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Abstract

Amidst a lot of research in motion planning and control in concern with robotic
applications, the mankind has never reached a point yet, where the robots are per-
fectly functional and autonomous in dynamic settings. Though it is controversial
to discuss about the necessity of such robots, it is very important to address the
issues that stop us from achieving such a level of autonomy. Industrial robots have
evolved to be very reliable and highly productive with more than 1.5 million oper-
ational robots in a variety of industries. These robots work in static settings and
they literally do what they are programmed for specific usecases, though the robots
are flexible enough to be programmed for a variety of tasks. This research work
makes an attempt to address these issues that separate both these settings in a
profound way with special focus on uncertainties. Practical impossibilities of pre-
cise sensing abilities lead to a variety of uncertainties in scenarios where the robot
is mobile or the environment is dynamic. This work focuses on developing smart
strategies to improve the ability to handle uncertainties robustly in humanoid and
industrial robots. First, we focus on a dynamical obstacle avoidance framework
proposed for industrial robots equipped with skin sensors for reactivity. Path plan-
ning and motion control are usually formalized as separate problems in robotics.
High dimensional configuration spaces, changing environment and uncertainties do
not allow to plan real-time motion ahead of time requiring a controller to execute
the planned trajectory. The fundamental inability to unify both these problems has
led to handle the planned trajectory amidst perturbations and unforeseen obsta-
cles using various trajectory execution and deformation mechanisms. The proposed
framework uses ’Stack of Tasks’, a hierarchical controller using proximity informa-
tion to avoid obstacles. Experiments are performed on a UR5 robot to check the
validity of the framework and its potential use for collaborative robot applications.

Second, we focus on a strategy to model inertial parameters uncertainties in a
balance controller for legged robots. Model-based control has become more and
more popular in the legged robots community in the last ten years. The key idea is
to exploit a model of the system to compute precise motor commands that result in
the desired motion. This allows to improve the quality of the motion tracking, while
using lower feedback gains, leading so to higher compliance. However, the main flaw
of this approach is typically its lack of robustness to modeling errors. In this paper
we focus on the robustness of inverse-dynamics control to errors in the inertial
parameters of the robot. We assume these parameters to be known, but only with
a certain accuracy. We then propose a computationally-efficient optimization-based
controller that ensures the balance of the robot despite these uncertainties. We used
the proposed controller in simulation to perform different reaching tasks with the
HRP-2 humanoid robot, in the presence of various modeling errors. Comparisons
against a standard inverse-dynamics controller through hundreds of simulations
show the superiority of the proposed controller in ensuring the robot balance.
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Chapter 1

Introduction

This chapter introduces the fields of industrial robots and humanoid robots to
motivate the work presented in this thesis. Industrial robots operate in structured
environments, where they can be highly productive for laborious industrial tasks.
However, when collaborating with human beings, these robots have to move conser-
vatively to ensure safety. This chapter discusses this issue in detail, presenting the
existing approaches, and their current limitations. Another key issue in robotics
is the lack of robustness of current balance controllers for legged robots. Classic
balance controllers rely on a precise estimation of the robot center of mass position
and velocity. However, accurate models of legged robots are extremely hard to iden-
tify in practice, due to the complexity of these machines. We discuss the need for
robustness, and the current approaches to tackle this issue, in order to provide the
context of our contribution on robust balance control.

1.1 Overview of the Work

Autonomy is undoubtedly the main goal in robotics research. We wish to develop
robots that are self-reliant, and we wish to do it through a technology that is as
generic as possible. Every incremental research in robotics directly or indirectly
strives to automatize processes or mechanisms of interest, efficiently and effectively.
Though the need of advanced autonomy in robots is a controversial subject, it is
undeniable that robotics researchers try to solve problems using generic and self-
reliant algorithms. Autonomy is not only about higher awareness and control in
structured environments, but also about the ability to cope with unknown and
dynamic environments. Developing algorithms with an ability to change, adapt or
be flexible is one of the core problems to achieve autonomy in robots.

In this thesis, we address two specific control problems, aiming to advance au-
tonomy in robots: environment variability, and uncertainty in the robot model.
With variability, we refer to situations in which algorithms need to adapt online,
but without compromising the final goal. Instead by uncertainty, we refer to the
incomplete knowledge of qualitative or quantitative parameters of a robot model,
requiring the control algorithm to achieve given goals despite this lack of knowl-
edge. Though these two terms look similar, and they may even mean the same
thing in some cases, they are fundamentally different in general, and need to be
handled differently. We have addressed these two problems using two different
robotic platforms, motivated by the current essential need in robotics research and
development.
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The first part of the thesis (Chapter 2) presents a control framework to handle
environment variability in industrial robots. Classic industrial robots work in static
settings and repeatedly execute the action programmed by the users. Though these
robots are flexible enough to execute a large variety of tasks, their control algorithms
lack any adaptation capability. This work attempts to address this issue, focusing
on dynamic obstacle avoidance, i.e. when the robot encounters unforeseen obstacles
while executing a task. The second part of the thesis (Chapter 3) presents a balance
controller for legged robots that can cope with imperfect knowledge of the robot
inertial parameters. Legged robots are subject to a variety of uncertainties, both
in the robot model and in the environment model. Due to the complexity of their
complete dynamic model, reduced/approximated models are often used for balance
control. Unfortunately, these model-based control approaches are sensitive to model
uncertainties. To tackle this issue, we propose a robust control strategy to improve
balance control in the presence of inertial parameter uncertainty.

In a nutshell, this thesis focuses on developing intelligent strategies to handle
variability and uncertainties in industrial and humanoid robots, respectively. The
two main contributions of this thesis are:

• A dynamic obstacle avoidance control framework for industrial robots
equipped with skin proximity sensors.

• A control strategy for balancing humanoid robots that is robust to bounded
uncertainties in their inertial parameters.

1.2 Towards Collaborative Robots

This section briefly discusses the evolution of industrial robotics to stress the need
for collaborative robots. We also discuss the current state of the industry and its
technological limitations, establishing the context of the thesis.

1.2.1 Evolution of Industrial Robotics

The idea of automatic machines has been in existence since many centuries,
with documented illustrations in various interesting applications [Berryman 2003].
Fig. 1.1 shows snapshots of some important automatons known to be popular dur-
ing ancient times. Archytas (4th century B.C.), the founder of mathematical me-
chanics, invented an autonomous wooden flying pigeon (Fig. 1.1(a)) which can fly
uninterrupted for hundreds of meters and is considered to be the first robot ever
documented in the history. Fig. 1.1(b) shows an analog device (developed during 1st
century B.C.) that can predict astronomical positions for the purpose of maintaining
a calendar and astrological reasons, making it one of the most ancient computers
ever developed. The first ever human-like robot in the records was designed by
Leonardo da Vinci, and is shown in Fig. 1.1(d). It has joints similar to human be-
ings, with an ability to perform motions such as waving its arms, moving its head
and jaws, sitting and standing up. Many automatons developed were capable of
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(a) Archytas’ bird (b) Antikythera mechanism (c) Su Song’s Clock Tower

(d) Da Vinci’s robot (e) Elephant Automaton (f) Digesting Duck

Figure 1.1: Automatons in the Past

entertaining, speaking and playing musical instruments. A musical automaton in
the form of an elephant is shown in Fig. 1.1(e); it was designed by Hubert Martinet,
a French clock-maker, in 1774. Another musical automaton that has mechanically
controlled mannequins chiming and ringing bells in an artistic clock tower, devel-
oped by Su Song, is shown in Fig. 1.1(c). A funny golden mechanical duck (see
Fig. 1.1(f)) is known for imitating the ability to eat and defecate grains, trying to
illustrate metabolic capabilities.

Though most of the automatons were created for entertainment or artistic sat-
isfaction in the beginning, the characterization of robots to be human look-alike
machines that can serve human beings came up in the 20th century. The term
robot itself was born in 1921 from R.U.R. (Rossum’s Universal Robots), a Czech
play written by Karel Čapek [Hockstein 2007]. The play depicts robots as good and
benevolent workers serving the human beings in the beginning, but later gaining
super human strength to revolt against humans, leading to the end of life. This
negative idea changed after a Russian writer, Isaac Asimov, made a contrasting
characterization of robots as just mechanical creatures with no emotions. Asimov’s
laws of robotics in 1942 gave way to a new perspective of robots to be seen as a prod-
uct that could be developed by engineers to improve productivity in manufacturing
industries. During the same time period, a mechanism to do spray painting was
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(a) Pollard’s Paint Sprayer (b) Unimate Robot’s Television Appearance

Figure 1.2: Robotic Mechanisms in the Beginning

designed by Pollard and Roselund (see Fig. 1.2(a) showing the first spray painter
design), pioneering the first programmable device in history [Wallén 2008].

The first truly programmable robot was Unimate, which consisted of an arm and
a drum memory box with pre-programmed tasks. Unimation, the first company to
make robots that were used to transport and weld die castings on automobile bodies,
sparing humans dangerous working conditions (Fig. 1.2(b) shows the first television
appearance of an Unimate robot). Though the numerically controlled turning and
milling machines and the hydraulic assembly machines were programmable, the
industrial robots differed in the sophistication of re-programmability and the versa-
tility to be used for different tasks. This is purely because of the invention of digital
computers and integrated circuit technology, which allowed to develop the brains of
industrial robots. Also these robots have more than 3 DoF providing more flexibility
in the workspace. Ford’s interest to install Unimation robots triggered American
manufacturing industries to pay attention to the robotics industry a bit more seri-
ously. Installations in General Motors in Ohio (US) in the beginning of the 1960s
marks the real beginning of industrial robotics. After an intense research and de-
velopment during the next 15 years, the introduction of micro-processors provided
the basis for low cost control systems. A Norwegian company, Trallfa, designed
and developed a cost-effective alternative to Unimate robots for spray painting ap-
plications. Several companies such as Electrolux, ESAB, Atlas Copco, and ASEA
followed the same path designing in-house robots for their own purposes, which
suited the requirements of other customers resulting in a product of its own. This
phenomenon gave birth to more than 70 robot manufacturers by the mid 1970s. In
the beginning, industrial robots were hydraulic or pneumatic, though they are very
suitable for heavier loads. Vicarm turned out to be the first electric robot to suit the
lighter loads of assembly lines and arc welding ??. The 6-degree-of-freedom robot
was designed with simplified analytic solutions by Victor Scheinman, allowing the
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Figure 1.3: Manufacturing unit in General Motors with ’Unimate’ robots in 1969

robot to track arbitrary paths in its work space. Cincinnati Milacron, the largest
machine tool constructor during the 1970s, developed "The Tomorrow Tool", the
first microcomputer-based robot shown in Fig. 1.4.

In the beginning robots were used for simple tasks, such as pick and place with
no external sensing. External sensing along with the ability of robots to perform
advanced motion behaviors gave rise to complex applications like welding, grinding
and deburring. Robots were deployed in three major areas: assembly lines, process
operations and material handling. The main motivation of industrial robotics is to
apply productive, cost-effective and safe automation solutions, without compromis-
ing the quality of the products. The capabilities of robots were purely driven by
the manufacturing industries, with different industries focusing on different require-
ments. Material handling required robots of increased loading capacity, while arc
welding and motion dependent applications required the robot to have better elec-
trical motors and path control. In the beginning of 1980s the assembly lines were
mostly focused on achieving shorter cycle time, which required robots to be highly
dynamic and repeatable. Metal industries required robots to be very stubborn to
operate in hot and unsafe working environments. Though robots had complex appli-
cations, simple applications such as pick-and-place, or material transportation were
economically advantageous for automatization. These customer demands provided
way to the industrial robotic revolution in the 80’s [Wallén 2008].

Robotics was unanimously accepted as a key focus area to increase industrial
development and achieve competitive edge. Advanced sensors such as force sensors,
vision cameras and laser scanners were introduced in the late 1980s to allow physical
interaction with the environment and to improve the system “intelligence”. In the
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(a) The Tomorrow Tool-T3 (b) Shakey (c) Stanford Arm

Figure 1.4: Robots in the 1970s

1980s, the ambitious vision of robotics was to completely automatize factories with
robots. However, it was soon realized that certain human work mechanisms were
difficult to be replicated. Heterogenous integration of complex systems involves a
lot of problems and robotic workcells were more expensive than the workers, though
they were economically beneficial for simpler tasks. Productivity is a complex con-
cept, and the idea of robots solely responsible for improving productivity changed
in the beginning of 1990s. The dependence on robotics for more ambitious tasks
started to decrease, though it was and is still an inevitable part of the mechatronic
technology to automize and improve productivity. Now robotics is used for medical
applications, service, entertainment and disaster recovery. Though industrial robots
have been in use for quite a long time, many challenges have not been completely
addressed yet. This is where the ’Factory in a Day’ project comes in to the picture.
Let us have a look at the project and its goals, to position the first part of this
thesis, before continuing the discussion on the development of Collaborative Robots
creating safe, shared and inexpensive work spaces.

1.2.2 The ’Factory in a Day’ EU project

We are aware that robot automation has been into existence since the 1960s and
has seen a lot of technological advancements, but it is still challenged by the time
and cost needed to set up robots specific to the functional needs of the factories.
There is a lot of risk involved in such investments, making them economically less
attractive to smaller companies. Moreover, the factory setups are fixed environ-
ments with hard coded settings of millimeter precision, so that they are perfectly
under control at all times. In contrast to fixed robot arms, mobile robots provide
kinematic flexibility to handle multiple tasks, thanks to the proper use of extra
base degrees of freedom. Though there exist state-of-the-art controllers that can
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handle redundancy, mobile manipulation is difficult because of the odometry errors
and uncertainties introduced by the wheels in the base. Another critical concern
is safety for human beings working in robot environments. Though recent tech-
nologies are focused towards collaborative robot control, where human beings and
robots can work together, these algorithms are either not mature enough to be used
in factories, or not yet known in the industrial community.

The Factory-in-a-Day project puts forward the idea of reducing the installation
time (and the associated costs) from several months to just a single day. The project
focuses on the following aspects of robotics, which are the steps taken to install a
robotic setup in a day [Wisse 2013a].

• Standardized procedures to design 3D printed custom parts, which are usu-
ally attached to an existing robot arm and grippers using novel templates to
minimize the time taken.

• The flexibility to be placed in factories without any alteration, exploiting an
adaptive framework that helps to connect with the existing machineries.

• Use rapid teaching to program production tasks in the setup from a rich set
of learnable skills for applications like mould finishing, welding and assembly.

• Visually intuitive tools for the factory workers to assess the robot behavior.
Augmented reality can be used to visualize the robot planned path to be aware
of its activity allowing improved collaboration.

• A dynamic obstacle avoidance framework based on proximity skin sensors to
allow human-robot collaboration in an unfenced workspace.

These aspects, along with the proposed certification procedures and a complete
focus on manufacturing industry, can improve the automation sector. The first
part of this thesis focuses on the last aspect in the list above, which is human-
robot collaboration. Standard industrial robots cannot share the workspace with
human beings, as they were primarily designed for productivity, not for safety.
The robots are programmed to operate at higher speed wihtout any awareness of
an obstacle or human presence which could be dangerous when a human worker
accidentally gets into the robot workspace. The Fig. 1.5 (a) shows the reality of
many manufacturing units with fences to avoid dangerous accidents with human
beings. In case a human has to get inside the fence to prepare the workspace or
repair something, strict protocols need to be followed to ensure safety. Moreover, it
is definitely not efficient in case of frequent human interruption of the workspace,
and it is expensive to build cages and integrate additional safety devices. A need
for safety, shared workspace, and inexpensive installations gave birth to a new
breed of robots called Collaborative Robots. Current Collaborative Robots need
to be conservative to ensure safety in the vicinity of human beings. This work
proposes a collision-avoidance framework that focuses on providing adaptability
to the existing technology. A mature human-robot interaction requires advanced
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(a) Fenced Robot for Safety (b) New Gen Universal Robot

Figure 1.5: Motivation towards Collaborative Robots

collision handling strategies, motivating the development and integration of reactive
motion generation strategies. Let us discuss the current scenario of Collaborative
Robots to position our framework in the state of the art.

1.2.3 Collaborative Robots

The world Collaboration literally means the action of working with somebody to
create or produce something. Though collaborative robots share the same goal of
regular industrial robots, the functionalities and workings necessary for a robot to
be called collaborative depend on the kind of safety features. According to the
international standards ISO10218, there are four kinds of features that qualify a
robot as collaborative in nature [Fryman 2012].

1. Safety Monitored Stop: The robot needs to stop moving when a human
worker gets into the restricted zone of safety. The proximity of the robot is
monitored using external sensors to ensure safety of the workers without the
need of a cage. The robot is stopped by switching on the brakes, instead of
shutting it down interrupting its behavior, which allows the worker to perform
his task in the shared workspace. It is reasonably efficient if the frequency of
human interruption is minimal. This safety feature is the easier to implement
in regular industrial robots.

2. Hand Guiding: This collaborative feature of the robot is an additional
control mode that can be added in regular robots with an obvious necessity
to detect applied forces on the arm. As the name says, a human can guide
the robot by moving the tool around to learn scenario specific behaviors. A
force torque sensor is used to measure these forces applied on the robot tool.
The limiting aspect is that this type of collaboration works only in hand
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(a) Baxter Robot (b) KUKA iiwa (c) ABB Yumi

Figure 1.6: Collaborative Robots

guiding control mode, requiring the robot to safeguarded in the other control
modes. This feature is very useful in developing applications without explicit
programming.

3. Speed and Separation Monitoring: An improvement of the “safety mon-
itored stop” feature is to adjust the speed of the robot when a worker is
nearby. These regular robots use a vision system to detect the workers pres-
ence. In this case they operate at the stipulated speed, which is usually slow,
and stop completely if a worker gets too close. The zones close to the robot
are gradated with different robot behaviors depending upon the proximity.
The new ANSI/RIA standards dictate a maximum end-effector speed of 250
mm/s when the distance between the robot and human beings is less than a
minimum separation distance, which is determined by risk assessment of the
setup and the application [Michalos 2015].

4. Force Limiting Robots: These are non-regular robots specially designed
to be safe, so they do not need any other extra device to ensure safety. These
robots react to any abnormal force that they detect with safe and adaptive
motion behaviors. They are designed to dissipate impact forces thanks to their
rounded shapes and the absence of sharp edges. These robots work within
regulated force and energy limits, which can be applied without any harm.
Before their deployment in the industry, they require a risk assessment veri-
fying i) the severity of injury, ii) the possibility of occurrence and avoidance,
and iii) the frequency of exposure. A direct connection with the worker and
its ability to be compliant makes it look more collaborative in nature when
compared to other robots with limited features. In terms of functionalities,
these robots can measure forces in the joints, which allows the detection of
unexpected contacts.

Universal Robots launched a series of cobots such as UR5(2008) and UR10(2012)
followed by UR3(2015), the smallest cobot in the market. These robots are known
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for increasing productivity without causing injuries, making Universal Robots the
largest collaborative robot manufacturer. Rethink Robotics launched Baxter(2012),
two 7-degree-of-freedom arms with hand guided training to intuitively program
the robot behavior without explicit programming (See Fig. 1.6 (a)). Later in
2015, they launched Sawyer, an extension of Baxter having larger workspace
and better repeatability. Though the robot has good safety features, its shaky
and irregular motions make it more a lab platform than an industrial prod-
uct [Bélanger-Barrette 2015]. The LBR iiwa by KUKA, promoted as the first sensi-
tive robot produced in series, can perform adaptive assembly tasks such as plugging
hoses on the connector and human collaborated assembly exploiting torque sensing.
As shown in this video, the workspace is separated into two areas: with and without
permissible contact. In the contact permissible area, reduced velocities and force
detection are implemented to ensure safety.

1.2.4 Motivation and Objectives

Though reduced velocities and compliant control are a simple way to ensure safety
on collaborative robots, they do it in a conservative way: the fact that human be-
ings do not engage with the robot all the time slows down the production process.
The motivation of our work is to remove the barriers that separate permissible and
non-permissible contact area. To do so, we want to implement adaptive behav-
iors by applying advanced perception and intelligent control. Force limited robots
can feel contact forces, but they cannot detect an oncoming object if they don’t
have a proximity sensor. Also manipulating unstructured environments requires a
good awareness of the surroundings. Visual sensors can be used to detect obsta-
cles, but the continuous computation of the robot-obstacle distance after fitting an
approximate model is computationally expensive.

A fast obstacle avoidance using on-board sensors is essential to remove physical
cages and multiple control modes, without compromising safety, nor performance.
We propose a framework that uses proximity sensors for dynamic obstacle avoid-
ance. My contribution was the development of a reactive controller as a ROS-based
component.

1.3 Towards Robust Balance Control

To motivate the necessity of robust balance control, this section discusses the evo-
lution of humanoid robots and the current challenges preventing the deployment of
humanoid robots in real working environments.

1.3.1 Evolution of Humanoid Robots

Humanoid robots are robotic mechanisms whose kinematics structure resembles the
one of human beings, with a head and a torso bridging two arms and two legs. Many
variants exist, considering only certain parts of the human body, but we focus on

https://www.youtube.com/watch?v=Dh36aVOIkJI
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legged robots with arms in this thesis. The anthropomorphic shape of these robots
helps their social acceptance, making human-robot interaction feasible [Fink 2012].
Also, the potential abilities of humanoids could make them suitable for rescue or
disaster recovery scenarios. All these aspects make investment on humanoid robots
important in robotics research.

In the beginning, humanoid robots were only controlled using traditional
joint position control methodologies similar to industrial robots focusing only
on precision tasks. WABOT-1(1973), from the University of Waseda, was the
first humanoid robot to walk, communicate, visually recognize objects and ma-
nipulate them [Kato 1973]. The same laboratory lead a series of develop-
ments leading to WABIAN-2, which can walk with stretched knees [Ogura 2006].
P2(1996), from Honda, was the first robot to perform stable walking after
10 years of work on dynamic biped walking and stability control [Hirai 1998].
The next version P3 was much lighter and led to the launch of the famous
ASIMO robot in 2000, having a more friendly appearance and improved mo-
bility [Hirose 2007]. ASIMO’s impressive capabilities attracted the attention of
robotics researchers and created a perspective of humanoid robots to be exploited for
service robotics [Kaneko 2009]. Many humanoids were developed in Japan during
the last decade for both entertainment and demonstrating physical capabilities, in-
cluding the Humanoid Robotics Project series: HRP-2P(2002) [Kaneko 2002], HRP-
2(2004) [Kaneko 2004], HRP-3(2008) [Kaneko 2008], HRP-4C(2009) [Kaneko 2009]
and HRP4 (2010) [Kaneko 2011], developed by Kawada Industries in collaboration
with the Japanese National Institute of Advanced Industrial Science and Technol-
ogy (AIST). Other Japanese popular platforms include QRIO(2004) [Geppert 2004],
HOAP series(Latest HOAP-3 in 2005), H7 [Nishiwaki 2007], Kenta [Inaba 2003],
Kojiro(2007) [Mizuuchi 2007], and Kenshiro(2012) [Nakanishi 2012].

The SARCOS Research Corporation and the ATR (Advanced Telecommu-
nications Research Institute International) from Japan, built the robots Erato
DB (Dynamic Brain) based on hydraulic actuation in 2000 [Atkeson 2000], and
CBi in 2006 [Cheng 2007], which explores the background neural processes in
the human brain. The Korea Advanced Institute of Science and Technology
(KAIST) developed humanoid robots (KHR) since 2002, with the latest HUBO
2 (2011) [Kim 2002, Park 2005a, Park 2005b, Grey 2013] winning the DARPA
robotics challenge in 2015. Other Korean robots include MAHRU, and the AHRA
series [You 2005, Kwon 2007, Kim 2011].

The Technical University of Munich (TUM) has built the humanoid robot John-
nie [Gienger 1999], followed by an improved version called Lola [Lohmeier 2009],
known for its fast and robust motions. The Italian Institute of Technology
(IIT) has built the small-size torque-controlled robots iCub [Metta 2010] and CO-
MAN(2012) [Tsagarakis 2013]. The Spanish University Carlos III has built Rh-
1(2007) [Arbulu 2007] and its successor TEO(2011) [Monje 2011]. Pal Robotics,
a robotics company based in Barcelona, has built the humanoid robots REEM-
B [Tellez 2008], and REEM-C, a human-friendly robot in 2014 [Robotics 2014].
In 2007, Aldebaran Robotics, a French robotics company, launched Nao, one
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(a) WABOT-1 (b) ASIMO (c) Kobian

Figure 1.7: Humanoids of the first generation

(a) HRP2 (b) Kojiro (c) Kenshiro

Figure 1.8: Japanese Humanoids

of the most popular small humanoid robots in the world, allowing several lab-
oratories to work on humanoids with a smaller budget [Gouaillier 2009]. The
same company presented a torque-controlled child-size robot, called Romeo. The
DARPA Robotics Challenge (DRC), a competition funded by the US Defense
Advanced Research Projects Agency (DARPA), was held between 2012 and
2015. This has motivated the development of new humanoid robots, such as
CHARLI(2010) [Knabe 2013], THOR(2014) [Yi 2015], CHIMP(2013) [Stentz 2015],
and Valkyrie(2013) [Radford 2015].

Most of the robots mentioned above are rigid, and fully actuated (i.e. each
joint can be independently controlled) by electric motors. Compliances are
sometimes used in the feet, to attenuate impacts with the ground while walk-
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(a) SARCOS (b) CHIMP (c) Valkyrie

Figure 1.9: Advanced Humanoid Robots

ing. These robots mostly use traditional high-gain position-control methodolo-
gies requiring a precise robot dynamic model. For walking and balance control,
the zero moment point (ZMP) concept [Vukobratović 1972] has applied to many
bipeds [Hirai 1998, Kaneko 2004, Grey 2013]. Advanced robots are expected to
perform dexterous interactions in unstructured environments. High-gain position
control severely limits the capabilities of these systems, as it does not allow them
to be compliant, and thus adapt to the environment in case of modeling errors.
For instance, in a jumping task the feet need to be compliant. The same can be
observed in drilling tasks, where the robot hands need to apply force on the wall
with a driller, motivating a need for compliant control in humanoid robots. Torque
control has gained much attention in recent years for its ability to make robust and
compliant interactions with the environment and human beings resulting in greater
safety. Human safety is a crucial issue that does not allow service robots, either in
mobile or humanoid form, to be commercialized as domestic robots. Higher com-
pliance brings automatic adaptation to un-modeled and uncertain environments,
making interactions safer than for traditional position-controlled robots. The inter-
est in torque control has led to a new generation of humanoid robots with torque
sensing. Even though joint torques cannot be directly measured in older platforms
such as HRP-2, iCub, HRP-4 and Asimo, torque control has been implemented
in [Del Prete 2016b, Nori 2015, Khatib 2008].

In 2012, Boston Dynamics has built the hydraulics robot Petman [Nelson 2012],
and then a series of Atlas robots starting from 2013. The demonstration video of
Atlas in 2016 illustrated the powerful capability of this hydraulic robot by perform-
ing tasks which were impossible for previous robots. Hydraulic actuation provides
high bandwidth control and high power density, with the price of huge power re-
quirements and noisy hydraulic pumps. High un-modeled friction/stiction makes
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it harder to control and also the high strength of actuators does not allow safe
human-robot interaction. Series elastic actuators are also used by some humanoid
platforms to implement torque control: StarlETH from ETH [Hutter 2012], CO-
MAN [Tsagarakis 2013] and WALKMAN [Negrello 2016] from IIT, Hume from Hu-
man Centered Robotics lab [Slovich 2012], and M2V2 from IHMC [Pratt 2008].
The deflection in the spring is measured to compute the torque, and regulated to
control the robot. Series elastic actuators are mechanically robust, shock absorbing
and energy efficient [Kormushev 2011].

For certain applications, electrical drive units with torque sensors are an even
better choice, as they allow for both stiff position control and controlled com-
pliance, along with less acoustic noise and low maintenance. DLR’s advanced
Light Weight Robot (LWR) technology [Hirzinger 2002] has resulted in the de-
velopment of the Rollin’ Justin, a humanoid upper body, and the DLR biped
robot [Ott 2010]. LWR drives were exploited in such a way that it does not re-
quire any customization to develop a complete humanoid robot specifically for a
purpose such as walking or running. TORO, a torque-controlled humanoid robot
with DLR-Biped legs can perform multi-contact interaction and dynamic whole-
body motions [Englsberger 2014]. Each joint of the robot is equipped with both
torque and position sensors, which makes it appropriate for torque control. DURUS
from SRI [Hereid 2016] is another humanoid robot equipped with torque sensors and
an efficient energy transmission system with high mechanical compliance at the an-
kles. Compliance is an important aspect in the design of humanoid robots. A
typical task scenario of humanoids requires a mixture of precision and compliance
in control. High stiffness is required for precision tasks, such as manipulation and
foot positioning, which can be achieved by high gain position control. Low stiff-
ness is required for compliant interaction with unstructured environment or human
beings, which can be achieved by low gain force control. Ideally, we need a robot
that can handle both the control with ease, which leads to the idea of developing
controlled (active) compliances rather than just mechanical (passive) ones.

1.3.2 Humanoids in Real Environments

Even though there exist a large number of humanoid robots, their applications are
rather limited. The DRC competition challenged the limits of humanoid robots
by putting them in complex scenarios. It has been a great milestone in terms of
the amount of attention received and the participation of teams from all around
the world. After a first pre-selection in the DRC simulation, 16 teams managed to
contest in the trails, consisting of a rich set of tasks: driving a utility vehicle, loco-
moting across rubbles, removing debris, manipulating various tools such as valves,
fire hoses and more. TEAM Kaist has won the contest with their robot DRC-
HUBO. Hubo’s transformer design providing the ability to switch between bipedal
walking and rolling on wheels made them perform faster [Guizzo 2015]. Though
the DRC has encouraged humanoid research labs to deploy the current technologies
on their robots to showcase their capabilities in complex and unstructured envi-
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(a) ATLAS (b) TORO (c) TALOS

Figure 1.10: Latest Humanoid Robots

Figure 1.11: DARPA Robotic Challenge Illustration

ronments, we observed a variety of problems including failed task attempts, robot
inactivity for longer period, and human operator mistakes [Atkeson 2016]. The
contest has shown us how difficult it is to deploy humanoids in reality, in spite of
all the technologies working in controlled environments or in simulation.

There are several interesting problems to overcome to make the technology
mature enough to be used in reality. Different aspects need to be considered when
discussing these failures.

• Robot Design: The mechanical design of the robot has influence on the kind
of failures it encounters with the environment. Walking on a flat surface is
different from rough surfaces or ground full of rubbles. An appropriate me-
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chanical design that can adapt to unstructured environments for locomotion
is necessary to eliminate failures. The transformer design of Hubo has been
a clear example of this concept. The wheels allowed the robot to navigate in
moderately rough terrains, eliminating the risks of fall associated to walking.
A systematic way to combine wheels, limbs and tracks can breed a new kind of
humanoid robots for disaster handling. Another important mechanical detail
is the ratio between feet size and height of center of mass which affects the
stability of walking robots.

• Behavior Design: The generated motion behaviors should be robust to hard-
ware failures. The kind of behaviors that we choose have a crucial impact
on the failures as well. This means that robots should be able to handle
variations in the task, making the behavior robust. The generated motion
behaviors do not fully exploit the environment to locomote. Humanoids have
arms that could be used to rest or hold static or rigid objects in the scene to
support locomotion. For instance, it is natural to hold the railings to climb up
the stairs, which significantly reduces the amount of actuation needed in the
joints. Most robots have shown no ability to locomote using external contacts.

• Planning and Control: Humanoid robots are redundant systems with more
than 30 degrees of freedom, which makes their whole-body control complex.
Also, the pose of the robot can be only controlled indirectly by appropriate
joint motions and its interaction with the environment, making these robots
under-actuated. Making and breaking contacts with the environment makes
the motion generation problem even harder because it introduces discontinuity
in the derivative of the robot dynamics function. Switching control behaviors
due to physical contact, joint limits, or kinematic singularities, challenges the
limits of optimization solvers, resulting in discontinuous control trajectories.
All these problems make it easy for the robot to lose its balance.

• Error Detection: Robot falls are mostly caused by errors generated by the sys-
tem itself rather than perturbations from the environment. Detecting errors
earlier can give enough time to take appropriate control actions to maintain
balance. Though there are strategies available to handle external perturba-
tions (so-called ’Push-Recovery’ strategies), robot generated errors are given
less attention. Aborting the current behavior after detecting errors can work,
but there is a necessity to handle them systematically.

These aspects show the challenges of humanoid robots, and the need for various
components to work appropriately to be robust to failures. For legged robots,
balancing is an essential safety constraint, and has been our motivation to focus on
robust balancing under model uncertainties.
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1.3.3 Motivations and Objectives

Balancing a humanoid without any failures is difficult as it would require a perfect
robot model. Humanoid robot models are typically less accurate due to a variety
of reasons:

• The high number of degrees of freedom and the impossibility to take the robot
apart to measure the parameters of each link makes the parameter identifi-
cation problem harder. Moreover small errors at each link can accumulate to
large errors at the end-effectors.

• The rigid body assumption is violated due to the link and joint flexibilities,
which are typically higher than in industrial manipulators mostly due to load-
ing because of gravity when standing.

• The extended use of the robot, or the replacement of its components, intro-
duces small parameter variations, which are hard to model.

• It is challenging to model the interactions between foot and contacts which
depends upon the nature of the ground surface.

The Center of Mass (CoM) of the complete robot plays a crucial role for bal-
ance control. Most balance control strategies are indeed revolving around it. This
requires an accurate computation of the robot CoM, but due to modeling errors at
each link, a model-based estimation of the CoM position and velocity may not be ac-
curate enough. These errors affect the robot balancing, and can be the main reason
of failure of the control algorithm. This scenario defines the context of the second
part of this thesis, which presents a computationally-efficient optimization-based
controller that account for these uncertainties in the balance of the robot.

1.4 State of the Art

In this section we discuss the current state of the art of motion generation in
robotics, providing the basis for the inverse-kinematic and inverse-dynamic con-
trol techniques used in the next chapters.

Control methodologies generally define a control law that generates feasible
motions, with respect to robot and environmental constraints, to achieve one or
more given tasks. There are a variety of methods to generate motion depending
upon the robot, the environment and the task complexity. The control of humanoid
robots is particularly challenging because of their kinematic redundancy and their
dynamic complexity.

• They have a non-trivial kinematic tree structure, with an essential need to
stabilize the position of their center of mass (CoM) with respect to the contact
locations, while executing other tasks. In simple words, a humanoid robot
cannot walk or run without knowing how to balance itself while in motion.
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• The dimension of their task space typically does not equal the dimension of
their actuator space. Typical tasks consist in controlling the position and
orientation of an end-effector (i.e. 6 dimensions), while a humanoid robot has
more than 30 degrees of freedom.

• Humanoid robots are under-actuated systems, which means that a subset of
their state (i.e. their 6d pose with respect to the inertial frame) cannot be
controlled directly, but only as a consequence of their joint actuators.

• The controller must handle the local interactions with the environment, while
reaching the global goal. The combined workings of both a motion planner
and controller results in a complete working application.

In the following we discuss the three main control methodologies used in indus-
trial and legged robots: kinematic control, dynamic control and optimal control.

1.4.1 Kinematic Control

Kinematic control is one of the most used control techniques for precise robot con-
trol. In this section, we will briefly discuss the basics of kinematic control, the shift
to task based control which forms the basic foundation for our collision avoidance
framework proposed in chapter 2.

Basics of Robot Kinematics Kinematics is the study of movement of kine-
matic chains. It focuses on the geometry, ignoring the dynamic properties of the
system, such as mass, inertia and the forces/torques that generate the motion.
Kinematic control relies on the relationship between position, velocity and accel-
eration of the joints and the links of the system. These relationships of course
depend on the kinematic structure of the robot. The joint space of a robot with
n degrees of freedom is an n-dimensional manifold Q. The variation in an op-
erational point x can be represented by a twist ξ, comprising linear and angular
velocities [Featherstone 2014, Murray 1994]. An operational point is an arbitrary
point on the robot that is required to perform a desired motion or achieve a ma-
nipulation task or exert a desired force in the environment. The control model can
be defined in four different ways:

• Forward Kinematics: Given a joint configuration q ∈ Q, find the pose of an
operational point x ∈ SE(3) such that x = f(q), where f : Q → SE(3) is the
forward-kinematics function.

• Forward differential kinematics: Given the joint velocities v ∈ Tq(Q), find
the twist of an operational point ξ ∈ se(3) such that by ξ = Jo(q)q̇, where
Jo : Tq(Q)→ se(3) is the tangent or geometric Jacobian matrix [Spong 2006,
Khatib 1987], and Tq(Q) is the space tangential to Q at q.

• Inverse Kinematics: Given a pose x ∈ SE(3) for an operational point,
find the joint configuration q ∈ Q such that x = f(q), where f : Q →
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SE(3) is the kinematic function. The Inverse Kinematics problem can be
solved analytically for certain kinematic structures, using either algebraic ap-
proaches [pau 1981, Raghavan 1993] or geometric approaches [Paden 1985,
Peiper 1968].

• Inverse differential kinematics: Given a twist ξ ∈ se(3) for an operational
point, find the joint velocities v ∈ Tq(Q) such that ξ = Jo(q)q̇. This problem
boils down to solving a (typically underdetermined) system of linear equations,
and can thus be easily solved numerically, e.g. by computing the pseudo
inverse of Jo, that is J+

o : se(3) → Tq(Q). In certain cases it can be solved
analytically [Chiaverini 1994, Chiaverini 1997, Siciliano 1999].

Kinematic Redundancy The kinematic control problem consists in reaching a
reference point, or tracking a trajectory, in SE(3) for one or more operational points,
by searching the appropriate instantaneous joint configurations q(t). Such goals are
sometimes called tasks. When the dimension of the robot n exceeds the dimension
of the task nt, the robot is said to be kinematically redundant with n − nt being
the degree of redundancy with respect to the task [Nakamura 1990]. Though kine-
matic redundancy provides flexibility in the joint space to manage the constraints
effectively, it can be complex to handle in a multi-task scenario [Siciliano 1991].
Closed-form solutions for redundant robots are not always available or difficult
to analytically compute. The approaches used in [Ali 2010, Nunez 2012] treat
the complete robot as a set of many kinematic chains making it complex and less
generic. Given the complexity of these approaches, instantaneous inverse kinematic
solvers are usually preferred. Also a controller that solves both the primary task and
the secondary tasks (at its best) is essential for handling multiple tasks in parallel
to fully exploit the redundancy of the robot. For instance, a robotic arm may have
to manipulate an object (secondary task) while reactively avoiding collisions with
obstacles (primary task). Numerical approaches are used to solve these multi-task
control problems on redundant robots.

Numerical methods formulate Inverse Kinematics as a constrained optimization
problem either with global or local constraints. Global methods search for an opti-
mal path for the entire trajectory, which is computational expensive [Baillieul 1990].
Local methods solve them differentially, computing locally optimal joint variations
dq corresponding to small end-effector variations dx to generate the joint space tra-
jectory q(t). Resolved Motion Rate Control [Whitney 1969] finds the joint velocities
v by solving the system: ẋ = J(q)v. Damped pseudo inverses [Nakamura 1986] are
used to avoid singularities and numerical issues in redundant robots, which may
appear when the Jacobian matrix has not full rank.

A more generic solution solves each task by projecting it into the null space of
the Jacobians J of the tasks with higher priority [Liegeois 1977]. There are two
ways to carry out the projection systematically.

• Task Weighting/Soft priorities uses weighting to modulate the task space by
constraining the joint space [Sciavicco 1987]. Task conflicts are managed by
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assigning weights to each task, finding a trade off between the different tasks.
Proper tuning specific to the scenario is essential for this methodology.

• Task Prioritization/Hard Priorities strictly prioritizes the tasks, ensuring that
the lower priority tasks do not affect the tracking error of the higher priority
tasks [Nakamura 1987]. A systematic framework for a multi-task scenarios is
proposed in [Siciliano 1991], which numerically computes v to minimize the
task errors in a prioritized way.

Both these approaches are quite popular in the control of redundant systems.
Task Weighting methods [Tevatia 2000, Salini 2009] suffer from task conflicts, re-
sulting in unsuccessful task execution, whereas Task Prioritization has a strict
priority on resolving multiple tasks leading to locally optimal results. The main
advantage of attaching strict priorities to the tasks, is the simplicity it provides
to program multiple tasks in an hierarchical fashion. Several heirarchical ap-
proaches have been developed for multiple equality constraints at the kinematic
level [Yoshida 2006, Mansard 2007, Gienger 2005]. For inequality tasks, a cascade
of quadratic programs is used to solve the stack of tasks [Kanoun 2009]. A much
more efficient implementation using complete orthogonal decomposition has been
proposed by [Escande 2014a]. [Jarquín 2013] proposed a solution for smooth tran-
sitions in control when the priorities are interchanged but does not deal with in-
equalities.

The controller we used for the reactive control scheme discussed in chapter 2
uses the state of the art hierarchical based control as proposed in [Escande 2014a].
The hierarchical property and the ability to handle inequality constraints provide
a way to deform the trajectory in case of unforeseen situation such as a collision
with obstacles in the vicinity. Collision avoidance provide safety and is of high
priority when compared to the main task such as manipulating an object from the
workspace. There are other safety tasks which are basically inequality constraints
such as ensuring joint position, joint velocity limits, ensuring balance in legged
robots occupying the first level of the hierarchy. This provides a way to achieve
the main task only with the available degrees of freedom after the safety tasks has
been satisfied. The formulation of these inequality constraints and the hierarchy
used to achieve a collision avoidance behaviot while executing the main task will
be explained in chapter 2.

1.4.2 Dynamic Control

Applying dynamic control helps in advanced interaction with the environment for
dynamic tasks such as balancing, jumping, or running for humanoid robots. In this
section, we will briefly discuss the basics of dynamics control that will prepare us
for the proposed robust controller strategy discussed in chapter 3.

Basics of Robotic Dynamics Dynamics is the study of the relationship between
the motion of the kinematic chain and the generalized forces acting on the system.
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The generalized forces include the joint torques for rotational joints, the joint forces
for prismatic joints, and also the contact forces. This relationship allows to control
the robot at a dynamic level, resulting in a better control of physical interactions.
Dynamic parameters such as length, mass, and inertia of each link need to be known
in this kind of models. In a robot dynamic model, the motion is defined by joint
acceleration v̇, and operational point acceleration ξ̇ in the task space. The two main
problems in robot dynamics are:

• Forward Dynamics: find the joint accelerations of the robot given the gener-
alized forces.

• Inverse Dynamics: find the generalized forces given the joint accelerations.

The two main approaches to model the robot dynamics are:

• Lagrange: this is an energy-based approach resulting in a closed-form expres-
sion of the dynamic equations [Uicker 1969, Kahn 1969, Bejczy 1974]. It has a
clear separation of each component, but it is very expensive for implementing
control schemes. [Hollerbach 1980] presents an efficient formulation, but still
not as efficient as the Newton-Euler algorithm.

• Newton-Euler : this recursive algorithm [Orin 1979] does not clearly separate
components by describing the combined translational and rotational dynamics
of rigid bodies. The recursivity of the apprach makes it computationally
cheaper. [Featherstone 2010] explains the most common algorithms such as
the recursive Newton-Euler Algorithm (RNEA).

[Spong 1992] uses an hamiltonian approach for the analysis of the robot dynam-
ics and there exist certain numerical methods to integrate hamiltonian equations
efficiently. Alternatively, centroidal dynamics [Orin 2013, Orin 2008] models the
dynamics of the CoM of the robot capturing the constraints imposed by contact
forces on the CoM making the dynamic model very simple. But it does not in-
clude joint position and torque limits which makes the model approximate failing
to describe the angular momentum of the robot. Humanoids walk with very little
angular momentum, which is typically supposed to be zero when using centroidal
dynamics model. In contrast to the classic joint space formulation, the operational
space formulation [Khatib 1987] defines the motion using the task space accelera-
tion, which requires the forces to be formulated as generalized forces in the task
space.

Dynamic Control in Humanoid Robotics There are two main categories of
torque-based control: impedance control and inverse dynamics control. Impedance
control [Part 1985, Albu-Schäffer 2007, Ott 2008, Schäffer 2008] is known for its
passivity properties, which guarantee stable interactions with the environment.
Inverse dynamics (ID) control [Del Prete 2016b, Buchli 2009, Righetti 2013a] re-
lies on a complete dynamic model of the robot to ensure good trajectory tracking
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while maintaining high compliance, thanks to the low feedback gains. Recent ID
controllers use quadratic programming (QP) solvers, which allow to account for
inequality constraints, such as joint position, velocity, and torque bounds, con-
tact force friction cones, and center of pressure (CoP) limits, which are crucial
in humanoid robots. The operational-space inverse-dynamics (OSID), a generic
framework establishes the whole-body control considering balance, contacts and
other constraints. [Khatib 2004] proposes a multi-task formulation with sequen-
tial projection on the nullspaces of the tasks at each level. Strict hierarchy allows
lower priority tasks not to affect the higher priority tasks. An equivalent approach
[Mistry 2010] uses orthogonal decomposition and kinematic projections to simply
control when switching contact constraints and avoids the inversion of mass ma-
trix. [Righetti 2011a, Righetti 2011b] proposes an improved version constraining
the ground reaction forces with the friction boundaries. This framework does not
include inequality constraints, which allow a straightforward implementation of col-
lision avoidance, joint limits and visual servoing. OSID is used within optimization-
based methodologies to find optimal solutions. Quadratic Programming (QP) based
approaches are more popular for redundant systems, which allow both equality and
inequality tasks. Weighting schemes has been used in a QP-based approach that
provides robust balance [Collette 2008a]. [Salini 2011] implemented a weighting ap-
proach to compute torque commands using a sequence of prioritized dynamic tasks.
[Herzog 2013] has used an active-set algorithm to implement an inverse dynamics
control of the legs of a hydraulic humanoid robot. OSID in a strictly prioritized
QP framework has also been implemented in simulation in [Saab 2013].

The previous approaches focused on the robot dynamics, but did not control the
angular momentum, which is an important component of human agile and complex
motions [Popovic 2004]. [Kajita 2003c] proposed to control the angular momentum
of the robot using the inverse of the inertia matrix. Other approaches focused on
controlling the angular momentum by constraining the centroidal momentum of
the system. In [Hofmann 2009], this approach is implemented to generate appro-
priate gait movements. [Moro 2013] used an attractor-based approach to control
the angular momentum. Also [Wensing 2013] used conic optimization techniques
to control the angular momentum generating complex motions.

1.4.3 Optimal Control

Optimal Control consists in finding control laws for a given dynamical system, such
that a given optimality criterium is minimized. It can be seen as a constrained
infinite-dimensional optimization problem, which is impossible to solve in general.
When the found control law is open loop (i.e. it does not depend on the state, but
only on time) it is called Trajectory Optimization or Trajectory Filtering.

Background Optimal Control is actually an extension of Calculus of Variations
that uses optimization to find control policies. The first ever optimal control solution
was proposed for the brachystochrone problem in Bernouli’s work [Sussmann 1997].
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Though there were early contributions to the theory of optimal control by Newton,
Euler, Leibniz, Jacobi, Hamilton, Bolza and many others, the formalization began
to take shape with the introduction of the Linear Quadratic Control (LQC) problem,
minimizing a quadratic ojective function [Wiener 1949]. The next milestone was
the birth of Dynamic Programming (DP), a recursive approach to solve discrete
(time and space) optimal control problems, resulting in a discrete version of the
Hamilti-Jacobian Bellman(HJB) equation.

HJB formalizes the optimization problem as a nonlinear partial differential equa-
tion. The solution of the HJB equation is the value function, which gives the min-
imum cost as a function of the initial state. When solved locally, the HJB is a
necessary condition, but when solved over the whole state space, the HJB equation
is a necessary and sufficient condition for an optimum. The solution is open loop,
but it also permits the solution of the closed loop problem. The HJB method can
be generalized to stochastic systems as well.

Pontryagin maximum principle [Pontryagin 1987] completely formalizes the
problem based on the calculus of variations considering path-wise constraints on
the control. In optimal control problems, the final goal is to find a trajectory. The
HJB approach is a good way to find a local optimum, but it does not actually
constitute a solution, whereas Pontryagin maximum principle gives an actual so-
lution [Bertsekas 1995]. The Linear Quadratic Regulator (LQR) and the Linear
Quadratic Gaussian (LQG) have been formulated to design optimal control policies
in [Kalman 1960], which marks another important step in optimal control.

There are two numerical approaches used to handle optimal control problems:
direct and indirect methods. In direct methods, the state, control, and the objec-
tives are approximated using a relevant function such as piecewise or polynomial
approximation. The control problem is transcribed to a nonlinear optimization
problem with the coefficients of the approximated functions as optimization vari-
ables. In indirect methods, the first-order optimality conditions are generated using
calculus of variations, resulting in a two or a multi-point boundary value problem
to be solved.

Model Predictive Control (MPC) also known as Receding Horizon Control, is
a popular automatic control methodology in the industries. At each control cycle,
it solves a new finite-horizon optimal control problem, using the current state of
the system as initial state in the problem. Only the first part of the computed
control trajectory is then applied, while the rest is discarded [Richalet 1978]. The
high-level task goals are specified as simple cost functions, and the MPC controller
generates the behavior details and the control law automatically. The MPC con-
trol also avoids the extensive exploration by generating control policies online. The
controller predicts the future states of the system to decide the best current control
action based on the pre-defined criteria. Differential Dynamic Programming (DDP)
is an efficient numerical scheme for direct optimal control, generating locally-optimal
trajectories [Jacobson 1968]. A hybrid method with constant local controllers was
presented in [Atkeson 1994], to speed up global optimization in dynamic program-
ming. An extension was later proposed in [Atkeson 2003], which used second-order
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DDP models to make locally-linear controllers.

Optimal Control in Humanoid Robotics For humanoid robot walking, the
Operational Space Inverse Dynamics or Inverse Kinematics cannot properly handle
the constraints of the CoM accelerations, thus generating very conservative mo-
tions. Optimal control can find trajectories connecting given initial and final pos-
tures subject to given constraints. MPC is extensively used in humanoid robotics.
[Kajita 2003b, Herdt 2010] used a Linear Inverted Pendulum Model (LIPM) to gen-
erate walking motion for a humanoid robot. Though it is a complex machinery and
it heavily relies on models, the selling point of optimal control is that it can account
for all the system constraints. The key problems limiting the use of optimal control
in humanoid robotics are the large number of DoFs and the need for fast reactions,
which make computational time a critical resource.

In multi-task scenarios, a weighted average of the task errors can be used
to find a compromise between the possibly-conflicting tasks. Choosing the right
weights for each task may however be challenging [Dimitrov 2011]. Large weights
can also produce numerical errors, making these control schemes hard to use in
practice. In [Del Prete 2014], strict priorities have been introduced in the opti-
mal control problem to avoid such issues. MuJoCo [Todorov 2012] is a state-of-
the-art simulation and control framework based on MPC. It has been used to
generate simulated humanoid motions, such as getting up from the ground or
rejecting disturbances [Tassa 2012]. The use of contacts in the environment in-
creases the controllable space to successively achieve the goals [Lengagne 2013]
generating non-coplanar contact motions. Parkour motions [Dellin 2012], kicking
a ball [Miossec 2006] and lifting weights [Arisumi 2008] are examples of complex
behaviors generated using optimal control.

Different variants of DDP have been used in humanoid robots. Control-limited
DDP [Tassa 2014] allows for box constraints on the control inputs, and it has been
applied on a simulated humanoid robot. Square-root DDP [Geoffroy 2014] is an
efficient variation of DDP that exploits the least-squares form of the cost func-
tion, showing also that IK and OSID are special cases of optimal control with-
out preview horizon. DDP has also been used to generate simulated sample tra-
jectories to train a neural network based policy [Levine 2012]. Behaviors such
as walking, running, hopping and swimming have been generated using this ap-
proach. Robust walking behaviors have been generated using dynamic program-
ming [Whitman 2013], relying on multi model and learning based dynamic pro-
gramming variants. Steep climbing motions have been generated in [Noda 2014],
which used the Body Retention Load Vector index for modeling severity of physical
constraints, i.e. bounds on contact forces, moments and joint torques. Optimal
control has also been treated as an offline control problem in [Schultz 2010] using
multiple shooting to generate energy efficient running. Walking motions have been
generated without using a pattern generator by optimizing joint velocities, torques
or ZMP constraints [El Khoury 2013, Koch 2012].
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Motion planning is also combined with optimization for collision-free naviga-
tion in a cluttered environment [Desai 1999, Kalakrishnan 2011]. Motion planners
for high-DoF systems generate trajectory in two stages: planning and optimiza-
tion. There are three well-known and similar techniques in this domain. CHOMP
(Covariant Hamiltonian Optimization for Motion Planning) uses covariant gradient-
descent techniques, resulting in a planning algorithm completely relying on trajec-
tory optimization [Zucker 2013]. Starting with a naive trajectory, CHOMP opti-
mizes the trajectory while reacting to the obstacles in the environment. STOMP
(Stochastic Trajectory Optimization for Motion Planning) is very similar, except
for the use of stochastic perturbations to generate trajectories without computing
the Jacobian [Kalakrishnan 2011]. ITOMP (Incremental Trajectory Optimization
for Real-Time Replanning in Dynamic Environments) incrementally updates the
trajectory online, but it can produce suboptimal solutions because of the time con-
straints in the solver [Park 2014].

The high dimensionality of humanoid robots is one of the main challenges to
get optimal control working in real time. Current optimal control solutions are
time consuming and encounter numerical problems, which is still an open issue in
robotics.

1.5 Chapter Overview

The thesis describes two main contributions, respectively in Chapter 2 and Chap-
ter 3. Chapter 2 presents a reactive collision-avoidance control scheme using prox-
imity information from the skin sensors, which has been tested on a UR5 robot.
Chapter 3 presents a robust balance controller that accounts for inertial parameter
uncertainties. Finally, Chapter 4 concludes the thesis and discusses the future work.
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Chapter 2

Collision Avoidance Framework

Current collaborative robot arms allow for more flexible work cells, where they
safely collaborate with human operators augmenting productivity in tasks difficult
for traditional automation. However, current robotic solutions for safe interaction
simply stops the robot motion when a collision is detected. This reduces the produc-
tivity in an operational setup in which unintended, safe collisions can happen often.
Active contact evasion by the robot arm is desired so that the production process
continues despite regular interferences and path obstructions, without compromis-
ing human safety. In the framework of the EU project Factory-in-a-day we have in-
vestigated dynamic collision avoidance techniques that exploit proximity-measuring
robot skin. We have used reactive motion control to generate collision-free motions
in a real-time industrial manipulation setup. These technologies have been inte-
grated into a unique framework for dynamic collision avoidance, which has been
successfully tested on a UR5 robot. The primary contribution of this chapter is
thus a reactive control mechanism, built upon a state-of-the-art inverse-kinematics
Hierarchical Quadratic Programming (HQP) solver. This chapter summarizes the
above-mentioned collision avoidance framework, with a special focus on the reactive
control components.

2.1 Introduction

A need for robotic solutions, particularly in the small and medium scale enterprises
(SMEs) is becoming increasingly prominent. Automation and robotics promise to
reduce production costs and increase productivity. However, traditional automation
implies an investment prohibitive for SMEs, whose activities mainly involve small
batches of production and high variety of products, for example due to a seasonal
nature of their operations. Concretely, tasks such as assembly, machine filling or
packaging, can be automated with a robot in the work cell. However, economic fea-
sibility requires to reduce the robotization costs. As it was pointed out earlier, the
Factory-in-a-day project [Wisse 2013b] focuses on reducing the robotization cost by
reducing the cost of system integration and the installation time. The key idea is to
develop generic and flexible robotic solutions so that they can be quickly re-installed
and configured to another temporary product line. To achieve this flexibility and
maintain acceptable levels of productivity, the Factory-in-a-day approach is to au-
tomate the easy 80% of the tasks and leave the hard 20% for human co-workers.
Robot manipulators provide power, repeatability and extended work-space, while
the human operators provide flexibility and problem solving capabilities. In addi-
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tion, fenceless collaborative robots save space and installation cost. However, this
approach requires a very high level of safety and agility; the robots should be aware
of any obstacle (including dynamic obstacles such as human co-workers) and be able
to avoid collisions. Whereas current co-bots guarantee safe contacts, they degrade
the performance of the work cell by stopping the production.

This chapter presents the Factory-in-a-day framework, which relies on collision
avoidance and skin sensors to make robots able to avoid (dynamic) obstacles while
continuing their work. The chapter is structured as follows. Section 2.2 summarizes
the state of the art in collision avoidance. Section 2.3 presents the framework, each
of its individual components, and their interconnections in a manipulation scenario.
Section 2.4 presents the main contribution, which is the reactive motion control part
of the framework. Section 2.5 demonstrates collision avoidance using the proposed
methodologies on a real robot setup. Section 2.6 discusses the merits and demerits
of the proposed methodologies along with conclusive remarks.

2.2 Collision Avoidance

The main motivation behind collision avoidance is to ensure safety of the robots,
its connected components and, most importantly, the human beings and the envi-
ronment. Also, a secondary motivation to avoid collision is to allow the robot to
achieve its task efficiently. Collision avoidance is one of the fundamental problems
of robotics. It consists in planning a sequence of actions that the robot should take
to avoid a detected obstacle in the near future. This means that there is no need to
avoid collisions if there are no oncoming collisions, giving rise to the sub-problem
of collision detection. Clearly, the collision avoidance quality is highly dependent
on the collision detection quality. This simple subconscious mechanism that allows
human beings to be aware of obstacles and avoid unintended contacts, is actually
extremely complicated to automatize in robots. Even if collisions are handled at the
planning level, this is not sufficient if un-modeled obstacles appear in the environ-
ment, or obstacles start moving. Robots should continuously perform the sense-act
cycle based on the instantaneous observations of the world to avoid collisions while
executing a task. Moreover, the collision avoidance algorithm has to take into ac-
count a variety of aspects, such as the kinematic and the dynamic capability of the
robot and its ability to detect collisions at run time. In the following, we briefly
discuss the state of the art of collision avoidance, to position our framework.

2.2.1 State of the Art

To start off, we want to highlight that by collision avoidance we do not necessarily
mean avoiding unintended contacts with the obstacles. While collaborating with
robots, it is necessary for human beings to be in contact with the robot to teach or
guide them through the work flow. As the main concern of collision avoidance is
safety, a collision can be avoided even after contact is made. We can thus identify
two kinds of behaviors to avoid collisions:
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• Extrinsic behaviors: These active behaviors avoid the contact with the obsta-
cles. They require a continuous tracking of the distance between the robot
and the obstacles to take an appropriate action for avoiding contact.

• Intrinsic behaviors: These approaches are based on the idea to dissipate the
contact forces applied on the robot links. They require force/toque sensors
to measure the interaction forces and thus be compliant in case of collision to
minimize damage. To ensure safety with this kind of behaviors, the speed of
the robot must be bounded to give it enough time to react.

The collision avoidance problem has been researched extensively since the 80’s,
resulting in a variety of methodologies tackling the problem either at the planning
or at the control level. Let us have a look at the existing approaches.

2.2.1.1 Extrinsic Approaches

Potential Field Methods Potential field methods are one of the most pop-
ular techniques used to date. The first real-time collision avoidance algorithm
based on potential fields was introduced in [Khatib 1986], and later extended
in [Warren 1989, Ogren 2000]. The control laws are defined based on artificial
attractive and repulsive fields, which can pull the robot towards the goal, while
pushing it away from the obstacles. This simple approach allows to generate re-
active and complex motion behaviors by modifying the trajectory depending on
changing environmental conditions. In its extended version [Warren 1989], a col-
lision free path is generated by a path planner by defining the potential functions
around obstacles in the configuration space. The linear path connecting initial and
final state is exposed to the artificial fields, resulting in incremental deformations.
Some local minima are avoided because planning is done at a global level, consid-
ering the entire path. However, defining potential functions in configuration space
becomes challenging for systems with many degrees of freedom. In [Ogren 2000],
coordinated motions between the base and the arm have been generated to reach
an end-effector goal, while avoiding the obstacles encountered by the base.

There are different formulations of potential fields with different semantics de-
pending on the kind of robot and the goals of the scenario. This has led to imple-
mentations mostly depending on the so-called separation distance between robot
and obstacles, but also on other factors, such as the human gaze direction, or even
the affective state of the human nearby. The affective state describes the psycho-
logical experience of emotions. In the safety framework proposed in [Kulić 2007],
the controller uses a danger index based on the separation distance, the velocity,
and the affective state of the user. The affective state of the human is inferred using
skin conductance and heart rate measurements. The controller in [Calinon 2010]
used a risk criterion based on the human gaze direction, in addition to the separa-
tion distance to the human head to guide the robot motion without compromising
safety. The collision avoidance method in [Haddadin 2010] is not only based on
the virtual forces caused by the separation distance, but also the real forces due



30 Chapter 2. Collision Avoidance Framework

to the physical contact. They used virtual springs and dampers in the workspace
to generate collision-free trajectories with an impedance controller. The potential
function in this controller depends also on the direction of the approach, smoothing
the motions and avoiding unnecessary accelerations. Another interesting framework
proposed in [Flacco 2012, De Luca 2012] used two collision avoiding schemes: one
for the end-effector, and the other for the surface of the robot. The repulsive vec-
tor for the end-effector is considered as a repulsive velocity using a potential field,
whereas artificial forces are generated for the other points on the robot, modeled
as Cartesian constraints.

In contrast to the repulsive field definition of the obstacles, the idea of a cir-
cular field generated by fictitious current on the obstacle surface was introduced
in [Singh 1996]. This allows the robot to rotate away from the obstacles avoiding
some local minima, which is the main issue with the potential field approaches. A
hybrid method presented in [Haddadin 2011b] used an extended circular field along
with a potential field to model the interaction between the robot and a complex
environment for a 6D operational space real-time motion. A kinetostatic danger
field [Lacevic 2010] is a generalization of potential fields that captures the robot
kinematics by creating a virtual field on the robot rather than the obstacles. Kine-
tostatic safety fields [Polverini 2014] , an extension of [Lacevic 2010], includes the
geometry of the danger source and the relative motion between the danger source
and the field location to model the interaction. The safety field was experimentally
verified to avoid self collisions and human-robot collision.

Real time Adaptive Motion Planning The insight to handle dynamic envi-
ronments by exploiting both global planning and reactive motion control has re-
sulted in a variety of real-time adaptive motion planning methods. These methods
perform adaptive online trajectory generation to bridge the motion planning and
control components to handle dynamic environments. Usually the planner generates
parametrized paths that are modulated at run-time, based on the interactions with
the environment. The Elastic band framework [Quinlan 1993] represented paths
as curves in configuration space, with properties of an elastic band. The obsta-
cles had a repulsive action resulting in trajectory elongations, as an elastic band.
The main difference with respect to [Warren 1989] is that the path is deformed by
using proximity information in task space, rather than configuration space. This
makes the potential fields easier to define. However, the computational complexity
increases with the number of degrees of freedom and the geometrical complexity
of the robot, making the framework more suitable for robot with few degrees of
freedom. [Baginski 1998] proposed a fast motion planning algorithm called the BB
method, which literally means ’Blow up the robot and Bend the trajectory’. The
planner starts with an initial path and it reduces the robot size until the path is
collision free. The path is then incrementally modified repositioning the colliding
bodies to let the complete robot pass. However, this method can get stuck in local
minima and it cannot incorporate local motion constraints at run time.
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The elastic strip framework [Brock 2002] is a generic and efficient framework
that integrates global motion planning and task-based control with reactive ob-
stacle avoidance. The planned motion for redundant robots can be deformed using
task-based control to execute robust collision-free motion in dynamic environments.
In [Vannoy 2008], spline functions have been used to represent trajectories connect-
ing the waypoints generated by a global planner. The parameters of the spline
functions are modified to adapt to the dynamic obstacles in the environment. The
approach in [Yang 2006, Yang 2010] uses a roadmap composed of collision free ver-
tices and edges to represent planned trajectories. In [Balan 2006], the robot and the
obstacles are modeled as spheres to generate a collision-free trajectory by searching
in the space of end-effector in predefined orientations.

Speed and Separation Monitoring These approaches are based on the idea of
gradating the space around the robot based on the distance to an obstacle. These
complex zones are used to control the speed of the robot to avoid harming the
human beings nearby. The SafeMove framework by ABB [Soenke Kock 2006] uses
programmable static safety zones to control the robot speed within recommended
limits, allowing safe interaction with human beings using extrinsic sensors. In con-
trast to static zones, [Vogel 2013] implemented varying safety zones depending on
the joint positions and velocities, increasing the efficiency of the task with more
workspace flexibility to the collaborating human beings. The interesting thing in
this work is the projection system used to display the safety zone on floor of the
room where the robot is mounted, to give a visual cue to the user about where the
robot is approaching. The speed is decreased when a human being or an obsta-
cle enters into this changing virtual space, making it very effective in industries.
[Lasota 2014] proposed a framework that eliminates the definition of conservative
safety zones by using accurate and instantaneous distance measurements to scale
down the speed of the robot using a tunable function incorporating task-related
parameters. The approach proposed in [Zanchettin 2016] addressed the loss of pro-
ductivity of [Lasota 2014] by taking advantage of the robot redundancy to ensure
safety, while maintaining the goal end-effector position. The safety region is com-
puted based on the separation distance with uncertainties in measurement, robot
velocity, and the braking distance, allowing the robot to maintain a significant
distance of separation without compromising the goal.

The main challenge in the above systems is the ability to localize human be-
ings or obstacles accurately. [Flacco 2012] used depth information from 3-d cam-
eras, such as kinect, to estimate the separation distance and the obstacle velocity.
In [Rybski 2012], the framework fuses data from stereo and range cameras to gener-
ate dynamically changing danger zones based on the robot state and the trajectory.
[Avanzini 2014] used multiple infrared distance sensors distributed on the surface
of the robot to reduce the possibility of occlusions and sense unstructured environ-
ments. The work also proposes an optimization strategy to find out the minimal
number of distance sensors and their best placements on the robot for effective colli-
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sion avoidance. As discussed before, [Lacevic 2010] used a kinetostatic danger field
criterion depending on the distance sensors information to control the robot behav-
ior. This framework allows to modulate the task hierarchy depending on whether
the danger criterion is above the safety threshold or not. For example, if the danger
metric increases because of human interference, the end-effector goal orientation is
compromised, but maintaining at least the goal position. In case the metric exceeds
the safety threshold, the controller simply abandons the end-effector goal.

Depth-Based Approaches In the last decade, the usage of visual sensors with
depth information has become essential to develop a 3d collision avoidance system
for robotic arms, even though laser scanners are sufficient for mobile robot bases.
Microsoft Kinect is a low-cost depth sensor that can record helpful 3d information
to measure distance between objects. The depth information is projected in the
robot-centric space and approximate representations of obstacles are built to mea-
sure distances. Depth data based collision avoidance implementations are quite a
few. In [Bascetta 2010], the authors presented two approaches to avoid collisions
in Cartesian space using a laser time of flight sensors—one that preserves the geo-
metrical properties of the trajectory, and another that preserves its time properties.
In [Schiavi 2009], both active collision avoidance and passive impedance control in
configuration space are discussed to improve the robot safety. [Flacco 2012] used
a classic potential field method to generate repulsive commands to avoid collisions
with a KUKA LWR IV arm in a dynamic environment. A concept of depth space in
proposed to evaluate distances between the robot and the obstacles with estimated
velocities from 3d sensors. The virtual force vectors from the distances and veloc-
ities measured using the 3d sensors are used to avoid collisions, while executing a
generic motion task. [Yang 2010, Yang 2006] presented a solution based on elastic
roadmap, claiming to generate robust and task-consistent motions for redundant
robots, but not completely verified experimentally. [Pan 2013] proposed a real-time
collision detection and distance query algorithm, which is particularly efficient in
handling large amounts of point-cloud information. Even though the algorithm has
been implemented, there is no record of a complete experimental verification and
the software is unavailable.

Optimization-Based Approaches The idea of modeling obstacle avoidance as
a linear inequality constraint was originally introduced in [Faverjon 1987]. This
approach is a nice alternative to potential fields to generate local collision-free mo-
tions for robotic manipulators. In potential-field methods, the controller generates
trajectories based on the sum of the repulsive fields coming from the obstacles, and
the attractive field coming from the target. The solution work well for few obstacles,
but it struggles in complex environment as influences of various nature are added
in a single function. Some well-known issues are [Faverjon 1987]:

• Oscillatory repulsions between opposite obstacles. This behavior can be ob-
served when a mobile robot tries to navigate through a narrows passage.
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Figure 2.1: Velocity damper constraint [Faverjon 1987]

• Higher repulsions from multiple adjacent obstacles than the repulsion from a
single obstacle due to the summation of all forces in a single function.

• Inability to generate trajectories close to obstacles.

In [Faverjon 1987], the main idea is to separate the main task from the collision-
avoidance constraints. A main task can be to follow a given trajectory, or to reach
a given posture, which can be easily formulated as a minimization of an objective
function. The collision avoidance constraints are modeled as geometric constraints
in configuration space that are not added in the objective function, allowing to
generate improved trajectories. The collision avoidance constraints are defined as
linear inequalities:

ḋ ≥ −K (d− ds)
(di − ds)

∀d ≤ di (2.1)

This technique is called a velocity damper. First of all, this constraint is active
only when the separation distance d is less than the distance of influence di. In
this case, (2.1) constrains d not to decrease too fast, so that d cannot be less
than the security distance ds. The gain K must be tuned depending upon the
application. Fig. 2.1 shows the interaction between the moving object and the
obstacle describing the velocity damper constraint. This control strategy has been
implemented on redundant systems to verify the validity of the approach.

This approach [Faverjon 1987] was later extended in [Kanehiro 2008] to han-
dle arbitrary polyhedral objects (i.e. not necessarily convex). The closest points
between the objects move discontinuously because of the non-convexity, resulting
in discontinuous velocities when a velocity damper constraint is applied to avoid
collision. The continuity in interaction is achieved by decomposing the interaction
between polyhedral objects into a set of interactions between triangular faces of the
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polyhedra and the edges of triangular faces of the polyhedra. The velocity damp-
ing constraints are generated with pairs of points between an edge and a triangle,
chosen based on the Voronoi1 regions in which the edge lies.

An often overlooked aspect of constraint-based methods is the potential in-
compatibility between the considered constraints. This problem has been thor-
oughly investigated for the case of joint position, velocity and acceleration
bounds [Decré 2009, Rubrecht 2012, Del Prete 2018]. Computationally efficient so-
lutions of this problem exist for the case of constant bounds. However, these ap-
proaches do not easily extend to obstacle avoidance because velocity and acceler-
ation bounds are not constant in Cartesian space. Recently in [Meguenani 2016],
the authors model energy related safety indicators as constraints in the controller
to ensure safety.

2.2.1.2 Intrinsic Approaches

The idea of strictly avoiding collisions may not be practical in some setups because
of a variety of reasons, e.g. robot type, sensing, necessity to guide the robot.
As a result, an appealing alternative is to focus on post-collision mechanisms to
reduce the impact of collisions and react to it. These methods use quantitative
measures to guarantee that a robot motion is not harmful to the human beings
after detection of collisions, and they react depending on the task requirement.
This is done by constraining the joint velocities, energy, or exertion of forces on
the robot body. First, let us have a look at some quantitative measures to ensure
safety in a collaborative environment, which is followed by the popular approaches
to date.

Safety Measurements The trajectory planner SoftMotion [Broquere 2008,
Broquere 2010] can generate trajectories satisfying jerk, acceleration and velocity
limits. This approach is based on the 7 segment acceleration profile [Castain 1984],
computing connected series of cubic curves for both point to point and continuous
motions. The generated trajectory is smoothed at each way point, respecting the
error and kinematic bounds in real time. The real-time capability of this trajec-
tory planner makes it appropriate to be used for reacting to unforeseen situations
online. Though the proposed planner can be used online for collaborative robot
applications [Zhao 2014], it is not complete, because it can react only if the current
joint accelerations are zero [Wahl 2010]. Rather than planning trajectories, other
approaches focused on real-time tracking and limiting the appropriate quantities to
ensure safety. The approach in [Heinzmann 2003] limits the impact forces by con-
straining the torque generated by a position controller, such that it complies with
safety restrictions, reducing the post-collision impact with human beings. To re-
duce the collision impacts, [Laffranchi 2009] implemented a position controller on a

1A Voronoi diagram is a partitioning of a plane into regions, based on a set of points in the
plane. Each region is the set of points whose distance to one of the given points is less than or
equal to the distance to all of the other points.
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single-joint series elastic actuator, limiting the system energy (kinetic, gravitational
and elastic potential energy) by modifying the reference commands online.

In [Haddadin 2012], the authors presented a unique approach based on an anal-
ysis of the relationship between the robot mass, velocity, impact geometry and
resulting injury. Previous approaches relied on the relationships with exerted forces
on the robot surfaces. On the contrary, this work carried out an injury analysis
on abdominal samples from pigs, resulting in risk curves showing a relationship be-
tween impact speed, geometry, mass and the impacted body. These risk curves have
been used to bound the robot velocity, ensuring safety in the case of unintended
collisions.

Detection, Localization and Reaction Some methodologies proposed not only
to detect, but also to localize and react to collisions in the right direction according
to the goals of the scenario. The well-known work of [De Luca 2006] detects and
localizes collisions using only joint positions, velocities, and commanded torques.
This framework incorporates a energy measure—the sum of kinetic and gravita-
tional potential energies—and generalized momentum to localize collisions, allowing
for a safe reaction. The approach in [Geravand 2013], similarly to [De Luca 2006],
detects collisions without torque sensing. This framework does not require a dy-
namic model and uses motor current measurements (instead of joint velocities) to
distinctly detect unintentional and intentional collisions. A parallel use of high-pass
and low-pass filters on the motor current measurements allows to switch between
collaborative mode or evasive mode, based on the assumption that unintentional
collisions generate a high-frequency signal, whereas intentional impacts generate a
low-frequency signal. [Golz 2015] used a nonlinear support vector machine (SVM)
to distinguish intentional and unintentional collisions using a physical contact model
and data generated from real impacts. [De Luca 2009] developed a momentum-
based collision detection system for a variable stiffness actuator without torque
sensing, similar to [Geravand 2013]. The system uses nonlinear control to gen-
tly move the arm away from the collision, while limiting contact forces by rapidly
reducing the stiffness to bring the arm to a halt.

Interactive Control There are special techniques to handle intentional collisions
that are made by human beings to collaborate with the robot. The robot should
reason about the intent of the human instead of just moving away or switching
to another control mode. [De Luca 2012] proposed to switch to a collaborative
mode based on user input, either through gestures or through speech. The contact
forces are estimated continuously to identify and distinguish between allowed and
un-allowed human contact body parts. The controller allows contacts with specific
parts (e.g. hands) for collaboration, while it avoids contacts with other parts (e.g.
the head). In an approach proposed in [Erdem 2011] for a back-drivable robot,
the system determines the intent of the human by estimating the effort based on
conservation of momentum, without measuring the joint torques or joint velocities.
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Effectiveness of Collision Avoidance Schemes [Haddadin 2008] presented a
collision detection and reaction concept with experimental analysis on human dum-
mies to compare the post-impact force time-series profiles of four intrinsic collision
reaction schemes.

1. Stopping immediately after a collision is detected.

2. Switching from position control to torque control with gravity compensation
resulting in a compliant robot.

3. Switching from position control to torque control with gravity compensation.
The difference with respect to 2) is that it uses joint torque feedback and
estimated external torques to scale down motor and link inertia resulting in
an apparently lighter robot.

4. Switching to admittance control using the estimated external torques. The
robot moves away from the collision by setting a reference velocity to the
joints opposite to the estimated external torque.

The strategies 2)-4) switch from trajectory following to sensor guided compliant
control to actively react to a potential collision. The tests verified that all the ap-
proaches succeeded in avoiding danger to human beings at velocities up to 2.7
m/s. The same control schemes were also tested for collisions with a balloon
in [De Luca 2006], in which the residual torque time-series during collision were
compared.

[Vick 2013] evaluated their post-collision strategy on an industrial robot, which
limits torques based on external forces. The effectiveness is tested in two cases:
when a human pushes a stationary robot, and when a human interferes with a robot
executing a sinusoidal motion. In the former case, the robot moves away from the
collision source to limit the contact forces. In the latter case, the robot modifies
the sinusoidal path to reduce the impact forces. [Haddadin 2011a] studied soft
tissue injuries caused by robots holding sharp tools. They carried out experiments
of stabbing and cutting motions on silicone and human beings with two control
schemes: i) stop the robot when the collision is detected, or ii) switch from position
control to torque control with zero gravity. The experiments proved to be effective
at reducing forces and avoiding injury with robot velocities up to 0.75 m/s.

Force based control using skin sensors There are post-collision avoidance
schemes using haptic sensors that can directly measure impact forces applied on
the robot [De Luca 2006, De Luca 2004] to react to the collision. [Phan 2011] pre-
sented an approach using capacitive skin sensors to detect and localize the impact
forces on the robot. Passive torsional springs have been used for variable stiffness
in the joints, making it independent of the controller bandwidth limitations. The
authors carried out an accurate comparison between skin sensors and joint force
sensors, considering various parameters such as interface friction, interface stiff-
ness, joint stiffness, and end-effector velocity, as they affect the severity of collisions.
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[Shin 2011] presented the concept of instantaneous stiffness during collisions with
experimental comparisons of peak impact accelerations at different impact magni-
tudes, on a robot using pneumatic muscles. [Killpack 2016] used model predictive
control with an impact-momentum model in the objective function to regulate joint
velocities specifically to reduce the impact forces from unexpected obstacles.

2.2.2 Remarks

In spite of a large variety of methods to avoid collisions with dynamic obstacles,
robots are still used conservatively because of the lack of maturity of these ap-
proaches. Our control scheme falls in the category of extrinsic approaches, where
the speed of the robot is adapted depending on the separation distance to the obsta-
cle. Our framework relies on infrared-based proximity sensors in skin cells to mea-
sure distance information. The main advantage of these sensors is that they provide
a direct distance measurement, rather than computing it after a computationally-
expensive and error-prone processing, which is usually the case with other extrinsic
sensors. These sensors allow us to perceive unstructured environments without the
need for modeling obstacles. Moreover, they are not subject to occlusion issues,
which can instead occur with static extrinsic sensors.

Other approaches exist that exploit distance sensors mounted on the
robot to avoid collisions. The concept of distributed sensors was introduced
in [Lumelsky 2000], focusing on the principles, methodology, and prototypes of
sensitive skin-like devices to measure proximity, touch, pressure, and tempera-
ture. [Ceriani 2013] mounted distributed proximity sensors on the manipulator
links, focusing on the optimal sensor placements according to safety and detection
capabilities. The developed prototype with off-the-shelf infrared distance sensors
has been used to validate the proposed approach. [Avanzini 2014], an extension
of [Ceriani 2013], focused on improving safety by assessing the danger that a robot
induces. In our approach, we did not have to focus on the optimal placement of the
the skin sensors because they already cover the whole link surface.

The formulation of collision avoidance in our approach is based
on [Faverjon 1987], using a velocity-damper function to constrain the veloci-
ties of the points of interest (i.e. the skin cell locations). We formulate the collision
avoidance and the trajectory tracking as two separate tasks, with higher priority
being given to the former, in order to ensure safety. The main difference of our
work with respect to similar state-of-the-art approaches is that we used hierarchical
control. This makes our optimization problem always feasible because rather than
formulating the inequalities as hard constraints, we minimize their violations. This
results in exactly the same solution in case the inequalities are feasible. However,
if the inequalities are unfeasible, our formulation still allows for a solution, while a
non-hierarchical formulation would be unfeasible. We will see in Section 2.5.2 that
this property can be extremely useful in certain complex scenarios.
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Figure 2.2: An artist’s schematization of the Dynamic Obstacle Avoidance (DOA)
concept.

2.3 Framework Components

This section provides an overview of the different components of the dynamic ob-
stacle avoidance framework.

2.3.1 Overview

Current collaborative robot solutions guarantee safety, but they stop moving when
an obstacle is detected rather than adapting the motion. The objective of the
proposed dynamic obstacle avoidance framework is to detect obstacles and move
around them while accomplishing the desired tasks. The framework relies on a
dynamic motion planner that can fulfill various task specific constraints for typical
industrial applications. For example, the work cell 3D model is used to create a
consistent model of the work environment, so that collision-free trajectories are
flexibly generated for different operations.

An illustration of the proposed dynamic obstacle avoidance solution is shown in
Fig. 2.2. The robot motion control component (see Section 2.4) generates the joint
velocities set-points for the robot controller. This component uses the proximity-
sensing skin that covers the manipulator (see Section 2.3.2) to adapt the motion
online to fulfill two objectives: i) following the reference trajectory, and ii) avoiding
collisions. If the collision is unavoidable with local deformations of the current
trajectory, the module may request a (global) re-planning to the reactive path-
planner (see Section 2.3.3). The reactive path planner has been provided by our
project partner, Siemens, and is not a contribution of this thesis. Our main focus
is the reactive control scheme, which can be used with any path planner.
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Figure 2.3: Robot skin developed at Institute for Cognitive Systems, TUM.

2.3.2 Artificial Robot Skin

The development of Artificial Robot Skin(ARS) is motivated by the necessity to
provide robots with a rich and direct feedback of their interactions with the world.
This system, called HEX-o-SKIN, assembles multiple intelligent uniform unit cells
with cell-2-cell communication, thus allowing automatic cellular network organiza-
tion [Mittendorfer 2012b]. The robot skin system is modularized and transduces
multi-modal tactile stimuli [Mittendorfer 2015]. The robot skin consists of hexago-
nally shaped Printed Circuit Board (PCB) modules called skin cells (see Fig. 2.3).
A group of directly connected skin cells is called a skin patch. All skin cells are
identical and contain the same set of sensors. The sensors sample 9 tactile stimuli
of 4 different modalities, namely vibration (3D acceleration sensor), 3 normal forces
(capacitive force sensor), 2 temperatures and 1 distance (optical proximity sensor).
These sensors are either off-the-shelf standard integrated circuits or, in the case of
the force sensors, in-house developments. A micro-controller in the back of each
skin cell collects data from its sensors, filters it, and sends data packets contain-
ing the most recent values of all sensors. All the skin cells are connected to each
other via stretchable flex PCBs, which allows the skin to cover curved surfaces and
increases its robustness. The network of skin cells is a meshed bidirectional com-
munication network, which is routed by the micro-controllers of the skin cells. A
self-organized algorithm initializes all the skin cells in a skin network and constructs
a bidirectional communication path between each skin cell and the network root,
the tactile section unit (TSU). The TSU converts skin network packets to standard
UDP Ethernet packets and vice versa. This allows for fast connections between the
robot skin and the PC (see Fig. 2.4). The skin also supports the auto-calibration of
spatial relationships between skin cells of a skin patch [Mittendorfer 2012a], such
that the pose of every skin cell with respect to the base frame can be easily de-
termined. The proximity sensors used in the skin cells are infrared-based sensors.
The sensor emits infrared light and captures its reflections on obstacles in the range
from 0 to 6 cm. The strength of the reflections allows the sensor to estimate the
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Figure 2.4: The skin cell network architecture and interface to the PC.

Figure 2.5: Robot TOMM with artificial robot skin.

distance to the detected objects.

Evaluation of Artificial Robot Skin(ARS) The ARS has been successfully
deployed on the robot TOMM [Dean-Leon 2017] (see Fig. 2.5). The integration of
the ARS signals in the control loop has been demonstrated in [Dean-Leon 2016a],
where the controller exploited the ARS to produce compliance in a non-compliant
industrial robot. The main advantage of these compliant behaviors is their higher
safety in case of physical Human-Robot Interaction. The fusion of the multi-modal
signals of the ARS with different sensors (e.g. cameras and joint encoders) in a
semantic level has been demonstrated in [Karinne Ramirez-Amaro 2016]. These
semantic representations are used to extract general task structures, which to-
gether with the obtained knowledge can improve and accelerate the teaching of
new tasks [llya Dianov 2016]. Finally, the integration of these technologies has been
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Figure 2.6: UR5 setup with Skin Cells activated (with red LEDs)

evaluated in an industrial scenario, where a human can kinesthetically teach the
robot TOMM to sort oranges [Dean-Leon 2016b] (see Fig. 2.5). The ARS has also
been successfully deployed on another practical setup with a statically mounted
Universal Robots UR5 robot. In this setup, the ARS is being used to provide
proximity information related to obstacles in the immediate surroundings of the
robot. The proposed reactive control scheme (discussed in the next section) has
been experimentally verified in this setup, shown in Fig. 2.6.

2.3.3 Motion Planning

The motion planning component is required in this framework to generate a global
plan, represented as a sequence of way points. We integrated a path planner devel-
oped by our partner Siemens, which is based on the industry grade KineoWorksTM2

path planning library. KineoWorks library includes innovative algorithms to ad-
dress path planning, distance computation and collision checking which is basically
a result of research activities done in LAAS-CNRS. The algorithms use modern
Probabilistic Roadmaps to solve the planning problem which are basically graphs
with nodes referring to collision free configurations and edges referring to collision
free path. A collision checker is used to find collision free configurations at random
from the roadmaps which actually captures both the coverage and the topological
connectivity of the space. Another advantage of the current state of the planner
is its ability to use point-cloud data to compute a collision-free path in an un-
structured or un-modeled environment to reach the desired goal configuration. It
also allows to add static obstacles present in the workspace, like most planners.
The exact algorithm used to achieve this is never disclosed until now for the ob-

2See Kineoworks.

http://www.plm.automation.siemens.com/en_us/products/open/kineo/kineoworks/index.shtml
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vious commercial reasons. The main advantage of 3d sensors is that they provide
a global view of the environment, contrary to proximity sensors on the surface of
the robot, which provide only local distance measurements. Though skin sensors
can be used to implement reactive obstacle avoidance behaviors (as discussed in the
next section), a collision-free path generated using point-cloud data can help the
controller to recover from local minima.

The collision detection in the planner is performed using the KineoTMCollision
Detector (KCD)3. KCD performs 3D collision detection and minimal distance anal-
ysis between triangular mesh surfaces in assembly environments. KCD has been
designed specifically to minimize memory usage and take advantage of parallel pro-
cessing. The component is synchronized with an OctoMap4 based 3D occupancy
grid map, which is updated at 30Hz with the point clouds acquired by an Xtion or
Kinect camera sensor.

Though it is essential to replan when the robot is stuck in local minima, due to
the practical unavailability of 3d sensors in the experimental setup, we have used
the planner only to plan a trajectory at the beginning of the experiment. The plan-
ner generates the reference path as a polygonal line connecting a sequence of way
points in joint space. These way points can then be connected using a trajectory
generation library that takes into account the joint velocity, acceleration and jerk
limits (such as Reflexxes [Kröger 2011] or Softmotion [Broquere 2008]). Alterna-
tively, the ways points can simply be connected by straight lines, using an arbitrary
time parametrization, which is the approach that we used in our experiments. A
trajectory sequencer in the framework takes care of this linear interpolation to gen-
erate instantaneous desired posture command for the reactive controller.

2.3.3.1 Software Integration

This framework has been seamlessly integrated into the ROS-ecosystem via a ROS
package called kws_ros_interface, which provides the planner implementations
of KineoWorks as shared objects that are readily usable in ROS-based software
via the kws_ros_planner ROS node. Robot kinematic models are provided to
KineoWorks in the Unified Robot Description Format (URDF), which is a ROS
standard. Furthermore, KineoWorks also accepts the standard ROS representa-
tion of a PointCloud5 for creating collision models of dynamic obstacles in the
environment.

2.4 Reactive Collision Avoidance using SoT

Our reactive controller relies on the Stack of Tasks (SoT) [Mansard 2009a], a hi-
erarchical control framework that implements the generalized inverse kinematics

3See KCD.
4a library that implements a 3D occupancy grid mapping approach, providing data structures

and mapping algorithms in C++
5See http://wiki.ros.org/pcl

http://www.plm.automation.siemens.com/en_us/products/open/kineo/collision-detector/index.shtml
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formalism by Hanafusa et al. [Hanafusa 1981, Mansard 2009c]. In this section, we
introduce the Stack of Tasks controller framework and its integration in ROS based
framework. It is followed by the formulation of collision avoidance as a inequal-
ity constraint and the task hierarchy for executing a planned path while avoiding
collisions.

2.4.1 Stack of Tasks: State of the Art

Redundant systems are more and more popular due to their increased flexibility.
However, their control is more complex as in general it is not possible to compute
analytic inverse kinematic solutions. Task function based approaches (such as the
SoT) uses numerical inversion techniques to resolve redundancy and minimize the
task space errors [Samson 1991]. A systematic framework for the control of re-
dundant systems has been proposed in [Siciliano 1991] to allow the execution of
multiple tasks with strict priorities. This framework could only handle equality
tasks, so various strategies have been proposed to transform inequality constraints
to equalities [Nelson 1995, Chan 1995, Mansard 2009b, Raunhardt 2007]. However,
these strategies are not generic and lead to priority inversion issues, making them
unreliable for practical use.

To overcome these issues, Kanoun et al. proposed to handle inequality con-
straints by solving a cascade of least-squares program [Kanoun 2011a]. This ap-
proach is generic and exact, but computational inefficient, due to the need of solv-
ing several optimization problems at each control cycle. Mansard et al. proposed
an improved QP solver to manage multiple equality and inequality tasks in a pri-
oritized hierarchy [Escande 2014b]. Kanoun et al. [Kanoun 2011b] and De lasa
et al. [de Lasa 2010] used a primal active-set algorithm, which is computation-
ally expensive due to the active-set search involving inappropriate activation and
deactivation of constraints at each level along the cascade. This efficiency issue
has been addressed by a dedicated Hierarchical Quadratic Programming (HQP)
solver, which is based on the Complete Orthogonal Decomposition (rather than
the more expensive Singular Value Decomposition) and an improved active-set al-
gorithm [Escande 2014b]. The HQP solver relies on a modified primal active-set
algorithm, which is tailored for hierarchical problems. The solver is ten times faster
than the classical solvers and can consider inequalities at any levels of the hierar-
chy [Escande 2014b].

2.4.2 What is a Task?

A task is a control objective defined by a function of the robot state. For equality
tasks, the goal of the controller is to minimize the value of the task function (i.e.
bring it as close as possible to zero). For inequality tasks, the goal is instead to keep
this value negative (or positive). As an example, a task-space reaching task can
be defined by a function measuring the distance between the current end-effector
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position x(q) and the desired end-effector position x∗:

e(q) = x∗ − x(q),

where q contains the current joint angles. Other typical tasks are: reaching a desired
joint configuration, avoiding obstacles, or grasping an object.

2.4.3 Redundancy Formalism

Siciliano and Slotine [Siciliano 1991] have been the first ones to propose a systematic
control framework to achieve multiple tasks in redundant systems. The key idea
is to solve each task in the null space of all higher priority tasks, to ensure the
satisfaction of the strict priorities. In other words, the achievement of any task
cannot be compromised by the lower-priority tasks.

Let x1(q) be the task-space position of the first (highest priority) task, and J1(q)
be its Jacobian matrix, defined by:

ẋ1 = J1(q)q̇ (2.2)

We can then define the task error as e1(q) = x1(q)−x∗1, and we can define a desired
exponential convergence rate of this error towards zero:

ė∗1 = −K1e1, (2.3)

where K1 is a symmetric positive-definite gain matrix. Now we can compute the
desired joint velocities as:

q̇ = J+
1 ė
∗
1 + P1z, (2.4)

where J+
1 is the Moore-Penrose pseudo-inverse of J1, P1 is a projector in the null

space of J1, and z is an arbitrary velocity vector, which can be exploited to achieve
any secondary objective.

We can easily extend this methodology to an arbitrary number of tasks n. Let
(e1, J1)(e2, J2)...(en, Jn) be the errors and Jacobians associated to the n tasks. The
desired joint velocities to achieve all these tasks can be computed as:

q̇i = q̇i−1 + (JiPAi−1)+(ėi − Jiq̇i−1), i = 1 . . . n, (2.5)

where PAi is the projector onto the null space of the augmented Jacobian JAi =
(J1 . . . Ji). The algorithm is initialized with q̇0 = 0 and PA0 = I. The joint velocities
achieving all the task objectives are q̇ = q̇n. The null space projectors can be
computed recursively using the following expression:

PAi = PAi−1 − (JiPAi−1)+JiP
A
i−1 (2.6)

This systematic way of prioritizing tasks allows simultaneous execution of poten-
tially conflicting tasks, ensuring the satisfaction of the given priority order.



2.4. Reactive Collision Avoidance using SoT 45

Figure 2.7: Robot-Obstacle Interaction.

2.4.4 Collision Avoidance Task Formulation

Suppose an obstacle in the environment is sufficiently close to the robot to be
perceived by its artificial skin sensors. In this case, we would like the robot to
exploit the skin data to lower its velocity in the direction of the obstacle, so as to
avoid a collision in the near future. The final goal is to maintain a minimum distance
dmin (defined by the user) between the robot and any obstacle. The i-th skin cell
measures its distance di (e.g. see Fig. 2.7) to the perceived obstacle (if any). Since
we have no way to predict the obstacle motion, our best guess is to assume that it
does not move, and thus the distance di depends only on the robot configuration q.
We can easily express our control objective as an inequality constraint:

di(q) ≥ dmin (2.7)

This constraint is expressed as a function of the robot configuration q. However,
our controller is formulated as an optimization problem of the joint velocities q̇.
This means that in order to include collision avoidance in our control framework we
need to express it as a function of q̇. A sufficient (but not necessary) condition to
ensure the satisfaction of (2.7) is to bound the distance rate of change as a function
of the distance:

ḋi(q) ≥ −K(di(q)− dmin), (2.8)

where K is a symmetric positive-definite matrix, representing the convergence gain.
Intuitively, this ordinary differential inequality makes the robot slow down as the
distance to the obstacle is approaching dmin. The satisfaction of (2.8) ensures that:

di(q)− dmin ≥ (di(q0)− dmin)e−Kt, (2.9)
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where q0 is the robot configuration at time zero. This means that if the distance
constraint (2.7) is satisfied at time zero, then the right-hand side of (2.9) is always
positive (and converging to zero as t increases), which means that (2.7) will always
be satisfied (under the assumption of a static obstacle). It should be noted that this
way of modeling collision avoidance does not account for the limited acceleration
capabilities of the system [Rubrecht 2012], so it may demand unfeasible accelera-
tions if K is too large. A proper tuning of the parameter K is thus fundamental for
a successful implementation on real robots. While different methods to account for
limited acceleration capabilities exist [Decré 2009, Rubrecht 2012, Del Prete 2018],
it is not clear how to estimate appropriate bounds on the robot accelerations in
Cartesian space, because they depend on the joint configuration. For this reason,
we preferred to use this heuristic method, which is simpler to implement and works
well in practice—after a proper tuning of K.

We can now express (2.8) as a linear function of the joint velocities, in order to
use it in the SoT control framework:

− ∂di(q)
∂q

q̇ ≤ −K(dmin − di(q)) (2.10)

2.4.4.1 Distance Gradient

In order to implement (2.10) in our controller we need to compute the gradient of
the distance functions di(q) [Lefebvre 2005]. Consider a multi-body robot with nc
skin cells. Let ci(q) be the 3d position of the skin cell i at a robot configuration q,
and O be the set of points occupied by the obstacle. By moving from ci(q) along
the direction ni, normal to the i-th skin cell, we may (or may not) meet the obstacle
O. In case we do, we call the first intersection point oi. In case we do not, this
means that the obstacle is not visible from the i-th skin cell, and we can assume oi
to be infinite. We can then represent the cell-obstacle distance as:

di(q) = dist(ci(q),O) = ||ci(q)− oi|| (2.11)

The gradient of this distance with respect to the robot configuration is:

∂di(q)
∂q

= nT
∂ci(q)
∂q

,

where:
n = ci(q)− oi

‖ci(q)− oi‖
This shows that the distance gradient is simply a projection of the Jacobian asso-
ciated to the skin cell on the direction normal to the skin cell.
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Figure 2.8: Stack order for trajectory tracking with obstacle avoidance.

2.4.4.2 Combining Trajectory Tracking and Obstacle Avoidance

Now that we have formulated collision avoidance as an inequality constraint, we
need to decide how to combine it with the trajectory tracking task that the robot
has to execute. The SoT framework allows us to specify multiple tasks that the
robot has to achieve at the same time. The only thing that we have to decide is the
priority order of the different tasks. Since we consider safety to be more important
than trajectory tracking, we give higher priority to the collision avoidance task.
We also include a joint limit task, which consists in not violating the joint position
bounds. Fig. 2.8 shows the stack priority order.

T1 Joint Limits
K1(qmin − q) ≤ q̇ ≤ K1(qmax − q)
where qmin and qmax are the joint position bounds.

T2 Obstacle Avoidance
ḋ(q) ≥ K2(dmin − d(q))
where d(q) is a vector containing all the distance measurements.

T3 Joint Trajectory Tracking
q̇ = −K3(q − qref )
where qref is the reference trajectory.

Once the tasks are specified, the SoT controller computes the desired joint velocities
q̇ that minimize the task tracking errors in a lexicographic sense (i.e. each task error
is minimized under the constraint of not affecting the errors of the higher priority
tasks).
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Figure 2.9: Skin cell sensors used in our experiments. They form a “ring” on the
upper arm of the UR5 robot.

Table 2.1: Experiment Parameters.
Symbol Meaning Value
K1 Joint Limits Gain 0.2 s−1

K2 Obstacle Avoidance Gain 0.1 s−1

K3 Posture Gain 1 s−1

dmin Safety Distance 0.058 m
dt Controller Time Step 0.01s

2.5 Experiments

The presented Stack of Tasks (SoT) controller with collision avoidance constraints
has been implemented and tested, both in simulation and on the UR5 robot setup
with skin sensors (see Fig. 2.6). The values of the parameters used in our tests are
summarized in Table 2.1.

2.5.1 Experiments with a UR5 Robot

The reactive collision avoidance has been experimentally tested on a UR5 robot
with the skin sensor setup. The skin sensor network consists of approximately 300
cells, covering the entire surface of the UR5 robot arm. While using all the skin cells
would increase the collision avoidance capabilities of the system, it would require a
large number of inequalities in the solver. In our experience, the current HQP solver
cannot handle such a large number of inequalities, probably because of numerical
stability problems. For this reason, in our experiments we only used eight skin
cells, located in the upper arm of the robot. These skin cells are positioned in a
ring shape, as shown in Fig. 2.9; this symmetric configuration allows the robot to
perceive obstacles from any direction.

We divided the experiments into two groups (called test 1, and test 2 in the
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following), according to the reference trajectory tracked by the controller. Though
we carried out more tests, we decided to focus on only two of them to illustrate the
performance of the controller. All reference trajectories started from or went to one
of these three configurations: Home position, Pick position, and Place position. To
show the capability of the system to perceive obstacles in any direction we repeated
each test several times, placing the obstacle in different positions. A box has been
used as the obstacle to disturb the robot movement. Moreover, we repeated each
test with and without the collision avoidance task, to show the different behaviors
of the system. The repetitiveness of these tests is meant to highlight the robustness
of the controller. Additionally, a complete manipulation scenario is described in
Section 2.5.1.3, to illustrate a real-world application of our framework.

The selected tests can be seen in the following videos:

• Test 1: Home to Pick

• Test 2: Pick to Place

2.5.1.1 Test 1

Fig. 2.10 shows some snapshots taken from the video of test 1, while the robot
is executing a Home to Pick motion, with a fixed obstacle location. The plots in
Fig. 2.11 show the trajectory execution without the collision avoidance task. As
it can be seen both in the video and in the plots, the trajectory execution was
not affected by the approaching obstacle. The distance measurement goes to zero
slightly after 8 s, showing that the arm collided with the obstacle. As expected, the
joint motion is smooth, without any disturbances.

It may be surprising to see that the tracking error gets large (above 1 rad)
before the collision with the obstacle. The poor tracking is due to the fact that the
proportional gain of the joint tracking task was small (see Table 2.1). This gain
has been tuned to improve the joint tracking in the final application described in
Section 2.5.1.3.

Fig. 2.12 shows the results of test 1 with the collision avoidance task. This time,
thanks to the collision avoidance task, the robot did not collide with the obstacle.
We can clearly see in the top plot of Fig. 2.12 that the distance measurement remains
always above 1 cm. The three bottom plots show that the tracking error does not
converge to zero, but keeps oscillating. This is because, given the obstacle location,
the controller cannot reach the goal without colliding with it (i.e. the controller is
stuck in local minima).

2.5.1.2 Test 2

Fig. 2.13 shows some snapshots taken from the video of test 2, while the robot
is executing a Pick to Place motion, with a fixed obstacle location. The plots
in Fig. 2.14 show the trajectory execution without the collision avoidance task.
As it can be seen in the plots, the trajectory execution was not affected by the

https://goo.gl/LVbQZz
https://goo.gl/7jCqzA


50 Chapter 2. Collision Avoidance Framework

(a) Home Position (b) Colliding with Obstacle

(c) Avoiding Local Collisions (d) Stuck in Local Minima

Figure 2.10: Test 1: Trajectory execution from home to pick location with and
without collision avoidance task in the controller stack. (a) Initial state of the
robot, i.e. Home position. (b) Trajectory execution without any collision avoidance
task, leading to a collision with the obstacle. (c) Avoiding collision with the obstacle
(d) The robot arm is stuck in local minimum.



2.5. Experiments 51

Figure 2.11: Test 1 without collision avoidance. These plots show a Home to Pick
trajectory tracking. The top plot shows the minimum distance measurement from
the 8 skin cells. The distance drops close to zero, showing that the obstacle touched
the robot arm. The three bottom plots show the trajectory tracking for the three
main joints.

Figure 2.12: Test 1 with collision avoidance. Home to Pick Trajectory Execution.
The top plot shows the minimum distance measurement from the 8 skin cells. The
three bottom plots show the trajectory tracking for the three main joints.



52 Chapter 2. Collision Avoidance Framework

approaching obstacle. The distance measurement gets to zero at around 3s, showing
that the arm collided with the obstacle.

The results of test 2 with collision avoidance are plotted in Fig. 2.15. The
differences with respect to the previous test are: i) the reference joint trajectory,
and ii) the obstacle location. Contrary to test 1, the controller did not get stuck in
an oscillating behavior when trying to avoid collisions. This is due to the different
location of the obstacle, which allows the controller to reach the goal just by locally
deforming the trajectory. In the bottom plots of Fig. 2.15 we can see that the joint
tracking error converged to zero.

2.5.1.3 Real-World Scenario

After proper tuning, the presented collision avoidance framework has been used
in a complete manipulation scenario. The scenario involved multiple sequences of
pick-and-place operations of boxes and shaving cans, using a suction gripper on the
end-effector. The robot controller still used the same ring of skin cells in the upper
arm. The demonstration video can be seen at this link, with snapshots shown in
Fig. 2.18.

2.5.2 Simulations: Infeasible Constraints

Another interesting aspect of the controller is its ability to handle infeasible in-
equality constraints. This is due to the formulation of the HQP problem used in
the SoT. Each task error is minimized (i.e. no task is formulated as a constraint),
so that the problem is always feasible.

The collision avoidance task is formulated as the inequality constraint (2.10).
If two (or more) skin cells on opposite sides of the arm perceive an object at the
same time, their associated constraints may become conflicting, because they would
require the arm to move in opposite directions. To illustrate this scenario, we
performed two simulations in which we artificially generated the distance signals
and observed the resulting controller behavior.

At first, we simulated the presence of an obstacle close to one of the skin cells,
by lowering its distance measurement close to the safety margin dmin. While doing
this, we kept the other skin cell measurements equal to 0.6, which is 10 times larger
than dmin. The plot in Fig. 2.16 shows the change in velocity of a specific skin cell
in response to the simulated approaching obstacle. The plot shows the feasibility of
the goal, thus resulting in a behavior inline with the formulated collision avoidance
constraint (2.7).

In the second simulation instead, we simulated multiple obstacles surrounding
the arm, and thus making constraint (2.10) infeasible. We forced the distance
measurement of one specific cell to cross the safety margin, while keeping the other
measurements just 1mm above dmin. The plot in Fig. 2.17 shows the resulting skin
cell velocity. Since the controller could not satisfy all the conflicting skin-cell velocity
constraints, it found a compromise between them. Even if the constraints (2.10)

https://goo.gl/PLbKdb
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(a) Initial State - Pick Position (b) Colliding with Obstacle

(c) Avoiding Local Collisions 1/3 (d) Avoiding Local Collisions 2/3

(e) Avoiding Local Collisions 3/3 (f) Final State - Place Position

Figure 2.13: Test 2: Trajectory execution from Pick to Place locations, with and
without collision avoidance task. The robot avoiding the collision and reaching the
goal can be seen in (c), (d), (e) and (f).
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Figure 2.14: Test 2 without collision avoidance: Plots during Pick to Place trajec-
tory tracking. The top plot shows the minimum distance measurement from the 8
skin cells. The distance drops close to zero, showing that the obstacle touched the
robot arm. The three bottom plots show the trajectory tracking for the three main
joints. There are no disturbances in the trajectory tracking when an obstacle is in
collision..

Figure 2.15: Test 2 with collision avoidance: Plot during a Pick to Place. The top
plot shows the minimum distance measurement from the 8 skin cells. The three
bottom plots show the trajectory tracking for the three main joints.
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Figure 2.16: Plot showing the velocity of the skin cell i, when the other cells perceive
no obstacles in the vicinity. In this case the inequality (2.10) is satisfied by the
controller.

are temporarily violated, the resulting behavior is still reasonable and it does not
lead to a crash of the solver.

2.6 Conclusions

This chapter presented a reactive collision-avoidance framework, developed in the
factory-in-a-day EU project. Let us discuss briefly the implemented framework and
the expected future work.

2.6.1 Skin Sensors for Distance Measurements

One of the key features of our framework is that it relies on the infra-red based
proximity sensors to measure local distance information. The advantages of these
sensors are:

• They allow for collision avoidance in unstructured environments, without the
need for modeling the obstacles. Usually extrinsic sensors such as stereo
camera or 3d camera are used to detect objects in the environment and an
approximate model is used to fit the detected obstacle.

• Most collision avoidance methods estimate the robot-obstacle distance at run
time. This distance is computed at every control cycle, which may be com-
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Figure 2.17: Plot showing the velocity of the skin cell i, when the other skin cells
measure a distance of 6cm, which is just 2mm larger than the safety margin dmin.
In this scenario, it is not possible to satisfy all the skin cell inequalities (2.10).

(a) Grasping with a suction gripper (b) Avoiding Obstacles

Figure 2.18: Illustrating obstacle avoidance while picking and placing small objects
using a suction gripper. The full scenario video can be seen in this video.

putational expensive. In the case of skin sensors, the distance is measured
directly, assuming the skin cell poses are known.

https://goo.gl/PLbKdb
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Sensor Range Though the range of the skin sensors is limited to 6cm in the
experimental prototype on the UR5 arm, after a proper tuning of the task gains,
the robot has shown good collision avoidance behaviors. In the future, we hope
to enhance the range of the skin cells to allow the robot to move faster and be
more agile in avoiding obstacles. This would help increase the productivity of
collaborative robots in industries.

2.6.2 Collision Avoidance as Inequalities

In our experiments, we have used only 8 skin cells covering the circumference of
the upper arm. This was deliberately done to reduce the number of inequality con-
straints in the solver, which did not prove capable of handling a large number of
inequalities. This problem has two potential solutions. One option would be to rely
on an improved solver, capable of handling a large number of inequalities. How-
ever, to the best of our knowledge, hierarchical solvers are still an active research
topic, and we are not aware of any reliable solver publicly available. Alternatively,
we may try to improve our formulation, so as to limit the number of inequality
constraints. For instance, we could model in the solver only the inequality con-
straints corresponding to the 8 skin cells that are currently measuring the smallest
distances. We expect this simple approach to work well as long as no more than 8
skin cells are active at the same time (which is the case in our experiments). Other
more complex solutions to reduce the number of inequality constraints may also be
explored.

2.6.3 Reactive Replanning

Though the presented approach seems performed well in our tests, the controller
tends to get stuck in local minima, which trigger the need for replanning. While
it is possible to escape local minima by applying circular fields [Haddadin 2011b],
the escape is not guaranteed because of the lack of global information. Extrinsic
sensors (on top of the skin sensors) such as 3d cameras, are essential to reactively
plan in case of unforeseen obstacles interrupting the task. Depth-based reactive
planning [Flacco 2012, Dumonteil 2015] can also be useful to avoid local minima in
an unstructured environment without building collision bodies.

2.6.4 Kinematic Redundancy

One of the main reasons for using task based control is to exploit the extra degrees of
freedom in redundant robots to handle multiple tasks in parallel. The implemented
controller has been tested on a fixed arm with 6 degrees of freedom, which do
not provide much flexibility to reach a 3d pose with the end-effector. Mounting
a manipulator on a mobile base makes the robot redundant, which increases the
probability of success in case of collision avoidance. In the future, we would like
to experiment on mobile robots with an arm equipped with a complete skin cell
network, or at least a ring of skin cells covering the circumference of the arm. This
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will provide a way to verify whether improved collision avoidance behaviors are
actually possible by exploiting the mobile base.

2.6.5 Final Integration

The collision avoidance component has been successfully integrated in the final
project demonstration of Factory-in-a-day, which ran for more than 20 minutes,
without any failure. We believe that the simplicity of the approach and its practical
relevance make it an excellent candidate for industrial applications.



Chapter 3

Robustness to Inertial
Parameter Errors for Legged
Robots Balancing on Level

Ground

Model-based control has become more and more popular in the legged robots com-
munity in the last ten years. The key idea is to exploit a model of the system to
compute precise motor commands that result in the desired motion. This allows
to improve the quality of the motion tracking, while using lower gains, leading so
to higher compliance. However, the main flaw of this approach is typically its lack
of robustness to modeling errors. In this chapter we focus on the robustness of
inverse-dynamics control to errors in the inertial parameters of the robot. We as-
sume these parameters to be known, but only with a certain accuracy. We then
propose a computationally-efficient optimization-based controller that ensures the
balance of the robot despite these uncertainties. We used the proposed controller in
simulation to perform different reaching tasks with the HRP-2 humanoid robot, in
the presence of various modeling errors.Comparisons against a standard inverse-
dynamics controller through hundreds of simulations show the superiority of the
proposed controller in ensuring the robot balance.

3.1 Introduction

The problem of balancing for real legged robots is still a challenge for the robotics
community. Although our understanding of this problem has remarkably improved
during the last 15 years, the robustness of the state-of-the-art control algorithms is
far from satisfactory. For instance, during the recent DARPA Robotics Challenge
Finals [Pratt 2015], all legged robots have moved extremely cautiously, and, despite
that, sometimes they could not avoid falling. Another striking fact is the difference
between what robots can do in simulation where they easily perform extremely
dynamics tasks and what they can do in the real world where they struggle to
execute slow movements in structured environments. The gap between simulation
and real world can be explained through countless unmodeled uncertainties affecting
these systems, such as poor torque control, model uncertainties, sensor noises and
delays. In recent work of [Del Prete 2016a], an optimization-based controller tries
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to ensure the satisfaction of the physical constraints of the robot (force friction
cones, joint acceleration limits and torque limits) despite errors in the joint torque
tracking. In this work we move along the same line, designing a robust controller
that can balance a legged robot despite bounded errors in its inertial parameters.

The chapter starts with a brief discussion about various control methodologies
used in humanoid robots (Section 1.4). Section 3.2 presents robustness related work
in optimization based control. In Section 3.3 we model the uncertainty in the inertial
parameters of the robot through polytopes. Then we present the Task-Space Inverse
Dynamics(TSID) controller with capture-point constraints [Ramos 2014] to ensure
the balance of the robot in case of no modeling errors. Section 3.4 presents an exten-
sion of the standard capture-point inequalities that is robust to errors in the inertial
parameters.We first formulate the associated robust optimization problem, and then
use standard robust-optimization techniques to reformulate it in a tractable form.
The Section 3.5 presents statistical results that compare in simulation the stan-
dard and the robust controller in a reaching task with the humanoid robot HRP-2.
Regardless of the simulation conditions, our results empirically demonstrate the su-
periority of the proposed robust controller with respect to standard TSID. Finally,
Section 3.6 draws the conclusions and discusses the future work.

3.2 Robustness in Humanoid Robots

Even though the problem of robustness is long-standing and well-identified, it re-
mains largely unanswered for legged robots. Some approaches focus exclusively on
the stability of the system rather than on the feasibility of the trajectories. For
instance, adaptive control [Kelly 1989] and time-delay estimation [Jin 2008] try to
estimate and compensate online for the major errors between nominal and real
dynamic model. Virtual model control [Pratt 2001] does not rely on the dynamic
model of the robot, which ensures robustness to errors in the inertial parame-
ters [Dietrich 2013]. The main issue of these schemes is that they do not consider
inequality constraints, which makes it hard to implement them on real systems,
given the large number of bounds to which they are subject.

Other approaches are based on hand-tunable heuristics. For instance, a common
heuristic in Task-Space Inverse Dynamics (TSID) [Del Prete 2015] which we adopt
as well is to use a secondary task to keep the robot posture close to a reference
one, in order to keep the movements far from the joint limits. Similarly, to avoid
slipping/tipping, it was proposed to minimize the contact moments and the tan-
gential contact forces in the null space of the main motion task [Righetti 2010]. Yet
another common trick during locomotion is to maintain the center of pressure close
to the center of the foot [Kajita 2003a]. The robotics literature is filled with these
kinds of heuristics, which often are the main reason behind the successful imple-
mentations on real platforms. However, these heuristics can not ensure feasibility
in the presence of any significant uncertainty and needs ad-hoc tuning depending
on the situation.
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Finally, another class of works which includes this work makes use of robust
optimization techniques to formulate control and planning problems. Mordatch
et al. [Mordatch 2015] considered several perturbed models of a humanoid robot
to plan offline a trajectory that is robust to uncertainties, reporting success rate
between 80% and 95% on a real platform. Another recent work [Luo 2015] has com-
bined robust and time-scaling optimization to plan trajectories that are robust to
bounded errors in friction coefficients and joint accelerations, whose magnitude can
be estimated online through iterative learning. Nguyen and Sreenath [Nguyen 2015]
have recently exploited control Lyapunov functions and Quadratic Programs (QPs)
to ensure stability despite bounded uncertainties in the linearized system dynamics.

Contrary to [Mordatch 2015, Nguyen 2015], the uncertainties modeled in this
work affect the parameters of the system, so they could be identified using set-
membership identification techniques [Ramdani 2005]. The main contribution in
this work is a novel formulation of the capture-point balance constraints, which can
be included in the Task-Space Inverse Dynamics optimization problem to balance
the robot despite bounded uncertainties in its inertial parameters. Contrary to pre-
vious approaches that dealt with uncertainties to inertial parameters, our approach
allows us to include inequality constraints in the problem formulation. Thanks to
this we can thus account for all the constraints to which legged robots are subject,
ensuring the feasibility of the resulting trajectories.

3.3 Task-Space Inverse Dynamics with Capture-Point
Balance Constraints

To design a controller that is robust to errors in the inertial parameters of the robot
we have first to understand how these errors affect the control action. In this section
we define the inertial parameters and we present a standard Task-Space Inverse Dy-
namics controller, which includes balance constraints. Throughout the presentation
we explicitly show the dependency of the terms on the inertial parameters, while
we omit the dependency on the robot configuration q and velocities v because they
are constant values at each time step.

3.3.1 Inertial Parameters

We define the vector containing the 10 inertial parameters of link i as:

φi = (mi,mi
ici, I

xx
i , Ixyi , Ixzi , Iyyi , Iyzi , I

zz
i ),

where mi ∈ R is the mass, ci ∈ R3 is the CoM, Ii ∈ R3×3 is the 3D rotational
inertia matrix. Both ci and Ii are expressed in the local reference frame of the link.
Note that φi does not contain directly ci, but it contains only its product with mi.
This is because the robot dynamics can be written in a linear form with respect to
this parameterization of the inertial parameters [Traversaro 2015].
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Now we can collect the inertial parameters of all the N links of the robot in a
single vector:

φ = (φ1, . . . , φN )

We assume that each link parameters φi are not known exactly, but we know that
they lie inside a polytope Ui, i.e. φi ∈ Ui. Hence also the vector φ lies inside a
polytope:

φ ∈ U = U1 × · · · × UN

Note that since a polytope can be represented by a set of linear inequalities, the
constraint φi ∈ Ui can be expressed under the form Aiφi ≤ ai. Now that we defined
the inertial parameters and the associated uncertainty polytopes, we can see how
these uncertainties affect the controller.

3.3.2 Task-Space Inverse Dynamics

The controller that we consider in this work is an optimization-based inverse dynam-
ics controller, which computes the desired torques taking into account the dynamcis
of the robot. It has become a standard for the control of legged robots in recent
years [Del Prete 2015, Herzog 2016, Sentis 2004, Saab 2011]. Table 3.1 shows TSID
outperforming other control frameworks. Theortically, the kinematics and dynamics
are decoupled. Kinematic level task prioritization is done first to compute accelera-
tion and the torques are calculated to achieve the computed accelerations. Various

Table 3.1: Comparison of Control Frameworks[Del Prete 2015]
Framework Optimal Efficient Force Under Inequality Output

Control actuated
TSID[Del Prete 2015] × × × × τ
UF[Peters 2007] × × τ
WBCF[Sentis 2005] × × (×) τ
[Mistry 2011] × × τ
SoT[Saab 2011] × × × × τ
[De Lasa 2009] × × × τ
[Jeong 2009] × × τ/q̈
[Nakamura 1987] × q̇/q̈
[Chiaverini 1997] × q̇
[Siciliano 1991] × × q̇
[Baerlocher 1998] × × q̇
[Smits 2008] × × × q̇

formulations of the TSID optimization problem exist and are often equivalent or
similar [Del Prete 2015]. We write it here as an optimization problem of the base
and joint accelerations v̇ ∈ Rn+6, the contact forces f ∈ Rk, and the joint torques
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τ ∈ Rn [Saab 2013]:

minimize
y=(v̇,f,τ)

||Ay − a||2

subject to
[
M(φ) −J>c −S>
Jc 0 0

]v̇f
τ

 =
[
−h(φ)
−J̇cv

]

|τ | ≤ τmax (3.1a)
v̇min ≤ v̇ ≤ v̇max (3.1b)
f ∈ K (3.1c)

where Jc ∈ Rk×(n+6) is the constraint Jacobian, M ∈ R(n+6)×(n+6) is the mass
matrix, h ∈ Rn+6 contains the bias forces, S ∈ Rn×(n+6) is the selection matrix,
τmax ∈ Rn are the maximum joint torques, v̇min/max ∈ Rn+6 are the acceleration
bounds1, and K is the force friction cone (which is typically linearized). The cost
function represents the error of the task, which is typically an affine function of v̇
(i.e. a task-space acceleration):[

Jtask 0 0
]

︸ ︷︷ ︸
A

y − (ẍdestask − J̇taskv)︸ ︷︷ ︸
a

= ẍtask − ẍdestask

The task may be to track a predefined trajectory of a link, of the CoM of the robot,
or to regulate the robot angular momentum.

3.3.3 Capture Point

Regardless of the task they are performing, legged robots must take care of balancing
(i.e. avoiding to fall) at the same time. Balancing is fundamental for legged robots
and it has been extensively studied [Collette 2008b, Morisawa 2012, Goswami 2004,
Hyon 2006, Sherikov 2014]. This problem is particularly well understood for robots
in contact with a flat terrain only. In this case, the dynamics of the robot CoM
c is well approximated by a linear inverted pendulum. In this model the robot is
approximated as a point mass (maintained at a constant height) supported by a
variable-length leg link [Pratt 2006]. The resulting dynamics is:

c̈xy(φ) = ω(φ)2(cxy(φ)− u),

where u ∈ R2 is the ZMP, which is equivalent to the center of pres-
sure [Wieber 2002], and ω(φ) =

√
g

cz(φ) . The same dynamics can also be obtained
from the real dynamics of the robot CoM, by assuming that ċz = 0 and the rate
of change of the robot angular momentum is null [Wieber 2015]. Using this linear
dynamics we can compute the point on the ground where the robot can put its

1The bounds of the joint positions and velocities are typically converted into joint-acceleration
bounds [Rubrecht 2010]
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ZMP to in order to stop its CoM:

ξ(φ) = cxy(φ) + ċxy(φ)
ω(φ)

This point is known as the capture point [Pratt 2006], the divergent component of
motion or the extrapolated CoM [Wieber 2015].

3.3.4 Capture-Point Balance Constraints

Originally, the capture point was used to decide where to make the robot step in
order to recover from a push [Pratt 2006]. More recently, Ramos et al. [Ramos 2014]
proposed use it to ensure the balance of the robot. The key idea is that, as long as
the capture point remains inside the convex hull of the contact points (i.e. the so-
called support polygon S), the robot can balance without taking a step. To ensure
the balance of the robot we can then add to (3.1) another set of inequalities to
constrain the capture point to remain inside the support polygone:

B(ξ(φ) + ∆tξ̇(φ)) ≤ b,

where ξ̇(φ) ∈ R2 is the time derivative of the capture point, and the matrix B and
the vector b define the support polygon (i.e. Bx ≤ b ⇐⇒ x ∈ S). By expressing ξ
and its derivative as functions of cxy and its derivatives we get:

B

(
cxy(φ) + ċxy(φ)

ω(φ) + ∆t
(
ċxy(φ) + c̈xy(φ)

ω(φ)

))
≤ b

B

(
cxy(φ) + α(φ)ċxy(φ) + ∆t

ω(φ) c̈
xy(φ)

)
≤ b,

where α(φ) = ∆t + ω(φ)−1. Finally we can express the CoM acceleration c̈xy as a
function of the joint accelerations v̇:

D(φ)v̇ +B (cxy(φ) + α(φ)ċxy(φ) + β(φ)) ≤ b, (3.2)

where:

D(φ) = ∆t
ω(φ)BJcom(φ)

β(φ) = ∆t
ω(φ) J̇com(φ)v

These inequalities are linear with respect to the joint accelerations v̇, so they can be
added to the QP problem (3.1) to ensure the robot balance in case of no modeling
uncertainties.
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3.4 Robustness to Inertial Parameter Errors

In the previous section we saw that the inertial parameters appear in three different
locations in the controller optimization problem (3.1): i) in the mass matrix M , ii)
in the bias forces h, and iii) in the capture-point inequalities (3.2). Unfortunately
M and h depend on φ in a highly-nonlinear way, so it is hard to deal with it. In this
work we deal instead with the dependency of the capture-point inequalities (3.2)
on the inertial parameters. More in details, many terms in (3.2) depend on φ, but
we will focus on the dependency of the CoM xy coordinates on φ. In other words,
we want to solve this optimization problem:

minimize
y=(v̇,f,τ)

||Ay − a||2

subject to
[
M(φ̂) −J>c −S>
Jc 0 0

]v̇f
τ

 =
[
−h(φ̂)
−J̇cv

]
(3.3a)

(3.1a), (3.1b), (3.1c)
D(φ̂)v̇ +Bcxy(φ) ≤ b̄(φ̂) ∀φ ∈ U, (3.3b)

where φ̂ are the nominal inertial parameters (i.e. those used by the standard con-
troller) and:

b̄(φ̂) = b−B(α(φ̂)ċxy(φ̂) + β(φ̂))

Problem (3.3) is not tractable because it has an infinite number of inequality con-
straints due to the capture-point inequalities that need to be satisfied for all the
possible values of φ. In order to solve (3.3) we need to reformulate it in a tractable
form. To do that, we will start by analyzing the relationship between cxy and φ

(which is linear). Then we will show how to reformulate the robust capture-point
inequalities (3.3b) in a tractable form.

3.4.1 Dependency of CoM on Inertial Parameters

The CoM of the robot is the average of the CoM of all its links, weighted by their
respective masses:

cxy = P

∑N
i=1mi(pi + wRi

ici)
mtot

=
N∑
i=1

m−1
totP

[
pi

wRi 03×6
]

︸ ︷︷ ︸
Fi

φi

=
[
F1 . . . FN

]
φ = Fφ,

(3.4)

where P =
[

1 0 0
0 1 0

]
, pi ∈ R3 is the position of the reference frame of link i expressed

in the world frame, wRi ∈ R3×3 is a rotation matrix from link i reference frame to
the world frame, and mtot is the total mass of the robot. From (3.4) we can see that
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the robot CoM is the ratio of two linear functions of the inertial parameters because
mtot is clearly a linear function of φ. However, given that we can easily know the
robot total mass, we can assume that the uncertainty in mtot be negligible. In the
context of robustness we can thus consider cxy as a linear function of φ.

3.4.2 Robust Capture-Point Inequalities

Now we want to reformulate the robust capture-point inequalities into a tractable
form. We can start by rewriting the i-th line of (3.3b) using (3.4):

Div̇ +BiFφ ≤ b̄i ∀φ ∈ U,

where Di, Bi and b̄i are the i-th lines of the associated matrix/vector, and we
dropped the dependency on the nominal inertial parameters φ̂ for the sake of read-
ability. We can get rid of the quantifier operator ∀ by replacing the uncertain term
with its maximum:

Div̇ + max
φ∈U

(BiFφ) ≤ b̄i (3.5)

We could compute the maximum of BiGφ under the constraint of φ belonging to
the polytope U by solving a Linear Program (LP) for each capture-point inequality.
However, that would be too computationally expensive for a controller that typically
has to run at 1 kHz because of the size of the LP (i.e. 10N variables and even more
constraints). Luckily we show now that we can solve this LP by solving N LPs of
much smaller size.

max
φ∈U

BiFφ = max
φ∈U

N∑
j=1

BiFjφj =
N∑
j=1

max
φj∈Uj

BiFjφj (3.6)

Thanks to this reformulation, rather than maximizing a linear function of the robot
CoM, we can maximize a linear function of each link CoM. This boils down to
finding, for each link, the CoM position that maximizes the dot product with the
vector Bi. If the polytope of possible CoM positions has not many vertices, this
optimization can be performed by enumeration. This means that we can compute
the dot product ofBi with all the vertices of the CoM polytope and then take the one
that resulted in the largest value. Since the vertices of the CoM polytope of each link
can be computed offline before starting the controller, this operation is extremely
computationally efficient. If we assume that each CoM polytope has nv vertices
and that the support polygone has ns sides, the computation of maxφ∈U BiFφ for
all i requires nsnvN dot products of 3D vectors. For a typical scenario of ns = 6,
nv = 10 and N = 30, this gives 1800 dot products. On a standard computer this
would take only a few microseconds, so it is suitable for real-time control on a real
robot.

Once this quantity has been computed, the robust capture-point inequalities
(3.3b) can be written as standard linear inequalities and problem (3.3) can be
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Table 3.2: Simulation parameters.
Symbol Meaning Value
∆t Simulation time step 0.002 s
v̇maxj Max joint acceleration 10 rad s−2

vmaxj Max joint velocity 9.14 rad s−1

µ Force friction coefficient 0.3
wreach Reaching weight 1
wpost Posture weight 10−2

wforce Force minimization weight 10−5

solved by a standard QP solver.

3.5 Tests

In this section, we present a series of simulation results that try to answer to the
following question: what improvement can we get in terms of fall prevention by us-
ing the robust controller? We tested the proposed controller on a typical humanoid
tasks (i.e. whole-body reaching) with the 30-degree-of-freedom humanoid robot
HRP-2. We carried out several batches of tests, each batch differing for the simu-
lated uncertainties. Each batch was composed by 100 tests, which is not enough for
being a statistically significant sampling, but was dictated by the computation time
of our simulation environment (about 6 hours for 100 tests). Each test consisted in
trying to perform the reaching motion with the two controllers (classic and robust)
until the robot either fell or reached the end of the motion. The inertial parameter
errors changed at each test, but they were the same for the two controllers. We
then measured the number of times each controller drove the robot to a fall and
the average distance between the final end-effector position and the desired target.

3.5.1 Simulation Environment

To assess the proposed controller we developed a dedicated simulation environ-
ment based on a state-of-the-art algorithm for frictional contacts in multibody sys-
tems [Kaufman 2008]. We integrated the equations of motion of the system with a
first-order Euler scheme with fixed time step ∆t. Our choice of not using an off-
the-shelf simulator is motivated by our desire to completely understand and control
the simulation environment. The inertial parameters (masses and centers of mass)
of the model used by the controller did not match those of the model used by the
simulator. The random inertial-parameter errors were generated using uniform dis-
tribution. For masses, the maximum error was expressed in terms of percentage of
the real values. For centers of mass, the maximum error was instead expressed in
meters. In each test we specify which uncertainties were simulated. Table 3.2 lists
all the simulation and controller parameters.
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Table 3.3: Results of Test 1. For each controller we show the number of falls (Falls),
the average time to complete the motion (Task Time) and the average distance of
the end-effector to the target at the end of the motion (Task Error).

Uncertainties Classic Controller Robust Controller
Max Mass Max CoM Falls Task Task Falls Task Task
Error Error Time Error Time Error
[%] [mm] [%] [s] [mm] [%] [s] [mm]
10 10 31 4.4 49 3 4.5 60
10 20 33 4.3 52 1 4.5 69
10 40 45 4.3 55 3 4.7 102
20 10 38 4.2 49 11 4.5 77
20 20 49 4.5 51 9 4.55 103
20 40 45 4.5 59 14 4.72 122

3.5.2 Task Description

The control objective was defined by three tasks that the robot had to perform at
the same time. Since the tasks are in conflict, we weighted them with hand-tuned
parameters, according to their importance. The three tasks, in order of decreasing
priority, are:

• reach the desired target with the right end-effector (weight wreach)

• maintain initial joint posture (weight wpost)

• minimize contact moments and tangential forces [Righetti 2013b] (weight
wforce)

We carried out two sets of simulations. In both cases HRP-2 executed a reaching
motion that made its capture point reach the boundaries of its support polygon.

3.5.3 Test 1

In this test we set the right end-effector target far in front of the robot. Fig. 3.1
shows some screen shots of the simulations. To reach the target the robot must
move its CoM (and hence also its capture point) close to the boundaries of its
support polygon. Table 3.3 presents the results. Regardless of the magnitude of
the inertial parameter errors, the robust controller managed to prevent the robot
from falling almost always, while with the standard controller the robot fell more
than 30% of the times. However, since the target was far away from the robot,
the robust controller did not manage to reach it because that would have required
violating the robust balance constraints.
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(a) Classic control illustrating the robot’s loss of balance when the real
capture point gets out of the support polygon

(b) Robust control illustrating the robot right end effector reaching close
to the goal without losing balance

Real Capture Point Estimated Capture Point Support Polygon Capture Point Polytope

Figure 3.1: Screenshots of HRP-2 executing Test 1 to reach the ball target with the
robust controller.
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Table 3.4: Results of Test 2. For each controller we show the number of falls (Falls),
the average time to complete the motion (Task Time) and the average distance of
the end-effector to the target at the end of the motion (Task Error).

Max Mass Max CoM Falls Task Task Falls Task Task
Error Error Time Error Time Error
[%] [mm] [%] [s] [mm] [%] [s] [mm]
10 10 29 3.94 2 0 3.4 2
10 20 35 3.4 2 2 3.0 2
10 40 42 3.86 4 0 2.6 4
20 10 43 3.6 3 0 2.8 4
20 20 45 3.5 3 0 2.5 4
20 40 45 3.0 5 0 2.1 5

3.5.4 Test 2

In this test we moved the right end-effector target closer to the robot, so that HRP-
2 can reach it without moving its CoM close to the support polygon boundaries.
However, we increased the desired speed of reaching (by increasing the gains of
the reaching task). This affected the velocity of the CoM, which in turns affected
the capture point, making it reach the boundaries of the support polygon. The
difference with respect to Test 1 is that in this case also the robust controller can
reach the target. Table 3.4 summarizes the results.

Similarly to Test 1, the classic controller leads the robot to a fall in more than
30% of the cases. However, contrary to Test 1, this time the robust controller
also manages to reach the target, because it is located closer to the robot. This
test shows that being robust does not necessarily implies that we have to sacrifice
performance. A video result of the same is available here.

3.6 Conclusions

This chapter presented a novel optimization-based inverse-dynamics controller that
can balance a legged robot despite bounded uncertainties in its inertial parame-
ters. The controller is based on the state-or-the-art control framework Task-Space
Inverse Dynamics. In particular, this work is based on the capture-point inequal-
ities [Ramos 2014], which can be included in the controller formulation to ensure
the balance of the robot on a level ground. We extended these capture-point in-
equalities to be robust to bounded uncertainties in the inertial parameters of the
robot. The resulting optimization problem is still a Quadratic Program with the
same number of variables and inequalities. Moreover, the time required for the
additional computation of the robust controller is negligible in this context (i.e. a
few microseconds).

We tested the robust controller in simulations with the HRP-2 robot, trying to

https://youtu.be/IA-HhoR0g-4
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reach a target position with its right end-effector while balancing. We performed
several batches of 100 simulations each, introducing different errors in the inertial
parameters and varying the position of the target position and the required speed
of motion. Comparisons against a classic TSID controller have shown impressive
improvements in terms of fall prevention.

In the derivation of the robust controller we saw that the inertial parameters
appear in different terms of the optimization problem. In this preliminary work
we focused only on how the uncertainties affect the CoM position. We believe it
should be possible to extend this analysis to the other terms in the capture-point
inequalities: CoM velocity, CoM altitude, CoM Jacobian and its time derivative.
Extending it also to the mass matrix and the bias forces is an interesting future
direction, but it seems more challenging because of nonlinearities.

Another issue of the presented approach is that it is rather conservative and
this can lead to poor performance, which can be unacceptable on a real system.
Modeling uncertainties with probability distributions (rather than with polytopes)
may lead to a less conservative behavior of the system, and it is thus an interesting
future direction. In [Del Prete 2016a], the proposed controller was robust to joint-
torque tracking errors. Integrating the two controllers together seems to be feasible
and it would provide robustness to both kinds of uncertainties. In this preliminary
work we focused on simulations to validate the controller formulation and to test
it with different parameter errors. Of course, we plan also to test the generated
movements on the real HRP-2 robot, to quantify how much it can benefit from this
robustness.





Chapter 4

Conclusions

This thesis investigated the development of robust and reactive control methodolo-
gies for industrial and legged robots. Both the contributions in this thesis focuses on
handling uncertainties and variability in robotic control in two different platforms
exposed to different environment settings. This chapter concludes this thesis with
a brief overview of the contributions and the expected future work.

4.1 Dynamic Obstacle Avoidance

The first contribution of this thesis is a framework that augments robot manipu-
lators with dynamic obstacle avoidance functionalities. The goal is to make indus-
trial robots more capable of collaborating with human beings. The framework uses
proximity skin sensors to perceive its environment, which thus does not need to
be modeled. The dense proximity information around the arm allows the system
to react to obstacles approaching from any direction. The reactive controller re-
lies on the state-of-the-art hierarchical QP solver, which makes it efficient enough
to be used in real time. The tasks are programmed systematically to execute the
planned trajectory, while avoiding potential collisions thanks to the higher-priority
collision-avoidance task. The controller has been validated on a UR5 robot, shown
in Fig. 2.6.

The integration and installation of advanced functionalities, such as the pre-
sented dynamic obstacle avoidance solution, poses three main challenges from the
software point of view. The first is the integration of different components such as
the skin driver, path planner and robot motion control. We addressed this challenge
by adhering to the software development paradigm of the ROS-Industrial initiative.
All the components presented in the work have been successfully integrated with
ROS.

A second challenge is the quality assurance and robustness of the integrated
robot software. This is crucial in production environments, and is specially impor-
tant in collaborative applications, where safety needs to be guaranteed. For this pur-
pose an Automated testing Framework (ATF) has been developed [Weisshardt 2016]
as a part of the FiaD project, which allows for the systematic testing of robot soft-
ware components, including unit testing, simulation-in-the-loop testing, and even-
tually hardware-in-the-loop testing. The tests can be automated and integrated in
a centralized continuous integration system. Preliminary tests have already been
conducted with the components of the robot software system of this work, and the
integrated prototype applications will be tested with ATF.
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(a) Classic Controller (b) Robust Controller

Figure 4.1: Reaching Task under Inertial Uncertainties

Finally, the third challenge is the deployment of the software. One of the main
barriers to transfer solutions based on robot frameworks such as ROS to industry,
and specially SMEs, is how cumbersome they are to deploy. As a part of the FiaD
project, a robot deployment toolbox has been developed [Lüdtke 2017], based on
ROS, which can also be integrated with ATF. The deployment tools will also be
evaluated on the RBE17 prototype.

The developed reactive control scheme has been demonstrated in the final
project meeting (see this video) in the context of developing collaborative robot
applications that can be deployed in industries quickly and with ease.

4.2 Robust Balance Control

The second contribution is a strategy to model inertial parameter uncertainties in
a balance controller for legged robots. The specific controller that we considered
in this work relies on the capture point to ensure the balance of the system. We
investigated how errors in the masses and centers of mass of the robot links affect
the estimation of the capture point, and thus the robot balance. This has allowed
us to derive new robust capture-point inequality constraints, that we integrated in
a standard Task-Space Inverse Dynamics control framework. Our simulations with
the HRP-2 humanoid robot show that these new capture-point constraints make
the controller much more robust to inertial errors of the robot model.

While the presented results are extremely encouraging, this work represents
only a first step towards the achievement of a completely reliable balance control
for legged robots. In the future, several issues of the presented controller need to
be addressed in order to improve its performance, both from a theoretical and a
practical stand point.

From a theoretical stand point, the proposed controller cannot guarantee the
balance of the robot even if the inertial parameter uncertainties lie inside the given

https://youtu.be/DU-y0KH41HI?t=3m18s
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polytopes. This is because the inertial parameters appear in different terms of
the optimization problem, but we have focused only on how they affect the CoM
position. Our decision was based on our intuition, which suggested us that this was
the most important term to take into account to achieve a robust behavior. Our
simulations seem to confirm our intuition. However, this leaves us with a controller
that cannot actually provide any guarantee on the balance of the system, and thus
it is not reliable. We believe that it should be possible to account also for the effect
of inertial parameter errors in several other terms of the capture-point inequalities:
CoM velocity, CoM altitude, CoM Jacobian and its time derivative. However, this
would still be insufficient to provide a theoretical guarantee of stability. This is
because the inertial parameters also affect the mass matrix and the bias forces of
the robot dynamics equation. While trying to account for all these uncertainties
is an interesting future direction, it seems extremely challenging due to the highly
nonlinear dependence of these quantities on the inertial parameters.

From a pragmatic stand point, during our tests we noticed that the presented
approach can lead to extremely conservative behaviors. This problem is directly
connected to our worst-case approach to model uncertainties: errors are supposed
to lie inside polytopes, and we try to make the system robust to any possible real-
ization of these errors. Another well-known way to model uncertainties is to rely on
probability distributions rather than on uncertainty sets. Probability distributions
provide a much richer descriptions of the errors, and thus allow the controller to
make smarter choice when looking for a trade-off between safety and performance.
These intuitions have also been confirmed by a recent work on robustness to joint-
torque tracking errors [Del Prete 2016a], which compared the worst-case and the
stochastic approaches to ensure robustness. All of this makes us believe that by
using probability distributions to model inertial parameter errors we may obtain
less conservative behaviors, while maintaining a high level of robustness.

Another interesting direction of future work would be to extend the presented
controller to account for other kinds of uncertainties. For instance, it could be
possible to integrate our controller with the one presented in [Del Prete 2016a], so
as to ensure robustness to both inertial parameter errors and joint-torque tracking
errors.
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