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Annexe A : Interaction entre Curosurf natif et Latex 1 (-) 
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ABSTRACT: We report on the interaction of pulmonary
surfactant composed of phospholipids and proteins with
nanometric alumina (Al2O3) in the context of lung exposure
and nanotoxicity. We study the bulk properties of
phospholipid/nanoparticle dispersions and determine the
nature of their interactions. The clinical surfactant Curosurf,
both native and extruded, and a protein-free surfactant are
investigated. The phase behavior of mixed surfactant/particle
dispersions was determined by optical and electron micros-
copy, light scattering, and zeta potential measurements. It
exhibits broad similarities with that of strongly interacting
nanosystems such as polymers, proteins or particles, and
supports the hypothesis of electrostatic complexation. At a
critical stoichiometry, micron-sized aggregates arising from the association between oppositely charged vesicles and nanoparticles
are formed. Contrary to the models of lipoprotein corona or of particle wrapping, our work shows that vesicles maintain their
structural integrity and trap the particles at their surfaces. The agglomeration of particles in surfactant phase is a phenomenon of
importance that could change the interactions of the particles with lung cells.

I. INTRODUCTION

Pulmonary surfactant, the fluid lining the epithelium of the
lungs is a complex surface-active fluid that contains
phospholipids and lipids (85% and 5%, respectively) and 10%
proteins (SP-A, SP-B, SP-C, SP-D, and serum proteins).1,2 The
biophysical functions of pulmonary surfactant are to prevent
the collapse of small alveoli during expiration and the
overexpansion of large alveoli during inspiration. It also
preserves bronchiolar patency during normal and forced
respiration.1,3,4 Furthermore, it has an important immuno-
logical role of protecting the lungs from injuries and infections
caused by inhaled particles, including micro-organisms,
particulate matter, or engineered particles.5−10 More specifi-
cally, particles of sizes less than 100 nm end up significantly
deposited in the alveoli, and are susceptible to interact with the
lung fluid.11,12

To evaluate the risks of exposure to inhaled nanomaterials,
recent studies have been focusing on the interaction of particles
with membranes, more specifically on model systems made of
1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) or 1,2-
dioleoyl-sn-glycero-3-phosphocholine (DOPC) unilamellar
vesicles.13−20 The review of the different interaction potentials
between particles and membranes revealed the importance of
the interplay between particle/vesicle attraction and bilayer
bending energy.17 For diameters lower than a critical size

(order of 10 nm for silica), the particles decorate the outer
surface of the membrane, and induce aggregation.17,18 For
larger particle diameters, supported phospholipid bilayers form
and coat the particles.13,16 In the latter case, it is suggested that
the membrane invaginates and eventually engulfs the particle in
a process that resembles endocytosis.14,21 In some reports, this
engulfment is dubbed ingestion or transmigration, because it
involves the passage of the particle from the outer to the inner
part of the object. Ingestion of latex particle (2 μm) was first
evidenced by Dietrich et al. using time-lapse microscopy and
single object manipulation.13 Transmigration of silica-based
nanoparticles (110 nm) into micron-sized liposomes combined
with membrane invagination was evidenced by Le Bihan et al.
using cryo-electron tomography.16 Recent simulations studies
have shown that the wrapping of biomembranes around
particles are favored if the adhesive interactions are sufficiently
strong to compensate bending.22−25 Simulations were also
performed on hydrophobic nanoparticles and predicted the
formation of a lipoprotein corona or insertion into the
membrane.22,24 In contrast, very little is known on the
interactions between particles and membranes forming multi-
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lamellar vesicles and/or comprising different types of
phospholipids and proteins. In this context, factors such as
vesicle dispersity, variability of the molecular constituents, pH,
or salt concentration of the solvent have to be taken into
account, and may lead to specific behaviors.
In this work, we use a clinical pulmonary surfactant, Curosurf

(Chiesi Pharmaceuticals, Parma, Italy) to evaluate the
interactions of particles with membranes relevant to biology.
Curosurf is a commercially available surfactant developed as a
medication for exogenous treatment of respiratory distress
syndrome for premature infants. Pulmonary surfactant
substitutes are either synthetic or derived from animals, and
their clinical effects have been thoroughly documented.23 As
compared to other preparations, Curosurf contains the highest
amount of phospholipids and proteins, with concentrations of
76 g L−1 of phospholipids and 0.45 (respectively 0.59) g L−1 of
SP-B (respectively SP-C) membrane proteins and has been
shown to be an effective surfactant in the treatment of
respiratory deficiency. Curosurf bulk solutions are dispersions
of spherical multilamellar vesicles (MLVs) mainly composed of
a mixture of phospholipids and surface-active proteins.6,26 Bulk
samples were examined using freeze-fracture and (cryo)-
transmission electron microscopy to determine the size and
shape distribution of MLVs, and the organization of bilayers in
the presence of biological or synthetic additives.27−29

Previous studies focused on interfacial and rheological
properties of surface layers, as it is relevant to its biophysical
function in the lungs.19,30−35 In the alveoli, however, the
pulmonary surfactant forms a layer of a few hundreds of
nanometers,1,36 and after crossing the air−liquid interface, the
nanoparticles will also interact with the phospholipid subphase.
This secondary process could interfere with phospholipid bulk
dynamics and exchanges, and perturb the surfactant equili-
brium. Some studies of nanoparticles interacting with
pulmonary surfactant bulk phases were reported, but their
number is limited. These studies involved the formation of
complexes formed at the air/liquid interface, and further
analysis on the interactions of these complexes with lung
epithelial cells.26,37−41 Issues related to cytotoxicity, lung
inflammation and ability to cause oxidative stress were also
addressed. However, these studies do not focus primarily on
the main driving forces of interaction.
Here we report on the bulk properties of a synthetic and of

purified pulmonary surfactant, and highlight the nature of
interactions of nanoparticles with phospholipid membranes. In
the first part, the physicochemical properties of pulmonary
surfactant and particles are thoroughly characterized. Emphasis
is put on stability, surface charge, and aging behavior of
dispersions. We also use extrusion to prepare multilamellar
vesicles of well-characterized size and dispersity. As a model of
nanoparticle−pulmonary surfactant system, alumina (Al2O3)
was chosen as it is one of the most widely used material in
nanotechnology-based products and its toxicological relevance,
especially for lungs, is already well-recognized and studied.42−46

The formation of complexes between Al2O3-nanoparticles with
pulmonary surfactant substitutes is demonstrated here. The
complexes are the result of electrostatic interactions between
oppositely charged vesicles and particles.

II. MATERIALS AND METHODS
II.1. Materials. Curosurf (Chiesi Pharmaceuticals, Parma, Italy) is a

natural surfactant extract obtained from porcine lungs, and containing
polar lipids such as phosphatidylcholine (about 70% of total

phospholipid content), phosphatidylglycerol (about 30% of total
phospholipid content), and about 1% of hydrophobic proteins SP-B
and SP-C. It is suspended in 0.9% sodium chloride solution and
appears as a white to creamy suspension. According to the
manufacturer, its pH is adjusted as required with sodium bicarbonate
to a pH of 6.2 on average, the actual pH being indeed comprised
between 5.5 and 6.5 according to the different batches received.31

Curosurf was kindly provided by Mostafa Mokhtari (Kremlin-Bicet̂re
Hospital, Val-de-Marne, France) and by Ignacio Garcia-Verdugo
(INSERM, Paris, France). Dipalmitoylphosphatidylcholine (DPPC)
was obtained from Sigma-Aldrich, while 2-oleoyl-1-palmitoyl-sn-
glycero-3-phospho-rac-(1-glycerol) (POPG) and L-α-phosphatidyl-
DL-glycerol sodium salt from egg yolk lecithin (PG, Sigma-Aldrich,
MDL number: MFCD00213550) were given by Ignacio Garcia-
Verdugo from Institut Pasteur, Paris. Aluminum oxide nanoparticles
(Disperal, SASOL) were kindly given by Florent Carn (Laboratoire
Matier̀e et Sytem̀es Complexes, Paris). The powder was dissolved in
nitric acid (0.4 wt %) and sonicated for 30 min to give suspensions at
10 g L− 1 . Methano l , n i t r i c ac id (70%) , and po ly -
(diallyldimethylammonium chloride) (PDADMAC, MW < 100 000 g
mol−1) were purchased from Sigma-Aldrich. Water was deionized with
a Millipore Milli-Q Water system. All the products were used without
further purification.

II.2. Protein-Free Surfactant. Phospholipids DPPC, PG, and
POPG were initially dissolved in methanol, at 10, 10, and 20 g L−1

respectively. These compounds were mixed in proper amounts for a
final weight concentration of 80%/10%/10% of DPPC/PG/POPG.
The solvent was evaporated under low pressure at 60 °C for 30 min.
The lipid film formed on the bottom of the flask was then rehydrated
with the addition of Milli-Q water at 60 °C and agitated at
atmospheric pressure for another 30 min. Milli-Q water was added
again to finally obtain a solution at 1 g L−1.

II.3. Extrusion. Extrusion of Curosurf and protein-free surfactant
was performed using an Avanti Mini Extruder (Avanti Polar Lipids,
Inc. Alabama, USA). Solutions were prepared at 1 g L−1 and extruded
50 times through Whatman Nucleopor polycarbonate membranes of
different pore sizes (50, 100, 200, and 800 nm in diameter). For the
interaction studies with nanoalumina, the MLV dispersions were then
diluted to 0.1 g L−1, and the pH was adjusted to pH 5 using 0.1 M
hydrochloric acid.

II.4. Dynamic Light Scattering (DLS). Hydrodynamic diameters
were measured using a Zetasizer Nano ZS equipment (Malvern
Instruments, Worcestershore, UK). A 4 mW He−Ne laser beam (λ =
633 nm) is used to illuminate sample dispersion, and the scattered
intensity is collected at an angle of 173°. The second-order
autocorrelation function is analyzed using the CONTIN algorithm
to determine the average diffusion coefficient D0 of the scatterers.
Hydrodynamic diameter is then calculated according to the Stokes−
Einstein relation, DH = kBT/3πηD0, where kB is the Boltzmann
constant, T is the temperature, and η is the solvent viscosity.
Measurements were performed in triplicate at 25 or 37 °C after an
equilibration time of 120 s.

II.5. Zeta Potential. Laser Doppler velocimetry was used to carry
out the electrokinetic measurements of electrophoretic mobility and
zeta potential with the Zetasizer Nano ZS equipment (Malvern
Instruments, Worcestershore, UK). Measurements were performed
three times, at 25 °C, after 120 s of thermal equilibration.

II.6. Optical Microscopy. Phase-contrast and bright field images
were acquired on an IX71 inverted microscope (Olympus) equipped
with 20× , 40×, and 60× objectives. Thirty microliters of dispersion
was deposited on a glass plate and sealed into a Gene Frame (Abgene/
Advanced Biotech) dual adhesive system. An EXi Blue camera
(QImaging) and Metaview software (Universal Imaging Inc.) were
used as the acquisition system. Silica glass slides were coated using
poly(diallyldimethylammonium chloride) to improve the surface
adhesion of the MLVs.

II.7. Transmission electron microscopy (TEM). TEM imaging
was performed with a Tecnai 12 operating at 80 kV equipped with a
1K × 1K Keen View camera. For negative staining, drops of
suspensions were deposited on Formvar-carbon coated 400 mesh
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copper grids. Negative stains were made with 1% uranyl acetate in
water.
II.8. Interaction. The interactions between lung fluid models and

nanoparticles were investigated using a mixing protocol developed by
us and had already been tested on a series of strongly interacting
colloidal systems.47−49 It was checked that this procedure provides
reproducible results, in particular that the mixing order or
concentration does not modify interactions. Batches of pulmonary
phospholipid phases and nanoparticles were prepared in the same
conditions of pH (pH 5) and concentration (c = 0.1 g L−1) and then
mixed at different ratios, noted by X = VSurfactant/VNP, where VSurfactant
and VNP denote the volumes of the phospholipid and particle
solutions, respectively. Because the concentrations of the stock
solutions are identical, the volumetric ratio X is equivalent to the
mass ratio between constituents. This procedure was preferred to
titration experiments, because it allowed exploring a broad range in
mixing conditions (X = 10−3 − 103), while keeping the total
concentration in the dilute regime and using a low amount of
pulmonary fluid and particle.48,50,51 The interactions between the
phospholipid vesicles and Al2O3 nanoparticles occurred rapidly, i.e.,
within a few seconds after mixing.

III. RESULTS AND DISCUSSION
III.1. Characterization and Processability of Curosurf.

III.1.1. Structure of Native Curosurf. Curosurf solutions were
prepared from the native dispersions at 76 g L−1 by dilution
using 5 mM phosphate buffer (pH 6.4). Solutions at c = 0.1 and
1 g L−1 were studied using optical microscopy and light
scattering for characterization at room and body temperatures.
Microscopy observations reveal the presence of micron sized
objects with spherical symmetry undergoing rapid Brownian
motion. Figure 1a−d shows a selection of some of the
Brownian particles, with sizes 0.4 μm, 0.8 μm, 1.6 and 3.2 μm,
respectively. An analysis of 100 objects resulted in a size
distribution of median diameter 1.0 μm and standard deviation
0.5 μm (Figure 1e). Referring to earlier studies, these particles
are identified as uni- or multilamellar vesicles.26−28,32 In this

study, large membrane layers or tubular myelin commonly
observed in the lung fluid were not observed by microscopy.52

Dynamic light scattering performed on the same sample shows
a bimodal distribution with two major peaks, at 80 and 800 nm
(Figure 1f). The DLS peak at 800 nm is in agreement with that
found by microscopy. Light scattering also shows a population
of small vesicles that could not be detected by microscopy. Data
on the surfactant microstructure obtained at T = 25 °C or T =
37 °C, i.e., at temperatures where the membranes are in the gel
or in the fluid phase, respectively, were similar (see differential
scanning calorimetry data in Supporting Information, S1).

III.1.2. Extrusion. As discussed previously, Curosurf dis-
persion in its native state is made of highly disperse MLVs.
Concerning interactions with particles, dispersity is a major
issue, in particular for data analysis and interpretation. To
overcome this difficulty, extrusion was applied using poly-
carbonate membranes with different pore diameters of 50, 100,
and 200 nm. For extrusion, native Curosurf was first diluted to
0.1 g L−1 at pH 6.4, as in the previous section. Figure 2a shows
hydrodynamic diameter of vesicles as a function of the number
of passages through the membrane. For the first extrusion
passages (1 to 5), a sharp decrease in size was observed. With
further extrusion, a plateau at hydrodynamic diameters 100,
150, and 180 nm is reached for membranes of increasing pore
sizes. In parallel, the MLV size distribution was found to
decrease progressively, reaching the final dispersity index of 0.1
± 0.05 (S2). Additional extrusion using an 800 nm-pore
membrane was performed for microscopic visualization
purposes (see Section III.2).
Based on earlier studies of unilamellar vesicles,53,54 a model

was developed that can also describe the extrusion of
pulmonary surfactant analogues. This model assumes that in
the first passages, native micron size vesicles are pushed
through the pores causing strong deformation, membrane
tearing, and resizing of the structure. At this stage, the exiting
vesicles are still large and nonuniform. As extrusion progresses,
the size mismatch between pores and vesicles lessens, giving
rise to a Rayleigh-like instability. In the pores, the vesicles are
sheared and stretched significantly, leading to their breaking
into smaller objects (Figure 2b). Because of this stretching, exit
diameters are larger than the pore sizes. From purely
geometrical considerations, the final diameters can be estimated
and were found in agreement with experimental data
(Supporting Information, S2). Extrusion turns out to be an
easy and reproducible procedure to prepare Curosurf vesicles of
predictable size.

III.1.3. Curosurf Stability: Effect of pH and Aging. From a
practical standpoint and in anticipation of the work with
particles, it is essential to know the behavior and stability of the
surfactant vesicles as a function of physicochemical parameters,
such as concentration, temperature and pH. Hydrodynamic
diameter and zeta potential of native and extruded Curosurf
were measured over a wide range of pH above and below the
physiological value (pH 6.4 for newborns). Data are displayed
in Figures 3a and 3b, respectively. With increasing pH, the
broadly distributed vesicles of native Curosurf decrease by 50%
in size (from 800 to 400 nm). In contrast, the diameter of
vesicles extruded through a 50 nm-membrane remains constant
at 100 nm. Likewise, the zeta potential is found to decrease
from positive values at acidic pH (ζ = +25 mV) to highly
negative ones at alkaline pH (ζ = −30 mV and −60 mV for the
extruded and native state, respectively). At physiological
conditions, we confirmed that phospholipid membranes are

Figure 1. (a−d) Representative images of Curosurf at the
concentration of 0.1 g L−1 obtained by phase contrast optical
microscopy at T = 25 °C (the bar is 3 μm). The sizes for the vesicles
are indicated in the right-hand side of the panel. (e) Size distribution
deduced from optical microscopy. (f) Distribution of hydrodynamic
diameters of Curosurf vesicles as determined by DLS.
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negatively charged.55 The behaviors found in Figure 3 can be
understood in terms of acid−base properties of the
phospholipid molecules. At pH below the pKa of the
phospholipids (pKa of 456), the phosphate moieties are not
ionized, and the overall charge of the membrane is given by the
quaternary ammonium groups located in the zwitterionic heads.
The rapid decrease of the ζ-potential observed around pH 4 is
then attributed to the deprotonation of the phosphate groups,
and the charging of the membrane.
Aging properties of Curosurf preparations were investigated

over a 30-day period by light scattering and zetametry.
Experiments were performed every 12 h, the samples being
stored at 4 °C between measures. Hydrodynamic diameter and
zeta potential are displayed in Figure 4a,b for native and
extruded Curosurf as well as for the protein-free surfactant for 7
days after the preparation. For size, native Curosurf (either at
0.1 and 1 g L−1) exhibits an evolution on the first day, but
rapidly reaches a steady state. For these samples, the size
distribution is broad, and minor modifications could change the
average hydrodynamic diameter. In contrast, the extruded
samples remain unchanged over the entire period. The zeta
potential shows a systematic increase from −60 mV to −30 mV
for all samples, except for native Curosurf at 1 g L−1. Data at 7
and 30 days are moreover identical, confirming the good
stability of as prepared MLVs. Concerning the origin of the ζ-
potential variations during the first days, further work is
required to clarify this issue. Additional results were acquired

using up to four freeze−thaw cycles on the native specimens.
No significant changes were observed either, suggesting that
freezing surfactant preparation does not alter its structural
properties (Supporting Information, S3).

III.2. Interactions with Aluminum Oxide Particles. Prior
to experiments with pulmonary surfactant, the alumina particles
were also thoroughly characterized. DLS, TEM, and zeta
potential measurements were performed at concentrations 0.1
to 1 g L−1 and from pH 3 to pH 12 (Figure 5a,b). In the inset, a
TEM image shows that Al2O3 particles are anisotropic, their
shape is that of irregular platelets of average dimensions 40 nm
long and 10 nm thick. The particles exhibit moreover a broad
size distribution (Figure 5a). Electrophoretic measurements
show that the particles are positively charged at low pH, with ζ
= +40 mV. As pH increases above 6, particle surface charge
decreases progressively and reaches the isoelectric point around
pH 10. Beyond this, the particles are negatively charged. These
results are in agreement with those of Cabane and co-workers
who reported an isoelectric point of 9.3 for alumina
particles.57,58 Above pH 6, particles also start to aggregate
and their hydrodynamic diameter increases, suggesting that the
stability observed at low pH is caused by electrostatic repulsion.
Experiments involving pulmonary surfactant and particles were
performed at pH 5, where both dispersions are stable.

Figure 2. (a) Hydrodynamic diameter measured by light scattering as a function of the number of passages. Polycarbonate membranes of pore size
50, 100, and 200 nm were used and experiments were performed in triplicate. The error bars represent the standard deviation. For large extrusion
numbers, the bars are smaller than the symbols. The solid lines are guides for the eyes. (b) Schematic representation of the two-step extrusion
process.

Figure 3. Hydrodynamic diameter (a) and zeta potential (b) as a
function of pH for extruded and nonextruded Curosurf at 0.1 g L−1.
Error bars represent the standard deviation of experiments performed
in triplicate. For extruded Curosurf (close circles in panel a), the errors
bars are smaller than the symbols. The solid lines are guides for the
eyes.

Figure 4. Hydrodynamic diameter (a) and zeta potential (b) as a
function of time for three types of lung fluid substitutes: protein-free
surfactant (diamond), extruded (circles), and native (squares)
Curosurf at concentrations 0.1 and 1 g L−1. Experiments were
performed in triplicate, and the error bars represent the standard
deviation. Solid lines are guides for the eyes.
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Surfactant/nanoparticle dispersions were obtained by mixing
stock solutions at different volumetric ratios X. This method
was successfully tested in the screening of multicomponent
phase diagrams.48,51 In physiological conditions of lung
exposure to nanoparticles, pulmonary surfactant is in excess
and the ratio X lies in the range 103 − 104.59 Because of this
large excess, the dispersion is close to that of pure Curosurf,
and the interactions of the particles with the vesicles are
difficult to assess. To remedy this shortcoming, the phase
behavior of the mixed systems was investigated between X =
10−3 and 103. In this context, it is assumed that the nature of
the interactions does not depend on the X-values. Figure 6
shows the scattering intensity (panels a−c) and the hydro-
dynamic diameter DH (panels d−f) as a function of X at T = 25
°C. The surfactant phases studied are a protein-free surfactant
(Figure 6a,d), and dispersions of extruded (using 50 nm pores
in Figure 6b,e) and native Curosurf (Figure 6c,f). The solutions

were prepared at fixed concentration (0.1 g L−1) for every X. In
Figure 6, nanoparticles and surfactant stock solutions are set at
X = 10−3 and X = 103 for convenience. For dilute solutions as
the ones investigated here, the scattering intensity is propor-
tional to the concentration and to the molecular weight of the
scatterers. The solid black lines in Figure 6a,b,c are calculated
assuming that surfactant and particles do not interact with each
other, and that the scattering is the sum of the intensities
weighted by their actual concentrations. In Figure 6a−c, the
scattering intensity is found to be systematically higher than the
predictions for noninteracting species, implying that mixed
aggregates are formed upon mixing. The scattering maxima
ascertain moreover that the aggregates have a preferential
stoichiometry, as the maximum is peaked at a definite X.
The hydrodynamic diameters DH(X) shown in Figures 6c−e

confirms this interpretation. The DH-values at maximum
reaches 2 μm for the protein-free surfactant, 200 nm and 1.5

Figure 5. (a) Hydrodynamic diameter and zeta potential of alumina particles (1 g L−1) as a function of pH. Error bars represent the standard
deviation of experiments performed in triplicate. (b) Alumina particle size distribution obtained from transmission electron microscopy image
analysis. Inset: TEM picture of Al2O3 particles (bar 50 nm). The solid line results from least-squares calculations using a log-normal distribution with
median diameter 41 nm and dispersity (defined as the ratio between the standard deviation and the average) of 0.3.

Figure 6. Scattered intensity (a, b, and c) and hydrodynamic diameter (d, e, and f) of alumina particles mixtures with protein-free surfactant (a, d),
extruded Curosurf (b, e) and native Curosurf (c, f) as a function of X (T = 25 °C). X denotes the ratio between the surfactant and nanoparticles
weight concentration. Light scattering experiments were performed in triplicate. The error bars represent the mean of the standard deviations. Solid
lines in blue, red, and green are guides for the eyes. Solid lines in black in a, b, and c represent the scattered intensity calculated assuming that
particles and vesicles do not interact.
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μm for the extruded and native Curosurf, and the position of
the maxima corresponds to that of the scattering peaks. Similar
results were obtained at T = 37 °C, i.e., at temperature where
the phospholipids are in the disordered liquid state (Supporting
Information, S4). Figure 7 displays the histograms of the

interaction strength between particles and vesicles at the two
temperatures, T = 25 and 37 °C. This strength is calculated
from the integral of the scattering intensity (color-shaded areas
in Figure 6 and Figure S4) with respect to the predictions for
noninteracting species. This approach shows that surfactant−
particle interactions are the strongest for protein-free surfactant,
and the weakest for native Curosurf. These conclusions were
confirmed from the size data (T = 25 °C), which show
increases by 1500%, 80% and 50% with respect to the
uncomplexed vesicles. The shift of the scattering maxima for
the different formulations (from X = 1−8 in Figure 6a−c) is
indicative of a predetermined stoichiometry between species.
However, the number of vesicles and particles in the formed
aggregate are difficult to estimate, since the relationship
between the phospholipid concentration and the vesicle density
is yet unknown.60 This shift in X suggests, however, that at a
fixed concentration, extruded vesicles are more numerous that
native ones.
To gain further insight into the surfactant−Al2O3 mixed

structures, dispersions were prepared at the maximum of the
scattering peak using extruded Curosurf with 100 or 800 nm
pore membranes. Figure 8a shows vesicles adsorbed at a silica
surface before and after complexation with nanoalumina. In the
inset, the uncomplexed 800 nm MLVs are isolated and
randomly distributed on the substrate, whereas in the
mainframe they form micron-sized aggregates. These results
are in agreement with the light scattering data (Figure 6). Due
to the sedimentation of the largest clusters, aggregates appear
larger than those detected by light scattering. A close-up view of
an aggregate shown in Figure 8b exhibits characteristic patterns
of vesicles at close packing inside the formed structure. Figure
9a and 9b display aggregates observed by TEM, using here 100
nm extruded MLVs. The two examples shown are representa-
tive of the many structures observed using this technique. The
cluster structure is dense, and the vesicles have a doughnut

shape. During the sample preparation, dehydration causes the
collapse of the MLVs at the center. The vesicles maintain their
shape on the border, however, due to the curvature effect of the
phospholipid bilayer (Figure 9c). Similar structures were
observed on surfactant substitutes28 and on polymer-liposome
complexes.29 Note that in the figure the Al2O3 particles are not
visible, probably because of their weak contrast as compared to
that of the stained vesicles. A schematic representation of an
aggregate is illustrated in Figure 9d.
The results here demonstrate that the interaction of

nanoalumina with surfactant gives rise to the formation of
large aggregates, the size of which depends on the ratio
between the two species. The phase behavior of the mixed
dispersions exhibits similarities with that of strongly interacting
nanosystems such as polymers, proteins or particles, and
supports the hypothesis of electrostatic complexation. Electro-
static complexation designates the process by which coassembly
is driven by the pairing of electric charges located at the
surfaces of particles or along the backbones of macro-
molecules.49 It is concluded that, in the present experimental

Figure 7. Integrals over the mixing ratio X between the scattering
intensities as determined experimentally and the intensities calculated
from noninteracting particles and vesicles (colored areas in Figure 6
and Figure S4). The integral is indicative of the strength of
nanoparticle-surfactant interactions. The labels a, b, and c are related
to the protein-free surfactant, the extruded Curosurf, and the native
Curosurf, respectively.

Figure 8. (a) Dispersions of 800 nm Curosurf vesicles and alumina
particles at ratio X = 7 observed by phase contrast microscopy (×60).
The bar is 20 μm. The sample was prepared at c = 0.1 g L−1 and T =
25 °C and put between glass slides. The silica surfaces were coated
using poly(diallyldimethylammonium chloride) to improve surface
adhesion. Inset: image of uncomplexed vesicle in the same
experimental conditions (bar 5 μm). (b) Close-up view of an
aggregate (bar 5 μm).

Figure 9. (a and b) Transmission electron microscopy image of mixed
100 nm extruded Curosurf vesicles and alumina particles (bar 200
nm). (c) Close-up view of a single vesicle (bar 50 nm) and cartoon
illustrating its doughnut height profile on the grid.29 (d) Schematic
representation of nanoparticle−surfactant aggregates.
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context, the interactions of nanoalumina and surfactant are
mainly driven by electrostatic forces. The destabilization or
reorganization of the vesicles as a result of strong interaction is
not observed. Encapsulation of alumina particles by vesicles is
also not likely to occur. These scenarios would indeed result in
a decrease in the light scattering data as a function of X, which
is not observed experimentally. The interactions between
nanoalumina and vesicles finally appear to be nonspecific and
independent of the membrane proteins SP-B and SP-C, as
similar results were observed for protein-free surfactant and
Curosurf. At this point, it is difficult to attribute the differences
between the protein-free surfactant and the Curosurf (such as
those seen in light scattering) to the presence of the proteins.

IV. CONCLUSION
The pulmonary surfactant layer located at the air−liquid
interface in the alveoli is known to be the first line of barrier for
particles inhaled through the airways. Previous studies on the
interaction with particles highlighted the modifications of
interface properties. After deposition at the air−liquid interface,
however, the particles may dissolve in the surfactant subphase
and modify the phospholipid exchanges and equilibrium. To
investigate these interactions further, a clinical pulmonary
surfactant Curosurf and a synthetic analogue composed of
phospholipids are characterized and analyzed for their
interaction with 40 nm alumina nanoparticles. The size, the
microstructure, the stability and the nature of the dispersion
forces of the surfactant phase are the primary physicochemical
indicators to be considered when examining the interactions
with nanoparticles. These properties were examined thoroughly
in the present work. On native Curosurf, data obtained by light
scattering and microscopy corroborate those reported in the
literature:26,28,59 surfactant dispersions are made of multi-
lamellar vesicles broadly distributed in size, typically from 100
nm to 5 μm. To circumvent the issue of the size dispersity,
which can be detrimental in some cases (in particular in
relation with data analysis and treatment), the Curosurf
dispersions were extruded using polycarbonate membranes of
pores 50 to 800 nm, resulting in the generation of highly
uniform vesicles. The first result that emerges from this work is
that native and extruded Curosurf behave similarly as a function
of pH, temperature, stability and interactions with particles. We
also demonstrate that for the bulk phase, extruded surfactant
represents an excellent model to study. With alumina particles,
the interactions give rise to the formation of large aggregates
made of the vesicles and particles, which is in agreement with
the phenomenon of electrostatic complexation. The micro-
structure of the aggregates was disclosed using electron and
optical microscopy, and it reveals densely packed clusters made
of tens to hundreds of vesicles glued together by the
nanoalumina (Figure 9d). As anticipated, the behavior of
particles in Curosurf bears some similarities with that of
particles in biological fluids in general, such as plasma serum,
lysosomal, and interstitial fluids.7,15,41,47,61 In these complex
environments, the particles are generally found to be coated
with proteins or with other biomacromolecules (forming then
the protein corona), and later to agglomerate into clusters of
various sizes.62,63 In this respect, the vesicles of the lung
surfactant substitutes are playing the same role as that of the
serum proteins in other environments. The agglomeration of
particles in biological fluids is a phenomenon of critical
importance since it results in the loss of the nanometer
character of the probes, in changes of hydrodynamic properties,

and interactions with cells. Finally, as compared to recent
simulation predictions,22−25 our results provide a different view.
The formation of large vesicular clusters is a process that is
different from the phenomena of protein/lipoprotein corona or
of formation of supported bilayers and should be considered
when the biological responses are studied concerning the
effects of nanoparticles in lungs. Moreover, aggregate formation
could result in the long term trapping of particles and prevent
their interactions with epithelial cells.
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a b s t r a c t

The electrostatic charge density of particles is of paramount importance for the control of the dispersion
stability. Conventional methods use potentiometric, conductometric or turbidity titration but require
large amount of samples. Here we report a simple and cost-effective method called polyelectrolyte
assisted charge titration spectrometry or PACTS. The technique takes advantage of the propensity of
oppositely charged polymers and particles to assemble upon mixing, leading to aggregation or phase sep-
aration. The mixed dispersions exhibit a maximum in light scattering as a function of the volumetric ratio
X, and the peak position XMax is linked to the particle charge density according to r � D0XMax where D0 is
the particle diameter. The PACTS is successfully applied to organic latex, aluminum and silicon oxide par-
ticles of positive or negative charge using poly(diallyldimethylammonium chloride) and poly(sodium 4-
styrenesulfonate). The protocol is also optimized with respect to important parameters such as pH and
concentration, and to the polyelectrolyte molecular weight. The advantages of the PACTS technique are
that it requires minute amounts of sample and that it is suitable to a broad variety of charged nano-
objects.

� 2016 Elsevier Inc. All rights reserved.

1. Introduction

Electrostatic Coulomb forces are ubiquitous in soft condensed
matter [1,2]. Interaction pair potentials created by elementary
charges of the same sign at interfaces or along macromolecules
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are long-range and repulsive. These interactions depend on
physico-chemical parameters, such as the dielectric constant of
the continuous phase, the solute concentration, the pH, the ionic
strength and the temperature. Electrostatic forces between like-
charged systems are especially relevant to insure repulsion
between colloidal objects. At low ionic strength, electrostatic
repulsions are for instance sufficient to induce long-range ordering
and colloidal crystal phases [3]. In aqueous dispersions, the ioniz-
able groups at the colloid surface exert Coulombic forces toward
the counterions, leading to their condensation and to the formation
of the electrical double layer [1]. The counterion condensation
occurs for charge density r above a certain threshold [4]:

r >
2

pD‘B
ð1Þ

where D is the diameter of the colloid and ‘B is the Bjerrum length
(0.7 nm in water). As a result, particles in solution satisfying Eq. (1)
behave as if they would have an effective charge Zeff different from
its structural charge Zstr [4,5]. The counterion condensation for col-
loids bears strong similarities with that derived for polymers and
known as the Oosawa-Manning condensation [6]. Following Belloni
[4] the effective charge can be approximated by the expression:

Zeff ¼ 2D
‘B

ð2Þ

For a particle of charge density r = +1e nm�2 and a diameter of
10 nm, the effective charge Zeff = +28e represents around 10% of
the total ionizable groups (Zstr = +314e). As the condensed counteri-
ons are firmly attached to the surface and move with the colloid
during diffusion, experiments such as electrophoretic mobility mea-
surements [7–12] or small-angle scattering experiments in the con-
centrated regime [13–15] enable access to the effective charge only.

Potentiometric, turbidity or colloid titration techniques, as well
as conductometry are commonly used to determine the structural
charges of colloids. Potentiometric or acid-base titration coupled
with conductometry was successfully applied to microgels [16],
polymer micelles [17] and metal oxide nanoparticles [18–21].
However the technique requires large sample quantity, which
depending on the particle synthesis is not always possible. To
determine the charge density of iron oxide particles for instance,
Lucas et al. used potentio-conductometric titration with disper-
sions containing 5–10 g of iron oxide dry matter [18]. Colloid titra-
tion is another method that was introduced by Terayama some
50 years ago [22]. This technique was applied to titrate ion-
containing polymers in aqueous solutions. Colloid titration is based
on the reaction between oppositely charged polyelectrolytes in
presence of a small amount of dye molecules that serves as an indi-
cator of the endpoint reaction between the two polymers [23,24].

Initially developed to study protein complexes, isothermal titra-
tion calorimetry (ITC) has gained interest in the field of physical
chemistry. ITC was also used to survey the condensation of DNA
with multivalent counterions [25] and with oligo- and polycations
[26–28] and more recently the complexation between polymers,
proteins or surfactants. Despite a large number of studies [29–39]
the interpretation of the thermograms remains a challenge, as the
heat exchanges during titration exhibit rich and numerous features
not always accounted for by existingmodels [33,40]. More recently,
ultrafast laser spectroscopy coupled to the generation of the second
harmonics or resistive pulse sensing techniques were proposed to
measure the surface charge of particles in the nanometer range
[41,42].

The technique examined here borrows its principle from meth-
ods developed for enzymatic activity measurements [43] and from
turbidity titration [44,45]. Earlier reports suggest that the maxi-
mum of absorbance or turbidity associated with the precipitation
is related to the end-point reaction, and allows an estimation of

the charge density of the titrated colloids. The method applied here
differs from turbidity titration in two aspects: (i) light scattering is
preferred to UV-spectrometry and (ii) the mixed polymer and par-
ticle dispersions are prepared by direct mixing instead of step-wise
addition. With newly developed photon counters, light scattering
is a highly sensitive technique, which can detect colloidal diffusion
down to extremely low concentration. During the last decade, light
scattering has been applied to investigate the complexation of
oppositely charged species, including surfactant, polymers, phos-
pholipids and proteins [12,46–53]. In most studies however,
emphasis was put on the structures that formed and not on the
reaction stoichiometry [54]. Here we develop a simple protocol
based on the use of light scattering and on the complexation prop-
erty of particles with oppositely charged polymers. The technique
is assessed on different types of organic and inorganic nanoparti-
cles in the 50 nm range, either positive or negative and it is shown
that the structural charge and charge density can be determined
with minute amount of sample. The technique was dubbed Poly-
electrolyte Assisted Charge Titration Spectrometry subsequently
abbreviated as PACTS.

2. Materials and methods

2.1. Nanoparticles

Latex particles functionalized with carboxylate or amidine sur-
face groups were acquired from Molecular Probes (concentration
40 g L�1). The dispersion pH was adjusted at pH 9.7 and pH 6 by
addition of sodium hydroxide and hydrochloric acid, respectively.
The particles were characterized by light scattering and transmis-
sion electron microscopy, yielding DH = 39 nm and 56 nm and
D0 = 30 and 34 nm. Negative silica particles (CLX�, Sigma Aldrich)
were diluted from 450 to 50 g L�1 by DI-water. Particles were dia-
lyzed for 2 days against DI-water at pH 9. Positive silica particles
(DH = 60 nm) were synthesized using the Stöber synthesis route
[55–57]. Silica seeds were first prepared and grown to increase
the particle size. Functionalization by amine groups was then per-
formed, resulting in a positively charged coating [56]. Aminated
silica synthesized at 40 g L�1 were diluted with DI-water and the
pH was adjusted to pH 5 with hydrochloric acid. Aluminum oxide
nanoparticle powder (Disperal�, SASOL) was dissolved in a nitric
acid solution (0.4 wt% in deionized water) at the concentration of
10 g L�1 and sonicated for 1 h. For the PACTS experiments, the dis-
persions were further diluted to 0.1 g L�1 and the dispersion pH
was adjusted to pH 4 with sodium hydroxide. In this pH condition,
the nanoalumina are positively charged (DH = 64 nm) [58].

Fig. 1 displays images of the particles obtained by transmission
electron microscopy (TEM). Except for Al2O3 which have the form
of irregular platelets of average dimensions 40 nm long and
10 nm thick, all other particles are spherical. In Table 1, the hydro-
dynamic diameters DH are found slightly higher than the geometric
diameters D0 found by TEM. With light scattering, the largest par-
ticles contribute predominantly to the scattering intensity and
determine the value for the measured DH . The dispersity s defined
as the ratio between the standard deviation and the average diam-
eter are shown in Table 1 (see Supplementary Fig. 1 for size
distributions).

2.2. Polymers

Poly(diallyldimethylammonium chloride) (PDADMAC) of
molecular weight Mw = 13.4 and 26.8 kDa was purchased from
Polysciences Europe and from Sigma Aldrich respectively. The
degree of polymerization was determined from the number-
average molecular weight Mn by size exclusion chromatography
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(SEC) and found to be 31 and 50 with respective dispersities of
Ð = 2.7 and 3.5 [59]. As shown in Supplementary Fig. 2, SEC com-
bined light-scattering detection using Novema columns reveals a
double peak distribution for PDADMAC26.8k, one associated with
a molecular weight around 30 kDa and one attributed to longer
chains or polymer aggregates. Poly(sodium 4-styrenesulfonate)
(PSS) of molecular weight Mw = 8.0 kDa and 59.7 kDa were
obtained from SRA Instruments and Sigma Aldrich. The degrees
of polymerization were found at 32 and 137 by SEC, with respec-
tive dispersities Ð = 1.2 and 2.1. PDADMAC and PSS polymers were
selected for titration because their ionization state does not
depend on pH. Experiments were also carried out using poly
(acrylic acid) (PAA, Sigma Aldrich) for comparison. Its degree of
polymerization was obtained from SEC and found at 32, with a dis-
persity of 1.8. PAA is a weak polyelectrolyte characterized by a pKa
of 5.5. The polymer characteristics are summarized in Table 2 and
in Supplementary Fig. 2 [59]. The PDADMAC, PSS and PAA repeti-
tive unit molar masses (mn) are 161.5, 206.1 and 94.0 g mol�1

respectively. Sodium acetate (CH3COO�, Na+; 3H2O), acetic acid,
nitric acid, hydrochloric acid and sodium hydroxide were pur-
chased from Sigma-Aldrich. Water was deionized with a Millipore
DI-Water system. All the products were used without further
purification. Stock solutions are diluted with DI-water to 1 or

0.1 g L�1 and pH is adjusted with hydrochloric acid or with sodium
hydroxide, depending on the particles to be titrated.

2.3. Mixing protocols

For PSS, PAA and PDADMAC polymers, 500 lL batches were pre-
pared in the same conditions of pH and concentration (0.1, 1 or
10 g L�1). Solutions were mixed at different charge ratios
Z�=þ ¼ ½��=½þ� where ½�� and ½þ� denote the molar charge concen-
trations. This procedure was preferred to titration experiments
because it allowed exploring a broad range in mixing conditions
(Z�=þ ¼ 10�4—103), while keeping the total concentration in the
dilute regime [46,60,61]. Interactions between polymers occurred
rapidly upon mixing, i.e. within a few seconds, and the dispersions
were then studied by light scattering. The complexation of
nanoparticles with oppositely charged polymers was investigated
using a similar protocol. Particle concentrationwas adjusted so that
the dispersion scattering intensity did not exceed 5 � 105 kcps,
corresponding to a Rayleigh ratio R = 5� 10�3 cm�1. Polymer and
nanoparticle batches (500 lL) were prepared in the same pH
and concentration conditions (between 0.1 g L�1 and 1 g L�1). The
solutions were mixed at different volumetric ratios X, where

Fig. 1. Transmission electronic microscopy images of latex (a, c), silica (b, d) and alumina (e) particles used in this study.

Table 1
Nanoparticles studied in the present work. Particle characteristics are the mass density (q), the pH at which the experiments are done, the hydrodynamic diameter (DH), the
geometric diameter (D0) and the dispersity s obtained from transmission electron microscopy.

Nano-particle Chemical composition Function-nalization q (g cm�3) Working pH DH (nm) D0 (nm) s

Latex (�) Polystyrene Carboxylate 1.05 9.7 39 30 0.15
Latex (+) Polystyrene Amidine 1.05 6 56 34 0.15
Silica (�) SiO2 / 2.3 9 34 20 0.20
Silica (+) SiO2 Amine 1.9 5 60 42 0.11
Alumina (+) Al2O3 / 3.0 4 64 40 0.30
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X = VPol/VNP and VPol and VNP are the volumes of the polymer and par-
ticle solutions respectively. Because the stock solution concentra-
tions are identical, the volumetric ratio X is equivalent to the
mass ratio between constituents.

2.4. Transmission electron microscopy

TEM imaging was performed with a Tecnai 12 operating at
80 kV equipped with a 1 K � 1 K Keen View camera. Drops of sus-
pensions (20 lL at 0.01 g L�1 in DI-water) were deposited on
holey-carbon coated 300 mesh copper grids (Neyco). Grids were
let to dry over night at room temperature.

2.5. Isothermal titration calorimetry

Isothermal titration calorimetry (ITC) was performed using a
Microcal VP-ITC calorimeter (Northampton, MA) with cell of
1.464 mL, working at 25 �C and agitation speed of 307 rpm. The
syringe and the measuring cell were filled with degased solutions
of PDADMAC, and PSS at the same pH. Water was also degased
and filled the reference cell. Typical charge concentrations were
10 mM in the syringe and 1 mM in the measuring chamber. The
titration consisted in a preliminary 2 lL injection, followed by 28
injections of 10 lL at 10 min intervals. A typical ITC experiment
includes the thermogram (i.e. the differential power provided by
the calorimeter to keep the temperature of cell and reference iden-
tical) and binding isotherm. Control experiments were carried out
to determine the enthalpies associated to dilution. These behaviors
were later subtracted to obtain the neat binding heat.

2.6. Static and dynamic light scattering

Light scattering measurements were carried out using a NanoZS
Zetasizer (Malvern Instruments). In the light scattering experiment
(detection angle at 173�), the hydrodynamic diameter DH and the
scattered intensity IS were measured. The Rayleigh ratio R was
derived from the intensity according to the relationship:
R ¼ ðIS � IwÞn2

0RT=ITn2
T where Iw and IT are the water and toluene

scattering intensities respectively, n0 = 1.333 and nT = 1.497 the
solution and toluene refractive indexes, and RT the toluene Ray-
leigh ratio at k = 633 nm ðRT ¼ 1:352� 10�5 cm�1Þ. The second-
order autocorrelation function is analyzed using the cumulant
and CONTIN algorithms to determine the average diffusion coeffi-
cient DC of the scatterers. Hydrodynamic diameter is then calcu-
lated according to the Stokes–Einstein relation, DH ¼ kBT=3pgDC ,
where kB is the Boltzmann constant, T the temperature and g the
solvent viscosity. Measurements were performed in triplicate at
25 �C after an equilibration time of 120 s.

2.7. Electrophoretic mobility and zeta potential

Laser Doppler velocimetry using the phase analysis light scat-
tering mode and detection at an angle of 16� was used to carry
out the electrokinetic measurements of electrophoretic mobility

and zeta potential with the Zetasizer Nano ZS equipment (Malvern
Instruments, UK). Zeta potential was measured after a 2 min equi-
libration at 25 �C.

2.8. Optical microscopy

Phase-contrast images were acquired on an IX73 inverted
microscope (Olympus) equipped with an 60� objectives. PSS8.0k
and PDADMAC13.4k were prepared in MilliQ water at 20 g L�1.
Solutions were diluted to 0.1 g L�1 with DI-water or 100 mM NaCl
solution electrolyte. The polymer dispersions were mixed at Z = 1
and after 10 min, the mixture was diluted by a factor 10 for obser-
vation. 30 ll of dispersion were deposited on a glass plate and
sealed into a Gene Frame� (Abgene/Advanced Biotech) dual adhe-
sive system. An EXi Blue camera (QImaging) and Metaview soft-
ware (Universal Imaging Inc.) were used as the acquisition system.

3. Results

3.1. Assessment of the PACTS technique using ion-containing polymers

The PACTS technique was first assessed using oppositely
charged polymers. Poly(diallyldimethylammonium chloride) and
poly(sodium 4-styrenesulfonate) of molecular weight Mw = 13.4
and 8.0 kDa with similar degrees of polymerization (DP = 31 and
32 respectively) were considered. In this study, isothermal titration
calorimetry was used to determine the stoichiometry of the inter-
polyelectrolyte reaction, and to set up a reference for PACTS. In
addition to the charge stoichiometry, ITC also provides the binding
enthalpy and reaction binding constant. Fig. 2a and b displays the
thermogram and the binding isotherm obtained for PSS/PDADMAC,
respectively. Here, the PSS dispersion at molar charge concentra-
tion 20 mM was added stepwise to a PDADMAC solution contain-
ing 2 mM of positive charges. Throughout the process, the
enthalpy exhibits a sigmoidal decrease with increasing charge ratio
and is associated with an exothermic reaction. Above Z�=þ = 1, heat
exchanges close to zero indicate that the titration is completed.
Experiments performed with PSS and PDADMAC of different
molecular weights provide similar thermograms (see Supplemen-
tary Fig. 3). The data of Fig. 2 also confirm the ITC results obtained
by Bucur and coworkers on the same polymers at a slightly differ-
ent ionic strength (0.3 M NaCl) [29].

The ITC data on PSS/PDADMAC were analyzed according to the
Multiple Non-interacting Sites (MNIS) model [33,40,62]. The MNIS
model assumes that the macromolecules to be titrated have several
anchoring sites, and that the binding probability is independent on
the occupation rate of other sites. This simplified model was found
toworkwell for a broad range of colloidal systems [33,39]. The reac-
tion betweenmacromolecules is associatedwith heat exchange that
is proportional to the amount of binding events and characterizedby
the enthalpy DHb, the binding constant Kb and by a reaction stoi-
chiometry n. Fig. 2a displays the ITC data together with the fitting
curves obtained from the MNIS model. The values retrieved are
the binding enthalpy DHb = �2.6 kJ mol�1, the free energy

Table 2
Polyelectrolytes investigated in this work. Polymer characteristics are the number-average molecular weight (Mn), molecular weight (Mw), the degree of polymerization (DP), the
dispersity (Ð) and the nature of the polyelectrolyte [59].

Polymer Provider Mn (kDa) Mw (kDa) DP Ð Charge Polyelectrolyte type

PDADMAC Sigma Aldrich 7.6 26.8 50 3.5 + Strong
Polysciences Europe 4.9 13.4 31 2.7 + Strong

PSS Sigma Aldrich 28.2 59.7 137 2.1 – Strong
SRA Instruments 6.7 8.0 32 1.2 – Strong

PAA Sigma Aldrich 3.0 5.4 32 1.8 – Weak
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DG = �RTLnKb = �30.4 kJ mol�1 and the entropy contribution to the
reaction TDS ¼ DHb � DG = +27.8 kJ mol�1. The associated binding
constant is Kb ¼ 2:0� 105 M�1 and the stoichiometry coefficient
n = 1.1 ± 0.1. For PDADMAC13.4k and PDADMAC26.8k titrated alter-
nativelywith PSS8.0k and PSS59.7k, stoichiometry coefficients close
to unity were also obtained (Supplementary Fig. 3). The large value
of the binding constant indicates a strong affinity of styrene sul-
fonate for diallyldimethylammonium, and a stoichiometry around
1 that the complexation occurs through charge neutralization. The
entropy contribution to the reaction,�TDS is around 10 times larger
than the binding enthalpy, demonstrating that the process is driven
by the entropy anddominatedby the release of the sodiumandchlo-
ride counterions [25,54].

The PACTS technique was applied to PSS/PDADMAC following
the direct mixing protocol described in Section 2.3. The volumes
of the stock solutions used for mixing were adjusted to cover a
range in charge ratio between 10�4 and 103. After mixing, the dis-
persions were stirred rapidly, let to equilibrate for 5 min and the
scattered intensity and hydrodynamic diameter were measured
in triplicate. The light scattering experiments were repeated a
day after and showed the same features (data not shown). Fig. 2b
displays the Rayleigh ratio obtained for 0.1 and 1 g L�1 PSS/PDAD-
MAC mixtures. Both datasets exhibit a maximum around the 1:1
charge stoichiometry. At 1 g L�1, the scattering peak is broad and
exhibits a flat plateau between Z�=þ = 0.5 and 2. At 0.1 g L�1 in con-
trast, the sharp maximum is observed and allows an accurate
determination of its location, here at ZMax = 1.2 ± 0.1. Such a scat-
tering feature on mixing oppositely charge species was observed
for various systems, including synthetic and biological polymers,
phospholipid vesicles and surfactants [19,31,32,47,48,51,52,63]. It
is interpreted in terms of complexation, charge neutralization
and the formation of structures or phase much larger the initial
components. In this scenario, the coacervate particles formed at
equivalence (½þ� ¼ ½��) have a zero surface charge and grow rapidly
in size. In off-stoichiometric mixtures on the other hand, the coac-
ervate particles are charged and repel each other, preventing them
from growing. The Zmax-value is also in good agreement with the

stoichiometry found in ITC on the same compounds. We have
found that stoichiometric PSS/PDADMAC mixtures without added
salt form a viscous coacervate phase that sedimented rapidly
[63,64]. Observed between glass slides, the coacervate appears as
5 lm droplets (Fig. 2c, top panel). At 0.1 M of added salt, the phase
separation persists and gives rise to droplets in the micron range
(Fig. 2c, lower panel). These polymer phases are similar to those
found by Priftis et al. on branched poly(ethyleneimine) complexed
with linear poly(glutamic acid) [51,65], indicating that electrostat-
ics driven reactions between charged polymers share general fea-
tures as far as the structure, the phase or the thermodynamics
are concerned [32]. The main result of this study is that the PACTS
technique allows an accurate determination of the charge
stoichiometry.

3.2. Application of the PACTS technique to nanoparticles and polymers

Polymer/nanoparticle dispersions were formulated by mixing
stock solutions at different volumetric ratios between 10�4 and
103. Fig. 3a–c shows the Rayleigh ratio RðXÞ, hydrodynamic
diameter DHðXÞ and zeta potential fðXÞ respectively for latex/poly
(sodium 4-styrenesulfonate) mixtures. At 0.1 g L�1, the mixed dis-
persions are dilute and the scattering intensity is proportional to
the concentration and to the molecular weight of the scatterers.
The continuous line in Fig. 3a is calculated assuming that polymers
and particles do not interact, and that the Rayleigh ratio is the sum
of the respective Rayleigh ratios weighted by their actual concen-
trations [60]:

R0ðXÞ ¼ RNP þRPolX
1þ X

ð3Þ

where RNP and RPol are the Rayleigh ratios of the nanoparticle and
polymer dispersions, respectively. In Fig. 3a, RðXÞ is found to be
higher than the predictions for non-interacting species, and it exhi-
bits a marked maximum at the critical value XMax = 0.020 ± 0.003.
The observation of a maximum suggests that polymer/particle
aggregates are formed, and that it occurs at a defined stoichiometry.

Fig. 2. (a) Thermogram (upper panel) and binding isotherm (lower panel) obtained from micro-calorimetry titration of poly(diallyldimethylammonium chloride) (PDADMAC
Mw = 13.4 kDa) by stepwise addition of poly(sodium 4-styrenesulfonate) (PSS, Mw = 8.0 kDa). The molar charge concentrations are 20 mM and 2 mM respectively, and the
temperature is fixed at T = 25 �C. The continuous curve in red arises from best fit calculations using the Multiple Non-interacting Sites (MNIS) model. The stoichiometry
coefficient derived from ITC is n = 1.1 ± 0.1. (b) Rayleigh ratios obtained from PDADMAC/PSS mixed dispersions formulated by direct mixing. The scattering intensity exhibits
a maximum at the 1:1 charge stoichiometry. (c) Bright field optical microscopy images of the PDADMAC/PSS coacervate phase prepared without added salt (upper panel) and
at the ionic strength of 100 mM. The dark (light) blue bars are 20 (5) lm. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

40 F. Mousseau et al. / Journal of Colloid and Interface Science 475 (2016) 36–45



The hydrodynamic diameter DHðXÞ in Fig. 3b confirms this result.
The DH-maximum reaches a value over a micron at the same XMax

as the intensity. Fig. 3c shows the zeta potential fðXÞ as a function
of the mixing ratio. The point of zero charge, characterized by
fðXÞ = 0 is obtained for X ¼ XMax, indicating that the reaction stoi-
chiometry is associated with the neutralization of the electrostatic
charges [31,52,66]. Zeta measurements using higher molecular
weight poly(sodium 4-styrenesulfonate) (Mw = 59.7 kDa) confirm
this result (Supplementary Fig. 4). Our goal here is to show that
under appropriate conditions, the approach can be exploited to
determine the structural charges of particulate nanosystems.

3.3. Charge density calculation and comparison with standard
methods

Fig. 4 displays the Rayleigh ratio and the hydrodynamic diame-
ter for latex (a), silica (b, c) alumina (d). The negative latex and sil-
ica were complexed with PDADMAC13.4k, whereas the positively
charged particles (silica and alumina) were associated with the
8 kDa PSS. The features disclosed in Fig. 3 were again observed:
both RðXÞ- and DHðXÞ-data exhibit sharp maxima. The positions
of these maxima coincide and allow an accurate determination of
XMax. The values for the mixing ratios at maximum are
0.0023 ± 0.0003 for carboxylate coated latex, 0.010 ± 0.002 for

negative silica, 0.016 ± 0.004 for amine coated silica and
0.10 ± 0.01 for alumina. Assuming that the peak position coincides
with the charge neutralization, the structural charge ZStr is
obtained from:

ZStr ¼ XMax
MNp

n

mn
ð4Þ

where MNp
n and mn denote the number-averaged molecular weights

of the particles and of the repetitive unit of the polymer used for
titration, respectively. Taking into account the particle dispersity s
(Table 1), the charge density reads:

r ¼ N AqD0expð2:5s2Þ
6mn

XMax ð5Þ

In Eq. (5),q is theparticlemass density andN A theAvogadronumber.
For log-normal distribution of median diameter D0 and dispersity s,

the ith-moment is given by the expression hDii ¼ Di
0 expði2s2=2Þ.

For particles of uniform size (s � 0), the exponential term in the
numerator of Eq. (5) is close to 1, and the charge density is directly
proportional to the particle diameter and the scattering maximum
position observed by PACTS.

Results are summarized in Table 3, and the charge densities
obtained from Eq. (5) are compared with those retrieved from con-
ventional methods. The r-values for carboxylate and amidine latex
(r = �0.05e nm�2 and +0.21e nm�2 respectively) were provided by
the supplier, whereas those of negative silica and alumina were
measured using potentiometry and precipitation titration coupled
to conductometry experiments. The positive silica particles were
produced in small quantities and their charges could not be
obtained by titration. As shown in Table 3 for alumina, latex and
negative silica, PACTS provides charge densities in agreement with
the other techniques. In view of the dispersity exhibited by the
polymers and particles examined in this work, a 20–30% difference
between PACTS and other techniques is noticeable. For positive sil-
ica, the value retrieved from PACTS amounts at r = +0.62e nm�2, a
value in fair agreement with earlier determination [56,57]. From
the charge densities listed, it can also be verified that the inequality
r > 2=pD‘B (Eq. (1)) holds and that the condensation and double
layer description apply for all particles considered [1]. In conclu-
sion, it can be said that the PACTS is an accurate technique for mea-
suring the structural charges of nanoparticles.

3.4. Optimizing PACTS

In this section, we explore the effects of physico-chemical
parameters such as the concentration, the molecular weight and
the polymer ionization state.

3.4.1. Effect of concentrations and sensitivity
As illustrated in Fig. 2 for PSS8.0k and PDAD13.4k, the initial

concentration has a significant effect on the scattering peak shape.
The plateau observed at 1 g L�1 around the 1:1 charge stoichiome-
try arises from the high turbidity of the coacervate phase. As a
result, the sample absorbs a noticeable part of the incoming and
scattered light, and the recorded values of the Rayleigh ratios are
biased. At 0.1 g L�1, the hydrodynamic sizes are of the order of
200 nm, the turbidity is lowered, making measurements possible.
For particles, PACTS measurements were made between 0.1 and
1 g L�1 and gave Rayleigh ratios around 10�3 cm�1 at the peak
maximum. These values are 1000 times larger than the minimum
Rayleigh ratio detectable by light scattering spectrometers [49].
The concentration in a PACTS experiment could hence be reduced
and still provides reliable data. One important advantage of PACTS
over the techniques mentioned in introduction is that it requires
very low amount of samples.

Fig. 3. Rayleigh ratio RðXÞ (a), hydrodynamic diameter DHðXÞ (b) and zeta potential
fðXÞ (c) measured for positively charged 34 nm latex particles complexed with poly
(sodium 4-styrenesulfonate) chains of molecular weight Mw = 8.0 kDa at concen-
tration c = 0.1 g L�1. The continuous line in green (a) is calculated according to Eq.
(3). The position of RðXÞ and DHðXÞ-maxima coincides with charge neutralization
and a zero zeta potential. Continuous lines in red are guides for the eyes. (For
interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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3.4.2. Effect of polymer molecular weight
The molecular weight of the titrating polymers plays also an

important role. Fig. 5a displays the Rayleigh ratio as a function of
X for negative silica complexed with poly(diallyldimethylammo-
nium chloride) of molecular weight Mw = 13.4 kDa and 26.8 kDa.
With increasing molecular weight, the scattering peak broadens
and shifts toward higher mixing ratios, here from XMax = 0.01 to
0.02, leading to a doubling of the apparent charge density
(�0.30e nm�2 versus �0.61e nm�2). Similarly, positive latex parti-
cles were associated with poly(sodium 4-styrenesulfonate) atMw =
8.0 kDa and Mw = 59.7 kDa. Again, the scattering peak broadens

and moves toward higher X-values (Fig. 5b). With PSS59.7k, the
charge density deduced using Eq. (5) equals r = +2.6e nm�2, that
is seven times that obtained with PSS8.0k. These results suggest
that the particle aggregation mechanism depends on the molecular
weight of the titrating polymers. For short chains, it is assumed
that the polymers adsorb at the particle surface and compensate
the structural charges. As a result the destabilization occurs
through the surface charge neutralization and electrostatic
screening. Note here that the structural charges of the polymers
(Zstr � 30) are much smaller than that of the particles
(Zstr ¼ 1000—5000). This asymmetry appears as an important crite-
rion in regulating the adsorption and precipitation processes. With
higher molecular weight polymers, polymers adsorb at the particle
surface but form loops or bridges with neighboring particles. In
this latter case, there is an excess of uncomplexed charges, which
artificially increases the particle charge density.

3.4.3. Effect of polyelectrolyte
Fig. 5c compares the Rayleigh ratios RðXÞ using a weak (poly

(sodium acrylate) 5.4 kDa) and a strong (PSS8.0k) polyelectrolyte
of same degree of dispersity, together with the positively charged
silica. Experiments were performed under conditions where the
particles are colloidally stable, i.e. at pH 5. Acid-base titration
experiments on PAA 5.4 kDa have shown that at this pH, the chain
ionization degree is 30%. Fig. 5c illustrates that switching from

Fig. 4. Rayleigh ratio RðXÞ and hydrodynamic diameter DHðXÞ obtained from PACTS experiments performed with latex (a), silica (b and c) and alumina (d) nanoparticles. The
legends are similar to those of Fig. 3. Continuous lines in red are guides for the eyes. PACTS was performed at concentrations c = 1 g L�1 in (a), c = 0.1 g L�1 in (b), c = 0.5 g L�1 in
(c) and c = 0.1 g L�1 in (d). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 3
Charge densities r of the particles studied in this work determined by conventional
titration methods and by PACTS. XMax denotes the volumetric mixing ratio at which
the scattering intensity and hydrodynamic diameter are maximum. The charge
density from PACTS was calculated from Eq. (5) and particle characteristics of Table 1.

Nanoparticles
(sign)

Nominal charge
density, r
(nm�2)

Mixing ratio at
maximum
scattering, XMax

Charge density
from PACTS, r
(nm�2)

Latex (�) �0.05 0.0023 ± 0.003 �0.048 ± 0.006
Latex (+) +0.21 0.020 ± 0.003 +0.33 ± 0.06
Silica (�) �0.24 0.010 ± 0.002 �0.31 ± 0.07
Silica (+) n.d. 0.016 ± 0.004 +0.62 ± 0.16
Alumina (+) +5.9 0.10 ± 0.01 +7.3 ± 0.7
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strong to weak poly(acid) shifts the scattering maximum position
to higher values, here from XMax = 0.013–0.022. As a result, the
charge density estimated from Eq. (5) is found to be higher with
PAA (r = +1.85e nm�2) as compared to that with PSS (r =
+0.63e nm�2). The reason for this discrepancy is that not all the
acrylic acid monomers adsorbing at the interface are charged and
complex with the silica surface charges. Using PDADMAC and par-
tially charged PAA chains, it was shown recently that the complex-
ation process itself modifies the degree of ionization of the weak
poly(acid) chains and displaces the reaction stoichiometry [39,67].

4. Conclusion

The main result of this study is that polyelectrolyte assisted
charge titration spectrometry technique is a rapid and effective
method to estimate nanoparticle structural charges. Here we are
taking advantage of the propensity of oppositely charged polymers
and particles to assemble upon mixing. The designed complexation
protocole makes use of low molecular weight ion-containing poly-
mers as complexing agents. Upon mixing, the chains adsorb at the
particle surface in an entropy-driven process and compensate the
charge of the nanoparticles. The particles then aggregate via van
der Waals interactions, resulting in the formation of micron size
objects, or in some cases micro-phase separation. Both induced
states are easily detectable by light scattering. The screening of
the polymer/nonoparticle phase diagram by varying the volumet-
ric ratio leads to a marked scattering peak (Fig. 6). The peak posi-
tion on the X-axis provides the value of the charge density r,
assuming its size and dispersity are known. In this approach, the
complexing polymers are of low molecular weight to avoid over-
charging during the adsorption process. Overcharging can be asso-
ciated to the formation of loops, dangling ends or to the bridging of
distant particles. The use of high molecular weight polymers leads
to a wrong estimation of the structural charges, as shown in Fig. 5.
The protocol was further optimized with respect to pH, concentra-
tion and to the nature of the polymers. The technique used here is
similar in its principle to the one reported by one of us a few years
ago [60]. In this previous work, the complexation was carried out
using double hydrophilic block copolymers instead of homopoly-
electrolytes. The role of the neutral block was to reduce the inter-
facial tension between the particle aggregates and the solvent, and
to stabilize the microstructure in the 100 nm range. With
homopolyelectrolytes the situation is different, as the complexa-
tion and further growth of the aggregates are not hindered by

the presence of neutral blocks, therefore leading to the formation
of micron size colloids or coacervate droplets solely at the charge
stoichiometry. One decisive advantage of PACTS is that it requires
minute amounts of particles, typically 10 lg of dry matter,
whereas conventional titration uses 103–104 larger quantities
[16–18,21]. In conclusion, PACTS represents a quick and easy pro-
tocol that can be used to determine the structural charge density of
nanoparticles, which is of critical importance for the stability and
interaction of bulk dispersions.
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