24)
This quantity allows to assign weights to each component. The authors use relative weights w i / j w j . If no outliers are present in a given component, one expect the principal components to be approximately normally distributed (similar to the original data), yielding a kurtosis close to zero. Also, a robust Mahalanobis distance (denoted RD i ) is calculated using the distance from the median (as scaled by the MAD), weighting each component according to the relative weights w i / j w j , with the kurtosis measure w i defined in (1.24).

To finish the first phase of the algorithm, these robust Mahalanobis distances {RD i } are transformed according to

d i = RD i χ 2 p * ,0.5 med (RD 1 , • • • , RD n ) , i = 1, • • • , n, (1.25) 
where χ 2 p * ,0.5 is the χ 2 p * 50th quantile. The translated biweight function is used to assign weights to each observation and use these weights as a measure of outlyingness. The weights for each observation are calculated according to

w 1i =        0, d i ≥ c, 1 -d i -M c-M 2 2 , M < d i < c, 1, d i ≤ M,
(1.26)

where i = 1, • • • , n, M is the 33 1 3 rd quantile of the distances {d 1 , • • • , d n }, and c = med (d 1 , • • • , d n ) + 2.5 M AD (d 1 , • • • , d n ) .
(1.27)

The second phase of the algorithm is similar to the first except that the kurtosis weighting scheme is not used. Principal components focuses on those directions that have large variance, so the algorithm search for scatter outliers in the semi-robust principal component space described before. That is, the algorithm search for the outliers in the space defined by Z * from (1.23). As before, calculating the Euclidean norm for data in principal component space is equivalent to the Mahalanobis distance in the original data space.

Similarly to the first phase, weights for each robust distance are calculated according to (1.26) and setting M 2 equal to the χ 2 p * 25th quantile and c 2 equal to the χ 2 p * 99th quantile. Call the weights calculated this way,

w 2i , i = 1, • • • , n.
Finally, the algorithm combine weights from these two steps to calculate final weights w i , i = 1, • • • , n, according to

w i = (w 1i + s) (w 2i + s) (1 + s) 2 , (1.28)
where typically the scaling constant s = 0.25. Outliers are then classified as points that have weight w i < 0.25. These phases can be summarized in the following scheme:

Phase 1 Detection of location outliers.

Step 1 Robustly sphere the data according to (1.20) using the coordinatewise median and the median absolute deviation (MAD).

Calculate the sample covariance matrix of the transformed data X * .

Step 2 Compute a principal component decomposition of the semi-robust covariance matrix from Step 1, and retain only those p * eigenvectors whose eigenvalues contribute to at least 99% of the total variance. Robustly sphere the transformed data as in (1.23).

Step 3 Compute the robust kurtosis weights for each component as in (1.24), and hence weighted norms for the sphere data from Step 2. Since the data have been scaled by the MAD, these Euclidean norms in principal component space are equivalent to robust Mahalanobis distances. Transform these distances according to (1.25).

Step 4 Determine weights w -1i for each robust distance according the translate biweight in (1.26), with M equal to the 33

1 3 rd quan- tile of the distances {d 1 , • • • , d n } and c = med (d 1 , • • • , d n ) + 2.5M AD (d 1 , • • • , d n ).
Phase 2 Detection of scatter outliers.

Step 5 Use the same semi-robust principal component decomposition calculated in Step 2 and compute the (unweighted) Euclidean norms of the data in principal component space. Transform according to (1.25) to yield a set of distances for use in Step 6.

Step 6 Determine weights w 2i for each robust distance according to the translated biweight in (1.26) with c 2 equal to the X 2 p * 99th quantile and M 2 equal to the X 2 p * 25th quantile.

Combining Phase 1 and Phase 2: Use the weights from Step 4 and 6 to determine final weights for all observations according to (1.28).

Model-Based Clustering, Classification and Density Estimation ([Fra+12], [START_REF] Fraley | Model-based Clustering, Discriminant Analysis and Density Estimation[END_REF]). The Cluster Analysis refers to the partitioning of a groups of individuals into groups following some criteria involving the variables measured on them.

In our case, we aim to classify a population of particles using the measures of a set physical and morphological variables. It would improve the degree of interpretation in the physical phenomenon and to better describe the population. Note that we do not know, a priory, the number of groups existing in the population.

We use a Model-Based Clustering in order to classify a population of particles. We can see each component probability distribution in a finite mixture model as a cluster. Thus, problems that are usually associated with clustering can be addressed as a statistical model choice problem. For example, The problem of determining the number of clusters can be see as the problem of compare models that differ in number of component distributions. Outliers can be modeled also as a special component distribution (or distributions) representing the atypical data.

We use the library Mclust ( [START_REF] Fraley | mclust Version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density Estimation[END_REF]) in the R Language ([R C17]) in order to perform the cluster analysis using the mixture model-based with the presence of outliers.

The strategy arose from two methods based on multivariate normal mixture models with covariances parameterized by eigenvalue decomposition. These methods are hierarchical agglomeration based on the classification likelihood and the EM algorithm for maximum likelihood estimation of multivariate mixture models. The two approaches are complementary; model-based hierarchical agglomeration tends to produce reasonably good partitions even when started without any information about the groupings, whereas initialization is critical in expectation-maximization (EM) because the likelihood surface tends to have multiple modes, although EM typically produces improved partitions when started from reasonable ones.

By initializing EM with partitions from model-based hierarchical agglomeration and using approximate Bayes factors with the Bayesian Information Criterion (BIC) approximation to determine the number of groups present in the data. The method proposed allows to select the parameterization of the model as well as the number of clusters simultaneously using BIC.

Mixture Models Lets denote y a data matrix formed by independent multivariate observations of observations y 1 , • • • , y n , the likelihood for a mixture model with C components is

L (θ 1 , • • • , θ C ; τ 1 , • • • , τ C | y) = n i=1 C i=1 τ k f k (y k | θ k ) (1.29)
where f k and θ k are the density and parameters of the kth component in the mixture and τ k is the probability that an observation belongs to the kth component with τ k ≥ 0 and C k=1 τ k = 1. Most commonly, f k is the multivariate normal (Gaussian) density φ k parameterized by its mean µ k and covariance matrix Σ k ,

φ k (y i | µ k , Σ k ) = exp{-1 2 (y i -µ k ) T Σ -1 k (y i -µ k )} det (2πΣ k )
.

(1.30) Data generated by mixtures of multivariate normal densities are characterized by groups or clusters centered at the means µ k . Geometric features (shape, volume, orientation) of the clusters are determined by the covariances Σ k .

The covariance matrix Σ k can be used to characterize several possible mixture models for the clusters. We mention the mixture model implemented in the Mclust library:

• Σ k = λI: all clusters are spherical of the same size,

• Σ k = Σ constant across clusters: all the clusters have the same geometry which is not necessarily spherical,

• Σ k = λ k I: clusters are spherical but have different volume,

• Σ k = λ k A k : all the covariances are diagonal but their size, shapes and orientation are allowed to vary,

• Σ k unrestricted: each cluster may have a different geometry.

Cluster Analysis. The strategy presented by the authors is based on mixture models. A parameterization for the covariance matrices Σ k though eigenvalues decomposition is used as basis for a class of models that is sufficiently flexible to accommodate data with widely varying characteristics. The parameterization is

Σ k = λ k D k A k D T k (1.31)
where D k is the orthogonal matrix of eigenvectors, A k is a diagonal matrix whose elements are proportional to the eigenvalues, and λ k is an associated constant of proportionality.

The strategy comprises three core elements: initialization via model-based hierarchical agglomerative clustering, maximum likelihood estimation via EM algorithm, and selection of the model and the number of clusters using approximate Bayes factors with the BIC approximation.

Model-based hierarchical agglomerative clustering is an approach to computing an approximate maximum for the classification likelihood,

L CL (θ 1 , • • • , θ G ; 1 , • • • , n | y) = n i=1 f i (y i | θ i ) (1.32)
where the i are labels indicating a unique classification of each observation, i = k if y i belongs to the kth component. In the mixture likelihood (1.29), each component is weighted by the probability that an observation belongs to that component. The presence of the class labels in the classification likelihood (1.32) introduces a combinatorial aspect that makes exact maximization impractical.

Model-based hierarchical agglomerative clustering proceeds by successively merging pairs of clusters corresponding to the greatest increase in the classification likelihood (1.32) among all possible pairs. In the absence of any information about groupings, the procedure starts by treating each observation as a singleton cluster.

The EM algorithm (Dempster, Laird, and Rubin 1977) is a general approach to maximum likelihood estimation for problems in which the data can be viewed as consisting of n multivariate observations x i recoverable from (y i , z i ), in which y i is observed and z i is unobserved. If the x i are independent and identically distributed (iid) according to a probability distribution f with parameter θ, then the complete-data likelihood is

L C (x i | θ) = n i=1 f (x i | θ) .
(1.33) Further, if the probability that a particular variable is unobserved depends only on the observed data y and not on z, then the observed-data likelihood, L O (y | θ), can be obtained by integrating z out of the complete-data likelihood,

L O (y | θ) = L C (x | θ) dz.
(1.34)

The EM algorithm alternates between two setps, an "E step", in which the conditional expectation of the complete-data log-likelihood given the observed data and the current parameter estimates is computed, and a "M step", in which parameters that maximize the expected log-likelihood from the "E step" are determined. Under regularity conditions, EM can be shown to converge to a local maximum of the observed-data likelihood. The unobserved portion of the data may involve values that are missing due to nonresponse and/or quantities that are introduced to reformulate the problem for EM.

In EM for mixture models, the "complete data" are considered to be

x i = (y i , z i ), where z i = (z i 1 , • • • , z i G )
is the unobserved portion of the data, with

z i k = 1, if x i belongs to group k 0, otherwise. (1.35)
Assuming that each z i is iid according to a multinomial distribution of one draw from G categories with probabilities τ 1 , • • • , τ G , and that the density of an observation y i given z i is given by G i=1 f k (y i | θ k ) z ik , the resulting complete-data log-likelihood is

l (θ k , τ k , z ik | x) = n i=1 G k=1 z ik log [τ k f k (y i | θ k )] .
(1.36)

The E step of the EM algorithm for mixture models is given by

ẑik ← τk f k y i | θk G j=1 τj f j y i | θj , (1.37)
while the M step involves maximizing (1.36) in terms of τ k and θ k with z ik fixed at the values computed in the E step, ẑik . The value z * ik of ẑik at a maximum of (1.29) is the estimated conditional probability that observation i belongs to group k.

For multivariate normal mixtures, te E step is given by (1.37) with f k replaced by φ as defined in (1.30), regardless of the parameterization. For the M step, estimates of the means and probabilities have simple closed-form expressions involving the data and ẑik from the E step,

τk ← n k n ; μk ← n i=1 ẑik y i n k ; n k ≡ n i=1
ẑik .

(1.38)

Computation of the covariance estimate Σk depends on its parameterization. The approach proposed by the authors to the problem of model selection in clustering is based on Bayesian model selection via Bayes factors and posterior model probabilities. The basic idea is that if several models M 1 , • • • , M K , are considered, with posterior probabilities p (M k ), k = 1, • • • , K (often taken equal), then, by Bayes's theorem, the posterior probability of model M k given data D is proportional to the probability of the data given model M k , times the model's prior probability, namely

p (M k | D) ∝ p (D | M k ) p (M k ) .
(1.39)

When there are unknown parameters, by the law of total probability, p (D | M k ) is obtained by integrating over parameters, that is

p (D | M k ) = p (D | θ k , M k ) p (θ k | M k ) dθ k , (1.40) 
where p (θ k | M k ) is the prior distribution of θ k , the parameter vector of model M k . The quantity p (D | M k ) is known as the integrated likelihood of model k. In hierarchical agglomeration, each stage of merging corresponds to a unique number of clusters and an unique partition of the data. A given partition can be transformed into indicator variables (1.35), which can then be used as conditional probabilities in a M step of EM for parameter estimation, initializing an EM algorithm. This, combined with Bayes factors as approximated by BIC for model selection, yields a comprehensive clustering strategy:

• Determine a maximum number of clusters, M , and a set of mixture models to consider.

• Perform hierarchical agglomeration to approximately maximize the classification likelihood for each model, and obtain the corresponding classification for up to M groups.

• Apply the EM algorithms for each model and each number of clusters 2, • • • , M , starting with the classification from hierarchical agglomeration. Compute BIC for the one-cluster case for each model and for the mixture model with the optimal parameters from EM for 2,

• • • , M clusters.
Strong evidence for a model and an associated number of clusters is taken to correspond to a decisive maximum of the BIC.

Linear Discriminant Analysis [Ren02]

Discriminant analysis is used in situations where the individuals are classified a priory in groups or clusters. There are two major objective in separation of groups:

• Description of groups separation. in which linear functions of the variables (discriminant functions) are used to describe or elucidate the differences between two or more groups. Descriptive discriminant analysis aims to identify the relative contributions of the explicative variables to separation of the groups. This tool helps to find a subset of the original variables that separates the groups almost as well as the original set. Also the interest is to find an optimal plane on which the points can be projected in order to best illustrate the configuration of the groups.

• Prediction of allocation of observations to groups. The classification functions are employed to assign an individual unit to one of the groups finding the group to which the individual most likely belongs.

For k groups, with n i observations in the ith group, the observation vector y ij are transformed to obtain z ij = a y ij , for i = 1, 2, • • • , k; j = 1, 2, • • • , n i , and find the means zi = a ȳi , where ȳi = n i j=1 y ij /n i . We seek a vector a that maximally separates z1 , z2 , • • • , zk . To express separation among z1 , z2 , • • • , zk , we use the H and E matrix and we write λ = a Ha a Ea , which can also be expressed as

λ = SSH (z) SSE (z) ,
where SSH (z) and SSE (z) are the between and within sums of squares for z, and where

H = n k i=1 (ȳ i• -ŷ•• ) (ȳ i• -ŷ•• ) , E = k i=1 n j=1 (y ij -ȳi• ) (y ij -ȳi• ) .
and

y i• = n j=1 y ij y •• = k i=1 n j=1 y ij .
We can write this expression in the form a Ha = λa Ea ⇔ a (Ha -λEa) = 0.

We search for the value of a that results in maximum λ (the solution a = 0 is not permissible because it gives λ = 0 0 ). Other solutions are found from

Ha -λEa = 0 ⇔ E -1 H -λI a = 0.
(1.41)

The solutions of (1.41) are the eigenvalues λ 1 , λ 2 , • • • , λ s and associated to the eigenvectors a 1 , a 2 , • • • , a s of E -1 H, and we consider them to be ranked

λ 1 > λ 2 > • • • > λ s .
The number of (nonzero) eigenvalues s is the rank of H, which can be found as the smaller of k -1 and p. Thus, the largest eigenvalue λ 1 is the maximum value of λ = a Ha/a Ea, and the coefficient vector that produces the maximum is the corresponding eigenvector a 1 . Hence, the discriminant function that maximally separates the means is z 1 = a 1 y, z 1 represents the dimension or direction that maximally separates the means.

Then, we obtain s discriminant functions z i = a i y, for i = 1, 2, • • • , s, which show the dimensions or directions of differences among ȳ1 , ȳ2 , • • • , ȳk . This discriminant functions are uncorrelated, but they are not orthogonal because E -1 H is nor symmetric.

The relative importance of each discriminant function z i is given by

λ i s j=1 λ j .
(1.42)

Standardized discriminant functions. The contributions of the explicative variables y's to separation of several groups can be examined from the coefficients of the standardized discriminant functions. If we denote the rth coefficient in the mth discriminant function by

a mr , m = 1, 2, • • • , s; r = 1, 2, • • • , p, then the standardized form is a * mr = s r a mr , (1.43) 
where s r is the within-group standard deviation obtained from the diagonal of S pl = E/v E .

Analysis PCA The initial distribution of flocs was characterized by Rg ∈ [10, 200] and C I ∈ [0.3, 0.95]. Variety of size and shape are not of the same nature.

It is possible to obtain empirical data from the flocculation phenomenon using techniques like Granulometry for laser diffraction in Jar test ( [START_REF] Vlieghe | Agrégation et rupture de flocs sous contraites turbulentes[END_REF]). This processes usually involves the treatment of floc's images, measuring a set of internals characteristics that can be classified into:

• Size describing measures,

• Shape or morphology describing measures,

• Localization measures. Among this measures, we have:

• Size describing measures -Volume distribution of Circle Equivalent Diameter (CED): diameter of the sphere having the same image of diffraction.

-Mean radius of gyration (Rg): it is the mean square of distances from the components of the floc to the center.

-Area (A), Perimeter (P): the area (perimeter) of the disk having the same area of the object's image.

-The size can also be characterized for the biggest dimension (the maximum distance between two pixels belonging to the object's image.

• Shape or morphology describing measures -Fractal dimension: the notion of fractal, based on the invariance for scale change (repetition of a motif) (Df): he exponent relating the mass of the floc with the diameter apparent.

Mass Df: N = Kg Rg r 0

Df

, where N : number of primary particles contained (similar to the mass of the aggregate adimensionalized for the mass of one primary particle), Rg: radius of gyration, r 0 : radius of the primary particles, Kg: form factor. 1 ≤ Df ≤ 3.

The flocculation process can result in a great quantity of aggregates and they can be very different, with a large variability. Usually the granulometry software takes several hours to analyses one image. Moreover, the description of flocculation processes involve the time evolution of the flocs present in the system, then several images are taken (and analyzed) over experimental time ( [Mor]).

Depending on Shape and Size describing measures, the flocs have different kind of chemical properties ( [Mor]). Because of this, it is important to understand the behavior of this measures as individually as in the multivariate context.

The main objective of measuring all this characteristics is to know the number distribution of flocs in function of its internal variables. Nevertheless, the minimal set of this variables is required in order to facilitate the interpretation. The classical analysis implies the study the number distribution in function of one measure, usually a size describing one although recent studies pursued describing number distribution in function of some size and shape measures ( [WMpt], [START_REF] Vlieghe | Agrégation et rupture de flocs sous contraites turbulentes[END_REF]).

Bentonite Experimental Data

We also found that the properties of size are highly positively correlated, and having a very similar distribution each other. For the shape measures, a similar behavior was found, being the less correlated convexity and circularity. In order to have a better representation of the results, we made the same comparisons using a logarithmic transformation only for the Size variables, because of the large range of variation in Size variables. We repeat the CPA analysis and we find the same trend in the relation between the variables. In General, the first Principal Component represent the Size variables, with the Perimeter and the Diameter as the more important ones. The second Principal Component can be interpreted as related to Shape variables with the Circularity and the Elongation as the more important ones.

Further, an PCA was performed only taking account one group of variables at time. Thus, for the Size variables using the logarithmic transformation, we have that the first component explains almost 97% of the total variability and, the more important variable was the Diameter. In the other hand, for the Shape variables, the most important variable was the Circularity. Then, we can summarize the behavior of the Size variables using the Diameter and the behavior of the Shape variables using the Circularity.

In the PCA graphic for the individuals, we can remark a possible division of the original population of flocs into sub-populations, having different behavior for Size and Shape variables. Also, it is possible to find outliers individuals. We use an outlier multivariate detection technique in order to mark some individuals that have a very different behavior from the others. For that, we use the algorithm of Filzmorser, Marona and Werner. Then we use an hierarchical cluster analysis in order to characterize the sub-populations. We use a Normal Mixture Modeling cluster technique, that compare a set of models in order to find the better fit with the population and estimates the number of groups present in the population. The procedure exclude the individuals marked as outliers.

We find using the Bayesian Information Criteria the presence of five groups or sub-populations. We can describe those sub-populations using the Diameter for summarizing the Size variables behavior and the Circularity for summarizing the Shape variables.

Morphological analysis of Bentonite's flocs for different hydrodynamic conditions

Experimental empirical data was obtained in ( [START_REF] Vlieghe | Agrégation et rupture de flocs sous contraites turbulentes[END_REF]). They analyzed the behavior of one micron (µm) bentonite primary particles in Jar test. They used several mixing speed in order to get different conditions for aggregation and breakage processes. The speed of mixing used were 30, 50, 70 and 90 revolutions per minute (rpm).

Bentonite in a kind of clay of type smectite, montmorillonite. The clay particles are the plates consisting of a stack of sheets separated by an inter-lacing space.

The experiments originating the empirical data implement the flocculation of Bentonite provided by CECA Chemicals. The mass concentration of the suspension is 30 mgL -1 . The suspension is diluted as much as allowing to take images. The bentonite's mass needed for the experiments was putted in the water at least 24 hours before the experiments. This suspension had high intensity agitation by 45 min, before introduction into the reactor. Therefore, the suspension is constituted of primary agglomerates, compound of several elementary particles.

The initial population of this primary agglomerates shows that they have high variation about the Circle Equivalent Diameter (CED), with some values larger than 200 µm. The most part of particles had size about some tens of micrometers and there are a small proportion of agglomerates with size larger than 200 µm. The water used was demineralized water, the Ph is about 4.5 ± 0.1 and temperature between 20 and 25 • C. The experiments were performed in a Taylor-Couette Reactor.

In the experiments, they used a mechanism of aggregation by charges neutralization, using aluminum sulfate Al 2 (SO 4 ) 3 as coagulant, which is used commonly in water treatment. It allows to produce flocs weak enough to interact with the hydrodynamic. The concentration of aluminum sulphate in the reactor is 3.5 × 10 -5 molL -1 .

Conclusions

A continuation, the most important conclusions obtained from the descriptive data analysis are mentioned. The conclusions are divided in:

• Conclusions from the descriptive analysis of the data.

• Conclusions from the exploratory multivariate analysis of the data.

Conclusions of the descriptive analysis of the data.

The analysis was done using a natural classification for the variables in "size" variables and "shape" variables. Then, the description searched to interpret the data in that terms.

Initial population of Bentonite flocks.

Populations of Bentonite flocks under different hydrodynamics conditions.

Populations of Bentonite flocks under different hydrodynamics conditions thought time.

Chapter 2

Numerical methods for recovering the moments of the number density function

Introduction

Population Balances for simultaneous coagulation and breakage are employed in describing many systems including aerosols, powders and polymers, and many unit operations including reactors, crystallizers, and size reduction (or enlargement) equipment. Solving this kind of equations is very important for Computational Fluid Dynamic (CFD) simulations or with process flowsheet simulations ([WVF05], [START_REF] Soos | Population balance modeling of aggregation and breakage in turbulent Taylor-Couette flow[END_REF]). The classical methods direct calculating the particle-size distribution evolution consume large computational resources. Often, this techniques include scale size discretization and solving the equation on each interval or the use of Monte Carlo methods, that makes the implementation in such simulations nonviable.

Conventional moments models are computationally less demanding, but are restricted to those systems for which the set of moments equations are closed. Furthermore, unless the moments themselves are the targets of the model, the method also poses the inversion problem. Recent approaches allows to relate the CFD simulation with techniques involving the moments of the distribution. One of those approachs is the Quadrature Method of Moments (QMOM), first proposed by [START_REF] Mcgraw | Description of aerosol dynamics by the quadrature method of moments[END_REF] [START_REF] Mcgraw | Description of aerosol dynamics by the quadrature method of moments[END_REF], where the closure problem is solved by using a quadrature approximation involving some finite support set (abscissas) and weights.

Formulation of the model

The PBE is an equation in the foregoing number density and may be regarded as representing a number balance on particles of a particular state. The equation is often coupled with conservation equations for entities in the particles' environmental (or continuous) phase [START_REF] Ramkrishna | Population Balances. Theory and Applications to Particulate Systems in Engineering[END_REF].

The population balance equation basically accounts for various ways in which particles of a specific state can either form in or disappear from the system. When particle states are continuous, then processes, which cause their smooth variation in time, must contribute to the rates of formation and disappearance of specific particle types. There are several ways in which number of particles of a particular type can change is by processes that create new particles ("birth" processes) and destroy existing particles ("death" processes).

Birth of new particles can occur due to breakage or splitting processes, aggregation processes and so on. Breakage and aggregation processes also contribute to death processes, for a particle type that either breaks (into other particles) or aggregates with another particle no longer exists as such following the event [START_REF] Marchisio | Quadrature Method of Moments for Population-Balance Equations[END_REF].

We are interested in the analysis of this kind of populations in liquidsolid suspensions containing particles, where the evolution of the system is reflected in the time evolution of the number distribution of the particles about a size characteristic (longitude, area, volume, for example). In this kind of systems, the mass in the suspension is not modified. The aggregations and breakages models describe the probabilities of the particles having some properties are added or broken ([Van00], [START_REF] Soos | Population Balance modeling of aggregation and breakage in turbulent Taylor-Couette flow[END_REF]).

The Balance Population Equation (PBE) including aggregation and breakage is defined in terms the number distribution in function of only the volume of the particle as main property by [START_REF] Marchisio | Quadrature method of moments for aggregation-breakage processes[END_REF] In the precedent chapter, we presented in section 1.2, proposition 3.2 theBalance Population Equation (PBE) (equation 3.2) including aggregation and breakage is defined in terms the number distribution in function of only the size of the particle as main property. We show that equation as reference

∂n (L, t) ∂t =B a (L; t) -D a (L; t) + B b (L; t) -D b (L; t) = L 2 2 L 0 β (L 3 -λ 3 ) 1/3 , λ (L 3 -λ 3 ) 2/3 n L 3 -λ 3 1/3 , t n (λ, t) dλ -n (L, t) ∞ 0 β (L, λ) n (λ, t) dλ + ∞ L a (λ) b (L | λ) n (L, t) dλ -a (L) n (L, t) ,
Further, in section 1.3, we presented the PBE describing the time evolution of the standard moments of the number density. This equation was deducted from equation (3.2) as we have shown in proposition 1.3 (equation (1.11)). We show the equation here also as reference

∂m k (t) ∂t = 1 2 L 0 n (λ; t) ∞ 0 β (u, λ) n (u; t) u 3 + λ 3 k/3 du dλ - ∞ 0 L k n (L; t) ∞ 0 β (L, λ) n (λ; t) dλ dL + ∞ 0 L k ∞ 0 a (λ) b (L/λ) n (λ; t) dλ dL - ∞ 0 a (λ) n (L; t) L k dL
The methods that we are about to present in this chapter use the PBE describing the time evolution of the standard moments of the number density. The objective is to recover the time evolution of a finite set of standard moments of the number density from an initial set of standard moments values and also knowing the information from the aggregation and breakage kernels and parameters.

In order to apply some methods for recovering the time evolution of the standard moments of the number distribution, we are going to obtain a system of equations in differences from the Population Balance Equation in 3.2. This system of equation is expressed in function of a finite number of some abscissas points and weights representing the number distribution.

Starting from a initial estimation of those abscissas points and weights, then the system of equation in differences can be solve using some numerical differentiation scheme ([Mar+03], [START_REF] Paulo | The quadrature method of moments for continuous thermodynamics[END_REF]).

Proposition 2.1. The Population Balance Equation can be used in order to obtain the following system of equation in differences

∂m k ∂t = 1 2 i W i j W j L 3 i + L 3 j k/3 β ij - i L k i W i j W j β ij + i a i b -(k) i W i - i a i L k i W i (2.1)
where L i are a finite number of abscissas points and W i a finite number of weights representing the number density distribution.

Proof. From proposition 1.3, we know that the PBE in terms of the standard moments of the number density function is given by equation (1.11)), this is

∂m k (t) ∂t = 1 2 L 0 n (λ; t) ∞ 0 β (u, λ) n (u; t) u 3 + λ 3 k/3 du dλ - ∞ 0 L k n (L; t) ∞ 0 β (L, λ) n (λ; t) dλ dL + ∞ 0 L k ∞ 0 a (λ) b (L/λ) n (λ; t) dλ dL - ∞ 0 a (λ) n (L; t) L k dL
Now, we introduce the quadrature approximation

m k = ∞ 0 n (L) L k dL ≈ N i=1 W i L k i W i , L i and m k depends on t (2.2)
using this approximation into the equation (1.18) we get

∂m k (t) ∂t = B a k -D a k + B b k -D b k (2.3)
if we use L i for λ and L j for u, we have

B a k (t) = 1 2 L 0 n (λ; t) ∞ 0 β (u, λ) n (u; t) u 3 + λ 3 k/3 du dλ B a k (t) ≈ 1 2 i W i j W j L 3 i + L 3 j k/3 β (L j , L i ) (2.4) D a k (t) = ∞ 0 L k n (L; t) ∞ 0 β (L, λ) n (λ; t) dλ dL D a k (t) ≈ i L k i W i j W j β (L i , L j ) (2.5) B b k (t) = ∞ 0 L k ∞ 0 a (λ) b (L/λ) n (λ; t) dλ dL = ∞ 0 a (λ) ∞ 0 L k b (L/λ) dL n (λ; t) dL B b k (t) ≈ i a (L i ) ∞ 0 L k b (L/L i ) dL W i (2.6) D b k (t) = ∞ 0 a (λ) n (L; t) L k dL D b k (t) ≈ i a (L i ) L k i W i (2.7)
Now, if we denote

• β ij = β (L i , L j ) • a i = a (L i ) • b -(k) i = ∞ 0 L k b (L/L i ) dL we get ∂m k ∂t ≈ 1 2 i W i j W j L 3 i + L 3 j k/3 β ij - i L k i W i j W j β ij + i a i b -(k) i W i - i a i L k i W i (2.8)

Basis Pursuit

In the famous article [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF] it is treated the characterization of a signal s viewed as the decomposition

s = γ∈Γ α γ φ γ (2.9)
or as the approximate decomposition

s = m i=1 α γ i φ γ i + R (m) (2.10)
where R (m) is a residual, and the φ γ are waveforms in a dictionary D = (φ γ ) γ∈Γ . Specifically:

• Overcomplete representation. In an overcomplete representation, the signal is represented as a superposition of waveforms, as s = (s t : 0 ≤ t < n) where s is a discrete signal of length n

• Dictionaries and atoms. A dictionary is a collection of discrete time signals of length n as D = (φ γ ) γ∈Γ where the atoms φ γ are discrete-time signals of length n parametrized by the vector γ.

The decomposition of the signal can be seen as

s = Φα (2.11)
where Φ is a n × p matrix containing p waveforms as columns α = (α r ) is the vector of coefficients. When the dictionary furnishes a basis, Φ is a n × n non-singular matrix and we have unique representation α = Φ -1 s. When the atoms are, in addition, mutually orthogonal, then Φ -1 = Φ T . Given a dictionary of waveforms, one can distinguish analysis from synthesis:

• Synthesis; is the operation of building up a signal by superposing atoms.

It involves a n × p matrix and s = Φα.

• Analysis; involves the operation of associating with each signal a vector of coefficients attached to atoms, it involves a p×n matrix and α = Φ T s.

In the overcomplete case, we are interested in p >> n and Φ is not invertible. The goals of adaptive representation are:

• Sparsity: To find the sparsiest possible representation, which means to find the representation of the signal with the fewest significant coefficients.

• Superresolution: We should obtain a resolution of sparse objects that is much higher resolution than that possible with traditional approach.

• Speed: A representation in order O (n) or O (n log (n)) time

Basis Pursuit: Basis Pursuit (BP) finds signal representations in overcomplete dictionaries by convex optimization; it obtains the decomposition that minimizes the 1 norm of the coefficients occurring in the representation.

BP can be used with noisy data by solving an optimization problem trading a quadratic misfit measure with an 1 norm of coefficients.

We assume that the dictionary is overcomplete, so that there are in general many representations s = r α r φ r . BP solves the problem:

min α 1 subject to Φα = s (2.12)
BP is connected with linear programming, the problem treated in BP can be written as a linear program and solved using interior-point methods or primal-dual log-barrier methods.

Linear program. The Linear Program (LP) in so-called standard form is a constrained optimization problem defined in terms of a variable x ∈ R m by min c T x subject to Ax = b, x ≥ 0, (2.13) where c T x is the objective function, Ax = b is a collection of equality constraints, and x ≥ 0 is a set of bounds. The main question is which variables should be zero. The BP problem can be equivalently reformulated as a linear program in the standard form by making the following translations: m ⇔ 2p, A ⇔ (Φ, -Φ), b = s, c ⇔ (1, 1), x ⇔ (u, v), and α = u -v, with (1, 1) a 1 × 2p vector.

In the solution of the LP problem, suppose A is a n × m matrix with n > m and suppose an optimal solution exists. It is known that a solution exists in which at most n of the entries in the optimal x are nonzero (in the generic case, the solution is called non-degenerated, and there are exactly n nonzeros). The nonzero coefficients are associated with n columns of A and these columns make up a basis of R n . Once the basis is identified, the solution is uniquely dictated by the basis. Thus, finding a solution to the LP problem is identical to find the optimal basis.

Then, we have from the LP results, the following decomposition

s = n i=1 α * γ i φ γ i (2.14)
the waveforms (φ γ i ) are linearly independent but not necessarily orthogonal. The collection γ i is not known in advance but depends on the problem data (the signal s). The selection of waveforms is therefore adaptive.

The algorithm BP-interior. The collection of feasible points {x : Ax = b, x ≥ 0} is a convex polyhedron in R m or a "simplex". The simplex method works by walking around the boundary of this simplex, jumping from one vertex (extreme point) of the polyhedron to an adjacent vertex at which the objective function is "better".

Interior point methods instead starts from a point x (0) well inside the interior of the simplex (x (0) >> 0 and go "thought the interior" of the simplex. Since the solution of a linear program is always at an extreme point of the simplex, as interior-point method converges, the current iterate x (k) approaches the boundary. Then, one may abandon the basic interior-point iteration and invoke a "crossover" procedure that uses simplex interactions to find the optimizing extreme point.

Translating this LP algorithm into BP terminology, one starts from a solution to the overcomplete representation problem Φα (0) = s, with α (0) > 0. One iteratively modifies the coefficients, maintaining feasibility Φα (k) = s and apply a transformation that effectively sparsifies the vector α (k) . At some iteration, the vector has ≤ n significantly nonzero entries, and those correspond to the atoms appearing in the final solution. One forces all the other coefficients to zero and "jumps" to the decomposition in terms of the ≤ n selected atoms. More general interior-point algorithms starts with α (0) > 0 but do not require the feasibility Φα (k) = s throughout, they achieve feasibility eventually.

Basis Pursuit denoising. Basis pursuit denoising refers to the solution of min 1 2 y -Φα 2 2 +λ α 1 (2.15) the solution α (λ) is a function of the parameter λ. It yields a decomposition into signal-plus-residual

Y = s (λ) + r (λ) (2.16)
where s (λ) = Φα (λ) . The size of the residual is controlled by λ. As λ -→ 0, the residual goes to zero and the solution behaves exactly like BP applied to y. As λ -→ ∞, the residual gets large, we have r (λ) -→ y and s (λ) -→ 0.

(2.3) is equivalent to the following perturbed linear program:

min x,p c T x + 1 2 p 2 subject to Ax + δp = b, x ≥ 0, δ = 1
(2.17)

where

A = (Φ, -Φ), b = y, c = λ (1, 1), x = (u, v), α = u -v.
Perturbed BP is really quadratic programming, but it retains a structure similar to BP. Hence, we can have a similar classification of algorithms into BPND-simplex and BPND-interior-point.

Exact reconstruction using Generalized Minimal Extrapolation

• They show that measures with finite support on the real line are the unique solution to an algorithm, named Generalized Minimal Extrapolation (GME), involving only a finite number of generalized moments.

• GME shares related geometric properties with the Basis Pursuit (BP) [START_REF] Chen | Atomic decomposition by basis pursuit[END_REF] approach.

• They also extent some standard results of compressed sensing (the dual polynomial, the nullspace property) to the signed measure framework

• They express exact reconstruction in terms of a simple interpolation problem.

• They prove that every nonnegative measure, supported by a set containing s points, can be exactly recovered from only 2s + 1 generalized moments.

• The last result leads to a new construction of deterministic sensing matrices for compressed sensing.

• In this paper, they show that the exact reconstruction of a signed measure is still posible when one only knows the values of a finite number of a finite number of non adaptive linear measurements.

• Surprisingly, GME appears to uncover exact reconstruction results related to basis pursuit.

• More precisely, consider a signed discrete measure σ on a set I := [-1, 1]. Consider the Jordan decomposition σ = σ + -σ -, and denote by S + (resp. S -) the support of σ + (resp. σ -). Lets us define the Jordan support of the measure σ as the pair J = (S + , S -). Assume further that S := S + S -is finite and has cardinality s. Moreover, suppose that J belongs to a family Ψ of pairs of subsets of I. We call Ψ a Jordan support family. The measure σ can be written as andδ x denotes the Dirac measure at point x.

σ = s i=1 σ i δ x i , where S = {x 1 , • • • , x s }, σ 1 , • • • , σ s are nonzero real numbers,
• Let F = {u 0 , u 1 , • • • , u n } be any family of continuous functions on Ī, where Ī is the closure of I. Let µ be a signed measure on I. The k-th generalized moment of µ is defined by

c k (µ) = I u k dµ for all the indices k = 0, 1, • • • , n.
• The main issue: The reconstruction of the target measure σ from the observation of

K n = (c 0 (σ) , • • • , c n (σ)).
Assume that the support S and the weights σ i of the target measure are unknown. We want to recover σ uniquely from K n (does an algorithm fitting K k (σ) among all the signed measures of I recover the measure σ? ).

Generalized minimal extrapolation is the process of reconstructing a target measure σ from the observation K n (σ) = (c 0 (σ) , • • • , c n (σ)) of its first n + 1 generalized moments c k (σ) by finding a solution to the problem

σ * ∈ arg min µ∈M µ T V subject to K n (µ) = K n (σ) (2.18)
where the supremum is taken over all partition Π of I into a finite number of disjoint measurable sets. By analogy with basis pursuit,

• on one hand, basis pursuit minimizes the 1 -norm subject to linear constraints,

• on the other hand, generalized minimal extrapolation naturally substitutes the T V -norm for the 1 -norm,

• for the case of Fourier coefficients, (GME) is simply Beurling Minimal Extrapolation.

Basis Pursuit: It is the process of reconstructing a target vector x 0 ∈ R p from the observation b = Ax 0 by finding a sparse solution x * to an underdeterminated system of equations

x * ∈ arg min y∈R p y 1 subject to Ay = Ax 0 (2.19)
where A ∈ R n×p is the design matrix. GME looks for a minimizer among all the signed measures on I. Nevertheless, the target measure σ is assumed to be of extrema Jordan type.

By analogy with compressed sensing: if σ is of extrema Jordan type, then σ is a point of contact between the ball of radius σ T V and the affine space {µ ∈ M, K n (µ) = K n (σ)}, where n is greater than a bound depending only on the structure of the Jordan support of σ.

Definition 2.2. Extrema Jordan Type A signed measure µ is of extrema Jordan type (with respect to a family

F = {u 0 , u 1 , • • • , u n }) if and only if its Jordan decomposition µ = µ + -µ -satisfies Supp µ + ⊂ E + P and Supp µ -⊂ E - P ,
where Supp (ν) is defined as the support of the measure ν, and

• P denotes any linear combination of elements of F ,

• P is not constant and P ∞ ≤ 1,

• E + P (resp. E - P ) is the set of all points x i such that P (x i ) = 1 (resp. P (x i ) = -1).

• In the paper, they give exact reconstruction results for the following three kinds of extrema Jordan type measures:

-Nonnegative measures: Assume that F is an homogeneous Msystem. Then, any nonnegative measure σ is the unique solution to GME given the observation K n (σ), where n is not less than twice the size of the support of sigma.

-Generalized Chebyshev measures: Assume that F is a Msystem. let σ be a signed measure having Jordan support included in (E + k ,E - k ), for some 1 ≤ K ≤ n, where k denotes the kth generalized Chebyshev polynomial. Then σ is the unique solution to GME given the observation K n (σ).

-∆-interpolation: Considering F n P = {1, x, x 2 , • • • , x n }, the standard family, GME exactly recovers any ∆-spaced out type measure σ from the observation K n (σ), where n is greater than a bound depending only on ∆.

• Let σ be an extrema Jordan type measure. Then σ is a point of contact between the ball of radious σ T V and the affine space {µ ∈ M, K n (µ) = K n (σ)}, where n is greater than a bound depending only on the structure of the Jordan support of σ.

Generalized dual polynomial

• The existence of a generalized dual polynomial is a sufficient condition for the exact reconstruction of a signed measure with finite support.

Theorem 2.3. GME, [START_REF] De | Exact reconstruction using beurling minimal extrapolation[END_REF] Let F be an homogeneous M-system on I. Consider a non-negative measure σ with finite support included in I. Then, the measure σ is the unique solution to generalized minimal extrapolation given observation K n (σ), where n is not less than twice the size of support of σ.

Every measure with support size s depends on 2s parameters (s for its support and s for its weights). Surprisingly, this information can be recovered from only 2s + 1 of its generalized moments.

Lemma 1. The generalized dual polynomials Let n be a positive integer.

Let S = {x 1 , • • • , x s } ⊂ I and (ε 1 , • • • , ε s ) ∈ {±1} s If there exist a linear combination P = n k=0 a k u k such that 1. the generalized Vandermonde system      u 0 (x 1 ) u 0 (x 2 ) • • • u 0 (x s ) u 1 (x 1 ) u 1 (x 2 ) • • • u 1 (x s ) . . . . . . . . . u n (x 1 ) u n (x 2 ) • • • u n (x s )      has full column rank, 2. P (x i ) = ε i , ∀i = 1, • • • , s, 3. |P (x)| < 1, ∀x ∈ [-1, 1] \S
Then every measure σ = s i=1 σ i δ x i , such that sgn (σ i ) = ε i is the unique solution of GME given the observation K n (σ).

• The linear combination P considered above is called a generalized dual polynomial.

Reconstruction of a cone

• GME recovers exactly all measures σ of which support is included in S = {x 1 , • • • , x s } and such that sgn (σ i ) = ε i for all nonzero σ i if the generalized interpolation problem defined in the lemma above has solution.

• Let us denote this set by C (x 1 , ε 1 , • • • , x s , ε s ). It is exactly the cone defined by

C (x 1 , ε 1 , • • • , x s , ε s ) = { s i=1 µ i δ x i | ∀µ i = 0, sgn (µ i ) = ε i }
Thus, the existence of P implies the exact reconstruction of all measures in this cone.

• The cone C (x 1 , ε 1 , . . . , x s , ε s ) = is the conic span of an (s-1)-dimensional face of the T V -unit ball, that is

F (x 1 , ε 1 , • • • , x s , ε s ) = { s i=1 ε i λ i δ x i | ∀i, λ i ≥ 0 and s i=1 λ i = 1}.
Furthermore, the affine space {µ,

K n (µ) = K n (σ)} is tangent to the T V -unit ball at any point σ ∈ F (x 1 , ε 1 , • • • , x s , ε s ),
as we can see in the following remark.

• Remark. From the convex optimization point of view, the dual certificates and the generalized dual polynomials are deeply related: the existence of an generalized dual polynomial P implies that, for all σ ∈ F (x 1 , ε 1 , • • • , x s , ε s ), a subgradient Φ P of the T V -norm at the point σ is perpendicular to the set of the feasible points, that is

{µ, K n (µ) = K n (σ)} ⊂ ker (Φ P )
where ker denotes the nullspace.

• The condition 2 and 3 in the Lemma 1 ensure that the solutions to GME belong to the cone C (x 1 , ε 1 , • • • , x s , ε s ), whereas condition 1 gives uniqueness.

Exact reconstruction of the nonnegatives measures

• They show that if the underlying family F = {u 0 , u 1 , . . . , u n } is an homogeneous M-system, then GME recovers exactly each finitely supported nonnegative measure µ from the observation of a surprisingly few generalized moments.

Markov systems

Definition 1. T-systems of order k. [SS66] Denote by {u 0 , u 1 , . . . , u k } a set of continuous real (or complex) functions on Ī. This set is a T-system of degree k if and only if every generalized polynomial

P = k l=0 a l u l
has at most k zeros in I, where (a 0 , a 1 , . . . , a k ) = (0, 0, . . . , 0).

• A finite combination of elements of a T-system is called a generalized polynomial.

• This definition is equivalent to each of the two following conditions 1. For all x 0 , x 1 , . . . , x k distinct elements of I and all y 0 , y 1 , . . . , y k real (or complex) numbers, there exists a unique generalized polynomial P such that P (x i ) = y i , for all i = 0, 1, 2, . . . , k.

2. For all x 0 , x 1 , . . . , x k distinct elements of I, generalized Vandermonde system

     u 0 (x 1 ) u 0 (x 2 ) • • • u 0 (x k ) u 1 (x 1 ) u 1 (x 2 ) • • • u 1 (x k ) . . . . . . . . . u k (x 1 ) u k (x 2 ) • • • u k (x k )     
has full rank.

Definition 2.4. M-system. We say that the family F = {u 0 , u 1 , . . . , u n } is an M-system if and only if it is a T-system of degree k for all 0 ≤ k ≤ n Definition 2.5. We say that the family F = {u 0 , u 1 , . . . , u n } is an homogeneous M-system if and only if it is an M-system and u 0 is a constant function.

• Using homogeneous M-systems, they show that one can exactly recover all non-negative measures from a few generalized moments.

Theorem 2.6. Let F be an homogeneous M-system on I. Consider a nonnegative measure σ with finite support included in I. Then the measure σ is the unique solution to GME given the observation K n (σ), where n is not less than twice the size of the support of σ.

Non-negative interpolation An important property of M-systems is the existence of a non-negative generalized polynomial that vanishes exactly at a prescribed set of points {t 1 , • • • , t m }, where t i ∈ I for all i = 1, • • • , t m . Indeed, define the index as

Index (t 1 , • • • , t m ) = m i=1 χ (t i ) (2.20)
where

χ (t) = 2 if t ∈ I 1 otherwise (2.21)
and where I denotes the interior of I.

Lemma 2.7. Non-negative generalized polynomial Consider Deterministic matrices for compressed sensing. In the following, p denotes the number of predictors, or from a signal processing view point, the length of the signal.

• Deterministic Design: For O p,s-→∞ s log p s (2.22) 
there exists a deterministic matrix A ∈ R n×p such that basis pursuit recovers all s-sparse vectors from the observation Ax 0 .

• Random design:

If n ≥ Cs log p s (2.23)
where C > 0 is a universal constant, there exists (with high probability) a random matrix A ∈ R n×p such that basis pursuit recovers all s-sparse vectors from the observation Ax 0 .

Considering non-negatives sparse vectors, it is possible to drop the bound on n to 2s + 1.

Theorem 2.8. Deterministic design matrix. Let n, p, and s be integers such that s ≤ min (n/2, p). Let A be generalized Vandermonde system defined by

A =      1 1 • • • 1 u 1 (t 1 ) u 1 (t 2 ) • • • u 1 (t p ) . . . . . . . . . u n (t 1 ) u n (t 2 ) • • • u n (t p )      (2.24)
then, basis pursuit exactly recovers all non-negative s-sparse vectors x 0 ∈ R p from the observation Ax 0 .

The program basis pursuit can be recast as a linear program. Then, we use an interior point method to solve basis pursuit.

Lets us denote

K : t → (1, u 1 (t) , • • • , u n (t)
). The columns of A are the values of this map at points t 1 , • • • , t p .

The nullspace property for measures. We aim at deriving a sufficient condition for exact reconstruction of signed measures. Note that the solutions to program (GME) depend only on the first n + 1 elements of F and on the target measure σ. We investigate the condition that the family F must satisfy to ensure exact reconstruction (nullspace property).

The nullspace property for generalized minimal extrapolation. Consider the linear map

K n : µ → (c 0 (µ) , • • • , c n (µ)) from µ to R n+1 that defines he generalized moment morphism.
Its nullspace ker (K n ) is a linear subspace of M. The Lebesgue decomposition theorem is the precious tool used to define the nullspace property. Definition 2.9. Nullspace property with respect to a Jordan family Y We say that the generalized moment morphism K n satisfies the nullspace property with respect to a Jordan support family Y if and only if it satisfies the following property. For all nonzero measure µ in the nullspace of K n , and for all (S + , S -) ∈ Y (nullspace property) µ S < µ S c (2.25) (weak nullspace property)

µ S ≤ µ S c (2.26) 
where S = S + ∪ S -

BLASSO

Super-resolution

• The Super-resolution phenomenon is the ability to recover the information beyond the physical limitations [START_REF] Enmanuel | Towards a Mathematical Theory of Super-Resolution[END_REF].

• This paper offers quantitative detection guarantees from noisy observations.

• The autors provide a tractable algorithm (BLASSO) and quantitative estimates of a train of complex valued spikes from very few noisy observations.

• Their analysis involves an estimate of the magnitude of the noise perturbation in the signal domain using the Rice method. In particular, they derive explicit bounds for tunning parameter appearing in BLASSO.

General model and notation

Theorem 2.10. General model and notation Let T be a compact set homeomorphic to either the interlval [0, 1] or the unit circle S 1 .Let ∆ be a complex measure on T with discrete support of (unknown) size s. In particular, ∆ has polar decomposition:

∆ = s k=1 ∆ k exp (iθ k ) δ T k , (2.27) 
where

∆ k > 0, θ k ∈ R, T k ∈ T for k = 1, • • • , s and δ x denotes the Dirac measure at point x.
Let m be a positive integer and F = {φ 0 , φ 1 , • • • , φ m } be a family of complex continuous functions on T. Define the k-th generalized moment of a complex measure µ on T as:

c k (µ) = T φ k dµ, (2.28) 
for all indices k = 0, 1, • • • , m. Assume that we observe y = (y k ) m k=0 defined as:

y = T Φ dµ + ε, (2.29) 
where Φ = (φ 0 , φ 1 , • • • , φ m ). We aim at reconstructing the complex measure ∆ from the m + 1 measurements given by y.

Definition 2.11. Beurling LASSO (BLASSO) [START_REF] Azais | Spike detection from inaccurate samplings[END_REF] Denote by M the set of finite complex measures on T and by • T V the total variation norm. We recall that for all µ ∈ M,

µ T V = sup π∈Π E∈π |µ (E) | (2.30)
by analogy with LASSO, Beurling LASSO (BLASSO) is the process of reconstructing a discrete measure ∆ from the samples y by finding a solution to ∆ ∈ arg min

µ∈M 1 2 Φ dµ -y 2 2 +λ µ T V (2.31)
where λ is a tuning parameter.

Fendrel dual program:

The usual convex analysis shows that BLASSO can be viewed as a Fendrel dual program. As a matter of fact, any solution to BLASSO can be faithfully computed from a companion program that builds a dual certificate of ∆.

Definition 2.12. The problem

min a∈C m+1 a -y 2 2 2 + I {a∈C; m k=0 a k ψ k ∞≤λ} (a) (2.32)
has its Fendrel dual with the same minimizer as BLASSO. Here, the indicator

I E (v) of a set E ⊂ C is defined by I E (v) = 0 if v ∈ E and I E (v) = +∞ otherwise.
Using the predual problem (2.32), it is possible to derive optimality conditions for BLASSO. Hence, we mention that all solution to BLASSO is SM.

Proposition 2.13. [BP 10] The optimization problem (BLASSO) admits at least a solution. Moreover, all solution ∆ is SM and it has a dual certificate P = m k=0 âk ψ k where

∀k ∈ {0, • • • , m}, âk = c k ∆ -y k λ (2.

33)

Remark: We have an explicit formulation of a dual certificate P of ∆ using 2.33. Moreover, all solution to BLASSO is discrete, SM and satisfies

{x ∈ T, | ∆ ({x}) | > 0} ⊆ {x ∈ T, | P | (x) = 1}.
(2.34)

In other words, the support of ∆ is included in the set of the points for which | P | is maximal. On the algorithmic side, the program (2.32) allows us to compute a dual certificate of a solution ∆ to (BLASSO). As a matter of fact, it takes the form:

â ∈ arg min a∈C m+1 a - y λ 2 2 subject to m k=0 a k ψ k ∞ ≤ 1 (2.35)
Once the support is estimated accurately, a solution to (BLASSO) can be found by solving a well-posed linear problem.

The Quadrature Method of Moments

In [START_REF] Gordon | Error bounds in equilibrium statistical mechanics[END_REF] [Gor68], it was developped a methodology for calculating a Gaussian quadrature whose weigth function is an arbitrary distribution function whose support belongs to [0, ∞). This quadrature was applied by (McGraw, 1997) [START_REF] Mcgraw | Description of aerosol dynamics by the quadrature method of moments[END_REF], to develop the quadrature method of moments (QMOM) for numerically solving the population balance equation [START_REF] Paulo | The quadrature method of moments for continuous thermodynamics[END_REF]. The Gordon quadrature of k points can be derived for any given continuous or discrete distribution for which the 2k first standard moments can be calculated, using the Product-Difference Algorithm (PDA).

The calculation of a k-points Gordon quadrature implies in the determination of k weights (W i ) and k abscissas (L i ). This 2k variables can be found using the PDA from the low order moments. The PDA is based on minimizing the error tasked when we replace the integral in equation (2.8) with its quadrature approximation ([Mar+03],[Lag07]).

The Product Difference Algorithm

The PDA consists in two principal steps. First, a upper triangular matrix P of size (2k + 1)×(2k + 1). Then, the second step consists in the calculation of the vector α which is used to compute a tridiagonal symetric Jacobi matrix J of size k × k. The weights and abcsisas are computed using the characteristic values of this matrix and the characteristic vectors of J ([Lag07], [START_REF] Gordon | Error bounds in equilibrium statistical mechanics[END_REF]).

Construction of the matrix P.

We start with the construction of the first column of

P P i,1 = δ i1 , i = 1, • • • , 2N + 1; δ i1 : Kronecker delta (2.36)
then, the second column is

P i,2 = (-1) i-1 , i = 1, • • • , 2N + 1 (2.37)
Since the final weight can be corrected multiplying by the real value of m 0 , the computations are made assuming a normalized distribution (exp. m 0 = 1).

The rest of the components are found using the PD algorithm P i,j =P 1,j-1 P i+1,j-2 -P 1,j-2 P i+1,j-1

where j = 3, • • • , 2N + 1 i = 1, • • • , 2N + 2 -j (2.38)
Calculation of the weights and abscissas.

The continuous fraction coefficients (α i ) are computed assigning α 1 = 0 and the rest of them can be computed recursively by the following relation

α i = P 1,i+1 P 1,i P 1,i-1 , for i = 2, • • • , 2N (2.39) 
A symmetric tridiagonal matrix can be get from the α i 's using

a i =α 2i + α 2i-1 , for i = 1, • • • , N b i = √ α 2i+1 α 2i , for i = 1, • • • , N -1 (2.40)
where a i and b i are the diagonal and codiagonal of the Jacobi matrix respectively. The weights and the abscisas are determined finding the eigenvalues and eigenvectors of the Jacobi matrix.

L i = eigenvalues W i =m 0 v 2 i,1
where v i,1 = first component of the i-th eigenvector (2.41)

Examples of Implementation of QMOM

Theoretical moments of the case of Silva 2010

In ([Sil+10], [START_REF] Scott | Analytic Studies of Cloud Droplet Coalescence[END_REF], [START_REF] Patil | An analytical solution to continuous population balance model describing floc coalescence and breakage. A special case[END_REF]) the authors studied particular cases where an theoretical solution to the Population Balance Equation exists. In order to investigate the behavior of methods for recovering the time evolution of a finite number of standard moments, we compute the standard moments of the distribution given in (Silva 2010) as theoretical solution for the PBE. The authors studied three cases where they could find an analytic solution. The first one modelize systems where the aggregation and breakage processes were equally important. The second case modelize systems where the aggregation processes are significantly more important than breakage processes and finally the third case modelize systems where the breakage processes are more important than aggregation. We have then Proposition 2.14. Theoretical moments Following [START_REF] Silva | Comparison of the accuracy and performance of quadrature-based methods for population balance problems with simultaneous breakage and aggregation[END_REF], [START_REF] Vlieghe | Agrégation et rupture de flocs sous contraites turbulentes[END_REF], we have a system with the following initial conditions: µ 0 (0) = 1, µ 1 = 1, and C = 1. The initial distributions are

n 1 (L, 0) =3L 2 e -L 3 n 2 (L, 0) =12L 5 e -2L 3 (2.42)
For the initial conditions, the initial moments are respectively

m k (t) 1 =Γ k 3 + 1 , m k (t) 2 = 1 2 k 3 Γ k 3 + 2 .
(2.43)

• Case Φ (∞) = 1 (aggregation and breakage equally important).

In this case, the theoretical solution is

n a (L, t) = 2 i=1 K 1 (t) + P i (t) K 2 (t) L 2 (t) + 4P i (t) 3L 2 e P i (t)L 3 , t > 0 (2.44)
and the standard moments can be computed as

µ k (t) = Γ k 3 + 1 2 i=1 1 (-P i (t)) k/3+1 K 1 (t) + P i (t) K 2 (t) L 2 (t) + 4P i (t) (2.45) • Case Φ (∞) = 1 (aggregation more important than breakage if Φ (∞) > 1,
and breakage more important than aggregation if Φ (∞) < 1).

In this case, the theoretical solution is

n a (L, t) = 3L 2 [Φ (t)] 2 e -Φ(t)L 3 , t > 0, (2.46) 
and the standard moments can be computed as

µ k (t) = Γ (k/3 + 1) [Φ (t)] k/3-1 (2.47)
Proof. We use the same ideas as ([Vli+11], [START_REF] Marchisio | Solution of population balance equations using the direct quadrature method of moments[END_REF]) in order to express the number distribution function in terms of the size of the particle the population bilan equation

• Case Φ (∞) = 1.
We have that the standard moments of the theoretical solution is defined as

µ k (t) = ∞ 0 L k n a (L, t) dL = ∞ 0 L k 2 i=1 K 1 (t) + P i (t) K 2 (t) L 2 (t) + 4P i (t) 3L 2 e P i (t)L 3 dL (2.48) if we call Λ i (t) = K 1 (t) + P i (t) K 2 (t) L 2 (t) + 4P i (t) (2.49)
which is a function that depends only on time t. Then, we can write this integral as

µ k (t) = Λ 1 (t) ∞ 0 L k 3L 2 e P 1 (t)L 3 dL + Λ 2 (t) ∞ 0 L k 3L 2 e P 2 (t)L 3 dL.
(2.50) The two integrals involved can be evaluated using the Gamma function as

µ k (t) = Λ 1 (t) Γ (k/3 + 1) [-P 1 (t)] k/3+1 + Λ 2 (t) Γ (k/3 + 1) [-P 2 (t)] k/3+1 , (2.51) 
and finally we obtain

µ k (t) = Γ (k/3 + 1) 2 i=1 3 (-P i (t)) k/3+1 K 1 (t) + P i (t) K 2 (t) L 2 (t) + 4P i (t) (2.52) • Case Φ (∞) = 1.
In a similar way we have

µ k (t) = ∞ 0 L k n a (L, t) dL = ∞ 0 3L k+2 [Φ (t)
] 2 e -Φ(t)L 3 dL.

(2.53)

The integral involved can be evaluated using the Gamma function and finally we obtain Chapter 3

µ k (t) = Γ (k/3 + 1) [Φ (t)] k/3-1 , (2.54) 
Numerical resolution for the Population Balance Equation

Introduction and theoretical considerations

Particles are encountered in an innumerable variety of systems. The particles are either naturally presented in these systems or engineered into them.

In either case, the particles often significantly affect the behavior of such systems. In many other situations, systems are associated with processes in which particles are formed either as a main product or as a by-product. We will refer to systems containing particles as dispersed phase systems or particulate systems regardless of the precise role of the particles in them.

Population balances are essential to scientists and engineers of wide varying of disciplines. They are of interest to physicist (astrophysicist, highenergy, geophysicists, meteorologists) and chemists (colloidal chemists, statistical mechanicians). Biophysicists concerned with populations of cells of various kinds, food scientists dealing with preparations of emulsions or sterilization of food all have an indispensable need for population balances.

Among engineers, population balance concepts are of importance to aeronautical, chemical, civil (environmental), mechanical, and materials engineers. Chemical engineers have put population balances to the most diverse use. Applications have covered a wide range of dispersed phase systems, such as solid-liquid dispersions (although with incidental emphasis on crystallization systems), and gas-liquid, gas-solid, and liquid-liquid dispersions [START_REF] Soos | Population Balance modeling of aggregation and breakage in turbulent Taylor-Couette flow[END_REF].

Although most of the foregoing applications are known, it is significant to cite more modern applications such as the preparation of ceramic mixtures and fine particles (nanoparticles) for a variety of applications, in which population balances play a critical role in the analysis, design and control of such processes. For example, the manufacture of superconducting ceramic mixtures requires very tight specifications on their composition on a fine scale of mixing. The knowledge of the time evolution of the number particle distribution is also important in many applications like in computational fluid dynamic simulation [START_REF] Marchisio | Quadrature Method of Moments for Population-Balance Equations[END_REF].

Analysis of particulate systems seeks to synthesize the behavior of the population of particles and its environment from the behavior of single particles in their local environments. In the application of population balances, one is more interested in the distribution of particles populations and their effect on the system behavior. The system of interest is that they contain particles which are continually being created and destroyed by processes such as particles breakage and agglomeration [START_REF] Vanni | Approximate Population Balance Equations for Aggregation-Breakage Processes[END_REF].

Fundamental to the formulation of population balances is the assumption that there exist a number density of particles at every point of the particle state space. The number of particles in any region of the state space is obtained by integrating the number density over the region desired.

The theoretical solution of population balance equation means to solve the integral-partial differential equation involved. Except for some cases, it is not straightforward to obtain such solution. The efforts for solving this equation comprise numerical integration and the discretization of the range of the considered property (like volume or length), solving the equation numerically in some intervals. Also we can find methods solving the equation for the evolution of a set of moments of the number distribution. The application of methods finding the time evolution of moments often involves to work with no closed equations.

We propose a discretization scheme in order to find a numerical approximation to the solution of population balance equations involving only aggregation and breakage processes acting as particle's modifiers. This numerical solution is compared to some known theoretical solution for simple aggregation and breakage kernels. Also, we consider a more general case of aggregation and breakage kernels. We compare the performance of the numerical approximation to an empirical estimation found in (?) from computed from experimental data.

The framework of Population Balance

We are concerned with systems consisting of particles dispersed in an environmental phase which we shall refer to as the continuous phase.

The particles may interact between themselves as well as with the continuous phase. Such behavior may vary from particle to particle depending upon a number of "properties" that may be associated with the particle. Continuous variables may be encountered more frequently in population balance analysis. The external coordinates denoting the position vector of (the centroid of) a particle describing continuous motion through space represent continuous variables.

The temporal evolution of the particulate system, we shall regard time as varying continuously and inquire into the rate of change of the particle state variables. It is convenient to deal with continuous variables in this regard. A fundamental assumption here is that the rate of change of state of any particle is a function only of the state of the particle in question and the local continuous phase variables. Thus we exclude the possibility of direct interactions between particles, although indirect interaction between particles via the continuous phase is indeed accounted for because of the dependence of particle behavior on the "local" continuous phase variables. In order to enable such a local characterization of the continuous phase variables, it is necessary to assume that the particles are considerably smaller than the length scale in which the continuous phase quantities vary. The continuous phase variables may be assumed to satisfy the usual transport equations with due regard to interaction with the particulate phase. Thus, such transport equations will be coupled with the population balance equation.

Particle state vector We are concerned with particle phase variables that are continuous. In general, the choice of the particle state is determined by the variable needed to specify:

• The rate of change of those of direct interest to the application, and

• The birth and death processes.

The particle state may generally be characterized by a finite dimensional vector.

• External coordinate r ≡ (r 1 , r 2 , r 3 ) denote the position (of the centroid) of the particle.

• Internal coordinates x ≡ (x 1 , • • • , x d ) representing d different quantities associated with the particle.

The particle state vector (x, r) accounts for both internal and externals coordinates. We shall let Ω x represent the domain of internal coordinates and Ω r be the domain of external coordinates, which is the set of points in physical space in which the particles are present. These domains may be bounded or may have infinite boundaries.

The particle population may be regarded as being randomly distributed in the particle state space, which include both external or internal coordinates.

Our concern will be about large populations, which will display relatively deterministic behavior because the random behavior of individual particles will be averaged out.

The continuous phase vector. The continuous phase variables may be collated into a finite c-dimensional vector field. The continuous phase variables affect the behavior of each particle.

We define a continuous phase vector.

Y (r, t) = [Y 1 (r, t) , • • • , Y c (r, t)
] which is clearly a function only of the external coordinate r and time t.

The evolution of this field in space and time is governed by the laws of transport and interaction with the particles.

In some applications, a continuous phase balance may not be necessary because interactions between the population and the continuous phase may not bring about any (or a substantial enough) change in the continuous phase. In such case, analysis of the population involves only the population balance equation.

The number density function. We postulate that there exist an average number density function defined on the particle state space, E [f 1 (x, r, t)] ≡ n (x, r, t) with x ∈ Ω x and r ∈ Ω r , where E [f 1 (x, r, t)] denote the expectation or the average of the actual number density f 1 (x, r, t), while n (x, r, t) denotes the average number density. This definition implies that the average number of particles in the infinitesimal volume dV x dV r (in the particle state space) about the particle state (x, r) is n (x, r, t) dV x dV r . However, we will refer to particles in volume dV x dV r about the particle state (x, r).

The average number density n (x, r, t) is assumed to be sufficiently smooth to allow differentiation with respect to any of its arguments as many times as may become necessary.

The (average) number density allows one to calculate the (average) number of particles in any region of particle state space. Thus, the (average) total number of particles in the entire system is given by Ωx dV x Ωr dV r n (x, r, t)

where dV x and dV r are infinitesimal volume measures in the spaces of internal and external coordinates respectively. The local (average) number density in physical space, i. e. the (average) total number of particles per unit volume of physical space, denoted N (r, t) is given by

N (r, t) = Ωx dV x n (x, r, t) .
Other densities such as volume or mass density may also be defined for the particle population. Thus, if v (x) is the volume of the particle of internal state x, then the volume density may be defined as v (x) f 1 (x, r, t).

The volume fraction density φ (x, r, t) of a particle state is defined by

φ (x, r, t) = 1 Φ (r, t) v (x) n (x, r, t)
where

Φ (r, t) = Ωx dV x v (x) n (x, r, t)
the denominator above represents the total volume fraction of all particle.

Similarly, mass fractions can also be defined. For the case of scalar interval state using volume, the volume fraction density of particles of volume v becomes

φ (v, r, t) = vn (v, r, t) Φ (r, t)
where

Φ (r, t) = ∞ 0 vn (v, r, t) dv.
In contrast with number density, volume or mass denote the amount of dispersed phase material.

The rate of change of particle state vector We observe earlier that particle state might vary in time. We are concerned with smooth changes in particle state describable by some vector field defined over the particle state space both internal and external coordinates.

While changes of external coordinates refers to motion through physical space, that of internal coordinates refers to motion through an abstract property space (for example size).

We had collectively referred to thm as convective processes for the reasons that they might be likened to physical motion.

It will be convenient to define "velocity" Ṙ (x, r, Y, t) for internal coordinates and Ṙ (x, r, Y, t) for external coordinates. These functions are assumed to be as smooth as necessary.

The velocity just defined may be random processes in space and time. Thus, n (x, r, t) Ṙ (x, r, Y, t) represents the particle flux through physical space and n (x, r, t) Ẋ (x, r, Y, t) is the particle flux through internal coordinate space.

The Population balance equation. Consider a population of particles distributed according to their size x which we shall take to be the mass of the particle and allow it to vary between 0 and ∞.

The particles are uniformly distributed in space so that the number density is independent of external coordinates. Further, we assume fot the present that the environment does not play any explicit role in particle behavior.

We let Ẋ (x, t) be the growth rate of the particle size x and let n (x, t) denote the number density. All functions involved are assumed to be sufficiently smooth. Thus, we have the population balance equation

∂n (x, t) ∂t + ∂ Ẋ (x, t) n (x, t) ∂x = 0.
In the above derivation, we did not take in account the birth and death of particles. To asses the rates of this contributions detailed modeling of breakage and aggregation processes will be needed. Let h (x, t) dx the net rate of generation of particles in the size range x to x+dx, where the identity of h (x, t) would depend on the models of breakage and aggregation. In this case, the population balance equation becomes

∂n (x, t) ∂t + ∂ Ẋ (x, t) n (x, t) ∂x = h (x, t)
The preceding equation must be supplemented with initial and boundary conditions. The initial condition must clearly stipulate the distribution of particles in the particle state space. The Population Balance Equation (PBE) is an equation that describes the evolution of one population of particles in colloidal systems. Changes in this kind of population are due to aggregation or breakage processes that can be seen as processes of birth and death. The evolution of the population is characterized by the particle The formulation of PBE is traditionally made in terms of the particle's volume as Size property.

This four terms at the right side of the equation are the corresponding processes of birth and death due to aggregation or breakage.

This equation is expressed like Definition 3.1. Population Balance Equation The equation governing the evolution in time of the number distribution of a population of colloidal particles is known as Population Balance Equation, and it is defined as

∂η (v; t) ∂t =B a (v; t) -D a (v; t) + B b (v; t) -D b (v; t) = 1 2 v 0 φ (v -, ) η (v -; t) η ( ; t) d -η (v; t) ∞ 0 φ (v, ) η ( ; t) d + ∞ v ψ ( ) ρ (v/ ) η ( ; t) d -ψ (v) η (v; t) , (3.1) 
where and where

• B a (v; t) = 1 2 v 0 φ (v -, ) η (v -; t)
• η (v; t): number density function using volume as coordinate,

• φ (v, ): aggregation kernel using volume as coordinate,

• ψ (v): breakage kernel using volume as coordinate,

• ρ (v/ ): distribution function of fragments.

In some applications, it is interesting to express the PBE in terms of the Length of Diameter particle instead of the volume. Because of this, we are going to see how we can transform the PBE using the particle's volume as distribution variable to the PBE using the particle's size as distribution variable. We can see that this formulation is Proposition 3.2. The PBE in terms of size particle coordinate. The PBE can be formulate in terms of the length coordinate like

∂n (L, t) ∂t =B a (L; t) -D a (L; t) + B b (L; t) -D b (L; t) = L 2 2 L 0 β (L 3 -λ 3 ) 1/3 , λ (L 3 -λ 3 ) 2/3 n L 3 -λ 3 1/3 , t n (λ, t) dλ -n (L, t) ∞ 0 β (L, λ) n (λ, t) dλ + ∞ L a (λ) b (L | λ) n (L, t) dλ -a (L) n (L, t) , (3.2) 
where where

• B a (L; t) = L 2 2 L 0 β (L 3 -λ 3 ) 1/3 ,λ (L 3 -λ 3 ) 2/3
n (L 3 -λ 3 ) 1/3 , t n (λ, t) dλ: birth rate of particles with length L by aggregation of little particles, and where

• D a (L; t) = n (L, t) ∞ 0 β (L, λ) n (λ,
• n (L; t): number density function using length as coordinate,

• β (L, λ): aggregation kernel using length as coordinate,

• a (L): breakage kernel using length as coordinate,

• b (L/λ): distribution function of fragments.

Except for some theoretical cases is not possible to find analytically the solution of the Population Balance Equation. In order to find an approximation to this solution, we are going to propose a discretization scheme.

Let L be the particle's Size. This coordinate has its natural variation range in ]0, +∞[. We start building a discretization scheme for the coordinate L. Lets denote L a conveniently small value for L and L a conveniently large value of L. That is, L ∈ L, L . We choose a discretization scheme, building a geometrical grid of N + 1 values. Lets denote s the multiplicative step for the geometrical grid, where with s

= L N L 0 1 N . Lets denote L 0 = L, L N = L and for i = 1, • • • , N -1, L i = s i L 0 .
The PBE is an integro-differential equation of the number distribution. We are going to use the extended trapezoidal rule in the geometrical grid in order to numerically solve the integral parts involved and the Euler's step foward method for the derivative part.

Trapezoidal rule for regular and geometric grid

Now, we want to compare the performance of the trapezoidal rule implemented with a regular grid to the same rule using a geometric grid instead. We are going to use the particular Gamma distribution described before at the beginning because of its 'tailed' behavior and then we are going to use others distributions like the uniform distribution.

We use the theoretical value of the integral of the Gamma function for comparing the performance between the two estimation methods.

The Extended Trapezoidal rule

We want to approximate the value of the integral of certain function between the points a and b with the integral of a linear function between the same rang, that is 

f (x) dx = x 1 x 0 f (x) dx + • • • + x N x N -1 f (x) dx = x 1 -x 0 2 (f (x 0 ) + f (x 1 )) + • • • + x N -x N -1 2 (f (x N -1 ) + f (x N )) + o (1) = N i=1 x i -x i-1 2 (f (x i-1 ) + f (x i )) + o (1)
then, if we use a uniform grid

x i+1 = x i + h for i = 0, • • • , N , and h = x N -x 0 N we get b a f (x) dx = N i=1 x i -x i-1 2 (f (x i-1 ) + f (x i )) + o (1) = 1 2 N i=1 [x i -x i-1 ] (f (x i-1 ) + f (x i )) + o (1) = 1 2 N i=1 h (f (x i-1 ) + f (x i )) + o (1) = h 2 2 N -1 i=1 f (x i ) + f (x 0 ) + f (x N ) + o (1) .
If we use a geometric grid x i+1 = sx i = s i+1 x 0 for i = 0, • • • , N , and with x i -

s = x N x 0 1/N we get b a f (x) dx = N i=1 x i -x i-1 2 (f (x i-1 ) + f (x i )) + o (1) = 1 2 N i=1 [x i -x i-1 ] (f (x i-1 ) + f (x i )) + o (1) = x 0 2 N i=1 s i -s i-1 (f (x i-1 ) + f (x i )) + o (1) = x 0 2 { N -1 i=1 s i+1 -s i-1 f (x i ) + s 1 -s 0 f (x 0 ) + s N -s N -1 f (x N )} + o (1) .
x i-1 2 (f (x i-1 ) + f (x i )) + o (1) (3.4)
If we use a uniform grid

x i+1 = x i + h for i = 0, • • • , N , and h = x N -x 0 N we get b a f (x) dx = h 2 2 N -1 i=1 f (x i ) + f (x 0 ) + f (x N ) + o (1) (3.5)
And if we use a geometric grid x i+1 = sx i = s i+1 x 0 for i = 0, • • • , N , and

with s = x N x 0 1/N we get b a f (x) dx = x 0 2 { N -1 i=1 s i+1 -s i-1 f (x i ) + s 1 -s 0 f (x 0 ) + s N -s N -1 f (x N )} + o (1) (3.6) 
The interest of solving the PBE is to known the time evolution of the number distribution n (L, t). Lets denote n t the vector containing the values of this distribution at the set of the chosen coordinate points in the grid at instant of time t. Then, n t is a N + 1 column vector, that is

n k =      n (L 0 , k) n (L 1 , k) . . . n (L N , k)      N +1×1
.

Proposition 3.5. Discretization scheme for the Population Balance Equation. The solution of the PBE can be computed numerically by an iterative procedure like

n k+1 =n k + ε B a k -D a k + B b k -D b k + o (1) n k+1 =n k + ε n t • B • S n t -n t • (βSn t ) + Ω • S An t -An t + o (1) (3.7)
having A, B, S, B, S, S and Ω as appropriate N + 1 × N + 1 matrices:

• n k is the number distribution vector at time instant k,

• A is the matrix containing the values of the breakage kernel,

• B and B are the matrices containing the values of the aggregation kernel,

• S, S, and S are matrices involving the geometric multiplicative step s, and

• Ω is a matrix containing the values of the fragment distribution function of daughter particles.

where • denotes the Hadamar product and where

• B a k is the vector representing the process of birth due to aggregation,

• D a k is the vector representing the process of death due to aggregation,

• B b k is the vector representing the process of birth due to breakage, and

• D b k is the vector representing the process of death due to breakage.

Proof. We may write the previous equation for each coordinate point

L i for i = 0, • • • , N as ∂n (L i , t) ∂t =B a (L i , t) -D a (L i , t) + B b (L i , t) -D b (L i , t) = L 2 i 2 L i 0 β (L 3 i -λ 3 ) 1/3 , λ (L 3 i -λ 3 ) 2/3 n L 3 i -λ 3 1/3 , t n (λ, t) dλ -n (L i , t) ∞ 0 β (L i , λ) n (λ, t) dλ + ∞ L i a (λ) b (L i |λ) n (λ, t) dλ -a (L i ) n (L i , t) .
We are going to deal with each term in the right side of the PBE as they involve integrals. We will use a numerical integration scheme on a large enough integration interval L, L . This will be performed by using the extended trapezoidal rule (assuming that the integrated function is regular in the whole integration domain). Then, we are going to find a numerical expression for each term.

Proposition 3.6. Numerical integration of the birth due to aggregation term. The term representing the process of birth due to aggregation B a (L i , t) can be expressed as

B a (L, t) = B a t
represented by an vector evaluated in each one of the points of the grid in the discretization scheme, and it can be estimated as

B a k = n t • B • S n t + o (1)
where

B a t =    B a (L 0 , t) . . . B a (L N , t)    N +1×1 β =    β0 . . . βN    N +1×N +1 S = S i,j =                              if i = j 1 if i > j      1 2 L 0 (S 1 -S 0 ) , if j = 0, 1 2 L 0 (S i-1 -S i-1 ) , if j = i -1, 1 2 L 0 (S j+1 -S j-1 ) , if j = 1, • • • , i -2 if i < j 0 
Proposition 3.7. Numerical integration of the death due to aggregation term. The term representing the process of death due to aggregation D a (L, t) can be expressed as

D a (L, t) = D a t (3.8)
represented by an vector evaluated in each one of the points of the grid in the discretization scheme, and it can be estimated as

D a t = n t • (βSn t ) + o (1) .
where

D a t =    D a (L 0 , t) . . . D a (L N , t)    N +1×1 β =    β (L 0 , L 0 ) • • • β (L 0 , L N ) . . . . . . β (L N , L 0 ) • • • β (L N , L N )    N +1×N +1
Proposition 3.9. Numerical integration of the death due to breakage term. The term representing the process of birth due to breakage D b (L, t) can be expressed as

D b (L, t) = D b t
represented by an vector evaluated in each one of the points of the grid in the discretization scheme, and it can be estimated as

D b t = an t + o (1) .
where

D b t =    D b (L 0 , t) . . . D b (L N , t)    .
and a is the same as in proposition 3.9.

Proof of proposition 3.6. From the definition 3.2 we have the expression of the term for each coordinate point L i as

B a (L i ; t) = L 2 i 2 L i 0 β (L 3 i -λ 3 ) 1/3 , λ (L 3 i -λ 3 ) 2/3 n L 3 i -λ 3 1/3 , t n (λ, t) dλ.
We notice that there is a singularity in a neighborhood of L i . In order to calculate numerically the value of this integral, we can split this integral into two parts and use the extended trapezoidal rule in the geometrical grid

B a (L i , t) = L 2 i 2 L i 0 β (L 3 i -λ 3 ) 1/3 , λ (L 3 i -λ 3 ) 2/3 n L 3 i -λ 3 1/3 , t n (λ, t) dλ = L 2 i 2 L i-1 0 β (L 3 i -λ 3 ) 1/3 , λ (L 3 i -λ 3 ) 2/3 n L 3 i -λ 3 1/3 , t n (λ, t) dλ + L 2 i 2 L i L i-1 β (L 3 i -λ 3 ) 1/3 , λ (L 3 i -λ 3 ) 2/3 n L 3 i -λ 3 1/3 , t n (λ, t) dλ.
We use the extended trapezoidal rule for the numeric integration of the first term so that the first integral is evaluated using the approximation

L 2 i 2 L i-1 0 β (L 3 i -λ 3 ) 1/3 , λ (L 3 i -λ 3 ) 2/3 n L 3 i -λ 3 1/3 , t n (λ, t) dλ = 1 2 L 0 { i-2 j=1 s j+1 -s j-1 L 2 i 2 β L 3 i -L 3 j 1/3 , L j L 3 i -L 3 j 2/3 n L 3 i -L 3 j 1/3 , t n (L j , t) + s 1 -s 0 L 2 i 2 β (L 3 i -L 3 0 ) 1/3 , L 0 (L 3 i -L 3 0 ) 2/3 n L 3 i -L 3 0 1/3 , t n (L 0 , t) + s i-1 -s i-2 L 2 i 2 β L 3 i -L 3 i-1 1/3 , L i-1 L 3 i -L 3 i-1 2/3 n L 3 i -L 3 i-1 1/3 , t n (L i-1 , t)} + o (1) .
Proposition 3.10. Improper integral The improper integral in 3.9 can be numerically approximated like

L i L i-1 1 (L 3 i -λ 3 ) 2/3 dλ = 1 3 1 x du u 2/3 (L 3 i -u) 2/3 (3.9)
which can be calculated using an incomplete beta function Beta (1/3, 1/3),

where x = L i-1 L i 3 .
Proof of the proposition 3.10. In order to compute the value of the integral

L i L i-1 dλ (L 3 i -λ 3 ) 2/3 (3.10) If we propose the transformation u = λ 3 , then du = 3λ 2 dλ, u -----→ λ-→L i-1 L 3 i-1 , and u ----→ λ-→L i L 3
i , then we can write the integral as

L i L i-1 dλ (L 3 i -λ 3 ) 2/3 = L 3 i L 3 i-1 du 3u 2/3 (L 3 i -u) 2/3 (3.11)
Proof. Proof of the proposition 3.7 From the definition 3.2 we have the expression of the term for each coordinate point L i as

D a (L, t) = n (L, t) ∞ 0 β (L, λ) n (λ, t) dλ D a (L i , t) = n (L i , t) ∞ 0 β (L i , λ) n (λ, t) dλ
Again, applying the extended trapezoidal approximation rule for this integral in λ = L j for j = 0, 1, • • • , N , we have

D a t =    D a (L 0 , t) . . . D a (L N , t)    N +1×1 β =    β (L 0 , L 0 ) • • • β (L 0 , L N ) . . . . . . β (L N , L 0 ) • • • β (L N , L N )    N +1×N +1
and

S N +1×N +1 = (S) i,j =                    if i = j      L 0 2 s 1 -s 0 , if j = 0 L 0 2 s N -s N -1 , if j = N L 0 2 s j+1 -s j-1 , if j = 1, • • • , N -1 else 0 
then, we can express the later equation like

D a t = n t • (βSn t ) + o (1) .
Proof. Proof of proposition 3.8 From the definition 3.2 we have the expression of the term for each coordinate point L i as

B b (L, t) = ∞ L a (λ) b (L | λ) n (λ, t) dλ.
Continuing with the discretization scheme, we work now on the breakage birth term. We begin with

B b (L i , t) = ∞ L i a (λ) b (L i | λ) n (λ, t) dλ.
and, applying the extended trapezoidal rule for solve this integral numerically, we get

B b t =    B b (L 0 , t) . . . B b (L N , t)    a =      a (L 0 ) 0 • • • 0 0 a (L 1 ) • • • 0 . . . . . . . . . . . . 0 0 • • • a (L N )      N +1×N +1 b =    b (L 0 | L 0 ) • • • b (L 0 | L N ) . . . . . . b (L N | L 0 ) • • • b (L N | L N )    N +1×N +1 where b (L i | L j ) = 3L 2 i L 3 j , if i ≤ j; 0, if i > j.
and

SN+1×N+1 = S i,j =                    if i ≤ j      L 0 2 (s i+1 -s i ) , if j = i L 0 2 (s j+1 -s j-1 ) , if j = i + 1, • • • , N -1 L 0 2 s N -s N -1 , if j = N if i > j 0 
then, we can write

B b t = b • S an t + o (1) .
Proof. Proof of the proposition 3.9 From the definition 3.2 we have the expression of the term for each coordinate point L i as

D b (L, t) = a (L, t) n (L i , t)
Using the same discretization scheme, we can express the term for death due to breakage like

D b (L i , t) = a (L i , t) n (L i , t) . for i = 0, 1, • • • , N .
Using matricial notation, let's denote

D b t =    D b (L 0 , t) . . . D b (L N , t)    .
Finally, we can express the last equation like 

D b t = an t + o ( 
n t k+1 =n t k + ε B a t k + D a t k + B b t k -D b t k + o (1) n t k+1 =n t k + ε n t • β • S n t -n t • (βSn t ) + b • S an t -an t + o (1) .

Simulations using the Discretized PBE

We are going to evaluate the discretized PBE presented before, using the results from [START_REF] Silva | Comparison of the accuracy and performance of quadrature-based methods for population balance problems with simultaneous breakage and aggregation[END_REF] in which they find the analytical solution for a PBE in the case of the number density distribution for the volume of the particles. We use this result for comparing the performance of the analytical and numerical solution.

The PBE is the conservation equation for the mean number density distribution function of particles, n (v, t), whose dimensions depend on the particle properties, v, considered as distribution variables [Silva_2011].

The theoretical distribution

In [START_REF] Silva | Comparison of the accuracy and performance of quadrature-based methods for population balance problems with simultaneous breakage and aggregation[END_REF], they studied the analytic solution given by Patil and Andrews (1998) [START_REF] Patil | An analytical solution to continuous population balance model describing floc coalescence and breakage. A special case[END_REF] for a special case where the total number of particles is constant. Also, the use the solution given by McCoy and Madras (2003) for a more general case, where the number of particles is not constant, but using a different initial condition. The distributions are originally given using the particle's volume as distribution variable. We are going to use the same solutions but using particle's size as distribution variable. The initial equation is

∂n (v; t) ∂t = 1 2 v 0 β (v -, ) n (v -; t) n ( ; t) d -n (v; t) ∞ 0 β (v, ) n ( ; t) d + 2 ∞ v a ( ) b (v/ ) n ( ; t) d -a (v) n (v; t) .
(3.12)

This PBE is subjected to the following initial conditions:

n (v; 0) = µ 0 (0) µ 0 (0) µ 1 (0) e - µ 0 (0) µ 1 (0) v (3.13) or n (v; 0) = µ 0 (0) 2 µ 0 (0) µ 1 (0) 2 ve -2 µ 0 (0) µ 1 (0) v (3.14)
where µ 0 (0) and µ 1 (0) are the initial zero and first-order moments. Due to mass conservation, µ 1 is constant for the considered problems. The aggregation and breakage kernels are:

• β (v, ) = C, with C constant, • a (v) = Sv, with S constant, • b (v | ) = 2 .
For these choice of aggregation and breakage kernels, if the initial distribution is normalized (µ 0 (0) = 1), and µ 1 = 1, and using C = 1 and S = [Φ(∞)] 2 2 , and Φ (∞) = 1, the number of particles and the density distribution are constants. The analytical solution given by Patil and Andrews (1998), assuming no variation in the total number of particles (and using the constants defined before), is

n a (v; t) = 2 i=1 K 1 (t) + p i (t) K 2 (t)
L 2 (t) + 4p i (t) e p i (t)v for ∀t > 0;

(3.15)

where

K 1 (t) =7 + t + e -t K 2 (t) =2 -2e -t L 2 (t) =9 + t -e -t p 1,2 (t) = 1 4 e -t -t -9 ± d (t) d (t) =t 2 + 10 -2e -t t + 25 -26e -t + e -2t .
(3.16)

McCoy and Madras (2003) treated the general case where the total number of particles is not constant. Thus, Φ (∞) can assume arbitrary values, that represents systems with predominant breakage (Φ (∞) > 1) or aggregation (Φ (∞) < 1), they find the following solution when the first initial condition is used:

n a (v; t) = [Φ (t)] 2 e -Φ(t)v (3.17)
where

Φ (t) = Φ (∞) 1 + Φ (∞) tanh (Φ (∞) t/2) Φ (∞) + tanh (Φ (∞) t/2) . (3.18)
Using the particles size like distribution variable, we have

∂n (L, t) ∂t = L 2 2 L 0 β (L 3 -λ 3 ) 1/3 , λ (L 3 -λ 3 ) 2/3 n L 3 -λ 3 1/3 , t n (λ, t) dλ -n (L, t) ∞ 0 β (L, λ) n (λ, t) dλ + 2 ∞ L a (λ) b (L | λ) n (L, t) dλ -a (L) n (L, t) , (3.19) 
with the following inital conditions

n (L, 0) = µ 0 (0) µ 0 (0) µ 1 (0) 3L 2 e - µ 0 (0) µ 1 (0) L 3 (3.20) or n (L, 0) = µ 0 (0) 2 µ 0 (0) µ 1 (0) 2 3L 5 e -2 µ 0 (0) µ 1 (0) L 3 (3.21)
and with the following aggregation and breakage kernels

• β (L, λ) = C with C constant, • a (L) = SL 3 with S constant, • b (L | λ) = 6L 2 λ 3
, where µ 0 (0) and µ 1 (0) are the initial zero and first-order moments of n (v; 0). Then, the analytical solution given by Patil and Andrews (1998) is expressed by

n a (L, t) = 3L 2 2 i=1 K 1 (t) + p i (t) K 2 (t) L 2 (t) + 4p i (t) e p i (t)L 3 for ∀t > 0; (3.22)
and, the solution given by McCoy and Madras ( 2003) is expressed by

n a (L, t) = 3L 2 [Φ (t)] 2 e -Φ(t)L 3 , (3.23)
using the constants defined before.

Chapter 4

Parameter Estimation via Extended Kalman Filter and Least Squares

Introduction

In the previous chapter, the population balance equation(PBE), the integrodifferential equation governing the time evolution of the number density distribution of a particles population has been solved numerically using a discretization scheme. However, the implementation of such a solution needs the knowledge of the kernels involved in the modelization and that of its parameters.

Recent investigation in colloidal particles systems are centered in the identification of those theoretical kernels for aggregation and breakage processes and also in the estimation of its parameters. The kernel modelization is done using hydrodinamic theoretical considerations. Nevertheles, the parameters involved have to be estimated. Some of those researches are based on data obtained from experimental controlled environments using a population of primary particles of size and volume known [START_REF] Vlieghe | Agrégation et rupture de flocs sous contraites turbulentes[END_REF]. The resulting data are expressed in terms of the volume distribution in time. From this data, experts are able to give an empirical estimation of the parameter vector.

The time number distribution function of particles can be used to estimate the parameter vector. Although this distribution is not directly measurable, the experimental data expressed as the volume distribution function contains information about the number distribution so it can be seen as a function of the number distribution. Now, the aggregation and breakage kernels being identified and having at hand some initial estimation of the parameters, we 123 propose a procedure to recover the number distribution from the volume distribution using the Extended Kalman Filtering.

For this, our procedure use the discretized scheme of the PBE as state equation. This equation involve the chosen kernels and the initial estimation of the parameters. We then consider the volume distribution as a measure equation involving the number distribution to be recovered. The Extended Kalman Filter algorithm predicts the number distribution at a discretized set of time instants.

Furthermore, in the same framework, we can also use the observation to estimate the unknown parameters of the PBE. Using the discretized scheme of the PBE as theoretical model, we propose a procedure to estimate the parameters iteratively. The procedure involves the misfit between the number distribution obtained from the discretized model and the predicted by the Extended Kalman Filter. We propose a Least Squares Estimator. This estimator is computed iteratively at each time. Notice that as the discretized model is not lineal, we have to use a linear approximation model. Moreover, the computation of the parameter vector estimation is done via ridge regression. 

Estimation of the

∈ N x k =f k-1 (x k-1 ) + v k-1 z k =h k (x k ) + w k (4.1)
where f k-1 is the non-linear function linking x k the state at time k with x k-1 the state at time k -1. h k is the non-linear function linking z k the measure at time k and the state at time k. v k-1 and w k are random sequences, mutually independent, zero mean white Gaussian noise with covariances Q k-1 and R k respectively.

The nonlinear functions in (4.1) are approximated by the first term in their Taylor series expansion [START_REF] Del | Modèles et métodes stochastiques. Une introduction avec applications[END_REF]. The EKF is based on the assumption that the local linearization may be a sufficient description of nonlinearity. The posterior pdf p (x k | Z k ) is approximated by a Gaussian density and the following relationships are assumed to hold

p (x k-1 | Z k-1 ) =N x k-1 ; xk-1|k-1 , P k-1|k-1 p (x k | Z k-1 ) =N x k ; xk|k-1 , P k|k-1 p (x k | Z k ) =N x k ; xk|k , P k|k (4.2)
where p (x k-1 | Z k-1 ) = N (x; m, P ) is a Gaussian density with argument x, mean m and covariance P .

The mean and the covariance of the underlying Gaussian density are computed recursively as follows

xk|k-1 =f k-1 xk-1|k-1 P k|k-1 =Q k-1 + Fk-1 P k-1|k-1 F T k-1 xk|k =x k|k-1 + K k z k -h k xk|k-1 P k|k =P k|k-1 -K k S k K T k (4.3)
where

S k = Ĥk P k|k-1 ĤT k + R k K k =P k|k-1 ĤT k S -1 k (4.4)
and Fk-1 and Ĥk are the local linearization of nonlinear functions f k-1 and h k respectively. They aredefined as Jacobians evaluater at xk-1|k-1 and xk|k-1 respectively, that is:

Fk-1 = x k-1 f T k-1 (x k-1 ) T | x k-1 =x k-1|k-1 Ĥk = x k h T k (x k ) T | x k =x k|k-1 (4.5)
where

x k = ∂ ∂x k [1] • • • ∂ ∂x k [nx] T (4.6) with x k [i]; i = 1, • • • , n x ,
being the i-th component of vector x k . An element of, say, Ĥk is then given by:

Ĥk [i, j] = ∂h k [i] ∂x k [j] | x k =x k|k-1 (4.7)
where h k [i] denotes the i-th component of vector h k (x k ).

For the number distribution function, we are going to use the discretized scheme of the PBE as state equation as state equation. Thus, the state vector is going to be represented by n k the vector containing the values of this distribution at the set of the chosen coordinate points in the grid at instant of time k. Then, n k is a N + 1 column vector, that is

n k =      n (L 0 , k) n (L 1 , k) . . . n (L N , k)      N +1×1
, and, the state equation is

n k =n k-1 + ε{n k-1 • B • S n k-1 -n k-1 • (βSn k-1 ) + Ω • S An k-1 -An k-1 } + v k-1 (4.8)
where v k-1 is a vector residues. The measure equation can be obtained as

ϑ i = v i,t V T = y i+1 y i ϕ V T L 3 n (L, t) dL;
where V T = ∞ 0 ϕL 3 n (L, t) dL;

using the discretization scheme, and denoting by ϕ (L) = ϕL 3 , ϕ = π 6 (2R 0 ) 3 , and R 0 is the primary particle's ratio, we get

v i,t = L 0 2 1 V T {
N -1 j=1 s j+1 -s j-1 ϕ i (L j ) n (L j , t) + s 1 -s 0 ϕ i (L 0 ) n (L 0 , t)

+ s N -s N -1 ϕ i (L N ) n (L N , t)} + o (1)
,

where ϕ i (L) = π 6 (2R 0 ) 3 L 3 1 [y i ,y i+1 ) (L) for i = 1, • • • , d. If we denote v t =    v 1,t, . . . v d,t    d×1 , ϕ =    ϕ 1 (L 0 ) • • • ϕ 1 (L 0 ) . . . . . . ϕ d (L 0 ) • • • ϕ d (L 0 )    d×N +1
then we get v t = ϕ Sn t , and, the constant V T included in the model is known.

Least Squares Estimators for PBE parameters

General Information

Let's denote r the number of experiment's replicates, k the observation time, where 0 ≤ k ≤ t max , z k,r the volume fraction measured for the k-th time and for the r-th sample. Then, the available data can be represented as We are interested in the number distribution, and we apply a Kalman Filtering for recover this distribution from the measured matrix described above • Assumptions:

         z 1,1 z 1,2 • • • z 1,r z 2,1 z 2,2
-Neither the f θ and h funtions nor the θ vector of parameters change in time.

-The error's covariance matrices Q k-1 and R k can change in time.

The estimation problem can be stated as follows: We denote

• xk,r : the filtered state from the real measured data in k-th time and r-th sample.

• xk,r : simulated state by the discretized PBE model in k-th time and r-th sample.

we want to find an estimator for θ using the least Squares Method, by minimizing the following objective function where

Γ k =
β (L i , L j ) =     
α m e i,j 1 (x) m i,j 1 (y) l i,j 1 , if i > j; α m e i,j 2 (x) m i,j 2 (y) l i,j 2 , if i = j; 0, if i < j.

where the functions are

e i,j 1 (x) = exp        -x       1 -       max (L 3 i -L 3 j ) 1/3 2 Df , L j 2 Df min (L 3 i -L 3 j ) 1/3 2 Df , L j 2 Df             2        , m i,j 1 (y) = G 6 L 3 i -L 3 j 1/3 + L j 3 (L 3 i -L 3 j ) 1/3 2 Df L j 2 Df y , l i,j 1 = L 2 i 2 L 3 i -L 3 j 2/3 , e i,j 2 (x) = exp            -x           1 -           max      L 3 i - L i-1 +L i 2 3 1/3 2   Df , L i-1 +L i 2 2 Df    min      L 3 i - L i-1 +L i 2 3 1/3 2   Df , L i-1 +L i 2 2 Df                        2            , m i,j 2 (y) = G 6 L 3 i -L i-1 +L i 2 3 1/3 + L i-1 +L i 2 3   L 3 i -L i-1 +L i 2 3 1/3 Df L i-1 +L i 2 Df   y , l i,j 2 = L 2 i (L i -L i-1 ) 1/3 2 (3L 2 i ) 2/3
.

If we define the following matrices ē (x) N +1×N +1 = (ē (x)) i,j =      e i,j 1 (x) , if i > j; e i,j 2 (x) , if i = j; 0, if i < j, m (x) N +1×N +1 = ( m (x)) i,j =      m i,j 1 (y) , if i > j; m i,j 2 (y) , if i = j; 0, if i < j,

DN+1×N+1 = D i,j =      l i,j 1 , if i > j; l i,j 2 , if i = j; 0, if i < j.
we can rewrite the β matrix above in terms of this matrices like

β = α m ē (x) • m (y) • D .
For the β and a matrices, we can write a similar developement. This is

β N +1×N +1 = (β) i,j = β (L i , L j )
where β (L i , L j ) = α m e i,j 3 (x) m i,j 3 (y) , and and

S N +1×N +1 = (S) i,j =          s -1, if i = j = 0; L 0 2 s i+1 -s i-1 , if i = j = 1, • • • , N -1; s N -s N -1 , if i = j = N + 1; 0, if i = j.
Considering the expressions above we can write the state equation like ∂x , if i > j;

∂e i,j 2 (x) ∂x , if i = j; 0, if i < j where 

∂e i,j 1 (x) ∂x = -       1 -       max (L 3 i -L 3 j ) 1/3 2 Df , L j 2 Df min (L 3 i -L 3 j ) 1/3 2 Df , L j 2 Df             2 × exp        -x       1 -       max (L 3 i -L 3 j ) 1/3 2 Df , L j 2 Df min (L 3 i -L 3 j ) 1/3 2 Df , L j 2 Df             2        , ∂e i,j 2 (x) ∂x = -           1 -           max      L 3 i - L i-1 +L i 2 3 1/3 2   Df , L i-1 +L i 2 2 Df    min      L 3 i - L i-1 +L i 2 3 1/3 2   Df , L i-1 +L i 2 2 Df                        2 × exp            -x           1 -           max      L 3 i - L i-1 +L i 2 3 1/3 2   Df , L i-1 +L i 2 2 Df    min      L 3 i - L i-1 +L i 2 3 1/3 2   Df , L i-1 +L i 2 2 Df                        2            , ∂e ( 
L 3 i -L i-1 +L i 2 3 1/3 + L i-1 +L i 2 3      L 3 i - L i-1 +L i 2 3 1/3 2   Df L i-1 +L i 2 2 Df    y × log            L 3 i -L i-1 +L i 2 3 1/3 2      Df   L i-1 +L i 2 2   Df      
∂m (y) ∂y = ∂ (m (y)) i,j ∂y = ∂m i,j 3 (y) ∂y 1. We use the theoretical distribution in order to obtain the number density function at each time instant k, 2. We generate a zero mean Gaussian process at constant variance matrix. This is a N + 1 vector.

3. We add to this Gaussian noise to the theoretical state. We don't let the simulated vector behave atypically. It means that we don't use values negatives or highly deviated, because the nature of the process to be simulated.

4. We use the Measure discretized model in order to obtain the volume fraction distribution.

5. We add a Gaussian noise to this distribution in order to obtain the simulated measure.

6. We use the Extended Kalman Filter in order to recover the original noiseless state from the simulated measure. We use a zero vector like initial condition in order to simulate the no-information case.

In the Figure (4.1) we can see the theoretical distribution simulated using the discretized model in definition (4.2) and the simulated state with additive Gaussian noise. Also, we can see the recovered state evolution in time from the no-information initial condition. We can see also the absolute error in all the time evolution and the comparison between the least theoretical state and the least recovered state.

Simulation from the case of (Vlieghe, 2016) theoretical study

We use the discretized model in order to simulate an state number distribution from the kernels and parameter vector identified in (Vlieghe, 2016) [START_REF] Vlieghe | Agrégation et rupture de flocs sous contraites turbulentes[END_REF].

Then we get from this simulated state the simulate volume distribution using also the Measure discretized model (definition 4.2). We observe the stability of the simulation and compare to the experimental data.

In Figure (4.2) we observe the real experimental data. Then we see the simulated state using the model, the kernels and parameter vector identified by (Vlieghe, 2016) [START_REF] Vlieghe | Agrégation et rupture de flocs sous contraites turbulentes[END_REF]. Then we observe the simulated volume fraction distribution obtained from the simulated number density. We use the discretized model with the kernels and parameters seted by Melody as state equation, in order to recover the unknow number density from the experimental measures obtained from Melody 2016.

The recovered state is then compared to the empirical number density obtained by Melody. We use the same procedure as in the section (4.4.2) and with the kernels shown in section (4.4.3) in order to compare the recovered number density with the empirical number density obtained from the real data.

In Figure (4.3) we can see the experimental volume fraction and the empirical number density obtained from them. Also, we can see the number density function recovered from the real volume fraction using the Extended Kalman Filter, and the absolute error between the empirical and the recovered number density.

Simulation using the EKF and LSE in a simulated case

We use the discretized model with the kernels used in Melody in order to test the behavior of the method in simulated data. We use the procedure described to obtain simulated measures using a vector of fixed parameters. Then we use different initialization vectors in order to test the sensibility of this choice.

Parameter estimation of parameters values of Guerin datasets

We use an initial vector of parameters, in order to apply the LSE to estimate the parameters values.

Chapter 5

Conclusion

Experimental empirical data was obtained in ( [START_REF] Vlieghe | Agrégation et rupture de flocs sous contraites turbulentes[END_REF]). They analyzed the behavior of one micron (µm) bentonite primary particles in Jar test. They used several mixing speed in order to get different conditions for aggregation and breakage processes. The speed of mixing used were 30, 50, 70 and 90 revolutions per minute (rpm). Bentonite in a kind of clay of type smectite, montmorillonite. The clay particles are the plates consisting of a stack of sheets separated by an interlacing space.

The experiments originating the empirical data implement the flocculation of Bentonite provided by CECA Chemicals. The mass concentration of the suspension is 30 mgL -1 . The suspension is diluted as much as allowing to take images. The bentonite's mass needed for the experiments was putted in the water at least 24 hours before the experiments. This suspension had high intensity agitation by 45 min, before introduction into the reactor. Therefore, the suspension is constituted of primary agglomerates, compound of several elementary particles.

The initial population of this primary agglomerates shows that they have high variation about the Circle Equivalent Diameter (CED), with some values larger than 200 µm. The most part of particles had size about some tens of micrometers and there are a small proportion of agglomerates with size larger than 200 µm. The water used was demineralized water, the Ph is about 4.5 ± 0.1 and temperature between 20 and 25 • C. The experiments were performed in a Taylor-Couette Reactor.

In the experiments, they used a mechanism of aggregation by charges neutralization, using aluminum sulfate Al 2 (SO 4 ) 3 as coagulant, which is used commonly in water treatment. It allows to produce flocs weak enough to interact with the hydrodynamic. The concentration of aluminum sulphate in the reactor is 3.5 × 10 -5 molL -1 .

A continuation, the most important conclusions obtained from the descriptive data analysis are mentioned. The conclusions are divided in:

• Conclusions from the descriptive analysis of the data.

• Conclusions from the exploratory multivariate analysis of the data.

Conclusions of the descriptive analysis of the data.

The analysis was done using a natural classification for the variables in "size" variables and "shape" variables. Then, the description searched to interpret the data in that terms.

Initial population of Bentonite flocks.

Populations of Bentonite flocks under different hydrodynamics conditions.

Populations of Bentonite flocks under different hydrodynamics conditions thought time. We use the discretized model with the kernels and parameters seted by Melody as state equation, in order to recover the unknow number density from the experimental measures obtained from Melody 2016. The recovered state is then compared to the empirical number density obtained by Melody. We use the same procedure as in the section (4.4.2) and with the kernels shown in section (4.4.3) in order to compare the recovered number density with the empirical number density obtained from the real data.

In Figure (4.3) we can see the experimental volume fraction and the empirical number density obtained from them. Also, we can see the number density function recovered from the real volume fraction using the Extended Kalman Filter, and the absolute error between the empirical and the recovered number density.
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 11 Figure 1.1: Histograms in natural scale for the Size properties

Figure 1 . 2 :

 12 Figure 1.2: Histograms in logarithmic scale for the Size properties
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 16 Figure 1.6: Frequency polygons comparing the two data sets obtained under 30 rpm. Each size variable is represented under a logarithmic transformation. The aim is to evaluate the replicability of the experimental results. The two distributions are almost overlapped

Figure 1

 1 Figure 1.7: Frequency polygons comparing the two data sets obtained under 30 rpm. Each shape variable is represented. The aim is to evaluate the replicability of the experimental results. In this case, the two distributions are almost overlapped as in the precedent set of variables.

Figure 1

 1 Figure 1.8: Frequency polygons comparing the two data sets obtained under 50 rpm. Each size variable is represented under a logarithmic transformation. The aim is to evaluate the replicability of the experimental results. Again, the two distributions are almost overlapped

Figure 1 .

 1 Figure 1.10: Frequency polygons comparing the two data sets obtained under 70 rpm. Each size variable is represented under a logarithmic transformation. The aim is to evaluate the replicability of the experimental results. Again, the two distributions are almost overlapped

Figure 1 .

 1 Figure 1.12: Frequency polygons comparing the two data sets obtained under 90 rpm. Each size variable is represented under a logarithmic transformation. The aim is to evaluate the replicability of the experimental results. Again, the two distributions are almost overlapped

Figure 1 .

 1 Figure 1.14: Frequency polygons comparing the populations obtained under 30, 50, 70, and 90 rpm. Each size variable is represented under a logarithmic transformation. In general, we observed an increase of the size of the flocks when the level of rpm increase. The group of small flocks also decrease when the rpm increase. This tendency is observed in all size variables
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 1 Figure 1.16: Frequency polygons comparing the populations obtained under 30, 50, 70, and 90 rpm. Each shape variable is represented. The roundness of the flocks decrease when the level of rpm augment. Also, lower is the level of rpm, the more elongated are the flocks. When the level of rpm augment, more irregular are the flocks in terms of concavity and roughness.

Figure 1 .

 1 Figure 1.18: CPA variables
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 1 Figure 1.24: PCA. Individuals
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 21 Figure 2.1: First 6 standard moments ofr the case of (Silva, 2011) (strength line) and the estimation with QMOM (dotted line)

  η ( ; t) d : birth rate of particles with volume v by aggregation of little particles,• D a (v; t) = η (v; t) ∞ 0 φ (v, ) η ( ; t) d : death rate ofparticles with volume v by aggregation with other particles, • B b (v; t) = ∞ v ψ ( ) ρ (v/ ) η ( ; t) d : birth rate of particles with volume v by breakage of big particles, • D b (v; t) = ψ (v) η (v; t): death rate of particles with volume v by breakage into little particles.

  t) dλ: death rate of particles with length L by aggregation with other particles,• B b (v; t) = ∞ L a (λ) b (L | λ) n (L,t) dλ: birth rate of particles with length L by breakage of big particles, • D b (v; t) = a (L) n (L, t): death rate of particles with length L by breakage into little particles.

  α] dx. Definition 3.3. The trapezoidal rule[Nak92] The integral of certain function in [a, b] can be approximated by b a f (x) dx = b -a 2 (f (a) + f (b)) + o (1) (3.3) Now, if we want to use N+1 points to approximate the theoretical integral value, we use the trapezoidal rule N times, from which we have the Extended Trapezoidal rule. That is b a

Definition 3. 4 .

 4 The extended trapezoidal rule The integral of certain function in [a, b] can be approximated by b a f (x) dx = N i=1

x•

  k =f θ (x k-1 ) + v k-1 z k =h (x k ) + w kwhere the parameter vector θ ∈ R p , and the probabilistic conditions for the Extended Kalman FilterFrom this, we have the recovered objective distribution, denoted by xk,r ∈ R N +1 : the number distribution filtered from the r-th sample in the k-th time.

  k,l -xk,l ] T [x k,l -xk,l ] Γ k = r l=1 [x k,l -xk,l (x k-1,l ; θ)] T [x k,l -xk,l (x k-1,l ; θ)] for k = 1, • • • , t max , where xk,l = xk,l (x k-1,l ; θ) = f θ (x k-1,l ) xk,l = xk-1,l + ε{x k-1,l • βS xk-1,l -xk-1,l • (βS xk-1,l ) -baS xk-1,l + ax k-1,l }where the symbol • denote de Hadamar matricial product, and we have the measure equation which links the measure with the aimed state,z k = h (x k ) = ϕS xk .In this case, we consider the following aggregation frequency and efficacity kernel and rupture frecuency kernel, likeβ (L, λ) =α m exp ) = α b G b 0 L 2 c ,this kernels are considered fixed and not time variant, and the vector of unknown parameters is θ = [α m , x, y, α b , b 0 , c] T ∈ R 6 .The matrices involved in the above equations are, after considering the fixed kernels, expressed like 0 , L 0 ) • • • β (L 0 , L N ) . . . . . .β (L N , L 0 ) • • • β (L N , L N )

.

  e (x) N +1×N +1 = (e (x)) i,j = e i,j 3 (x) , m (y) N +1×N +1 = (m (y)) i,j = m i,j 3 (y)we have β = α m (e (x) • m (y)) .130In the same way, we havea N +1×N +1 = (a) i,j = a (L i ) , if i = j; 0, if i = j where a (L i ) = α b G b 0 T i (c) ,andT i (c) = L i 2 cIf we callT (c) N +1×N +1 = (T (c)) i,j = T i (c) , if i = j; 0, if i = jthe we can rewrite the a matrix likea = α b G b 0 T (c) .The rest of the involved matrices are b N +1×N +1 = (b) i,j = b (L i | L j ) , where b (L i | L j ) =

  xk,l (x k-1,l ; θ) = xk-1,l + ε{x k-1,l • α m ē (x) • m (y) • D S xk-1,l -xk-1,l • [α m (e (x) • m (y)) S xk-1,l ] + b α b G b 0 T (c) S xk-1,l -α b G b 0 T (c) xk-1,l }The Least Squares Estimator is defined like the point in the parametrical space where the objective function Γ k is minimal for each k = 1, • • • , t max . In with the usual solutionθk = W T k Wk -1 W T k Zk .The expression for the W k,l considering the estructure of the xk,l (x k-1,l ; θ) isW k,l = ∂ xk,l ∂α m ∂α m =ε{x k-1 • ē (x) • m (y) • D S xk-1 -xk-1 • [(e (x) • m (y)) S xk-1 ]}, ∂ xk,l ∂x =ε{x k-1 • α m ∂ē (x) ∂x • m (y) • D S xk-1 -xk-1 • α m ∂e (x) ∂x • m (y) S xk-1 }, ∂ xk,l ∂y =ε{x k-1 • α m ē (x) • ∂ m (y) ∂y • D S xk-1 -xk-1 • α m e (x) • ∂m (y) ∂y S xk-1 }, ∂ xk,l ∂α b =ε{b G b 0 T (c) S xk-1 -G b 0 T (c) xk-1 }, ∂ xk,l ∂b 0 =ε{G b 0 log (G) b (α b T (c)) S xk-1 -G b 0 log (G) (α b T (c)) xk-1 }, ∂ xk,l ∂c =ε{b α b G b 0 ∂T (c) ∂c S xk-1,l -α b G b 0 ∂T (c) ∂c xk-1,l }where we have the following expressions for ∂ē

,

  if i > j; ∂m i,j 2 (y) ∂y , if i = j;

Figure 4 . 1 :

 41 Figure 4.1: Behavior of the Extended Kalman Filter recovering the number density. a) Theoretical state. b) Simulated state with noise; c) State recovered by EKF. d) Absolute error; e) Error in the last state recovered

Figure 4 . 2 :

 42 Figure 4.2: Behavior of the discretized model using the kernels and parameters identified in Vlieghe 2016. a) Experimental volume distribution function data. b) Simulated state using the kernels identified by Vlieghe 2016. c) Simulated measure from the state obtained using the discretized model.

Figure 4 . 3 :

 43 Figure 4.3: Behavior of the discretized model using the kernels and parameters identified in Vlieghe 2016. a) Experimental volume distribution function data. b) Empirical state identified by Vlieghe 2016. c) Recovered state using the kernels identified by Vlieghe 2016 and the EKF. d) Absolute error

  

  

  

  

  

  

  

  

Table 1

 1 Univariate Descriptive Statistics of Size Variables for the Initial Population Property Min. 1st Qu. Median Mean 3rd Qu. Max.

	Diameter	2.170 2.730	3.810	7.835	7.090	338.990
	Length	2.22	3.71	5.28	11.41	10.10	718.56
	Width	1.110 2.770	3.825	7.729	6.940	341.490
	Perimeter	4.90	8.06	12.70	42.40	28.57	4645.41
	Area Pixels 12	19	37	661	128	292647
	HS Circularity 0.0320 0.3960	0.6200	0.6019 0.8230	1.0000
	Convexity	0.2660 0.8610	0.9590	0.9066 1.0000	1.0000
	Solidity	0.3040 0.8490	0.9460	0.9094 1.0000	1.0000
	Elongation	0.0000 0.1580	0.2580	0.2718 0.3770	0.9300

.3: Univariate Descriptive Statistics of Size Variables between the 1st and the 3rd quantile are distributed very near to the minimum values. This trend is very similar in each variable. We can remark the presence of very big flocks in the last 75% of the distribution.

Univariate Descriptive Statistics of Shape Variables Property

Min. 1st Qu. Median Mean 3rd Qu. Max.

Table 1

 1 

.4: Univariate Descriptive Statistics of Shape Variables

  1) .

	Now, in order to find an approximation for
						∂n (L, t)
						∂t
	we can write an approximation for the PBE as
	∂n t ∂t	=B a t + D a t + B b t -D b t + o (1)
	∂n t ∂t	=n ∂n t k ∂t	≈	n t k+1 -n t k ε	+ o (1)
	hence, we can write the state equation like
	n t k+1 =n t k + ε	∂n t k ∂t	+ o (1)	

t • β • S n t -n t • (βSn t ) + b • S an t -an t + o (1) .

Now, we are going to use the forward one step Euler's method from t k to t k+1 = t k + ε for handling the numerical derivative

and

Proposition 3.8. Numerical integration of the birth due to breakage term. The term representing the process of birth due to breakage B b (L, t) can be expressed as B b (L, t) = B b t represented by an vector evaluated in each one of the points of the grid in the discretization scheme, and it can be estimated as

where

and

this case, the function xk,l (x k-1,l ; θ) is not linear, we propose the following strategy for computing this minimum. We start with a linearization for approximate the function xk,l (x k-1,l ; θ) like

where θk-1 is a previous approximation, and

We can express the last equations like

We can now use an approximation objective function like

and to search for the θ that minimize this function, for each k = 1, • • • , t max . We can rewrite this problem as an linear least squares estimation like

We can rewrite the last equation like

Results

Simulation using the particular case (Silva 2010)

In [START_REF] Silva | Comparison of the accuracy and performance of quadrature-based methods for population balance problems with simultaneous breakage and aggregation[END_REF], they studied the analytic solution of the Population Balance Equation given by Patil and Andrews (1998) [START_REF] Patil | An analytical solution to continuous population balance model describing floc coalescence and breakage. A special case[END_REF] for a special case of aggregation and breakage kernels where the total number of particles is constant. For these case they obtained an analitycal solution. We used this cases in order to study the behavior of the Extended Kalman Filter applied using as state equation the discretized model. We compared the number density function theoretically obtained with the predicted state recovered using the Extended Kalman Filter. We use the theoretical solution of the PBE in order to simulate the measure and state processes. In this, we simulate samples from the theoretical number distribution adding to this distribution an additive Gaussian noise. From this noised state, we obtain an volume distribution function also adding to this process a Gaussian noise. This represents the simulated measure. Definition 4.2. Discretization scheme for the Population Balance Equation. The solution of the PBE can be computed numerically by an iterative procedure like

having A, B, S, B, S, S and Ω as appropriate N + 1 × N + 1 matrices and n k is the number distribution vector at time instant k. The Measure discretized equation is also defined as

where v k is the volume fraction and, the constant V T included is the known Total Mass/Volume.

The definition of the number density distribution studied in [START_REF] Scott | Analytic Studies of Cloud Droplet Coalescence[END_REF] and [START_REF] Silva | Comparison of the accuracy and performance of quadrature-based methods for population balance problems with simultaneous breakage and aggregation[END_REF] is

where µ 0 (0) and µ 1 (0) are the initial zero and first-order moments. Due to mass conservation, µ 1 is constant for the considered problems. The aggregation and breakage kernels are:

For these choice of aggregation and breakage kernels, if the initial distribution is normalized (µ 0 (0) = 1), and µ 1 = 1, and using C = 1 and S = [Φ(∞)] 2 2 , and Φ (∞) = 1, the number of particles and the density distribution are constants. The analytic solution given by (Patil and Andrews, 1998)([PA98]), assuming no variation in the total number of particles (and using the constants defined before), is

where

(4.14)

The simulation processes followed is:

Résumé

Nous concentrons notre intérêt sur l'Équation du Bilan de la Population (PBE). Cette équation décrit l'évolution, au fil du temps, des systèmes de particules en fonction de sa fonction de densité en nombre (NDF) où des processus d'agrégation et de rupture sont impliqués. Dans la première partie, nous avons étudié la formation de groupes de particules et l'importance relative des variables dans la formation des ces groupes en utilisant les données dans [START_REF] Vlieghe | Agrégation et rupture de flocs sous contraites turbulentes[END_REF]) et des techniques exploratoires comme l'analyse en composantes principales, le partitionnement de données et l'analyse discriminante. Nous avons utilisé ce schéma d'analyse pour la population initiale de particules ainsi que pour les populations résultantes sous différentes conditions hydrodynamiques.

La deuxième partie nous avons étudié l'utilisation de la PBE en fonction des moments standard de la NDF, et les méthodes en quadrature des moments (QMOM) et l'Extrapolation Minimale Généralisée (GME), afin de récupérer l'évolution, d'un ensemble fini de moments standard de la NDF. La méthode QMOM utilise une application de l'algorithme Produit-Différence et GME récupère une mesure discrète non-négative, étant donnée un ensemble fini de ses moments standard.

Dans la troisième partie, nous avons proposé un schéma de discrétisation afin de trouver une approximation numérique de la solution de la PBE. Nous avons utilisé trois cas où la solution analytique est connue (Silva et al. 2011) afin de comparer la solution théorique à l'approximation trouvée avec le schéma de discrétisation.

La dernière partie concerne l'estimation des paramètres impliqués dans la modélisation des processus d'agrégation et de rupture impliqués dans la PBE. Nous avons proposé une méthode pour estimer ces paramètres en utilisant l'approximation numérique trouvée, ainsi que le Extended Kalman Filter. La méthode estime interactivement les paramètres à chaque instant du temps, en utilisant un estimateur de Moindres Carrés non-linéaire.

Mots-clés : Modélisation Stochastique, Méthode de la quadrature des moments, Extrapolation Minimale Généralisée, Filtre Étendu de Kalman, Estimateur de Moindres Carrés non-linéaire.

Abstract

We center our interest in the Population Balance Equation (PBE). This equation describes the time evolution of systems of colloidal particles in terms of its number density function (NDF) where processes of aggregation and breakage are involved.

In the first part, we investigated the formation of groups of particles using the available variables and the relative importance of these variables in the formation of the groups. We use data in [START_REF] Vlieghe | Agrégation et rupture de flocs sous contraites turbulentes[END_REF]) and exploratory techniques like principal component analysis, cluster analysis and discriminant analysis. We used this scheme of analysis for the initial population of particles as well as in the resulting populations under different hydrodynamics conditions.

In the second part we studied the use of the PBE in terms of the moments of the NDF, and the Quadrature Method of Moments (QMOM) and the Generalized Minimal Extrapolation (GME), in order to recover the time evolution of a finite set of standard moments of the NDF. The QMOM methods uses an application of the Product-Difference algorithm and GME recovers a discrete non-negative measure given a finite set of its standard moments.

In the third part, we proposed an discretization scheme in order to find a numerical approximation to the solution of the PBE. We used three cases where the analytical solution is known (Silva et al. 2011) in order to compare the theoretical solution to the approximation found with the discretization scheme.

In the last part, we proposed a method for estimate the parameters involved in the modelization of aggregation and breakage processes in PBE. The method uses the numerical approximation found, as well as the Extended Kalman Filter. The method estimates iteratively the parameters at each time, using an non-linear Least Square Estimator.