Maroun Abi

Assaf Vii

Maroun Abi Assaf

Assaf Xi

Assaf Xiii

Assaf Xix

Assaf Xxi

Keywords:

The emergence of fixed or mobile communicating objects poses many challenges regarding their integration into business processes in order to develop smart services. In the context of the Internet of Things, connected devices are heterogeneous and dynamic entities that encompass cyber-physical features and properties and interact through different communication protocols. To overcome the challenges related to interoperability and integration, it is essential to build a unified and logical view of different connected devices in order to define a set of languages, tools and architectures allowing their integrations and manipulations at a large scale. Business artifact has recently emerged as an autonomous (business) object model that encapsulates attribute-value pairs, a set of services manipulating its attribute data, and a state -based lifecycle. The lifecycle represents the behavior of the object and its evolution through its different states in order to achieve its business objective. Modeling connected devices and smart objects as an extended business artifact allows us to build an intuitive paradigm to easily express integration data-driven processes of connected objects. In order to handle contextual changes and reusability of connected devices in different applications, data-driven processes (or artifact processes in the broad sense) remain relatively invariant as their data structures do not change. However, service-centric or activity-based processes often require changes in their execution flows. This thesis proposes a framework for integrating artifact-centric processes and their application to connected devices. To this end, we introduce a logical and unified view of a "global" artifact allowing the specification, definition and interrogation of a very large number of distributed artifacts, with similar functionalities (smart homes or connected cars, ...). The framework includes a conceptual modeling method for artifact-centric processes, inter-artifact mapping algorithms, and artifact definition and manipulation algebra. A declarative language, called AQL (Artifact Query Language) aims in particular to query continuous streams of artifacts. The AQL relies on a syntax similar to the SQL in relational databases in order to reduce its learning curve. We have also developed a prototype to validate our contributions and conducted experimentations in the context of the Internet of Things.

The four years and five months that lasted my Ph.D. were extremely intense and rich. I had never worked so hard before this period, but I have gained a lot of experience and maturity. I would like to use this page to thank all those who have helped and supported me during this period.

First of all, I would like to thank my main supervisor, Prof. Youakim Badr for his unreserved support, for the endless hours he devoted to turn me into a researcher, for all the amazing discussions we had on scientific and nonscientific topics during these years.

I would also like to express my deep gratitude towards my other supervisors, Prof. Kablan Barbar and Prof. Youssef Amghar for giving me this once in a lifetime opportunity and for sharing their deep knowledge and insights with me.

Last but not least, I thank my family and friends for their unconditional moral and physical support during my Ph.D.

Maroun Abi Assaf

ix Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Résumé La démocratisation des objets communicants fixes ou mobiles pose de nombreux défis concernant leur intégration dans des processus métiers afin de développer des services intelligents. Dans le contexte de l'Internet des objets, les objets connectés sont des entités hétérogènes et dynamiques qui englobent des fonctionnalités et propriétés cyberphysiques et interagissent via différents protocoles de communication. Pour pallier aux défis d'interopérabilité et d'intégration, il est primordial d'avoir une vue unifiée et logique des différents objets connectés afin de définir un ensemble de langages, outils et architectures permettant leur intégration et manipulation à grande échelle.

L'artéfact métier a récemment émergé comme un modèle d'objet (métier) autonome qui encapsule ses données, un ensemble de services, et manipulant ses données ainsi qu'un cycle de vie à base d'états. Le cycle de vie désigne le comportement de l'objet et son évolution à travers ses différents états pour atteindre son objectif métier. La modélisation des objets connectés sous forme d'artéfact métier étendu nous permet de construire un paradigme intuitif pour exprimer facilement des processus d'intégration d'objets connectés dirigés par leurs données. Face aux changements contextuels et à la réutilisation des objets connectés dans différentes applications, les processus dirigés par les données, (appelés aussi « artifacts » au sens large) restent relativement invariants vu que leurs structures de données ne changent pas. Or, les processus centrés sur les services requièrent souvent des changements dans leurs flux d'exécution.

Cette thèse propose un cadre d'intégration de processus centré sur les artifacts et leur application aux objets connectés. Pour cela, nous avons construit une vue logique unifiée et globale d'artéfact permettant de spécifier, définir et interroger un très grand nombre d'artifacts distribués, ayant des fonctionnalités similaires (maisons intelligentes ou voitures connectées, …). Le cadre d'intégration comprend une méthode de modélisation conceptuelle des processus centrés artifacts, des des algorithmes d'appariement inter-artifacts et une algèbre de

List of Figures

Context

Artifact-centric process modeling is a Business Process Modeling approach that seeks to explicitly unify data and process, and consequently eliminates the dichotomy that has separated the Database and the Business Process Management communities.

Artifact-centric processes were first introduced by IBM research labs in 2003 [START_REF] Nigam | Business artifacts: An approach to operational specification[END_REF]. The artifact-centric approach, rather than Relation Schema modeling in Databases [START_REF] Abiteboul | Foundations of databases: the logical level[END_REF], or Workflow modeling in Business Process Management [DTKB03], combines both data and process into self-contained entities, known as Artifacts that serve as the basic building blocks from which models of (business) processes are constructed.

In general, an artifact-centric process referred to as an Artifact System [START_REF] Bhattacharya | Towards formal analysis of artifact-centric business process models[END_REF] is formed from three main components: 1) Artifact Classes including Information Models for data related to the artifacts and state-based Lifecycles describing possible stages,

2) Services the basic units of work that operate on Artifacts, and 3) (Business) Rules describing the possible ways that Services can be invoked on Artifacts by following transitions between states of their Lifecycles.

An Artifact System is thus a blend of data and process about dynamic entities that capture their end-to-end journeys and evolve according to specified lifecycles in order to achieve particular goals. Figure 1.1 illustrates an example of an Artifact System about an Order artifact. The Information Model of the Order Artifact class has data attributes for registering information about the order id, product, quantity, client, shipment address, whether the product is available in stock, date retrieved, and delivery date. The Lifecycle includes states for representing the different stages of an Order Artifact including; Created, NotAvailable, Available, Retrieved, and Delivered. The list of Services acting on Order Artifact includes: 1) Create Order: creates a new Order Artifact instance and registers necessary information.

2) Check Availability: checks if the requested product and quantity are available in stock.

CONTEXT

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

3) Retrieve Product: retrieves the product from the stock. And, 4) Deliver Product: delivers the product to the shipment address.

Rules are declarative ECA (Event-Condition-Action) rules that are represented as arrows in Figure 1.1. They are responsible for invoking Services and changing the state of Artifact instances. By leveraging process models into a semantic level, artifact-centric processes provide an intuitive and flexible framework for executing and managing data-driven processes. As reported in [START_REF] Cohn | Business artifacts: A data-centric approach to modeling business operations and processes[END_REF]Hull08], the artifact-centric approach has successfully been applied to process management and case handling, and has demonstrated many advantages such as enabling a natural modularity and componentization of processes, supporting process transformations and changes, providing a framework of varying levels of abstraction, and understanding the interplay between data and process in ways not supported by previous Computer Science abstractions. As a result, end-users can manage, control, and transform artifact-centric processes from day to day with minimal to no intervention from IT specialists and experts.

Over the last few years, artifact-centric processes have proliferated at a phenomenal pace with the wide range of promising applications including finance, monitoring, and virtual organization. Yet another promising application of artifacts is the Internet of Things (IoT) in which smart objects link networks of sensors and actuators. In this context, smart objects can be modeled as self-evolving artifacts gathering data streams from various sensors, detecting complex events, and performing actions on actuators. The Internet of Things, where numerous connected devices are integrated with Internet-based protocols in order to build high-level business services, can be architecturally divided into three layers as illustrated in Figure 1.2: 1) Devices layer: This is the lowest-level layer, which consists of a set of sensors and actuators interacting with their physical environment.

2) Gateway layer: This is the intermediate layer, which is able to provide a unified access point to the variety of connected objects.

3) Business services layer: The Internet of Things presents considerable business opportunities, not only from a device manufacturing perspective, but also from a business perspective through business services and high-level applications. The artifact-centric approach can provide an abstraction over the three layer architecture of Internet of Things and its various components. Through the use of Artifact Classes, Services, and Rules, an Artifact System can represent all the low-level components of Internet of Things including sensors, actuators, storage, processing, access control, and gateways.

As a result, the artifact-centric approach demonstrates many advantages and benefits including; a natural modularity and componentization of self-contained entities and a framework of varying levels of abstraction in order to develop goal-oriented components instead of function-oriented components in the case of Web Services.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

Problem Description

Many of today's businesses are formed by mergers and acquisitions with other businesses and as a result, business people have to deal with a number of heterogeneous Business Processes and Databases performing similar or different functionalities (i.e. manufacturing processes, sale processes) [START_REF] Parent | Database integration: the key to data interoperability[END_REF]. The same situation is applicable to the Internet of Things in which a large number of connected devices require to merge their data or provide a Unified View in order to be easily managed in a simple way rather than dealing with a large number of rows in distributed Database tables.

As described in [START_REF] Lenzerini | Data integration: A theoretical perspective[END_REF], a convenient approach to manage heterogeneous processes and Databases consists of using a Unified View that centralizes the access to information and tasks available in these processes. A Unified View is a virtual process or data model that can be uniformly used to supervise, execute, and interrogate heterogeneous distributed processes and data entities without dealing with their differences and complexities. As a result, a uniform query based on a Unified View is transformed using mapping rules into the corresponding heterogeneous queries of the distributed data entities (i.e., Databases) or processes. Result sets of the heterogeneous queries are then transformed and merged using the mapping rules into a uniform result set compatible with the Unified View. The benefits of using Unified Views are managing huge number of entities at a large scale, facilitating evaluation and analysis of their data and behavior, and providing a centralized access point for administrators and casual users. Figure 1.3 illustrates the integration mechanisms.

Since artifact-centric processes have emerged as a new modeling paradigm and provided interesting applications in the context of Internet of Things to model artifact-based connected devices, this thesis' work focuses on the problem of integrating heterogeneous artifact-centric processes. Integrating artifact-centric processes raises an acute problem because of the complexity of matching and mapping two or more artifacts at the level of their components (i.e. Information Models, Lifecycles, Services, and Rules). And as a result, traditional data integration and process merging solutions and techniques like [START_REF] Chinosi | BPMN: An introduction to the standard[END_REF][START_REF] Kunchala | A survey on approaches to modeling artifact-centric business processes[END_REF][START_REF] Parent | Database integration: the key to data interoperability[END_REF] fail to address the complexity of artifact-centric process integration.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Variants of artifacts consequently lead to heterogeneous artifact-centric processes. As a result, the integration of artifact-centric processes from different sources becomes a major challenge when we need to provide Unified Views for managing, querying and executing very large number of artifacts distributed across the Internet of Things.

Since artifact-centric processes combine three main components; Artifact Classes, Services and Rules, the integration problem of two or more artifacts requires simultaneously the integration of their Information Models, Lifecycles, Services and Rules. However, integration problems have been extensively investigated in disciplines such as Data Integration, Databases, Business Process Merging but the complexity and richness of artifact structures requires specialized integration semantics and approaches.

The challenges facing artifact-centric process integration can be classified into four different levels:

1) Integration Semantics Level: Artifact Systems combine both process and data aspects into three components; Artifact Classes including Information Models and Lifecycles, Services, and Rules. As a result, specialized

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon integration semantics that address these three components should be defined. Moreover, these integration semantics should support different kinds of semantic relationships (i.e. unique, equivalent, and composition) between elements of the different Artifact Systems' components.

2) Conceptual Artifact Model Level: In order to define effective integration semantics, Artifact Systems should be represented using conceptual models that capture their three components. These conceptual models should not only be simple, intuitive and holistic but can also be used to generate working Artifact Systems.

3) Artifact-specific Language Level: In order to effectively create, execute, manipulate, and interrogate Artifact Systems, artifact-specific languages should exist to specifically target artifacts and take full advantage of their semantic nature. Additionally, Artifact-specific languages should be used in order to interrogate generated Unified Views, and, 4) Extended Artifact Level: Since artifacts are mainly applied to traditional business processes, artifacts require to be extended with data stream capabilities in order to support modern IoT-based processes.

Contributions

In this thesis, we focus on the problem of artifact-centric process integration in the context of the Internet of Things through the representation of Artifact Systems, using conceptual models and merging of conceptual models according to correspondence relationships between different artifact component elements.

To this end, we propose a global artifact-centric process integration framework as illustrated in Figure 1.4. The integration framework is based on four main phases: Modeling, Specification, Integration, and Execution.

In the Modeling Phase, we model Artifact Systems using conceptual models that we refer to as Conceptual Artifact Models (CAMs). We propose the Conceptual Artifact Modeling Notations (CAMN) as minimalistic graphical notations that we use in order to model CAMs. CAMs are not only characterized by containing all required information for generating Artifact Systems, but they also form the basis of the integration and generation of Unified Views of heterogeneous artifacts.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon In the Specification Phase, we generate Artifact Systems from CAMs that are modeled in the modeling phase. We also propose the Artifact Query language (AQL), an artifact-specific language, that we use in order to express and implement Artifact Systems. The AQL is a high-level declarative language similar to the SQL and specifically targets artifacts taking full advantage of their semantic and data structutres. The AQL is made of two parts: the Artifact Definition Language (ADL), and the Artifact Manipulation Language (AML). The ADL contains statements to define Artifact Classes, Services, and Rules. The AML contains statements to instantiate, manipulate, and interrogate artifact instances. Moreover, the AQL supports Data Streams and Continuous Query capabilities and allows Complex Event Processing (CEP) over data streams through the use of Artifact Rules.

In the Integration Phase, we integrate several local CAMs in order to generate one global CAM that is used as a Unified View of heterogeneous artifacts. We propose semantic-based integration based on: Finally, in the Execution Phase, we execute Artifact Systems using an execution engine based on translating AQL queries into semantic queries. Semantic queries are then executed on a Database Management System in order to perform relational and stream operations. The execution engine is also responsible for invoking Services.

We validate our artifact-centric process integration framework by developing a prototype, consisting of several modules and graphical user interfaces.

Document Organization

The remainder of the document is organized as follow. Chapter two is a survey of related works. In this thesis, we treat problems related to Business Process Modeling. In particular, we focus on modeling, execution, and integration of artifactcentric Business Processes and their applications to modern smart processes and services.

In this chapter, we present the state of the art of existing works and compare them with regard to our research problem. The reviewed research fields and domains include: Business Process Modeling, Data Integration, Business Process Merging, and Query Languages.

In Section 2.1, we start with a brief introduction of Business Process Models that puts into perspective activity-centric and artifact-centric approaches.

In Section 2.2, we make an overview of activity-centric Business Process Modeling. Moreover, we illustrate advantages and disadvantages of the activity-centric approach in contrast to the artifact-centric approach.

In Section 2.3, we present artifact-centric Business Process Modeling. We describe the artifact-centric approach and its existing formal models. We also make a comparison between existing formal models and the proposed formal model illustrating the advantages of our proposition.

In Section 2.4, we describe existing artifact modeling notations and framework and illustrate their advantages and disadvantages. We then make a comparison between existing artifact modeling notations and frameworks and the proposed artifact modeling notations and framework.

In Section 2.5, we investigate data integration and show the need for an alternative approach to integrate artifact-centric processes.

In Section 2.6, we describe Business Process Merging and Views approaches. Similarly to Data Integration, we demonstrate the need for an alternative approach to integrate artifact-centric processes.

In Section 2.7, we describe existing Query Languages including onetime and continuous query languages. We also compare existing query languages to the proposed query language while illustrating its advantages.

Business Process Models

Business Process is the way an organization conducts its business in order to achieve its business goals. As stated in [Ritt04], a Business Process is one of the first things to consider when organizations need to improve their effectiveness and efficiency. Not having a well-defined and standardized

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Business Process, may lead an organization to unfavorable consequences since the choice of how to conduct the business is left for each employee to make.

The Business Process Model (BPM) is an abstract representation of the Business Process of an organization. This abstract representation is most often a graphical representation that consists of a set of interconnected modeling primitives. As described in [START_REF] Liu | Modeling business contexture and behavior using business artifacts[END_REF], a Business Process Model allows the analysis of the Business Process and the reasoning about how to conduct it in the most efficient and effective manner.

Two major approaches to modeling Business Processes exist:

The Activity-centric approach in which Business Processes are modeled as sequences of Tasks or Activities [START_REF] Dumas | UML activity diagrams as a workflow specification language[END_REF]. And,

The Artifact-centric approach in which Business Processes are modeled based on semantic entities referred to as Business Artifacts [START_REF] Nigam | Business artifacts: An approach to operational specification[END_REF].

[EsWi03, TrAS08, VTKB03] describe three major aspects that are involved in any Business Process Model:

The process aspect (Control-Flow) describes Tasks or Activities, and their logical order of execution.

The data aspect (Data-Flow) describes the evolution of data in the Business Process.

The resource aspect concerns the organizational structure and describes roles that are responsible for executing tasks.

In the activity-centric Business Process Modeling, the process aspect is fundamental and vital to the Business Process Model and represents its core [START_REF] Van Der Aalst | Workflow patterns[END_REF]. On the other hand, data and resource aspects are secondary and are layered on top of the process aspect and provide it with necessary support. In this approach, models describes actions that need to be performed by business actors (human or system) using resources of an organization and their logical order of execution in order to achieve business goals [START_REF] Liu | Modeling business contexture and behavior using business artifacts[END_REF].

On the other hand, in artifact-centric Business Process Modeling both process and data aspects are involved from the beginning in the Business Process Model. The main building blocks of this approach are Business Artifacts [START_REF] Nigam | Business artifacts: An approach to operational specification[END_REF], combining both process and data aspects of a Business Process. In this approach, Business Process Models are built from Lifecycles of Business Artifacts.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon As described in [START_REF] Cohn | Business artifacts: A data-centric approach to modeling business operations and processes[END_REF], activity-centric Business Process Models have been found to have many disadvantages especially when applied in situations that require dynamic modelling and transformations like in knowledge-driven Business Processes. In this kind of situations where the Control-Flow is not known before executing the process, an artifact-centric approach is more flexible and suitable than an activity-centric approach.

Activity-Centric Business Process Modeling

In activity-centric Business Process Modeling, the core components of the process model comprise Activities, and Control-Flows. Activities are the units of work that represent single logical steps within a Business Process. An Activity may be performed by a human actor or an automated system. Control-Flows are used to connect Activities together to form logical steps of a Business Process.

Activity-centric Business Process Models can be supported by a Workflow Management System (WFMS) in order to automate suitable parts of the Business Process as described in [Ritt04]. In this case, the Business Process Model is referred to as a Workflow model. An overview of Workflow Management is described in [START_REF] Georgakopoulos | An overview of workflow management: From process modeling to workflow automation infrastructure[END_REF] where a Workflow model can be read, executed, and controlled by a Workflow Management System (WFMS).

Different modeling languages and notations related to Business Process and Workflow modeling exist. For examples, UML Activity Diagrams [START_REF] Dumas | UML activity diagrams as a workflow specification language[END_REF], Business Process Model and Notation (BPMN) [Fort09], and Yet Another Workflow Language (YAWL) [START_REF] Van Der Aalst | YAWL: yet another workflow language[END_REF] are the most common and used modeling languages and notations. Moreover, these modeling languages and notations are interchangeably used by business analysts and IT specialists.

From an analysis perspective, [START_REF] Van Der Aalst | Workflow patterns[END_REF] performs a study on Workflow patterns. In this study, twenty six Workflow patterns are identified and described. Moreover, [START_REF] Van Der Aalst | Workflow patterns[END_REF] From a different perspective, [Fort09] describes the Business Process Modeling Notation (BPMN). While [START_REF] Van Der Aalst | YAWL: yet another workflow language[END_REF] describes the Yet Another Workflow Language (YAWL). Works such as [START_REF] White | Process modeling notations and workflow patterns[END_REF] and [FoFo09] illustrate and compare how to model Workflow patterns described in [START_REF] Van Der Aalst | Workflow patterns[END_REF] using UML Activity Diagrams, BPMN, or YAWL. They conclude that the three modeling notations can be adequately used to model most Workflow patterns. Similarities between the three modeling notations exist and are due to the fact that they are designed to solve the same basic problem; the diagramming of procedural business processes. Moreover, differences between the three modeling notations also exist and are due to the target users and goals of the modeling notations; BPMN was created as a graphical notation for business people to use. UML was created in order to standardize modeling for software development. YAWL was created in order to provide comprehensive support for Workflow patterns and to design executable Workflow models.

In summary, activity-centric Business Process Modeling focuses on modeling Business Processes based on Activities. An activity-centric Business Process Model tends to be easier to be developed than an artifactcentric Business Process Model since key Activities in a Business Process

Create Order

Check

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon can be easily identified. Moreover, business logics are defined explicitly using Control-Flows which result in an explicit process model which contributes towards Business Process awareness in the organization. However, data are incorporated at a limited level as inputs and outputs of Activities which limits the understanding of possible effects of processing steps on key business entities [START_REF] Ngamakeur | others: On realization of artifact-centric model for business processes[END_REF]. Moreover, the explicit definition of Control-Flows is not suitable in situations that require dynamic modelling and transformations like in knowledge-driven Business Processes that are characterized by not having predefined Control-Flows. Instead, skilled and knowledgeable workers decide the best course of action according to each case like in the healthcare domain. In this kind of processes, an artifactcentric approach is more flexible and suitable than the activity-centric approach as described in [START_REF] Marin | Roman: Data centric bpm and the emerging case management standard: A short survey[END_REF][START_REF] White | Case management: Combining knowledge with process[END_REF].

Artifact-Centric Business Process Modeling

In artifact-centric Business Process Models, the data aspect of Business Processes is involved from the beginning as opposed to the activity-centric approach that leaves it to later stages as input and output of tasks.

In this approach, data and process aspects are combined into semantic entities referred to as Business Artifacts [START_REF] Nigam | Business artifacts: An approach to operational specification[END_REF]. A Business Artifact is composed from an Information Model and a Lifecycle. The Information Model is a set of attribute/value pairs representing business related data and objects. The Lifecycle describes the possible stages that a Business Artifact can pass through during the Business Process. Business Artifacts are used by business people in order to record and track progress toward completing business goals.

The concept of using Business Artifacts as building blocks for Business Processes Models was first introduced in [NiCa03] and was further described in [START_REF] Bhattacharya | A data-centric design methodology for business processes[END_REF][START_REF] Cohn | Business artifacts: A data-centric approach to modeling business operations and processes[END_REF]Hull08] Moreover, the problem of verification of procedural artifactcentric Business Process Models is studied in [START_REF] Gerede | Specification and verification of artifact behaviors in business process models[END_REF] where a language for specifying and verifying artifact lifecycle behaviors is presented. between activity-centric and artifact-centric Business Process Models is performed in [START_REF] Kumaran | On the duality of information-centric and activity-centric models of business processes[END_REF][START_REF] Meyer | Activity-centric and artifact-centric process model roundtrip[END_REF]. A formal model for artifact-centric Business Process Models based on declarative Guard-Stage-Milestones (GSM) Lifecycles was introduced and defined [[START_REF] Damaggio | Roman: On the equivalence of incremental and fixpoint semantics for business artifacts with Guard-Stage-Milestone lifecycles[END_REF][START_REF] Hull | A Formal Introduction to Business Artifacts with Guard-Stage-Milestone Lifecycles[END_REF]HDDF11b]. In this formal model, Lifecycles are represented using Guards, Stages, and Milestones. Milestones correspond to business objectives that a Business Artifact might achieve. Stages correspond to collections of Tasks that are intended to achieve Milestones. And, Guards control when Stages can be opened for execution. The GSM provides a declarative model that supports parallelism and hierarchies in Business Artifact's lifecycles. The problem of verification of GSM models based on symbolic model checking was studied in [START_REF] Gonzalez | Verifying GSMbased business artifacts[END_REF]. In [START_REF] Popova | From Petri Nets to Guard-Stage-Milestone Models[END_REF][START_REF] Popova | Artifact lifecycle discovery[END_REF], Petri Net Lifecycles generated from event logs are transformed into GSM models.

In summary, three different formal models for artifact-centric Business Process Models exist. The first formal model is based on procedural finite state machines. The second formal model is based on declarative Business Rules. And, the third formal model is based on declarative GSM Lifecycles. Moreover, a declarative model is better suited than a procedural model in the context of Business Process transformation and customization. In this case, adding declarative rules or editing existing declarative rules is simpler than editing, recompiling, and deploying of a finite-state machine. As a result, the formal model we propose in this thesis is based on declarative Business Rules we refer to as Artifact Rules.

On the other hand, existing artifact formal models lack the support for data streams generated by sensors, and actuators. As a result, existing artifact formal models are not suitable for modeling of modern day smart processes and thus smart services that require the integration of data streams, sensors, and actuators into same processes.

In comparison, the proposed artifact formal model offers support for data streams in the form of Stream Attributes included in artifacts' Information Models. Additionally, the proposed artifact formal model defines two types of Services that can operate on artifacts;  Ad-hoc Services that perform one time actions on actuators. And,  Stream Services that continuously read data from stream sources like sensors.

Moreover, existing artifact formal models define Information Models as sets of simple attribute/value pairs or as sets of database relations (i.e., tuples). When using relational databases to model and manage artifacts, manipulating artifacts must be performed by manipulating different database relations using SQL queries. This approach of dealing with low-level database relations or attributes does not take full advantage of the semantic nature of artifacts and the different relationships that can exist between them.

In comparison, in our proposed artifact formal model, which defines Information Models as data structures, introduce four types of data attributes; Simple, Complex, Reference, and Stream. As a result, these types of data attributes allow the manipulation of artifacts at a high-level and hide the lowlevel database relations and SQL queries.

Similarly, the proposed artifact formal model represents artifact relationships using high-level Reference data attributes that hide the lowlevel database relations. Table 2.1 summarizes the differences between existing and proposed artifact formal models.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

Artifact Modeling Notations and Frameworks

From modeling notations and frameworks perspective, many works have focused on defining formal and graphical notations to model and execute artifact-centric Business Processes. We analyze and distinguish between these notations according to three criteria:

Conceptual vs Executable Notations:

The first criterion distinguishes between whether notations are used to construct Conceptual Models or Execution Models. A Conceptual Model is a graphical model that is designed by a business person and is used to represent a Business Process at a conceptual level. On the other hand, an Execution Model is an IT related technical and textual model that is defined by an IT specialist or a computer system and is used to execute a Business Process. An Execution Model can also be automatically generated from a Conceptual Model.

Procedural vs Declarative Notations:

The second criterion distinguishes between procedural or declarative notations. Procedural notations are used to construct finite-state based artifact models whereas declarative notations are used to construct rule-based artifact models.

Graphical vs Textual Notations:

The third criterion distinguishes between graphical or textual notations. Graphical notations are used to With the exception of the GSM notation [START_REF] Damaggio | Roman: On the equivalence of incremental and fixpoint semantics for business artifacts with Guard-Stage-Milestone lifecycles[END_REF], existing graphical modeling notations are based on the modeling constructs and patterns described in [START_REF] Liu | Modeling business contexture and behavior using business artifacts[END_REF][START_REF] Nigam | Business artifacts: An approach to operational specification[END_REF]. [START_REF] Nigam | Business artifacts: An approach to operational specification[END_REF] describes three modeling constructs; Task, Repository, and Flow Connector that can be used to model artifact lifecycles. While [START_REF] Liu | Modeling business contexture and behavior using business artifacts[END_REF] describes nine modeling patterns including; Pipeline, Repository, Branch, Convergence, Project, Creation, Synchronization, Rework, and Disposal that can be employed in Business Artifact modeling.

Cohn et al. [START_REF] Cohn | Siena: From powerpoint to web app in 5 minutes[END_REF] introduce Siena to graphically model Business Artifact Lifecycles as procedural finite-state machines based on Tasks, Repositories, and Flow Connectors. Siena provides the capability to generate XML-based Business Artifacts that are then deployed and executed in the Siena Runtime Container. The procedural specification of finite-state machines in Siena makes it unsuitable for Business Process transformation and customization where a declarative approach is more favorable.

In [START_REF] Lohmann | Artifact-centric modeling using BPMN[END_REF], Business Process Modeling Notation (BPMN) extensions have been introduced to model artifact-centric Business Process Models. These BPMN extensions include; Artifacts, Object Lifecycles, Location Information, Access Control, Goal States, and Policies. Artifacts represent the process model's basic building blocks. Object Lifecycles specify artifacts' states. Location Information specifies how artifacts change their location. Access Control specifies the remote accessibility of artifacts. Goal States specify desired final states. And, Policies are used to remove undesired behavior. BPMN extensions provide graphical notations and environment for modeling procedural artifact-centric processes but do not support a declarative modeling approach.

In [START_REF] Liu | Automated realization of business workflow specification[END_REF], Artifact Conceptual Flow or ArtiFlow (re-named EZ-Flow in [START_REF] Xu | An artifactcentric approach to dynamic modification of workflow execution[END_REF]) is introduced. The ArtiFlow model relies on four types of constructs: Business Artifacts, Services, Repositories, and Events. ArtiFlow models are executed by translating them into BEPL-based Workflows. In order to make the translation into the BPEL feasible, ArtiFlow manages execution control through the use of Events. A modeling tool for Artiflow models is designed and developed in [START_REF] Zhang | ArtiFlow Designer: A Tool towards Artifact-Centric Business Process Designing[END_REF]. Figure 2.5 illustrates an Artiflow example. Similarly to BPMN extensions, ArtiFlow provides graphical notations and environment for modeling procedural artifact-centric processes but do not support a declarative modeling approach.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Moreover, the use of a generated event when a Task is executed in order to invoke the next Task makes Artiflow more process oriented. [EQST12] models artifact-centric business processes with the Unified Modeling Language (UML) [START_REF] Rumbaugh | The unified modeling language reference manual[END_REF]. In this work, Business Artifacts (Information Models) are represented as Class Diagrams. Lifecycles are represented as State Machine Diagrams. Services are declaratively specified as preconditions and post-conditions using the Object Constraint Language (OCL) [START_REF] Cabot | Object constraint language (OCL): a definitive guide[END_REF]. Finally, Associations are procedurally specified using Activity Diagrams. [MaHV12] core model. The Barcelona prototype provides design editor and runtime environment for Business Artifact models based on the GSM paradigm [START_REF] Heath | Barcelona: A design and runtime environment for declarative artifact-centric BPM[END_REF]. Figure 2.5 illustrates GSM representation of the Lifecycle of the Order artifact. The GSM approach not only supports a declarative specification of artifact-centric business processes but it also provides graphical modeling notations and environment which simplifies the modeling phase. However, GSM does not support data streams, sensors, and actuators and is developed to be used by Business People which makes it unsuitable for modeling modern day smart processes. From the textual notations perspective, the Business Entities and Business Entity Definition Language (BEDL) are introduced in [NKMH10, NPKM11]. The BEDL is an XML-based language that specifies artifactcentric Business Process Models based on; Business Entities (or Artifacts), Lifecycles, Access Policies, and Notifications. The BPEL4DATA is then used to consume Business Entities and execute processes. Even though BEDL is a textual language, BEDL does not support a declarative specification of artifact-centric business process models. Instead, the BEDL specifies artifactcentric business process models as technical XML-based finite state machines. As a result, the BEDL complicates the design and modeling phase of artifact-centric business process models.

Abiteboul et al. [START_REF] Abiteboul | The AXML artifact model[END_REF] formalize business artifact processes using the Active XML (AXML) approach where a Business Artifact instance is written as an XML document with embedded function calls. The Business Artifact process is thus executed by invoking embedded functions when associated condition holds and assigning their results to Business Artifact attributes. The Active XML introduces a declarative specification of artifactcentric business process models which makes it suitable for Business Process transformation and customization. Nonetheless, the Active XML does not provide a graphical modeling notation that simplifies the modeling phase and contribute towards process awareness in the organization. In [START_REF] Yongchareon | Chengfei: A process view framework for artifactcentric business processes[END_REF], the Artifact-Centric Process Model (ACP model) is introduced in order to support inter-organizational business process modeling. In [START_REF] Yongchareon | An artifact-centric viewbased approach to modeling inter-organizational business processes[END_REF], an extended version of the ACP model is presented and is referred to as Artifact-Centric Collaboration Model (ACC model). The core modeling constructs of ACC model include: Role, Artifact, Task and Business Rule. Roles are organization roles participating in the collaboration. Moreover, ACC model distinguishes between two types of artifacts; local and shared artifacts. Local artifacts are the artifacts used internally within an organization. Shared artifacts serves as a contract between involved organizations, and it is used to indicate the agreed business stages towards the completion of the collaborative process. In [START_REF] Ngamakeur | Chengfei: A framework for realizing artifact-centric business processes in service-oriented architecture[END_REF], a framework for realizing artifact-centric process models in Service-Oriented Architecture (SOA) has been proposed and implemented based on the ACC model proposed in [START_REF] Yongchareon | An artifact-centric viewbased approach to modeling inter-organizational business processes[END_REF]. One of the main advantages of ACC model is its support for declarative specification of Business Rules which are specified as constraints expressed with Event-Condition-Action Rules.

In comparison to existing works, we propose a graphical modeling notation referred as the Conceptual Artifact Modeling Notations (CAMN).

The CAMN includes six modeling constructs; Task, Repository, Flow Connector, Data Attribute List, Condition, and Event. These six modeling constructs allows the design of procedural Conceptual Models that we refer to as Conceptual Artifact Models (CAM). The CAM is characterized by capturing both Information Models and Lifecycles of artifacts in the same Conceptual Model resulting in reduced design time and improves process awareness. Additionally, we describe eleven modeling patterns that cover the nine modeling patterns described in [START_REF] Liu | Modeling business contexture and behavior using business artifacts[END_REF], in addition to modeling patterns that are required when data streams are involved. Moreover, the CAM includes required information for automatically generating declarative Execution Models that comply with our proposed formal model. A textual notation, referred to as Artifact Query Language (AQL), is also proposed in order to directly construct declarative Execution Models and interrogate them. Secondly, several modeling approaches, including BEDL, AXML, and ACC model, do not make use of a Conceptual Model. Instead, they directly define Executable Models using a technical language like XML which complicates the modeling phase and does not support process awareness.

Thirdly, the CAM is the only approach that incorporates both procedural and declarative modeling approaches according to the modeling level. At the conceptual level, CAM is graphically presented as a procedural Conceptual Model based on minimalistic and intuitive constructs which simplifies the design phase. Moreover, it provides a graphical model that is easy to understand and analyze. At the execution level, the CAM is automatically translated into a declarative Execution Model based on ECA Rules which provide high level of control and flexibility over the execution of the Business Process.

Finally, the CAM is the only approach that offers both graphical and textual notations. The graphical notation CAMN is used to design procedural Conceptual Models which are then automatically translated into Execution Models. The textual notation AQL is used to directly define and query declarative Execution Models.

In summary, existing artifact modeling notations and frameworks fall into two categories: Notations that model procedural finite-state machines which fail to provide a declarative and flexible framework. And, notations that provide declarative notations based on rules which fail to provide a simple and representative Conceptual Models. Our work combines both conceptual and declarative approaches in order to provide holistic models that are used as the basis of the Artifact Integration Framework.

Data Integration

Dealing with solutions for artifact integration leads to analyze integration problems in various disciplines such as Databases and the Business Process Management.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon From the Database perspective, Data Integration is the problem of combining data residing at heterogeneous data sources, and providing users with a Unified View of these data [Hale01, Hull97, Ullm00]. On the other hand, [HuZh96a, HuZh96b, YaKL97, ZHKF95] describes two major approaches to manage Data Integrations:

1) The Materialized Approach by which data at the sources are copied into Data Warehouses where it is accessed from. And,

2) The Virtual Approach by which data are accessed from sources through a Unified View. Consequently, a query against the Global Schema in the Materialized Approach is answered directly by accessing Data Warehouses. In contrast, a query against the Global Schema in the Virtual Approach cannot be answered directly but has to be translated into sub-queries against the Local Schemas.

Moreover, two types of Data Integration systems can be implemented in the Virtual Approach:

1) The Central Data Integration System in which a global schema provides the user with a uniform interface to access information stored in the data sources as described in [START_REF] Cruz | The role of ontologies in data integration[END_REF][START_REF] Lenzerini | Data integration: A theoretical perspective[END_REF][START_REF] Xiao | Query processing for heterogeneous data integration using ontologies[END_REF]. And,

2) The Peer-to-Peer Data Integration System in which there are no global points of control on the data sources (or peers). Instead, any peer can accept user queries to manipulate distributed data in the whole system as described in [AKKK03, CDLR04, HIST03].

On the other hand, in [START_REF] Lenzerini | Data integration: A theoretical perspective[END_REF][START_REF] Parent | Database integration: the key to data interoperability[END_REF], Local Schemas are integrated into a Global Schema and mapping rules that translate data between local and global schemas are generated. Moreover, Global Schemas are generated based on correspondence relationships between elements of Local Schemas.

In [START_REF] Aumueller | Schema and ontology matching with COMA++[END_REF][START_REF] Hai | others: Schema matching and mapping-based data integration: Architecture, approaches and evaluation[END_REF], correspondences are acquired as a result of Match Operations. [START_REF] Do | Comparison of schema matching evaluations[END_REF]RaBe01] describe two types of Match Operations: manual operations, where users specify the corresponding elements using a graphical interface, and semi-automatic operations, using the help of algorithms and/or ontologies.

As described in [START_REF] Bonifati | Schema matching and mapping: from usage to evaluation[END_REF][START_REF] Manakanatas | A Tool for Semi-Automated Semantic Schema Mapping: Design and Implementation[END_REF], Schema Mapping deals with transforming data structured respecting a source schema into data structured conforming a target schema. In the context of Data Integration, Schema Mapping transforms data structures between global and local schemas [START_REF] Hai | others: Schema matching and mapping-based data integration: Architecture, approaches and evaluation[END_REF][START_REF] Hai | others: Schema matching and mapping-based data integration: Architecture, approaches and evaluation[END_REF]. As described in [START_REF] Lenzerini | Data integration: A theoretical perspective[END_REF], two main approaches to Schema Mapping exist; Global-As-View (GAV) and Local-As-View (LAV). In the GAV approach, elements in the Global Schema are mapped to views over Local Schemas. Therefore, querying strategies are simple, but the evolution of Local Schemas is not easily supported. In the LAV approach, elements in Local Schemas are mapped to views over the Global Schema. The LAV allows thus changes to Source Schemas without affecting the Global Schema but complicates query processing. Since the mapping associates to each source a view over the global schema, it is not immediate to infer how to use the sources in order to answer queries expressed over the global schema [START_REF] Lenzerini | Data integration: A theoretical perspective[END_REF]. In order to overcome these limitations of both GAV and LAV, related works such as [START_REF] Katsis | View-based data integration[END_REF] propose a hybrid approach known as Global-

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

Local-As-View (GLAV) in which views over Local Schemas are mapped to views over the Global Schema.

From a different perspective, recent works such as [START_REF] Giacomo | Using ontologies for semantic data integration[END_REF][START_REF] Cheatham | Catia: Semantic Data Integration[END_REF], employ Ontologies in order to perform Semantic Data Integration. An Ontology is a formal, explicit specification of a shared conceptualization for domain knowledge [START_REF] Cruz | The role of ontologies in data integration[END_REF]. In Semantic Data Integration systems, Ontologies are used to represent Global Schemas [START_REF] Wache | Ontology-based integration of information-a survey of existing approaches[END_REF]. Moreover, works such as [START_REF] Langegger | A semantic web middleware for virtual data integration on the web[END_REF][START_REF] Pasquier | Biological data integration using Semantic Web technologies[END_REF], uses Semantic Web [START_REF] Decker | The Maroun Abi Assaf Thèse en Informatique[END_REF] technologies such as Resource Description Framework (RDF) [START_REF] Klyne | Resource description framework (RDF): Concepts and abstract syntax[END_REF] and Web Ontology Language (OWL) [START_REF] Antoniou | Web ontology language: Owl[END_REF] Furthermore, we generate the global Conceptual Artifact Model based on identified correspondences as a result of Match Operations. Finally, we generate specialized mapping specifications between local and global models that are used for data translation and transformation. Since we integrate local Conceptual Artifact Models representing different existing processes, we employ a GAV mapping approach in order to simplify query processing. However, Data Integration only deals with data and ignores processes. As a result, artifact integration requires specialized integration semantics that take into consideration process elements and their Control-Flows such as in the fields of Business Process Merging and Views.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

Business Process Merging and Views

From the Business Process perspective, process integration is extensively studied in order to build Business Processes by merging seerveral Business Processes.

As described in [START_REF] Sun | Merging workflows: A new perspective on connecting business processes[END_REF], Merging Business Processes is primarily based on Control-Flows including operators such as sequential, parallel, conditional, and iterative to reconnecting and re-branching activities.

In [START_REF] Rosa | Merging business process models[END_REF], three requirements to merging Business Process Models are presented:

1) The behavior of the merged process model should subsume the source process models.

2) Given an element in the merged process model, analysts should be able to trace back from which source process model(s) the element in question originates.

3) One should be able to derive source process models from the merged processes.

[KGFE08] proposes a prototype for consolidating multiple versions of one shared Business Process Model that is manipulated in the context of business-driven development. The prototype visualizes differences between versions of process models and enables the resolution of differences, by applying change operations in an iterative way to automatically build the Control-Flow.

[LDUD13] presents an algorithm for generating the union of multiple Business Process Models referred to as Merged Models. Additionally, an algorithm that extracts intersections of multiple Business Process Models referred to as Digests from a Merged Model is also presented.

From the Business Process Views perspective, works in the field of artifact-centric inter-organizational business process modeling and choreography such as [START_REF] Lohmann | Artifact-centric choreographies[END_REF][START_REF] Yongchareon | An artifact-centric viewbased approach to modeling inter-organizational business processes[END_REF][START_REF] Yongchareon | others: A view framework for modeling and change validation of artifact-centric inter-organizational business processes[END_REF] seek to provide collaborative organizations with the ability to modify and/or hide specific parts of their internal processes while exposing necessary parts by using Business Artifacts. In this case, Business Artifacts ensure the correctness of collaboration processes. For example, the framework proposed in [START_REF] Yongchareon | Chengfei: A process view framework for artifactcentric business processes[END_REF][START_REF] Yongchareon | An artifact-centric viewbased approach to modeling inter-organizational business processes[END_REF] exposes private and public views to integrate artifact based processes.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Similarly to Business Process Merging and Views, we merge in our framework several source Conceptual Artifact Models into one Conceptual Artifact Model. We handle the merged model as the union of source models. Moreover, we employ merging algorithms that re-branch and reconnect Flow Connectors between Tasks and Repositories in the merged model. in our work, the Control-Flow is not directly modeled in Conceptual Artifact Models and is substituted by Repositories, representing different data states, which hence implies the need for specialized merging approaches that include Data Integration mechanisms.

Query Languages

To the best of our knowledge, current works on artifacts still lack effective languages and tools that take full advantage of the artifact semantic nature in order to define, manipulate and interrogate their instances.

With the exception of [START_REF] Joseph | Business artifact modeling: A framework for business artifacts in traditional database systems[END_REF], most existing languages are graphical or textual notations, which mainly focus on modeling and executing artifact processes. They lack of declarative query languages similar to SQL in relational databases for managing artifact instances and handling their data streams.

The SQL for Business Artifacts (BASQL), introduced in [START_REF] Joseph | Business artifact modeling: A framework for business artifacts in traditional database systems[END_REF], was a first attempt to describe SQL-like statements in order to define and manipulate artifact instances. However BASQL fails to treat artifacts as semantic entities formed from an underlying model of relations and streams, instead of treating them as simple database relations.

From Data Streaming, Continuous Query, and Complex Event Processing perspectives have received abundant contributions in the literature. The roots of continuous query go back to Materialized Views [START_REF] Gupta | others: Maintenance of materialized views: Problems, techniques, and applications[END_REF] where data views are continuously updated to reflect changes to databases.

The concept of Data Streaming was first introduced in [JaMS95] under the name of Chronicles as an extension of materialized views. The Tapestry [START_REF] Terry | Continuous queries over append-only databases[END_REF] was a pioneer by introducing the notion of continuous queries using a declarative language called TQL by which queries are executed once every time instant and their results are merged using set union statements.

Since then, many sophisticated continuous query languages and data stream management systems have been proposed including Aurora

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon [START_REF] Abadi | Aurora: a new model and architecture for data stream management[END_REF], TelegraphCQ [START_REF] Chandrasekaran | TelegraphCQ: continuous dataflow processing[END_REF], STREAM [START_REF] Arasu | Stream: The stanford data stream management system[END_REF], and Odysseus [00a] to just name a few. However, Complex Event Processing goes back to Active Databases [START_REF] Schreier | Alert: An architecture for transforming a passive DBMS into an active DBMS[END_REF][START_REF] Widom | Active database systems: Triggers and rules for advanced database processing[END_REF] where ECA rules, referred to as Triggers, fire when events of interest occur and if their conditions are satisfied to perform relevant actions. Since events in Triggers are simple update, insert, or delete operations performed on relations, works in [START_REF] Chakravarthy | Composite events for active databases: Semantics, contexts and detection[END_REF] focuses on the specification of complex or composite events which are constructed from primitive events.

As sensors and data stream processing have become main-streams in the Internet of Things, recent works on Complex Event Processing techniques such as [START_REF] Demers | Cayuga: A General Purpose Event Monitoring System[END_REF][START_REF] Jiang | MavEStream: Synergistic integration of stream and event processing[END_REF], allow expressing specialized continuous queries that detect complex events from input event streams.

In summary, existing query languages treat low level streams and/or relations and are not suitable for treating high-level Artifact instances and their data. For this reason, our proposed Artifact Query Language (AQL) is specifically designed to target Artifact instances and take full advantage of their semantic nature in order to define, manipulate, and interrogate Artifact instances. Moreover, our AQL support data streams and services invocation capabilities in order to model modern day processes that require reading sensor data and performing actions on actuators.

Conclusion

In this chapter, we present and analyzed existing works related to the problem of this thesis. First, we cover with a brief introduction to Business Process Models that puts into perspective its activity-centric and artifactcentric approaches. We then overview activity-centric Business Process Modeling and illustrated its advantages and disadvantages in comparison to the artifact-centric approach. We then investigate existing artifact modeling notations and framework and illustrate their advantages, disadvantages and compared them to our proposed artifact modeling notation and framework. We then study Data Integration and Business Process Merging and show the need for specialized Artifact Integration semantics that combines mechanisms from both approaches and adds specific integration mechanisms related to artifact integration. Finally, we describe existing Query Languages including one-time and continuous query languages and compared them to the proposed query language while illustrating its advantages.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

In the next chapter, we present the Specification Phase of the Artifact Integration Framework. Moreover, we define a formal model for an Artifact System that implements and executes artifact-centric processes. We also propose a declarative query language that takes full advantage of the semantic nature of artifacts in order to define, manipulate and interrogate artifact instances. Several formal models for executing artifact-centric processes exist in the literature and can be grouped into two types; procedural and declarative models. Procedural formal models such as [START_REF] Gerede | Static analysis of business artifact-centric operational models[END_REF] are based on finite-state machines and are difficult to customize and transform. On the other hand, declarative formal models like [START_REF] Bhattacharya | Towards formal analysis of artifact-centric business process models[END_REF][START_REF] Damaggio | Roman: On the equivalence of incremental and fixpoint semantics for business artifacts with Guard-Stage-Milestone lifecycles[END_REF] are based on Event-Condition-Action (ECA) Rules and are flexible for customization and transformation processes.

Maroun Abi Assaf

Nevertheless, existing formal models fail to define practical approaches that can be semantically used in order to define, manipulate and query artifact-centric processes in a simple and intuitive manner. Instead, existing formal models directly exposes the relational database model and require technical expertise in order to be defined, manipulated, and queried. As a result, artifact-centric processes that are based on existing formal models cannot be effectively used by casual users and business people.

Most of existing formal models are defined in order to specify traditional artifact-centric Business Process Models. As a result, they lakes the support of data streaming, sensors, and actuators descriptions that are needed in smart processes and smart services in IoT.

In this chapter, we introduce a formal model for the Artifact System that implements and executes artifact-centric processes. The proposed formal model is based on declarative ECA Rules allowing customization and transformation of processes. Moreover, our proposed Artifact System hides low-level relational database model and exposes high-level data attributes that can be used to semantically define, manipulate and query Artifact Systems by casual users and business people. Additionally, the proposed formal model supports data streams, sensors and actuators that are relevant for IoT applications.

The proposed Artifact System is based on three main components:

1. Artifact Classes which include four categories of high-level data attribute types including; simple, complex, reference, and stream.

2. Services, which are the basic units of work that operate on artifacts, perform actions on actuators, and data stream generated by sensors. And, 3. Artifact Rules, which are a variant of Event-Condition-Action (ECA) rules, execute artifact processes by detecting situations based on states of artifacts and taking appropriate actions in a timely manner.

We also define the Artifact Query Language (AQL) a simple and declarative query language inspired by the SQL. The AQL is used to define

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Artifact Systems and manipulate and query artifact instances. The AQL is characterized by hiding the underlying relational model and semantically operating on artifact instances.

The remainder of this chapter is organized as follow:

In Section 3.1, we define and formalize Artifact Systems.

In Section 3.2, we present the syntax of the Artifact Query Language (AQL) and its two sub-parts; Artifact Definition Language (ADL) and Artifact Manipulation Language (AML).

In Section 3.3, we describe the semantics and execution strategies of AQL based on fundamental Mathematical Logic and Relational Algebra.

Artifact Systems

In artifact-centric processes, semantic entities, known as artifacts, are the basic building blocks from which the process is constructed [START_REF] Cohn | Business artifacts: A data-centric approach to modeling business operations and processes[END_REF]. The purpose of every artifact is to achieve a particular goal. Artifacts evolve according to their lifecycles and interact with each others in order to reach their business goals.

An Artifact is composed from both an Information Model and a Lifecycle [START_REF] Nigam | Business artifacts: An approach to operational specification[END_REF]. The information model is used to register data about the artifact-centric process and involved objects. The state-based lifecycle dictates the possible states and possible state transitions of artifacts and when services, performing basic units of work can be invoked on artifacts.

Based on these definitions and concepts, we define an Artifact System that implements artifact-centric processes based on a declarative specification of artifact Lifecycles using Artifact Rules as described in [START_REF] Bhattacharya | Towards formal analysis of artifact-centric business process models[END_REF]. A declarative specification describes "what" should be done using Event-Condition-Action (ECA) Rules whereas a procedural specification describes "how" processing should be done in a step-by-step manner using a finite-state machine. The declarative specification benefits the incremental construction of artifact processes and introduces higher level of flexibility when performing process transformation in contrast to the procedural specification [START_REF] Kunchala | A survey on approaches to modeling artifact-centric business processes[END_REF].

Our proposed Artifact System is composed of three main components: Artifact Classes, Services, and Artifact Rules.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Definition 3.1 (Artifact System) An Artifact System W is a triplet (C, S, R) where C is the set of Artifact Classes, S is the set of Services, and R is the set of Artifact Rules.

Example 3.1 (Artifact System)

A simplified Artifact System implementing a smart process about house fire detection and control in the context of a smart city could be composed of the following:  Two Artifact Classes; FireControlArtifact that deals with fire detection and performs reactive procedures, and FireStationAlertArtifact that deals with locating and alerts near fire stations.

 Several Services such as TurnOnAlarm that turns on an alarm actuator, StreamIndoorTemperature that streams indoor temperature from a temperature sensor, LocateFireStation that locates a close fire station, etc.

 Several Artifact Rules such as a rule that detects a fire incident when indoor temperature becomes greater than 57°C and changes the state of a FireControlArtifact to the FireDetected state as a result, and another rule that invokes the TurnOnAlarm when a FireControlArtifact state becomes FireDetected, etc.

Artifact Classes

An Artifact Class represents the schema for a set of artifact instances of the same type. It thus specifies both the Information Model and the Lifecycle of a given artifact.

The Information Model defines a set of data attributes that are used to register data about an artifact and involved objects. Data attributes are expressed as name-type pairs. Data attributes fall into four categories:

1. Simple Attributes: hold one value at a time and are used to record information about the artifact itself. For example the artifact identifier and its creation date are simple attributes. The simple attribute types are: Boolean, Integer, Real, String, Date, and TimeStamp.

2. Complex Attributes: represent relations and are specified as lists of simple attributes. In mathematics, relations represent Database tables.

Similarly to relations, complex attributes can hold many tuples or table rows at a time. They are used to record information about various business objects that are related to the artifact. For example House is a complex attribute consists of two simple attributes; Address, and Surface.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon 3. Reference attributes: refer to other artifacts (i.e., children artifacts) that are directly related to the parent artifact in a Parent-Child relationship.

The Parent-Child relationship can be one-to-one or one-to-many. Thus, a parent artifact can have one or more children artifacts. For example a fire control artifact is the parent of several fire station alert artifacts.

4. Stream attributes: represent data streams that are generated by data stream sources and are specified as a list of simple attributes including a timestamp attribute representing the insertion time of tuples. Data streams are considered a non-persisted, append-only, and unbounded bag of elements that include a timestamp. For example the house's indoor temperature is a stream attribute consisting of two simple attributes; Temperature and TimeStamp.

The Lifecycle of an Artifact Class is a set of states that artifact instances can pass through towards their goals. States represent stages or milestones in the business context that are achieved by artifact instances. The set of states can have one initial state in addition to any number of intermediate and final states. For example, in the fire control artifact, Normal is the initial state. FireDetected is an intermediate state. And, FireExtinguished is a final state. Additionaly, an Initialized state is used by default to represent an artifact instance that is created but has not yet moved to its initial state.

The Artifact Class has a minimal structure that must contain at least an artifact identifier and state attributes in its Information Model, and one state in its Lifecycle.

Assuming the existence of the following pairwise disjoint countably infinite sets: C of artifact names, A of attribute names, Q of artifact states, Y of simple data types, including: Boolean, Integer, Real, String, Date, Null, and TimeStamp, and S of services names.

Definition 3.2 (Artifact Class)

An Artifact Class c is a tuple (c, A, γsim, γcom, γref, γstr, Q, s, F) where:

 c ∈ C is the artifact class name,  A ⊆ A is a finite set of
artifact attributes that include four subsets; a simple attribute partition As, a complex attribute partition Ac, a reference attribute partition Ar, and a stream attribute partition At,  γcom : Ac → A n , the complex type function is a partial map that maps the complex attributes in A to a list of simple attributes in A.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon  γref : Ar → C, the reference type function is a partial map that maps the reference attributes in A to their corresponding Artifact Class in C.

 γstr : At → A n , the stream type function is a partial map that maps the stream type attributes in A to a list of simple attributes in A such that one of the simple attributes is of the TimeStamp type.

 γsim : As ∪ γcom ∪ γstr → Y, the simple type function is a partial map that maps the simple attributes in A in addition to the simple attributes constituting complex and stream attributes to their simple data types in Y. Ad hoc Services perform certain actions, update artifact instances, and finish execution as soon as possible. Ad hoc Services can perform calculations, read data objects, and/or perform actions, for instance, on sensors, actuators or software modules. They also can be automatic services, requiring no human intervention, manual services, requiring human intervention, or semi-automatic services. Ad hoc Services affect simple, complex and reference attributes. For example, TurnOnAlarm is an Ad hoc Service that is invoked when fire is detected in order to activate an alarm actuator.

 Q ⊆ Q, a
2. Stream Services: are units of work that are invoked when artifacts are instantiated to connect to sensors and pull out data streams. From the moment they are invoked, stream services are continuously executed until the artifact instance is disposed. They produce data streams that are read from various sources (i.e., temperature sensors, RSS feeds, CSV files). For example, StreamIndoorTemperature is a stream service that transmits the house's indoor temperature from a physical temperature sensor into an IndoorTemperature stream attribute.

In order to provide a declarative specification of Services, we define (artifact) Services using Input, Output, Precondition, and Effect (IOPE) in a similar way to Semantic Web Services where:

 Input is a list of artifacts that are read by the Service.

 Output is a list of artifacts that are manipulated or created by the Service. Output may include artifacts from the Input list.

 Precondition is a condition on the Input artifacts that holds before executing the Service.

 Effect is a condition on the Output artifacts that holds after executing the Service.

Definition 3.3 (Service)

A Service s is a tuple (s, CI, CO, P, E) where s ∈ S is a service name, CI is a finite set of input artifact classes that are read by the service, CO is a set of output artifact classes that are modified or created by the service, P and E are respectively the Precondition and Effect of the service defined below.

Definition 3.4 (Service Precondition) A Service Precondition P is an expression that is formed from the conjunction of the following predicates

and their negations over data attributes: opened(c.At), defined(c.A), and scalar comparison predicates (>, <, ≤, ≥, =, ≠) where c ∈ CI ∪ CO. The conjunction is expressed using the logical conjunction symbol: ∧, while the negation is expressed using the negation symbol: ¬.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Definition 3.5 (Service Effect) A Service Effect E of a service is an expression that is formed from the conjunction of the following predicates and their negations over data attributes or Artifact Classes: new(c), opened(c.At), defined(c.A), and scalar comparison predicates (>, <, ≤, ≥, =, ≠) where c ∈ CI ∪ CO. The conjunction is expressed using the logical conjunction symbol: ∧, while the negation is expressed using the negation symbol: ¬.

The semantics of the predicates involved in Services' Precondition and Effect are defined as follow:

 opened(c.At): The opened predicate implies that the stream attribute At of the Artifact Class c has started receiving data tuples from its stream source.

 defined(c.A): The defined predicate implies that the attribute A of the Artifact Class c is not null and has a defined value.

 new(c):

The new predicate implies that a new instance of the Artifact Class c is created.

Consequently, a Stream Service is a service that can only have the opened Definition 3.6 (Artifact Rule) An Artifact Rule r is a logical implication P → Q in which its antecedent P is formed from the conjunction of the following predicates; event(e), state(c,q), defined(c.A) and their negations, and scalar comparison predicates (>, <, ≤, ≥, =, ≠). And its consequent Q is one of the following predicates: invoke(S), or state(c,q).

The semantics of the newly introduced predicates used in Artifact Rules are as follow:

 event(e): The event predicate implies that a timely, or user-generated event e is received. Timely events are used to trigger actions that should be performed on a timely basis, i.e., every day at 20 P.M. a backup should be performed. User-generated events are events that occur in the environment, i.e., a student submits an application form, an employee creates an order, etc.

 state(c, q): The state predicate implies that an instance of Artifact Class c is in the state q.

 invoke(S): The invoke predicate implies that the Ad hoc Services S are invoked.

Maroun Abi Assaf

𝒆𝒗𝒆𝒏𝒕(𝑪𝑭𝑪𝑨𝑬) → 𝒊𝒏𝒗𝒐𝒌𝒆(𝑪𝒓𝒆𝒂𝒕𝒆𝑭𝑪𝑨)
Artifact Rules are considered to be sound and thus can be executed if they do not contain any conflict. Conflicting Artifact Rules are rules that have overlapping conditions and distinct actions. For example, an Artifact Rule states that if the state of an FCA artifact is Normal and the indoor temperature is greater than 57°C then the state should be changed to FireDetected. Another Artifact Rule states that if an FCA artifact is Normal and the indoor temperature is greater than 50°C then the state should be changed to PossibleFire. These two rules are conflicting since an FCA artifact which is in the Normal state and has an indoor temperature of 60°C can trigger both rules. In this case, one Artifact Rule should be refined in order to resolve the conflict. For example, the second Artifact Rule should be refined to if the state is Normal and the indoor temperature is between 50°C and 56°C, then the state should be changed to PossibleFire. The conflict resolution is performed by a reasoner that detects and flags any conflicting Artifact Rules that must then be updated by the user.

After resolving conflicts, Artifact Rules can then be executed by the Rule Execution Engine which is implemented in the prototype (see chapter 6). Whenever an artifact instance is modified, the Rule Execution Engine is notified. After that, all the Artifact Rules that involve the corresponding Artifact Class are evaluated on the artifact instance. Finally, the matching Artifact Rules are incrementally executed on the artifact instance.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

Artifact Query Language

Based on the Artifact System we proposed in Section 3.1, we define the Artifact Query Language (AQL) in order to declaratively specify, manipulate and query Artifact Systems and artifact instances. The AQL differs from other query languages like SQL [Slaz04], BASQL [START_REF] Joseph | Business artifact modeling: A framework for business artifacts in traditional database systems[END_REF], and CQL [START_REF] Arasu | The CQL continuous query language: semantic foundations and query execution[END_REF] by targeting the high-level artifact model instead of targeting low-level database relations and streams. The AQL benefits include simpler and intuitive queries that hide the technical details of the underlying relational model. It consists of nine statements divided into two parts: the Artifact Definition Language (ADL) and the Artifact Manipulation Language (AML). Table 1 lists the AQL statements and their syntaxes. The AML instantiates, manipulates, and interrogates artifact instances using the following statements: New, Update, Insert Into, Remove From, Delete, and Retrieve. The New statement instantiate a new artifact instance and invoke its Stream Services. Update, Update In, Insert Into, Remove From, and Delete statements are used to manipulate simple, complex, and reference attributes and artifact instance states. On the other hand, since stream attributes are append-only bags of elements that are neither persisted nor modified, stream attributes cannot be manipulated. Finally, the Retrieve statement retrieves artifact instances and allows the specification of conditions and a Sliding Window on stream attributes.

In the following sub-sections, we describe, define, and provide examples for AQL statements. We also specify their context-free grammars where production rules are separated by semi-colon symbols (;). Moreover, the name of a rule is written at the left-side of a colon symbol (:), while its expansion is written at the right-side. Finally, variables are written in uppercase and bold styles, while terminal symbols are written in normal style and are enclosed by double quotes.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon The Create Artifact statement is used to define an Artifact Class with respect to its formal model. It consists of a list of data attributes and a list of states.

The list of data attributes supports the four categories or datatypes; simple, complex, reference, and stream. Simple attributes are specified using the "name:type" syntax. Complex attributes are specified using the "name1:{name1:type1, name2:type2,…}" syntax. The cardinality of the complex attribute is set to one or to many by appending respectively "As One" or "As Many" to the complex attribute. Reference attributes are specified using the "name:artifact" syntax. Stream attributes are specified using the "name1:{name2:TimeStamp, name3:type1,…} As Stream" syntax in which one of the attributes must be of the TimeStamp type.

The list of states supports the specification of initial, final, or intermediate states. The initial state is specified using the "As Initial State" keyword whereas final states are specified using the "As Final State" keyword. The other states are by default intermediate states. The Create Service statement defines a Service by specifying its Input, Output, Pre-condition, and Effect (IOPE). Input is a list of comma separated Artifact Classes that are read by the Service. Output is a list of comma separated Artifact Classes that are modified or instantiated by the service.

Precondition is the condition on the Input artifacts that holds before the invocation of the service. Effect is the condition on the Output artifacts that holds after the invocation of the service. Condition expressions are formed from the conjunctions of the following predicates using the And keyword: opened(Attribute), closed(Attribute), defined(Attribute), notDefined(Attribute), new(Artifact), and scalar comparison predicates (>, <, ≤, ≥, =, ≠) where closed and notDefined predicates denotes respectively the negation of opened and defined predicates. Figure 3.2 illustrates the context-free grammar of the Create Service statement.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon An optional "On event" clause can be appended to rules. The event in this case represents an external, timely, or user generated event, i.e., creation of a new application, submission of required documents, etc.

In the case that the "On event" clause is specified, the "If condition" clause can be omitted. The condition expression is thus formed from the conjunction of the following predicates: state(Artifact, State), defined(Selector), notDefined(Selector), and scalar comparison predicates (>, <, ≤, ≥, =, ≠) where Selector is a cascading reference to attributes inside artifacts, such as Selector = {Artifact.Attribute1, Artifact. Attribute1.Attribute2}. services are a list of comma separated services to be invoked using the syntax "servicename(Artifact1, Artifact2, …)" where the list of input artifacts is specified between parenthesis. Figure 3 In this section, we present the statements of the Artifact Manipulation Language (AML), which are used to declaratively manipulate and query artifact instances.

New Statement

The New statement instantiates a new artifact instance from an artifact class, initializes its attribute values and states, and invokes its stream services. The New statement has several modes of usages that can be combined in order to initialize:

1. Some or all of the simple attributes using:

"(attribute1, attribute2, …)Values(value1, value2, ...)".

2. Complex attributes by using the syntax: "attribute Include { (value1, value2, …), (value3, value4, …), …}" where a list of tuples is inserted into the complex attribute relation.

3. Reference attributes using: "attribute Having (condition)" where the child artifact referenced by attribute should satisfy condition.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon 4. State of the artifact using: "Set State To state".

In addition, the New statement is used to invoke stream services on stream attributes using: "attribute Using service". The context-free grammar of the New statement is illustrated in Figure 3.4. Example 3.17 (New Statement) In the following, the New query creates an instance of the FireControlArtifact (FCA). The simple attribute FireControlArtifactId is initialized to the value of 100235, the tuple ("20 Av. Albert Einstein", 64) is inserted into its House complex attribute, and two tuples ("John", 00330675839457) and ("Sam", 00330625374883) are inserted into its Habitats complex attribute. Moreover, its FireStationAlert reference attribute is initialized to refer to the FireStationAlertArtifact instance having100200 as the value of its FireStationAlertArtifactId. The StreamIndoorTemperature service is passed the current artifact instance and is invoked on the IndoorTemperature stream attribute. Similarly, StreamSmokeLevel is invoked on SmokeLevel stream attribute. Finally, the state of the artifact instance is set to Normal. The Retrieve statement selects tuples that meet certain conditions from artifact relations, in addition to related tuples from complex attributes, stream attributes and child artifact relations. The condition of the Retrieve statement is specified using the "Where condition" clause. Three types of filtering condition are introduced:

Maroun Abi Assaf

1. Conditions on simple, complex, stream attributes and states are possible using scalar comparison operators and state predicates.

Simple attributes inside complex and stream attributes can be accessed using cascading references, i.e., Artifact.Attribute1.Attribute2.

2. Conditions on complex attributes using the Include keyword where the complex attribute is tested for containing certain tuples; "complex attribute Include {tuple list}".

Conditions on reference attributes using the Having keyword;

"attribute Having (condition)" where the reference attribute should match condition.

Additionally, the Retrieve statement supports the specification of Sliding Windows when stream attributes are involved. The Sliding Window is specified using the optional "Within range" clause where range is a time interval. If no Sliding Window is specified using the "Within range" clause, then the current instance (a.k.a. now) Sliding Window is applied by default.

The context-free grammar of the Retrieve statement is illustrated in Figure 3.5. The remaining statements of the AML manipulate artifact instances and include statements such as Update, Insert Into, Remove From, and Delete. The Update statement is used to update simple and complex attributes and states of artifacts. The Insert Into statement is used to insert tuples into complex attributes. It is also used to insert child artifact references into reference attributes. On the other hand, the Remove From statement is used to remove tuples from complex attributes and child references from reference attributes. Finally, the Delete statement is used to entirely delete artifact instances including values of their complex, reference, and stream attributes. Since streams are append-only bags that are neither persisted nor modified, stream attributes cannot be manipulated using the described statements. Figure 3.6 illustrates the context-free grammar of the remaining manipulation statements where the WHERECLAUSE production rule is the same as in Figure 3.5. Boolean, Integer, Real, String, Date, and TimeStamp, and S of services names. We also make uses of the definitions made in Section 3.1 related to Artifact System W, Artifact Class c, Service s, and Artifact Rule r.

Maroun Abi Assaf

We also give some simple notations for relations and relation schemas.

For a given relation schema R, we denote by schema(R) ⊆ A the set of attributes in R. Since the AQL is used to manipulate and query an underlying model of relations and streams, we also make use of the relational and stream algebra operators: Selection, Projection, Cartesian Product, Window, and Assignment. As described in [START_REF] Abiteboul | Foundations of databases: the logical level[END_REF][START_REF] Arasu | The CQL continuous query language: semantic foundations and query execution[END_REF], these operators provide the necessary functionalities in order to manipulate and query relations and streams. The Selection operator is denoted by σc(r) where a subset of tuples that meet condition c is selected from the relation r. The Projection operator is denoted by πa1,…,an(r) where the result is a relation of n attributes obtained by erasing from the relation r the attributes that are not listed in a1,…,an. The Cartesian Product operator is denoted by r1 × r2 where the result is a relation that combines r1 and r2. Window is denoted by Wrange(s) where the result is a subset relation obtained by returning the stream tuples with a timestamp matching range from the stream s. Relational algebra expressions can be constructed using Selection, Projection, Cartesian Product and Window operators in addition to mathematical union and set difference operators. The Assignment operator is denoted by r ← E where the result of the relational algebra expression E is assigned to the relation r. Using the assignment operator, we can define insert, delete and update operations on relations. Inserting a tuple t into a relation r is defined as r ← r ∪ t. Deleting a tuple t from a relation r is defined as r ← r -t. Updating a tuple t in a relation r is defined as r ← r -t ∪ t′ where t′ is the updated tuple.

The Artifact Definition Language

In this section, we formally define how the underlying model of relations and streams, representing an Artifact System, is created using the statements of the Artifact Definition Language (ADL).

Create Artifact Statement

The Create Artifact statement of the ADL defines Artifact Classes according to Definition 3.2. The semantics of executing a Create Artifact query is defined as follow: House(House_PK, FCA_FK, Address, Surface) Habitats (Habitats _PK, FCA_FK, Name, PhoneNum)

3. For every reference attribute ar of c such that ar ∈ Ar, we create an associated relation schema Rar that contains foreign keys of parent and child artifacts such that schema(Rar)={aparent, achild | aparent=concat(c, "_PFK") and achild=concat(γref(ar), "_CFK") }. Additionally, both foreign keys form the primary key of Rar such that key(Rar)={aparent, achild}. Taking the Create Artifact query of Example 3.9, we obtain the following relation schema:

FireStationAlert(FCA_PFK, FSAA_CFK)

4. For every stream attribute at of c such that at ∈ At, we create an associated relation schema Rat that contains the simple attributes constituting at such that schema(Rat)={a | a ∈ γstr(at) }. Moreover, schema(Rat) also contains a reference to the artifact relation in the form of a foreign key atfk of Rc such that atfk =concat(c, "_FK"). On the other hand, since stream data may not be unique, the relational schema Rat does not have a primary key. Taking the Create Artifact query of Example 3.9 as an example, we obtain the following relation schema:

IndoorTemperature (FCA_FK, Time, Tmp) SmokeLevel (FCA_FK, Time, Lvl)

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon 5. For every state q of c, we insert a tuple t into the states relation such that:

 states ← states ∪ {(c, q, "")} if q ∈ Q and q ≠ s and q ∉ F.

 states ← states ∪ {(c, q, "initial")} if q ∈ Q and q = s.

 states ← states ∪ {(c, q, "final")} if q ∈ Q and q ∈ F.

Create Service Statement

The Create Service statement of the ADL defines Services according to Definition 3.3. The semantics of invoking and executing a Service s is defined as follow:

1. When a Service s is invoked, primary keys of the artifacts included in the input list CI are passed as parameters.

2. The Service Precondition P is evaluated on the input artifacts specified in the input list CI according to the following predicate semantics:

 The predicate defined(c.A) checks if the attribute A of c has a value and is defined when Service s is executed.

 The predicate notDefined(c.A) checks if the attribute A of c does not have a value and is undefined when Service s is executed.

 The opened predicate, opened(c.A), checks if the stream attribute A of c is receiving stream readings when Service s is executed.

 The closed predicate, closed(c.A), checks if the stream attribute A of c is not receiving stream readings when Service s is executed.

 The scalar comparison predicates (>, <, ≤, ≥, =, ≠) checks if the left and right operands match with the specified operator.

As a result, if the input artifacts CI do not match with the Service Precondition P then the service execution is aborted.

The primary keys of overlapping artifacts between the input artifact list

CI and the output artifact list CO are copied from the input artifact list CI into the corresponding output artifacts in the output artifact list CO.  The defined predicate, defined(c.A), assigns a simple value or tuple(s) to the simple attribute A (respectively the complex attribute A) of the artifact instance of the Artifact Class c referenced by the output artifact o ∈ CO. The assigned value can be retrieved from one of three sources which are implemented in the prototype (see chapter 6) : 1) A GUI Form, 2) A Web Service Call, or 3) A User Defined Function.

The

 The scalar comparison predicates (>, <, ≤, ≥, =, ≠) checks if values assigned by the defined predicates match certain conditions and if not, the service effect is rolled back and the invocation is aborted.

 The opened predicate, opened(c.A), describing the effect of a Stream Service continuously reads into the stream attribute A of the artifact instance of the Artifact Class c identified by an output artifact o ∈ CO. The stream source can be specified using one of two choices implemented in the prototype (see chapter 6) : 1) A Web Service Call, or 2) A text file.

Create Rule Statement

The Create Rule statement of the ADL defines Artifact Rules according to Definition 3.6. The semantics of executing Artifact Rules is defined as follow:

1. The set of Artifact Rules R of an Artifact System W is re-evaluated every time a manipulation operation is performed on the relational database model of an artifact instance i, or when a user-generated or timely event e related to an artifact instance i is created using the Graphical User Interface of the prototype (see chapter 6).

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon 2. All Artifact Rules that do not involve the Artifact Class c of the artifact instance i are discarded.

3. If a user-generated or timely event e1 is created then all the Artifact Rules that do not have an event predicate event(e2) in their conditions such that e1 = e2 are discarded.

4  If the action changes the state of an artifact using a state predicate state(c, q), then an update operation that changes the State attribute of the corresponding artifact instance relation to the q state is performed.

 If the action invokes some services using the invoke predicate invoke(S), then the set of services S are invoked and the primary keys of the input artifacts are passed as parameters.

Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

Artifact Manipulation Language

In this section, we formally define how the underlying model of relations and streams are manipulated and queried using the statements of the Artifact Manipulation Language (AML).

New Statement

The New statement of AML instantiates an artifact instance of an Artifact Class c by inserting necessary tuples into the different relations constituting the artifact relational model. The semantics of executing a New query is defined as follow:

1. Values of simple attributes specified in the "(attribute1, attribute2, …)

Values (value1, value2…)" clause are inserted in a new tuple into the artifact main relation rc and its automatically generated primary key is retained such that: rc ← rc ∪ {(kparent, v1, … , vn, state)} where kparent is the automatically generated primary key of the artifact instance. If the state is not yet specified in the query, the state of the artifact is set to Initialized. Similarly, if the state is specified in the query, it is validated using the expression: σArtifact=c ∧State=state(states). The retained primary key kparent is used as the foreign key for the insert operation.

2. For every complex attribute tuple clause specified in "attribute Include (tuple1, tuple2…)", an insert operation is performed on the corresponding complex attribute relation rac such as: rac ← rac ∪ {(kac1, kparent, tuple1), (kac2, kparent, tuple2), … } where kac1 and kac2 are automatically generated primary keys of the inserted tuples and kparent is the retained foreign key of the parent artifact.

3. Similarly, for every reference attribute clause "attribute Having condition", an insert operation is performed on the corresponding reference attribute relation rar such as: rar ← rar ∪ {(kparent, kchild)}. In this case, the kparent is the retained foreign key of the parent artifact and kchild is the retrieved foreign key of the child artifact. The kchild is retrieved according to the specified condition using the expression:

πArtifact_PK(σcondition(γref(attribute)))).

4. Finally, for every stream attribute invocation clause "attribute Using service(kparent)", the service is invoked and passed the primary key kparent of the parent artifact instance in order to continuously stream data readings into the specified stream attribute relation.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

Update Statements

The Update statement of AML updates simple and complex artifacts' attributes, in addition to the artifact states. The semantics of executing an

Update query is defined as follow:

1. The required artifact instance tuple is retrieved from the artifact relation rc using a selection operation: t ← σcondition(rc) where condition is the condition specified in the query.

2. An update operation involving the simple attributes and state of the artifact instance is performed on the artifact relation such as: rc ← rc -t ∪ t′ where t′ is the tuple t updated with the new values of the simple attributes and state of the artifact instance.

3. Updating a complex attribute relation rac is done by first retrieving the complex attribute tuple from the complex attribute relation using a Cartesian Product operation such as:

t←πschema(rac)(σcondition ∧ Artifact_PK=Artifact_FK(rc × rac))

4. An update operation can be performed on the complex attribute relation rac such as: rac ← rac -t ∪ t′ where t′ is the tuple t updated with the new values of the simple attributes of the complex attribute.

Insert Into Statements

The Insert Into statement of the AML inserts tuples into complex or reference attributes relations. The semantics of executing the Insert Into query is defined as follow:

1. In order to insert a tuple (value1,…,valuen) into a complex attribute, the primary key of the corresponding artifact is retrieved using projection and selection operations such as: kparent ← πArtifact_PK(σcondition(rc)). An insert operation is then performed on the complex attribute relation rac such as: rac ← rac ∪ {(kac, kparent, value1,…,valuen)}.

2. In order to insert a reference into a reference attribute, the primary keys of the parent and child artifacts are retrieved using projection and selection operations: kparent ← πArtifact_PK(σcparent(rparent)) where cparent is the condition related to the parent artifact. And kchild ← πArtifact_PK(σcchild(rchild)) where cchild is the condition related to the child artifact. An insert operation is then performed on the reference attribute relation rar as follow: rar ← rar ∪ {(kparent, kchild)}.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

Remove Statements

The Remove From statement of the AML deletes tuples from complex or reference attribute relations. The semantic of executing a Remove From query is defined as follow:

1. Removing a tuple t from a complex attribute relation rac is performed similarly to the Update statement for complex attributes. But, a delete operation is used instead of an update operation such as: rac ← rac -t.

2. On the other hand, removing a tuple from a reference attribute relation rar is performed similarly to the insert statement for reference attributes. But, a delete operation is used instead of an insert operation:

rar ← rar -{(kparent, kchild)}.

Delete Statement

The Delete statement deletes instances of a given artifact class or schema, in addition to all related children artifacts (cascade deletion.

Retrieve Statement

The Retrieve statement selects tuples that meet conditions from the artifact System. The semantics of executing a Retrieve query is defined as follow:

1. Tuples from the artifact relation that meet condition on simple attributes and state of the artifact are selected as follow: r1 ← σcparent(rc) where cparent is the condition related to the simple artifact attributes and states.

2. As for conditions on artifact complex attributes, further selections are performed on the Cartesian Product of r1 and related complex attribute relation rac such as: σccomplex ∧ Artifact_PK=Artifact_FK(r1 × rac) where ccomplex is the condition related to the complex attribute.

3. Similarly, for conditions on artifact reference attributes, a selection is performed on the Cartesian Product of r1, the reference attribute relation rar, and the artifact relation rc such as: σcchild ∧ r1.Artifact_PK=Artifact_PFK ∧ Artifact_CFK=artifact.Artifact_PK(r1 × rar × rc). We also present the Artifact Query Language (AQL) to declaratively define Artifact Systems and manipulate artifact instances without dealing with low level relations and streams. The AQL provides simple and declarative statements that hide underlying database relations and streams. Statements are grouped into the Artifact Definition Language (ADL), and the Artifact Manipulation Language (AML). The ADL provides statements to define Artifact Systems. The AML provides statements to manipulate and query artifact instances. Moreover, the AML will be used in order to uniformly manipulate and query distributed Artifact Systems using the Unified Views in the Artifact Integration Framework.

In the next chapter, we will model Artifact systems to promote process awareness through simple graphical notations and enable the Artifact Integration Framework with Unified Views that serve as centralized access platforms to supervise and manage distributed Artifact Systems.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon As described in Chapter 3, Artifact Systems can be specified by writing appropriate AQL queries. We extend AQL queries with conceptual models. In fact, conceptual models of representing artifact-based processes are visualoriented approach to practical and user-friendly design that can be automatically translated into Artifact Systems. They can be also effectively used for integrating heterogeneous Artifact Systems and generating Unified Views for supervising, managing, and querying heterogeneous Artifact Systems in a uniform manner.

Existing artifact modeling notations and frameworks such as [DaHV13, LLQS10, LoNy11] have several limitations. Firstly, their conceptual models do not present a holistic representation of Artifact System's components: Artifacts (Information Models), Lifecycles, Services, and Associations. Instead, Lifecycles, Services and Associations are often included in the conceptual models while Information Models are defined separately from the conceptual model. As a result, these models cannot be effectively used for generating representative Unified Views that serve as centralized supervision and management platforms for artifact-centered processes.

Moreover, existing artifact modeling notations fall under two categories; procedural and declarative notations. Procedural modeling notations like [CDHP08, EQST12, NKMH10] are based on simple finitestate machines and they fail to provide customizable and flexible frameworks. Declarative modeling notations like [ABGM09, [START_REF] Damaggio | Roman: On the equivalence of incremental and fixpoint semantics for business artifacts with Guard-Stage-Milestone lifecycles[END_REF][START_REF] Yongchareon | An artifact-centric viewbased approach to modeling inter-organizational business processes[END_REF] are based on customizable Event-Condition-Action (ECA) Rules but still limited and cannot easily provide simple and representative models that support process awareness.

In addition, they are used to model Business Process Models with workflow patterns as described in [START_REF] Liu | Modeling business contexture and behavior using business artifacts[END_REF]. These patterns lack data stream capabilities and thus are not suitable for modeling smart services and smart processes, integrating data streams.

In order to overcome the disadvantages of existing artifact modeling notations and frameworks, we propose the Conceptual Artifact Modeling Notation (CAMN) to construct Conceptual Artifact Models (CAM). The CAMs include all components of Artifact Systems into the same model and thus provides a holistic process representation. Moreover, CAMs are procedural models based on simple finite-state machines that can be automatically translated into declarative Artifact Systems based on customizable Event-Condition-Action (ECA) Rules. As a result, our proposed modeling framework combines the advantages of both procedural and declarative modeling approaches and eliminates their disadvantages.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Furthermore, we propose a set of modeling patterns to include data stream specific modeling patterns and ensure the generation of valid Artifact Systems. The remaining sections of Chapter 4 are organized as follow:

In Section 4.1, we introduce the Conceptual Artifact Modeling Notation (CAMN) which is based on six modeling primitives.

In Section 4.2, we describe the modeling patterns that ensure the generation of valid Artifact Systems.

In Section 4.3, we describe the semantics of generating Artifact Systems from the Conceptual Artifact Models (CAM) based on the set of modeling patterns.

Conceptual Artifact Modeling Notation

In Table 4.1, we summarize the Conceptual Artifact Modeling Notation (CAMN) constructs and their graphical representations to design Conceptual Artifact Models (CAMs). The notation's main focus is to capture artifact Lifecycles by describing how artifact instances flow between CAMN constructs.

The graphical notation is based on six modeling constructs: Task, Repository, Flow connector (read-only and read/write), Data Attribute List, Condition, and Event. Using these constructs, an artifact-centric process can be represented at a conceptual level by modeling interacting artifact Lifecycles.

1. Tasks correspond to Services in Artifact Systems and represent units of work to be performed in order to manipulate artifact instances and evolve them in their lifecycle thus achieving goals.

2. Repositories denote state-based storage locations into which artifacts can be stored, awaiting for future processing. For every artifact state in the lifecycle, an associated Repository is used to store all artifact instances that are in that state. Artifact instances can then be pushed into or pulled from particular Repositories as needed using Flow Connectors. In the Repository-to-Task Transition Pattern, a Task is invoked when an input artifact instance is available in its input Repository. In this case, the artifact instance is passed from the Repository into the invoked Task through a read/write Flow Connector. In the Synchronization Pattern, an artifact instance must read data from another artifact instance in order to advance in its Lifecycle. In this case, two artifact instances are passed to one Task. One of the artifact instances is passed in read/write mode using a read/write Flow Connector, while the second artifact instance is passed in a read-only mode using the read-only Flow Connector. Then, the Task manipulates the read/write artifact instance by reading the content of the read-only artifact instance. Finally, the manipulated artifact instance is passed to a different Repository, while the consulted artifact instance remains in the same Repository.

Flow Connectors connect

Modeling Construct

Graphical

Conceptual Artifact Model Semantics

In this section, we define the semantics of generating Artifact Systems from Conceptual Artifact Models (CAMs) and propose a formalism for Conceptual Artifact Models (CAMs). Based on this formalism, we define semantics of generating different elements of an Artifact System.

Conceptual Artifact Model

Based on the Conceptual Artifact Modeling Notation (CAMN), we present a formal presentation for Conceptual Artifact Models (CAMs). First, we assume the existence of the following pairwise disjoint countably infinite sets:  γcom : Ac → A n , the complex type function is a partial map that maps the complex attributes in Ak to a list of simple attributes in A.

 C of
 γstr : At → A n , the stream type function is a partial map that maps the stream type attributes in Ak to a list of simple attributes in A such that one of the simple attributes is of the TimeStamp type.

 γref : Ar → C, the reference type function is a partial map that maps the reference type attributes in Ar to an Artifact Class in C.

 γsim : As ∪ γcom ∪ γstr → Y, the simple type function is a partial map that maps the simple attributes in A in addition to the simple attributes constituting complex and stream attributes to their simple data types in Y.

When clear from the context, a Task (k, Ak, γart, γcom, γstr, γsim) is simply referred to as k. For every Task k that creates an instance of a child Artifact Class cchild, a stream data attribute a that references the child Artifact Class cchild is inserted into the set of data attributes A of the parent Artifact Classc such that γref(a)= cchild.

Generating Lifecycle's States

The states of Lifecycle of an Artifact Class c are inserted by examining the set of Repositories P of the Conceptual Artifact Model G.

For every Repository p ∈ P, if cp=c then an associated state q is created and inserted into the set of Lifecycle's states Q of the Artifact Class c.

Moreover, if Repository p has no ingoing Flow Connector w such that β(w)=(x, p) where x is a Task or a Repository, then state q is the initial state of the Lifecycle of Artifact Class c and as a result s= q.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Furthermore, if Repository p has no outgoing Flow Connector w such that β(w)=(p, x) where x is a Task or a Repository, then state q is a final state of the Lifecycle of the Artifact Class c and as a result s is inserted into the set of final states F. Creating Services is performed by examining the set of Tasks K in the Conceptual Artifact Model G. For every Task k ∈ K, a corresponding Service (s, CI, CO, P, E) with s= k is created and inserted into the set of Services S of the generated Artifact System W. The remaining elements of the created Service s are specified in the following sections.

Inputs Specification

The list of input Artifact Classes CI of the created Service s is specified by examining the ingoing Flow Connectors into the corresponding Task k in the Conceptual Artifact Model G. For every data attribute a ∈ Ak, if γart(a)=c, c ∈ CI and a ∉ Ar , then append to Precondition P a notdefined predicate over data attribute a such as P = P ∧ notdefined(c.a).

On the other hand, , if γart(a)=c, c ∈ CI and a ∈ Ar , then append to Precondition P a closed predicate over data attribute a such as P = P ∧ closed(c.a).

Effect Specification

Similarly, Service's Effect expression E of a Service s involves data attributes of Data Attribute Lists Ak attached to corresponding Task k. Only data attributes of the output Artifact Classes CO are considered in Service's Effect expression. The Service's Effect expression is formed from the conjunction of defined or opened predicates over the selected data attributes. The opened predicate is used for stream data attributes.

For every data attribute a ∈ Ak, if γart(a)=c, c ∈ CO and a ∉ Ar , then append to Effect E a defined predicate over data attribute a such as E = E ∧ defined(c.a).

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon On the other hand, if γart(a)=c, c ∈ CO and a ∈ Ar , then append to Effect E a defined predicate over data attribute a such as E = E ∧ defined(c.a).

Additionally, if Task k is creating a new artifact instance of a child

Artifact Class cchild such that cchild ∈ CO but cchild ∉ CI, then append to Effect E a new predicate over Artifact Class cchild such as E = E ∧ new(c.a) where a is the reference data attribute such that a ∈ Ak , γart(a)=c and γref(a)=cchild. For every read/write Flow Connector w ∈ W such that ¬w.ro (not read-only), if the source of w is a Repository p ∈ P such that β(w)=(p,x) where x is a Task or a Repository, then an Artifact Rule r is created and inserted into the set of Artifact Rules R of the Artifact System W.

On the other hand, if the source of w is a Task k ∈ K such that β(w)=(k,x) where x is a Task or Repository, then for every ingoing read/write Flow Connector w' into Task k such that β(w')=(x,k) and ¬w'.ro where x is a Task or a Repository, an Artifact Rule r is created and inserted into the set of Artifact Rules R of the Artifact System W.

Generating Event Predicate

An Event is added to the condition part of an Artifact Rule if an Event construct is attached to the corresponding Flow Connector.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon For every Artifact Rule r ∈ R, if the corresponding Flow Connector w ∈ W has an attached Event e ∈ E such that δ(w)=e , then a corresponding event predicate is appended to the condition part Conr of Artifact Rule r such that Conr = Conr ∧ event(e).

Generating State Predicate

With the exception of Flow Connectors having no sources, a state predicate specifying the state of an artifact instance is inserted into the condition part of corresponding Artifact Rules.

For every Artifact Rule r ∈ R, if its corresponding Flow Connector w ∈ W have a source such that β(w)=(x, y) where x and y are Tasks or Repositories, we append a state predicate corresponding to the first source Repository p into the condition part Conr of the Artifact Rule r such that Conr = Conr ∧ state(cp, p). If the source of the corresponding Flow Connector w is a Repository p such that β(w)=(p, x) where x is a Task or a Repository, then in this case p is the source Repository. On the other hand, if the source of the corresponding Flow Connector w is a Task k such that β(w)=(k, x) where x is a Task or a Repository, then we backtrack on the ingoing Flow Connector w' that was used to create the Artifact Rule r in Section 4.3.4.1 until we discover the first Repository which is in this case the source Repository. Moreover, if a child artifact instance is created by a Task, then we use the Initialized state. For every Artifact Rule r ∈ R, if the corresponding Flow Connector w transports a child artifact instance that is created by its source Task k such that β(w) = (k, x) where x is a Task or a Repository, then we append a state predicate to the condition part Conr of Artifact Rule r such that Conr = Conr ∧ state(w.c, Initialized).

Generating Notdefined Predicate

If the destination of a Flow Connector is a Task, then the notdefined predicate over the data attributes of the attached Data Attribute List is used in the condition of the corresponding Artifact Rule.

For every Artifact Rule r ∈ R, if the destination of the corresponding Flow Connector w is a Task k such that β(w)=(x, k) where x is a Task or a Repository, then for every data attribute a ∈ Ak we append a notdefined predicate over a to the condition part Conr of the Artifact Rule r such that Conr = Conr ∧ notdefined(c.a).

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

Generating Defined Predicate

If the source of a Flow Connector is a Task, then the defined predicate over the data attributes of the attached Data Attribute List is used in the condition of the corresponding Artifact Rule.

For every Artifact Rule r ∈ R, if the source of the corresponding Flow Connector w is a Task k such that β(w)=(k, x) where x is a Task or a Repository, then for every data attribute a ∈ Ak we append a defined predicate over a to the condition part Conr of the Artifact Rule r such that Conr = Conr ∧ defined(c.a).

User Defined Condition

An additional user defined condition is appended to the condition part of an Artifact Rule if a Condition construct is attached to the corresponding Flow Connector.

For every Artifact Rule r ∈ R, if the corresponding Flow Connector w ∈ W has an attached Condition n ∈ N such that α(w)=n, then the user defined condition is appended to the condition part Conr of Artifact Rule r such that Conr= Conr ∧ n.

Action Specification

The action part of an Artifact Rule is specified according to the destination of the corresponding Flow Connector.

For every Artifact Rule r ∈ R, if the destination of the corresponding Flow Connector w ∈ W is a Task k, then the action part Actr of the Artifact Rule r is an invoke predicate over the corresponding Service s such that Actr = invoke(s).

On the other hand, if the destination of the corresponding Flow

Connector w ∈ W is a Repository p, then the action part Actr of the Artifact Rule r is a state predicate such that Actr = state(cp, p).

Summary of Modeling Artifact Systems

In this chapter, we present the Conceptual Artifact Modeling Notation (CAMN) which is used to graphically model Artifact Systems. Moreover, the constructed Conceptual Artifact Models (CAMs) include all components of an Artifact System in the same model and provide a more representative and holistic model that supports process awareness. Furthermore, the proposed modeling approach combines the advantages of both procedural and declarative modeling approaches. Additionally, we propose modeling patterns that include data stream specific patterns required for modeling smart artifact-based processes. Finally, we define transformation semantics for generating valid Artifact Systems from CAMs based on the proposed formalism.

In the next chapter, we will present the Artifact Integration System that integrates heterogeneous CAMs into one global CAM. The global CAM serves as a Unified View for supervising, managing, and querying heterogeneous artifacts.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

In Chapter 4, we proposed the Conceptual Artifact Modeling Notation (CAMN) to graphically model Artifact Systems as Conceptual Artifact Models (CAMs). The CAM provides many benefits over existing conceptual models. First, the CAM is a representative and holistic model that includes all components of an Artifact System. It also combines advantages of both declarative and procedural modeling approaches. Finally, the CAM supports modeling patterns for situations that involve data streams. As a result, we aims at building artifact-centric process integration by considering corresponding CAMs.

In fact, existing integration semantics like Data Integration [START_REF] Lenzerini | Data integration: A theoretical perspective[END_REF] and Business Process Merging [START_REF] Rosa | Business process model merging: An approach to business process consolidation[END_REF] only deal with the integration of one aspect of a Business Processes. Data Integration deals with integrating data structures but ignores processes that manipulate data. Business Process Merging deals with integrating process activities or tasks but ignores the data aspect. As a result, existing integration semantic are not suitable for integrating CAMs which combine both data and their processes into same models.

In this chapter, we introduce the Artifact Integration System that aims at integrating heterogeneous CAMs. In this system, several local CAMs representing heterogeneous artifacts or artifact-based processes are integrated into one global CAM acting as a Unified View of the integrated artifact. In addition, we generate mapping rules that translate elements between global and local conceptual artifact models.

The semantics of the Artifact Integration System are based on three sub-phases:

1. Matching Sub-phase: Inspired by S chema Matching [START_REF] Bonifati | Schema matching and mapping: from usage to evaluation[END_REF], the Matching Sub-phase deals with identifying correspondences between different elements of local CAMs. The remainder of this chapter is organized as follow:

Merging

In Section 5.1, we introduce the Artifact Integration System and the three sub-phases of the Integration Phase.

In Section 5.2, we describe the Matching Sub-Phase of the Integration Phase and the semantics of identifying correspondence relationships.

In Section 5.3, we describe the Merging Sub-Phase of the Integration Phase and the semantics of generating a global CAM.

In Section 5.4, we describe the Mapping Sub-Phase of the Integration Phase and the semantics of generating mapping rules between local and global CAMs.

Artifact Integration System

The integration of CAMs is based on traditional Data Integration Systems [START_REF] Hull | Gang: A Framework for Supporting Data Integration Using the Materialized and Virtual Approaches[END_REF][START_REF] Parent | Database integration: the key to data interoperability[END_REF]

Definition 5.1 (Artifact Integration System) An Artifact Integration System

ICAM is a triplet (G, S, M), where G is the global CAM, S is the set of local CAMs, and M is the set of mapping rules between G and S. In the remaining of the chapter, we describe the semantics of the Artifact Integration System using two local CAMs; G1 and G2 that are integrated into one global CAM; GI. by such, G1 is the tuple (P1, T1, W1, E1, N1, δ1, α1, β1). G2 is the tuple (P2, T2, W2, E2, N2, δ2, α2, β2). And, GI is the tuple (PI, TI, WI, EI, NI, δI, αI, βI).

Matching Sub-Phase

Integration of CAMs is based on identified correspondences between their different constituting elements. Correspondences are acquired as a result of match operations [START_REF] Do | Schema matching and mapping-based data integration[END_REF]. Match operations can be of two types: manual operations, where the user specifies the corresponding elements using graphical interfaces, and semi-automatical operations using matching algorithms and ontologies [RaBe01]. In this thesis, we perform match operations based on graphical interfaces. However, the proposed approach can be enhanced with ontologies in order to perform semi-automatic match operations.

The Matching Sub-Phase consists of two operations: 1) Artifacts, Tasks and Repositories match operation, and 2) Data Attributes match operation. The result is a set of correspondences which are exposed as correspondence functions that maps the elements of the local CAMs to their corresponding elements, if any.

Artifacts, Tasks, and Repositories Match Operation

The first match operation identifies correspondences of Artifacts, Tasks and Repositories. Three correspondences relationships are involved: uniqueness, equivalence, and composition relationships.

G1 G2 b) Equivalent Repositories with dominant Repository2

Repository 1 Repository 2

G1 G2 c) Equivalent Artifacts with dominant Artifact1

Artifact 2

Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

The composition relationship represents compositions of (business) functions where one (business) function is used to abstract several other (business) functions. As such, in a composition relationship a Task in one local CAM is used to aggregate n elements; Tasks and Repositories, in the other local CAM. The composition relationship is a correspondence of oneto-many or many-to-one cardinalities, and represented graphically as a circle shape with several outgoing arrows as illustrated in Figure 5.4. In composition relationship, the Task aggregating the n elements is the dominant element and the n elements must be on a single path.

C exposes correspondence relationships between Artifacts, Tasks and

Repositories from G1 and G2 and is defined as:

C : Art1 ∪ Art2 ∪P1 ∪ P2 ∪ K1 ∪ K2  (Art1 ∪ Art2 ∪P1 ∪ P2 ∪ K1 ∪ K2) n ×d
Where: Art1 and Art2 are respectively the sets of all used Artifacts of G1 and G2. P1 and P1 are respectively the sets of Repositories of G1 and G2. K1 and K2 are respectively the sets of Tasks of G1 and G2. And d ∈ { r, l } defines the

o C(e1)=(e2, l) if e1 is the dominant element, o C(e1)=(e2, r) if e2 is the dominant element,
where e1 is an Artifact, Task or Repository from G1 and e2 is an Artifact, Task or Repository from G2. o C(e0)=(e1,…en, r) if e0 is the dominant element, where e1,… en are Tasks and Repositories from G1 and e0 is a Task from G2.

And the Task aggregating the n element is always chosen as the dominant element.

Data Attributes' Match Operation

In the second match operation, correspondences between data attributes of G1 and G2 are identified. Data attributes characterizing Tasks of both models are automatically collected and presented in a graphical interface where the user specifies correspondence relationships. Similarly to Artifacts, Tasks and Repositories match operation, three correspondence relationships are proposed : uniqueness, equivalence, and composition relationships.

The uniqueness relationship is a correspondence of one-to-zero or zeroto-one cardinalities and signifies that a data attribute in one CAM has no

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon corresponding data attribute in the other CAM. Table 5.1 illustrates the uniqueness relationship for data attributes characterized by the absence of visual relations between the unique data attribute and any other data attribute from the other CAM.

The equivalence relationship is a correspondence of one-to-one cardinality and signifies that two data attributes belonging to the two CAMs are semantically equivalent. Equivalence relationships are graphically represented using the double headed arrow where the solid head points in the direction of the dominant attribute as illustrated in Table 5.1. Additionally, the user must specify a matching expression that defines how the two data attributes are related to each other in the equivalence relationship as illustrated in Table 5.1.

The composition relationship is a correspondence of one-to-many or many-to-one cardinalities and signifies that a data attribute in one CAM is the composition of several data attributes in the other CAM. Composition relationships are represented using the circle shape with outgoing arrows. The solid head arrow points to the composite data attribute in one CAM. The other normal head arrows points to the composite data attributes in the other CAM as illustrated in Table 5.1. In addition a matching expression defining how data attributes are related to each other in the composition relationship must be specified by the user as illustrated in Table 5.1. Matching expressions are user defined mathematical expressions involving data attributes written using arithmetic operators (equality, addition, subtraction, multiplication, division, and remainder) in addition to a list of predefined functions as listed in Table 5.2. Matching expressions serves two purposes:

Match Relationship

Graphical Notation Matching Expression

1) To describe how data attributes involved in a correspondence relationship are related to each other, as in the case of composition relationships.

2) To achieve domain type transformations.

Cda : A1 ∪ A2  (A1 ∪ A2) n × d × Exp
where A1 and A2 are the sets of all data attributes respectively from G1 and G2, d is the dominance, and Exp is the set of all matching expressions.

The semantic of the correspondence function Cda for data attributes is defined as follow:

 Uniqueness correspondences: If a data attribute in one CAM has no equivalent data attribute in the other CAM, then Cda(a)=⊥ where ⊥ is the null symbol and a ∈ A1 ∪ A2 is a data attribute from G1 or G2.

 Equivalence correspondences: If two data attributes from the two

CAMs have an equivalence relationship, then:

o Cda(a1)=(a2, l, x) if a1 is the dominant data attribute.

o Cda(a1)=(a2, r, x) if a2 is the dominant data attribute.

where a1 ∈ A1, a2 ∈ A2, and x ∈ Exp is a matching expression.

 Composition correspondences: If a data attribute belonging to one

CAM has a composition relationship with n data attributes belonging to the other CAM, then:

o Cda(a0)=(a1,…an, l, x) if a0 is the dominant data attribute, where a0∈A1, a1,…an ∈ A2, and x ∈ Exp is a matching expression.

o Cda(a0)=(a1,…an, r, x) if a0 is the dominant data attribute, where a1,…an ∈ A1, a0∈ A2, and x ∈ Exp is a matching expression.

And the dominant element is always the data attribute aggregating the other n data attributes.

Merging Sub-Phase

In the Merging Sub-Phase, we generate the global CAM GI by merging the two local CAMs G1 and G2 according to the correspondences exposed by the Correspondence Function C and its specialization Cda from the Matching Sub-Phase.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

Similarly to Business Process Merging [START_REF] Sun | Merging workflows: A new perspective on connecting business processes[END_REF], the Merging Sub-Phase re-branches and re-connects Flow Connectors and is composed of five incremental operations: Artifact Generation, Repository Generation, Task Generation, Data Attribute List Generation, and Flow Connector Generation including Events and Conditions. We formally define the semantics of the Merging Sub-Phase based on a set of mathematical rules that make use of an Integration Function I, and its specialization Condition Integration Function Icon. The Integration Function I is then used to generate the various elements of the integrated CAM. The Condition Integration Function Icon is used to generate the Conditions of the integrated CAM.

Definition 5.4 (Integration Function)

The Integration Function I takes as input one or more elements from one CAM and returns the integrated element(s) according to the correspondence relationship between the elements. The Integration Function I is defined as:

I : (G1 ∪ G2) n  (G1 ∪ G2) n
where G1 and G2 are the two CAMs.

Example 5.1 (Integration Function) Suppose that a Task SubmitOrder from G1 has an equivalence relationship with a Task CreateOrder from G2 and SubmitOrder is the dominant Task, in other words, C(SubmitOrder)=(CreateOrder, l) then: I(SubmitOrder) =SubmitOrder and I(CreateOrder)=SubmitOrder.

Definition 5.5 (Condition Integration Function) The Condition Integration Function Icon function takes a condition expression as input and updates its data attributes to reflect their integrated form in the global CAM. Icon uses Matching Expressions from Exp to translate between domain types if they are different. Icon is defined as:

Icon : N1 ∪ N2  NI where N1, N2, and NI are the sets of Conditions from respectively G1, G2, and GI.

Example 5.2 (Condition Integration Function) Suppose that a data attribute a1="Price" originates from G1 such that a1 is expressed in the dollar unit, and a data attribute a2="Cost" originates from G2 such that a2 is expressed in Cent unit, and that CDA(a1)= (a2, r, "Cost = Price*100") in other words I(a1)=a2, I(a2)=a2, and "Cost = Price*100" is the matching expression. Then if we have a Condition n1="Price ≥ 500" such that n1 ∈ N1, then Icon(n1)="Cost ≥ 50000".

In the rest of this section, we define the semantics of the five generate operations using generation rules. These generation rules are divided into

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon five incremental sets that successively describe the generation of Artifacts, Repositories, Tasks, Data Attribute Lists, and Flow Connectors including Events and Conditions. The generation rules have the following general form:

"If correspondence then update I and generate integratedElement in GI"

where If-then is represented using the logic implication symbol "→". "correspondence" is a conjunction of conditions (using logic AND symbol "∧") that tests for a particular correspondence relationship. If the "correspondence" holds, then the Integration Function I is updated with a set "X" of new entries of the form "I(ei)=ej", and "integratedElement" is generated in the global CAM. The "integratedElement" is defined using the "there exist" logic symbol; "∃e∈GI[specification]" where "specification" is a set of conjunctive conditions (using the logic AND symbol exprssed as "∧") that the generated element must match. The Integration Function I will be further used in the "specification" part of the "integratedElement" to integrate associated elements if existing.

Artifacts Generation

The  Unique Repositories integration rule:

∀pi ∈ P1 ∪ P2 [C(pi)=⊥ → I(pi)=pi ∧ ∃pj∈PI [pj=pi ∧ cpj=I(cpi)]]
 Equivalent Repositories integration rule (l-dominant):

∀pi ∈P1, ∀pj ∈P2 [C(pi)=(pj, l) → I(pi)=pi ∧ I(pj)=pi ∧ ∃px ∈PI [px=pi ∧ cpx=I(cpi)]]
 Equivalent Repositories integration rule (r-dominant): The generation of Data Attribute Lists is achieved by integrating the constituting data attributes. Two important factors are involved in the generation of Data Attribute Lists:

1) The correspondences between the data attributes that constitutes the lists exposed using the Data Attributes Correspondence Function Cda, and 2) The integrated Tasks exposed using the Integration Function I.

As a result, the generation of data attribute lists is performed in two further sub-steps: Data Attributes Integration, and Data Attribute Lists Population.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

Data Attributes Integration

In the Data Attributes Integration sub-step, the Integration Function I is filled with integration entries related to data attributes. The generation rules that describe this sub-step are reduced to: "If dataAttributeCorrespondence then update I". We recall that a Task k is a tuple (k, Ak, γart, γcom, γstr, γref, γsim) in which Ak, γart, γcom, γstr, γref, γsim represent the attached Data Attribute In the Data Attribute Lists Population sub-step, we populate Data Attribute Lists of integrated Tasks with the integrated data attributes. A test is performed that identifies integrated Tasks in the global CAM prior to the population of attached Data Attribute Lists. Thus, the generation rules describing this sub-step reflects the following logic:

"If integratedTask then generate integratedAttribute in GI."

where "integratedTask" is a condition written using the Integration Function I that checks for integrated Tasks in the global CAM. Furthermore, the associated Artifact and Data Type Functions of the data attribute are also updated. We recall that a Task k is a tuple (k, Ak, γart, γcom, γstr, γref, γsim) in which Ak, γart, γcom, γstr, γref, γsim represent the attached Data Attribute List. The generation of Flow Connectors is achieved by integrating their source, destination, associated Artifact, type, attached Event, and attached Condition if any. We recall that a Flow Connector is defined as a tuple w = (c, ro) where c is the associated Artifact, and ro is the type of the Flow Connector (read-only or read/write). Additionally, δ, α are the partial functions that associate Events and Conditions respectively to Flow Connectors and β is the total function that specifies the source and destination of Flow Connectors.

We also use the Condition Integration Function Icon that takes as input the Condition of a Flow Connector and updates the involved data attributes and values with their integrated counterparts using the Integration Function I in addition to the user defined matching expressions from the Matching Sub-Phase. For every Flow Connector wi in G1 or G2, we first ensure that the integration of its source and destination are not equal; I(s) ≠I(d). Otherwise the source and destination are part of a composited Task and in this case no Flow Connector is generated.

Maroun Abi Assaf

If the integration of wi's source and destination are not equal, we generate a Flow Connector wx in GI such that:

 The associated Artifact is the integration of the associated Artifact of wi ; wx.c=I(wi.c).

 The type (read-only or read/write) is the same type as wi ; wx.ro=wi.ro.

 The source and destination are respectively the integration of the source and destination of wi ; βI(wx)=((I(s), I(d)). This will ensure that correct routing is performed when equivalent elements, branch pattern, or convergence pattern are involved.

 One of the Events that can trigger wx is the Event attached to wi if any; δ(wi) ∈ δI(wx).

C(Art1) = ⊥, C(R1) = ⊥, C(R2) = ⊥, C(R4) = ⊥, C(R7) = ⊥, C(T1)=⊥, CDA(Att1)= ⊥.  Equivalent elements: T2 G1 T3 G2 R7 Art1 R 5 T4 R 4 R 1 R 2 R 3 R 6 Art2 Art2 Art2 Art3 Art3 Art3 Art3

Mappings describe relationships between elements of global CAM and local

CAMs and are used to translate between them. Mappings are used for several applications including; In this section, we propose mapping specifications based on the structure of CAMN constructs. This structure can be resumed by the following three key relationships:

G I R 4 R 1 R 2 Art 1 T 2 T 1 E 1 Art 3 E 2 Art 3 R 7 R 6 -Art 3 .
1) Artifacts are associated to Repositories and Flow Connectors.

2) Tasks are the sources or destinations of Flow Connectors.

3) Repositories are the sources or destinations of Flow Connectors.

Based on these relationships, we define five mapping functions that respectively map Artifacts, Repositories, Tasks, Data Attributes and Flow Connectors of global CAM into local CAMs.

Definition 5.6 (Artifact Mapping Function) The Artifact Mapping Function Mart maps Artifacts of global CAM to Artifacts of a selected local

CAM and is defined as:

Mart : ArtI × d  Art1 ∪ Art2
where Art1, Art2, and ArtI are respectively the sets of Artifacts of G1, G2, and GI. d ∈ {l, r} is the dominance singleton specifying the target local CAM; l signifies the left side CAM or G1, r signifies the right side CAM or G2.

Example 5.4 (Artifact Mapping Function) Suppose that we have a

FireStationAlertArtifact in the global CAM GI. When applied to FireStationAlertArtifact, the Artifact Mapping Function Mart returns the results:

Mart("FireStationAlertArtifact", l) = "FireStationAlertArtifact", and Mart("FireStationAlertArtifact", r) = ⊥.

In other words,

FireStationAlertArtifact is mapped to

FireStationAlertArtifact in G1, and has no mapped Artifact in G2. where: Art1, Art2, and ArtI are respectively the sets of Artifacts of G1, G2, and GI. P1, P2, and PI are respectively the sets of Repositories of G1, G2, and GI. And d ∈ {l,r} is the dominance singleton specifying the target local CAM as before.

Example 5.5 (Repository Mapping Function) Suppose that we have a

Repository "Normal" associated to an Artifact "FireControlArtifact" in GI.

Then, the Repository Mapping Function MP returns the result:

MP("Normal", "FireControlArtifact", l) = ("Normal", "FireControlArtifact") MP("Normal", "FireControlArtifact", r) = ("Idle", "ReactiveProcedureArtifact").

In other words, the Repository "Normal" associated to the Artifact "FireControlArtifact" in GI is mapped to the Repository "Normal" associated to the Artifact "FireControlArtifact" in G1 and is mapped to the Repository "Idle" associated to the Artifact "ReactiveProcedureArtifact" in G1.

Definition 5.8 (Task Mapping Function) The Task Mapping Function MK maps Tasks of global CAM to Tasks of a selected local CAM. In the case that the Task is a composite Task, then the Task Mapping Function MK returns the composited path made of Tasks and Repositories. MK is defined as:

MK : KI × d  (K1 ∪ P1) n ∪ (K2 ∪ P2) n
where K1, K2, and KI are respectively the sets of Tasks of G1, G2, and GI. P1 and P2 are respectively the sets of Repositories of G1 and G2 . And, d ∈ {l,r} is the dominance singleton specifying the target local CAM as before.

Example 5.6 (Task Mapping Function) Suppose that we have a Task "PerformPrimaryProcedure" in GI. Then, the Task Mapping Function MK returns the results:

MK("PerformPrimaryProcedure", l) = ("TurnOnAlarm", "AlarmTurnedOn", "ActivateWaterEjectors", "WaterEjectorsActivated") MK("PerformPrimaryProcedure",r)=("PerformPrimaryProcedure").

In other words, Task "PerformPrimaryProcedure" in GI is mapped to the composited Tasks and Repositories;TurnOnAlarm", "AlarmTurnedOn", "ActivateWaterEjectors", "WaterEjectorsActivated" in G1 and is mapped to Task "PerformPrimaryProcedure" in G2.

Maroun Abi Assaf

Mda: AI × ArtI × d (A1 n × Art1 × Exp) ∪ (A2 n × Art2 × Exp)
where: A1, A2, and AI are respectively the sets of data attributes of G1, G2, and GI. Art1, Art2, and ArtI are respectively the sets of Artifacts of G1, G2, and GI. Exp is the set of matching expressions. And, d ∈ {l,r} is the dominance singleton specifying the target local CAM as before.

Example 5.7 (Data Attribute Mapping Function) Suppose that a Habitats

Artifact in GI includes a data attribute "FullName". When G1 is selected, the Data Attribute Mapping Function Mda returns the result: Mda("FullName", "Habitats", l)=({"FirstName", "MiddleName", "LastName"}, "Habitats", "concat('FirstName', ' ', 'MiddleName', ' ', 'LastName')")

In other words, data attribute "FullName" in GI is mapped to the composited data attributes "FirstName", "MiddleName", and "LastName" in G1 according to the matching expression "concat(FirstName, ' ', MiddleName, ' ', LastName)".

MW : (KI∪PI) × (KI∪PI) × ArtI × d  ((K1∪P1) × (K1∪P1) × Art1) ∪ ((K2∪P2) × (K2∪P2) × Art2)
where the first (K ∪ P) represents the source, the second (K ∪ P) represents the target, Art represents the associated Artifact of G1, G2, and GI.

Example 5.8 (Flow Connector Mapping Function) Suppose that a Flow

Connector in GI is associated to a "FireControlArtifact" and its source and destination are respectively "FireDetected" and "PerformPrimaryProcedure". When G2 is selected, the Flow Connector Mapping Function MW returns the result:

MW("FireDetected", "PerformPrimaryProcedure", "FireControlArtifact", r) = ("FireDetected", "TurnOnAlarm", "FireControlArtifact")

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

In other words, the selected flow connector in GI is mapped to the flow connector having "FireDetected" and "TurnOnAlarm" as respectively its source and destination in G2.

Summary of Integrating Conceptual Artifact Models

Since CAMs combines both process and data aspects into same models, we propose an Artifact Integration System based on specialized integration semantics for integrating heterogonous CAMs. The proposed integration semantic combines integration mechanisms from both Data Integration and Business Process Merging, and covering artifact-specific integration mechanisms. The proposed artifact integration semantics is based on three sub-phases: Matching Sub-Phase, Merging Sub-Phase, and Mapping Sub-Phase. The Matching Sub-Phase uses concepts from Schema Matching in order to identify correspondence relationships between elements of local CAMs. The Merging Sub-Phase uses concepts from Business Process Merging in order to merge local CAMs and generate global CAMs. Finally, the Mapping Sub-Phase uses concepts from Schema Mapping in order to define mapping functions that translate elements between global and local CAMs.

In the next chapter, we present the prototype implementing of the Artifact Integration Framework. Moreover, we illustrate an experimental scenario about a fire control smart process in the context of a smart city. Finally, we present experimental results in the context of a applied study performed on the developed prototype. In order to validate our work, we have developed a prototype to demonstrate key concepts of the Artifact Integration Framework, including covering Integration, Modeling, Specification, and Execution functionalities.

Maroun Abi Assaf

The prototype implements the four phases of the Artifact Integration Framework using a modular architecture. Modules communicate with each other using input and output messages. The prototype relies on several programming languages, including; HTML5 [00b], XML [00c], Java [00d], Xtend [00e], and JavaScript [00f]. it also deploys several programming frameworks such as Eclipse Rich Client Platform (Eclipse RCP) [00g], Xtext Framework for the development of Domain Specific Languages (DSL) [00h], the Java Architecture for XML Binding (JAXB) Framework [00i], JointJS Javascript Diagramming Library [00j], and Apache Derby Database Management System [00k].

In this chapter, we describe the prototype implementation and an experimental scenario about fire control smart processes in the context of a futuristic smart city. The remainder of the chapter is organized as follow:

In Section 6.1, we describe the prototype implementation of the Artifact Integration Framework.

In Section 6.2, we describe the fire control scenario.

Finally, Section 6.3 is a summary of the prototyping and experimentation chapter.

Prototype Architecture

The prototype implementation of the Artifact Integration Framework covers the four phases using six software modules as illustrated in Figure 6.1.

The AQL Processor module implements the Execution Phase and is responsible for processing, executing, and managing AQL queries and Artifact Systems. The AQL Processor takes AQL queries as input from the AQL Generator, the CAM Mapper, or the built-in Graphical User Interface, executes queries, and produces the result using the built-in Graphical User Interface.

The AQL Generator module implements the Specification Phase and generates Artifact Definition Language (ADL) queries from CAMs. The AQL Generator takes as input a CAM from the CAM Modeler and outputs Artifact Definition Language (ADL) queries of corresponding Artifact System.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon The Semantic Query Generator sub-module is an Xtend based generator that takes the AST of an AQL query as input and generates an XML-based semantic query as output. In this module, the "AqlGenerator.xtend" consists of 693 lines of Xtend code that generates an XML file representing the semantic form for every AQL query in an AQL file. The generated XML files are then inserted into the "src-gen" folder of the current project. The addRuleEngineAsDatabaseListener() method is used in order to register the AQL Rule Execution Engine as a listener on the Database Manager. As a result, the AQL Rule Execution Engine will receive events whenever the Database Manager performs database operations. The createSystemTables() method invokes methods from the Database Manager in order to create three system tables. The created three system tables are internally used by the AQL Processor in order to invoke services and receive user-generated external events. The created three system tables are: InvokedServicesSysTable, InvokedServicesInputSysTable, and GeneratedEventsSysTable.

The setDatabaseSettings() method is used in order to retrieve and set necessary database settings from the created project properties. The createDatabase(CreateArtifact) method invokes the Database Manager in order to create database tables corresponding to a Create Artifact query.

The RunAqlQueriesHandler class is a handler that is used in order to invoke the SemanticInterpreter from the Eclipse Workbench. The DatabaseManager class provides static methods for creating and managing an underlying database. The DatabaseManager class performs three main functionalities: 1) Create and manage database tables corresponding to Artifact Classes, complex attributes, stream attributes, reference attributes, and states. the DatabaseManager class provides methods for creating, populating, manipulating and querying these tables. 2) Create and manage system tables that are responsible for executing services and receiving user-generated or timely events. The DatabaseManager class creates three system tables:

o InvokedServicesSysTable 3) Implement a variant of the observer design pattern responsible for registering listeners and sending database operation events to registered listeners. This functionality is useful for the AQL Rule Execution Engine that listens for database operation events and reevaluates Artifact Rules when these events are received. The RuleEngine class provides methods that evaluate and execute Artifact Rules. Figure 6.11 illustrates the UML class of RuleEngine.

The evaluateRules(DatabaseOperationEvent) method is invoked by the RuleEngineDatabaseListener and passed a DatabaseOperationEvent object as a parameter. When a database operation is performed, the evaluateRules() method reevaluates the registered Artifact Rules and executes the matching rules. However, the performInvocationAction() method is used to execute the action of service invoking Artifact Rules. The performTransitionAction() method is used to execute the action of state transitioning Artifact Rules. Finally, the checkIfInstanceMatchCondition() method checks if an Artifact instance matches the condition of an Artifact Rule.

Process Explorer Sub-Module

The Process Explorer sub-module provides views and editors for executing Artifact Systems and manipulating Artifact instances. It consists of two packages: ArtifactInstanceView, and ArtifactProcessExplorer.

The ArtifactInstanceView package consists of five classes: ArtifactInstanceNode, ArtifactInstancesContentProvider, ArtifactInstancesLabelProvider, ArtifactInstancesView, and ArtifactNode. they provide a graphical user interface, called the Artifact Instance Viewer, and lists Artifact instances registered in the Artifact System.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon The Artifact Instance Viewer (see Figure 6.12) includes a context menu for refreshing, creating and deleting Artifact instances, and opens the Artifact Process Explorer when double clicking an Artifact instance. The Available Events panel displays user-generated or timely events that can be created at a particular state of the Artifact instance. Available events are represented as a list of buttons that when clicked will create the corresponding event.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

The Invoked Services panel displays the ad-hoc Services that are invoked by Artifact Rules. The invoked Services are represented as a list of buttons that when clicked will execute the corresponding Service using the Services Manager.

The Stream Services panel displays the stream services available to an artifact instance. The stream services are represented as lists of buttons that when clicked will open the stream Service configuration dialog using the Services Manager.

Service Manager Sub-Module

The Service Manager sub-module is responsible for managing ad-hoc and stream Services. It generates dialogs used to configure and execute Services. Three configurations are available for ad-hoc Services:

1) Automatically generated GUI Forms that collect needed data attribute values directly from users.

2) Web Service Calls that return needed data attribute values from Web Services. And,

3) User Defined Functions that perform user-defined computations and return needed data attribute values.

Two configurations are available for stream Services:

1) File Readers that continuously read input streams from Comma-Separated Values (CSV) files.

2) Web Service Calls that continuously receive input streams from Web Services.

The Service Manager consists of five classes: ServicesManager, AdHocServiceDialog, StreamServiceDialog, StreamServiceThread, and StreamServiceThreadProvider, and performs three main tasks: 1) Invoke ad-hoc Services using the AdHocServiceDialog class. The AdHocServiceDialog class automatically generates dialogs for configuring and executing ad-hoc Services (see Figure 6.16). The CAM Modeler module is a graphical editor that implements the Conceptual Artifact Modeling Notation (CAMN) and allows the modeling of Conceptual Artifact Models (CAMs). It is based on HTML5, JavaScript, and the JointJS JavaScript Diagramming Library. Figure 6.18 illustrates the graphical interface of the CAM Modeler. A Toolbar allows the user to select and insert CAMN into the Drawing Canvas. Additionally, a Properties Panel allows the specification of properties for a selected element. The CAM can then be saved as an array of elements in an XML file. Every element has an ID attribute that uniquely identifies it and a Construct attribute that specifies its CAMN type. The Construct attribute can be Task, Repository, Flow Connector, Data Attribute List, Event, or Condition. Moreover, every construct type has additional attributes that describe it. Flow Connector has attributes for storing the ids of its source and destination elements in addition to attached Event and Condition elements if any. Repository has attributes for storing its name and the name of the associated Artifact. Data Attribute List has an attribute for specifying a list of Data Attributes. Finally, Task has an attribute for storing its name.

AQL Generator Module

The AQL Generator module is a JavaScript based module that implements the semantics described in Section 4.3. It takes as input an XML file created

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon by the CAM Modeler, generates an equivalent Artifact System, and returns as output the corresponding AQL queries.

CAM Matcher Module

The CAM Matcher module is a graphical editor that is used to graphically capture correspondences relationships between two local CAMs. It is based on HTML5, JavaScript, and JointJS JavaScript Diagramming Library. The captured correspondences can be registered in an XML file alongside the two local CAMs. It consists of two graphical interfaces: the main graphical interface captures correspondences relationships between Tasks, Repositories, and Artifacts (Figure 6.19) and the Attribute Matcher graphical interface, which captures correspondences relationships between data attributes (Figure 6.20). The data attributes displayed in the Attribute Matcher graphical interface are automatically generated from the two local CAMs. In order to validate our contributions, we illustrate an experimental scenario about the detection and control of house fires in the context of a smart city.

We assume that every house in a smart city is equipped with temperature and smoke sensors in addition to alarm and water ejectors (i.e., actuators). Moreover, every house is wirelessly connected to the city control center that remotely detects fire incidents and controls responses. Additionally, the city control center manages, in its databases, information about every house, like its location, surface, habitats, fire station addresses and can remotely cut off the power grid in every house.

The city control center detects a fire incident when house temperature sensor values become higher than 57°C and smoke sensor levels exceed a

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon threshold of 3 in a range of values between 0 and 5. When the fire incident occurs, the control system turns on alarms and activates water ejectors. Then the control system alerts the closest fire station with information regarding the house's address and its related data as extracted from its database. If the fire station is not able to respond in case of insufficient resources, then the control center will identify another close fire station and alert it. This process is repeated until an available fire station is successfully responding. In addition, the city control system informs the house habitats about the fire incidents by automatically sending SMS messages to their mobile phones.

If the fire has not been extinguished and water has been depleted from ejectors, water pumps are remotely activated to refill the ejectors. Water levels are detected using water level sensors and water pumps are activated using water pump actuators that are also installed in every house of the smart city.

Finally, when the house temperature becomes less than 50°C and the smoke level value is less than or equal to 1, the fire is considered to be extinguished. The fire incident is then archived in the fire control database for any possible future references and analytics.

Analysis of Fire Control Artifact System Artifact Classes

Since artifacts are goal-oriented, every artifact is designed to perform and reach a particular goal. To this end, we design an Artifact System for the fire control smart process based on two artifacts:

1) The FireControlArtifact deals with detecting house fires and performing reactive procedures.

2) The FireStationAlertArtifact deals with locating fire stations close to the house under fire and successfully alerting one of them.

The two artifacts are related in a parent to child relationship; The FireControlArtifact is the parent artifact that emits the FireStationAlertArtifact child artifact.

The FireControlArtifact collects information about the house, the fire, and the reactive procedures. Its Information Model is illustrated listed in Table 6.1.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon On the other hand, the FireStationAlertArtifact collects information about nearest fire stations and alerts incidents. Its Information Model includes the attributes listed in Table 6.2.  Located signifies that a fire station has been located.

 Failed signifies that the located fire station could not be alerted.

 Alerted is the final state. It signifies that the located fire station was successfully alerted.

Figure 6.22 illustrates the state transitions to be performed between the the FireStationAlertArtifact states.  NotifyHabitats service sends SMS messages using an SMS Web Service to the habitats of the corresponding FireControlArtifact in order to notify them about the fire.

 ActivateWaterPumps service activates the water pump actuator in order to refill the depleted ejectors of the corresponding FireControlArtifact. It defines its AreWaterPumpsActivated attribute.

 RegisterFireData service registers data about the extinguished fire corresponding to the FireControlArtifact.

 LocateFireStation service locates a close fire station to the house under fire of the corresponding FireStationAlertArtifact.

 AlertFireStation service alerts the located fire station of the corresponding FireStationAlertArtifact.

The stream Services which are invoked when an artifact instance is created include the following Services:  StreamIndoorTemperature service streams temperature readings from the temperature sensor of the corresponding FireControlArtifact into its IndoorTemperature attribute.

 StreamSmokeLevel service streams smoke level readings from the smoke sensor of the corresponding FireControlArtifact into its SmokeLevel attribute. Implementing the fire control Artifact System by directly writing corresponding AQL queries is a time consuming, error prone, and not a visual-oriented approach. A more practical and user-friendly approach is to model the fire control artifact system using the CAM Modeler as a Conceptual Artifact Model (CAM) which is then automatically translated by the AQL Generator into AQL queries of the corresponding Artifact System. The generated AQL queries can then be executed by the AQL Processor. Figure 6.23 illustrates the CAM of the fire control process while the generated AQL queries are listed in Appendix A.

Integrating Local Fire Control CAMs

In addition to the smart process modeled in Section 6.2.3, we have modeled a variant fire control smart process in the context of another smart city. In this context, the detection and control of house fires are performed in a slightly different manner so that we have similar and different elements with the first fire control smart process. Our goal is to integrate both smart processes in order to provide a Uniform View for supervising and querying both smart processes in a uniform manner.

Using the CAM Matcher, CAM Merger, and CAM Mapper, we have integrated the local CAMs of both fire control smart processes and generated a global CAM in addition to mapping rules that translates elements between global and local CAMs. Moreover, we have also proposed the Artifact Query Language (AQL) to declaratively define Artifact Systems and manipulate their artifact instances. In order to reduce its learning curve, the AQL is based on syntax similar to SQL, but unlike SQL, the AQL does not deal with low level relations and streams. Instead, the AQL provides simple and declarative statements that hide the underlying model of relations and streams. Furthermore, the AQL statements are grouped into two parts; Artifact Definition Language (ADL), and Artifact Manipulation Language (AML). ADL provides statements to define Artifact Classes, Services, and Rules. AML provides statements to manipulate and query artifact instances. Additionally, the AML is used in order to uniformly query Unified Views in the Artifact Integration Framework. Finally, the AQL supports Data Streams and Continuous Query capabilities and allows Complex Event Processing over Data Streams through the use of Artifact Rules.

Integration Phase

In the Integration Phase, we have integrated several local CAMs in order to generate one global CAM, acting as a unified view. Since CAMs combines both process and data aspects into the same model, we have proposed an Artifact Integration System based on specialized integration semantics for integrating heterogonous CAMs. The proposed integration semantics combines integration mechanisms from both Data Integration and Business Process Merging in addition to artifact-specific integration mechanisms. The proposed artifact integration semantics is based on three sub-phases: Matching, Merging, and Mapping. Finally, the Mapping Sub-Phase uses concepts from Schema Mapping in order to define mapping functions that translate elements and data between global and local CAMs.

Execution Phase

In the Execution Phase, the Execution Engine executes Artifact Systems by translating AQL queries into Semantic queries. Semantic queries are then executed on a Database Management System to perform relational and stream operations. The Execution Engine is also responsible for invoking Adhoc and Stream services.

Prototype Implementation

In order to validate our various contributions, we have also developed a prototype that implements the artifact-centric process integration framework. The prototype covers the four phases of the Artifact Integration Framework: Execution, Specification, Modeling, and Integration using six main modules in addition to eight sub-modules. Moreover, we have illustrated an experimental scenario about the detection and control of house fires in the context of a smart city.

Perspective and Future Works

This thesis deals with specifying Artifact Systems. We have chosen a declarative approach based on ECA (Event-Condition-Action) Rules in order to support process transformation and customization, and perform Complex Event Processing (CEP) that is needed in smart process scenarios.

In order to be relevant for modeling of smart processes, we have also included support of Data Streams incoming from sensors and the ability to invoke Ad-hoc Services that can perform actions on actuators. Moreover, Complex Event Processing (CEP) is performed using the proposed Artifact Rules. In its current manifestation, Artifact Rules support the fundamental event operators; OR, AND, and SEQ. Future works seek to extend Artifact

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Rules with additional event operators such as Not, Any, Aperiodic, and Periodic operators. Moreover, we seek to improve the execution strategies of Artifact Rules in order to incorporate conditions on two or more unrelated Artifact Classes. Furthermore, we intend to investigate techniques for the automatic discovery of Web Services in the context of Artifact Systems.

The second part of this thesis dealt with modeling of Artifact Systems as conceptual models, generating Artifact Systems based on these models, and integrating these conceptual models in order to generate unified views.

In order to enable the Modeling Phase and perform a holistic integration, we have proposed a conceptual model and notations that are based on modeling all of the components of an Artifact System into the same model. Moreover, the chosen model supports the automatic generation of declarative Artifact Systems that are valid and fully functional.

Since the integration of process models in this thesis was limited to heterogeneous CAMs, future works seek to integrate heterogeneous process models based on different models and notations including CAMN, GSM, BPMN, ArtiFlow, and Database Schemas. As a prerequisite, we intend to devise semantics and algorithms that achieve a transformation between the proposed CAM and the different process models.

From a different research perspective, the artifact integration semantics that we proposed are based on matching, merging and mapping of CAMs. The matching of CAMs are performed using semi-automatic algorithms and a graphical editor. Future works should take advantages of the progress achieved in the field of Sematic Integration in order to employ ontologies and automatically perform matching between CAMs.

Finally, we intend to extend the proposed Artifact meta-model with capabilities to consider constraints on functional and non-functional properties, consumable resources and feedback loops in the context of connected devices.

Final Words

In this thesis, we cover a large spectrum of research topics on Smart Processes and Business Artifacts, Data Integration and Business Processes. Our theoretical contributions have led to the definition of a new Artifact meta-model with its architecture, graphical notation, query language, and integration semantics. From a technological perspective, the prototype

Introduction

La modélisation des processus centrée sur l'artéfact est une approche de modélisation des processus métiers qui vise à unifier explicitement les données et les processus, et élimine par conséquent la dichotomie qui sépare les communautés de base de données et de gestion des processus métier.

Les processus centrés sur les artéfacts ont été introduits par IBM en 2003 [START_REF] Nigam | Business artifacts: An approach to operational specification[END_REF]. L'approche centrée sur les artéfacts, plutôt que la modélisation des schémas relationnels dans les bases de données [START_REF] Abiteboul | Foundations of databases: the logical level[END_REF] ou la modélisation des Workflows dans la gestion des processus métier [DTKB03], combine les données et les processus en entités autonomes, appelées artéfacts qui servent de blocs de construction de base à partir desquels les modèles de processus (métier) sont construits. En conséquence, l'approche centrée sur les artéfacts démontre de nombreux avantages, y compris; une modularité naturelle des entités autonomes et un cadre de différents niveaux d'abstraction afin de développer des composants orientés vers les objectifs au lieu de composants orientés vers les fonctions dans le cas des services Web.

Description du Problème

De nombreuses entreprises se constituent par fusion et acquisition et, par conséquent, les gestionnaires sont face à des processus et des bases de données hétérogènes fonctionnant de manière similaire ou différente (processus de fabrication, processus de vente) [START_REF] Parent | Database integration: the key to data interoperability[END_REF]. La même situation est applicable à l'Internet des objets dans lequel un grand nombre d'objets connectés nécessitent la fusion de données ou la construction d'une vue unifiée pour une gestion plus simple évitant, par exemple, de traiter un grand nombre de tables dans une base de données distribuée.

Comme décrit dans [START_REF] Lenzerini | Data integration: A theoretical perspective[END_REF], une approche pratique pour gérer des processus et des bases de données hétérogènes consiste à utiliser une vue unifiée qui centralise l'accès aux informations et aux tâches disponibles de ces processus. Une vue unifiée est un modèle de données virtuel qui peut être utilisé pour superviser, exécuter et interroger des processus et des entités de données distribués et hétérogènes indépendamment de la complexité et des différences de représentations des données et des traitements. Par conséquent, une requête basée sur une vue unifiée est transformée en utilisant des règles de mapping en des requêtes hétérogènes correspondantes aux entités de données ou des processus distribuées. Les ensembles de résultats des requêtes hétérogènes sont ensuite transformés et fusionnés en utilisant d'autres règles de mapping en un ensemble de résultats compatible avec la vue unifiée. Les avantages de l'utilisation de ce type de vues sont; i) la gestion d'un grand nombre d'entités à une grande échelle, ii) la facilitation de l'évaluation et l'analyse des données et de leurs comportements, et iii) le support d'un point de l'accès centralisé pour les administrateurs et les utilisateurs occasionnels. La Figure 3 illustre les mécanismes de l'intégration.

2.DESCRIPTION DU PROBLÈME

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Finalement, dans la sous-phase de mapping, des règles de mapping sont spécifiées afin de traduire les requêtes AML et les données entre les CAM globaux et locaux en fonction du type d'éléments de CAM. La sémantique de mapping est définie à l'aide de cinq fonctions de mapping qui réalisent des correspondances des artéfacts, des dépôts, des tâches, des attributs de données et des connecteurs de flux dans le CAM global avec éléments respectifs dans les CAM locaux. The emergence of fixed or mobile communicating objects poses many challenges regarding their integration into business processes in order to develop smart services. In the context of the Internet of Things, connected devices are heterogeneous and dynamic entities that encompass cyber-physical features and properties and interact through different communication protocols. To overcome the challenges related to interoperability and integration, it is essential to build a unified and logical view of different connected devices in order to define a set of languages, tools and architectures allowing their integrations and manipulations at a large scale. Business artifact has recently emerged as an autonomous (business) object model that encapsulates attribute-value pairs, a set of services manipulating its attribute data, and a state-based lifecycle. The lifecycle represents the behavior of the object and its evolution through its different states in order to achieve its business objective. Modeling connected devices and smart objects as an extended business artifact allows us to build an intuitive paradigm to easily express integration data-driven processes of connected objects. In order to handle contextual changes and reusability of connected devices in different applications, datadriven processes (or artifact processes in the broad sense) remain relatively invariant as their data structures do not change. However, service-centric or activity-based processes often require changes in their execution flows. This thesis proposes a framework for integrating artifact-centric processes and their application to connected devices. To this end, we introduce a logical and unified view of a "global" artifact allowing the specification, definition and interrogation of a very large number of distributed artifacts, with similar functionalities (smart homes or connected cars, ...). The framework includes a conceptual modeling method for artifact-centric processes, inter-artifact mapping algorithms, and artifact definition and manipulation algebra. A declarative language, called AQL (Artifact Query Language) aims in particular to query continuous streams of artifacts. The AQL relies on a syntax similar to the SQL in relational databases in order to reduce its learning curve.

We have also developed a prototype to validate our contributions and conducted experimentations in the context of the Internet of Things.

MOTS-CLÉS

Figure 1 . 1

 11 Figure 1.1 Artifact System example ..

Figure 1 . 2

 12 Figure 1.2 Internet of Things architecture ...

Figure 1 . 3 .

 13 Figure 1.3. Integration mechanism ...

Figure 1 . 4 .

 14 Figure 1.4. Artifact-centric process integration framework

Figure 2 . 1

 21 Figure 2.1 UML Activity Diagram modeling constructs ...

Figure 2 . 2

 22 Figure 2.2 UML Activity Diagram example ...

Figure 2 . 3

 23 Figure 2.3 BALSA Framework example ...

Figure 2 . 4

 24 Figure 2.4 Lifecycle of Order artifact as Tasks, Repositories and Flow Connector

Figure 2 . 5

 25 Figure 2.5 Artiflow example...

Figure 2 . 6

 26 Figure 2.6 GSM representation of the Lifecycle of the Order Artifact

Figure 2 . 7

 27 Figure 2.7 Artifact Integration System ..

Figure 3 . 1

 31 Figure 3.1 Create Artifact Statement Grammar ..

Figure 3 . 2

 32 Figure 3.2 Create Service Statement Grammar ..

Figure 3 . 3

 33 Figure 3.3 Create Rule Statement Grammar ..

Figure 3 . 4

 34 Figure 3.4 New statement Grammar ...

Figure 3 . 5

 35 Figure 3.5 Retrieve statement Grammar ...

Figure 3 . 6

 36 Figure 3.6 Manipulation statements Grammar ...

Figure 4 . 1

 41 Figure 4.1 Examples of CAMN Combinations ..

Figure 4 . 2

 42 Figure 4.2 Part of Fire Control Conceptual Artifact Model

Figure 4 . 3

 43 Figure 4.3 Repository-to-Task Transition Pattern ...

Figure 4 . 4

 44 Figure 4.4 Repository-to-Task Transition Pattern Example

Figure 4 . 5

 45 Figure 4.5 Task-to-Repository Transition Pattern ...

Figure 4 . 6

 46 Figure 4.6 Task-to-Repository Transition Pattern Example

Figure 4 . 7

 47 Figure 4.7 Task-to-Task Transition Pattern ..

Figure 4 . 8

 48 Figure 4.8 Task-to-Task Transition Pattern Example ...

Figure 4 . 9

 49 Figure 4.9 Repository-to-Repository Transition Pattern

Figure 4 .

 4 Figure 4.10 Repository-to-Repository Transition Pattern Example

Figure 4 .

 4 Figure 4.11 Parent Artifact Creation Pattern ..

Figure 4 .

 4 Figure 4.12 Parent Artifact Creation Pattern Example ...

Figure 4 .

 4 Figure 4.13 Child Artifact Creation Pattern ..

Figure 4 .

 4 Figure 4.14 Child Artifact Creation Pattern Example ...

Figure 4 .

 4 Figure 4.15 Task-centered Branch Pattern ..

Figure 4 .

 4 Figure 4.16 Repository-centered Branch Pattern ..

Figure 4 .

 4 Figure 4.17 Branch Pattern Example ..

Figure 4 .

 4 Figure 4.18 Task-centered Convergence Pattern ..

Figure 4 .

 4 Figure 4.19 Repository-centered Convergence Pattern ..

Figure 4 .

 4 Figure 4.20 Rework Pattern ..

Figure 4 .

 4 Figure 4.21 Rework Pattern Example ..

Figure 4 .

 4 Figure 4.22 Synchronization Pattern ...

Figure 4 .

 4 Figure 4.23 Synchronization Pattern Example ..

Figure 4 .

 4 Figure 4.24 Streaming Pattern ..

Figure 4 .

 4 Figure 4.25 Streaming Pattern Example ..

Figure 5 . 1

 51 Figure 5.1 Artifact Integration System ..

Figure 5 . 2

 52 Figure 5.2 Uniqueness correspondence relationships for Tasks, Repositories, and Artifacts ...

Figure 5 . 3

 53 Figure 5.3 Equivalence correspondence relationships for Tasks, Repositories, and Artifacts ...

Figure 5 . 4

 54 Figure 5.4 Composition correspondence relationship for Tasks

Figure 5 . 5

 55 Figure 5.5 Merging Sub-Phase local CAMs example ..

Figure 5 . 6

 56 Figure 5.6 data attributes correspondences of local CAMs example

Figure 5 . 7

 57 Figure 5.7 Generated global CAMs..

Figure 6 . 1

 61 Figure 6.1 Main Modules of Artifact Integration Framework

Figure 6 . 2

 62 Figure 6.2 AQL Processor Architecture ..

Figure 6 . 3

 63 Figure 6.3 Graphical Interface of the AQL Editor ..

Figure 6 . 4

 64 Figure 6.4 Generated XML Semantic Query ...

Figure 6 . 5

 65 Figure 6.5 UML Class of SemanticInterpreter ...

Figure 6 . 6

 66 Figure 6.6 UML Class of RunAqlQueriesHandler ..

Figure 6 . 7

 67 Figure 6.7 UML Class of ArtifactSystem ...

Figure 6 . 8

 68 Figure 6.8 UML Class of AttIdentification ...

Figure 6 . 9

 69 Figure 6.9 UML Class of DatabaseOperationEvent ..

Figure 6 .

 6 Figure 6.10 UML Class of DatabaseManager ..

Figure 6 .

 6 Figure 6.11 UML Class of RuleEngine ..

Figure 6 .

 6 Figure 6.12 Artifact Instance Viewer ..

Figure 6 .

 6 Figure 6.13 Artifact Process Explorer 1 ...

Figure 6 .

 6 Figure 6.14 Artifact Process Explorer 2 ...

Figure 6 .

 6 Figure 6.15 UML class of ServicesManager ..

Figure 6 .

 6 Figure 6.16 Automatically generated dialog of an ad-hoc Service

Figure 6 .

 6 Figure 6.17 Automatically generated dialog of a stream Service

Figure 6 .

 6 Figure 6.18 CAM Modeler Graphical Interface ..

Figure 6 .

 6 Figure 6.19 CAM Matcher Main Graphical Interface ..

Figure 6 .

 6 Figure 6.20 Attribute Matcher Graphical Sub-Interface

Figure 6 .

 6 Figure 6.21 State Transitions of FireControlArtifact ..

Figure 6 .

 6 Figure 6.22 State Transitions of FireStationAlertArtifact

Figure 6 .

 6 Figure 6.23 Fire Control Conceptual Artifact Model ...

Figure 6 .

 6 Figure 6.24 Fire Control Local CAMs Correspondences

Figure 6 .

 6 Figure 6.25 Fire Control Global CAM ...

Figure 1 . 1

 11 Figure 1.1 Artifact System example

Figure 1 . 2

 12 Figure 1.2 Internet of Things architecture

Figure 1

 1 Figure 1.3. Integration mechanism Moreover, given an artifact-based connected device, different variants can exist to handle different usages in different application domains. Variations may occur in the Information Model (semi-structured data), States (i.e. new intermediary states), Services (i.e. new services or same services with different signatures ...), and Rules (specifically tailored to an application domain).

Figure 1 . 4 .

 14 Figure 1.4. Artifact-centric process integration framework

 Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon a) The identification of three types of correspondence relationships (unique, equivalent, and composition) between different elements of CAMs, b) The generation of a global CAM by merging local CAMs based on the identified correspondences, and c) The specification of mapping rules in order to translate AML queries and data between the global and local CAMs with regards to the type of CAM elements.

 Chapter three defines the Artifact System and presents the Artifact Query Language (AQL). Chapter four presents the Conceptual Artifact Modeling Notations (CAMN) and defines Conceptual Artifact Models (CAMs). It also describes the semantics of generating Artifact Systems from CAMs. Chapter five defines integration semantics of CAMs. Chapter six describes the prototype implementation. Finally, chapter seven concludes our contributions with new research perspectives and open research issues. Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

 concludes that current Workflow Management Systems (WFMS) can only support a subset of the twenty six workflow patterns. related work such as [MSMP05, VaVa04] describe four major Workflow patterns that are involved in any Workflow including Sequence, Parallel Path, Alternative Path, and Iteration where: Sequence pattern represents several Activities that should be executed in order, one after the other. Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Parallel Path pattern represents several Activities that can be executed at the same time or in no particular order. Alternative Path pattern path represents the decision of executing one or more Activities from several Activities. Iteration pattern is when several Activities must be repeatedly executed until a condition is met. From the Unified Markup Language (UML) perspective, [DuTe01, Ritt04] describe the use of UML Activity Diagrams in modeling Workflows. The UML Activity Diagram [StHa04] provides basic constructs that can be combined in order to model the major patterns of Workflows.Figure 2.1 illustrates the UML Activity Diagram constructs that includes: Start, End, Fork/Join, Decision/Merge, Activity and Activity Edge. [StHa04, StHa05] define formal semantics for UML Activity Diagrams. While [EsWi03] makes a comparison between Petri Nets and UML Activity Diagrams. On the other hand, [MSMP05] presents an approach to the modeling and analyzing of Business Processes based on UML Activity Diagrams and Petri Nets where; Sequence patterns are modeled using Activities and Activity Edges. Parallel Path patterns are modeled using Fork/Join constructs. Alternative Path patterns are modeled using Decision/Merge constructs. Iteration patterns are modeled using a combination of Decision/Merge and Activity Edges constructs. Finally, Start and End constructs are respectively used to denote the start and end of the Business Process.

Figure 2 . 1

 21 Figure 2.1 UML Activity Diagram modeling constructs

Figure 2 .

 2 Figure 2.2 illustrates an example of a Workflow model about an order process modeled as UML Activity Diagram. After creating an order, it is checked for availability. If it is available, the product is retrieved and delivered. Otherwise, the process terminates.

Figure 2 . 2

 22 Figure 2.2 UML Activity Diagram example

(

 Information Model), Lifecycle, Services, and Associations. Figure 2.3 illustrates an example of the BALSA framework representation of an Order artifact.

Figure 2 . 3

 23 Figure 2.3 BALSA Framework example By varying the implementations of the four dimensions of the BALSA framework, different kinds of artifact-centric Business Process Models ranging from procedural to declarative can be constructed. A procedural model describes "how" processing should be done in a step-by-step manner using a finite-state machine. While a declarative model describes "what" should be done using statements in a particular language. In [GeBS07, GeSu07], a formal model for procedural artifact-centric Business Process Models is defined. In this formal model, Associations and Lifecycles are represented using finite-state machines composed from Tasks, Repositories, and Flow Connectors where: Tasks represent units of work that operate and update Information Models of Business Artifacts. Repositories represent storage locations for Business Artifacts awaiting future processing if any. And, Flow Connectors transport Business Artifacts between Tasks and Repositories.

Figure 2 .

 2 Figure 2.3 illustrates the Lifecycle of the Order artifact represented as a finite-state machine composed from Tasks, Repositories, and Flow Connectors.Moreover, the problem of verification of procedural artifactcentric Business Process Models is studied in[START_REF] Gerede | Specification and verification of artifact behaviors in business process models[END_REF] where a language for specifying and verifying artifact lifecycle behaviors is presented.

Figure 2 . 4

 24 Figure 2.4 Lifecycle of Order artifact as Tasks, Repositories and Flow Connector On the other hand, [BGHL07] defines a formal model for declarative artifact-centric Business Process Models. In this formal model, Associations are represented as declarative Business Rules. Services are also declaratively represented as Semantic Web Services specifications. Business Rules, as variants of Event-Condition-Action (ECA) Rules describe conditions under which actions should be performed. Conditions involve Information Models and Lifecycles' states. Actions invoke Services, or change Lifecycles' states. The problem of verification of correctness properties for declarative artifactcentric Business Process Models is studied in [DHPV09, HCDD11].

 Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

Figure 2 . 5

 25 Figure 2.5 Artiflow example The ArtiNets model, a variant of artifact-centric process models is introduced in [KuSu10]. It supports the specification of constraints on artifact lifecycles. Similarly to the Declarative Service Flow Language (DecSerFlow) [VaPe06], ArtiNets also allow declarative style in specifying constraints on artifact lifecycles. The key components of ArtiNets model are: Artifacts, Services, Places, and Transitions. ArtiNets model is closely related to Petri Nets [Mura89], but only they differ in two aspects: Artifacts in ArtiNets replaces Tokens in Petri Nets, and ArtiNets have different transition firing rule than Petri Nets.

Figure 2 . 6

 26 Figure 2.6 GSM representation of the Lifecycle of the Order Artifact

Figure 2 .

 2 Figure 2.5 illustrates the architecture of a typical Data Integration System as described in [KaPa09]. Sources store data in a variety of formats including relational databases, text files, spreadsheets, XML…etc. Wrappers handle the heterogeneity in the data formats by transforming each Source's data model to a common data model used by the integration system. The wrapped data sources are usually referred to as Local Schemas or source databases. A Unified View, also called Global Schema is then exported by the Mediator. Mappings expressed in a certain mapping language specify the relationship between the Local Schemas and the Unified View or Global Schema. Finally, users can retrieve data from the Sources indirectly by querying the Global Schema.

Figure 2 . 7

 27 Figure 2.7 Artifact Integration System

 finite set of states, where s ∈ Q and F ⊆ Q are respectively initial and final states. Example 3.2 (Artifact Class) An Artifact Class c specifying a fire control artifact is defined as follow:  c = FireControlArtifact  A = {FireControlArtifactId, FireDate, House, IsAlarmTurnedOn, FireStationAlert, IndoorTemperature, Address, Surface } where: o As = { FireControlArtifactId, FireDate, IsAlarmTurnedOn} o Ac = { House } o Ar = { FireStationAlert } o At = { IndoorTemperature }  γcom(House) = {Address, Surface}  γref(FireStationAlert) = FireStationAlertArtifact  γstr(IndoorTemperature) = {Time, Tmp}  γsim(FireControlArtifactId)=Integer, γsim(FireDate)=Date, γsim(IsAlarmTurnedOn)=Integer, γsim(Address)=String, γsim(Surface)=Real, γsim(Time)=TimeStamp, γsim(Tmp)=Integer  Q = {Normal, FireDetected, AlarmTurnedOn, FireStationAlerted, FireExtinguished} where s = Normal and F = { FireExtinguished } Services Services are basic units of work that operate on artifacts and update their attributes, and trigger state transitions according to artifact lifecycles. We define two types of Services: 1. Ad hoc Services: are stateless units of work that are executed when certain situations occur as specified by Artifact Rules. When executed, Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

 predicate and its negation in the Precondition and Effect expressions. While an Ad hoc Service can only have the defined, new and scalar composition predicates and their negations in Precondition and Effect expressions. Example 3.3 (Ad hoc Service 1) The TurnOnAlarm Ad hoc Service activates alarm actuator of the corresponding FireControlArtifact (FCA) and is defined as follow:  s = TurnOnAlarm  CI = {FCA}  Co = {FCA}  P = defined(FCA.FireControlArtifactId) ∧ ¬defined(FCA.IsAlarmTurnedOn)  E = defined(FCA.IsAlarmTurnedOn) Example 3.4 (Ad hoc Service 2) The IssueFireStationAlert Ad hoc Service creates a new instance of the FireStationAlertingArtifact (FSAA) as a child artifact of the corresponding FireControlArtifact (FCA) and is defined as follow:  s = IssueFireStationAlert  CI = {FCA}  Co = {FCA, FSAA}  P = ¬defined(FCA.FireStationAlert)  E = new(FCA.FireStationAlert) ∧ defined(FSSA.FireStationAlertArtifactId) ∧ defined(FSSA.House) Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Example 3.5 (Stream Service) The StreamIndoorTemperature Stream Service streams temperature readings from the temperature sensor of the corresponding FireControlArtifact (FCA) into its IndoorTemperature attribute and is defined as follow:  s = StreamIndoorTemperature  CI = {FCA}  Co = {FCA }  P = ¬opened(FCA.IndoorTemperature)  E = opened(FCA.IndoorTemperature) Artifact Rules Artifact Rules are variants of declarative Event-Condition-Action (ECA) rules that execute artifact processes in conformance with the artifact state-based lifecycle. Artifact rules fall into two types: 1. Artifact Rules that invoke Services on artifacts, and 2. Artifact Rules that perform Lifecycle's state transitions Artifact Rules specify predicate conditions over attribute, in particular stream attributes. Moreover, they can only invoke Ad hoc Services whereas Stream Services are automatically invoked upon artifact's instantiation.

The

 ADL has three statements to define Artifact Classes, Services and Artifact Rules: The Create Artifact statement defines Artifact Classes as a list of data attributes and states. The Create Service statement defines Services by specifying their Input, Output, Pre-condition, and Effect (IOPE) in a similarly way to Semantic Web Services. The Create Rule statement defines Event-Condition-Action (ECA) rules that invoke Services or change artifact states.

 Figure 3.1 illustrates the context-free grammar of the Create Artifact statement.

Figure

 Figure 3.1 Create Artifact Statement Grammar

Figure 3 . 2

 32 Figure 3.2 Create Service Statement Grammar Example 3.10 (Create Service Statement 1) The CreateFCA service creates a new instance of the FireControlArtifact (FCA) and defines its FireControlArtifactId, House, and Habitats. The corresponding Create Service query is defined as follow:

Figure 3 . 4

 34 Figure 3.4 New statement Grammar

 Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon New FCA (FireControlArtifactId) Values (100235) House Include {("20 Av. Albert Einstein", 64)} Habitats Include { ("John", 00330675839457), ("Sam", 00330625374883) } FireStationAlert Having FireStationAlertArtifactId = 100200 IndoorTemperature Using StreamIndoorTemperature SmokeLevel Using StreamSmokeLevel Set State To Normal Retrieve Statement

 Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

Figure 3 . 5

 35 Figure 3.5 Retrieve statement Grammar Example 3.18 (Retrieve Statement 1) The following Retrieve query selects all the attributes of the FireControlArtifact instances that are in the FireDetected state and their indoor temperature is higher than 100°C over a window of 10 seconds. Retrieve * From FCA Where state(FCA, FireDetected) And FCA.IndoorTemperature.Tmp > 100 Within 10 Seconds

Figure 3 . 6

 36 Figure 3.6 Manipulation statements Grammar Example 3.20 (Update Statement) The following Update query updates the phone number of the habitat with the name "John" of the FireControlArtifact instance having 100325 as id.

Where

 Habitats.Name = "John" And FCA.FireControlArtifactId = 100325 Example 3.21 (Insert Into Statement) The following Insert Into query inserts two tuples into the Habitats complex attribute of the FireControlArtifact instance having 100325 as id. Insert Habitats Into FCA { ("Sebastien", 0033823459876), ("Nicole", 003357643214) } Where FCA.FireControlArtifactId = 100325 Example 3.22 (Remove From) The following Remove From query delete a tuple having "John" as value of the Name attribute from the Habitats complex attribute of the FireControlArtifact instance having 100325 as id. Remove Habitats From FCA Where FCA.FireControlArtifactId = 100325 And Habitats.Name = "John" Example 3.23 (Delete Statement) The following Delete query deletes the FireControlArtifact instance having 100325 as id including all its complex reference and stream attributes values. Delete FCA Where FCA.FireControlArtifactId = 100325 Artifact Query Language Semantics Preliminaries This section describes the semantics of the AQL which formally define the functioning of the AQL statements and how they should be executed by an AQL processor. Since Artifact Systems are based on Database relations, we specify the semantics of AQL using fundamental Mathematical Logic [Mend09] and Relational Algebra [Maie83] concepts. We start by assuming the existence of the following pairwise disjoint countably infinite sets: D for constants; i.e. data values. C of artifact names, A of attribute names, Q of artifact states, Y of simple data types, including:

4

 . Finally, for conditions on artifact stream attributes, first a window operator is applied to the stream attribute relation rat such that Wrange(rat) where range is specified by the "Within range" clause ofMaroun Abi AssafThèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon the Retrieve query. If the "Within range" clause is not specified then the default current window (a.k.a now) is specified by default such as Wnow(rat). Further selections are then performed on the Cartesian Product of r1 and the windowed stream attribute relation Wrange(rat) such as: σcstream ∧ Artifact_PK=Artifact_FK(r1 × Wrange(rat)) where cstream is the condition related to the stream attribute.Summary of Specifying Artifact SystemsIn this chapter, we propose a formal model for Artifact Systems that is specifically adapted to extended artifacts adequate to the IoT in a simple and intuitive manner. The formal model supports data streams generated by sensors and actuators which are parts of IoT based processes. Moreover, the formal model allows definitions, manipulations, and querying of Artifact Systems at a high-level without dealing with underlying details of relations and streams. The formal model makes use of four high-level attribute categories; simple, complex, reference, and stream. By such, stream attributes are used to represent data streams. Complex attributes are used to represent complex relationships between artifacts, and reference attributes which are used to represent Parent-Child relationships between artifacts. Moreover, the formal model presents two types of Services to respectively perform actions on actuators and stream data from various sensors. The proposed Artifact System serves thus as the basis of the Artifact Integration Framework that is further described in the remaining chapters.

 storage locations for artifacts Read/write Flow Connector Transit artifacts between tasks and repositories Read-only Flow Connector Read artifact content from a repository Data Attribute List List of attribute-type pairs that are manipulated by a Task Condition Conditions associated to flow connectors Event Event associated to flow connectors 4. Data Attribute Lists are associated to Tasks and describe the set of data attributes of artifact's Information Models that are manipulated by the Task. Simultaneous definitions of artifact's Information Model and Lifecycle in the same conceptual model leads us to building artifact processes incrementally without dealing with fine-grained details related to artifact models. Additionally, the aggregation of Data Attribute Lists also allows the generation of Information Models of interrelated artifacts. Data attributes are written as"artifact.attribute:type" triplets.

 Figure 4.1 (b) depicts a Data Attribute List attached to a Task. 5. Events are attached to Flow Connectors and specify received external events that trigger activation of Flow Connectors. For example in the Task Repository Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon fire control process, a Create Fire Control Artifact event causes the invocation of the CreateFCA task. 6. Conditions are also attached to Flow Connectors and specify constraints that should be satisfied in order to activate a Flow Connector. The condition expresses constraints over artifact attributes by using the defined, notdefined and scalar comparison predicates (>, <, ≤, ≥, =, ≠).

 Figure 4.1 (c) illustrates an Event and a Condition constructs attached to a Flow Connector.

Figure 4 . 1

 41 Figure 4.1 Examples of CAMN CombinationsUsing the six CAMN constructs, a Conceptual Artifact Model (CAM) can be constructed as illustrated in Figure4.2 and depicts part of the fire control process. First, when the CreateFireControlArtifact (CFCA) event is received, the CreateFCA Task is invoked. An instance of the FireControlArtifact (FCA) is created, its FireControlArtifactId, House, and Habitats attributes are also defined. The instance is then passed into the Normal Repository. If the indoor temperature becomes greater than 57 and smoke level becomes greater than 3, the FCA instance is passed from the Normal Repository into the FireDetected Repository. Consequently, the TurnOnAlarm and ActivateWaterEjectors Tasks are invoked. Finally, if the alarm is successfully turned on and water ejectors are successfully activated, the FCA instance is passed into the PrimaryProcedurePerformed Repository. Otherwise, the FCA instance is passed into the Failure repository. Moreover, a StreamIndoorTemperature Task continuously streams readings from a

Figure 4 . 2

 42 Figure 4.2 Part of Fire Control Conceptual Artifact Model

 Figure 4.3 illustrates the Repository-to-Task Transition Pattern.

Figure 4 . 3

 43 Figure 4.3 Repository-to-Task Transition Pattern

Figure 4 .

 4 Figure 4.4 illustrates an example of the Repository-to-Task Transition Pattern from the fire control scenario. When a FireControlArtifact instance is in the FireDetected Repository, it is passed into the TurnOnAlarm Task which defines its IsAlarmTurnedOn Boolean attribute.

Figure 4 . 4

 44 Figure 4.4 Repository-to-Task Transition Pattern Example

 Figure 4.5 illustrates the Task-to-Repository Transition Pattern. Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

Figure 4 . 5

 45 Figure 4.5 Task-to-Repository Transition Pattern

Figure 4 .

 4 Figure 4.6 illustrates an example of the Task-to-Repository Transition Pattern from the fire control scenario. After a FireControlArtifact (FCA) instance is manipulated by the ActivateWaterPumps Task which defines its AreWaterPumpsActivated Boolean attribute, it is then passed into the EjectorsRefilled Repository.

Figure 4 . 6

 46 Figure 4.6 Task-to-Repository Transition Pattern Example

 Figure 4.7 illustrates the Task-to-Task Transition Pattern.

Figure 4 . 7

 47 Figure 4.7 Task-to-Task Transition Pattern

Figure 4 .

 4 Figure 4.8 illustrates an example of the Task-to-Task Transition Pattern from the fire control scenario. After a FireControlArtifact (FCA) instance is

Figure 4 . 8

 48 Figure 4.8 Task-to-Task Transition Pattern Example

 Figure 4.9 illustrates the Repository-to-Repository Transition Pattern.

Figure 4 . 9

 49 Figure 4.9 Repository-to-Repository Transition Pattern

Figure 4 .

 4 Figure 4.10 illustrates an example of the Repository-to-Repository Transition Pattern from the fire control scenario. When a FireControlArtifact (FCA)instance is in the Normal Repository and its indoor temperature becomes greater than or equal to 57 and its smoke level becomes greater than or equal to 3, it is passed into the FireDetected Repository.

Figure 4 .

 4 Figure 4.10 Repository-to-Repository Transition Pattern Example

Figure 4 .

 4 11 illustrates the Parent Artifact Creation Pattern.

Figure 4 .

 4 Figure 4.11 Parent Artifact Creation Pattern

Figure 4 .

 4 Figure 4.12 illustrates an example of the Parent Artifact Creation Pattern from the fire control scenario. When a Create Fire Control Artifact (CFCA) event is received, the CreateFCA Task is invoked in order to create a new instance of the FireControlArtifact (FCA) and define its FireControlArtifactId, House, and Habitats attributes.The FireControlArtifact (FCA) instance is then passed into the Normal Repository.

Figure

 Figure 4.12 Parent Artifact Creation Pattern Example

 Figure 4.13 illustrates the Child Artifact Creation Pattern.

Figure 4 .

 4 Figure 4.13 Child Artifact Creation Pattern

Figure 4 .

 4 Figure 4.14 illustrates an example of the Child Artifact Creation Pattern from the fire control scenario. When a FireControlArtifact (FCA) instance is in the PrimaryProcedurePerformed Repository, it is passed into the IssueFireStationAlert Task which will create a new artifact instance of the FireStationAlertArtifact (FSSA) as a child artifact of the parent FireControlArtifact (FCA) instance. The reference to the child artifact instance is stored in the FireStationAlert attribute. The FireStationAlertArtifactId and House attributes of the child artifact instance are also defined. Finally, the parent artifact instance (FCA) is passed into the ClosestFireStationAlerted Repository, while the child artifact instance (FSAA) is passed into the Issued Repository.

Figure

 Figure 4.14 Child Artifact Creation Pattern Example

 Figure 4.15 illustrates the Task-centered Branch Pattern.

Figure 4 .

 4 Figure 4.15 Task-centered Branch Pattern

Figure 4 .

 4 Figure 4.16 illustrates the Repository-centered Branch Pattern.

Figure 4 .

 4 Figure 4.16 Repository-centered Branch Pattern

Figure 4 .

 4 Figure 4.17 illustrates an example of the Branch Pattern from the fire control scenario. When a FireStationAlertArtifact (FSAA) instance is in the Located Repository, it is passed into the AlertFireStation Task which defines its IsSuccessfullyAlerted Boolean attribute. If the value of the IsSuccessfullyAlerted is true, the FireStationAlertArtifact (FSAA) instance is

Figure 4 .

 4 Figure 4.17 Branch Pattern Example

 Figure 4.18 illustrates the Task-centered Convergence Pattern.

Figure 4 .

 4 Figure 4.18 Task-centered Convergence Pattern

Figure 4 .

 4 Figure 4.19 illustrates an example of a Repository-centered Convergence Pattern from the fire control process. In this example, a FireControlArtifact (FCA) instance can be passed into the FireExtinguished Repository from the HabitatsInformed or the EjectorsRefilled Repositories whenever the indoor

Figure 4 .

 4 Figure 4.19 Repository-centered Convergence Pattern

 Figure 4.20 illustrates the Rework Pattern.

Figure

 Figure 4.20 Rework Pattern

Figure 4 .

 4 Figure 4.21 illustrates an example of the Rework Pattern from the fire control scenario. A FireStationAlertArtifact (FSAA) instance repasses through the LocateFireStation and AlertFireStation Tasks until a located fire station is successfully alerted.

Figure 4 .

 4 Figure 4.21 Rework Pattern Example

 Figure 4.22 illustrates the Synchronization Pattern.

Figure

 Figure 4.22 Synchronization Pattern

Figure 4 .

 4 Figure 4.23 illustrates an example of the Synchronization Pattern from the fire control scenario. In this example, the LocateFireStation Task takes two artifact instances as input; a FireStationAlertArtifact (FSAA) instance from the Issued Repository, and a MapArtifact (MPA) instance from the Active Repository. The FireStationAddress attribute of the FireStationAlertArtifact (FSAA) is updated with the address of the closest fire station by consulting the MapArtifact (MPA) and is then passed into the Located Repository.

Figure 4 .

 4 Figure 4.23 Synchronization Pattern Example

Figure 4 .

 4 Figure 4.24 Streaming Pattern

Figure 4 .

 4 Figure 4.25 illustrates an example of the Streaming Pattern from the fire control scenario. A FireControlArtifact (FCA) instance is continuously updated with readings from a temperature sensor using the

Figure 4 .

 4 Figure 4.25 Streaming Pattern Example

Definition 4. 4 (

 4 Flow Connector) A Flow Connector w is the tuple w = (c, ro), where c ∈ C is the Artifact Class associated to w, ro ∈ Boolean indicates if w is read only: true (w.ro), or not: false (¬w.ro).

Example 4. 1 (

 1 Repository) The FireDetected Repository from the fire control process is a tuple (p, cp) where p=FireDetected, and cp=FCA.

Example 4. 2 (

 2 Task) The CreateFCA Task from the fire control process is a tuple (k, Ak, γart, γcom, γstr, γref, γsim) where:  The Task name: k= CreateFCA  The Task attributes: Ak={ FireControlArtifactId, House, Habitats }  The Artifact Class mappings: γart(FireControlArtifactId)=FCA, γart(House)=FCA, γart(Habitats)=FCA  The complex attributes mappings: γcom(House)={ Address, Surface }, γcom(Habitats)={ Name, PhoneNum }  The stream attributes mappings: ∅  The reference attributes mappings: ∅  The simple attributes mappings: Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon γsim(FireControlArtifactId)=Integer, γsim(Address)=String, γsim(Surface)=Real, γsim(Name)=String, γsim(PhoneNum)=Integer Example 4.3 (Flow Connector) A Flow Connector w connecting the Normal Repository to the FireDetected Repository in the fire control process, is a tuple w = (c, ro) where w.c=FCA and w.ro=false.

Example 4. 4 (

 4 Conceptual Artifact Model) Considering the Conceptual Artifact Model G made of the Branch Pattern depicted in Figure 4.17, G = (P, K, W, E, N, δ, α, β) is specified as follow:  The set of Repositories P={p1, p2, p3} where p1=Located, p2=Success, p3 =Failed  The set of Tasks K={k1} where k1=AlertFireStation  The set of Flow Connectors W={w1, w2, w3}  The set of Events E=∅  The set of Condition expressions N={n1, n2} where n1="FSSA.IsSuccessfullyAlerted=true" and n2="FSSA.IsSuccessfullyAlerted=false"  The Event mappings: δ(w1)=∅, δ(w2)=∅, δ(w3)=∅  The Condition expressions mappings: α(w1)=∅, α(w2)=n1, α(w3)=n2  The transitions mappings: β(w1)=(p1, k1), β(w2)=(k1, p2), β(w3)=(k1, p3) Generating Artifact Classes Artifact Classes Creation Creating Artifact Classes is performed by examining the set of Repositories P of the Conceptual Artifact Model G and creating an associated set of Artifact Classes C of the Artifact System W.

For

 every Repository p ∈ P, if the associated Artifact Class cp does not exist in the set of created Artifact Classes C, a corresponding Artifact Class (c, A, γsim, γcom, γref, γstr, Q, s, F) is created and inserted into the set of Artifact Classes C with c=cp and the remaining elements specified in the following sections. Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Generating Simple, Complex, and Stream Attributes The Information Model of a created Artifact Class c ∈ C is generated by inserting corresponding data attributes specified in the Data Attribute Lists attached to the set of Tasks K into the set of data attributes A of the Artifact Class c.

For

 every Task k ∈ K, we examine the data attributes of the attached Data Attribute List Ak. For every data attribute a ∈ Ak , if γart(a)=c then a is inserted into the set of data attributes A of the Artifact Class c . Additionally, the data type functions γsim, γcom, γstr of the Artifact Class c are updated to reflect the data type of the data attribute a as specified by the data type functions γsim, γcom, γstr of the Task k.Generating Reference AttributesThe Tasks creating child artifact instances (Child Artifact Creation Pattern) are identified by comparing their ingoing and outgoing Flow Connectors. If a Task k ∈ K has an outgoing Flow Connector w1 ∈ W such that β(w1)=(k, x1) where x1 is a Repository or a Task and there is not an ingoing read/write Flow Connector w2 ∈ W associated with the same Artifact Class as w1 such that β(w2)=(x2, k) and w1.c= w2.c where x2 is a Repository or a Task, then Task k creates an instance of a child Artifact Class cchild.

Example 4. 5 (

 5 Generating Artifact Classes) Taking the Conceptual Artifact Model G illustrated in Figure 4.2 as an example, we generate the FireControlArtifact Class as a tuple (c, A, γsim, γcom, γref, γstr, Q, s, F) such that:  The Artifact Class name: c = FireControlArtifact  The set of data attributes: A = { FireControlArtifactId, House, Habitats, IndoorTemperature, IsAlarmTurnedOn, AreWaterEjectorsActivated }  The complex data type mappings: γcom(House)={Address, Surface}, γcom(Habitats)={Name, PhoneNum}  The stream data type mappings: γstr(IndoorTemperature)={Time, Tmp}  The reference data type mappings: ∅  The set of Lifecycle's states: Q={ Normal, FireDetected, PrimaryProcedurePerformed, Failure}  The initial state: s= Normal  The set of final states: F={ PrimaryProcedurePerformed, Failure } Generating Services Services Creation

For

 every ingoing Flow Connector w of Task k such as β(w)=(x, k) where x is a Task or a Repository, the associated Artifact Class w.c is Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon inserted into the list of input Artifact Classes CI of the corresponding Service s. Outputs Specification The list of output Artifact Classes CO of the created Service s is specified by examining the outgoing Flow Connectors from the corresponding Task k in the Conceptual Artifact Model G. For every outgoing Flow Connector w of Task k such as β(w)=(k, x) where x is a Task or a Repository, the associated Artifact Class w.c is inserted into list of output Artifact Classes CO of the corresponding Service s. Precondition Specification Services' Precondition expression P of a Service s involves data attributes of Data Attribute Lists Ak attached to corresponding Task k. Only data attributes of the input Artifact Classes CI are considered in Services' Precondition expression. The Services' Precondition expression is formed from the conjunction of notdefined or closed predicates over the selected data attributes. The closed predicate is used for stream data attributes.

Example 4. 6 (

 6 Generating Services) Taking the Conceptual Artifact Model illustrated in Figure 4.14 as example, we generate an IssueFireStationAlert Service as the tuple (s, CI, CO, P, E) such that:  The service name: s= IssueFireStationAlert  The input list: CI={FCA}  The output list: CO={FCA, FSAA}  The precondition: P=notdefined(FCA.FireStationAlert) .FireStationAlertArtifactId) ∧ defined(FSAA.House) Generating Artifact Rules Artifact Rule Creation Artifact Rules are created by examining the source of read/write Flow Connectors.

Example 4. 7 (

 7 Generating Artifact Rules) Taking the Conceptual ArtifactModel illustrated in Figure4.17, the generated set of Artifact Rules is R={r1, r2, r3} such that:  𝑟 1 : 𝑠𝑡𝑎𝑡𝑒(𝐹𝑆𝐴𝐴, 𝐿𝑜𝑐𝑎𝑡𝑒𝑑) ∧ ¬𝑑𝑒𝑓𝑖𝑛𝑒𝑑(𝐹𝑆𝐴𝐴. 𝐼𝑠𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦𝐴𝑙𝑒𝑟𝑡𝑒𝑑) → 𝑖𝑛𝑣𝑜𝑘𝑒(𝐴𝑙𝑒𝑟𝑡𝐹𝑖𝑟𝑒𝑆𝑡𝑎𝑡𝑖𝑜𝑛) Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon  𝑟 2 : 𝑠𝑡𝑎𝑡𝑒(𝐹𝑆𝐴𝐴, 𝐿𝑜𝑐𝑎𝑡𝑒𝑑) ∧ 𝑑𝑒𝑓𝑖𝑛𝑒𝑑(𝐹𝑆𝐴𝐴. 𝐼𝑠𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦𝐴𝑙𝑒𝑟𝑡𝑒𝑑) ∧ 𝐹𝑆𝐴𝐴. 𝐼𝑠𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦𝐴𝑙𝑒𝑟𝑡𝑒𝑑 = 𝑡𝑟𝑢𝑒 → 𝑠𝑡𝑎𝑡𝑒(𝐹𝑆𝐴𝐴, 𝑆𝑢𝑐𝑐𝑒𝑠𝑠)  𝑟 3 : 𝑠𝑡𝑎𝑡𝑒(𝐹𝑆𝐴𝐴, 𝐿𝑜𝑐𝑎𝑡𝑒𝑑) ∧ 𝑑𝑒𝑓𝑖𝑛𝑒𝑑(𝐹𝑆𝐴𝐴. 𝐼𝑠𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦𝐴𝑙𝑒𝑟𝑡𝑒𝑑) ∧ 𝐹𝑆𝐴𝐴. 𝐼𝑠𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑓𝑢𝑙𝑙𝑦𝐴𝑙𝑒𝑟𝑡𝑒𝑑 = 𝑓𝑎𝑙𝑠𝑒 → 𝑠𝑡𝑎𝑡𝑒(𝐹𝑆𝐴𝐴, 𝐹𝑎𝑖𝑙𝑒𝑑)

 in which several local schemas are integrated into one global schema acting as a Unified View for accessing local schemas. Moreover, in traditional Data Integration Systems, the global schema is generated based on identifying correspondences between elements of local schemas. The process of identifying correspondences between local schemas is known as Schema Matching [RaBe01]. Additionally, transformations between local and global schemas are achieved with mapping rules. The process of defining mapping rules between local and global schemas is known as Schema Mapping [BoVe11]. Similarly to traditional Data Integration Systems, we integrate several local CAMs into one global CAM that acts as a Unified View. The generation of global CAMs is based on the correspondences between local CAMs and mapping rules to transform queries between local and global CAMs.

Figure 5 .

 5 Figure 5.1 illustrates the Artifact Integration System where the Artifact Manipulation Language (AML) queries are sent to the global CAM. Mapping Rules are then used to translate the queries from the global CAM into local

Figure 5 . 1

 51 Figure 5.1 Artifact Integration System The semantics of the Artifact Integration System are based on three sub-phases: Matching Sub-Phase, Merging Sub-Phase, and Mapping Sub-Phase. First, the Matching Sub-Phase deals with identifying correspondences between different elements of local CAMs and is constituted of two incremental match operations. The first match operation identifies correspondences between Artifacts, Tasks and Repositories. The second match operation identifies correspondences between data attributes of both models. In later case, matching expressions over data attributes defining data transformation rules are specified based on a set of predefined functions. The result of the Matching Sub-Phase is a set of correspondences between different elements of the local CAMs and is used to guide sub-phases of the Integration Phase. Second, the Merging Sub-Phase deals with generating the Unified View or global CAM by merging the local CAMs based on the identified correspondences of the Matching Sub-Phase. First, Artifacts are generated followed by Repositories, Tasks, Data Attribute Lists, and finally Flow Connectors, including Events and Conditions. Each step is based on the result of the previous steps as follows: The generation of Tasks and Repositories is based on the generation of Artifacts, the generation of Data Attribute Lists is based on the generation of Tasks, and the generation of Flow Connectors is based on the generation of Artifacts, Tasks, Repositories, and Data Attribute List. Finally, the Mapping Sub-Phase defines mapping rules between local and global CAMs. Mapping rules are used to translate elements between local and global CAMs. Moreover, mapping rules are specified based on the

 It is worth noting CAMs are defined based on the formalism described in Chapter 4. An important difference between the global CAM GI and the local CAMs is that in GI, Flow Connectors can be associated with several Events and/or Conditions. This reflects the fact that two semantically equivalent Flow Connectors in the local CAMs can be triggered by two different Events and/or Conditions. As a result, δI and αI respectively map WI to EI n and NI n instead of EI and NI.

The

 uniqueness relationship is a correspondence of one-to-zero or zeroto-one cardinalities and signifies that an element of one local CAM has no Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon corresponding element in the other local CAM. Figure 5.2 illustrates the uniqueness relationship for Tasks, Repositories, and Artifacts characterized by the absence of visual relations between the unique elements and any other element from the other CAM.

Figure 5 . 2

 52 Figure 5.2 Uniqueness correspondence relationships for Tasks, Repositories, and ArtifactsThe equivalence relationship is a correspondence of one-to-one cardinality and signifies that two elements of two different CAMs are semantically equivalent. The equivalence relationship is represented using double headed arrows as illustrated in Figure5.3. The solid head points in the direction of the dominant element. The dominant element is the generated element in the global CAMs when merging the elements of the equivalence relationship.

Figure 5 . 3

 53 Figure 5.3 Equivalence correspondence relationships for Tasks, Repositories, and Artifacts

Figure 5 . 4

 54 Figure 5.4 Composition correspondence relationship for Tasks After the specification of correspondences between elements of the two local CAMs using the graphical notation, the correspondence relationships are exposed as a Correspondence Function C.



 Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon dominant element participating in the correspondence relationship; l (leftdominant) for the element belonging to the left-side e.g., G1, and r (rightdominant) for the element belonging to the right-side e.g., G2. The semantics of the Correspondence Function C for Artifacts, Tasks and Repositories are defined as follow:  Uniqueness correspondences: If an Artifact, Task or Repository in one CAM has no equivalent Artifact, Task or Repository in the other CAM, then C(e) = ⊥ where ⊥ is the null symbol and e is an Artifact, Task or Repository from G1 or G2. Equivalence correspondences: If two Artifacts, Tasks or Repositories belonging to the first and second CAMs have an equivalence relationship, then:



 Composition correspondences: If one Task in one CAM has a composition relationship with n Tasks and Repositories in the other CAM, then: o C(e0)=(e1,…en, l) if e0 is the dominant element, where e0 is a Task from G1 and e1,… en are Tasks and Repositories from G2.

 generation of Artifacts is achieved based on the correspondences exposed by the Correspondence Function C. Since Artifacts are transmitted between Tasks, Repositories and Flow Connectors, the first-order rules update the Integration Function I with new entries corresponding to the integrated Artifacts but do not generate an element in GI. Thus, the generation rules are reduced to: "If correspondence then update I" for Artifact generation. The Integration Function I is then used in the remaining generate operations in order to generate Repositories, Tasks, Data Attribute Lists, and Flow Connectors. We recall that w = (c, ro) represents a Flow Connector.  Unique Artifacts Integration Rule: ∀wi ∈ W1 ∪ W2 [C(wi.c)=⊥ → I(wi.c)=wi.c]  Equivalent Artifacts Integration Rule (l-dominant): ∀wi ∈W1, ∀wj ∈W2 [C(wi.c)=(wj.c, l) → I(wi.c)=wi.c ∧ I(wj.c)=wi.c]  Equivalent Artifacts Integration Rule (r-dominant): ∀wi ∈W1, ∀wj ∈W2 [C(wi.c)=(wj.c, r) → I(wi.c)=wj.c ∧ I(wj.c)=wj.c] Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Repositories Generation Similarly to Artifacts, the generation of Repositories is achieved based on the correspondences exposed by the Correspondence Function C. The Integration Function I is updated with new entries corresponding to the integrated Repositories. Additionally, the Integration Function I is used to generate the associated Artifacts of generated Repositories. The generation of Repositories is defined using the following generation rules, where p represents the Repository (p, cp).



 ∀pi ∈P1, ∀pj ∈P2 [C(pi)=(pj, r) → I(pi)=pj ∧ I(pj)=pj ∧ ∃px ∈PI [px=pj ∧ cpx=I(cpj)]] Tasks Generation Tasks are generated based on the correspondences exposed by the Correspondence Function C. On the other hand, Data Attribute Lists attached to Tasks are generated in the Data Attribute Lists Generation. The Integration Function I is updated with new entries corresponding to the integrated Tasks. We recall that a Task k is a tuple (k, Ak, γart, γcom, γstr, γref, γsim) in which Ak, γart, γcom, γstr, γref, γsim represent the attached Data Attribute List. Unique Tasks integration rule: ∀ki ∈ K1 ∪ K2 [C(ki)=⊥ → I(ki)=ki ∧ ∃kj∈KI [kj = ki]]  Equivalent Tasks integration rule (l-dominant): ∀ki ∈K1, ∀kj ∈K2 [C(ki)=(kj, l) → I(ki)=ki Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon ∧ I(kj)=ki ∧ ∃kx∈KI [kx=ki]]  Equivalent Tasks integration rule (r-dominant): ∀ki ∈K1, ∀kj ∈K2 [C(ki)=(kj, r) → I(ki)=kj ∧ I(kj)=kj ∧ ∃kx∈KI [kx=kj]]  Composite Tasks integration rule (l-dominant): ∀ki∈K1, ∀k1,…kn∈K2 [C(ki)=(k1,...kn, l) → I(ki)=ki ∧ I(k1)=ki ∧ … ∧ I(kn)=ki ∧ ∃kj∈TI [kj=ki]]  Composite Tasks integration rule (r-dominant): ∀k1,…kn∈K1, ∀kj∈K2 [C(kj)=(k1,…kn, r) → I(kj)=kj ∧ I(k1)=kj ∧ … ∧ I(kn)=kj ∧∃kx∈TI [kx=kj]] Data Attribute Lists Generation



 Unique data attributes integration rule: ∀ki ∈K1∪ K2, ∀aj∈Aki [Cda(aj)=⊥→ I(aj)=aj]  Equivalent data attributes integration rule (l-dominant): ∀ki ∈K1, ∀kj ∈K2, ∀am ∈Aki, ∀an ∈Akj [Cda(am)=(an, l, x) → I(am)=am ∧ I(an)=am]  Equivalent data attributes integration rule (r-dominant): ∀ki ∈K1, ∀kj ∈K2, ∀am ∈Aki, ∀an ∈Akj [Cda(am)=(an, r, x) → I(am)=an ∧ I(an)=an]  Composite data attributes integration rule (l-dominant): ∀ki ∈K1, ∀kj ∈K2, ∀am ∈Aki, ∀a1,… an ∈Akj [Cda(am)=(a1,… an, l, xComposite data attributes integration rule (r-dominant): ∀ki ∈K1, ∀kj ∈K2, ∀a1,… am ∈Aki, ∀an ∈Akj [Cda(an)=(a1,… am, r, x) → I(an)=an ∧ I(a1)=an ∧ … ∧ I(am)=an] Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Data Attribute Lists Population



 Data Attribute Lists population rule: ∀ki ∈K1∪ K2, ∃kx ∈KI [kx=I(ki) → ∀aj ∈Aki , ∃al ∈Akx [al=I(aj) ∧ γart(al)=I(γart (aj)) ∧ γcom(al)=γcom(aj) ∧ γstr(al)=γstr(aj) ∧ γref(al)=I(γref(aj)) ∧ γsim(al)=γsim(aj)]] Flow Connectors Generation

 Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon  Flow Connectors integration rule: ∀wi ∈ W1∪W2, ∃s, d ∈ K1∪K2∪P1∪P2 [β(wi)=(s, d) ∧ I(s) ≠I(d) → ∃wx ∈WI [wx.c=I(wi.c) ∧ wx.ro=wi.ro ∧ βI(wx)=((I(s), I(d)) ∧ δ(wi) ∈ δI(wx) ∧ Icon(α(wi))∈αI(wx)]]



 One of the Conditions of wx is the integrated form of the Condition attached to wi if any; Icon(α(wi)) ∈ αI(wx) Example 5.3 (Merging Sub-Phase) We consider two local CAMs G1 and G2 and their Artifacts, Tasks, Repositories and data attributes correspondences illustrated in Figure 5.5 and Figure 5.6 where matching expressions are omitted. Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

Figure 5 . 5

 55 Figure 5.5 Merging Sub-Phase local CAMs example



 Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon C(Art2)=(Art3, r), C(R3)=(R6, r), CDA(Att3)=(Att6, r, x1). Composition elements: C(T2)=(T3,R5,T4, l), CDA(Att2)=(Att4, Att5, l, x2) The Integration Function I will have the following entries: I(Art1)=Art1, I(R1)=R1, I(R2)=R2, I(R4)=R4, I(R7)=R7, I(T1)=T1, I(Att1)=Att1, I(Art2)=Art3, I(Art3)=Art3, I(R3)=R6, I(R6)=R6, I(Att3)=Att6, I(Att6)=Att6, I(T2)=T2, I(T3)=T2, I(R5)=T2, I(T4)=T2, I(Att2)=Att2, I(Att4)=Att2, I(Att5)=Att2.

Finally, the generated

 global CAM GI is illustrated in Figure5.7.

Figure 5 . 7

 57 Figure 5.7 Generated global CAMs

 Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon  Query reformulation: To translate queries posed at global CAM into queries compatible with local CAMs.  Centralized execution: To translate execution instructions posed at global CAM into execution instruction compatible with local CAMs.  Supervising platform: To translate processing details from local CAMs into global CAM.

Figure 6 . 1

 61 Figure 6.1 Main Modules of Artifact Integration Framework The CAM Modeler module implements the Modeling Phase and provides graphical editor for modeling CAMs. The CAM Modeler takes input from the user and generates CAMs. The Integration Phase is implemented by three modules:  The CAM Matcher module implements the Matching Sub-phase of the Integration Phase. The CAM Matcher is a graphical editor that is used in order to capture correspondences between two local CAMs. The CAM Matcher takes two CAMs specifications as inputs and outputs correspondence relationships.

 and translates the query to heterogeneous queries corresponding to the local CAMs.AQL Processor ModuleThe AQL Processor module deals with processing, executing, and managing AQL queries and Artifact Systems. It provides a complete Integrated Development Environment (IDE) based on the Eclipse Rich Client Platform (Eclipse RCP) and offers several views, dialogs and windows to work with AQL and Artifact Systems.The AQL Processor module is composed of eight sub-modules as illustrated in Figure6.2.

Figure 6 . 2

 62 Figure 6.2 AQL Processor Architecture

 Figure 6.3 illustrates the AQL Editor generated by the Xtext framework. Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

Figure 6 . 3

 63 Figure 6.3 Graphical Interface of the AQL Editor

 Figure 6.4 illustrates an example of a generated XML-based semantic query.

Figure 6 . 4

 64 Figure 6.4 Generated XML Semantic Query

Figure 6 . 5

 65 Figure 6.5 UML Class of SemanticInterpreter The runAqlQueries(IWorkbenchWindow, ISelection) method is invoked by the RunAqlQueriesHandler class and aims to interpret AQL queries stored in an AQL file. References to the active WorkbenchWindow and Selection are passed as parameters in order to retrieve the selected AQL file.

SemanticInterpreter

 + runAqlQueries(IWorkbenchWindow, ISelection) : void -addRuleEngineAsDatabaseListener() : void -createSystemTables() : void -setDatabaseSettings(IProject) : void -interpretCreateRuleQuery(IFile) : void -interpretCreateServiceQuery(IFile) : void -interpretCreateArtifactQuery(IFile) : void -interpretDeleteQuery(IFile) : void -interpretNewQuery(IFile) : void -interpretRetrieveQuery(IFile) : void -interpretUpdateQuery(IFile) : void -interpretInsertIntoQuery(IFile) : void -interpretRemoveFromQuery(IFile) : void -createDatabase(CreateArtifact) : void Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

 Figure 6.6 illustrates the UML class of RunAqlQueriesHandler consisting of one method.

Figure 6 . 6

 66 Figure 6.6 UML Class of RunAqlQueriesHandler The execute(ExecutionEvent) method retrieves the active WorkbenchWindow and Selection and invokes the runAqlQueries method from the SemanticInterpreter class.

Figure 6 . 7

 67 Figure 6.7 UML Class of ArtifactSystemThe AttIdentification class is used to identify data attributes of Information Models. The AttIdentification class provides several members to set and return the data attribute, parent data attribute, and containing Artifact Class names. Figure6.8 illustrates the UML class of AttIdentification.The Helper class provides methods for working with the ArtifactSystem class. Some of these methods return Create Artifact, Create Service, and Create Rules objects, other methods return data attributes of Information Models according to types, test types of data attributes, return Stream or Adhoc Services, or test types of Services or Artifact Rules.

Figure 6 . 8

 68 Figure 6.8 UML Class of AttIdentification

Figure 6 .

 6 Figure 6.9 illustrates the UML class of DatabaseOperationEvent.

Figure 6 . 9

 69 Figure 6.9 UML Class of DatabaseOperationEvent

Figure 6 .

 6 Figure 6.10 illustrates the UML class of DatabaseManager.

Figure 6 .

 6 Figure 6.11 UML Class of RuleEngine

Figure 6 .

 6 Figure 6.12 Artifact Instance Viewer The ArtifactProcessExplorer package consists of three classes: ArtifactProcessExplorer, CallArtifactProcessExplorer, and ProcessExplorerInput. They provide a graphical user interface --the Artifact Process Explorer (see Figures 6.13 and 6.14), which allows users to explore the Information Model and Lifecycle of an Artifact instance. It also executes invoked Services, and creates user-generated or timely events.The Artifact Process Explorer is composed of several panels. The Simple Attributes panel displays simple attributes, states and primary key of the Artifact instance. Complex, reference, and stream attributes are

Figure 6 .Figure 6 .

 66 Figure 6.13 Artifact Process Explorer 1

2)

 Configure stream Services using the StreamServiceDialog class. And, 3) Update database with Services' returned values using the DatabaseManager class.

Figure 6 .

 6 Figure 6.15 illustrates the UML class of the ServicesManager.

Figure 6 .

 6 Figure 6.15 UML class of ServicesManager

Figure 6 .

 6 Figure 6.16 Automatically generated dialog of an ad-hoc Service The StreamServiceDialog class automatically generates dialogs for configuring stream Services. The StreamServiceThread class and the StreamServiceThreadProvider class are used to create threads that continuously receive data streams from configured input streams (see Figure 6.17).

Figure 6 .

 6 Figure 6.17 Automatically generated dialog of a stream Service

Figure 6 .

 6 Figure 6.18 CAM Modeler Graphical Interface

Figure 6 .

 6 Figure 6.19 CAM Matcher Main Graphical Interface

Figure 6 .

 6 Figure 6.20 Attribute Matcher Graphical Sub-Interface

Figure 6 .

 6 Figure 6.21 State Transitions of FireControlArtifact

Figure

 Figure 6.22 State Transitions of FireStationAlertArtifact

 Figure 6.24 illustrates some of the correspondences captured by the CAM Matcher for a part of the local CAMs where Data Attribute Lists are omitted for readability concerns.

 Figure 6.25 illustrates part of the generated global CAM. Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

Figure 6 .

 6 Figure 6.23 Fire Control Conceptual Artifact Model

Figure

 Figure 6.24 Fire Control Local CAMs Correspondences

Figure 6 .

 6 Figure 6.25 Fire Control Global CAM

CAMs.

 Three types of correspondence relationships are supported; Unique, Equivalent, and Composition. The Merging Sub-Phase uses concepts from Business Process Merging in order to merge local CAMs and generate global CAMs. The merging semantics are based on the identified correspondences and on Flow Connector's re-branching and re-connecting.

 En général, un processus centré sur les artéfacts appelé Système d'Artéfact [BGHL07] est formé de trois composants principaux: Les Classes d'Artéfacts incluant des modèles d'information pour les données relatives aux artéfacts et des cycles de vie basés sur des états décrivant les étapes possibles, Les Services qui sont les unités de travail de base manipulant les artéfacts, Les Règles (Métiers) décrivant comment les Services peuvent être invoqués sur les artéfacts en suivant les transitions issus de leurs cycles de vie. Un Système d'Artéfacts est donc une combinaison de données et de processus formant des entités dynamiques dont la sémantique d'exécution est dictée par les cycles de vie spécifiés. La Figure 1 illustre l'exemple de l'artéfact « commande » (Order Artifact). Le modèle d'information de la Classe d'Artéfacts « commande » possède des attributs pour la représentation des données telles que l'identificateur de la commande, le numéro de produit, la quantité commandée, le numéro du client, l'adresse d'expédition, la disponibilité du produit, la date de récupération, la date de livraison. Le cycle de vie comprend des états pour représenter les différentes étapes d'un artéfact de commande parmi lesquels : Created, NotAvailable, Available, Retrieved, et Delivered. La liste des Services agissant sur l'artéfact de commande comprend : Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Create Order: pour créer une nouvelle instance d'artéfact de commande et enregistrer les informations nécessaires. Check Availability: pour vérifier si le produit est disponible en stock en quantité suffisante. Retrieve Product: pour récupèrer le produit du stock. Deliver Product: pour expédier le produit à l'adresse de livraison. Les Règles sont des règles déclaratives de la forme « événement, condition, action » (ECA Rules). Elles sont représentées par des flèches dans la Figure 1. Les Règles sont responsables de l'invocation des Services et de la modification de l'état des instances d'artéfact.

Figure 1 .

 1 Figure 1. Exemple d'un Système d'ArtéfactsEn exploitant les modèles de processus d'une manière sémantique, les processus centrés sur les artéfacts fournissent un cadre intuitif et flexible pour l'exécution et la gestion des processus pilotés par les données. Comme indiqué dans [CoHu09, Hull08], l'approche centrée sur les artéfacts a été appliquée avec succès à la gestion des processus et à la gestion des cas (Case Handling) et a montré de nombreux avantages comme: 1) la modularité naturelle, 2) la simplicité de transformation de processus, 3) la disponibilité d'un cadre de différents niveaux d'abstraction, et 4) la comprehension de l'interaction entre les données et les processus d'une manière qui n'est pas supportée par les abstractions plus « traditionnelles ». En conséquence, les utilisateurs finaux peuvent gérer, contrôler et transformer les processus centrés sur les artéfacts

Figure 2 .

 2 Figure 2. Architecture de l'Internet des objets

Figure 3 .

 3 Figure 3. Mécanisme d'intégration Puisque les processus centrés sur les artéfacts ont émergé comme un nouveau paradigme de modélisation et ont fourni des applications intéressantes dans le contexte de l'Internet des objets pour modéliser des objets connectés basés sur des artefacts, le travail de cette thèse se propose de prolonger ce paradigme en se concentrant sur l'intégration de processus hétérogènes centrés sur les artéfacts. L'intégration de processus centrés sur les artéfacts est un problème important en raison de la complexité de mapping de deux ou plusieurs artéfacts au niveau de leurs composants (les Modèles d'Information, les Cycles de Vie, les Services et les Règles). Par conséquent, les solutions et techniques traditionnelles d'intégration de données et de fusion de processus telles que [ChTr12, KuYY14, PaSp00] ne permettent pas de traiter la complexité de l'intégration de processus centrée sur les artéfacts. De plus, étant donné un objet connecté basé sur des artéfacts, différentes variantes peuvent exister pour gérer différentes utilisations dans des différents domaines d'application. Des variations peuvent survenir dans le Modèle d'Information (données semi-structurées), les Etats (nouveaux états intermédiaires), les Services (nouveaux services ou mêmes services avec différentes signatures...) et les Règles (spécifiquement adaptées à un domaine d'application).En conséquence, les variantes d'artéfacts entraînent des processus hétérogènes centrés sur les artéfacts. L'intégration de ces processus issus de différentes sources devient un défi majeur lorsque nous devons fournir des

Figure 4 .

 4 Figure 4. Cadre d'intégration de processus centré sur les artéfacts

Figure 5 .

 5 Figure 5. Partie du modèle d'artéfact conceptuel d'un contrôle d'incendie

La Figure 6

 6 illustre des exemples de requêtes pour ADL. La requête 1 définit un Classe d'Artéfact, FireControlArtifact (FCA) responsable du contrôle des incendies. Les requêtes 2 et 3 définissent des Règles d'Artéfact. Enfin, les requêtes 4 et 5 définissent des Services. La Figure 7 illustre des exemples de requêtes pour AML. La requête 1 instancie un FCA. Les requêtes 2 et 3 récupèrent des données à partir d'artéfacts en fonction de la condition et la fenêtre sur les flux de données. Les requêtes 4 à 7 manipulent des instances d'artéfacts.

 Dans la phase d'intégration, nous intégrons plusieurs CAM locaux afin de générer un CAM global utilisé comme vue unifiée. Nous proposons et définissons un Système d'Intégration d'Artéfacts et une sémantique d'intégration basée sur un protocole qui enchaine trois sous-phases : Correspondance, Fusion, et Mapping. Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

Figure 6 .Figure 7 .

 67 Figure 6. Exemples de requêtes ADL

Figure 8 .

 8 Figure 8. Exemples de correspondance entre les artéfacts, les tâches et les dépôts

Figure 9 .

 9 Figure 9. Modules principaux du prototype

 : Business Process Modeling and Merging, Query Languages, Data Integration, Smart Processes, Internet of Things Laboratoire (s) de recherche : LIRIS Directeur de thèse: BADR, Youakim Présidente de jury : LAFOREST, Frédérique Composition du jury : LAFOREST, Frédérique -Professeure (Université Jean Monet) -Présidente VERDIER, Christine -Professeure (Université de Grenoble Alpes) -Rapporteure LAURENT, Anne -Professeure (Université de Montpellier) -Rapporteure CAUVET, Corine -Professeur (Université Aix-Marseille) -Examinatrice BADR, Youakim -Maître de Conférences -HDR -Directeur de thèse AMGHAR, Youssef -Professeur (INSA-Lyon) -Co-directeur de thèse BARBAR, Kablan -Professeur (Université Libanaise) -Co-directeur de thèse

 définition et de manipulation d'artifacts. Le langage déclaratif, appelé AQL (Artifact Query Language) permet en particulier d'interroger des flux continus d'artifacts. Il s'appuie sur une syntaxe de type SQL pour réduire les efforts d'apprentissage. Nous avons également développé un prototype

	List of Tables	
	Maroun Abi Assaf	xv
	Thèse en Informatique / 2018	
	Institut National des Sciences Appliquées de Lyon	

Table 2 .1

 2 Comparison between existing and proposed artifact formal models Comparing conceptual models of different artifact modeling approaches . Comparing execution models of different artifact modeling approaches ...

	Table 2.2 Table 2.3

Table 3 .

 3 1 AQL Statements ... Conceptual Artifact Modeling Notation (CAMN) Data Attribute Correspondences Examples .. Matching Expression Predefined Functions ... FireControlArtifact Attributes ...

	Table 4.1 Table 5.1 Table 5.2 Table 6.1

Table 6 .

 6 2. FireStationAlertArtifact attributes ..

xvi

Maroun Abi Assaf

Thèse en Informatique / Institut National des Sciences Appliquées de Lyon

Check Availability Retrieve Product Deliver Product Maroun Abi Assaf Thèse

	Order Artifact		Artifact Class		Lifecycle
	-OrderId : Integer -Product : String		NotAvailabe	
	-Quantity : Integer			
	-ShippmentAddress : String -ClientName : String	Created		Rules
	-InStock : Boolean			
	-DateRetrieved : Date		Availabe	Retrieved	Delivered
	-DeliveryDate : Date			
	Information				Rules
	Model			
		Create	
	Services	Order	

en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

 . In this approach, Lifecycles of Business Artifacts are represented using finite state machines. Lifecycle of a Business Artifact can interact with the Lifecycles of other Business Artifacts in the Business Process. A Business Process Model is formed from all Lifecycles of Business Artifacts involved in the Business Process.

	In [Hull08], a framework for analyzing and working with artifact-
	centric Business Process Models is presented. The framework, referred to as
	the BALSA framework, describes four dimensions that are involved in any
	artifact-centric Business Process Model, including: Business Artifact

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

Check Availability Retrieve Product Deliver Product Maroun Abi Assaf Thèse

	Order Artifact		Business Artifact		Lifecycle
	-OrderId : Integer -Product : String		NotAvailabe	
	-Quantity : Integer			
	-ClientName : String -ShippmentAddress : String	Created	
	-InStock : Boolean			
	-DateRetrieved : Date		Availabe	Retrieved	Delivered
	-DeliveryDate : Date			
	Information				Associations
	Model			
		Create	
	Services	Order	

en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

Table 2 .1

 2 Comparison between existing and proposed artifact formal models

		Existing	Proposed
		Formal Models	Formal Model
	Data	do not support	support data streams
	Streams	data streams	using Stream Attributes
	Sensors	do not support sensors	support sensors using Stream Services
	Actuators	do not support actuators	support actuators using Ad-hoc Service
	Manipulation	low-level dealing with attribute/value pairs and database relations	high-level dealing with simple, complex, reference, and stream data attributes
	Artifact Relationships Representation	low-level using database relations	high-level using reference attributes

 Maroun Abi AssafThèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon model declarative or procedural Conceptual Models. Textual notations are used to model declarative or procedural Execution Models.

Created ORD ORD Not Available Available ORD ORD : Order Artifact : Service ORD : Repository : Read (Pull) Create Order E2 E1 Check Availability E2 : Write (Push) E E : Consume Event : Produce Event Maroun Abi Assaf Thèse

 en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

	On the other hand, modeling notations for declarative Business Artifact
	models based on the GSM (Guard-Stage-Milestones) formal model are
	introduced in [DaHV13, HDDF11a, HDDF11b]. The GSM paradigm seeks to
	graphically model Business Artifact lifecycles using Guards, Stages, and
	Milestones. Declarative rules referred to as Sentries open or close Stages, and
	consequently validate or invalidate Milestones. By using Guards, Stages and
	Milestone as modeling primitives, the GSM notation allows parallelism and
	hierarchies in Business Artifact lifecycles. Moreover, GSM notation served as
	the foundation for the Case Management Modeling and Notation (CMMN)

Create Order Check Availability Created Available NotAvailable Retrieve Product Retrieved Deliver Product Delivered : Guard : Stage : Milestone Maroun Abi Assaf Thèse

en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

Table 2

 2

	.2 and 2.3 summarize and compare different artifact modeling
	notations and frameworks covered in this section. Table 2.2 compares the
	Conceptual Models of the modeling approaches, if any, whereas Table 2.3
	compares the Execution Models of the modeling approaches, if any.
	Similarly to [KuYY14], we perform our comparison based on the four
	dimensions of the BALSA framework; Information Model, Lifecycle,
	Services, and Associations. The '-' symbol signifies that the BALSA

Table 2 .3

 2 Comparing execution models of different artifact modeling approachesFirstly, the CAM is the only approach that embeds the Information Model in the Conceptual Model, which leads to a holistic representation of Business Processes and simplification of the modeling phase. The UML approach represents the Information Model as a separate Conceptual Model using a Class Diagram. The remaining approaches define Information Models separately from Conceptual Models.

		Information Model	Lifecycle	Services	Association
				Declarative	
	CAM	Programming Data Types	Declarative (States)	(Semantic Web Services	Declarative (Artifact Rules)
				Specification)	
	Siena	Database	Procedural (XML finite-state machine)	Procedural (Tasks)	Procedural (XML finite-state machine)
	BPMN Extensions	-	-	-	-
	ArtiFlow	XML Schema	Procedural (BPEL)	Procedural (BPEL)	Procedural (BPEL)
	ArtiNets	-	-	-	-
	UML	-	-	-	-
	GSM	-	-	-	-
			Procedural		Procedural (XML
	BEDL	XML Schema	(XML finite-	Procedural	finite-state
			state machine)		machine)
			Declarative		
			(AXML		Declarative
	AXML	XML Schema	Embedded Function Calls	Declarative (Function Calls)	(AXML Embedded Function Calls with
			with		Conditions)
			Conditions)		
	ACC model	XML Schema	Declarative (States in XML)	Declarative (Web Service Details in XML)	Declarative (ECA Rules in XML)

Sources Relational Database Text File <xml> XML File Spread- Sheet Web Page Wrappers Local Schema Wrapper Local Schema Wrapper Local Schema Wrapper Local Schema Wrapper Local Schema Wrapper Global Schema Mediator Mediator Maroun Abi Assaf Thèse

 en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

 in order to define Ontologies and process queries.In comparison to the Artifact Integration System, the data sources in the Artifact Integration System correspond to distributed and heterogeneous artifacts. Local Schemas corresponds to Conceptual Artifact Models. Moreover, several local Conceptual Artifact Models are integrated in order to build a global Conceptual Artifact Model that acts as a Global Schema. Since the local models in our case represent distributed processes that executes separately, the Artifact Integration System that we propose is based on a Virtual Approach in which a Unified View is generated and no data is replicated in a Warehouse.

	Moreover, since the purpose of the Artifact Integration System is to
	provide a centralized access point for managing local artifact-centric
	processes, we propose in our contribution to implement a central Artifact
	Integration System in which a global Conceptual Artifact Model is used to
	access local Conceptual Artifact Models.

Table 3 .1 AQL Statements

 3

	Statement	Syntax
	Create	Create Artifact <name>
	Artifact	Attributes <list of attributes>
		States <list of states>
	Create	Create Service <name>
	Service	Input <list of artifacts>
		Output <list of artifacts>
		Precondition <expression>
		Effect <expression>
	Create	Create Rule <name>
	Rule	

(On <event> | On <event> If <condition> | If <condition>) (Change State Of <artifact> To <state> | Invoke <list of services>) New New <artifact> <list of simple attributes> Values <list values> {<complex attribute> Include <list of tuples>} {<reference attribute> Having <condition>} {<stream attribute> Using <stream service>} [Set state to <state>] Retrieve Retrieve <list of attributes> From <list of artifacts> [Where <condition>] [Within <range>] Update Update <artifact> Set <list of assignments> [Where <condition>] Insert Into Insert <attribute> Into <artifact> <list of tuples> [Where <condition>] Remove From Remove <attribute> From <artifact> [Where <condition>] Delete Delete <artifact> [Where <condition>] Artifact Definition Language In this section, we present the statements of the Artifact Definition Language (ADL) which are used to declaratively specify Artifact Systems. Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Create Artifact Statement

9 (Create Artifact Statement)

 3.1 Create Artifact Statement GrammarThe Create Artifact query defining the FireControlArtifact (FCA) is defined as follow:

	Create Artifact FCA
	Attributes (
	CREATEARTIFACT: "Create Artifact" BANAME
	ATTRIBUTECLAUSE
	STATECLAUSE;
	ATTRIBUTECLAUSE: "Attributes (" ATTRIBUTELIST ")";
	ATTRIBUTELIST: ATTRIBUTE | ATTRIBUTE "," ATTRIBUTELIST;
	ATTRIBUTE: ATTRIBUTENAME ":" ATTRIBUTETYPE;
	ATTRIBUTETYPE: SIMPLETYPE | COMPLEXTYPE | REFERENCETYPE | STREAMTYPE;
	REFERENCETYPE: BANAME;
	STATESCLAUSE: "States (" STATELIST ")";
	STATELIST: STATE | STATE "," STATELIST;
	STATE: STATENAME
	| STATENAME "As Initial State"
	| STATENAME "As Final State";
	BANAME: IDENTIFIER;
	ATTRIBUTENAME: IDENTIFIER;
	STATENAME: IDENTIFIER;
	IDENTIFIER: LETTER | IDENTIFIER LETTER | IDENTIFIER DIGIT;
	LETTER: "a" ... "z" | "A" ... "Z";
	DIGIT: "0" ... "9";

SIMPLETYPE: "Boolean" | "Integer" | "Real" | "String" | "Date"; COMPLEXTYPE: "{" ATTRIBUTELIST "}" ("As One" | "As Many"); STREAMTYPE: "{" ATTRIBUTELIST "," ATTRIBUTENAME ": TimeStamp } As Stream"; Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Example 3.FireControlArtifactId : Integer, FireDate : Date, FireDuration : Integer, AreWaterEjectorsActivated : Boolean, IsAlarmTurnedOn : Boolean, House : { Address : String, Surface : Real } As One, Habitats : { Name : String, PhoneNum : Integer } AS Many, FireStationAlert : FireStationAlertArtifact, IndoorTemperature : { Time : TimeStamp, Tmp : Integer } As Stream, SmokeLevel : { Time : TimeStamp, Lvl : Integer } As Stream) States (Normal As Initial State, FireDetected, PrimaryProcedurePerformed, FireExtinguished As Final State) Create Service Statement

new(FCA) And defined(FCA.FireControlArtifactId) And defined(FCA.House) And defined(FCA.Habitats)

	CREATESERVICE: "Create Service" SNAME And defined(FSAA.FireStationAlertingArtifactId)
	INPUTCLAUSE And defined(FSAA.House)
	OUTPUTCLAUSE
	PRECONCLAUSE
	EFFECTCLAUSE;
	INPUTCLAUSE: "Input" BANAMELIST;
	OUTPUTCLAUSE: "Output" BANAMELIST;
	BANAMELIST: BANAME | BANAME "," BANAMELIST;
	PRECONCLAUSE: "Precondition" PREDICATELIST;
	EFFECTCLAUSE: "Effect" PREDICATELIST;
	PREDICATELIST: PREDICATE | PREDICATE "and" PREDICATELIST;
	PREDICATE: NEWPRED | DEFPRED | NDEFPRED | OPEPRED | CLOPRED | SCALPRED;
	NEWPRED: "new(" BANAME ")";
	DEFPRED: "defined(" ATTRIBUTEIDENTIFICATION ")";
	NDEFPRED:"notDefined(" ATTRIBUTEIDENTIFICATION ")";
	OPEPRED: "opened(" ATTRIBUTEIDENTIFICATION ")";
	CLOPRED: "closed(" ATTRIBUTEIDENTIFICATION ")";
	SCALPRED: ATTRIBUTEIDENTIFICATION SCALAROP CONSTANTVALUE;
	SCALAROP: "=" | "<" | ">" | "<=" | ">=";
	ATTRIBUTEIDENTIFICATION: ATTRIBUTENAME
	| BANAME "." ATTRIBUTEIDENTIFICATION
	| ATTRIBUTENAME "." ATTRIBUTEIDENTIFICATION;
	BANAME: IDENTIFIER;
	ATTRIBUTENAME: IDENTIFIER;
	IDENTIFIER: CONSTANTVALUE;
	CONSTANTVALUE: LETTER | IDENTIFIER LETTER | IDENTIFIER DIGIT;
	Create Service CreateFCA
	Input -
	Output FCA
	Precondition -
	Effect Example 3.11(Create Service Statement 2) The IssueFireStationAlert
	service creates a new instance of the FireStationAlertArtifact (FSAA) as a
	child artifact of the corresponding FireControlArtifact (FCA). It defines its
	FireStationAlertArtifactId and House attributes. It is defined using the
	following Create Service query:
	Create Service IssueFireStationAlert
	Input FCA
	Output FCA, FSAA
	Precondition notdefined(FCA.FireStationAlert)
	Effect new(FCA. FireStationAlert)
	Maroun Abi Assaf
	Thèse en Informatique / 2018
	Institut National des Sciences Appliquées de Lyon

LETTER: "a" ... "z" | "A" ... "Z"; DIGIT: "0" ... "9";

Example 3.12 (Create Service Statement 3) The

 StreamIndoorTemperature service streams data tuple from temperature sensors into the IndoorTemperature attribute of the corresponding FireControlArtifact. Its Create Service query is defined as follow:

	Create Service StreamIndoorTemperature
	Input FCA
	Output FCA
	Precondition

closed(FCA.IndoorTemperature) Effect opened(FCA.IndoorTemperature)

	Create Rule Statement

The Create Rule statement is used to define Artifact Rules. There are two types of rules:

 "If condition Invoke services", and  "If condition Change State of artifact To state".

Create Rule r1 On CreateFireControlArtifactEvent Invoke CreateFCA() Example 3.14 (Create Rule Statement 2)

 .3 illustrates the context-free grammar of the Create Rule statement. Rule 2 changes the state of FireControlArtifact to the Normal state if it is initialized and its FireControlArtifactId, House, and Habitats attributes are defined. Its Create Rule query is defined as follow:

	Example 3.
	Maroun Abi Assaf
	Thèse en Informatique / 2018
	Institut National des Sciences Appliquées de Lyon

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Figure 3.3 Create Rule Statement Grammar Example 3.13 (Create Rule Statement 1) Rule 1 invokes the CreateFCA service when a Create Fire Control Artifact Event is received. It is defined using the following Create Rule query:

15 (Create Rule Statement 3)

 Rule 3 changes the state of FireControlArtifact to the FireDetected state if it is in the Normal state, house temperature sensor values are higher than 57°C, and smoke sensor levels exceed a threshold of 3. It is defined using the following Create Rule query:

	Create Rule r3
	If state(FCA, Normal)
	And FCA.IndoorTemperature.Tmp >= 57
	And FCA.SmokeLevel.Lvl >= 3
	Change

State of FCA To FireDetected Example 3.16 (Create Rule Statement 4)

 Rule 4 invokes the TurnOnAlarm and ActivateWaterEjectors services if a FireControlArtifact is in the FireDetected state and its IsAlarmTurnedOn and AreWaterEjectorsActivated attributes are not defined. Its corresponding Create Rule query is defined as follow:

Create

Rule r4 If state(FCA, FireDetected) And notdefined(FCA.IsAlarmTurnedOn) And notdefined(FCA.AreWaterEjectorsActivated) Invoke TurnOnAlarm(FCA), ActivateWaterEjectors(FCA) Artifact Manipulation Language

{" TUPLELIST "}"; REMOVE: "Remove" ATTRIBUTENAME "From" BANAME WHERECLAUSE; DELETE: "Delete" BANAME WHERECLAUSE; TUPLELIST: TUPLE | TUPLE "," TUPLELIST; TUPLE: "(" CONSTANTVALUELIST ")"; BANAME: IDENTIFIER; STATENAME: IDENTIFIER; ATTRIBUTENAME: IDENTIFIER; IDENTIFIER: CONSTANTVALUE; CONSTANTVALUE: LETTER | DIGIT | CONSTANTVALUE LETTER | CONSTANTVALUE DIGIT; LETTER

	UPDATE: "Update" BANAME
	SETCLAUSE
	WHERECLAUSE;
	SETCLAUSE: SETSTATE | SETATTRIBUTES;
	SETSTATE: "Set State To" STATENAME;
	SETATTRIBUTES: "Set" ATTRIBUTEASSIGNMENTLIST;
	ATTRIBUTEASSIGNMENTLIST: ATTRIBUTEASSIGNMENT
	| ATTRIBUTEASSIGNMENT "," ATTRIBUTEASSIGNMENTLIST;
	ATTRIBUTEASSIGNMENT: ATTRIBUTENAME "=" CONSTANTVALUE;
	INSERT: "Insert" ATTRIBUTENAME
	"Into" BANAME
	COMPLEXATTCLAUSE?
	WHERECLAUSE;
	COMPLEXATTCLAUSE: "
	Update FCA
	Set Habitats.PhoneNum = 0033763423758

: "a" ... "z" | "A" ... "Z"; Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

 The primary key of R is denoted by key(R) ⊆ schema(R). t over R is an element of D |schema(R)| , and a relation r over R is a finite set of tuples over R such that r ⊆ D |schema(R)| . We also assume the existence of a relation states over a relation schema States used to store information about states of lifecycles with schema(States)={Artifact, State, Type} and key(States)={Artifact, State}.

A Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

tuple

 Maroun Abi AssafThèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon 1. A relation schema Rc representing an Artifact Class c is created. The schema of Rc contains the simple attributes of c such that schema(Rc) = {a | a ∈ As}. Additionally, Rc contains two more attributes: apk=concat(c, "_PK") is the primary key of Rc such that key(Rc)=apk, and ast=State is the current state of the artifact. Taking the Create Artifact query of Example 3.9 as an example, we obtain the following . For every complex attribute ac such that ac ∈ Ac, we create an associated relation schema Rac containing the simple attributes constituting ac such that schema(Rac)={a | a ∈ γcom(ac) }. Additionally,

	relation schema:
	FCA(FCA_PK, FireControlArtifactId, FireDate, FireDuration,
	AreWaterEjectorsActivated, IsAlarmTurnedOn, State)

2schema(Rac) contains a primary key attribute acpk such that key(Rac)=acpk and acpk=concat(ac, "_PK"). Moreover, schema(Rac) also contains a reference to the artifact relation in the form of a foreign key acfk of Rc such that acfk=concat(c, "_FK"). In reference to the Create Artifact query of Example 3.9, we obtain the following relation schemas:

 Service Effect E is executed according to the following predicate semantics: The new predicate new(c) creates a new instance of Artifact Class c and assigns its primary key to the corresponding output artifact o ∈ CO. if the new predicate is of the form new(c.A) where A is a reference attribute of the artifact instance referenced by an output artifact o1 ∈ CO of the Artifact Class c, then a new instance of Artifact Class γref(A) is created as a child artifact of o1 and its primary key is assigned to the corresponding output artifact o2 ∈ CO referencing the Artifact Class γref(A).

	
	Maroun Abi Assaf
	Thèse en Informatique / 2018
	Institut National des Sciences Appliquées de Lyon

 . The state predicates state(c, q1) of the remaining Artifact Rules is matched with the state q2 of the artifact instance i of Artifact Class c. If q1 ≠ q2 then the Artifact Rule is discarded.5. Predicates involving simple attributes (respectively complex attributes)of an Artifact Class c in the condition of the remaining Artifact Rules are matched with the simple attribute values of the artifact instance i of Artifact Class c. Artifact Rules, which do not meet the simple attributes (respectively complex attributes) predicate conditions, are thus discarded.

6. Predicates involving stream attributes of

Artifact Class c in the condition of the remaining Artifact Rules are matched with the last (or current) tuple of the corresponding stream attribute relations of artifact instance i of Artifact Class c. Artifact Rules that do not meet the stream attributes predicate conditions are discarded. 7. Predicates involving reference attributes of Artifact Class c in the condition of the remaining Artifact Rules are matched with the corresponding child artifact instances of the artifact instance i of Artifact Class c. Artifact Rules that do not meet the reference attributes predicate conditions are discarded. 8. Action parts of the remaining Artifact Rules are executed as follow:

 Tasks and Repositories and allow artifact instances to be transferred between them. Read/write Flow Connectors indicate that artifact instances are transferable between tasks and repositories where they are manipulated and evolved with respect to their lifecycles. Read-only Flow Connectors indicate that artifact required in read-only mode and no modification is performed, thus the artifact instance remains in the same Repository. Figure 4.1 (a) illustrates a Repository connected to a Task through a read/write Flow Connector.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon content is

Table 4 .

 4 1 Conceptual Artifact Modeling Notation (CAMN)

 Artifact Class names. Y of simple data types, including: Boolean, Integer, Real, String, Date, and TimeStamp; Ak ⊆ A is a finite set of artifact attributes associated to the Task k. Ak includes three partitions; a simple attribute partition As, a complex attribute partition Ac, a reference attribute partition Ar, and a stream attribute partition At.

	Definition 4.1 (Conceptual Artifact Model) A Conceptual Artifact Model
	(CAM) is an augmented graph G in which Tasks and Repositories are
	vertices, and Flow Connectors are edges such as:
	G = (P, K, W, E, N, δ, α, β)
	Where:
	Stream Indoor  P ⊆ P is the set of Repositories defined below,
	Temperature  K ⊆ K is the set of Tasks defined below,
	 W is the set of Flow Connectors defined below,
	 E ⊆ E is the set of Events,
	 N ⊆ N is the set of Conditions,
	Definition 4.3 (Task) A Task is a tuple (k, Ak, γart, γcom, γstr, γref, γsim) where:

 A of attribute names.  K of Task names.  P of Repository names.  N of Condition expressions.  E of Event names.  FCA -FCA.IndoorTemperature : { Time : TimeStamp, Tmp : Integer } AS STREAM Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon  δ is the partial function that maps W to the set of Events E, thus δ attaches Events to some Flow Connectors,  α is the partial function that maps W to the set of Conditions N, thus α attaches conditions to some Flow Connectors,  β is the total function that maps the set of edges (Flow Connectors W) to the set of endpoints (Tasks K and Repositories P) such as: β : W → P×K ∪ K×P ∪ K×K ∪ P×P ∪ ⊥×K Where ⊥ is the null symbol. In other words, β specifies the source and destination of Flow Connectors where: o P×K represents Repository-to-Task Transition Pattern, o K×P represents Task-to-Repository Transition Pattern, o K×K represents Task-to-Task Transition Pattern, o P×P represents Repository-to-Repository Transition Pattern, and o ⊥×T represents Parent Artifact Creation Pattern in which the Flow Connector have no source and a Task as destination. Definition 4.2 (Repository) A Repository is a tuple (p, cp), where p ∈ P is the Repository name, cp ∈ C is the Artifact Class associated to the repository. When clear from the context, a Repository (p, cp) is simply referred to as p.  k ∈ K is the Task name. Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon   γart : Ak → C, the artifact type function is a total map that maps the attributes in Ak to the Artifact Class they belong to in C.

 Inspired by Schema Mapping[START_REF] Do | Schema matching and mapping-based data integration[END_REF], the Mapping Sub-phase deals with transforming data between global and local models.The generated global CAM acts as a Unified View that can be used in order to supervise, execute, and/or query local CAMs. Without loss of generality, the proposed integration semantics is presented in the context ofMaroun Abi AssafThèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon integrating two CAMs. However, integrating any number of CAMs can be performed by incrementally integrating CAMs.

Sub-phase: Inspired by Business Process Merging

[START_REF] Sun | Merging workflows: A new perspective on connecting business processes[END_REF]

, the Merging Sub-phase deals with merging local CAMs into one global CAM according to identified correspondences and by re-branching and re-connecting Flow Connectors.

3. Mapping Sub-phase:

Table 5 .1

 5 Data Attribute Correspondences Examples

Table 5

 5

		.2 Matching Expression Predefined Functions	
	Function	Description	Example	Result
		Returns the substring of the first argument		
	substring(string, number,	starting at the position specified in the	 substring('John Smith', 5)	 "Smith"
	number?)	second argument and the length specified in	 substring('John A. Smith', 5, 2)	 "A."
		the optional third argument.		
		Returns the substring of the first argument		
		string that follows the first occurrence of the		
	substring-after(string, string)	second argument string in the first argument string, or the empty string if the first		
		argument string does not contain the second		
		argument string.		
		Returns the substring of the first argument		
		string that precedes the first occurrence of		
		the second argument string in the first		
		argument string, or the empty string if the		
		first argument string does not contain the		
		second argument string.		
	average(number, number, number*)	Returns the average of the arguments.	 average(10, 20, 30, 40)	 25
	min(number, number, number*) Returns the minimum of the arguments.	 min(10, 20, 30, 40)	 10
	max(number, number, number*) Returns the maximum of the arguments.	 max(10, 20, 30, 40)	 40
	ceiling(number)	Returns the smallest integer that is not less than the argument.	 ceiling(2.15)	 3
	floor(number)	Returns the largest integer that is not greater than the argument.	 floor(2.75)	 2
	round(number)	Returns an integer closest in value to the argument.	 ceiling(2.15)	 2
	string(number)	Converts the argument to a string.	 string(25.5)	 "25.5"
			 number(false)	 0
	number(string|boolean)	Converts the argument to a number.	 number(true)  number('25.5')	 1  25.5
			 number('Abcd')	 NaN
			 boolean(-5)	 true
			 boolean(1)	 true
	boolean(number)	Converts the argument to a Boolean.	 boolean(5)	 true
			 boolean(0)	 false
			 boolean('Abcd')	 false
	not(boolean)	Returns true if the argument is false; otherwise false.	 not(true)  not(false)	 false  true

concat(string, string, string*) Returns the concatenation of the arguments.  concat('John', ' ', 'Smith')

 "John Smith"

 Substring-after('John Smith', ' ')  Smith"

substring-before(string, string)

 substring-before('John Smith', ' ')  "John"

Definition 5.9 (Data Attribute Mapping Function)

 Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon The Data Attribute Mapping Function Mda maps data attributes associated to Artifacts in global CAM to data attributes associated to Artifacts in a selected local CAM in addition to matching expressions originating from Data Attribute Correspondence Function Cda . Mda is defined as:

 Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

	Maroun Abi Assaf Maroun Abi Assaf
	Thèse en Informatique / 2018 Thèse en Informatique / 2018
	Institut National des Sciences Appliquées de Lyon Institut National des Sciences Appliquées de Lyon

 The CAM Matcher is a graphical editor that is used in order to capture correspondences between two local CAMs. The CAM Matcher takes two CAMs specifications as inputs and outputs correspondence relationships.  The CAM Merger module implements the Merging Sub-phase of the Integration Phase. The CAM Merger takes two local CAMs specifications and their correspondences as input and generates one global CAM specification as output.  The CAM Mapper module implements the Mapping Sub-phase of the Integration Phase. The CAM Mapper takes global and local CAMs in addition to a uniform Artifact Manipulation Language (AML) query

	Integration			Uniform AML Query
	Phase				
				Global	
	CAM	Correspondances	CAM	CAM	CAM
	Matcher	Merger		Mapper
					Heterogeneous
		Local CAMs		AML Queries
	Modeling	Local CAMs	CAM		
	Phase	Modeler	Local CAMs	
		Local CAM		
	Specification		AQL		
	Phase	Generator		
		ADL Queries			
	Execution Phase	AQL Processor		
	Maroun Abi Assaf				
	Thèse en Informatique / 2018			
	Institut National des Sciences Appliquées de Lyon			

 The database settings are then used by the Database Manager whenever database operations are performed. methods respectively interpret and execute Create Rule, CreateService, Create Artifact, Delete, New, Retrieve, Update, InsertInto, and Remove queries. Every method takes a reference to the XML semantic query file as an IFile parameter.

	The		interpretCreateRuleQuery(IFile),
	interpretCreateServiceQuery(IFile), interpretCreateArtifactQuery(IFile),
	interpretDeleteQuery(IFile),		interpretNewQuery(IFile),
	interpretRetrieveQuery(IFile),		interpretUpdateQuery(IFile),
	interpretInsertIntoQuery(IFile),	and	interpretRemoveQuery(IFile)

 table keeps track of the invoked services by the AQL Rule Execution Engine.

	o InvokedServicesInputSysTable table keeps track of a list of input
	artifact instances of the invoked services.
	o GeneratedEventsSysTable table keeps track of the user-generated
	or timely events.

Table 6 .2. FireStationAlertArtifact attributes

 6

	Attribute	Data Type	Category
	FireStationAlertArtifactId	Integer	simple
	FireStationAddress	String	simple
	House(Address, Surface)	(String, Real)	complex
	IsSuccessfullyAlerted	Boolean	simple
	The FireStationAlertArtifact Lifecycle includes the following states:

 Issued is the initial state. It signifies that a new artifact instance corresponding to the parent artifact is created.

 StreamWaterLevel service streams water level readings from the water level sensor of the corresponding FireControlArtifact into its WaterLevel attribute.Artifact Rules automate the fire control smart process by invoking ad hoc Services and performing lifecycle state transitions on artifact instances. Artifact Rules for the fire control smart process include the following:  Rule 1 invokes the CreateFCA service when a Create Fire Control Artifact Event is received.  Rule 2 changes the state of FireControlArtifact to the Normal state if it is initialized and its FireControlArtifactId, House, and Habitats attributes are set.  Rule 3 changes the state of FireControlArtifact to the FireDetected state if it is in the Normal state, house temperature sensor values are higher than 57°C, and smoke sensor levels exceed a threshold of 3. FireControlArtifact to the ClosestFireStationAlerted if it is in the PrimaryProcedurePerformed and its child FireStationAlertArtifact is created.  Rule 9 invokes the NotifyHabitats service if a FireControlArtifact is in the ClosestFireStationAlerted state and its AreHabitatsNotified attribute is not set.  Rule 10 changes the state of a FireControlArtifact to the HabitatsInformed state if it is in the ClosestFireStationAlerted state and its house's habitats are sent SMS notification messages. Rule 11 changes the state of a FireControlArtifact to the EjectorsDepleted state if it is in the HabitatsInformed state and water level drops to zero.  Rule 12 invokes the ActivateWaterPumps service if a FireControlArtifact is in the EjectorsDepleted state and its AreWaterPumpsActivated attribute is not set.  Rule 13 changes the state of a FireControlArtifact to the EjectorsRefilled state if it is in the EjectorsDepleted state and its water pumps are activated.  Rule 14 changes the state of a FireControlArtifact to the FireExtinguished state if it is in the HabitatsInformed state and the house's temperature becomes less than 50°C and the smoke level is less than or equal to 1.  Similarly, rule 15 changes the state of a FireControlArtifact to the FireExtinguished state if it is in the EjectorsRefilled state and the house's temperature becomes less than 50°C and the smoke level is less than or equal to 1. FireStationAlertArtifact to the Located state if it is in the Issued state and its fire station address is located. FireStationAlertArtifact is in the Located state and its IsSuccessfullyAlerted attribute is not set.  Rule 22 changes the state of a FireStationAlertArtifact to the Failed state if it is in the Located state and the located fire station was not successfully alerted. Rule 23 invokes the LocateFireStation service if a FireStationAlertArtifact is in the Failed state and its FireStationAddress attribute is not set.  Rule 24 changes the state of a FireStationAlertArtifact to the Located state if it is in the Failed state and its fire station address is located.  Rule 25 changes the state of a FireStationAlertArtifact to the Success state if it is in the Located state and the located fire station was successfully alerted.

	Artifact Rules 21 invokes   Rule Modeling of Fire Control Artifact System the	AlertFireStation	service	if	a
			Maroun Abi Assaf
		Thèse en Informatique / 2018
		Institut National des Sciences Appliquées de Lyon

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon   Rule 4 invokes the TurnOnAlarm service if a FireControlArtifact is in the FireDetected state and its IsAlarmTurnedOn attribute is not set.  Rule 5 invokes the ActivateWaterEjectors services if a FireControlArtifact is in the FireDetected state, its IsAlarmTurnedOn attribute is set, and its AreWaterEjectorsActivated attribute is not set.  Rule 6 changes the state of a FireControlArtifact to the PrimaryProcedurePerformed state if it was in the FireDetected state and its alarm and water ejectors are activated.  Rule 7 invokes the IssueFireStationAlert service if a FireControlArtifact is in the PrimaryProcedurePerformed state and its FireStationAlert attribute is not set.  Rule 8 changes the state of a  Rule 16 invokes the RegisterFireData service if a FireControlArtifact is in the FireExtinguished state and its fire date and duration are not registered yet.  Rule 17 changes the state of a FireControlArtifact to the final Archived state if it is in the FireExtinguished state and its fire incident data are registered.  Rule 18 changes the state of an initialized FireStationAlertArtifact to the Issued state if its FireStationAlertArtifactId and House attributes are set.  Rule 19 invokes the LocateFireStation service if a FireStationAlertArtifact is in the Issued state and its FireStationAddress attribute is not set.  Rule 20 changes the state of a Maroun Abi Assaf Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon 

 The Matching Sub-Phase relies concepts from Schema Matching in order to identify correspondence relationships between elements of local

	Maroun Abi Assaf
	Thèse en Informatique / 2018
	Institut National des Sciences Appliquées de Lyon

FSAA.FireStationAlertArtifactId) And defined(FSAA.House)

 Maroun Abi AssafThèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon models, integrates, and executes the proposed Artifact System. Beyond these points, many interesting research perspectives remain unsolved with open challenges to handle and adapt to the Internet of Things.

	2.	Create Service Queries
		 CreateFCA Service:
		Create Service CreateFCA
		Input -
		Output FCA
		Precondition -
		Effect new(FCA) And defined(FCA.FireControlArtifactId) And defined(FCA.House) And defined(FCA.Habitats)  TurnOnAlarm Service: Create Service TurnOnAlarm Input FCA Output FCA A Precondition notdefined(FCA.AlarmTurnedOn)
		Effect defined(FCA.AlarmTurnedOn)
		Fire Control Process AQL Queries
		Create Service IssueFireStationAlert
		Input FCA
		Output FCA, FSAA
		Precondition notdefined(FCA.FireStationAlert)
		Effect new(FCA. FireStationAlert)
		And defined(Create Service NotifyHabitats
		Input FCA
		Output FCA
		Precondition notdefined(FCA.AreHabitatsNotified)
		Effect defined(FCA.AreHabitatsNotified)
		 ActivateWaterPumps Service:
		Create Service ActivateWaterPumps
		Input FCA
		Output FCA
		Precondition notdefined(FCA.AreWaterPumpsActivated)
		Effect defined(FCA.AreWaterPumpsActivated)
		 RegisterFireData Service:
		Create Service RegisterFireData
		Input FCA
		Maroun Abi Assaf
		Thèse en Informatique / 2018
		Institut National des Sciences Appliquées de Lyon

 ActivateWaterEjectors Service: Create Service ActivateWaterEjectors Input FCA Output FCA Precondition notdefined(FCA.WaterEjectorsActivated) Effect defined(FCA.WaterEjectorsActivated)  IssueFireStationAlert Service:  NotifyHabitats Service: Maroun Abi Assaf Thèse en informatique / 2017 Institut national des sciences appliquées de Lyon Output FCA Precondition notdefined(

FCA.FireDate) And notdefined(FCA.FireDuration) Effect defined(FCA.FireDate) And defined(FCA.FireDuration)

	Create Service LocateFireStation
	Input FSAA
	Output FSAA
	Precondition notdefined(FSAA.FireStationAddress)
	Effect defined(FSAA.FireStationAddress)
	 AlertFireStation Service:
	Create Service AlertFireStation
	Input FSAA
	Output FSAA
	Precondition notdefined(FSAA.IsSuccessfullyAlerted)
	Effect defined(FSAA.IsSuccessfullyAlerted)
	Create Service StreamIndoorTemperature
	Input FCA
	Output FCA
	Precondition closed(FCA.IndoorTemperature)
	Effect opened(FCA.IndoorTemperature)
	Create Service StreamSmokeLevel
	Input FCA
	Output FCA
	Precondition closed(FCA.StreamSmokeLevel)
	Effect opened(FCA.StreamSmokeLevel)
	Create Service StreamWaterLevel
	Input FCA
	Output FCA
	Precondition

 LocateFireStation Service:

 StreamIndoorTemperature Service:  StreamSmokeLevel Service:  StreamWaterLevel Service:

closed(FCA.StreamWaterLevel) Effect opened(FCA.StreamWaterLevel)

		If state(FCA, ClosestFireStationAlerted)
		And defined(FCA.AreHabitatsNotified)
		And FCA.AreHabitatsNotified = true
		Change State Of FCA To HabitatsInformed
		 Rule 11:
		Create Rule r11
		If state(FCA, HabitatsInformed)
		And FCA.WaterLevel.Lvl = 0
		Change State Of FCA To EjectorsDepleted
		 Rule 12:
		Create Rule r12
		If state(FCA, EjectorsDepleted)
		And notdefined(FCA.AreWaterPumpsActivated)
		Invoke ActivateWaterPumps(FCA)
		 Rule 13:
		Create Rule r13
		If state(FCA, EjectorsDepleted)
		And defined(FCA.AreWaterPumpsActivated)
		And FCA.AreWaterPumpsActivated = true
		Change State Of FCA To EjectorsRefilled
		 Rule 14:
		Create Rule r14
		If state(FCA, HabitatsInformed)
		And FCA.IndoorTemperature.Tmp < 50
		And FCA.SmokeLevel.Lvl <= 1
		Change State Of FCA To FireExtinguished
		 Rule 15:
		Create Rule r15
		If state(FCA, EjectorsRefilled)
		And FCA.IndoorTemperature.Tmp < 50
		And FCA.SmokeLevel.Lvl <= 1
		Change State Of FCA To FireExtinguished
		 Rule 16:
	3.	Create Rule Queries
		Create Rule r16
		If state(FCA, FireExtinguished)  Rule 1: And notdefined(FCA.FireDate)
		Create Rule r1 And notdefined(FCA.FireDuration)
		On CreateFireControlArtifactEvent Invoke RegisterFireData(FCA)
		Invoke CreateFCA()
		 Rule 2:  Rule 17:
		Create Rule r2 Create Rule r17
		If state(FCA, Initialized) If state(FCA, FireExtinguished)
		And defined(FireControlArtifactId) And defined(
		And defined(House)
		And defined(Habitats)
		Maroun Abi Assaf
		Thèse en informatique / 2017
		Institut national des sciences appliquées de Lyon

FCA.FireDate) And defined(FCA.FireDuration) Change State Of FCA To Archived 1. INTRODUCTION Maroun Abi Assaf Thèse

en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

 Dans la phase de spécification, nous définissons et générons des Systèmes d'Artéfacts à partir des CAMs modélisés dans la phase précédente. Nous proposons l'Artifact Query Language (AQL), un langage spécifique aux artéfacts que nous utilisons pour exprimer et implémenter les Systèmes d'Artéfacts. AQL est un langage déclaratif de haut niveau similaire à SQL qui cible spécifiquement les artéfacts et profite pleinement de leur nature sémantique. AQL est composé de deux parties : Artifact Definition Language (ADL) et Artifact Manipulation Language (AML). ADL contient trois déclarations Create Artifact, Create Service, et Create Rule pour définir respectivement les Classes d'Artéfacts, les Services et les Règles d'Artéfacts. AML contient six déclarations New, Update, Insert Into, Remove From, Delete, and Retrieve pour instancier, manipuler et interroger les instances d'artéfacts. De plus, AQL prend en charge les capacités de flux de données et de requêtes continues et permet le traitement des événements complexes (CEP) sur les flux de données grâce à l'utilisation de Règles d'Artéfact. Le Tableau 2 énumère les neuf déclarations d'AQL et leur syntaxe.

	3.2	Phase de Spécification

 Dans la phase d'exécution, nous exécutons les Systèmes d'Artéfacts en utilisant un moteur d'exécution basé sur la traduction des requêtes AQL en requêtes sémantiques. Les requêtes sémantiques sont ensuite exécutées sur un système de gestion de base de données afin d'effectuer des opérations relationnelles. Le moteur d'exécution est également responsable de l'appel des services.

	3.4	Phase d'Exécution et Prototype

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI059/these.pdf © [M. Abi Assaf], [2018], INSA Lyon, tous droits réservés

Maroun Abi AssafThèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2018LYSEI059/these.pdf © [M. Abi Assaf], [2018], INSA Lyon, tous droits réservés

Acknowledgements

Nous avons également développé un prototype mettant en oeuvre le cadre complet d'intégration des artéfacts, y compris ses quatre phases: Intégration, Modélisation, Spécification et Exécution. Le prototype met en oeuvre le cadre d'intégration des artéfacts en utilisant une architecture modulaire. Chaque module est responsable de la mise en oeuvre d'un aspect du cadre d'intégration des artéfacts. Le prototype est basé sur plusieurs langues, y compris; HTML5 [00a], XML [00b], Java [00c], Xtend [00d] et JavaScript [00e], en plus de plusieurs cadres de programmation et systèmes, y compris; Eclipse Rich Client Platform (Eclipse RCP) [00f], Xtext Framework for the development of Domain Specific Languages (DSL) [00g], Java Architecture for XML Binding (JAXB) Framework [00i], JointJS Javascript Diagramming Library [00j], et Apache Derby Database Management System [00h]. Le prototype est composé de six modules principaux; CAM Modeler, CAM Matcher, CAM Merger, CAM Mapper, AQL Generator, et AQL Processor comme illustré sur la Figure 9. Les différents modules communiquent entre eux à l'aide de messages d'entrée et de sortie.

Availability Retrieve Product Deliver Product [Available] [Not Available] Availability Retrieve Product Deliver Product

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon The FireControlArtifact Lifecycle includes the following states:

Normal is the initial state. It signifies that an artifact instance corresponding to a particular house is created and no fire is detected yet.

FireDetected signifies that a fire is detected.

PrimaryProcedurePerformed signifies that alarm and water ejectors are activated.

ClosestFireStationAlerted signifies that a close fire station is successfully located and alerted.

HabitatsInformed signifies that all of the house's habitats are informed by sending them SMS messages.

EjectorsDepleted signifies that water ejectors are depleted.

EjectorsRefilled signifies that water pumps are activated in order to refill water ejectors.

FireExtinguished signifies that the fire has been extinguished.

Archived is the final state. It signifies that fire information is registered and the artifact instance has been archived for future references.

Figure 6.21 illustrates the transitions that can be performed between the FireControlArtifact states.

Maroun Abi Assaf

Thèse en Informatique / 2018 Institut National des Sciences Appliquées de Lyon Artifact-centric process modeling offers an alternative approach to traditional activity-centric process modeling, and has been demonstrated to provide many benefits and advantages. In this thesis, we address the problem of modeling, integration and execution of artifact-centric processes which are suitable for implementing various types of processes including smart processes in the Internet of Things (IoT).

In this chapter, we discuss about different design choices we made, the limits of our work, and provide future works perspectives.

Summary of Contributions

The main goal of this thesis is to integrate heterogeneous artifact-centric processes. We have proposed a complete Artifact Integration Framework that not only deals with integrating artifact-centric processes but also with modeling, querying, specifying, and executing artifact-centric processes. The proposed Artifact Integration Framework is based on four phases, covering Modeling, Specification, Integration, and Execution.

Modeling Phase

In the Modeling Phase, we model Artifact Systems using conceptual models that we refer to as Conceptual Artifact Models (CAMs). We have proposed the Conceptual Artifact Modeling Notation (CAMN), a minimalistic graphical notation which is used to graphically model Artifact Systems without writing complex and error prone AQL queries. The constructed Conceptual Artifact Models (CAMs) include all components of an Artifact System into the same model thus providing a more representative and holistic model than existing works. Furthermore, the proposed modeling approach combines the advantages of both procedural and declarative modeling approaches. Additionally, we have proposed modeling patterns that include data stream specific patterns required for modeling smart processes which are not supported by existing works. Finally, we have defined transformation semantics for generating valid and functional Artifact Systems from CAMs based on a proposed formalism.

Specification Phase

In the Specification Phase, we generate Artifact Systems from CAMs that are modeled in the previous phase. We have proposed a formal model for Artifact Systems that is specifically adapted to model modern day smart processes that are based on the Internet of Things (IoT) in a simple and

Maroun Abi Assaf

Thèse en informatique / 2017 Institut national des sciences appliquées de Lyon

In this Appendix, we list the AQL queries generated by the AQL Generator from the CAM of the fire control process illustrated in Figure 6.23.

1.

Create Artifact Queries  Fire Control Artifact: 4) Le niveau de l'Artéfact Etendu : ayant été uniquement appliqués aux processus métier traditionnels, les artéfacts doivent être étendus avec des capacités de flux de données afin de soutenir les processus émergents de l'Internet des objets.

Contributions

Dans cette thèse, nous nous focalisons sur le problème de l'intégration des processus centrés sur les artéfacts dans le contexte de l'Internet des objets à travers la représentation des Systèmes d'Artéfacts en utilisant des modèles conceptuels et la fusion de modèles selon les relations de correspondance entre leurs différents éléments.

Maroun Abi Assaf