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Präkonditionen [pʀɛːkɔndiːt͡sɪoːˈnɛn]:
restlose Abklärung von Vorbedingun-
gen; eine absurdum geführte Transpa-
renz; das Röntgen von Mietern durh
Immobilienmakler oder von Menshen
durh die Krankenkassen∗
Der große Polt: Ein Konversationslexikon

Gerhard Polt

∗ G. Polt. Der große Polt: Ein Konversationslexikon. 6th ed. Zürih: Kein & Aber, 2017, p. 117. For those
who dwell in Munih, the word “Präkonditionen” has a negative touh as indicated by Gerhard Polt,
who deines it as the “total clariication of preconditions; a transparency to the point of absurdity,” for
example, as it is observed in the “x-raying of tenants by real estate agents.” his treatise is devoted to
the development of so-called “preconditioners” in the context of boundary integral equation methods
for that it vindicates at least partially the term “preconditions.”



Abstract
he electric ield integral equation (EFIE) and the combined ield integral equation
(CFIE), whih are commonly used to solve scatering and radiation problems,
sufer from the dense-discretization and the low-frequency breakdown: if the
average edge length of the mesh is reduced, or if the frequency is decreased,
then the condition number of the system matrix grows. his leads to slowly or
non-converging iterative solvers.
his dissertation presents new paradigms for rapidly converging integral equa-

tion solvers: to overcome the ill-conditioning, we advance and extend the state
of the art both in hierarhical basis and in Calderón preconditioning tehniques.
For the EFIE, we introduce a hierarhical basis for structured and unstructured
meshes based on generalized primal and dual Haar prewavelets. Furthermore, a
framework is introduced whih renders the hierarhical basis able to eiciently
precondition the EFIE in the case that the scaterer is multiply connected. he
applicability of hierarhical basis preconditioners to the CFIE is analyzed and an
eicient preconditioning sheme is derived.
In addition, we present a reinement-free Calderón multiplicative precondi-

tioner (RF-CMP) that yields a system matrix whih is Hermitian, positive deinite
(HPD), and well-conditioned. Diferent from existing Calderón preconditioners,
no dual basis functions and thus no reinement of the mesh is required. Since the
matrix is HPD—in contrast to standard discretizations of the EFIE—we can apply
the conjugate gradient (CG) method as iterative solver, whih guarantees con-
vergence. Eventually, the RF-CMP is extended to the CFIE. Particular atention
is paid to obtain a preconditioner that is stable on multiply connected objects,
both for the EFIE and the CFIE.
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Zusammenfassung
Diese Dissertation stellt neue Paradigmen zur Vorkonditionierung von Integral-
gleihungen zur Lösung elektromagnetisher Streu- und Ausstrahlungsprobleme
vor. Integralgleihungsverfahren werden häuig für Probleme dieser Art einge-
sezt, da—neben einer Reihe weiterer Vorteile—ofene Randbedingungen niht
aufwendig modelliert werden müssen und keine numerishe Dispersion autrit.
Für die Problembeshreibung werden typisherweise die elektrishe Feldinte-
gralgleihung und die kombinierte Feldintegralgleihung verwendet. Leider sind
diese shleht konditioniert: Wird die Anzahl der Unbekannten erhöht oder die
Frequenz verringert, dann wähst die Konditionszahl der Systemmatrix, die durh
die Diskretisierung der jeweiligen Integralgleihung entsteht.
Um diese shlehte Konditionierung zu verhindern, werden in dieser Disserta-

tion die Hierarhishe-Basen- und die Calderón-Vorkonditionierung weiterent-
wikelt. Zuerst wird eine auf Haar-Prewavelets basierende hierarhishe Basis
vorgestellt, die auf strukturierten wie auh unstrukturierten Diskretisierungs-
gitern verwendet werden kann. Mit dieser Basis wähst die Konditionszahl nur
noh logarithmish mit der Anzahl der Unbekannten. Dazu wird die Haar-Basis
sowohl für das primäre als auh für das duale Giter verallgemeinert. Um den Ska-
larpotentialoperator der elektrishen Feldintegralgleihung vorzukonditionieren,
werden die Divergenzterme, die in der Variationsformulierung autreten, mit-
tels inverser Laplace-Matrizen indirekt entfernt: Die Entfernung geshieht durh
Anwendung iterativer Verfahren, die mitels algebraisher Mehrgitervorkondi-
tionierer stabilisiert werden. Für den Vektorpotentialoperator der elektrishen
Feldintegralgleihung wird gezeigt, dass eine angepasste inverse Transformati-
onsmatrix der dualen Haar-Basis als Vorkonditionierer eingesezt werden kann.
Dieses Ergebnis wird unter Verwendung einer diskreten Calderón-Identität er-
reiht, welhe den hypersingulären Randintegraloperator und den Einfahshiht-
Randintegraloperator in Bezug sezt. Nebenbei ergibt sih dadurh ein Haar-Basis-
Vorkonditionierer für den hypersingulären Operator, der unter anderem in der
numerishen Modellierung elektrostatisher und akustisher Probleme relevant
ist.
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Wenn eine Geometrie mehrfah zusammenhängend ist, müssen sogenannte
globale Shleifenfunktionen zu quasi-Helmholz-Zerlegungen hinzugefügt wer-
den. Diese Funktionen sind numerish aufwendig zu konstruieren bzw. anzuwen-
den. Um dennoh hierarhishe Basen als Vorkonditionierer einsezen zu können,
ohne dabei die quasilineare Gesamtkomplexität des Lösungsalgorithmus zu ge-
fährden, wird ein neues Verfahren vorgestellt, welhes erlaubt, diese Basen mit
quasi-Helmholz-Projektoren zu kombinieren, wodurh die explizite Konstruktion
der globalen Shleifenfunktionen umgangen wird.
Anshließend wird die Anwendbarkeit von hierarhishen Basen als Vorkondi-

tionierer auf die kombinierte Feldintegralgleihung untersuht. Es wird gezeigt,
dass die hierarhishen Shleifenfunktionen, welhe den Vektorpotentialopera-
tor niht vorkonditionieren können, sehr wohl bei der kombinierten Feldinte-
gralgleihung angewendet werden können. Darüber hinaus wird ein Verfahren
mit quasi-Helmholz-Projektoren vorgestellt, das es erlaubt Hierarhishe-Basen-
Vorkonditionierer im Rahmen der kombinierten Feldintegralgleihung auf un-
strukturierten Diskretisierungsgitern zu nuzen.
Für die meisten Anwendungen sind diese hierarhishen Vorkonditionierer

ausreihend. Im asymptotishen Grenzfall, wenn also die Anzahl der Unbekann-
ten gegen Unendlih strebt, würde die Konditionszahl dennoh shrankenlos
wahsen. Werden hingegen Calderón-Vorkonditionierer verwendet, so konver-
giert die Konditionszahl gegen eine Konstante. In dieser Dissertation wird die
Calderón-Vorkonditierung derart weiterentwikelt, dass keine dualen Basisfunk-
tionen und daher auh kein baryzentrish verfeinertes Diskretisierungsgiter
benötigt wird. Es basiert auf spektralen Äquivalenzen von Laplace-Matrizen und
diskretisierten Integraloperatoren (vornehmlih des Einfahshihtpotentialope-
rators und des hypersingulären Operators). Insbesondere gelingt es dabei auh,
den Vorkonditionierer so auszulegen, dass mehrfah zusammenhängende Geo-
metrien ohne Stabilitätsprobleme behandelt werden können. Im Gegensaz zu
existierenden Verfahren ist die entstehende Systemmatrix hermetish und positiv
deinit. Dadurh ist es möglih, dass iterative Verfahren der konjugierten Gra-
dienten anzuwenden, das Konvergenz garantiert und im Vergleih zu anderen
Krylov-Unterraumverfahren geringe numerishe Zusazkosten aufweist.
Shließlihwird der neue Calderón-Vorkonditionierer auf die kombinierte Feld-

integralgleihung erweitert. Diese Erweiterung ist notwendig, da die elektrishe
Feldintegralgleihung bei geshlossenen Geometrien für deren Resonanzfrequen-
zen niht mehr eindeutig lösbar ist. Dabei gibt es vershiedene Herausforderun-
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gen: Zunähst ist eine direkte Anwendung des neuen Verfahrens niht möglih,
weil der Teil des Vorkonditionierers für den Vektorpotentialoperator zu einer
shleht-konditionierten Systemmatrix der ebenso enthaltenen magnetishen
Feldintegralgleihung führen würde. Daneben würde die vorkonditionierte Ma-
trix niht mehr hermitesh und positiv deinit sein. Besondere Aufmerksamkeit
erfordern shließlih mehrfah zusammenhängende Geometrien, da der toroidale
Teil des quasi-harmonishen Helmholz-Unterraums so mit der Frequenz skaliert,
dass sih für den statishen Grenzfall ein Nullraum ergibt. Das neue Verfahren
führt, wie shon im Fall der elektrishen Feldintegralgleihung, zu einer Sys-
temmatrix, die hermitesh, positiv deinit und wohlkonditioniert ist—sowohl für
einfah als auh mehrfah zusammenhängende Geometrien.
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Résumé
Cete dissertation présente de nouveaux paradigmes de préconditionnement
d’équations intégrales pour la résolution de problèmes de difusion et de radiation
électromagnétique. Les équations intégrales sont communément utilisées pour
résoudre ces problèmes elles incorporent naturellement les conditions aux limites
ouvertes et elles ne ne soufrent pas de problèmes de dispersion numérique.
Malheureusement, certaines de ces équations intégrales, en particulier l’équation
intégrale du hamp électrique et l’équation intégrale du hamp combiné sont mal
conditionnées. C’est à dire que, si le nombre d’inconnues augmente ou que la
fréquence diminue, le conditionnement du problème se dégrade, ce qui a pour
conséquence le ralentissement ou la non-convergence de solveurs itératifs.
Pour remédier à ce mauvais conditionnement, nous nous basons sur et éten-

dons l’état de l’art dans le domaine des bases hiérarhiques et des tehniques de
préconditionnement de type Calderón. Dans un premier temps, la thèse est dédiée
à l’amélioration des préconditionneurs à bases hiérarhiques. Nous présentons
une base pour des maillages structurés et non structurés, dans laquelle le condi-
tionnement croît logarithmiquement en fonction du nombre d’inconnues. Cela
représente un nete amélioration par rapport à l’état de l’art, qui ateint au mieux
une croissance proportionnelle à la racine carrée du nombre d’inconnues. Nous
obtenons ce résultat en généralisant dans un premier temps la base de Haar aux
maillages triangulaires et leur dual. Pour préconditionner l’opérateur potentiel
scalaire de l’équation intégrale du hamp électrique nous supprimons les termes
de divergence apparaissant dans sa forme variationnelle grâce à l’utilisation de
l’inverse des laplaciens de graphes. Pour stabiliser cete inversion nous utilisons
des préconditionneurs à grilles multiples déjà existant. Pour de l’opérateur du
potentiel vecteur de l’équation intégrale du hamp électrique, nous montrons
que la matrice de transformation inverse de la base de Haar doit être utilisée. Ce
résultat est obtenu grâce à une identité de Caldérón scalaire discrétisée qui lie
l’opérateur hypersingulier à l’opérateur potentiel simple couhe bien connu en
électrostatique. Cete démarhe a aussi permis l’obtention d’un préconditionneur
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à base de Haar pour l’opérateur hypersingulier, opérateur qui apparaît dans la
modélisation de problèmes électrostatiques et en acoustiques.
Dans le cas de géométries à connexions multiples, les boucles globales doivent

être prises en compte et ajoutées aux décompositions quasi-Helmholz. La construc-
tion et l’application de ces fonctions sont coûteuses en termes de calcul. Ain
d’utiliser les préconditionneurs à base hiérarhique sans nuire à la complexité
dominante engendrée par une méthode rapide, nous montrons que la base hié-
rarhique peut être utilisée sans la construction explicite des boucle globales. Ce
résultat est obtenu grâce au développement d’un système permetant de com-
biner les projecteurs quasi-Helmholz à la base hiérarhique. Le principe en lui
même est agnostique de la base concrète, et par conséquent peut être combiné à
n’importe quelle base hiérarhique disponible.
Ensuite nous nous intéressons à l’application du préconditionneur à base hié-

rarhique à l’équation intégrale du hamp combiné. Nous démontrons que les
boucles hiérarhiques, qui ne peuvent pas résoudre la détérioration de la solution
due à la discrétisation dense pour la partie du potentiel vecteur de l’équation in-
tégrale du hamp électrique, peuvent être efectivement utilisées pour l’équation
intégrale du hamp combiné. De plus, nous proposons une nouvelle méthode per-
metant l’utilisation de préconditionneurs à bases hiérarhiques à la fois sur des
maillages structurés et non-structurés dans le contexte de l’équation intégrale du
hamp combiné. Nous utilisons le fait que l’équation du hamp combiné est bien
conditionnée pour le sous-espace de Helmholz solénoïdal et ainsi nous utilisons
les projecteurs quasi-Helmholz : ces projecteurs sont metent en évidence une
base hiérarhique non-solénoïdale permetant de préconditionner la partie de
l’opérateur du potentiel scalaire dans l’équation intégrale du hamp combiné.
Les nouveaux préconditionneurs à base hiérarhique suisent pour la ma-

jorité des applications. Cependant le conditionnement des problèmes devrait
tendre asymptotiquement vers l’inini. C’est pourquoi dans un second temps,
nous surmontons cete limitation en introduisant le préconditionneur multi-
plicatif de Caldéron sans rainement (RF-CMP) qui, contrairement aux autres
méthodes, ne nécessite pas une seconde discrétisation de l’équation intégrale du
hamp électrique avec les fonctions de base duales. Tout d’abord, nous dérivons
cete tehnique pour l’équation intégrale du hamp électrique en nous basant
sur l’équivalence spectrale entre les laplaciens (de graphe) et les opérateurs inté-
graux discrétisés (les opérateurs simple couhe et hypersingulier). Une atention
particulière a été portée à l’obtention d’une formulation stable dans le cas des
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géométries à connexion multiple. Contrairement à d’autres préconditionneurs, le
système matriciel résultant est Hermitien, déini positif ce qui permet l’utilisation
de la méthode des gradients conjugués. A la diférence des autres méthodes des
sous-espaces de Krylov, la méthode des gradients conjugués a une convergence
garantie et a un surcoût calculatoire minimal.
Enin, le RF-CMP est étendu à l’équation intégrale du hamp combiné. Nous

obtenons ainsi une formulation sans résonances artiicielles. Il y a là plusieurs
déis : premièrement l’application directe du RF-CMP est impossible puisque
la partie du préconditionneur pour l’opérateur du potentiel vecteur rendrait
l’équation intégrale du hamp magnétique mal conditionnée. Deuxièmement,
nous n’aurions pas un système matriciel hermitien déini positif. Et enin nous
n’obtiendrions pas une formulation stable pour des géométries à connexions
multiples. Cela est du au fait que l’équation intégrale du hamp magnétique n’est
pas entièrement bien conditionnée puisqu’elle possède un noyau statique associé
à la partie toroïdale du sous-espace de Helmholz quasi-harmonique. La nouvelle
formulation est construite de façon à ce que le système préconditionné soit,
comme pour l’équation intégrale du hamp électrique, hermitien déini positif et
reste stable pour des géométries à connexions multiples.
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Preface and Aknowledgment
I am so used to plunging into the
unknown that any other
surroundings and form of existence
strike me as exotic and unsuitable
for human beings.†

Conquest of the Useless
Werner Herzog

When I plunged into my dissertation research, I did not knowwhat
hallenges and issues I would encounter, and what the outcome of all my
eforts would be. While I would never dare to compare these eforts with,

let’s say, the efort it takes to move a ship across a mountain ridge from one river
system into another, I found the existence as doctoral student quite suitable for
me.‡ his is not only due to the fun I had whilst exploring the unknown, but also
due to the people who I have met in that quest.
he researh of this thesis was carried out at the Chair of High-Frequency En-

gineering at the Tehnical University of Munih and the Computational Electro-
magnetics Researh Laboratory at the École nationale supérieure Mines-Télécom
of Atlantique Bretagne-Pays de la Loire. During my Lehrjahre, I have met many
wonderful people both in my academic and my private life and I would like to
express my sincere gratitude to all of them.
First, I would like to thank my advisors professor homas Eibert and pro-

fessor Francesco Andriulli. his work would not have been possible without
their guidance, counsel, encouragement, and the many fruitful discussions we

† W. Herzog. Conquest of the Useless: Relections from the Making of Fizcarraldo. 1st ed. Ecco: New
York, 2009, p. 248.

‡ As a side note for (future) doctoral students, I found that the ilm “Burden of Dreams” is a great source
of motivation helping to master the (occasional) periods of frustration.
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Preface and Aknowledgment

had—a guidance whih was, in fact, not limited to this work alone. heir (not
only scientiically) inspiring nature will always remain an example for me. Von
ganzem Herzen danke ich professor Eibert for introducing me to the world of
high-frequency engineering and for giving me a large measure of freedom in
my teahing. Io ringrazio di cuore Francesco for introducing me to Calderón and
hierarhical basis preconditioning, leting me use his boundary element code, the
myriad Skype sessions, and all the adventures we had together.
Moreover, I am grateful to professor Romanus Dyczij-Edlinger and profes-

sor Ralf Hiptmair for serving on my thesis commitee and for their invaluable
feedbak, and to professor Ulf Shlihtmann for hairing the commitee.
My advisors enabled me to visit many conferences, whih allowed me to get

feedbak on my researh early on by meeting researhers from all over the world.
he many interesting discussions, not necessarily limited to my own researh,
made the conference visits so priceless. To name but a few, I would like to thank
professors Hakan Bağci, Shanker Balasubramaniam, Amir Boag, Kristof Cools,
Leslie Greengard, Ludger Klinkenbush, Eric Mihielssen, Andrew Peterson, Se-
bastian Shöps, Felipe Vico, Karl Warnik, homas Weiland, Daniel Weile, and
Dr. Yves Beghein for the many inspiring conversations.
A special thanks goes to professor Yaniv Brik, who honored me with his

friendship since we meet at IEEE International Symposium on Antennas and
Propagation in Orlando. I am deeply grateful not only for our discussions on
common researh interests, but also for introducing me to the IEEE Education
Commitee and to the Japanese cuisine!
hat my stays at the end of the earth§ have been so enjoyable, I owe very muh

to my friends and co-workers professor Rajendra Mitharwal, Dr. Abdelrahman
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Chapter 1

Introduction
Kinder, shat Neues!

Richard Wagner

Seven score and twelve years ago, James C. Maxwell published twenty
equations whih describe the behavior of electromagnetic ields [Max65] and
whih we refer today as “Maxwell’s equation” (though the equations as they

are taught in university nowadays are fewer in number thanks to the introduction
of vector calculus and the omission of Lorenz force law [SS03; Art13]).1 Despite
the many decades whih have passed since their publication, inding a solution
to Maxwell’s equations for an arbitrary problem remains a hallenge. Analytic
solutions are known only for a few canonical geometries suh as a sphere [Mie08],
but even for a geometry as simple as a torus no analytic solution is known [Lau67;
BCP13; Ven06].
Yet, there is a need for obtaining these solutions: if we were not be able to

solve Maxwell’s equations, the design process of any device with electromagnetic
properties would be limited to extensive prototyping and experimentation, a
process whih is both expensive and time consuming. Given the number of quo-
tidian electromagnetic devices and systems suh as television, radio, microwave
ovens, satellite communication systems, radar systems, electrical motors and
generators, medical imaging systems, it is evident that we need methods that
allow us to predict the (electromagnetic) behavior of these devices and systems
at an early stage in the design process.

1 Important contributions to the formalismwe are using today stem fromOliver Heaviside [Hea; Hea93]
and Heinrih Herz [Her84; Her90]. he irst textbook on Maxwell’s equations, whih according to
[Art13] presented the theory in a clear and instructive manner, was published by August Föppl
[FA07]. For a detailed discussion on the evolution of Maxwell’s equations, see [Art13].
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a) Fragmentary2 Review of Numerical Tehniques
If there is no analytic solution, one must resort to a numerical tehnique, whih
yields an approximate solution. A plethora of tehniques have been developed,
and the hoice of the method depends on the problem to be solved. For example,
if a scaterer spans several millions of wave lengths, then asymptotic tehniques
based on geometrical or physical optics are required [Kel62; KP74; Ui07]. hese
methods, however, cannot always guarantee convergence to the physical solution.
In particular for electrically small or midsize problems with non-smooth surfaces,
this problem becomes critical.
In order to guarantee convergence, numerically exact methods must be used.

hey are typically divided into local and global methods. A local method dis-
cretizes in most cases a (partial) diferential operator commonly resulting in a
sparse linear system. Typical examples are the inite diference time domain
(FDTD) method [Yee66], the inite integration tehnique (FIT) [Wei77], the trans-
mission line matrix method (TLM) [JB71; Hoe85], or the inite element method
(FEM) [Jin14]. While these methods are well-suited for many applications, scat-
tering or radiation problems are not their strength: local methods require the
discretization of the entire domain, whih is impossible to ahieve for open prob-
lems (i.e., where the domain is unbounded). In order to minimize the computa-
tional resources, the domain must be truncated artiicially. his can be ahieved
by using, for example, absorbing boundary conditions [BT80] or the perfectly
mathed layer tehnique [Ber94]. While good results can be obtained, there is
still a trade-of between accuracy and computational efort.
Another issue, whih plagues local methods is numerical dispersion, that is,

if the frequency is increased while keeping the ratio of the average edge length
of the mesh and the wavelength constant, then the phase becomes polluted and
is eventually lost [BS97]. Remedies for this problem usually comprise the use of
higher order basis functions, whih leads to a densely populated linear system in
the asymptotic limit (and thus to the loss of one of the most harming properties
of local methods).

2 A cornucopia of numerical methods has been presented in the past decades for the solution of
Maxwell’s equations. Hence, the methods discussed in this section are mere samples to illuminate
the context in whih integral equation methods are situated. For a more complete discussion of the
diferent tehniques, the reader may consider standard textbooks suh as [Jin15].
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Integral equation based methods, whih belong to the class of global methods,
only demand the discretization of the scaterer or the antenna, respectively: open
boundary conditions are modeled within the analytical formulation so that no
additional efort is required. If the obstacle is homogeneous (or consists of a
several homogeneous subdomains), a further reduction in the computational
efort is possible since it suices to discretize the surface resulting in a surface
integral equation that has to be solved. In addition, integral equation based
methods do not sufer from numerical dispersion, though of course, the linear
system emerging from a standard discretization of an integral equation is densely
populated.
he dense system matrix has been one of the main reasons why integral equa-

tions were not in the focus of the scientiic community for a long time: since
the matrix is fully populated, the computational complexity to obtain a solution
becomes at least quadratic both in memory and in time consumption. Given the
computational resources available in the last century, researhwas mostly limited
to, for example, thin-wire approximations or 2-D problems [Har01; Sar83]. he
issue has been overcome with the advent of fast methods that allowed to reduce
the cost of a single matrix-vector product as well as the memory consumption
to quasilinear complexity, that is, if � is the number of unknowns, the com-
plexity is O(� log� � ), where � ∈ R

+ is a constant depending on the respective
method. Among the most popular methods are the multilevel fast multipole
method (MLFMM), multilevel matrix decomposition algorithm (MLMDA), hier-
arhical matrices, or adaptive cross approximation (ACA) [GR87; HN89; SLC97;
Dar00; MB96; ZVL05; Beb00; BR03].
he physical scenario considered in this thesis is the scatering of electromag-

netic waves by perfectly electrically conducting (PEC) objects, that is, a known
electromagnetic wave impinges on an obstacle and the scatered wave shall be
computed. As a variant of this scenario, we also take radiation problems into
account, where we solve for the wave radiated by an antenna whih is fed by a
voltage-gap source.
Given these scenarios, the focus is on surface integral equation methods, where

we do not solve directly for the electric or magnetic ield, but instead electric
and magnetic currents are obtained on the surface of the scaterer by applying
the surface equivalence principle [SC39; Pet+98]. Depending on the formulation,
these currents can have a physical meaning or can be purely artiicial.
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For solving a PEC problem, there are in essence two integral operators avail-
able, the electric ield integral equation (EFIE) and the magnetic ield integral
equation (MFIE) operator, whih lead to the EFIE [Rum54] and the MFIE [Mau49].
While both of them yield the physical electric surface current density, their prop-
erties difer in many regards: most prominently, the EFIE works for both closed
and open surfaces (e.g., an ininitely thin metal sheet would be an example of
an open surface), while the MFIE is only applicable to closed surfaces. hey do
share, however, a common problem: if we have an electrically large object with a
closed surface (i.e., the size of the scaterer spans several wavelengths), then both
the EFIE and the MFIE sufer from spurious modes; at resonance frequencies, the
operators have a null space and the electric current is not uniquely determined
anymore. his issue usually results in a loss of accuracy and slow convergence
if an iterative solver is used. he classic remedy is to combine the EFIE and
the MFIE to the combined ield integral equation (CFIE) [MH78], where we still
solve for the physical current. Alternatively, a combined source integral equation
(CSIE), as for example proposed in [MH79] or analogously to [BW65], can be
used. In this case, however, the solution is not the physical current anymore.
Whatever strategy is hosen, the resulting combined integral equation operator
will inherit properties of the EFIE and the MFIE operator. Hence, both operators
must be studied and dealt with.

b) Computational Complexity and Ill-Conditioned
Integral Equations

It was mentioned that fast methods can compress the system matrix so that the
memory consumption and the cost of a single matrix-vector product scale only
quasilinearly in the number of unknowns. he overall numerical costs for ob-
taining the solution of the scatering problem, however, have not been discussed
so far. To obtain the solution, two approahes are possible: a direct inversion of
the system matrix or the usage of an iterative solver, typically one belonging to
the class of Krylov subspace methods. he advantage of a direct inversion is its
robustness: we are guaranteed to obtain the inverse matrix, whereas iterative
solvers can converge slowly or, in the worst case, do not converge at all.
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In general, the direct inversion of the system matrix is of limited practicality
since the numerical costs scale cubically in � . Even if the inverse matrix is
obtained, for multiple right-hand sides it is still impractical since the cost of
single matrix-vector product scales quadratically in � . Recently, advances have
been made in the ield of fast direct methods in the static [Mar09] and in the
dynamic regime [GHM13; BLB14; GJM14; Guo+16], where in the later case
[Guo+16] it is observed that the memory requirement scales as O(� log2 � ) and
the computational costs for obtaining the inverse as O�� 1.5 log��. Since the
inverse is compressed, a single matrix-vector product has quasilinear complexity,
whih makes these methods particularly for multiple right-hand side problems
interesting. For large problems, however, any growth exceeding quasilinear
complexity can be prohibitive.
For iterative methods, the computational costs scale as O��iter� log� ��,

where �iter is the number of iterations that the iterative solver needs to converge.
he decisive question is whether there is an upper bound for �iter independent
of � . In the case of an integral equation of the second kind—the MFIE is a
typical example [Yla+13]—there is suh an upper bound (apart from the resonance
frequencies, where the MFIE operator has a null space). hus if a mesh is reined,
that is, � → ∞, then �iter → � , where � ∈ N is some constant.
For an integral equation of the irst kind, the EFIE is a typical example [Yla+13],

the situation is more complicated. For most Krylov subspace methods no sharp
bounds on �iter can be given. For illustration purposes and for the sake of
simplicity, we assume that the conjugate gradient (CG) method is used (whih
is actually not applicable since it requires a Hermitian, positive deinite (HPD)
matrix [HS52], whih neither the EFIE nor the MFIE are), then the number of
iterations �iter used by the CG method can be bounded by the square root of the
condition number of the system matrix [She94; AK01]. he condition number
is the ratio of the largest over the smallest singular value and in the case of the
EFIE the condition number scales linearly in � and so the computational costs
are O�� 1.5 log� �� for the EFIE and O�� 1.25 log� �� for the CFIE or the CSIEs.
Clearly, if �iter grows with increasing � , then the quasilinear complexity set

by the respective fast method is lost. Given the considerations on the CGmethod,
if the leading complexity set by the fast method shall be maintained, the system
matrices of the EFIE or CFIE must be transformed suh that the condition number
of the resulting system matrix has an upper bound independent of � .

7



Introduction Chapter 1

Whenever the growth of the condition number is unbounded in� , the problem
is ill-conditioned in � and this growth is referred to as the dense-discretization
breakdown. his terminology is necessary since other forms of ill-conditioning
can exist, in particular, the EFIE sufers from the so-called low-frequency break-
down: the condition number grows when the frequency is decreased.
Historically, in fact, when no fast method was available and the computational

resources were more limited than today, the low-frequency breakdown was,
with respect to ill-conditioning, the pressing problem (and not that muh the
dense-discretization breakdown). he low-frequency breakdown originates from
the fact that the EFIE operator is composed of two operators, the vector and
the scalar potential operator, whih scale with � and 1/�, respectively, where �
is the wavenumber. Since the scalar potential has a null space associated with
solenoidal functions, the system matrix possess two branhes of singular values
and these branhes are driven apart when the frequency is decreased.
To resolve these issues or their practical impact at least partially, there are

essentially three means: (i) developing a new formulation whih does not sufer
from these defects, (ii) domain decomposition approahes, and (iii) construct
a suitable preconditioner. A preconditioner can be understood as one or two
matrices whih are multiplied let and right to the system matrix, respectively,
and whih should yield a lower condition number of the overall matrix. Examples
for new formulations are the augmented EFIE [QC08] or the decoupled potential
integral equation [Vic+16]. hese approahes resolve the problems, however,
only partially [QC08] or are limited to smooth objects [Vic+16].
Domain decomposition methods are well-suited if the object is electrically

large or discretized with many unknowns. hey divide the domain into smaller
subdomains, where in eah subdomain the problem is solved independently from
the other subdomains. Transmission conditions are required to prevent unphys-
ical relections from the boundary of the subdomains. While these approahes
work well for FEMs, whih are local in nature, one needs more elaborate trans-
mission conditions in the case of integral equations: some methods perform
decently for simple problems [Bra+00] or speciic problems suh as the scatering
from antenna arrays [SM00; PM03; MLV07], they fail, however, when confronted
with intricate problems. A possible remedy comprises the use of second order
transmission conditions [RL10; PWL11], though at the price of the introduction
of auxiliary unknowns. More recent methods avoid the introduction of auxiliary
unknowns by introducing a penality term [Pen+16].
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c) Review of Preconditioning Tehniques
Preconditioners, to be efective, must be carefully designed. For example, to cure
the low-frequency breakdown a simple Jacobi preconditioner is not suicient.
Instead, the low-frequency breakdown has been cured by using quasi-Helmholz
decompositions suh as the loop-star and the loop-tree decomposition [WG81;
WGK95; BK95; Vec99; ZC00; Eib04]. Here, the loop functions are a solenoidal
basis and the star or tree functions complementing the loop functions are non-so-
lenoidal. By scaling these functions in frequency, the low-frequency breakdown
is resolved. hese preconditioners, however, cannot cure the dense-discretiza-
tion breakdown. In fact, the loop-star preconditioner is even more sensible to
the dense-discretization breakdown [And12a]. Another approah to overcome
the low-frequency breakdown is the augmented EFIE [QC08], whih does not
require an explicit quasi-Helmholz decomposition and whih has the advantage
that for multiply connected geometries the global loops are not needed (whih
are otherwise costly to obtain). Recently, quasi-Helmholz projectors have been
presented, whih can cure the low-frequency breakdown and do not require a
searh for the global loops [And12a; And+13].
One cure for the dense-discretization breakdown are near-zone precondition-

ers. Typically, fast methods suh as the MLFMM or the ACA distinguish between
near- and far-interactions. he near-interactions can be extracted from the system
matrix as sparse matrix with O(� ) elements. Since the near matrix is the domi-
nant part of the system matrix, its inverse is a good candidate as preconditioner.
his inverse, however, must be obtained. A classic approah is the incomplete
LU factorization [Ben02; Saa03], whih was invented by Varga [Var59]. he LU
factorization decomposes a matrix into the product of two triangular matrices,
whih, however, do not maintain the sparsity of the original matrix rendering it
a costly preconditioner. he incomplete LU factorization discards some of the
elements of the LU decomposition, whereby the computational costs are small
at the price of a less efective preconditioner [Mv77]. While various strategies
have been proposed in the past for obtaining an incomplete LU decomposition,
it remains a hallenge to get an incomplete LU decomposition whih works sui-
ciently for any given problem without the need to optimize its parameters [SV00;
CDG00; LLB03; MG07; Car09].
Another near-zone preconditioner approah is based on using a sparse ap-

proximate inverse (SAI): it is assumed that the inverse can be approximated by
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a sparse matrix up to a certain error (an error measured typically with respect
to the Frobenius norm) [Che+01; LZL04; Car+05; CB12; PS14]. he construction
of the SAI preconditioner is an optimization problem and because of the use of
the Frobenius norm, SAI preconditioners are usually easier to parallelize than
incomplete LU decompositions [MG07].
A third near-zone preconditioner approah is based on an iterative inversion

of the near-zone matrix in an inner-outer solver sheme. Compared with the
incomplete LU or SAI approahes, no additional setup time is required; this
advantage comes at the price of increased computational costs per iteration
step [Eib03; WE13].
What all these near-zone preconditioning shemes have in common is that it is

diicult to assess how the condition number depends on the number of unknowns.
Nonetheless, it can be said that, while they usually improve the conditioning, they
cannot cure the dense-discretization breakdown in the asymptotic limit � → ∞,
diferent from shemes whih take into account the underlying mathematical
nature of these operators.
he two most popular strategies in this regard are Calderón preconditioning

tehniques and hierarhical basis preconditioners. Calderón preconditioning
leverages the fact that the EFIE operator applied to itself equals the identity
operator plus a compact operator. In other words, it becomes an integral equation
of the second kind. hus there is an upper bound for �iter independent from� . he discretization of the Calderón identity is by no means trivial: a simple
multiplication of the system matrix with itself would just square the condition
number. Instead an inverse Gram matrix is needed to link the two EFIE operators
[SW98]. he EFIE is commonly discretized with Rao-Wilton-Glisson (RWG)
functions; if the second EFIE operator is discretized with RWG basis functions as
well, then the Gram matrix is singular [CN02].
To bypass this problem, diferent strategies were proposed. In [CN02] the

authors resorted to a saddlepoint formulation. he contributions of [Ada04;
AC04] split the product of the EFIE operator with itself by considering that the
operator is composed of the vector and the scalar potential operator and by
discretizing eah of the products of the scalar and the vector potential operator
separately. In particular, the vanishing of the term, where the scalar potential
operator is applied to itself, is enforced. he contribution [Con+02] follows a
similar approah compared with [AC04] in the sense that here as well the diferent
products of the vector and the scalar potential operator are treated separately,
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where they are simpliied by using Stokes’ theorem. [BLA05] focuses on the CSIE
and uses a localized admitance operator for combining the EFIE with the MFIE.
In order to link this operator to the domain of the EFIE operator, projections using
the Gram-Shmidt orthogonalization are used, whih increases the computational
costs. In [Bru+09], the CFIE and CSIE are preconditioned by regularizing the EFIE
operator with the vector potential in the context of a Nyström discretization.
Similarly to [Vic+16], a smooth surface is required.
What the approahes for the EFIE, mentioned in the previous paragraph, have

in common is that open surfaces need a special treatment—if they can be treated
at all. Also, signiicant hanges of an existing code are required. With the in-
troduction of Bufa-Christiansen (BC) functions a direct discretization of the
Calderón identity became possible [BC07] so that this tehnique could be easily
integrated into an existing code [And+08].3 he price for the increased comfort
is, however, that the number of unknowns is increased by a factor of six since
the EFIE is discretized on the barycentrically reined mesh. In addition, (minor)
modiications of the existing solver code are still necessary since half-RWGs
have to be added on the boundary of open surfaces in order to represent the BC
functions. Further issues related to multiply connected geometries are discussed
in Chapter 8.
Hierarhical basis preconditioners are usually explicit quasi-Helmholz decom-

positions similar to a loop-star or loop-tree basis, yet with the diference that the
basis itself is ill-conditioned in suh a way that the ill-conditioning of the EFIE is
counteracted. he roots of hierarhical basis preconditioners come from wavelet
analysis. Since the irst wavelets have been one-dimensional functions (the Haar
wavelets as one of the most famous examples [Haa10]), these methods were irst
applied to thin-wire approximations or two-dimensional problems [Alp+93; SL93;
GCC95; WC95; Sar97; SS02; Ala+03; Ger+06]. he focus was less on precondi-
tioning, but on compressing the systemmatrix and accelerating the matrix-vector
product [And+05]. In the inite element community, various hierarhical bases
were presented for preconditioning diferential operators [Yse86; Dah97; Sv97].
One of the key properties of wavelets is that they form a set of orthogonal

functions (if only functions of diferent levels are orthogonal to eah other, they
are called prewavelets). For preconditioning purposes it turns out that suh an or-

3 In fact, a discretization of the Calderón identity could have been obtained before the introduction of
the BC functions since the Chen-Wilton (CW) functions would haven been applicable as well [CW90].
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thogonality is desirable if the goal is to cure the dense-discretization breakdown.
Early hierarhical bases for the EFIE did not necessarily have this property or only
had this property for the non-solenoidal basis [VPV05; BSJ05; VVP07; ATV07].
hey did improve the conditioning compared with a conventional loop-star or
loop-tree preconditioner, but when the non-solenoidal basis is complemented
with loop or hierarhical loop functions (the later based on Yserentant’s hier-
arhical nodal basis [Yse86]), the overall system remained ill-conditioned. In
[ATV10], a hierarhical basis preconditioner for the EFIE was presented that
yielded a logarithmic growth of the condition number (see also the analysis in
[HM12]).
What all of these approahes for three-dimensional problems have in common

is that they are limited to structured meshes. Suh a mesh is obtained by starting
from a coarse mesh that captures (suiciently) the geometrical details of the
scaterer. Assuming that a triangulation is used, a reined mesh is generated by
connecting the midpoints of the edges of the triangles; this so-called dyadical
reinement is repeated until the desired resolution is reahed [ATV07]. For these
meshes, existing hierarhical preconditioners can yield a condition number that
grows only logarithmically in � . When a scaterer is smooth, these approahes
would result, in order to be practical, in a loss of geometrical details and thus
a possibly large geometrical error can occur. his problem was partially allevi-
ated by a hierarhical basis preconditioner generalized to unstructured meshes
[AVV08]—partially, because only the non-solenoidal basis was generalized and
so the condition number still grows with O(� 1/2). Compared with Calderón
preconditioning, the implementation is easier (no dual functions are required)
and the computational costs are smaller. In the asymptotic limit � → ∞, in
particular for unstructured meshes, the hierarhical basis preconditioner can,
however, not prevent the dense-discretization breakdown.

d) Scope and Outline of the hesis

This dissertation presents new paradigms for the preconditioning of the
EFIE and the CFIE for solving electromagnetic scatering and radiation prob-
lems, that is, we advance and extend the state of the art both in hierarhical

basis and in Calderón preconditioning tehniques. To this end, Part I presents
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the bakground material and equations, whih will be used throughout the the-
sis: Chapter 2 introduces fundamental concepts from diferential geometry and
Sobolev space theory. Chapter 3 covers the electromagnetic theory and equations
required to model scatering problems and Chapter 4 discusses the discretization
of these equations.
Part II is dedicated to the advancement of hierarhical basis preconditioners.

Chapter 5 presents a basis whih is deined on structured and on unstructured
meshes. hereby, a condition number is obtained for the EFIE that grows only
logarithmically in � ; this improves the state of the art [AVV08], where the
growth is O�� 1/2�.4 his result is obtained by irst generalizing the Haar basis,
both for the primal triangular and for its dual mesh. To precondition the scalar
potential part of the EFIE, the divergence terms appearing in its variational
formulation are removed by using inverse graph Laplacians. his inversion is
performed implicitly by solving the associated linear system iteratively, where for
the stabilization algebraic multigrid preconditioners are employed. For the vector
potential part of the EFIE, it is shown that an inverse Haar basis transformation
matrix must be used. his result is derived by leveraging a discretized scalar
Calderón identity that relates the hypersingular to the single layer operator
known from electrostatics. As an interesting auxiliary result, we thus get a Haar
basis preconditioner for the hypersingular operator, an operator not only used
in electrostatics but also, for example, in acoustics.
When a geometry is multiply connected, so called global loops have to be

added to the quasi-Helmholz decompositions. hese functions are numerically
expensive to construct and/or to apply.5 In order to use hierarhical basis pre-
conditioners without destroying the leading complexity set by a fast method,
Chapter 6 shows how the hierarhical basis can be applied without the need to
explicitly ind the global loops. hereby, the complexity of a fast method can be
maintained. his result is obtained by developing a framework that allows to
combine quasi-Helmholz projectors, whih were irst introduced in [And12a],
with the hierarhical basis. he sheme itself is agnostic to the concrete basis and
thus can be combined with any hierarhical basis available.

4 Also [ATV10] yields a logarithmic growth of the condition number, but it is limited to structured
meshes.

5 hey can be applied eiciently if more computational complexity is spend on their construction.
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Chapter 7 analyzes the applicability of hierarhical basis preconditioners to
the CFIE. It shows that the hierarhial loops, whih cannot cure the dense-dis-
cretization breakdown of the vector potential part of the EFIE, can efectively
be applied to the CFIE. In addition, we propose a sheme that allows to use the
hierarhical basis preconditioners on both structured and unstructured meshes
in the context of the combined ield integral equation: by employing quasi-He-
lmholz projectors, the fact that the CFIE is well-conditioned on the solenoidal
Helmholz subspace is used. hese projectors are accompanied by a hierarhical
non-solenoidal basis for preconditioning the scalar potential part of the CFIE.
he new hierarhical basis preconditioners are suicient for most applications.

Still, in the asymptotic limit � → ∞, the condition number would grow to
ininity. Part III overcomes this limitation by introducing the reinement-free
Calderón multiplicative preconditioner (RF-CMP) that diferent from existing
Calderón preconditioners does not require a second discretization of the EFIE
operator with dual basis functions. Chapter 8 derives this tehnique for the EFIE.
It is based on spectral equivalences between (graph) Laplacians and discretized
integral operators (namely the single layer and the hypersingular operator). Par-
ticular care was devoted to multiply connected geometries to obtain a formulation
that remains stable on these. In contrast to other preconditioners, the resulting
system matrix is HPD whih allows the application of the CG method. Diferent
from other Krylov subspace methods, the CG method guarantees convergence
and has the least computational overhead among the Krylov methods.

Chapter 9 extends this method to the CFIE resulting in a formulation that is
well-conditioned and free from spurious resonances. here are several hallenges:
irst of all, a direct application of the preconditioner from Chapter 8 is not possi-
ble since the part of the preconditioner for the vector potential operator would
render the MFIE ill-conditioned. Secondly, it would not yield an HPD system
matrix, and thirdly, the formulation would not be stable on multiply connected
geometries. he reason is that the MFIE is not entirely well-conditioned since it
possesses a static null space associated with the toroidal part of the quasi-har-
monic Helmholz subspace [Bog+11]. he new formulation is constructed suh
that the preconditioned system is—as in the case of the EFIE—HPD and remains
well-conditioned on multiply connected geometries.
Finally, Chapter 10 concludes this thesis and outlines possible future researh

directions.

14



Chapter 2

Mathematical Preliminaries

Avanced mathematical concepts concerning function spaces will be
frequently used in the subsequent hapters. he most important results are
reviewed here. he reader may ind deinitions of commonly used terms

suh as “open” or “closed” in [Rud91]. Similarly, we presume that the reader is
familiar with concepts suh as normed vector spaces.

a) Notation
“Physical vectors”, that is, vectors that are situated inR2 orR3 suh as the electric
ield � , the position vector � , or the surface current density �, are writen in a
bold, italic, and serif font. We use for non-physical vectors or matrices a bold,
italic, and sans-serif font (e.g., A ∈ R

�×� is a matrix), and we distinguish matrices
from vectors by using capital leters for matrices and minuscules for vectors (this
rule does not apply to “physical vectors”, where we follow standard conventions).
Scalar integral operators are denoted with a calligraphic font suh as the single
layer operator V , and vector integral operators with a bold calligraphic font suh
as the EFIE operator T . here is an exception to every rule: this thesis follows
the convention used in most textbooks that the space of test functions D(�) and
the Shwarz space S(�) are denoted with a calligraphic leter.

b) Surfaces and Mathematical Operators
his thesis deals with the solution of electromagnetic scatering problems by
three-dimensional obstacles. Mathematically, suh an obstacle can be considered
as a subset � ⊂ R

3. In order to obtain results on the existence and regularity of a
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solution, this subset cannot be arbitrary. he less regular suh a set is, the more
diicult it becomes to obtain rigorous mathematical statements. First of all, we
require that � is a domain.
Deinition 2.1 (Domain). A domain is a connected, open subset � of a inite
dimensional vector space.

Since the focus is on the modeling of realistic scatering problems, it is presup-
posed in the following that � is a bounded domain. In order to deine function
spaces, in whih we can seek for a solution of the scatering problem, we need to
make statements on the regularity of the surface.6
To impose more constraints on �, we need to introduce the classical ��-fu-

nction spaces. As a concise way of denoting derivatives, we deine a derivative
operator and use the multi-index notation: a vector α = (�1, �2, … , �� ) for � ∈ N

with �� ∈ N0 is called a multi-index. Its absolute value is |α| = �1 + … + �� . hen
we deine the derivative operator

Dα� ∶= ⎧⎪⎪⎪⎨⎪⎪⎪⎩
� ∂∂� ��1� ∂∂���2�(�) , for � = 2 ,� ∂∂� ��1� ∂∂���2� ∂∂� ��3�(�) , for � = 3 ,

(2.1)

where, in a slight abuse of notation,

� =

�
(� , �)T ∈ R

2 , for � = 2 ,

(� , �, �)T ∈ R
3 , for � = 3 ,

(2.2)

is the position vector. In addition, we deine7

�α ∶= ���1��2 , for � = 2 ,��1��2��3 , for � = 3 .
(2.3)

6 For the sake of simplicity, we only consider single-body problems. An extension to multibody
problems is possible.

7 Clearly, these deinitions can be generalized to the �-dimensional case. For the sake of simplicity,
we constrain ourselves here to the cases whih are relevant for the modeling of realistic scatering
scenarios.
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he set �� denotes the space of all continuous functions � where � is �-times
continuously diferentiable. We equip this space with the norm‖�‖�� (�) ∶= ∑

|α|≤� sup�∈���Dα�(�)�� . (2.4)

he space �∞ denotes the space of functions whih have ininitely many contin-
uous derivatives and we refer to these as smooth functions.
For a scatering problem, more relevant than the properties of� are the proper-

ties of it’s boundary: the surface � . To describe it, we follow closely the treatment
in [Néd01].

Deinition 2.2 (Surface). Let � ⊂ R
3 be a domain. We call the boundary of �,� = �� ∶= � ⧵ � (2.5)

a (two-dimensional) surface.

Deinition 2.3 (Ball B�� (�)). We deine the �-dimensional ball B�� (�) ⊂ R
� with

center � and radius � as
B
�� (�) ∶= ��′ ∶ ���� − �′��� < �� . (2.6)

Deinition 2.4 (Regular ��-Surface). Let � ⊂ R
3 be a simply connected domain

and � its surface. Moreover, we assume that we have a covering of �, that is, a
inite union of open sets �� with � ∈ [0, �] and

� ∈ �⋃�=0�� . (2.7)

In addition, we require that � ∩ �0 = ∅ , (2.8)

whih means that �0 is completely contained inside � . A surface is called regular
when there exists a difeomorphism8 �� for eah �� that maps the set �� into the
unit ball B3

1(�) suh that the � ∩ �� is mapped into the equatorial plane � = 0

8 A difeomorphism is a bijective, continuously diferentiable function whose inverse function is
continuously diferentiable as well.
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of the unit ball, � ∩ �� is mapped into the region � < 0 of the unit ball, and
(R3 ⧵ �) ∩ �� is mapped into the region � > 0 of the unit ball. A surface is of
class �� if the difeomorphisms �� are of class �� . If �� ∈ �∞, then we speak of a
smooth surface.
he covering of � and the difeomorphisms �� are called atlas and the pairs

(�� , ��) are called harts. If �� are Lipshiz functions, that is, there is a constant� > 0 suh that����−1� (�) − �−1� (�′)��� ≤ ����� − �′��� for all � , �′ ∈ B
3
1(�) (2.9)

holds, then � is a Lipshiz surface.
Remark. hese harts are not only useful for deining diferentiable operators,
but also for introducing Sobolev spaces on surfaces.
If � is multiply connected, then more than one set �0 is needed to describe its

interior [Néd01]. Since we are interested in the deinition of surface operators
and since their deinition is the same for simply and for multiply connected
geometries, we assume without loss of generality that� is simply connected (and
therebywe do notmake themathematical framework unnecessarily complicated).
his section follows closely the deinitions in [Néd01]. hus, we avoid to

introduce the language of diferential forms and the framework of diferential
geometry. In the following, it is assumed that � is a bounded domain with
a smooth surface. It is possible to extend the deinitions of the mathematical
operators to Lipshiz surfaces. While for scalar functions there is only litle
diference when dealing with a Lipshiz surface, the treatment of vector ields
becomes more complicated since, for example, the surface normal is not deined
on corners and edges of the surface. his thesis deals with vector ields and their
corresponding function spaces in order to justify the hoice of expansion and
testing functions. For this justiication, there is virtually no diference between
smooth or Lipshiz surfaces. he objective at the heart of this thesis, however,
is the introduction of new preconditioning paradigms. he novel formulations
depend on scalar integral equations and by using quasi-Helmholz decompositions
we connect them to the electromagnetic integral equations (i.e., vector integral
equations). hus the beneit of discussing the general Lipshiz case is limited, in
fact, due to the more intricate framework, it might even obfuscate the objective
of this thesis. he interested reader may ind more details on this general seting
in [Cos88; BC01b; BC01a; BCS02b; Buf03].
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he function �(�) = inf�′∈� ���� − �′��� (2.10)

denotes the minimal distance of the point � to the surface � . We deine the
tubular neighborhood of � as�� = �� ∶ �(�) < �� . (2.11)

If � is small enough, then all � ∈ �� have a unique projection P(�) onto � suh
that ��� − P(�)�� = �(�) . (2.12)
Since it is assumed that � is smooth, every point on it admits a tangent plane

and the vector � − P(�) is normal to it. Furthermore, we hoose the open cover
of � suh that �� , � > 0 are completely contained in �� . We can then deine the
unit normal directed to the exterior as�̂(P(�)) = grad �(�) , ∀� ∈ �c

, (2.13)�̂(P(�)) = − grad �(�) , ∀� ∈ � . (2.14)

where �c is the complement of the closure of �. he points � ∈ �� can be
described using the orthogonal spliting� = P(�) + ��̂(P(�)) , −� < � < � , (2.15)� = �+�(�), ∀� ∈ �c

,−�(�), ∀� ∈ � .
(2.16)

We deine the pieces of surface �� = �� ∩� and note that eah is parametrized by a
difeomorphism �−1� whihmaps by deinition from the two-dimensional unit ball
B
2
1(�) to �� . Let �1 and �2 be the variables associated with this difeomorphism.
hen we have the decomposition�(�1, �2, �) = �′(�1, �2) + ��̂(�1, �2) , −� < � < � , (2.17)

whih is used throughout this section. his allows to deine a liting for scalar
functions � deined on � : we have a natural extension �̃(�) into the three-dimen-
sional space surrounding the surface by deining�̃(�) = �(P(�)) . (2.18)
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his liting enables us to obtain the surface equivalences of operators suh as the
gradient or the curl operator.

Deinition 2.5 (Surface Gradient). he surface gradient is deined as

grad� � ∶= grad �̃∣� . (2.19)

Deinition 2.6 (Surface Curl). he surface curl is����� � ∶= curl��̃�̂�∣� . (2.20)

Deinition 2.7 (Laplace-Beltrami Operator). he Laplace-Beltrami operator isΔ�� ∶= div� grad� � = − curl� ����� � . (2.21)

Given that �̂ is deined as the gradient of the distance function and given the
vector calculus formula [Bro+08]

curl(��) = grad � × � + � curl� (2.22)

we obtain ����� � = grad� � × �̂ . (2.23)

For deining the surface divergence and the surfacic curl, we need a liting
operator for vector ields. To this end, we irst introduce the family of parallel
surfaces �� = �� ∶ � = �′ + ��̂(�′); �′ ∈ �� . (2.24)

Deinition 2.8 (Curvature Operator). he curvature operator is deined by

R� = grad �̂(�) . (2.25)

It is a matrix-valued operator and we set, for notational convenience,R ∶= R0.

his allows us to deine the transport of tangential vectors ields � into the
tubular neighborhood �� by deining��(�) = �(�′) − �R�(�)�(�′) . (2.26)
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Deinition 2.9 (Surface Divergence). he surface divergence of a tangent vector
ield � is

div� � = div ��∣� (2.27)

Deinition 2.10 (Surfacic Curl). he surfacic curl of a tangent vector ield � is
curl� � = �curl �� ⋅ �̂�∣� (2.28)

Deinition 2.11 (Hodge Operator). heHodge operator (i.e., the vectorial Lapla-
cian) of a tangent vector ield � is��� = grad� div� � − ����� curl� � . (2.29)

Since we have difeomorphisms �� with associated coordinates �1 and �2, we
can also state more explicit forms of the surface operators. To this end, we need
to deine an explicit basis for the tangent plane at eah point � ∈ �� . Suh a basis
is given by �1(�) = �1(�′, �) = ∂�∂�1 + � ∂�̂∂�1 = �1(�′) + �R(�′)�1(�′) , (2.30)

�2(�) = �2(�′, �) = ∂�′∂�2 + � ∂�̂∂�2 = �2(�′) + �R(�′)�2(�′) . (2.31)

If � is a vector in the tangent plane, it can be writen as� = �1�1 + �2�2 . (2.32)

his allows to introduce the metric tensor��� = �� ⋅ �� , (2.33)

whih links the tangent with the cotangent plane9. More precisely, the metric
tensor can be writen as a two by two matrix, and thus its inverse is �−1. he
entries of this matrix are denoted as ��� and we can deine the basis vectors of
the cotangent plane as �� = 2∑�=1 ����� . (2.34)

9 he cotangent plane is the dual space of the tangent plane. For the deinition of dual space, see
Deinition 2.13.
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hen we have
(�� ⋅ �� ) = δ�� , (2.35)

where δ�� denotes the Kroneker delta and thus� = �1�1 + �2�2 , (2.36)

with �� = 2∑�=1 ��� �� . (2.37)

Using these deinitions, explicit formulas of the surface operators are available:
the surface gradient of the function � is

grad� � =
∂�∂�1 �1 + ∂�∂�2 �2 , (2.38)

and the surface curl is����� � =
1�
det � � ∂�∂�2 �1 − ∂�∂�1 �2� . (2.39)

We obtain for the surface divergence of a contravariant tangential vector ield

div� � =
1�
det � � ∂∂�1�det ��1 + ∂∂�2�det ��2� , (2.40)

and the surfacic curl of a covariant tangential vector

curl� � =
1�
det � � ∂∂�1 �2 − ∂∂�2 �1� . (2.41)

For the Laplace-Beltrami operator, we obtain the expressionΔ�� = div� grad� � = − curl� ����� �
=

1�
det � � 2∑�,�=1 ∂∂���det ���� ∂�∂��� . (2.42)

hese surfaces operators are related to eahother, in fact, the surface divergence
is the adjoint operator of the surface gradient, and likewise the surfacic curl is
the adjoint operator of the surface curl.
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heorem 2.1 ([Néd01]). Let � ∈ �1(� ) be a function and � ∈ ��1(� )�2 a tangent
vector ield deined on the surface � . We have the following Stokes identities:

∫� �grad� � ⋅ ��d�(�) = −∫� � div� �d�(�) , (2.43)

∫� (����� � ⋅ �)d�(�) = +∫� � curl� �d�(�) , (2.44)

div� ����� � = 0 , (2.45)
curl� grad� = 0 , (2.46)
div� (� × �̂) = curl� � . (2.47)

c) Sobolev Spaces

We have qualiied surfaces by using the classical ��-function spaces (i.e., by
requiring that the difeomorphisms �� are members of suh a space). Corre-
spondingly, one could presume that we use these function spaces to qualify the
solution of the integral equations we are faced with. his, however, is not prac-
tical since these function spaces are deined by the strong derivative;10 a irst
step to broaden the domain in whih we searh for a solution is to introduce
the weak derivative. he function spaces associated with the weak derivative
are the Sobolev spaces. What makes the Sobolev spaces we encounter in the
description of the scatering and radiation problems particularly suitable is the
fact they are Hilbert spaces, that is, they come with an inner product. his inner
product corresponds to the physical energy of the solution, and by searhing for
a solution in a Sobolev space, we ask for a solution with inite energy [HK97], a
result one would reasonably expect from a physical point of view. his section
follows closely the treatment in [Ste10].

10 An example for the limitation imposed by the strong derivative is the one-dimensional scalar wave
equation �2�2�/��2 − �2�/��2 = 0, where in the distributional sense every function of the form� (� ± ��) is a solution even though the solution might not be twice continuously diferentiable.
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�) Generalized Derivatives, Distributions, and Sobolev Spaces
Let � be a function � ∶ � ⊂ R

3 → C. he support of � is deined as
supp � ∶= �� ∈ � ∶ �(�) ≠ 0

�
. (2.48)

he set
D(�) = �� ∈ �∞(�) ∶ supp � ⊂ �� (2.49)

is the space of test functions, that is, the space of smooth functions with compact
support.
In order to deine the weak derivative, we need function spaces that take into

account the integrability of a function; suh spaces are the ��(�)-spaces, whih
simply speaking, contain all functions with bounded norm11

‖�‖�� (�) ∶= �∫� ���(�)��� d� (�)�1/�
, for 1 ≤ � < ∞. (2.50)

he �2-space is a Hilbert space equipped with the inner product
(�, �)�2(�) = ∫� �(�)�(�)d� (�) , (2.51)

where �(�) is the conjugate of �(�). For deining the weak derivative in the
broadest possible sense, we also need the space of locally integrable functions

�1loc(�) = �� ∶ ∫� ���(�)�� d� (�) < ∞ , for all compact subsets � ⊂ �� . (2.52)

Deinition 2.12 (Weak derivative). A function � ∈ �1loc(�) is the αth weak
derivative of the function � if for all test functions � ∈ D(�), we have

∫� ��d� (�) = (−1)|α| ∫� �Dα�d� (�) . (2.53)

We denote the weak derivative as Dα� ∶= �.
11 Formally, we should write that the space ��(�) contains all equivalence classes of measurable func-

tions � deined on � suh that|�|� is integrable for 1 ≤ � < ∞. he introduction of equivalence classes
is necessary to ensure that ��(�) has only one element whose norm is zero. See [Rud91].
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Not all functions possess a weak derivative, one just has to think of the step
function. A further generalization of derivatives is possible by resorting to dis-
tribution theory.

Deinition 2.13 (Topological Dual Space). Let � be a topological vector space,
that is, a vector space on whih a topology is deined.12 hen the set of all
continuous and linear functionals on � is denoted as � ′.
Remark. When we speak of a dual space in this thesis, we always mean the
topological dual space.

Deinition 2.14 ([Ste10]). A complex valued continuous linear functional �
acting on D(�) is called a distribution. he functional � is continuous on D(�)
if �� → � in D(�) always implies � (�� )→ � (�). he set of all distributions is
denoted by D′(�).
Any functional ��(�) ∶= ∫� �(�)�(�)d� (�) for � ∈ D(�) (2.54)

with � ∈ �1loc(�) is continuous and therefore a distribution. Distributions of the
type �� are called regular. Distributions whih cannot be expressed by suh an
integral are called singular. Since any function � ∈ �1loc(�) can be associated
with a distribution �� , we follow the common practice and write � instead of �� .
Deinition 2.15 (Derivatives of Distributions). Let � ∈ D′(�) and α be a mul-
ti-index. hen the distribution Dα� ∈ D′(�) is deined as⟨Dα� , �⟩ = (−1)|α|⟨� , Dα�⟩ (2.55)

for all � ∈ D(�).
Deinition 2.16 (Shwarz Space, [Ste10]). he space S(R� ) is the space of func-
tions � ∈ �∞(R� ) satisfying������,� ∶= sup�∈R��|� |� + 1� ∑

|α|≤���Dα�(�)�� < ∞ for all �, � ∈ N0 . (2.56)

12 Virtually any vector space we encounter in this thesis will at least be a normed or even be a Hilbert
space (and so they are also topological vector spaces). he reason why we have to mention topological
vector spaces here, is that D is not a normed space (in fact, it is not even a metric space).
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Any function � ∈ S(R� ) and all of its derivatives decrease faster for |� |→∞
than any polynomial. his ensures that the Fourier transformation is well-deined
for any function � ∈ S(R� ) and we denote its Fourier transform as ��, whih we
deine as��(� ) ∶= (F�)(� ) = (2π)−�/2 ∫

R� e−i�⋅��(�)d� (�) for � ∈ R
� . (2.57)

We could have deined the Fourier transformation also for functions residing in
D(R� ); the Fourier transformation of these functions, however, does not neces-
sarily reside inD(R� ). In contrast, the mappingF ∶ S(R� )→ S(R� ) is invertible
and the inverse Fourier transformation is [Ste10]

�F−1 ���(�) = (2π)−�/2 ∫
R� ei�⋅� ��(�)d� (� ) for � ∈ R

� . (2.58)

Due to the smoothness of the functions of S(R� ), the derivative is well-deined
for any multi-index α by

Dα�F��(� ) = (−i)|α|F��α��(� ) (2.59)

and �α�F��(� ) = (−i)|α|F�Dα��(� ) . (2.60)

We denote its dual space S′(R� ) following Deinition 2.14, that is, it is the space
of all linear and continuous complex valued functionals over S(R� ). he ele-
ments � ∈ S′(R� ) are called tempered distributions, and we deine their Fourier
transformation �� ∈ S′(R� ) as�� (�) ∶= � (��) for � ∈ S(R� ) . (2.61)

Also for tempered distributions, the mapping F ∶ S′(R� )→ S′(R� ) is invertible
and the inverse Fourier transformation is deined as�F−1��� ∶= � (F−1�) for � ∈ S(R� ) . (2.62)

he identities (2.59) and (2.60) hold for tempered distributions as well. As a inal
ingredient for the deinition of Sobolev spaces, we need the Bessel potential
operator, whih is deined by

�J ���(�) ∶= (2π)−�/2 ∫
R��1 +��� ��2��/2��(� )ei�⋅�d� (� ), � ∈ R

� (2.63)
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for � ∈ R and � ∈ S(R� ). he operator J �� ∶ S(R� )→ S(R� ) is a bounded and
linear operator. hus we have

(J ��)(�) ≡ F
−1��1 +��� ��2��/2(F�)(� )�(�) . (2.64)

If we compare this equation with (2.60), we ind that J � is a diferential operator
of order � (and since we allowed � to be a real number, we thereby obtain a notion
of fractional derivatives). As we did it before with the derivative operator and
the Fourier transformation operator, we can generalize the Bessel operator to
tempered distributions � ∈ S′(R� ) by deining�J ���(�) ∶= ��J ��� for all � ∈ S�R�� . (2.65)

he operator J � ∶ S′(R� )→ S′(R� ) is bounded and linear.
Deinition 2.17 (Sobolev space � �). he Sobolev space � � , � ∈ R, is deined as� �(R� ) ∶= �� ∈ S

′(R� ) ∶‖�‖� � (R� ) < ∞� (2.66)

where ‖�‖� � (R� ) ∶= ��� ����2�2(R� ) = ∫���1 +��� ��2�� ����(� )�� d� (� ) . (2.67)

Remark. he space � � is a Hilbert space, where the inner product is deined as
(�, �)� � (R� ) ∶= �J ��,J ����2(R� ) . (2.68)

We note that we have � 0 = �2.
Lastly, we need to deine � �(�), where � ⊂ R

� is some bounded domain. We
obtain this space by restriction, that is, we deine� �(�) ∶= �� = �̃∣� ∶ �̃ ∈ � �(R� )� (2.69)

and we equip this set with the norm

‖�‖� � (�) ∶= � inf�̃∈� � (R� ),�̃∣�=�‖�̃‖� � (R� )
�

(2.70)

If the domain � is unbounded (e.g., the exterior scatering scenario), then the
appropriate function spaces are � �loc(�), whih are deined in the same fashion
as �1loc(�).
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�) Sobolev Spaces on Surfaces
For deining the Sobolev spaces on the boundary � , we have to remember that
we are in the possession of an overlapping piecewise parametrization of � , where

� =
�⋃�=1 �� , �� ∶= �� ∈ R

3 ∶ � = �−1� (�′) for �′ ∈ B
2
1(�)� . (2.71)

As mentioned in Section 2.b, it is assumed that � is smooth. In addition, we
introduce the partition of unity of non-negative cutof functions �� ∈ D(R3) suh
that �∑�=1 ��(�) = 1 , for � ∈ � , (2.72)

and �� = 0 , for � ∈ � ⧵ �� . (2.73)
For any function � deined on � , we can deine functions �� ∶= ��� suh that

�(�) = �∑�=1 ��(�) for � ∈ � . (2.74)

Using the parametrization �−1� , we deine�̃�(�′) ∶= ��(�−1� (�′)) = ��(�) , ∀�′ ∈ B
2
1(�) . (2.75)

For the parameter domain B2
1(�), we have the appropriate Sobolev spaces at hand

so that

‖�‖�2� (� ) ∶= � �∑�=1‖�̃�‖2�2�B2
1(�)��1/2

(2.76)

and

‖�‖� �� (� ) ∶= � �∑�=1‖�̃�‖2� ��B2
1(�)��1/2

. (2.77)

hen the spaces �2�(� ) and � ��(� ) contain all functions deined on the surface �
for whih the norm is bounded.
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Equivalent norms13, whih are easier to use since the parametrization is not
required explicitly, are ‖�‖�2(� ) ∶= �(�, �)�2(� ) (2.79)

induced by the inner product

(�, �)�2(� ) = ∫� �(�)�(�)d�(�) , (2.80)

and the Sobolev-Slobodekii norm

‖�‖� � (� ) ∶= ⎛⎜⎜⎜⎝‖�‖2�2(� ) + ∫� ∫�
����(�) − �(�′)���2��� − �′��2+2� d�(�′)d�(�) .⎞⎟⎟⎟⎠

1/2

(2.81)

If � is not smooth, the maximum number of allowed derivatives depends on �. If�� ∈ ��−1,1, then |�| ≤ �. In particular for Lipshiz surfaces, we have |�| ≤ 1.� ) Vector Sobolev Spaces
So far we have deined all the Sobolev spaces, whih we would need to model
electrostatic or acoustic problems, that is, problems that can be described with
scalar functions. For electromagnetic problems, however, one is faced with vec-
tor functions and we need appropriate Sobolev spaces to accommodate these
functions. We deine� �(�) ∶= �� �(�)�3 ∶= �� ∶ (�)� ∈ � �(�) , � = 1, 2, 3

�
(2.82)

equipped with the norm

‖�‖� � (�) ∶=� 3∑�=1��(�)���2� � (�) . (2.83)

13 Two norms‖�‖� and‖�‖� are called equivalent if there are constants � and � suh that�‖�‖� ≤‖�‖� ≤ �‖�‖� . (2.78)
All norms deined on a inite-dimensional space are equivalent, but for an ininite space, this is gener-
ally not true. And as a side note: while systems resulting from a discretization are inite-dimensional,
the situation becomes interesting when the discretization is reined so that the dimensionality grows.
While for a certain discretization all norms are equivalent, we might not be able to ind constants
independent from the discretization density.
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his deinition readily extends to the case of � �(� ), where � is a surface, and in
particular we note that we have for � 0(� ) = �2(� ) the norm‖�‖�2(� ) ∶= �(�,�)�2(� ) (2.84)

induced by the inner product

(�,�) = ∫� �(�) ⋅ �(�)d�(�) . (2.85)

he spaces containing tangential vector ields are� �t (� ) ∶= �� ∈ � �(� ) ∶ � ⋅ �̂ = 0
�

(2.86)

where � is a smooth surface. Furthermore, we need the spaces� �(div� , � ) = �� ∈ � �t (� ) ∶ div� � ∈ � �(� )� (2.87)

and � �(curl� , � ) = �� ∈ � �t (� ) ∶ curl� � ∈ � �(� )� (2.88)

equipped with the norms‖�‖� � (div� ,� ) ∶= ‖�‖� � (�) +‖div� �‖� � (�) , (2.89)‖�‖� � (curl� ,� ) ∶= ‖�‖� � (�) +‖curl� �‖� � (�) . (2.90)
(2.91)

We note that the spaces � �(div� , � ) and � �(curl� , � ) are dual with respect to
the �2-inner product [Néd01].
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Chapter 3

Electromagnetic heory and Integral
Equation Formulations of Scatering

Problems

Maxwell’s eqations describe the scenario whih shall be solved: the
scatering of electromagnetic waves from PEC obstacles in frequency
domain. his hapter reviews the bakground material: Section 3.a in-

troduces the necessary electromagnetic theory and derives the mixed potential
formulas, whih allow to compute the electromagnetic ield excited by electric and
magnetic current distributions. In Section 3.b, it is shown how these formulas can
be used to model a scatering scenario. his hapter is closed by briely discussing
the electrostatic case in Section 3.c and by showing how integral operators can
be used to obtain a solution for Laplace’s equation.

a) Maxwell’s Equations and heir Solution
Since the focus is on time-harmonic problems, we assume and suppress the time-
dependency exp(−i��) in the following, where � is the time and � the angular
frequency. How the electric current density � andharge distribution �e excite the
electric ield � and the magnetic ield� and how these ields interact is described
by Maxwell’s equations [Har01]

curl � = i�� , (3.1)
curl� = −i�� + � , (3.2)
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div� = �e , (3.3)
div� = 0 , (3.4)

where � is the electric and � the magnetic lux density. he current density� and the harge distribution �e are not independent since the harge must be
conserved, that is, they must satisfy14

div � = i�� . (3.5)

he luxes � and � are related to � and � by the constitutive relations15� = �(� ,� ) , (3.7)� = �(� ,� ) , (3.8)

that is, the relationship between the ields can be non-linear, (bi-)anisotropic,
and space and frequency dependent. Due to the scope of this thesis, it suices to
consider piecewise homogeneous and isotropic materials, where the diference
between the ields is just a multiplicative factor, so that the constitutive relations
read � = �� = �r�0� , (3.9)� = �� = �r�0� , (3.10)

where � is the permitivity and � is the permeability, �r is the relative permitivity
and �r is the relative permeability, and �0 is the electric and �0 the magnetic
constant. If � or � are piecewise constant, Maxwell’s equations do not hold (in
a classical sense) on the material boundary since the ields are not continuous
anymore. Instead, we need to introduce continuity conditions at the interfaces
whih the ields must satisfy. hese conditions are discussed in the next section.
While magnetic harges and currents do not exist, or at least have not been

observed in nature so far, their introduction to Maxwell’s equations provides a

14 In fact, if we postulate harge conservation, then (3.3) and (3.4) are a consequence of this postulate.
15 Conducting materials, whih are not considered in this thesis, are introduced by a third constitutive

relation � = �(� ,� ) . (3.6)
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useful mathematical tool. Together with the constitutive relations and a normal-
ization of � and � by the wave impedance� = ��/� , (3.11)

we can write Maxwell’s equations as

curl � = i�� − � , (3.12)
curl� = −i�� + � , (3.13)
div� = �e , (3.14)
div� = �m , (3.15)

where � = 2π/� (3.16)
= �√�� (3.17)
= 2π�√�� (3.18)

is the wavenumber, � is the wavelength, and � is the frequency. In other words, if� classic and �classic are the classically deined magnetic ield and the electric cur-
rent density, we deine �new = �� classic and �new = ��classic and insert 1/��new
and 1/��new into Maxwell’s equations. Using this normalized system, the electric
and magnetic ield have the same unit, whih simpliies the formalism.

�) Continuity Conditions
Let � ⊂ R

3 be a domain with a smooth boundary � . he ields are subject to the
continuity conditions [Har01]�̂ × �+ − �̂ × �− = −�� , (3.19)�̂ ×�+ − �̂ ×�− = �� , (3.20)�̂ ⋅ �+ − �̂ ⋅ �− = �� ,e , (3.21)�̂ ⋅ �+ − �̂ ⋅ �− = �� ,m , (3.22)
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where we used the deinition� +(�) = lim�′→� � (�) , ∀�′ ∈ �c
, (3.23)� −(�) = lim�′→� � (�) , ∀�′ ∈ � , (3.24)

and �̂ is the surface unit normal vector directed to the exterior. he � symbol in
the subscript of the currents andharges indicates that these are surface densities.
hese densities are rather a theoretical construct and for physical applications
typically zero. If one considers, however, idealized materials suh as perfect
electric or magnetic conductors, then the right-hand sides do not vanish. In this
thesis, � describes a PEC object and thus the continuity equations simplify to�̂ × �+ = � , (3.25)�̂ ×�+ = �� , (3.26)�̂ ⋅ �+ = �� ,e , (3.27)�̂ ⋅ �+ = 0 . (3.28)�) Equivalence Principle
Diferent source distributions can lead to the same ields, a circumstance that is
the fundamental idea of the equivalence principle. Let �� and�� be source dis-
tributions inside � and � and � the generated ields. If we assume the existence
of surface current densities�� = −�̂ × � , ∀� ∈ � , (3.29)�� = �̂ ×� , ∀� ∈ � , (3.30)

then we obtain [Har01]

� =

�� , ∀� ∈ �c
,� , ∀� ∈ � (3.31)

and � =

�� , ∀� ∈ �c
,� , ∀� ∈ � .

(3.32)
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his means that we can replace the original problem by solving Maxwell’s equa-
tions only in �c subject to the boundary conditions (3.29) and (3.30). Likewise,
the internal problem can be solved (with zero ields outside) by enforcing the
boundary condition �� = �̂ × � , ∀� ∈ � , (3.33)�� = −�̂ ×� , ∀� ∈ � . (3.34)� ) Electromagnetic Potentials, Green’s Function, and Mixed

Potential Formulas
he introduction of electromagnetic potentials provides an elegant means to
solve Maxwell’s equations since instead of solving the four Maxwell’s equations
it suices to solve two vector Helmholz equations. To obtain the potential ap-
proah, we leverage the linearity of Maxwell’s equations: we split the electric
and magnetic ield into � = �e + �m , (3.35)� = �e +�m , (3.36)

where the ields �e and �e are due to electric and �m and �m due to magnetic
sources. his spliting of the ields is justiied by the linearity of Maxwell’s
equations.
In the absence of magnetic sources, the magnetic ield � is solenoidal, that is,

div� = 0 . (3.37)

herefore, we can ind a vector potential �e suh that [Har01]�e = curl�e . (3.38)

Inserting this into (3.12) yields

curl(�e − i��e) = � , (3.39)

whih means that the total vector ield �e − i��e is conservative. Hence, there
must be a scalar potential suh that�e − i��e = − grad �e . (3.40)
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Inserting (3.38) into (3.13) yields

curl curl�e = −i��e + � (3.41)

and applying the vector identity curl curl�e = grad div�e − ��e [Bro+08], we
obtain � − grad div�e + ��e = i��e . (3.42)

Combining (3.40) and (3.42), we yield� + grad div�e + ��e + �2�e = − grad �e . (3.43)

Equation (3.38) only deines the curl of�e, so we are free to hoose div�e = i��e;
this hoice is called the Lorenz gauge. hus we get��e + �2�e = −� (3.44)

and we ind for the electric ield�e = i��e − 1/(i�) grad div�e . (3.45)

Dually, we deine �m = − curl�m , (3.46)

and obtain ��m + �2�m = −� (3.47)�m = i��m − 1/(i�) grad div�m . (3.48)

Summarizing, we have� = i��e − 1/(i�) grad div�e − curl�m , (3.49)� = curl�e + i��m − 1/(i�) grad div�m . (3.50)

A solution to (3.44) and to (3.47) can be obtained by convolving the Green’s
function [Har01] �� (� , �′) = e

i����� ,�′ ���
4π��� , �′�� (3.51)
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with the current densities resulting in

�e(�) = ∫
R3
�� (� , �′)�(�′)d� (�′) (3.52)

and �m(�) = ∫
R3
�� (� , �′)�(�′)d� (�′) . (3.53)

herefore, we ind for the electric ield

�(�) = i� ∫
R3
�� (� , �′)�(�′)d� (�′) − 1/(i�) grad div∫

R3
�� (� , �′)�(�′)d� (�′)

− curl∫
R3
�� (� , �′)�(�′)d� (�′) , (3.54)

and for the magnetic ield

� (�) = i� ∫
R3
�� (� , �′)�(�′)d� (�′)− 1/(i�) grad div∫

R3
�� (� , �′)�(�′)d� (�′)

+ curl∫
R3
�� (� , �′)�(�′)d� (�′) . (3.55)

hese equations for � and � are called mixed potential formulas.
If � and� are surface current densities located on a closed smooth surface � ,

then (3.52) and (3.53) hold for all � ∉ � so that we may write
�(�) = i� ∫� �� (� , �′)�� (�′)d�(�′) − 1/(i�) grad div∫� �� (� , �′)�� (�′)d�(�′)− curl∫� �� (� , �′)�� (�′)d�(�′) , (3.56)

and for the magnetic ield

� (�) = i� ∫� �� (� , �′)�� (�′)d�(�′) − 1/(i�) grad div∫� �� (� , �′)�� (�′)d�(�′)
+ curl∫� �� (� , �′)�� (�′)d�(�′) . (3.57)
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Since for the remainder of this thesis all currents appearing will be surface cur-
rents, we omit the subscript � . For the limiting case that � approahes � , one
inds for the (rotated) tangential component of the electric and the magnetic
ield16 �̂ × �± = T � + (∓I/2 +K)� , (3.58)�̂ ×�± = (±I/2 −K)� + T� , (3.59)

where I is the identity operator,

K� = −�̂ × curl∫� �� (� , �′)�(�′)d�(�) , (3.60)

and
T � ∶= i�TA + 1/(i�)TΦ (3.61)

is the EFIE operator composed of the vector potential operator17

TA� ∶= �̂ × ∫� �� (� , �′)�(�′)d�(�′) (3.62)

and the scalar potential operator18

TΦ� = −�̂ × grad∫� �� (� , �′) div′� �(�′)d�(�′) . (3.64)

16 he derivation is rather cumbersome and we want to spare the reader the details. he interested
reader may ind it in, for example, [Néd01].

17 In this thesis, we distinguish operators that map from a function space deined on � to a function
space deined on�c and/or� from those that map from and to a function space deined on � . he irst
type of operator will be called potential while the second type will be called potential operator. For
example, �� �� (� , �′)�(�′)d�(�′) in (3.56) is the vector potential and TA the vector potential operator.
In some cases, we will omit the expression “potential” in “potential operator” for the sake of brevity.
For example, instead of speaking of the single layer potential operator, we speak of the single layer
operator.

18 Where we implicitly used that

∫� div���� (� , �′)�(�′)�d�(�′) = ∫� grad� �� (� , �′)�(�′)d�(�′)
= −∫� grad′� �� (� , �′)�(�′)d�(�′) (2.43)= ∫� �� (� , �′) div′� �(�′)d�(�′) . (3.63)
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b) Scatering by or Radiation from a PEC Object
his thesis deals with the scatering of electromagnetic of waves by or the ra-
diation from a PEC object described by the domain � ⊂ R

3 embedded in a
homogeneous medium with permitivity � and permeability �. For a scatering
scenario, the tuple (� i,� i) describes an incident time-harmonic electromagnetic
wave impinging on �, and the scatered wave, whih is the quantity to solve for,
is described by the tuple (�s,� s). For a radiation scenario, it is typically assumed
that ���� i��� = �0/� (3.65)

between two antenna terminals, where � is the width of the gap and �0 the
voltage [Gib14].
In the exterior region �c, the total ields (� ,� ) = (� i + �s,� i +� s) are subject

to the Maxwell’s equations ∇ × � = +i�� , (3.66)
and ∇ ×� = −i�� , (3.67)
they must satisfy the boundary conditions�̂ × � = � , (3.68)�̂ ×� s = � − �̂ ×� i (3.69)

on � , and (�s,� s) must satisfy the Silver-Müller radiation condition [Sil84;
Mül48]19

lim�→∞�� s × � − ��s� = 0 , (3.70)

where � = ‖�‖.
Instead of solving the partial diferential equations (3.66) and (3.67) directly, we

use the mixed potential formulas (3.58) and (3.59) and solve for the surface current
density �. he scatered wave (�s,� s) is obtained by evaluating (3.56) and (3.57).
In the following sections, we discuss surface integral equation formulations
commonly used in literature.

19 he radiation condition is necessary to enforce that only solutions are obtained whih are waves
traveling from a source to ininity, where the ratio of the electric and magnetic ield is the wave
impedance �2, andwhere the electric ield, themagnetic ield, and propagation vector form a trihedron.
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�) Electric Field Integral Equation
For PEC objects, the tangential component of � = � i + �s on � must vanish.
Equation (3.19) implies that� = � and using (3.58), we obtain the EFIE− �̂ × � i = T � . (3.71)

Once this equation is solved for �, (3.56) and (3.57) may be used to compute �s
and � s everywhere in �c. We note that T ∶ �−1/2(div� , � )→ �−1/2(div� , � ) is
invertible if �2 is not an interior electric eigenvalue [Néd01].
So far we have assumed that � is a smooth surface. his is a severe limitation

since we could not even make a statement on suh “simple” problems as the
scatering from a cube. Fortunately, the presented theory can be generalized to
Lipshiz surfaces. his, however, renders the mathematical theory more complex
given that �̂ is not deined on the edges and corners of a Lipshiz surfaces.
A modiied version of �−1/2(div� , � ) must be introduced whih then allows to
obtain a generalized Gårding inequality whih implies existence of a unique
solution of (3.71) [BH03]. To obtain this result, extensive preliminary work was
necessary [Cos88; McL00; Buf01; BC01b; BC01a; BCS02a; BCS02b; Buf03]. Open
surfaces (i.e., Lipshiz screens) require a further extension of the theory, and so
do T-junctions. In this thesis, however, we obtain theoretical results only for the
case that � is closed, and hence, we do not present the mathematical theory of
these problems. �) Magnetic Field Integral Equation
As an alternative to the ansaz for the EFIE, we can leverage on (3.26), that is,�̂ ×� s = � − �̂ ×� i, resulting in�̂ ×� i = (I/2 +K)� , (3.72)

and in the case of an excitation located in � (interior problem), we ind the MFIE�̂ ×� i = (I/2 −K)� . (3.73)

As abbreviation, we introduce the exterior MFIE operator

M
+ = I/2 +K (3.74)
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and the interior MFIE operator

M
− = I/2 −K . (3.75)

whih allows as to compactly write�̂ ×� i = M
±� . (3.76)

Since this thesis focuses on scatering problems, we only deal with the exterior
problem and hence for the sake of simplicity we omit the plus symbol and useM
for the exteriorMFIE operator, though the theory presented in this thesis holds for
the interior problem as well. We note thatM ∶ �−1/2(div� , � )→ �−1/2(div� , � )
is invertible if �2 is not an interior electric eigenvalue and similarly to the EFIE
the MFIE can be solved on Lipshiz surfaces [BH03].� ) Combined Field Integral Equation
For interior electric eigenvalues �2 both the EFIE and the MFIE do not possess
a unique solution due to interior resonances. hese interior resonances are un-
physical (i.e., they cannot be excited by an exterior source). he classic approah
in the engineering community is to form the CFIE [MH78]

C� = −�C�̂ × �̂ × � i + (1 − �C)�̂ ×� i (3.77)

where
C = �C�̂ × T + (1 − �C)M (3.78)

is the CFIE operator with �C ∈]0, 1[. In particular for Lipshiz surfaces, it has
not been shown that the CFIE has a unique solution. To overcome this issue
regularized CFIEs have been proposed in the past [BH04; ES07], though only
in the case of [BH04] also the numerical solvability has been discussed. hese
approahes, however, have never been adopted widely. In the case of the approah
in [BH04], a reason might be that the edges of the geometry should be known
to the solver.20 Since no numerical evidence has ever been presented that would

20 We note that the terminology of what is to be called CFIE is not consistent in literature. What is called
CFIE in [BH04] is typically called combined source integral equation in the engineering community.
Diferent from the CFIE, one does not solve directly for the (real) electric current, but for some
equivalent current. he combined source integral equation was irst presented for the Helmholz
equation in [BW65] and is therefore oten referred to as the Brakhage-Werner trik.
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imply that the CFIE admits non-unique solutions, we use the standard CFIE
denoted in (3.77).

c) Electrostatics: Laplace’s Equation and Integral
Equation Formulations

In this thesis, we will frequently encounter integral operators known from the
solution of Laplace’s equation. his equation is obtained by considering that for� = 0 the electric ield is conservative. his allows to express the electric ield as
the gradient of a scalar potential, that is, � = − grad �e. Combining � = − grad �e
together with (3.3) and (3.9) and assuming �e = 0, we yield Laplace’s equationΔ�e = 0 , (3.79)

subject to the boundary condition�e = � , ∀� ∈ � (3.80)

for the Dirihlet problem, ∂∂�̂�e = � , ∀� ∈ � (3.81)

for the Neumann problem , and the decay condition [SS11]�e(�) ≤ �/‖�‖ for ‖�‖ → ∞ . (3.82)

A solution for the Dirihlet problem can be obtained by solving

V� = � (3.83)

on � , where
V� ∶ �−1/2(� )→ � 1/2(� ) ∶= ∫� �0(� , �′)�(�′)d�(�′) , (3.84)

is the single layer (potential) operator, and we ind the electric potential �e(�) =
(S�)(�), where

S� ∶ �−1/2(� )→ � 1
loc��c� ∶= ∫� �0(� , �′)�(�′)d�(�′) , (3.85)
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is the single layer potential.21
For the Neumann problem, we assume that � satisies the compatibility condi-

tion ∫� �(�)d�(�) = 0 . (3.86)

By using the hypersingular operator

W� ∶ � 1/2(� )/R→ �−1/2(� ) ∶= ∫� ∂2∂�̂�∂�̂�′ �0(� , �′)�(�′)d�(�′) (3.87)

and solving
W� = −� (3.88)

the electric potential can be computed as �e(�) = (D�)(�), where
D� ∶ � 1/2(� )/R→ � 1

loc��c� ∶= ∫� ∂∂�̂�′ �0(� , �′)�(�′)d�(�′) (3.89)

is the double layer potential and � 1/2(� )/R is a quotient space22, whih is nec-
essary to guarantee a unique solution of (3.88) due to the null space ofW . We
note that the integral in (3.87) has to be understood in the Cauhy principal value
sense. For practical implementations this is not relevant since one would solve
the variational formulation [Ste10; Néd01]

(�,W�)�2(� ) = (�, �)�2(� ) (3.90)

for all � ∈ � 1/2, where we have

(�,W�)�2(� ) = ∫� ∫� ����� �(�′) ⋅ ����� �(�)�0(� , �′)d�(�′)d�(�) . (3.91)

he operators V andW satisfy the so-called Calderón identities

VW = I/4 − K
2 (3.92)

21 his is by no means the only ansaz for inding a solution of the Dirihlet problem. It is an example of
the indirect approahes, where the quantity �, we solve for, has no physical meaning. For an overview
of the diferent approahes, we refer the reader to [Ste10].

22 See [Rud91] for a deinition of quotient space.
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and
WV = I/4 − K

′2 (3.93)

where
K� ∶ � 1/2(� )→ � 1/2(� ) ∶= ∫� ∂∂�̂�′ �0(� , �′)�(�′)d�(�′) (3.94)

is the double layer operator,

K
′� ∶ �−1/2(� )→ �−1/2(� ) ∶= ∫� ∂∂�̂�′ �0(� , �′)�(�′)d�(�′) (3.95)

is the adjoint double layer operator, and I is the identity operator.
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Chapter 4

Discretization of Boundary Integral
Operators and Equations

Numerical formulations of the integral equations (3.71), (3.76), and (3.77)
are necessary to ind solutions for non-canonical scatering problems. his
hapter introduces the classical numerical formulations based on Galerkin

theory. First, it discusses this theory and possible basis functions. hen dis-
cretized counterparts of (3.71), (3.76), and (3.77) are derived. Lastly, it analyzes
the ill-conditioning of the system matrices resulting from these discretizations
and shows partial remedies in form of quasi-Helmholz decompositions and pro-
jectors.

a) Petrov-Galerkin heory
Except for a few canonical objects (e.g., if � is a sphere), analytic solutions
are not known for (3.71), (3.76), and (3.77), so one must resort to a numerical
approximation and discretize these equations. Diferent approahes are available
suh as the Nyström or collocation method. In this thesis, we use the Petrov-
Galerkin method, whih can guarantee that the numerical solution converges to
the analytical solution.
For describing the Petrov-Galerkin method, we consider the equation

A� = � , (4.1)

whereA ∶ � → � ′ is a bounded linear operator and � and � are Hilbert spaces.
We can associate with A a bilinear form � ∶ � × � → R that satisies [Ste10]���(� , �)�� ≤ �‖�‖� ������ (4.2)
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with � > 0. We are faced with the variational problem to ind � ∈ � suh that�(�, �) = ⟨� , �⟩� ′×� ∀� ∈ � with � ∈ � ′. (4.3)

Equation (4.1) (or equivalently (4.3)) has a unique solution if 23

sup�∈� ���(�, �)�� > 0 , ∀� ≠ 0 , (4.5)

inf�∈� sup�∈� �(�, �)‖�‖� ‖�‖� ≥ �ALBB > 0 (4.6)

are satisied, where �ALBB is a positive constant. hese conditions are referred to
as inf-sup conditions for the analytic problem [Bab71; Bre74; XZ03].24
For a numerical approximation, we must use inite-dimensional subspaces of �

and � , that is, we employ �� = span
������=1 ⊂ � and �� = span

������=1 ⊂ �
with dim(�� ) = dim(�� ) = � . he task is to ind �� ∈ �� suh that�(�� , �� ) = ⟨� , �� ⟩� ′� ×�� (4.7)

for all �� ∈ �� . his variational formulation in (4.7) is equivalent to

Au = f (4.8)

where �A��� = ��� ,A����2 (4.9)

and �f �� = ��� , � ��2 . (4.10)

Even though the inf-sup conditions for the analytic problem are satisied, this
does not imply that we can expect to obtain a unique solution of (4.7). In addition,

23 Equations (4.5) and (4.6) can also be expressed as

�ALBB‖�‖� ≤ sup
0≠�∈� �(�, �)‖�‖� , ∀� ∈ (nullA)⟂ ⊂ � . (4.4)

Equation (4.5) implies that � must not be in the null space of A.
24 In literature, this is also known as the Ladyzhenskaya-Babuska-Brezzi (LBB) condition.

46



Section 4.b Basis Functions

a discrete inf-sup condition must be satisied, that is, we must have [Bab71; Bre74;
XZ03]

sup�∈�� ���(�, �)�� > 0 , ∀� ≠ 0 , (4.11)

inf�∈�� sup�∈�� �(�, �)‖�‖� ‖�‖� ≥ �DLBB > 0 , (4.12)

where �DLBB is a positive constant. If this condition is satisied, then the solution
is unique. If, in addition, the trial space satisies the approximation property

lim�→∞ inf�� ∈�� ‖� − �� ‖� = 0 , ∀� ∈ � , (4.13)

then we have �� → � for � → ∞, that is, the approximation converges to the
analytical solution.
To correctly apply the Petrov-Galerkin method, it is decisive that the testing is

always performed in the dual space of the range ofA, where we notice that � ′′ =� when � is a Hilbert space. As discussed in the next section, this requirement
has been ignored in the case of the discretization of the MFIE in the past.

b) Basis Functions
For the numerical solution, it is assumed that � is a Lipshiz polyhedral surface.
If instead � is a smooth surface, then we would need to approximate the surface
by a polyhedral surface. We presume that this preprocessing step has happened
at this point. he polyhedral surface � is discretized with a mesh of triangular
cells. For the discretization of the scalar operators V andW , we use piecewise
constant functions25 �� ∈ �� ⊂ �−1/2(� ) and piecewise linear functions26 �� ∈�� ⊂ � 1/2(� ). he piecewise constant functions are deined as

��(�) = �1/�� , � ∈ �� ,
0 , otherwise,

(4.14)

25 In literature, they are also referred to as path functions.
26 Oten referred to as pyramid or nodal functions.
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where �� denotes the domain of the �th cell of the mesh and �� its area. he
piecewise linear functions �� are deined as

��(�) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 for � ∈ �� ,
0 for � ∈ �� ≠ �� ,
linear elsewhere,

(4.15)

where �� ∈ � is the �th vertex of the mesh.
For the discretization of vector integral operators, we need RWG functions�� ∈ �� (that are equivalent to the zeroth order Raviart-homas functions on a

manifold [RWG82; RT77]), whih we deine as

�� =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
� − �+�
2��+� for � ∈ �+� ,�−� − �
2��−� for � ∈ �−� (4.16)

following the convention depicted in Figure 4.1, where the vector �� denotes the�th directed edge, �+� and �−� denote the domains of the cells on whih �� has
its support, �+� and �−� denote the vertices on the edge �� , and �+� and �−� are
the vertices opposite to the edge �� . In a slight abuse of notation, ��+� and ��−�
denote the cell area of �+� and �−� , respectively. Diferent from [RWG82], we do
not normalize �� by the edge length. We note that �� ⊂ �−1/2(div� , � ): the RWG
functions are divergence conforming; the application of the divergence operator
on RWG functions is well-deined in the sense that unphysical lineharges cannot
appear. For the rotated �̂ × �� ∈ ��̂×� on the other hand, we have the property��̂×� ⊂ �−1/2(curl� , � ).
Oten we need to discretize the identity operator I (or I , depending on the

context). he resulting matrix is called Gram matrix.27 In order to avoid deining
the Grammatrix for diferent basis functions every time, we stik to the following
convention: let �� ∈ �� and �� ∈ �� be functions of the function spaces �� and�� , respectively; the Gram matrix of these functions is deined and denoted as�G� ���� ∶= ��� , ����2 . (4.17)

Naturally, this deinition extends to the case that functions are vector-valued.

27 In literature, the Gram matrix is also referred to as mass matrix.
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��
�+�

�+� �−��+� �−�
�−�

Fig. 4.1.: Deinition of the RWG functions. he vector �� denotes the directed edge, �+� and�−� denote the domains of the cells, �+� and �−� denote vertices on the edge �� , and�+� and �−� are the vertices opposite to the edge �� .

When the �2-space ishosen as pivot space, the space�−1/2(curl� , � ) is the dual
space of�−1/2(div� , � ) and vice versa. Unfortunately, �� and ��̂×� are not dual to
eah other in the sense that they do not satisfy inf-sup conditions. his led to the
development of the BC basis functions �̃ ∈ ��̃ . hey are divergence conforming
just as the RWG functions, but they allow to obtain a well-conditioned mixed
Gram matrix G�̂×�̃ ,� , whih means that inf-sup conditions are satisied [BC07].28

28 he CW functions, whih have been developed in a diferent context many years before the BC
functions [CW90], could be used as well.
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c) Discretization of the Field Integral Equations
In order to apply the Petrov-Galerkin method to the EFIE, we need to obtain a bi-
linear form associated withT . Suh a variational formulation is given by [Rum54]

��̂ × � ,T ���2(� ) ∶= i� ∫� �(�) ⋅ ∫� �� (� , �′)�(�′)d�(�′)d�(�)
+

1

i� ∫� div� �(�)∫� �� (� , �′) div′� �(�′)d�(�′)d�(�) ,∀� ∈ �−1/2(div� , � ), �̂ × � ∈ �−1/2(curl� , � ) , (4.18)

where we used (2.43). hus we obtain as Petrov-Galerkin discretization of (3.71)

T
�
j = −e , (4.19)

where
T
� = i�T �A + 1/(i�)T �Φ (4.20)

with �T �A��� = ��̂ × �� ,TA����2(� ) (4.21)

= ∫� ��(�) ⋅ ∫� �� (� , �′)��(�′)d�(�′)d�(�) , (4.22)

�T �Φ ��� = ��̂ × �� ,TΦ����2(� ) (4.23)

= ∫� div� ��(�)∫� �� (� , �′) div′� ��(�′)d�(�′)d�(�) , (4.24)

�e�� = ��̂ × �� , �̂ × � i��2(� ) , (4.25)

where the electric current density is approximated by

� ≈ �∑�=1�j�� �� . (4.26)

An important requirement of the Petrov-Galerkin theory is that both analytic and
discrete inf-sup conditions must be satisied. hat this requirement is satisied
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has been shown even for the case where � is a Lipshiz surface [BH03]. For
notational convenience, we will in general omit the superscript � ofT � .
he computation of the matrix elements of TA and TΦ is by no means trivial

because of the singularity of the Green’s function. If � and �′ are suiciently
far away from eah other, then Gaussian quadrature can be used for integra-
tion [Gau14; Dun85]. In the case that Gauss quadrature is not applicable, the
singularity extraction method is employed in this thesis [Gra93].
For the MFIE, the situation is slightly diferent. Classically, the bilinear form

(�,M�)�2(� ) ∶= 1/2∫� �(�) ⋅ �(�)d�(�)− ∫� �(�) ⋅ �̂ × ∫� grad�� (� , �′) × �(�′)d�(�′)d�(�) ,∀� ∈ �−1/2(div� , � ),� ∈ �−1/2(div� , � ) (4.27)

has been used. Employing �� as expansion and testing functions, we obtain the
system

Mj ∶= �G�� /2 + K�j = h , (4.28)

where

�G�� ��� = ��� , ����2(� ) = ∫� ��(�) ⋅ ��(�)d�(�) , (4.29)�K��� = ��� ,K����2(� ) (4.30)

= −∫� ��(�) ⋅ �̂ × ∫� grad�� (� , �′) × ��(�′)d�(�′)d�(�) , (4.31)

�h�� = ��� , �̂ ×� i� . (4.32)

Suh a discretization approah is, however, not conforming with Petrov-Galerkin
theory. Just as in the case of the EFIE, the testing functions should belong to�−1/2(curl� , � ). A discretization with �̂ × �� is doomed to fail since discrete
inf-sup conditions are not satisied. Instead, a diferent set of basis functions
must be used suh that the discrete inf-sup conditions are satisied. his issue
was discussed in [Coo+11], where the use of BC functions was proposed. In this
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case, the bilinear form reads

��̂ × � ,M���2(� ) ∶= 1/2∫� �̂ × �(�) ⋅ �(�)d�(�)
− ∫� �(�) ⋅ ∫� grad�� (� , �′) × �(�′)d�(�′)d�(�) ,∀� ∈ �−1/2(div� , � ), �̂ × � ∈ �−1/2(curl� , � ) . (4.33)

Using �� as expansion and �̂ × �̃� as testing functions, we obtain the system�Mj ∶= �G�̂×�̃ ,� /2 + �K�j = h̃ , (4.34)

where

�G�̂×�̃ ,� ��� = ��̂ × �̃� , ����2(� ) = ∫� �̂ × �̃�(�) ⋅ ��(�)d�(�) , (4.35)

��K��� = ��̂ × �̃� ,K����2(� ) (4.36)

= −∫� �̃�(�) ⋅ ∫� grad�� (� , �′) × ��(�′)d�(�′)d�(�) , (4.37)

�h̃�� = ��̂ × �̃� , �̂ ×� i� . (4.38)

We refer to �M as conformingly discretized MFIE.
he classical discretization of the CFIE follows immediately as

Cj = −�Ce + (1 − �C)h , (4.39)

where
C ∶= �CT + (1 − �C)M . (4.40)

For the conformingly discretized system, however, we have�Cj = −�Ce + (1 − �C)G��G−1�̂×�̃ ,� h̃ , (4.41)

where �C = �CT + (1 − �C)G��G−1�̂×�̃ ,� �M . (4.42)
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he Gram matrices are necessary to ensure that the CFIE is consistently tested
[Beg+13].
Lastly, we need to discretize the scalar operators V andW . Here, we obtain

the system matrices �V ��� = ��� ,V����2(� ) (4.43)

and �W ��� ∶= ��� ,W����2(� ) (4.44)

where for the later we use the variational formulation of (3.91).

d) On the Ill-Conditioning of System Matrices
We have pointed out in Chapter 1 that equations suh as the discretized EFIE
in (4.19) are typically solved with an iterative solver belonging to the family of
Krylov subspace methods. he overall computational complexity in time then
depends on the fast method used (a fast method suh as the MLFMM or ACA)
and the number of iterations required by the solver to converge.
If we consider the system Ax = b where A is a symmetric, positive deinite

matrix and if we apply the CG method, we have the upper bound for the number
of iterations �iter ≤ ⌈12√condA log

2� ⌉ (4.45)

with the condition number

condA = ‖A‖���A−1��� = �max(A)�min(A)
, (4.46)

where �max(A) is the largest singular value and �min(A) the smallest singular value
of A, and where � is the relative residual error that serves as stopping criterion,
that is, if‖Ax − b‖ ≤ �‖b‖, then the CG solver stops.
Clearly, if condA is large, then the CG solver will require many iterations to

converge and one would say that A is ill-conditioned. here are many factors that
can contribute to a large condition number, for example, a complicated geometry
or a distorted mesh [Ste10]. hese efects are, however, not on the focus of this
thesis. Instead, the main atention is on the question how the condition number
behaves if the mesh is reined, that is, the average edge length ℎ → 0.
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Why can a decreasing ℎ lead to an ill-conditioned system? For a symmetric,
positive deinite matrix, eigenvalues and singular values as well as eigenvectors
and singular vectors coincide. If an operator with eigenvalues growing to ininity
or accumulating at zero is discretized, then it comes at no surprise that suh a
behavior is observable in the corresponding system matrix: when the mesh is
reined, the ininite spectrum of the respective operator is beter captured and
thus also the system matrix has growing or decreasing eigenvalues, at least under
the condition that an �2-stable basis is used, that is, the Gram matrix of this basis
is well-conditioned.
By introducing the weak and distributional derivative, the concept of deriva-

tives was generalized. Closely linked to this generalization are pseudo-diferential
operators. he Laplace-Beltrami operator is a pseudo-diferential operator of or-
der +2, while the hypersingular operatorW is of order +1, and the single layer
operator V is of order −1. Operators of negative order have eigenvalues cluster-
ing around zero, while operators of positive order have eigenvalues growing to
ininity. he rate at whih they grow or decrease corresponds to the order of the
operator.
In general, if an �2-stable basis is used for the discretization of an operator with

non-zero order, then the resultingmatrix is ill-conditioned. For integral operators,
two of the most popular remedies are either the use of a basis, whih is itself�2-unstable, these are the hierarhical basis preconditioners, or to use an operator
of opposite order as preconditioner. For a hierarhical basis preconditioner, it is
typical that these bases are constructed on classical function spaces suh as ��
or �� . his allows to reuse the standard discretization and to apply the basis as a
preconditioner in form of a transformation matrix. hat is, instead of solving the
system

Ax = b (4.47)
we solve a system of the form

B
T
ABy = B

T
b (4.48)

so that in the best case
cond�BT

AB� ≲ 1 (4.49)

would hold, where the expression � ≲ � means that there is a constant � , inde-
pendent of the average edge length ℎ, suh that � ≤ �� holds. In addition, we
will frequently use � ≍ � meaning that both inequalities � ≲ � and � ≲ � hold.
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he approah to use an operator of the opposite order can be motivated by
the Calderón identities, whih we introduced in (3.92) and (3.93). By applying
V toW (or vice versa), an integral equation of the second kind is obtained, that
is, the identity operator plus a compact operator. Since the eigenvalues of a
compact operator cluster around zero, the eigenvalues I/4 − K2 accumulate at
1/4. When an iterative solver suh as the CG method is used, the number of
iterations to converge are bounded from above with a constant independent of
the discretization density [SW98; Hip06; AK01]. In the case of the Calderón
preconditioners, we solve a system of the form

PAx = Pb (4.50)

and have
cond(PA) ≲ 1 . (4.51)

he preconditioner in (4.48) is referred to as split preconditioner, and the one
in (4.51) as let preconditioner. In order to ind new preconditioners, we will
frequently use Rayleigh quotients. If A ∈ R

�×� is symmetric, positive deinite,
then we have �max(A) = max

x

xTAx

xTx
(4.52)

and �min(A) = min
x

xTAx

xTx
. (4.53)

For our analysis, we will use the notation�min(A) x
T
x ≤ x

T
Ax ≤ �max(A) x

T
x , ∀x ∈ R

� . (4.54)

If, for example, the inequality

x
T
Ax ≍ x

T
F
−1
x , ∀x ∈ R

� . (4.55)

holds, then
cond(FA) ≲ 1 (4.56)

follows.29 he EFIE is not directly applicable to suh an analysis since it is
not a symmetric, positive deinite matrix. his is mainly due to the frequency

29 Consider that in this case also
x
�
A
2
x ≍ x

T
F
−2
x , ∀x ∈ R

� (4.57)
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dependency of the Green’s function �� (� , �′). We are not, however, able to
consider the case � → 0 due to the 1/� scaling of the scalar potential operator
part of the EFIE.his observation, in fact, leads to another form of ill-conditioning
particular to the EFIE: the low-frequency breakdown.
A close look at (4.20) reveals thatT is ill-conditioned in �, that is, the condition

number of T grows as 1/�2 for � → 0: the scalar potential operator TΦ has a
null space spanned by a solenoidal subspace of the RWG functions. Hence, the
spectrum ofT consists of two branhes, the spectrum ofTΦ and ofTA. Due to the
scaling of the vector and the scalar potential operator with 1/� and �, respectively,
the two branhes are driven apart leading to the ill-conditioning.
he ℎ-dependency of the condition numberT is more diicult to establish than

the frequency dependency. In this case it is helpful to use a (quasi-)-Helmholz
decomposition to make the transition to scalar quantities and to consider the
contribution fromTA separately fromTΦ so that well-established inverse inequal-
ities can be used (see, for example, [ATV10].) A relatively general framework for
assessing the ill-conditioning of an operator was shown in [Kir10]. Summarizing,
one obtains for the EFIE

cond(T ) ≲ 1/(�ℎ)2 . (4.60)
ForM and �M , we obtain that the condition number can be bounded independently
from � or ℎ on simply connected geometries, but on topologically non-trivial
structures, we obtain [Bog+11]

cond( �M ) ≲ 1/�2 . (4.61)

he CFIE inherits these properties, and we have on simply connected geome-
tries

cond �C = 1/ℎ (4.62)
and

cond �C = 1/(�2ℎ) (4.63)

holds and by using the substitution y = F −1x , we obtain
y
�
FA

2
F y ≍ y

T
y , ∀y ∈ R

� . (4.58)

Given that FA2F = F TATAF and the deinition of the singular value decomposition (SVD), we ind

cond(AF ) =
�
cond�F TATAF � . (4.59)
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on multiply connected. he reduction in the ill-conditioning from ℎ−2 to ℎ−1 re-
sults from the identity operator in �C : it introduces a lower bound of the spectrum
so that the singular values ofTA are shited and bounded away from zero.
his dissertation introduces new paradigms for curing the dense-discretization

breakdown of the EFIE and the CFIE. A tool that will be used throughout the
following hapters are quasi-Helmholz decompositions: they allow for a sepa-
rate preconditioning of TA and TΦ, and they can be used to consider equivalent
problems linked to scalar integral operators, whih makes it, for example, easier
to devise a new basis.

�) uasi-Helmholz Decompositions

uasi-Helmholz decomposition have a long history, as pointed out in Chapter 1,
since they were originally used to cure the low-frequency breakdown of the
EFIE. Two families of basis functions, a solenoidal basis complemented with a
non-solenoidal basis that can represent the harge, are employed. By rescaling
these bases in �, the low-frequency breakdown is prevented.
Examples for classical quasi-Helmholz decompositions are the loop-star and

the loop-tree decomposition [WGK95; BK95; Vec99]. While for practical purposes
the loop-tree decomposition works beter than the loop-star decomposition, we
show in this section that the later is a beter foundation for the development of
new preconditioning strategies. Diferent from a real Helmholz decomposition,
where we would have a solenoidal and an irrotational basis, both the loop-star
and the loop-tree decomposition provide a quasi-Helmholz decomposition: in-
stead of forming an irrotational basis, the star and the tree functions are only
non-solenoidal. In fact, there is no real Helmholz decomposition available for
the RWG function space and thus we will frequently omit the word “quasi” and
only use it if we want to stress the nature of the decomposition.
In more detail, let �� ∈ �� be loop functions, �� ∈ �� be global loops

and �� ∈ �� be star functions [WGK95; Vec99]. he global loops �� are the
discrete counterpart of the quasi-harmonic Helmholz subspace. heir deinition,
however, is subtle and cannot be treated here (see, for example, [WG81; Coo+09]).
As�� = ��⊕�� ⊕�� , there are transformationmatricesΛ ∈ R

�×�V , H ∈ R
�×�H ,

and Σ ∈ R
�×�C that link the expansion coeicients of the current in the loop-star
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basis to the expansion coeicients in the RWG basis, that is, we have

j = Λj� + Hj� + Σ j� (4.64)

and �∑�=1�j���� = �V∑�=1�j����� + �H∑�=1�j� ���� + �C∑�=1�j����� , (4.65)

where j�, j� , and j� are the unknown vectors in the loop-star basis, �V is the
number of vertices (inner vertices, when � is an open surface), �C the number
of cells, and �H = 2�, where � is the genus of � . Given the convention depicted
in Figure 4.1, the loop transformation matrix is deined as

�Λ��� = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 for �� = �+� ,−1 for �� = �−� ,
0 otherwise,

(4.66)

where �� is the �th vertex of the mesh. When the surface is open, �� are the
inner vertices of the mesh and �V is the number of inner vertices. Following the
convention in Figure 4.1, the star transformation matrix is deined as

�Σ��� = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 for �� = �+� ,−1 for �� = �−� ,
0 otherwise,

(4.67)

where �� is the domain of the �th cell of the mesh. In other words, the �th column
of Λ and Σ carries the coeicients with whih the �th loop and star function,
respectively, can be expressed as a linear combination of RWG functions.
We deine the loop-star preconditioner as

Q = �Λ/√i� H /
√
i� Σ

√
i�� . (4.68)

he discretization with the loop-star basis leads to the system matrixTQ , whih
is related toT by

TQ = Q
T
TQ = �TΛΛ TΛΣ

TΣΛ TΣΣ� (4.69)
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if � is simply connected.30
he loop-star decomposition has some interesting properties. First, we can

relate the loop-loop and the star-star part of TQ to system matrices stemming
from the discretization of scalar integral operators: we deine the functions

��(�) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
3/�� for � ∈ �� ,−1/�� for � ∈ �� and �� is adjacent to �� ,
0 otherwise,

(4.71)

whih are the divergence of the star functions. hen we have [ATV10; Néd01]�T 0ΛΛ��� = (�� ,W�� )�2(� ) , (4.72)

and �T 0ΣΣ��� = (�� ,V�� )�2(� ) . (4.73)

At this point, we should comment on the fact that the loop and the star func-
tions are not independent if � is closed; the all-one vectors�1Λ�� = 1 , � = 1, … ,�V (4.74)

and �1Σ�� = 1 , � = 1, … ,�C (4.75)

are in the null spaces of Λ and Σ , that is, Λ1Λ = 0 and Σ1Σ = 0. If � is open,
the loop functions are linearly independent, but since the overall harge is zero,
the star functions remain linearly dependent. he consequence for the classical
loop-star preconditioner is that if � is closed, then a loop and a star function
must be eliminated, and if � is open, then only a star function must be eliminated
resulting in transformation matrices Λ ∈ R

�×�Λ and Σ ∈ R
�×�Σ , where �Λ

and �Σ are the dimensions suh that the loop and star functions are linearly
independent and we have � = �Λ + �H + �Σ [Vec99].

30 In the multiply connected case, it reads

TQ = Q
T
TQ =

⎡⎢⎢⎣
TΛΛ TΛH TΛΣ
THΛ THH THΣ
TΣΛ TΣH TΣΣ

⎤⎥⎥⎦ (4.70)

.
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For the preconditioning shemes we are developing in this thesis, this is not
a customary hoice. For example, the equality in (4.72) only holds if we do not
eliminate a loop function sinceW has a null space spanned by 1Λ (and in the end,
we are developing a preconditioner forW , whih we can then only apply toTA if
this equality holds). Another issue by eliminating a function is that the matrices
Λ and Σ become even more ill-conditioned [And12a]. For the (quasi-)Helmholz
projectors, we are introducing in Section 4.d.� , it is necessary to solve the systems
Λ
T
Λx = b andΣT

Σx = b . It turns out that if the functions are not eliminated, then
it is easier to precondition these systems. Depending on the preconditioner used,
however, a delection of the null spaces might be necessary (see Section 4.d.�).
he overall Helmholz projectors are, however, identical, regardless whether we
eliminate a function or not. We leverage this fact in Chapter 6 in order to keep
the notation concise. �) uasi-Helmholz Projectors
We have seen that the loop-star basis allows to linkTA toW andTΦ toV . Another
important property of the loop-star decomposition is the orthogonality between
the transformation matrices: we have ΛT

Σ = 0, ΛTH = 0, and HT
Σ = 0. he

orthogonality can be used to recover the loop or the star components of j . he
right-inverses of Λ and Σ are given by (ΛT

Λ)+ΛT and (ΣT
Σ )+ΣT. If, for example,

(ΛT
Λ)+ΛT is applied to (4.64), then we obtain the loop expansion coeicients, that

is, �� = (ΛT
Λ)+ΛTj . he symbol “+” denotes the Moore-Penrose pseudo-inverse,

whih is necessary due to the linear dependency of the loop and the star functions.
his motivates the deinition of quasi-Helmholz projectors

PΛ ∶= Λ�ΛT
Λ�+ΛT (4.76)

and
PΣ ∶= Σ�ΣT

Σ�+ΣT (4.77)

where PΛ projects to the solenoidal and PΣ to the non-solenoidal Helmholz
subspace (for a detailed discussion and derivation of the Helmholz projectors,
see [And12a; And+13]). When the geometry is multiply connected, there is the
projector PH that projects to the harmonic subspace. We can implicitly obtain
this projector as

PH = I − PΛ − PΣ . (4.78)
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he matrices ΣT
Σ and Λ

T
Λ are graph Laplacians and thus ill-conditioned.

Standard tehniques, suh as algebraic multigrid preconditioners, allow an ei-
cient inversion [LB12; NN12; Not]. In practice, the null spaces of ΣT

Σ and ΛT
Λ

can prevent convergence when the residual error is low. To stabilize the iterative
solver, we delect the null space as follows. For a single body problem, we can
invert the matrix ΣT

Σ + 1̂Σ 1̂TΣ , where 1̂Σ ∈ R
�C is the normalized all-one vector

(i.e., 1̂Σ = 1Σ/‖1Σ‖2) spanning the null space of ΣT
Σ . We note that

�ΣT
Σ + 1̂Σ 1̂TΣ�−1 = �ΣT

Σ�+ + 1̂Σ 1̂TΣ (4.79)

holds (see [And+13]). Other normalizations may be used as well. he best perfor-
mance of the iterative solver can be expected when the singular value associated
with 1̂Σ 1̂TΣ is shited into the spectrum of ΣT

Σ . For a multibody problem, the
dimensionality of the null space is the number of bodies �B. For the �th body,
the �th vector 1̂Σ,� is deined as

�1̂Σ,��� = �1/��C,� , when �� ∈ ��
0 , else,

(4.80)

where�C,� is the number of cells and �� is the surface of the �th body, respectively,
and �� denotes the �th cell of the entire surface � = ∪�B�=1�� . We deine the matrix̂̂
1Σ ∈ R

�C×�B as � ̂̂1Σ��� = �1̂Σ,��� (4.81)

and then the matrix ΣT
Σ +

̂̂
1Σ ̂̂1TΣ is invertible.

Similarly, we can deal with ΛT
Λ. Diferent from Σ

T
Σ though, the graph Lapla-

cian ΛT
Λ has a null space only when the surface is closed. For stabilizing the in-

version ofΛT
Λ in the presence of a null space, we can invert thematrixΛT

Λ+1̂Λ1̂TΛ
(i.e., using the same strategy, as we did in the case of ΣT

Σ ), where 1̂Λ is the nor-
malized all-one vector (i.e., 1̂Λ = 1Λ/‖1Λ‖2) spanning the null space of ΛT

Λ. For a
multibody problem, the dimensionality of the null space is the number of closed
bodies �BC . For the �th closed body, we have the vector 1̂Λ,� with entries

�1̂Λ,��� = �1/��V,� , when �� ∈ ��
0 , else,

(4.82)
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where �� is the surface of the �th closed body, �V,� is the number of vertices on
this surface, and �� denotes the �th vertex of the entire surface � . We deine the
matrix OΛ ∈ R

�Λ×�BC as � ̂̂1Λ��� = �1̂Λ,��� (4.83)

and then the matrix ΛT
Λ +

̂̂
1Λ ̂̂1TΛ is invertible.

As demonstrated in [And+13], the projectors are an ideal means to cure the
low-frequency breakdown. We deine PΛH = PΛ + PH. Applying the projectors
to the system matrix, we ind

(PΛH + PΣ)T (PΛH + PΣ)
= (PΛH + PΣ)�i�TA + 1/(i�)TΦ�(PΛH + PΣ)

= (i�)PΛHTAPΛH + (i�)PΛHTAPΣ + (i�)PΣTAPΛH
+ (i�)PΣTAPΣ + 1/(i�)PΣTΦPΣ . (4.84)

To prevent the low-frequency breakdown, we rescale the projectors with the
square root of the wavenumber resulting in the preconditioner

P = �1/√��PΛH + i
√�PΣ . (4.85)

Considering (4.20) and (4.84), it is evident that

PTP (4.86)

is free from the low-frequency breakdown.he imaginary unit +i is used to pre-
vent the numerical cancellation due to the diferent scaling of the solenoidal and
non-solenoidal components in the right-hand side and the current vector (for an
exhaustive discussion, we refer the reader to [And+13]).
While (4.86) is free from the low-frequency breakdown, its condition number

still grows with 1/ℎ2. In the following parts, new paradigms in preconditioning
are introduced to handle the dense-discretization breakdown.
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Chapter 5

Primal and Dual Haar Bases on
Unstructured Meshes for the EFIE

A new hierarchical basis preconditioner for the EFIE operator is introduced. In
contrast to other hierarchical basis preconditioners, it works on arbitrary meshes and
preconditions both the vector and the scalar potential within the EFIE operator. his
is achieved by taking into account that the vector and the scalar potential operator
discretized with loop-star basis functions are related to the hypersingular and the
single layer operator (i.e., the well known integral operators from electrostatics). he
strategy proposed in this chapter for preconditioning the EFIE is the transformation
of the scalar and the vector potential operator into operators equivalent to the single
layer operator and to its inverse. Further mathematical considerations show that this
allows to use generalized primal and dual Haar functions as preconditioner. It turns
out though that in the case of the dual Haar wavelets, the inverse transformation
matrix must be used. he numerical results show the efectiveness of the proposed
preconditioner and the practical impact of theoretical developments in real case
scenarios. his chapter is based on [AAE17].

Quasi-Helmholtz decompositions—as we have seen in Chapter 4—are
commonly used to cure the low-frequency breakdown. Typical examples
are the loop-star and the loop-tree basis preconditioners, where the loop
functions form a set of solenoidal functions and the star/tree functions

form a set of non-solenoidal functions. With suh a Helmholz decomposed basis,
the solenoidal null space of the scalar potential is exploited to separate the vector
from the scalar potential operator allowing to rescale them in frequency [BK95;
WGK95].
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While loop-star and loop-tree preconditioners takle the low-frequency break-
down, they do not cure the dense-discretization breakdown. he dense-discre-
tization breakdown is due to the integrative and derivative strength of the vector
and of the scalar potential operator giving rise to a condition number of the
EFIE system matrix whih scales with 1/ℎ2, where ℎ is the average edge length
of the mesh. Hierarhical basis preconditioners cure the dense-discretization
breakdown when the basis is constructed suh that it relects the Sobolev norm
induced by the EFIE operator [ATV10].
hey are, however, not a panacea. In fact, the construction of a hierarhical

basis for the discretization of vector operators suh as the EFIE is far from being
trivial, in particular, when three constraints are applied: (i) it should be possible
to apply the hierarhical basis multiplicatively to an EFIE that is discretized with
RWG functions (so that the hierarhical preconditioner can easily be integrated
into existing codes), (ii) the construction and application of the hierarhical basis
should have at most a quasilinear complexity (i.e., linear up to logarithmically
growing multiplicative terms) so that the advantage of using fast matrix-vector
multiplication algorithms is not jeopardized), and (iii) the hierarhical basis should
be applicable to unstructured meshes. An unstructured mesh is the output of a
mesher where, given a spline geometry, an optimized triangulation subject to
a certain average edge length ℎ is generated. A structured mesh, on the other
hand, is generated from a (usually coarse) unstructured mesh by sequentially
reining it, for example, dyadically (i.e., the midpoints of the three edges of a cell
are connected resulting in four smaller, new cells) until the desired average edge
length ℎ is obtained.
While the irst and second condition are met by virtually all hierarhical basis

preconditioners [VPV05; ATV07; And12b; ATV10; Che+09; HM12], there have
been only few hierarhical bases reported for the EFIE that work on unstructured
meshes as well [AVV08]. he satisfaction of the third criterion, however, is
decisive for the practicality of the hierarhical basis preconditioner. Structured
meshes are, in industrial applications, rarely used for two reasons. Usually one
cannot start from a coarse mesh and perform a structured reinement. Most of
the time, one has to start with a mesh that is relatively ine since only then the
details of the spline geometry can be captured. In addition, the hierarhical basis
only reduces the condition number to one obtained by a discretization of the
EFIE on coarsest mesh. his condition number can still be prohibitively large so
that the efectiveness of the hierarhical basis preconditioner is insuicient.
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Currently available hierarhical basis preconditioners for unstructured meshes
only precondition the scalar potential operator [AVV08; DJC11]. As part of
the underlying quasi-Helmholz decomposition, loop functions are used for the
solenoidal basis whih, however, do not cure the dense-discretization breakdown
of the vector potential operator [And12a]. hus the condition number of the
entire system matrix still grows with 1/ℎ and we face the open task to ind a
hierarhical basis that preconditions the vector potential operator on unstructured
meshes.
he reason why there is a hierarhical basis preconditioner available for the

scalar potential operator but not for the vector potential operator can be ex-
plained as follows. When the EFIE operator is discretized with RWG functions
as expansion and testing functions, the scalar potential operator is a single layer
operator discretized with piecewise constant basis functions related to the two
divergence terms of the current basis functions. his allows, once these diver-
gence terms are resolved, to reuse a hierarhical basis deined on the space of
piecewise constant functions [AVV08].
he vector potential operator, on the other hand, is a single layer operator

on the vector function space of the electric surface current density �. Unlike
the scalar potential operator, we cannot turn it directly into a scalar single layer
operator. Yet, there is an important property of the vector potential operator: we
have seen in Chapter 4 that when loop functions are used, the discretized vector
potential operator is equivalent to the hypersingular operatorW discretized with
scalar piecewise linear functions. his simpliies our task of preconditioning the
vector potential operator since we do not have to deal with a vector but a scalar
operator, that is, we “only” have to ind a hierarhical basis for a scalar function
space.
In this hapter, a provable hierarhical preconditioning strategy for the vector

potential operator is reported. he three criteria (i)-(iii) for a good hierarhical
basis preconditioner stated before are satisied. Both the scalar and the vector
potential operator are preconditioned in this work by generalized primal and
dual Haar bases (i.e. generalized Haar bases deined on the standard and dual
mesh respectively). In order to precondition the scalar potential operator with
the primal Haar basis, we use graph Laplacians to transform it into the single
layer operator V . For the vector potential operator instead, whih relates to the
hypersingular operatorW , we exploit the spectral equivalency of the later to
the inverse single layer operator to precondition it with a linear-in-complexity,
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closed-form inverse of the dual Haar basis. Since the generalized Haar basis is
easy to construct and the same code can be used for the generation of the primal
and the dual Haar bases, the implementational efort of using the preconditioner
is minimal.
he hapter is structured as follows: in Section 5.a, we comment on the scat-

tering scenario. Section 5.b introduces the primal and the dual Haar basis. In
Section 5.c, we show how the vector and the scalar potential operator can be
transformed into operators spectrally equivalent to the single layer operator
and its inverse and how they can be preconditioned with a generalized Haar
bases in these representations. In Section 5.d, we present numerical results that
demonstrate the efectiveness of the proposed approah.

a) Bakground
As required in Chapter 4, the scaterer� ⊂ R

3 is Lipshiz polyhedral, we constrain
ourselves, however, to the discussion of simply connected geometries to keep the
notation concise. For multiply connected geometries, the hierarhical basis can
be complemented with global loops as discussed in Section 4.d.� . If the number
of global functions is large, or even scales with � , this is not eicient anymore.
Chapter 6 discusses how hierarhical basis preconditioners can be combined with
a Helmholz projector approah, where the quasi-harmonic Helmholz subspace
is only recovered implicitly. Whenever relevant for the implementation of the
hierarhical basis preconditioner, we will point out to the reader the necessary
modiications to apply the tehnique to multi-body problems, both closed and
open.

b) Construction of the Generalized Haar Basis
Generalized Haar bases have been constructed before, also for the case of un-
structured meshes (see, for example, [HKS05], where an octree was used for
the partitioning of the mesh). Classically, a Haar basis would be constructed
on the space of piecewise constant functions �� . As it turns out in Section 5.c,
we also need a Haar basis for the piecewise constant functions deined on the
dual mesh, whih we denote as �̃� ∈ ��̃ . Diferent from the standard piecewise

68



Section 5.b Construction of the Generalized Haar Basis

�1�2�3�4�5 �6 �7 �8�9
�10�11�12

Fig. 5.1.: he standard (thik lines) and the barycentrically reined (thin lines) mesh. he
grey shaded area is a dual cell.

constant functions, whih are deined on the cells of the mesh, these functions
are associated with the vertices of the mesh. We can deine the dual piecewise
constant functions by using a barycentric mesh reinement. he support of the
dual piecewise constant function �̃� is given by the cells on the barycentrically
reined mesh that are atahed to the �th vertex (Figure 5.1 shows the support of
a dual piecewise constant function). When � is in the support of �̃� , the function
value �̃� (�) = 1/��� , where ��� is the area of the support of �� , and is zero when �
is not in the support of �̃� . Let �bar� be the standard piecewise constant functions
deined on the barycentrically reined mesh. For the example given in Figure 5.1,
we ind �̃� = 12∑�=1 ���bar� , (5.1)

where �� = �bar� /��� for all � = 1, … , 12 with �bar� being the area of the support
of �bar� and ��� = ∑12�=1 �bar� is the area of the support of �̃� . Now we have all the
functions spaces necessary to construct the primal and dual Haar bases.
he Haar bases are obtained in the form of transformation matrices ĤΣ and

ĤΛ. he columns of the matrices ĤΣ and ĤΛ carry the expansion coeicients of
the Haar functions in terms of piecewise constant �� and dual piecewise constant
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functions �̃� , respectively. We refer to the generalized Haar bases ĤΣ and ĤΛ as
primal and dual generalized Haar basis.
We start with the construction of ĤΣ. he construction algorithm requires as

input the cell-based graph Laplacian Σ
T
Σ and the areas �� of the cells �� of the

mesh. he construction of the Haar basis begins with deining the entire mesh
as a macro cell (see Figure 5.2a). On this macro cell, the irst generalized Haar
function is deined as the constant function�H,0 = 1/�� , � ∈ � , (5.2)

where �� is the area of the surface � . Eventually, we seek to obtain a multiplica-
tive preconditioner in the form of a matrix ĤΣ that maps from the generalized
Haar functions to the piecewise constant functions �� ∈ �� . We have the rela-
tionship �H,0 = 1/�� �C∑�=1���� (5.3)

between the irst generalized Haar function and the functions �� ∈ �� . We insert
the expansion coeicients for �H,0, whih are

�ĤΣ��1 = ��/�� (5.4)

with � = 1, … ,�C, in the irst column of ĤΣ.
he next Haar functions are obtained by dividing the mesh into �m = 4 macro

cells. Although alternative strategies are possible [MA14], in our implementation,
we have used the graph partitioning algorithms made available by the METIS
library [KK98]. Other graph partitioning algorithms could be used as well as
long as they can ensure that the macro cells have (approximately) the same area
and that the cells in a macro cell are all connected by their edges. An example
for the division is shown in Figure 5.2.
We denote the domains of the thereby generated macro cells by �m,� , � =

1, … ,�m and deine macro piecewise constant functions
�m,� =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1�(�m,�) � ∈ �m,� ,

0 � ∉ �m,� , (5.5)
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(a)he initial macro cell. (b)he macro cells ater the irst partition-
ing using METIS.

(c)he next macro cells ater the application of METIS to a macro cell from Figure 5.2b.

Fig. 5.2.: Space Shutle: macro cells generated by using METIS.
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where �(�m,�) is the area of the macro cell �m,� . Notice, that these functions are
normalized suh that �� �m,�d�(�) = 1. he functions �m,� are given in terms of�� as �m,� = 1/�(�m,�) ∑�∈��∈� ∣��⊂�m,������ . (5.6)

With this relationship, we obtain the vectors

�b��� = ���/�(�m,�) when �� ⊂ �m,� ,
0 otherwise,

(5.7)

and we can combine them columnwise in the matrix B = �b1 … b�m�.
he functions �m,� with � = 1, … ,�m and �H,0 are linearly dependent, and they

are not orthogonal to �H,0. herefore, we need to form�m−1 linear combinations
of macro piecewise constant functions �H,� suh that ��H,0, �H,���2 = 0 for � =
1, … ,�m − 1. here is not a unique solution, and so we strive to orthogonalize the
Haar functions of the same group as well, whih we obtain in the case of uniform
meshes by considering the unweighted cell-based graph Laplacian L deined by
the �m macro cells �m,� and apply the SVD, that is, we have USUT = L. hen
we deine the matrix R = U (1 ∶ end, 1 ∶ end − 1) (Matlab notation). Using this
matrix, we deine the Haar functions as

�H,� = �m∑�=1 �m,��R��� , � = 1, … ,�m − 1 (5.8)

noting that∑� R(�, �) = 0 whih ensures the orthogonality of the Haar wavelets
to �H,0. Given these deinitions, the matrix BR is the transformation matrix that
maps from the Haar functions to the piecewise constant functions �� ∈ �� . he
matrix BR is added to the matrix ĤΣ, whih at this point consists of a single
column associated with �H,0.
he remaining generalized Haar functions are obtained recursively: eahmacro

cell, when it contains more than one cell, is subject to a further division into �m
cells (as it is depicted in Figure 5.2b and Figure 5.2c). his gives rise to new macro
cells, on whih we deine new macro piecewise constant functions; we obtain a
new matrix B and a new matrix R , and every time the new matrix BR is added
to ĤΣ. In this way, we obtain �C generalized Haar functions.
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Since the primal generalized Haar basis is used for representing the electric
harge and since the total harge is zero, we discard the function �H,0 and denote
the resulting matrix as HΣ ∈ R

�C×�Σ .
Analogously, the dual generalized Haar basis ĤΛ can be constructed. As input,

we now need the vertex-based graph Laplacian matrix ΛT
Λ and the areas ��� of

the dual cells �̃� , where �̃� denotes the support of the �th dual piecewise constant
function. he deinition of �H,0 stays the same as in (5.2), and we represent it as
a linear combination of dual piecewise constant functions

�H,0 = 1/�� �V∑�=1 ��� �̃� . (5.9)

herefore, the irst column of ĤΛ is given by�ĤΛ��1 = ���/�� (5.10)

with � = 1, … ,�V.
On eah of these dual macro cells we deine a dual macro piecewise constant

function �̃m,� =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1��(�m,�) � ∈ �̃m,� ,
0 � ∉ �̃m,� , (5.11)

where ��(�m,�) is the area of the dual macro cell �̃m,� . Notice, that these functions
are normalized suh that �� �̃m,�d�(�) = 1. We deine the vectors

�b̃��� = ����/��(�̃m,�) when �̃� ⊂ �̃m,� ,
0 otherwise,

(5.12)

and we combine them columnwise in the matrix �B = �b̃1 … b̃�m�.
he dual macro functions are combined to the dual generalized Haar functions

�̃H,� = �m∑�=1 �̃m,���R��� , � = 1, … ,�m − 1 (5.13)

suh that ��H,0, �̃H,���2 = 0 and where �R is obtained analogously to R by using
the SVD applied to the cell-based graph Laplacian of the �m dual macro cells �̃m,� .
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he matrix �B �R is the transformation matrix that maps from the Haar functions
to the dual piecewise constant functions �̃� ∈ ��̃ . he matrix �B �R is added to
ĤΛ, whih at this point consists of a single column whih is associated with �H,0.
hen the algorithm continues recursively by further dividing the dual macro cells
and generating for eah new division step the matrices �B �R .
When the surface is closed, the function �H,0 and the associated column in

ĤΛ are discarded. We denote the resulting matrix as HΛ. Diferent from the
generation of HΣ, special care must be taken when the surface is open. First of
all, only the dual piecewise constant functions associated with the inner vertices
of the mesh are considered. Secondly, the function �H,0 must not be discarded
(i.e., HΛ ∶= ĤΛ) as in this case the loop functions are a set of linearly independent
functions and thus ΛTTAΛ has full rank.

c) New Hierarhical Basis
In the following, we transform the vector and the scalar potential operator suh
that we can apply a generalized Haar basis for preconditioning.

�) Scalar Potential Operator
It is known thatV can be preconditioned by applying the Haar basis transforma-
tion matrix ĤΣ—at least on structured meshes—followed by the diagonal rescaling
matrix [Osw94; Osw98; HKS05]

�D̂Σ��� = 2−�̂Σ(�)/2 , (5.14)

where the function �̂Σ(�), � ∈ {1, … ,�C}, returns the level on whih the associated
Haar function is deined, so that the condition number bound

cond�D̂ΣĤTΣV ĤΣD̂Σ� ≲ log2(1/ℎ) (5.15)

holds [Osw98]. he numerical results show that suh a basis is an efective
preconditioner even for unstructured meshes.
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he divergence of �� is given by [RWG82]
div� �� = ⎧⎪⎪⎪⎨⎪⎪⎪⎩

1/�+� , � ∈ �+� ,−1/�−� , � ∈ �−� ,
0 , otherwise.

(5.16)

Since the functions div� �� are piecewise constant, they can be deined as a linear
combination of �� functions, thereby giving rise to a transformation matrix X .
hen we have �TΦ��� ∶= −��̂ × �� ,TΦ���� = X

T
VX , (5.17)

where the matrix X ∈ R
�C×� is deined as
�X��� = ⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 for �� = �+� ,−1 for �� = �−� ,
0 otherwise.

(5.18)

Comparing (5.18) with (4.67), we see that X = Σ
T, and another application of Σ

yields
T
0ΣΣ = Σ

T
ΣVΣ

T
Σ . (5.19)

To apply the generalized Haar basis to the scalar potential operator, we must
remove the star transformation matrices ΣT

Σ in (5.19). We apply from let and
right (ΣT

Σ )+, where the “+”-symbol denotes the Moore-Penrose pseudo-inverse,
and ind

�ΣT
Σ�+ΣT

ΣVΣ
T
Σ�ΣT

Σ�+ = �ΣT
Σ�+T 0ΣΣ�ΣT

Σ�+ . (5.20)

he pseudo-inverse is necessary since there are only �Σ = �C − 1 linearly inde-
pendent star functions as the total harge is always zero [Vec99].
We take this later fact into account by using HΣ ∈ R

�C×�Σ , whih is obtained
from ĤΣ by discarding the constant Haar function (see Section 5.b). In order to
apply HΣDΣ to (5.20), we must have

DΣHTΣ�ΣT
Σ�+ΣT

ΣVΣ
T
Σ�ΣT

Σ�+HΣDΣ = DΣHTΣVHΣDΣ , (5.21)
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where �DΣ��� = 2−�Σ(�)/2 with � ∈ {1, … ,�Σ} and �Σ(�) = �̂Σ(� + 1). hat (5.21) holds
can be seen as follows: the system Σ

T
Σx = y is solvable only when y is in the

range of ΣT
Σ . It is easy to see that

�ΣT
Σ��� = ⎧⎪⎪⎪⎨⎪⎪⎪⎩

deg �� if � = � ,−1 if � ≠ � and �� is adjacent to �� ,
0 otherwise,

(5.22)

where deg �� is the degree of �� (i.e., the number of cells atahed to �th cell). In
other words ΣT

Σ is the graph Laplacian matrix associated with the cell-based
graph. From this deinition it follows that the let null space of ΣT

Σ is spanned
by the all-one vector. Only vectors whose row sum is zero are orthogonal to this
vector. Hence, the row sum of y = HΣx must be zero for all x , as y must be in the
range of ΣT

Σ . hat the row sum is zero for all x , can be seen from the deinition
of HΣ (see (5.7) and (5.8) in Section 5.b).
We deine �Σ ∶= �Σ�ΣT

Σ�+HΣ� , (5.23)

where the wide hat symbol “�” signiies that we deal with a hierarhical basis.
hen we have

cond�DΣ �ΣT
T
0Φ �ΣDΣ� ≲ log2(1/ℎ) (5.24)

since

DΣ �ΣT
T
0Φ �ΣDΣ = DΣHTΣ�ΣT

Σ�+ΣT
T
0ΣΣΣ�ΣT

Σ�+HΣDΣ
(5.20)
= DΣHTΣ�ΣT

Σ�+ΣT
ΣVΣ

T
Σ�ΣT

Σ�+HΣDΣ
(5.21)
= DΣHTΣVHΣDΣ (5.25)

and

cond�DΣHTΣVHΣDΣ� ≲ cond�D̂ΣĤTΣV ĤΣD̂Σ� (5.15)≲ log2(1/ℎ) , (5.26)

where we used that for any symmetric, positive deinite (SPD)matrix the symmet-
ric elimination of a row and column leads to a smaller or at most equal condition
number than the original matrix.
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�) Vector Potential Operator
According to (4.72), the loop-loop blok matrixT 0ΛΛ is identical to the discretiza-
tion of the hypersingular operator with piecewise linear functions, that is,�W ��� = �T 0ΛΛ��� . (5.27)

Since a set of hierarhical piecewise linear functions for unstructured meshes is
not available, we must resort to a strategy that does not explicitly require suh a
set of hierarhical functions.
To simplify the following analysis, we consider a modiied hypersingular op-

erator. Without the modiication, the operatorW is not � 1/2(� )-elliptic, and its
discretization possesses a null space spanned by the constant functions. Follow-
ing a standard approah [Ste10], we introduce the delected operator

Ŵ ∶ � 1/2(� )→ �−1/2(� ) (5.28)

deined by the bilinear form

��, Ŵ���2(� ) ∶= (�,W�)�2(� ) + (1,�)�2(� )(1, �)�2(� ) (5.29)

for all � , � ∈ � 1/2(� ). We note that the unique solution � of Ŵ� = � is also
a solution ofW� = � when � satisies the solvability condition �� �d�(�′) = 0.
his can be seen when � = 1 in (5.29), whih reduces to (� , 1)�2(� )(1, 1)�2(� ) = 0

whih implies (� , 1)�2(� ) = 0. he discretization of Ŵ is given by

�Ŵ ��� = ��� , Ŵ����2(� ) . (5.30)

With the dual piecewise constant functions we can discretize the single layer
resulting in the matrix ��V ��� = ��̃� ,V �̃���2(� ). It should be noticed that by using
dual piecewise constant functions, we obtain system matrices �V andW with
equal dimensionality.

Proposition 5.1. Let HΛ be the transformation matrix from the dual generalized
Haar basis to the dual piecewise constant functions as deined in Section 5.b, and let�DΛ��� = 2−�Λ(�)/2 , (5.31)

77



Primal and Dual Haar Bases on Unstructured Meshes for the EFIE Chapter 5

where the function �Λ(�), � ∈ {1, … ,�Λ} returns the level on which the associated
Haar function is deined with �Λ = �V − 1 the number of linearly independent loop
functions. hen we have

cond�D−1Λ H
‡ΛG−1��̃WG

−T��̃�H‡Λ�TD−1Λ � ≲ log2(1/ℎ) , (5.32)

where �G��̃��� = ��� , �̃���2(� ) and H
‡Λ is an �2-generalized inverse matrix deined

as
H
‡Λ = �HTΛG �̃�̃HΛ�−1HTΛG �̃�̃ . (5.33)

Proof. From (5.15), we have

cond�D̂ΛĤTΛ�V ĤΛD̂Λ� ≲ log2(1/ℎ) , (5.34)

where ĤΛ is deined in Section 5.b and �D̂Λ��� = 2−�̂Λ(�)/2 with � ∈ {0 … ,�V}.
Based on the scalar Calderón identities (see Section 3.c and [SW98; Hip06]), we
have the spectral equivalence

x
T�Vx ≍ x

T
G
T��̃Ŵ −1

G��̃x , ∀x ∈ R
�V (5.35)

and therefore obtain

cond�D̂ΛĤTΛGT��̃Ŵ −1
G��̃ĤΛD̂Λ� ≲ log2(1/ℎ) (5.36)

from whih
cond�D̂−1Λ Ĥ

−1Λ G
−1��̃ŴG

−T��̃ Ĥ−TΛ D̂
−1Λ � ≲ log2(1/ℎ) (5.37)

holds, since all matrices appearing are invertible. We should now make the
transition from Ŵ toW . It follows from (5.30), that Ŵ x can be replaced byWx

when the associated function �x ∶= ∑��x���� satisies (�x , 1)�2(� ) = 0. In matrix
form, this can be expressed as

ã
T
G �̃�x = 0 , (5.38)

where �ã�� = ��� . Any preconditioner X ∈ R
�V×�Λ applicable toW suh that

XTWX is well-conditioned must ensure for any y ∈ R
�Λ that the expansion

coeicients x = X y satisfy the discrete solvability condition (5.38).
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First, we note that Ĥ−1Λ = (ĤTΛG �̃�̃ĤΛ)−1ĤTΛG �̃�̃ . Since HΛ is obtained by
eliminating the irst column of ĤΛ, we use as let inverse of HΛ the matrix H‡Λ,
whih is obtained from Ĥ−1Λ by eliminating the irst row, and whih we can write
explicitly as Ĥ‡Λ = (HTΛG �̃�̃HΛ)−1HTΛG �̃�̃ . hen we have

cond�D−1Λ H
‡ΛG−1��̃ŴG

−T��̃�Ĥ‡Λ�TD−1Λ � ≲ log2(1/ℎ) , (5.39)

since the matrix in (5.39) is symmetric, positive deinite and for any suh matrix
the elimination of the �th row and column yields a condition number bounded
by the condition number of the original matrix. In addition, by the deinition of
H‡, we satisfy (5.38): for any y ∈ R

�Λ , we ind a z ∈ R
�Λ suh that

y = (HTΛG �̃�̃HΛ)−1D−1Λ z . (5.40)

Deining x = G−T��̃G �̃�̃HΛy and inserting in (5.38), we obtain
ãG �̃�x = ãG �̃�G−T��̃G �̃�̃HΛy = ãG �̃�̃HΛy . (5.41)

Since �G �̃�̃��� = 1/��� , eq. (5.41) can be writen as
1
TΛHΛy = 0 , (5.42)

where 1Λ ∈ R
�V is the all-one vector and the equality results from the deinition

of HΛ, where we notice that the column vectors of HΛ have a zero mean value
(see Section 5.b).

Summarizing, we deine the transformation matrix for the new solenoidal basis
as �Λ ∶= ΛG

−T��̃G �̃�̃HΛ�HTΛG �̃�̃HΛ�−1 . (5.43)

he Gram matrix G��̃ can be computed analytically. We have
�G��̃��� =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
11

18
when � = � ,

7

18

�+�� + �−��
6

1��� , when � ∈ ���(�) ,
0 , otherwise,

(5.44)
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where ���(�) is the set of vertices adjoint to vertex �, �+�� and �−�� are the areas of
the cells atahed to the edge that connect the vertices � and �, and ��� is the area
of the dual cell atahed to vertex � (see Figure 5.1 for an example of a dual cell).
Since this Gram matrix is well-conditioned and sparse, iterative solvers can be
used for computing the application of G−1��̃ to a vector.
We note that HTΛG �̃�̃HΛ is the Gram matrix of the Haar functions, that is,

�HTΛG �̃�̃HΛ��� = ��̃� ,� , �̃� ,���2 (5.45)

(for an explicit deinition of the Haar functions �̃� ,� , see Section 5.b). he inverse
of the matrix HTΛG �̃�̃HΛ can be computed fast (i.e., in O(�V) complexity). his
can be seen by considering the structure of this Gram matrix: the only Haar
functions whih are not orthogonal to a Haar function �̃H,� in the �2-sense are
the Haar functions deined on the same macro cell as �̃H,� ; by construction of
the Haar functions, we have ensured that the functions from diferent levels
are �2(� )-orthogonal. Haar functions on the same level but deined on diferent
macro cells have orthogonal supports and thus are orthogonal in the �2(� )-sense.
As outlined in Section 5.b, every macro cell is split in (at most) four smaller macro
cells, and hence, there are at most three Haar functions deined on a macro cell.
hen for eah Haar function there are at most only two other non-orthogonal
Haar functions. hus HTΛG �̃�̃HΛ is a blok diagonal matrix with bloks of at most
size 3 × 3 (i.e., to be precisely, it is blok diagonal when the non-orthogonal Haar
functions are grouped together). Clearly, this matrix is sparse with the number
of elements scaling as O(�V) and its inverse is given by the inversion of eah
of the matrix bloks. Since the costs for inverting a single blok is independent
from �V and the number of bloks are scaling linearly in �V, the complexity for
inding the inverse is O(�V).

� ) Proposed Preconditioner for the EFIE Operator
We deine the overall basis transformation matrix as�Q = � �Λ �Σ� , (5.46)
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where �Λ was deined in (5.43) and �Σ in (5.23), and the rescaling matrix as
D = �D−1Λ /

√
i�

DΣ√i�� , (5.47)

where DΛ was deined in (5.31) and DΣ in (5.14). We observe for the static limit
lim�→0

D �QT
T
� �QD = �D−1Λ �ΛTT 0

A
�ΛD−1Λ

DΣ �ΣTT 0Φ �ΣDΣ� (5.48)

and because of (5.24) and (5.32), we have

cond� lim�→0
D �QT

T
� �QD� ≲ log2(1/ℎ) . (5.49)

Since the dynamic kernel only introduces a compact perturbation, we conclude
that D �QTT �QD is well-conditioned up to a logarithmic perturbation.
As a side note, we also consider multiply connected geometries. Similar to

loop-star or loop-tree quasi-Helmholz preconditioners (see also Section 4.d.�),
we add the global loops transformation matrix H to �Q resulting in�Q = � �Λ H �Σ� (5.50)

and use

D =

⎡⎢⎢⎢⎣
D−1Λ /

√
i�

DH/
√��

DΣ√i�
⎤⎥⎥⎥⎦ , (5.51)

where �DH��� = 1/
��HTT 0

AH��� . (5.52)

hen we have

lim�→0
D �QT

T
� �QD =

⎡⎢⎢⎢⎣
D−1Λ �ΛTT 0

A
�ΛD−1Λ D−1Λ �ΛTT 0

AHDH

DHH
TT 0

A
�ΛD−1Λ DHH

TT 0
AHDH

DΣ �ΣTT 0Φ �ΣDΣ
⎤⎥⎥⎥⎦ . (5.53)
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he analysis of the conditioning is more complicated than for (5.48) due to
the of-diagonal blok matrices. First, we note that DHH

TT 0
AHDH is well-co-

nditioned since mesh reinements do not hange the global loops. hus all the
blok matrices on the main diagonal are well-conditioned. he transformation
matrix H has no preconditioning strength, whihwould indicate that the matrices
D−1Λ �ΛTT 0

AHDH and DHH
TT 0

A
�ΛD−1Λ are only “half preconditioned” so that we have

for their singular values an upper bound. We note that by adding the global
loops, we cannot exclude the case that some eigenvalues of lim�→0 D �QTT � �QD

are shited closer to zero, but since the basis transformation matrix �Q has full
rank, we can exclude that a real null space is introduced. Numerical evidence
suggests that even a shiting of eigenvalues closer to zero does not occur (see
Chapter 6). hus it seems that we can safely assume that the logarithmic bound
persists in the presence of global loops.
Obtaining H explicitly is, however, not a trivial task and using global loops

explicitly can be a costly operation. herefore, we present a sheme in the next
hapter that allows to use hierarhical basis preconditioners for the EFIE suh
that a searh for the global loops is not required.
Returning to the simply connected case, beter results are observed in practice

when a normalization is used for curing the low-frequency breakdown, that is,
we use

D = �D−1Λ /
√�Λ

DΣ/√�Σ� , (5.54)

where �Λ and �Σ are the largest singular values ofD−1Λ �ΛTT �ΛD−1Λ andDΣ �ΣTT �ΣDΣ,
respectively. he diference in the norm of these two matrices is properly taken
into account in (5.54) by the rescaling of DΛ and DΣ. Note that �Λ and �Σ can be
obtained in linear complexity by using, for example, a power iteration method
[Gol13].
he matrices DΛ and DΣ where deined by simply taking into account the

level on whih the respective Haar function is deined (see (5.14) and (5.31)).
his works well when partitions on a level have all the same area. Since graph
partitioning shemes are usually heuristic this is only approximately ensured.
For this reason it is typically proposed to compute

�D��� = 1/

�� �QTT �Q��� , (5.55)
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where T is usually replaced by the near-interaction part of the system matrix
in order to compute the matrix-matrix products rapidly. In our sheme, it is not
possible to compute D in this manner due to the inverse matrices appearing in
the deinition of �Λ and �Σ . However, we have an alternative by leveraging on the
fact the Haar functions we are using are not �2-stable, so that the Gram matrices
of the primal and the dual Haar bases scale as�HTΛG��HΛ��� ≍ 22�Λ(�) , (5.56)

and �HTΣG��HΣ��� ≍ 22�Σ(�) . (5.57)

Hence, we can use the diagonal of their Gram matrices to obtain DΛ and DΣ, that
is, we deine �DΛ��� = ��HTΛG �̃�̃HΛ����−0.25 , (5.58)

�DΣ��� = ��HTΣG��HΣ����−0.25 . (5.59)

d) Numerical Results
We begin with studying the spectral properties of the new formulation by using a
cube with side length 1m. We have generated a regular sequence of meshes, for
diferent values of the average edge length ℎ, resulting in numbers of unknowns
ranging from 18 to 18 432.
At irst, we analyze how well the dense-discretization breakdown is prevented

by the proposed preconditioner. his is done by computing the condition number
for diferent values of the spectral index 1/ℎ. We begin our analysis by comparing
the preconditioned scalar potential operator in (5.24) with a star, a tree, and a
standard hierarhical non-solenoidal basis preconditioner (like the non-solenoidal
part of the method used in [ATV10]). Figure 5.3a shows that both hierarhical
preconditioners have the same qualitative behavior, whereas the star and tree
preconditioner result in ill-conditioned system matrices.
Next, we analyze the efectiveness of our proposed preconditioning strategy

of the vector potential operator in (5.32). We compare it with a vector potential
operator that is discretized with loop functions, the modiied hierarhical loop
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functions proposed in [ATV10], and with hierarhical loop functions. he later
are constructed by adding the loop functions deined on all the new vertices of
eah reinement step. his construction does not enforce an orthogonality be-
tween the levels, and thus we cannot expect it to show any sign of preconditioning
efectiveness. Figure 5.3b) displays the condition number as a function of the
spectral index 1/ℎ. he modiied hierarhical loops compare well with our pro-
posed method. his can be expected from the theory presented in [ATV10]. he
modiied hierarhical loops lead to a discretization where the condition number of
the matrix is bounded by a constant, whereas for the proposed preconditioner the
condition number is still growing logarithmically. Diferent from the proposed
preconditioner, the modiied hierarhical loops are limited to structured meshes
and lak, therefore, the necessary lexibility for practical applications.

Figure 5.3c shows the results when the entire EFIE operator is preconditioned
with our new method, with the preconditioner presented in [ATV10], and with a
standard hierarhical basis preconditioner. he standard hierarhical basis pre-
conditioner consists of loop functions and a hierarhical non-solenoidal basis.
his preconditioner is representative of the state of the art, since it is applicable
to structured and unstructured meshes. In Figure 5.3c, the condition number
is shown as a function of the spectral index 1/ℎ. hese results show that the
new preconditioner presented in this work compares favorably with previously
proposed tehniques. In fact, it has a performance whih is comparable with
the preconditioner in [ATV10], whih however is applicable only to structured
meshes. Since the standard hierarhical basis preconditioner employs loop func-
tions, the vector potential operator is not efectively preconditioned; it is for this
reason that in Figure 5.3c we observe the growth in the number of iterations for
this preconditioner. In Figure 5.3d, the condition number of the system matrix
is shown as a function of the frequency � . he frequency � is related to the
wavenumber by � = 2π� /�, where � is the speed of light. he results show that
the new preconditioner efectively cures the low-frequency breakdown.

Finally, we have tested the new preconditioner on more realistic geometries.
he proposed preconditioner requires the inversion of the mixed Gram matrix
G��̃ and the graph Laplacian ΣT

Σ . In general, we are going to use the conjugate
gradient squared (CGS) method as iterative solver with the exception of our
treatment of ΣT

Σ (other Krylov subspace methods could be used as well). he
matrix G��̃ is sparse and well-conditioned, hence one can easily use a solver
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(b) Condition number of preconditionedTA.
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(d) Veriication of the low-frequency stability of (preconditioned)T .

Fig. 5.3.: Cube: spectral analysis of the diferent preconditioners for varying ℎ and � .
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tolerance close to mahine precision. As ΣT
Σ is a graph Laplacian, the matrix is

ill-conditioned and a preconditioner necessary. We are using the aggregation-
based algebraic multigrid preconditioner AGMG presented in [NN12; Not]. As
solver tolerances, we use 1 ⋅ 10−14 for the AGMG solver and 1 ⋅ 10−16 for the CGS
for G��̃ , thereby showing that even for small tolerances our method remains
practical.
As closed realistic structure, we use a model of a Space Shutle discretized with

1 148 400 basis functions. he length of the Space Shutle is �/20. We compared
the preconditioner proposed in this work with a classical loop-tree preconditioner
[WGK95] and the case that a hierarhical non-solenoidal basis is complemented
by loop functions (denoted as “standard hierarhical preconditioner”). For ob-
taining the numerical results, we used the CGS solver with tolerance 1 ⋅ 10−4. To
accelerate the computation, we employed the ACA with precision 1 ⋅ 10−4. As
excitation, we used a plane wave and a voltage gap, respectively. he results,
summarized in Table 5.1, show clearly the improvements that the preconditioner
proposed in this work presents over the state of the art. Figure 5.4 shows a good
agreement of the bistatic scatering cross sections.
Like other hierarhical preconditioner shemes or Calderón preconditioners,

the new preconditioner was derived under the assumption that the structures
are closed. In practice, we ind that the new preconditioner can be used on
open structures as well. We simulated the scatering problem for the model of
a MiG-15 with 306 036 unknowns. We used the same ACA precision and solver
tolerance as for the Space Shutle, and we studied the efect of a plane wave
and a voltage gap excitation. Table 5.2 shows the number of iterations and the
timings, and Figure 5.5 shows the bistatic scatering cross section. Clearly, the
new preconditioner remains efective for open structures.

e) Conclusion
We presented a hierarhical basis preconditioner, whih works on structured and
on unstructured meshes. Diferent from other hierarhical basis preconditioners
with comparable applicability, it preconditions the electric ield integral equation
operator completely. he numerical results do not only conirm the theoretical
predictions but also show that the presented preconditioner outperforms standard
methods for real case scenarios.
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(b) Voltage gap excitation.

Fig. 5.4.: Space Shutle: bistatic scatering cross section. he system matrix is compressed
with the ACA (precision 1 ⋅ 10−4).
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Fig. 5.5.: MiG-15: bistatic scatering cross section. he system matrix is compressed with
the ACA (precision 1 ⋅ 10−4).
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Chapter 6

Hierarhical Bases on Multiply
Connected Objects for the EFIE

his chapter extends hierarchical basis preconditioners applicable to the EFIE such
that on multiply connected geometries no search for global loops is required. Cur-
rently available hierarchical basis preconditioners need an explicit representation
of global loops. Finding these requires a computational complexity exceeding the
linearithmic complexity of fast matrix-vector multiplication methods. Instead of
using an explicit representation of global loops, quasi-Helmholz projectors are uti-
lized to precondition the EFIE separately on the solenoidal, non-solenoidal, and
quasi-harmonic Helmholz subspace. hereby, we avoid the explicit recovery of the
global loops and maintain the leading complexity of fast multiplication methods.
Numerical results prove the efectiveness of the proposed approach. his chapter is
based on [AAE14b].

Hierarchical basis preconditioners, as discussed in Chapter 1 and
in Chapter 5, can cure the ill-conditioning of the EFIE up to a logarithmic
perturbation. Various bases have been presented for the EFIE operator and

their efectiveness has been demonstrated in the past [VPV05; ATV07; Che+09;
ATV10; AVV08; HM12; AAE17]. A hierarhical basis for the EFIE operator must
precondition both the vector and the scalar potential operator. he separate
preconditioning of the vector and the scalar potential operator is usually ahieved
by using a set of hierarhical solenoidal and non-solenoidal basis functions. his
enforces a quasi-Helmholz decomposition that exploits the solenoidal null space
of the scalar potential operator in order to split it of from the vector potential
operator.
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On multiply connected geometries, however, the hierarhical bases share the
same issue as the classical loop-star/tree quasi-Helmholz decompositions: they
require an explicit representation of the quasi-harmonic subspace. his subspace
is spanned by the so-called global loops, whih are associated with the handles
and holes of the geometry [Ces96; Vec99].
he explicit representation of the quasi-harmonic subspace requires to ind

the global loops of the geometry. Existing loop-inding algorithms have at least
a complexity of O(�� ), where � is the genus of the geometry [VY90; Laz+01].
When � ∝ � , the loop-inding algorithms cannot have a complexity less than
quadratic [EH04].
For a convenient application of the hierarhical preconditioner, it is desirable

that the hierarhical basis can be applied multiplicatively. In standard codes the
EFIE is discretized with RWG basis functions and the preconditioner is a sparse
basis transformation matrix applied from let and right to the system matrix.
Standard loop-inding algorithms do not generally ind the shortest loops, so that
the transformation matrix mapping the global loops to RWG functions is dense.
Algorithms that do ensure to ind the shortest loops (and thereby avoid a dense
transformation matrix) have at least a cubic complexity [EH04; DFW13].
As the leading complexity set by the fast multiplication methods is at most

linearithmic [CRW93; ZVL05], the use of loop-inding algorithms is unatractive.
Considering that the implementation of suh an algorithm is cumbersome and
their application is only satisfactory for certain classes of geometries, it is desir-
able to ind a general purpose formulation where the searh for global loops is
unnecessary, that can be integrated easily into existing codes, and that does not
jeopardize the efectiveness of the fast multiplication method.
In this hapter, we present suh a formulation applicable to hierarhical bases

for the EFIE operator meeting these criteria. To this end, we leverage quasi-He-
lmholz projectors allowing for an implicit representation of the quasi-harmonic
Helmholz subspace. Helmholz projectors were irst introduced in [And12a],
where the projectors were used for stabilizing the Calderón preconditioned EFIE
in the static limit. We show that we cannot directly integrate these Helmholz
projectors in a hierarhical preconditioning sheme to bypass the searh for the
global loops. Instead, it turns out that the standard split preconditioning for-
mulation must be abandoned in favor of a let preconditioning formulation. he
numerical results corroborate the efectiveness of the presented theory.
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Section 6.b Bakground

a) Bakground
In thishapter, we allow� to be amultiply connected Lipshiz polyhedral domain.
Available hierarhical bases rest upon a quasi-Helmholz decomposition [VPV05;
ATV07; Che+09; ATV10; AVV08; AAE17] as the scalar potential operator must be
preconditioned separately from the vector potential operator. For any hierarhical
basis that shall be applicable to the formulation presented in this work, we require
that the space of hierarhical functions is equal to the space of RWG functions:�� = ��� ⊕ �� ⊕ � �� , where �� is the space of RWG basis functions, ��� the space
of hierarhical solenoidal functions, �� is the space of quasi-harmonic global
loop functions, and � �� the space of hierarhical non-solenoidal basis functions.
his allows us to deine linear mappings �Λ ∈ R

�×�Λ , H ∈ R
�×�H , and �Σ ∈ R

�×�Σ
from the hierarhical solenoidal and non-solenoidal functions to the RWG basis
functions. We do not give an explicit representation of �Λ and �Σ , as our sheme is
not limited to a speciic hierarhical basis.
In other words, we can express the system matrix T �Q whih is obtained by

using the hierarhical basis in terms of a linear mapping�Q = � �Λ H �Σ� (6.1)

applied toT asT �Q = �QTT �Q . In general for the hierarhical basis preconditioner
to be efective, the matrix has to be rescaled by using the diagonal preconditioner

�D��� = 1/

��T �Q��� . (6.2)

his diagonal preconditioner is necessary for both curing the low-frequency and
the dense-discretization breakdown. Summarizing, the preconditioned system
matrix is

DT �QD . (6.3)

Given the discussion in the previous hapter on the conditioning of the matrix
(5.53), we assume that we have condition number bound

cond�DT �QD� ≲ log2�1/ℎ2� . (6.4)
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b) New Formulation Without the Searh for Global
Loops

Since the explicit construction of �� is computationally expensive, the new
formulation presented in this hapter uses an implicit representation of the qua-
si-harmonic subspace. To this end, we use projectors that allow us to obtain the
solenoidal, non-solenoidal, and quasi-harmonic part of the current density � in
terms of RWG functions so that we can precondition the EFIE operator on eah
Helmholz subspace separately [AEA13]. hese projectors have been recently
introduced [And12a; And+13]. hey are based on the classical loop and star
functions [Wil83; WGK95; BK95].
It remains to link the projectors to the hierarhical basis preconditioner. In-

spired by (4.85), a irst idea would be to use�̇P = �ΛD �ΛX �Λ + PH
√� + �ΣD �ΣX �Σ , (6.5)

requiring that �̇PT
T �̇P (6.6)

is well-conditioned. he matrices D �Λ and D �Σ are the diagonal preconditioners
of �ΛTT �Λ and �ΣTT �Σ , respectively. he matrices X �Λ ∈ C�Λ×� and X �Σ ∈ C�Σ×�
are necessary to math the column dimensionality of PH since D �Λ ∈ C�Λ×�Λ
and D �Σ ∈ C�Σ×�Σ but PH ∈ R�×� . he parameter � (instead of 1/√� as in
(6.5)) is necessary, because the diagonal preconditioning of D �Λ might have an
efect diferent from a mere rescaling with 1/

√� (the hoice of � is discussed in
Section 6.c). All in all, the projector-based preconditioning of the quasi-harmonic
subspace becomes more complicated than in (6.5) or in [And+13].
It might seem thatΛT and ΣT are natural hoices for X �Λ and X �Σ . But these ma-

trices are ill-conditioned, as they have a derivative strength [And12a]. Applying
an ill-conditioned matrix from let and right to a well-conditioned matrix results,
in general, in an ill-conditioned matrix and so (6.6) is not well-conditioned.31

31 Alternatively, we could resort to the hierarhical basis transformation matrices �ΛT and �ΣT and
rescale them suh that they become �2-stable transformations, that is that the discretization of
the identity operator �ΛTG�� �Λ and �ΣTG�� �Σ is well-conditioned. However, both the solenoidal and
the non-solenoidal hierarhical basis should be �2(� )-stable, whih they not necessarily are (e.g.,
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Instead of hoosing Λ and Σ for XT�Λ and XT�Σ , one might consider using the
transformation matrices Γ andΘ of cotree and tree functions, respectively, since
Γ andΘ do not possess a derivative (or integrative) strength. For the deinition
of tree/cotree functions see [Sun+95] (what we call tree functions in this hapter,
is referred to as cotree function in [Sun+95] and vice versa; they can be obtained
in linear complexity by a depth-irst searh). he dimensionality of the tree
functions �Σ (as they must span the harge space), and thus, the dimensionality
of the cotree space is � − �Σ = �Λ + �H, where �H is the dimensionality of the
quasi-harmonic subspace. To math the dimensionality of ���, we must eliminate�H cotree functions resulting in the reduced cotree transformation matrix Γ .
Despite their well-conditionedness, Γ and Θ may not be used, because their

null spaces are not orthogonal to the null space of PH. he non-orthogonality of
the null spaces induces a new form of ill-conditioning. To illustrate this efect, we
used a cube with a hole on eah side so that the cube has ive global loops (this
cube is shown in Figure 6.1; there are ive and not six global loops, because one
hole makes the cube an open but still simply connected structure). A plane wave
with frequency 1MHz impinges on this cube with side length �/150, where � is
the wavelength. Figure 6.4 shows the spectrum of the system matrix. When we
use the cotree/tree formulation, ive isolated singular values appear. hese are
the singular values associated with the global loops. hese singular values are not
clustered meaning that the quasi-harmonic subspace has become ill-conditioned.
Hence, we need matrices that have null spaces that are orthogonal to the null

space of PH, but whih are, in contrast to Λ
T and Σ

T, well-conditioned. he
following lemma provides us with matrices having the desired properties.

Lemma 6.1. he irst �Λ (�Σ) singular values of (ΛTΛ)−1/2ΛT ((ΣTΣ )−1/2ΣT) are
equal to one, the rest of the singular values are zero.

Proof. We proof this for (ΛTΛ)−1/2ΛT. he proof for (ΣTΣ )−1/2ΣT follows analo-
gously. Let

UΞR
T (6.7)

the hierarhical solenoidal functions from the previous hapter would when applied to G�� lead
to a condition number scaling like O(log4(1/ℎ)) as discussed in Section 7.b), and even if they are�2(� )-stable, then the upper bound of the condition number of �ΛTG�� �Λ or �ΣTG�� �Σ can still be
prohibitively large for practical applications.
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Fig. 6.1.: Cube with six holes: open surface with ive global loops.

be the singular value decomposition of Λ and let �� = �Ξ��� be the singular
values. Notice that U and RT are unitarian matrices. hen it follows that the
eigenvalue and singular value decomposition of ΛT

Λ is RΠRT, where �Π��� = � 2�
for � = 1, … ,�Λ and Π ∈ R

�Λ×�Λ . he inverse square root of ΛT
Λ is given by the

decomposition RΠ−1/2RT. We then ind

�ΛT
Λ�−1/2ΛT = RΠ

−1/2
R
T
R⏟⏞⏞⏞�⏞⏞⏞�

I

ΞU
T = RΨU

T , (6.8)

where Ψ = Π
−1/2

Ξ , Ψ ∈ R
�Λ×� with �Ψ��� = 1, � = 1, … ,�Λ and zero otherwise.

It follows from (6.7) and (6.8) that the range and null spaces ofΛT and (ΛTΛ)−1/2ΛT

are identical.

Lemma 6.1 infers that the matrices (ΛTΛ)−1/2Λ and (ΣTΣ )−1/2Σ are well-cond-
itioned up to the null space of Λ and Σ , respectively, and that they, because of
their range and null space mathing those of PH, can be used instead of ΛT and
Σ
T.
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Modifying the preconditioner proposed in (6.5) to�P = �ΛD �Λ�ΛT
Λ�−1/2ΛT + PH

√� + �ΣD �Σ�ΣT
Σ�−1/2ΣT , (6.9)

we obtain a hierarhical preconditioner, whih takes implicitly care of the qua-
si-harmonic Helmholz subspace. Figure 6.4 demonstrates the correctness of this
square root based approah. We see that all the singular values are clustered for
a suitably hosen � as described in Section 6.c.
he downside of this approah is obvious: we have to compute the inverse

square root of a matrix. To avoid this, we propose a let preconditioner instead
of this split preconditioner: instead of�PT

T �P (6.10)

we suggest to use �P �PT
T , (6.11)

where we note that �P �PT does not contain inverse square roots anymore, as we
have �P �PT = �ΛD2�Λ �ΛT + PH� + �ΣD2�Σ �ΣT . (6.12)

We note that the matrices �P �PTT and �PTT �P are similar, since�P−1��P �PT
T��P = �PT

T �P . (6.13)

and thus they have the same eigenvalue spectrum, whih typically results in a
convergence behavior of the iterative solver comparable to the split precondi-
tioned case.
For extremely low frequencies this approah needs a slight modiication: since

the solenoidal/quasi-harmonic and the non-solenoidal part of the current, PΛHj
and PΣj , scale diferently in frequency, numerical cancellation appears in j ,
whih would render it impossible to compute the electric and magnetic ield
(see [And+13] for more details). In this case, one should apply the low-frequency
preconditioner from Section 4.d.� and replaceT by −iPTTP so that P̂ does not
have to take care of the low-frequency breakdown anymore. In more detail, the
preconditioned matrix would read�P �PT�−iPT

TP� (6.14)
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where the diagonal preconditioners should be obtained from the frequency inde-
pendent system matrices �D �Λ��� = 1/

���ΛTT 0
A
�Λ��� (6.15)

and �D �Σ��� = 1/

���ΣTT 0Φ �Σ��� (6.16)

since −iPTTP is well-conditioned in frequency. If the basis from the previous
hapter is used, then (5.58) and (5.59) can be used to determine D �Λ and D �Σ .
We note that −iPTTP and �PT(−iPTTP ) �P become SPD for � → 0. his allows

to obtain an upper bound for the condition number of �P �PT(−iPTTP ) in the static
limit.
Lemma 6.2. If we have a hierarchical basis such that

x
T
x ≲ lim�→0

x
T �PT�−iPT

T
�
P��P� ≲ log2(1/ℎ)xTx , ∀x ∈ R

� ≲ log2(1/ℎ)
(6.17)

is satisied, then

cond� lim�→0
�P �PT�−iPT

T
�
P�� ≲ log2(1/ℎ) (6.18)

holds.

Proof. In the following, we assume � → 0 and suppress the limit. Using Rayleigh
quotients, we have

x
T
x ≲ x

T �PT�−iPT
TP��Px ≲ log2(1/ℎ)xTx , ∀x ∈ R

� . (6.19)

Using the substitution �Px = y , we have

y
T �P −T �P −1y ≲ y

T − iPT
TP y ≲ log2(1/ℎ)yT �P −T �P −1y , ∀y ∈ R

� (6.20)

and thus

y
T��P−T �P−1�2y ≲ y

T�−iPT
TP�2y≲ log4(1/ℎ)yT��P −T �P −1�2y , ∀y ∈ R

� . (6.21)
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Using the substitution �P −T �P −1y = x , we obtain

x
T
x ≲ x

T �P �PT�−iPT
TP�2 �P �PT

x ≲ log4(1/ℎ)xTx , ∀y ∈ R
� . (6.22)

his implies

cond��P �PT�−iPT
TP�2 �P �PT� ≲ log4(1/ℎ) (6.23)

and hence
cond��P �PT�−iPT

TP�� ≲ log2(1/ℎ) . (6.24)

Considering that the efect of the non-dynamic kernel is only a compact per-
turbation, we do not expect a signiicant impact on the employed method. he
numerical results shown in Section 6.d conirm our expectations and demonstrate
the legitimacy of (6.11).

c) Implementational Issues
Since we were not interested in extremely low-frequencies, we used (6.11) to
demonstrate the applicability of our approah. So far it has not been discussed,
how to select the scaling parameter � . he spectrum of the global loops scales
linearly in frequency. For that reason, the preconditioner in (4.85) rescales both
the solenoidal and quasi-harmonic subspace with the same factor 1/�. When we
use the hierarhical basis and a diagonal preconditioner is obtained by using (6.2),
one could simply use the average factor by whih the spectrum is shited, that is,

� =
�Λ∑�Λ�=1� �ΛT(i�TA)�Λ��� . (6.25)

For the numerical results in this hapter, we have used this approah.32

32 If the preconditioner from Chapter 5 is applied, where the power iteration method is used to cure
the low-frequency breakdown, it is more customary to employ the power iteration method for the
quasi-harmonic part of the spectrum as well.
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Fig. 6.2.: Cube: number of iterations for a CGS solver with precision 1 ⋅ 10−6 and ACA
accuracy 1 ⋅ 10−7.

Albeit (6.11) is a signiicant improvement compared with (6.10), further en-
hancements are possible. If a hierarhical basis is used, where it is advisable to
use the diagonal preconditioner to obtain D , then numerical results show that
it suices to compute D �Λ and D �Σ as the diagonal preconditioners of �ΛTT near �Λ
and �ΣTT near �Σ , whereT near is the near-interaction part of the system matrix as
deined in the ACA sheme. his matrix is sparse and hence the products can
be formed explicitly. As D = �D �Λ D �Σ�, D �Λ and D �Σ can be obtained without
modiication of an existing hierarhical basis preconditioner code.

d) Numerical Results
To prove the general efectiveness of (6.11), we tested it with both kinds of hier-
arhical bases: a hierarhical basis for unstructured meshes (HB-U) [And12b]
(whih in this case preconditions only the scalar potential operator) and a hier-
arhical basis for structured meshes (HB-S) [ATV10] (whih preconditions in this
case the vector and the scalar potential operator).
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Section 6.d Numerical Results

In the irst test, we veriied the applicability of the new formulation with a
simply connected geometry. A plane wave with frequency 1MHz impinges on
a cube with side length �/300. In order to use the HB-S, we used a dyadic mesh
reinement. To accelerate the computation, we compressed the system matrix,
compression precision 1 ⋅ 10−7, with the adaptive cross approximation (ACA),
whih reduces the cost of a single matrix-vector product to O(� log� ) [ZVL05].
We compared the new formulation from (6.11) with the loop-tree preconditioner
and with the standard formulation of eah hierarhical basis preconditioner as
it is denoted in (6.3). From Figure 6.2, we can see that the proposed formulation
has a comparable eicacy as the standard formulation of (6.3) in terms of number
of iterations. In fact, for some cases the let preconditioning formulation out-
performs the standard split preconditioning formulation in terms of number of
iterations. he beter performance of the HB-S compared with the HB-U stems
from the fact that the used HB-U only preconditions the scalar potential operator.
As a second example, we veriied the low-frequency stability. We used the

multiply connected cube with six holes (see Figure 6.1). For the generation
of the results we used the HB-U. We compared the proposed method with the
case where � = 1 independent from the frequency. One can see in Figure 6.3
that the condition number remains constant, while when � = 1 the condition
number hanges with the frequency. Figure 6.4 shows the spectrum for the case
when � = 1 kHz. One can see that the part of the spectrum associated with
the global loops is well-contained in the rest of the spectrum, while for � = 1

the singular values associated with the global loops are separated from the rest
of the spectrum. In comparison with Figure 6.4, we can see the integrity of the
preconditioner: the singular values associated with the global loops are clustered.
As a third example, we tested the HB-U on a plate with an increasing amount

of holes (as an example, a plate with 64 holes is shown in Figure 6.6). A plane
wave with frequency 1MHz impinges on the plate. We compared the HB-U in the
new formulation with a classical loop-tree preconditioner that does not take into
account the global loops. Figure 6.5 shows the relative error. he CGS precision
was 1 ⋅ 10−6. he large and with the number of holes growing error shows the
importance of including the global loops—explicitly or implicitly.
Lastly, wewere interested in the performancewhenwe deal withmore complex

structures. To evaluate the performance, we used the model of a MiG-15 as
shown in Figure 6.7. his model is an open geometry with one hole. We tested
the proposed preconditioner with the HB-U. he precision of the iterative solver
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Fig. 6.3.: Cube with six holes: the condition number as a function of the frequency.

is 1 ⋅ 10−6 and the precision of the ACA is 1 ⋅ 10−7. Figure 6.9 shows the number
of iterations. We observe that the number of iterations needed by the new
formulation is in the same order as the number of iterations needed by the
standard formulation of hierarhical basis preconditioners. his demonstrates
that the optimality efect of the hierarhical basis—that the number of iterations
grows at most logarithmically—is maintained.

e) Conclusion
We presented a formulation that allows to apply hierarhical bases for precondi-
tioning the EFIE on multiply connected geometries without searhing for global
loops—a searh whih has, in general, a quadratic cost. Instead, the quasi-harmo-
nic subspace is preserved by implicitly recovering the global loops using a let
preconditioning formulation instead of the standard split preconditioning formu-
lation of the hierarhical bases preconditioner. hereby, the leading complexity
O(� log� ) set by the fast multiplication method is maintained regardless of the
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(formulation of (6.5) with X �Λ = Γ

T and X �Σ = Θ
T) and preconditioned loop/star

functions (formulation of (6.8)), and the singular value spectrum of the proposed
method (formulation of (6.11) with � hosen as in (6.25) and with � = 1). he
frequency is 1 kHz. he plot of the square root formulation is hidden behind the
plot of “his work”.
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Fig. 6.5.: Plates: relative error of the iteratively obtained solutions compared with the
solution obtained by a direct inversion of the matrix.

Fig. 6.6.: Plate: model with 64 holes. he surface current density excited by a plane wave
with frequency 1MHz is shown. © IEEE 2014.
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Fig. 6.7.: MiG-15: open surface with one hole.

Fig. 6.8.: MiG-15: current density for a plane wave impinging when the frequency is
1MHz. © IEEE 2014.
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number of global loops. he proposed formulation was evaluated with diferent
hierarhical bases and for all bases the results demonstrate a performance com-
parable with the results obtained by the standard formulation of the hierarhical
bases preconditioners, where a loop-inding algorithm had been employed to
construct the quasi-harmonic subspace explicitly.
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Chapter 7

On the Hierarhical Preconditioning of
the CFIE

his chapter analyzes how hierarchical bases preconditioners constructed for the
EFIE can be efectively applied to the CFIE. In addition, a new scheme is proposed:
the CFIE is implicitly preconditioned on the solenoidal Helmholz subspace by us-
ing a Helmholz projector, while a hierarchical non-solenoidal basis is used for the
non-solenoidal Helmholz subspace. Numerical results corroborate the efectiveness
of the new formulation. his chapter is based on [AAE16b].

At resonance freqencies, the EFIE and the MFIE are not uniquely solv-
able (see the discussion in Section 4.c), an issue that has been overcome by
solving the CFIE [MH78]. Since, however, the CFIE is a combination of

the EFIE and of the MFIE, it is not free from the low-frequency and the dense-dis-
cretization breakdown. For this reason, eforts have been made to extend the
hierarhical basis preconditioners to the CFIE [Fra+14].
he conference contribution [Fra+14] reported on the fact that the application

of a hierarhical loop/hierarhical non-solenoidal basis preconditioner to the
CFIE resulted in a well-conditioned equation. Given that the hierarhical loop
preconditioner is not capable of preconditioning the EFIE [ATV10; LO98], we
found the result surprising and decided to perform a theoretical investigation of
the problem.
his leads to this hapter whose novelty content is twofold: (i) we show on a

theoretically sound basis that a direct application of the hierarhical basis pre-
conditioner to the CFIE is possible when the hierarhical loop [VPV05] or the
three-point hierarhical loop functions [ATV10] are used as solenoidal basis.
Beyond the discussion in [AAE16b], we discuss the applicability of the new dual
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Haar basis developed in Chapter 5. (ii) We propose a new hierarhical let pre-
conditioning sheme that diferent from any other hierarhical approah for the
preconditioning of the CFIE (including those communicated in [Fra+14] and de-
tailed in [Rig+16]) can provide optimal (up to a logarithmic term) preconditioning
both on structured and unstructured meshes. Numerical results will show the
efectiveness of the new sheme for canonical and realistic examples.

a) Spectral Analysis of the EFIE
We assume in this analysis that � is simply connected. he operators W and
V are known to sufer from the dense-discretization breakdown [ATV10]. If we
precondition these operators successfully, we can precondition the EFIE (see also
Chapter 5). Diferent hierarhical bases have been introduced in the past. For
preconditioning TΦ, the bases developed are all equivalent, and we hoose as a
representative the basis from [AVV08].
For TA, two hierarhical bases have been commonly used until the publication

of [AAE17]: the hierarhical loops ��H� [VPV05] (the subscript “H” denotes that
we deal with hierarhical loops. It has nothing to do with global loops, whih are
denoted as�� in this thesis) and the three-point hierarhical loops ��T� [ATV10].33
Only the later can cure, however, the dense-discretization breakdown of the EFIE
[ATV10]. Both ��H� and ��T� require a structured mesh: a mesh that is obtained by
iteratively reining, for example dyadically, � times a coarse mesh. Accordingly,��H� and ��T� are deined on � hierarhical levels (for details, see [ATV10]). hese
functions are related to scalar functions by��H� = ∇ × �̂ ��H� (7.1)

and ��T� = ∇ × �̂ ��T� , (7.2)
where ��H� are the hierarhical nodal functions presented by Yserentant [Yse86]
and ��T� are the three-point hierarhical nodal functions by Stevenson [Ste98]. As

33 Due to the relationship of loop functions with the piecewise linear functions, as will be outlined
in this section, it should be possible to generate further hierarhical solenoidal bases by using, for
example, a basis as presented in [DS99]. his would, however, not impact the discussion in this
hapter since ��H� are � �-stable, 0 ≤ � ≤ 1, that is, they are optimal for preconditioning in the relevant
range of � (and for any other hierarhical basis the analysis could be adapted).
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we did for the loop basis, we can deine transformation matrices �ΛH and �ΛT for
the hierarhical loop and three-point hierarhical loop functions, respectively. In
this hapter we assume, following the discussion in Section 4.d.� , that the bases
are all linearly independent, that is, a loop function has been eliminated so that
Λ, �ΛH, �ΛT ∈ ��×�Λ .
In addition, we consider the new solenoidal hierarhical basis introduced in

Chapter 5, where we denote the transformation matrix as �Λ. For notational
convenience, we assume that these functions have been rescaled as explained
in Chapter 5 suh that cond(�ΛTTA �Λ) ≲ log2�1/ℎ2�, thus there is no need for an
additional diagonal preconditioner matrix in order to precondition the EFIE.
he operatorW maps from the Sobolev space � 1/2(� ) to �−1/2(� ) and induces

an inner product on� 1/2/R [Néd01]. he three-point hierarhical nodal functions�T� are � 1/2-stable, that is, when rescaled appropriately, the three-point hier-
arhical loop functions can precondition the vector potential operator [ATV10]
resulting in

cond�D1Λ �ΛT
TTA

�ΛTD
1Λ� ≲ 1 , (7.3)

with �D �Λ��� = 2(1−�)�Λ(�) , (7.4)
where �Λ(�), � ∈ {1, … ,�Λ}, is the number of the level of the �th three-point
hierarhical loop function. We note that D1Λ makes the three-point hierarhical
nodal functions � 1/2-stable, while D0Λ results in �2-stable and D2Λ in � 1-stable
three-point hierarhical nodal functions.34 he hierarhical nodal functions, on
the other hand, are not � 1/2-stable [LO98], and thus, the hierarhical loop func-
tions fail to precondition TA. Likewise, the nodal functions are not � 1/2-stable
resulting in [ATV10]35

cond�ΛT
TAΛ� ≲ 1/ℎ . (7.5)

We note that an application of a Jacobi preconditioner can improve the behavior
quantitatively but not qualitatively (see Fig. 7.1a).

34 his means that for D1Λ the three-point hierarhical loop functions are � (div� 0, � )-stable and for
D2Λ they are �2(� )-stable, where � (div� 0, � ) = �� ∈ � (div� , � ) ∶ div� � = 0

�
. he deinition of DΛ

always depends on the deinition of the hierarhical basis. Naturally, one could have tailored the
hierarhical basis suh that it is �2-stable without the application of a diagonal preconditioner.

35 Due to the elimination of a loop function, the conditioning is actually worse: there is an isolated
singular value going astray [And12a]. In order not to complicate the situation, we ignore this efect.
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Let ��� be the hierarhical non-solenoidal functions for whih we deine the
transformation matrix �Σ . Since V is inducing an �−1/2 inner product, we need a
rescaling deined by �DΣ��� = 2+�Σ(�)/2 to make div ��� stable in �−1/2, where �Σ(�),� ∈ {1 … ,�Σ}, is the number of the level of the �th hierarhical non-solenoidal
function. hen it can be proved that (see [ATV10] and references therein)

cond�DΣ �ΣT
TΦ �ΣDΣ� ≲ log2�1/ℎ2� . (7.6)

We deine the overall transformation matrix

Q
�
X /�,�Σ� ∶= �XD �Λ/√� �ΣDΣ√�� , (7.7)

where X can be Λ, �ΛH, or �ΛT. Summarizing, we ind for the preconditioned EFIE
that the loop/hierarhical non-solenoidal basis yields

cond��Q0
Λ/�,�Σ��TTQ

0
Λ/�,�Σ�� ≲ 1/ℎ (7.8)

and that the three-point hierarhical loops/hierarhical non-solenoidal basis yields

cond��Q1�ΛT/�,�Σ��TTQ
1�ΛT/�,�Σ�� ≲ log2�1/ℎ2� . (7.9)

b) Spectral Analysis and Preconditioning of the CFIE
Following these considerations, we study the CFIE. For the sake of brevity, the
analysis is carried out only for the conformingly discretized CFIE. he indings
are, however, the same as for the standard CFIE. Because of the identity operator
of the MFIE, the conditioning of the CFIE is beter than that of the EFIE with

cond� �C� ≲ 1/ℎ . (7.10)

While the largest singular value of TΦ still grows to ininity, the singular values
of TA are shited from 0 to 1/2 by I/2. Next, we have to study a Helmholz-
decomposed CFIE. Following the argumentation in [And12a], the compact oper-
ator K (i.e., K is compact on smooth surfaces; the numerical results imply that
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the spectral properties hold for non-smooth surfaces as well) can be neglected
and it suices to analyze how G�� hanges the EFIE behavior.
We notice that when I is discretized with loop, hierarhical loop, and thr-

ee-point hierarhical loop functions, the resulting matrix is equivalent to the
discretization of the Laplace operator in its weak formulation with nodal, hier-
arhical nodal, and three-point hierarhical nodal functions since [And12a]�∇ × �̂�� ,∇ × �̂����2 = �∇�� ,∇����2 . (7.11)

he Laplace operator induces an inner product on � 1/R, and hence, we need� 1-stable basis functions.
It is well-known that the nodal functions are not � 1-stable [LO98]; the con-

dition number grows with �(1/ℎ2), and given that the Laplace operator Δ� is a
pseudo-diferential operator of order +2 andW is a pseudo-diferential operator
of order +1, the total order ofW + Δ� is +2, and hence, we have

cond�ΛT �CΛ� ≲ 1/ℎ2 . (7.12)

In other words, loop functions applied to the CFIE result in a conditioning worse
than when they are applied to the EFIE.
Similar to [And12a], we ignoreK for the condition number analysis since its

eigenvalues cluster around zero. Hence, we only consider I and T . We note that
on multiply connected geometries, we cannot neglect K [Bog+11].
he hierarhical nodal functions are not � 1-stable. Yet, for � 1 and when

rescaled appropriately, they result in a condition number that grows with [Yse86]

O�log2�1/ℎ2�� , (7.13)

and thus, we have
cond��ΛT

H
�C �ΛH� ≲ 1/ℎ2 . (7.14)

he three-point hierarhical nodal functions are � 1-stable [Ste98], and thus, we
have

cond�D2Λ �ΛT
T
�C �ΛTD

2Λ� ≍ 1 . (7.15)
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Notice that the matrix D2Λ �ΛT
TT
�ΛTD

2Λ is ill-conditioned; since we use � 1-stable
functions, the singular values are now accumulating at zero. his does not destroy
the well-conditioning as D2Λ �ΛT

TG�� �ΛTD
2Λ is spectrally equivalent to I , that is,

x
T
D
2Λ �ΛT

TG�� �ΛTD
2Λx ≍ x

T
x , ∀x ∈ R

�Λ , (7.16)

and thus the spectrum is bounded from below. Since TΦ is a derivate operator, the
Gram matrix DΣ �ΣTG�� �ΣDΣ of the rescaled ��� must have integrative strength to
precondition TΦ. As it is true for integrative operators, the singular values of this
Gram matrix cluster around zero, and since DΣ �ΣTT �ΣDΣ is spectrally equivalent
(up to a logarithmic term) to I , we can conclude that

cond�DΣ �ΣT �C �ΣDΣ� ≲ log2�1/ℎ2� . (7.17)

Summarizing, we have for the loop/hierarhical non-solenoidal basis precon-
ditioner

cond��Q0
Λ,�Σ��T �CQ

0
Λ,�Σ�� ≲ 1/ℎ2 , (7.18)

for the hierarhical loop/hierarhical non-solenoidal basis preconditioner

cond��Q2�ΛH,�Σ��T �CQ
2�ΛH,�Σ�� ≲ log2�1/ℎ2� , (7.19)

and for the three-point hierarhical loop/hierarhical non-solenoidal basis pre-
conditioner

cond��Q2�ΛT,�Σ��T �CQ
2�ΛT,�Σ�� ≲ log2�1/ℎ2� . (7.20)

Equivalently said, the combination loop/hierarhical non-solenoidal functions
does not precondition the CFIE, while both combinations hierarhical loop/hier-
arhical non-solenoidal and three-point hierarhical loop/hierarhical non-solen-
oidal basis are a valid preconditioner for the CFIE.
Both the hierarhical loops and the three-point hierarhical loops only operate

on structured meshes. he hierarhical solenoidal basis �Λ presented in Chapter 5
might be an interesting alternative since it can be deined on unstructured meshes
as well. It is based on an explicit inversion of the dual Haar basis transformation
matrix and stability results for the � 1/2-space were obtained by using Oswald’s
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result that the (dual) Haar basis is �−1/2-stable [Osw98] and by leveraging a
discrete Calderón identity.
When it comes to the Laplace operator it is not immediately clear whether or

not the dual Haar basis is applicable since there is no formal proof available that
the Haar basis is �−1-stable. By anticipating a result from the next hapter, we
assume that we have

x
T
�x ≍ x

T
WG

−1��Wx ≍ x
T
WWx /ℎ2 , ∀x ∈ R

� . (7.21)

As shown in Chapter 5, the matrix

D
−1Λ H

‡ΛG−1��̃WG
−T��̃�H‡Λ�TD−1Λ (7.22)

is well-conditioned up to the log2(1/ℎ) perturbation and we note that the let
preconditioned version

WG
−T��̃�H‡Λ�TD−2Λ H

‡ΛG−1��̃ (7.23)

has the same eigenvalue spectrum due to the matrix similarity. hen clearly, we
have

cond�G−T��̃�H‡Λ�TD−2Λ H
‡ΛG−1��̃WWG

−T��̃�H‡Λ�TD−2Λ H
‡ΛG−1��̃� ≲ log4(1/ℎ) (7.24)

and by using (7.21), we ind

cond�G−T��̃�H‡Λ�TD−2Λ H
‡ΛG−1��̃�G−T��̃�H‡Λ�TD−2Λ H

‡ΛG−1��̃� ≲ log4(1/ℎ) (7.25)

Consequently, we can use

G
−T��̃�H‡Λ�TD−2Λ H

‡ΛG−1��̃ (7.26)

as split preconditioner for � resulting in a condition number that grows with
log4(1/ℎ). he message from this consideration is that it might be possible to
modify �Λ suh that it becomes applicable to the CFIE, but at the price that the
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upper bound of O(log2(1/ℎ)) on the condition number set by the Haar basis
preconditioner forTΦ is deteriorated. Since we are interested in maintaining this
bound, we do not further consider this basis.
In practical scenarios, the mesh is typically unstructured and thus hierarhical

loop and three-point hierarhical loop functions are not available; yet, from the
presented theory it is clear that the use of loop functions is not efective and a
diferent strategy is necessary. To this end, we deine the transformation matrix√

Λ ∶= Λ�ΛT
Λ�−1/2 . (7.27)

he Gram matrix of these new loop functions is well-conditioned since

x
T
√
Λ
T
G��√Λx ≍ x

T�ΛT
Λ�−1/2ΛT

Λ�ΛT
Λ�−1/2x = x

T
x , ∀x ∈ R

�Λ . (7.28)

Using these orthogonalized loop functions, we obtain as hierarhically precondi-
tioned system

�Q0√
Λ,�Σ��T �CQ

0√
Λ,�Σ� j = �Q0√

Λ,�Σ��T�−�Ce + (1 − �C)G��G−1�̂×�̃ ,� h̃� , (7.29)

with
cond��Q0√

Λ,�Σ��T �CQ
0√
Λ,�Σ�� ≲ log2�1/ℎ2� . (7.30)

While this approah is theoretically sound, it laks practical applicability due to
the presence of square rootmatrices. Following the strategy outlined in Chapter 6,
we modify the approah by considering a let instead of the split preconditioner
in (7.29). hereby, we obtain

Q
0√
Λ,�Σ��Q0√

Λ,�Σ��T = Λ�ΛT
Λ�−1ΛT + �ΣD2Σ �ΣT . (7.31)

As discussed in Section 4.d.� , the matrix Λ(ΛT
Λ)−1ΛT ≡ PΛ is a projector to the

solenoidal Helmholz subspace [And+13] and compared with (ΛT
Λ)1/2x = b , the

system (ΛT
Λ)x = b can be solved more rapidly [HHT08]. he let preconditioner

is motivated by the same argument as in Chapter 6: the let preconditioned system
matrix is similar to the split precondition system matrix, so that they have the
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same eigenvalue spectrum and the preconditioned conjugate gradient method
would show the same iterative behavior if it were applicable. he conjugate
gradient method is not applicable since �C is not HPD. But as in Chapter 6, we still
expect a reasonable behavior of the iterative method given that the eigenvalue
spectrum is the same. Albeit there is not strict proof for the well-conditioning,
the numerical results corroborate our expectations.
Usually, best results are obtained when the (hierarhical) functions are rescaled

by leveraging on a Jacobi preconditioner, that is, we use

�DΣ��� = 1/

���ΣT �C �Σ��� . (7.32)

For a fair comparison of the diferent bases discussed, solenoidal and non-solen-
oidal alike, eah basis is rescaled by using suh a Jacobi preconditioner.
When the conforming CFIE is used, the Gram matrices prohibit to obtain

the Jacobi preconditioner eiciently in a direct manner. For the preconditioner
presented in this work, this problem can be avoided by using

�DΣ��� = 1/

���ΣTT �Σ��� (7.33)

that is, the same procedure as for the EFIE can be used. If the basis from Chapter 5
is used, then (5.59) can be employed. his hoice cures the low-frequency break-
down (i.e., the condition is independent of the frequency); however, a further
alignment of the singular value branhes associated with the solenoidal and the
non-solenoidal Helmholz subspace improves the condition number. To this end,
by selecting � =

���PΛ �C���2 and � =
��� �ΣD2Σ �ΣT �C���2, we can deine�P ∶= PΛ/� + �ΣD2Σ �ΣT/� (7.34)

resulting in the system�P �Cj = �P�−�Ce + (1 − �C)G��G−1�̂×�̃ ,� h̃� . (7.35)

he norms can be estimated rapidly by using a power iteration method.
While the CFIE is typically not used for extremely low frequencies, for suh a

scenario it would be necessary to apply the new preconditioner to the frequency
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preconditioned PT �CP , where P was deined in (4.85), in order to avoid numerical
cancellation in the current and in the right-hand side. he reader should note,
however, two obstacles: suh a low-frequency sheme is only applicable when the
MFIE is conformingly and carefully discretized. he reason is that for a standard
MFIE the loop-loop part of the system matrix is not scaling in frequency. It does
so for a conformingly discretized MFIE, but it requires a meticulous discretization
[Bog+11].

c) Numerical Results
In the following, we compare our new formulation (7.35) with the unprecondi-
tioned CFIE and when standard hierarhical basis preconditioners are applied.
he standard hierarhical preconditioners we use always consist of the same
hierarhical non-solenoidal basis complemented by loop, hierarhical loop, or
three-point hierarhical loop functions, respectively. We do this for the conform-
ingly discretized CFIE operator �C , and the standard CFIE C (denoted as S-CFIE).
Furthermore, we used �C = 0.9 for the CFIE parameter. By this hoice we proit
from the fact that the EFIE usually yields a higher accuracy compared with the
MFIE [OCE15].
First, we analyzed the dense-discretization stability by using a cube with side

length 1m. We used a plane wave excitation and ixed the frequency at � = 1MHz

with � = ��/(2π), where � is the speed of light. We varied the average edge lengthℎ from 1.13m to 0.07m, and the number of iterations is displayed as a function
of the spectral index 1/ℎ in Fig. 7.1a. he results conirm the presented theory:
in particular, we can conclude from the igure that loop functions should not
be used with the CFIE, and that hierarhical loops can safely be used with the
CFIE but not with the EFIE. he new formulation (7.35) performs well both when
applied to a conformingly discretized CFIE as well as a standard CFIE.
Next, we veriied the frequency stability. Figure 7.1b displays the condition

number as a function of the frequency � . We see that all preconditioned formu-
lations are free from the low-frequency breakdown. Figure 7.1c shows that all
preconditioned CFIEs are resonance-free. We also see that in terms of the condi-
tion number, the unpreconditioned CFIE works beter than the preconditioned
counterparts. his is not unexpected since hierarhical basis preconditioners
need to be adapted to high-frequency problems.
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Fig. 7.1.: Cube: spectral analysis.

Fig. 7.2.: Space Shutle. © IEEE 2016.
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Formulation Iterations Formulation Iterations

CFIE 436 S-CFIE 417
CFIE: loops 199 S-CFIE: loops 198
his work: CFIE 39 his work: S-CFIE 37

Tab. 7.1.: Space Shutle: the number of iterations for the diferent formulations with solver
tolerance 1 ⋅ 10−6.

To apply our new method to a more realistic structure, we employed the model
of a Space Shutle shown in Fig. 7.2. he electric size of the Space Shutle is 1/2�,
where � is the wavelength. Table 7.1 summarizes our results, where the solver
tolerance was 1 ⋅ 10−6.

d) Conclusion
First, we can conclude that the hierarhical loop functions, whih fail to precon-
dition the vector potential operator TA of the EFIE, can be successfully applied
to the CFIE (though the results obtained by using three-point hierarhical loop
functions are usually beter, and they work for the EFIE as well). he best re-
sults were obtained with our new formulation in (7.35), whih diferent from all
other hierarhical preconditioners, works on both structured and unstructured
meshes. It is part of ongoing researh to obtain a hierarhical preconditioner
whih remains eicient for electrically large problems.
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Chapter 8

On a Reinement-Free Calderón
Multiplicative Preconditioner for the

EFIE
his chapter presents a Calderón preconditioner for the EFIE, which does not require
a barycentric reinement of the mesh, where the condition number can be bounded
independently from the frequency and average edge length of the mesh, and which
yields an Hermitian, positive deinite (HPD) system matrix allowing for the us-
age of the CG solver. Diferent from existing Calderón preconditioners, no second
discretization of the EFIE operator with BC functions is necessary. We obtain this
preconditioner by leveraging spectral equivalences between (scalar) integral opera-
tors, namely the single layer and hypersingular operator, and the Laplace-Beltrami
operator. Since our approach incorporates Helmholz projectors, there is no search
for global loops necessary and our method remains stable on multiply connected
geometries. he numerical results demonstrate the efectiveness of our approach for
both canonical and realistic (multi-scale) problems. Preliminary results have been
presented at conferences [AAE14a; AAE15].

Calderón identity based preconditioners, unlike the hierarhical ba-
sis preconditioners, allow to obtain an EFIE, where the condition number
has an upper bound independent from ℎ [CN02; BC07; And+08; Con+02;

Ada04]. In the static limit, however, the Calderón strategies stop working due
to numerical cancellation in both the right-hand side excitation vector and the
unknown current since solenoidal and non-solenoidal components scale dif-
ferently in � [Zha+03]. Explicit quasi-Helmholz decompositions do not sufer
from this cancellation since the solenoidal and non-solenoidal components are
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stored separately. To make Calderón preconditioners stable in the static limit,
one could combine the Calderón multiplicative preconditioner (CMP) with an
explicit quasi-Helmholz decomposition.
hese approahes sufer, however, from the same defect that explicit quasi-He-

lmholz decompositions share: if the geometry is multiply connected, then the
quasi-harmonic global loop functions have to be added to the basis of the de-
composition [Vec99]. Diferent from loop, star, or tree functions, (or any of the
hierarhical bases mentioned in this thesis) the construction of the global loops is,
in general, a costly operation making the overall problem O(� 2 log(� )), where� is the number of unknowns [AAE14b] (see also Chapter 6).
In order to avoid the construction of the global loops, a modiied CMP has

been presented whih leverages an implicit quasi-Helmholz decomposition based
on projectors [And12a; And+13]. hese projectors require the application of the
inverse primal (i.e., cell-based) and the inverse dual (i.e., vertex-based) graph
Laplacian, a task for whih blakbox-like preconditioners suh as algebraic multi-
grid methods can be used for obtaining the inverse rapidly. We note that a
sheme based on an explicit loop-star quasi-Helmholz decomposition does not
ofer an alternative since the inverse Gram matrices appearing therein are all
spectrally equivalent to discretized Laplace-Beltrami operators, however, with
the additional hallenge that the Gram matrices are not symmetric since the
loop-star basis is applied to a mixed Gram matrix, that is, BC functions are used
as expansion and rotated RWG functions are used as testing functions [And12a;
And+13].
he work in [And+08; And+13] demonstrated a Calderón sheme that can be

integrated relatively easily in existing codes. Instead of discretizing the operator
on the standard mesh with RWG and BC functions, only a single discretization
with RWG functions on the barycentrically reined mesh is necessary. Yet, there
are caveats: (i) the memory consumption as well as the costs for a single-matrix
vector product are increased by a factor of six and (ii) for open structures the
codes must be modiied suh that half-RWG functions on the boundary edges are
included for the discretization of the EFIE.
In this work, we propose a reinement-free Calderón multiplicative precondi-

tioner (RF-CMP) for the EFIE. Diferent from existing Calderón preconditioners,
no BC functions are employed, so that a standard discretization of the EFIE with
RWG functions can be used. No modiications for open structures are neces-
sary, though similar to the CMP, we do not have a constant upper bound of the

128



Section 8.a Bakground

condition number. What is more, we get a system matrix, whih is HPD. We
obtain this result by leveraging spectral equivalences between the single layer
and hypersingular operator known from electrostatics and the Laplace-Beltrami
operator. Similar to [And+13], graph Laplacians need to be inverted. Since the
new system matrix is HPD, we are allowed to employ the CG solver. In contrast
to other Krylov subspace methods, it guarantees convergence and has the least
computational overhead. he numerical results corroborate the new formulation.
he hapter is structured as follows. Section 8.a discusses the bakground; Sec-

tion 8.b introduces the new formulation and provides implementational details,
while Section 8.c provides the theoretical apparatus behind the new formula-
tion. For the implementation of the new preconditioner, it is not necessary to
study Section 8.c. Numerical results demonstrating the efectiveness of the new
approah are shown in Section 8.d.

a) Bakground
hematrixT is ill-conditioned both in � and ℎ [CN02]. An optimal preconditioner
is given by T itself: the Calderón identity

T
2 = −I/4 +K

2 , (8.1)

where K is a compact operator, dictates that its discretization

G
−T�̂×� ,�̃ �TG

−1�̂×� ,�̃T (8.2)

is well-conditioned with ��T ��� = (�̂ × �̃� ,T �̃�)�2 , where �̃ ∈ ��̃ are functions
dual to � suh as the BC functions [BC07].
he matrix in (8.2) is, however, not numerically stable down to the static limit

due to numerical cancellation in the excitation e and the unknown current vector
j , and on multiply connected geometries it comprises a null space associated
with the harmonic Helmholz subspace [Coo+09]. A irst approah to overcome
the numerical cancellation could be to use an explicit quasi-Helmholz decom-
position. While this could succeed in preventing the numerical cancellation and
in preserving the quasi-harmonic Helmholz subspace, it also comes with several
drawbaks as will be discussed in the following.
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In more detail, let Q = �Λ/√i� H /
√
i� Σ

√
i�� (as deined in Section 4.d.�).

If we were to eliminate loop and star functions so that Q ∈ C
�×� has full rank

(i.e., this follows the classical loop-star preconditioner approah), then QTTQ is
well-conditioned in frequency and hence

�QT
G�̂×� ,�̃Q�−TQT�TQ�QT

G�̂×� ,�̃Q�−1QT
TQ (8.3)

is stable in frequency down to the static limit.
here are two drawbaks: First, the global loops �� have to be constructed,

where currently available algorithms have, in general, a complexity of O(� 2) for� ≍ �, where � is the genus of geometry, and H is dense (a sparse matrix H can
be obtained, but then the costs for inding the global loop isO(� 3), see Chapter 6
and references therein). Second, the Gram matrix QTG�̂×� ,�̃Q is ill-conditioned
with a condition number that grows as O(1/ℎ2). he reason for this is that loop
and star functions are not �2-stable, their Grammatrices are spectrally equivalent
to discretized Laplace-Beltrami operators, for whih the condition number grows
with 1/ℎ2, that is, we have for the Gram matrices [And12a]

Λ
T
G��Λ = � (8.4)

and
Σ
T
G �̃ �̃Σ = �� , (8.5)

where ����� = (∇��� ,∇���)�2 (8.6)

is the Laplace-Beltrami operator discretized with piecewise linear nodal functions

��(�) = ⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 for � ∈ �� ,
0 for � ∈ �� ≠ �� ,
linear elsewhere,

(8.7)

where �� ∈ � is the �th vertex of mesh, and� ����� = �∇� �̃� ,∇� �̃���2 (8.8)
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is the Laplace-Beltrami operator discretized with dual piecewise linear nodal
functions as deined in [BC07]. he matrix QTG�̂×� ,�̃Q is even more diicult to
invert since unlike � it is not a symmetric matrix anymore due to G�̂×� ,�̃ .
Recently, a sheme has been presented that leverages the quasi-Helmholz

projectors [And+13], whih we have discussed in Section 4.d.� . In addition to the
projectors that were deined therein, we also need PΣH ∶= I − PΛ. his allows
to deine the primal P ∶= PΛH/√� + iPΣ√� and the dual decomposition operator�P ∶= PΣH/√� + iPΛ√�. hen the matrix

G
−T�̂×� ,�̃ ��P �T �P�G−1�̂×� ,�̃ (PTP ) (8.9)

is well-conditioned [And+13]. Diferent from (8.3), the costly global loop inding
and construction of the (dense) matrix H is avoided. Instead of dealing with the
non-symmetric matrix QTG�̂×� ,�̃Q , in (8.9) only symmetric, positive semi-deini-
te graph Laplacians ΛT

Λ (vertex-based) and ΣT
Σ (cell-based) appear. As pointed

out in [And+13], a plethora of (blak box) algorithms exists for inverting these
matrices eiciently.

b) New Formulation

his section introduces and motivates the new formulation and provides the
implementational details. For the interested reader, a theoretical derivation of
this formulation is provided in the next section.
Similar to the formulation in (8.9), the new formulation uses quasi-Helmholz

projectors. Diferent from (8.9), no second discretization of T with dual functions�̃� is required and thus no (barycentric) reinement of the mesh. Instead, we
exploit the fact that Λ and Σ are ill-conditioned and use them to preconditionT .
We propose the new formulation

P
†
oT

†
PmTPoi = −P†

oT
†
Pme , (8.10)

131



On a Reinement-Free Calderón Multiplicative Preconditioner for the EFIE Chapter 8

where

Po = PΛH/� + iPΣ/� , (8.11)
Pm = PmΛ + PmΣ , (8.12)

PmΛ = ΛG
−1��ΛT/�2 + PΛH/� , (8.13)

PmΣ = Σ�ΣT
Σ�+G‡���ΣT

Σ�+ΣT/�2 , (8.14)

G
‡�� = G

−1�� −G−1��1Σ1TΣG−1��/�1TΣG−1��1Σ� (8.15)

with j = Poi , and the coeicients

� = 4

����PΛHT †
AΛG

−1��ΛTTAPΛH���2 , (8.16)

� = 4

����PΣT †Φ PmΣTΦPΣ���2 , (8.17)� =
���(PΛH/�)T †

APΛHTA(PΛH/�)���2 . (8.18)

hese coeicients are necessary to cure the low-frequency breakdown. A power
iteration method can be used to compute the norms. he coeicients could be
replaced by functions of � as shown in Section 8.c, that is, we could have used� =

√� , (8.19)� = 1/
√� , (8.20)� = � , (8.21)

but typically the condition number obtained by using norms is lower; thereby,
the number of iterations used by a Krylov subspace method is reduced (and this
saving usually outweighs the costs for estimating the norms).
he use of the imaginary unit +i in the deinition Po is motivated for the same

reason as it was for P : to prevent the numerical cancellation due to diferent
scaling of the solenoidal and non-solenoidal components in e and j (for a detailed
analysis, see [And+13]).
In Section 8.c, we derive the new formulation in a rigorous way. Given that

this section is rather tehnical, we shall provide some intuitive ideas about the
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approah. In a irst step, we decompose the EFIE into two scalar operators as
shown in Chapter 4.
Equation (8.1) is not the only Calderòn identity that exists. For the single layer

operator V and the hypersingular operatorW , we have the identities [SS11] (see
also Section 3.c)

W◦V = −I/4 + K1 , (8.22)
V◦W = −I/4 + K2 . (8.23)

Here, and in the following, K� , � ∈ N, denotes operators, whih are compact on
a smooth geometry. hese two equations imply that the hypersingular operator
can be used as preconditioner for the single layer potential and vice versa [SW98].
We are, however, not interested in doing this, since we would still need to use
dual basis functions so that there is no real advantage compared with the standard
Calderón tehniques. By combining (8.22) and (8.23), we yield

V◦W◦W◦V = I/16 + K3 , (8.24)
W◦V◦V◦W = I/16 + K4 . (8.25)

hese expressions can be simpliied, if we take into account the identities [Néd01]−W = (−Δ� )1/2 + K5 , (8.26)
V = (−Δ� )−1/2 + K6 , (8.27)

where Δ� is the Laplace-Beltrami operator. Combining (8.24) with (8.26) and
(8.25) with (8.27), we obtain

V◦(−Δ� )◦V = I/16 + K7 , (8.28)
W◦(−Δ� )−1◦W = I/16 + K8 . (8.29)

hen we could consider
G
−1��VG

−1�̃� ��G−1��̃V (8.30)

and
G
−1��W�

+
W (8.31)
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as discretizations of (8.28) and (8.29). For deriving the inal formulation, it is
beter to use symmetric, positive deinite versions of these matrices, that is, we
use

G
−1/2�� VG

−1�̃� ��G−1��̃VG
−1/2�� (8.32)

and
G
−1/2�� W�

+
WG

−1/2�� , (8.33)

whih are well-conditioned as well since they are similar matrices.
he RWG and BC functions are �2-stable so the discretization of the identity

operator is well-conditioned, that is, we have [And12a]

x
T
G�� x ≍ x

T
G �̃ �̃ x ≍ x

T
x , ∀x ∈ R

� , (8.34)

and thus
x
T ��x ≍ x

T
Σ
T
Σx , ∀x ∈ R

�C , (8.35)

and
x
T
�x ≍ x

T
Λ
T
Λx , ∀x ∈ R

�V . (8.36)

While the mixed Gram matrix is necessary to obtain a rigorous proof for the
well-conditioning, numerical evidence suggests that it has no practical impact.
Since its omission allows numerical savings, we leave it out. hen (8.32) simpliies
to

G
−1/2�� VΣ

T
ΣVG

−1/2�� (8.37)

and (8.33) simpliies to

G
−1/2�� W�ΛT

Λ�+WG
−1/2�� . (8.38)

Considering the deinition of PΣ and substituting bak fromV to TΦ, then (8.37)
reads

G
−1/2�� �ΣT

Σ�ΣT
T
0ΦPΣT 0ΦΣ�ΣT

Σ�G−1/2�� . (8.39)

If a matrix ATA is well-conditioned, then so is AAT, whih can be seen by con-
sidering the SVD of A. Hence, the matrix

PΣT 0ΦΣ�ΣT
Σ�G−1���ΣT

Σ�ΣT
T
0ΦPΣ (8.40)
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is well-conditioned on the non-solenoidal Helmholz subspace, where we used
that P 2Σ = PΣ. Likewise, we ind for (8.38)

G
−1/2�� Λ

T
T
0
AΛ�ΛT

Λ�+ΛT
T
0
AΛG

−1/2�� (8.41)

and using the deinition of PΛ, we obtain
G
−1/2�� Λ

T
T
0
APΛT 0

AΛG
−1/2�� . (8.42)

If this matrix is well-conditioned on the solenoidal Helmholz subspace, then so
is

PΛT 0
AΛG

−1��ΛT
T
0
APΛ . (8.43)

On the other hand, for � → 0, (8.10) reduces to

PΛT 0
AΛG

−1��ΛT
T
0
APΛ + P

†ΣT 0ΦΣ�ΣT
Σ�+G‡���ΣT

Σ�+T 0ΦPΣ . (8.44)

he matrix G‡�� is a variant of G−1�� , where we introduced a null space to math
with the null space of ΣT

Σ (this results in a beter conditioning for non-uniform
meshes, whih is motivated in Section 8.c.�). We see that (8.10) is the sum of
(8.42) and (8.41), it is therefore well-conditioned, and it can be interpreted as
discretization of the scalar Calderón identities. he dynamic kernel introduces a
compact perturbation, and so we can conclude that for � ≠ 0 the formulation of
(8.10) is still well-conditioned. In addition, since any matrix of the form A†A is
HPD, then so is (8.10).
his derivation has, however, some caveats and due to these we provide a

diferent derivation in Section 8.c, a derivation whih is alas less intuitive and
more complicated. For example, (8.27) and (8.26) were derived in [Néd01] under
the assumption that the surface � is smooth (this is a considerable limitation, a
simple cube is not a smooth geometry). his means that for the case that � is a
Lipshiz polyhedral domain, we cannot prove that (8.28) and (8.29) hold.
So far, we have only discussed simply connected geometries. For multiply con-

nected ones, we note that HTT 0
AH is well-conditioned since the global loops are

associatedwith the geometry of � and hence�� and subsequently ��� ,T �
A����2

remains the same when ℎ → 0. hus we have

x
T
H
T
T
0
AHx ≍ x

T
H
T
Hx ≍ x

T
x , ∀x ∈ R

�H (8.45)
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and since H = PΛHH , we have
x
T
PΛHT 0

APΛHx ≍ x
T
x , (8.46)

for all x ∈ XH ∶= �x ∈ R
� ∣ ∃y ∈ R

�H ∶ x = Hy

�
, and thus

x
T
PΛHT 0

APΛHT 0
APΛHx ≍ x

T
x , ∀x ∈ XH . (8.47)

c) heoretical Apparatus

he formulation for whih we are going to show the well-conditioning in the
static limit reads

P̆o
†
T
†
P̆mT P̆oĭ = −P̆o†T †

P̆me , (8.48)

where

P̆o = PΛH/√� + iPgΣ√� , (8.49)

PgΣ = Σ�ΣT
Σ�+G−1�̃�ΣT , (8.50)

P̆m = P̆mΛ/� + P̆mΣ� , (8.51)
P̆mΛ = ΛG

−1��ΛT + PΛH , (8.52)

P̆mΣ = Σ�ΣT
Σ�+G−1���ΣT

Σ�+ΣT . (8.53)

Two diferences compared with the formulation in (8.10) are noticable: (i) in-
stead of using the norms, we make the frequency treatment explicit by using
the wavenumber �, (ii) and we use PgΣ and not PΣ. For obtaining a rigorous
statement on the conditioning, we cannot omit the Gram matrix in PgΣ. In terms
of the number of iterations used by a Krylov subspace method, there is only a
minor diference observable between using PgΣ or PΣ. Since the usage of PgΣ
is computationally more expensive, we recommend to use PΣ. If, however, the
implementation of (8.48) is desired, then this can still be trivially ahieved since
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we have the analytic formula

�G �̃���� =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

2

18�9

2
+

3∑�=1 1

NoC(VoC(�, �))� , if � = � ,
2

18�1

2
+

1

NoC(�+) + 1

NoC(�−)� , if cells � and �
share edge �, ,

0 , otherwise,

where the function NoC(�) returns the number of cells atahed to �th vertex of
the mesh, the function VoC(�, �) returns the global index of the �th vertex of the�th cell, and �+ and �− are the indices of the vertices of the �th edge.
In order to show the well-conditioning of (8.48) in the static limit, we need

to establish spectral equivalences betweenW and � as well asV and ��. hese
equivalences will be established by using Rayleigh quotients. What makes it
diicult is that for exampleW possesses a null space and if we need to form
the inverse of a product of matrices where some matrices have a null space and
some matrices have not, then the inverse of suh a product cannot be simpliied
easily. To avoid the null space issue, we follow a standard approah (as we have
done already in Chapter 5) by deining operators that are identical toW and Δ�
for mean-value free functions, but have no null space [Ste10]: we introduce the
operator Ŵ ∶ � 1/2 → �−1/2 deined by the bilinear form

��, Ŵ���2(� ) ∶= (�,W�)�2(� ) + (1,�)�2(� )(1, �)�2(� ) (8.54)

for all � , � ∈ � 1/2(� ). We note that the unique solution � of Ŵ� = � is also
a solution ofW� = � when � satisies the solvability condition �� �d�(�′) = 0.
his can be seen when � = 1 in (8.54), whih reduces to (1,�)�2(� )(1, 1)�2(� ) = 0.
Likewise, let Δ� ∶ � 1/R→ �−1 be the Laplace-Beltrami operator [Néd01]; we
consider the � 1-elliptic modiied Laplace-Beltrami operator Δ̂� deined by the
bilinear form��, Δ̂����2(� ) ∶= (∇�� ,∇��)�2(� ) + (1,�)�2(� )(1, �)�2(� ) . (8.55)

When �� are used for the discretization of Ŵ and Δ̂� , the resulting matrices are
Ŵ =W +G

T��1Λ1TΛG�� (8.56)
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and
�̂ = � +G

T��1Λ1TΛG�� . (8.57)

If �̃� are used for the discretization, the resulting matrices read�̂W = �W +G
T�̃�̃1Σ1TΣG �̃�̃ (8.58)

and �̂� = �� +G
T�̃�̃1Σ1TΣG �̃�̃ . (8.59)

In addition, we deine
W̌ ∶=W + 1Λ1TΛℎ4 (8.60)

and
�̌ ∶= � + 1Λ1TΛℎ4 . (8.61)

In the following, we assume the spectral equivalences

x
T
ŴG

−1��Ŵ x ≍ x
T
�̂x , ∀x ∈ R

�V (8.62)

and
x
T �̂WG

−1�̃�̃ �̂Wx ≍ x
T �̂�x , ∀x ∈ R

�C . (8.63)

As shown in the Appendix for (8.62), suh a spectral equivalence can be estab-
lished when we have a nested sequence of function spaces. Similarly to precon-
ditioning strategies suh as algebraic multigrid, the new formulation remains
efective as can be seen from the numerical results in Section 8.d.

�) Vector Potential Operator
Here, we prove for the case of a simply connected geometry that

PΛ�T �A�†ΛG−1��ΛT
T
�
APΛ (8.64)

is well-conditioned up to its null space. To this end, we irst need to establish
several spectral equivalences.
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Lemma 8.1. We have the spectral equivalences

x
T
�̂x ≍ x

T
�̌x , ∀x ∈ R

�V , (8.65)

and
x
T
Ŵ x ≍ x

T
W̌ x , ∀x ∈ R

�V . (8.66)

Proof. Here we prove (8.65); the proof for (8.66) follows analogously. We note
that the null space of � is spanned by 1Λ. Furthermore, we note

1
TΛGT��1Λ1TΛG��1Λ = �2� ≍ 1 , (8.67)

where �� is the area of � , and‖1Λ‖2 = √�V ≍ 1/ℎ and thus
1
TΛ1Λ1TΛ1Λℎ4 ≍ 1 . (8.68)

First, consider that we have

x
T
1Λ1TΛℎ4x ≲ x

T
xℎ2 , ∀x ∈ R

�V , (8.69)

and
x
T
G
T��1Λ1TΛG��x ≲ x

T
xℎ2 , ∀x ∈ R

�V , (8.70)

where the last inequality follows from the well-known equivalence

x
T
G��x ≍ x

T
xℎ2 , ∀x ∈ R

�V , (8.71)

and the submultiplicativity of the matrix norm, that is,���GT��1Λ1TΛG�����2 ≤���GT�����2���1Λ1TΛ���2��G����2 ≲ ℎ2 . (8.72)

Let x = x∥ + x⟂ be an orthogonal spliting with x∥ ∈ span 1Λ. If x⟂ = 0Λ, then
x
T
�̂x = x

T
G
T��1Λ1TΛG��x ≍ x

T
1Λ1TΛℎ4x = x

T
�̌x (8.73)

due to (8.67), (8.68) (noting that x∥ is a multiple of 1Λ). Since we have [And12a]
x
T
xℎ2 ≲ x

T
�x ≲ x

T
x , ∀x ∈ �span 1Λ�⟂ , (8.74)
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we note that for x⟂ ≠ 0Λ the leading contribution xT�x scales at least O(ℎ2)
and at most O(1). he contribution from xTGT��1Λ1TΛG��x and xT1Λ1TΛx adds
a positive quantity that scales at most O(ℎ2) due to (8.70), (8.71), and the fact
that GT��1Λ1TΛG�� and 1Λ1TΛ are positive semi-deinite rank-1 matrices. Hence
for ℎ → 0, we can conclude that the eigenvalues of �̂ and �̌ whih scale with
O(ℎ� ), 0 ≤ � < 2 (and their associated eigenvectors) are spectrally identical and
the eigenvalues scaling by O(ℎ2) are shited at most by a constant factor. hus
(8.65) follows.
For (8.66), the same argumentation can be used noting that

x
T
xℎ2 ≲ x

T
Wx ≲ x

T
xℎ , ∀x ∈ �span 1Λ�⟂ , (8.75)

holds.

Remark. his lemma will be frequently used in order to replace GT��1Λ1TΛG��
by 1Λ1TΛ. In essence, we are allowed to do so if the matrix accompanying
GT��1Λ1TΛG�� has a null space spanned by 1Λ and where the smallest non-zero
singular value scales as O(ℎ�) with � ≤ 2.

Lemma 8.2. We have the spectral equivalences

x
T
ŴG

−1��Ŵ x ≍ x
T�WG

−1��W +G
T��1Λ1TΛG���x≍ x

T�WG
−1��W + 1Λ1TΛℎ4�x , ∀x ∈ R

�V . (8.76)

Proof. We have

ŴG
−1��Ŵ = �WG

−1�� +G��1Λ1TΛ��W +G��1Λ1TΛG���
=WG

−1��W +G��1Λ1TΛG��1Λ1TΛG�� (8.77)

usingW 1Λ = 0 and 1TΛW = 0
T. Since 1TΛG��1Λ = �� d�(�) = �� is a constant, we

yield

x
T
ŴG

−1��Ŵ x ≍ x
T�WG

−1��W +G��1Λ1TΛG���x , ∀x ∈ R
�V , (8.78)
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whih proves the irst equivalence. For the second equivalence, we have due to
(8.71)

x
T
WG

−1��Wx ≍ x
T
WWx /ℎ2 , ∀x ∈ R

�V (8.79)

and using (8.75), we have

x
T
xℎ2 ≲ x

T
WWx /ℎ2 ≲ x

T
x , ∀x ∈ �span 1Λ�⟂ . (8.80)

hen using the argumentation of Lemma 8.1, we obtain

x
T�WG

−1��W +G
T��1Λ1TΛG���x≍ x

T�WG
−1��W + 1Λ1TΛℎ4�x , ∀x ∈ R

�V . (8.81)

Lemma 8.3. We have the spectral equivalence

x
T
�̌x ≍ x

T�ΛT
Λ + 1Λ1TΛℎ4�x , ∈ R

�V . (8.82)

Proof. Since � = Λ
TG��Λ and [And12a]

x
T
G�� x ≍ x

T
x ∀x ∈ R

� , (8.83)

we have �T�x ≍ x
T
Λ
T
Λx , ∀x ∈ R

�V . (8.84)

Equation (8.84) remains true when we add 1Λ1TΛℎ4 to the matrices since all ma-
trices appearing are positive, semi-deinite.

Proposition 8.1. We have the spectral equivalence

x
T
PΛ�T �A�†ΛG−1��ΛT

T
�
APΛx ≍ x

T
PΛx , ∀x ∈ R

� . (8.85)

Proof. By combining the previous lemmas we can establish

x
T�WG

−1��W + 1Λ1TΛℎ4�x ≍ x
T�ΛT

Λ + 1Λ1TΛℎ4�x , ∀x ∈ R
�V , (8.86)
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that is in more detail, we have

x
T�WG

−1��W + 1Λ1TΛℎ4�x
Lemma 8.2≍ x

T
ŴG

−1��Ŵ x

Proposition A.1≍ x
T
�̂x

Lemma 8.1≍ x
T
�̌x

Lemma 8.3≍ x
T�ΛT

Λ + 1Λ1TΛℎ4�x , ∀x ∈ R
�V . (8.87)

We apply the substitution x = (ΛT
Λ)+ΛTy and obtain

y
T
Λ�ΛT

Λ�+WG
−1��W�ΛT

Λ�+ΛT
y ≍ y

T
PΛy , ∀y ∈ R

� , (8.88)

where PΛ ≡ Λ(ΛT
Λ)+ΛT. We note that ΛTT 0

AΛ = W = W †; for � ≠ 0, the
dynamic kernel introduces a compact perturbation, whih does not afect theℎ-conditioning, and we can freely hooseT †

A instead ofTA resulting in (8.85).

Remark. he matrix PΛ(T �A )†ΛG−1��ΛTT �APΛ is Hermitian and positive semi-dei-
nite, whih can be seen by considering

PΛ�T �A�†ΛG−1��ΛT
T
�
APΛ = �G−1/2�� Λ

T
T
�
APΛ�†G−1/2�� Λ

T
T
�
APΛ . (8.89)

Now, we are ready to consider the case that � is multiply connected: we have
to establish that

PΛH�T �A�†�ΛG−1��ΛT + PΛH�T �APΛH (8.90)

is well-conditioned up to its null space. For deriving this result some preliminary
considerations are necessary, and again, we start with considering the static limit� → 0.

Proposition 8.2. We have the spectral equivalence

x
T�Λ̆T

Λ̆�−1/4Λ̆T
T
0
AΛ̆�Λ̆T

Λ̆�−1/4x ≍ x
T
x , ∀x ∈ �span 1Λ�⟂ , (8.91)

where we used the substitution Λ̆ ∶= Λ/ℎ.
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Proof. Proposition 8.1 states that

x
T
PΛ�T 0

A�†ΛG−1��ΛT
T
0
APΛx ≍ x

T
PΛx , ∀x ∈ XΛ (8.92)

with
XΛ ∶= �x ∈ R

� ∣ x = PΛx� (8.93)

holds. We apply the substitution y = (ΛT
Λ)−1/2ΛTx noting that (ΛT

Λ)−1/2ΛT ∶
XΛ → �span 1Λ�⟂ is one-to-one and onto and that PΛ = Λ(ΛT

Λ)−1/2(ΛT
Λ)−1/2ΛT

so we obtain

y
T�ΛT

Λ�−1/2ΛT�T �A�†ΛG−1��ΛT
T
�
AΛ�ΛT

Λ�−1/2y≍ y
T
y , ∀y ∈ �span 1Λ�⟂ . (8.94)

By using (8.71), we obtain

x
T�ΛT

Λ�−1/2ΛT
T
0
AΛ�ℎ−2�ΛT

T
0
AΛ�ΛT

Λ�−1/2x≍ x
T
x , ∀x ∈ �span 1Λ�⟂ . (8.95)

We deine Λ̆ = Λ/ℎ noting that
�ΛT

Λ�−1/2ΛT
T
0
A Λ�ℎ−2�ΛT

T
0
AΛ�ΛT

Λ�−1/2
= �Λ̆T

Λ̆�−1/2Λ̆T�T 0
A�†Λ̆Λ̆T

T
0
AΛ̆�Λ̆T

Λ̆�−1/2 . (8.96)

Furthermore, we notice that the singular values of

Λ̆
T
T
0
AΛ̆�Λ̆T

Λ̆�−1/2 (8.97)

are by deinition of the SVD the square roots of the singular values of

�Λ̆T
Λ̆�−1/2Λ̆T�T 0

A�†Λ̆Λ̆T
T
0
AΛ̆�Λ̆T

Λ̆�−1/2 , (8.98)

whih implies that the matrix in (8.97) is well-conditioned.
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he absolute value of the largest eigenvalue can always be bounded from above
by the largest singular value and the smallest eigenvalue can always be bounded
from below by the smallest singular value. he second half of this statement is
not entirely helpful since the smallest eigenvalue and singular value are both
zero. However, since the let null space and the right null space of (8.97) are
identical, we can show that the smallest non-zero absolute eigenvalue �min can
be bounded from below by the smallest non-zero singular value �min .
To see this, let v be the unit eigenvector associated with �min and we use the

abbreviation A = Λ̆
TT 0

AΛ̆(Λ̆
T
Λ̆)−1/2. We have

|�min|
2 = v

T
A
T
Av ≥ min‖x ‖2=1∧x⟂1Λ xTAT

Ax = �2min (8.99)

following the properties of the SVD noting that‖v ‖2 = 1 and v ⟂ 1Λ.
Similar matrices have the same eigenvalues and thus A and (ΛT

Λ)−1/4A(ΛT
Λ)1/4

have the same eigenvalues. Since

�Λ̆T
Λ̆�−1/4A�Λ̆T

Λ̆�1/4 = �Λ̆T
Λ̆�−1/4Λ̆T

T
0
AΛ̆�Λ̆T

Λ̆�−1/4 (8.100)

is a symmetric, positive semideinite matrix, the eigenvalues and singular values
coincide and thus �Λ̆T

Λ̆�−1/4Λ̆T
T
0
AΛ̆�Λ̆T

Λ̆�−1/4 (8.101)

is well-conditioned up to its null space.

Given Proposition 8.2, we can conclude that if the matrix Λ̆(Λ̆T
Λ̆)−1/4 is used as

solenoidal basis, we obtain a well-conditioned matrix with bounded norm. hus
if we were to pursue a classical explicit quasi-Helmholz decomposition sheme,
we could use the basis �Λ̆(Λ̆T

Λ̆)−1/4 H� as preconditioner for TA on multiply
connected geometries. Using (8.45), it follows that the matrix

��Λ̆T
Λ̆�−1/4Λ̆T

HT �T 0
A�Λ̆�Λ̆T

Λ̆�−1/4 H� (8.102)

is well-conditioned in ℎ up to the null space of the loop functions since the basis
transformation matrix has full rank (up to the null space of the loop functions)
and since the bloks on the main diagonal are well-conditioned and all bloks are
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bounded: the boundedness of HTT 0
AΛ̆(Λ̆

T
Λ̆)−1/4 and of (Λ̆T

Λ̆)−1/4Λ̆TT 0
AH follows

from the boundedness of the bloks on the main diagonal.
Now, it remains to return from the explicit quasi-Helmholz decomposition of

(8.102) to the new formulation in (8.90).

Proposition 8.3. We have the spectral equivalence

x
T
PΛH�T �A�†�ΛG−1��ΛT + PΛH�T �APΛHx ≍ x

T
PΛHx , ∀x ∈ R

� . (8.103)

Proof. We deine

T
Λ̆H

∶= �Λ̆T

HT�T 0
A�Λ̆ H� , (8.104)

Q
Λ̆H

∶= ��Λ̆T
Λ̆�−1/4

I� , (8.105)

and observe

��Λ̆T
Λ̆�−1/4Λ̆T

HT �T 0
A�Λ̆�Λ̆T

Λ̆�−1/4 H� = Q
Λ̆H

T
Λ̆H

Q
Λ̆H

. (8.106)

In other words, we can interpret Q
Λ̆H

as a preconditioner for the standard loop/-
global loop discretizedT

Λ̆H
.

We note that T
Λ̆H

and Q
Λ̆H

are symmetric matrices and that they have the
same null space (i.e., the null space due to the linear dependency of the loop
functions). Summarizing, we have the Rayleigh quotient

x
T
Q
Λ̆H

T
Λ̆H

Q
Λ̆H

x ≍ x
T
x , ∀x ∈ �nullQΛ̆H �⟂ . (8.107)

By using the substitution y = Q
Λ̆H

x , we obtain

y
T
T
Λ̆H

y ≍ y
T
Q
−2
Λ̆H

y , ∀y ∈ �nullQΛ̆H �⟂ (8.108)

from whih immediately

y
T
T
2
Λ̆H

y ≍ y
T
Q
−4
Λ̆H

y , ∀y ∈ �nullQΛ̆H �⟂ (8.109)
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and thus
x
T
Q

2
Λ̆H

T
2
Λ̆H

Q
2
Λ̆H

x ≍ x
T
x , ∀x ∈ �nullQΛ̆H �⟂ (8.110)

follows.
Moreover, we notice that

T
2
Λ̆H

= �Λ̆T

HT�T 0
A�Λ̆ H��Λ̆T

HT�T 0
A�Λ̆ H�

= �Λ̆T

HT�T 0
A�Λ̆Λ̆T + HH

T�T 0
A�Λ̆ H� (8.111)

using that HT
Λ̆ = 0.

he global loop transformation matrix is not uniquely deined, but a possible
transformation matrix can always be constructed from PH ∶= I − PΛ − PΣ by
using its SVD so that H is the column space of it. Hence, we can always obtain

PH = HH
T . (8.112)

By using (8.111) and (8.112), we have

Q
2
Λ̆H

T
2
Λ̆H

Q
2
Λ̆H

= ��Λ̆T
Λ̆�−1/2Λ̆T

HT �T 0
A�Λ̆Λ̆T + PH�T 0

A�Λ̆�Λ̆T
Λ̆�−1/2 H� . (8.113)

We also note that the transformation �Λ̆(Λ̆T
Λ̆)−1/2 H� is well-conditioned, in

fact, �Λ̆�Λ̆T
Λ̆�−1/2 H���Λ̆T

Λ̆�−1/2Λ̆T

HT � = PΛH . (8.114)

hus we have

x
T�Λ̆�Λ̆T

Λ̆�−1/2 H�Q2
Λ̆H

T
2
Λ̆H

Q
2
Λ̆H ��Λ̆T

Λ̆�−1/2Λ̆T

HT �xT≍ x
T
PΛHx , ∀x ∈ R

� , (8.115)
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where we note that the preconditioned system matrix can be expressed as

�Λ̆�Λ̆T
Λ̆�−1/2 H�Q2

Λ̆H
T
2
Λ̆H

Q
2
Λ̆H ��Λ̆T

Λ̆�−1/2Λ̆T

HT �xT
= PΛHT 0

A�Λ̆Λ̆T + PH�T 0
APΛH . (8.116)

We can replace PH by PΛH since the matrix PΛHT 0
APΛT 0

APΛH is symmetric, posi-
tive deinite and���PΛHT 0

APΛT 0
APΛH���2 ≲‖PΛH‖2���T 0

A
���2‖PΛ‖2���T 0

A
���2‖PΛH‖2 ≲ 1 (8.117)

is bounded, where���T 0
A
���2 ≲ 1 follows from the compactness of TA. Likewise, the

dynamic kernel is a compact perturbation and by substituting bak from Λ̆ to Λ
and G−1�� , we obtain that the matrix

PΛH�T �A�†�ΛG−1��ΛT + PΛH�T �APΛHx ≍ x
T
PΛHx , x ∈ R

� (8.118)

is well-conditioned (up to its null space).�) Scalar Potential Operator
In this section, we are going to establish that the matrix

P
T
gΣ�T �Φ�†P̆mΣT �ΦPgΣ (8.119)

is well-conditioned (up to its null space).
As for the vector potential operator, we need some lemmas and auxiliary

matrices. We deine the matrix

V̊ ∶= �ΣT
Σ�+ΣT

ΣVΣ
T
Σ�ΣT

Σ�+ . (8.120)

his matrix is important since it is connected to the scalar potential by (see (5.20))

V̊ ≡ �ΣT
Σ�+ΣT

T
0ΦΣ�ΣT

Σ�+ . (8.121)
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Lemma 8.4. We have the spectral equivalence

x
T
VG

−1��Vx ≍ x
T
V̊G

−1��V̊ x , ∀x ∈ �span 1Σ�⟂ . (8.122)

Proof. If x is suh that 1TΣx = 0, then we have

Σ
T
Σ�ΣT

Σ�+x = x (8.123)

and thus
x
T
Vx = x

T
V̊ x . (8.124)

Clearly, we have for suh x also

x
T
VVx = x

T
V̊V̊ x , (8.125)

and since yTG−1��y ≍ yTy holds for all y ∈ R
�C , we have

x
T
VG

−1��Vx ≍ x
T
V̊G

−1��V̊ x . (8.126)

Corollary 8.1. We have the spectral equivalence

x
T �̌�x ≍ x

T�ΣT
Σ + 1Σ1TΣℎ4�x , ∀x ∈ R

�C . (8.127)

Proof. Follows from Lemma 8.3.

Lemma 8.5. he vector 1Σ is a right eigenvector of G−T�̃� , that is, 1Σ = G−T�̃� 1Σ.
Proof. If �̃y = �x = 1 , ∀� ∈ � , (8.128)

then y = 1Σ and �x�� = �� , where �̃y = ∑�V�=0�y���̃� and �x = ∑�C�=1�x���� .
Testing this equation with �� yields

G��̃1Σ = G��x = 1Σ . (8.129)

Since G��̃ = GT�̃� , we have 1Σ = G−T�̃� 1Σ.
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Corollary 8.2. For any mean value free vector x , that is, 1TΣx = 0, we have that
the vector G−1�̃�x is mean value free as well.

Proof. his follows from Lemma 8.5 since if we have 1TΣx = 0, then

1
TΣG−1�̃�x = 1

TΣx = 0 . (8.130)

Proposition 8.4. We have the spectral equivalence

x
T
P
T
gΣ�T �Φ�†P̆mΣT �ΦPgΣx ≍ x

T
PΣx , ∀x ∈ R

� . (8.131)

Proof. We start with (8.63)

x
T �̂WG

−1�̃�̃ �̂Wx ≍ x
T �̂�x , ∀x ∈ R

�C (8.132)

and applying the substitution x = G−1/2�̃�̃ y yields

y
T
G
−1/2�̃�̃ �̂WG

−1�̃�̃ �̂WG
−1/2�̃�̃ y = y

T�G−1/2�̃�̃ �̂WG
−1/2�̃�̃ �2y≍ y

T
G
−1/2�̃�̃ �̂�G−1/2�̃�̃ y , ∀y ∈ R

�C , (8.133)

and hence

y
T
G
1/2�̃�̃ �̂W −1

G
1/2�̃�̃ y ≍ y

T�G1/2�̃�̃ �̂�G1/2�̃�̃ �−1/2y , ∀y ∈ R
�C . (8.134)

From the Calderón identities and the theory outlined in [SW98; BC07; Hip06],
we have

x
T �̂Wx ≍ x

T
G
−T�̃�V −1G−1�̃�x , ∀x ∈ R

�C . (8.135)

Inserting this in (8.134) and applying the bak-substitution y = G1/2�̃�̃ x , we obtain
x
T
G
−T�̃�VG

−1�̃�G �̃�̃G−T�̃�VG
−1�̃�x ≍ x

T �̂�−1x , ∀x ∈ R
�C . (8.136)
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he right-hand side can be simpliied: it was shown in [And+13] that

�ΣT
Σ + 1Σ1TΣ/�C�−1 = �ΣT

Σ�+ + 1Σ1TΣ/�C (8.137)

holds. In addition with �C ≍ 1/ℎ2 and Corollary 8.1, we can simplify the ri-
ght-hand side of (8.136) yielding

x
T
G
−T�̃�VG

−1�̃�G �̃�̃G−T�̃�VG
−1�̃�x ≍ x

T��ΣT
Σ�+ + 1Σ1TΣ�x , ∀x ∈ R

�C . (8.138)

From [SW98; BC07], we can obtain

x
T
G
−1��x ≍ x

T
G
−1�̃�G �̃�̃G−T�̃� x , ∀x ∈ R

�C . (8.139)

Inserting this into (8.138) yields

x
T
G
−T�̃�VG

−1��VG
−1�̃�x ≍ x

T��ΣT
Σ�+ + 1Σ1TΣ�x , ∀x ∈ R

�C . (8.140)

hen we use the substitution x = Σ
Ty and obtain

y
T
ΣG

−T�̃�VG
−1��VG

−1�̃�ΣT
y ≍ y

T
PΣy , ∀y ∈ R

� , (8.141)

since Σ1Σ = 0. Due to this relationship, it is clear that all vectors ΣTy with
y ∈ R

� are mean value free, that is, we have 1TΣΣTy = 0. hus we can invoke
Lemma 8.4 and obtain

y
T
ΣG

−T�̃�V̊G
−1��V̊G

−1�̃�ΣT
y ≍ y

T
PΣy , ∀y ∈ R

� . (8.142)

Inserting the right-hand side from (8.121), we obtain

y
T
P
T
gΣT 0Φ P̆mΣT 0ΦPgΣy ≍ y

T
PΣy ≍ y

T
PΣy , ∀y ∈ R

� . (8.143)

As in Proposition 8.1, we note that the dynamic kernel only introduces a compact
perturbation, and that by using (T �Φ )† for the let scalar potential operator matrix
in (8.131), we yield a symmetric, positive semi-deinite system.
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� ) Preconditioned Electric Field Integral Equation
Proposition 8.5. he new formulation is well-conditioned in the static limit, that
is, the matrix in (8.48) satisies

lim�→0
x
T
P̆o

†
T
†
P̆mT P̆ox ≍ x

T
x , ∀x ∈ R

� . (8.144)

Proof. We have

P̆o
†
T
†
P̆mT P̆o

= P
†ΛH�T �A�†P̆mΛT �APΛH + P

†
gΣ�T �Φ�†P̆mΣT �ΦPgΣ

+ �2P†
gΣ�T �A�†P̆mΛT �APgΣ + �4P†

gΣ�T �A�†P̆mΣT �APgΣ
i�P†ΛH�T �A�†P̆mΛT �APgΣ − i�P†

gΣ�T �A�†P̆mΛT �APΛH
i�3P†ΛH�T �A�†P̆mΣT �APgΣ − i�3P†

gΣ�T �A�†P̆mΣT �APΛH
i�P†ΛH�T �A�†P̆mΣT �ΦPgΣ − i�P†

gΣ�T �Φ�†P̆mΣT �APΛH . (8.145)

hus we ind

lim�→0
P̆o

†
T
†
P̆mT P̆o = P

†ΛH�T 0
A�†P̆mΛT �APΛH + P

†
gΣ�T 0Φ�†P̆mΣT �ΦPgΣ . (8.146)

Clearly, the new formulation is low-frequency stable and the well-conditioning
in ℎ follows from Proposition 8.3 and Proposition 8.4 so that we have

x
T�P†ΛH�T 0

A�†P̆mΛT 0
APΛH + P

†
gΣ�T 0Φ�†P̆mΣT 0ΦPgΣ�x≍ x

T
x , ∀x ∈ R

� . (8.147)

For the dynamic case, we note that the additional terms appearing in (8.145)
have at least up to a certain frequency a smaller norm than then principal terms in
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(8.147). Numerical evidence suggests that even for geometries spanning several
wavelengths, the new preconditioner shows a beneicial behavior compared with
an unpreconditioned system.
he derivation also holds for the case that the mesh is non-uniform, that is, the

condition number is still bounded ater subsequent structured mesh reinements.
If, however, only a local reinement is performed then the condition number can
still grow. If in suh a process only the conditioning of G�� and G�� is increased
but not of G�� and G�� , then this can be prevented.
In fact, only the preconditioner for the scalar potential part is afected. he

reason for this is that we have used that

� �̂WG
−1�̃�̃ �̂W�−1 = �̂W +

G �̃�̃ �̂W −1
. (8.148)

ForW , the same statement (with pseudo-inverses) is not true:

� �WG
−1�̃�̃ �W�+ ≠ �W +

G �̃�̃ �W + , (8.149)

where we note that in our analysis �W + does not appear since we have already
moved toV and later on to V̊ in the proof of Proposition 8.4.
What we have implicitly obtained in the proof is a spectral equivalence between

( �WG−1�̃�̃ �W )+ and �W +G �̃�̃ �W +, where however the bounding constants tend to
deteriorate with an increasing ill-conditioning of G �̃�̃ . If G �̃�̃ is modiied suh
that it has a null space spanned by 1Σ resulting in the matrix G̊ �̃�̃ , then we would
have � �WG̊

+�̃�̃ �W�+ = �W +
G̊ �̃�̃ �W + , (8.150)

and thus no deterioration would occur. Since in the end we are not interested
in �W but in preconditioning V̊ , we replace G−1�� by G‡�� , whih has a null space
spanned by 1Σ. Section 6.d conirms the efectiveness of this approah.
We have now assumed that G�� and G �̃ �̃ are reasonably conditioned. A study

for the case that the condition number assumes extreme values is not within the
scope of this work. For the non-canonical numerical examples, the condition
number of G�� or G �̃ �̃ is up to around 1 ⋅ 103.
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d) Numerical Results
First, we considered a sphere, radius 1m, to conirm the low-frequency stability
by computing the condition number obtained by the new formulation and com-
pared it with a loop-tree preconditioned system. Figure 8.1 shows that the new
formulation is frequency stable and Figure 8.2 that the bistatic radar cross section
can be accurately computed down to 1 ⋅ 10−30Hz. he saturation of the condition
number in the case “no preconditioner” stems from numerical cancellation: the
null space of TΦ exists only up to numerical precision and when � becomes too
small, the (numerical) norm of the null space of TΦ is larger than the norm of TA
so that TA completely vanishes in numerical noise. To verify the dense-discre-
tization stability, we computed the condition number for the new formulation
and the loop-tree preconditioned system for an increasing spectral index 1/ℎ. We
can see from Figure 8.3 that the new formulation is dense-discretization stable,
whereas the loop-tree preconditioner is not.
In addition, we considered a plate as an example for an open structure. Similar

to Calderón preconditioners, the condition number shows a slight growth in 1/ℎ
as displayed in Figure 8.4; however, it remains small compared with a loop-tree
preconditioner. In order to conirm the low-frequency stability in the case for
multiply connected geometries, we considered a closed structure with two global
loops shown in Figure 8.5. Evidently, the new formulation remains stable.
Next, we considered more realistic structures. To compress the system matrix,

we used an ACA with tolerance 1 ⋅ 10−4. As iterative solver, we used the CG
method for the new formulation and the CGS method for the other formulations
since the CG method is only applicable if the matrix is HPD. We note that a single
iteration step of CGS requires two matrix-vector products. We employed the
AGMG library [Not; NN12] for the fast inversion of the graph Laplacians with
solver tolerance 1 ⋅ 10−14 to demonstrate that even for extreme small tolerances
our preconditioner remains eicient.
As irst realistic example, we considered as open and multiply connected struc-

ture the model of a MiG-15 displayed in Figure 8.6, whih has one global loop.
As excitation we used a plane wave and its electric size is 2 ⋅ 10−2�, where �
is the wavelength. Several unstructured reinements where conducted ranging
from 1518 to 306 036 unknowns. Figure 8.7 and Figure 8.8 show the number of
iterations and total time, respectively, as a function of 1/ℎ. Clearly, the reduction
in the number of iterations relects in a saving of computational time.
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Fig. 8.1.: Sphere: the condition number as a function of the frequency.

Since the MiG-15 is an open structure, we were also interested to see how the
new formulation behaves for high frequencies, that is, when the electric size of
the model spans several wave lengths �. To this end, we used as discretization of
the MiG-15 with 306 036 unknowns, where the maximum edge length is 0.07m
and the average edge length ℎ is 0.025m (standard deviation is 0.0023m). We
varied the frequency from 0.48GHz, where ℎ = �/25, to 0.8 GHz, where ℎ = �/15.
his frequency range corresponds to an electric size � varying from 13 to 24. We
considered a voltage gap and a plane wave excitation and compared the new
formulation with an unpreconditioned EFIE. Table 8.1 summarizes or indings.
We see that the new formulation behaves favorably even for higher frequencies,
though it seems that its advantage is waning the higher the frequency becomes.
As an example of a simply connected and closed structure, we considered

the model of a Rafale ighter shown in Figure 8.9a, whih is discretized with a
non-uniform mesh (see Figure 8.9b). We employed a coarse initial discretization
with 18 171 unknowns and performed two structured reinement steps ending
up with 290 736 unknowns (by using a structured reinement the geometry is not
hanged). We note that condG�� ≈ 1.8 ⋅ 105 remains constant for all reinements,
but G�� varies from 276 of the initial discretization to 769 of the inest discretiza-
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(b) Frequency: 1 ⋅ 10−30 Hz.
Fig. 8.2.: Sphere: bistatic radar cross section.
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Fig. 8.3.: Sphere: the condition number as a function of the spectral index.
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Fig. 8.4.: Plate: the condition number as a function of the spectral index.
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Fig. 8.5.: Toroidal structure: the condition number as a function of the frequency.

Fig. 8.6.: MiG-15: real part of � excited by an incident plane wave.
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Fig. 8.7.: MiG-15: the number of iterations as a function of the spectral index.
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Fig. 8.8.: MiG-15: the total time as a function of the spectral index.
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� �/ℎ � Preconditioner

None his work

Iterations Time∗ Iterations Time∗
(h:m:s) (h:m:s)

Voltage gap excitation
0.48 25 13 13 189 89:03:11 705 12:10:09
0.6 20 16 17 546 180:17:37 1055 29:18:19
0.8 15 24 15 793 159:54:04 1943 59:18:11

Plane wave excitation
0.48 25 13 10 842 73:25:57 1413 24:08:18
0.6 20 16 16 654 171:08:41 1544 42:14:42
0.8 15 24 14 151 136:22:36 3223 79:53:03

∗ his is the total time including the setup costs for the preconditioners.

Tab. 8.1.: MiG-15: the number of iterations and the time used by the solver to obtain a
residual error below 1 ⋅ 10−4.

tion. Table 8.2 shows the number of iterations and total time. We can see that
in this case the number of iterations grows also for the new formulation. his is
not unexpected since the condition number of G�� has grown for the irst reine-
ments. Further reinements would lead to a converging condition number of G��
and hence, we can expect that the new formulation would converge likewise.

Lastly, as an example of a multiply connected and closed structure, we have
hosen an model of the Fokker Dr.I depicted in Figure 8.10, whih has 390 global
loops. As excitationwe considered both a planewave and a voltage gap excitation.
he model is discretized with 294 420 unknowns resulting in a non-uniform mesh
with condG�� ≈ 3 ⋅ 103 and condG�� ≈ 7 ⋅ 104. Its electric length is 1 ⋅ 10−3�.
From Table 8.3, we can see that there is not only a signiicant saving in the
number of iterations, but also in time.
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(a) Real part of � excited by an incident plane
wave.

(b) Non-uniform mesh due to hose.

Fig. 8.9.: Rafale.

Fig. 8.10.: Fokker Dr.I: real part of � excited by an incident plane wave.
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� Preconditioner

Loop-tree his work

Iterations Time∗ Iterations Time∗
(h:m:s) (h:m:s)

Plane wave excitation
18 171 671 00:18:17 98 00:08:01
72 684 2054 04:14:05 129 00:43:41
290 736 5707 58:50:14 173 04:10:59
Voltage gap excitation
18 171 246 00:07:25 36 00:03:57
72 684 181 00:22:33 48 00:20:03
290 736 333 03:16:11 38 01:19:17

∗ his is the total time including the setup costs for the preconditioners.

Tab. 8.2.: Rafale: the number of iterations and the time used by the solver to obtain a
residual error below 1 ⋅ 10−4.

e) Conclusion
We presented a preconditioner for the EFIE that yields a Hermitian, positive
deinite, and well-conditioned system matrix without requiring the use of a
barycentrically reined mesh. While it outperforms a standard tehnique suh
as the loop-tree preconditioner in the low- and mid-frequency range, further
investigations are necessary for electrically large problems.
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Preconditioner Iterations Time∗ �2-relative error†
Current RCS

(h:m:s) (%) (%)

Plane wave excitation
Loop-tree 4846 31:46:57
his work 169 03:01:40 1.3086 0.0015
Voltage gap excitation
Loop-tree 2309 15:35:07
his work 26 00:44:11 0.0236 1.5917

∗ his is the total time including the setup costs for the preconditioners.
† he relative error is with respect to the solution obtained by using the loop-tree preconditioner.

Tab. 8.3.: Fokker Dr.I: the number of iterations and the time used by the solver to obtain a
residual error below 1 ⋅ 10−4.

162



Chapter 9

A Hermitian, Positive Deinite, and
Well-Conditioned CFIE

his last technical chapter sketches some preliminary results on a new precondi-
tioner for the CFIE that gives rise to a Hermitian, positive deinite system of linear
equations. Diferent from other Calderón strategies, this scheme necessitates a stan-
dard discretization of the EFIE with RWG basis functions (i.e., no dual EFIE matrix
required), is free from spurious resonances, and is stable down to the static limit
for both simply and multiply connected geometries. he fact that the new system
matrix is Hermitian, positive deinite, and well-conditioned makes it amenable for
fast iterative solvers. Numerical results demonstrate the efectiveness of the proposed
approach. his work is based on the conference article [AAE16a].

For closed, electrically large problems, the CFIE can be used to avoid
interior resonances. Classical Calderón preconditioners have been extended
to the CFIE [Bag+09; And+12]. However, these shemes demand the use of the

Yukawa potential (i.e., an EFIE where the wavenumber � in the Green’s function
is replaced by +i�), thereby requiring the discretization of another operator and,
furthermore, they do not give rise to Hermitian formulations.
In the previous hapter, a sheme has been presented that allows to precon-

dition the EFIE without the need of dual basis functions and a barycentric re-
inement of the mesh. Based on this formulation, we present in this hapter
a well-conditioned CFIE that has three key properties: (i) At the best of our
knowledge it is the irst CFIE formulation giving rise to a Hermitian, positive
deinite system matrix at every frequency. To obtain this, we use the RF-CMP
for preconditioning the EFIE part of the CFIE leveraging on the fact that the
matrix Po is, up to the frequency scaling, a well-conditioned matrix. herefore,
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we can apply it to the MFIE part without jeopardizing its well-conditioning. (ii)
Diferent from other Calderón-like preconditioning shemes, we can prove the
resonance-freeness of the discretized equation under the assumption that the
unpreconditioned CFIE is resonance-free. (iii) When compared with standard
Calderón tehniques, the computational costs of the new formulation presented
here are substantially reduced since, while dual basis functions are still necessary
for the MFIE, the EFIE can be discretized solely with standard RWG functions
(no dual EFIE matrix is required). his hapter will deine the new equation
and analyze its theoretical properties in detail. Finally, numerical results will
corroborate the theory and show the practical impact of the new sheme on real
case scenarios.

a) New Formulation
We deine the abbreviation

M̆ = G��G−1�̂×�̃ ,� �M . (9.1)

For resonance frequencies,T and M̆ are rank deicient, while the linear combi-
nation T + M̆ has full rank, but is not well-conditioned due to T (i.e., in the case
of multiply connected geometries, it is also not well-conditioned due to M̆ ). We
propose the following preconditioned CFIE:

P
†
o �T †

PmT /� + �M† �M /��Poi = P
†
o �−T †

Pme� + �M†
h/�� , (9.2)

where Po and Pm are the same as deined in Chapter 8, that is, as deined in (8.11)
and (8.12), and we used the normalization factors� = ���P†

oT
†
PmTPo

��� , (9.3)� =
���P†

o �M† �MPo
��� . (9.4)

Since �M is well-conditioned except when � is multiply connected: the part qua-
si-harmonic Helmholz subspace associated with the toroidal loops becomes a
null space in the static limit [Bog+11]. As shown in the previous hapter, the
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matrix P†
oT

†PmTPo is well-conditioned (at least in the static limit) and thus com-
pensates the ill-conditioning of the MFIE associated with the toroidal subspace.
hus we can conclude that P†

o �T †PmT /� + �M† �M /��Po is well-conditioned. It
remains to show that the matrix does not sufer from interior resonances.

Proposition 9.1. he matrixT †PmT /� + �M† �M /� has full rank.

Proof. We note that null M̆ = null �M . For all x ∈ R
� ⧵ �nullT ∪ null �M�, we have

x
†�T †

PmT /� + �M† �M /��x = x
†
T
†
PmT x /� + x

† �M† �Mx /� > 0 , (9.5)

since T †PmT and �M† �M are positive deinite on R
� ⧵ �nullT ∪ null �M�, that is,

x
†
T
†
PmT x /� > 0 (9.6)

and
x
† �M† �Mx /� > 0 (9.7)

using that � > 0. Clearly, when either x ∈ nullT or x ∈ null �M , we still have
x
†�T †

PmT /� + �M† �M /��x > 0 , (9.8)

and hence, the matrix is positive deinite and thus has full rank at resonance
frequencies.

b) Numerical Results
To verify the presented theory, we irst tested the frequency stability. We used
a sphere and compared the new formulation with an EFIE, CFIE, and a loop-
tree preconditioned CFIE. Figures 9.1a and 9.1b show that from the standard
tehniques only the loop-tree preconditioned is frequency stable (the CFIE dete-
riorates for low-frequencies, the EFIE for low and high-frequencies), however,
with a relatively high condition number compared with the new formulation.
We can see that the new formulation does not sufer from interior resonances,
though we observe a growth of the condition number with increasing frequency,
whih stems from the compact perturbation of the dynamic kernel.
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Formulation Iterations� = 1MHz � = 10MHz

CFIE 214 85

CFIE: LT 649 1245

his Work 40 274

Tab. 9.1.: Space Shutle: the number of iterations; solver tolerance 1 ⋅ 10−4.
To beter assess the impact of the dynamical kernel on the iterative solver, we

considered a plane wave excitation and solved the system by using the gener-
alized minimal residual (GMRES) and CG method with solver tolerance 1 ⋅ 10−4.
Figure 9.1c displays the results. We can see a correspondence between the con-
dition number and the number of iterations, though we note that for the highest
frequency the ratio of the condition numbers of the conformingly discretized
CFIE and the new formulation is around 18, while for the number of iterations
the ratio is around 1.45.
Next, we veriied the dense-discretization stability. To this end, we reined the

toroidal structure (i.e., a multiply connected geometry, whih has a harmonic
subspace) depicted in Figure 9.2a. Figure 9.2b shows that for suh a geometry even
the MFIE is ill-conditioned, whereas the new formulation is stable. Eventually, we
used a more realistic structure, the model of a Space Shutle discretized with 3780
unknowns, where we employed a plane wave excitation with frequency 1MHz

and 10MHz, respectively. For the later, the electric length is 4�. he results are
summarized in Figure 7.2; they conirm the observation from Figure 9.1c: for
high frequencies the dynamic kernel deteriorates the conditioning of (9.2). If,
however, a iner mesh would be used for the discretization, then the conforming
CFIE would have a growing condition number, while the condition number of
the matrix in (9.2) can be bounded.

c) Conclusion
It was shown that it is possible to extend the RF-CMP to a conformingly dis-
cretized CFIE: the low-frequency and the dense-discretization breakdown are
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(a)he condition number as a function of the frequency. Average edge length ℎ = 0.2m.
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(b)he condition number as a function of the frequency. Average edge length ℎ = 0.2m.
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(c)he number of iterations as a function of the frequency. Average edge length ℎ = 0.2m.
Plane wave excitation and GMRES method as solver for the unpreconditioned con-
forming CFIE and the loop-tree preconditioned conforming CFIE. Conjugate gradient
method as solver for the new formulation.

Fig. 9.1.: Sphere: study of the impact of the frequency on the condition number and the
number of iterations.
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(a)he coarsest mesh, whih was then dyadically reined. © IEEE 2016.
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(b)he condition number as a function of the spectral index 1/ℎ. Frequency 1MHz.

Fig. 9.2.: Toroidal structure
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both cured. We observed, however, that the condition number starts to grow
when the frequency is increased once a geometry dependent threshold is passed.
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Chapter 10

Concluding Scientiic Postscript
For small erections may be inished
by their irst arhitects; grand ones,
true ones, ever leave the copestone
to posterity.

Moby-Dick; or, he Whale
Herman Melville

Preconditioners for the EFIE and the CFIE based on hierarhical bases and
on Calderón identities have been presented in this dissertation that sensibly
advanced the state of the art: we have obtained preconditioned EFIEs and CFIEs

where in the case of the hierarhical bases preconditioners the condition number
is logarithmically bounded in the number of unknowns � and where in the case
of the RF-CMP preconditioner the condition number is bounded independently of� . Diferent from existing shemes, the results were obtained without the explicit
use of dual basis functions. We did consider multiply connected geometries for
both the hierarhical basis and the RF-CMP.he later even yields an HPD system
matrix, whih allows to apply the CG method as solver, whih, at least in theory,
guarantees convergence.
A great German philosopher once said, “Ater the game, is before the game.”

While the presented preconditioners have already a certain degree of maturity,
further work needs to be carried out to make them admissible for the usage in
commercial sotware:

• In general, geometries are not necessarily Lipshiz polyhedral, for example,
when they include T-junctions. he hierarhical basis needs extension to
this scenario. he RF-CMP, is when it comes to the formulation, already
applicable to structures with junctions since loop and star functions have
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been deined on these structures before. It is, however, not clear how strong
the preconditioning efect on a junction is. his needs careful evaluation
and maybe further amendments.

• Oten enough, we are also interested in solving scatering problems in-
volving penetrable objects. he Poggio-Miller-Chang-Harrington-Wu-Tsai
(PMCHWT) equation is due to the EFIE part of the operator ill-condition-
ed as well. Hierarhical basis preconditioners have been adapted to the
PMCHWT [Guz+17]. In a next step, the RF-CMP should be extended to
this equation.

• Many algebraic multigrid preconditioners have been presented in the past
[Not; LB12; BOS15]. A study and comparison of the diferent methods
would be desirable. Particular atention should be paid to the case of
multi-body problems, where the null spaces are more complicated (as it
was discussed in Section 4.d.�). In addition, it would be desirable to have a
(parallelized) algebraic multigrid solver at hand, developed under a liberal
license both for commercial and academic use.

Further targets to takle and questions to answer include:

• hroughout this thesis, it was assumed that the condition number of the
RWGGrammatrix is reasonably large. What happens, however, if the RWG
Gram matrix is highly ill-conditioned? To what degree can this problem
be ixed?

• When the geometry is open, one observes for the Calderón preconditioner
a growth of the condition number, whih is of logarithmic nature. Even
though this is not a critical issue, it would be interesting to obtain an
optimal preconditioner for open problems.

• For non-linear problems, frequency domain methods cannot be used. hus
it would be desirable to extend the preconditioners to time-domain ield
integral equations.

• If the frequency is increased to the limit that ℎ ≈ �/10, the number of itera-
tions used by an iterative solver grows. Modiied Calderón preconditioners
have been presented to reduce this increase [BT14]. It should be possible
to amend the RF-CMP in a similar way.
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• It would be desirable to obtain a well-conditioned CFIE or CSIE that does
not require dual basis functions.
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Appendix A

he Discretized Laplace-Beltrami and
the Hypersingular Operator

In the following, we give a proof for the spectral equivalence of Ŵ and �̂ in the
case that we have a nested sequence of piecewise linear function spaces.

Proposition A.1. Let ��,� ⊂ ��,�+1, � = 0, … , � − 1, denote a nested sequence of
piecewise linear function spaces, �� ∈ ��,� , and �V = dim���,� � is the number of
vertices of the mesh. Let �̂ be the discretization of the modiied Laplace-Beltrami
operator Δ̂� with piecewise linear functions �� ∈ ��,� , that is,��̂��� = ��� , Δ̂�����2(� ) . (A.1)

hen we have
x
T
�̂x ≍ x

T
ŴG

−1��Ŵ x , ∀x ∈ R
�V . (A.2)

Proof. To prove this proposition, we leverage the stability results that Stevenson
obtained for his three-point hierarhical wavelets [Ste98] (see also Chapter 7,
where we have discussed the preconditioning efect of this basis). Let �λT ∈
R
�V×�V be the transformation matrix that maps from the three point hierarhical
wavelets ��T� to the piecewise linear basis �� . hen the following equivalences
follow from [Ste98]:

x
T�λTT�̂�λTx ≍ x

T
D̂
+2�λTTG���λTD̂+2

x , ∀x ∈ R
�V , (A.3)

and
x
T�λTTŴ �λTx ≍ x

T
D̂
+1�λTTG���λTD̂+1

x , ∀x ∈ R
�V , (A.4)

where �D̂��� = 2�̂Λ(�)/2 , � = 1, … ,�V (A.5)
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he Discretized Laplace-Beltrami and the Hypersingular Operator Chapter A

and the function �̂Λ(�) returns the level on whih the function ��T� was deined.
Equations (A.3) and (A.4) can be further simpliied by considering that �� are�2-stable satisfying (8.71), and the �2-stability of ��T� (properly rescaled by D̂+2)
can be expressed as

x
T
x ≍ x

T
D̂
+2�λTTG���λTD̂+2

x ≍ x
T
D̂
+2�λTT�λTD̂+2

xℎ2 , ∀x ∈ R
�V , (A.6)

where we assumedwithout loss of generality that����λTT�λT��� ≍ 1 (due to the deinition
we have used here, the functions ��T� are, if not rescaled at all, � 1-stable). hus
we ind by substitution

x
T�λTT�λTxℎ2 ≍ x

T
D̂
−4
x , ∀x ∈ R

�V . (A.7)

Since the matrices are invertible, we also have

x
T�λ−1T �λ−TT x ≍ x

T
D̂
4
xℎ2 , ∀x ∈ R

�V . (A.8)

Using (A.6) in (A.3) and (A.4), we ind

x
T�λTT�̂�λTx ≍ x

T
x , ∀x ∈ R

�V , (A.9)

and
x
T�λTTŴ �λTx ≍ x

T
D̂
−2
x , ∀x ∈ R

�V . (A.10)
By using the substitution y = �λTx in (A.9) and (A.10), we obtain

x
T
�̂x ≍ x

T�λ−TT �λ−1T x , ∀x ∈ R
�V , (A.11)

and
x
T
Ŵ x ≍ x

T�λ−TT D̂
−2�λ−1T x , ∀x ∈ R

�V . (A.12)
Summarizing, we obtain the spectral equivalence

x
T
ŴG

−1��Ŵ x
(8.71)≍ x

T
Ŵ

2
x /ℎ2

(A.12)≍ x
T��λ−TT D̂

−2�λ−1T ℎ2�2x /ℎ2≍ x
T�λ−TT D̂

−2�λ−1T �λ−TT D̂
4ℎ2D̂−2�λ−1T x /ℎ2

(A.8)≍ x
T�λ−TT �λ−1T x ≍ x

T
�̂x , ∀x ∈ R

�V . (A.13)
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Nomenclature

List of Variables and Other Mathematical Symbols
he following list summarizes frequently used variables and mathematical sym-
bols.

Symbol Description

Accents and Operations� he wide hat symbols denotes the involvement of a hierarhical
basiŝ he standard hat denotes a unit vector, or that a null space of an
operator has been delected� he wide tilde denotes the involvement of dual basis functions

A−1 Inverse of the matrix A (if it exists)
A+ Moore-Penrose pseudo-inverse of the matrix A
AT Transpose of the matrix A
A, �(�) Conjugate of the matrix A or the function �, respectively
A† �A�T
A−T �A−1�T
I Unit matrix
Physical uantities� , �′ Position vectors, deined in (2.2)�̂ Surface normal unit vector directed to the exterior� Permitivity� Permeability�0 Permitivity of vacuum�0 Permeability of vacuum�r Relative permitivity
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Nomenclature

�r Relative permeability� Wavenumber� Frequency� Wave impedance� Angulary frequency� Electric current density� Magnetic current density�e Electric harge density�m Magnetic harge density� Electric ield� Magnetic ield� Electric lux density� Magnetic lux density�� (� , �′) Green’s function, see (3.51)
Vector Spaces and Sets
B
�� (�) Ball with radius � centered at � , see Deinition 2.3� Denotes a domain in R

3� Boundary of �� Closure of ��c Complement of �
supp � Support of the function �, deined in (2.48)�� (�) Space of functions with � continuous derivatives, norm deined

in (2.4)��(�) Space of Lebesgue integral functions, see (2.50)�2(�) Space of square integral functions, see (2.51)�1loc(�) Locally integrable functions, deined in (2.52)
D(�) Space of test functions, deined in (2.49)
S(�) Shwarz space, deined in Deinition 2.16� ′ Dual space of � , see Deinition 2.13� �(R� ) Sobolev space, see Deinition 2.17� �(�) Sobolev space, deined in (2.69)�� Finite element space spanned by the functions ���2(� ) Space of square integrable functions on a surface, see also (2.80)� �(� ) Sobolev space on a surface, see also (2.81)
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� �(� ) Sobolev space of vector functions on a surface, deined in Equa-
tion (2.82)�2(� ) See (2.84)� �(div� , � ) See (2.90)� �(curl� , � ) See (2.91)

Operators
Dα Derivative operator, see (2.1)
grad� Surface gradient, see Deinition 2.5
curl� Surface curl, deined in Deinition 2.6Δ� Laplace-Beltrami operator, see Deinition 2.7
div� Surface divergence, see Deinition 2.9����� Surfacic curl, see Deinition 2.10
T EFIE operator, deined in (3.61)
TA Vector potential operator, deined in (3.62)
TΦ Scalar potential operator, deined in (3.64)
M MFIE operator, deined in (3.74)
C CFIE operator, deined in (3.78)
K Deined in (3.60)
I , I Identity operators (vector and scalar functions)
V Single layer operator, deined in (3.84)
W Hypersingular operator (3.87)
Matrices
G� � Gram matrix of �� and �� functions
T � T operator discretized with RWG functions, see (4.20)
T �A TA discretized with RWG functions, deined (4.22)
T �Φ TΦ discretized with RWG functions, deined in (4.24)
e �̂ × � i discretized, deined in (4.25)
j Unknown vector, see (4.19)
M DiscretizedM operator, deined in (4.28)
h �̂ ×� i discretized, deined in (4.32)�M DiscretizedM operator, tested with rotated dual functions, de-

ined in (4.34)
h̃ �̂ ×� i discretized, deined in (4.38)
C Standard CFIE system matrix, deined in (4.40)
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Nomenclature

�C Conforming CFIE system matrix, deined in (4.42)
V Discretized V operator, deined in (4.43)
W DiscretizedW operator, deined in (4.44)
� Discretized Δ� operator, deined in (8.4)�� Discretized Δ� operator with dual basis functions, deined in (8.5)
1Λ All-one vector, deined in (4.74)
1Σ All-one vector, deined in (4.75)
Λ Loop transformation matrix, deined in (4.66)
Σ Star transformation matrix, deined in (4.67)
H Globel loop transformation matrix
PΛ Projector to solenoidal Helmholz subspace, deined in (4.76)
PΣ Projector to non-solenoidal Helmholz subspace, deined in (4.77)
PH Projector to quasi-harmonic Helmholz subspace, deined in (4.78)
Q Loop-star transformation matrix, deined in (4.68)
P Helmholz projector based preconditioner, see (4.85)�Λ Transformation matrix of a solenoidal hierarhical basis. Deini-

tion varies from hapter to hapter.�Σ Transformationmatrix of a non-solenoidal hierarhical basis. Def-
inition varies from hapter to hapter.

Basis functions�� Piecewise constant functions, deined in (4.14)�� Piecewise linear functions, deined in (4.15)�� Rao-Wilton-Glisson (RWG) functions, deined in (4.16)�̃� Functions dual to the RWG functions, suh as the BC functions��� Dual piecewise constant functions, deined in (5.1)��� Bufa-Christiansen piecewise linear functions
Variables� Number of unknowns�C Number of cells of the mesh�V Number of (inner) vertices of the mesh�Λ Number of linearly independent solenoidal functions, whih can

be formed with RWG functions�Σ Number of linearly independent non-solenoidal functions, whih
can be formed with RWG functions
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�� Area of the �th cell�� Area of the surface �ℎ Average edge length of the mesh�C CFIE parameter

Abbreviations
ACA adaptive cross approximation
BC Bufa-Christiansen
CFIE combined ield integral equation
CG conjugate gradient
CGS conjugate gradient squared
CMP Calderón multiplicative preconditioner
CSIE combined source integral equation
CW Chen-Wilton
EFIE electric ield integral equation
FDTD inite diference time domain
FEM inite element method
FIT inite integration tehnique
GMRES generalized minimal residual
HB-S hierarhical basis for structured meshes
HB-U hierarhical basis for unstructured meshes
HPD Hermitian, positive deinite
LBB Ladyzhenskaya-Babuska-Brezzi
MFIE magnetic ield integral equation
MLFMM multilevel fast multipole method
MLMDA multilevel matrix decomposition algorithm
PEC perfectly electrically conducting
PMCHWT Poggio-Miller-Chang-Harrington-Wu-Tsai
RF-CMP reinement-free Calderón multiplicative preconditioner
RWG Rao-Wilton-Glisson
SAI sparse approximate inverse
SPD symmetric, positive deinite
SVD singular value decomposition
TLM transmission line matrix method
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Titre :  Solveurs à Convergence Rapide pour Équations Intégrales aux Élément de Frontière en 
Électromagnétisme Computationnel  

Mots clés : Équations intégrales, Electromagnétique computationnelle, Préconditionnement 

Résumé :  L'équation intégrale du champ électrique (EFIE) et l'équation intégrale du champ 
combiné (CFIE) souffrent d'un mauvais conditionnement à haute discrétisation et à basse 
fréquence : si la taille moyenne des arrêtes du maillage est réduite ou si la fréquence est 
diminuée le conditionnement du système se dégrade rapidement. Cela provoque le 
ralentissement ou la non convergence des solveurs itératifs. Cette dissertation présente de 
nouveaux paradigmes permettant l'obtention de solveurs à convergence rapide pour équations 
intégrales; pour prévenir la dégradation du conditionnement nous avançons l'état de l'art des 
techniques de préconditionnement dites de Calderon et de celles reposant sur l'utilisation des 
bases hiérarchiques. Pour traiter l'EFIE, nous introduisons une base hiérarchique pour maillages 
structurés et non-structurés dérivant des pré-ondelettes primaires et duales de Haar. De plus, 
nous introduisons un nouveau cadre permettant de préconditionner efficacement l'EFIE dans le 
cas d'objets à connexion multiples. L'applicabilité à la CFIE des préconditionneurs à bases 
hiérarchiques fait l'objet d'une étude aboutissant à la formalisation d'une technique de 
préconditionnement. Nous présentons aussi un préconditionneur multiplicatif de type Calderon 
(RF-CMP) qui permet l'obtention d'une matrice système Hermitienne, définie positive (HDP) et 
bien conditionnée, sans avoir recours, contrairement aux préconditionneurs existants, au 
raffinement du maillage ni à l'utilisation de fonction duales. Puisque la matrice est HPD, la 
méthode du gradient conjugué peut servir de solveur itératif avec une convergence garantie. 

 

Title :  Rapidly Converging Boundary Integral Equation Solvers in Computational Electromagnetics 

Keywords : Integral equations, Preconditioning, Calderón, Prewavelets, Hierarchical basis 

Abstract : The electric field integral equation (EFIE) and the combined field integral equation 
(CFIE) suffer from the dense-discretization and the low-frequency breakdown: if the average edge 
length of the mesh is reduced, or if the frequency is decreased, then the condition number of the 
system matrix grows. This leads to slowly or non-converging iterative solvers. This dissertation 
presents new paradigms for rapidly converging integral equation solvers: to overcome the ill-
conditioning, we advance and extend the state of the art both in hierarchical basis and in Calderón 
preconditioning techniques. For the EFIE, we introduce a hierarchical basis for structured and 
unstructured meshes based on generalized primal and dual Haar prewavelets. Furthermore, a 
framework is introduced which renders the hierarchical basis able to efficiently precondition the 
EFIE in the case that the scatterer is multiply connected. The applicability of hierarchical basis 
preconditioners to the CFIE is analyzed and an efficient preconditioning scheme is derived. In 
addition, we present a refinement-free Calderón multiplicative preconditioner (RF-CMP) that yields 
a system matrix which is Hermitian, positive definite (HPD), and well-conditioned. Different from 
existing Calderón preconditioners, no dual basis functions and thus no refinement of the mesh is 
required. Since the matrix is HPD—in contrast to standard discretizations of the EFIE—we can 
apply the conjugate gradient (CG) method as iterative solver, which guarantees convergence. 
Eventually, the RF-CMP is extended to the CFIE. 
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