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In this thesis, we are interested in the study of the relative hyperbolicity of the suspensions of free products, as well as the conjugacy problem of certain automorphisms of free products.

To be more precise, given a free product

φ is said atoroidal if no power fixes the conjugacy class of an hyperbolic element. It is called fully irreducible if the given free factor system [G 1 ], . . . , [G p ] is the largest one that is fixed by every power of the automorphism. It is said toral if for all i, there exists g i ∈ G such that ad g i • φ| G i is the identity on the free factor G i . It is said to have central condition if for each i, there exists g i ∈ G conjugating φ(G i ) to G i , and if there exists a non-trivial element of

 (which solved the conjugacy problem of hyperbolic automorphisms).

Résumé

Dans la thèse présente, nous nous intéressons à l'étude de la relative hyperbolicité des produits semi-direct des produits libres, ainsi que le problème de conjugaison pour certains automorphismes de ces produits libres.

Plus précisement, pour un produit libre

G = G 1 * • • • * G p * F k
un automorphisme φ est intitulé atoroidal s'il ne fixe pas (ni aucune de ses puissances) la classe de conjugaison d'un élément hyperbolique de G. Cet automorphisme est appelé completement irréductible si le système de facteurs libres est le plus grand qui est fixé par toutes les puissances de cet automorphisme. Il est appelé toral si pour tous les i, il existe g i ∈ G tel que ad g i • φ| G i est identité sur le facteur libre G i . Nous disons qu'il a la condition centrale si pour chaque i, il existe g i ∈ G conjugue φ(G i ) à G i , et s'il existe un 'elément non trivial de G i adg i •φ| G i Z qui est central dans G i adg i •φ| G i Z.

Nous prouvons, dans le Théorème 4.34, que si φ est atoroidal et completement irréductible, et si le produit libre est nonelementaire (k ≥ 2 ou p + k ≥ 3), le groupe G φ Z est relativement hyperbolique (relativement a des suspensions de chaque G i ). Après, dans le Théorème 6.10, nous prouvons le même résultat si φ est atoroidal avec la condition centrale. Nous prouvons aussi dans le Théorème 7.22, que si tous les G i sont abelien, le problème de conjugaison est solvable pour les automorphismes atoroidaux, toraux. Ces sont des analogues du résultat de Brinkmann [START_REF] Brikmann | Hyperbolic Automorphisms of Free Groups[END_REF] (celui qui a donné le résultat d'hyperbolicité pour les groupes libres), et du résultat de Dahmani [START_REF] Dahmani | On Suspensions and Conjugacy of Hyperbolic Automorphisms[END_REF] (celui qui a résolu le problème de conjugaison des automorphismes hyperboliques). les mots clés: Relative hyperbolicité, Problème de conjugaison, produit libre, Atoroidalité, Irreducibilité.

Introduction 1.Automorphisms

For any given group G, let Aut(G) be its automorphism group. The inner automorphism group Inn(G) is defined as Inn(G) = {ad h : G → G, g → hgh -1 ; h ∈ G}, it is a normal subgroup of Aut(G). The quotient, Aut(G)/Inn(G) is the outer automorphism group of G, denoted by Out(G).

These groups are easy to define, but automorphisms are usually not so easy to deal with. A natural problem arises to determine whether two given automorphisms have the same image in the outer automorphism group (i.e. they differ only by a conjugation in G). This problem involves the so-called "simultaneous conjugacy problem in G": given the generating set of G, determine whether or not images of all the generators by two given automorphisms are conjugate by a same element in G. For some groups, say free groups, this problem is easy to solve, as the centraliser of any element in the free group is the maximal cyclic group containing such an element.

Other natural problems are to determine whether two given automorphisms are conjugate by an element in Aut(G) (the conjugacy problem in Aut(G)), and to determine whether two given automorphisms are conjugate by an element in Out(G) (the conjugacy problem in Out(G)). For example, take G = Z n (where n is a positive integer), its automorphism group is GL n (Z). Its inner automorphism group is trivial, so Out(Z n ) is also GL n (Z). The conjugacy problem of GL n (Z) can be related to a theorem by Latimer and MacDuffee in 1933 (see [START_REF] Claiborne | A correspondence between classes of ideals and classes of matrices[END_REF]). The theorem says that for a given irreducible (over Z) monic polynomial P (with P (0) = 1), the conjugacy classes of matrices in GL n (Z) with characteristic polynomial P are in bijection with the ideal classes of Z[X]/(P ). This sheds light on the conjugacy problem of Aut(Z n ), but still, the arithmetic approach is complicated, even in the case when the characteristic polynomials are irreducible.

In order to survive this complexity, one may look for hyperbolicity.

Hyperbolicity

We first come back to the example of G = Z n , but this time, we take a simple case where n = 2 and consider the subgroup SL 2 (Z) (subgroup of GL 2 (Z)). It acts on the hyperbolic plane H 2 in the following way (expressed in the upper half plane model):

a b c d : z → az + b cz + d
This action has a kernel of {±Id}. Hence we can identify P SL 2 (R) = SL 2 (R)/{±Id} with the group of all linear fractional transformations of H 2 .

There is a fundamental domain M = {z : |z| > 1, -1 2 < Re(z) ≤ 1 2 } ∪ {e iθ : π 3 ≤ θ ≤ π 2 } of P SL 2 (Z) on H 2 : each point in the hyperbolic plane is equivalent (by the action of the group P SL 2 (Z)) to some point in M, while no point in M (except for itself) is equivalent to another point in M.

In addition, one can show that the union of all images of the arc {e iθ : π 3 ≤ θ ≤ π 2 } by elements of SL 2 (Z) form a tree, whose edges are precisely the different images of the arc. The group SL 2 (Z) thus acts on this tree, one can check that the action is without inversion (stabilizer of any edge is the stabilizer of both end points), and without global fixed point. It follows, by Bass-Serre theory that SL 2 (Z) has the familiar presentation as an amalgamated free product: SL 2 (Z) Z 4 * Z 2 Z 6 . Hence every element has a normal form, and by comparing the cyclic reduced normal form (up to cyclic permutation) one can tell whether or not two given elements in this group are conjugate.

Hyperbolic geometry gives us the tree which provides us a solution to the conjugacy problem.

But, in the case of SL 3 (Z), things are more difficult, as there is no hyperbolic space for this group, and very little hyperbolic behaviour for this group. Hence the method above (for SL 2 (Z)) does not work in this case.

Take another example, a genus g closed surface (denoted by Σ g ). Its universal cover is H 2 , the hyperbolic plane. Moreover, π 1 (Σ g ) is an analogue of Z 2 : Z 2 corresponds to a tessellation of an Euclidean plane by squares, and π 1 (Σ g ) corresponds to a tessellation of the hyperbolic plane by (4g)gons. In other words, Z 2 is an euclidean lattice, while π 1 (Σ g ) is a hyperbolic lattice.

By a theorem of Dehn and Nielsen, the mapping class group (the group of isotopy classes of diffeomorphisms) of Σ g is isomorphic to a subgroup of index 2 of Out(π 1 (Σ g )). And Thurston (see [START_REF] Thurston | On the geometry and dynamics of diffeomorphisms of surfaces[END_REF]) gave a classification of all the elements in the mapping class group by classifying into 3 kinds: periodic, reducible (i.e, the element preserving some finite union of disjoint simple closed curves on the surface up to isotopy), and pseudo-Anosov.

In 1986, Thurston gave an important theorem (see [START_REF] Thurston | Hyperbolic structures on 3manifolds, ii: Surface groups and 3-manifolds which fiber over the circle[END_REF]), revealing that, for a genus g (where g ≥ 2) surface Σ g , an element φ in the mapping class group of Σ g is pseudo-Anosov if and only if the fundamental group of its suspension (or, in other words, π 1 (Σ g ) φ Z, see Subsection "Automorphisms, suspensions, semidirect product" 2.4 for formal definition) is Gromov-hyperbolic.

One can revisit the case of SL 2 (Z), using the viewpoint that SL 2 (Z) is the mapping class group of the punctured torus. Elements that are loxodromic in the modular tree are pseudo Anosov. Although the punctured torus is not a closed surface, Thurston's theorem says that, for these elements, the suspension is a geometrically finite hyperbolic manifold, and its fundamental group is toral relatively hyperbolic. If elements are conjugate, they give isomorphic suspensions. Al-though it seems unnecessarily complicated for the case of SL 2 (Z), one can argue that all the hyperbolicity needed to solve the conjugacy problem is in the suspensions.

Free groups

Replacing π 1 (S) by another group G, and letting φ be an automorphism of G, it is interesting to know whether G φ Z is hyperbolic or relatively hyperbolic. One kind of interesting example is free groups, as it is an analogue of π 1 (Σ g ) (in the sense that, π 1 (Σ g ) is a hyperbolic lattice, and free groups are lattices in trees).

Bestvina, Feighn, Handel investigated an analogue of Thurston's result on the hyperbolicity of the semi-direct product (see [START_REF] Bestvina | Laminations, trees, and irreducible automorphisms of free groups[END_REF]). In his thesis, Brinkmann also approached the problem, giving an account in a broader generality (see [START_REF] Brikmann | Hyperbolic Automorphisms of Free Groups[END_REF]) and providing a characterisation. Brinkmann's result is that for a free group G, and for any φ ∈ Aut(G), G φ Z is hyperbolic if and only if φ is an atoroidal automorphism (here atoroidal means that no non-trivial conjugacy class of element in the group can be preserved by some non-zero power of φ). The general method for this theorem is to: -use train track maps that represent topologically on a specific graph (or on its universal cover, a tree), the automorphisms that we consider -analyse how edges and paths are folded and stretched by this train track map -deduce the growth of conjugacy classes of the elements of the group under the action of the automorphism -use the Bestvina-Feighn combination theorem that indicates when a HNN extension is a word-hyperbolic group.

Still, there are plenty examples of non-hyperbolic groups that need to be analysed:

The group Z n Z is never hyperbolic or relatively hyperbolic, because Z n is normal in it, and normal parabolic groups must be finite.

Take φ ∈ Aut(F n ), where F n is a free group of rank n (where n > 2), if φ is a toroidal automorphism (for example, G = F 2 * F n-2 , φ ∈ Aut(G) such that φ| F 2 = Id, and φ| F n-2 is atoroidal), then F n φ Z is not hyperbolic as it contains Z 2 . But, in some cases, it can be relatively hyperbolic (see Definition 4.3 for formal description). In this example, it is hyperbolic relative to F 2 × Z.

In [START_REF] Dahmani | On Suspensions and Conjugacy of Hyperbolic Automorphisms[END_REF] Dahmani gave a solution to the conjugacy problem for atoroidal automorphisms of free groups, using this hyperbolicity. In [START_REF] Dahmani | On suspensions, and conjugacy of a few more automorphisms of free groups[END_REF] he also gave a solution to the conjugacy problem for more cases of automorphisms, which produce relatively hyperbolic suspensions.

Free products

In this thesis, we assume that G is a free product, and show the relative hyperbolicity of G φ Z under some condition on φ. Our main results are Theorem 4.34 and Theorem 6. [START_REF] Dahmani | Finding relative hyperbolic structures[END_REF].

The first study of outer automorphism group of free products goes back to pioneering work of Fouxe-Rabinovitch (1941) ( [START_REF] Fouxe-Rabinovitch | Über die Automorphismengruppen der freien Produkte[END_REF], [START_REF] Fouxe-Rabinovitch | Über die Automorphismengruppen der freien Produkte[END_REF]) where she found generators and relations. Golowin and Szadowsky ( [START_REF] Golowin | Über die Automorphismengruppen der freien Produkte[END_REF]) worked out the case of 2 factors in 1938.

We will use a more modern approach. Any free product G acts on Bass-Serre trees (vertex stabilizers are either conjugate to some of G i 's or trivial), and Out(G) acts on the space of these Bass-Serre trees, formalised by Guirardel and Levitt in [START_REF] Guirardel | The Outer Space of A Free Product[END_REF] as outer spaces of free products. Francaviglia and Martino (in [START_REF] Francaviglia | Stretching factors, metrics and train tracks for free products[END_REF]) identified that for each so-called irreducible automorphism φ, there is a family of preferred trees on which φ induces a train track map (a map with good cancellation properties).

We first restrict to the fully irreducible case, for nonelementary free product(i.e. either k ≥ 2 or p + k ≥ 3). To achieve relative hyperbolicity of the suspension G φ Z, we simply need to prove the relative hyperbolicity of the automorphism φ, thanks to a combination theorem proved by Gautero and Weidmann (see Corollary 7.3 in [START_REF] Gautero | An algebraic combination theorem for graphs of relatively hyperbolic groups[END_REF], cited in this thesis as Theorem 4.8). The relative hyperbolicity of the automorphism, in this case, is shown by the exponential growth of length of fundamental segments by a map representing such an automorphism. Such a map we use in this thesis, is the train track map, which is similar to the case of free group. The study of train track maps in the free group case was developed by Bestvina and Handel, and was introduced into the free product case by Francaviglia and Martino in [START_REF] Francaviglia | Stretching factors, metrics and train tracks for free products[END_REF].

The technique we use in this thesis is analogous to that in the free group case. In free product, things are going different and more complicated, as we are dealing with locally infinite trees instead of finite graphs. But still, some similar result can be achieved in the fully irreducible and atoroidal case (where we have train track maps that every edge stretch by a same factor strictly larger than 1). Then by analyzing the growth of each fundamental segment, and the exponential growth of its subpaths, we achieve the relative hyperbolicity of G φ Z in the case when φ is atoroidal and fully irreducible, under the assumption that the free product decomposition is nonelementary.

For the reducible case, we first show that there is a larger free factor system such that the automorphism is still fully irreducible and atoroidal. And by a method of descent, assuming that the a certain property that we call the "central property" holds (i.e., for each i, g i ∈ G conjugates φ(G i ) to G i , and there exists a non-trivial element of

G i adg i •φ| G i Z that is central in G i adg i •φ| G i Z)
, we can achieve relative hyperbolicity of G φ Z if φ is atoroidal (see Theorem 6.10 for detailed information).

Conjugacy Problem of toral atoroidal automorphisms of free products

Conjugacy problem is another big problem in group theory.

In this thesis, we focus on the conjugacy problem of toral atoroidal automorphisms of free products. An automorphism is toral if for all i, there is g i ∈ G such that ad g i • φ| G i is the identity on the free factor G i ; it is atoroidal if no non-trivial conjugacy class of hyperbolic element is fixed by some power of φ.

We will use a basic, well-known fact concerning the conjugacy problem: two automorphisms φ 1 , φ 2 ∈ Aut(G) are conjugate in Aut(G) if and only if there is an isomorphism from G φ 1 t 1 to G φ 2 t 2 such that it sends G to G and t 1 to t 2 ; they are conjugate in Out(G) if and only if there is an isomorphism from G φ 1 t 1 to G φ 2 t 2 such that it sends G to G and t 1 to t 2 G. Also, similar results hold for the abelianisation (see Lemma 7.7 for detail).

Dahmani and Groves proved the solvability of isomorphism problem of toral relatively hyperbolic groups (see Theorem 7.1 of [START_REF] Dahmani | The isomorphism problem for toral relatively hyperbolic groups[END_REF]). What remains to us to check is, whether or not the element t 1 is sent to the corresponding element (depending on Out or Aut) and G is sent to G. This is referred to as the "Orbit problem of uprighting hyperplanes".

Guirardel and Levitt proved an interesting result (see Theorem 1.4 of [START_REF] Guirardel | Splittings and Automorphisms of Relatively Hyperbolic Groups[END_REF]), saying that there is a finite index subgroup Out 1 (H) of Out(H) for any toral relatively hyperbolic oneended group H fitting in an exact sequence

1 → T → Out 1 (H) → P i=1 M CG 0 (Σ i ) × m j=1 GL r j ,n j (Z) → 1
in which T is an abelian well-identified group (generated by algebraic Dehn-twists).

Computing coset representatives of Out 1 (H) in Out(H) is made possible (using Guirardel and Levitt) by computing a primary JSJ-decomposition of the relatively hyperbolic group H. This is done in the work of Dahmani and Groves ([13]). Thus conjugacy problem can be turned into the orbit problem in Out(H) of uprighting hyperplanes in G φ 2 t 2 , and the image of the solution in each GL r j ,n j satisfies the Condition 1. This Condition 1 is actually directly induced by Lemma 7.7, by the restriction to each GL r j ,n j (see Section 7.4 for formal definition).

The method we use in the rest of the work is an analogue of the work of Dahmani (see [START_REF] Dahmani | On Suspensions and Conjugacy of Hyperbolic Automorphisms[END_REF]) in the case of hyperbolic automorphisms. Because the action of Out 1 (G t ) on the abelianisation of G t is generated by transvections, we turn the orbit problems to the corresponding Diophantine equation problems, and prove the solvability of conjugacy problem of toral atoroidal automorphisms of free products (see Subsection "Conjugacy Problem for Toral Relatively Hyperbolic Automorphisms" for details). Our main result in this direction is Theorem 7.22 that we state here: For any given free product G, and two toral atoroidal automorphisms, there is an algorithm to decide whether φ 1 and φ 2 are conjugate in Aut(H) (and in Out(H)). t must be parabolic (because they contain a normal Z 2 ). But their intersection t is infinite. Therefore, they must be in the same maximal parabolic subgroup, but since they generate the whole semi-direct product (Z 2 a * Z 2 b ) t , it means that the whole group must be parabolic. Thus there is no proper relative hyperbolic structure on it. What can be a necessary and sufficient condition, then?

Further perspectives

One potential approach is to see the filtration of the tree (stratify the tree into zero-strata, polynomial growing strata, and exponentially growing strata, similar to the free group case), and to analyse the possible "improved relative train track map". But the existence of which, in the free product case, is unclear to me yet.

2. Also, in free group case, atoroidal irreducible automorphisms are fully irreducible, it is unknown in the free product case. I would like to have some investigation on this in the near future. Recent work of Guirardel and Horbez ([26]) might be relevant.

3. Given the work of Dahmani-Touikan [START_REF] Dahmani | Deciding Isomorphy using Dehn fillings, the splitting case[END_REF], it seems legitimate to try to extend our main result on the conjugacy problem (Theorem 7.22)to the case where A 1 , . . . , A k are nilpo-tent and φ i induce the identity on them. One can also possibly hope to extend the result to the case where φ i induces a nilpotent automorphism, i.e. an automorphism of an abelian or a nilpotent group, such that the semi-direct product is still nilpotent.
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2 Graphs, trees, groups acting on them

Conventions on graphs

Let us recall some conventions regarding graphs, trees, metrics, and group actions.

A graph X is a pair (V, E) where V is a non-empty set, and E is a set, that is endowed with three applications i : E → V , t : E → V and b : E → E such that b is a fix-point free involution and such that t = i • b. The elements of V are called the vertices of the graph, the elements of E are called the oriented edges of the graph. The map b is the reversing of the orientation of an edge. In the above notation, we denote by V (X) the set of vertices of X, and by E(X) the set of edges in X. We will from now denote by ē the edge b(e).

Consider X a graph. The degree of a vertex v is the cardinality of the set {e : i(e) = v}.

A finite path in X is a finite sequence of edges e i , i = 1, . . . , n, such that for all i, t(e i ) = i(e i+1 ). We say that such a path starts at i(e 1 ) and ends at t(e n ) (or is from i(e 1 ) to t(e n ) ).

A graph is connected if for every pair of vertices, there is a path starting at one and ending at the other.

We say that a path is reduced if for all i, e i = ēi+1 . Clearly if there is a path from x to y, there is a reduced path from x to y. An infinite path is a sequence (e i ) i∈N such that t(e i ) = i(e i+1 ) for all i. Again it can be reduced, or not. A bi-infinite path is a sequence (e i ) i∈Z such that t(e i ) = i(e i+1 ) for all i. A path is said to be closed if its starting point and its ending point are identical. The shift of parameter k ∈ Z on a biinfinite path (e i ) i∈Z is the bi-infinite path (e i+k ) i∈Z . Slightly more formally, the shift of parameter k ∈ Z is a map from the set of all bi-infinite paths to itself defined by the above association.

A tree is a connected graph for which, given any pair of vertices, there is a unique reduced path between them. A forest is a disjoint union of trees.

An automorphism of a graph

X = (V, E) is a pair of bijec- tions φ V : V → V, φ E : E → E such that i(φ(e)) = φ(i(e)) and φ(ē) = φ(e).
The automorphisms of a tree are of two kinds. An automorphism is said to be elliptic if it fixes a vertex or a pair of vertices; otherwise it is said to be hyperbolic. An elementary result in the geometry of trees justifies this terminology: any hyperbolic automorphism preserves a unique bi-infinite path (up to shifting), and in restriction to it, acts as a shift on the indices of the edges, or a translation. See Theorem 2.1, Chapter 2 of [START_REF] Bogopolski | Introduction to Group Theory[END_REF].

Consider a group G and its action on a tree T , by automorphisms. We say that the action is trivial if there exists a vertex of T that is fixed by all elements of G. We say that it is without inversion if every element of G that fixes a pair of vertices actually fixes both vertices of the pair. Recall Serre's lemma: if G is finitely generated, and if its action on T is non-trivial, then G contains hyperbolic elements (see [START_REF] Serre | Arbres, Amalgames[END_REF]).

Given a tree T , we call a vertex v ∈ V T redundant, if it has degree two, and if any g ∈ G fixing v fixes edges adjacent to v.

It is called terminal if T -{v} is connected (although T -{v} is no longer a graph).

Digression on metrics

Let us put a metric on a graph. A length function on a graph

X = (V, E) is a function l X : E → R + \ {0}. It is symmetric if l X (e) = l X (ē)
for all e ∈ E. Given a length function, one defines the length distance on X (more precisely on V ) as follows.

First, the length of a path p = (e 1 , . . . , e k ) is X (p) = i l X (e i ). Second, the length distance between v 1 , v 2 ∈ V , denoted by d X (v 1 , v 2 ), is the infimum of the lenghts of paths that starts at v 1 and end at v 2 . It is symmetric as soon as l X is symmetric. It obviously satisfy the triangular inequality. In general one does not have (d

X (v 1 , v 2 ) = 0) =⇒ (v 1 = v 2 ).
However this is satisfied in many cases, for example: when X is locally finite, when there is > 0 such that all edges have l X (e) > (in particular when there are only finitely many possible values), when the graph is a tree, etc. In all our examples, our graphs will satisfy one or several of these conditions.

An elementary example is when l X (e) = 1 for all e. However we will use more examples.

Free groups

The universal cover of a rose is a regular tree, which is the Cayley graph for the free group.

Let X be a subset of a group F . Assume that X -1 (= {x -1 , x ∈ X}) is disjoint from X. Recall that F is a free group of basis X if every non-trivial element of F can be represented uniquely as a product f = x 1 . . . x n , for some n ≥ 1, and x i ∈ X ∪ X -1 , with the only constraint that x i x i+1 = 1 for all i. See [START_REF] Bogopolski | Introduction to Group Theory[END_REF] for instance.

Free groups are very important in geometric and combinatorial group theory.

Here are a few elementary important properties. A group is free if and only if it acts freely on a simplicial tree. A group is free if and only if it is the fundamental group of a graph. Any group is a quotient of a free group. Any map from X to a group extends uniquely in a group homomorphism from the free group of basis X to that group.

Let us describe free groups as fundamental groups of graphs more precisely. In this thesis, a rose, following a well established convention, is a graph with a single vertex. Given a rose R, let e 1 , . . . e n , ē1 , . . . , ēn its oriented edges, so that e 1 , . . . e n is a certain choice of orientation of the set of edges. Then, denoting by v the vertex of R, the group π 1 (R, v) is naturally isomorphic to the free group of basis {e 1 , . . . e n }.

The universal cover of R is a 2n-regular tree, and can be naturally identified with the Cayley graph of π 1 (R, v), over the generating set {e 1 , . . . e n }, by choosing a base point.

Automorphisms, suspensions, semidirect product

Consider a topological space S, which is assumed to be pathconnected. Let f : S → S be a continuous map.

One can construct the suspension of S along f to be the quotient topological space Σ(S, f ) = S × [0, 1]/ ∼ where (s, 0) ∼ (f (s), 1) for all s. In general, one needs to take the transitive closure of the relation, but if f is injective, this is not necessary and the equivalence classes have one or two point.

For example, if S = S 1 , and f = Id, one gets the torus; if f = -Id, the Klein bottle. Given s 0 ∈ S, the homotopy group π 1 (Σ(S, f ), s 0 ) has its isomorphic type depending only on the homotopy class of f . Therefore, since S is assumed path connected, to realise the isomorphism class of π 1 (Σ(S, f ), s 0 ) we may freely assume that f (s 0 ) = s 0 . In that case, f realises an endomorphism of π 1 (S, s 0 ). Note that if one uses another representative f of the homotopy class of f , then f defines an endomorphism that differs from f by the composition with an inner automorphism of π 1 (S, s 0 ) (that is, a conjugation by an element of π 1 (S, s 0 )).

Assume also that f is a homotopy equivalence of S. Then f defines an automorphism of π 1 (S, s 0 ). Let us denote it by φ f . Recall again that only the outer class of φ f (its class in the outer automorphism group of π 1 (S, s 0 )) is well defined. Seifert van Kampen theorem indicates that π 1 (Σ(S, f ), s 0 ) is isomorphic to the semidirect product π 1 (S, s 0 ) φ f Z. Actually one should note that the theorem gives a presentation of π 1 (S, s 0 ) as an HNN-extension, but in the case of an automorphism, it is a semidirect product with Z.

A famous example (that we recalled in the introduction) is given for S a closed orientable surface of genus g ≥ 2. This, in particular, illustrates our interest in finding hyperbolic properties of maps f through hyperbolic properties of the group π 1 (S, s 0 ) φ f Z.

Basics of Bass-Serre theory

We recall the definition of graph-of-groups, and the duality with trees. We refer to [START_REF] Bogopolski | Introduction to Group Theory[END_REF].

Let S be a set. Denote here by F S the free group with basis S.

A graph of groups ..e n is a closed path in Y , and where for all j, g j ∈ G t(e j ) ) is called a path element in the Bass group. We say that it starts at i(e 2 ) and ends at t(e n ).

(Y, {G v , v ∈ V (Y )},
Given a vertex V 0 in the graph Y , we define the fundamental group π 1 (Y, V 0 ) of the graph of groups Y with the base point V 0 , to be the subgroup of B(Y) of all path elements starting and ending at V 0 .

If now τ is a maximal subtree of the graph Y , the fundamental group π 1 (Y, τ ) of the graph of groups Y with maximal subtree τ is the quotient group of B(Y) by the normal closure of {t e : e ∈ E(τ )}.

An important result of Bass-Serre theory, reported as Corollary 16.7 of [START_REF] Bogopolski | Introduction to Group Theory[END_REF], states that π 1 (Y, V 0 ) and π 1 (Y, τ ) are isomorphic (therefore, both π 1 (Y, V 0 ) and π 1 (Y, τ ) are regardless of the choice of vertex and maximal subtree). More precisely, the quotient map restricted to π 1 (Y, V 0 ) is an isomorphism onto π 1 (Y, τ ).

Another central point of Bass-Serre theory is the duality between graphs of groups and trees. First, there exists a tree T on which π 1 (Y, τ ) acts by automorphisms, without inversion, and in which the vertex stabilizers are exactly the conjugates of the images of the groups G v , v ∈ V (Y ) in π 1 (Y, τ ), and in which the edge stabilizers are exactly the conjugates of the images of the groups G e , e ∈ E(Y ) in π 1 (Y, τ ). Second, or conversely, anytime a group G acts on a tree T non-trivially, and without inversion, then G is the fundamental group of a graph of groups constructed on the graph G\T where the vertex groups and the edge groups are copies of the vertex stabilizers in G and of the edge stabilizers in G. We refer to [START_REF] Serre | Arbres, Amalgames[END_REF] and to [START_REF] Bogopolski | Introduction to Group Theory[END_REF] for a comprehensive treatment.

Example. The group obtained as the free product G = Z 2 * Z 3 * Z 4 * F {a,b,c} is isomorphic to the fundamental group of the graphs of groups (and many more) shown in Figure 1. Each of them is associated to a dual Bass-Serre tree on which G acts. To deal with the multiplicity of trees, on which G can act, let us gather some vocabulary.

We first define equivariant maps in the most common way. Given a group G with group actions G × X → X, G × Y → Y (acting on the left), a map f :

X → Y is referred to as G- equivariant, if f (gx) = gf (x) for each g ∈ G and x ∈ X.
Given a group G, we say T is a G-tree if T is a tree endowed with a simplicial G-action α : G × T → T by tree automorphisms. A G-tree is a metric G-tree if it carries a metric (as above, in the sense of graphs) such that the action of G is by isometries. Denote by T (G) the set of metric Gtrees. For a G-tree T , we have a quotient graph G\T . Denote by π T the projection map from T to G\T .

Two G-trees T, T are said to be equivalent, denoted by T ∼ T , if there is a G-equivariant isometry f from T to T .

Grushko decompositions, free product decompositions

Grushko Decomposition Theorem states that for any nontrivial finitely generated group there exists a decomposition into a free product of the form

G G 1 * ... * G p * F k (GD)
where G i is freely indecomposable and not infinite cyclic for each i = 1, ..., p, and F k is a free group of rank k. We say that this decomposition is non-trivial if either (k > 0, p ≥ 1) or p > 1.

Moreover, Grushko's unicity theorem states that if moreover

G G 1 * ... * G p * F k
where G i is freely indecomposable and F k free, then p = p, k = k and for any i ∈ {1, ..., p}, there is some j ∈ {1, ..., p}, such that G i is conjugate to G j . This unicity needs to be understood to be rather weak in the context of this thesis. We will call Grushko decomposition of G any graph-of-group decomposition for which the vertex groups are the conjugates of the G i , i = 1, ..., p, and the trivial group, and the edge groups are trivial. This leaves many possibilities as we illustrated in the Figure 1.

Hence in the following parts of this thesis, we fix a group G and a non-trivial free product decomposition G G 1 * ... * G p * F k . However, we will not always assume that each G i is freely indecomposable. Given a free product decomposition with the above notation, by Bass-Serre theory, G acts on a tree T with the following properties:

• 1. G acts on tree T without edge-inversions, and without fixed point;

• 2. all edge stabilizers are trivial;

• 3. any vertex stabilizer is either {1} or conjugate to G i for some i = 1, ..., p, and each G i fixes a vertex;

• 4. this action is minimal: no proper subtree of T is invariant under G.

Outer space of free products

Following Guirardel and Levitt, we recall the definition of outer space. We refer to [START_REF] Guirardel | The Outer Space of A Free Product[END_REF].

Recall that T (G) is the set of metric G trees.

Definition 2.1 Let G = G(G, (G i ) p i=1 , F k )
be the subset of T (G)/ ∼ of simplicial, metric G-trees T , up to equivarient isometry, such that • (C0) T has no redundant vertices;

• (C1) the G-action of T is minimal (i.e. there is no proper invariant subtree), with trivial edge stabilizers;

• (C2) for each i = 1, ..., p, there is one orbit of vertices with stabilizer conjugate to G i , and each G i fixes a vertex;

• (C3) the stabilizers of all other vertices are trivial. These vertices are referred to as free vertices.

Definition 2.2 ([21], Definition 3.2) Let G be a free prod- uct in the form of G 1 * ... * G p * F k , we define Aut(G, G) (also denoted by Aut(G, ([G 1 ], . . . , [G p ])), or Aut(G; (G i ) p i=1
)) to be the subset of Aut(G) satisfies the following:

for any automorphism

Φ ∈ Aut(G), Φ is in the subset Aut(G, G) if and only if for all i ∈ {1, . . . , p}, there is a ele- ment g i ∈ G and j ∈ {1, . . . , p} such that, Φ(G i ) = g -1 i G j g i . Since Inn(G) is a normal subgroup of Aut(G, G), we de- fine Out(G, G) (also denoted by Out(G, ([G 1 ], . . . , [G p ])), or Out(G; (G i ) p i=1 )) to be Aut(G, G))/Inn(G).
The multiplication of all lengths of the edges by the same positive number is a transformation from G to G. And therefore one can define a space P G = P G(G, (G i ) p i=1 , F k ) from the space G, to be the projective space for this rescaling process. It is called the outer space of G relative to G 1 , ..., G p .

If G is free (the collection of G i is empty ), this is isomorphic to Culler-Vogtmann's outer space for free groups, about which there is abundant literature (for instance, [START_REF] Bestvina | Geometric group theory[END_REF]). Note that Culler and Vogtmann's outer space is a space of marked metric graphs, where the space Guirardel and Levitt defined is a space of metric G-trees, but the correspondence is clear, through passing to universal covers, with deck transformation actions.

If G is finitely generated, and each of the G i is freely indecomposable, we obtain the space of all Grushko decompositions.

Consider the case when G = F n , and G i are free factors, but not necessarily freely indecomposable. For instance, take G = F n and select some free factors that, for some reason, we want to see preserved. Let G 1 , . . . , G k be these free factors. Then, these G i are free groups (whose sum of ranks is less than n) and the space G is the relative outer space associated to the free factor system as studied for instance by Radhika Gupta in her thesis ( [START_REF] Gupta | Relative currents[END_REF], [START_REF] Gupta | Loxodromic elements for the relative free factor complex[END_REF]).

Let us notice that Out(G; {(G i ) p i=1 }) acts on G in the following way:

If G acts on a tree T in G, as α :

G × T → T , and if Φ ∈ Out(G), choose φ ∈ Aut(G; (G i ) p i=1
) a representative of Φ, then G acts on T in the following way: (g, x) → (φ(g)x) ∈ T . First, the new G-tree T (endowed with the new action) is in G since the new stabilizers of vertices are the images of the conjugates of the G i by φ -1 , and therefore are the conjugates of the G i , and the stabilizers of edges are still trivial since they are intersection of different conjugates of the G i . Second, the new G-tree T does not depend on the choice of φ in the class of Φ, because precomposing the action by a conjugation in G amounts to precomposing the action by an equivarient isometry of T , and therefore remains in the same ∼-class.

One of the main results of [START_REF] Guirardel | The Outer Space of A Free Product[END_REF] is the description of a geodesic between any two points in P G, in terms of a folding path. This allows to describe a geodesic between a tree and its image by an outer automorphism. In particular, since every folding move is rather simple, this decomposes any au-tomorphism into simple moves. 

From automorphisms to maps between trees

(gt) = Φ(g)(f (t)) holds.
If moreover the action is minimal on the tree T , and f continuous, it implies that f is surjective.

All the maps we consider in this thesis will be continuous and even Lipschitz.

The existence of such a map is shown in the following lemma, which is proven by Francaviglia and Martino. 

Deformation spaces

We recall the definition of deformation spaces. We refer to [START_REF] Guirardel | Deformation Spaces of Trees[END_REF].

By Theorem 5.12 of [START_REF] Francaviglia | Stretching factors, metrics and train tracks for free products[END_REF], for any A, B ∈ G, and for any Φ ∈ Aut(G), there exists a G-equivariant map f : A → B that is piecewise linear with minimal Lipschitz constant that represents Φ.

It also follows that (by reparametrising the map), for any A, B ∈ G, and for any Φ ∈ Aut(G), there exists a map f : A → B representing Φ that is piecewise linear.

Consider two trees T 1 and T 2 , we say that T 1 dominates T 2 if there exist an equivariant map T 1 → T 2 (see [START_REF] Guirardel | Deformation Spaces of Trees[END_REF]). It is equivalent to say that, if a group is elliptic in T 1 , then it is elliptic in T 2 .

The deformation space DF (T ) of a tree T is the set of metric trees T such that T and T dominates each other, up to equivariant isometry. Equivalently, it is a set of trees T such that T have the same elliptic subgroups as with T . For example, if we fix G with a free product decomposition like (GD), and if we see

G = G(G, (G i ) p i=1 , F k )
as a space of Gtrees, then G is the deformation space for T 0 the tree of the free product.

Note that for g ∈ G, g is not hyperbolic for some T ∈ G if and only if g lies in a G-conjugate of some G i , i ∈ {1, ..., p} (see also section 4.1, [START_REF] Francaviglia | Stretching factors, metrics and train tracks for free products[END_REF]). Therefore g ∈ G is hyperbolic for T ∈ G if and only if it is hyperbolic for every element in G. So we denote the set of hyperbolic elements of G for some (and for all) T ∈ G by Hyp(G).

Train tracks on marked graphs, and on trees

In this section, we define, and recall results about train tracks on marked graphs, or on G-trees. We refer to [START_REF] Francaviglia | Stretching factors, metrics and train tracks for free products[END_REF], where Francaviglia and Martino described the train track maps on the G-trees and proved some result of irreducible automorphisms of free product. We will also define irreducibility, and atoroidality in the context of automorphisms of free products.

Irreducibility

Recall that an automorphism of a free group F is irreducible if it does not preserve the conjugacy class of any proper free factor. It is fully irreducible if all its positive powers are irreducible.

In the case of automorphisms of free product, Francaviglia and Martino have adapted the definition of irreducibility.

We recall two definitions of irreducibility of free product automorphisms from [START_REF] Francaviglia | Stretching factors, metrics and train tracks for free products[END_REF], and prove that these definitions are equivalent (as was stated in [START_REF] Francaviglia | Stretching factors, metrics and train tracks for free products[END_REF]).

For g ∈ G, we denote by [g] its conjugacy class in G; likewise, for a subgroup H of the group G, denote by

[H] the conjugacy class of H in G. Given a group G = G 1 * ... * G p * G , the set {[G 1 ], ..., [G p ]} is called a free factor system for G. If there is another free factor system {[G 1 ], ..., [G p ]} for G such that, for each i ∈ {1, . . . , p } there is some j ∈ {1, . . . , p} satisfying G i ≤ gG j g -1 for some g ∈ G, then we declare {[G 1 ], ..., [G p ]} ≺ {[G 1 ], ..., [G p ]}.
Proposition 3.1 The relation ≺ defined as above is a partial order.

Proof: If {[G 1 ], ..., [G p ]} ≺ {[G 1 ], ..., [G p ]}, and if {[G 1 ], ..., [G p ]} ≺ {[G 1 ], ..., [G p ]}, then for any i, there is some j, g, g such that g G j g -1 ≤ G i ≤ gG j g -1 , thus g -1 g ∈ G, g G j g -1 = G i = gG j g -1 . Hence we have [G i ] = [G j ], then {[G 1 ], ..., [G p ]} = {[G 1 ], ..., [G p ]}.
And since the reflexivity and transitivity is obvious from the definition of the relation ≺, it follows that the relation ≺ is a partial order relation.

Definition 3.2 (Irreducible and fully irreducible maps) Let

Φ be an automorphism of a group G, T ∈ G and f : T → T represent Φ ∈ Aut(G). We call f irreducible, if for every proper subgraph W of the tree T that is G-invariant and finvariant, the quotient graph G\W is a collection of isolated subtrees with at most one non-free vertex. We say f is fully irreducible if for any integer i > 0, f i is irreducible.

Definition 3.3 (G-irreducible and G-fully-irreducible auto- morphisms) We say Φ ∈ Aut(G, G) is G-irreducible if for any T ∈ G and for any f : T → T representing Φ, f is irreducible.
Likewise, we refer Φ to as fully irreducible if f is G-fully-irreducible (or fully irreducible for short) for any T ∈ G and for any f : T → T representing Φ. Definition 3.4 (Irreducible automorphisms relative to a free factor system) Given a group G with a free product decomposition

G = G 1 * ... * G p * F k , an automorphism Φ ∈ Aut(G) is said to be irreducible relative to the free factor system {[G 1 ], ..., [G p ]} if {[G 1 ], ..., [G p ]
} is a maximal (under the order ≺) proper free factor system that is invariant under Φ. 

• (1). Φ is G-irreducible; • (2). Φ is irreducible relative to the free factor system {[G 1 ], ..., [G p ]}.
We first give the following lemma, the proof of which is standard (because edge stabilizers are trivial), thus we do not show the proof in this thesis. Lemma 3.6 Let G be a group with a given free product decomposition

G = G 1 * ... * G p * F k . For any tree T ∈ G, if g 1 ∈ G fixes vertex v 1 , g 2 ∈ G fixes vertex v 2 , and if v 1 = v 2 , then g 1 g 2 is hyperbolic in G relative to this free product de- composition.
Proof: [of Lemma 3.5] Assume that Φ is not irreducible relative to the free fac-

tor system {[G 1 ], ..., [G p ]}, then there is another Φ-invariant free factor system {[H 1 ], ...[H p ]} such that {[G 1 ], ..., [G p ]} ⊆ {[H 1 ], ...[H p ]}. Without loss of generality, we may assume that G 1 < hH 1 h -1 for some h ∈ G. Denote here H 1 = hH 1 h -1 .
Define W to be a minimal H 1 invariant subgraph in T , and let f :

T → T representing Φ such that f | W : W → W represents Φ| H 1 .
From the previous lemma, we know that there is a hyper-

bolic element g / ∈ H 1 relative to {[G 1 ], ..., [G p ]}(if we find an elliptic element g 2 / ∈ H 1 , let g 1 ∈ G 1 , since they fix different vertices, g = g 1 g 2 is a hyperbolic element not in H 1 )
. Notice that the quotient H 1 \W is finite (because H 1 is finitely generated). Let A g be the axis of g, A g is not contained in W (otherwise, H 1 A g ⊂ W , A g maps to the quotient by a finite path. By decomposition we have that g ∈ H 1 , a contradiction). Therefore, W is a proper subgraph of T .

By Kurosh Subgroup theorem, H 1 either contains a subgroup that is conjugate to a subgroup of G i (i > 1) or contains a free group as a subgroup. So the quotient G\W is not a disjoint union of trees each of which consists at most 1 non-free vertex.

Thus we have proved that Φ is not G-irreducible if it is not irreducible relative to the free factor system

{[G 1 ], ..., [G p ]}.
To prove that (2) implies (1): suppose now that Φ is irreducible relative to the free factor system {[G 1 ], ..., [G p ]}. Let T ∈ G be a tree, and let f : T → T be a map representing Φ ∈ Aut(G). If there is a proper G-subset W in T that is invariant under f , by collapsing each connected component of W to a point G equivariantly, we have another tree T ∈ G in the different deformation space from T . In the quotient graph, this point corresponds to a free factor of G. As Φ is irreducible relative to {[G 1 ], ..., [G p ]}, we conclude that the quotient is a disjoint union of trees each of which contains at most 1 non-free vertex.

Atoroidality and Nielsen paths

Recall that [g] is the conjugacy class of g in G for g ∈ G.

Recall that an automorphism φ of a free group F is said to be atoroidal if for any non trivial conjugacy class [x] of F , [φ n (x)] = [x] for all positive integer n. The explanation of the terminology is more clear when one considers the negation. An automorphism φ is toroidal (i.e. not atoroidal) if there is n > 0 and g = 1 in F , and h ∈ F such that φ n (g) = hgh -1 . In the semidirect product F φ Z, the two elements g and t n h (where t is the element of Z inducing φ on F ) generate an abelian group, which is easily seen to be free of rank 2. That is the fundamental group of a torus, embedded in F φ Z, as discussed in the section "Automorphisms, suspensions, semidirect product". Topologically, the suspension of a rose (whose fundamental group is F ) by a map realising φ also contains the π 1 -injective image of a 2-torus, namely the suspension of a loop representing g in the rose.

In the free product case, we cannot define atoroidality like that. We need to consider only elements that are not conjugate in one of the free factors G 1 , . . . , G p .

Definition 3.7 (Atoroidal automorphisms) Let Φ ∈ Aut(G, G).
We say that Φ is atoroidal, if for any g ∈ Hyp(G), and for any positive integer n,

[Φ n (g)] = [g].
It is necessary to allow n to be different from 1, for instance in a free group F {a,b} , the automorphism defined by a → b and b → ab sends the commutator [a, b] to its inverse, and therefore is toroidal (its square preserve the commutator), but does not preserve any conjugacy class.

Related, we need the following, Definition 3.8 (Nielsen and pre-Nielsen paths) Let G be a group, T be a G-tree, and Φ be an automorphism of G, f : T → T be a map representing Φ. A path ρ is called a Nielsen path if there exist an exponent n > 0 and an element g ∈ G such that f n (ρ) = gρ after reduction. A path ρ is called pre-Nielsen if there exist an exponent M > 0 such that f M (ρ) is Nielsen.

Observe that even if Φ is atoroidal , there can be Nielsen paths: they do not map on closed loops in G\T .

Train Tracks Maps

Definition 3.9 (Train track structure, legal turn, and legal paths)

Given a graph X, an ordered pair (e 1 , e 2 ) of oriented edges such that i(e 1 ) = i(e 2 ) is called a turn (at the vertex i(e 1 )). A trivial turn is a turn of the form (e, e).

A train track structure (or a gate structure) on a G-tree T is a G-invariant equivalence relation on the set of oriented edges at each vertex of T , with at least two equivalence classes at each vertex.

Each equivalence class of oriented edges is referred to as a gate.

In a gate structure, a turn is said to be legal if the two oriented edges are in different equivalent classes. A reduced path is said to be legal if every turn of it are legal.

To describe a gate structure, it is enough to specify which turns are legal (or illegal).

An important example of gate structure is the one given as follows (and this is the one we will use). Consider T and T two G-trees, as well as a map f : T → T which is equivariant, and piecewise linear (linear, non constant, on edges). Define the gate structure on T induced by f as follows. Declare that a turn (e 1 , e 2 ) is illegal if f (e 1 ) and f (e 2 ) share their first edge in T . It is easy to check that this defines an equivalence relation on the oriented edges issued from a same vertex, and that it is invariant for G, by equivariance of f .

In this construction, it is obvious that any legal turn is send by f on a pair of paths whose first edges define nontrivial turn (by abuse of language we say that any legal turn is send by f on a non-trivial turn). However, if T = T , in principle, a legal turn could be sent on an illegal turn, and in that case f 2 would send a legal turn to a trivial turn. This is not a pleasant situation, and motivates the following. Definition 3.10 (Train track maps) Given T ∈ G, Φ ∈ Aut(G, G), and given f : T → T a piecewise linear G-equivariant map (linear, non constant, on edges) representing Φ, we say that f is a train track map if, for the gate structure it defines,

• f maps edges to legal paths;

• if f (v) is a vertex, then f maps legal turns at v to legal turns at f (v).
One of the main results of [START_REF] Francaviglia | Stretching factors, metrics and train tracks for free products[END_REF], due to Francaviglia and Martino is the following, and will be important for us. 

Relative Hyperbolicity of an Automorphism in Fully Irreducible Case

We review vocabulary and materials from Gautero and Weidmanns' contribution ( [START_REF] Gautero | An algebraic combination theorem for graphs of relatively hyperbolic groups[END_REF]). However we begin with definition of relatively hyperbolic groups that goes back to Bowditch ( [START_REF] Bowditch | Relatively hyperbolic groups[END_REF]) and Farb ([18]).

Let G be a finitely generated group with a generating set S and a Cayley graph Γ S (G). Let Λ be a set and let H = {H i } i∈Λ be a family of subgroups H i of G. The group G is hyperbolic relative to H if the following holds:

• Γ H S (G) is Gromov hyperbolic; • for any positive integer n, any edge in Γ H S (G) is contained in finitely many embedded loops of length n (called "fineness" property).

We say that a group G is relatively hyperbolic if there is a family H of subgroups of G such that G is hyperbolic relative to H. Definition 4.4 (Mapping torus of a subgroup) Let H be a subgroup of a group G, and φ ∈ Aut(G). Suppose that n H is the smallest positive integer such that there exist

g H ∈ G satisfying φ n H (H) = g -1 H Hg H . Then the semidirect product H adg H •φ n H | H Z is referred to as the mapping torus of H.
Likewise, for H a set of subgroup of G, the mapping torus of H is defined as

{H adg H •φ n H | H Z : H ∈ H}.

Note that for the free product

G = G 1 * • • • * G p * F k ,
and for φ ∈ Aut(G, G), the mapping torus of each G i is well-defined since φ does preserve the free factor system {[G 1 ], ..., [G p ]} (set wise).

We may now define what it means to be a relatively hyperbolic automorphism. Definition 4.5 (Relatively hyperbolic automorphisms) Let G be a group. Let Λ be a set and let H = {H i } i∈Λ be a family of subgroups H i of G such that each H i is its own normalizer. An automorphism Φ ∈ Aut(G, H) is hyperbolic relative to H (or in short, relatively hyperbolic) if it satisfies the following: there exist λ > 1, M, N ≥ 1, such that for any g ∈ G with |g| H ≥ M , the inequality holds:

λ|g| H ≤ max{|Φ N (g)| H , |Φ -N (g)| H }
Recall that for a path ρ in a metric tree T , l T (ρ) is its length. Assume now that G is a free product. Let Φ ∈ Aut(G, G), and consider f :

T → T , f : T → T homotopy equivalences representing Φ ∈ Aut(G, G) and Φ -1 ∈ Aut(G, G) respectively.
If there exist a natural number M > 0 and a real number λ > 1 for trees T, T and maps α, α , f, f , such that for all Ghyperbolic element g ∈ G, for all fundamental segment σ for g in T , and σ the reduced path of α(σ) (hence a fundamental segment for g in T ) one has:

λl T (σ) ≤ max{l T [f M (σ)], l T ([f M (σ )])}
then Φ is refered to as a hyperbolic automorphism of (G, {G 1 , . . . , G p }, T, T f, f ), and any path (does not required to be a fundamental segment of a hyperbolic element) satisfying the above inequality is said to have the desired growth.

Remark 4.7 Notice that, given G and G G 1 * ... * G p * F k a free product decomposition, let H 0 = {G 1 , ..., G p },let T be in G, then by Bass-Serre Theory, the H 0 -word metric is quasiisometric to the length in the Bass-Serre tree. Therefore, if Φ is a hyperbolic automorphism of (G, {G 1 , . . . , G p }, T, T f, f ), then it is relatively hyperbolic.

The relevance of hyperbolic automorphisms is through the following combination theorem , which is proven by Gautero and Weidmann: Theorem 4.8 (Corollary 7.3, [START_REF] Gautero | An algebraic combination theorem for graphs of relatively hyperbolic groups[END_REF]) Let G be a finitely generated group, and α be an automorphism of G. Let H 0 be a finite family of infinite subgroups of G and α be hyperbolic relative to H 0 . If G is hyperbolic relative to H 0 , then the semi-direct product G α Z is relatively hyperbolic (more precisely, G α Z is hyperbolic relative to the mapping-torus of H 0 ) .

Our main result in this section is the following. It is an analogue of Brinkman's first result in [START_REF] Brikmann | Hyperbolic Automorphisms of Free Groups[END_REF], and of a result of Bestvina-Feighn-Handel for free groups in [START_REF] Bestvina | Laminations, trees, and irreducible automorphisms of free groups[END_REF] Theorem 4.9 Let G be a finitely generated group with a given free product decomposition

G G 1 * ... * G p * F k (where k ≥ 2 or p + k ≥ 3), and let H 0 = {G 1 , ..., G p }. Assume that Φ ∈ Aut(G, H 0 ) is fully irreducible and atoroidal. Then the semi-direct product G Φ Z is relatively hyperbolic.
Actually we can say that G Φ Z is hyperbolic relative to the mapping-torus of H 0 .

Growth of Edges

We will use several technical results of Francaviglia and Martino in [START_REF] Francaviglia | Stretching factors, metrics and train tracks for free products[END_REF] in this subsection, and we will give each precise result from their work. The authors gave a proof of this lemma in their paper, but we still would like to show another proof of this lemma.

Proof:

Let l i be the length of the edge e i (and so the length of ge i for any g ∈ G) in the tree T , and consider the non-negative matrix M with the element M i,j denoting the total time of f (e i ) passing through the G-orbit of e j . This matrix, and its transpose, t M , are irreducible because of the irreducibility of Φ. By Perron-Frobenius Theorem, there is a unique maximal eigenvalue of t M , denoted by λ that is strictly larger than 1. Moreover, an eigenvector of this eigenvalue has positive entries (and this eigenvector is unique up to multiplication of a real number). We scale it such that its smallest entry is 1, denote by v 0 such an eigenvector. Set l i to be the corresponding entry of the eigenvector. Hence, for every vector v, we have that

t v 0 • (M v) = ( t v 0 • M )v = t ( t M • v 0 )v = λ t v 0 • v Take v = (1
, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1) respectively, and for this re-scaling of edges, every edge is stretched by the same factor λ.

By the proof of the previous lemma, the constant λ is unique (which is the eigenvalue corresponding to the unique eigenvector). Hence the following definition becomes natural: Definition 4.11 (Growth rate of a train track map) Let Φ ∈ Aut(G, G) be irreducible, f : T → T be a train track map representing Φ. Rescale the edge such that every edge in the tree stretch with the same factor λ. Such a factor is called the growth rate of f . Lemma 4.12 (Lemma8.20, section 8.3, [START_REF] Francaviglia | Stretching factors, metrics and train tracks for free products[END_REF]) If f : T → T is a piecewise linear map representing Φ, and if f is a train track map, then so is f k which represents Φ k .

For the following lemma, in order to explain the assumption, notice that in a graph-of-group decomposition of G = G 1 * ... * G p * F k , giving a free product decomposition in the same deformation space, the number of edges is at least max{p -1, 0} + k. Indeed, the Euler Characteristic of the underlying graph is -(k -1) (because the rank of the free group factor is k) and the number of vertices is at least max{p, 1}. It follows that the number of edges is at least max{p, 1} + k -1. This clarifies that if either k ≥ 2 or p + k ≥ 3, then T has at least two orbits of edges. Proof: By the assumption there are at least two orbits of edges.

Fix a shortest fundamental segment σ in T of a hyperbolic element in G. Due to the finiteness of the orbits of edges, there are only finitely many paths (up to translation) in T that are not longer than this length, and hence there are only finitely many (up to translation) fundamental segments σ = σ 1 , . . . , σ s (denote by t 1 , . . . , t s the corresponding hyperbolic elements in G) in T that has the same length as σ.

If the growth rate is 1, then each fundamental segment σ i of t i is sent to a segment of the same length (which is a fundamental segment of Φ(t i )). Thus some power of f sends σ i to the translate of σ w(i) . As Φ is an automorphism, we can assume w to be a permutation of {1, . . . , s} so that f n (σ i ) = h i σ i for some i, n and h i ∈ G. Denote by v 0 the ending vertex of

σ i , notice that h i A i = f n (A i ) = f n (t i A i ) = Φ n (t i )f n (A i ) = Φ n (t i )h i A i , where A i is the axis of t i . Thus h -1 i Φ n (t i )h i fixes the axis of t i . It follows that h -1 i Φ n (t i )h i = t i g v 0 ,
where g v 0 fixes v 0 . Denote by G v the stabilizer of v 0 , we also have that

h -1 i Φ n (G v )h i = G v .
Therefore, the free factor t i , G v is invariant under some power of Φ, by the assumption of p and k, this is a proper free factor. This contradicts the irreducibility, and thus the growth rate of f is strictly larger than 1.

Angle Analysis on each vertex

When a graph is not locally finite, it is often helpful to have a notion of angle between adjacent edges, that brings back some local finiteness. In the context of fine graphs, angles are defined metrically (see Bowditch [START_REF] Bowditch | Relatively hyperbolic groups[END_REF], Dahmani-Yaman [START_REF] Dahmani | Symbolic dynamics and relatively hyperbolic groups[END_REF], and Dahmani [START_REF] Dahmani | Accidental parabolics and relatively hyperbolic groups[END_REF]). Although trees are fine, this is not useful for us here (as all angles would be infinite). We thus proceed differently. Definition 4.14 For each i, fix a word metric | • | i on G i , let v G i be a vertex of a tree T that is fixed by G i . Choose once and for all a transversal set of adjacent edges (a minimal set of a choice of adjacent edges, where every other adjacent edge is the translation of one of the edge in the set) of v G i for the action of its stabiliser ε 0 , ...ε r . For each pair of edges e, e adjacent to v G i , we define the angle Ang v G i (e, e ) to be the word length of g -1 g , where g, g satisfies ge 1 ∈ {ε 0 , ...ε r }, g e 2 ∈ {ε 0 , ...ε r }.

Remark 4. [START_REF] Dahmani | The isomorphism problem for all hyperbolic groups[END_REF] We notice that the angle Ang v G i (e, e ) as above is well-defined: the choice of g and g is unique, because stabilizer of each edge (and thus of ε 0 , ...ε r ) is trivial.

We now define angles on other non-free vertices: Definition 4.16 (Angles at a vertex) For each i, for each v ∈ Gv G i , and for each pair of edges e 1 , e 2 adjacent to v, define the angle Ang v (e 1 , e 2 ) to be Ang v G i (ge 1 , ge 2 ) where g is the element in G such that gv = v G i .

Remark 4.17 In general, the choice of g in the definition is not unique, but only differs from an element in G i , and by the definition of angles at the vertex whose stabilizer is G i , element in G i preserves the angle (to be more exact, for any g

∈ G i , Ang v G i (ge 1 , ge 2 ) = Ang v G i (g ge 1 , g ge 2 )
), so the angle Ang v (e 1 , e 2 ) here is still well-defined.

We also notice that the angle is locally finite: for a given edge e 1 with starting vertex v and a given number C > 0, there are only finitely many possible e 2 satisfying Ang v (e 1 , e 2 ) < C. This is easy to see as there are only finitely many edges (up to G-orbit) adjacent to v and that there are only finitely many elements in G i whose word length is bounded by C.

Finally, we notice that the angle is invariant under any translation by any element h ∈ G. More precisely, if e, e are adjacent to vertex v, then Ang v (e, e ) = Ang hv (he, he ). This is obvious as the angle equals the corresponding angle at v G i (which is well-defined). Definition 4.18 (Angles between paths) For any free vertex v, and for each pair of edges e 1 , e 2 adjacent to v, define the angle Ang v (e 1 , e 2 ) to be 1.

Let v be a vertex in a tree T , ρ 1 , ρ 2 be two paths starting from v, and let e 1 , e 2 be the starting edge of ρ 1 , ρ 2 respectively (hence these two edges also start from v). We define Ang v (ρ 1 , ρ 2 ) to be Ang v (e 1 , e 2 ). Definition 4.19 ("Boundedness after iteration" of angle of a vertex on a path) Let Φ ∈ Aut(G, G) be an automorphism of G, f : T → T be a map representing Φ, let ρ be a path, v be a vertex on ρ that is neither the starting nor the ending vertex. Denote by e 1 , e 2 be the adjacent edges on ρ containing v (hence the ending vertex of e 1 is the starting vertex of e 2 , which is v). We say that angle at v is bounded after iteration, if there is a constant C such that Ang f n (v) (f n (e 1 ), f n (e 2 )) < C for all integer n > 0.

Definition 4.20 (Θ-straight paths, Θ-patterns) Let ρ be a (reduced) path in the tree T .

A subdivision of the path is a choice of reduced subpaths ρ 1 , . . . , ρ k such that ρ is the concatenation of ρ 1 -• • • -ρ k , where each subpath ρ i (i ∈ {1, . . . , k}) is called a component of the path ρ.

We say that ρ is Θ-straight if all angles between consecutive edges are bounded by Θ.

Two paths ρ, ρ with subdivisions ρ 1 , . . . , ρ k and ρ 1 , . . . , ρ k respectively are G-equivalent if for all i, ρ i is in the G-orbit of ρ i .

A Θ-pattern is an equivalence class for this relation where all components are Θ-straight. Lemma 4.21 Given a tree T ∈ G, with any given choice of measure of angle, for all C > 0 and for all Θ > 0, there are only finitely many Θ-patterns not longer than C.

Proof:

For any given C, there are only finitely many possible subdivisions of a path ρ not longer than C such that each component is Θ-straight, and denote by ρ 1 , . . . , ρ k any choice of subdivision of this kind. Since there are only finitely many possible Θ-straight paths of the length equal to ρ i up to G-action for all i ∈ {i, ..., k}, there are finitely many choice of ρ (up to G-action) with some subdivision ρ 1 , . . . , ρ k that is not G-equivalent to ρ with subdivision ρ 1 , . . . , ρ k . Therefore, there are only finitely many Θ-patterns not longer than C. Lemma 4.22 Let Φ ∈ Aut(G, G) be an automorphism of G, f : T → T be a map representing Φ. Then for any Θ 1 > 0, there exists Θ 2 > 0, such that for any vertex v and for any pair of edges e 1 , e 2 starting from vertex v with Ang v (e 1 , e 2 ) > Θ 2 , we have that Ang f (v) (f (e 1 ), f (e 2 )) > Θ 1 .

Proof:

Assume that the stabilizer of v in G is H (and

H = h 1 G i h -1
1 for some G i and h 1 ∈ G). Since f represents Φ, f (v) is fixed by Φ(H), assume that Φ(H) is conjugate to G j . Then there is an induced quasi-isometric map from the Cayley Graph of G i to the Cayley Graph of G j . Thus we can find Θ 2 > 0, such that the pre-image of the subset of the Cayley Graph of G i whose vertices are all the elements with word-length not larger than Θ 1 is contained in the subset of the Cayley Graph of G j whose vertices are all the elements with word-length not larger than Θ 2 . Equivalently, the subset of the Cayley Graph of G j with word metric strictly larger than Θ 2 is sent to subset of the Cayley Graph of G i with word metric strictly larger than Θ 1 . For such a Θ 2 , Ang f (v)(f (e 1 , f (e 2 ))) > Θ 1 .

Growth of paths

Directly from the above lemma, we have: 

Proof:

Suppose otherwise, that the length of a fundamental segment τ of a hyperbolic element h is bounded after iteration. As there are only finitely many Θ-patterns of length with such a upper bound for any given Θ > 0, we divide by angle at each vertex after iteration of f into two cases: Case 1. Angle at each vertex is bounded after iteration: In this case, there are finitely possible f n (τ ) up to the action of G. This means that there exist n 2 > n 1 > 0 and g ∈ G such that f n 2 (τ ) = gf n 1 (τ ), which contradicts the fact that Φ is atoroidal.

Case 2. There are vertices at which angles are unbounded after iteration: By the assumption, there are subsequence of f n (τ ) that has the same length, in short, we write τ i such a sequence. Consider τ 0 a segment of this length in R, and the embedding map p i : τ 0 → τ i . Extract a subsequence such that there are (finitely many) points a 1 , . . . , a q in τ 0 (q -1 ≤ l T (τ 0 )) such that for all i, angles at p i (a j ) go to infinity, while angles at p i (a) for any other points a are bounded, and denote this upper bound by Θ 0 .

If q > 1: Again, apply Lemma 4.21 to each component, segment p i ([a 1 , a 2 ]) has only finitely many possible images up to Gaction. Assume that p it ([a 1 , a 2 ]) are in the same G-orbit, and that the angles at other vertices in these subsequence of segments are bounded by Θ 0 . For t sufficiently large, angles at p it (a 1 ) and p it (a 2 ) become sufficiently large. By our assumption,

p i t+1 ([a 1 , a 2 ]) is obtained from p it ([a 1 , a 2 ]
) by action of some power of f after cancellation of possible il-legal turns. And by Lemma 4.22, we have that each p it (a j ) is the image of p i 1 (a j ) by the corresponding power of f (t ≥ 1), for j = 1, 2. Thus there are some n 1 > 0 such that

f n 1 ([p i 2 (a 1 ), p i 2 (a 2 )]) = g ([p i 1 (a 1 ), p i 1 (a 2 )]) for some g ∈ G. Thus [p i 2 (a 1 ), p i 2 (a 2 )]-• • •-[p i 2 (a q-1 ), p i 2 (a q )]
is a Θ 0 -pattern, and Φ n 1 fixes the conjugacy class of g 1 g 2 where g 1 fixes p i 1 (a 1 ), and g 2 fixes p i 1 (a 2 ). By the lemma 3.6, g 1 g 2 is hyperbolic, which contradicts the atoroidality.

If q = 1: Denote by a and b the starting and ending point of τ 0 respectively. As p i (a 1 ) is fixed by some power of f , we can assume that the segments [p i (a), p i (a 1 )] (respectively [p i (a 1 ), p i (b)]) are in the same G-orbit. If one of them contains a non-free vertex, the angle at this vertex becomes unbounded, and by the previous argument (in q > 1) this assumption violates the atoroidality. If none of them contains a non-free vertex, h can be written in the form of tg 1 after conjugation, where t is conjugate in F k , and g 1 is in some G m (assume without loss of generality that g 1 ∈ G 1 ). Since by a power of Φ, t is sent on tg 1 . Thus the element h = g 1 tg 1 t -1 is invariant under Φ (after some iteration). And h , as composition of g 1 and tg 1 t -1 , is hyperbolic. Again, this violates atoroidality.

Recall that for a path α ⊂ T , [α] is defined to be the reduced path of α. Lemma 4.24 (Bounded cancellation lemma) Let Φ be an automorphism of G in Aut(G, G), T ∈ G, f : T → T be piecewise linear representing Φ. Then there exist a constant C f > 0, depending only on f , such that for any path ρ ⊂ T obtained by concatenating two legal paths α, β without cancel-lation, we have

l T ([f (ρ)]) ≥ l T (f (α)) + l T (f (β)) -C f
Proof: Let f be a homotopic inverse of f representing Φ -1 , and let g = f • f : T → T . Clearly, g represents Id ∈ Aut(G). Assume that two vertices A, B ∈ V T have the same image under f , then g(A) = g(B). Then we have a homotopy H : [0, 1] × T → T such that H| 0 ≡ g, H| 1 ≡ Id. As H can be chosen to be piecewise linear (because H is a homotopy, we can re-scale it on each edge such that it is piecewise linear), we may assume that H is Lipschitz. Thus there is D > 0 such that d(H(0, x), H(1, x)) ≤ D for all x, therefore d(A, B) ≤ 2D. Let v 1 ∈ α, v 2 ∈ β such that the subpath of ρ between v 1 and v 2 is exactly the reduced subpath by the image of f (i.e., f

(v 1 ) = f (v 2 ) is the ending point of f (α) ∩ [f (ρ)], and the starting point of f (β) ∩ [f (ρ)]), then d(v 1 , v 2
) is bounded by 2D, hence there exist a uniform upper bound for d(f (v 1 ), f (v 2 )), which is the C f in this lemma.

Assume that f : T → T is a train track map representing Φ ∈ Aut(G, G). Denote by λ the growth rate of f . By bounded cancellation lemma, we can easily come to the following conclusion (in fact, this is a computation by induction):

Lemma 4.25 (Lemma 5.2 of [7]) If β is a legal path in T with λl T (β) -2C f > l T (β) (i.e. l T (β) > 2C f
λ-1 ), and α, γ are paths such that the concatenation α -β -γ is locally injective, then there is a constant ν > 0 (independent of β) such that the length of legal leaf segment (the length of the maximal legal segment) of f i (α -β -γ) corresponding to β is at least νλ i l T (β) for all integer i > 0. Definition 4.26 (Critical constant of a train track map) Let G be a free product, Φ ∈ Aut(G, G) be irreducible, f : T → T be a train track map representing Φ, λ be the growth rate of f . The constant 2C f λ-1 is called the critical constant of f , where C f is the constant defined in the Bounded Cancellation Lemma.

Legal Control in Iteration

Similar to Bestvina, Feighn and Handel in [START_REF] Bestvina | Laminations, trees, and irreducible automorphisms of free groups[END_REF], we have Lemma 4.27 [analogue of [START_REF] Bestvina | Laminations, trees, and irreducible automorphisms of free groups[END_REF], Lemma 2.9] Let G be a group with free product decomposition G = G 1 * ... * G p * F k , Φ ∈ Aut(G, G) be fully irreducible and atoroidal, f : T → T be a train track map representing Φ. Assume that either k ≥ 2 or p + k ≥ 3. Then for every C > 0, there exists an exponent M > 0, such that for any path ρ in T , one of the three following holds:

• (A) the length of the longest legal segment of [f M (ρ)] is greater than C; • (B) [f M (ρ)
] has strictly less illegal turns than ρ;

• (C) ρ is a concatenation of γ 1 -α 1 -• • • -α s -γ 2 ,
where γ 1 , γ 2 has at most 1 illegal turn with length at most 2C, and that each α i is a pre-Nielsen path with at most 1 illegal turn.

Proof: Assume (B) fails for all integer M > 0, then no illegal turn becomes legal after iteration. In addition, let us assume that (A) fails as well. As f is a train track map, none of the legal turns become illegal, the total number of illegal turns (and henceforth the number of legal segments) remains the same after iteration. While each legal segment has a uniformly bounded length after iteration, then there is an exponent N such that π T (ρ) = π T (f N (ρ)) = ... = π T (f iN (ρ)) = ... for all i ∈ Z (remind that π T is the quotient map from the tree T to its quotient graph of groups).

We classify ρ in the following cases: Case 1. Angles at every vertex in ρ are bounded after iteration:

Since statements (A) and (B) fail, the length of ρ is bounded after iteration. By Lemma 4.21, there are only finitely many possible f n (ρ) (up to G-action), i.e., there exist

N 0 > 0, n > 0, g ∈ G such that [f n (f N 0 (ρ))] = g[f N 0 (ρ)] (in other word, ρ is pre-Nielsen).
Denote by v i,1 , v i,2 the starting and ending vertices of the maximal legal segment ρ i . By the action of f n , each maximal legal segment ρ i in f N 0 (ρ) grows and cancels at the possible illegal turns with ρ i-1 or ρ i+1 (or possibly more), and obtain gρ i . In addition, the legal segment between gv i,1 and f (v i,1 ) (if they are different vertices) and the legal segment between gv i,2 and f (v i,2 ) (if they are different vertices) are canceled. Hence there is a subsegment (which is legal)

ζ i of ρ i such that f (ζ i ) ⊂ gρ i . For this reason, there is a vertex v i in each ζ i (thus it is in ρ i ) such that [f n (f N 0 (v i ))] = g[f N 0 (v i )]. Call these v i "pre-periodic points", we have that ρ is a concatenation of γ 1 -α 1 -• • • -α s -γ 2 ,
where γ 1 , γ 2 has at most 1 illegal turn with length at most 2C, and that each α i is a pre-Nielsen path with at most 1 illegal turn. In addition, as ρ pre-Nielsen, γ 1 , γ 2 are also pre-Nielsen.

Case 2. There exists a vertex in ρ where angles become unbounded after iteration:

Assume that a subsequence f N (ρ) has the same length with ρ, denote by a N the isometries between ρ and each f N (ρ).

Let v 1 , v 2 be two such vertices that angles at a N (v 1 ), a N (v 2 ) are unbounded and that angles at a N (v) are bounded for all vertices v between v 1 and v 2 , and let q be the total number of vertices in ρ where angles are bounded (this is restricted by the length of ρ). If q > 1, we assume that

v 1 = v 2 . Choose g 1 ∈ G preserves v 1 , g 2 ∈ G preserves v 2 , then g 1 g 2 is a hyperbolic element in G,
but this is impossible as the conjugacy class of g 1 g 2 is fixed by Φ, thus contradicts atoroidality.

If there is only one such vertex v 1 in ρ, i.e. q = 1, denote the starting and ending vertex of ρ by v a , v b respectively, subdivide the path ρ into 3 segments

ρ 1 , ρ 2 , ρ 3 such that ρ 1 ⊂ [v a , v 1 ], ρ 3 ⊂ [v 1 , v b ], and that v 1 ∈ ρ 2 such that ρ 2 contains only one edge in [v a , v 1 ] and one edge in [v 1 , v b ].
By the same argument of the subcase where q > 1,

f N (v 1 ) = g 2 v 1 , f N (ρ 2 ) = g 2 ρ 2 (
where g 2 ∈ G), and since angles at every vertex in ρ 1 , ρ 2 are bounded, we have that ρ 1 , ρ 2 are pre-Nielsen, thus ρ = ρ 1 -ρ 2 -ρ 3 is a Θ-pattern for some Θ > 0. As in Case 1, we further subdivide ρ 1 and ρ 3 such that statement (C) of the lemma holds. If f : T → T is a train track representative for φ on T , then there exists a constant M 0 such that it is impossible to concatenate more than M 0 Nielsen paths.

Proof:

We first observe that the concatenation of two Nielsen paths is still Nielsen: Let ρ 1 -ρ 2 be the resulting path, by the assumption, there exist some N, g 1 , g

2 such that [f N (ρ 1 )] = g 1 ρ 1 , [f N (ρ 2 )] = g 2 ρ 2 .
Due to the fact that the terminal vertex of ρ 1 is exactly the initial vertex of ρ 2 , we deduce that g 1 = g 2 , which implies that ρ 1 -ρ 2 is still Nielsen. A basic induction shows that any finitely many concatenation of Nielsen path would be still Nielsen.

In order to prove the lemma, it suffices to prove that any path concatenating n 0 (where n 0 ≤ M 0 + 1) Nielsen paths contains such a subpath, which leads to a contradiction: on one hand, this subpath is still a concatenation of Nielsen paths (thus its length remains the same after iteration); on the other hand, this subpath will eventually grow after iteration of f .

Since the quotient G\T is finite, we have that there is m such that the image in the quotient of the concatenation of at most m paths contains a loop (which consists of a concatenation of these paths). This means that the concatenation of at most m paths contains a fundamental segment of a hyperbolic element (this statement also holds for a concatenation of these Nielsen paths). Choose M 0 = m -1, then after concatenate n 0 (n 0 ≤ M 0 + 1) Nielsen paths α 1 -• • • -α M , the whole path contain a subpath α I -• • • -α I+J (where I, J are positive integers such that 1 ≤ I < I + J ≤ M ) which is a fundamental segment of a hyperbolic element, which eventually grows after iteration. But this is impossible as it is still Nielsen. Thus it is impossible to concatenate more than M 0 Nielsen paths.

As an application of Lemma 4.27, we have Lemma 4.29 (analogue of [START_REF] Bestvina | Laminations, trees, and irreducible automorphisms of free groups[END_REF], Lemma 2.10) Let Φ be an irreducible and atoroidal automorphism in Aut(G, G), f : T → T and f : T → T be train track maps representing Φ and Φ -1 respectively. And let α : T → T and α : T → T be G-equivariant, Lipschitz homotopy equivalences. Assume that either k ≥ 2 or p + k ≥ 3. Then for any C > 0 there exist an exponent N > 0 and L 0 > 0, such that if ρ is a path of length ≥ L 0 , and if ρ = [α(ρ)], then either [f N (ρ)] or [f N (ρ )] contains a legal segment of length greater than C.

Proof: By the above lemma, there exist a constant M 0 such that it is impossible to concatenate more than M 0 pre-Nielsen paths.

Fix C > 0 such that it is larger than the critical constant for both f and f . Suppose that [f N (ρ)] does not contain a legal segment of length greater than C for all N > 0. Then (A) of Lemma 4.27 fails. In addition, fix L 0 > (2M 0 + 4)C, where M 0 is the bound of Lemma 4.28, thus (C) of Lemma 4.27 also fails (otherwise, by Lemma 4.28, (A) of Lemma 4.27 holds, a contradiction). Then (B) of Lemma 4.27 must hold. Let M be the greater one of the integers according to Lemma 4.27 when we apply it to f, C and f , C.

We then represent ρ as a concatenation of segments β ⊂ ρ such that f M (∂β) ⊂ [f M (ρ)] with uniformly bounded length (this bound is independent on ρ). Thus the upper bound to the number of illegal turns in each segment exists, we denote it by P . Fix Q such that P -1 P < Q < 1. For a path τ we denote by N IT (τ ) the number of illegal turns in τ . Then for long enough subsegment γ of ρ we have

N IT ([f M (γ)]) N IT (γ) ≤ Q
We do the same construction to f M (ρ), f 2M (ρ), .... Then for a given large integer s > 0 and long enough segment γ,

N IT ([f sM (γ)]) N IT (γ) ≤ Q s
Since we require that any legal segment in each [f N (ρ)] is bounded by C, and it is obviously not less than the length of shortest edge, there is some constant

K = K(f, C) > 0, such that l T ([f sM (γ)]) l T (γ) ≤ KQ s (1)
Apply the same discussion to [αf sM (ρ)] as we did to ρ, and consider f instead of f . If we assume that [f N (ρ )] does not contain a legal segment of length greater than C either for N = sM , then we have

l T ([f sM αf sM (γ)]) l T ([αf sM (γ)]) ≤ K Q s ( 2 
)
where

K = K (f , C) is a constant.
Notice that f sM αf sM is conjugate to α, hence there is some constant µ > 1 such that for long L,

1 µ ≤ l T ([f sM αf sM (γ)]) l T ([α(γ)]) ≤ µ (3) 
Multiply ( 1), ( 2) and the inverse of (3) we have

l T ([f sM (γ)]) l T ([αf sM (γ)]) l T ([α(γ)]) l T (γ) ≤ µKK Q 2s Notice that l T ([f sM (γ)]) l T ([αf sM (γ)]) l T ([α(γ)]) l T (γ)
≥ 1 µ Lip(α)Lip(α ), where Lip(α), Lip(α ) is the Lipschitz constant of α, α respectively, we have

1 µ Lip(α)Lip(α ) ≤ l T ([f sM (γ)]) l T ([αf sM (γ)]) l T ([α(γ)]) l T (γ) ≤ µKK Q 2s
Since s is large enough, and Q is a constant that 0 < Q < 1, the right part goes to 0 as s goes to infinity, while the left part is a positive constant. Thus this inequality fails, and proved the lemma. Definition 4.30 (C-legality of a path) Given a T ∈ G and a constant C, for any immersed path ρ ⊂ T , the C-legality of ρ ,denoted by LEG T,C (ρ), is the ratio of the sum of lengths of all the maximal legal segments in ρ that are longer than C over the total length of ρ. Lemma 4.31 (see [START_REF] Bestvina | Laminations, trees, and irreducible automorphisms of free groups[END_REF], Lemma 5.6) Let Φ ∈ Aut(G, G) be fully irreducible and atoroidal, f : T → T , f : T → T be train track maps representing Φ and Φ -1 respectively. And let α : T → T and α : T → T be G-equivariant, Lipschitz homotopy equivalences. Assume that C is the larger one of the critical constant of f and f and that either k ≥ 2 or p+k ≥ 3. Then there is > 0 and an integer N 1 > 0 such that for every hyperbolic element x ∈ G, if σ is a fundamental segment of x in T , σ is an isometric immersion of [α(σ)], then for every

N > N 1 , either LEG T,C (f N (σ)) ≥ or LEG T ,C (f N (σ )) ≥ .
Proof: By Lemma 4.23, there is an integer N , such that l T (f N (σ)) > L 0 and l T (f N (σ )) > L 0 , where L 0 is defined according to Lemma 4.29. And by Lemma 4.29, there is N 1 such that either [f N 1 (σ)] or [f N 1 (σ )] contains a legal segment of length greater than C.

Suppose the result does not hold, then there are sequences {σ i } and {σ i } in T and T respectively such that their Clegality converges to 0. Then there exists arbitrarily long segments in {σ i } and {σ i } that do not contain a legal segment of length ≥ C. Thus contradicts the Lemma 4.29.

We wish to show the growth of every fundamental segment of every hyperbolic element in the free product (to be more precise, we want to show the hyperbolicity of the automorphism in the sense of Definition 4.6). To achieve this, it suffices to show that after some iteration of f , the image of any fundamental segment of any hyperbolic element contains such a subset of segments, that • 1. the total length of the segments in this subset amounts certain (say , which is independent of the choice of fundamental segment and hyperbolic element) ratio of the length of the total length of whole path (after iteration);

• 2. it has the desired growth (in the sense of Definition 4.6).

Remind in Definition 4.6 we defined an automorphism is a hyperbolic automorphism of (G, {G 1 , . . . , G p }, T, T f, f ) if it satisfies the desired growth in Definition 4.6.

By Lemma 4.29, after a certain times of iteration (forward or backward) of f , there is a set of leagal segment that is longer than C (where C is the larger one of the critical constant of f and f ), and each of these segments has the desired growth (in the sense of Definition 4.6) since it is leagal. And by the analysis of the C-legality of each fundamental segment (i.e. Lemma 4.31), the following theorem becomes natural:

Theorem 4.32 Let G = G 1 * • • • * G p * F k (where k ≥ 2 or p + k ≥ 3), Φ ∈ Aut(G,
G) be fully irreducible and atoroidal, f : T → T , f : T → T be train track maps representing Φ and Φ -1 respectively. Then Φ is a hyperbolic automorphism of (G, {G 1 , . . . , G p }, T, T f, f ).

Proof: Let α : T → T and α : T → T be G-equivariant Lipschitz homotopy equivalences. For each hyperbolic element x ∈ G, let σ be a fundamental segment of x in T , σ be an isometric immersion of [α(σ)].

Choose C be the larger one of the critical constant of f and f . By Lemma 4.31, there is > 0 and integer N 1 > 0 such that for every

N > N 1 , either LEG T,C (f N (σ)) ≥ or LEG T ,C (f N (σ )) ≥ .
Denote here by S C (σ) the set of legal leaf segments (maximal legal segments) in σ whose length is longer than C.

We assume that LEG T (f N (σ)) ≥ (the other case is similar), by our introduction of critical length, let λ be the growth rate of f , there is ν > 0 such that

l T ([f i (σ)]) ≥ νλ i l T (S C (σ)) ≥ ν λ i l T (σ)
holds for all i > N 1 .

Relative Hyperbolicity in Fully Irreducible Case

Recall that in the previous sections, we defined the relatively hyperbolic automorphism in Definition 4.5 in terms of the growth of conjugacy classes of hyperbolic elements. And we have explained that relatively hyperbolicity of an automorphism can be shown by the growth of fundamental segments of hyperbolic elements in a tree. From Theorem 4.32, it follows that Gautero and Weidmann proved a relevant combination theorem (see Corollary 7.3 of [START_REF] Gautero | An algebraic combination theorem for graphs of relatively hyperbolic groups[END_REF]), recalled as Theorem 4.8 of this thesis). By the combination theorem, the relative hyperbolicity of G Φ Z is true by the fact that Φ is hyperbolic relative to H 0 . Thus our result of Theorem 4.9 holds. We give a more precise version of the theorem below: From the above theorem, we come to a relative hyperbolicity result of a kind of toroidal automorphism of free group: Corollary 4.35 Let G be a free group and φ be an automorphism of G such that there exist a free group decomposition G = F n G 1 * ... * G p * F k with the following properties:

• 1. each [G i ] (i ∈ {1, . . . , p}
) is preserved by some power of φ (i.e. there exist some positive integer n i such that

φ n i (G i ) = g -1 i G i g i for some g i ∈ G); • 2. φ is fully irreducible and atoroidal in Aut(G, H 0 ),
where

H 0 = {G 1 , ..., G p }; • 3. k ≥ 2 or p + k ≥ 3.
Then there is some positive integer n such that G φ n Z is hyperbolic relative to the mapping-torus of H 0 .

Indeed, choose n to be the least common multiple of (n i )s, by definition, φ n is fully irreducible and atoroidal in Aut(G, H 0 ). We can obtain this corollary from Theorem 4.34.

Detecting fully irreducible automorphisms

Theorem 4.34 gives the relative hyperbolicity result of G φ Z for the free product G G 1 * ... * G p * F k under the assumption that Φ is fully irreducible and atoroidal. We give in this section a condition for full irreducibility. We first give a definition of Whitehead graph for a given train track map. The set of vertices in W h T (v, f ) is the set of oriented edges in T originating from v; two vertices v 1 , v 2 (corresponding to e 1 , e 2 respectively in T ) in W h T (v, f ) are adjacent if there exist some g 1 , g 2 ∈ G, n ≥ 1 and e ∈ E(T ) such that the segment g 1 ē1 -g 2 e 2 is a subsegment of f n (e) or a reducible segment in the form of e -ē (for some edge e ).

Definition 5.2 (Transition matrix of a map) Let G be a group with free product Decomposition

G = G 1 * ... * G p * F k , Φ ∈ Aut(G, G), f : T → T be a map representing Φ.
Fix a choice of edges {e 1 , . . . , e s } as the basis of T such that every edge in the tree is in the G-orbit of some e i and that e i and e j are not in the same G-orbit for i = j (where i, j ∈ {1, . . . , s}). The transition matrix M (f ) of f is a non-negative matrix with the element M i,j denoting the total time of f (e i ) intersecting the G-orbit of e j .

Lemma 5.3 Let

G = G 1 * ... * G p * F k with either k ≥ 2 or p + k ≥ 3, Φ ∈ Out(G, G)
, and let f : T → T be a train track map representing Φ such that l T (f n (e)) goes to infinity as n goes to infinity for some e ∈ E(T ). Assume that Φ is irreducible. Then for every vertex v ∈ V (T ) the Whitehead graph W h T (v, f ) is connected.

Proof:

Suppose otherwise, that there exist some u ∈

V (T ) such that W h T (u, f ) is disconnected.
We first define a new graph Γ based on T to be as follows: For every vertex v ∈ T , we define v in Γ correspondingly (call it the central vertex corresponding to v), and introduce in Γ some "attached vertices" v 1 , . . . , v k , where k is the number of connected components of W h T (v, f ). For each central vertex v, we add an (oriented) edge between v and each of its attached vertex for every v ∈ V (T ) (such edges are called attached edges attached to v). For edge e in T from v to w, we add an edge e in the graph Γ from v i to w j , where v i and w j are attached vertices to v and w respectively, such that v i and w j correspond to the connected components of W h T (v, f ) and of W h T (w, f ) containing e.

We then define a map f : Γ → Γ based on f as follows:

First we set f (v) = f (v) and f (e ) = e 1 -• • • -e n (where f (e) = e 1 -• • • -e n ) for all v ∈ V (T )
and for all e ∈ E(T ) (the latter makes sense by the definition of the Whitehead graph). For an attached vertex v i that is attached to v, denote by e i an edge in T starting from v that represents v i , and set f (v i ) to be the attached vertex w i (attached to f (v)) that corresponds to the starting edge of f (e). It follows that the starting edge of f (e) and the starting edge of f (e ) are adjacent in W h T (v, f ) if e, e are two edges starting from the same vertex v that are adjacent in W h T (v, f ). Hence the definition of f on the attached vertex is well-defined. And for an attached edge ȇ (attached to v, from v to v i ), we set f (ȇ) to be the attached edge starting from f (v) to f (v i ). We can see from this construction that f is a continuous map, and that contracting all attached edges to points in Γ is a homotopy equivalence between Γ and T . Hence the map f : T → T still represents Φ.

Consider a subgraph W of Γ by removing all central vertices and interiors all attached edges (for all vertices). This subgraph W is f -invariant and G-invariant. By the disconnectedness of W h T (u, f ), the inclusion map from W to Γ is not a homotopy equivalence. In addition, by the expanding property of f , there is some edge e and some large integer n such that f n (e) contains a subpath σ (where σ is a fundamental segment of a hyperbolic element). It follows from the construction that, as the image of f n (e ), σ is such a path whose image in the quotient graph is a loop. Thus we found W to be a f -invariant and G-invariant subgraph that its image in quotient graph of groups is non-trivial (topologically) and such that the inclusion map from W to Γ is not a homotopy equivalence. This contradicts the fact that Φ is irreducible.

By the above lemma, we come to the following proposition, which serves as a condition for full irreducibility:

Proposition 5.4 Let G = G 1 * ... * G p * F k with either k ≥ 2 or p + k ≥ 3, Φ ∈ Out(G, G).
If Φ is fully irreducible and atoroidal, then there exists a train track map f : T → T representing Φ such that the following holds:

• 1. the transition matrix M (f ) is irreducible; • 2. for every vertex v ∈ V (T ) the Whitehead graph W h T (v, f ) is connected.

On the reducible case

Let G be a group with free product decomposition G G 1 * ... * G p * F k (as GD).

In this section, we consider an automorphism Φ such that {[G 1 ], . . . , [G p ]} is preserved by Φ, and such that it is reducible with respect to the free factor system {[G 1 ], . . . , [G p ]} Case 1: there exist some x ∈ F k , g ∈ G and q ∈ {1, . . . , p } such that x ∈ gG q g -1 .

In this case, x / ∈ F k (because x fixes some vertex in the Bass-Sree Tree in G (G, (G i ) p i=1 , F k ), while every element in F k act on the Bass-Serre Tree by translation). Denote by < x, F k > the subgroup of G that is generated by x and F k , which is actually F k +1 . By Gurosh Subgroup Theorem (apply to the decomposition

G G 1 * • • • * G p * F k ), < x, F k > is a subgroup of F k . Hence k + 1 ≤ k, equivalently, k < k. Thus (k , p ) < (k, p).
Case 2: for all x ∈ F k and for all q ∈ {1, . . . , p }, x / ∈ gG q g -1 for all g ∈ G.

We define a map χ : {G 1 , . . . , G p } → {G 1 , . . . , G p } in the following natural way: for all i ∈ {1, . . . , p}, if there exist j ∈ {1, . . . , p } such that G i is a subgroup of gG j g -1 for some g ∈ G, then define χ(G i ) = G j . It is easy to check that this map is well-defined. By the assumption of this case, every G j has a pre-image of χ in {G 1 , . . . , G p } (i.e. χ is surjective), we have that p ≤ p.

Let T be a Bass-Serre Tree in G(G, (G i ) p i=1 , F k ). By the assumption that the free factor system {[G 1 ], . . . , [G p ]} is strictly larger than {[G 1 ], . . . , [G p ]}, there exist r ∈ {1, . . . , p}, r ∈ {1, . . . , p } and y ∈ G r such that gG r g -1 is a subgroup of G r , y / ∈ gG r g -1 . Moreover, we can assume that y is elliptic in (G, G) (because for any such hyperbolic element h ∈ G r , hgG r g -1 h -1 < G r , and hgG r g -1 h -1 = gG r g -1 as g -1 hg / ∈ G r , we have element in hgG r g -1 h -1 that is elliptic in (G, G)). Consider the subgroup < y > generated by y, it fixes some vertex v y in the Tree T . Denote by H y the stabilizer of v y in G. H y is conjugate to one of G i s (which is a subgroup of one of G j s), As y ∈ H y and y ∈ G r , H y is a subgroup of G r . By the choice of y and v y , H y is not conjugate to G r (otherwise, there exist some h ∈ G different from g such that hG r h -1 is a subgroup of G r , so G r is a subgroup of the intersection of g -1 G r g and h -1 G r h, which is empty). Thus there exist s = r and g ∈ G such that g G s g -1 (= H y ) is a subgroup of G r . This implies that χ(G r ) = χ(G s ) = G r . And since χ is surjective, p < p. Therefore, (k , p ) < (k, p).

Remark 6.3 1. The condition that {[G 1 ], . . . , [G p ]} is a strictly larger free factor system than {[G 1 ], . . . , [G p ]} does not imply that k +p < k+p. One counterexample is to let G = G 1 * G 2 * F 4 where F 4 =< a, b, c, d >, consider these two decomposition G = G 1 * G 2 * F 4 = G 1 * G 2 * G 3 * F 3 (where G 1 = G 1 , G 2 = G 2 , G 3 =< a >), in this case, p + k = p + k = 6. 2. The condition that {[G 1 ], . . . , [G p ]} is a strictly larger free factor system than {[G 1 ], . . . , [G p ]} also does not imply that (p , k ) < (p, k) in the lexicographical order. Consider G = G 1 * G 2 * F 5 where F 5 =< a, b, c, d, e > with the following two decomposition G = G 1 * G 2 * G 3 * F 3 = G 1 * G 2 * G 3 * G 4 * F 2 (where G 1 = G 1 , G 2 = G 2 , G 3 =< a, b >, G 3 =< c >, G 4 =< a, b >), in this case, p > p.
Directly from Lemma 6.2, we have

Lemma 6.4 Let G G 1 * • • • * G p * F k , Φ ∈ Aut(G) such that the free factor system {[G 1 ], . . . , [G p ]} is invariant under Φ n
for all integer n > 0. Then there exist another free factor system {[ Ĝ1 ], . . . , [ Ĝq ]} of G, such that Φ is fully irreducible relative to {[ Ĝ1 ], . . . , [ Ĝq ]}.

Proof: By the Lemma 6.2, for any given free factor system, a strictly larger free factor system has a less (k, p). And there are only finitely many (k , p )s that are smaller than (k, p). This implies that, by finitely many step (each step

subgroup H i is hyperbolic relative to subgroups H i,1 , . . . , H i,r i , then, G is hyperbolic relative to {H i,j , i ≤ s, j ≤ r i }.
This allows, in many cases, to reduce the study of the relative hyperbolicity of G φ Z to that of G i φ i Z, for φ i the composition of the restriction of φ to G i with a conjugation by an element of G sending φ(G i ) on G i .

Indeed, if one applies Proposition 6.6, and if the pair (q, r) thus obtained is such that r ≥ 2 or q +r ≥ 3, then one can use Theorem 4.34 in conjunction with Proposition 6.7 in order to reduce our problem to that of Ĝi φ i Z.

However there are two particular cases in this descent (the case r = 1, q = 0 and the case r = 0, q = 2), where we cannot apply Theorem 4.34. We thus focus on them in the following two statements.

Proposition 6.8 If G = G 1 * G 2 and if φ ∈ Aut(G, ([G 1 ], [G 2 ]))
is atoroidal, and assume that each G i φ i Z is hyperbolic relative to the mapping tori of certain free factors of G i . Assume also that each maximal parabolic subgroup of G i φ i Z has a non-trivial central element.

Then G φ Z is hyperbolic relative to the peripheral subgroups of G 1 φ 1 Z and G 2 φ 2 Z.

Proposition 6.9 If G = G 1 * Z and if φ ∈ Aut(G, ([G 1 ]))
is atoroidal, and assume that G 1 φ 1 Z is hyperbolic relative to the mapping tori of certain free factors of G 1 . Assume also that each maximal parabolic subgroup of G 1 φ 1 Z has a non-trivial central element.

Then G φ Z is hyperbolic relative to the peripheral subgroups of G 1 φ 1 Z.

We will prove these two Proposition shortly, but let us present the main application here.

We consider a descent of free product systems by applying telescopically Proposition 6.6 to each G i with φ i . Precisely, we equip them with the free product decomposition obtained by their action on the original Bass-Serre tree of G. And we extract by Proposition 6.6 another free factor system of each G i on which φ i is fully irreducible. We do again on the factors of this later one. Note that the descent terminates by Grushko's uniqueness theorem for G.

Thus, using telescopically Proposition 6.6, and using either Theorem 4.34 with Proposition 6.7, or directly one of the two previous Propositions 6.8, 6.9, we obtain theorem 6.10, which contains Brinkmann's original result.

Theorem 6.10 Let G G 1 * • • • * G p * F k , and let φ ∈ Aut(G, ([G 1 ], . . . , [G p ])) be atoroidal.
Assume that, for each i, there exists g i ∈ G conjugating φ(G i ) to G i . Assume that for each i there exists a non-trivial element of

G i adg i •φ| G i Z that is central in G i adg i •φ| G i Z.
Then G φ Z is relatively hyperbolic, relative to the collection {G i adg i •φ| G i Z, i ≤ p}. . We see F a,b as G 1 , so φ is atoroidal (for the given free factor decomposition). The restriction of φ on G 1 is well known (fully irreducible, pseudo-Anosov), the element t representing φ will have its square commute with [a, b] = aba -1 b -1 , thus necessarily parabolic in any relative hyperbolic structure, but as well t -2 ct 2 = c which means that c is also in the same parabolic group. The legitimate parabolic group seems to be t, [a, b], c which is not a mapping torus of a free factor. We now need to prove the two proposition 6.8 and 6.9.

The two elementary cases

We begin by Proposition 6.8. We may freely change our automorphism φ whithin its outer automorphism class, since it does not change neither the assumptions, nor the isomorphism class of the group obtained. Thus, we may assume that φ(G 1 ) = G 1 , and that φ(G 2 ) = G 2 at the same time.

A look at presentations of the groups reveals that Proof: Assume that both t 1 and t 2 are in parabolic subgroups of (G 1 φ 1 t 1 ) and (G 2 φ 2 t 2 ). Then, there are non-trivial elements a ∈ G 1 and b ∈ G 2 that respectively commute with t 1 and t 2 (either because they are in the center of a maximal parabolic subgroups, or because t i is in the center of a maximal parabolic subgroups).

G φ Z (G 1 φ 1 t 1 ) * t 1 = t 2 (G
Thus, ab is preserved by conjugation by t, therefore is preserved by φ. But ab is easily seen to be a hyperbolic element of the free product G 1 * G 2 , thus contradicting that φ is atoroidal. This proves the lemma. Moreover, each t i is a generator of the maximal cyclic subgroup that it contains. Therefore one can use the Combination Theorem [9, Main theorem 0.1, case 3], (possibly with a classical [START_REF] Dahmani | Combination of convergence groups[END_REF]Lemma 4.4] in order to turn a hyperbolic t i into a parabolic element) to get the desired result.

Therefore Proposition 6.8 is proved. We proceed and prove Proposition 6.9. Let G = G 1 * f .

The argument is rather similar. One may first assume that φ(G 1 ) = G 1 , and that there is g ∈ G 1 such that φ(f ) = f ±1 g. Notice that we may assume that g = 1, otherwise, the previous case applies. Up to taking the square of φ (thus passing to a finite index subgroup, we may assume that φ(f ) = f g.

Then a presentation of the groups reveals that, for g such that φ(f

) = f ±1 g, G φ t (G 1 φ 1 t ) * t , tg -1
Indeed, one can write

G φ t (G 1 * f ) φ t which has presentation G φ t G 1 , f, t | t -1 g 1 t = φ(g 1 ), t -1 f t = f g G 1 , f, t | t -1 g 1 t = φ(g 1 ), f -1 t -1 f = gt -1
We now check: Lemma 6.12 Either t or tg -1 is not parabolic in G 1 φ 1 t .

Proof: If both are, then by the the proof of the previous lemma, there are two free factors of G 1 , say A, B, such that there exist non trivial element a ∈ A and b ∈ B with a normalized by t and b by tg -1 . Hence φ(a) = a. Since f -1 tf = tg -1 , it means that f conjugates t, A into tg -1 , B .

Consider the element x = af bf -1 , this is a hyperbolic element in G (because a and f bf -1 fixes two different vertices in the Bass Serre tree), but φ(x) = a(f g)(t -1 bt)(g -1 f -1 ) = af (tg -1 ) -1 b(tg -1 )f -1 = x. This violates the assumption that φ is atoroidal. Thus the lemma is proved.

Finally, one can use again the Combination Theorem [9, Main theorem 0.1, case 4], (again possibly with a classical [9, Lemma 4.4]) to conclude. Proposition 6.9 is proved.

Conjugacy problem

In this section we recall what is the conjugacy problem in a group, and in particular in a group of automorphisms. In all this thesis we have considered automorphism groups of some particular groups (free groups, free products). We could discuss a little the case of automorphisms of free abelian groups. Let G be Z m . Then Aut(G) is actually GL(m, Z).

The conjugacy problem in this case (i.e in GL(m, Z)) is a natural problem. It can be understood in two different ways. The first way, is to classify when matrices in GL(m, Z) are conjugate by a matrix in GL(m, Z). The second way is to find an algorithm that answer the question whether two given matrices are thus conjugate.

One recognise a classical situation where one tries to find out whether two matrices are conjugate. However, we are not working over a field (like R, C or Q) but over a ring Z, and the tools of linear algebra (often relying on the principality of K[X]) are not helping us.

The classification of conjugacy classes in GL(m, Z) (for arbitrary m) is settled by a theorem of Latimer and MacDuffee of 1936. It states the following. Given an irreducible (over Z) monic polynomial P ∈ Z[X] (with P (0) = 1), the conjugacy classes of matrices in GL(m, Z) with characteristic polynomial P are in bijection with the ideal classes of Z[X]/(P ). A bijection is given by the following. First, one chooses a root ξ of P in Q and for every matrix M with characteristic polynomial P , one selects an eigenvector v M of M for ξ, whose entries are in Z[ξ], and one selects the ideal class of the ideal generated by the entries of v M . The theorem of Latimer Mac-Duffee says that this is well defined as an ideal class (i.e. up to multiplication by an element of the ring), two matrices give the same class if and only if they are conjugate, and every ideal of Z[ξ] is thus obtained.

For non-irreducible characteristic polynomial, the discussion is slightly more involved. However, it is not clear at all how to use this for algorithmic purpose, even in the case of irreducible polynomials.

The second way, is the algorithmic way. Let us mention that an algorithmic solution to the conjugacy problem in GL(m, Z) was given by Grunewald in 1977 (see [START_REF] Grunewald | Solution of the conjugacy problem in certain arithmetic groups[END_REF]).

For the sake of illustration, let us repeat here our abstract way to tackle with the conjugacy problem in automorphisms groups, even if , in this case, it is not conclusive.

If G is a group, two automorphisms φ 1 and φ 2 are conjugate in Aut(G) if and only if the two semi-direct products G φ 1 Z and G φ 2 Z are isomorphic by an isomorphism sending G on G and the generator t 1 of Z acting as φ 1 , to the generator t 2 of Z acting as φ 2 . (See Lemma 7.7)

Let us try to apply it to the case of a group G that is Z m . We should consider the semidirect products G M = Z m M Z (for M ∈ GL(m, Z), and m ≥ 2) for the two matrices. We certainly cannot expect any relatively hyperbolic structure, since these groups contain normal abelian subgroups (by definition). However, we can see that, if the matrix M has at least one eigenvalue of modulus different of 1, then the group G M posseses only one normal subgroup isomorphic to Z m by which the quotient is infinite cyclic. This applies in particular if the matrix is irreducible, and of infinite order in GL(m, Z). Indeed here is an argument: consider

H 1 , H 2 two different normal subgroups of G M abelian of rank m ≥ 2, such that G M /H i Z.
Then H 1 ∩ H 2 must be isomorphic to Z m-1 (otherwise H 2 injects in the quotient by H 1 ). Since H 1 = H 2 , we have an element outside H 1 that centralises a hyperplane (of rank m-1) H in H 1 . This element has the form vt r where v ∈ Z m and r ≥ 1. But for all w ∈ H , v and w commute (because they are in H 1 which is abelian), so it means that M r (w) = w, which means that M r is the identity on H . So M r has eigenvalue 1 with multiplicity m -1. Thus all eigenvalues (in Q) of M , except at most one, have modulus 1. Since M has determinant 1, it must have all its eigenvalues of modulus 1.

However, even in such a situation, it does not seem easier to check whether M 1 and M 2 are conjugate, because the isomorphism problem for the groups G M i falls in the metabelian case, and nothing seems gained. Notice that the isomorphism problem for polycyclic groups was solved by Segal after heavy development of the theory of orbit problems for arithmetic groups by Grunewald and Segal (see [START_REF] Grunewald | The solubility of certain decision problems in arithmetic and algebra[END_REF]), after the solution of Segal of the conjugacy problem in GL(m, Z).

The case of Out(F n )

In this section, we introduce the solvability of the conjugacy problem of some automorphisms of free group, which is solved by Dahmani in [START_REF] Dahmani | On Suspensions and Conjugacy of Hyperbolic Automorphisms[END_REF]. To be more exact, let F = F n be a free group of rank n, φ 1 , φ 2 be two atoroidal automorphisms of F (namely, φ k i ([g]) = [g] for all i ∈ {1, 2}, k ∈ Z + and for all g ∈ F \ {1}), we show that the problem is decidable whether or not φ 1 and φ 2 is conjugate in Out(F ) (The full proof is shown in [START_REF] Dahmani | On Suspensions and Conjugacy of Hyperbolic Automorphisms[END_REF] by Dahmani).

To work out this conjugacy problem, we recall that these two automorphisms are conjugate in Out(F ) if and only if there is an isomorphism Ψ : F φ 1 t 1 → F φ 2 t 2 that sends F on F and t 1 on t 2 F (see Lemma 3.1 of [START_REF] Dahmani | On Suspensions and Conjugacy of Hyperbolic Automorphisms[END_REF]).

In [START_REF] Brikmann | Hyperbolic Automorphisms of Free Groups[END_REF], Brinkmann proved that for any automorphism φ of a free group F , F φ Z is Gromov hyperbolic if and only if φ is atoroidal. In order to check atoroidality, one needs the following two parallel steps. The first step is to check the preserved conjugacy class by enumerating elements in F and their images by φ k , which stops when φ is found to be atoroidal by definition. The second step is to check the hyperbolicity of F φ Z by the procedure given by Papasoglu in [START_REF] Papasoglu | An algorithm detecting hyperbolicity. Geometric and computational perspectives on infinite groups[END_REF], which stops when F φ Z is found to be hyperbolic. By Brinkmann, exactly one of these two step will stop, and thus one can decide whether or not the given automorphism is indeed atoroidal.

In [START_REF] Sela | The isomorphism problem for hyperbolic groups. I[END_REF], [START_REF] Dahmani | The isomorphism problem for toral relatively hyperbolic groups[END_REF] and [START_REF] Dahmani | The isomorphism problem for all hyperbolic groups[END_REF], the isomorphism problem of hyperbolic groups is proved to be solvable. If there is no isomorphism Ψ : F φ 1 t 1 → F φ 2 t 2 , φ 1 and φ 2 are certainly not conjugate. Otherwise, we still needs to check the orbit problem of automorphism group of the semi-direct product: to verify whether or not an automorphism Ψ : F φ 1 t 1 → F φ 2 t 2 , φ 1 and φ 2 satisfies Ψ(F ) ⊂ F and Ψ(t 1 ) ∈ t 2 F .

In [START_REF] Dahmani | On Suspensions and Conjugacy of Hyperbolic Automorphisms[END_REF], Dahmani proved that if G is a finitely generated group, and if G φ 1 Z, G φ 2 Z are hyperbolic groups, then this orbit problem in Out(G) can be turned into Diophantine equation problems (see Section 2.1 of [START_REF] Dahmani | On Suspensions and Conjugacy of Hyperbolic Automorphisms[END_REF]), which is decidable. Then in the proof of Theorem 3.2 of [START_REF] Dahmani | On Suspensions and Conjugacy of Hyperbolic Automorphisms[END_REF], Dahmani gave a method to determine whether or not two given automorphisms of G are conjugate in Out(G), if G is a free group and the given automorphisms are atoroidal.

The atoroidal-toral case

In this section, we fix the setting of a free product

H = A 1 * • • • * A k * F p ,
where F p is a free group of rank p, and where each A i is a finitely generated group. Let Aut(H, (A 1 , . . . , A k )) be the subgroup of Aut(H) of all automorphisms φ such that φ(A i ) is conjugate to A i for all i.

Lemma 7.1 If each A i is freely abelian, whose rank is at least 2, and rank(A i ) = rank(A j ) for all i = j, then Aut(H, (A 1 , . . . , A k )) = Aut(H) Proof: We only have to check that Aut(H, (A 1 , . . . , A k )) ⊃ Aut(H). For any φ ∈ Aut(H), From Kurosh subgroup theorem, φ(A i ) can be written in the form of free product of the conjugate of subgroups of A j and a free group. Since the rank of each A i is at least 2, it does not split into free products, which implies that φ(A i ) is conjugate to some A j . As φ is an automorphism, φ(A i ) are conjugate to A i in Out(G), equivalently, φ ∈ Aut(H, (A 1 , . . . , A k )).

Lemma 7.2 One can define a map ρ

i : Aut(H, (A 1 , . . . , A k )) → Out(A i ) as follows: if φ ∈ Aut(H) is an automorphism such that φ(A i ) = h -1 i A i h i , then ρ i (φ) = [ad h i •φ| A i ],
where ad h i (x) = h i xh -1 i .

Proof: One can check by computation of the definition that ad h i • φ| A i maps A i to A i . What remains is to check that definition is irrelevant to the choice of h i . Suppose there is another

h i = h i such that φ(A i ) = h -1 i A i h i , then ad h i • φ| A i and ad h i • φ| A i only differ by conjugation of h i h -1 i , which is in the normalizer of A i (because φ ∈ Aut(H, (A 1 , ..., A k ))).
We now claim that h i h -1 i ∈ A i , for this , we only have to prove that A i = N H (A i ), where N H (A) is the normaliser of A i in H: consider the Bass-Serre Tree T of H, let x i be the vertex that is fixed by A i . For any element h ∈ N H (A i ), A i hx i = hA i x i = hx i , meaning A i also fixes hx i . But in Bass-Serre Tree, x i is the only vertex that is fixed by A i , thus

hx i = x i . Since the stabilizer of x i is A i , we have h ∈ A i , A i ⊃ N H (A i ).

By the definition of normalizer, one can verify that

A i ⊂ N H (A i ). Hence A i = N H (A i ).
By previous analysis,

h i h -1 i ∈ A i , then ad h i • ad -1 h i ∈ Inn(A i ), therefore [ad h i • φ| A i ] = [ad h i • φ| A i ] in Out(A i ).
The map is well-defined.

Remark 7.3 By the proof of the previous lemma, the conjugation element h i is unique (up to a left-multiplication by an element of A i ), hence we have the following definition.

Definition 7.4 (Toral automorphisms) Let

A i be abelian, φ ∈ Aut(H, (A 1 , . . . , A k )) is said to be toral if for all i, [ad g i •φ| G i ]
is the identity on the free factor G i , where g i is the element in H such that φ(A i ) = g -1 i A i g i .

Definition 7.5 (Toral relatively hyperbolic group) A group H is said to be toral relatively hyperbolic if the group is torsion free, relatively hyperbolic, and with abelian parabolic subgroups.

Recall that we have already define relatively hyperbolic automorphisms (see Definition 4.5), thus we have the following: Proposition 7.6 If each A i is abelian, H is torsion free, and the automorphism φ ∈ Aut(H, (A 1 , . . . , A k )) is a toral relatively hyperbolic automorphism, then H φ Z is toral relatively hyperbolic.

Proof: Since H is torsion free, so is H φ Z. And H φ Z is relatively hyperbolic as the automorphism is relatively hyperbolic. We only have to find the abelian parabolic subgroups.

Because φ is toral, [ad g i • φ| G i ] is trivial for all i (where g i is the element such that φ(A i ) = g -1 i A i g i ). Thus there exist some b i ∈ H φ Z, such that b i commutes with every element in A i in the semidirect product for every i ∈ {1, . . . , k}. Since each A i is abelian, we have that the subgroup generated by A i and b i is a abelian parabolic subgroup of H φ Z.

By the definition, the set of toral automorphisms forms a subgroups of Aut(H, (A 1 , . . . , A k )).

But, the set of toral relatively hyperbolic automorphisms does not form a subgroup in Aut(H, (A 1 , . . . , A k )): this set does not contain the identity automorphism (let Z = t , then H Id Z is not relatively hyperbolic, because t ∈ Z(H Id Z), which violates the fineness property of relative hyperbolicity).

In the previous sections (more precisely, see Theorem 4.34, Theorem 6.5, and Theorem 6.10), we have shown that if φ is atoroidal with some other good property (for example, full irreduciblility, or more generally, with central condition), then it is relatively hyperbolic.

Given an automorphism φ in Aut(H, (A 1 , . . . , A k )), by computation of ad h i • φ| A i one can decide whether it is toral. By the important result worked by Dahmani and Guirardel (see Corollary 0.2 of [START_REF] Dahmani | Finding relative hyperbolic structures[END_REF] and Theorem 2 of [START_REF] Dahmani | Presenting Parabolic Subgroup[END_REF] ), one can decide whether or not it is relatively hyperbolic.

In the following part of the thesis, we mainly focus on the toral relatively hyperbolic automorphisms, and deal with the conjugacy problem between two such given automorphisms.

Basic Properties on Conjugacy Problem

We first denote here by H 1 (G) the abelianisation of G for any given group G, and for an element (or a subgroup) g in G, denote by ḡ the corresponding element (or subgroup) of g in H 1 (G). We introduce a lemma for the beginning, in which the 1.1 and 2.1 are well-known facts.

Lemma 7.7 (see Lemma 3.1 of [START_REF] Dahmani | On Suspensions and Conjugacy of Hyperbolic Automorphisms[END_REF]) Given H a finitely presented group, we have:

1.Each of these two statements is equivalent to say that φ 1 , φ 2 ∈ Aut(H) are conjugate in Aut(H):

• 1.1.there exist an isomorphism Ψ : 

H φ 1 t 1 → H φ 2 t 2 such that Ψ(H) ⊂ H, Ψ(t 1 ) = t 2 ; • 1.2.

Proof:

Statement 2 of this lemma is concluded and proven in the Lemma 3.1 of [START_REF] Dahmani | On Suspensions and Conjugacy of Hyperbolic Automorphisms[END_REF]. And by the proof in Lemma 3.1 of [START_REF] Dahmani | On Suspensions and Conjugacy of Hyperbolic Automorphisms[END_REF] also shows that statement 1.1 and 1.2 are equivalent.

Here we show that statement 1.1 is equivalent to say that

φ 1 , φ 2 ∈ Aut(H) are conjugate in Aut(H): if φ 1 = α -1 • φ 2 • α for some α ∈ Aut(H), we extend α to α : H * t 1 → G 2 by sending t 1 to t 2 . This induces a map ᾱ : H φ 1 t 1 → H φ 2 t 2 which map h ∈ H to α(h) and map t 1 to t 2 , as α(h) = ᾱ(h) = ᾱ(t 1 φ 1 (h)t -1 1 ) = t 2 φ 2 α(h)t -1
2 , the map is welldefined (and the similar analysis show that it is injective). This ᾱ is the isomorphism we are looking for.

Conversely, if there is Ψ :

G 1 → G 2 sending H to H and t 1 to t 2 . Denote by α = Ψ| H . For all h ∈ H, in G 1 , we have t -1 ht = φ 1 (h), thus in G 2 , t -1 2 α(h)t 2 = α(φ 1 (h)), meaning, φ 2 • α = α • φ 1 , hence φ 1 and φ 2 are conjugate in Aut(H).
In the paper of Dahmani and Groves (see Theorem 7.1 of [START_REF] Dahmani | The isomorphism problem for toral relatively hyperbolic groups[END_REF]), the isomorphism problem of toral relatively hyperbolic groups is proven to be solvable.

Complements on Bass-Serre theory: the automorphisms

We will describe more precisely how automorphisms of a group can be read on a graph-of-group decomposition. We refer to [START_REF] Bogopolski | Introduction to Group Theory[END_REF].

Given two graphs of groups (Y, {G

v , v ∈ V (Y )}, {G e , e ∈ E(Y )}) and (Y , {G v , v ∈ V (Y )}, {G e , e ∈ E(Y )}), an iso- morphism of graph of groups Ψ :(Y, {G v , v ∈ V (Y )}, {G e , e ∈ E(Y )}) → (Y , {G v , v ∈ V (Y )}, {G e , e ∈ E(Y )})
is a tuple (Ψ Y , ψ v , ψ e , γ e ) satisfying the following conditions:

• 1. Ψ Y : Y → Y is an isomorphism between two underlying graphs;

• 2. for every vertex v, and for every edge e, ψ v :

G v → G Ψ Y (v) , ψ e = ψ ē : G e → G Ψ Y (e)
are isomorphisms;

• 3. for each e, γ e ∈ G Ψ Y (t(e)) ,

ψ v • i| e = ad γ -1 e • i| Ψ Y (e) • ψ e
where ad γe : x → γ e xγ -1 e is an inner automprohism.

If we denote by β e : G e → G t(e) , then the third point implies that:

ψ v • β e (G e ) = ψ v (G v ) = G Ψ Y (v) = ad γ -1 e (G Ψ Y (v) ) = ad γ -1 e • β Ψ Y (e) (G Ψ Y (e) ) = ad γ -1 e • β Ψ Y (e) • ψ e (G e ) Assume that (Y, {G v , v ∈ V (Y )}, {G e , e ∈ E(Y )}) equals (Y , {G v , v ∈ V (Y )}, {G e , e ∈ E(Y )}).
Then isomorphism between them can be composed naturally (see [START_REF] Bass | Covering theory for graphs of groups[END_REF], 2.11), which gives the automorphism group of (Y, {G

v , v ∈ V (Y )}, {G e , e ∈ E(Y )}), denoted by Aut(Y, {G v , v ∈ V (Y )}, {G e , e ∈ E(Y )}).

The JSJ decompositions and JSJ Theorem

We recall the situation of a JSJ decomposition in a hyperbolic group, or a relatively hyperbolic group. We refer to [START_REF] Guirardel | JSJ decompositions of groups[END_REF]. Definition 7.8 Given a group G, a family of subgroups A of G, an A-tree is a tree together with a G action on it with edge stabilizers in A. Definition 7.9 An A-tree is referred to as universally elliptic if it is such a tree whose edge stabilizers are elliptic in every A-tree.

Recall that in the previous Section 2.9, we have already defined the tree domination to be a relation such that a subgroup elliptic in dominating tree is also elliptic in the dominated trees. Definition 7.10 (see the introduction of [START_REF] Guirardel | JSJ decompositions of groups[END_REF])(JSJ Decomposition) A JSJ decomposition (also called a JSJ tree) of a group H over a family of subgroup A is an A-tree T satisfying the following:

• 1. T is universally elliptic;

• 2. For any other universally elliptic tree T , T dominates T .

Using the above notations, the quotient, H\T is called a JSJ-splitting (also see [START_REF] Guirardel | JSJ decompositions of groups[END_REF]).

Given a JSJ tree T of the group G = H Z, there are 3 kinds of vertices:

• 1. rigid vertices: that cannot be further splitted, for such a vertex v, the vertex group

G v satisfies |Out(G v )| < ∞;
• 2. (QH) vertices: vertex groups are surface groups with boundaries;

• 3. elementary vertices: each vertex group G v is either parabolic or (virtually) cyclic, in toral relatively hyperbolic case, each G v is abelian.

Recall that the A-JSJ decomposition of a group is a JSJ decomposition of this group over a family of subgroup A.

For a vertex v in a graph of groups X, denote by v the corresponding vertex group. Let E v be the choice of an order on (oriented) edges adjacent to v, S(E v ) be the choice of a generating set of the edge groups. A marked peripheral structure of v, denoted by M P S(v) is the tuple of conjugacy classes of the images of these generating sets by the attaching maps. Denote by Out(v, M P S(v)) the subgoup of Out(v) that leaves M P S(v) invariant. Definition 7.11 (Hanging bounded Fuchsian groups) A group H is called a hanging bounded Fuchsian group if there is a finite normal subgroup K of H such that H/K is isomorphic to the fundamental group of a non-elementary hyperbolic compact 2-orbifold with boundary, by an isomorphism sending the images of the adjacent edge stabilizers on the boundary subgroups of the orbifold group.

In the following part of this thesis, we assume that the choice of order and generating sets are done.

If A is the family of infinite cyclic subgroups of G, we can consider A-trees, that we call Z-trees (where every edge stabilizers are Z).

For hyperbolic group, the JSJ theorem (Bowditch, Sella) states that any one-ended hyperbolic group admits a canonical Z-JSJ tree (or a Z-JSJ decomposition).

We then have the following theorem, which is proven by Dahmani and Guirardel. Proposition 7.12 (see Prop.3.1 of [START_REF] Dahmani | The isomorphism problem for all hyperbolic groups[END_REF] and Lemma 2.13 of [START_REF] Dahmani | On Suspensions and Conjugacy of Hyperbolic Automorphisms[END_REF]) Let G be a hyperbolic group with one end. Let (v, M P S(v)) be a vertex group of the Z-JSJ decomposition X of G, with the marked peripheral structure induced by X. If Out(v, M P S(v)) is infinite, then G admits a splitting with a hanging bounded Fuchsian vertex group.

For torsion-free relatively hyperbolic groups, we take A as the infinite elementary subgroups (infinite cyclic, or infinite parabolic). The JSJ theorem of Guirardel and Levitt (Corollary 9.20 of [START_REF] Guirardel | JSJ decompositions of groups[END_REF]) says that any one-ended toral relatively hyperbolic group admits a canonical A-JSJ tree (or A-JSJ decomposition).

A similar result as Proposition 7.12 holds for a relatively hyperbolic group G if one replace "Z-JSJ decomposition" by "A-JSJ decomposition" and replace "G admits a splitting with a hanging bounded Fuchsian vertex group" with "G admits a splitting vertex group that is either hanging bounded fuchsian or parabolic". The proof is the same.

By Dahmani and Groves (see [START_REF] Dahmani | The isomorphism problem for toral relatively hyperbolic groups[END_REF]), the canonical JSJ decomposition for toral relatively hyperbolic groups is proven to be computable.

The following Theorem, proven by Guirardel and Levitt (see Theorem 1.4 of [START_REF] Guirardel | Splittings and Automorphisms of Relatively Hyperbolic Groups[END_REF]), turns out to be instrumental in the later analysis of conjugacy problem in this thesis. Theorem 7.13 Let H be toral relatively hyperbolic and oneended. Then some finite index subgroup Out 1 (H) of Out(H) fits in the exact sequence:

1 → T → Out 1 (H) → P i=1 M CG 0 (Σ i ) × m j=1 GL r j ,n j (Z) → 1 (ES)
where T is finitely generated free abelian, M CG 0 (Σ i ) is the group of isotopy classes of homeomorphisms of compact surface Σ i mapping each boundary component to itself in an orientation-preserving way; GL r,n (Z) is the group of automorphisms of Z r+n fixing the first n generators.

Remark: In the above theorem, each M CG 0 (Σ i ) is the automorphism group of the corresponding (QH) vertex; each GL r,n (Z) is the automorphism of the corresponding elementary vertex, whare r is the rank of G v , and n is the rank of group generated by edges.

If one take element (M 1 , ...M m ) ∈ m j=1 GL r k ,n k (Z), and take each M CG 0 (Σ i ) = 1, then there is φ ∈ Out 1 (G) with a surjective map φ → (M 1 , ..., M m ), such that φ acts on each elementary vertex G v i by M i and that φ acts on each edge by identity.

From Theorem 7.13, in order to study an element φ ∈ Out 1 (G), we only need to know the twist in T, and how it acts on the vertex groups.

Lemma 7.14 If Y is a graph of groups with a finitely generated fundamental group G, such that every edge group is finitely generated, then every vertex group of it is also finitely generated.

Proof:

Take x 1 , ..., x m generators of the fundamental group G, and take their normal forms in the Bass group.

For any vertex group G v , denote by S v the set of all elements in G v that occurs in the normal forms, define H v = S v . By this definition, H v ≤ G v and H v is finitely generated.

Replace now each G v in Y with H v , we obtain a new graph of groups Y , which is a sub graph of groups. Then the fundamental group of Y is the subgroup of G, but since it contains all generators x 1 , ..., x m of G, we can deduce that the fundamental group of Y is exactly G (which is the fundamental group of Y). This implies that the vertex group of Y (which is H v ) equals the vertex group of Y (which is G v ). As H v is finitely generated, so is G v . Lemma 7.15 Let H = A 1 * ... * A k * F p be finitely generated, each A i be abelian, and B be a non-cyclic abelian subgroup of H. Then B is a subgroup of some A i for i = 1, ..., k.

Proof:

Let T be the Bass-Serre Tree of H. Consider two different non-trivial elements b, b ∈ B and their actions on the tree T . There are several cases of these two actions: For Case 1. b fixes a vertex and b fixes a line: In this case, we may assume without loss of generality that b ∈ g -1 A 1 g for some g ∈ H (because the stabilizer of the vertex fixed by b is conjugate to one of the A i s). Since B is abelian, b -1 bb = b, and hence it is also in g -1 A 1 g. Thus b ∈ g -1 A 1 g ∩ b g -1 A 1 gb -1 . Due to the assumption that b fixes a vertex, and the fact that both g -1 A 1 g and b g -1 A 1 gb -1 are the stabilizers of a unique vertex in the Bass-Serre Tree, it follows that g -1 A 1 g = b g -1 A 1 gb -1 . If g = 1, then we can deduce that b ∈ A 1 , which violates the assumption that b fixes a line, hence g = 1. Let v be the vertex fixed by A 1 , then g -1 A 1 g fixes g -1 v, while b g -1 A 1 gb -1 fixes b g -1 v. As b = 1 acts on the tree by translation, g -1 v = b g -1 v, again contradicts the fact that g -1 A 1 g = b g -1 A 1 gb -1 . This analysis shows that Case 1 (and the same for Case 3) cannot be true, and similarly, if both b and b fix a line (or a vertex), these lines (or vertices) that are fixed by them cannot be different (by the similar argument). Thus we can deduce that there are only two possibilities: Now the only possibility for b and b is that they fix the same vertex. Notice that H is the free product and that each A i is abelian, we conclude that B is a subgroup of some A i for i = 1, ..., k. Lemma 7.16 (see Lemma 2.6 and Lemma 2.7 of of [START_REF] Dahmani | On Suspensions and Conjugacy of Hyperbolic Automorphisms[END_REF]) Let G = H Z, let T be the Bass-Serre G-tree of a reduced splitting of G. Then the stabilizer in G of any given vertex in T is a suspension of its stabilizer in H, and the stabilizer in G of any given edge in T is a suspension of its stabilizer in H.

• (i).
Lemma 7.17 (see Lemma 2.10 of of [START_REF] Dahmani | On Suspensions and Conjugacy of Hyperbolic Automorphisms[END_REF]) For any finitely generated group H that has infinitely many ends, any finitely generated normal subgroup has finite index. Lemma 7.18 Assume that each A i is abelian and G = H Z toral relatively hyperbolic. Then there is no (QH)-vertex in the JSJ-splitting (equivalently, no vertex group is free).

Proof: Let T be a Z-JSJ tree, let X, Y be the quotient X = G\T , Y = H\T respectively which are graphs of groups, and let H = A 1 * • • • * A k * F p . Since edge groups in X are abelian, edge groups in Y (which are normal subgroups of the edge groups in X) are also abelian. From Lemma 7.15, any non-cyclic abelian subgroup in H is a subgroup of a free factor of H, the edge group in Y are subgroups of some A i . Note that A i is isomorphic to Z N for some N , and a subgroup of Z N has finite basis. This implies that edge group in Y are finitely generated, so is vertex group in Y by Lemma 7.14. While the vertex group in Y is a infinite index normal subgroup of the corresponding vertex group of X, by Lemma 7.17, no vertex group in X is free.

Conjugacy Problem for Toral Relatively Hyperbolic Automorphisms

In this section we analyse and give a complete answer to the conjugacy problem of two given toral relatively hyperbolic automorphisms of H = A 1 * ... * A k * F p . The isomorphism problem of toral relatively hyperbolic groups is proven to be solvable (see Theorem 7.1 of [START_REF] Dahmani | The isomorphism problem for toral relatively hyperbolic groups[END_REF]). Assume that there is such an isomorphism Ψ sending G 1 = H φ 1 t 1 to G 2 = H φ 2 t 2 (otherwise, if there is no such isomorphism, then φ 1 and φ 2 are not conjugate). Thus by Lemma 7.7, if Ψ satisfies statement 1.1 (or, respectively, statement 2.1) in Lemma 7.7, then φ 1 and φ 2 are conjugate in Aut(H) (or respectively in Out(H)).

of M in the abelianisation. If the abelianisation of η fits the orbit problem, denote by ξ the corresponding the solution in T. We can write ξ in the form DT n 1 e 1 ...DT ns es . Then the corresponding element η ∈ Out 1 (H 1 (H φ 2 t 2 )) can be written as M DT The previous lemma provides the solvability for conjugation problem if η ∈ Out 1 (H φ 2 t 2 ): if there is such a solution, then we are done; if not, we still need to proceed as follows.

As Out 1 (H φ 2 t 2 ) is a subgroup of Out(H φ 2 t 2 ) of finite index, and that coset representatives of Out 1 (H φ 2 t 2 ) in Out(H φ 2 t 2 ) are computable, denote by {h 1 , . . . , h u } the set of these cosets (h i = h j for i = j). Then we can reproduce the process in the proof of last lemma to decide whether or not there is ξ ∈ T such that some η ∈ h i Out 1 (H φ 2 t 2 ) satisfies statement 1.2 in Lemma 7.7 (when consider conjugacy problem in Aut(H)) or satisfies statement 2.2 in Lemma 7.7 (when consider conjugacy problem in Out(H)). Once again, we obtain Diophantine equations. If for some h i , the Diophantine
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 1 Figure 1: Four graphs of groups whose fundamental groups are isomorphic to G = Z 2 * Z 3 * Z 4 * F {a,b,c} (edge groups are all trivial).
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 23 representative map of an automorphism) [[21], Section 8.1] For T ∈ G and Φ ∈ Aut(G, G), we say that a map f : T → T represents Φ on T if for any g ∈ G and t ∈ T , the equation f

Lemma 2 . 4 (

 24 [START_REF] Francaviglia | Stretching factors, metrics and train tracks for free products[END_REF], Lemma 4.2) Given any T ∈ G and Φ ∈ Aut(G, G), there exist a map f : T → T representing Φ on T . Moreover, if f 1 : T → T, f 2 : T → T are 2 different maps representing Φ on T , they coincide on non-free vertices.

Lemma 3 . 5

 35 Given a group G with a free product decomposition G = G 1 * ... * G p * F k and given Φ ∈ Aut(G, G). The following two statements are equivalent:

Theorem 3 .

 3 [START_REF] Dahmani | On suspensions, and conjugacy of a few more automorphisms of free groups[END_REF] (see Theorem 8.18 of[START_REF] Francaviglia | Stretching factors, metrics and train tracks for free products[END_REF]) If Φ ∈ Aut(G, G) is irreducible, then there exist T ∈ G and f : T → T representing Φ ∈ Aut(G), such that f is a train track map.

Definition 4 . 1

 41 (H-coned graph) The H-coned graph Γ H S (G) is a graph obtained from Γ S (G) by adding a vertex v(gH i ) for each left coset gH i and adding an edge of length1 2 between v(gH i ) and each v for v ∈ Γ S (G) ∩ gH i . Definition 4.2 Given a group G and φ ∈ Aut(G), we say that φ is a hyperbolic automorphism of G, if G φ Z is Gromov-hyperbolic.Definition 4.3 (H-word metric, relatively hyperbolic group)The H-word metric | • | H is the word-metric for G equipped with generating set S H = S ∪ (∪H i ) where ∪H i is the union of all H i in H;

Definition 4 . 6

 46 Let T, T be a pair of metric trees in G. Let α : T → T and α : T → T be G-equivariant Lipschitz homotopy equivalences between these trees.

Lemma 4 .

 4 10 ([21],Lemma 8.16) If f : T → T is a train track map representing an irreducible automorphism Φ, then there is a constant λ such that l T (f (e)) = λl T (e) for all edge e in T after a re-scaling of edges.

Lemma 4 .

 4 [START_REF] Dahmani | The isomorphism problem for toral relatively hyperbolic groups[END_REF] Let G be a group with free product decomposition G = G 1 * ... * G p * F k , Φ be an automorphism of G relative to the free factor system {[G 1 ], . . . , [G p ]}. Assume that either k ≥ 2 or p + k ≥ 3 and that Φ is fully irreducible. Let T ∈ G, and f : T → T be a train track representative for φ on T . Then the growth rate of f is strictly larger than 1.

Lemma 4 .

 4 [START_REF] Golowin | Über die Automorphismengruppen der freien Produkte[END_REF] Let G be a group with free product decomposition G = G 1 * ... * G p * F k , Φ be an automorphism of G relative to the free factor system {[G 1 ], . . . , [G p ]}. Assume that either k ≥ 2 or p+k ≥ 3 and that Φ is fully irreducible and atoroidal. Let T ∈ G, f : T → T be a train track representative for φ on T . Then for any given element h hyperbolic in G, any fundamental segment τ of h in T , and for any C > 0, there is an integer N > 0 such that l T (f N (τ )) > C.

Lemma 4 .

 4 [START_REF] Guirardel | JSJ decompositions of groups[END_REF] Let G be a group with a free product decomposition G = G 1 * ... * G p * F k , T ∈ G, Φ be an automorphism of G relative to the free factor system {[G 1 ], . . . , [G p ]}. Assume that either k ≥ 2 or p + k ≥ 3 and that Φ is fully irreducible.

Corollary 4 .

 4 [START_REF] Claiborne | A correspondence between classes of ideals and classes of matrices[END_REF] Let G be a finitely generated group with a given free product decomposition G G1 * ... * G p * F k (where k ≥ 2 or p + k ≥ 3), H 0 = {G 1 , ..., G p }. If Φ ∈ Aut(G,G) is fully irreducible and atoroidal, then Φ is hyperbolic relative to H 0 .

Theorem 4 .

 4 [START_REF] Denis | Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems[END_REF] Let G be a finitely generated group with a given free product decomposition G G1 * ... * G p * F k (where k ≥ 2 or p + k ≥ 3), let H 0 = {G 1 , ..., G p }, assume Φ ∈ Aut(G, G) is fully irreducible and atoroidal. Then G φ Z is hyperbolic relative to the mapping-torus of H 0 .
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 51 Whitehead graphs) Let G be a group with free product Decomposition G = G 1 * ... * G p * F k , Φ ∈ Aut(G, G), f : T → T be a train track map representing Φ. For any vertex v ∈ V (T ) in the tree, we define the Whitehead graph W h T (v, f ) as follows:

  It is not so clear to us what can happen if one drops the condition on central elements. Here is an embarrassing example. G = F 3 = F a,b * c and φ sends a on b, b on ab, and c on caba -1 b -1

7. 1

 1 Two cases from the literature 7.1.1 The linear case

• 1 .

 1 b fixes a vertex and b fixes a line; • 2. Both b and b fix a vertex; • 3. b fixes a vertex and b fixes a line; • 4. Both b and b fix a line.

  b and b fix the same vertex; • (ii). b and b fix the same axis. If possibility (ii) holds, then by Euclid algorithm, one can find a segment L on the axis and integer n 1 , n 2 such that n 1 L and n 2 L are fundamental segment of b and b respectively. In terms of the group B, we find an element b (that is generated by b and b ) such that b and b are multiples of b, which implies that B is cyclic.

  {G e , e ∈ E(Y )}, {α e , e ∈ E(Y )}) consists of a graph Y (called the underlying graph), a group (referred to as vertex group) G v for each vertex v of V (Y ), a group G e (called edge group) G e for each edge e of E(Y ), such that G e = G ē for all e ∈ E(Y ), and a monomorphism (an injective homomorphism) α e : G e → G i(e) for each edge e An element in the form g 1 t e 2 g 2 ...t en g n (where e 2 .

	in E(Y ).
	For a given graph of groups
	Y = (Y, {G v , v ∈ V (Y )}, {G e , e ∈ E(Y )}, {α e , e ∈ E(Y )})
	let ( * v∈V (Y ) G v ) * F E(Y ) be the free product of all vertex groups,
	and of the free group over the set of edges of Y .
	We define the Bass group B(Y) to be the quotient group
	of ( * v∈V (Y ) G v ) * F E(Y ) by the normal closure of
	{t -1 e α e (g)t e (α ē(g)) -1 , t e t

ē : e ∈ E(Y ), g ∈ G e }.

  2 φ 2 t 2 ) . Lemma 6.11 Either t 1 or t 2 (or both) is not in a parabolic subgroup of respectively G 1 φ 1 t 1 and G 2 φ 2 t 2 .

  n 1 e 1 ...DT ns es . The question is turned into the existence problem of n 1 , ...n s such that • (for conjugacy problem in Out(H)): η( hi ) ∈ H for all i = 1, ..., q, η( t1 ) ∈ t2 H • (for conjugacy problem in Aut(H)): η( hi ) ∈ H for all i = 1, ..., q, η( t1 ) = t2 Once again, quotient each side of above equations by H, one can get Diophantine equations. And Diophantine equation problem is decidable. These Diophantine equations have a solution if and only if there is ξ ∈ T such that some η ∈ Out 1 (H φ 2 t 2 ) satisfies the orbit problem in Out 1 (H φ 2 t 2 ).

equations have a solution, then the two given automorphisms are conjugate in Out(H) (or in Aut(H) respectively); if the Diophantine equations do not have a solution for any h i , then the two given automorphisms are not conjugate in Out(H) (or in Aut(H) respectively).

If we assume that H = A 1 * ... * A k * F p , with each A i free abelian, and that φ 1 and φ 2 are two toral atoroidal automorphisms of H, then φ 1 , φ 2 satisfies the central condition, and by Theorem 6.10, H φ 1 Z, H φ 2 Z are relatively hyperbolic. Furthermore, φ 1 and φ 2 are toral relatively hyperbolic.

From above Lemmas and analyses, one can conclude the following: Theorem 7.22 Given H = A 1 * ... * A k * F p , with each A i free abelian, there is an algorithm to decide, given φ 1 and φ 2 two toral atoroidal automorphisms, whether they are conjugate in Aut(H) (and in Out(H)).

(in this case, there is a larger free factor system that is also Φ-invariant). We deduce that, if Φ is an atoroidal automorphism of G such that the free factor system {[G 1 ], . . . , [G p ]} is invariant under Φ n for all integer n > 0, then there is a larger free factor system to which Φ is fully irreducible and atoroidal, and we can even use the result of the previous subsection to obtain the relative hyperbolicity of the HNN extension of G relative to Φ. 

Proof: First, we prove that k ≤ k. Suppose otherwise, then F k is a proper subgroup of F k , this violates the fact that

The relation between two free factor system can be divided into the following two cases: we find a strictly larger free factor system that is invariant under Φ n ), one can find a maximal free factor system {[ Ĝ1 ], . . . , [ Ĝq ]} preserved by Φ, such a free factor system is what we are looking for.

Directly from Lemma 6.1, Lemma 6.4, and Theorem 4.34, we have Theorem 6.5 Let G be a finitely generated group with a given free product decomposition G G 1 * ... * G p * F k , and let Φ ∈ Aut(G, G) be an atoroidal, reducible automorphism. Then there exist another free product decomposition G Ĝ1 * ... * Ĝq * F r such that Φ is atoroidal and fully irreducible. More-

that each [ Ĝi ] is φ-invariant, on which φ is irreducible and atoroidal.

6.1 Descent and the Theorem 6.10

Now that we have proved Theorem 4.34 about fully irreducible atoroidal automorphisms, and that we have Proposition 6.6, we want a descent argument to show that, in some cases at least, beyond irreducibility, G φ Z is relatively hyperbolic, relative to the mapping tori of the G i .

A first part of the argument is the following well known fact. For instance see the work of Osin [START_REF] Denis | Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems[END_REF]. Proposition 6.7 (see Theorem 2.40 of [START_REF] Denis | Relatively hyperbolic groups: intrinsic geometry, algebraic properties, and algorithmic problems[END_REF]) If G is hyperbolic relative to a family of subgroups H 1 , . . . , H s , and if each Suppose from now that Ψ does not satisfy statement 1.1 (or, respectively, statement 2.1) in Lemma 7.7, in order to solve the conjugacy problem, we can convert the problem into the following problem, which we call the Orbit Problem of uprighting hyperplanes:

whether there is such an automorphism η ∈ Aut(G 

to the Orbit Problem of uprighting hyperplanes of Out 1 (H φ 2 t 2 ), then its image M j of φ in each GL r j ,n j satisfies the condition (named Condition 1 ):

• (for conjugacy problem in Out(H)):

Thus we give the following lemma:

φ 2 be two toral relatively hyperbolic automorphisms. Assume that there is an isomorphism Ψ :

Then in the exact sequence (ES) of Theorem 7.13, one can decide whether there are matrices M j ∈ GL r j ,n j (Z) such that M j (Ψ(H) ∩ G v j ) ⊂ (H ∩G v j ) for all j = 1, ..., m. And if there exist such matrices, these matrices are computable.

Proof:

As each vertex group G v j in the JSJ-splitting X is finitely generated and abelian, we can find a basis for each G v j . Since Ψ(H) is the kernel of a cyclic quotient of G, Ψ(H) ∩ G v j is the kernel of a cyclic quotient of G v j . This gives a linear equation of integer coefficient, whose result is the generating set S j of Ψ(H) ∩ G v j (which does not generates other elements). Now the question can be turned into the existence of M j such that M j S j ⊂ (H ∩ G v j ). Quotient both sides of the equation by H ∩ G v j , the question turns to the equation M j S j = 1, which is another linear equation problem of integer coefficient. Since there exist an algorithm to determine whether any given Diophantine equation is solvable, this Diophantine equation has a solution if and only if such a matrix M j exist, and by the solution to the last equation (if it does has a solution), each M j is computed.

By the above Lemma and the same analysis, we come easily to the statement:

φ 2 be two toral relatively hyperbolic automorphisms. Assume that there is an isomorphism Ψ :

Then in the exact sequence (ES) of Theorem 7.13, one can decide whether there are matrices M j ∈ GL r j ,n j (Z) such that Condition 1 holds. And if there exist such matrices, these matrices are computable.

From the previous analysis, if there are no matrices matrices M j ∈ GL r j ,n j (Z) satisfying Condition 1, then there is no solution in Out 1 (H φ 2 t 2 ) to the orbit problem of Out 1 (H φ 2 t 2 ), and consequentely φ 1 and φ 2 are not conjugate. When such matrices exist and are computable, in order to find out whether there is some η ∈ Out 1 (H φ 2 t 2 ) satisfying the orbit problem in Out 1 (H φ 2 t 2 ), we need to know whether there is a twist ξ ∈ T such that some η ∈ Out 1 (H φ 2 t 2 ) (η ir relevant to ξ) satisfying the orbit problem in Out 1 (H φ 2 t 2 ), here we give a lemma. Lemma 7.21 Let H = A 1 * ... * A k * F p , φ 1 , φ 2 be two toral relatively hyperbolic automorphisms. Assume that there is an isomorphism Ψ : (H 1 φ 1 t 1 ) → (H 2 φ 2 t 2 ) . Assume also in the exact sequence (ES) of Theorem 7.13, matrices M j ∈ GL r j ,n j (Z) satisfy Condition 1.

Then one can decide whether or not there exists some η ∈ Out 1 (H φ 2 t 2 ) satisfying the orbit problem in Out 1 (H φ 2 t 2 ). To be more specific, one can decide whether or not there exists some η ∈ Out 1 (H φ 2 t 2 ) satisfying statement 1.2 in Lemma 7.7 (when consider conjugacy problem in Aut(H)), or satisfying statement 2.2 in Lemma 7.7 (when consider conjugacy problem in Out(H)).

Proof: From Lemma 7.18, there is no (QH)-vertex in the JSJ-splitting, so each M CG 0 (Σ i ) in the exact sequence (ES) of Theorem 7.13 is trivial. Let {h 1 , ...h q } be a generating set of H. Since T is generated by Dehn twist, and since T is abelian, {DT e |e ∈ N SE} (in which N SE denotes the set of non-separating edges) forms a generating set of T.

Denote by (M 1 , ..., M m ) the tuple of matrices satisfying