
HAL Id: tel-02011668
https://theses.hal.science/tel-02011668

Submitted on 8 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A journey towards practical fully homomorphic
encryption

Guillaume Bonnoron

To cite this version:
Guillaume Bonnoron. A journey towards practical fully homomorphic encryption. Cryptography
and Security [cs.CR]. Ecole nationale supérieure Mines-Télécom Atlantique, 2018. English. �NNT :
2018IMTA0073�. �tel-02011668�

https://theses.hal.science/tel-02011668
https://hal.archives-ouvertes.fr


THESE DE DOCTORAT DE

 
 
 
L’ÉCOLE NATIONALE SUPERIEURE MINES-TELECOM ATLANTIQUE 

BRETAGNE PAYS DE LA LOIRE - IMT ATLANTIQUE  

COMUE UNIVERSITE BRETAGNE LOIRE 
 

ECOLE DOCTORALE N° 601  
Mathématiques et Sciences et Technologies  
de l'Information et de la Communication  
Spécialité : Informatique 
 

A journey towards practical Fully Homomorphic Encryption 
 
 

 

Thèse présentée et soutenue à à IMT Atlantique, le 15 mars 2018 

Unité de recherche : Lab-STICC (UMR CNRS 6285) et Chaire de cyberdéfense des systèmes navals 

Thèse N° : 2018IMTA0073 

Par 

Guillaume BONNORON 

 

 
 

Composition du Jury :  
 
Président :  Damien STEHLE Professeur, LIP, Ecole Normale Supérieure de Lyon 
 
Rapporteurs :  Frederik VERCAUTEREN Associate Professor, KU Leuven, Belgique 
 Thomas JOHANSSON Professor, Lund University, Suède 
 
Examinateurs Renaud SIRDEY Directeur de Recherche, LIST, CEA Saclay
 Léo DUCAS Chercheur, CWI, Amsterdam, Pays-Bas  
 
Dir. de thèse : Caroline FONTAINE Chargée de recherche CNRS, IMT Atlantique, Lab-STICC 
 
 
Invités 

Adeline ROUX-LANGLOIS Chargée de Recherche CNRS, IRISA, Rennes 
Sylvain LACHARTRE Chercheur, Thales Com&Security, Gennevilliers 
 
 
 
 





Contents

Résumé en français 11

1 Introduction 21
1.1 The Chair of Naval Cyber Defence . . . . . . . . . . . . . . . . . . . . . . . 21
1.2 A walk through the history of cryptology . . . . . . . . . . . . . . . . . . . . 22

1.2.1 What can crypto do for you? . . . . . . . . . . . . . . . . . . . . . . 22
1.2.2 From paper-and-pencil to quantum... and post-quantum! . . . . . . . 22

1.3 This thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.2 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2 Preliminaries 27
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 Some lattice theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.1 General definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.2 Gram-Schmidt Orthogonalisation (GSO). . . . . . . . . . . . . . . . . 30
2.2.3 Fundamental results . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Lattice hard problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.1 Shortest Vector Problem (SVP) and consorts . . . . . . . . . . . . . . 31
2.3.2 Learning with errors (LWE) . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.3 Learning with errors over rings (Ring-LWE) . . . . . . . . . . . . . . 33
2.3.4 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4 Presentation of FHE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4.1 Homomorphic Encryption history (2008-2017) . . . . . . . . . . . . . 34
2.4.2 Dimensioning constraints . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.3 One example: the Fan-Vercauteren scheme (FV) . . . . . . . . . . . . 36

3 Recipe for a new attack 39
3.1 Review of the existing attacks . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.1.1 Against LWE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.1.2 Against Ring-LWE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.2 Mounting our own dedicated attack . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.2 Expanding on reduction . . . . . . . . . . . . . . . . . . . . . . . . . 44



4 CONTENTS

3.2.3 The actual decoding step . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.2.4 Launch the attack, for real . . . . . . . . . . . . . . . . . . . . . . . . 47

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Contributions to lattice reduction 53
4.1 Review of reduction algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Size reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.2 Lenstra-Lenstra-Lovász (LLL) reduction . . . . . . . . . . . . . . . . 54
4.1.3 Blockwise algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.4 Slide reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.5 Performances and output qualities . . . . . . . . . . . . . . . . . . . . 56

4.2 Improving reduction algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.2.1 The fplll days . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.2 Proven CVP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.2.3 BKZ 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.4 2-phases LLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5 Comparing and using schemes correctly 69
5.1 Review of the methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.2 Comparing FV and SHIELD . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.2.1 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.2.2 Unified presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.3 Noise growth equations . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3 Parameters in perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.1 Multiplicative depth for an arbitrary binary circuit . . . . . . . . . . 80
5.3.2 Multiplicative depth for an optimised circuit . . . . . . . . . . . . . . 81
5.3.3 The case of the Negative Wrapped Convolution . . . . . . . . . . . . 82
5.3.4 Parameters for batching . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.5 Keys and ciphertexts sizes . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Smallest error is not always the best . . . . . . . . . . . . . . . . . . . . . . 88
5.5 Implementation performance comparison . . . . . . . . . . . . . . . . . . . . 89
Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6 Construction of a new scheme 91
6.1 Introduction to the fourth generation . . . . . . . . . . . . . . . . . . . . . . 91
6.2 Additional preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.2.1 Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2.2 Circulant LWE and reduction to Ring-LWE . . . . . . . . . . . . . . 92
6.2.3 LWE encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2.4 Simpler error distribution in CLWE for practice . . . . . . . . . . . . 94

6.3 Building the gate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.1 Known building blocks . . . . . . . . . . . . . . . . . . . . . . . . . . 95



6.3.2 New building blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.3 Joining the building blocks . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.4 Heuristic error propagation . . . . . . . . . . . . . . . . . . . . . . . . 103

6.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.4.1 Data representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.4.2 Tweaking the parameters . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.4.3 Performances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7 Closing thoughts 113

Appendices 115
Disseminations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
List of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5



6



Thanks

Mes premiers remerciements vont à ma directrice de thèse, Caroline. La genèse de cette
thèse nous ramène en 2013 (et même avant), aussi je la remercie immensément de m’avoir
permis d’atteindre cet objectif, grâce notamment à tout son soutien et ses encouragements.

Merci beaucoup à Sylvain et Jacques et Vincent de Thales d’avoir aiguillé les réalisations
de cette thèse.

To my reviewers, Frederik and Thomas, I am most grateful for the time they have spent,
reading my prosis and providing their great feedbacks. Merci aux examinateurs et invités,
Damien, Léo, Adeline, Renaud, Sylvain, Caroline de m’avoir permis de restituer ces trois
années de travail.

Comme j’ai pu le constater, l’environnement dans lequel se déroule une thèse est très im-
portant. Aussi je salue et je remercie grandement toute la troupe de la Caverne : Benjamin,
Thibaud, Bastien, David, Yvon, Xavier, Olivier, Étienne et Arthur, et les personnes qui y
sont passées : Pedro, Thomas, Gaël, Erwan, Alex, Guillaume. Merci à Philippe, Patrick,
Caroline, David et Yvon pour l’animation et le cadre qu’ils assurent au sein de notre chaire.
Pour leur patience et leur support, un grand merci à Magalie, Christine et Amélie, sans
qui je n’aurai jamais pu rajouter cette dimension collaborative et m’intégrer si bien dans la
communauté.

Big thanks to my co-authors who with I have always had smooth and fruitful collabo-
ration : Caroline, Vincent, Léo, Max, Damien, Teja, Guillaume.

To my fellow fplll development team members: Martin, Marc, Damien, Léo, Shi,
Mickael, Koen, a big thanks for the interaction we have had during those coding days in
Lyon, interaction that reached beyond lines of codes.

For making my stay there possible, I send my warmest thanks to the CWI staff. Many
thanks to Léo for the invitation, to Max for the collaboration and to the whole crypto team:
Cécile, Pierre, Marc, Serge, Koen, Ronald and the others I forget!

Merci aussi à tous les cryptos français avec qui j’ai eu la chance de discuter au cours
de ces trois ans : Julien, Vincent, Soukayna, Adeline, Thomas, Fabrice, Marie, Thierry,
Pierre-Alain, Renaud, Malika, Phong, Pauline, Chen, Rachel, Kim, Pascal.

Et puisqu’une thèse ce n’est pas que de la recherche scientifique, je voudrais saluer
tous ceux avec qui j’ai partagé des discussions sport, nutrition et bien d’autres encore. La
principale question non élucidée reste de savoir si la thèse c’est paléo !

Enfin mes pensées vont à mes proches sans qui je ne serai, bien sûr, jamais arrivé là. Je
pense à mes parents, mes frère et sœur et tout particulièremnt à ma tendre Lavi avec qui
j’ai le plaisir de partager ma vie.

7



8



Abstract

Fully Homomorphic Encryption has been around since 2009 and the seminal work of Gen-
try, nearly thirty years after the concept was imagined. This kind of encryption is that
which allows to compute on encrypted data, with the guarantee that the outcomes of the
computation, once decrypted, will be the same as if the computation had been done on the
un-encrypted data. Since Gentry’s work, the community has been tremendously dynamic
on this topic and we have seen many scheme proposals which have kept improving the prior
works.

The aim of the thesis is to study the gap that remains between the theoretical proposals
and the use in real life applications of homomorphic encryption. Our contribution is divided
in several topics: the study of the concrete security of the proposals, the comparison of the
most promising schemes on a wide range of use cases and the conception and implementation
of a new scheme.

To begin, we focus our attention to the cryptanalysis aspects. The security of the
homomorphic schemes stands on the ground that the Learning With Errors (LWE) problem
is hard. However, for real use we need more than asymptotic hardness result. We want to
setup the scheme so that we guarantee say 80 or 128 bits of security. Due to the relative youth
of the LWE problem, at cryptographic scale, we still lack hindsight on its concrete security.
As our first task, we studied the practical security of LWE, in the cases of homomorphic
encryption. We derived a special-purpose attack that we implemented. Our work improved
upon the state-of-the-art at that time and our attack showed unexpectedly good performance
for some cases.

Once we had gained confidence on how to setup a homomorphic scheme correctly, we
could go on to our next task: comparing the existing schemes. Indeed, the details of the
different proposals are very technical and for people from outside the cryptographic commu-
nity (e.g. implementers) it is very hard to know which scheme is the most appropriate. So,
we join effort with Vincent Migliore to conduct a comparative survey of the most promising
schemes as of 2016. Our aim was to provide a most comprehensive study on different use
cases, under different implementation constraints so that we could say which scheme stands
out for which situation, and so that implementers could find ready-to-use information.

Last line of work in this thesis, the conception and implementation of a new scheme.
I visited at the CWI in Amsterdam in Spring 2017 and worked with Léo Ducas and Max
Fillinger on an improvement of FHEW. Our new proposal belongs to the generation of the
bootstrapped schemes, that are those where the noise is kept constant between the gates.
With our proof-of-concept implementation we can evaluate a binary gate on six input bits
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with one output bit in roughly six seconds.

Since 2015, we and the community have moved a long way towards practical homomor-
phic encryption. With the recent performance and the maturity that has been gained, we
can expect homomorphic encryption use in real world application within five to ten years.

10



Résumé en français

Introduction

Contexte

Cette thèse s’inscrit dans le cadre de la Chaire de cyberdéfense des systèmes navals1. Fondée
en 2014 autour de deux partenaires académiques Télécom Bretagne (aujourd’hui IMT Atlan-
tique) et l’École Navale ainsi que deux partenaires industriels Thales et DCNS (aujourd’hui
Naval Group), elle a pour objectif d’organiser un effort de recherche sur les problèmes de
cyberdéfense dans l’environnement naval, d’abord militaire mais aussi civil. Nous sommes
plusieurs doctorants à travailler sur des sujets de cyberprotection, cyberdéfense et cyberré-
silience. Mon sujet plus particulièrement s’intéresse à la protection des données.

Organisation

L’objet de cette thèse est d’étudier dans quelles mesures la cryptographie homomorphe
pourrait être utilisée à bord des navires. Celle-ci permettant l’utilisation de données chiffrées
dans un programme, cela consisterait en un obstacle supplémentaire pour un attaquant
souhaitant voler des données opérationnelles. Étant donné le dynamisme de ce sujet au
sein de la communauté cryptographique, nous avons focalisé notre attention sur trois sujets
principaux, qui seront repris dans leur ordre de traitement chronologique dans ce manuscrit.

• D’abord, nous avons endossé un rôle d’attaquant afin d’avoir une bonne compréhension
des façons de casser cette cryptographie. Cela nous a conduit à imaginer une nouvelle
attaque, reposant sur des résultats existants, mais dans un cadre plus ciblé permettant
d’améliorer l’état de l’art. Ce résultat a fait l’objet d’une publication à IndoCrypt 2017
(chapitre 3). Ce travail nous a permis de rejoindre la communauté de cryptanalyse
algorithmique autour notamment du développement de la bibliothèque de fonctions
fplll (chapitre 4).

• Avec la maîtrise du volet attaque, nous avons donc décidé de faire un état de l’art des
schémas homomorphes existants et de les comparer. Ce travail, effectué avec Vincent
Migliore, a vocation à faciliter le travail aux implémenteurs, pas nécessairement cryp-
tographes, en leur fournissant notamment des tables de paramètres (sûrs et corrects)
précalculées, adressant de multiples cas d’usages (chapitre 5).

1https://www.ecole-navale.fr/Chaire-de-cyberdefense-des.html
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• Enfin, lors d’un stage doctoral au CWI à Amsterdam, nous avons travaillé avec Léo
Ducas et Max Fillinger à la construction et implémentation d’un nouveau schéma de
chiffrement homomorphe, généralisant un schéma existant en lui apportant de multiples
améliorations (chapitre 6).

Nous invitons le lecteur à parcourir le chapitre 2 pour les quelques notations et définitions
qui pourraient être nécessaires à la lecture de ce résumé.

Présentation de la cryptographie homomorphe

Imaginée en 1978 [RAD78], la cryptographie complètement homomorphe n’a été réalisée
pour la première fois qu’en 2009 par les travaux de Gentry [Gen09]. Cette cryptographie a
pour but de permettre la réalisation de traitement sur des données chiffrées de telle façon
que le résultat puisse être déchiffré et soit identique au résultat qui aurait été obtenu si ce
traitement avait eu lieu sur les mêmes données non chiffrées. C’est le caractère homomorphe
du traitement.

Depuis 2009, de nombreux schémas homomorphes ont vu le jour, améliorant les per-
formances ou réduisant les hypothèses nécessaires à leurs sécurités. Une première famille de
schémas repose sur l’utilisation d’entiers [vDGHV10, CMNT11, CNT12], une autre, plus pro-
metteuse, sur des réseaux euclidiens (lattices en anglais) [BV11b, BGV12, FV12, BLLN13].
Tous ces schémas constituent la deuxième génération. C’est la plus mature et ses perfor-
mances sont très intéressantes, nous avons donc commencé notre travail avec ses schémas.
Ensuite [GSW13, KGV16] ont introduit une troisième génération de schémas et enfin, les
propositions les plus récentes apparues au cours de cette thèse [DM15, CGGI16, CGGI17]
forment ce que nous pouvons appeler la quatrième génération. Notre travail au CWI s’inclut
dans cette dernière vague.

Un exemple : le schéma de Fan-Vercauteren

Introduit en 2012 comme une généralisation sur anneaux du schéma [Bra12], le schéma de
Fan et Vercauteren [FV12], que nous appellerons FV, a rencontré beaucoup de succès. C’est
notamment le schéma choisi par Microsoft Research pour leur bibliothèque de fonctions
[LCP17]. On retrouve également une implémentation de FV sur NFLlib [Cry]. Simple à
énoncer et reprenant les principaux éléments de sa génération, c’est ce schéma qui nous a
servi comme porte d’entrée, pour notre travail de cryptanalyse notamment.

Le schéma. Pour la description de FV nous avons besoin d’un anneau R de dimension n.
Pour une exposition facile, le choix est souvent fait de définir R = Z[x]/(f(x)) où f(x) =
xn+1 est un polynôme cyclotomique et donc n une puissance 2. De plus nous restreignons à
Rq, l’anneau composé des éléments de R aux coefficients dans ]− q/2, q/2] pour un module
q fixé.

• Génération de clés : La clé secrète sk est un élément de Rq, généralement petit. La clé
publique est pk ∈ R2

q définie par :

pk = (p0,p1) = (−(a · s+ e) mod q, a)
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où s est la clé secrète, a et e sont tirés aléatoirement, uniformément dans Rq pour a et
selon une gaussienne discrète d’écart type σ dans R pour e.

• Chiffrement : l’ensemble des clairs est l’anneau Rt pour un entier t ≥ 2. Le chiffrement
d’un message m ∈ Rt se réalise comme suit :

c = (c0, c1) = (�q/t� ·m+ p0 · u+ e1,p1 · u+ e2)

où u est tiré aléatoirement uniforme dans R2 et e1, e2 sont tirés selon une gaussienne
d’écart type σ dans R.

• Pour déchiffrer, il suffit de calculer �(c0 + c1 · s)× t/q� pour retrouver m.

La partie intéressante est donc comment les opérations se déroulent sur les chiffrés.
Donnons nous ca et cb des chiffrés de ma et mb.

• L’addition se fait simplement terme à terme

c+ = (c0
+, c1

+) = (c0
a + c0

b, c1
a + c1

b) ∈ R2
q

Il est aisé de vérifier qu’il s’agit bien d’un chiffré de ma +mb.

• La multiplication est un peu plus complexe puisque l’analogue à l’addition terme à
terme, fait apparaître une troisième terme. Il est donc nécessaire de réaliser une opération
de relinéarisation afin de retrouver un chiffré valide. Cette relinéarisation, nécessite du
matériel de clés supplémentaire, en plus de la clé publique, que l’on nomme simplement
clé de relinéarisation.

Grâce à cette brève présentation, on peut noter que FV est paramétré par différentes
variables : l’anneau R, sa dimension n, un module q et un écart type pour l’erreur σ. Il
en est de même pour la plupart des schémas homomorphes et même plus largement de la
cryptographie à base de réseaux euclidiens.

Conception d’une nouvelle attaque
Notre premier travail de recherche a consisté à faire l’état des lieux des attaques possibles
contre les schémas de chiffrement homomorphe afin de déduire par la suite des paramètres
sûrs pour une utilisation maîtrisée. Le problème difficile principal sur lequel repose la plupart
des solutions cryptographiques sur les réseaux euclidiens est le problème Learning with Errors
ou LWE [Reg05]. Celui a pour but d’apprendre un secret masqué au milieu d’équations
linéaires bruitées. Plus précisément, étant donné une dimension n, un module q et une
distribution de probabilités χ d’écart type σ, fixons s = (s1, ..., sn) et construisons m couples
de la façon suivante :

(ai, �ai · s�+ ei mod q)

où chaque ai et ei sont constitués de n coordonnées tirées uniformément aléatoires pour ai et
selon la distribution de probabilités χ pour ei. Ces m échantillons sont rendus publics et deux
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problèmes en découlent : Decision-LWE (décider si ces m échantillons ont été construits ainsi
ou de façon complètement aléatoire) et Search-LWE (retrouver s). Un problème similaire a
été défini avec des anneaux, Ring-LWE [LPR10] pour lequel il existe également une variante
décisionnelle et une variante recherche. Il a été démontré de nombreux résultats garantissant
que ces problèmes sont difficiles asymptotiquement. Il reste donc à estimer leurs difficultés
concrètes étant donné un jeu de paramètres (n, q, σ) fixé. Pour cela, il convient d’analyser
les performances des différentes méthodes de résolution de ces problèmes.

Juste avant le début de cette thèse, Albrecht et al. ont réalisé une excellente synthèse
pour LWE [APS15]. Plus tard Peikert en a également réalisé une pour Ring-LWE [Pei16].
En nous appuyant sur ces travaux, nous avons pu nous intéresser de plus près aux perfor-
mances de ces attaques sur des instances avec des paramètres propres à la cryptographie
homomorphe. En effet toutes ces attaques sont génériques, or comme nous le verrons par la
suite en détails, le caractère homomorphe impose des contraintes sur le triplet (n, q, σ) qui
pourraient être mises à profit par un attaquant.

La nouvelle attaque

Profitant d’une erreur petite et d’un module trÈs grand, nous avons composé une attaque
en suivant le modèle de celle de Bai et Galbraith [BG14]. Ces résultats ont été présentés lors
de la conférence IndoCrypt 2017.

Plongement. Notre montage diffère sur quelques points. Le plongement n’est pas réalisé
exactement de la même façon. Nous le réalisons de la façon suivante

B =

�
In −A
0 qIn

�
∈ Z2n×2n

Alors que Bai et Galbraith le font comme suit

M =

�
In −A
qI2n

�
∈ Z3n×2n

devant ensuite en calculer la forme normale de Hermite pour obtenir une matrice de rang
complet. Notre solution est donc sensiblement plus efficace et nous donne une base très
particulière (triangulaire supérieure, par bloc, avec l’identité sur la diagonale à un facteur
près). Cette forme particulière s’avère en effet utile pour l’étape suivante de l’attaque : la
recherche de vecteur le plus proche.

Réduction de réseaux. Une recherche de vecteur le plus proche passe nécessairement
par une phase de réduction du réseau concerné afin que la base soit favorable à la recherche
effective. Plusieurs algorithmes s’offrent à nous pour cette opération : LLL [LLL82] de faible
complexité mais dont la qualité de réduction est moyenne ou BKZ [SE94] moins rapide mais
produisant des bases de meilleure qualité. Nous avons analysé lequel de ces algorithmes est
le plus pertinent pour notre cas ainsi que les meilleurs paramètres à lui définir. Il s’est avéré
qu’un LLL faible, donc très rapide, nous permettait de réussir nos attaques.
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Énumeration. Une fois la base réduite, plusieurs algorithmes existent pour réaliser une
recherche de vecteur proche. Nous avons opté pour l’énumération [LN13]. Cette méthode est
la meilleure pour les instances accessibles aujourd’hui mais nous savons que les méthodes de
crible sont plus performantes asymptotiquement et pourraient le devenir aussi en pratique
[HK17].

Expériences réelles

Après avoir assemblé de façon théorique les différents éléments de cette attaque, nous en
avons réalisé une implémentation pour étudier ses performances pratiques. Notre cible d’at-
taque a été l’implémentation de Lepoint [Lep14]. Si nous devions faire les mêmes expériences
aujourd’hui, notre choix porterait sur la bibliothèque SEAL [LCP17] qui, elle, a vocation à
être réellement utilisée.

Pour l’attaque, nous avons utilisé la bibliothèque fplll [dt17] pour la réduction des
réseaux. Le reste a été implémenté par nos soins. Par la suite nous avons découvert que
fplll avait également du code « expérimental » pour l’énumération avec lequel nous avons
travaillé par la suite.

Résultats. Ces expériences, lancées contre des centaines d’instances de FV avec différents
paramètres de dimension, module et erreur nous ont d’abord amenés à considérer la réduction
de réseaux. En effet, dans l’idéal les efforts fournis sur la réduction doivent être équilibrés
par rapport à ceux fournis sur l’énumération. Or il s’avère qu’avec nos premiers choix (BKZ
notamment), la quasi-totalité du temps était passée sur la réduction. Nous avons donc évolué
petit à petit vers une réduction de plus en plus faible jusqu’à un faible LLL (η = 0.71). La
partie énumération, quant à elle, resta très rapide également. De façon surprenante, nous
n’avions nul besoin d’énumérer puisque le premier candidat (la solution de Babai [Bab86])
était presque toujours celle que nous cherchions.

Nous avions donc entre les mains une attaque composée uniquement de procédures aux
coûts polynomiaux en temps. Cela aurait pu être un vrai problème pour la cryptographie
homomorphe. Toutefois, après avoir longuement approfondi l’analyse du comportement de
notre attaque, nous avons établi que celle-ci ne passerait pas à l’échelle et n’inquièterait pas
des instances proposant 80 bits de sécurité par exemple.

Bien que les retombés de notre travail soit limité, la communauté l’a suivi de très prêt,
puisque c’était un des premiers de ce genre. L’an dernier Albrecht [Alb17] a présenté un
travail similaire aux résultats plus forts.

Contribution en réduction de réseaux

Du fait de notre investissement sur le sujet de la réduction de réseaux pour la compréhen-
sion de notre attaque, nous avons rejoint la communauté gravitant autour du projet fplll
[dt17], notamment lors de rencontres de programmation : les fplll days. Ces évènements
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réunissent deux fois par an les intéressés pour faire avancer le projet : ajout de fonctionnali-
tés, optimisation, documentation... Nous avons donc pu apporter notre concours à ce projet
à ces occasions.

Améliorer la recherche de proches vecteurs. Réel besoin pour notre attaque, cette
fonction que nous avions découverte par hasard n’était pas recommandée à l’usage. Nous
avons donc consacré du temps à la rendre correcte. Ces problèmes étaient déjà évoqués par
Pujol [Puj08].

BKZ 3. Un grand nombre d’heuristiques ont été proposées pour améliorer les performances
de BKZ en pratique. Elles ont été regroupées sous le nom de BKZ 2.0 [CN11]. Ces résultats
ayant déjà quelques années, nous avons travaillé à plusieurs lors des journées fplll pour
tester de nouvelles heuristiques et ouvrir le chemin vers un futur « BKZ 3.0 ». De multiples
techniques ont été mises à l’épreuve, certaines déjà intégrées d’autres pas encore. Il est encore
trop tôt pour réaliser une publication.

LLL en deux phases. Phénomène déjà constaté auparavant, nous avons pu mettre en
évidence lors de nos multiples expériences avec l’algorithme LLL, qu’il était souvent plus
rapides de le réaliser en plusieurs passes, avec des paramètres moins exigeants que ceux
souhaités en tant que pré-calculs. Il ne s’agit pas d’une vérité universelle mais les gains que
nous avons ne sont pas négligeables. Aussi il est intéressant d’en faire l’expérience lors de
réduction de réseaux avec ces propriétés.

Choix de l’algorithme et des paramètres

Forts de ces expériences en cryptanalyse, nous avons pu nous tourner avec confiance vers la
tâche suivante, celle du choix du meilleur cryptosystème homomorphe et de ses paramètres.
En commun avec Vincent Migliore, nous avons donc effectué cette étude comparative dans
le but de fournir un contenu d’accès facile pour les implémenteurs. Ce travail a été accepté
pour un numéro spécial des Transactions on Computers de l’IEEE sur « l’ingénierie crypto-
graphique dans le contexte post-quantique » [?].

Périmètre de l’étude

Ce travail débuté à l’été 2016 nous avons d’abord considéré les schémas les plus prometteurs
à cette époque, c’est-à-dire YASHE’ [BLLN13], FV [FV12] de deuxième génération ainsi
que SHIELD (ou Ring-GSW) [KGV16] et F-NTRU [DS16] de troisième génération. Plus
tard, suite à différentes attaques [ABD16, KF17], nous avons dû retirer YASHE’ et F-NTRU
qui n’était plus viable. Notre étude permet néanmoins de mettre en regard des schémas de
deuxième et troisième génération sur des cas très concrets.

Nous nous sommes ensuite donnés plusieurs cas d’usages afin de mettre en évidence
les avantages et inconvénients des schémas selon les situations. Il en découle de nombreuses
tables de paramètres. Les valeurs des paramètres permettent ensuite de se faire un avis sur le
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coût d’utilisation de chacun des schémas. En effet les tailles de clés ou chiffrés en dépendent
directement, tout comme les temps de calcul, eux aussi liés à la taille des données manipulées.

Réalisations

Pour réaliser cette étude nous avons donc remis les schémas sous un formalisme commun, afin
d’en dériver des équations de fonctionnement comparables. Calculer les paramètres revient
donc à trouver les valeurs qui satisfont à la fois ces équations de fonctionnement et les
conditions de sécurité.

Pour ce faire, nous avons donc réalisés un script de recherche. Celui-ci inclus les équations
de fonctionnement des schémas et s’interface avec l’estimateur de sécurité de Albrecht [Albb].
Celui-ci étant toujours mis à jour à mesure que de nouvelles techniques d’attaques sont
publiées il nous paraissait important de pouvoir maintenir nos tables à jour facilement.

Résultats

Chaque situation mérite une attention particulière, néanmoins plusieurs tendances se dé-
gagent de l’ensemble de nos résultats.

1. Pour des petites profondeurs multiplicatives, FV présente de plus petits paramètres,
alors que si le circuit à évaluer le permet SHIELD sera meilleur pour des profondeurs
supérieures. Le changement a lieu autour d’une profondeur 8.

2. Dans le cas où du batching serait possible ou souhaité, FV est généralement meilleur
que SHIELD. Le batching consiste à évaluer un même circuit sur plusieurs données en
même temps, grâce à un empaquetage de plusieurs clairs dans un chiffré unique.

Ce travail a comporté de nombreux challenges, se tenir à l’état de l’art en est un. Il
est également difficile de comparer des schémas dont les structures ne comportent que peu
de points communs. Notre travail est un des premiers du genre et appelle à être prolongé
par une comparaison des performances réelles des schémas. Plusieurs sont déjà implémentés
au sein de bibliothèques de fonctions open-source (Helib, SEAL, ...). Nous avons également
initié l’implémentation de SHIELD en utilisant NFLlib pour permettre une comparaison la
plus simple possible dans un travail futur.

Construction d’un nouveau schéma
La dernière contribution principale de cette thèse s’attèle à être force de proposition dans
la dynamique communautaire de cryptographie homomorphe. Après avoir éprouvé la sécu-
rité des schémas existants et comparé deux des propositions les plus prometteuses, nous
avons travaillé à la conception et implémentation d’un schéma de dernière génération. Cette
contribution est le fruit de mon séjour de recherche au sein du CWI d’Amsterdam. Dans
cette collaboration avec Léo Ducas et Max Fillinger, j’ai assuré la partie design et réalisation
de l’implémentation de ce schéma.
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Un schéma de quatrième génération

Issue des travaux initiés par FHEW [DM15], la dernière génération des schémas complète-
ment homomorphes apporte un profond changement de paradigme. Avant les dimensions du
circuit à évaluer jouait un rôle prédominant dans le choix des paramètres des schémas. En
effet le « bruit » intrinsèque aux chiffrés augmentant au cours de l’évaluation, il est nécessaire
de choisir les paramètres pour que ce bruit n’empêche pas un déchiffrement correct. Or les
schémas de quatrième génération ont pour caractéristique principale de maintenir un niveau
de bruit constant au cours de l’évaluation du circuit. Cette dernière génération est encore
très jeune et de nombreuses améliorations théoriques sont possibles. Notre travail est une
extension de FHEW, orthogonal à celle proposée par [CGGI16, CGGI17].

L’évolution principale introduite dans ce schéma est l’utilisation de deux accumulateurs
homomorphes dans deux anneaux de dimension modérée. Puis, grâce un produit tensoriel
avant l’extraction de fonction, il est possible de rétablir une grande expressivité, tout en
maintenant des coûts globaux très modestes. L’implémentation que nous discutons ci-dessous
permet de réaliser des évaluations de portes logiques binaires sur 6 bits d’entrée en 6 secondes.
La structure du schéma est présenté dans la figure 1.

De nombreux challenges pour l’implémentation

La figure 1 illustre bien l’hétérogénéité des objets à manipuler pour réaliser la porte dans sa
globalité. Mes trois mois passés au CWI ont été dédié à réaliser une meilleure implémentation
possible du schéma afin qu’il soit facilement évolutif (donc compréhensible par une personne
extérieure) mais aussi performant pour révéler tout le potentiel des idées théoriques.

La réalisation a donc été faite en C++11 et l’usage de templates est la principale tech-
nique utilisée pour répondre aux objectifs de modularité et de performances. Des routines de
bas-niveau ont été implémentés pour l’arithmétique modulaire et la manipulation d’éléments
d’anneaux omniprésentes. Ensuite les objets cryptographiques en font usage.

Seules les transformés de Fourier, nécessaires aux multiplications d’éléments d’anneaux,
sont réalisés par une bibliothèque externe, FFTW. Celle-ci nous a d’ailleurs apporté une
contrainte de stabilité numérique. Étant donné que les transformés ont lieu sur des nombres
à virgule flottante en double précision (i.e. 53 bits de mantisse), nous devons nous assurer
que nos calculs ne dépassent jamais ce seuil. Le risque serait de faire apparaître une erreur
supplémentaire dans le cryptosystème. Comme nos valeurs de modules pour l’arithmétique
modulaire peuvent atteindre de très grandes valeurs (jusqu’à 256), nous devons dans ces cas
scinder les éléments d’anneaux en leur partie de poids fort et celle de poids faible, procéder
aux transformés sur chaque moitié et réaliser des multiplications terme à terme correctement
(à la Karatsuba).

Performances

Notre première implémentation fonctionne pour 6 bits d’entrée avec les performances sui-
vantes :

• Temps de génération de clés (une fois par programme) : 38 secondes ;
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Sur la partie gauche, on voit les k bits d’entrée m1, · · · ,mk qui sont combinés pour former
m ∈ Zt. Sur le côté droit, on voit les deux Accumulateur Homomorphe ExtExpInner, qui
réalise la partie linéaire Lc du calcul bootstrappé en mode CRT. Le résultat du tenseur
alimente la partie non-linéaire du calcul Nf : x �→ f(�tx/q� mod t), i.e. FunExpExtract, où
f est la fonction évaluée homomorphiquement. La sortie peut être directement fournie en
entrée d’une porte suivante.
Les boites grises représentent les opérations, les boites blanches carrées les chiffrés, et celle
arrondies les diverses clés.

Figure 1 – Aperçu du schéma.
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• Temps d’évaluation d’une porte : 6.4 secondes ;

• Consommation mémoire : 9.2 Gio.

Le temps de la porte se décompose en 0.60 s pour chaque accumulateur (qui pourraient
être calculés en parallèle), 4 s pour un changement de clés dans l’extraction de fonction, et
0.55 s pour les opérations liés au bit de sortie. Il serait donc possible de réaliser une fonction
binaire de 6 bits vers 6 bits en une dizaine de secondes.

Perspectives

Quelques astuces d’implémentations pourraient encore être réalisées pour améliorer quelque
peu les performances. En revanche, les techniques de RNS, utilisées récemment sur FV,
pourraient quant à elles améliorer grandement les performances de notre schéma. Compara-
tivement à TFHE [CGGI17], notre solution n’est en général pas la meilleure. Toutefois sur
certains types de portes comme les portes à seuil, notre approche semble meilleure.
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Introduction

Computer science is no more about computers
than astronomy is about telescopes

Edsger W. Dijkstra
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1.1 The Chair of Naval Cyber Defence

This thesis work is an integral part of the overall research effort conducted within the Chair
of Naval Cyber Defence1. This industrial chair has been launched in 2014 as a partnership
between academic institutions and industrial players of the defense sector. Thales Group
and Naval Group (formerly DCNS) are joined by the Institut Mines-Télécom Atlantique
(formerly Télécom Bretagne) and the French Naval Research Institute and together they
cover all scientific, academic and applications aspects. The motivation for this chair is to
have a scientific approach to bring new solutions for improving cybersecurity on military
ships.

Cyber-security is usually divided into cyber-protection, cyber-resilience and cyber-
defense. The chair consists in several doctoral and post-doctoral students whose works cover
this whole spectrum. The present work is about cyber-protection and the target application

1in French: https://www.ecole-navale.fr/Chaire-de-cyberdefense-des.html
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of this thesis is to secure data aboard ships, military ships as a first motive but commercial
ships as well.

1.2 A walk through the history of cryptology

1.2.1 What can crypto do for you?

Cryptology, from the Greek κρνπτoς (secret) and λoγια (science) is the study of means to
protect information (to use only broad terms). It is the union of cryptography (the creative,
constructive part) and cryptanalysis (the assessment, attack counter-part). The first example
of cryptography in history is the Caesar cipher, used by Emperor Julius Caesar during his
conquests, more than two thousands years ago. The cryptanalytic technique that breaks this
cipher is called frequency analysis and dates back from the 9th Century with Al-Kindi’s work.
Since these times, cryptologic work has been a cat-and-mouse game where cryptographers
build more and more clever ways to protect information that cryptanalysts aim at breaking.

The overall protection objective is usually partitioned into three sub-objectives whose
acronym C.I.A. is easy to remember. C stands for confidentiality: we do not want an eaves-
dropper to get the content of a protected exchange, I for integrity: the communication
should not be altered by errors or attacks, and A for availability, legitimate entities should
be able to access the information. In cryptology we call primitives the elementary build-
ing blocks that together form a complete protection solution. We refer here loosely about
entities or eavesdropper, we shall in this work use the term user(s) when talking about the
legitimate participants and attacker for the malicious, adverse party whose aim is to break
the protection to some extent.

From an application viewpoint, we wish to limit the extra costs induced by the crypto-
graphic protection to the minimum. As we shall see in this work, this is not always a trivial
objective.

1.2.2 From paper-and-pencil to quantum... and post-quantum!

Let us now quickly review the last two thousands years of outstanding advances in cryptology.
The paper-and-pencil area spans from Caesar cipher to the German AFDX cipher of the First
World War. Depending on the technique, we speak about code or cipher. The former is about
replacing meaningful word by others that only the legitimate recipient can understand, while
the latter is about modifying the message content into something scrambled using substitution
or mixing. A famous example of a code is Verlaine’s poem Les sanglots longs des violons
de l’automne that was broadcast by the BBC to French resistant forces during the Second
World War. When the next verse was added Blessent mon cœur d’une langleur monotone,
the message yields: "This is D-Day!". The Caesar cipher is an example of substitution, each
letter is replaced by the one three position after in the alphabet: A becomes D, B becomes E
and so on. So "This is D-Day" would be ciphered as WKLV LV G-GDB. Another example
of cipher, using mixing only, say swap two consecutive letters in the message, would change
our message into "HTSI SI D-DYA".
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Of course none of these toy techniques are secure by today’s standards, yet they have
been state-of-the-art in their times. The Caesar cipher is called a mono-alphabetical sub-
stitution because encryption is about taking a letter replacement from one unique alphabet
(the regular alphabet shifted by three in our example above). Another famous cipher of
that kind is called Polybe Square which is about putting all the letters into a square and
replacing them by the pair (row number, column number). These techniques were only bro-
ken by Al-Kindi’s work on frequency analysis in the 9th Century when he realised that the
most frequent letter in the original text remains the most frequent letter (or number) in the
ciphertext. Thus, if you know the original text language you can easily decrypt the message.
After mono-alphabetical substitution, Vigenère introduced the poly-alphabetical cipher: the
Vigenère cipher. This time, the letters of the message are not shifted by the same number
of positions, but by a changing number of positions. For example the first would be shifted
by eight positions, the second by twelve positions, the third by five, and the next by eight
again and you loop like this for the whole message. This way, two identical letters in the
ciphertext are not necessary the same in the cleartext. Analysing frequencies becomes more
difficult. Now the attacker shall consider statistics on one every n letters in the ciphertext.
Indeed in our example, every third letter is shifted by the same number of positions (eight,
twelve or five). The first challenge is to find the number of shifts (i.e. the length of the key)
before doing frequency analysis. The extreme version of this poly-alphabetical cipher, when
each letter is shifted by an unpredictable number of positions (no loops and randomness), is
called Vernam Cipher and is the only perfectly secure cipher ever to be built. Indeed this
is perfectly secure as demonstrated by Shannon in his seminal work on information theory.
The drawback of this cipher is that the key (the shifts to apply) is as long as the message,
doubling the cost or time of the communications.
Another famous cryptographic proposal from the pencil-and-paper time is the AFDX, later
ADFVX cipher. It is similar to the Polybe Square in that you write the letters in a 5 × 5
or 6 × 6 square whose columns and rows do not bear numbers but letters (A, F, D, X and
V). To encrypt you apply this substitution, followed by a mixing operation on the resulting
letters. This cipher was famously used in the First World War by the Germans and broken
by the French George Painvain, only with pencil and paper.
The last famous cryptosystem to mention from the pre-computer area is the Enigma machine,
again an extraordinary invention from the Germans that gave many troubles to the Allies.
This mechanical device used rotors and wiring to apply a poly-alphabetical substitution to
the messages and was not broken in the cryptographic sense. Indeed what was successfully
used to recover messages was the brute-force technique that attempts every possible key
against ciphertexts whose clear content was partially known. This brute-force attack was
made possible by the Bombe of Alan Turing.

Later on, the development of communication devices and computers increased the need
for information protection and provided new capabilities to protect. . . and to attack. The
major problem of the techniques above is that they do not scale easily to world-wide com-
munication. In all of them, the users have to share a piece of secret information (shifts, rotor
configurations. . . ), that we generally call the secret key. This means that, prior to any com-
munication, there must have been a key exchange between the users. For military or highly
critical communications, it is worth paying someone to physically deliver some key materials
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(think about a carrier handcuffed to a locked suitcase for example) to support some amount
of communication. But that cannot apply to private companies or individuals that would
want to engage in secure communications. The solution to this was brought by Diffie and
Hellman in 1976 (it was also invented by Cocks, from the British Intelligence Service, but the
information was declassified only in 1997). The key exchange protocol allows two users to
establish a common secret, using only public information exchanges. The first cryptosystem
by Rivest, Shamir and Adleman (RSA) in 1978 provides another solution: it uses one public
key to encrypt and another private to decrypt. Like this, everybody can encrypt a message
to someone, who will be the only one able to retrieve the content. This is called asymmetric
cryptography as opposed to symmetric cryptography. This marks the beginning of modern
cryptography.

Today, cryptography provides many different primitives: symmetric encryption, asym-
metric encryption, signature, key exchange, zero knowledge, random number generation...
There are several standardised algorithms for these building blocks and, following the princi-
ples from Kerckhoffs, their design has been publicly reviewed and assessed by cryptographic
experts for some time before being widely deployed. These proposals provide security proofs.
Some are information theoretical results, some are hardness reductions to problems known
or proven to be hard. The cryptosystem RSA, for instance, is believed secure because it
somehow relates to the problem of factoring big integers, which has been a target from
number theorists for centuries. Hence, it is assumed that no one will come up with an un-
expectedly efficient algorithm to solve it. Thus, breaking RSA should be difficult. Hence
most cryptographic components today rely on few of such hard problems to ensure security.
The problems are: integer factorisation, discrete logarithm in cyclic groups. The only 100%
proven secure algorithm is the Vernam cipher, also referred to as the One-time pad.
However, the ground-breaking result from Shor in 1994 came shaking the status-quo. His
contribution known as Shor’s algorithm is an efficient algorithm that works against both
the discrete logarithm and the factorisation problem. . . but requires a quantum computer
to work. Therefore we stand today with the knowledge that all deployed cryptographic
components could be broken the day when a quantum computer is up and running Shor’s
algorithm. This is why, we see the emergence of post-quantum cryptography, meaning re-
sistant to quantum attackers. It should not be mixed up with quantum cryptography which
uses quantum properties to achieve security, for example quantum entanglement can be used
to perform perfectly secure key exchange. This post-quantum cryptography has now been
under study for several years, with first steps in 1978 with McEliece or 1996 with Ajtai. The
U.S. National Institute of Standards and Technology (NIST) has annonced in 2015 a call for
proposals of quantum resistant primitives, like it did in the past for other primitives, mostly
with success.
Cryptographers turn to different mathematical objects in order to achieve quantum resis-
tance, lattices are among them. In addition, lattices allow to build more advanced primitives
such as homomorphic encryption. This kind of cryptography had been conjectured in 1978
but only realised in its full version, with lattices, in 2009 by Gentry. Homomorphic encryp-
tion is about encrypting data in such way that, once encrypted, they can still be operated
upon. And when you decrypt the result of the computation, it yields the same result as if
the computation had been done on the un-encrypted data. It was originally called privacy
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homomorphism because it allows users to have their data being used by a third-parties (e.g.
service provider) while keeping their data private. In a context of medical sensors or external
storage and services (aka cloud), this cryptographic feature brings timely solutions.

1.3 This thesis

1.3.1 Outline

Fully Homomorphic Encryption (FHE) is therefore today a trendy topic, with high expectan-
cies put into it, attracting much attention in the cryptology community. The aims of the
present work is to participate in the effort to make FHE practical and study the added value
such cryptography could bring to secure information aboard military ships.
Because of the pace of FHE improvements, the overall context has been moving quite a
lot between the beginning and the end of this work. Nevertheless, we have conducted our
study to the end. The approach we had was the following. First, we reviewed the most
promising proposals, aiming first at understanding their security. Indeed the foundations of
lattice-based cryptography are quite young, in cryptographic scale. Several years are usually
needed for hardness assumptions to be thoroughly assessed. We contributed to this crypt-
analytic effort, with a focus on lattice instances below FHE and lattice reduction. Next,
we maintained a technological watch and performed a comparison of the best candidates
as of end of 2016, with complete analysis of the costs and settings of each candidate, with
real use cases in mind. Finally, we had the opportunity to work on the latest type of FHE
scheme and developed a new FHE scheme, improving upon the state-of-the-art and provided
a proof-of-concept implementation.

1.3.2 Roadmap

This manuscript follows to some extent the chronological order of the work of these last
years.

• First in Chapter 2, we shall set the definitions and notation for the lattice theory we
use in this work, together with a formal description of homomorphic encryption.

• Then we will start with our cryptanalysis efforts. Reviewing the state-of-the-art of
lattice attacks, we shall present our special-purpose attack in Chapter 3. This work led
to a publication in IndoCrypt 2017 [BF17]. Then in Chapter 4, as key component, we
shall focus on lattice reduction, whose performance is directly linked to the attacker’s
advantage, and to which we contributed especially with involvements in the development
of an open-source library fplll, which is included in Sage.

• Next, we move to our experience on choosing secure parameters for FHE in Chapter
5. We conducted a comparative study of the most promising schemes. Aiming at
families of use-cases, we derived the concrete parameters of the schemes. We could then
compare them depending on the scenario and provide guidance to the community of
implementers on how to correctly setup the cryptography in their designs. This work has
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been published in a special issue of IEEE Transations on computers on Cryptographic
Engineering in a Post-Quantum World [?].

• Finally, improving upon the state-of-the-art, we developed a new scheme, more effi-
cient, together with an open-source implementation, see Chapter 6. It was accepted to
Africacrypt 2018 [?].
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2.1 Notation
In the thesis, we use the common mathematical sets, N, Z, and R, respectively the natural
integers, the integers and the reals. For a real a, we note |a| the absolute value of a and
also �a�, �a� and �a� respectively the rounding of a to the nearest integer smaller than a,
bigger than a, and closest to a. For a positive integer q > 0 we denote Zq the set of integers
(−�q/2�, . . . , �q/2�].
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Our log function is the logarithm in base 2.
For n > 0 integer, the matrix In refers to the identity matrix of size n. Capital bold

letters are used for matrices, e.g. B, and small ones for vectors, e.g. v. We similarly write
B for a matrix or for the ordered family of (row) vectors B = (b1,b2, . . . ,bn) using bold
subscripts. For a vector v, we refer to its components with italic letters vi. We use �·, ·� to
speak about the inner product of two vectors of the same size.

For a vector v = (v1, . . . , vn) ∈ Rn, we define the Euclidean norm and note �v�2 =��n
i=1 v

2
i , and the infinity norm �v�∞ = max1≤i≤n |vi|. We may omit the subscript when

it is clear from the context.

Rings

When dealing with a polynomial p of degree n− 1, we use the coefficient embedding (unless
specified) and assimilate it as a coordinate vector: p = (p0, p2, . . . , pn−1). We will work with
polynomials in a polynomial ring R = Z[x]/(f(x)) for some f ∈ Z[x]. We denote Rq the set
of polynomials in R with coefficients in Zq.

For a ∈ R (or Rq) we define two norms:

• The Coefficient norm as �a� = �(a0, . . . , an−1)� =
��n−1

i=0 a2i .

• The Operator norm as |a| = maxb∈R\{0} �ab�/�b�. We expand this notion to vectors
x ∈ Rm with m > 1 by maximizing y over Rm \ {0} and replacing the multiplication
with the inner product over R.

Random variables

For a ring R and a polynomial a, we say a ← UR when a is sampled uniformly in R, A ← BR

when it is sampled with binary coefficients and a ← DR,σ when its coefficients are sampled
independently from a (centred) discrete Gaussian distribution with width parameter σ, i.e.
proportional to exp(−πx2/σ2).

We say that a real random variable X is subgaussian with parameter δ (or δ-subgaussian)
if E[X] = 0, and for all t, E[exp(tX)] ≤ exp

�
t2δ2/2

�
. We consider only centred subgaussian

variables (E[X] = 0). Subgaussian random variables have the following well known properties
Let X1 and X2 be subgaussian random variables with parameters δ1 and δ2, respectively.

• X1 +X2 is (δ1 + δ2)-subgaussian.

• If X1 and X2 are independent, X1 +X2 is
�
δ21 + δ22-subgaussian.

• aX1 is (|a|δ1)-subgaussian.

• Subgaussian tail estimate: P (|X1| ≥
√
2λδ1) ≤ 2 exp(−λ).



2.2. SOME LATTICE THEORY 29

Gadgets

Throughout this exposition we use a binary decomposition operation on ring elements, and
the reverse. For simplicity we adopt the notation of gadget vector and matrix.

The gadget vector gT of size K is set to
�
1 2 22 · · · 2K−1

�
∈ RK

d . Reciprocally, we
define g−T as a function such that, for w ∈ Rn

d , V = g−T (w) is a (K × n)-matrix whose
entries are ring elements with coefficients in {0, 1} such that gTV = w.

For some integer n ≥ 1, the gadget matrix Gn is defined by Gn = In+1 ⊗ g ∈
R

(n+1)K×(n+1)
d .

GT
n =




1 2 · · · 2K−1 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 1 2 · · · 2K−1 · · · 0 0 · · · 0

...
...

...
...

0 0 · · · 0 0 0 · · · 0 · · · 1 2 · · · 2K−1




We define G−1
n similarly to g−T : for a ∈ Rn+1

d , we let d = G−1
n (a) ∈ R

(n+1)K
d be the

vector whose entries have coefficients in {0, 1} such that dT · G = a. For convenience we
write Gn = G as n is typically clear from context.

2.2 Some lattice theory
In this section we synthesise the notions about lattices that will be used throughout this
thesis.

2.2.1 General definitions

In general, a lattice L of dimension n is a discrete additive subgroup of Rn. Integer lattices
are discrete additive subgroups of Zn. In this work we only deal with the integer lattices
and simply call them lattices.

Lattices (of size n) are usually represented by a basis B, a set of n independent integer
vectors (b1,b2, . . . ,bn) of size n whose integer linear combinations generate the lattice.

L(B) =

�
n�

i=1

vibi : vi ∈ Z

�
=
�
BTv : v ∈ Zn

�
= BZn

In our lattices, B is always a square integer matrix, B ∈ Zn×n. For most of the discussion
we restrict to this full rank definition and will make it explicit when working with greater
generating families of m > n vectors.

For a lattice L, we define its volume Vol(L) as the volume of the fundamental paral-
lelepiped described by the basis vectors, P1/2(L) = {�n

i=1 xibi, |xi| < 1/2}. This volume is
simply the absolute value of the determinant of a basis and is therefore a lattice invariant.
We write

Vol(L) = det(L) = | det(B)|
We often use projections onto subsets of basis vectors, so we note πB,i(v), the orthogonal

projection of the vector v onto {b1, . . . ,bi−1}. Hence πB,1 is the identity.
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Given a lattice L we define its dual L� as the set of vectors y ∈ Rn such that �x,y� ∈ Z
for all x ∈ L. It holds that det(L�) = 1/ det(L).

q-ary lattices. When studying cryptographic lattice problems, the lattices we mostly work
with are called q-ary, because they are defined modulo some integer q (not necessarily prime).
These lattices are defined as follows:

Lq(B) =

�
n�

i=1

vibi mod q : vi ∈ Z

�
=
�
BTv mod q : v ∈ Zn

�

Hence, since we are working modulo q, we can equivalently consider that all the com-
ponents of B and v are in Zq.

2.2.2 Gram-Schmidt Orthogonalisation (GSO).

We use several times the Gram-Schmidt Orthogonalisation of a basis. This algorithm takes
the matrix to orthogonalise B and outputs the resulting matrix B� and a matrix µ (lower
triangular with 1 on the diagonal) such that: B = µ × B�. It constructs B� so that its
vectors verify:

• b�
1 = b1

• b�
i is the projection of bi orthogonally to the subspace generated by the i−1 first vectors

of B. Formally b�
i = bi −

�i−1
j=1 µi,jb

�
j where µi,j = �bi,b

�
j �/�b�

j ,b
�
j �.

We have det(L) = �n
i=1 �b�

i �2. The algorithm works in polynomial time in the size of the
matrix.

2.2.3 Fundamental results

For any lattice, we define Minkowski’s successive minima λi(L). They are the radiuses of
the smallest centred in zero balls containing i linearly independent vectors, i.e. λ1(L) is the
norm of a shortest non-zero vector of L, λ2(L) the norm of the second shortest vector and
so on.

The Gaussian Heuristic (GH) states that the volume of the intersection of a set S and
a lattice L is: Vol(S ∩ L) ≈ Vol(S)/Vol(L). Especially, it yields a useful estimate for the
first minimum:

λ1(L) =
�

n

2πe
Vol(L)1/n

Finally, we introduce the Root Hermite Factor of a basis that we note δ0. For a given
basis (b1, . . . ,bn), it is defined such that:

�b1� = δn0 · Vol(L)1/n

It is clearly dependent of basis used to represent the lattice and, as we shall see next, plays
a central role when speaking of basis quality.
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Hermite’s work from the 19th century provides us with the following inequality:

λ1(L)
Vol(L)1/n ≤

�
4

3

�n−1
4

Therefore we define the Hermite constant γn as the extremum of the left side hand ratio
over all lattices of a given dimension n. It is folklore that γn grows linearly in n, yet exact
value for it are only known for n from 1 to 8, and 24.

2.3 Lattice hard problems
The study of lattices by mathematicians goes far back in time with sphere packing analysis,
but it is only recently that cryptologists got interested into them. First, with Coppersmith
[Cop96] who used lattices to break RSA under some assumptions. Then Ajtai [Ajt96] opened
the way to lattice-based cryptography, showing the existence of NP-hard problems in lattices.
We review now the landscape of these hard problems, that support today all primitives of
lattice-based cryptography, homomorphic encryption among them.

2.3.1 Shortest Vector Problem (SVP) and consorts

Shortest vector problems

The first (and easiest to state) of these problems is called the Shortest Vector Problem (SVP).
This problem asks to find a shortest non-zero vector v in a lattice L, given a basis B. It
shall satisfy

�v� = λ1(L)
Note that due to the group structure of lattices, the shortest vector is not unique, never. In
every lattice, if v realises the first minimum, then −v does it too. There are also lattices
were several linearly independent vectors have all the shortest norm (e.g. the hexagonal
lattice).

The result of Ajtai [Ajt98] is that the exact version of SVP is NP-hard.

Approx-SVP. If we relax the condition to finding a vector v, such that �v� ≤ γλ1(L) for
some γ > 1, we have the Approximate Shortest Vector Problem (Approx-SVP). The greater
the constant γ, the easier the problem. Assuming the Gaussian Heuristic, we can reformulate

�v� ≤ γ · λ1(L)

≤ γ ·
�

n

2πe
Vol(L)1/n

Hence, a lattice reduction that achieves a root-Hermite factor of δn0 = γ
�

n
2πe

solves Approx-
SVP with approximation factor γ. Since LLL achieves δn0 = (4/3)(n−1)/4 in polynomial time,
we can say that Approx-SVP with exponential approximation factor is not hard. There are
several results about Approx-SVP hardness for intermediate approximation factor [Mic01,
AR05].
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Hermite SVP. For Approx-SVP, the factor bounds the short vector size with respect to
the first Minkowski minimum, that we do not always know in advance. Therefore, if we refer
to the volume instead: �v� ≤ γVol(L), we define the Hermite Shortest Vector Problem with
approximation factor γ.

Unique SVP. As we shall see later, lattice-based primitives are such that the lattice
contains one unexpectedly short vector. This might turn out to be a much easier problem
that we refer to as the Unique Shortest Vector Problem (uSVP), which is about finding a
shortest vector when λ2(L) > γλ1(L).

Gap SVP. Another variant of Approx-SVP is called GapSVP. This is a decisional version.
It asks to determine, for a fixed factor γ, if a given lattice L verifies λ1(L) ≤ c or λ1(L) ≥ γ ·c,
with the promise that the lattices fall into one or the other case.

Closest vector problems

Where SVP is the homogeneous problem to find a lattice vector close to 0 ∈ L, we can also
ask to find a lattice vector close to some target t ∈ Rn. More formally, given a basis B of
a lattice L of dimension n and a target t ∈ Rn, find the vector v ∈ L such that �t − v� is
minimal.

Approx-CVP. As for SVP, we can define an Approximate Closest Vector Problem for an
approximation factor γ. This version is about finding a vector v ∈ L such that

�t− v� ≤ γ · dist(L, t)

where dist(L, t) is the distance from t to the closest vector from t in lattice L. Both exact
and approximate CVP are hard within constant factor [ABSS93], furthermore any hardness
result on CVP implies the same hardness for SVP [GMSS99], i.e. SVP is not harder than
CVP.

Bounded Distance Decoding. If in addition, we have the promise that the closest vector
is unique and that dist(L, t) < γλ1(L), we speak about the Bounded Distance Decoding
(BDD) problem. This problem is one of the closest to the instances we see later, and we
have a hardness result for it [LM09].

2.3.2 Learning with errors (LWE)

Using the previous problems, it is possible to construct some primitives for lattice-based
cryptography, yet cryptographers looked for more expressive problems that would enable
more advanced primitives. In 2005, Regev introduced the Learning with errors (LWE) prob-
lem [Reg05], which is about solving noisy linear equations. More formally, given two positive
integers n (dimension), q (modulus) and a probability distribution χ over Z, we define the
LWEn,q,χ problems as follows:
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For a fixed secret vector s ∈ Zn
q , we construct m samples (a, b) = (a, �a, s� + e), where

a is sampled uniformly in Zn
q and e is sampled from χ and considered in Zq. The Search

problem is about recovering s from the available samples and the Decision problem is about
distinguishing such samples from uniform samples in Zn

q × Zq.
Several hardness results have been demonstrated: classical or quantum, for different

sizes of modulus q, in an normal form (secret and error are sampled from the same distribu-
tion). The condition that always remains is that the error distribution shall not be to small,
otherwise the problem is not hard. To the extreme, if we have e = 0, it is only a matter of
linear algebra to recover s.

A former problem: Learning Parity with Noise (LPN) [BKW03] is a particular case of
LWE problem where q = 2 and χ is the Bernouilli distribution over {0, 1}.

Another convenient way to express the LWE problem with m samples is to adopt a
matrix notation. With A ∈ Zm×n

q where each row is an a from the previous definition and b

and e are column vectors of the b’s and e’s, we can write (A,b) = (A,As+ e) ∈ Zm×(n+1)
q .

In LWE-based schemes, A relates to the lattice basis.

2.3.3 Learning with errors over rings (Ring-LWE)

The use of LWE to construct schemes often implies many samples and therefore the matrix
A tends to be expensive to store or share. Therefore, the community tried to find ways to
gain efficiency in this matter. A solution is to add structure to the lattice and consider, for
instance, ideal lattices. In this setting, the description of the lattice requires only a vector a
instead of a matrix A decreasing the costs of the scheme from O(n2) down to O(n). More
precisely, we define the LWE problem over Rings (Ring-LWE) [LPR10] as follows.

Given a ring R of degree n over Z and a positive integer q, we call Rq = R/qR the
quotient ring. We also fix χ a probability distribution over R. Then, for a fixed s ∈ Rq, we
construct m samples (a, b) = (a, a · s+ e mod q) where a is sampled uniformly in Rq and e
is sampled from χ. The search problem asks to recover s from the samples and the decision
version is to distinguish such samples from uniform samples in R2

q .
In terms of security, Ring-LWE enjoys security reductions to SVP in ideal lattices. So

this cannot be harder than regular LWE. Yet as of today there is no significantly better
algorithm to solve SVP in the ideal case. The algebraic structure is nevertheless an aspect
that requires much attention. The original problem statement involves a fractional ideal R∨

dual to R and therefore the statement above is equivalent from an application perspective
but differs to some extent when doing their rigorous analysis.

2.3.4 Miscellaneous

Module-LWE

Working in highly structured lattices, e.g. ideal lattices, or even more so with cyclotomic
rings, brings many concerns about real hardness of these instances. Therefore we see several
attempts to trade-off between the higher efficiency of the structure and their weaker hardness
results. One is to shift to non-cyclotomic rings and the other to module lattices and define
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module-LWE [LS15] for instance. This problem generalizes Ring-LWE where the elements
are not living in Rq of dimension n but in Rd

q of dimension nd. This provides easy trade-offs
and we see several primitive based upon it.

Middle-Product LWE

Another way to shift the LWE formalism is to change the binary operator between a and
s. Instead of using the regular product, as in Ring-LWE for example, the idea is to use the
middle-product operator. The middle product of size d of a and b, two polynomials of degree
da and db is:

MP(a, b) =
�
ab mod xk+d

xk

�
, where 2k = da + db − d− 1

Interesting hardness results has been demonstrated for this problem [RSSS17] together with
efficient primitives.

Short Integer Solution

Another expressive problem, somehow dual to LWE, is the Short Integer Solution (SIS)
problem. It was introduced even before LWE by Ajtai’s work [Ajt96], but since it is more
useful to construct signatures than encryption schemes, we prefer to mention it only as
extra information, not at the core of this thesis work. Informally, SIS asks to find a linear
combination, with small coefficients, of given random elements that yields zero.

More formally, as with LWE we have a dimension n, a modulus q and m samples
(ai)1≤i≤m ∈ (Zn

q )
m, SIS asks to find (si)1≤i≤m, each of norm �si� smaller than some threshold

t, such that
�

ai · si = 0 ∈ Zn
q .

SIS enjoy hardness reduction to GapSVP as LWE. It also has an inhomogeneous version
where the combination target is no longer 0 but some vector in Zn

q , and also ring and module
variants.

2.4 Presentation of FHE
We shall now introduce the core of this thesis: homomorphic encryption (HE). First with
an overview on the history of the different scheme proposals that led to the current state-
of-the-art in the subject. And then, we shall present the different common components of
homomorphic encryption schemes, using that from Fan and Vercauteren [FV12] to illustrate.

2.4.1 Homomorphic Encryption history (2008-2017)

Homomorphic encryption dates back to the notion of privacy homomorphism whose existence
was conjectured in the late 70s [RAD78]. The aim is to allow computation to take place over
private data, e.g. encrypted data. The situation back then was that encryption scheme only
allowed encryption and decryption. Any operation on ciphertext would give a completely
uncontrolled decrypted plaintext, or worse, prevent its decryption.
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The first step, to perform any operations, was to allow one type of operation. This is
what we call partially homomorphic encryption whose most famous examples are the cryp-
tosystem RSA [RSA78] and that of Paillier [Pai99]. Indeed, two RSA ciphertexts can be
multiplied together and yields an encryption of the product of their respective plaintexts.
We say that RSA is homomorphic for multiplication. Similarly Paillier is homomorphic for
addition. Other schemes provide homomorphism for multiplication or addition, but it is
only in 2008 with the work from Aguilar-Melchor et al. [AGH10] that it became possible to
do both additions and multiplications on ciphertexts, at least a bounded number of them.
It creates the concept of Somewhat Homomorphic Encryption (SHE) whose schemes per-
mits a number of operations known in advance. Next, in 2009, Gentry [Gen09] set the first
stone to Fully Homomorphic Encryption (FHE), where no more constraints pertains to the
computation. Thanks to the novel technique of bootstrapping which consists in homomor-
phically decrypting the ciphertext to refresh it, it becomes possible to evaluate any circuits
on encrypted data. At least in theory because this early proposal is not efficient at all, but
opened the road to many improvements. The first implementation of the ideas of Gentry is
due to Smart and Vercauteren [?].

The first improvement was introduced with work from van Dijk et al. [vDGHV10],
dubbed FHE over the integers. Instead of lattices like Gentry, they only use integers to con-
struct their scheme, whose security relies on the hardness of Approximate Greatest Common
Divisor (AGCD) problem. This problem asks, given several elements which are almost mul-
tiples of an integer p, to recover p. Several improvements have been brought to the original
DGHV scheme until 2012 [CMNT11, CNT12].

Then, many homomorphic encryption scheme were designed over LWE and ported to
the ring setting for efficiency. Brakerski and Vaikuntanathan’s scheme introduced several
novel technique such as the modulus switching [BV11b, BV11a]. This operation allows to
scale down the noise inherent to the ciphertext which increases at each operation. This
postpones the need for a bootstrapping. Also their scheme shows a linear increase of the
error magnitude with respect to the circuit depth, unlike Gentry’s scheme which has quadratic
increase. Next, the modulus switching was pushed even further in BGV scheme [BGV12],
where a complete ladder of moduli is used, so that after each multiplication, the ciphertext
is scaled down to the next modulus. This is what we call a leveled HE scheme. BGV is, as
of today, one of the most promising scheme and an implementation is available in the IBM
Research library HElib [Hal] with many implementation tricks [GHS12a, GHS12b, SV14].
Next, leaving modulus switching aside, Brakerski presented a scale invariant scheme over
LWE [Bra12], later transposed to Ring-LWE by Fan and Vercauteren [FV12]. FV is also
very promising and is implemented by Microsoft Research in SEAL library [LCP17] and using
NFLlib [Cry]. It also enjoys a fast variant using Residue Number System (RNS) [BEHZ16].
Both BGV and FV belongs to the second generation of homomorphic schemes, Gentry’s was
the first generation.

We have also seen homomorphic schemes inspired by NTRU encryption scheme [HPS98].
YASHE [BLLN13], which has similarities with FV, sounded very interesting, even at the
beginning of this thesis. It was the original scheme in SEAL library. However, in 2016,
the subfield/sublattice attack [ABD16, KF17] damaged completely the overstretched NTRU
assumption that sustained YASHE.
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Later, third generation schemes were introduced. They remove the need for relineari-
sation of the second generation proposals. GSW [GSW13] extends upon Brakerski’s scheme
[Bra12], and SHIELD [KGV16] is its ring variant. Similarly F-NTRU [DS16] extended
YASHE but became obsolete with the subfield/sublattice attack. Hence, SHIELD is the only
interesting third generation scheme. It involves matrices where second generation schemes
needed only vectors, therefore the minimal cost is higher, but thanks to the absence of
relinearisation, the cost increases far slower than for previous generation schemes.

All the proposals from above are SHE, meaning that given a choice for their parameters,
they can evaluate circuits of bounded complexity. The bootstrapping technique of Gentry can
then be applied if the scheme parameters allow at least to evaluate the decryption procedure.
For example, say that the procedure requires 8 multiplications, the scheme parameters shall
be so that at least 9 multiplications are possible. In such cases, we can transform the SHE
scheme into a FHE scheme. Sometimes it is not necessary if the application has a fixed
number of multiplications for example.

Yet, the latest line of work is about bootstrapped schemes [AP14, DM15, BR15, CGGI16].
They have the property to maintain the noise level in ciphertext across the evaluation,
removing the need for operations dedicated to bootstrapping. It is somehow built into the
scheme. This proposals appeared quite recently and we have not yet applications using them,
but they should ultimately be the best homomorphic encryption schemes.

2.4.2 Dimensioning constraints

As with any encryption scheme, the context of application is central to correctly setup the
scheme and choose its parameter(s). From the end-user perspective, the scheme should
adapt to two elements: the programme to evaluate P and the security level λ. Security is
commonly evaluated in bits, λ bits of security means an attacker will face a cost of 2λ to
break the scheme.

Concerning the programme, we (designers) classically view it as a circuit with elemen-
tary gates, which then can be viewed as a polynomial function on the input data. For
SHE/SHE schemes (e.g. BGV, FV) the main feature to consider is the circuit depth L.
We usually define it as the maximum number of multiplications that an input data goes
through to produce the output. Indeed, the multiplications are the operations that have
the most impact on the noise in ciphertexts. And since we want to keep this noise under
control to maintain decryption correct, this number of multiplications is the most important
feature. For bootstrapped schemes, which usually offer more expressive gates that just ad-
dition/multiplication, the concerns are a bit different. We shall come back to that later in
this work.

For cases like FV, we now have a depth L and security parameter λ and shall derive
scheme parameters so that the computation will be both correct and secure. We shall see
later that these two goals bring opposite conditions that may turn out contradictory. In the
end, since our schemes are based on (Ring-)LWE, the parameter choice will give us at least
a dimension n, a modulus q and an error distribution χ.
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2.4.3 One example: the Fan-Vercauteren scheme (FV)

To illustrate the different components of a homomorphic encryption scheme, we take the one
of Fan and Vercauteren [FV12], which is central for this thesis work.

FV is the ring variant of the scheme from Brakerski [Bra12] and therefore all operations
of FV are done in some ring R. The original description of FV sets R to be the polynomial
ring R = Z[x]/(f(x)) for some monic irreducible polynomial f ∈ Z[x] of degree n. For easy
exposition, we often choose f to be cyclotomic: f(x) = xn + 1 with n a power of 2. The
elements at hands are polynomials of degree n, and we restrict to Rq where the polynomials
have their coefficients in Zq, for some positive integer q.

Key generation

The secret key generation is a fairly simple operation, but for efficiency purposes, it may
differ between implementations. The original procedure is to sample the coefficients from a
discrete Gaussian distribution χs of standard deviation σs.

sk = s = (s1, · · · , sn) ∈ Rq, where ∀i, si ← χs

Sometimes we see that s is binary (coefficients in {0, 1}) or ternary (coefficients in {-1, 0,
1}) or even sparse (only a fixed number of coefficients are non-zero).

The public key is then derived from sk. Sample a uniformly random a ∈ Rq and an
error e from a discrete Gaussian distribution χe of standard deviation σe. Then define

pk = (p0,p1) = (−(a · s+ e) mod q, a) ∈ R2
q

We notice that this public key is a Ring-LWE sample. The error distribution may or may
not be the same as the secret. However, error sampling is not trivial and should be done
with care, especially while taking into account the ring R. As a reminder, the hardness
results on Ring-LWE considers not R but R∨ and this difference should be understood when
implementing the error sampling.

Encryption and decryption

In FV, the plaintext space is Rt, the set of polynomials of degree n with coefficients in Zt

for some positive integer t, and the ciphertext space is Rq. We note Δ = �q/t�.
To encrypt a message m ∈ Rt, sample a binary polynomial u ∈ R2 and two errors e1

and e2 from χe, then set

c = (c0, c1) = (Δ ·m+ p0 · u+ e1,p1 · u+ e2) ∈ R2
q

It is worth to note that homomorphic encryption schemes are often public encryption scheme
and always random, two encryptions of the same plaintext must be independent from one
another.

For decryption, compute

c0 + c1 · s = Δ ·m+ p0 · u+ e1 + (p1 · u+ e2) · s
= Δ ·m+ (−(a · s+ e) + a · s) · u+ e1 + s · e2
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which yields Δ ·m, plus small polynomials. Hence by scaling and rounding we can recover

m = �(c0 + c1 · s)× t/q� ∈ Rt

We can see that for decryption to work, the errors shall remain small. We will come back
more extensively on this aspect later in this work.

Homomorphic addition

Performing addition with FV is not a complex operation, as is often the case with other
SHE. Addition is a linear operation, so if we have ca and cb two encryptions of ma and mb

respectively, then it is easy to verify that

c+ = (c0
+, c1

+) = (c0
a + c0

b, c1
a + c1

b) ∈ R2
q

is a ciphertext for ma +mb. The input noises are added to form the output noise.

Homomorphic multiplication

Multiplication is a more involved process. Indeed, we would like that the decryption of c×

yields the same as the product ma and mb. In other words we wish that

�(c0× + c1
× · s)× t/q� = �(c0a + c1

a · s)× t/q × (c0
b + c1

b · s)× t/q�
= �c0a · c0b + (c0

a · c1b + c1
a · c0b) · s+ (c1

a · c1b) · s2 × t2/q2�

However we have in the right-hand side a term in s2 that makes this straightforward product
a non-valid ciphertext. This is why we need to perform a relinearisation of the quadratic term
in order to get c0× and c1

× so that the equality holds. For other schemes this operation may
be referred to as a key switching because the trick is about taking the part that is somehow
encrypted under s2 and getting it back encrypted under s.

Relinearisation. To do this we need to make another, non negligible, assumption for
security: we need circular security, that is to say we need to encrypt elements highly related
to s under that same key s. This extra assumption is universal in homomorphic encryption
scheme and it would be a huge leap forward to describe a new scheme that does not need it.

In practical terms, we can construct an almost encryption of s2 by cr = (−(a · s+ e) +
s2, a) ∈ R2

q for some a and e as before. It holds that c0r + c1
r · s = s2 + e. Provided this cr

is public, we can then replace the s2 terms by linear terms at the cost of an extra error. Yet,
this is not good enough because this extra error will be multiplied by the term in front of s2
in the equation above, i.e. a (non-small) uniform element of Rq, so the error will blow up.
The way to handle this is to slice this term (consider its decomposition in some basis ω), this
process is referred to as the gadget decomposition. Then, with the appropriate relinearisation
keys, it is still possible to get rid of the s2 while maintaining the error growth under control.
As we shall see later, the choice of ω is a trade-off choice between a bigger relinearisation
key to share and a smaller error growth.
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In this chapter we adopt an attacker posture in order to assess the security of homo-
morphic encryption schemes. In the previous chapter, we said that homomorphic encryption
schemes sit on hardness results and are proven secure, even against quantum attackers. Such
statements speak about asymptotic behaviour; they mean that it is possible to choose the
parameters of a problem such that solving it is infeasible within some resource limit. In
concrete terms it says that if we pick a parameter (e.g. a dimension) big or small enough,
the attacker will not be able to solve the problem with his available resources.

Therefore, when given an concrete application, we have to put a cursor on the security
level we want to achieve. We usually speak in terms of bit security, noted λ. Then, we say
that our scheme has a security of λ bits of security, if we estimate the cost of the attack
(e.g. time, space, money. . . ) to be in the order of magnitude of 2λ. As a result, we need
to have some link between the parameters of the scheme and the security level. This link
is necessarily obtained by a similar link between the parameters of the underlying lattice
problems (SVP, LWE, . . . ) and their concrete hardness. In this work, we are especially
interested in that of LWE and its ring variants.

The present chapter begins with a review of the known attacks against (Ring-)LWE.
Then we present our first contribution: a dedicated attack on LWE instances as found in
homomorphic encryption settings. This work was accepted to IndoCrypt 2017 conference
[BF17]. Finally, we report some contributions made on lattice reduction, which is a central
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part in most of the attacks. These contributions were mostly done on the fplll library
[dt17] during coding days.

3.1 Review of the existing attacks

Just before this thesis began, Albrecht et al. released the survey Concrete hardness of
Learning with Errors [APS15] which served as an excellent springboard in the subject for
us. In addition to their work, they provided and maintain an lwe-estimator [Albb] which
computes the expected attack costs against LWE with the input parameters. As we discussed
in the previous chapter, Ring-LWE instances can be viewed as special cases of LWE instances,
so all the attacks against LWE can be used against Ring-LWE.

3.1.1 Against LWE

Let us now review the different attacks against LWE.

Algebraic attack – Arora-Ge

The first attack we present here is that of Arora and Ge [AG11]. It is an algebraic attack
that establishes a system of non-linear noise-free polynomials, whose roots are the secret s.
Solving the system allows to recover the secret. With Gröbner bases it is possible to optimise
the resolution [ACF+15a].

This attack assumes that the errors remain in some small range [−e; +e] because this
value e determines the degree of the polynomials and also the number of samples we need for
a valid resolution. Consequently, this is an interesting attack, because it is subexponential
when the LWE error distribution is smaller than what the hardness reduction requires. It
strengthens the fact that errors should not be too small. At least in theory, because this
attack comes with large constant costs and despite its subexponential time, it is never an
efficient way to attack LWE.

Combinatorial attacks – BKW

The Blum-Kalai-Wasserman method [BKW03] was introduced against the Learning Parity
with Noise problem, a special case of LWE we mentioned earlier. From a global perspective,
BKW-like algorithm are about using many LWE samples to create collisions and exhibit
relations between samples that allow to reveal the secret. Since its introduction, many
improvements have been brought to this line of work [AFFP14, ACF+15b, DTV15, GJS15,
KF15]. The main drawback is that these algorithms require many samples to work.

Lattice attacks – Primal and dual

Last, but not least, the lattice attacks. This family regroups the methods working with the
structure of lattice behind the LWE samples and attempting to solve the equivalent BDD,
CVP or SVP instances. The most natural is that of decoding. Assuming we are given an
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LWE sample (e.g. a public key from Fan-Vercauteren scheme) A · s+ e and the description
of the lattice A, we try to remove the error e to recover the lattice point A · s which then
allows to recover s. This is solving a BDD instance. Below we present more extensively the
algorithms [Bab86, LP11, GNR10, LN13] for this and our contribution.

As we shall see, in order to decode it is sometimes better to embed the lattice. That
is, to consider the elements of A in another, bigger, lattice. This is what Kannan [Kan87],
or Bai and Galbraith [BG14] do. We will present these techniques in more details below. It
allows to reduce BDD to uSVP [AFG14, AGVW17].

Finally, instead of working in the primal or direct lattice, it is also interesting to work
with the dual lattice, as in [Alb17].

3.1.2 Against Ring-LWE

As we said above, Ring-LWE can be considered as a special case of LWE, but the additional
ring structure may make dedicated attacks possible. We recently saw this trend in the
following works [EHL14, ELOS15, CLS15, CLS16, CIV16] which were summed up by Peikert
[Pei16]. All these works take advantage of the error distribution shape in the ring. Hence,
none of them invalidates the hardness result about Ring-LWE [LPR10] which specifies that
the errors should be sampled in R∨ and not in R. Nevertheless, the difference allows to
mount attacks against careless error sampling. Peikert shows how to instantiate Ring-LWE
securely.

When presenting the ring-based homomorphic encryption schemes, we mentioned
YASHE [BLLN13] and F-NTRU [DS16] that are based on the hardness of the NTRU assump-
tion (not only on that of Ring-LWE). However, for performance considerations, the choices
of parameters that the authors advertised were not compliant with the hardness result about
NTRU [SS11]. Therefore we saw successful attacks against them [ABD16, KF17].

3.2 Mounting our own dedicated attack

We just described the landscape of attack methods against (Ring-)LWE instances. Remem-
ber that when dealing with LWE, we have a dimension n for the samples, a modulus q and
an error distribution, say Gaussian with standard deviation σ. We shall see more precisely in
the next chapter what values these parameters take in the case of Fan-Vercauteren scheme.
Typical values are: few thousands for n, some hundreds of bits for q and σ gets as tiny as 8,
despite the hardness reduction that requires σ > 2

√
n.

So such parameter set is quite remarkable, q is huge and σ is tiny. Based on this
analysis and on the fact that, at the beginning of this thesis, no attacks make any particular
assumptions on the parameter values, we started to investigate what could be done in this
case and what performance an ad-hoc attack could achieve. This work was mostly done in the
first year of my thesis and was accepted to IndoCrypt 2017 as A Note of Ring-LWE security
in the case of Fully Homomorphic Encryption. Some of the material below is extracted from
that work.
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3.2.1 Outline

Among the available attacks, some are dedicated to the case where the secret is small, for
example BKW [AFFP14] or embedding [BG14] variants. We started by following the path
of lattice attacks using decoding approach. This choice stems from the fact that with Fan-
Vercauteren application, the public key is one (Ring-)LWE sample and may be attacked
offline. Combinatorial attacks would require a huge amount of samples so they seemed less
practical. As a running thread for this whole thesis, we shall use Fan-Vercauteren scheme to
illustrate our attack.

For the public key to the lattice

From (Ring-)LWE samples it is possible to create a straightforward lattice. We show here
how this is done and stress on the main difference between LWE and Ring-LWE cases and
why it matters.

In the LWE case, when we have access to m samples of Zn
q × Zq:

(a1, b1) = (a1, �a1, s�+ e1 mod q)

(a2, b2) = (a2, �a2, s�+ e2 mod q)

...
(am, bm) = (am, �am, s�+ em mod q)

We introduce the matrix A whose rows are the ai’s and denote the vectors b = (b1, b2, . . . , bm)
and e = (e1, e2, . . . , em). The equations above are summed up by the following:

(A,b) = (A,As+ e mod q)

The second term of the pair b is, in the q-ary lattice L(A), the point As mod q to which
some noise e has been added.

In the Ring-LWE case, the situation is slightly different. A matrix A ∈ Zn×n
q can

be derived from a single sample. With a = (a1, a2, · · · , an) ← Rq and s ← R2, we have
the identity a · s = As. For easy exposition, if we set n to be a power of two and R =
Z[X]/(Xn + 1), the matrix A is skew-circulant:

A =




a1 a2 a3 · · · an
−an a1 a2 · · · an−1

−an−1 −an a1 · · · an−2
...

...
... . . . ...

−a2 −a3 −a4 · · · a1




The matrix A differs for other cases of n and R, but the result is the same: with only
one Ring-LWE sample, we can mount a lattice attack to attempt to recover s.

Embedding and rescaling

Now that we have a lattice basis A ∈ Zn×n
q and a vector b ∈ Zn

q , we want to find s and/or
e both in Zn

q . The attack from Bai and Galbraith goes as follows.
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Where is the lattice problem? First, write A� = (A|In) ∈ Zn×2n
q . We have the following

equality

b = A�
�
s
e

�
mod q

where
�
s
e

�
is a short vector, with respect to q, that we want to reveal.

Given A and b, we can find a trivial solution w =

�
0
b

�
that gives A�w = b. However

w is not small, and clearly not the solution we expect. So now that we have a particular
solution, we want to find a solution v0 to the homogeneous problem, i.e. A�v0 = 0 mod q.
For such a vector v0, we have

A�(w − v0) mod q = A�w −A�v0 mod q

= b− 0 mod q

= b

If in addition v0 is such that w − v0 is small, it is most likely that w − v0 =

�
s
e

�
.

Consequently, we consider the lattice L� defined by L� = {v ∈ Z2n : A�v = 0 mod q} and
try to find a vector v0 close to w in it.

We recognise a CVP instance: L� is the lattice and w is the target. We now need a
basis for L� and then we can follow with classical CVP algorithms. Besides, if we know how
s and e have been sampled, we can derive a bound on �w − v0� and this becomes a BDD
instance.

Embedding. Luckily, it is fairly straightforward to explicit a basis for L�, by embedding:

B =

�
In −A
0 qIn

�
∈ Z2n×2n

It can be verified that the rows of this matrix are linearly independent and each of them
satisfies the definition of L�, so B is a basis of L�.

This embedding differs slightly from what Bai and Galbraith presented. They instead
introduced the matrix

M =

�
In −A
qI2n

�
∈ Z3n×2n

and compute its Hermite Normal Form to end up with a full rank matrix generating the
lattice. Our technique avoids this computation and yields a basis for L� more efficiently.
We can see that with linear operations on rows their M can be transformed into our B as
follows:

M =




In −A
qIn 0
0 qIn


→



In −A
0 qA
0 qIn


→



In −A
0 0
0 qIn




Removing the n middle rows gives our matrix. As the name suggests, the Hermite Normal
Form is useful for theoretical discussions and analyses but an attacker would definitely not
go this way. This is why we changed the embedding step.
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Rescaling. So far we did not take any advantage of the parameters values, yet in real
applications secrets and errors are sampled very differently. Usually s will be ternary whereas
e is sampled from a Gaussian for standard deviation σ, which in theory should not be small.
Consequently the distance from w to L� is not balanced along each dimension because

w − v0 =

�
s
e

�
.

The idea is to take advantage of that to inflate the lattice. If we consider instead a basis

B =

�
σIn −A
0 qIn

�
∈ Z2n×2n

the difference between w and the closest vector in this lattice becomes
�
σs
e

�
which is more

balanced. It is useful to do this, because now the lattice volume is bigger so lattice reduction
algorithms will give better results. It slightly increases the distance between the lattice and
the target but it is worth it.

BDD algorithms

Once the embedding and rescaling is done, the next step is to find the closest point v0 to w
in L�. The available BDD algorithms need a well-reduced basis to work efficiently. This is not
the case of our basis B. In the next sections we present our experiments and contributions
to the field and see what strategy an attacker would follow.

3.2.2 Expanding on reduction

We already mentioned in the previous chapter that lattice reduction draws many contribu-
tions both on theoretical questions and implementation aspects. As we see in this work, the
lattice reduction performance and complexity greatly define the security level of a choice of
parameters. The previous embedding and rescaling are trivial and costless operations, how-
ever breaking BDD is a much more costly task. Since a better reduction allows for a faster
enumeration, an attacker would try to balance the time spent in both steps. Hence it is
paramount to understand lattice reduction behaviour to provide correct security guarantees.

Ad-hoc algorithms

Based on experimental studies [GN08b, MW16], it seems a natural choice to pick the BKZ
algorithm. It achieves quite good reduction, with possible trade-offs on complexity and
quality (via the blocksize parameter β). But these experiments are based on general random
lattices. The lattice at hand here is very particular: integer, upper triangular, blockwise
upper triangular, with scaled identity on the diagonal. The attacker may look for specialised
lattice reduction algorithm.

To the best of our knowledge, only one specialised algorithm, a variant of LLL by Gama
et al. [GHGN06] may be useful in our case. It is a study about NTRU attack and the lattices
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that the authors aim at reducing are symplectic. A lattice with basis B is symplectic if and
only if

BTJ2nB = J2n, where J2n =

�
0 In

−In 0

�
∈ Z2n×2n

The bases of our case are symplectic, as can be verified. So this variant of LLL would be
interesting to try. The authors claim it brings a speed-up factor of nearly 10 when compared
to reference implementations of regular LLL. However the code has not been released, so we
could not use it in our tests, nor confirm its performance.

This is one example of specialisation that could bring unexpected computational ad-
vantage to an attacker. Despite our efforts we were not able yet to come up with another
reduction method for this specific case of embedding. The size of the lattice being doubled
by the embedding, the reduction time is drastically increased. Consequently working on the
original lattice A before embedding might give a fantastic gain compared to what we present
below. We leave this topic for further research.

Tweaking LLL

After a few toy examples we realized that most of the time was spent in the lattice reduction
stage. So we tried different settings for BKZ and also for LLL on cases where n ≤ 100. It
turned out that LLL reduction was good enough for our instances, and even a weak LLL
reduction.

Concerning BKZ, we could confirm [CN11], an intermediate blocksize β = 20 leads to
moderate running times. Whereas smaller values like 5 or greater like 40 lead to higher
running times.

Concerning LLL, we recall the size reduction and Lovász conditions:

∀i < j, |�bj,b
�
i �| ≤ η · �b�

i �2 ⇐⇒ µi,j ≤ η

∀i, δ�b�
i �2 ≤ �b�

i+1�2 +
(bi+1|b�

i )
2

�bi
��2

We always have 1/4 ≤ δ ≤ 1 and 1/2 ≤ η ≤
√
δ and the default value is (δ, η) = (0.99, 0.51).

We first tried to decrease δ to loosen the Lovász condition. However with an LLL-(0.75,
0.51), we see speed-ups only for n ≥ 100 and the overall attack fails later due to a lattice
basis of not sufficient quality.

So we then worked on η, trying to increase its value while keeping δ = 0.99. We
performed experiments with the following η: 0.60, 0.75, 0.80, 0.85, 0.95, 0.98. As we can see
in Figure 3.1, loosening the size reduction condition decreases the running time of LLL. We
observe a speed-up even in moderate dimensions. This speed-up is greater between η = 0.60
and η = 0.75 than between η = 0.75 and η = 0.95. In addition, with η = 0.95 we get a
less successful attack, whereas when η equals 0.50 or 0.75 the success rates are similar. We
conclude that the best option is around η = 0.60.

Consequently, in our specialised attack, the best choice for the lattice reduction step is
an LLL reduction, with δ = 0.99 and η ∈ [0.60, 0.75].
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Figure 3.1 – Execution time in seconds in term of n for different η
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3.2.3 The actual decoding step

To perform the final search for the closest vector of v0 in the lattice L�, we have several
options. There are sieving algorithms [BTS16, HK17] and enumeration algorithms [FP85,
GNR10], with also Gaussian sampling [ADRS15, ADSD15] or Voronoi cell computation
[MV10] techniques.

From an attacker’s point of view, today the enumeration algorithms are best, especially
what is called pruned enumeration [LN13]. This method is an adaptation to BDD of the
extreme pruning technique introduced by Gama et al. [GNR10]. Conceptually, enumeration
is about trying many linear combinations of basis vectors to find vectors that are small (in
the case of SVP) or close to the target (in the cases of CVP or BDD). If we do not put any
constraints, enumeration generates all the lattice vectors. This is a sure way to find the one
we look for, but unimaginably costly. So in practice, we want to enforce some condition to
keep the enumeration tree size under control.

The most elementary way to perform an enumeration comes from Babai [Bab86] Nearest
Plane algorithm. Assume we have our reduced basis B = (b1, · · · ,bn) and we want to
approximate w /∈ L�. We can express exactly w with a real linear combination of the
Gram-Schmidt vectors:

w =
n�

i=1

tib
�
i , where ∀i, ti ∈ R.

So if we iteratively round each ti, and update the target to account for the rounding at
every dimension, we can get a vector v ∈ L� rather close to w in polynomial time. More
precisely, v is the unique vector such that w − v ∈ P1/2(B

�). However v is not always
the closest vector to w, so Lindner and Peikert [LP11] generalised this algorithm into the
Nearest Planes algorithm. In this version, instead of keeping only the rounded coefficients, a
bounded exhaustive search is performed to keep more than one candidate at each dimension.

The next level of generalisation is what we call pruned enumeration. This time, at
each depth in the tree (i.e. when considering each component of w), we want to choose a
candidate component for vi the i-th coordinate of the solution v we search. So we look at
the quantity �w−v,b�

i �/�bi
��, and consider all values for vi such that this quantity remains

below some bound Ri. We call the tuple (R1, · · · , Rn) the pruning function. This is the only
setting for the last attack step.

In our case, we know precisely the expected distance between w and the lattice point v0,
w−v0 = ( σs

e ), so we can set the bound Rn to the expected value of its norm. For a Gaussian
error distribution we have with high probability ||e||2 ≤ n× (3σ2), so R2

n = nσ2 + n(3σ)2 =
10nσ2. It remains to explore how to set the other Ri’s. Gama et al. [GNR10] study different
remarkable functions: linear, step bounded or piecewise linear. Their results is that extreme
pruning is the most efficient regime. Extreme pruning is about having very low bounds Ri

so that the enumeration tree is very small and quickly scanned. In this case however, the
probability of success for finding the correct solution is very low, so we need to shuffle the
basis and start again lattice reduction and enumeration multiple times.

Despite this state-of-the-art, we noticed with our instances that the correct solution was
almost always the Babai solution, that is the first candidate to be enumerated. We provide
explanation for this fact below.
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3.2.4 Launch the attack, for real

In order to practically evaluate the performance of the ad-hoc attack described above, we
implemented it and ran many experiments against real instances, leading to successful breaks.

Early experiments

Our first rounds of experimentation were done using a custom implementation in C++. We
made use of the following libraries:

• Lepoint’s implementation [Lep14] of Fan-Vercauteren. At that time (2015), SEAL
[LCP17] had not yet shifted to FV, but today we would rather use SEAL instead.

• fplll [dt17] for lattice reduction algorithms,

• NTL [Sho] for additional lattice operations.

We implemented the embedding/rescaling, the pruned enumeration algorithm from Liu-
Nguyen following their pseudo-code [LN13] and created the glue between the different li-
braries to lead the attack from beginning to end.

Lepoint’s implementation. In order to compare FV and YASHE [LN14], Lepoint im-
plemented the code needed to use FV scheme and perform homomorphic operations. We
use his constructor method with light modification. It allows us to create a public key pk
= ([−(a ·s+e)]q, a), given n, σ and q. The attack then works with an FVKey object as input.

We run these experiments against FV public keys of fairly wide ranges of parameters:
30 ≤ n ≤ 360 and 10 ≤ q ≤ 2128 keeping σ = 2

√
n (i.e. best choice for FHE, within the

LWE hardness bounds). For lattice reduction, we kept η ∈ {0.51, 0.61, 0.71}.
With n up to 250 we see in Figure 3.2 that with η = 0.71 the attack takes fairly less

time than 0.51, roughly 5 times less and still finishes successfully. This motivated us to keep
only the version η = 0.71 and continue to higher dimensions.

In the end we were able to successfully break an FV key with n = 320 and log q = 68 in
little less than 29 hours, see Figure 3.3. It seems in reach to beat the previous record from
Laine and Lauter [LL15]. They were able to recover a key in dimension 350 in 3.5 days, with
a less generic attack with log q = 52 and σ = 8/

√
2π.

Here we say that we were successful in our attack, meaning we successfully recovered the
private key from the public key with the settings we discussed above: LLL reduction with
η = 0.71, δ = 0.99 and Babai enumeration, i.e. the attack is only made of polynomial time
components. If it would scale, it would have been an issue for lattice-based homomorphic
encryption schemes. However, beyond the successful instances we also had failures, for
smaller q, and/or bigger n. Therefore we made thorough analyses of success/failure cases,
to push this polynomial time attack as far as possible.

We distinguish several situations:

• Wrong when the attack goes as planned and output a vector, but not the correct secret,
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Figure 3.2 – Execution time in seconds in terms of n and q for different η

Figure 3.3 – Execution time in seconds in terms of n and q for different η = 0.71
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• Failure when Babai enumeration does not succeed in finding a candidate of expected
norm.

Looking at lattice reduction indicators, as shown in Figure 3.4, was unfortunately not enough
to divide Success from Failure cases.

Decoding from fplll

Later, during our study of Success and Failure cases, we dived into fplll source code and
found that, in addition to the reductions and SVP routines, there was also a CVP routine,
flagged experimental. We defer to the next section the details about the work on fplll
that followed. Soon enough we were able to replace our own implementation of pruned
enumeration with a respected library alternative.

So, we launched again the attack on the same instances as before, for the sake of com-
parison. It turned out that the results were almost the same, in terms of Failure or Success.
The only improvement with fplll version was on small dimension and huge modulus cases of
Failure, which all became Success, probably thanks to a more clever floating-point precision
management in fplll.

Looking at Babai’s Nearest Plane algorithm provides an explanation of the ceiling our
attack faces. No successful break happens above n = 340. Indeed, we said that Babai
algorithm recover the unique vector v such that w−v ∈ P1/2(B

�), so our attack is successful

if and only if
�
s
e

�
∈ P1/2(B

�). In other words, with a fixed lattice reduction, the b�
i are also

fixed and only an error e that validates |�e,b�
i �| < �b�

i �2/2 can be handled successfully. In
the LWE case, it is possible to derive a success probability for the Nearest Plane algorithm,
depending on the standard deviation of the error and the norm of the Gram-Schmidt vectors
[LP11]:

P =
n�

i=1

erf
��b�

i �
√
π

2σ

�

where erf is the Gauss error function. We can exhibit this graphically. In Figure 3.5 we plot
the Gram-Schmidt norms of the bases vectors, for reduced lattices of increasing sizes. We
also plot the expected error sizes for these dimensions. We can see that, with an increasing
dimension, the norm of the smallest Gram-Schmidt vector get smaller while the error norm
gets bigger. So obviously, for a fixed reduction, there is a maximal dimension beyond which
Babai algorithm cannot be successful.

Easier from Sage

Much later, with the knowledge that this polynomial time attack was limited, we reconsidered
the lattice reduction step, in order to push further the successful breaks. Our motivation
stems from the fact that third generation homomorphic encryption schemes work with much
small dimensions than the second generation (one thousand instead of many thousands). For
the new round of experiments, we moved to SageMath environment. It gives access to the
efficient fplll core routines, thanks to the Python wrapper fpylll [Alba] and allows for
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(a) root Hermite Factor after reduction

(b) GS slope after reduction

Figure 3.4 – Success, Wrong and Failure cases
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Figure 3.5 – Gram-Schmidt norms and error norms

Sample dimension 100 125 150 175
Lattice dimension 200 250 300 350

Algorithm LLL-(0.71, 0.99) LLL-(0.71, 0.99) LLL-(0.61, 0.99) BKZ-20
Time (in sec) 78 482 1,705 10,023

Table 3.1 – Successful breaks of SHIELD with diminished dimension

scripting/developing in Python. This is a very comfortable setup to experiment on lattice
reduction. Sage also includes Albrecht’s lwe-generator [Albc].

Our ultimate goal was to come close to the parameters of SHIELD [KGV16]. For 80
bits of security they give: n = 1024, log q = 31 and σ = 10. In the end we could not go very
far. We report in Table 3.1.

Conclusion

In this chapter we presented our work on the construction of a dedicated attack to the LWE
instances of homomorphic encryption. This has been published at IndoCrypt 2017 [BF17].
At the time of this study, there were no similar work and people were expecting our outcomes.
Despite its minor extent, our work has set a first stone to special-purpose attacks against
homomorphic encrytion. The state-of-the-art today is the work from Albrecht [Alb17]. We
think we can expect many other specific works like ours and we need them to gain confidence
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in homomorphic encryption.
This first work on attack made us dive into the state-of-the-art on cryptanalysis of

lattice based cryptography. Among others we discovered lattice reduction challenges which
are addressed in the next chapter.

Throughout this cryptanalytic work we grasped the wide range of theoretical and prac-
tical results. The spread of outcomes is such that one can easily get lost. This contribution
has really been a hands-on work and it served as a good start to address our next topics
with more confidence.
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Contributions to lattice reduction
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4.1 Review of reduction algorithms

A central family of algorithms in our discussions is that of lattice reduction algorithms. In
order to manipulate a lattice, we usually handle a family of vectors that spans the lattice, the
basis. Therefore the legitimate question is whether there are more efficient representations
(i.e. better bases) than others, and to what criteria. Then the challenge will be to somehow
improve the basis.

As shown in Figure 4.1, the second basis seems much better than the first. The exper-
imental intuition we have is that the vector lengths are more balanced and the vectors are
closer to orthogonal from one another. While this is trivial to grasp and achieve in dimension
2, it is far from being the case in higher dimensions.

The operation of taking a basis from a lattice and making changes to it in order to
improve its quality is called lattice reduction. We present here the different algorithms from
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b1

b2

b�1
b�2

Figure 4.1 – Reducing the bad (red) basis (b1, b2) to a better (blue) basis (b�1, b
�
2)

the literature and the performances. Many of the criteria involve the Gram-Schmidt vectors
as defined above.

4.1.1 Size reduction

The most elementary reduction is about balancing the sizes of the vectors. We say a basis
B = (b1, . . . ,bn) is size reduced with parameter η ≥ 1/2 if

∀i < j, |�bj,b
�
i �| ≤ η · �b�

i �2 ⇐⇒ µi,j ≤ η

The algorithm to achieve size-reduction is very simple and runs in polynomial time. It
consists, for each vector, in subtracting the component of the current vector with respect to
the previous vectors.

Unless specified, the parameter is set to η = 1/2 in the literature. Though we can see
that the smaller the η, the tighter the inequation and the better the reduction becomes.

4.1.2 Lenstra-Lenstra-Lovász (LLL) reduction

The celebrated work from Lenstra, Lenstra and Lovász [LLL82] presents a better lattice
reduction algorithm dubbed LLL. It produces a basis that is size reduced, and validates the
so-called Lovász condition:

∀i, δ�b�
i �2 ≤ �b�

i+1�2 +
�bi+1,b

�
i �2

�bi
��2
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LLL algorithm also runs in polynomial time in the input basis. Both the dimension and
the entry size matter for the complexity and for the implementation. Indeed, implementing
a floating-point version of LLL is a real challenge and many efforts have been done in this
area.

The parameter δ can be tweaked to achieve different output quality. The default value
for LLL implementation is δ = 0.99. We shall always keep δ ∈]1/4, 1] and η ∈ [1/2,

√
δ[.

4.1.3 Blockwise algorithms

As generalisation of LLL, whose Lovász condition considers only a vector and the next at
the same time, a new family of algorithms working on blocks was developed.

In BKZ (Blockwise Korkine-Zolotarev) algorithm [SE94], the basis is first LLL-reduced
for some η and δ. Then the algorithm works on a block of size β. The block is the space
spanned by the projections of bj, . . . , bj+β orthogonally to (b1, . . . , bj−1). In this block, the
algorithm searches for a short vector, then inserts it in the local basis and call LLL on the
new expended vector family to keep β vectors. Thus a BKZ-reduced basis is LLL-reduced
and we have the extra property that:

∀1 ≤ j ≤ n, �b�
j� = λ1(L[j,k])

where k = min(n, j + β − 1) and L[j,k] is the lattice spanned by (πj(bj), . . . , πj(bk)). In the
case where β = n, we speak about Hermite Korkine-Zolotarev (HKZ) reduced basis.

While HKZ reduction is a useful notion in theory, in practice it is never attempted
because of the time it would need. BKZ, as described here, is no longer used either. Sev-
eral heuristics have been introduced to improve its performance and reduce its execution
time. All these improvements are dubbed BKZ 2.0 [CN11] and we shall present our further
improvements later. BKZ 2.0 is the state-of-the-art in terms of time and quality.

Self-dual BKZ. A new approach has been presented by Micciancio and Walter [MW16]:
Self-Dual BKZ (SDBKZ). In BKZ, each tour look one block after the other towards increasing
indices and extract a short vector in each block. In addition to these forward tours, they
perform backward tours looking at the dual of each block while going back towards the first
vectors. The experimental time and quality of SDBKZ are similar to that of BKZ, yet the
theoretical analysis is much easier. It provides a more confident way to extrapolate lattice
reduction performance to bigger dimensions, which is paramount to establish security level
as we shall see below.

4.1.4 Slide reduction

When proving the output quality of LLL, one recovers inequalities of the same flavour as that

of Hermite’s inequality which states that γn ≤
��

4/3
�n−1

. Therefore as Gama and Nguyen
put it [GN08a], LLL can be viewed as an algorithmic version of Hermite’s inequality. This
suggests that given another inequality on γn, it could be possible to derive its algorithmic



58 CHAPTER 4. CONTRIBUTIONS TO LATTICE REDUCTION

version. This is exactly what they did with Mordell’s inequality, which gives

γn ≤ γ
n−1
k−1

k for 2 ≤ k ≤ n

The resulting algorithm is called Slide Reduction and is another blockwise generalisation of
LLL. It also makes a polynomial number of short vector searches and its theoretical analysis
is easier than that of BKZ. However the first experimental results did not show attractive
speed-ups and it was not used until Micciancio and Walter [MW16] reinstated it as a good
reduction algorithm.

4.1.5 Performances and output qualities

Before comparing the algorithm, we shall have some common quality measure(s).

How to measure a basis quality?

Despite the very visual insight we have in dimension 2, as in Figure 4.1, it is not trivial
to have such a clear indicator in arbitrarily large dimensions. We recall here the different
criteria used in the literature.

Gram-Schmidt norms and the Geometric Serie Assumption. We saw that the
Gram-Schmidt (GS) vectors b�

i and coefficients µi,j play central roles in lattice reduction
algorithms. So it is quite natural to look at these vectors for reduced bases, especially
their norms �b�

i �. In a log-plot, as in Figure 3.5, we see that the decreasing curves can
be approximated by a line. This is referred to as the Geometric Series Assumption (GSA)
[Sch03]

∀i ∈ {1, . . . , n}, �b�
i � = αi−1�b1�, for some α ∈ [0, 1]

We can see throughout a reduction (between BKZ tours for example) that reducing more
makes the line closer to the horizontal. α gets closer to 1 and would be 1 in the case of an
orthonormal basis.

Root Hermite factor. Without question the most popular indicator is the root Hermite
factor, usually noted δ0 it is defined by

�b1� = δn0 · Vol(L)1/n
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It essentially captures how small the first vector of the basis is. However, under the GSA, it
conveys information on the whole basis. Indeed if we combine the equations, we get

Vol(L) =
n�

i=1

�bi� =
n�

i=1

αi−1�b1�

=
n�

i=1

�
αi−1 · δn0 · Vol(L)1/n

�

=

�
n�

i=1

αi−1

�
· δ2n0 Vol(L)

Hence, αn(n−1)/2 = δ−2n
0 , which yields α ≈ 1/δ20. Informally, this means that under the GSA,

making the first basis vector shorter yields a better basis. Consequently we usually use this
root Hermite factor, quite easy to compute, to measure the (whole) basis quality.

The orthogonality defect. Another measure that takes into account the whole basis is
the orthogonality defect. This one is about comparing the volume of the lattice with the
product of the basis vectors lengths.

od(L) =
�n

i=1 �bi�
Vol(L) =

�n
i=1 �bi��n
i=1 �b�

i �

We can see that od(L) ≥ 1 with equality when the basis is orthogonal.

Half-volume. This other measure captures the balance between the two halves of the
basis. It is defined by

V1/2(L) =
��n/2�

i=1 �b�i ��n
i=�n/2�+1 �b�i �

This one is more difficult to compute but can be useful to estimate enumeration times
in the reduced basis. Again we would want it to be closest to 1.

Algorithms’ complexities and performances

We summarize here the costs of the algorithms presented above, together with the root
Hermite factor they achieve. Some results come from proven bounds and theoretical results,
other from practical experimental results. When speaking about complexity, we have n the
dimension of the lattice (or the basis matrix, we keep the full-rank case) and B is an upper
bound of the entries of the matrix, i.e. logB is the size of the entries.

LLL. The initial LLL proposal has a complexity of O(n6 logB) and achieves a the-
oretical quality of δ0 = (4/3)

n−1
4n [LLL82]. In other words, it is a polynomial time
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algorithm that achieves an exponential approximation factor. After many improve-
ments [NS05, NS09, NV09], we now have more efficient algorithms that have complexity
O(n5+ε logB + n4+ε log2 B). On the implementation side, there are floating-point versions
of LLL that run in time O(n3 log2 B) [CN11]. Also, experimental results showed that LLL
can achieve quality as good as δ0 = 1.021, showing sometimes unexpected performance
[NS06, GN08b].

BKZ. To estimate the execution time of BKZ, we need to consider extra parameters: the
number of tours N required for it to converge and the time tβ of the local search for short
vectors. The overall complexity is then O(N × n× tβ).

While the theoretical upper bound for N is exponential in n [GN08b], heuristic analysis
shows that after a polynomial number of tours, namely N = (n/β)2 log n, the output quality
is already very close to what is expected [HPS11].

Concerning the cost of the local searches, many studies must be taken into account to
provide a correct estimate. There are several approaches to do this: computing the lattice
Voronoi cell [MV10], sieving [BTS16, HK17] or enumerating [FP85, GNR10]. Asymptotically,
sieving has the lowest complexity, but as of today enumeration with extreme pruning is the
most efficient (to break challenges for example). Sieving and enumeration also differ greatly
with respect to memory usage. It is polynomial for enumeration but exponential for sieving.
Hence we can use the following for tβ

tβ =





O(2Θ(β)) for sieving
O(2Θ(β2)) for enumeration
O(βΘ(β)) for enumeration with preprocessing

There are other estimates for BKZ running time [LP11, vdPS13], but quite obsolete now
that we have a much better understanding of the algorithm.

The theoretical output quality of BKZ is: δ0 =

�
2γ

n−1
2(β−1)

+1.5

β

� 1
n

. From the work from

Chen [Che13], we estimate that the output quality is δ0 =
�

β
2πe

· (πβ)1/β
�1/2(β+1)

.

Slide reduction. The theoretical output quality of Slide Reduction is very similar, yet

better, than that of BKZ [GN08a]: δ0 =
�
2γ

n−1
2(β−1)

β

� 1
n

. In practice they show similar output

quality [MW16].
In addition, the theoretical complexity analysis guarantees only a polynomial number

of local searches whereas for BKZ this comes only as a heuristic result. In practice Slide
Reduction behaves like BKZ.

4.2 Improving reduction algorithms
We saw in the previous section that lattice reduction performance are central to estimating
security of lattice-based schemes. Our cryptanalytic work led us to look under the hood



4.2. IMPROVING REDUCTION ALGORITHMS 61

and bring some improvements to lattice reductions, especially around the fplll library. We
detail below the work on reductions we did in the course of this thesis.

4.2.1 The fplll days

The fplll library was originated by Stehlé’s work a few years ago and is now a collabora-
tive project on GitHub. It brings together several lattice enthusiasts from the cryptology
community and is now available from SageMath, thanks to the side project fpylll. fplll
stands for “floating-point LLL”, it provides several lattice reduction algorithms: floating-
point LLL versions [NS09] which can be easily used through a wrapper that optimises the
floating point settings along the computation, BKZ [SE94] algorithm together with BKZ 2.0
[CN11] heuristics and also slide reduction [GN08a] and self-dual BKZ [MW16]. There are
also SVP and CVP enumeration routines.

In the same spirit as the Sage Days, the core team of fplll has decided to put in place
regular meetings (roughly twice a year) to bring together the maintainers for some days.
The objective is to leap forward on evolutions with the relevant people present and to give
more visibility to the community. I actively took part in the first two sessions of these fplll
days (June and December 2016), my contributions range from CVP routine enhancement to
work on the new heuristics for BKZ and are detailed in this section.

4.2.2 Proven CVP

CVP enumeration is more involved than SVP

For enumeration, the cases of SVP and CVP are very similar. The objective is to enumerate
lattice vectors close to 0 or some target vector t but some subtleties arise when doing
floating-point implementations and studying carefully their respective complexities. This
issue is discussed in [Kan83, Puj08].

Let us remember that we want to find a lattice vector v =
�n

i=1 vibi ∈ L(B) close to
some vector w =

�n
i=1 tib

�
i , where the b�

i are the Gram-Schmidt vectors of B. We note
ri = �b�

i �. We know, assume, or at least want that

�w − v�2 = �
n�

i=1

tib
�
i −

n�

i=1

vibi�2

= �
n�

i=1

tib
�
i −

n�

i=1

vi
�
b�
i +

n�

j=i+1

µi,jb
�
j

�
�2

=
n�

i=1

�
ti − vi −

n�

j=i+1

µj,ivj
�2
r2i

=
n�

i=1

�
ci − vi

�2
r2i , with ci = ti −

n�

j=i+1

µj,ivj

≤ R2 for some radius R ≥ 0
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Now the enumeration algorithm works as follows: start at the bottom of the tree i = n and
at each depth try all vi such that

(ci − vi)
2r2i ≤ R2 −

n�

j=i+1

(cj − vj)
2r2j

Since we are going toward decreasing indices, vi is the only variable quantity in the equation
above. Also it is an integer, so there is a bounded number of possibilities. We can show that
there is a maximum of 2R/ri + 1 possible values.

However, if we want to solve CVP and not BDD, i.e. we do not know R in advance, we
need to pick a value for it. In the SVP case, setting R = λ1(L) does the trick, but for CVP
we need to go to the top of the tree to conclude, which is not the case for SVP. So it is likely
that, even for the correct solution, the bound at depth 1 < i < n will discard the current
candidate. So we need to have at least R ≥ �n

i=1 r
2
i /4. This bound is not satisfactory

either. Indeed, the Geometric Series Assumption tells us that for a reduced basis, the ri
are decreasing. But there are cases, that can be exhibited, for which the suite is arbitrarily
increasing. For such case, the present approach that enumerates 2R/ri+1 solution per level
is likely to waste enormous amount of time. So we need to do better.

Fixing fplll

The algorithmic solution to this is to somehow reset the enumeration when we reach a ri
with maximal value before going deeper in the tree. It improves both the running time and
the numerical stability (for floating-point implementations). The fplll routine for CVP
was not using this trick, that is why it was flagged “experimental”. During the first fplll
days, we implemented it with some help from Marc Stevens.

This idea is to separate the depths into the largest intervals in which the ri are decreas-
ing. Say it is decreasing from i = 1 to i0 − 1 for some i0 > 1 and from i0 to n. Below i0, it
makes sense to set R =

�n
i=i0

ri/4 ≤ (n − i0)r0/4 but for depth between 1 and i0 − 1, the
number of candidates at each depth is probably going to be huge, so it would be better to
set the bound differently. At this point, we have some candidates for the last components of
v = (�, . . . , �, vi0 , . . . , vn) and we still want to find the firsts. Remember that at this point,
our objective is

�w −
� i0−1�

i=1

vibi +
n�

i=i0

vibi

�
�2 ≤ R2

We can view this as a new CVP in dimension i0 − 1 where the new target is w−�n
i=i0

vibi.
Moreover, instead of going on with a bound R�2 = R2 −�n

i=i0
(ci − vi)

2r2i , we can pick
R�2 =

�i0−1
i=1 (ci− vi)

2r2i . In the possible cases where the ri have different sizes, this approach
also improves numerical stability, because where R� would have been of the order of R, i.e.
too big, R� depends only on the “small” ri and will be more adapted.

The code to add this reset feature was integrated to fplll1. It involved patching most of
the enumeration routines.

1https://github.com/fplll/fplll/pull/191
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4.2.3 BKZ 3

During the second fplll days, we worked together with Léo Ducas and Martin Albrecht on
new ways to make BKZ reduction faster. We refer to this as YoloBKZ or more pompously
BKZ 3. We shall now first review the BKZ algorithm in details, together with BKZ 2.0
heuristics and then introduce our new techniques.

Review of BKZ and BKZ 2.0

We briefly said that BKZ was a blockwise algorithm performing several tours on the basis,
using a shifting window called a block. For each position of this block, the local basis is
improved with the addition of a newly found short vector. The output quality of BKZ
depends mainly on the block-size β. So does its time complexity, which is also dependent on
the number of tours. BKZ, was first introduced by Schnorr and Euchner [SE94] and refined
by Chen and Nguyen [CN11] who brought several tweaks to make it faster.

More precisely, BKZ algorithm works as described in Algorithm 4.1. We keep a high
level description here to focus on the essential aspects. The interested reader can also have
a look at an implementation of BKZ in fpylll 2

Algorithm 4.1 Perform a BKZ-β reduction on the input basis B

1: function BKZ(B: an LLL-reduced basis, β: the blocksize)
2: repeat
3: Tour(B, β)
4: until No progress is made
5: return B
6: end function
7: function Tour(B: the current basis, β, the blocksize)
8: for 1 ≤ j ≤ n do
9: k ← min(j + β, n)

10: v ←FindSVP(B, j, k)
11: if v is useful then
12: insert v in B
13: end if
14: end for
15: end function

Let us know provide more details on the different steps.

No progress is made. The termination condition of BKZ in its original version says that
the algorithm should continue as long as the basis is changed during a tour, i.e. a shorter
vector is found in at least one of the blocks. It is proven that BKZ terminates, and observed
that the number of tours is exponential (in the lattice dimension and size of its entries)
[GN08b]. A heuristic result [HPS11] suggests however that it should be enough to perform

2https://github.com/fplll/fpylll/blob/master/src/fpylll/algorithms/simple_bkz.py
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a polynomial number of tours to get an output quality close to final. This is what we call
the early abort strategy. BKZ is stopped when no “significant” progress is made on a tour.
In practice, the GSA slope is monitored and if the progress per tour is below some threshold
for some number of tours in a row, the algorithm is stopped.

FindSVP. This SVP oracle may be implemented using techniques we mentioned above:
sieving or enumeration. Recent works on sieving [BTS16, HK17, BDGL16] bring it closer to
be best in practice, but for a long time enumeration wan out. Most of the heuristics that
shape BKZ 2.0 are about optimising enumeration. In fplll, enumeration is used, yet the
fplll days 4 in December 2017 are about bringing in the latest algorithmic improvements
on sieving.

With enumeration there is always the question about the enumeration radius. As we are
doing SVP we do not have the subtleties of CVP to take care of as in the previous section.
We can set R = �b�

j�, at least the enumeration will output this vector. Yet the Gaussian
Heuristic also provides some clue on how short we expect the vector to be. So in practice,
the enumeration radius is set to what is minimal between �b�

j� and 1.05 times the Gaussian
Heuristic prediction. Also, as for any enumeration, the pruning function should be chosen
to minimize the overall enumeration, even if it implies to perform many cheap enumerations
with low success probability on different bases (obtained by randomisation).

Now that we did our best to have a very efficient enumeration, we shall not forget
about the quality of the local basis. By design, the BKZ algorithm is such that any block
is LLL-reduced when FindSVP is called. LLL-reduced bases offer only fair context to run
enumeration, the situation can be improved if we have BKZ-reduced bases. So this is exactly
what is done: in the case of a BKZ-β reduction, it is very appropriate to have the local bases
BKZ-β� reduced, for some β � < β. Optimising the choices for β � in terms of β has been
addressed by Chen and Nguyen when they introduced BKZ 2.0. We shall come back to this
later. We also call this step the SVP pre-processing step.

fplll is distributed with a default strategy that provides “optimised” choices for pre-
processing block-sizes, enumeration radiuses and pruning function, depending on the re-
quested BKZ reduction. This strategy shows good results, yet it is established from average
reduction behaviour on generic lattices, so it may be sub-optimal for some particular lattices.

If v is useful. The FindSVP oracle should at least return a vector as good as the first
of the local basis. If it is the case and not better, there is obviously no need for insertion.
BKZ and BKZ 2.0 both share this behaviour.

Insert v into B. When inserting a new vector, the local basis momentarily gets an extra
vector. The solution to remove the linear dependencies and to keep the best vectors is to
run LLL. This is usually done on the beginning of the whole basis, between indices 1 and
k + 1. We refer to this insertion and reduction step as the SVP post-processing step.
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Introducing new heuristics

We present now some new tricks for faster BKZ. This is mainly experimental and not yet
published in final versions. It results from manual experiments and tunings and extensively
benefits from the flexibility of fpylll.

Auto-adaptive pre-processing. Instead of using pre-computed strategies, it would be
best to have an adaptive strategy. The same wish extends to all parameters of lattice reduc-
tion, of course. Yet for pre-preprocessing Léo Ducas developed some code which monitors
the enumeration behaviour (success probability and number of enumerated nodes) to adapt
on-the-fly the pre-processing settings that will be used for the next block. We ran several
experiments to try to get a trend on how it behaves. This aim was to derive a pre-computed
dynamic strategy or strategies. But as we can see in Figure 4.2, it changes completely from
one lattice to the other, alternating phases of small and big block-sizes.

In the end, it makes it faster to reach a BKZ 2.0 quality.

Tentative multiple insertions. The time spent in the FindSVP oracle is a significant
part of the total reduction time. Yet each call is worth, at most, one short vector. We inves-
tigated the possibility to make use of other candidates, encountered during the enumeration
(or sieving). For example, we may wish to insert not only the shortest vector found but
maybe also the second shortest or more. The post-processing step will automatically handle
insertions of many vectors thanks to the LLL behaviour which will keep only β linearly inde-
pendent vectors. Consequently, we modified the enumeration procedure in fplll to enable
the return of more than one vector, and tried to do more than one insertion per block.

We explored inserting 2 vectors, 5 vectors, or β/2 or β/4. None of these strategies
improved the quality or the speed. Dead end.

Weaker/less LLL in post-processing. Here we want to decrease the time spent in LLL
in the post-processing. First, the vector returned by FindSVP may be easy to insert manu-
ally into the basis. So there is some code to handle such cases, like when the vector has only
±1 coordinates. Next, running a very weak LLL is enough to remove linear dependencies.
Though, next time we work in the block, we want it to be reduced enough for the next
FindSVP call to work fine. So two options: reducing not to weakly (η = 0.71 gives good
results) or split the work between the current post-processing and the next pre-processing
(of this same block, i.e. in the next tour). Second option offers even more possibilities. For
example, reducing only parts of the basis before going to the next block, the rest of the work
will be done later if needed.

Several leads have been followed independently by Martin, Damien, Léo, Shi, Marc and
myself but the techniques are not orthogonal and not necessarily compatible. Below we
report some speed-ups between BKZ 2.0 and BKZ including such heuristics. The one we
keep from this section is that of using weak LLL with η = 0.71.

Progressive block-sizes. Similarly as we use locally BKZ with smaller block-size to speed
up enumeration in blocks, we may BKZ-reduce the whole basis with a smaller block-size
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(a) Random lattice 1

(b) Random lattice 2

(c) Random lattice 3

Figure 4.2 – Optimal choices for pre-processing block-sizes along BKZ-60 tours in dimension
100. From block position 0 to 100 it is the first tour, from 101 to 200 the second and so on.
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Blocksize 10 20 30 40 50 55 60
Time (s) 0.198 0.335 0.546 1.24 11.0 24.7 44.9

Cumulative (s) 0.198 0.533 1.08 2.32 13.4 38.1 82.8
log �b�

0�2 38.9 38.9 38.7 38.4 37.5 36.7 35.9
GS slope -0.0851 -0.0830 -0.0791 -0.0725 -0.0643 -0.0575 -0.0523

(a) With ramp-up
Blocksize 60 60 60
Time (s) 54.8 47.5 53.4

Cumulative (s) 54.8 102 156
log �b�

0�2 38.1 36.8 36.0
GS slope -0.0678 -0.0575 -0.0524

(b) Without ramp-up

Table 4.1 – Time and quality improvements of a ramp-up phase

before doing the reduction with the block-size we want. This trend has already appeared in
the literature and studied recently [HRP13, AWHT16]. The later work proposes very clever
techniques to simulate the best progression toward a target block-size. We adopted a more
down-to-earth approach, based on experiments.

Our technique relies solely on a ramp-up phase, prior to the normal BKZ execution.
From a practical point of view, on a lattice of dimension 160, BKZ reductions for block-size
under 40 are of negligible costs, whereas the closer we get to the target block-size, the less
negligible it becomes. So our idea for ramp-up was to jump by a step of 10 until β − 10 and
then β − 5, doing one BKZ tour for each block-size.

The results are quite impressive (cf. Table 4.1 and Figure 4.3): the ramp-up phase takes
about 75 % of one normal tour and the quality after ramp-up and one tour is the same as
the quality after doing 3 tours directly. So we have a speed-up from 3 to 1.75 just with this
naive technique. Further into the reduction, as the normal tours happen, the benefits of
this ramp-up, independently of its nature, fade away. Considering the results, this technique
should also be put in place for all local pre-processing BKZ. This would bring speed-ups for
the whole BKZ reduction and even in this naive, costless fashion.

4.2.4 2-phases LLL

We made another observation on LLL behaviour during the many experiments we conducted.
On average and on our lattices from embeddings, it seems faster to first run a weak LLL
reduction, before running the one with our target parameters. We did not investigate a lot,
but Figure 4.4 shows that it can make the reduction up to two times faster. Damien Stehlé
pointed us that this strategy was already mentioned [Coh96].
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(a) GS slope evolution with and without a
ramp-up phase

(b) First basis vector norm evolution with and
without a ramp-up phase

Figure 4.3 – Basis quality improvement dynamic, with or without ramp-up

Figure 4.4 – Reduction time, one step versus two steps
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Conclusion
We reported here several experimental results on lattice reduction algorithms and our con-
tributions to fplll. Interestingly, the ramp-up paradigm seems efficient for both BKZ and
LLL algorithm so could be studied more closely. Many heuristics drive the concrete perfor-
mances of the lattice reduction algorithms, so there are still many hindsights to gain before
being able to extrapolate confidently their performances. Also the days of enumeration may
soon be over since we see many speedups coming from sieving and its new tricks.

The great discussion within the fplll community allowed us to contribute to the long
existing field of computational cryptanalysis. Standing between what theorems prove and
what computers can do, the landscape of the contribution is of the most exciting. The
progresses we helped making bring more confidence to the whole lattice based cryptography
community. This is paramount to evolve towards broader acceptation and use of these
primitives.
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Comparing and using schemes correctly

Where we demonstrate that the best security is
not the highest.
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In the beginning of this thesis, we started by working on the cryptanalytic or attack
side. Now we can safely head to the task of implementing homomorphic encryption schemes,
for real. Considering the state-of-the-art on the existing schemes in 2015, the challenge for
us is about choosing parameters for them to ensure both correctness of our computations
and enough security. The insights we got from our previous works allow us to confidently
address this topic.
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In this chapter we shall first review the classical parameter derivation methods. Then,
we present a common work with Vincent Migliore whose aim is to provide ready-to-use
content for people from outside the cryptography community, e.g. implementers. In the end
we also present some results on the influence of the error size over the other parameters.

Most of this work was accepted for a special issue of IEEE Transactions on computers
on Cryptographic Engineering in a Post-Quantum World [?].

5.1 Review of the methods

Prior to our study, several works had already be done on scheme analysis and comparison.
First, a comparison of FV and YASHE’ from Lepoint and Naehrig [LN14]. They derived
parameters for both schemes, implemented them in C++ and compared their performances
at evaluating a lightweight block cipher SIMON [BTCS+15]. They established that the noise
growth in FV is smaller than in YASHE’, while the latter turned out to be faster. Later,
Costache and Smart [CS16] included BGV. They compared BGV, FV and YASHE’ and
highlighted the main advantages of each of them, namely BGV is best for large plaintext
moduli, and YASHE’ wins in other cases.

At the heart of a comparative parameter selection stand two main challenges. The first
one is to have a unified description of the schemes, so that when we write equations about
the noise growth, i.e. about the correctness of the scheme, we handle comparable data. And
secondly, there is a need to draw parameters that achieve the same security level for all
schemes.

Addressing the first challenge is just a matter of putting the operations into perspective
to unify the different actions done to the ciphertexts. Both previous works and ours do that.
However when it comes to security, we saw in the previous chapters that huge efforts are
being done on the attack front and it can be difficult to confidently draw parameters. As it
turns out that YASHE’ has been broken, the outcomes of both previous studies should be
revised. We remind that [LN14] uses the technique from [vdPS13] and [CS16] uses that of
[LP11]. Both techniques attempt to model the power of lattice reduction at solving LWE
from only one point of view. However, YASHE’ is an efficient variant of YASHE, which was
not proven secure, and these models could not account for an attack such as the sublattice
attack.

5.2 Comparing FV and SHIELD

Now we present our comparative study of somewhat homomorphic schemes: the schemes
included, the use cases. Then we present both FV and SHIELD in our unified presentation
and derive their noise growth equations (for scheme correctness) and then we detail the
security aspects. The section after documents our findings.
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(a) Arbitrary circuit of depth L (b) Optimal circuit of degree L

5.2.1 Scope

Schemes

As we presented earlier in Section 2.4.1, the most practical SHE schemes in 2015 were: BGV
[BGV12], FV [FV12], YASHE [BLLN13] (in its optimised version dubbed YASHE’), SHIELD
[KGV16] (aka Ring-GSW) and F-NTRU [DS16]. The three first of this list (BGV, FV and
YASHE) belong to the second generation of HE schemes while SHIELD and F-NTRU belong
to the third.

YASHE and F-NTRU have been damaged by the sublattice attack from 2016 [KF17], so
we had originally included them in the scope of our comparative study, but we dropped them
later. The attack broke the security assumptions of both YASHE’ and F-NTRU. YASHE is
still secure but impractical and for F-NTRU the correctness and security constraints can no
longer be satisfied.

BGV differs significantly from FV and SHIELD, by its structure involving several mod-
uli. So with hardware considerations in mind, we decided not to include it in our work.
Accelerating hardware modular reduction with changing modulus seemed quite a challenge
and not promising for performance. Nonetheless, BGV is a good candidate, especially when
it comes to large plaintext moduli [GHS12b, CSVW16, JA16, CKKS17]. Several works also
support the use of binary plaintext. Among other things, it enables more complex operators
such as comparison. Hence our choice for FV and SHIELD.

Use cases

Our work aims at comparing FV and SHIELD on different scenarios. The main aspect we
consider for comparison is the size of the ciphertexts and key materials, because the costs
of the communications and homomorphic operations will then depend directly on them. So
we study the parameters in the following cases:

• Evaluation of an arbitrary binary circuit of depth L, i.e. a polynomial for maximum
degree 2L (see Figure 5.1a).



74 CHAPTER 5. COMPARING AND USING SCHEMES CORRECTLY

• Evaluation of an optimised binary circuit of degree L (see Figure 5.1b). With SHIELD
the noise growth is better when a multiplication occurs with a “fresh” ciphertext (i.e.
depth L with one additional multiplication per level). So we highlight the parameters
of this optimal case.

• Use of NTT multiplication in the Negative Wrapped Convolution regime. This setting
saves a polynomial reduction when doing a multiplication, but implies extra constraints
on the dimension n. With high performance objectives it could be interesting to work in
this regime, so we study the impact on these extra constraints on the other parameters.

• Batching or Single Instruction on Multiple Data (SIMD) technique. This trick allows to
amortise the computation cost by evaluating the same circuit on several different input
data. For this, we also studied the choice of dimensions which yield different numbers
of possible slots. This was mostly done by Vincent.

5.2.2 Unified presentation

To begin this comparative work, we present FV and SHIELD (and did also F-NTRU at the
beginning) in a somewhat unified formalism.

FV

To detail the brief presentation that we made of FV in a previous chapter, we state in
detail the sub-routines of the scheme from Fan-Vercauteren. We note lω,q = �log2 q/ log2 ω�.
Algorithm 5.1 introduces utility functions, Alg. 5.2 the key generation procedures, Alg.
5.3 the usual encryption and decryption and Alg. 5.4 presents the actual homomorphic
elementary operations.

It holds that
�
FV.PowersOfω,q(a),FV.WordDecompω,q(b)

�
= [a× b]q.

SHIELD

Now we introduce, under the same formalism, the subroutines of SHIELD. We note N =
2× �log2 q�. For a ring element a we use a(j) to speak about the ring element composed of
the j-th bit(s) of a.

Algorithm 5.5 introduces utility functions, Alg. 5.6 the key generation procedures, Alg.
5.7 the usual encryption and decryption and Alg. 5.8 presents the actual homomorphic
elementary operations. As the names suggest BitDecompInv is the invert function of
BitDecomp. We call them BD and BDI for conciseness.

5.2.3 Noise growth equations

Next, under this unified framework we derive the noise growth equations for both schemes.
Indeed, to control correctness one expresses the noise after L multiplications and validates
that a decryption of a ciphertext with this amount of noise will yield the expected plaintext.
This work has to be done for each scheme.
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Algorithm 5.1 FV: Utility functions
1: function FV.PowersOfω,q(a ∈ Rq)
2: A = (A0, · · · ,Alω,q−1) ∈ R

lω,q
q

3: for i = 0 to lω,q − 1 do
4: Ai ← [a · ωi]q
5: end for
6: return A
7: end function
8: function FV.WordDecompω,q(a ∈ Rq)
9: A = (A0, · · · ,Alω,q−1) ∈ R

lω,q
q

10: for i = 0 to lω,q − 1 do
11: l0 = i× log2 ω
12: l1 = (i+ 1)× log2 ω − 1
13: Ai ← a(l0···l1)
14: end for
15: return A
16: end function

Algorithm 5.2 FV: Key generation functions
1: function FV.GenKeys(σkey, σerr)
2: s ← DRq ,σkey

3: a ← URq

4: e ← DRq ,σerr

5: pk ← (−a · s+ e, a)
6: sk ← s
7: return (pk, sk)
8: end function
9: function FV.GenRelinKeys(pk, sk, σerr)

10: A ← U
lω,q

Rq

11: E ← D
lω,q

Rq ,σerr

12: γ ←
��

FV.PowersOfω,q

�
s2k
�
−
�
A · sk + E

��
q
,A

�

13: return γ
14: end function
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Algorithm 5.3 FV: Encryption/Decryption
1: function FV.Encrypt(m, pk, σkey, σerr)
2: u ← DRq ,σkey

3: (e1, e2) ← D2
Rq ,σerr

4: c ←
��

q/t×m+ pk,0u+ e1

�
q
,
�
pk,1u+ e2

�
q

�

5: return c
6: end function
7: function FV.Decrypt(c, sk)
8: �m ←

�
c0 + c1 · sk

�
q

9: m = � �m× t/q�
10: return m
11: end function

Algorithm 5.4 FV: Homomorphic operations
1: function FV.Add(ca, cb)
2: c+ ← (c0

a + c0
b, c1

a + c1
b)

3: return c+

4: end function
5: function FV.Mult(ca, cb)
6: �c0 ← [�c0a × c0

b × t/q�]q
7: �c1 ← [�(c0a × c1

b + c1
a × c0

b)× t/q�]q
8: �c2 ← [�c1a × c1

b × t/q�]q
9: c× ← FV.Relin(�c0,�c1,�c2, γ)

10: return c×

11: end function
12: function FV.Relin(�c0,�c1,�c2, γ)
13: c0 ← [�c0 + � FV.WordDecompω,q(�c2), γ0�]q
14: c1 ← [�c1 + � FV.WordDecompω,q(�c2), γ1�]q
15: c ← (c0, c1)
16: return c
17: end function
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Algorithm 5.5 SHIELD: Utility functions
1: function SHIELD.BitDecomp(A ∈ RN×2

q )
2: B ∈ BN×N

Rq

3: for i = 0 to N − 1 do
4: for j = 0 to log2 q − 1 do
5: Bi,j ← A

(j)
i,0

6: Bi,j+log2 q ← A
(j)
i,1

7: end for
8: end for
9: return B

10: end function
11: function SHIELD.BitDecompInv(B ∈ BN×N

Rq
)

12: A ∈ RN×2
q

13: for i = 0 to N − 1 do
14: Ai,0 ←

�log2 q−1
j=0 2j ·Bi,j

15: Ai,1 ←
�N−1

j=log2 q
2j ·Bi,j

16: end for
17: return A
18: end function

Algorithm 5.6 SHIELD: Key generation function
1: function SHIELD.GenKeys(σkey, σerr)
2: t ← DRq ,σkey

3: a ← URq

4: e ← DRq ,σerr

5: b ← a · t+ e
6: Pk =

�
b a

�

7: Sk =

�
1
−t

�

8: return (Pk,Sk) ∈ R1×2
q ×R2×1

q

9: end function
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Algorithm 5.7 SHIELD: Encryption/Decryption
1: function SHIELD.Encrypt(m,Pk, σerr)
2: rN×1 ← BN×1

Rq

3: eN×2 ← DN×2
Rq ,σerr

4: CN×2 ← m · BDI(IN) + rN×1 ·Pk + EN×2

5: return CN×2

6: end function
7: function SHIELD.Decrypt(C,Sk)
8: M ← C · Sk

9: m ← �2/q × ·M0,0�
10: return m
11: end function

Algorithm 5.8 SHIELD: Homomorphic operations
1: function SHIELD.Add(Ca,Cb)
2: C+ = Ca +Cb

3: return C+

4: end function
5: function SHIELD.Mult(Ca,Cb)
6: C× = BitDecomp(Ca)×Cb

7: return C×

8: end function
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On the security front, a unique common work is needed. At first we went in a similar
fashion as Lepoint and Naehrig did in their comparative study of FV and YASHE that had
been used several times by implementers.

Notation

We briefly introduce additional notation for the noise extraction. When a ← DRq ,σkey
and

b ← DRq ,σerr , we note �a�∞ = Bkey and �b�∞ = Berr. B0 refers to the upper bound of the
noise for a fresh ciphertext, BL denotes the noise bound after a multiplicative depth of L.
We also introduce the expansion factor δR of a ring R, which bounds the product of two ring
elements. The expansion can be expressed as

δR = sup
a,b∈R

� �a · b�∞
�a�∞�b�∞

�

FV

The noise bound has been thoroughly studied in [LN14], thus we only recall some key aspects
below.

Initial noise. To determine the initial noise, we apply the decryption procedure on a fresh
ciphertext, focusing on the encryption of a 0:

c0 + c1s = (−as+ e)u+ e1 + (au+ e2)s

= eu+ e1 + e2s

Thus, the initial noise is B0 = Berr(1 + 2nBkey).

Multiplicative noise. Following the approach in [LN14, Section 3.5] we can express an
inequality that must be satisfied for decryption to be correct at depth L.

CL
1 B0 + LCL−1

1 C2 < (�q/t� − (q −Δt))/2

where
C1 = δt(4 + δBkey), C2 = δ2Bkey(Bkey + t2) + δωlω,qBerr

For binary messages it becomes:

C1 = 2n(4 + nBkey), C2 = n2Bkey(Bkey + 4) + nωlω,qBerr

SHIELD

The authors of [KGV16] only provided an asymptotic evaluation of SHIELD noise growth.
Following the same approach as before, we develop below a more precise calculation, pro-
viding the constant terms.
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Initial noise. To determine the initial noise, we apply the decryption procedure on a fresh
ciphertext, focusing on the encryption of a 0:

C · Sk = (m · BDI(IN) + rN×1 ·Pk + EN×2) · Sk

= rN×1 ·Pk · Sk + EN×2 · Sk

We set E = rN×1 ·Pk · Sk + EN×2 · Skey and we have

�E [i]�∞ ≤ nBerr + Berr + n · Berr · Bkey

= Berr(1 + n(1 + Bkey))

Thus, the initial noise can be bounded by B0 = Berr(1 + n(1 + Bkey)).

Multiplicative noise. To determine the noise after a homomorphic multiplication in
SHIELD, we apply the decryption procedure after the multiplication step. Recall that
SHIELD.Mult(Ca,Cb) = BD(Ca) ·Cb

BD(Ca) ·Cb · Sk = BD(Ca)(mbBDI(IN) · Sk + Eb)
= mb · BD(Ca) · BDI(IN) · Sk + BD(Ca) · Eb
= mb ·Ca · Sk + BD(Ca) · Eb
= ma ·mb · BDI(IN) · Sk +mb · Ea + BD(Ca) · Eb

We set E× = mb · Ea + BD(Ca) · Eb. To bound E×, which is a vector, one must bound
each elements. BD(Ca) is always a N ×N -matrix of binary polynomials. Thus, each row of
BD(Ca) · Eb is a product/accumulation of N = 2 log2 q binary polynomials with polynomials
bounded by �Eb[i]�∞. After one homomorphic multiplication, the noise can be bounded by

�E×[i]�∞ ≤ ma · Ba
0 + 2n · log2 q · Bb

0

≤ B0(1 + 2n · log2 q)
(5.1)

Then, by an immediate induction, the noise after L homomorphic multiplications can
be expressed as BL = B0(1 + 2n log2 q)

L. To be able to decrypt without error after L
homomorphic multiplications, the final noise must be lower than q/2. We must have

q/2 > B0(1 + 2n log2 q)
L

Better noise for multiplication. Unlike in FV, noise in SHIELD grows slowly if a ci-
phertext is multiplied by a fresh one. By carefully examining Equation 5.1, one can deduce
that the noise of each ciphertext is independent. Thus, the multiplicative noise growth can
be more finely managed. When a ciphertext is multiplied by L other fresh ciphertexts, the
noise growth can be expressed as

BL = B0 + L(2n log2 q)B0 = B0(1 + 2Ln log2 q)
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Table 5.1 – Maximum log2 q for a given dimension n, where λ is the security level. σerr =
2
√
n.

n 2048 4096 8192 16384
λ = 80 bits 89 bits 174 bits 348 bits 695 bits
λ = 128 bits 59 bits 114 bits 224 bits 444 bits

With batching. Earlier, we extracted noise parameters when m ∈ {0, 1}. However, if one
wants to use batch operations, the message is now a polynomial with coefficients in {0, 1}.
This has a significant impact on the noise growth in SHIELD. We express the new bound of
the noise E×:

�E×[i]�∞ ≤ �mb · Ea�∞ + �BD(Ca) · Eb�∞
≤ n · �mb�∞�Ea�∞ + 2n · log2 q · �Eb�∞

In the case of the optimised circuit for SHIELD, i.e. the second ciphertext is a fresh
one, the noise new bound can be expressed as :

Bi+1 = n · Bi + 2n · log2 q · B0

It is an arithmetico-geometric sequence of the form Bi+1 = a · Bi + b, where a = n and
b = 2n log2 qB0. So BL = aL(B0 − r) + r, with r = b

1−a
.

5.2.4 Security

While the noise management determines the multiplicative depth and set a minimum q to
keep computations correct, the security requirement asks for the opposite. It upper-bounds
the size of the modulus for a given dimension n. This means that, sometimes, to ensure
a given multiplicative depth one cannot only increase the modulus. The induced loss in
security must be compensated by an increase in the dimension n. For a brief overview we
put in Table 5.1 the maximal allowed log q for several dimensions at 80 and 128 bits of
security.

As expected in cryptography, all the schemes presented here come with hardness results,
provided by reductions to the Ring-LWE problem. This hard problem is one of the best
candidates for post-quantum cryptography. There are no quantum attacks performing better
than the classical ones. Yet, beyond these asymptotic reductions, we need concrete hardness
results to choose the scheme parameters according to a security level objective, e.g. 80 bits
or 128 bits. As we said above, one key component to make a pertinent study is to have all the
schemes secure, and equally secure. Consequently, we focus our study on parameters that
do not violate the security reductions. First and foremost is the error distribution, which
should not be too small with respect to the dimension n [Reg05]. Both previous studies did
not make this similar choice.

At first we tried to adapt and update the lattice reduction modelling as in [LN14] but
we quickly shifted to the lwe-estimator from Albrecht [Albb]. We extensively discuss this
matter in the previous chapters of the manuscript. The take-away conclusion is that the
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estimator from Albrecht is being constantly updated with the publications about attack
improvements and as of today could be used as a very good indicator for the security level
of a given parameter set.

To produce the values for this study, we used it as is in commit 61ac716, setting our
threshold at exactly 80 or 128 bits of security. For real applications with long term perspec-
tive, we advice to add some extra bits of margin. We already said it several times, huge
efforts are conducted nowadays on cryptanalysis of post-quantum cryptography and new
attacks can take away bits of security faster than Moore’s Law.

5.3 Parameters in perspective

We automated the parameter derivation with scripts, under Matlab first. Then we moved
to Sage to directly use Albrecht’s estimator as a black-box. This allows to conveniently
generate up-to-date values. In this section, we explore different settings: arbitrary circuit,
optimised circuit, NWC, batching, and report concrete parameters for scheme comparison.

How to proceed? Real use-cases of homomorphic cryptography define requirements for
the multiplicative depth L and a security level λ to achieve, then one needs to choose the
corresponding security parameters. However we have three variables to adjust: the dimension
n, the modulus q and the error size σ. Plus, a change to one of them could be compensated,
amplified or cancelled by a change to another one, so we had to establish a sound procedure
to avoid being caught in loops or achieving suboptimal parameters.

To remove one degree of freedom to the system, we decided to go for a fixed error size
and set it to σ = 2

√
n. This choice is compliant with the hardness reduction and a bigger

error would have a negative impact on the correctness. At least this is what is usually
believed in, but we present in the next section how this is not always true, on average it
seems a correct assumption.

So, the procedure goes as follows: for a tentative dimension n (start small), derive a
lower bound for the modulus q to ensure correctness. Check if this lower bound is small
enough so that with this dimension n (and σ), the security is good enough. If it is, the
triplet (n, q, σ) satisfies both correctness and security requirements; if not, try again to find
a modulus, this time with a bigger n. We formalize this procedure in Algorithm 5.9. The
procedure MinModulus involves the noise growth equations established previously and
SecurityLevel is a call of Albrecht’s estimator.

5.3.1 Multiplicative depth for an arbitrary binary circuit

Table 5.2 provides parameters for FV and SHIELD for 80 and 128 bits of security. They are
extracted in the proven-hardness regime, that is to say σerr = 2

√
n for each scheme.

Values for SHIELD seem the best in the tables. However the number of sub-polynomials
for a given ciphertext explodes because it is proportional to log2 q for SHIELD. For example,
with L = 5, a ciphertext in SHIELD contains 2 × N = 4 × log2 q = 480 polynomials of
degree-2772 with 120 bits coefficients, whereas in FV a ciphertext is only two polynomials
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Algorithm 5.9 Determine (n, σ and q) parameters from (L,λ) for a given scheme
1: function ChooseParam(scheme, L,λ)
2: n ← 0
3: repeat
4: n ← n+ 1
5: σ ← 2

√
n

6: q ← MinModulus(n, L, scheme)
7: until SecurityLevel(n, σ, q) > λ
8: return n, σ, q
9: end function

Table 5.2 – Parameters for FV and SHIELD, where λ is the security level and L the multi-
plicative depth. Arbitrary circuit.

(a) Selection of parameters for FV. Binary key, σerr = 2
√
n.

L
λ = 80 bits λ = 128 bits

ω = 32 bits ω = 64 bits ω = 32 bits ω = 64 bits
log2 q n log2 q n log2 q n log2 q n

1 54 1188 87 1982 55 1878 88 3106
5 159 3711 193 4507 166 6014 200 7292
10 303 7120 337 7917 317 11625 351 12898
15 454 10715 489 11549 475 17507 509 18729
20 611 14405 645 15187 639 23491 673 24755

(b) Selection of parameters for SHIELD. Binary key, σerr = 2
√
n.

L λ = 80 bits λ = 128 bits
log2 q n log2 q n

1 36 752 38 1247
5 120 2772 124 4454
10 238 5597 246 9005
15 364 8556 376 13834
20 495 11685 511 18838

of degree-3711 with 159 bits coefficients. Consequently, in the case of an arbitrary binary
circuit, FV is best.

5.3.2 Multiplicative depth for an optimised circuit

As stated in the previous section, SHIELD seems very costly for arbitrary circuits. However,
all third generation schemes have a really interesting feature: when a ciphertext is multiplied
by a fresh ciphertext, the noise growth is additive instead of multiplicative for binary mes-
sages. Table 5.3 provides parameters for SHIELD for such optimised circuit. FV is omitted
here, because it presents no particular optimisation.
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Table 5.3 – Parameters for SHIELD, where λ is the security level and L the multiplicative
degree. Optimized circuit. Binary message (No batching). Binary key, σerr = 2

√
n.

L λ = 80 bits λ = 128 bits
log2 q n log2 q n

1 36 752 38 1247
5 38 803 40 1323
10 40 849 41 1363
15 40 854 42 1396
20 41 869 43 1429

Results are very impressive, SHIELD scales to large multiplicative degree with nearly
no impact on n and q. For 80 bits of security, the modulus only increases by 5 bits between
a multiplicative depth of 1 and 20 when the degree of the associated cyclotomic polynomial
remains under 1024. As a reminder from Table 5.2, FV requires at least n = 14405 and
log2 q = 611 bits for a multiplicative depth of 20.

SHIELD is clearly better than FV in this setting, which is not about evaluating circuit
of depth L for all inputs, yet still a degree-L function.

5.3.3 The case of the Negative Wrapped Convolution

As we saw in the tables so far, implementing homomorphic schemes requires to handle
polynomials of very high degree with large coefficients. A challenge that arises is that of
polynomial multiplication.

More on polynomial multiplication techniques

Recall that there are three families of algorithms for that:

• The schoolbook algorithm which has an asymptotic complexity of O(n2)

• More advanced algorithms like Karatsuba-Ofman [KO63] or Toom-Cook [Too63] which
have asymptotic complexities of O(n1.58) and O(n1.465) respectively

• And Fast Fourier Transform (FFT) algorithms with the best asymptotic complexity of
O(n log n).

The final choice on the polynomial multiplication algorithm will greatly depend on the size
of operands and on the constraints from the evaluating environment (software/hardware).

For polynomials with integer modular arithmetic, FFT can be replaced by a specific
Number Theoretic Transform (NTT) algorithm. This is a specialisation of the FFT in finite
fields, implying only modular integer arithmetic with a prime modulus q instead of complex
numbers in FFT. We recall the formal definition of NTT:

Let N be a power of 2, q a prime modulus such as q ≡ 1 mod 2N , and w be a primitive
N th root of unity in Zq. The NTT/iNTT of a given polynomial a = (a0, · · · , aN−1) is defined
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by:

NTT(a) =

�
N−1�

j=0

ajw
ij

�

0≤i≤N−1

iNTT(â) =

�
n−1

N−1�

j=0

âjw
−ij

�

0≤i≤N−1

For two polynomials a and b, the polynomial multiplication can be computed as follows:

iNTT(NTT(a)� NTT(b)) = a · b mod XN − 1

where � denotes the component-wise multiplication of two vectors. This version NTT is
called Positive Wrapped Convolution (PWC) and is not perfectly suited for homomorphic
encryption because XN − 1 is not a cyclotomic polynomial. Indeed, we do not want the
polynomial reduction by XN − 1, so we must double the size of the NTT and then perform
the polynomial modular reduction manually.

Yet, with a minor modification, the NTT can be turned a Negative Wrapped Convolution
(NWC) which computes a·b mod XN+1. Then, because XN+1 is a cyclotomic polynomial,
the polynomial modular reduction is directly integrated during NTT computations, at no
extra cost.

However, the NWC technique is incompatible with batching as we shall see below. When
factoring Xn + 1 in Z2[X], the resulting polynomial is (X + 1)N , which has a unique factor,
namely (X + 1), so it is not possible to “pack” several messages. This is incompatible with
the batching technique presented in Section 5.3.4. Thus, for binary messages, the NWC,
which is optimised for performance, is not well suited for parallel computations. For non
binary messages, it would be possible to find some configurations compatible with batching
by selecting a particular modulus prime q.

Parameters under NTT NWC constraints

We provide in Table 5.4 the parameters for FV and SHIELD under the constraints from
NWC. Parameters are selected to maximize the multiplicative depth for a given n, which is
necessarily a power of 2, because the NWC NTT set the cyclotomic polynomial to Xn + 1.
When compared to the previous case, this slightly increases the size of the modulus, for a
given multiplicative depth.

For example with FV, for a multiplicative depth of 4, optimised parameters are n = 3065
and log2 q = 132. In a NWC NTT scenario, new parameters are n = 4096 and log2 q = 135
bits. Thus, the ciphertexts are slightly larger when compared to optimised ones, but the
computation time will be better than with a NTT multiplication of size 2N .

For SHIELD, parameters seem quite independent of the multiplicative depth. Because
the polynomial degree is oversized due to NWC, a security of λ = 80 bits requires n = 1024,
cf Table 5.3, and we can then go to very high depth. Similarly, n = 2048 is required for
λ = 128 bits.
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Table 5.4 – Parameters for FV and SHIELD in the case of the NWC NTT, where λ is
the security level and L the multiplicative depth. Binary key, σerr = 2

√
n. Reminder: no

batching with the NWC NTT.

(a) Parameters for FV.

n
λ = 80 bits λ = 128 bits

ω = 32 bits ω = 64 bits ω = 32 bits ω = 64 bits
log2 q L log2 q L log2 q L log2 q L

2048 79 2 87 1 55 1 × ×
4096 159 5 166 4 109 3 88 1
8192 333 11 337 10 195 6 200 5
16384 675 22 677 21 443 14 414 12

(b) Parameters for SHIELD.

λ = 80 bits, n=1024 λ = 128 bits, n=2048
log2 q L log2 q L

36 1 38 1
38 5 40 5
40 10 41 10
40 15 42 15
41 20 43 20

5.3.4 Parameters for batching

How does it works?

For both FV and SHIELD, the plaintext is a polynomial in Rt for some integer t ≥ 2. Be-
cause of the expansion of homomorphic encryption, we would like to have integer messages,
i.e. t >> 2. However, this integer representation prevents us from doing interesting homo-
morphic operations. Indeed, all algorithms doing comparison require dealing with binary
messages. This latter representation also has some drawbacks. First, to perform an integer
addition or multiplication on an integer, one must reconstruct the binary circuit of these
operators. Second, the size of ciphertexts is strongly impacted because a ciphertext holds
only one bit of plaintext, unlike with integer representation where tens of plaintext bits get
encrypted into one ciphertext. Yet, recent research [Ang17] demonstrates that using a binary
encoding for plaintext data is optimal.

To control the ciphertext expansion issue, the batching technique was introduced [SV14].
This trick allows to “pack” several messages into one single ciphertext. To do so, the associ-
ated cyclotomic polynomial must be reducible in Z2[X]. Then, a polynomial CRT is applied
to pack the messages, with one message per factor.

New parameters for SHIELD

As stated above, the batching technique is very useful to reduce the ciphertext expansion.
Table 5.5 provides parameters for SHIELD when the batching technique is used, in an
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Table 5.5 – Parameters of SHIELD for 80 bits of security when batching is enabled, where λ
is the security level and L the multiplicative depth. Binary key, σerr = 2

√
n.

L log2 q n

1 36 752
2 47 1016
3 59 1306
4 71 1596
5 84 1911
10 149 3476

optimised circuit as described in Section 5.3.2. FV is not represented because batching does
not imply new noise growth equations as SHIELD. For FV, we detail below the precise
choices for n depending on the number of slots.

Unlike when the messages are binary, SHIELD parameters becomes sensitive to the
multiplicative depth. As early as depth 3, the dimension goes over 1024 and implies an
associated NTT of size 2048. Moreover, the modulus q grows significantly with the depth,
on average 12 more bits per level which leads to more and more polynomials for a given
ciphertext. For a multiplicative depth of 10, SHIELD with batching requires 596 polynomials
of degree 3476 with coefficients of 149 bits, while without batching it only requires 160
polynomials of degree 849 with coefficients of 40 bits. The use of batching with SHIELD is
not recommended.

Focus on polynomials choice for batching with FV

For completeness we keep this section though it is based on work from Vincent Migliore only.
We have investigated the structure and the repartition of cyclotomic polynomials in

order to measure the practicality of batching. Because there is no known efficient NTT to
perform polynomial modular reduction with arbitrary cyclotomic polynomial (apart from the
cases of NWC with Xn+1 as presented in Section 5.3.3), the polynomial modular reduction
must be implemented manually. Thus, batching can only be practical if we have a cyclotomic
polynomial that allows efficient reduction.

Because the polynomial modular reduction complexity is closely related to the Ham-
ming weight of the cyclotomic polynomial (i.e. the number of non-zero monomials), we have
minimised as much as possible this parameter. Table 5.6 provides the conclusions of our
exploration. We only have investigated batching for FV, since SHIELD does not seem prac-
tical for batching as discussed above. For each multiplicative depth, we have extracted the
four cyclotomic polynomials with the lowest Hamming weight and compatible with batch-
ing. As can be seen, batching can be implemented for each multiplicative depth with various
number of batches. In addition, for all parameters, the Hamming weight is very small when
compared to the degree of the cyclotomic polynomial, further supporting the practicality of
batching.
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Table 5.6 – Parameters of FV for 80 bits of security when batching is enabled, where L
is the multiplicative depth, batching the number of packed operations, m the rank of the
cyclotomic polynomial and weight of the number of non-zero monomials in the associated
cyclotomic polynomial. Binary key, σerr = 2

√
n

Range of n L batching weight m Actual n

[1024, 2048]

1

2 7 3375 1800
6 9 3087 1764
12 33 2835 1296
24 59 2925 1440

2

2 7 3645 1944
6 17 3159 1944
18 49 2997 1944
20 57 4125 2000

[2048, 4096]

3

2 7 5625 3000
6 9 5103 2916
18 25 4617 2916
30 49 3875 3000

4

2 7 6075 3240
6 23 4459 3528
12 33 7875 3600
20 57 7425 3600

5

2 17 6591 4056
12 33 8505 3888
24 59 7605 3744
40 65 5125 4000

[4096, 8192]

6

2 7 9375 5000
10 17 6875 5000
12 33 11025 5040
20 57 9075 4400

7

2 7 10125 5400
6 9 9261 5292
18 25 9747 6156
20 57 12375 6000

5.3.5 Keys and ciphertexts sizes

One of the key aspect for the practicality of homomorphic encryption is obviously the size
of keys and ciphertexts. In order to fairly evaluate FV and SHIELD, we have compared
the volume of data required for each scheme in a scenario requiring 8 bits of information.
Figure 5.2 provides the conclusions of the study. For FV, the size of relinearisation keys are
also included because they are required during the homomorphic multiplication.
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Figure 5.2 – Data size required for FV and SHIELD in a scenario with 8 encryptions.

For small multiplicative depths, namely under 8, FV requires a lower amount of data
than SHIELD. This is because SHIELD requires large parameters as of the first multiplica-
tive depths. But for larger depths, the improved noise management of SHIELD is highly
beneficial. The main issue for FV is the size of the relinearisation key. For a multiplicative
depth of 15, it is as large as 17.8MB, when SHIELD does not require such a key. It can be
reduced a bit by enlarging ω at an additional computation cost.

We deepen our analysis on the size of the relinearisation key. In Fig. 5.3a and 5.3b,
we show for FV the respective sizes of this additional key and 8 ciphertexts. Both are
transmitted from client to server, and we can see that going from ω = 32 to ω = 64
significantly decreases the relinearisation key sizes, and with it, the transmission overhead.
We shall also note that when the server sends a computation result back to the client, it
does not need to include this extra key material, and in this case only the orange bars
corresponding to ciphertexts are of interest. Hence, these figures illustrate both the different
transmission overhead for client-server and server-client communications, and the interest of
using ω = 64 instead of ω = 32 for the client-server upload.
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Figure 5.3 – Histograms showing the respective size of ciphertexts and keys for FV with
λ = 80. The lower (orange) part is the cumulative size of 8 ciphertexts and the upper part
is the relinearisation key.

5.4 Smallest error is not always the best

As we described in the previous section, security and correctness directly depend on all the
parameters: dimension, modulus and error size. Few relations exist and are not necessarily
written black on white in the literature so we take the chance here to highlight them, before
pushing the reasoning a bit further.

For a scheme to be correct, the error shall not be too big in front of the modulus, i.e.
σ << q. We can grasp the idea that big errors will induce wrap-around q and mess things
up. Yet for security, the error shall not be to small, σ > ω(

√
n), otherwise the “masking”

action we intend with error addition is not effective. So, we can say that

• Increasing q, increase correctness but reduce security.

• Increasing σ, decrease correctness but increase security.

Also, increasing n usually increase the difficult of the underlying problems so increase secu-
rity, yet it magnifies the effect of the errors so can decrease the correctness.

These three trends and their respective weights made us derive our Algorithm 5.9 to
draw parameters, with a fixed σ = 2

√
n. We said we do not want to take it smaller, because

of the hardness reduction (see [Pei16] for extensive details). Yet we might try to make it
bigger with the hope to gain security without breaking correctness and so it may result
in smaller parameters. We investigated this behaviour in more detail after we noticed it
accidentally.

We took the case of FV for a depth 10 and 80 bits of security and derive parameters as
before while fixing σ = x

√
n with x varying from 2 to 200. Figure 5.4 displays the size of



5.5. IMPLEMENTATION PERFORMANCE COMPARISON 91

Figure 5.4 – Ciphertexts and key sizes in term of σ

the resulting polynomials of degree n with coefficient size log q (again using Alg. 5.9. The
ciphertext sizes and key sizes are multiple of n and log q.

Let us explain the phenomenon. We can see piecewise decreasing curves. For each of
these pieces, increasing sigma makes the polynomials smaller. Indeed, a bigger error brings
more security and so a smaller dimension is enough to reach the target security level. This
is the behaviour we wished for. Yet, we observe a threshold effect of the size. The reason is
that, if we continue to increase the error, the correctness is diminishing to the point when it
no longer works. In such cases, we have to take a bigger modulus q (one more bit) to restore
correctness, hence the jumps of the curve.

Taking one step back from the values, we see that the variation is limited, roughly 1% on
this example. Yet every optimisation is interesting when considering deployment. However,
in our exploration space of optimal parameters with three degree of freedom (n, σ, q), we
had hoped that this third requirement (that of minimising the ciphertext) would have given
us a global optimum, but it does not seem to be the case.

5.5 Implementation performance comparison

Now that we have done a thorough analysis of the parameters at hand within the different
schemes, it would be of great interest to compare the actual performance of the scheme. It
was a goal for us to continue in this direction. However comparing third party libraries in
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different languages or needing extensive tuning is always questionable.
In [LN14], they chose to implement FV and YASHE’ to compare them. This is a

good approach because the skill of the programmer and the optimisation level would be
very similar for all scheme. But it is quite time-consuming and there is always some more
optimisation that can be done. Another approach (as in [HF17]) involves using third party
libraries with their default settings. This is also imperfect because some tuning could be
done here and there to make things better. This would require to have good insights on all
libraries.

To circumvent these limits, our idea was to take NFLlib [Qua], upon which there is a
FV implementation [Cry] and write a similar implementation of SHIELD, with the aim to
keep both implementations very similar. It would benefit from a highly optimised library
for the core (costly) operations, while also keeping the scheme implementation comparable
because they consists only in a “thin” layer over NFLlib. This work is partially done but not
good enough to have been released yet [BM]. And so, the performance study is left for near
future work.

Conclusion
We have detailed in this chapter our comparative study of homomorphic encryption schemes.
This work was accepted for a special issue of IEEE Transactions on computers on Crypto-
graphic Engineering in a Post-Quantum World [?]. Giving clues to an industrial implementer
is the main outcome of our work.

Throughout this in-depth analysis, we were able to draw some general conclusions and
pinpoint the most dimensioning questions to consider when going for homomorphic encryp-
tion use. Our study covered the most promising schemes as of 2016 and in the next chapter
we will move on to the latest generation of schemes.

This work does not set a final point on the matter. The latest proposals discussed below
extensively change the criteria for choosing an encryption scheme. For an application we
will always need to pick a scheme, and also maybe one of its implementations if several exist.
In the future we may have heuristics for automatic selection of scheme and implementation.
As of now, we need them to mature more. The effort for a common API 1 is a very good
step forward.

1https://github.com/bristolcrypto/HEAT
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As our last contribution, we endorsed a designer role. Thanks to the invitation of Léo
Ducas, I joined the Centrum Wiskunde & Informatica (CWI) in Amsterdam between March
and May 2017. During my stay, I worked with him and Max Fillinger on a new scheme that
we called HE8, for “Homomorphic Evaluation over 8 bits”. This new scheme is an improve-
ment of FHEW and belongs to the new trend of bootstrapped schemes. It was accepted for
Africacrypt 2018 [?]. The roadmap for this chapter is as follows: first we shall review the
proposals of bootstrapped schemes, the fourth generation of homomorphic schemes. Then we
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describe the homomorphic gate, its elementary procedures and optimisations. And finally,
we focus on the implementation aspects that I took care of during my time at CWI.

6.1 Introduction to the fourth generation

In the beginning of this dissertation we reviewed the young history of fully homomorphic
encryption from Gentry’s proposal in 2009 to the most mature BGV or FV as of this time.
Yet a new trend of homomorphic schemes arises, that of bootstrapped schemes. We could
refer to them as the fourth generation but to the best of our knowledge, no one did so
before. For a refresher on the different generations, consult Section 2.4.1. This new kind of
scheme has the interesting feature that the elementary operations supported by the scheme
show no error growth. This trend emerged in 2014 with the work of Alperin-Sheriff and
Peikert [AP14]. Ducas and Micciancio released the scheme FHEW [DM15] that can evaluate
a NAND gate in time less than 1 second. More recently Chillotti et al. [CGGI16] introduced
TFHE which achieve even better performances: less than 0.1 second for common gates
(NOT,AND, NAND, OR, XOR).

Our work builds upon the ideas of FHEW and introduces orthogonal improvements to
that of [CGGI16] with the aim of building an 8 bits generic gate. Concurrent work from the
TFHE team [CGGI17] brings even more improvements to TFHE. They released their work
at the end of April 2017, exactly when we finished our implementation of HE8.

6.2 Additional preliminaries

6.2.1 Rings

Our FHE scheme uses circulant convolution rings (or, for short, circulant rings). Circulant
rings of degree d will be denoted with indeterminate T : Rd = Z[T ]/(T d − 1). We fix two
distinct odd primes p and q. When speaking specifically of rings Rp, Rq, and Rpq we shall use
indeterminates X, Y and Z, respectively. We write R̃d for the cyclotomic ring Z[T̃ ]/Φd(T̃ )
where Φd(T̃ ) is the d-th cyclotomic polynomial.

We define the (normalised) trace function1 as follows: we let Tr∗Rd/Z : Rd → Z, a �→ a0.
If d is clear from context, we simply write this function as Tr∗. We let Tr∗Rpq/Rp

: Rpq → Rp

be the linear function defined by

Tr∗Rpq/Rp

�
Zk
�
=

�
Xk/q if q|k
0 otherwise

It is easy to see that: Tr∗Rd/Z and Tr∗Rpq/Rp
are linear, and: Tr∗Rp/Z ◦Tr∗Rpq/Rp

= Tr∗Rpq/Z.

1This is simply a special case of the usual definition of the trace function, but we do not need the general
definition here.
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6.2.2 Circulant LWE and reduction to Ring-LWE

It is well known that the naive decisional version of Ring-LWE is insecure over circulant
rings, simply by exploiting the CRT decomposition. Say that d is prime, and note that
Rd/QRd � R̃d/QR̃d×Z/QZ if Q is co-prime to d, so one may mount an attack on the Z/QZ
part (projecting to this part corresponds to evaluating the polynomial at 1, and therefore
maintain smallness of the error). However, this does not mean that such rings are inherently
insecure: the NTRU cryptosystems [HPS98, HHGP+03] use circulant rings, choosing the
secret key and errors that evaluate to a fixed known value (say 0) at 1.

This suggests a strategy to construct a variant of Ring-LWE over circulant rings that
would be as secure as the cyclotomic Ring-LWE, simply by lifting all elements x̃ ∈ R̃d/QR̃d

to x � (x̃, 0), yet this reverse CRT operation may not keep small elements small. Léo Ducas
showed how to circumvent this obstacle in the published version of this work [BDF17]. We
detail the practical error sampling procedure in Section 6.2.4.

6.2.3 LWE encryption

We recall the definition of the most basic LWE symmetric encryption scheme (see [BFKL94,
Reg05, ACPS09]). LWE symmetric encryption is parametrised by a dimension n, a plaintext
modulus t ≥ 2, a ciphertext modulus Q = nO(1) and an error distribution χ. The message
space of the scheme is Zt. (Typically, e ← χ satisfies the condition |e| < Q/2t, and t = 2 is
used to encrypt message bits.) The (secret) key of the encryption scheme is a vector s ∈ Zn

Q,
which may be chosen uniformly at random, or as a random short vector. The encryption of
a message m ∈ Zt under key s ∈ Zn

Q is

c = (a, b = �a, s�+ e+ �Q/t�m mod Q) ∈ Zn+1
Q

where a ← Zn
Q is chosen uniformly at random. A ciphertext (a, b) is decrypted by computing

m� = �t(b− �a, s�)/Q� mod t ∈ Zt.

We write c ∈ LWEt|Q
s (m) to denote that c is an LWE-encryption of m, and c ∈ LWEt|Q

s (m;E) if
c is a random LWE-ciphertext such that c = (a, �a, s�+�Q/t�m+e) where e is a subgaussian
random variable with parameter E. The error of c = (a, b) ∈ LWEt|Q

s (m) is err(c) = (b −
�a, s� − �Q/t�m) mod Q, reduced modulo Q to the centered interval [−Q/2, Q/2). Notice
that the error err(a, b) depends not just on (a, b), but also on s, Q, t and m.

We use this LWE encryption to construct two encryption schemes, Circulant-LWE and
Circulant-GSW (based on [GSW13]), which we need for our homomorphic accumulator (see
Section 6.3). We do not specify any decryption procedures since we do not need any for the
homomorphic accumulator.

Circulant-LWE encryption scheme

We let R, R̃, d, t and Q be as in Sections 6.2.1 and 6.2.3. The Circulant-LWE scheme over
R consists of the following algorithms:
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• KeyGen: Output a uniformly random element s of R̃.

• Encs(m) for m ∈ R/tR: Let (a, b) be a sample from the Circulant-LWE distribution
over R with secret s and output (a, b� = b+ �Q/t� ·m).

We also define an n-dimensional variant of the scheme where the key is s ∈ Rn, a is a random
vector in Rn and the product a·s is replaced by the inner product over R: �a, s� =�n

i=1 ai ·si.
Thanks to the reduction of Circulant-LWE, we have that the Circulant-LWE scheme is

CPA-secure for messages of the form m = Xk if the decisional R̃- LWE problem is hard.
We write c ∈ RdLWEt|Q

s (m;E) if c = (a, ats+
�
Q
t

�
m+ e) for some random error vector

e that is E-subgaussian. We extend the notation to C ∈ RdLWEt|Q
s (mT ) for message m ∈ Rk

t

that are vectors, meaning that the i-th column Ci of C is in RdLWEt|Q
s (mi). Furthermore,

we write err(c) for the error term e in c. We may drop the information on the error size
where it is not needed to make the notation easier.

Circulant-GSW encryption scheme

We let R, R̃, d, t and Q be as in Sections 6.2.1 and 6.2.3, and G as in Section 2.1. Further-
more, let t ≥ 2 be the plaintext modulus and B an integer ≥ 2, let K be the smallest integer
such that BK ≥ Q.

The Circulant-GSW scheme is described by the following algorithms:

• KeyGen: Sample a uniformly random s from R̃.

• Encs(m) for m ∈ R/tR: Generate a matrix A ∈ R2K×2 where each row is a sample from
the Circulant-LWE distribution with secret s. Output A+ �Q/t� ·mG.

We also define a n-dimensional variant of the scheme where A ∈ R(n+1)K×(n+1) and whose
rows are samples from the n-dimensional Circulant-LWE and where G1 is replaced by Gn.

As before, we have that the Circulant-GSW scheme is CPA-secure if the decisional
R̃- LWE problem is hard.

We write C ∈ RdGSW
t|Q
s (m,E) if C = (a, as + e) +

�
Q
t

�
· mG, and the components

of e are independent E-subgaussian variables. We write err(C) for the error vector e in C.
We may drop the information on the error size where it is not needed, to make the notation
easier.

6.2.4 Simpler error distribution in CLWE for practice

In practice, most FHE schemes do not follow precisely the Ring-LWE problem definition
admitting reduction to worst-case problem [LPR10]. For example, HElib [Hal, HS15] uses
Ring-LWE with spherical errors in the coefficient embedding, and very sparse ternary secrets,
ignoring the co-different ideal R∨. The TFHE scheme [CGGI16] also relies on Ring-LWE
with ternary secrets, which is known to reduce to the regular Ring-LWE. Cutting such
corners appears quite crucial to error growth management and therefore efficiency. We will
follow this approach, and adjust the distributions as follows.
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• First we sample secrets and error isotropically. Respecting the symmetries seems a must
in the light of recent analysis [CIV16, Pei16].

• Then we choose to use ternary secrets s, which, as in previous schemes, leads to serious
performance improvements due to smaller error growth. It has recently been shown
that such choices make lattice attacks somewhat faster [Alb17], especially when s is
very sparse, so we will account for this refined analysis when measuring the concrete
security of our proposed parameters.

Sampling of a. We sample a uniformly in Rd/(QRd) under the constraint that a(1) = 0
mod Q. We achieve this by choosing all the coefficients ai at random for i ≥ 1, and setting
a0 = −�i>0 ai mod Q.

Sampling of s. When d is prime, we sample a ternary s of density δ = 2/3 by choosing
exactly �δd/2� coefficients set to 1 and �δd/2� coefficients set to −1. This implies that
s(1) = 0, and �s�2 = 2�δd/2�. Indeed, we find it preferable to fix its length to avoid
sampling sparse keys that would be substantially weaker.

Sampling of e. We wish to sample errors e with variance σ in a way that ensures e(1) = 0.
We set:

e =

σ2d/2�

i=0

T ai − T bi ,

where the ai’s and bi’s’ are independent uniform exponents modulo d. One notes that
this distribution is invariant by permutation over {1, T, . . . , T d−1}: we have preserved the
symmetries of the ring. Note that this procedure would get rather slow for large σ, yet we
won’t exceed σ ≤ 8 in our parameter choices.

The above procedure would not be appropriate for composite degree d, as more care is
required to construct a lift as done in section 6.2.2. Yet, while we will make use of circulant
ring Rd with composite degree d = pq, we will never directly construct ciphertexts over that
ring. Indeed, the ciphertext in Rpq will be publicly constructed by tensoring two ciphertexts
from Rp and Rq, and are therefore no easier to decrypt than the original ciphertexts over Rp

and Rq.

6.3 Building the gate
Before going into the detail of my contribution on the implementation of the scheme, we need
to present briefly the multiple building blocks that compose the gate. Figure 6.1 presents
an overview of the scheme and should be used as a guidance to understand this section.
Some of the blocks (KeySwitch for example) do not appear anywhere because they belong
to a superior detail level. In this section we present the building blocks and in the next, the
optimisation that can be done on the structure or on some precise points.

Most of the operations presented below are meaningful both in the ring/circulant-setting
or over the integers. We consider the RLWE problem over rings Rd = Z[X]/(Xd − 1) with d
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LWEt|pq
s (m)

c = (a, b)

· mod p · mod q

(a(p), b(p)) (a(q), b(q))

E
xt
E
xp
In
ne
r

E
xt
E
xp
In
ne
r

RpLWEt|Q
sp

�
Xb−�a,s� mod p

�

ModSwitchQ→Q⊗

RpGSW
t|Q
sp (Xsi)

KSψα(sp)→sp

RqLWEt|Q
sq

�
Y b−�a,s� mod q

�

ModSwitchQ→Q⊗

RqGSW
t|Q
sq (Y si)

KSψα(sq)→sq

�

ModSwitchQ⊗→Q�

RpqLWEt|Q�
spq

�
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�
FunExpExtractf(� · �t:pq)LWEt|Q�
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On the left side, there are the k input bits m1, · · · ,mk that get combined into m ∈ Zt. On
the right side we have the two Homomorphic Accumulator ExtExpInner, which perform the
linear part Lc of the bootstrapped computation in a CRT fashion. After tensoring it is fed
to the non-linear part of the computation Nf : x �→ f(�tx/q� mod t), i.e. FunExpExtract,
where f is the function to be homomorphically evaluated. The computation is intrinsically
done with the bootstrapping process, so the final output can directly be used as input.
Grey boxes represent operations, white square boxes represent ciphertexts, and rounded
white boxes represent key material. The linear step Lc and the non-linear step Nf discussed
in the introduction are highlighted by dashed red circles.

Figure 6.1 – Scheme overview.
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prime and over R = Z (i.e. simply the LWE problem). However, most of the results presented
in this section also hold for cyclotomic rings. We assume that coefficients of ring elements
in R/QR can be added and multiplied in constant time since, in our implementation, each
coefficient fits into a machine word. Thus, adding two ring elements takes time O(d) and
multiplying them takes time O(d log d) using FFT.

Below we omit the proofs of the algorithms because they are the work of Max Fillinger
and involve some theory on sub-gaussian random variables which are outside the scope of
our work. They can be found in the published version [BDF17].

6.3.1 Known building blocks

Let us first recall, within our formalism, known building blocks from the literature. The
only novelty in this section concerns the FunExpExtract function: while this was already
constructed in previous work, in our setup we will need to apply a trick from [GHPS12] to
improve its efficiency.

Linearity

Add : RdLWEt|Q
s (m; E)×RdLWEt|Q

s (m�; E �) → RdLWEt|Q
s

�
m+m�;

√
E2 + E �2

�

The Add operations are computed by simply adding the ciphertexts component-wise. Hence
Add has a time complexity of O(nd). The error term in the result of Add holds when the
error terms in the input ciphertexts are independent. Otherwise, it is E + E �.

x ∈ Rd,Multx : RdLWEt|Q
s (m; E) → RdLWEt|Q

s (xm; |x|E)

The Multx operations work by scalar multiplication with x. The runtime is O(nd log d).

Modulus switching

In our scheme we need several times to change the ciphertext modulus.

ModSwitchQ→Q�
: RdLWEt|Q

s (m; E) → RdLWEt|Q�
s

�
m;

�
(kE)2 + 1 +

�

i

|si|2
�

The basic idea of modulus switching is to multiply the ciphertext with Q�/Q, or rather
�Q�/t� / �Q/t�. The runtime is O(d).

In practice, we only use modulus switching in the following two cases: when the dimen-
sion of the key is n = 1, and for short keys in Zn, i.e. n-dimensional keys where |si| ≤ 1.
In the first case, the error parameter simplifies to

�
(kE)2 + 1 + |s|2, in the second case to�

(kE)2 + n+ 1.
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Key switching

In our scheme, we also change the key under which the ciphertexts are encrypted.

KeySwitchs→s�
S : RdLWEt|Q

s (m; E) → RdLWE
t|Q
s�

�
m;

√
E2 + σ2d2nK

�
.

Algorithm 6.1 KeySwitchs→s�
S (c): Transforms an RdLWE ciphertext under key s into a

ciphertext under s�.
Require:
S = [Si]i∈[n] where Si ∈ RdLWE

Q|Q
s� (si · gT ).

A ciphertext (a, b) ∈ RdLWEt|Q
s (m) for some m ∈ R/tR.

Ensure: A ciphertext c ∈ RdLWE
t|Q
s� (m)

return (0n� , b)− g−T (a) · S

As it is the case for FV and SHIELD (see previous chapter), the choice of the basis
decomposition B for the gadget is important. It allows to trade off key size and running
time against error growth. We use

S =
�
RdLWE1,Q

s� (Bjsi; σ)
�
i=1...n,j=0...K−1

,withK = �logB Q�

as key material. The key size decreases to O(nn�dK logQ), and the running time decreases
to O(d log dnn�K), while the output error parameter also increases to

√
E2 + σ2d2B2nK.

External Multiplication

Similarly as in FHEW and TFHE, we perform multiplication between RdLWE and RdGSW
ciphertexts. The runtime of this operation is O(Kd log d).

ExtMult : RdLWEt|Q
s (Tm; E)×RdGSW

t|Q
s (Tm�

; E �)

→ RdLWEt|Q
s

�
Tm+m�

;
√
E2 + 2Kd2E �2

�

Algorithm 6.2 ExtMult(c,C): Multiplies an RdLWE ciphertext and a RdGSW ciphertext
into a RdLWE ciphertext.

Require: A ciphertext c ∈ RdLWEt|Q
s (Tm), and a ciphertext C ∈ RdGSW

t|Q
s (Tm�

).
Ensure: A ciphertext c� ∈ RdLWEt|Q

s

�
Tm+m��

.

return G−1
�
�Q/t�−1 · c

�
·C
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Function extraction in the exponent

To construct our bootstrapped scheme, we need to somehow evaluate a function on the
ciphertext and get the result back. In our scheme, this is achieved with FunExpExtract. It
takes what comes out of the homomorphic accumulator.

FunExpExtract
spq→s
F,S : RpqLWEt|Q�

spq (Z
m; E)

→ LWEt|Q�
s

�
F (m); |F |

�
E2 + 3σ2p2q2K

�

for some function F : Zpq → Zt where |F | =�i∈Zpq
|F (i)| and s ∈ Zp.

Let us first consider the function F0 that maps 0 �→ 1 and k �→ 0 for k �= 0. If we
can extract this function, we can extract any function by first multiplying the ciphertext
with an appropriate polynomial. This extraction is easily provided by the trace function
Tr∗ = Tr∗Rpq/Z. Indeed, if (a, b) ∈ RpqLWEs(m), then (a,Tr∗(b)) ∈ LWEs(m0), where a, s ∈ Zpq

are the vectors of coefficients of a and s.
However, this leads to an LWE ciphertext with quadratic dimension pq = Θ(n2), that

must be key-switched to a much smaller dimension Θ(n). Such a key-switch without any
ring structure would require up to Θ̃(n3) running time, and as much key material.

To circumvent this issue, we exploit the intermediate ring, following one of the tricks
of [GHPS12]. Namely, we choose a key in Rp, which can also be viewed as an element of
Rpq. Exploiting the structure of Rpq, switching to this key requires only Θ̃(pq) = Θ̃(n2)
operations. Then, one can trace a down to Rp, and b down to Z, and obtain the desired
result.

Algorithm 6.3 FunExpExtract
spq→s
F,S : Turns an RpqLWE encryption of Zm into an LWE en-

cryption of F (m).
Require:

A ciphertext c ∈ RpqLWEt|Q�
spq (Z

m),
A function F : Zpq → Zt,
A key switching key S from spq to s� ∈ Rp ⊆ Rpq, where s� =

�p−1
i=0 (spq)i+1X

i.
Ensure: A ciphertext c� ∈ LWEt|Q�

s (F (m)).

f ←�
i∈Zpq

F (i)Z−i mod pq ∈ Rpq

c ← KeySwitch
spq→s�

S (c) � ∈ RpqLWE
t|Q�

s� (Zm)

c ← Multf (c) � ∈ RpqLWE
t|Q�

s� (
�

i∈Zpq
F (i)Zm−i mod pq)

(a, b) ← Tr∗Rpq/Rp
(c) (component-wise) � ∈ RpLWE

t|Q�

s� (
�

i, st q|(m−i) F (i)Xm−i mod pq)

a ← (a0, ap−1, ap−2, . . . , a1)
b ← Tr∗Rp/Z(b)
return (a, b)

Algorithm 6.3 runs in time O(pq log(pq) logQ�). A careful look at the proof shows that
we could reduce the error growth by performing the multiplication before the key-switch.
However, doing the key-switch first allows to amortise the cost of gates with multiple outputs.
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Indeed the algorithm consists in computing

cpq �→ Tr∗Rpq/Rp
(f ·G−T (cpq) · S)

where the most expensive part of the computation G−T (cpq) · S (i.e. the KeySwitch) can be
re-used for several different f ’s. Hence, at the cost of one KeySwitch we can extract multiple
functions on the same input bits. This allows to construct more evolved gates with negligible
extra costs.

6.3.2 New building blocks

In this part, we present the new elementary blocks that were introduced for this scheme.

Exponent Multiplication by Galois Conjugation

For α ∈ Z∗
d, we let ψα be the automorphism of Rd defined by T �→ T α. We define a Galois

Conjugation on ciphertexts

Galois : RdLWEt|Q
s (Tm; E) → RdLWE

t|Q
ψα(s)

(T αm; E) .

Given a RdLWE-ciphertext (a, as+�Q/t�Tm+e), by applying ψα component-wise, we obtain
(ψα(a),ψα(a) · ψα(s) + �Q/t�Tαm + ψα(e)). The running time is O(d), because for x ∈ R
ψα(x) is computed simply by permuting the coefficients of x. Even if the ciphertext is in
FFT representation, the runtime remains O(d), as ψα also acts on those representations by
permutation.

CRT in the exponent by tensoring

A key trick from our scheme is that of combining the computation of two small (and fast)
homomorphic accumulators into one result. This is the purpose of the ExpCRT operation.

ExpCRT : RpLWEt|Q⊗
sp (Xmp ; Ep)×RqLWEt|Q⊗

sq (Y mq ; Eq)

→ RpqLWEt|Q⊗
spq

�
Zm;

�
E2

p + E2
q + t

√
2λEpEq

�

where m = αmp+βmq is such that mp = m mod p and mq = m mod q and spq = (−ψα(sp)⊗
ψβ(sq),ψα(sp)⊗ 1, 1⊗ ψβ(sq)).

Note that we need t · �Q⊗/t� = 1 for the algorithm to be correct. This condition can
be easily satisfied in our bootstrapping scheme because we perform a modulus switch before
and after ExpCRT. Algorithm 6.4 runs in time Θ(pq).
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Algorithm 6.4 ExpCRT
�
cp, cq

�

Require: Ciphertexts cp ∈ RpLWEt|Q⊗
sp (Xmp ;Ep) and cq ∈ RqLWEt|Q⊗

sq (Y mq ;Eq).
Ensure: A ciphertext c ∈ RpqLWEt|Q⊗

spq (Zm)

(ap, bp) ← Galoisα
�
cp
�

� ∈ RpLWE
t|Q⊗
ψα(sp)

�
Xαmp ;Ep

�

(aq, bq) ← Galoisβ
�
cq
�

� ∈ RqLWE
t|Q⊗
ψβ(sq)

�
Y βmq ;Eq)

a ← (ap ⊗ aq, ap ⊗ bq, bp ⊗ aq)
return (ta, tbp ⊗ bq)

External Multiply-and-Add in the exponent

We construct an (External) Multiply-and-Add operation in the exponent, for a public coef-
ficient α ∈ Z∗

d.
A similar speed-up was obtained in [CGGI16] using a different technique, namely a

Mux operation. We are unfortunately unable to use it in our circulant setup, essentially
because encryptions of 0 are not allowed: our IND-CPA-security guarantee only applies to
encryptions of Xm for some m ∈ Zd. Yet, our technique is more general, precisely we do not
restrict the secret input vector to have binary coefficients.

ExtExpMultAdd : RdLWEt|Q
s (Tm�

; E)×RdGSW
t|Q
s (Tm; E �) → RdLWEt|Q

s

�
T αm+m�

; E ��
�
.

Algorithm 6.5 ExtExpMultAddαSα,Sβ(c,C)

Require: α ∈ Z∗
d, with inverse β = α−1 ∈ Z∗

d

A ψα(s) → s key switching key Sα ∈ RdLWEQ|Q
s

�
ψα(s) · gT ; σ

�

A ψβ(s) → s key switching key Sβ ∈ RdLWEQ|Q
s

�
ψβ(s) · gT ; σ

�

A ciphertext c ∈ RdLWEt|Q
s (Tm�

; E). A ciphertext C ∈ RdGSW
t|Q
s (Tm; E �)

Ensure: A ciphertext c� ∈ RdLWEt|Q
s (T αm+m�

;
�
E2 + d2K(4σ2 + E �2)).

c1 ← Galoisβ(c) � ∈ RdLWE
t|Q
ψβ(s)

�
T βm��

c2 ← KeySwitch
ψβ(s)→s

Sβ (c1) � ∈ RdLWEt|Q
s

�
T βm��

c3 ← ExtMult(C, c2) � ∈ RdLWEt|Q
s

�
Tm+βm��

c4 ← Galoisα(c3) � ∈ RdLWE
t|Q
ψα(s)

�
T αm+m��

c5 ← KeySwitch
ψα(s)→s
Sα (c4) � ∈ RdLWEt|Q

s

�
T αm+m��

return c5.

External Inner-product in the Exponent

By chaining, this allows us to evaluate inner products �x,y� over Zd in the exponent, given
GSW encryptions RdGSW

t|Q
s (T xi) and a public vector of coefficients y ∈ Z�

d. This procedure
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allows evaluation of inner products in exponents with log d times less homomorphic additions
in exponents than in FHEW, also less key material. Algorithm 6.6 runs in time Θ(lKd log d).

ExtExpInner y[Sα]α
:

��

i=1

RdGSW
t|Q
s (T xi ; E �) → RdLWEt|Q

s

�
T �x,y�;

√
2K�2d2σ2 + 2K�d2E �2

�
.

Algorithm 6.6 ExtExpInner y[Sα]α
([Ci]i∈[l])

Require: A public vector y ∈ Z�
d

A ψα(s) → s key switching key Sα ∈ RdLWEQ|Q
s

�
ψα(s) · gT

�
for each α ∈ Z∗

d

A ciphertext Ci ∈ RdGSW
t|Q
s (T xi) for each i ∈ [�]

Ensure: A ciphertext c ∈ RdLWEt|Q
s

�
T �x,y��.

c ← (0, T 0) � ∈ RdLWEt|Q
s (T 0; 0)

for i from 1 to � where yi �= 0 do
α = yi; β = α−1 mod d

c ← ExtExpMultAddαSα,Sβ(c,Ci) � ∈ RdLWEt|Q
s

�
T

�i
j=1 xjyj

�

end for
return c

In order to make things faster we also introduced (and implemented) two tricks.

Factoring Galois-KeySwitch sequences. We note that it is possible to factor some oper-
ations when chaining ExtExpMultAddα and ExtExpMultAddβ, by applying Galoisαβ

−1

rather
than Galoisα followed by Galoisβ (together with the appropriate key-switches), as illustrated
in Fig 6.2. The implementation follows this approach.

Furthermore, if y ∈ Z�
d contains repeated values, it is possible to re-index the inner

product to make equal values contiguous, and skip useless Galois1 operations. Those tricks
also decrease the final error E by constant factors. In practice we noticed that this re-indexing
was more expansive than the gain. It may be possible to achieve a positive speed-up with
this trick but we would need to look more closely at its implementation.

Pushing this trick to its limits, if � is large enough, one could re-index the inner product
so that the αβ−1 all belong to a small subset Z∗

d (of size roughly d/�+2, assuming the public
vector y ∈ Z�

d is uniformly random), allowing to decrease the size of the key material. In
combination with the following optimisation, this should lead to reduce the overall key size
by a significant factor. We did not attempt to implement this yet.

Decreasing LWE dimension. In our theoretical scheme, the homomorphic inner product
in exponent operation is performed over vectors of length � = p+1 where p is the dimension
of the secret in the LWE scheme.

In practice, we remark that this dimension is quite larger than needed for security,
given the amount of noise and the (small) modulus pq of those ciphertexts. We therefore
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Figure 6.2 – Optimised ExtExpInner (External Inner Product in Exponent) overview
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proceed with an extra LWE key-switch just after the combination of the LWE ciphertexts. In
practice it allows to decrease the dimension by a factor between 2 and 3, which accelerates
the ExtExpInner operations by the same factor. As a small added bonus, it also slightly
decreases the error in the ciphertexts output by this function.

6.3.3 Joining the building blocks

In this section, we explain how the building blocks described above fit together to form
the homomorphic evaluation and bootstrapping procedure EvalBootstrap. See Fig 6.1 for a
schematic overview. We build an algorithm that, given ciphertexts ci ∈ LWEs(mi;Ein), i ∈
{1, . . . , k} with s ∈ Zp

Q� a short vector (i.e. si ∈ {−1, 0, 1} for all i), a function f : Zt → Zt,
and coefficients γ1, . . . , γk ∈ Zt such that

�
i |γi| ≤ t, produces c ∈ LWEs(f(m);Eout) where

m =
�k

i=1 γimi. We use the following parameters for the building blocks:

• n as the security parameter,

• p, q = Θ(n), Q = poly(n), K = �logQ� = O(log n), t = Θ(n) such that t ≤ √
pq/4,

• λ = Θ(n), such that λ ≤ q as the failure parameter; the decryption and homomorphic
evaluation procedures should only fail with probability exponentially small in λ,

• σ as the error parameter used in the key material,

• Q�, Q⊗ = O(Q/
√
nσ), with t · �Q⊗/t� = 1 mod Q⊗.
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For mi ∈ {0, 1}, the algorithm can evaluate arbitrary k-bit gates if t ≥ 2k, using
γi = 2i−1 and an appropriately chosen f . We can compute a threshold gate if t > k by
setting γi = 1 for all i.

Algorithm 6.7 EvalBootstrapf,γ1,...,γkS (c1, . . . , ck): Homomorphically evaluates a function
and produce a bootstrapped encryption of the result.

Require: ci ∈ LWEt|Q�
s (m;Ein), f : Zt → Zt, γi ∈ Zt where γEin ≤ T for a certain T =

Θ(Q/(n2
√
σ)), and S is the required public key material consisting of:

• Bootstrapping keys BK
(d)
i ∈ RdLWE

t|Q
s(d)

(si mod d; σ) for i = 1, . . . , n and d = p, q

• Key switching keys Sd,α from ψα(s) to s for d ∈ {p, q} and α ∈ Z∗
d

• A key switching key S from spq to s� where spq =
�
−ψα(sp)⊗ ψβ(sq),ψα(sp)⊗ 1, 1⊗

ψβ(sq)
�

for α = q−1 mod p, and β = p−1 mod q, and s� =
�p−1

i=0 (spq)i+1X
i

Ensure: c ∈ LWEt|Q�
s

�
f
��k

i=1 γimi

�
;Eout

�
where Eout = O

�
|f |n4.5σ

�

c ←�k
i=1 ci � ∈ LWEt|Q�

s (m; γE
�

c ← ModSwitchQ
�→pq(c) � ∈ LWEt|pq

s (m;
�
r2γ2E2 + (p+ 1)2) where r = �pq/t� / �Q�/t�

(ap, bp) ← c mod p
(aq, bq) ← c mod q

cp ← Xbp · ExtExpInner−ap

[Sp,α]α

��
BK

(p)
i

�
i

�

� ∈ RpLWEt|Q
s

�
Xb−�a,s� mod p;O

�
n2.5σ

��

cq ← Y bq · ExtExpInner−aq

[Sq,α]α

��
BK

(q)
i

�
i

�

� ∈ RqLWEt|Q
s

�
Y b−�a,s� mod q;O

�
n2.5σ

��

cp ← ModSwitchQ→Q⊗(cp) � ∈ RpLWE
t|Q⊗
s(p)

�
Xb−�a,s� mod p;O

�
n
√
σ
��

cq ← ModSwitchQ→Q⊗(cq) � ∈ RqLWE
t|Q⊗
s(q)

�
Y b−�a,s� mod q;O

�
n
√
σ
��

cpq ← ExpCRT(cp, cq) � ∈ RpqLWEt|Q⊗
spq

�
Zb−�a,s�;O

�
n3.5σ

��

cpq ← ModSwitchQ⊗→Q��
cpq
�

� ∈ RpqLWEt|Q�
spq

�
Zb−�a,s�;O

�
n3.5σ

��

F ← (x �→ f(�tx/q� mod t)) � F : Zpq → Zt, |F | = |f |pq/t = O(|f |n)

c ← FunExpExtract
spq→s
F,S

�
cpq
�

� ∈ LWEQ�|t
s

�
f(m);O

�
|f |n4.5σ

��

return c

6.3.4 Heuristic error propagation

Our theoretical analysis of the scheme used subgaussian analysis to provide bounds on error
propagation that are already significantly better than worst-case bounds. Yet those bounds
are asymptotic, without explicit constants, and for some operations may not be perfectly
tight. As in previous work [DM15, CGGI16], when it comes to choosing practical parameters,
we rely on a tighter but heuristic analysis of error propagation, essentially treating all random
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variables as independent gaussians. More precisely, considering that the critical random
variable for correctness is obtained as the sum of many random variables, we only compute
its variance as the sum of the variances of its terms, and treat this final result as gaussian in
accordance with the central limit theorem (which is formally not applicable due to potential
dependencies).

We refer to the original publication [?] for these better bounds that were derived by
Léo and Max. We could successfully confirm all these heuristic equations by measuring the
actual errors in our implementation.

6.4 Implementation
Now that we have presented the scheme in details, we can turn to the implementation
challenges that constitute my contribution to this work. When I arrived at CWI in March
2017, the main aspects of the scheme were already there, based on Léo’s and Max’s works.
We already had the overall Figure 6.1 in place. It remained to clear out some aspects such as
proofs, practical error propagation, choice of parameters and implementation performance
and tweaks. Working on this implementation kept me busy for my three months there. We
shall present now the details of this contribution.

In the end, we developed a complete implementation of the scheme in C++11. Our
objective was to make it efficient and easily usable by fellow cryptographers and users. The
performance we got enabled us to homomorphically evaluate binary gates on six input bits
in roughly 6.4 seconds on a regular laptop.

6.4.1 Data representation

As we saw above, there are several objects (in the board sense) to handle: different ciphertexts
(LWE, RdLWE, RdGSW, . . . ), key materials (for encryption, key switching) and so on. To
handle all this, we need to be able to have circulant ring elements in Rd whose dimension d
takes different values: p, q in the accumulator, pq in the function extraction or even 1 for
the input/output of the gate. Also, all arithmetic operations are performed modulo different
integers Q,Q�, Q⊗. . . We put in Figure 6.3 the full class diagram where each class has in
subscript the parameter upon which it depends.

Low-level classes

At the bottom, we developed two classes: IntegerMod and CirculantRing to handle mod-
ular arithmetic and ring operations respectively. For performance reasons, we create the
different integers and ring elements thanks to the template mechanism. As a reminder, the
advantage of doing so is that the compiler will generate different binary code for all the dif-
ferent instances, so each type is optimised by the compiler. For example, modular arithmetic
done with % operator modulo some power of 2 gets rewritten automatically with shifts by
the compiler. The downside is a longer compilation time.

The IntegerMod class is then defined with one template attribute and contains one
int64_t field to hold the value. CirculantRing has two template parameters: the class
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CirculantRingInt,d,dFFT

IntegerModqFFTdFFT

RLWER,n GadgetR,B,K

KSWKeyR,B,K RGSWR,n,n�,B,K

R stands for a ring; d is the size of a ring; dFFT the FFT dimension for ring element
multiplication; n and n� are numbers of ring elements; B and K are a decomposition basis
and size.

Figure 6.3 – Class diagram. The relation A → B reads “A needs B”
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for its coefficients (the ring does not know, and does not need to, the modulus) and the
dimension of the ring. It has one dynamically allocated array of elements.

Fast multiplication with FFT

To perform the numerous FFTs of the scheme, we rely on a third party library FFTW
[FJ05]. It is a well-established, free and open-source, library with excellent performances so
we provide a connector class FFT to handle the library calls. Working with FFTW implies
that at the beginning of the programme some plans are computed (to be used to perform
the FFT transforms later) with optimal performances on the computer used for execution.
This wisdom is saved by our programme and has to be generated only once per computer.
Each CirculantRing type (i.e. each template parameter set) has a static pointer to an FFT
object to delegate the multiplication to it. We also add few static caches, that are allocated
when the program starts and can be used for intermediary operations within CirculantRing.
It saves the many allocations/deallocations that would happen otherwise and badly impact
the performances.

Since we are dealing with circulant ring elements, we may wish to run the FFT operation
in the ring dimension exactly. We would benefit from the Wrapped Convolution property
we discussed in the previous chapter. But we need our ring dimensions to be prime, which
is the worst case for FFT efficiency. We ran some benchmarks and it turned out that it
was much faster to use a bigger dimension (with small prime factors), and perform the
polynomial reduction afterwards. Also, we do not meet the conditions to apply NTT (our
moduli are not prime), so our choice was to stick with regular FFT computations. As such,
each CirculantRing class has another template parameter: the FFT dimension.

More challenges arose with FFT computations since our biggest modulus is Q = 256 and
the FFT works with double precision numbers (i.e. 53 bits mantissa). So we have to split the
ring coefficients into two halves of 28 bits each (least and most significant parts) and apply
the FFT transformation on each to prevent rounding errors and then perform the term by
term multiplications correctly (à la Karatsuba). We perform this splitting trick only when
needed, i.e. when the ring element at stake is not small. For example, in ExtMult products
of ring elements are computed where one of them is the output of a Gadget decomposition.
This operand does not need to be split before FFT forward transform because it is very
small.

Gadget decomposition

For this aspect, we also created a dedicated class Gadget. The decomposition depends on
the type to decompose, on the basis B used for the decomposition and on the size K of such
decomposition. Again, we put these three parameters as template on the class. It consists
only of two functions: one to generate the Gadget matrix used in RdGSW and the other to
perform the actual g−T decomposition.
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Predicates

The main objective of our scheme remains to evaluate a function on the input bits. So we
provide the generic class to describe such a function f : Zt → Zt. Any user function can
be described by derivation of the base class and the description can take any form (look-up
table (LUT), linear expression, . . . ).

Encryptions

Using again the power of templates, we construct one generic RLWE class, taking two template
parameters: the ring type of its elements and the size of the ciphertext. This size is that of
the key which can be 1 in the case of a usual Ring-LWE (s is one ring element of size d) or
many for LWE encryptions (s is n integers). Also, we have the case of Matrix-Ring-LWE as
it happens in our scheme after the ExpCRT operation: the ciphertexts are then composed of
3+1 ring elements and the associated key spq has also three components.

All this complexity is hidden to the user in the template parameters and the class RLWE
has only two fields: an array a of ring elements (dynamically allocated with n elements) and
another ring element b.

For RdGSW, the ciphertexts are a matrix of size nK × n of ring elements. So several
template parameters are put in place for the RGSW class: the ring type, the size n, the
decomposition basis B and size K. A static field links each type to the adequate gadget
matrix computed by the Gadget interface.

Key switching keys

The last non-trivial component is the KSWKey class. Remember from the description of
the building blocks above that a key switching key consists in several RdLWE encryptions
of multiples of a key under another key. Hence, our KSWKey class takes several template
parameters: the ring type like the others, the dimension of the source key n, that of the
destination key n� and the decomposition basis B and size K. The object itself contains one
field: a n×K array of RdLWE encryptions (of size n�).

Further optimisations

Pre-computations. In order to minimise the evaluation time of the gate, a maximum
of heavy computations is done in the setup phase. Consequently all key materials: boot-
strapping keys, key switching keys, among others, are computed ahead of time and in FFT
domain. Our CirculantRing class allows to transparently manipulate ring element in FFT
or coefficient representation which greatly contributes to both performance and code read-
ability.

Compiler options. We went into great lengths at optimising the algorithms and the dif-
ferent function calls and so on. We dived into the details with callgrind for precise function
profiling to target our efforts. We also tweaked the optimisation flags of g++ to save up 5%
more time than the usual -O2, which already saves 75% when compared to no flag at all.
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The selected flags are: -Ofast, -march=native, -mtune=native, -fno-schedule-insns,
-funroll-loops, -ffinite-math-only.

Open-source

Many efforts have also been made for general availability and usability. The whole code is
documented with Doxygen and many unitary tests are provided. With under 4,000 lines of
code, it remains accessible to whoever wants to tweak or improve it. The implementation is
publicly available and open-source2.

Tests. We provide extensive tests for every operations happening in the gate. They can
be used for correctness checks, when playing with parameters for instance. We also provide
statistical tests that allow to measure the output error for every steps in the scheme. They
allowed us to confirm the heuristic error growth equations of Section 6.3.4.

6.4.2 Tweaking the parameters

Error growth and correctness. To choose the parameters, we simulated the error
growth throughout the gate, using heuristic error propagation assumptions, described in
Section 6.3.4. We compared the predicted variance of each step to the experimental one,
and found them to be quite close. From the final variance, and according to a central limit
heuristic, we predict a failure probability of only 2−74 for the parameter set below. In prac-
tice we have tested our scheme hundreds of time on different inputs, and never observed
failure.

Security. To estimate the concrete security of our parameter set, we use the lwe-
estimator from Albrecht [APS15]. All the LWE instances behind our LWE, RpLWE, RqLWE
ciphertexts given as part of the evaluation key offers at least 100 bits of security. This is
according to the estimator as of commit cc5f6e8, which includes the latest result of [Alb17]
for small secrets. Therefore we feel safe to claim at least 80 bits of security.

Parameter sets. For our first implementation, we targeted a 6-bit gate. The parameters
of the scheme are as follows:

• For 6 input bits, the plaintext modulus t = 26.

• The ring dimensions p and q are 1439 and 1447, so pq = 2, 077, 892.

• Hence the FFT dimensions are dFFT
1 = 3072 = 3·210 for Rp,Rq and dFFT

2 = 4, 194, 304 =
222 for Rpq. Using 3072 gives us better results than 4096 despite it not being a power
of two. This did not happen for dFFT

2 .

• The modulus in ExtExpInner and the LWE are Q,Q� = 256.
2https://github.com/gbonnoron/Borogrove
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• Errors and secrets are sampled according to Section 6.2.4. Secrets are ternary, one third
of the coefficients are set to -1, another to 1 and the rest to 0. Errors have variance 4.

• For ExpCRT we want a small inverse to �Q⊗/t� mod Q⊗. Hence we choose Q⊗ =
(219 − t+ 1)2 which gives us

�Q⊗/t�−1 = −t mod Q⊗

• Finally, for the gadget decomposition we use B = 28 and K = 7 for ExtExpInner and
FunExpExtract and their key material.

We also have extra parameters related to the optimisation ExtExpInner. Namely, we
apply an extra KeySwitch over the LWE ciphertext to decrease its length l of the inner-
product from l = p = 1439 down to l = 600. This key-switch happens with modulus
Q = 256, error standard deviation 233, and gadget parameters B = 26, K = 10.

6.4.3 Performances

Time

We run our test on a punchy laptop: Core i7-6500U (2.50 GHz, 4MB L2 cache), 16 GB RAM
with a GNU/Linux Fedora 26 installed on a SSD. The computation is single-threaded and
we got the following timings:

• FFTW wisdom computation (only once per computer): 68 minutes

• Key pre-processing (once per user key pair): 38 seconds

• 6-bit input, 1-bit output gate evaluation: 6.4 seconds

The gate time breaks down into:

• 0.60 s per ExtExpInner (the two could be run in parallel);

• 4.0 s for the KeySwitch in FunExpExtract;

• and only 0.55 s for the output bit related operations.

Consequently, computing another function (1 more output bit) on the same 6 input bits
would add only 0.55 s, and so on. For 6-to-6 bit gate it yields just above 10 seconds.

Memory

On the memory front, we need 9.2 GB of RAM to store all key materials and for the
computation. The usage breaks down as follows

• 52 MB of secret keys (s, sp, sq, spq)
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• 2 × 790 MB of bootstrapping keys in ExtExpInner (all the RpGSW
t|Q
sp (Xsi) and

RqGSW
t|Q
sq (Y si))

• 2 × 950 MB of key-switching keys in ExtExpInner (all the KSψα(sp)→sp and KSψα(sq)→sq)

• 2.9 GB for the key-switching key in FunExpExtract (KSspq→s�)

• 1.4 GB for the extra key-switching key on the LWE ciphertext prior to the ExtExpInner.

The input and output ciphertext size is 11.3 KB. The accumulators are 22.5 KB large
each and after tensoring it is 63.5 MB.

Conclusion
In this last chapter, we detailed a new scheme, improving upon FHEW. We reported both
the formal description and the implementation aspects we took care of. This contribution
has been accepted to Africacrypt 2018 [?]. Another such improvement is the scheme TFHE
[CGGI16, CGGI17]. In comparison to our work, TFHE offers better performances for generic
gates. Though, our scheme is simpler: we have homogeneous inputs and outputs, so no need
for bootstrapping. Our unique formalism for the function f is also simpler than the LUT
and automata in TFHE.

With this work, we endorsed the last role of our journey, that of the implementer.
Despite the hard competition there is around homomorphic encryption, our contribution
has brought new concepts and techniques. As the one doing the actual implementation, our
work spanned between the theoretical aims and the practical constraints. As with lattice
reduction, this point is where we need works to close, or at least narrow, the gap between
theory and practice.

The scheme presented here is in its infancy and could be extended and improved by
further work, for example using RNS technique [BEHZ16]. The fourth generation may
however be the last, since now the noise is constant between gates. Still, there may be
algorithmic improvements since the ideas of TFHE [CGGI17] are very different from those
in our scheme.
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Chapter 7

Closing thoughts

Isn’t it the goal of the traveller, never to be there?

We shall now wrap up the discussion about the last three years of work. Not that we
intend to close the study of homomorphic encryption, but we hope we pushed forward both
cryptography and cryptanalysis in this topic.

Retrospective

Started in April 2015, this journey led us first to endorse an attacker role. As a newcomer
to the field, it has been a very stimulating task to try to break things down. Despite the
limited reach of our new attack described in Chapter 3, the interaction with the community
turned out to be very fruitful. Chapter 4 is a good illustration, about our contribution to
algorithmic lattice reduction. A work that was mostly driven by the fplll days.

Next, within the context of the Lab-STICC, we were able to join forces, together
with Vincent Migliore, to explore the practicality and the precise settings of homomorphic
schemes, see Chapter 5 for all the details.

Finally, thanks to other encounters, we had the chance to join Léo Ducas and Max
Fillinger at CWI for a few months. This allowed us to complete the circle and become a
scheme designer and implementer, for real. Chapter 6 presents this line of work.

Our work in an evolving context

Following the trend around homomorphic encryption proved to be a real challenge. It re-
quired us to stay constantly tuned to the IACR ePrint Archive, with on average 2 or 3
highly relevant publications for us per month. With such a pace, the picture on homomor-
phic encryption has extensively changed since April 2015 and if we were to start our thesis
today, our work would be conducted very differently. To keep only a few concurrent (and
simultaneous) works, [LL15, Alb17] achieved similar and better results than what we report
in Chapter 3. Then [CS16] offered similar outcomes as we did in Chapter 5. And lastly,
[CGGI16, CGGI17] achieved better performances, in some cases, than we did at the same
time (see Chapter 6).
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Perspectives

We are definitely not at the end of our journey. Below we share our thoughts for works that
could help push further the research efforts we joined during the thesis.

On targeted attacks. As most recently illustrated by the work of Albrecht [Alb17] against
the settings of HElib [Hal] and SEAL [LCP17], we can still expect better attacks for such or
such case. As we saw with YASHE’ and F-NTRU, we shall not advocate the use of schemes
that do not stand on a hard ground. Hence, when we see that today most of the homomorphic
encryption libraries choose not to comply with the hardness reduction conditions, we can
expect some troubles in the future.

To this end, we encourage cryptanalytic efforts or more efficient security reductions to
make things clearer for everyone.

On lattice reduction. The last fplll days of December 2017 put a focus on implementing
sieve algorithms for SVP/CVP. Indeed, we can expect that, in a near future, enumeration
will be beaten by sieving for the instances of interest. Thus, lattice reduction will continue to
improve, whether with generic libraries like fplll or with more confidential special-purpose
implementation. Many heuristics remain to be experimented with and many parameters to
tune. Thanks to the speed of fplll core and fpylll flexibility, we think playing within this
framework should be fruitful.

On scheme improvements. Homomorphic Encryption reaches the age of maturity and
we start to see industrialised framework [CL] that aims further than proof-of-concept imple-
mentations. We can expect many efficiency improvements and we think there is also space
for algorithmic leaps. Also, we think there will always be several lines of candidates, each
with its distinguishing features. The choice for the best will depend on the context, yet we
will have generically good schemes.
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Titre :  En route vers un chiffrement complètement homomorphe applicable 

Mots clés :  Chiffrement, Cloud, Homomorphe, Post-Quantique, Sécurité 

Résumé :  Craig Gentry a proposé en 2009 le premier schéma de chiffrement complétement 
homomorphe. Depuis, un effort conséquent a été, et est toujours, fourni par la communauté 
scientifique pour rendre utilisable ce nouveau type de cryptographie. Son côté révolutionnaire tient 
au fait qu'il permet d'effectuer des traitements directement sur des données chiffrées (sans que 
l’entité réalisant les traitements ait besoin de les déchiffrer). Plusieurs pistes se sont développées 
en parallèle, explorant d'un côté des schémas complétement homomorphes, plus flexibles en 
termes d'applications mais plus contraignants en termes de taille de données ou en coût de calcul, 
et de l'autre côté des schémas quelque peu homomorphes, moins flexibles mais aussi moins 
coûteux.  
 
Cette thèse, réalisée au sein de la chaire de cyberdéfense des systèmes navals, s’inscrit dans 
cette dynamique. Nous avons endossé divers rôles. Tout d’abord un rôle d'attaquant pour 
éprouver la sécurité des hypothèses sous-jacentes aux propositions. Ensuite, nous avons 
effectué un état de l’art comparatif des schémas quelque peu homomorphes les plus prometteurs 
afin d'identifier le(s) meilleur(s) selon les cas d’usages, et de donner des conseils dans le choix 
des paramètres influant sur leur niveau de sécurité, la taille des données chiffrées et le coût 
algorithmique des calculs. Enfin, nous avons endossé le rôle du concepteur en proposant un 
nouveau schéma complétement homomorphe performant, ainsi que son implémentation mise à 
disposition sur github. 
 

 

Title :  A journey towards practical Fully Homomorphic Encryption 

Keywords :  Encryption, Cloud, Homomorphic, Post-Quantum, Security 

Abstract :   Craig Gentry presented in 2009 the first fully homomorphic encryption scheme. Since 
then, a tremendous effort has been, and still is, dedicated by the cryptographic community to 
make practical this new kind of cryptography. It is revolutionnary because it enables direct 
computation on encrypted data (without the need for the computing entity to decrypt them). 
Several trends have been developed in parallel, exploring on one side fully homomorphic 
encryption schemes, more versatile for applications but more costly in terms of time and memory. 
On the other side, the somewhat homomorphic encryption schemes are less flexible but more 
efficient. 
 
This thesis, achieved within the Chair of Naval Cyber Defence, contributes to these trends. We 
have endorsed different roles. First, an attacker position to assess the hardness of the security 
assumptions of the proposals. Then, we conducted a state-of-the-art of the most promising 
schemes in order to identify the best(s) depending on the use-cases and to give precise advice to 
appropriately set the parameters that drive security level, ciphertext sizes and computation costs. 
Last, we endorsed a designer role. We proposed a new powerful fully homomorphic encryption 
scheme together with its open-source implementation, available on github. 
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