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1
Introduction

Every day, an enormous amount of electronic data is generated. These data could

be numbers, text, graphic, audio, video and many other types of data. Data contains

knowledge of different types (e.g., medical, statistical, financial or scientific). This

knowledge is virtually important to all fields (e.g., business, science, and industry).

Therefore, the ability to automatically and efficiently extract interesting knowl-

edge from these data is becoming crucial.

Textual data hold an essential share of the daily generated data. For instance,

each day, 734 million comments are posted on Facebook1, 656 million tweets are

sent2, 864 thousand new Wikipedia page edits are published2. Also, the number

of emails sent each day is 205 billion3. In 2015, the average number of business

emails received per user per day totaled 88 emails, and it is expected to grow to an

average of 96 messages in 2019. With this massive number of messages received

1https://www.domo.com/blog/data-never-sleeps-3-0/
2https://www.domo.com/learn/data-never-sleeps-5
3http://www.radicati.com/?p=12960.
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on a daily basis, it becomes more and more difficult for users to manage their email

accounts, e.g., sorting, selection .

Text mining (also called text data mining) is a subfield of data mining which is

a computational process of identifying useful and understandable knowledge from

a dataset. It uses methods that comprise different fields such as statistics, machine

learning, natural language processing, optimization and database technology [1;

2; 3].

Text mining [1] process usually involves several phases. The first phase in the

mining process is about preparing textual data for the training phase. This phase

has two goals, First, it aims to present the textual data in a format compatible with

the learning model. And secondly, it applies different techniques that improve the

text mining efficiency. For instance, Feature Selection (FS) and stemming reduce

the number of features, hence, they cut the computational cost. Text preprocessing

includes many different techniques. Tokenization is the first step to be applied. It

transforms a free text document (e.g., an email, a tweet or a news document) into

a vector of tokens. Case folding is another preprocessing technique. It maps all

letters to lower case.

Stemming and lemmatization are techniques that aim to map different forms of

a word to a single one. Stop-words removal is the task of removing common words

that have no discriminative power. At first sight, those techniques could seem trivial.

However, they include many challenges such as the handling of hyphenation and

acronyms in tokenization. All the techniques mentioned above are presented in

details in Chapter 2.

Text representation [3; 4] is a vital step in text mining in which text documents

are represented according to the learning model requirements. At this point, the

representation level (e.g., character level, word level) and the representation model

(e.g., Vector Space Model (VSM), Bag-of-Words (BoW) model, n-gram model) are

chosen. Term-weighting is also an important step which assigns scores to terms

using Term Weighting Scheme (TWS) [5]. TWS assigns high scores for keywords

and low scores for unuseful terms. Several TWSs have been proposed such as Term

Frequency-Inverse Document Frequency (TF-IDF) and its variants, Information

Gain (IG), Chi-squared (χ2), Odds Ratio (OR) and many others. These TWS could
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be organized into two groups: supervised TWS and unsupervised TWS, according

to whether they make use of available information on the documents memberships.

TWSs are used in filter-based feature selection (see Section 2.3) such as χ2 and

IG [6]. They are also used as a way to detect stopwords [7]. Term-weighting also

improves the model performance by assigning higher scores to essential terms

[8; 9]. TWSs are generally adopted from information retrieval and statistics. They

are generated according to human a priori and mathematical rules. They are usually

simple mathematical expressions. Unfortunately, depending on the application, it is

not easy to know a priori which TWS will be effective. In Chapter 5, we discuss and

propose an automatic way to generate specialized TWSs via Genetic Programming

(GP).

FS [6; 10] is another important technique in which a set of the most useful terms

are selected. All other terms are filtered out. The FS techniques are adopted for

three reasons: simplification of constructed models, shorter training times and

enhanced generalization by reducing overfitting (reducing of variance). Processing

techniques also include Parts-Of-Speech (POS) tagging, Named Entity Recognition

(NER), and many others. Depending on the task, different steps may improve or

hurts the text mining results. In Text Classification (TC), it is shown that case folding

improves the classification performance [11]. However, it hurts the performance

in sentiment analysis [12]. All the above preprocessing techniques are presented

and discussed in Chapter 2.

The second phase focuses on the mining functions (models). The performance

of the mining model may be improved by tuning the model parameters. The

choice of the model depends on the application. Each application has its own

set of learning algorithms. Mining task may be organized into two groups: the

supervised learning tasks and the unsupervised learning tasks. Each group has a

different type of algorithms. For instance, the k-means algorithm could be applied

for unsupervised clustering such as social network analysis and image segmentation

and Support Vector Machine (SVM) is fit for supervised learning such as TC and

sentiment analysis. Section 2.5 of Chapter 2 presents seven different classification

algorithms including SVM, Decision Tree (DT) and bagging and boosting.
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Finally, in the last phase, models are evaluated in order to assess their perfor-

mance. Several evaluation procedures and metrics are presented in Section 2.6 of

Chapter 2.

Typical text mining tasks include TC, text clustering, document retrieval, lan-

guage identification, authorship identification, concept/entity extraction, sentiment

analysis, document summarization, and entity relation modeling (i.e., learning

relations between named entities).

TC is a supervised learning task that aims to automatically assign a set of predefined

categories to a text document. This task is achieved by constructing a model from

a set of text documents.

A fundamental step in constructing a model (learning a classifier) is to represent

text documents in a suitable format recognizable by this classifier. In text prepro-

cessing, text documents are tokenized creating a bag of words (features/unique

terms, also called grammar). Features in TC are mainly words, but could also

be n-grams [13; 14; 15] (n consecutive terms). VSM is also used, so each text

document is represented as a vector of index terms in which each term is associated

with a weight (score) that measures how informative/discriminative the corre-

spondent term is. Weights are computed by a TWS. Filtering, stemming, cleansing,

stopword removal are also performed. They aim at reducing the computational

cost by reducing the number of unique terms and consequently the number of

dimensions of the vector space. These techniques may also in some cases (e.g.,

case folding) improve the accuracy of the classifier.

Finally, a classifier is trained using different supervised learning models and then

evaluated. Some of the well known and efficient learning models are C4.5, Random

Forest (RF), and SVM.

The classification problem may be a binary task, a multi-class task or multi-label

task. A multi-label classification task is generally transformed into multiple binary

single-label tasks. This transformation known as Binary relevance strategy is the

most popular in TC. However, it introduces two issues. First, the terms distribution

are only considered in terms of positive and negative category and secondly, the

strategy does not consider the label dependency. In Chapter 4, we propose a new

TWS based on the IG scheme that, to some extent, solves the first point, without

impacting the complexity of the weighting task.
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Text Classification

Text Classification (TC) and generally all text mining tasks usually involve a se-

quence of steps (see Figure 2.1):

• Text preprocessing such as tokenizing, filtering (stopword removal), stem-

ming, cleansing ...

• Feature Selection (FS): select useful features

• Feature Weighting: giving a score for each feature

• Data Mining/Pattern Discovery: creating/training a model

• Interpretation/Evaluation: analyzing results

This chapter is organized as follows: Section 2.1 presents the different prepro-

cessing techniques. It also discusses the impact of each one on the TC task. In

Section 2.2, the representation of text are discussed. Section 2.3 presents the dif-

ferent filter selection techniques which are organized in three groups: filter-based
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Figure 2.1 Steps of the text classification process.
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methods, wrapper methods, and embedded methods. Section 2.4 very briefly de-

fines term-weighting. Section 2.5 presents seven different classification algorithms

chosen to assess the impact of term-weighting on the classification performance.

And finally, Section 2.6 presents and discusses the evalution process.

2.1 Preprocessing Techniques

Before going into details about the preprocessing techniques, it is important to

define three important notions: Word, Term, and Token. A word is a delimited

string of characters in a text and a term is a normalized word (see Section 2.1.2),

whereas a token is an instance of a term or a word occurring in a document.

2.1.1 Tokenization

Tokenization is the process of splitting text into tokens. It is typically the first

process in any natural language processing application. However, it is directly

impacted by the choice of the representation model and the representation level

(character, word, Parts-Of-Speech (POS), phrase) (see Section 2.2). Tokens are

often space delimited alphabetic strings (word level representation), but they can

be numbers, punctuation, alpha-numerics, etc.

Tokenization is generally considered a trivial task, especially when considering

languages such as English where words are separated by white space characters

(segmented languages). However, a thorough examination reveals many obstacles

that should be handled such as accronyms, abbreviations and hyphenation.

Language Dependent Challenges

Text in some languages such as Chinese, Japanese and Thai is seen a sequence

of characters without spaces in between. In such languages, to obtain words,

particular methods should be applied.

Furthermore, about every language have specificities that should be considered

independently. For instance, in Arabic, pronouns are typically attached to verbs

(the sentence "I ate" is translated into one single word in Arabic).
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Accronyms and Abbreviations

In most languages, a period generally indicates the end of a sentence. Typically, it

is considered as an independent token. However, when attached to abbreviations

(e.g., dr., mr., .fr, etc.) or when occurring in acronyms (e.g., N.B., U.S.A, P.S., etc.),

periods are, in these cases, an integral part of the token.

Hyphenation

Hyphenation presents another challenge for tokenization algorithms. The challenge

is to address the question ‘should the hyphenated word be considered as a single

token or as multiple tokens?’

In English, hyphens are used for diverse purposes ranging from attaching prefixes

to words especially when the prefix ends with a vowel (co-editor) to showing

word breaks (two-, three-, or fourfold; dis-abled at the end of the line) to forming

compounds (well-known, sugar-free, break-in, twenty-two, California-based).

Breaking up all hyphenated words in disregard of the hyphenation type and of

the task may hurt the learning precision. For some cases, it is easy to see that the

hyphenated word should be considered as single tokens (dis-abled, twenty-two,

co-editor, etc.). However, some cases are unclear and should be addressed by

considering the task. For instance, on the one hand, in Named Entity Recognition

(NER), in the hyphenated word “California-based”, the “California” part should be

treated separately in order to be recognized as a location entity, however, on the

other hand, in part-of-speech tag, the same hyphenated word “California-based” is

preferably considered as one single token in order to be tagged correctly.

Named Entity Recognition (NER)

In Natural Language Processing (NLP), named entities are information units rele-

vant to a specific application, like names (person, location, organization, real-world

objects, etc.), numeric expressions (time, date, money, etc.), bibliographic refer-

ences, etc.

Named entities are generally composed of multiple words, e.g., "Université du

Littoral Côte d’Opale" or "Équipe de France de Football". Hence, splitting up words
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based on white spaces is not an option and may break up entities, losing valuable

information, helpful in various machine learning tasks.

The problem is, therefore, detecting named entities in order to tokenize them as

single tokens. However, detecting named entities is not an easy task for several

reasons:

• In many cases, a solution such as using dictionaries could not be considered

due to the enormous numbers of entities.

• New named entities are continually appearing [16] such as the name of a

new president.

• Some named entities have hundreds of variants. For example, the name

Muammar Gaddafi have 413 variants and the name Mikhail Saakashvili have

256 variants [16].

• Named Entities might be abbreviated (U.S.A, USA, US, etc.).

Numerical Cases

A trivial parser can hurt mining or retrieval results when splitting what should be

regarded as a single token.

• Dates (June 15, 2018).

• Phone numbers (+33 06 11 11 11 11).

• Time (04:16 am).

• Social security number, credit card number, etc.

• URIs, URLs, Email addresses, IP addresses, etc.

Comparison of Tokenization Techniques

Few researchers have compared the tokenization techniques on TC performance.

Two tokenizing schemas ([:blank:]) and ([:blank:] and [:punct:]) have been

inspected for SpamAssassin corpora on spam filtering tasks in [17]. It was stated
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that the choice of the tokenizing schema is relevant in the context of spam filtering.

The influence of tokenization, specifically the use of bigrams compared to unigrams,

have been analyzed on three corpora (ModApte split of Reuters-21578, 20News-

group (see Subsection 4.2.1), and Springer) for TC in [18]. In the study, bigrams

poorly impacted the results on both Reuters and 20Newsgroup corpora. However,

it outperformed unigrams on Springer. Authors assumed that bigram tokenization

is only useful for collection with long documents. Finally, in [11], alphabetic and

alphanumeric tokenization have been compared in English and Turkish languages.

It was stated that the alphabetic tokenizer should always be applied in the Turkish

language independently of the domain. In the English language, mixed results

were reported.

2.1.2 Normalization

Text normalization refers to a set of tasks that transform text into a more standard

form.

Depending on the level of text representation (see Section 2.2), and the mining

application, different techniques could be applied. Besides stemming, lemmati-

zation and case folding, normalization tasks include spelling correction, values

formatting, accents and acronyms processing.

Stemming

Sproat in [19] defined a stem as a morphological unit to which an affix attaches.

Stemming is the process of reducing inflected or derived form to its original form

by removing the affixes attached to it (e.g., CLASSES, CLASSED, CLASSIFY, CLAS-

SIFICATION, etc.) are all inflected forms of the stem ’CLASS’.

In Natural Language Processing (NLP), many stemming algorithms have been

proposed primarily for the English language. These stemming algorithms cut off

the end of words in the hope that related words map to the same stem. Technically,

the stem does not need to be a correct word.

Stemming algorithms could be classified into three types of algorithms:
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• Rule-based algorithms such as Lovins stemmer, Porter stemmer, Paice/Husk

stemmer, Dawson stemmer.

• Statistical-based algorithms such as N-Gram stemmer, Hidden Markov Model

and Yet Another Suffix Stripper (YASS).

• Mixed algorithms such as Krovetz stemmer, corpus-based stemmer, and

context-based stemmer.

Lovins stemmer, a rule-based algorithm, is the first popular stemmer proposed

in [20]. However, other algorithms less known have already been designed such

as the algorithm developed by Michael Lesk and presented in [21].

The Lovins stemmer includes a list of 294 endings compiled from multiple sources

(i.g. endings list used at Harvard and augmented catalog developed by Project

Intrex). Furthermore, the algorithm includes twenty-nine conditions associated

with specific endings and thirty-five transformational rules used in converting stem

terminations (Recoding procedure).

In the first step, the algorithm tries to match the longest ending that satisfies the

associated condition code (“the longest-match principle”). The matched ending is

removed. In the second step, the algorithm iterate over the thirty-five transforma-

tional rules and applying the relevant ones.

For example, the ending “ation” is the longest ending in the word “station”. How-

ever, the ending associated condition (“Minimum stem length = 3”) is not satisfied

and therefore, the second longest ending “ion” which in this case, fulfill the con-

dition (“Minimum stem length = 3 and do not remove ending after l or n") is

removed, leaving “stat”. No transformational rule could be applied to “stat”, and

therefore, based on Lovins algorithm, the word “station” is stemmed into “stat”.

Porter stemmer is the most famous and most used stemming algorithm. It is

one of the oldest stemming algorithms, and it supports a wide range of languages1

and most importantly, it is the most accurate algorithm [22]. Like Lovins stemmer,

Porter stemmer is a rule-based algorithm.

The algorithm was first proposed in [23; 24; 25, chap. 6]. Since then, the algorithm

has been derived developing two new algorithms that could be found in [26; 27].

1https://tartarus.org/martin/PorterStemmer/
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The Porter algorithm adopts a suffix stripping approach. The algorithm includes

a list of suffixes where each suffix is associated with a condition that governs its

removal (transformation).

The association of a suffix and a condition is called a transformation rule. The

transformational rules are of the form “(condition) S1→ S2” where a suffix S1 is

transformed into a new suffix S2.

Here are some examples:

• (m>0) ATOR→ ATE: the suffix ALLI should be transformed into AL if the

stem contains at least one word part, i.e., one or more vowels followed by

one or more consonants (e.g., operator→ operate).

• (m>1 and (*S or *T)) ION→ : the suffix ION should be removed if the stem

contains one word part and ends with S or T.

The algorithm follows five steps [24] where suffixes are removed gradually2. In

each step, a set of transformational rules are tested. Once a rule is successfully

applied, the algorithm advances to the next step. So the word relationalities is

transformed into relationaliti (Step 1), then stripped to relational (Step 2), and

finally to relation (Step 4). The stem does not match any rule in the two other

steps (Step 3 and 5).

Paice shows that light stemmers such as Porter stemming algorithm increases

false negatives and hence, he proposes the Lancaster stemming algorithm (also

called Paice/Husk stemmer) [28; 29]. Lancaster stemming algorithm is an iterative

rule-based algorithm with 115 rules that try to match and apply, one rule at a

time, according to the final letter of the word until no match could be found or the

last stem is obtained. The algorithm could be very aggressive. For instance, the

word nationalism is transformed into nat. nationalism is first stripped to national

(msi3> -ism→ -), then to nation (la2> -al→ -) and finally to nat (noi> -ion→ -).

Paice/Husk stemmer is considered very aggressive and therefore, it is more prone

to over-stemming [22].

Dawson stemmer is an extension of Lovins stemmer. In [30], Dawson modifies

the Lovins stemming in two ways. On the one hand, in Dawson’s algorithm, only

2http://snowball.tartarus.org/algorithms/porter/stemmer.html
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the partial-matching procedure is used to conflate words, hence, discarding the

recording procedure with the thirty-five transformational rules. On the other hand,

the list of endings is greatly extended from 294 endings to 1200 endings.

The rule-based algorithms are language-dependent. For instance, the above-

presented algorithms are developed for English. Many other rule-based algorithms

exist for English [31] and other languages such as Arabic [32; 33; 34], Croatian

[35], French [36; 37], Hindi [38; 39], Indonesian [40], etc. Porter presented a

series of stemming algorithms for Russian, for German and Dutch, for the Romance

languages Spanish, French, Portuguese and Italian, for Norwegian and Danish, and

for Finnish [41].

In order to overcome the shortfall of language-dependency in rule-based algo-

rithms, researchers proposed algorithms based on statistical information.

The single n-gram stemming algorithm [42] belongs to the statistical-based algo-

rithms, and therefore, it is language independent. The algorithm relies on the fact

that morphological affixes attached to stem are stripped in some of the derived

character n-grams. For instance, the stem nation could be derived from nations,

national, nationality, and nationalism by using 5-grams.

The algorithm selects the word-internal n-gram with the highest Inverse Document

Frequency (IDF) which measure the rarity of a term across all documents reasoning

that the morphological affixes occur often and around many different words, and

hence, they carry low IDF.

[43]proposed an unsupervised model based on Hidden Markov Models that

generates statistical stemmers. In this work, authors used three topologies of the

Hidden Markov Model (see Figure 2.2) where states are divided into two disjoint

sets, a prefix set of states that generate a first part of the word (the stem) and a

suffix set that generates the last part of the word. To obtain the stem of a given

word, the method computes the Viterbi path, i.e., the most probable sequence of

HMM states, corresponding to the this word. This path is then analyzed in order

to detect the point where a transition occurs from a state of the prefix set to a state

of the suffix set. The stem is, therefore, the sequence of characters generated by

the states of the prefix set.

Like the single n-gram stemming algorithm and the HMM-based algorithm, Yet

Another Suffix Stripper (YASS) [44] is a statistical-based stemming algorithm and
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Figure 2.2 The three topologies of the HMM that has been used for the experiments
taken from [43].
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therefore, it does not need linguistic expertise.

The algorithm defines a distance function used to find similar words and grouping

them into clusters. The clusters are considered as equivalence classes. Stems are

then derived from classes centroids.

The development and improvement of stemming algorithms have been active

since its beginning around 1960. Many different algorithms and approaches

have been proposed that range from dictionary-based algorithms to rule-based

algorithms to statistical algorithms and mixed methods (see Figure 2.3).

There is limited research on comparing the different stemming approaches. A study

comparing all the presented algorithms have been done in [22], however, it is not

clear how the algorithms have been evaluated, and on what basis, they have been

compared. After presenting the algorithms, their advantages and limitations have

been shown in the form of three tables focusing on the time consumption, the

aggressiveness, the language dependency, and the error rate. It is reported that

Porter stemmer produces the best output and have less error rate than the other

stemmers.

In [45], the advantages and disadvantages of rule-based approaches and sta-

tistical approaches have been discussed, and the performance of Porter stemmer,

YASS and GRAPH-BASED STEMMER (GRAS) [31] have been compared in term of

strength [46] and computational time. In term of strengh, it is noted that YASS

is very aggressive on all languages (e.g., Bengali, English, and French), and that

GRAS performs equally well compared to rule-based stemmer, stating that YASS

outperforms the other stemmers. Based on computational time, it is reported that

YASS performs the worst, five times slower than GRAS its closest competitor.

In [42], four stemming approaches (Snowball stemmer [26], 4-grams and their

proposed algorithm Pseudo-4 and Pseudo-5) have been evaluated and compared. It

is stated that although the snowball algorithm outperformed the Single N-gram al-

gorithm on seven of eight languages, the difference was only statistically significant

in Dutch.

In [44], authors compared the retrieval performance of YASS algorithm to

three other algorithms (Lovins, Porter and N-gram stemmers). It is stated that

the performance of YASS is comparable to Porter Stemmer. The performance of

four rule-based algorithms (Lovins, Porter 1, Porter 2 and Paice/Husk stemmers)
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have been investigated in [47]. The study focus on four factors on which the

algorithms have been compared, the Index Compression Factor, the Word Stemmed

Factor (WSF), the Correctly Stemmed Words Factor (CSWF) and the Average

Words Conflation Factor (AWCF) (i.e. higher the AWCF, higher the accuracy of the

stemmer). It is indicated that Porter1 and Porter2 stemmers have less compression

strength than the other two stemmers. It is also stated that under-stemming

and over-stemming errors happened more often in Lovins and Porter1 stemmers.

Furthermore, it is reported that Paice/Husk stemmer is comparatively better. Finally,

it is stated that the results obtained by Porter2 stemmer are quite accurate; still,

it produces over-stemming errors. The details of the four factors listed above are

beyond the scope of this thesis. The interested readers might refer to [47].

Figure 2.3 A number of stemming algorithms.

Lemmatization

Similar to stemming, lemmatization aims to map inflectional forms and deriva-

tionally related forms to a common base form (i.e. the words ’write’, ’written’,

’wrote’, ’writing’ may be grouped under the base form ’write’). However, unlike

stemming in which a stemmed word could be unreal, lemmatization refers to a

more appropriate and accurate approach.

Lemmatizers are typically language-dependent algorithms [48; 49; 50; 51; 52; 53;



2.1 Preprocessing Techniques 17

54]. Most approaches are dictionary based. Words are confronted to a dictionary

that maps the word variants to its base form.

In [51; 52; 55], rule-based approaches are used. For instance, an iterative algo-

rithm is presented in [52] and applied to the Swedish language. The complete

procedure of Hellberg lemmatizer is shown in Figure 2.4.

Automatic learning approaches of lemmatizers have also been attempted. In

[56], two-level morphological rules learned from a list of word pairs using three

possible elementary operations single character insertion, deletion and replacement

were applied to English, Xhosa and Afrikaans languages. In [57], Jongejan et al.

proposed a supervised approach to learn lemmatization rules for Dutch and German

languages automatically. A process trains a set of rules in such as way that for each

full form, an elected rule should produce the correct lemma. Figure 2.5 shows the

training process of the set of rules.

Case Folding

Applications like information retrieval or speech recognition map all letters to

lower case. In such applications, letter case is not essential. In other mining

applications (TC, information extraction), the case could be helpful in avoiding

some ambiguities (e.g., US the country and us the pronoun). Finally, in sentiment

analysis, the case is significant. Capital letters generally show a strong attitude. In

[12], using a maximum entropy model [58], Parikh et al. find that the attribute

holding the number of capital letters in a word have contributed the most to the

classification model. The impact of case folding alongside other preprocessing

steps on TC has been investigated in [11] for two news datasets and two emails

datasets in two different languages (English and Turkish). It was concluded that

lowercase transformation improves classification performance regardless of the

domain and language.

2.1.3 Stop-Words Removal

Stop-words are typically defined as common, non-informative, non-discriminative

words. In [59], Hans Peter Luhn, a pioneer in information retrieval and the first

to discuss the notion, described stop-words as insignificant words, the opposite of
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Figure 2.4 Flow chart of the Hellberg lemmatizer
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Figure 2.5 The process of building a rule set from training pairs as described in
[57]

keywords.

The stop-word removal is a commonly used preprocessing step to reduce the indexes

space and to improve the performance of the classification task [7; 60; 61; 62; 63].

For instance, words like “the” or “is” are common words and do not have discrim-

inative abilities, they can not be helpful for classification. Similarly, words that

occur in every document, or words that are equally distributed over all classes

do not have discriminative abilities. Furthermore, very rare words do not have

enough information to be contributed.

Stop-words removal has been approached by several ways. The first and the most

used approach addresses removal by rejecting words appearing in a language-

dependent compiled list of stop-words such as Van’s stop-list [64], Brown’s stop-list

[65] (see Figure 2.6).

Several automatic methods have been proposed and explicitly applied to text

classification [7; 61; 62; 63; 64; 65; 66]. Aside from the standard approach and ap-

proaches combining multiple stop-lists, the automatic methods could be classified

into four types:
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• Methods based on Zipf’s law,

• Term-Based Random Sampling (TBRS),

• Term Weighting Scheme (TWS).

Methods based on Zipf’s Law

Zipf’s law [67] maintains that in human behavior, events frequently respect a

particular distribution such that the number of occurrences of an event is inversely

proportional to its rank. It is shown empirically that given a large sample of words,

the law also applies to the frequency of words. Stop-words removal methods

inspired by Zipf’s law include removing the most frequent words (high Term

Frequency (TF)); removing words that occur once which significantly reduces

the dimensionality of feature space; removing words with low inverse document

frequency (see Section 2.4); removing words with low TF [7; 66].

Figure 2.6 Zipf’s law: most common word in english

Term-Based Random Sampling (TBRS)

TBRS is first introduced by Lo et al. in [66] to derive the stop-word list in in-

formation retrieval. TBRS is inspired by query expansion in [68]. The method

selects documents that contain the query term rather than selecting similar words

to expand the query.
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TBRS iterates over random samples where each document in a sample contains a

randomly selected term. Terms are then ranked using Kullback-Leibler divergence

measure [69] defined as follow:

w(t) = Px .log2
Px

Pc

In the above formula, Px is the normalized TF of the term t within the sample, and

Pc is the normalized TF of the term t in the whole collection.

Even though TBRS have first been proposed for information retrieval, the method

has later been applied and compared with other approaches in the context of TC

[7; 70].

Term-Weighting Schemes (TWS)

Term-weighting approach is one of the most used stop-word removal method,

second only to the standard approach in which terms are confronted with a compiled

list.

The approach uses a TWS to assign a score to each term that depicts its importance.

The stop-word list is then filled with terms having a score lower than a chosen

threshold. Finally, terms occurring in the created stop-word list are removed from

the vocabulary.

Comparison of Stop-Word Removal Methods

Standard stop-list removal and Mutual information stop-list removal are commonly

applied for TC without careful consideration of its impact on the task performance.

Few works, however, have been done on comparing the different existing ap-

proaches. Aside from researches proposing new methods, we were not surprised

to find only one study comparing these approaches since automatic stop-word

removal task could be thought of as a FS routine which is extensively studied

(Report to Section 2.3 for more extensive comparison).

The effect of different stop-word removal approaches have been investigated in

sentiment analysis using six twitter datasets in [7]. It is stated that concerning

feature space reduction, removing terms occurring once reduces the feature space
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extensively, Mutual Information comes second, and removing high-frequency words

have no real impact. Furthermore, it is stated that the removal of IDF stop-list has

an adverse impact on classification performance, on the other hand, the mutual

information stop-list reports the best classification performance. Finally, it is con-

cluded that the removal of terms occurring once has the best trade-off impact on

classification performance, feature space reduction and data sparsity.

The effectiveness of four Zipf’s law-based baseline methods alongside the proposed

TBRS has been investigated and compared for information retrieval in [66]. It is

reported that the proposed method shows comparable performance to the baseline

methods while being more computationally effective. Moreover, it is concluded

that the combination of standard stop-list and any stop-list produced by either of

the examined methods improves the retrieval performance.

2.1.4 Part-of-Speech (POS) Tagging

The POS tagging is the process of labeling words by its corresponding lexical

categories (also known as tags and word classes) such as nouns, verb, adjective,

etc. An example of POS-tagging is shown in Figure 2.7. Initially, the POS list (also

called tagset) included only eight tags: noun, pronoun, verb, adverb, preposition,

conjunction, particle, and article. However, bigger tagsets have been proposed. In

[71], the Penn Treebank POS tagset including 45 word classes is presented (see

Table 2.1), another 87-tag tagset proposed for the Brown corpus [72]. An even

bigger list found in [73], the C7 tagset includes 146 categories.

The importance of POS tagging comes from the amount of information that

could be extracted about a word and its neighbors. For instance, the distinction

between heteronyms (words that spell identical but have a distinct meanings or

different pronunciations) based on its POS tag improves the speech recognition

system, and it can make a more natural speech synthesis system. The adjective

invalid [In‘væl.Id] pronounced differently from the noun invalid [‘In.v@.lId]. Also,

knowing whether a pronoun is possessive or personal gives us information about

neighboring words (personal pronouns are likely to be followed by a verb, whereas

possessive pronouns are followed by a noun). In addition to speech recognition,

POS tagging is significant for information retrieval, text parsing, NER by identifying



2.1 Preprocessing Techniques 23

nouns, stemming as different POS takes different morphological affixes. POS

tagging has also been applied to TC. In [74], the authors used POS tagging to

reduce the misinterpretation of similar words. The use of different POS have

been explored for TC [75]. In this paper, Chua states that nouns are the best type

to describe a category’s content, reasoning that nouns names entities such as a

concept and an idea. The author also asserts that the list of nouns as features is

more efficient than a list created using χ2 or IG.

Figure 2.7 POS-tagging using the Online Stanford CoreNLP

2.1.5 Named Entity Recognition (NER)

NER aims to automatically identify and classify named entities in texts into pre-

defined categories such as person, location, date (See Figure 2.8).

Figure 2.8 NER using Stanford CoreNLP

NER is useful in various applications such as summarization, information ex-

traction, TC, natural language understanding, question answering, content recom-

mendation, and more.

NER is addressed by two main approaches: a rule-based approach mostly adapted

for detection of temporal and numerical expressions (e.g., days of the week, months,

years, money), and a machine learning based approach.

An example of a rule-based system used for tagging temporal expressions in

texts could be found in NLTK’s temporal expression tagger. The below code snippet

in Listing 1 is taken from the beginning of the file.

https://github.com/nltk/nltk_contrib/blob/c9da2c29777ca9df650740145f1f4a375ccac961/nltk_contrib/timex.py
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Table 2.1 The Penn Treebank POS tagset without punctuation marks [71]

Tag Description Example

CC Coordinating conjunction and, or
CD Cardinal number one, two, 15
DT Determiner the, them, these
EX Existential there there
FW Foreign word voilà, mais
IN Conjunction, subordinating or preposition among, in, into
JJ Adjective clean, nice
JJR Adjective, comparative cleaner, nicer
JJS Adjective, superlative cleanest, nicest
LS List item marker
MD Modal may, could, might
NN Noun, singular or mass computer, machine, air
NNS Noun, plural computers, machines
NNP Proper noun, singular France, Alice
NNPS Proper noun, plural three Alices
PDT Predeterminer both, all
POS Possessive ending ’s
PRP Personal pronoun him, we
PRP$ Possessive pronoun, her, our
RB Adverb quickly, clearly
RBR Adverb, comparative greater
RBS Adverb, superlative hardest, best
RP Particle up, across
SYM Symbol (mathematical or scientific) ×,=
TO to to run
UH interjection oops, googbye
VB verb, base form eat, hit, run
VBD verb, past tense ate, hit, ran
VBG verb, gerund or present participle hitting
VBN verb, past participle assigned
VBP verb, non-3rd person singular present think
VBZ verb, 3rd person singular present thinks
WDT wh-determiner that, which, whatever
WP wh-pronoun, personal that, which, whom
WP$ wh-pronoun, possessive whose
WRB wh-adverb how, why
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Listing 1 Snippets from NLTK’s temporal expression tagger: timex.py

1 # Predefined strings.
2 numbers = "(^a(?=\s)|one|two|three|four|five|six|seven|eight|\
3 nine|ten|eleven|twelve|thirteen|fourteen|fifteen|\
4 sixteen|seventeen|eighteen|nineteen|twenty|thirty|\
5 forty|fifty|sixty|seventy|eighty|ninety|hundred|thousand)"
6 day = "(monday|tuesday|wednesday|thursday|friday|saturday|sunday)"
7 ...
8 dmy = "(year|day|week|month)"
9 rel_day = "(today|yesterday|tomorrow|tonight|tonite)"

10 exp1 = "(before|after|earlier|later|ago)"
11 exp2 = "(this|next|last)"
12 iso = "\d+[/-]\d+[/-]\d+ \d+:\d+:\d+\.\d+"
13 year = "((?<=\s)\d{4}|^\d{4})"
14 regxp1 = "((\d+|(" + numbers + "[-\s]?)+) " + dmy + "s? " + exp1 + ")"
15 regxp2 = "(" + exp2 + " (" + dmy + "|" + week_day + "|" + month + "))"
16 ...
17

18 def tag(text):
19 ...
20 ...
21 # Captures expressions such as ’number of days’ ago, etc.
22 found = reg1.findall(text)
23 found = [a[0] for a in found if len(a) > 1]
24 for timex in found:
25 timex_found.append(timex)
26

27 # Variations of this thursday, next year, etc
28 found = reg2.findall(text)
29 found = [a[0] for a in found if len(a) > 1]
30 for timex in found:
31 timex_found.append(timex)
32

33 ...
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Machine learning based NER uses generally supervised learning algorithm (e.g.

Conditional Random Fields [76; 77], Support Vector Machine (SVM) [78; 79],

Hidden Markov Model [80], etc.) to detect entities, however semi-supervised learn-

ing algorithms (bootstrapping) and unsupervised learning algorithms (clustering)

could also be found [81; 82].

In [83], a FS method that considers both singular terms and named entities as

features have been proposed. Confidence Weight scheme (ConfWeight) is used

to apply scores to general terms. An improved version of ConfWeight is proposed

and used to evaluate the named entities. The proposed method is evaluated and

compared to Chi-squared (χ2) and Information Gain (IG) methods. It is noted that

considering the named entity information in FS methods improves the classification

performance.

2.2 Text Representation

A text document is one or more pieces of text of a written natural language. A

natural language is a human language such as Arabic, French or Chinese that has

evolved naturally as a means of communication among people [84].

Text documents in natural languages are very complex to be processed directly

in their raw format, due to the lack of structured data and the significant amount

of useless information they contain.

Text Representation is about representing text suitably to be handled by machine

learning algorithms. Many different ways exist to represent text. First, we can

always represent text as a string of characters. This simple representation is the

most general way to represent text as it can be used to represent any textual data in

any natural language. However, this representation is often useless when it comes

to semantic analysis which is needed in most machine learning tasks. In order

to be able to do semantic analysis, the representation should at least recognize

words. A word level representation is the first level of semantic richness as words

are the basic unit of any human communication natural language. This level of

representation is also the most common way to represent text documents. Word

level representation presents many promises. For example, by recognizing words,
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we can easily identify the most frequent words in a collection of documents and

many useful statistics such as the number of documents that contain a specific word.

Moreover, we can use words to form topics. For example, some words are positive,

and others are negative. So word level representation can be used for sentiment

analysis. However, it is not always easy to identify words in text documents. For

instance, in the Chinese language, text is seen as a sequence of characters without

whitespace delimitation. In such languages, particular techniques are used to

segment words. These techniques may introduce errors. Instead of words, we can

also easily represent text as a sequence of terms usually by normalizing words using

stemming [24] and case folding. Word level representation present many promises.

However, it is not always easy to identify words in text documents. For instance, in

the Chinese language, text is seen as a sequence of characters without whitespace

delimitation. In such languages, particular techniques are used to segment words.

These techniques may introduce errors. Part of Speech (POS) Tagging is the next

level in semantic richness. By adding POS tags as additional information for the

word level representation, new interesting statistics could be counted, such as the

number of nouns, and verbs; but also, it opens new possibilities such as extracting

relations between nouns and verbs, etc. Generally, POS tagging is used for NER

tasks. The next level of representation is done by adding syntactic structures

information which is useful for example in detecting writing styles and correcting

grammar mistakes. An example of syntactic structures obtained using Standford

CoreNLP is shown in the Figure 2.9. We may also go futher to recognize named

entities and relations between them (See Subsection 2.1.5).

Besides the choice of the level of text representation, there are many mod-

els to represent a document of textual data. The models differ on the assump-

tion they make about words and documents. Term-independence and document-

independence are the two primary assumptions.

Term independence asserts that, given the relevance of a term, we cannot make

any statement as to the relevance of the other terms. The term independence

assumption implies that terms of the documents in a collection are not related.

Document-independence asserts that the relevance of a document does not affect

the relevance of the other. Different models may accept either both assumptions,

only one of them or refuse both. A popular model for representing text document



28 Text Classification

that accepts both assumptions is Vector Space Model (VSM). The algebraic model

represents documents as a vector of index terms where each term is associated

with a weight. The weight tells how much information a term contributes to the

semantics of a document. VSM is quite popular in TC [6; 85; 86; 87; 88] and it

exhibits good performance, however, due to the term independence assumption,

it is clearly not adapted for spell checking as an example. In order to lessen the

impact of the term independence assumption, some authors uses n-grams, i.e., the

sequence of n words as features of the vector space [13; 14; 15; 89; 90].

Figure 2.9 Syntactic Structures of the text appeared in Figure 2.8.

2.3 Feature Selection (FS)

In TC, the number of features generally ranges from ten thousands to hundred

thousands and more, many of which are highly correlated variables, i.e., redundant

information that yield the same information about the classes or irrelevant variables
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that hold noisy information making prediction harder [91]. FS (variable selection),

i.e., the process of selecting the minimum number of relevant features to be used

in building a model, plays an vital role in TC and generally, in data mining tasks.

FS presents a number of benefits. By reducing the number of features, it helps

in making data simpler and easier to understand, reducing the computational

complexity of the model construction, lessening the impact of the curse of dimen-

sionality i.e. reducing the size of training dataset required, and improving the

model performance (lower overfitting) [92].

A FS algorithm is typically a search algorithm which includes an evaluation method

which goal is to find a subset of features that optimize a certain performance

measure.

FS algorithms has been classified into three types of algorithms, based on the

evaluation method:

• filter methods,

• wrapper methods,

• embedded methods.

2.3.1 Filter Methods

In general, Filter-based FS methods refer to the process of applying a statistical

metric that evaluates the goodness of features. Filter-based FS algorithms are

general methods, independent of the machine learning model.

In general, a score is assigned to each feature to depict the usefulness of the feature.

Features are then ranked according to their score. Finally, a number of features are

selected filtering out the rest of features (see Figure 2.10). The number of features

(may also be a percentage or even a cut-off point) to be selected is a parameter

generally obtained by cross-validation.

Filter-based FS methods require less computational time and are generally more

robust to overfitting. However, due to the independence assumption of variables,

redundant features are casually not filtered.

A considerable number of measures have been used in feature scoring including:

• Pearson Correlation [93; 94].
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• Mutual Information proposed by Shannon in his paper “A mathematical

theory of communication” in 1948, re-published in [95] used for FS in

[5; 6; 96; 97; 98; 99; 100; 101].

• χ2 proposed by Pearson in [102] re-published in [103] used for FS in [5; 6;

97]

• Spearman Correlation proposed in [104] and used in [105]

• Kendall Correlation proposed in [106] and used in [107; 108]

• Fisher Score [109]

• Welch’s t-test proposed in [110] and used in [111] to detect the most impor-

tant eigenbrains (i.e., eigenvectors[112] obtained by principal component

analysis) for diagnosis of Alzheimer’s disease.

• Infinite FS was introduced and used for FS in [113] applied to object classifi-

cation.

• Feature Similarity [114].

• Traditional TWS (binary, TF, Term Frequency-Inverse Document Frequency

(TF-IDF)) discussed in [8] and tested in [115; 116; 117].

• Supervised Term-Weighting (STW) methods (Term Frequency-Relevance

Frequency (TF-RF) [9], Term Frequency-Inverse Category Frequency (TF-ICF)

[86], Term Frequency-Odds Ratio (TF-OR) [118], Term Frequency-Gain Ratio

(TF-GR) [5])

However, besides TF-IDF which is very popular, Term Frequency-Chi Squared (TF-

χ2) and Term Frequency-Information Gain (TF-IG) are the most commonly used

feature scoring methods for TC tasks [10; 91].

For further readings, please refer to Chapter 3.
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Figure 2.10 Filter-based FS

2.3.2 Wrapper Methods

Wrapper-based FS methods, in contrast to filter-based methods, use the induction

algorithm to evaluate the subsets of features. The algorithm generates a subset

of features; then it uses the subset to train a learning model. The error rate of

the model is then computed and assigned to the subset. The best subset is the

one with the lowest error rate (see Figure 2.11). Wrapper methods generally use

optimization techniques to search the feature space with the fitness function as a

learning algorithm. These techniques include:

• Genetic algorithm [119; 120; 121; 122; 123; 124; 125; 126; 127].

• Ants Colony [128; 129; 130].

• HillClimbing [131; 132; 133].

• Particle Swarm Optimization [134; 135; 136; 137].

• etc.

Although the wrapper methods tend to retrieve the best performing subset

of features for a specific model, however, due to the use of the learning model

as the fitness function, two issues arise, first these methods are typically very

computationally complex, and second, they hold a higher risk of overfitting when

the training data is insufficient.
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Figure 2.11 Wrapper-based FS [132]

2.3.3 Embedded Methods

Embedded methods try to overcome the shortcomings of wrapper methods. The

name Embedded comes from the fact that the method is embedded in the learning

algorithm, i.e., it is an inseparable part of the model training process. For instance,

Decision Tree (DT) have their embedded FS methods. A DT algorithm involves a

greedy search that finds the feature that best splits the instance space into two or

more sub-spaces according to some metrics on the input features, at each iteration.

At the end of the process, only the selected features are part of the DT model. This

set of selected features is optimized for the DT and it is very probable that it won’t

work for the training of different models. Another example of embedded methods

could be found in SVM. The SVM model generally uses a small set of observations

(support vectors) in the training process. Hence, only terms belonging to these

documents are considered.

2.4 Term-Weighting

Besides the direct utility of assigning weights to features, TWSs are critical for

feature extraction, as well for filter-based FS methods. Additionally, TWSs can be

used for automatic stop-word detection as shown in the Subsection 2.1.3.

In Chapter 3, we present in detail the TWSs applied to TC.
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2.5 Classification Methods

In machine learning, TC is a supervised learning task since the true labels of the

training data are fed to the learning algorithms. The algorithm tries to approximate

a function g : X → Y that maps each document instance of the input space x ∈ X

to one of the pre-defined categories y ∈ Y based on a training set of tuples (x , y).

There is a wide range of approaches available for classifier learning such as SVM,

DT, random forest, k-NN, etc.

2.5.1 Probabilistic Classifiers

Probabilistic classifiers are a set of algorithms that apply the Bayes theorem:

P(y|x) =
P(y)P(x |y)

P(x)
(2.1)

P(x |y) is then estimated by considering the naive independence assumption stating

that features are not related to each other.

P(x |y) =
∏

i

P(x i|y) (2.2)

Finally, applying the Bayes theorem with the independence assumption leads to

the following classification rule:

ŷ = argmax
y

P(y)
∏

i

P(x i|y) (2.3)

2.5.2 Decision Tree (DT) Classifiers

DT learning is a supervised learning method that uses a tree as its predictive model

(Figure 2.12). It can be used for both classification and regression. DT algorithms

include Iterative Dichotomiser 3 (ID3) [138], C4.5 [138; 139], Classification and

Regression Trees (CART) [140], etc.

The classification tree is a collection of nodes with all edges pointing away from

the root node. Nodes can be either internal or leaf. An internal node represents
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Figure 2.12 Decision Tree (DT)

an inducing rule (i.e., a test on a feature) that splits the instance space into two

or more sub-spaces. A leaf node represents a decision that is, a terminal node

representing the target value (also called the outcome).

The algorithm to construct the classification tree involves a greedy search that

finds at each iteration the feature that best splits the instance space into two or

more sub-spaces according to some metrics (e.g., IG) on the input features. These

metrics generally measure the impurity (diversity) of the target variables within

the subsets. The goal is then to find the split that minimizes the impurity. Metrics

include IG [138], gini impurity, cross-entropy.

IG is an entropy-based metric from information theory. It measures the amount

of information one random variable contributes about another random variable i.e.,

the reduction in entropy of one variable given information about another. Given a

dataset D with n target values (i.e, classes), the entropy of D is defined as follows:

H(D) = −
n
∑

i=1

pi log2(pi) (2.4)
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Where pi is the proportion of elements belonging to i th class. In terms of entropy,

IG(D, V ) of a variable V relative to the dataset D is:

IG(D, V ) = H(D)−H(D|V ) (2.5)

= H(D)−
∑

v∈values(V )

|Dv|
|D|

H(Dv) (2.6)

Here, Dv is a subset of D where V have the value v.

IG, in contrary to entropy and gini impurity, measures the purity. Thus, the

feature (or variable) that maximizes the IG is used to split the instance space.

Gini impurity is a measure of how heterogeneous a dataset is. It is very similar

to entropy (see Figure 2.13).

Given a dataset D with n classes, and let pi be the proportion of elements

belonging to i th class, the gini impurity I of the dataset could be defined as follows:

I(D) = 1−
n
∑

i=1

p2
i (2.7)

2.5.3 Support Vector Machines (SVM)

SVMs [141] are one of the most popular choices of supervised classification algo-

rithms in machine learning applications. It was used for classification first in [85].

SVM classifiers try to group the members of different classes into different areas of

the input vector space by using a hyperplane (see Figure 2.14). In the SVM model,

instances are represented as points (real vector) in that space.

Given a binary classification task where the instance label is represented by

yi = 1 if x⃗ i belongs to the positive class and yi = 0 if it belongs to the negative

class, and a training dataset of n instances represented as follows:

( x⃗ 1, y1), ( x⃗ 2, y2), ..., ( x⃗ n, yn)

in the vector space, any hyperplane could be expressed as follows:

w⃗. x⃗ − b = 0 (2.8)
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Figure 2.13 Impurity index: entropy and gini impurity.
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Figure 2.14 Maximum-margin hyperplane for an SVM trained for the binary classi-
fication task.

When the training dataset is linearly separable, SVM finds a maximum margin

hyperplane that separates the positive points from the negative points by solving

the following optimization problem:

Minimize ||w⃗|| subject to yi(w⃗. x⃗ i − b)>= 1, for i ∈ [1, n] (2.9)

Finally, the classification function is, therefore:

y = f ( x⃗) = sgn(w⃗. x⃗ − b) (2.10)

Where x⃗ and b are the solutions to the above optimization problem. For non

linearly separable training data, the hyperplane that leads to the fewer incorrect

classification is selected. It is done by introducing a hinge loss function l [142]:

l(y) = max(0,1− yi.y) (2.11)
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It can be seen from the above formula that the hinge loss is equal to 0 when the

right class is predicted and |y| >= 1. However, a penalty is applied when |y| is
smaller than 1 or when the prediction is erroneous (y and yi have opposite sign).

This penalty increases linearly with y. The optimization problem to minimize

becomes:
�

1
n

n
∑

i=1

max(0, yi(w⃗. x⃗ i − b))

�

+λ||w⃗||2 (2.12)

2.5.4 Bagging and Boosting

Bagging (also called Bootstrap Aggregation) [143] and Boosting belongs to machine

learning ensemble meta-algorithms in which several learning models are combined.

They were proposed in order to control the bias-variance tradeoff [144]. In one

hand, boosting combines a set of weak learners (high bias) in order to obtain one

strong learner (low bias) [145]. On the other hand, bagging reduces the variance

by combining multiple strong learning models.

In bagging, given a training dataset D, n subsets of D are generated by random

sampling with replacement. The n learning models are then trained on the above

subsets and results are finally averaged. Figure 2.15 presents a schematic showing

the process of bagging. A popular improvement to the bagging algorithm is the

random forests [146; 147]. In random forests, features that can be evaluated at

each split point are limited to a random subset. This change makes predictions

from the DT less correlated, and hence, it reduces the variance.

Boosting as mentioned earlier combines several weak learning models creating

one strong model. One significant difference from bagging is that models are

dependent. Models are learned in sequence and training a model requires informa-

tion from the earlier trained model. In boosting, misclassified samples, at the last

iteration, are given more weights, so they are picked more often in the next round.

They are considered more complex and hence requires more training iterations.

Figure 2.16 present a diagram showing the boosting process.
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Figure 2.15 Diagram showing the process of the bagging algorithm

2.5.5 Passive-Aggressive (PA)

PA proposed by Crammer et al. in [148] is a learning algorithm focused on online

learning and large-scale dataset. The method treats a flow of documents and

outputs a prediction once a document is received. Later, whenever a document

true-label is discovered, the method redefines its prediction function. Given a

dataset D of n points: ( x⃗ 1, y1), ( x⃗ 2, y2), ..., ( x⃗ n, yn), the classification function is

simply the same as in SVM:

f ( x⃗) = sgn(w⃗. x⃗ − b)

The algorithm is also based on the hinge loss defined by:

l(y) = max(0, 1− yi.y))

Aside from that, the algorithm works in rounds. In the beginning, it initializes the

weight vector w⃗1 to (0, .., 0). Then, at each round i, an update rule is applied that
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Figure 2.16 Diagram showing the boosting process
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sets the weight vector to be the solution to the following optimization problem:

w⃗i+1 = arg min
w⃗

1
2
||w⃗− w⃗i||2 subject to l(w⃗. x⃗ i, yi) = 0.

In one hand, when the hinge loss is zero, the algorithm is passive and no modifica-

tion is done, wt+1 = wt . On the other hand, whenever the loss is positive (incorrect

prediction), the algorithm aggressively updates the new weight vector w⃗i+1 so that

it satisfies the constraint l = 0.

The aggressive behavior of the algorithm may lead to undesirable results.

In order to satisfies the constraint, one single noise instance may cause many

prediction errors. In order to overcome this issue, [148] introduces a new coefficient

(slack variable) ξ > 0 to soften the constraint of maximizing the margin. The

technique was already used by [141] to derive soft margin classifiers. The resulting

optimization problem is:

w⃗i+1 = arg min
w⃗

1
2
||w⃗− w⃗i||2 + Cξ2 subject to l(w⃗. x⃗ i, yi)⩽ ξ. (2.13)

Here, C is the aggressiveness parameter which controls the influence of the slack

term on the objective function.

2.5.6 Stochastic Gradient Descent (SGD) Classifiers

SGD classifier [149] is a discriminative learning approach for training linear models

such as linear SVM and logistic regression. The algorithm is a simplification of the

gradient descent algorithm. It focuses on the online learning and efficient large-

scale dataset. Given a training set of n examples, as in the example of SVM, and

also a loss function l to measure the gap between the predicted and the observed

variable. SGD try to learn a linear function f ( x⃗) = w⃗. x⃗ − b. Learning the linear

function amounts to minimizing the empirical risk (also called training error):

E(w⃗, b) =
1
n

n
∑

i=1

l(yi, f ( x⃗ i)) +αR(w⃗) (2.14)
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Here, l is the loss function, R is the regularization term and α is a positive parame-

ter. In SGD, the training error is minimized and the parameters are updated by

iteratively computing the gradient of the loss function on a single example:

w⃗i+1 = w⃗i −η∇[l(yi, f ( x⃗ i)) +αR(w⃗)] (2.15)

Where η stands for the learning rate.

2.5.7 Nearest Centroid (NC)

NC classifier is a simple neighborhood-based classification model that labels test

samples by the class of the closest group (distance to the centroid/mean) of training

samples.

Given a labeled training set D of m-dimensional input vectors D = { x⃗ i, yi|i =
1, ..., n} where x i ∈ ℜm denotes the i th training point and yi ∈ ℜ denotes the class

labels, the algorithm first computes the centroid for each class:

m⃗l =
1
|Sl |

∑

i∈Sl

x⃗ i. (2.16)

Where Sl represents the indices of points having label l. By computing the per-

class centroids, the training phase is complete. To classify an unlabeled point, the

algorithm assigns to an unlabeled point x⃗ the output label y which is the label of

the NC:

y = arg min
l
||m⃗l − x⃗ || (2.17)

2.6 Evaluation

After training a classification model, an evaluation step to check how well the

model will perform on unseen data. Therefore, it is important not to train the

model on the entire dataset. Generally, an evaluation procedure is performed that

splits data into splits for training, testing, and validation. In the training phase, a

model is built. The model parameters could then be optimized in the validation

phase. And finally, the model is evaluated in the testing phase.
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2.6.1 Evaluation Procedures

A key element in the model evaluation is to always train and test on different

data. Training the model on all data available would cause overfitting. In order

to avoid this issue, it is common to partition the dataset into at least two splits,

one subset for training and another subset to be kept for testing. This technique is

called hold out. In some benchmarks (i.e., Reuters-21578, Webkb), datasets are

already prepared and partitioned into two splits using the hold-out technique. It is

therefore advisable to use the proposed split for the sake of comparison. The hold-

out technique is a simple cross-validation technique to evaluate the performance

of a model on future/unseen data. There is a number of other cross-validation

techniques such as the Leave P Out Cross-Validation (LpOCV) with its particular

case, the Leave One Out Cross-Validation (LOOCV) when p = 1, the holdout

method seen above and the k-fold cross-validation. LpOCV uses p instances as the

validation set and the remaining for training. The process is repeated Cn
p where n is

the size of the dataset. This technique is almost always computationally infeasible

in TC. Even using the LOOCV (LpOCV with p = 1), the computational cost will still

be very high. A small dataset of a thousand document would need C1000
1 = 1000

training/testing rounds. It will rapidly jump to about 500000 when p = 2. In

k-fold cross-validation (see Figure 2.17), k disjoint subsets of the same size are

generated from the original dataset. One partition is used for testing the model

and the remaining subsets (k− 1 subsets) are used for training the model. This

process is repeated k times, using each time, a different subset as the validation

data for testing the model. In classification tasks, it is typical to use the stratified

k-fold cross-validation, so that the proportion of class labels in each fold (subset)

is roughly equal to the proportion in the original dataset.

2.6.2 Evaluation Metrics

The evaluation of classification models concerns mostly the performance (predictive

ability) of those models. Other important evaluation criteria include computation

cost, robustness, and scalability.
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Figure 2.17 k-fold cross-validation process (k = 5).

Generally, the performance of a classification model is visualized using a confu-

sion matrix (also called a contingency table) which is a 2× 2 table containing four

statistical information:

• The number of True Positives T P (i.e., when you correctly predicts the

instance positive class).

• The number of True Negatives T N (i.e., when you correctly predicts the

instance negative class).

• The number of False Positives F P (i.e., when you faulty predicts the instance

belongs to the positive class).

• The number of False Negatives FN (i.e., when you faulty predicts the instance

belongs to the negative class).

The confusion matrix shown in Figure 2.18 is fit for binary classifications. For

multi-class classification tasks, the confusion matrix may be extended as shown in

Figure 2.19 so that it takes the multiple labels into consideration. In this case, the

four statistical information TP, TN, FP, and FN are not directly available, and they

need to be computed for each label independently of the others as shown in the

Figure 2.19.
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Figure 2.18 Confusion matrix

Figure 2.19 A multi-class confusion matrix
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Various metrics could be defined using the values in the confusion matrix.

Accuracy acc (e.g., the percentage of correct classification) is an obvious choice to

evaluate the classification performance of the model. Using the confusion matrix,

it could be defined as follows:

acc=
T P + T N

T P + T N + F P + FN
.

However, the accuracy metric has two major problems. First, it assumes relatively

uniform class distribution. And secondly, it assumes equal cost for incorrect pre-

dictions. In order to show the weakness of the accuracy metric in expressing the

model true predictive ability, let us consider the problem of predicting the winner

in a contest with a hundred participants. In such problem (the portion of true

positives is very small compared to that of true negatives), a model that predicts

loosing for every participant would be 99% accurate. In order to overcome such

issues, other metrics have been introduced, including error rate, likelihood ratios,

the Area Under the Curve (AUC), precision and recall, sensitivity and specificity

and others [150; 151; 152].

Precision is defined to be the fraction of relevant instances among retrieved

ones, while recall is the fraction of relevant instances that have been retrieved over

all relevant instances.

precision= p =
T P

T P + F P
(2.18)

recal l = r =
T P

T P + FN
(2.19)

Recall ensures that positive instances are not overlooked, while precision ensures

that negative instances are not misclassified as positive cases.

A perfect classifier would have precision and recall equal to one. However,

a negative correlation exists between them. Hence, increasing one is generally

done at the expense of the other. For this reason, precision and recall are usually

evaluated in relation to each other. To this end, many metrics have been proposed

with the most popular are the precision-recall Break-Even Point (BEP), Precision-

Recall (PR) curve and the F-measure.
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Figure 2.20 The precision recall curve and the break-even point.

The BEP represents the value where precision and recall are equal (see Fig-

ure 2.20). In order to obtain the BEP, precision and recall are computed for a

number of different decision function thresholds. However, the BEP value is not

always achievable. In such cases, an approximate value is considered.

The PR curve (Figure 2.20) is a plot of precision as a function of recall. Similarly

to BEP, the PR curve is obtained computing precision and recall at various decision

threshold values. Another curve used to analyze the binary classification is the

Receiver Operating Characteristic (ROC) curve which is a plot of the True Postive

Rate (recall) (TPR= TP
TP+FN) as a function of the False Positive Rate (FPR= FP

FP+TN).

The curve with a larger area under the curve (AUC) usually represents a better

model.

F-measure combines precision and recall into a single measure. It is the har-

monic mean of precision and recall.

F =
T P

T P + (F P + FN)/2
= 2×

p× r
p+ r
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Figure 2.21 Receiver Operating Characteristic (ROC) curve

The above definition of F-measure gives equal importance to precision and recall.

A weighted version of F-measure does however exist.

Fβ = (1+ β
2)

p× r
β2 × p+ r

(2.20)

The β is a parameter that controls the tradeoff between precision and recall. A

β < 1 focuses on precision, while β > 1 on recall. The F-measure is very popular

for model evaluation in TC [10; 91; 153; 154; 155].



3
Term-Weighting

Term-weighting is the process of assigning weight to terms. Typically, it occurs after

the term selection phase. A Term Weighting Scheme (TWS) is used to compute a

weight for each term, that illustrates, roughly speaking, how many bits of informa-

tion it contributes to the semantics of the document. Besides the term-weighting

task, weighting methods are used in many other tasks such as Feature Selection

(FS), automatic detection of stop-words, etc.

In Text Classification (TC), i.e., the task of automatically assigning a set of prede-

fined categories to a text document, a classifier is learned from a training set of

text documents.

Achieving the construction of a classifier involves a number of fundamental steps.

Text documents are very complex to be processed directly in their raw format, due

to the lack of structured data. Therefore, a critical step in text mining, in general,

is to represent text documents in a suitable format compatible with learning al-

gorithms. The most common text representation model in TC is the Vector Space

Model (VSM). VSM could be seen as a generalization of the bag-of-words model.
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A document in VSM is represented as a vector of index terms. Initially, in the VSM,

each term is associated with its number of occurrences. In the term-weighting

process, a weighting method is applied that modifies the vector space by assigning

a different weight for each term. TWSs, typically, use statistical information from

the training set of documents to measure the importance of terms.

TC is a supervised learning task such that statistical information on the membership

of documents in categories are known in advance. Depending on whether the

method includes such information, we classify the TWSs into two groups, Super-

vised Term-Weighting (STW) scheme (it uses information about the membership

of documents in categories) and unsupervised TWS (the method does not use any

prior information on the membership of documents).

Well-known unsupervised TWS are typically derived from text retrieval such as

Term Frequency (TF) (term-frequency), the famous Term Frequency-Inverse Docu-

ment Frequency (TF-IDF) and other variants.

STW methods can be grouped into four categories:

• Term Frequency-Collection Frequency (TF-CF) System.

• Other statistical based methods.

• Schemes evolved via Genetic Programming (GP).

• Methods based on text classifiers.

The most common approach is to combine information theory functions or

statistic metrics to weight terms. FS metrics [5; 6] such as Chi-squared (χ2), Infor-

mation Gain (IG), Gain Ratio (GR), Odds Ratio (OR) are typical in this category of

weighting methods. The effectiveness of these methods in FS made them natural

candidates for term-weighting. Other methods from this category also include

Relevance Frequency (RF) [9], Inverse Category Frequency (ICF) [86], ConfWeight

which is based on statistical confidence intervals [156], etc.

The second approach uses statistical information to measure the importance of

terms however it does not respect the TF-CF system. This category includes Term

Class Relevance Measure proposed in [157] and a measure using the Bayes poste-

rior probability appeared in [158].
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Another approach appeared in [159] and called Weight Adjusted k-Nearest Neigh-

bor Classification Algorithm (WAKNN). The method tries to maximize an objective

function by adjusting vector weights first initialized with values computed using

mutual information measure.

All these methods will be detailed further in Section 3.3, except for methods based

on GP which will be discussed thoroughly in Chapter 5.

The rest of this chapter is organized as follows: Section 3.1 presents the TWSs

in general. Section 3.2 presents the unsupervised group of weighting schemes.

Finally, Section 3.3 presents and discusses the different types of supervised TWSs.

3.1 Term-Weighting Schemes (TWS)

In a binary classification task, given a term t i and a category ck, CF factor could

be expressed using statistical information a, b, c, d and others obtained from the

training data:

• a is the number of documents that contain the term t i and belong to the

positive category ck

• b is the number of documents that do not contain t i and belong to the positive

category ck

• c is the number of documents that contain t i and do not belong to ck

• d is the number of documents that do not contain t i and do not belong to ck

• N which stands for the total number of documents

• C is the total number of categories

• Ci is the number of categories that contains documents containing the term

t i

In machine learning and text retrieval, TWSs have been used for more than fifty

years. The first trace of scoring using statistical information, precisely the number

of occurrences, is due to Luhn and appeared in [160] for keyword indexing. Later,
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very fruitful works were done on feature scoring, however, for information retrieval.

Salton et al. used the frequency of occurrences in [161]. Jones in [162] introduces

the notion of collection frequency and proposes an important new scheme which

is known today as Inverse Document Frequency (IDF) noting that non-frequent

terms should be treated as more valuable than frequent terms. The basic idea

is that frequent terms tend to be general (not specific), and thus, they do not

have discrimination ability. Given a term i that occurs n times in a collection of N

documents, the weight of the term is formally defined as follows:

wi = f (N)− f (n) + 1 | 2 f (n)−1 < n≦ 2 f (n) .

Later, in [163], Salton combines the TF with the collection frequency (IDF) intro-

ducing the most famous TWS, i.e., TF-IDF. The weight for a term i in a document

k could be formulated as follows:

wik = t fik ∗ id fk .

Where id fk = log( N
nk
).

In [8], Salton et al. propose different variants for TF-IDF pointing out three primary

considerations for a text retrieval system that are believed to improve both recall

and precision.

• Term frequency factor (TF): The TF factor is used to capture the relative

importance of terms in a document. Table 3.1 lists a number of different TF

factors. They include the simple binary representation where a score of 1 is

assigned to present terms and a score of 0 for missing terms, the popular raw

count which represents the number of times the term occurs in a document

and different normalized variants ranged from the TF which is normalized

by the total number of tokens (instance of terms) in a document to the log

normalized variants to the inverse TF.

• Term discrimination factor/Collection frequency factor (CF): The importance

of words in a document (TF factor) does not provide enough discrimination

ability. A common word like ’The’ is frequent in almost all documents, and
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Table 3.1 TF Factors

TF factor TF Weight Description

binary 1,0
1 for terms present, 0
otherwise

raw count (f) f
the number of occur-
rences

TF f
∑

f ′

f normalized by the to-
tal number of tokens in
the document

log normalization (nlf) log(1+ f )

double normalization 0.5 (nnf) 0.5+ 0.5 f
max f

f first normalized by
maximum TF and fur-
ther normalized to lie
between 0.5 and 1

Inverse term frequency (itf) 1− 1
1+ f

then it could not separate a group of documents from the remainder of the

collection. Hence a discrimination factor is needed to favor those terms

that are concentrated in a few documents of a collection. Table 3.2 lists six

Collection Frequency (CF) factors.

• Normalization factor: In text retrieval, all documents are considered equally

important. However, the TF factor will favor large documents over shorter

ones, as large documents contain more unique terms and/or greater occur-

rence values. The normalization factor is helpful to eliminate this length

effect. Assuming that wi j is the weight of term t i in document d j produced by

the multiplication of the TF factor by the CF factor. The normalized weight

may then be defined as
wi j
Ç

∑

i[w
2
i j]

.

Based on the discussion above, the weight of a term i in a document j could be

expressed as:

wik = T Fi, j × C Fi . (3.1)

where T Fi, j is the TF component, and C Fi is the CF component. Tables 3.1 and 3.2

show the commonly used frequency components.
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Table 3.2 CF components

CF factor Denoted Description

1.0 1.0 no change in original weight

IDF IDF multiply by an inverse document frequency

Chi-squared χ2 multiply by χ2 function

Information Gain IG multiply by mutual information function

Gain ratio GR multiply by a gain ratio function

Odds Ratio OR multiply by an odds ratio function

Relevance Frequency RF multiply by a relevance frequency function

Inverse Category Frequency ICF multiply by an inverse category frequency

3.2 Traditional Term-Weighting Schemes (TWS)

As mentioned before, unsupervised TWS [8; 162; 164; 165] are generally borrowed

from Information Retrieval domain [8; 162] and adopted for TC [5; 87; 88]. TF-IDF

is the most famous TWS, proposed in [163]. The TF-IDF is a combination of two

components as discussed earlier. Both components have a number of variants.

The TF component has multiple normalized variants such as log f , log f + 1, i t f ,

etc (see 3.1). The IDF component also has many variants such as log( N
ni+1), etc.

However, the original variant log( N
ni
) is still the most used.

Besides the raw count ( fi j) representation of TF, there exist numerous other

variants such as binary representation (wi j = 1 if the term t i occurs in the document

d j and 0 otherwise), log( fi j) + 1, fi j/
∑

t ′∈d ft ′,d . All these variants are also used as

TWSs on their own [5; 6; 8; 87]. The IDF also has a number of variants such as

log(N/Ni) + 1, log((N − Ni)/Ni) [8].

3.3 Supervised Term-Weighting Schemes (STW)

As mentioned earlier, supervised methods could be grouped into multiple categories

depending on the approach used to compute weights.

• Based on the TF-CF system.
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• Based on statistical information.

• Evolved via GP.

• Based on text classifiers.

3.3.1 Term Frequency-Collection Frequency (TF-CF) System

Schemes based on TF-CF system make use of available information on the mem-

bership of training documents by replacing the unsupervised IDF component in

TF-IDF with another supervised component. Debole et al. and Deng et al. in [5; 6]

are the first to take advantage of such information by combining the unsuper-

vised TF component with different supervised CF component. Several comparative

studies on these TWSs for both term-weighting and FS has been reported in

[6; 10; 87; 91; 118; 166].

Chi-Squared (χ2)

In the context of TC, χ2 is a test of independence between a term t and a category

c. χ2 is a popular FS method. χ2 alongside with other supervised FS metrics

has been tested in several papers, as a TWS for TC. For example, Deng et al. in

[6], replaced the IDF factor with χ2 factor, claiming that χ2 is more efficient than

TF-IDF . In contrast, in a similar test, Debole et al. in [5], compare TF-IDF with

three supervised TWSs, namely, χ2, IG and Gain Ratio (GR). The authors have

found no consistent superiority of these new TWSs over TF-IDF . Given a term t i

and a category ck, The χ2 of t i and ck is given by:

χ2 = N ×
(a× d − b× c)2

(a+ c)(b+ d)(a+ b)(c + d)
(3.2)

Information Gain (IG)

IG [101] measures the amount of information obtained for category prediction by

knowing the presence or absence of a term in a document. IG is widely used in FS

for TC [5; 6; 10], and in Decision Tree (DT) [138].
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IG =
�

a
N
× log

a× N
(a+ b)(a+ c)

�

+
�

c
N
× log

c × N
(c + d)(a+ c)

�

+
�

b
N
× log

b× N
(a+ b)(b+ d)

�

+
�

d
N
× log

d × N
(c + d)(b+ d)

�

(3.3)

Gain Ratio (GR)

GR was first used in TC for both term-weighting and FS in [5]. It is defined as the

ratio between the IG of two variables and the entropy of one of them. The authors

claim that GR is a better term evaluation functions than the IG. In their TC test,

they confirmed the superiority of GR over IG and χ2. Statistically, the definition of

the GR is given by:

GR=
i g

− a+c
N log
�

a+c
N

�

− b+d
N log
�

b+d
N

� (3.4)

Odds Ratio (OR)

OR is a measure that describes the strength of association between two random

variables. It was first used as a FS methods by Mladeni’c et al. [118]who found that

OR outperforms 5 other scoring methods studied in a text-classification experiments.

Another comparative study on feature weight in TC is done by Deng et al. in [6].

The study shows good performance of OR, however, it is still outperformed by χ2.

The formal definition of OR in statistical terms could be expressed as shown below:

OR= log
�

2+
a ∗ d
b ∗ c

�

(3.5)

Relevance Frequency (RF)

RF is a new supervised weight scheme proposed in [9]. RF measures the distribution

of term t i between positive and negative categories and favors those terms that

are more concentrated in the positive category than in the negative category. Its

formula is defined as

RF = log
�

2+
a

max(1, c)

�

(3.6)
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Inverse Category Frequency (ICF)

ICF is a new supervised TWS proposed by Wang et al. in [86]. ICF stands for

inverse category frequency and aims to favor those terms that appear in fewer

categories.

IC F = log
�

C
Ci

�

(3.7)

ConfWeight

ConfWeight is a TWS proposed by [156] based on statistical confidence intervals.

Authors use the Wilson proportion estimate [167] to compute the proportion of

documents containing a term t. The Wilson proportion estimate is computed as

follows:

p̃ =
Nt + 1.96
N + 3.86

(3.8)

Where N is the size of the text collection and Nt is the number of documents that

contain the given term. Moreover, its confidence interval at 95% is:

p̃± 1.96

√

√ p̃(1− p̃)
N + 3.84

(3.9)

For a given label, two values p̃+ and p̃− are then computed by applying Equation 3.8

to the positive and negative category respectively. Now, they define the strength of

the term t for the positive category as:

st rt,+ =

¨

log2(2×
MinPos

MinPos+MaxNeg ) if MinPos > MaxNeg

0 otherwise
(3.10)

Where MinPos stands for the lower range of the confidence interval of p̃+, and

MaxNeg for the higher range of p̃− based on Equation 3.9.

Finally, by using the global policy technique [5], the ConfWeight of term t in a

document d is defined as:

ConfWeightt,d = log(t ft,d + 1) ∗max(st r2
t ) (3.11)
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3.3.2 Based on Statistical Information

As mentioned above, methods in this category include two measures, the first

uses the Bayes posterior probability [158], and the second is called Term Class

Relevance Measure [157].

Like methods from the TF-CF category, these methods use statistical information

in weighting terms. The difference, however, is that they do not adopt the TF-CF

system.

Bayes Posterior Probability

In [158], authors use the Bayes formula to compute the posterior probability

Pr(Category | Word) of each word in the input document. Then, they assign the

probability as the weight in the vector space of the VSM. The posterior probability

Pr(Category | Word) is defined as:

Pr(Category | Word)=
Occurrence of word in Category
∑

occurrence of all words in Category
(3.12)

Term Class Relevance Measure

Term Class Relevance Measure [157] is a relatively new scheme proposed by Guru

and Suhil in 2015. The measure is defined as the ability of a term t i in classifying

a document d j as a member of class ck. The measure combines three terms, class

weight (c), class term weight (w) and class term density (d). The measure is

formally defined as below:

rik = c ×w× d

Where c = Nk
N , w= a

Nt
and d = t f
∑

t f

3.3.3 Term-weighting based on classifiers

Interacting with learning algorithms in order to evaluate terms is not new to ma-

chine learning tasks. Wrapper-based FS methods assess multiple classifiers trained

on different features subset in order to find an optimal set of features. In embedded

FS methods, the weighting process is part of the classifier. A similar method to
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the embedded FS was proposed in [168]. The weighting scheme measures the

classifier information rate, and then it backpropagates this rate in order to assign

weights to features according to how much information they contributed. This

information rate measure is based on the performance of the SVM classifier.

Another embedded approach to the classifier-based term-weighting could be

found in [159]. In this paper, an iterative algorithm adjusts the feature weights

according to a defined measure based on the performance of a k-nearest neighbor

classifier. In each iteration, the algorithm slightly modifies the weight of each

feature and then checks for classifier performance improvement. The algorithm

finally updates the weight of the feature which has the greater impact on the

classification accuracy. Although, this method should achieve optimal weights at

convergence, the computational cost of the adjustment step is O(cn2) where c is

the number of iterations and n is the number of data points.





4
Contribution: Information Gain Based

Term-Weighting Scheme

This chapter is based on my contributions [87; 88]. Traditional classification

algorithms are not adapted for multi-label classification tasks. A multi-label classifi-

cation task is therefore transformed into multiple single-label binary tasks. Though

this transformation is the most popular in Text Classification (TC), it introduces

two main negative points. First, the strategy does not consider the label depen-

dancy, and secondly, terms are only considered in terms of positive and negative

categories. In this chapter, we propose a new Term Weighting Scheme (TWS)

based on the Information Gain (IG) scheme that, to some extent, solves the second

issue, by considering the importance of terms in relevance to all categories without

impacting the complexity of the weighting task.
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4.1 Information Gain Based Term-Weighting Scheme

(IGB)

In TC, terms are given weights using TWSs in order to improve classification

performance. A multi-label classification task is generally simplified into several

single-label binary tasks. Thus, the term distribution is considered only in terms of

the positive category and the negative category. In this paper, we propose a new

TWS based on the IG measure for multi-label classification tasks. The method tries

to overcome this shortness without affecting the complexity of the problem.

Moreover, we examine the impact of our proposed scheme alongside eight well-

known TWSs on the performance of five learning algorithms on two popular

problems in term of micro- and macro-averaging F1 measure. We find from the

experimental results that the new proposed method outperforms other methods,

especially regarding the macro-averaging measure. The basic idea of our proposed

IG based method comes in the form of a question: how much IG a term tk holds

about one category after subtracting the IG of the same term tk in relevance to

the other categories. It is to say that the higher the difference between a term IG

of one category and the average of other categories, the more the term helps in

separating the positive from the negative category. As mentioned earlier, a multi-

label classification task is transformed into multiple binary single-label classification

tasks, therefore, a term has multiple Collection Frequency (CF) weights, one for

each binary task. Each weight only considers the distribution of a feature/term in

terms of the positive category and the negative category (all documents that do

not belong to the positive category). We think that using these weights could be

helpful for more effective TWSs.

Considering this idea, we propose a new TWS based on IG. Its formula is defined

by:

w′t,c = wt,c − (µc′∈C wt,c′ +σc′∈C wt,c′)

Where w′t,c is the new weight of a term t and a category c, w′t,c is the IG score of a

term t and a category c, µc′∈C wt,c′ is the mean of weights on all other categories,

and σc′∈C wt,c′ is the standard deviation of weights on all other categories.

To evaluate the differences between the IG measure and our IGB method, let us
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consider the weights for the three terms in Table 4.1. The comparison aims to show

that our IGB values describe better the discriminative power of terms compared to

the standard TWS by including a score calculated in relevance to all categories.

First, let us clarify some points:

• When µ+σ > i g, the term contributes more to the negative categories than

to the positive category.

• When µ + σ < i g, the term contributes more information to the positive

category.

• When µ+σ = i g, the term has about the same amount of information about

both positive and negative categories.

First, considering the term t1 in Table 4.1, µ+σ (0.5) is higher than i g value

(0.3), which means that the negative categories have higher weights than the

positive category. However, the i g value of t1 is a positive value, in contrary to our

new method. That said, the difference does not have a significant impact on scores

especially when the number of categories in the corpus is important, as µ+σ will

have about the same value.

Now, if we consider terms t1 and t3, they both have the same i g value (0.3), which

means that they both contribute the same amount of information to the positive

category, however by looking at the values of µ+σ, t1 has a value of 0.5 > 0.3

and t3 has a value of 0.1< 0.3. In this case, we think that t3 should have a higher

value than t1 as it has the same IG in the positive category but smaller IG in the

negative categories.

Finally, t2 has the same IG value both in the positive category and the negative

categories i g = µ+σ = 0.2. Thus, the IGB value is equal to 0.

4.2 Benchmark

In this study, we conduct two experiments. The primary purpose of the first

experiment (see 4.2.4) is to find the best TWS (if it exists) and to explore the supe-

riority of supervised TWSs. In order to achieve it, we compare eight unsupervised

and supervised methods on three well-known benchmark dataset, Reuters-21578,
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Table 4.1 Comparison of the weighting values of i g and the proposed method.
µ+σ is the average plus the standard deviation of scores of categories which are
not the positive category. The values were hand-chosen.

Feature i g µ+σ IGB

t1 0.3 0.5 -0.2

t2 0.2 0.2 0

t3 0.3 0.1 0.2

20Newsgroup, and Oshumed, using five different classification algorithms in terms

of micro-/macro-averaged F1 measure [87].

The objective of the second experiment is to validate the effectiveness of our pro-

posed method using the same datasets, classification algorithms and evaluation

metrics [88].

4.2.1 Datasets

The Reuters-21578 dataset is one of the most used test collection for TC research.

We use the well-known “ApteMod” split [85]. This split includes 10788 documents

from the Reuters financial service, divided into a training set of 7769 documents,

and a test set of 3019 documents. The dataset is highly skewed, the smallest

category contains only two documents, and the biggest contains 3964 documents.

Documents in this dataset belongs to one or more categories. This version of the

dataset contains ninety categories, and, in our experiments, we report results for the

ten most significant categories. Oshumed dataset is extracted from the Oshumed

collection compiled by William Hersh1. It includes 13,929 medical abstracts (6,286

for training and 7,643 for testing) from the MeSH categories of the year 1991. Each

document in this dataset belongs to one or more categories from 23 cardiovascular

diseases categories.

The last test collection used in our experiment is the 20 Newsgroups. The dataset

“20news-bydate”2 is sorted by date and split into a training set (about 60%) and

a test set (about 40%). Duplicates are removed. Newsgroup-identifying headers

1http://disi.unitn.it/moschitti/corpora.htm
2http://qwone.com/~jason/20Newsgroups/

http://disi.unitn.it/moschitti/corpora.htm
http://qwone.com/~jason/20Newsgroups/
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(Xref, Newsgroups, Path, Followup-To, Date) are also removed.

In all three test collections, we applied a lowercase transformation, word stemming

and stop word removal. No additional preprocessing steps or Feature Selection

(FS) is performed.

Reuters-21578 and Oshumed are multi-labeled datasets. 20Newsgroups is a multi-

class dataset. In all cases, we transform the task into multiple binary single label

tasks using the one-vs.-all transformation strategy aka one-vs.-rest.

Table 5.3 shows some statistics on the three collections.

Table 4.2 Statistics on the three test collections (train data/test data).

Reuters Oshumed Newsgroups

# documents 7769/3019 6286/7643 11314/7532

# terms 26000 30198 101322

# categories 90 23 20

size of the smallest category 1/1 65/70 377/251

size of the largest category 2877/1087 1799/2153 600/399

4.2.2 Classifiers

Generally, the performance of a TWS is assessed on known benchmarks by evaluat-

ing a classification model on Vector Space Model (VSM) representation of this TWS.

In order to build the classification models, we experiment five different algorithms,

namely: Passive-Aggressive (PA), C4.5, Support Vector Machine (SVM), Stochastic

Gradient Descent (SGD), and Nearest Centroid (NC).

SVMs are a set of supervised machine learning methods introduced by Boser et

al. Developed from statistical learning theory, SVMs have shown good performance

in many fields. In TC, Joachims used SVM in which he demonstrates the better

efficiency of SVM over other learning algorithms namely Naive Bayes, Rocchio,

C4.5 and k-NN [85]. PA proposed by Crammer et al. is a learning algorithm

focused on online learning and large-scale dataset [148]. The method treats a

flow of documents and outputs a prediction once a document is received. Later at

any time a document true-label is discovered, the method redefines its prediction
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function. SGD classifier [149] is a linear classifier such as linear SVM, PA that uses

SGD for training. This classifier is also used for large-scale categorization problem.

NC [169] is a neighborhood-based classification algorithm and C4.5 [139] is state

of the art supervised learning algorithm based on the Decision Tree (DT).

4.2.3 Evaluation

As mentioned in Subsection 2.6.2, numerous evaluation metrics exist to evaluate

the classification models such as F1 measure. The F1 measure can be considered

as a weighted average of the precision (the fraction of positive predictions that

is correct) and recall (the fraction of actual positives that have been correctly

classified) and can be formally defined as:

F1 =
2 ∗ recal l ∗ precision

recal l + precision
.

Generally, the F1 measure is computed in two ways, micro-averaged and macro-

averaged. In micro-averaged, big categories are emphasized while in macro-

averaged, all categories have the same importance.

Underlined results represent the highest score over a column, and the bolded

results are the best pair of micro-/macro-averaged F1 scores when all the classifiers

and all the TWSs are considered. The pair having the highest mean is chosen as

the best.

4.2.4 Experiments

A Comparative Study on Term-Weighting Schemes (TWS) for Text Classifica-

tion (TC)

This section is based on the article that appeared in [87]. In this experiment, we

are interested in finding a proper TWS by studying the impact of eight TWSs on

five classification algorithms.

In tables 4.3, 4.4 and 4.5, we present the micro- and macro-averaged preci-

sion, recall, and f-score, respectively, for the Reuters-21578 dataset. In Table 4.5,

NC shows the lowest performance, considering both micro- and macro-averaged
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scores. PA has the highest micro-averaged score (87.22%) and the second highest

macro-averaged score (48.51%) preceeded only by C4.5 with an macro-averaged

score of 54.24%. Regarding TWS, even though, Term Frequency-Inverse Document

Frequency (TF-IDF) shows higher scores, the results are very close.

Tables 4.6, 4.7 and 4.8 shows the micro-/macro-averaged precision, recall,

and f-score, respectively, for Oshumed dataset. Considering both precision and

recall scores in Table 4.8, PA shows the best performance, followed by SGD, SVM.

Strangely C4.5 shows the lowest performance.

Regarding TWS, Term Frequency-Odds Ratio (TF-OR) outperforms all other meth-

ods except when used in conjunction NC. Term Frequency-Relevance Frequency

(TF-RF), Term Frequency-Gain Ratio (TF-GR) and Term Frequency-Information

Gain (TF-IG) have close results, and come second, followed by Term Frequency

(TF). TF-IDF and Term Frequency-Inverse Category Frequency (TF-ICF) perform

poorly.

For these two datasets, we can note that, in comparison with the other algorithms,

NC has very high recall scores (see Tables 4.4 and 4.7). However, NC reports the

lowest precision scores (see Tables 4.3, 4.6).

Scores for Newsgroups dataset are presented in Tables 4.9, 4.10 and 4.11. TF-IG

and TF-GR record the best scores (70%/69%) in conjunction with both SVM and

SGD. Overall, in this dataset, SVM performs the best, followed by SGD and PA.

C4.5 records very low scores. As for TWS, TF-IG and TF-GR give the best results,

followed closely by TF-OR, TF-IDF and TF-ICF. TF-RF shows the lowest scores.

In contrast to the high recall scores and low precision scores registered by NC

algorithm on Reuters-21578 and Oshumed datasets, NC registered approximately

equal results on both precision and recall.

Concerning C4.5, we can note that precision and recall results are approximately

equal on the three datasets.

Overall, in our study, we find that TF-OR is the best TWS. TF-IDF, TF-GR and TF-IG

are also good choices for weighting features. Term Frequency-Chi Squared (TF-χ2),

TF-ICF and TF-RF are the worst methods.
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Table 4.3 micro-/macro-averaged precision results (%) on Reuters-21578 dataset
using different weighting methods.

PA SVM SGD NC C4.5

TF 91.50/62.69 94.37/56.75 94.40/56.64 39.22/30.28 82.17/57.17

TF-χ2 91.35/63.23 94.37/56.75 94.46/55.54 39.22/30.28 82.18/56.23

TF-GR 91.26/61.37 94.37/56.75 94.48/57.21 39.22/30.28 82.44/55.26

TF-ICF 93.21/64.03 94.95/57.31 94.69/61.25 48.87/50.00 81.64/55.34

TF-IDF 93.12/64.14 95.17/56.95 94.45/58.85 63.40/47.57 81.82/56.65

TF-IG 91.56/62.63 94.37/56.75 94.48/56.68 39.22/30.28 82.45/58.53

TF-OR 91.73/63.42 94.37/56.75 94.47/56.62 39.22/30.28 82.07/56.24

TF-RF 91.51/60.75 94.37/56.75 94.45/55.52 39.22/30.28 81.93/55.63

Table 4.4 micro-/macro-averaged recall results (%) on Reuters-21578 dataset using
different weighting methods.

PA SVM SGD NC C4.5

TF 82.27/42.74 78.85/33.51 79.73/35.08 89.93/61.76 81.62/53.79

TF-χ2 81.76/42.64 78.85/33.51 79.62/34.82 89.93/61.76 81.41/52.91

TF-GR 82.27/41.55 78.85/33.51 79.54/34.81 89.93/61.76 81.62/51.81

TF-ICF 79.59/39.44 75.27/30.64 77.19/33.20 86.75/52.96 80.26/51.91

TF-IDF 82.02/41.81 78.37/33.60 80.02/36.29 87.55/55.60 80.80/53.65

TF-IG 82.61/41.93 78.85/33.51 79.51/34.81 89.93/61.76 81.70/53.51

TF-OR 82.10/42.59 78.85/33.51 79.46/34.66 89.93/61.76 81.68/53.32

TF-RF 82.00/41.15 78.85/33.51 79.57/34.75 89.93/61.76 81.97/52.97

Results for Information Gain-Based Method (IGB)

Table 4.12 and Table 4.13 show the micro-/macro-averaged F1 performances

of different TWSs using linear SVM for the two datasets Reuters and Oshumed,

respectively.

Considering the Reuters dataset, the best micro-averaged F1 score 88.68% is

achieved by using our IGB method using the SVM classifier. Regarding the macro-

averaged F1 score, using IGB gives the best score 57.70%. The best micro-/macro-
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Table 4.5 micro-/macro-averaged f-score results (%) on Reuters-21578 dataset
using different weighting methods.

PA SVM SGD NC C4.5

TF 86.64/48.48 85.91/39.74 86.45/41.15 54.61/34.75 81.90/53.63

TF-χ2 86.29/48.51 85.91/39.74 86.41/40.80 54.61/34.75 81.79/53.24

TF-GR 86.53/47.14 85.91/39.74 86.37/41.14 54.61/34.75 82.03/51.79

TF-ICF 85.87/46.42 83.97/37.77 85.05/40.28 62.52/46.43 80.94/52.05

TF-IDF 87.22/48.20 85.95/40.32 86.64/42.73 73.55/47.05 81.31/53.36

TF-IG 86.86/47.76 85.91/39.74 86.35/40.97 54.61/34.75 82.08/54.24

TF-OR 86.65/48.48 85.91/39.74 86.32/40.85 54.61/34.75 81.87/52.82

TF-RF 86.49/46.74 85.91/39.74 86.37/40.76 54.61/34.75 81.95/52.82

Table 4.6 micro-/macro-averaged precision results (%) on Oshumed dataset using
different weighting methods.

PA SVM SGD NC C4.5

TF 71.13/73.55 78.77/81.13 79.85/82.42 39.22/35.64 57.09/53.40

TF-χ2 64.72/61.40 72.81/71.56 71.57/69.70 47.34/45.23 58.22/56.02

TF-GR 76.17/78.21 81.04/80.14 80.67/79.39 58.65/58.85 56.72/52.89

TF-ICF 74.27/75.04 80.80/81.07 77.92/77.81 69.32/68.58 55.63/53.09

TF-IDF 75.76/78.26 80.83/80.36 80.48/79.11 54.40/53.06 57.54/53.61

TF-IG 76.14/77.84 81.04/80.14 80.81/79.49 58.65/58.85 56.84/53.65

TF-OR 74.25/76.45 79.74/81.91 79.44/81.19 53.58/53.61 57.34/54.62

TF-RF 74.08/76.38 80.29/83.20 80.39/82.11 52.24/52.12 57.64/54.63

averaged F1 pair 87.29%/57.70% is also achieved by IGB. Compared to the second

best pair (87.27%/48.59%) achieved by TF-OR, the proposed method records a

boost of over 9% in terms of macro-averaged F1.

In terms of learning algorithms, in this experiment, PA, SVM, and SGD show

comparable performances. NC records the lowest results.

Considering the Oshumed dataset, the highest micro-averaged F1 (67.45%) is

achieved using our IGB method. The highest macro-averaged F1 (62.37%) achieved
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Table 4.7 micro-/macro-averaged recall results (%) on Oshumed dataset using
different weighting methods.

PA SVM SGD NC C4.5

TF 52.91/44.32 46.21/35.96 47.27/37.76 68.04/66.55 56.08/51.73

TF-χ2 56.50/51.22 54.83/48.33 50.77/45.94 64.82/65.07 56.70/52.42

TF-GR 54.89/47.80 48.61/40.01 52.08/44.79 66.60/64.62 56.89/52.70

TF-ICF 45.57/40.16 35.50/29.46 42.02/36.32 51.58/47.07 57.43/52.71

TF-IDF 53.55/45.80 46.82/37.43 50.19/42.00 67.71/65.54 56.35/52.50

TF-IG 54.76/47.84 48.61/40.01 51.96/44.73 66.60/64.62 57.36/53.67

TF-OR 58.15/53.84 54.68/48.36 56.53/51.26 66.14/66.29 55.89/51.46

TF-RF 56.38/50.68 52.32/44.55 53.69/46.72 66.32/65.98 55.53/51.79

Table 4.8 micro-/macro-averaged f-score results (%) on Oshumed dataset using
different weighting methods.

PA SVM SGD NC C4.5

TF 60.68/53.95 58.25/47.02 59.39/48.78 49.76/44.48 56.58/52.42

TF-χ2 60.33/55.51 62.55/55.27 59.40/52.01 54.72/51.83 57.45/53.88

TF-GR 63.80/58.11 60.77/51.71 63.29/56.05 62.37/60.16 56.80/52.65

TF-ICF 56.48/51.32 49.33/41.93 54.60/48.32 59.15/55.25 56.51/52.67

TF-IDF 62.75/56.42 59.30/49.08 61.83/53.41 60.33/57.43 56.94/52.88

TF-IG 63.71/58.12 60.77/51.71 63.25/56.02 62.37/60.16 57.10/53.47

TF-OR 65.22/62.37 64.87/58.78 66.05/60.57 59.20/57.43 56.60/52.76

TF-RF 64.03/60.08 63.36/55.52 64.38/57.19 58.44/56.05 56.56/53.00

by using TF-OR. As a pair of micro- and macro-averaged F1, the proposed method

has a slightly higher average.

Concerning the learning algorithms, SGD and SVM perform the best followed

closely by PA and finally, NC and C4.5 show the lowest results.

Overall, in our study, we find that the proposed method gives good results, better

than the standard TWSs. TF-OR, TF-RF, TF-IDF and TF-IG have also shown good

results. t f .χ2 and TF-ICF give the worst results.
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Table 4.9 micro-/macro-averaged precision results (%) on 20newsgroups dataset
using different weighting methods.

PA SVM SGD NC C4.5

TF 63.91/63.77 66.94/66.58 61.05/62.78 55.91/62.22 44.07/44.12

TF-χ2 58.55/60.54 60.26/60.35 59.33/59.51 47.73/60.20 38.20/38.16

TF-GR 68.43/68.37 69.69/69.41 70.19/70.06 62.85/71.44 43.07/43.37

TF-ICF 68.14/68.23 69.15/69.23 69.24/68.85 59.43/71.87 49.19/51.77

TF-IDF 68.31/68.10 69.69/69.29 61.26/66.59 64.27/69.19 43.65/43.67

TF-IG 68.97/68.86 70.14/69.79 70.26/69.85 63.64/71.56 44.16/44.40

TF-OR 68.57/68.19 69.80/69.26 69.54/69.24 56.44/69.03 45.13/44.77

TF-RF 56.00/55.42 57.73/56.95 56.57/55.36 36.56/46.22 42.22/42.58

Table 4.10 micro-/macro-averaged recall results (%) on 20newsgroups dataset
using different weighting methods.

PA SVM SGD NC C4.5

TF 63.91/62.87 66.94/65.81 61.05/59.69 55.91/55.17 44.07/43.01

TF-χ2 58.55/57.05 60.26/58.74 59.33/57.82 47.73/47.05 38.20/37.17

TF-GR 68.43/67.33 69.69/68.52 70.19/68.92 62.85/62.10 43.07/42.07

TF-ICF 68.14/66.96 69.15/67.90 69.24/67.95 59.43/58.62 49.19/48.15

TF-IDF 68.31/67.20 69.69/68.48 61.26/59.95 64.27/63.32 43.65/42.73

TF-IG 68.97/67.86 70.14/68.93 70.26/68.94 63.64/62.78 44.16/43.15

TF-OR 68.57/67.42 69.80/68.52 69.54/68.26 56.44/55.81 45.13/44.05

TF-RF 56.00/54.86 57.73/56.38 56.57/55.10 36.56/36.06 42.22/41.33

In this study, we experimented with a new TWS applied to multi-label TC based

on the IG measure. The basic idea is that the IG weight of a feature in negative

categories should affect the importance of this term in the positive category.

We studied the effectiveness of the IGB method in comparison to eight well-

known TWSs applied to TC tasks.

Experimental results show that our method outperformed all other methods

tested in this study, especially regarding the macro-averaged measure.
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Table 4.11 micro-/macro-averaged f-score results (%) on 20newsgroups dataset
using different weighting methods.

PA SVM SGD NC C4.5

TF 63.91/63.06 66.94/65.85 61.05/60.38 55.91/56.97 44.07/43.18

TF-χ2 58.55/56.89 60.26/58.18 59.33/57.21 47.73/50.62 38.20/36.91

TF-GR 68.43/67.55 69.69/68.60 70.19/68.98 62.85/64.45 43.07/42.36

TF-ICF 68.14/67.18 69.15/68.10 69.24/67.97 59.43/61.74 49.19/49.08

TF-IDF 68.31/67.37 69.69/68.49 61.26/62.38 64.27/64.90 43.65/42.86

TF-IG 68.97/68.05 70.14/68.96 70.26/68.93 63.64/65.09 44.16/43.39

TF-OR 68.57/67.52 69.80/68.51 69.54/68.30 56.44/59.19 45.13/43.97

TF-RF 56.00/54.69 57.73/56.18 56.57/54.47 36.56/38.41 42.22/41.47

Table 4.12 micro-/macro- averaged F1 results (%) on Reuters-21578 corpus using
eight standard TWSs and the proposed method.

PA SVM SGD NC C4.5

TF 86.6/48.5 85.9/39.7 86.4/41.1 54.6/34.7 81.9/53.6

TF-χ2 86.3/48.5 84.8/43.9 86.4/40.8 54.6/34.7 81.8/53.2

TF-IDF 87.2/48.2 85.7/40.3 86.6/42.7 73.5/47.0 81.3/53.4

TF-GR 86.5/47.1 86.5/42.4 86.4/41.1 54.6/34.7 82.0/51.8

TF-OR 86.6/48.5 87.3/48.6 86.3/40.8 54.6/34.7 81.9/52.8

TF-IG 86.9/47.7 86.5/42.4 86.3/41.0 54.6/34.7 82.1/54.2

TF-ICF 85.9/46.4 84.0/37.8 85.0/40.3 62.5/46.4 80.9/52.0

TF-RF 86.5/46.7 87.8/45.3 86.4/40.8 54.6/34.7 82.0/52.8

New 87.3/57.7 88.7/51.7 88.4/49.0 66.5/54.7 82.2/51.3

4.3 Conclusion

In this chapter, we first got an insight into eight different TWSs. These schemes

are used in conjunction with five classifiers tested on Reuters-21578, Oshumed,

and 20newsgroups datasets. The work aims at extending previous surveys and

establishing a clean and fair basis for TC benchmarks. Secondly, we introduced
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Table 4.13 micro-/macro- averaged F1 results (%) on Oshumed using eight standard
TWSs and the proposed method.

PA SVM SGD NC C4.5

TF 60.7/54.0 58.2/47.0 59.4/48.8 49.8/44.5 56.6/52.4

TF-χ2 60.3/55.5 62.5/55.3 59.4/52.0 54.7/51.8 57.4/53.9

TF-IDF 62.7/56.4 59.3/49.1 61.8/53.4 60.3/57.4 56.9/52.9

TF-GR 63.8/58.1 60.8/51.7 63.3/56.0 62.4/60.2 56.8/52.6

TF-OR 65.2/62.4 64.9/58.8 66.0/60.6 59.2/57.4 56.6/52.8

TF-IG 63.7/58.1 60.8/51.7 63.2/56.0 62.4/60.2 57.1/53.5

TF-ICF 56.5/51.3 49.3/41.9 54.6/48.3 59.1/55.2 56.5/52.7

TF-RF 64.0/60.1 63.4/55.5 64.4/57.2 58.4/56.0 56.6/53.0

New 64.4/60.8 67.0/60.8 67.4/61.2 59.4/57.0 56.7/52.5

a new TWS based on IG for the multi-label classification task. The basic idea is

that the IG weight of a feature in negative categories should affect the importance

of this term in the positive class. We studied the effectiveness of our method in

comparison to the presented TWSs applied to TC tasks. To sum up, from the first

experiment comparing eight different , we find that TF-OR gives slightly better

results, however, the superiority of Supervised Term-Weighting (STW) methods

over unsupervised methods is still not clear. Results from the second experiment

show that the IGB method outperforms all other methods tested in this study,

particularly regarding the macro-averaged measure. Therefore, we conclude that

weighting a term by only considering its relevance to the positive category and the

negative category has a real negative impact on the classification results and that

even a partial solution to the problem has significantly improved the performance.





5
Contribution: Evolving

Term-Weighting Scheme using Genetic

Programming

This chapter is based on my contributions [170; 171; 172].

5.1 Introduction

Text Classification (TC) aims to automatically assign a set of predefined categories

to a text document based on their content. TC is an important machine learning

problem that has been applied to numerous applications such as spam filtering

[173], language identification [174], authorship recognition [175], sentiment anal-

ysis [176], and so on. Generally, the TC approach is to learn an inductive classifier

from a set of predefined categories. This approach requires that documents are rep-
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resented in a suitable format such as the Vector Space Model (VSM) representation

(Salton and Buckley, 1988).

In a VSM, a document d j is represented by a term vector d j = (w1, j, w2, j, ..., wt, j)

where each term is associated with a weight wk, j.

The weight represents how much a term contributes to the semantics of a

document. The method which assigns a weight to a term is called Term Weighting

Scheme (TWS).

Numerous TWSs exist, and we introduce the most famous in Section 5.2.

They are generated according to human a priori and mathematical rules. TWSs

are usually simple mathematical expressions. Unfortunately, depending on the

application, it is not easy to know a priori which TWS will be effective.

As expression discovery may naturally be addressed by Genetic Programming

(GP) [177], we are interested in this chapter to study the effectiveness of GP

generated formulas and their aspects. We are also interested to know if a stochastic

evolutionary process with no information about the complexity, the shape and the

size of the expression can find at least competitive discriminative TWS.

The chapter is organized as follows: Section 5.2 presents the TWSs and related

works. In section 5.3 we present GP and how it is applied to TWS. Section 5.4

presents the experiments and the results, and then we conclude in section 5.5.

5.2 Term-Weighting Schemes (TWS)

TC is a supervised learning task. Hence, the training data consists of a set of labeled

documents

D = ((d1, l1), ..., (dN , lN )),

such that d j is the term vector of j-th document, l j is its label and N is the total

number of training documents. As in VSM representation, a document d j is repre-

sented by a term vector d j = (w1, j, w2, j, ..., wk, j) where wi, j is a weight assigned to

the term t i of the document d j and determined by the TWS.
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5.2.1 Statistical Information

Generally, a multi-labeled classification task is turned into several distinct single-

label binary task, one for each label, using the Binary Relevance (BR) transformation

strategy. That is, given the list of labels L = {l1, l2, ..., lm}, the original dataset is

transformed into m different datasets D = {D1, D2, ..., Dm}. For each dataset Dk,

documents having the label lk will be tagged as the positive category ck and the

rest as the negative category ck. Weights are then computed independently for

each binary dataset.

Based on the BR transformation, given a term t i and a category ck, TWS could

be expressed using statistical information a, b, c, and d obtained from the training

data:

• a is the number of documents that contain the term t i and belong to the

positive category ck.

• b is the number of documents that do not contain t i and belong to the positive

category ck.

• c is the number of documents that contain t i and do not belong to ck.

• d is the number of documents that do not contain t i and do not belong to ck.

Using these statistics, the Inverse Document Frequency (IDF) is generally ex-

pressed as id f (t i, D) = log N
|d∈D:t∈d| could also be expressed as id f (t i, D) = log N

a+c

where N = a+ b+ c + d is the total number of documents in the training data.

Besides the statistics described above, Table 5.1 shows different statistical informa-

tion that could be extracted from the training data.

5.2.2 Short Review

As detailed in Chapter 3, term-weighting has been approached by a wide range

of approaches - from the traditional unsupervised TWS such as Term Frequency-

Inverse Document Frequency (TF-IDF), the supervised methods [6; 9; 86; 88; 156]
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Table 5.1 Statistical information (Terminals) used to evolve a TWS.

Label Description

N Total number of documents

C Number of categories

Ct Number of categories that contain the term t

Nt Number of documents that contain t

N t Number of documents that do not contain t

Ncat Number of documents in the positive category

cat

Ncat Number of documents that do not belong to cat

and methods based on statistical information [157; 158] to methods based on

classifier performance [159; 168].

Another approaches have also been proposed to learn TWSs via GP in [178;

179; 180; 181; 182; 183], however, these studies have focused on information

retrieval problem. For TC, a similar approach proposed by Escalante et al. in [184].

However our study differs in two ways: first, Escalante et al. try to generate new

TWSs by combining existing TWS, and secondly, they learn a single TWS for each

dataset whereas we learn a TWS for each category in a dataset. In our work, we

generate TWSs by combining statistical information at a microscopic level to evolve

new TWSs. We also extend the study on the thematic TC. We hope this leads to

more robust nonhuman based TWSs.

5.3 Genetic Programming (GP)

Evolutionary computing is based on Darwin’s theory of “survival of the fittest”. The

main scheme of evolutionary algorithms is to evolve a population of individuals

that are randomly generated. Each represents a candidate solution that undergoes

a set of genetic operators that allow to mix and alter partial solutions. One of the

key features of evolutionary algorithms is that they are stochastic schemes.
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5.3.1 Introduction

GP belongs to the family of evolutionary algorithms. Crammer et al. first proposed

it [185] and then popularized by Koza [186]. Unlike genetic algorithms where the

aim is to discover a solution, the goal of GP is to find out a computer program that

can solve a problem. Figure 5.5 outlines the flow of the GP algorithm.

In GP, a set of random expressions that usually represent computer programs

are generated. As in all evolutionary computation algorithms, this set of programs

will evolve and change dynamically during the evolution. What makes GP suitable

for a number of different applications is that these computer programs can represent

many different structures, such as mathematical expressions for symbolic regression

[187], Decision Tree (DT) [188], programs that control a robot [189; 190] to fulfill

a certain task or programs that are able to predict defibrillation success in patients

and so on.

The quality of a candidate solution (i.e., a program) is usually assessed by

confronting it with a set of fitness cases. This step is usually the most time-

consuming step as the programs may get huge and several thousands of candidate

programs are usually evaluated at each generation. These computer programs

will undergo one or several evolutionary operators that will alter in a hopefully

beneficial way. The most classical evolutionary operators are usually the crossover

operator that allows the exchange of genetic material (in our case subtrees) and

the mutation operator that allows a small alteration to the program.

In the most conventional GP approach, programs are usually depicted by trees.

In GP terminology, the set of nodes are split into two sets, inner nodes of the tree

are drawn from a set of functions while the terminal nodes (leaves) are drawn

from a so-called terminal set. Depending on the problem, the set of functions can

be mathematical functions, boolean functions, the control flow functions (if,...),

or any functions that may be suitable to solve the given problem. The terminal

set is usually the set of inputs of the problem, e.g., parameters and constants for

symbolic regression problems, sensors for robot planning and so on.

When the stopping criterion is reached, the best individual is returned, oth-

erwise, the loop continues. A set of individuals are selected (according to some

criteria) to produce the next generation. Those individuals are called parents. A
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number of different selection strategy exists such as Elitism, Tournament Selection

(TS), Roulette Wheel Selection (RWS) and Random Selection (RS) in which parents

are randomly selected. In Elitism, the best individuals of the current generation are

carried to be part of the next generation without being modified. TS is a popular

selection method in which the best individual from a fixed number of random

individuals is selected. The algorithm loops to select all parents. In RWS, each

individual is represented as a region proportional to its fitness value which could

be done by normalizing fitness values to one. An individual is then selected by

randomly choosing a number between zero and one.

Various methods were also proposed for the crossover (i.e., single-point crossover

and two-point crossover) and the mutation (i.e., uniform mutation, gaussian mu-

tation) operators. Crossover operator combines the genes of two individuals to

produce new offsprings. The single-point crossover splits two individuals at a

randomly chosen cut-off point and then swaps the tails. In a similar way, the

Figure 5.1 Single-point crossover.

two-point crossover trades parts between two different cut-off points. Figure 5.1

and Figure 5.2 show the process of the two approaches.

Figure 5.2 Two-point crossover.

Mutation aims to maintain diversity in the future generation by performing

simple modifications to one or more genes according to some distribution. In

uniform mutation, the value of a random gene is replaced by a random value

selected uniformly from the input values. The reader can refer to [186; 191] for

more information.
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5.3.2 Evolving Term-Weighting Scheme (TWS) using Genetic

Programming (GP)

A Collection Frequency (CF) factor is a combination of statistical information. It is

intended to measure the discriminative power of a term, i.e., it tells how much a

term is related to a certain category. These statistics are combined by means of

mathematical operators and functions.

We are interested in automatically evolving a CF factor (an individual) using

GP. In our approach, the learned CF factor combined with the Term Frequency

(TF) factor forms a TWS.

In our context of automatically evolving TWSs, an individual is a combination

of the function set that is built with simple arithmetical operators (+,-,*,/,log,...)

and the terminal set (constant values and inputs to our problem).

Table 5.1 shows the statistical information used as a terminal set for generating

formulas (the function set) which represent CF factors. As it can be seen, the

function set is made of very simple arithmetical functions while the terminal set

includes to the best of our knowledge all the statistical information used to build a

TWS.

As previously mentioned, programs (generated TWS) are depicted as trees.

In this problem, the terminal nodes consist of statistical information extracted

from the training data, while the inner nodes are a set of defined operators that

combines the statistical information to form a new TWS.

Figure 5.3 describes the representation graphically and Table 5.2 shows the

parameters used in the GP algorithm.

Terminals and Function Set

In this study, we try to generate new TWS by evolving the CF factor and then

combines it with the TF factor. The CF factor is a combination of constants,

statistical information (N , Nt ,...), and mathematical operators. Hence we define

the terminals as the statistical information shown in Table 5.1. Regarding the

mathematical operators, they are defined as one of the following (+, −, /, ∗,
p

x ,

log1(x) = log(1+ x) and log2(x) = log(2+ x)).
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Figure 5.3 Representation for the IDF component log(1+ N
Nt
) in GP.

Table 5.2 Parameters used in our GP.

Parameter Value

Population Size 100

Max Individual Size 20

Number of generations 100

Function set +, −, /, ∗,
p

x ,

log1(x) = log(1+ x),

log2(x) = log(2+ x)

Terminal set a, b, c, d, N , Nt , verl ineNt ,

Ncat , Ncat , C , Ct

Mutation Type OnePointMutation

Probability 1/individual size

CrossOver Type SubtreeCrossover

Probability 0.85
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We should note that the statistical information has different types (single value,

vector, and matrix). For instance, the number of documents in the training data N

is a constant (single value), the number of documents that contains a term t is a

vector containing the number of documents for each term and finally, the number

of documents that belongs to a category cat and contains a term t is a matrix.

Operations on these different types of statistical information are taken care of by

Eigen1 library using element-wise transformations.

Genetic Operators

In GP, a set of individuals is initialized and then evolved according to a set of

genetic operators. At first, we randomly generate a random size individuals with a

max size of twenty genes (the max size could be overpassed during the cross-over

operation). As for genetic operators, we use the elite selection and re-insertion,

a subtree crossover with a probability of 0.85 and one point mutation with a

probability of 1/size of the individual.

Figure 5.4 shows the crossover and mutation operations for our expression discovery

problem.

Fitness Function

Generally, the performance of a TWS is assessed on a known benchmark by evaluat-

ing a classification model on VSM representation of this TWS. Numerous evaluation

metrics exist to evaluate the classification models such as f1 measure. Evaluating

the classification model is a vital step that affects the performance of the GP. How-

ever, it could be very time-consuming. Hence, it is important to choose a good

and fast machine learning algorithm. LibLinear [192] is an open source library for

large-scale linear classification. It supports logistic regression and linear Support

Vector Machine (SVM)s.

In our study, once a new individual is generated, we perform a 3-fold cross-

validation on the training data which generates three disjoint subsets. We use two

subsets as the training set and one subset as the test set. The process is repeated

three times, each time using a different subset for testing. The performance is

1http://eigen.tuxfamily.org/

http://eigen.tuxfamily.org/
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Figure 5.4 One node crossover and uniform mutation operations for expression
discovery.

measured using the f1 measure. The average classification performance is used as

the fitness function. The f1 measure considers both precision p (true positive over

true positive plus false positive) and recall r (true positive over true positive plus

false negative) and can be formally defined as f1(p, r) = 2rp
r+p .

Figure 5.5 describes the course of the evolution of individuals graphically.

5.4 Experiments and Results

This section presents an empirical evaluation of the proposed approach. The goal of

this study is to assess the effectiveness of the generated TWSs and compare their per-

formances to standard TWSs including TF-IDF, Term Frequency-Information Gain

(TF-IG), Term Frequency-Chi Squared (TF-χ2), Term Frequency-Odds Ratio (TF-

OR), Term Frequency-Relevance Frequency (TF-RF) and Term Frequency-Inverse

Category Frequency (TF-ICF).
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Figure 5.5 The generic diagram of evolutionary algorithm as applied in our study.

5.4.1 Experimental setup

In our experiments, we have used three widely well-known benchmarks in TC:

Reuters-21578 Benchmark Corpus2, Oshumed Benchmark Corpus2, and the 4

Universities dataset also called Webkb3. The Reuters-21578 dataset is one of the

most used test collection for TC research. We use the well-known “ApteMod” split

[85]. This split includes 10788 documents from the Reuters financial service,

divided into a training set of 7769 documents and a test set of 3019 documents.

The dataset is highly skewed, the smallest category contains only two documents,

and the biggest contains 3964 documents. Documents in this dataset belong to one

or more categories. This version of the dataset contains ninety categories, however,

in our experiments, we report results only for the largest ten categories. Oshumed

dataset is extracted from the Oshumed1 collection compiled by William Hersh. It

includes 13,929 medical abstracts (6,286 for training and 7,643 for testing) from

the MeSH categories of the year 1991. Each document in this dataset belongs to

one or more categories from 23 cardiovascular diseases categories. Webkb dataset

2http://disi.unitn.it/moschitti/corpora.htm
3http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/

http://disi.unitn.it/moschitti/corpora.htm
http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
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contains WWW-pages collected from computer science departments of various

universities in January 1997 by the World Wide Knowledge Base (Webkb) project

of the CMU text learning group. In this experiment, we kept only the four largest

categories (“student”, “faculty”, “course” and “project”), and we split it into three

random folds where two folds are used for the training set and one fold for the

test set.

For all three datasets considered in the experiments:

• A default list of stop words, punctuation and numbers are removed.

• Lowercase transformation is applied.

• Porter’s stemming is performed.

Furthermore, for each experiment, a binary transformation is applied. That

leads to multiple distinct single-label binary task, one for each label (see Sec-

tion 5.2.1). Each task could be treated as an independent experiment with its own

dataset.

As mentioned above, each dataset has been split into training and test subsets.

Table 5.3 shows, for each dataset, the number of documents in the training and test

subsets, the number of classes, the number of terms, the size of smallest category

and the size of the largest category.

TWSs are evolved using the training subset (see Section 5.3.2). Finally, the test

subset is used to evaluate the performance of the generated TWS. And finally, for

each dataset, we report the f1 measure (see Section 5.3.2).

In order to obtain more reliable results, we have performed 20 runs on each task.

After having evaluated the generated TWSs, we report the performance average

and standard deviation over the 20 runs. In addition, we report the maximum

and minimum f1 score obtained across the 20 runs (for each run, only the last

generated TWS is taken into account).

Tables 5.4, 5.5 and 5.6 show the results obtained by the generated TWSs and

the best baseline using linear SVM.

Table 5.7 shows the average classification performance of the generated TWSs

on the test subset of the training data (Validation) and the performance on the test
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Table 5.3 Statistics on the selected datasets used for our experiments (training/test).

Reuters Oshumed Webkb

# documents 7769/3019 6286/7643 2803/1396

# classes 90 23 4

# terms 26000 30198 7890

smallest category 1/1 65/70 336/168

largest category 2877/1087 1799/2153 1097/544

data (Test). The goal of this experiment is to show us if further learning is possible

or to warn us of eventual overfitting.

Table 5.8 shows the average classification performance of a random learned

TWS for a single-label binary task on the complete dataset. These results are

important, in order to know whether our GP-Based TWS has good generalization

performances.

5.4.2 Results

First, a fast study of the Tables 5.4, 5.5 and 5.6 shows that the best baseline TWS

is different for each binary task. Therefore, a multi-labeled task requires different

TWSs for each category. Using different TWSs could lead to better results. However,

the problem is to recognize the best TWS for a specific task. Finding the TWS by

cross-validation does not obligatorily return the best TWS.

Regarding Reuters-21578, the generated TWSs and the baseline schemes have

similar performances. However, on Oshumed and Webkb datasets, the GP-Based

TWSs outperforms the best baseline schemes.

From Table 5.7 , we can see that the performance of generated TWSs on the

test subset of the training data during the cross-validation (See Section 5.3.2) are

very similar to the performance on the test data. In addition, the standard TWSs

have different results. That is interesting as it suggests that there is no overfitting

and that further learning can improve the performance.
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Table 5.4 Classification performance on top 10 categories of Reuters-21578 obtained
with the generated TWSs and the best baseline. We put in bold the best results
between our generated TWSs and the best baseline of the standard TWSs.

GP Best Baseline

Label f1 Min Max f1 Baseline

earn 98.34±0.09 98.24 98.54 98.38 TF-IDF

acq 96.93±0.23 96.55 97.54 97.10 TF-IDF

money-fx 79.60±0.50 78.16 80.45 78.63 TF-IDF

grain 94.25±0.63 93.10 95.22 93.43 TF-RF

crude 90.01±0.81 88.27 90.94 88.24 TF-RF

trade 79.10±1.21 77.69 80.18 78.03 TF-RF

interest 75.16±0.50 74.45 76.19 76.19 TF-IDF

ship 80.52±1.54 77.84 82.93 78.95 TF-OR

wheat 88.11±1.26 86.12 90.96 90.20 TF-χ2

corn 92.80±0.27 90.83 93.94 93.91 TF-χ2

Average 87.48±0.70 86.13 88.69 87.30
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Table 5.5 Classification performance on Oshumed dataset obtained with the gener-
ated TWSs and the best baseline.

GP Best Baseline

Label f1 Min Max f1 Baseline

C01 68.19±1.00 65.91 70.71 64.36 TF-OR

C02 41.28±1.20 38.45 43.51 36.38 TF-OR

C03 76.54±3.28 72.03 81.21 78.23 TF-OR

C04 80.06±1.48 77.67 81.72 80.06 TF-χ2

C05 59.48±0.20 59.05 60.59 52.85 TF-OR

C06 73.99±1.29 71.49 75.76 71.44 TF-OR

C07 41.40±3.35 34.86 47.45 32.6 TF-OR

C08 63.97±2.51 59.13 67.69 61.34 TF-OR

C09 53.75±2.63 50.85 58.43 48.00 TF-OR

C10 57.00±2.33 51.05 59.53 50.2 TF-RF

C11 67.78±1.06 65.52 69.23 66.67 TF-OR

C12 76.72±1.10 73.52 78.25 72.86 TF-OR

C13 66.48±0.47 64.72 67.92 63.70 TF-OR

C14 80.08±0.39 79.22 80.55 77.11 TF-IDF

C15 65.98±0.71 64.16 67.20 61.53 TF-χ2

C16 33.54±0.89 31.14 35.41 28.00 TF-OR

C17 64.85±0.90 61.87 66.87 59.24 TF-χ2

C18 61.21±1.50 57.50 65.12 61.22 TF-OR

C19 41.60±2.04 38.23 45.01 39.84 TF-OR

C20 71.61±0.28 70.96 72.07 69.62 TF-OR

C21 65.55±0.32 64.18 67.56 64.37 TF-χ2

C22 10.31±0.12 8.33 14.37 4.21 TF-OR

C23 46.77±0.08 45.59 47.20 46.15 TF-IDF

Average 59.48±1.26 56.76 61.89 56.08
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Table 5.6 Classification performance on Webkb dataset obtained with the generated
TWSs and the best baseline.

GP Best Baseline

Label f1 Min Max f1 Baseline

student 90.29±0.50 89.05 90.90 90.11 TF-RF

faculty 86.62±0.15 85.69 87.81 86.21 TF-RF

project 80.82±0.64 77.48 81.76 80.25 TF-RF

course 94.47±0.34 93.86 96.08 93.56 TF-RF

Average 88.05±0.41 86.52 89.14 87.53

Table 5.7 Average classification performance for validation phase and test phase.

Reuters Oshumed Webkb

Validation 89.15±0.42 59.74±0.9 87.74±0.31

Test 87.48±0.70 59.48±1.26 88.05±0.41

From Table 5.8, we can see that the average performance (macro- f1) of the

generated TWSs outperforms the best baseline on the three corpora which means

that the three learned TWS have good generalization performance.

Finally, compared to the results obtained in [184] on Reuters-21578 and Webkb,

we have similar results. Note that, in [184], they used Reuters-10 dataset which

contains, only documents from the top 10 categories of the Reuters-21578 dataset,

whereas we use Reuters-21578 “ModApte” split which contains documents from

90 categories.

5.5 Conclusion

In this chapter, we have studied the benefits of using GP for generating TWS for TC.

Unlike previous studies, we generate formulas by combining statistical information

at a microscopic level. This kind of generation is new, and we can conclude that :

• Different datasets require different formulas. This means that having a good

generic scheme is hard to find.
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Table 5.8 Average classification performance of random TWS learned for a single-
label task on its corresponding dataset and the best baseline. The selected TWS is
randomly chosen between the best generated TWSs for each category.

GP-Based Baseline

dataset Prefixed formula TWS f1 f1 Best

Reuters ∗ ∗ C ∗ //acN log2 cC C ∗ C ∗ ( a
c∗N ∗ log(2+ c)) 86.9 85.9 TF-RF

Oshumed /d/+ Nt log2Ct a
a

d∗(Nt+log(2+Ct ))
60.3 57.1 TF-χ2

Webkb log1 log2 a log(1+ log(2+ a)) 88.4 87.5 TF-RF

• Within a corpus, it is even better to use different schemes for different

categories. The hard task is to find out the best for each one.

• GP can find very good formulas which outperform standard formulas given

by experts in the literature.

• Eventually, even if the generated formula is specific to a given category,

results show that the best formula for one category is generic enough to be

good (but not best) for other categories.





6
Conclusion

In this thesis, we deal with TC problems. The literature related to the TC techniques

was considered in Chapter 2. Term-weighting was considered in more details in

Chapter 3.

Three main contributions to the TC are presented in Chapter 4 and Chapter 5.

First, we analyzed and compared the impact of eight different TWS on the classi-

fication model for the multi-label task. These schemes were used in conjunction

with five classifiers tested on three well-known benchmarks (i.e., Reuters-21578,

Oshumed, and 20newsgroups datasets). Results could be found in Table 4. We

find that the superiority of supervised TWS over unsupervised TWS is not clear.

The aim was to have a comparative study for future work. In addition, we are

currently working on providing a complete survey on the impact of the different

preprocessing techniques on the performance of classification models. Secondly,

we introduced a new TWS based on Information Gain (IG) for the multi-label

classification task. The basic idea is that the IG weight of a feature in negative

categories should affect the importance of this term in the postive category. In the
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proposed method, the distribution of terms are not only considered in terms of the

positive and negative categories.

Finally, we studied the benefits of using GP for generating TWS for TC. Unlike

previous studies, we generate formulas by combining statistical information at a

microscopic level.

These works are promising. They can lead to new perspectives. It would be

interesting to experiment bagging and boosting techniques on very large datasets

to avoid local optima. It would also be possible to replace the GP by other tree

construction algorithms such as Monte Carlo Tree Search (MCTS) [193; 194; 195;

196; 197; 198] or Nested Monte Carlo (NMC) [177].
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