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A B S T R AC T

Video streaming over the Internet consumes a larger ratio of the Internet bandwidth capacity, with
a prediction that more than 80 % of Internet traffic will be video by 2020. Consumers are gradually
deserting traditional broadband television to watch video stream over the Internet, requesting high
quality contents. Consumer are now starting to request immersion inside the content they are watching.

With the decreasing price of Head-Mounted Display (HMD) and omnidirectional cameras, the
popularity of omnidirectional video is increasing. Omnidirectional videos, also denoted as spherical
videos or 360° videos, are videos with pixels recorded from a given viewpoint in every direction of
space. A user watching such an omnidirectional content with a HMD can select the portion of the video
to display by moving her head. The portion of the video displayed to the user is denoted as viewport and
represents, with 2018’s typical HMDs, around 20 % of the full omnidirectional content. To feel high
immersion inside the content a user needs to see viewport with a very high resolution and a high frame
rate (typically at least 4096 × 2048 pixels (4K) spatial resolution and 90 Hz frame rate). In order to get
such viewport quality, streaming the whole video would require more than 100 Mbit s−1 bandwidth,
which is much higher than the worldwide median Internet access connection speed. Applying traditional
adaptive streaming technologies used by Over-The-Top (OTT) companies such as YouTube, Netflix,
and Facebook would result, to match the available download bandwidth, in very low quality viewports.

In this dissertation I present my contributions to enable the streaming of highly immersive
omnidirectional videos over the Internet. The contributions can be gathered into six contributions and
into three main topics. First we propose new streaming architectures. Our goal is to stay as close as
possible as existing HTTP Adaptive Streaming (HAS) architecture for obvious cost reduction reasons.
We propose first a viewport-adaptive streaming architecture where omnidirectional video are encoded
with a Quality Emphasized Region (QER) in order to stream video with high quality in the direction
user is predicted to look in a few seconds while keeping traditional download throughput adaptation
from HAS. Then we propose an extension to this streaming architecture to stream a next generation of
omnidirectional video, denoted as Multi-ViewPoint (MVP) omnidirectional video, where users can not
only perform rotational movement inside the content but also predefined translational movements.
Secondly we perform theoretical studies. We study the relationship between the spherical pixel density
and viewport distortion observed by users. We propose an extension to Facebook offset cube-map
projection. We present a theoretical model to compute the optimal way to distribute the bit-rate inside
an omnidirectional video, based on viewing statistics, to satisfy a majority of customer. Finally we
propose practical tools to manipulate and study omnidirectional videos. First we developed a modular
open-source C++ software, named 360Transformations, to manipulate projected omnidirectional videos,
extract viewports and compute objective quality metrics. Finally we recorded an openly available
head-movement dataset of users watching in a free-of-task way omnidirectional videos.

This work resulted in nine publications including eight international conferences and one journal
paper. Out of those nine publications, four are not discussed in this dissertation, for consistency
purpose, as they are related to video frame filtering for the streaming of low latency videos or related
to HTTP/2.0.
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R É S U M É

Chaque année, le streaming de vidéos sur Internet consomme une plus grande part de la bande passante
totale de l’Internet, avec comme prévision que d’ici 2020 plus de 80 % du trafic Internet sera dédié
à la vidéo. Les consommateurs désertent peu à peu la télévision traditionnelle pour regarder des
vidéos sur Internet, en demandant toujours des contenus de plus hautes qualités. Les consommateurs
commencent à réclamer de l’immersion à l’intérieur du contenu qu’ils regardent. Avec la baisse du prix
des Casques de Réalité Virtuelle (CRV) et des caméras omnidirectionnelles, la popularité des vidéos
omnidirectionnelles augmente. Les vidéos omnidirectionnelles, également appelées vidéos sphériques
ou vidéos 360°, sont des vidéos avec des pixels enregistrés, à partir d’un seul point de vue, dans toutes
les directions de l’espace. Un utilisateur qui regarde un tel contenu omnidirectionnel avec un CRV
peut sélectionner la partie de la vidéo à afficher en bougeant la tête. La partie de la vidéo affichée à
l’utilisateur est usuellement nommée viewport (fenêtre d’affichage en Français) et représente environ
20 % du contenu omnidirectionnel complet en considérant les caractéristiques des CRVs disponible
en 2018. Pour se sentir totalement immergé à l’intérieur du contenu, l’utilisateur a besoin de voir un
viewport avec une résolution spatiale de 4K et une fréquence d’images de 90 Hz. Pour obtenir une
telle qualité d’affichage, le streaming de l’ensemble de la vidéo nécessiterait une bande passante de
plus de 100 Mbit s−1, ce qui est beaucoup plus élevé que la vitesse médiane d’accès à l’Internet dans le
monde. L’utilisation des technologies traditionnelles de streaming adaptatif, utilisées par les sociétés
dites Over-The-Top (OTT) telles que YouTube, Netflix et Facebook, rendrait possible le streaming de
telles videos avec les bandes passantes actuellement disponibles mais au prix de viewport avec une très
faible qualité.

Dans cette thèse, je présente mes contributions pour rendre possible le streaming de vidéos
omnidirectionnelles hautement immersives sur l’Internet. On peut distinguer six contributions
principales elles-mêmes regroupées en trois thèmes. Tout d’abord, nous proposons de nouvelles
architectures de streaming. Notre objectif est de rester aussi proche que possible de l’architecture
existante d’HTTP Adaptive Streaming (HAS) pour des raisons évidentes de réduction des coûts. Nous
proposons d’abord une architecture de streaming omnidirectionnelle où la vidéo omnidirectionnelle est
encodée avec une Région de Qualité plus Élevée (RQE) afin de diffuser la vidéo de haute qualité dans
la direction où l’utilisateur est censé regarder dans quelques secondes tout en conservant l’adaptation
au variation de débit du HAS classique. Nous proposons ensuite une extension de cette architecture de
streaming pour diffuser une nouvelle génération de vidéo omnidirectionnelle, nommée vidéo
omnidirectionnelle Multi-Points de Vue (MPV), où les utilisateurs peuvent non seulement effectuer des
rotations à l’intérieur du contenu mais aussi effectuer des translations prédéfinies. Deuxièmement,
nous avons réalisé des études théoriques. Nous avons étudié la relation entre la densité des pixels sur la
sphère et la distorsion du viewport observée par l’utilisateur. Nous avons proposé une extension à la
projection offset cube-map de Facebook. Nous présentons un modèle théorique pour calculer la
manière optimale de distribuer le débit à l’intérieur d’une vidéo omnidirectionnelle, en utilisant des
statistiques de visualisation, afin de satisfaire une majorité d’utilisateurs. Enfin, nous proposons des
outils pratiques pour manipuler et étudier les vidéos omnidirectionnelles. Tout d’abord, nous avons
développé en C++ un logiciel modulaire open-source, nommé 360Transformations, pour manipuler les
vidéos omnidirectionnelles projetées, extraire des viewports et calculer des métriques de qualité
objective. Enfin, nous avons enregistré des traces de navigation de mouvements de têtes d’utilisateurs
qui regardent des vidéos omnidirectionnelles.

Ce travail a donné lieu à neuf publications scientifiques, dont huit conférences internationales et un
article de revues. Sur ces neuf publications, quatre ne sont pas abordées dans la présente thèse, par
souci de cohérence, car elles traitent du filtrage de trames vidéo pour le streaming de vidéos à faible
latence.
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Part I

I N T RO D U C T I O N





1
I N T RO D U C T I O N

1.1 general context

During the last decade, the time people spend consuming medias from the Internet has exploded.
Analysts predict the Internet will become the main source for entertainment in the next decade [159].
This tendency, illustrated in Figure 1.1a, is mainly due to the better accessibility of high-quality
media, which as been influenced by three factors: (i) As depicted in Figure 1.1b, the average Internet
connection speed has highly increased during the last decade, allowing people to consume, without
delay, content with better quality. The wide deployment of wireless access networks, such as Wi-Fi
and 4G, allow users to consume content wherever and whenever they want. (ii) Devices able to decode
high-quality content and able to connect to high speed network have become mainstream. And finally,
(iii) the number of videos available on the Internet has exploded, thanks to content providers, such as
YouTube, Dailymotion, Netflix, Hulu, Twitch, which allow content producers to offer multimedia content
over the Internet. The diversity of content type, including Video on Demands (VoDs), television (TV)
program replays, and live streaming of e-sport events, helps to attract a wide range of the population to
those services.

Among all media consumed on the Internet, video is the one users spend most time on and the one
that uses most Internet resources. For instance, in the first quarter of 2018, more than 4.80 billion hours
of video content was streamed over the Internet (this is equivalent to 6 centuries of content streamed
every single day), with an increase of 114 % compared to the same period in 2017 [27]. Moreover,
video streaming represented up to 73 % of global Internet traffic in 2016 and is predicted to grow up to
82 % by 2021 [25].

Compared to traditional broadcasted TV programs, video streaming services over the Internet offer
more freedom to the users and provide a real feeling of personalized services. The user can decide
when and where to watch a content, can pause, skip a part, and continue to watch the content later. This
flexibility is one of the main strengths of video streaming services. The feeling of personalized services
comes from the possibility for the streaming service to adapt the video quality based on how the user is
consuming the media (on a cellphone or on a TV, with a high or low speed Internet connection), but
overall come from the very efficient content recommendation services offer by most service providers.
The user is always able to find content he likes and so keep using the platform of the content provider.
Those content providers are Over-The-Top (OTT) companies: they stream the multimedia content
directly to the devices of their customers without intermediaries, which allows them to collect precious
information on their users.

The key enabling technologies that allows OTT companies to stream so much content on the Internet
is the Adaptive Bit-Rate (ABR) streaming implemented in HTTP Adaptive Streaming (HAS) protocols
such as Dynamic Adaptive Streaming over HTTP (DASH). With HAS, content provider deliver videos
to their customers like broadband companies (i. e. same content for multiple users) while giving to them
the feeling of personalized services. The main idea is to encode the videos into different representations
each having different resolutions and/or bit-rates. Each representation is split into segments of a few
seconds long (typically between 2 s to 3 s long). The users’ device run a video play, usually denoted as
client, that decides which segment to download, based on its available download bandwidth and on the
device resources, by sending HTTP requests. The service provider only needs to send the requested
segment to the client with a regular HTTP server and without any dedicated processing because all the
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Figure 1.1: Evolution over time of the daily media consumption per person (source

Zenith via Statista [159]) and of the global Internet access connection speed (source

Akamai via Statista [4])

decisions are made by the client. This technology can easily scale with the number of client and the
number of videos and adapt to users’ needs.

The last decade has also seen the increase of the interest of users in interactive media, mainly because
of the technology needed for such contents is becoming more and more affordable. Interactive medias
are multimedia content that can be actively modified by a user while being watched. They use new
generations of video players that exploits the increasing computing capacities of users’ devices to allow
new forms of interaction. For instance, the user can change the position of the camera, zoom inside the
video or even interact with objects inside the video. Multiple OTT services are based on interactive
videos such as cloud gaming, multi-view videos, and omnidirectional videos.

An omnidirectional video, also called spherical videos or 360° videos, is a video with pixel captured
in every direction of space. When a user watches such a video, only a small portion of the video,
denoted as viewport, is displayed to the user screen. One can represent an omnidirectional video as
a video on the inner surface of a sphere. To generate the viewport, a “virtual camera” is positioned
at the center of the sphere and extracts only the portion of the video in its Field of View (FoV). The
orientation of the virtual camera is controlled by user’s feedback: if the video is watched using a
Head-Mounted Display (HMD), the omnidirectional video player uses the head orientation of the user,
otherwise it uses keyboard or remote control inputs.

Virtual Reality (VR) multimedia content aims to offer users a high feeling of immersion. The users
should feel like they are living a real experience: the barrier between reality and virtuality disappears.
Such high level of immersion can only be provided with a high level of interactivity between the users
and the multimedia content.

To ensure a good immersion into the content, the spatial resolution of the viewport should be high
enough for the users not to perceive the pixel borders when using a HMD. A viewport with a 4096 ×
2048 pixels (4K) resolution usually provide imperceptible pixels. The vendors of HMD recommend
for the whole system to be able to react to head movement as fast as the refresh period of the HMD
to avoid simulator sickness [87]: 11 ms for 90 Hz HMDs. In other words, the motion-to-photon delay,
defined as the time between a head movement and the display of the first viewport corresponding to
this head movement, should be lower than 11 ms.

The streaming of such omnidirectional content on the Internet is challenging. To enable 4K
viewports, the whole omnidirectional content should be equivalent to at least a 16 384 × 8192 pixels
(16K) video. Streaming the whole content (16K video per eye) at 90 fps with existing streaming
technologies would requires more than 150 Mbit s−1 [96] which is way higher than the median home
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Figure 1.2: Panoramic versus Omnidirectional videos. In blue, part with pixels.

download speed (64 Mbit s−1 on United-States fixed connection and 22 Mbit s−1 on United-States
mobile connection [122]).

The goal of this thesis is to propose and evaluate modifications in today’s OTT delivery architecture
and to propose new ways to represent omnidirectional videos to enable the streaming of such interactive
and immersive content through the Internet.

1.2 motivation

Since Neumann, Pintaric, and Rizzo [90] published in 2000 the first paper introducing an
“omnidirectional” capturing video system, many researchers have worked on omnidirectional
videos/images. But what is often called “omnidirectional video” or “panoramic video” in the literature
is not exactly the same as what we denote by omnidirectional video in this dissertation. Often, it is
cylindrical content, with pixels only close to the equator, captured in 360°, without pixel near the poles.
It is a content where users can only turn on themself (i. e. yaw rotation only). In this dissertation, we
denote by panoramic videos the cylindrical videos with one Degree of Freedom (1DoF) (see
Figure 1.2a), and by omnidirectional videos the spherical videos with three Degrees of Freedom
(3DoF) (see Figure 1.2b), and we mainly focus on the latter.

Before the beginning of this thesis, a small number of studies have dealt with the streaming of
omnidirectional videos in the context of HAS for OTT companies, targeting HMD client devices.
Existing works can be classified into three groups: (i) the streaming of panoramic videos to traditional
TV displays, to tablets or to huge “omnidirectional” screens denoted as CAVE-like displays [36, 111],
(ii) the study of efficient ways to render the content [8, 9], and (iii) the study of new possible user’s
interactions with the content [99]. Alface, Macq, and Verzijp [6] are the first, in 2012, to study the
tiling of omnidirectional video. They model the tile quality selection, in the context of a bandwidth
constrained streaming, into an Integer Linear Program (ILP). They did not performed their study with
the tiling option of Moving Picture Experts Group (MPEG) High Efficiency Video Coding (HEVC)
video codec but with the not-tile-compatible Joint Photographic Experts Group 2000 (JPEG 2000)
image codec, nor did they discuss the integration of the system into HAS-like streaming architectures.
Niamut et al. [92] were the first in 2013 to propose a full streaming architecture to stream panoramic
videos. Their solution does not focus on omnidirectional videos and does not exploit the characteristics
of such videos. No real consensus existed in the community on what is the best way to prepare the
omnidirectional content before streaming, and how existing technologies can be upgraded to support
efficient and high quality omnidirectional video streaming. The goal of this thesis is to contribute filling
this gap.

In this thesis we focus on the streaming of omnidirectional videos to HMD devices, in the context of
OTT content providers: HAS architectures, low motion-to-photon delay, and time dependent bandwidth.
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Figure 1.3: Contribution timeline. Dark gray boxes indication the topics of contributions on

the same row. Each contribution is represented by a box with a short description

inside. Contribution with white background are discussed inside the body of the

dissertation, those with light-gray background are not discussed in this dissertation.

In the state-of-the-art, we can notice that few work have been done on the domain before 2015.
Moreover no dataset of recorded trajectory of user watching omnidirectional videos with a HMD
existed, making the study user behaviors inside the omnidirectional content more difficult. We will
further discuss the related work in Chapter 2.

The goals of the thesis are then threefold:

i. Streaming Architecture: Propose and evaluate a streaming architecture compatible with HAS and
especially with the widely deployed DASH protocol

ii. Theoretical: Propose theoretical analysis of the proposed architecture, on how to generate the
video representations for this architecture and on how to objectively evaluate the quality of each
representation.

iii. Practical Tools: Propose practical tools to evaluate the different propositions and to allow the
community to reproduce the results of our work.

1.3 contributions and organization of the manuscript

1.3.1 Introduction to the Contributions

The contributions presented in this dissertation are related to omnidirectional videos. We exploited
the characteristics of omnidirectional content to propose adaptive streaming solutions compatible with
current OTT streaming architecture: mainly with DASH-like architectures. Our contributions in this
domain can be classified into three groups, introduced in the previous Section and detailed further
below: (i) Architecture; (ii) Theoretical studies; and (iii) Practical tools .

Reproducibility of research works is the cornerstone of science. To help the community to reproduce
our works, we released, with all our publications, the software and datasets used to produce the results.
The only exception is when dataset copyright owner forbid the release of the dataset.

The omnidirectional video stream contributions do not represent the full extent of the work done
during the thesis. Figure 1.3 represents a timeline of the contributions of the thesis started in March
2015 and ended in May 2018. We chose not to talk about the video frame filtering contributions (with
light-gray background in the Figure) in the body of this dissertation to keep a consistent document.
Modern video player are able to decode a video bit-stream even if some of the encoded video frames are
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missing. Missing frames introduce distortion in the decoded video (decoding artifacts due to missing
information), but some missing frames introduce more distortion than others. In the context of low
delay video streaming, we studied the possibility to not transmit some of the frames that introduce
little distortion to mitigate temporary bandwidth shortage and avoid stalls. We applied this idea on
a cross-layer video frame scheduler for Multi-Path Transmission Control Protocol (MPTCP), and
on an applicative frame scheduler using the new features of HTTP/2. Readers interested about those
contributions may read our published papers [29, 30].

The dissertation is structured as follow: Part I contains this introduction and exhibits the state-of-the-
art, Part II contains a presentation and an evaluation of the architectures of viewport-adaptive streaming
and of a possible extension to discrete six Degrees of Freedom (6DoF) video streaming, Part III
comprehends some theoretical studies about omnidirectional videos, Part IV comprises the presentation
of some practical tools developed to better study viewport-adaptive streaming, omnidirectional video
projections, and users behaviors inside the 360° content, and finally Part V concludes the thesis.

The next sub-sections introduce the contributions that will be further discussed in the body of the
dissertation.

1.3.2 Streaming Architecture

We propose a new adaptive streaming architecture, compatible with DASH-like protocols, to stream
omnidirectional videos over the Internet. We introduce the concept of heterogeneous spatial quality
representations, which are video representations where the quality is not the same everywhere. When
an omnidirectional video is encoded with heterogeneous spatial quality, viewport extracted in an high
quality area has a better visual quality than viewport extracted in lower quality areas. We introduce
the concept of Quality Emphasized Region (QER), which is a connected subset of the sphere with
higher quality than the rest of the spherical regions, and the concept of Quality Emphasis Center (QEC),
which is the centroid of the QER, to propose a viewport-adaptive streaming architecture that not only
adapts to the user’s available bandwidth but also adapts to the user’s head orientation. This work was
published in the proceedings of IEEE ICC 2017 [33] and is presented in Chapter 3.

This architecture can only target 3DoF. Indeed, users can only rotate their head inside the content
but they cannot do any translational movements. Offering 6DoF on demand content is still challenging
because it either requires huge dedicated computing resources per user (like what is done with cloud
gaming) or requires the usage of still not mature technologies such as lightfield signal.

We studied a possible next step toward 6DoF: multi-viewpoint omnidirectional videos. It consists
in a set of synchronized omnidirectional videos that films the same scene from different viewpoints.
The user can “teleport” from one viewpoint to another. It is not a full 6DoF but instead a discrete
6DoF scenario where the user can freely choose the orientation of her head but can only move to a
predefined discrete set of position in space. Our study discuss different possible implementation of
multi-viewpoint omnidirectional videos streaming, model the optimal download strategy and evaluate
two radical download strategies. This study was partly done while I was visiting the Signal Processing
Laboratory (LTS4) at the Ecole Polytechnique Fédérale de Lausanne (EPFL). This work was published
in the proceedings of ACM MMSys’18 [35] and is presented in Chapter 4.

1.3.3 Theoretical Study

Sphere-to-plane projections are usually used to enable omnidirectional videos to be encoded with
encoders designed for traditional two Dimensional (2D) rectangular videos. To better understand the
impact of the sphere-to-plane projection on the quality of the extracted viewports, we studied the relation
between the spherical pixel sampling and the distortion introduced inside the extracted viewports. We
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denote by spherical sampling, or spherical pixel density, the number of pixel per surface units on the
sphere. The spherical sampling approach is useful to study projection that continuously degrades the
quality of the video such as the offset projection, proposed by Facebook to generate representation
with QER and used in the special case of the cubemap projection [73, 162]. We generalize this offset
transformation to any projection. This work is published in the proceedings of IEEE MMSP’18 [54]
and introduced in Chapter 5.

Even if we know how to generate representations with a QER, we need tools to automatically decide
the shape and the position of the QER. We aim to model the QER allocation independently of the actual
sphere-to-plane projection used, using content specific users’ viewing statistics. We model this problem
into a bit-rate allocation problem within the spherical video. The goal is to generate n representations
which fulfill a total bit-rate budget constraint, and which maximize the quality inside the viewports
generated by recorded head movement trajectories. To perform this allocation, we introduce the notion
of surface bit-rate. This work was published in the proceedings of ACM MM’17 [32] and is presented
in Chapter 6.

1.3.4 Practical Tools and Dataset

To evaluate the performance of viewport-adaptive streaming with different sphere-to-plane projections,
head-orientation prediction and head-orientation datasets, we developed an open source software able
to convert omnidirectional videos from one projection to another, to extract viewports, to replay head
movement trajectory datasets and to compute different objective distortion metrics. The software is
designed to allow easy insertion of new sphere-to-plane projections. This software was used in most of
our works to evaluate our proposition and is available for the community on GitHub [28]. Chapter 7
describes its design.

Datasets of recorded head movement trajectory of users watching omnidirectional videos are
necessary to enable the community to evaluate the different viewport-adaptive streaming proposals,
to understand global user behaviors within the omnidirectional content and to develop algorithms to
predict future head positions. For instance, viewport-adaptive streaming supposes that users’ head
movements can be predicted a few seconds in the future. Defining a small set of QER supposes there
exists some well defined Region of Interest (RoI) and that most users focus on those regions.

To alleviate this lack, we gathered a head movement dataset of 59 users watching five 70 s long videos
and released this dataset openly. This dataset is among the three first open dataset on omnidirectional
videos alongside with Lo et al. [82] and Wu et al. [145]. This dataset was published in the proceedings
of MMSys’17 [34] and is described in Chapter 8.
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R E L AT E D W O R K

2.1 introduction

This chapter introduces the concepts needed to understand the body of the dissertation, and discusses
the existing related work.

The interest of the research community related to adaptive streaming of omnidirectional video has
strongly grown since 2015. Most of the work presented in this dissertation was done in parallel of the
related work discussed in this Chapter.

This Chapter is organized as follow. Section 2.2 introduces the mathematical set-up used in the
whole dissertation. Section 2.3 presents an abstract representation of an omnidirectional video. First,
a definition of traditional two Dimensional (2D) video is given followed by a formal definition
of omnidirectional video and of viewports. Finally, the sphere-to-plane projection are defined and
the two main sphere-to-plane projections used in the context of omnidirectional video, namely the
equirectangular and the cube-map projection, are presented. Section 2.4 presents the principles behind
video encoding, and an overview of subjection and objective Quality of Experience (QoE) evaluation.
Section 2.5 presents the HTTP Adaptive Streaming (HAS), which are the main group of protocols
used to stream traditional video over the Internet. Section 2.6 presents the viewport-adaptive streaming:
an evolution of HAS to enable optimized streaming of omnidirectional video. It also introduces the
concept of heterogeneous spatial video encoding along with the new features of Moving Picture Experts
Group (MPEG) High Efficiency Video Coding (HEVC)/H.265 codec useful in this context. Section 2.7
discusses the related work with regard to prediction of future head orientation of users watching
omnidirectional videos. Finally, Section 2.8 presents the different standardisation efforts and innovative
industrial solutions.

2.2 definitions , notations and conventions

, denotes the definition equality and = denote the standard deductive equality.

World Space and Reference Frame.

In the whole dissertation, we consider the world to be the affine Euclidean space E3 = R3, with
the orthonormal direct world reference frame

(

O, #»
ı , #»
 ,

#»

k
)

. The right hand rule is used to define
rotations.

If A and B are two points, the vector to go from A to B is denoted as
#   »

AB. Using traditional affine
space notations, we have

#   »

AB , B− A and B = A +
#   »

AB. To simplify the notation we denote by
#»

A the
vector

#   »

OA.

Inner and Cross Products.

This space is equipped with an inner product, denoted as ·, and with a cross product, denoted as ×.
We denote by ‖ #»u ‖ ,

√
#»u · #»u the norm of #»u , and by θ

#»v
#»u

the unsigned angle between #»u and #»v in a
plane containing both vectors. The inner product between two vectors #»u and #»v verify:

#»u · #»v =‖ #»u ‖‖ #»v ‖ cos(θ
#»v
#»u
) (2.1)

9
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Figure 2.1: Traditional 2D picture

And the cross product verify

‖ #»u × #»v ‖ = ‖ #»u ‖‖ #»v ‖ sin(θ
#»v
#»u
) (2.2)

We define the norm of a point P as follow: ‖P‖ , ‖ #   »

OP‖.

Viewing Direction.

We denote by viewpoint a point A in the world. It is a point where an isolated observer is supposed
to see the world. We denote by direction a unit vector #»u . We denote by viewing direction (A, #»u )
a ray (or half-line) starting from a viewpoint A and having the direction #»u . It is the set of points
{

M | ∃t ∈ R+,
#     »

AM = A + t #»u
}

.

A ray is uniquely defined by the couple (A, #»u ).

2.3 omnidirectional videos

2.3.1 Traditional 2D Rectangular Videos

We denote by 2D picture with resolution W × H, a function C that maps any node from a rectangular
regular W × H grid with a color (a point in a three dimensional color space C ⊂ R3 [133]). In other
words, C(w, h) returns the color of the node with coordinate (w, h) in the grid. A 2D picture C with
resolution W ×H is often represented as a rectangle covered regularly into W ×H identical rectangular
surfaces, denoted as pixel, with all points inside a pixel (w, h) painted with the same color C(w, h).
This is a nearest neighbor interpolation. The only points with known color is the center of the pixels,
all other points have a color interpolated from the color function C. Figure 2.1a depicts this 2D picture
representation for a picture with 3 × 3 resolution. In this example, C(1, 1) is equal to the color “blue”.

It is possible to visualize a 2D picture in the 3D space E3 by emulating a perfect calibrated
camera [84]. Such camera is characterized by its focal point F, its horizontal Field of View (FoV)
hFoV and its vertical FoV vFoV . The focal point F is the point where all ray coming inside the camera
are supposed to converge. The vertical (respectively horizontal) FoV is the angular distance between the
top (respectively the left border) and the bottom (respectively the right border) of the picture measured
from the focal point F. The picture is a planar rectangle positioned such that the orthogonal projection
Op of F on the plane containing the picture is the center of the rectangle. Figure 2.1b illustrates this
camera model in the 3D space. Each point P inside the rectangular picture is mapped to a color by the
function C. The light ray starting from the focal point F and going through a point P on the picture
(i. e. the ray (F, # »

FP/‖ # »

FP‖)) has the color of P.



2.3 omnidirectional videos 11

We denote by (Op, #»u , #»v ) a reference frame associated with the picture. #»u and #»v are coplanar with
the picture plane: #»u is in the direction of the “horizontal” and #»v of the “vertical”. If we decide to set
‖ #»u ‖ (respectively ‖ #»v ‖) as the horizontal (respectively vertical) dimension of a pixel, we have:

‖ #»u ‖ = 2
W

tan(
hFoV

2
) (2.3)

and

‖ #»v ‖ = 2
H

tan(
vFoV

2
) (2.4)

For the sake of simplicity, we suppose ‖ #      »

FOp‖ = 1.

Only rays coming from the focal point F and intersecting the picture plan inside the picture rectangle
are associated with a color. A ray (F, #»a ) intersects the plane that contains the picture if and only if:

#»a · #      »

FOp > 0 (2.5)

In this case the intersection point P′ with the plane is:

P′ = F +
#»a

#»a · #      »

FOp

(2.6)

By definition of a reference frame, as P′ is in the picture plane, there exists two real w and h such that
P′ = Op + w #»u + h #»v . P′ is inside the picture if and only if:

w =
#»

P′ ·
#»u

#»u · #»u
∈
[

−W

2
;

W

2

]

(2.7a)

h =
#»

P′ ·
#»v

#»v · #»v
∈

[

−H

2
;

H

2

]

(2.7b)

In other words, a ray (F, #»a ) is associated with a color if and only if Conditions (2.6), (2.7a)
and (2.7b) are true, and in this case the ray has the same color as the point P′ defined by Equation (2.6).

We denote by video a sequence of picture captured at successive equally spaced instants in time. The
period between two pictures is usually given in hertz (Hz) by the number of picture per second or fps.
Traditionally, only the color function C is time dependent, the FoVs and the resolution are constant.

2.3.2 Omnidirectional Videos

An omnidirectional image is an image on a unit sphere of R3. We can consider such image was captured
with a fully omnidirectional camera. An omnidirectional camera can be considered as a calibrated
central camera [84]. Note that in practice, fully omnidirectional central camera cannot exists but can be
approximated with a set of traditional camera, whose pictures are stitched together to emulate a fully
omnidirectional central camera [17].

Like a traditional image, any point on the surface of the unit sphere is associated with a color by a
function C. The focal point is the center of the sphere. For the sake of simplicity, except in Chapter 4,
we always consider the unit sphere centered at the origin O of the world reference frame. Unlike 2D
pictures, any ray starting from the focal point O intersect the unit sphere and so can be associated with
a color.

Viewports

Traditional displays or Head-Mounted Displays (HMDs) can only display 2D pictures. To allow a high
level of immersion inside the content, the users should feel like the display is a window through which
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they watch the omnidirectional video. To do so, the picture inside the display should have a wide FoV
and should represent the very image of what the user would have perceived if the scene displayed was
real. Such a 2D picture, called viewport, can be captured by placing a virtual camera (as modeled in
Section 2.3.1) at the center of the omnidirectional picture (i. e. F = O). The viewport is positioned
such that its plane is tangent to the sphere at the viewport center Op. Figure 2.2a illustrates such a
viewport. The color function of the viewport is computed using a gnomonic projection [118]: the color
of the pixel centers P′ is fixed as the same as the color of its projection P on the sphere following the
light ray coming from the center of the sphere O (i. e. C′(P′) = C(P = P′

‖P′‖ )). This is an azimuthal
perspective projection with center O.

Figure 2.2c illustrates how this projection works. The pixel center P′ got mapped to color purple
because its gnomonic projection P on the sphere is purple.

With today’s technologies, the viewports have a FoV close to 110°× 90°. This means that viewports,
which are the pictures actually displayed to the user, represent only around 20 % of the whole
omnidirectional image. It is commonly admitted in the community that a viewport resolution with a
4096 × 2048 pixels (4K) resolution would provide a high feeling of immersion inside the content for a
user wearing a HMD. Indeed with such a high resolution the user does not perceive the pixel matrix
because, with nowaday HMDs FoV the angular size of a pixel in a 4K viewport is smaller than the
human eye sensitivity. As far as we known, no scientific study as been perform to evaluate what is the
optimal resolution to use in the viewport to provide high immersion. The 4K resolution is inferred
based on prior knowledge on the visual accuracy of the human visual system. Using a viewport with a
4K resolution means the total resolution of the omnidirectional video should be at least equivalent to a
16 384 × 8192 pixels (16K) planar video to enable extraction of 4K viewports.

Rotations and Viewports. A viewport can be uniquely identified by giving both its tangent point Op

and a vector collinear to #»u . Op indicates the viewing direction of the center of the viewport, and #»u

indicates the tilt of the viewport. To properly define a viewport position, and to avoid any ambiguity at
the poles, it is common to identify it to the rotation R ∈ S O(3) that transform #»

ı into
#  »

Op and #»
 into

#»u . This rotation is unique and always exists (even at the poles). Figure 2.2a illustrates the reference
viewport associated with the identity rotation, and Figure 2.2b shows how the viewport identified with
rotation R can be obtained from the reference viewport.

2.3.3 Sphere-To-Plane Map Projection

State-of-the-art technologies to store and compress videos are optimized for 2D rectangular videos. To
use those technologies it is needed to map the spherical images onto a 2D pictures. In other words, it
is needed to define a color function C′ for the 2D picture using the color function C of the spherical
picture.
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From “Ansgar Koreng / CC BY-SA 3.0 (DE)”: https://commons.wikimedia.org/wiki/File:Magnolienbaum,_Wiesbaden-Biebrich,_360x180,_160409,_ako.jpg

Figure 2.3: Equirectangular Projection

The color function C′ is usually defined by C′(u, v) , C(F(u, v)), with F a function that takes as
input a point (u, v) on the 2D picture and return a point P on the sphere (F : [−W

2 ; W
2 ]× [−

H
2 ; H

2 ] → S2).
Note that the function F that maps the plane on the sphere is used to perform the sphere-to-plane
projection: to generate the 2D picture C′ from the spherical image C.

To preserve traditional encoder efficiency, the function F should be an isometric isomorphism: i. e.
F should preserve object shapes, should preserve distance ratios, should be continuous, and should
have an inverse function. With these properties, encoder can easily detect object movements inside the
projected 2D video.

Theorem 1 (Gauss’s Theorema Egregium [101]). The Gaussian curvature of a surface is invariant
under local isometry.

So there exist no nice function between a 2D picture and a sphere. Theorem 1 implies that if two
surfaces have not the same curvature, there exists no isometry between them. The curvature of the unit
sphere is 1 everywhere and the curvature of the plane is 0 everywhere so a map between a sphere and a
subset of the plane will necessarily distort some distances.

Sphere-to-plane projections have been widely studied in the context of cartographic projection [119]
(i. e. projection of the earth or of the celestial sphere on a plane), but only two are usually used in the
context of omnidirectional videos: the equirectangular projection [124] and the cube-map projection.
Some other projections have been studied by the community [123, 150] such as the Equi-angular
Cubemap projection and the Truncated Square Pyramid projection. Especially, Ye and Boyce [150]
performed an extensive study of 13 projections. We will focus on some of them in Chapter 3.

Note that in many works, and in MPEG vocabulary, what we call projection is often described as a
two steps operation. A first step usually called projection but denoted here as geometrical projection to
avoid confusion, projects the sphere to a geometrical 3D object (for instance a cube or a pyramid). The
faces of the geometrical object are then mapped to the planar picture. This mapping operation is called
packing. Readers should be careful not to confuse the two definitions of projection. With our definition
changing the packing (i. e. the position, orientation of a face on the 2D picture) changes the projection
itself but does not influence the geometrical projection.

Equirectangular Projection. The equirectangular projection f maps the latitude and longitude of
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a point on the sphere with the coordinate u and v in the 2D picture. With the world reference frame
(O, #»
ı , #»
 ,

#»

k ) introduced previously we get:

f (u #»u + v #»v ) , cos(
2uπ

W
) cos(

vπ

H
) #»
ı − sin(

2uπ

W
) cos(

vπ

H
) #»
 − sin(

vπ

H
)

#»

k

and

f −1(
#»

P) =
W

2π
atan2
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with
#»

P
′
,

#»

P − #»

P · #»

k
#»

k , the orthogonal projection of
#»

P on the plane (O, #»
ı , #»
 )

The equirectangular projection is a continuous function whose inverse function is not well defined at
the poles (i. e. when

#»

P = ± #»

k ). All the points from the top border of the 2D picture (v = W
2 ) maps to

the north pole of the sphere, and all the points from the bottom border of the 2D picture (v = −W
2 )

maps to the south pole of the sphere. We can see on Figure 2.3 that this property generate a lot of
distortion in the 2D picture near the poles.

Cube-Map Projection. The cube-map projection can be split into two steps: (i) The sphere is
projected, following the ray starting from its center, onto a cube circumscribed to the sphere, (ii) each
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Figure 2.5: Projection from ground truth. Arrow indicates maps: pixels of the new projection

are mapped to the sphere and then map to the original picture.

face of the cube is mapped to a part of the 2D picture. Figure 2.4a illustrates those two steps: first it
project the point P from the sphere into P′ on the cube and then map it to the 2D picture. The projection
equation for a given face is the Equation (2.6).

The cube-map projection function is bijective once you fixed to which face belong each edge. In
Figure 2.4 we can see that there is a discontinuity line at the middle of the picture.

2.3.4 Ground Truth Omnidirectional Video

With nowadays capture technologies, the original spherical video signal is never captured and stored
directly. Most omnidirectional cameras use a set of synchronized traditional cameras with fish-eye
lens [66]. The set of 2D pictures output from those cameras are stitched together to generate the output
omnidirectional images. The output of the camera is not spherical images but projection on 2D pictures.
Those projected 2D pictures are what we denote as reference, original or ground truth omnidirectional
pictures.

Usually, to extract viewport or to project the omnidirectional video with a new sphere-to-plane
projection, it is not possible to directly use the sphere-to-plane projections introduced in previous
Section as the spherical image is not directly available, only a projection of it is available. It is first
required to perform a plane-to-sphere projection followed by the sphere-to-plane projection. Figure 2.5
illustrates those steps: pixel centers from the 2D picture we want to generate (on the right side) are
first mapped to the sphere and then mapped to the original ground truth picture. The map on the
original picture will most likely not match a pixel center, and so the color of this point will not be
directly available. The color of this pixel is interpolated based on neighbor pixel center colors thanks
for instance to a nearest neighbor interpolation, a bilinear interpolation or a bicubic interpolation [138].
The neighborhood is usually established on the original 2D projection.

2.4 video encoding

In this Section we analyse the related work associated to the encoding of traditional 2D rectangular
videos.

2.4.1 Principles

A raw, non encoded, RGB picture with 4K spatial resolution and 8 bit depth per color channel requires
at least 199 Mbit of storage (3840 × 2160 × 3 × 8 bit). Even YUV422p format, which use chroma
downsampling on YUV color format, still requires at least 99.5 Mbit. A 4K video with 24 fps stored



16 related work

0

200

400
I

I

P
P P P

B B B B B B B B B B B B B B B

frame in display order

fr
a
m

e
si

ze
(i

n
k
b
it

)

Figure 2.6: Frame size within a GOP for a video compressed with default parameter of

libx265 [146]

I

0

B

1

B

2

B

3

P

4

B

5

B

6

B

7

P

8

I

9

GOP

Figure 2.7: Hierarchical Encoding: GOP and Dependency Chain. Arrows indicate the

dependencies between the frames. For instance, the frame 2 is a B frame which

requires the B frames 1 and 3. Frames are ordered in display order.

with YUV422p format would then requires a bit-rate of at least 2.39 Gbit s−1. It is not possible with
current state-of-the-art storages and networks to store and stream non compressed video.

Videos contain redundant information that come from pixels’ spatial and temporal correlations:

Spatial Correlation Neighbor pixels in videos pictures are usually consistent and are highly
correlated, as they represent color from light ray coming from the same physical object. For instance,
JPEG 2000 [128] codec uses this spatial correlation to compress the pictures.

Temporal Correlation Consecutive pictures in a video are also usually highly correlated as they
represent the same scenes taken at different instant in time. Once object movements have been
identified within the pictures, it is possible to map some highly correlated blocks of pixels together
between two pictures, and to use this correlation to compress the information.

Video encoders, such as MPEG’s HEVC / H.265 codec [2, 127], MPEG’s Advanced Video Coding
(AVC) / H.264 [1, 144], Google’s VP9 [88] and the Alliance for Open Media’s AV1 [21], use the
spatial and temporal redundancies to compress the video signal. In this dissertation we mainly focus on
the HEVC codec, but many results are compatible with other compression standards.

The HEVC/H.265 codec, uses a hierarchical structure to exploit the temporal and spatial redundancies
in the video and efficiently compress it. Pictures from the original video are encoded into three types of
frames: intra-predicted (I) frames, inter-predicted (P) frames and bidirectional-predicted (B) frames. I
frames are encoded using only intra-predictions: the picture is compressed using only internal redundant
information, as if it was only one picture. P frames are encoded using both intra and inter-predictions:
the encoder can use a previously encoded picture to exploit temporal redundancy but can also use
internal redundancy. B frames are similar to P frames with in addition the possibility to use a second
picture to exploit temporal redundancy. One picture is usually displayed before the B and the second is
usually displayed after. With B frames the frame encoding/decoding order is not necessarily the same
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as the picture display order. Figure 2.6 illustrates how using some temporal correlation improve the
compression efficiency. Figure 2.7 depicts the dependencies between the frames.

The dependency chains between the frames make it impossible for a decoder to directly decode most
of the frames in the video. For instance, to decode the frame number 6 in Figure 2.7, it is mandatory to
decode first all frames until the last I frame (i. e. frames 0, 1, 2, 3, 4, 5, 7 and 8). Indeed, I frames can be
decoded independently, without any prerequisite. A video decoder can start decoding the video stream
at any I frames, they are Random Access Points (RAPs). There is a trade-off between the frequency of
RAP in the encoded video and the bit-rate of the stream. The more frequent are the RAPs, the easiest
it is to seek to any position in the video but the bigger the bitstream. A group of frames that depend
on each others are often denoted as Group of Picture (GOP). In Figure 2.7, frames from 0 to 8 form a
GOP, and frame 9 starts a new one.

Even if most codecs allow lossless compression, content providers usually perform lossy compression
to better control the bit-rate of the content.

2.4.2 Video Quality Evaluation

Lossy compression generates distortion in the video images that may impact the QoE of the users.
The QoE is a subjective feeling perceived by a user while watching a multimedia content. It is often
influenced by external elements such as the environment where the user is watching the video, the
context and opinion of the user over the content itself. To avoid as much as possible environment and
context biases and to allow measurements reproducibility, subjective evaluation of users’ QoE are
performed in controlled environments. The ITU-T Recommendation P.910 [63] provides methods to
assess subjective quality of video content. It strictly defines parameters such as the room illumination,
the user’s viewing distance, the test duration and the selection of the evaluators.

Most subjective quality evaluations use the Mean Opinion Score (MOS) to measure the QoE. Each
user note the evaluated content on a discrete scale, usually an integer ranging from 1 (“bad” quality) to
5 (“good” quality), and the score attributed by each user is averaged to generate the MOS. This score
represents with a hight fidelity the average user QoE.

Performing valid subjective video quality evaluation is constraining, laborious, and requires time and
resources which are not available for content provider to evaluate each encoded version of each video
content. Those tools were designed for video encoder evaluation and for display evaluation and not
for content providers that requires low cost, instantaneous evaluation. Objective metrics are needed to
automatically assess the video quality and to estimate the quality a user would have perceived. Fidelity
evaluation of objective quality assessment metrics is performed by evaluating their correlation with the
MOS measured with a subjective assessment.

The objective factors that influence the MOS include:

Image D istortion The distortion introduced by the lossy compression, if visible, can reduce the
QoE. The users are even more sensitive to high variation in the quantity of distortion during time, as
low distortion level anchor the user expectation.

Start-Up Delay The delay between when a user requested for the video and when the video actually
start to be played.

Stalls A stall is a pause in the video display decided by the video play without user consent. It
generally happen after a buffer starvation. Users are usually more sensitive to frequent stall than long
stall

Many models has been proposed to predict the users QoE based on objective measurement of those
factors [45, 108, 109]. In this dissertation, we suppose, except in Chapter 4, optimal scenarios where
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the start-up delay is fixed and where stalls are always avoided. In this context (no stall and fixed start-up
delay), only the displayed image quality can influence the user experience.

Multiple metrics have been developed to assess video quality by measuring distortion in the pictures,
but they are not all well correlated with the subjective MOS. Chikkerur et al. [22] surveyed the objective
video quality assessment tools available before 2011. Three types of video quality assessment metrics
exists: (i) full-reference metrics which have access to the original, highest quality, video (usually the
video used to generate the encoded videos), (ii) reduced-reference metrics which have access to a
simplified representation of the original video, and (iii) no-reference metrics which have only access to
the encoded bit-stream.

In this dissertation, to evaluate our proposals, we focus on full-reference metrics because we always
have access to the original videos and because they usually has a better correlation with the subjective
MOS. The main full-reference metrics are the Peak Signal to Noise Ratio (PSNR), the Multiscale -
Structural Similarity (MS-SSIM), the Video Quality Metric (VQM) [58].

The MS-SSIM is a static image metric that computes the structural similarities between the original
image and the compressed image [143]. It returns a dimensionless real value between 0 and 1, 1 being
identical images. When the MS-SSIM is higher than 0.95, real users cannot distinguish the original
image from the compressed image. For a video, the metric is computed frame by frame between the
original video and the encoded video and averaged to get a unique value. The MS-SSIM have a good
correlation with the subjective MOS [22].

The Mean Square Error (MSE) is a measure of the average squared error between the luma component
of each pixel of the picture compared to a reference picture. The PSNR is often preferred to the MSE.
It represents the same information but expressed in logarithmic scale in decibel (dB), and compared to
the maximum value of the MSE: PS NR = 10 log10(

MS Emax
MS E ). The PSNR alone does not represent well

the actual perceptual quality felt by users. The absolute PSNR value is highly content dependent. The
PSNR difference between two versions of the same video gives a good approximation of the subjective
quality gap between the versions [70].

2.5 traditional http adaptive streaming architecture

Adaptive streaming, and HAS in particular, is a widely adopted technology to stream traditional planar
videos over the Internet. The goal of HAS is to adapt the quality of the streamed video to the available
bandwidth. MPEG Dynamic Adaptive Streaming over HTTP (DASH) [61] is a commonly used HAS
international standard. Its main competitors inside the HAS family are Apple’s HTTP Live Streaming
(HLS) [97], Adobe HTTP Dynamic Streaming (HDS) [79] and Microsoft Smooth Streaming (MSS) [5,
154]. One advantage of using a protocol based on HTTP instead of a UDP such as Real-time Transport
Protocol (RTP) or TCP such as Adobe’s Real-Time Message Protocol (RTMP) is that it can be used
through standard firewalls and proxy servers without the need of any extra configuration. Moreover, it
enables the usage of stateless web server instead of dedicated streaming servers with state records for
each ongoing streaming session. DASH can be used to stream on demand or live videos.

To use DASH, the video has to be preprocessed by the server once before being delivered to many
clients without further processing. The video is encoded into multiple representations, each of them
being characterized by its bit-rate, its spatial resolution, and its video codecs. Then representations are
split into multiple chunks, denoted as segments. In other words, a segment is a chunk of a few seconds
of a video, encoded with a specific quality level, that can be downloaded by a client independently of
any other segments. The set of all segments, generated for a given media in a way that a client can
switch from one representation to another without the need to reset the video decoder, is called an
adaptation set. A client can only switch from representation belonging to the same adaptation set. The
server can also prepare segments for subtitle and for audio but we will not consider this possibility in
this dissertation as usually the size of subtitle and audio segments are insignificant compared to the size
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of video segments. The diversity of codec, resolution and bit-rate of all segments allows the service
provider to easily deliver the DASH video to a wide variety of client devices having each different
screen resolution, Central Processing Unit (CPU) capacity and available bandwidth.

To start to play a video with DASH, a client requests the Media Presentation Description (MPD) file,
which describes all video segments available on the server for a given media. The description contains
among other things: the duration and bit-rate of the segments, the codec used, and the location of the
segment described as an Uniform Resource Locator (URL) or as a template used to generate an URL.
Based on those information and an estimation of the future available download bandwidth, the client
selects which segments to download to maximize the user QoE [120] (maximize the displayed quality,
minimize the quality switch, minimize the buffer starvations). Figure 2.8 illustrates the architecture of
a DASH delivery system.

The DASH architecture scales easily with the number of users. The service provider only needs to
generate the adaption set, with the associated MPD file, once, and then just need to answer regular
HTTP requests with a standard HTTP server. The scheduling of segments downloading is a hard
problem and a profusion of research works have focused on optimizing it [72], but the scheduling
is only performed by the clients. The service provider does not solve the scheduling problem on its
servers but in a decentralized way on each clients. Using HTTP requests allow an easy interconnection
with Content Delivery Network (CDN) providers and HTTP cache service, enabling high scalability.

2.6 viewport-adaptive streaming

Viewport-adaptive streaming, also denoted as Viewport-Dependent Streaming, denotes streaming
architecture that leverages viewport orientation prediction to stream high quality only in the area that
are predicted to be attended by the user, and low quality elsewhere. Viewport-adaptive streaming
extends DASH to perform viewport orientation adaptation in addition to the existing bandwidth
adaptation. Viewport-adaptive streaming solutions usually exploits heterogeneous spatial quality
encoding to deliver high quality only in a given area. As viewports represents only a small portion of
total omnidirectional content (around 20 % of the spherical surface with today’s HMDs), for the same
bandwidth budget, the displayed viewport can have better average quality than when all the video is
streamed with uniform quality (with viewport-independent streaming).

Viewport-adaptive streaming is needed because the naive strategy considering the streaming of only
the attended viewport to the user is not conceivable. Indeed, with current video codecs, streaming
only the attended viewport would require, for each user, the server to decode the video, extract the
viewports and re-encode the viewport video stream. Such encoding process is hardly scalable and
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Figure 2.9: Heterogeneous Quality Video

cost-efficient. Moreover, to avoid the simulator sickness [114], the motion-to-photon delay should be
lower than 10 ms. To enable the streaming of only the attended viewport, the client needs to transmit
the orientation of the user’s head to the server, but the transmission delay of the orientation and then of
the video bit-stream (i. e. the Round-Trip Time (RTT)), and the delay to decode/re-encode the video
are, accumulated, usually greater than the advisable 10 ms.

The architecture of viewport-adaptive streaming is further described in Chapter 3. In this Section we
mainly focus on different way to prepare the content to enable viewport-adaptive streaming.

2.6.1 Heterogeneous Spatial Quality Encoding

We denote by heterogeneous spatial quality video a video with non uniform spatial quality. Non uniform
spatial quality means the quality of a group of pixels in the pictures vary depending on its spatial
location. The video depicted in Figure 2.9 is an example of heterogeneous spatial quality video: the
center of the picture has a higher quality than the edges of the picture.

In the context of omnidirectional video, as only a small portion of the video is displayed to the user,
one can emphasize the quality in the part displayed to the user and decrease the quality elsewhere to
reduce the total bit-rate of the video.

It is worth mentioning that even though the pixel information outside the user’s viewport is less
important, maybe even useless for a short video segment, it still needs to be delivered (even in low
quality) to maintain the video interactivity. For instance, when the user suddenly changes her head
position but no video content outside her current viewport has been sent in advance, the user will
experience a continuous loss of information until the video content for the current viewport is received
through the network. The latter would definitely decrease user’s QoE. That is why, sending videos with
heterogeneous quality (containing at least some content information for all the pixels of the video) is a
good practice.

We distinguish two main approaches to generate omnidirectional videos with heterogeneous quality:
one where the variation of the quality is done when the spherical video is projected into a plane [73,
74, 123, 162], and one where the encoding of the projected frames enables differentiating the quality
within the frame [32, 49]. Readers should note that those two categories are not totally disjointed. We
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Figure 2.10: MCTS encoding and bit-stream recomposition for a single HEVC-compliant

decoder

use them in this thesis to help distinguish different ways to generate videos with heterogeneous quality
but some solution could fit in both categories depend on what step one considers more important.

Coding-Based Viewport-Adaptive Video Streaming

There exists two main approaches to generate video with heterogeneous quality at encoding time: the
Quantization Parameter (QP) approach and the motion-constrained tile sets (MCTS) approach.

The QP approach changes the weight of the quantization steps during the encoding process to
decrease the quantity of information stored outside the Region of Interest (RoI) and keep a high quantity
of information inside the RoI. Lee, De Simone, and Ebrahimi [78] apply this idea to emphasize the
quality in the area of a traditional video where users are predicted to focus their attention. They identify
the RoI by using jointly audio and visual information.

The QP approach allows a fine grade tuning of how the information is distributed in the video
pictures, but offers no choices to the client which can only get the video representations as the service
provider has decided to prepare them.

The tile-based approach exploits the MCTS introduced by HEVC to spatially split a planar video
into independently encoded rectangular regions [52, 75, 85, 113, 157, 158]. The key idea of tiling is to
spatially split the video into a set of motion-constrained non-overlapping rectangular blocks, called tiles,
which are encoded independently one from another [85]. By default tiles are just spatially independent
but not temporally independent. Indeed tile has been originally introduced to allow parallel decoding
of video pictures. Reference to blocks inside another tile of the current picture is forbidden (spatially
independent) but reference to blocks in another tiles of a previously decoded picture is allowed (not
temporally independent). The MCTS scheme adds extra encoding constraints to also forbid temporal
prediction outside the tile boundaries and restrict the final in-loop filter to pixel belonging to the same
tile. The MCTS constraints turn each tile into independently decodable.

It is possible to extract each tile from a MCTS bit-stream into its own track inside an ISO base
media file format (ISOBMFF) media file [68]. Each track can then be downloaded independently from
each other (and as well be stored into separate files). A single instance HEVC decoder cannot decode
directly the N different tile tracks to get back the full picture. It is needed to merge the tile tracks
together first. To perform this merging operation, a special track called the “extractor track” is used.
The extractor track contains instructions to follow (called constructors) to merge the MCTS tracks. The
merging operation generates a new ISOBMFF stream with a single HEVC-compliant track.

Encoding a video with the MCTS introduces a bit-rate overhead due to the tile headers1 and due
to losses in compression efficiency [26]. On the other hand, tiling allows more flexible streaming
strategies. At the server side, a projected omnidirectional video (usually an equirectangular or a cube-
map panorama) is encoded into multiple qualities. Using the bit-stream extractor mechanism [26, 75,

1 it is actually due to the slice headers, but in the context of spatial quality adaptation with tiles, in order to make the tiles
independently downloadable, tiles are usually build in such a way that they each match a unique slice
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115, 157], every tile is extracted, for each quality level, into a separate ISOBMFF bit-stream that can
be independently downloaded. It is then possible at the client side to generate a decodable bit-stream,
decodable by a single HEVC decoder, by merging together tiles with different quality. The constraints
to generate this decodable bit-stream are: (i) each tile most fit into the tile grid and the slice grid of the
new bit-stream, (ii) it is mandatory to include the initial metadata of the video (i. e. the extractor track
used to re-write the bit-stream metadata) and (iii) the new bit-stream shall contain, for a given chunk, at
most one version of each tile. Figure 2.10 presents on the left side the video prepared with the MCTS
and the different quality levels, and on the right side a bit-stream recomposition with different quality
level for each tile. The tiles in green are tiles without information (i. e. not downloaded). This approach,
advocated in many studies [37, 48, 53, 98, 155, 157, 158], has been successfully implemented [37] and
integrated into recent standards [52, 59, 93].

In 2014, an extension, denoted as DASH Spatial Relationship Description (SRD) [38], has been
introduced into DASH to enable the streaming of individual tiles. DASH SRD allows a DASH server
to announce the existence and the properties of the different tiled segments into the MPD, and enables
tile level bit-rate adaptation at the client side.

Le Feuvre and Concolato [75] and Concolato et al. [26] demonstrate the feasibility of tiled adaptive
streaming with DASH SRD in the context of planar videos. However, no formal network evaluation is
performed. To show the encoding efficiency of tiling, Zare et al. [157] have investigated the theoretical
gains of tiling when applied to projected omnidirectional video frames. The authors have proposed
a viewport-adaptive tiling approach which uses two video versions with high and low resolutions.
The viewport tiles are transmitted in high resolution, whereas the regions outside the user’s viewport
correspond to tiles with low resolution. Petrangeli et al. [98] perform viewport-adaptive streaming over
HTTP/2 on tiled videos. They evaluate their system using an Android phone over a Wi-Fi network,
but they do not consider any delivery network. Ahmadi, Eltobgy, and Hefeeda [3] study a multicast
DASH-based solution to stream live tiled omnidirectional video on a multicast Long Term Evolution
(LTE) network. The system separates the users into different multicast groups, based on their network
quality (not on their viewing direction). For a given tile, users in the same multicast group receive the
same quality. Finally, Skupin et al. [115] present a solution to stream tiles with multiple resolutions in
the context of omnidirectional video. They introduce a fast and coding efficient way to create frequent
RAPs, but they do not evaluate any streaming scenario.

The MCTS approach offers a great level of flexibility to the client: if the user has a outlier behavior,
the client can still select tiles that provide high quality in this direction.

Projection Based Viewport-Adaptive Video Streaming

Projection based heterogeneous quality gathers techniques that reduce the size of the encoded video by
applying transformation on the omnidirectional signal before the encoding process. Two main strategies
exists to reduce the video bit-rate after encoding2 while generating a video with heterogeneous spatial
quality: (i) Transforming the original projected planar picture into a new planar picture with the
same resolution but applying a low-pass filter on some regions of the video. The filtering reduce the
complexity of some regions of the video, allowing a more efficient compression by the video codec,
and so reducing the video bit-rate, while keeping an equivalent quality than the original video in the
zone where no filter was applied [19, 54]. (ii) Use a sphere-to-plane projection with non uniform
spherical pixel sampling. With such projection, some region of the sphere have more pixel than others.
By choosing carefully the projection parameters, it is possible to store on a lower resolution planar
picture, a spherical picture with a region having as many pixel as in the original picture but with other
regions having less pixels. The bit-rate gain is then mainly due to the decrease of the spatial resolution.
Figures 2.11a and 2.11b depicts the pixel density ratio on the sphere for the equirectangular and the

2 compared to the bit-rate the video would have without using those techniques
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Figure 2.11: Heatmap of pixel density on the sphere. To ease the reading, the spherical pixel

density is projected on a planar picture using an equirectangular projection. The

red areas represent zone on the sphere with a high density of pixel. The color

scale between the two pictures is the same. It is truncated to 5 because for the

equirectangular projection the density tend toward infinity at the poles.

cube-map projection. If the pixel density ratio is equal to r, its means that at this position on the sphere
this projection generate r times more pixels than in the direction of #»

ı .

Neither the equirectangular projection nor the cube-map projection directly enables viewport-
adaptive video streaming, as neither of them emphasizes a given video region by compromising
the quality of the remaining regions. Kuzyakov and Pio [74] have recently exploited the potential of
another sphere-to-plane projection, i. e. the pyramid projection. They leverage a key property of this
projection, i. e. its irregularity, to emphasize a particular region of the video (the Quality Emphasized
Region (QER)). The sphere is put inside a pyramid and then projected onto each face of the pyramid.
The part of the sphere mapped to the base of the pyramid is the QER. The QER is displayed in full
resolution, whereas the quality of the video regions, mapped to the sides of the pyramid, decreases with
the distance from the QER. This means that the best video quality corresponds to the QER, mapped
to the base of the pyramid, whereas the worst quality corresponds to the region opposite the QER.
Therefore, in order to emphasize the user’s viewport, we need to apply a rotation of the spherical video
to make sure that the viewport is projected onto the base of the pyramid. A variant of the pyramid
projection called “truncated square pyramid” was evaluated by Zare, Aminlou, and Hannuksela [156]
and compared to a tile-based encoding. They demonstrate that the truncated square pyramid is slightly
more efficient regarding the streaming performances but requires more storage and more encoding time
that the tile-based solution.

Facebook introduced the cube-map offset projection to perform such a projection based
heterogeneous spatial quality encoding [73]. This transformation has been studied for the first time by
Zhou, Li, and Liu [162] while they reverse engineered how the Facebook’s Oculus Rift works.
We [54] further studied this kind of projection by generalizing it to any projection, and we present
some original results in Chapter 5 of this dissertation showing the correlation between spherical pixel
sampling (or spherical pixel density) with visual quality.

2.7 viewport orientation prediction

In the context of DASH streaming of traditional planar video, the prediction of the bandwidth that will
be available to the client in the near future is a key information to perform an optimal adaptive bit-rate
segment scheduling. In the context of omnidirectional video streaming, the fact (i) that most (≃80 %)
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of the video is not displayed to the user and (ii) that resolution of the full content is very high, makes it
very challenging to fit into the bandwidth budget while matching the low latency constraint.

Viewport orientation prediction is a key feature for omnidirectional video streaming as it may be
used to maximize the downloaded bit-rate in the displayed part of the video (i. e. to perform viewport-
adaptive streaming as described in Section 2.6). Of course bandwidth prediction is still important but
stays similar to the bandwidth prediction in the context of traditional planar video streaming.

Petrangeli et al. [98] predict the position of the center of the viewport with a linear regression: the
positions and the speeds are measured/estimated on the projected planar picture, not directly on the
sphere. The next viewport center position on the 2D picture #»p (t + ∆T ) in a period ∆T is estimated as
#»p (t + ∆T ) ≃ #»p (t) + ∆T

#»p (t)− #»p (t−δ)
δ

, with δ the viewport center velocity measurement step and t the
current instant in time. In their work, they use this prediction on an equirectangular projection of the
sphere. They do not predict the tilt of the viewport nor evaluate the accuracy of this viewport prediction,
but they show that using such a simple prediction can substantially improve the performance of their
adaptive streaming scenario.

Quan et al. [103] study also a linear regression and a weighted line regression to predict viewport
orientations. They evaluated the accuracy of their prediction with different prediction window.

Bao et al. [10, 11] predict the viewport position using regressions on the past position time-series.
They manipulate the orientation of the viewports using the Euler angles [83] yaw, pitch and roll. They
shows that there exists a high short-term auto-correlation with the Euler angles, and a lower correlation
between the three angles measured two by two. This means the viewport position can be predicted using
a short-term time-series by performing a regression independently on each Euler angles. They decided
to predict only the yaw and pitch angles, ignoring the roll angle, which is equivalent to predict the
position of the center of the viewport ignoring the viewport tilt. They do not use any video/audio feature
in the prediction. They study four regressions: a naive no movement regression, a linear regression, and
two neural network regressions; and measured the prediction error.

Xu et al. [148] perform also a linear regression on the three Euler angles representing the viewport
orientation. Unlike other cited work, they try to predict the full viewport orientation, not only its center.
They study the forecast error over time.

2.8 standards and industrial solutions

When omnidirectional videos has emerged, the industry has immediately been active in studying
potential standards, which could enable the whole chain of capturing, delivering, and consuming
immersive data to share common tools. In the meantime, this innovation field has also been explored
by start-up companies. We report in the following only the work that is directly related to this thesis,
which means that capturing and consuming 360°, or work related to omnidirectional audio are typically
ignored.

2.8.1 Standards

Many standard bodies have been active in starting studies related to Virtual Reality (VR) and in
particular, to omnidirectional videos.

MPEG’s ongoing work focuses on Omnidirectional MediA Format (OMAF) [100], which can be
seen as a toolkit for omnidirectional video based on the ISOBMFF multimedia container, HEVC and
DASH. It aims at the harmonization of VR video platforms and applications. The overall architecture
that is under discussion at MPEG and in particular, in OMAF, is depicted in Figure 2.12. A scene is
captured as a set of video signals (Bv). Before encoding (Ev), the content is projected and stitched onto
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Figure 2.12: Overall architecture under discussion at OMAF (video part only)

the unit sphere, then a sphere-to-plane projection is applied to get a planar projected picture. In OMAF
vocabulary and process, the sphere-to-plane projection is split into three steps: (i) the spherical image
is projected onto a 3D object, usually the unit-sphere itself or a cube, with a gnomonic projection (also
denoted as Dymaxion map or Fuller map when apply on a polyhedra); (ii) the image projected on the
polyhedra (or on the sphere itself), is mapped on the plane. Each face of the 3D object is mapped to a
predefined region of the plane. The regions and the mapping depend on the 3D object; (iii) The planar
regions are packed into the final rectangular planar picture. The packing operation takes rectangular
regions of the projected picture and can apply resampling, rotation (90°, 180° or −90°) or mirroring
operation on it. The resulting rectangular piece of picture is then mapped to the final picture. The
concept of region-wise packing is a core element of OMAF. OMAF defines the metadata needed to
describe such operations. OMAF metadata can only describe a subset of sphere-to-plane projection.
After encoding, the content is encapsulated into ISOBMFF segments (F) together with some metadata,
which may be used for additional signalling for DASH clients. The segments are then delivered to the
client. After downloading the file segments (F’), the client decapsulates the received stream (E’v) and
extracts the corresponding metadata. Finally, the video is decoded, projected back to the sphere and
displayed at the client device.

In OMAF, two projections are currently considered: the equirectangular and the cube-map
projections. As previously mentioned, one major component of OMAF is the concept of region-wise
packing [100, 117]. It is typically used to circumvent the main weaknesses of the projections: in
particular the oversampling at the poles in the equirectangular projection. We show the main idea
behind region-wise packing in Figure 2.13. Note that region-wise packing can also be used to describe
videos with a preferred viewport orientation. OMAF introduces the concept of region-wise quality
ranking to indicate that some region of a representation is available at higher quality than other. The
quality ranking provide the possibility to fully order the regions of multiple representations of the same
content. The region-wise quality ranking metadata can be spread into the DASH MPD file. With this
information, the client can select the representation which maximize the quality in the prediction
viewport positions.

The HEVC-based viewport-dependent profile of the current OMAF version (version 1) supports
only video encoded with HEVC up to the Main 10 profile, Main tier, Level 5.1 [116]. In other words, to
be OMAF compliant with current existing profiles, the video should not exceed a 4K spatial resolution
at 60 fps. This resolution constraint implies that if one wants to provide a high effective resolution
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inside the user’s viewports with the 4K decoding constraint, smart region-wise packing/sphere-to-plane
projection such as the one proposed by Zare, Aminlou, and Hannuksela [155] has to be considered.

OMAF specifies the delivery of omnidirectional video over DASH. It enables several approaches,
including the following:

• Using the viewport-independent profile defined in OMAF, the full video is sent to the end-users
regardless of the user’s viewing orientation. In that case, regular DASH server and client can be
used.

• Using the viewport-dependent profile, in which the user selects an adaptation set based on the
viewing orientation (or its prediction). Several adaptation sets need to be available on the server,
each for a specific user viewing orientation. The main idea here is to have, in each adaptation set,
the full omnidirectional video where one region is with an enhanced quality/resolution compared
to the rest of the omnidirectional video.

• The viewport-dependent profile of OMAF enables encoding MCTSs at several qualities, each
MCTS encapsulated in its own Representation. Each set of MCTS Representations covering the
same sphere region are encapsulated into the same Adaptation Set. Additionally, an extractor track,
offered as its own Representation, contains instructions on how to merge selected MCTSs to a
single video bitstream.

• The viewport-dependent profile of OMAF also enables encoding MCTSs at several resolutions and
combining MCTSs originating from different resolutions into a single video bitstream [155]. In this
scenario, an extractor track is required for each distinct viewing orientation.

Annex D of the OMAF standard [59] provides further information on viewport-dependent streaming
schemes enabled by OMAF.

The 3rd Generation Partnership Project (3GPP) has also started a working group to work on the topic
of VR in mobile networks [140]. The first reports have provided a complete overview of the challenges
that need to be addressed for a high-quality delivery of VR in mobile network, but, so far, to the best of
our knowledge, no standard has been actually defined in this standard body. The main document that
gives an idea of what the 3GPP could discuss in the next couple of years is shown in another technical
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report [102]. This document provides some typical QoE metrics for on-demand omnidirectional video
streaming.

2.8.2 Industry

Start-ups

The main start-up that has been visible in the emerging market of VR is Tiledmedia [132]. The
fundamental technology that they use is the MCTS tiling. Their main idea is as follows. At any time,
they deliver two video streams: (i) one video at low resolution and low quality (as a backup for abrupt
head orientation changes), this video may not be encoded with tile and (ii) only the tiles that are viewed
in the viewport at very high quality in order to get an excellent QoE.

One of the claims of Tiledmedia is that the motion-to-high-quality delay is a handful of frames,
which means that, in case of abrupt head movement, the delay to send the tiles at the highest quality
for the new viewport is around 30 ms. To do so, Tiledmedia encodes the high-quality video in two
distinct streams: (i) one video stream with a long RAP interval, sent in the case of relatively stable
head orientations and (ii) one video stream with a ultra-short RAP interval (typically two frames
only). Thus, this video can be played at any time once it is stored in the buffer. In case of brutal head
movement, the system delivers the missing high-quality tiles in its short RAP interval version, so that
the client can display the high-quality tiles upon reception of the tiles, and, at the end of the video
segment, the video version with long RAP interval is delivered to ensure an idle delivery.

The system implemented by Tiledmedia is thus especially efficient regarding the motion-to-high-
quality. It requires however to encode each video three times (one low-quality and two high-quality)
with the MCTS feature of HEVC. Unfortunately, this feature is not implemented in fast open-source
video encoders today.





Part II

A R C H I T E C T U R E





3
O M N I D I R E C T I O NA L V I D E O S T R E A M I N G A R C H I T E C T U R E :
E VA L UAT I O N O F D I F F E R E N T P RO J E C T I O N S

3.1 introduction

To deliver omnidirectional video content on the Internet, the content providers have to deal with a
problem of bandwidth waste: What is displayed on the device, denoted as viewport, is only a fraction
of what is downloaded, which is an omnidirectional view of the scene (see Section 2.3.2 for more
details on viewports). This bandwidth waste is the price to pay for interactivity. To prevent simulator
sickness [87] and to provide good QoE, the vendors of HMDs recommend that the multimedia systems
react to head movements as fast as the HMD refresh rate. Since the refresh rate of state-of-the-art
HMDs is 120 Hz, the whole system should react in less than 10 ms. This delay constraint prevents the
implementation of traditional delivery architectures where the client notifies a server about changes
and awaits for the reception of content adjusted at the server. Instead, in the current VR video delivery
systems, the server sends the full omnidirectional stream, from which the HMD extracts the viewport
in real time, according to the user head movements. Therefore, the majority of the delivered video
stream data are not used.

Let us provide some numbers to illustrate this problem. The viewport is defined by a device-specific
viewing angle (typically 110°× 90°), which delimits horizontally the scene from the head direction
center, called viewport center. To ensure a good immersion, the pixel resolution of the displayed
viewport is high, typically 4K. So the resolution of the full omnidirectional video is at least 16K. In
addition, the immersion requires a video frame rate on the order of the HMD refresh rate, so typically
around 100 fps. Overall, high-quality omnidirectional videos combine both a very large resolution (up
to 12K) and a very high frame rate (up to 100 fps). To compare, the bit-rate of videos with resolution
8192 × 4096 pixels (8K) and 60 fps encoded using HEVC is around 100 Mbit s−1 [96].

We propose in this Chapter a solution where, following the same principles as in rate-adaptive
streaming technologies, the server offers multiple representations of the same omnidirectional video.
But instead of offering representations that only differ by their bit-rate, the server offers here
representations that differ by having a QER: a region of the video with a better quality than the
remaining of the video. Our proposal is a viewport-adaptive streaming system and is depicted in
Figure 3.1. The QER of each video representation is characterized by a Quality Emphasis Center
(QEC), which is the centroid of the QER and represents a given viewing direction in the spherical
video. Around the QEC, the quality of the video is maximum, while it is lower for video parts that are
far from the QEC. Similarly as in DASH, the video is cut into segments and the client periodically runs
an adaptive algorithm to select a representation for the next segment. In a viewport-adaptive system,
clients select the representation such that the bit-rate fits their receiving bandwidth and the QEC is
closest to their viewport center.

This viewport-adaptive omnidirectional streaming system has three advantages: (i) the bit-rate of the
delivered video is lower than the original full-quality video because video parts distant from the QEC
are encoded at low quality. (ii) When the end-user does not move, the viewport is extracted from the
highest quality part of the spherical video (supposing that the user has not an outlier orientation and so
that a QEC exists near its current position). And (iii) when the head of the end-user moves, the device
can still extract a viewport because it has the full spherical video. If the new viewport center is far from
the QEC of the received video representation, the quality of the extracted viewport is lower but this
degradation holds only until the selection of another representation with a closer QEC.

31
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capturing server client

Figure 3.1: Viewport-adaptive 360-degree video delivery system: The server offers video

representations for three QERs. The dark brown is the part of the video encoded at

high quality, the light brown the low quality. The viewport is the dotted red rectangle,

the viewport center the cross

The remainder of the Chapter is organized as follows. First, we present our viewport-adaptive
streaming system, and we show how it can be integrated into MPEG – Immersive (MPEG-I)
OMAF [117]. Second, we address the choice of the geometric layout into which the spherical video is
projected for encoding. We evaluate several video quality arrangements for a given geometric layout
and show that the cube map layout with full quality around the QEC and 25 % of this quality in the
remaining faces offers the best quality of the extracted viewport. Third, we study the required video
segment length for viewport-adaptive streaming. Based on a dataset of real users navigating the
omnidirectional videos, we show that head movements occur over short time periods, hence the
streaming video segments have to be short enough to enable frequent QER switches. Fourth, we
examine the impact of the number of QERs on the viewport quality and we show that a small number
of (spatially-distributed over the sphere) QERs suffices to get high viewport quality. Finally, we
introduce a tool (released as open source), which creates video representations for the proposed
viewport-adaptive streaming system. The tool is highly configurable: from a given omnidirectional
video, it allows any arrangement of video quality for a given geometric layout, and it extracts the
viewport from any viewport center. This tool, used in all our evaluations, is further detailed in
Chapter 7.

In this Chapter, we compare our viewport-adaptive streaming architecture to the solutions existing at
the time this work was realised.

3.2 background and related work

We introduce the necessary geometric concepts for spherical videos, and discuss prospective
architecture proposals for navigable omnidirectional video delivery.

3.2.1 Geometric Layouts for 360-degree Videos

As described in Section 2.3.3, omnidirectional videos are usually projected onto planar rectangular
images in order to exploit existing video encoders. In this Chapter, we consider the four projections that
has been discussed for omnidirectional video encoding [152]. These layouts are depicted in Figure 3.2.
From the images that are projected on an equirectangular panorama, a cube map, and a rhombic
dodecahedron, it is possible to generate a viewport for any position and angle in the sphere without any
information loss [47, 91]. However, some pixels are over-sampled (a pixel on the sphere is projected to
a pair of pixels in the projected image). This is typically the case for the sphere pole when projected
on the equirectangular panorama (see Section 2.6.1). This over-sampling degrades the performance
of traditional video encoders [152]. On the contrary, the projection into a pyramid layout causes
under-sampling: some pairs of pixels on the sphere are merged into a single pixel in the projected
image by interpolating their color values. This under-sampling cause distortion and information loss
in some extracted viewports. Previous work regarding projection of spherical videos into different
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equirectangular cube map pyramid dodecahedron

Figure 3.2: Projections into four geometric layouts

geometric layouts focuses on enabling efficient implementation of signal processing functions [67] and
improving the video encoding [135].

Our contributions. We propose to leverage the geometric structure of the layouts to implement a
video encoding based on QER. Each geometric layout is characterized by a number of faces (e.g., 6 for
the cube map, 12 for the dodecahedron) and a given central point (which corresponds to a position on
the sphere). From the given central point and layout, our idea is to rotate the 3D geometric object to
align the center of one of its face with the given central point, this face is then denoted as front face,
and then to encode the front face in full quality while the quality of other faces is reduced. To our
knowledge, such idea has not been studied yet. Another originality of our work is that we measure
QoE by measuring the quality of several extracted viewports instead of the full projected video.

3.2.2 Personalized Viewport-Only Streaming

An intuitive idea to address the problem of resource waste due to the delivery of non-displayed video
data is to stream only the part of the video that corresponds to the viewport. This solution however
does not enable fast navigation within the omnidirectional video: When the client moves the head,
the viewport orientation changes, requiring a new viewport to be immediately displayed. Since the
device has no knowledge about other parts of the spherical video, it has to notify the server about the
head movement and wait for the reception of the newly adjusted viewport. As seen in other interactive
multimedia systems [24], this solution cannot meet the 10 ms latency requirement in the standard
Internet, even with the assistance of CDN. In addition, this solution requires the server to extract a part
of the video (thus to spend computing resources) for each client connection.

Our contributions. In our system, the server always delivers the full video, but it has different versions
of this video depending on the QER (characterized by its QEC). The client device selects the right
representation and extracts the viewport. The storage requirements at the server side increase but all
the processing is done at the client side (representation selection and viewport extraction). This idea
matches the adaptive delivery solutions that content providers have recently adopted (e.g. DASH),
trading client-personalized delivery for simple server-side management operation.

3.2.3 Tiling for Adaptive Video Streaming

To deal with the cases of end-users consuming only a fraction of the video (navigable panorama [48, 113,
142] and large-resolution video [75]), the most studied delivery solution leverages the concept of tiling
(see Section 2.6.1). In a short paper, Ochi et al. [94] have sketched a tile-based streaming system for
omnidirectional videos. In their proposal, the spherical video is mapped onto an equirectangular video,
which is cut into 8×8 tiles. More recently, Hosseini and Swaminathan [53] proposed a hexaface sphere-
based tiling of a omnidirectional video to take into account projection distortion. They also present an
approach to describe the tiles with MPEG DASH SRD formatting principles. Quan et al. [103] also
propose the delivery of tiles based on a prediction of the head movements. Zare et al. [158] evaluate
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the impact of different tiling scheme on the compression efficiency and on the transmission bit-rate
saving.

A tile-based adaptive streaming system provides the same features as our proposed system regarding
navigability (the clients get the full video), bandwidth waste reduction (the video at low quality for non-
viewport part) and QoE maintenance (the downloaded video is at full quality near the viewport center).
It has however several weaknesses. First, the client has to first reconstruct the video from independent
tiles before the viewport extraction can take place, which might cause additional latency. Second, the
more tiles there are, the less efficient the video encoding is due to the tile independence [113]. There is
so a limit on how fine-grained tiling can be useful. For instance, Youvalari et al. [151] concluded that
6 × 3 tiles appears to be the best trade-off for viewport adaptive streaming of omnidirectional videos
with equirectangular projection. Third, when the number of tiles is greater than the number of quality-
emphasized versions, the management at the server is heavier because the number of files is larger.
For example, a typical 8 × 8 tiling offered at six quality levels contributes to having 384 independent
files for each video segment, and this can result in larger MPD files (or manifest files). Finally, the
management at the client side is heavier. For each tile, the client should run a representation selection
process to decide witch quality to fetch from the server.

Our contributions. In our system, the server prepares n QER-based videos, each of them being a
pre-processed set of tile representations. Each QER-based video is then encoded at k global quality
levels. The main advantages include an easier management for the server (fewer files hence a smaller
MPD file), a simpler selection process for the client (by a distance computation), and no need for
re-constructing the video before the viewport extraction.

3.2.4 QER-Based Streaming

A omnidirectional video provider (Facebook) has released detailed the implementation of its delivery
platform [74]. The spherical video is projected onto a pyramid layout from up to 30 central points to
generate a set of video representations. Since the front face of pyramid projection has a better image
quality than the other faces, the system is in essence similar to our concept of QER. The end-users
periodically select one of the representations based on their viewport center. This implementation
suggests that Facebook was at the time considering the extra-cost of generating and storing multiple
QER-based representations of the same video worth the bandwidth savings and enhanced system
usability. However, as seen in Section 3.4, the pyramid projection is not the best regarding the viewport
quality. Moreover, the system uses the same video quality on each face, which is less efficient than our
proposal. Finally, the impact of the video encoding on the solution is not given.

Lee, De Simone, and Ebrahimi [78] studied in another context the coding of a regular video with a
QER. The QER is generated near the area that is the most likely to attract gazes. They do not propose
to generate different representations with different QERs.

Our contributions. Our approach is based on the same idea of offering multiple QER-based video
representations. However, we provide a complete study of our system with the additional distinction of
having varying quality across the geometrical layout. Moreover, our study includes an evaluation of
several geometric layouts, an analysis of the best segment duration, an analysis of the best number of
QERs, and a step towards integration into MPEG DASH.

3.3 system architecture

This section describes the system architecture of the proposed navigable omnidirectional video delivery
framework.



3.3 system architecture 35

high

s1

low
QER1

high

low
QER2

high

low
QER3

s2 s3

t

server
bw

t
low high low

client

connect

mpd

s1:QER2
lo

s2:QER3
hi

s3:QER1
lo

Figure 3.3: Viewport-adaptive streaming system: the server offers 6 representations (3 QERs
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client requests a representation that matches both the viewport and the network

throughput.

Server. The server takes as an input an omnidirectional video in equirectangular format and transforms
each frame into the desired geometrical layout. Then, it creates n different video versions, each with a
different QER and encoded into k different bit-rates (see Figure 3.3). The server splits all such encoded
videos into segments, which are classified in n×k representations (based on their respective bit-rate
and QER), enabling clients to regularly switch from one representation to another. The video quality
around the QEC is the highest, while the remaining part is encoded at lower quality.

Client. Over time the viewer moves the head and the available bandwidth changes. Current HMDs
record changes in head orientation through a rotation. Head movements modify the viewport orientation,
requiring a new viewport to be displayed. State-of-the-art HMDs can perform the viewport extraction
from a full omnidirectional picture [141]. The client periodically sends a request to the server for a
new segment in the representation that matches both the predicted future viewport orientation and the
available throughput.

Adaptation algorithm. Similarly to DASH, the client runs an adaptation algorithm to select the
video representation. It first selects the QER of the video based on the angular distance between the
viewport center and the QECs of the available QERs. This is an important addition to the DASH
bit-rate adaptation logic, since the QER position determines the quality of the extracted viewports, the
actual video displayed to the user. After the QER selection, the client chooses the video representation
characterized by this QER and whose bit-rate fits with the expected throughput for the next x seconds
(i.e., x being the segment length). The server replies with the requested video representation, from
which the client extracts the viewport displayed on the HMD, as illustrated in Figure 3.3.

Rate-adaptive streaming systems are based on the assumption that the selected representation will
match the network conditions for the next x seconds. Rate adaptation algorithms are developed [81,
131] to reduce the mismatch between the requested bit-rate and the throughput. In our proposal, the
adaptation algorithm should also ensure that the viewport centers will be as close as possible to the
QEC of the chosen QER during the x next seconds. In this paper, we implement a simple algorithm
for QEC selection: we select the QEC that has the smallest angular distance to the viewport center at
the time the client runs the adaptation algorithm. Similarly as for bit-rate adaptation, we expect new
viewport-adaptive algorithms to be developed in the future to better predict the head movement and
select the QEC accordingly. In their recent paper, Quan et al. [103] have made a first study where they
show that a simple linear regression algorithm enables an accurate prediction of head movements for
short segment size (see Section 2.7 for more detail on viewport prediction related-work).

Video segment length. A video segment length determines how often requests can be sent to the
server. It typically ranges from 1 s to 10 s. Short segments enable quick adaptation to head movement
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<?xml version="1.0"?>

<MPD>

<Representation id="1" qec="90,60" bandwidth="9876" width="1920" height="1080" frameRate="30">

<EssentialProperty schemeIdUri="urn:mpeg:dash:vrd:2017" value="0,0">

<SegmentList timescale="1000" duration="2000">

...

</Representation>

</AdaptationSet>

</MPD>

</xml>

Listing 1: Extensions of MPD file

and bandwidth changes, but they increase the overall number of segments and results in larger manifest
files. Shorter segments also increase the network overhead due to frequent requests, as well as the
network delay because of the round trip time for establishing a TCP connection. Longer segments
improve the encoding efficiency and quality relative to shorter ones, however they reduce the flexibility
to adapt the video stream to changes. We discuss segment length and head movement in Section 3.4.2
based on a dataset.

Extending the MPD file. To implement the proposed viewport-adaptive video streaming, we extended
a DASH MPD file with new information, as illustrated in Listing 1. Each representation contains
the coordinates of its QEC in degrees, besides the parameters that are already defined in the
standard [60]. Those coordinates are the two angles of the spherical coordinates of the QEC (latitude
and elevation), ranging respectively from −180° to 180° and from −90° to 90°. All representations
from the same adaptation set should have the same reference coordinate system. The @schemeIdUri
is used to indicate some extra information on the video such as the video source id and the projection
type. The projection type is used by the client to determine if it knows how to extract viewports from
this layout. The OMAF video format, newly introduce by MPEG-I, contains all the metadata needed to
extract viewports from the video downloaded by the client. It contains description of the projection
used, how the frame was packed (i. e. how faces of the geometrical object used for the projection are
mapped on the planar picture), and the rotation applied on the sphere before the projection. It also
introduce the notion of region-wise quality ranking which provides a superset of the functionality
needed to advertise QERs.

3.4 system settings

The preparation of omnidirectional videos for viewport-adaptive streaming relies on multiple
parameters. We distinguish between global parameters (the number of QERs, the number of
representations, the segment length and the geometric layout i. e. the projection map) and local (per
representation) parameters (the target bit-rate, the number of different qualities in a representation, the
quality arrangement of different faces of a geometric layout). We will not be comprehensive regarding
the selection of all these parameters here. Some of them require a deeper study related to signal
processing, while others depend on business considerations and infrastructure investment. In this paper,
we restrict our attention to three key questions: What is the best geometric layout to support
quality-differentiated omnidirectional video? What is the best segment length to support head
movements, while maintaining low management overhead? What is the best number of QERs n to
reduce the induced storage requirements, while offering a good QoE? To answer these three questions,
we have developed a software tool and used a dataset from a real VR system.

Dataset. We graciously received from Jaunt, Inc a dataset recording the head movements of real users
watching omnidirectional videos. The dataset is the same as the one used
by Yu, Lakshman, and Girod [152]. It comprises eleven omnidirectional videos that are ten seconds
long. These videos represent the typical content for such VR systems. The dataset contains the head
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movements of eleven people who were asked to watch the videos on a state-of-the-art HMD (Occulus
Rift DK2). The subjects were standing and they were given the freedom to turn around, so the head
movements are of wider importance than if they were asked to watch the video while sitting. Given the
length of the video and the experimental conditions, we believe that the head movements thus
correspond to a configuration of wide head movements, which is the most challenging case for our
viewport-adaptive system. Yu, Lakshman, and Girod [152] studied the most frequent head positions of
users. We are interested here in head movements during the length of a segment.

Software. We have developed our own tool to manipulate the main concepts of viewport-adaptive
streaming. Since the code is publicly available,1 the software can be used to make further studies and
to develop real systems. The main features include projection from one sphere-to-plane projection onto
any others, face-based quality adjustment for geometric based projection, and viewport extraction, and
are further detailed in Chapter 7. In this Chapter we used the version of the software of September
2016. The encoding is based on ffmpeg use the default libx265 rate control algorithm with default
configuration.

3.4.1 Geometric Layout

We report now the experiment of measuring the video quality of viewports, extracted from
omnidirectional videos projected onto various geometric layouts and with various face quality
arrangements. We used two reference videos.

• The original equirectangular video at full quality (highest bit-rate offered by youtube for the tested
video):2 We extract viewports at 1920 × 1080 pixels resolution from this 4K equirectangular video.
Those viewports are the reference (original) video used to assess the objective video quality.

• The same equirectangular video re-encoded at a target bit-rate. It is what a regular delivery system
would deliver for the same bit-rate budget (here 6 Mbit s−1 being 75 % of the original video bit-rate).
We re-encoded the original full-quality video with HEVC by specifying this bit-rate target. We call
it uniEqui to state that, in this video, the quality is uniform.

The videos are encoded using the 360Transformation software introduced previously in its version of
September 2016 and described in Chapter 7.

The performance of the layout can be studied with regards to two aspects: (i) the best viewport
quality, which is the quality of the extracted viewport when the viewport center and the QEC perfectly
matches, (ii) and the sensitivity to head movements, which is the degradation of the viewport quality
when the angular distance between the viewport center and the QEC increases. To examine both aspects,
we select one QEC on the spherical video. We chose one angular distance d that will vary from 0 rad to
π rad. We extract a ten seconds long viewport video, without any tilt, at distance d from the QEC, with
viewports at constant orientation during the ten seconds, at the same spherical position on the original
equirectangular video and on the tested video. We used two objective video quality metrics to measure
the quality of the extracted viewport compared to the original full quality viewport: MS-SSIM [143]
and PSNR (see Section 2.4.2 for more detail about those metrics). Since we compare several encoded
versions of the same viewport against the original, these well-known tools provide a fair performance
evaluation of viewport distortion. We perform multiple quality assessment (typically forty) at the same
distance d, but at different positions selected randomly with a uniform distribution, and average the
result.

We represent in Figure 3.4 the video quality (measured by MS-SSIM) of the viewport that is extracted
from our quality-differentiated layouts (equirectangular panorama with 8×8 tiles, cube-map, pyramid,
and dodecahedron). We also represent by a thin horizontal line the video quality of the same viewports

1 https://github.com/xmar/360Transformations/tree/master/transformation
2 https://youtu.be/yarcdW91djQ
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Figure 3.4: Average MS-SSIM depending on the distance to the QEC for the four geometric

layouts. Global bit-rate budget 6 Mbit s−1

extracted from the uniEqui layout (it does not depend on the distance since the quality is uniform).
For each geometric layout, we have tested numerous quality arrangements with respect to the overall
bit-rate budget. We selected here the “best” arrangement for each layout out of the tested combinaisons.
The bit-rate allocation per faces was performed as follow: (i) we set a weight bri for each face of the
projection. Here the weight is equal to bri = 1 for faces in the QER and bri = 0.25 for the others;
(ii) we fixe a total bit-rate target B. Here B = 6 Mbit s−1; (iii) we compute the bit-rate target Bi for
each face i with the following formula: Bi = B·bri

∑

i bri
. For the cube-map, the QEC is located at the

center of a face and the QER contains only this face. It means that the front face bit-rate target is
2.667 Mbit s−1 and the bit-rate target for the other faces is 0.667 Mbit s−1. The resolution of each cube
face is 960 × 960. For the pyramid the the QEC is at the center of the base face and the QER contains
only this face. The resolution of each face is 960 × 960. The equirectangular tiled representation has
5 × 5 tiles in the QER. Each tile has the resolution 480 × 240. Finaly the dodecahedron has three face
in the QER and each face has resolution 480 × 480.

The projection on a cube-map appears to be the best choice for the VR provider. The quality of the
viewport when the QEC and the viewport center matches (d = 0 rad) is above 0.98, which corresponds
to imperceptible distortion relative to the full quality video. For all layouts, the quality decreases when
the distance d increases but the quality for the cube-map layout is always the highest. Note that the
pyramid projection (the layout chosen by Facebook [74]) is especially sensitive to head movements.
The viewports extracted from a cube-map projection has a better quality than those extracted from the
uniEqui when their distance to the QEC is lower than 2 rad, while the other layouts viewports have a
better video quality only for distance to the QEC lower than 1 rad. We study next the interplay between
this distance, the segment length and the number of QECs.

3.4.2 Segment Length

The segment length is a key aspect of viewport-adaptive streaming. Long segments are easier to manage
and better for video encoding compression efficiency, but short segments enable fast re-synchronisation
to head movement. With respect to Figure 3.4, the segment length should be chosen such that the
distance between the viewport center and the QEC are rarely higher than π2 rad. Indeed, if this angular



3.4 system settings 39

0 1 π/2 2 3
0

0.2

0.4

0.6

0.8

1

Angular Distance [rad] to the Initial Head Positions

C
D

F
1 s 2 s 3 s 5 s
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distance is rarely higher than π2 rad, with the tested cube-map scenario users would rarely observe an
average viewport quality lower than for the uniEqui representation.

Given the dataset, we show the distribution of head movements for various segment lengths in
Figure 3.5. For each video and person watching it, we iterate over all timestamps in the datatset and
consider consecutively those timestamps as the starting time of a video segment, i.e., the time at which
the client select the next QER. Then, for each iterated timestamp we measure the angular distance
between this initial head position and every viewport center during the next x seconds, where x is the
segment length. In Figure 3.5, we show the Cumulative Density Function (CDF) of the time spent at
a angular distance d from the initial head position. For instance, for x =5 s, the blue curve cross the
point (1.5, 0.6), which means that, on average, users spend 60 % of their time with a viewport center at
less than 1.5 rad from the viewport center on the beginning of the segment.

Our main observation is that viewport-adaptive streaming requires short segment lengths, typically
smaller than 3 s. Indeed, for a segment length of 5 s, users spend on average half of their time watching
at a position that is more than 1.3 rad away from the initial head position, which results in a degraded
video quality. A segment length of 2 s appears to be a good trade-off: 92 % of users never diverged to a
head position that is further than 2 rad away from the initial head position, and users can experience the
full video quality three quarters of the time (head distance lesser than 0.7 rad). Please recall that our
dataset captures a challenging experiment for our system. We can expect narrower head movements,
and thus longer possible segment lengths, for sitting users and longer videos. Note also that these
results are consistent with the head movement prediction from Quan et al. [103], who showed that
prediction accuracy drops for time periods greater than 2 s.

3.4.3 Number of QERs

The number n of QERs represents another key trade-off. The more QERs there are, the better the
coverage of the spherical video is, and thus the better the viewport quality will be due to a better
match between the QEC and the viewport center. However, increasing the number of QERs also means
increased storage and management requirements at the server (and a longer MPD file).
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Figure 3.6: Median PSNR gap between the viewports of the cube-map layout and the uniEqui

depending on the number of QERs. Bit-rate: 6 Mbps

We represent in Figure 3.6 the median PSNR difference between the viewport extracted from the
cube-map layout and the same viewport extracted from the uniEqui layout with the same overall bit-rate
budget. In other words, we measure for each viewport position of a user the PSNR in the viewport
extracted in selected cube-map representation and the PSNR in the viewport extracted in the uniEqui
representation, and we compute the gap (the difference) between the two PSNR. Then we compute the
median value of all those PSNR gaps to get on point on the figure. To modify the number of QERs,
we set a number n, then we determined the position of the n QECs using the Thomson positioning
problem [106]. For each head position in the dataset, we computed the distance between the viewport
center and the QEC that was chosen at the beginning of the segment and we computed the viewport
quality accordingly.

The best number of QERs in this configuration is between 5 and 7. The gains that are obtained for
higher number of QERs are not significant enough to justify the induced storage requirements (in
particular not 30 QERs as in the Facebook system [74]). Having multiple QERs provides higher quality
gains for short segments, due to the better re-synchronization between the QERs and the viewport
centers. Note that a significant part of these gains stems from the cube-map layout.

3.5 conclusion

We have introduced in this Chapter a viewport-adaptive streaming architecture for navigable
omnidirectional videos. Our system aims at offering both interactive highs-quality service to HMD
users with low management for VR providers. We studied the main system settings of our framework,
and validated its relevance. We emphasize that, with current encoding techniques, the cube-map
projection for two seconds long segment and six QERs offers the best performance. This Chapter
opens various research questions and some of them will be studied in next Chapters: Chapters 5 and 6
explore how QER can be generated and how bit-rate should be allocated within the spherical picture.
The following Chapter, Chapter 4, proposes and evaluates an upgrade of this viewport-adaptive
streaming architecture to stream multi-viewpoint omnidirectional videos.
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M U LT I - V I E W P O I N T O M N I D I R E C T I O NA L V I D E O S T R E A M I N G

4.1 introduction

The current immersive multimedia services offering omnidirectional video are typically designed to
provide VR experience with three Degrees of Freedom (3DoF). A HMD can choose the portion of the
spherical content to view by rotating the head to a specific direction. Yet, to enable full immersion
inside a VR scene, head rotation alone is not sufficient. The ability to perform translational movements
inside the content is also required [44]. The user can then fully navigate the scene by virtually moving
(walking) within it. VR applications allowing rotations and translations inside a virtual scene are referred
to as six Degrees of Freedom (6DoF) applications. Yet the implementation of a continuous 6DoF VR
application, i.e., free-viewpoint, without restriction in translations is still an open challenge [55].1

A first implementation of 6DoF VR applications consists in restricting the navigation to only
predefined positions in space. We denote by Multi-ViewPoint (MVP) omnidirectional video a 6DoF VR
application where the scene is offered at some finite number of predefined viewpoints, i.e. positions from
which the scene can be viewed. To allow changes of viewpoint, the same scene has to be simultaneously
captured by multiple omnidirectional cameras located at different positions in space.2 Google Earth
VR [57] is an example of such a MVP 6DoF VR application allowing the navigation into a virtual scene
by changing the viewpoint (see Figure 4.1). However, it is to date restricted to static pictures instead of
videos.

When a MVP omnidirectional video acquisition system is available, streaming MVP omnidirectional
videos to the end-user brings new challenges. We highlight in particular two challenges: (iv) determining
the service implementation design that enables a good immersion experience without explosion of
the resource requirements in the delivery chain (server, network, client); (v) designing the best data
downloading strategy at the client side to maximize the QoE. Exploring these challenges and their
possible solutions is the scope of this Chapter.

1 6DoF VR will typically be addressed during the phase 2 of the MPEG-I
2 Cameras can be either real cameras or virtual cameras based on view synthesis

Figure 4.1: Example of viewpoint switching options appearing in a viewport in the Google Earth

VR [57] interface, i.e., walk-through functionality. Each white sphere appearing in

the viewport represents a viewpoint that the user can switch to. The viewpoint switch

can be selected using a controller, whose virtual representation is appearing in the

viewport as well.

41
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The first challenge is related to the implementation of the server. In the recent years, researchers
have sought for solutions to stream single-viewpoint omnidirectional videos. For obvious reasons of
re-using existing delivery architectures, proposals aim to patch the technologies of dynamic adaptive
streaming, typically MPEG DASH [120, 125]. This is for instance the case of the viewport-adaptive
streaming solution introduced in the previous Chapters. Multiple version of the same video is prepared
once at the server side, and the client, based on a prediction of the future available bandwidth and the
future head orientation (viewport position), decides which video segments to download to maximize
the quality in the displayed area. By multiplying the number of viewpoints, the service provider should
provision a large amount of resources to prepare, store, and deliver the data. The choices at the server
side, which are both on the implemented technologies and the design of the application, are bound to
the resource limitations on the whole delivery chain. Identifying the best design choices in this regard
is thus an open research topic.

The second challenge is related to the selection of representations at the client side. Now, in addition
to the two criteria that the client has to take into account to select the representation (bit-rate and
head orientation), the translation movements in the 6DoF scene should be anticipated to enable fast
viewpoint switch. To the best of our knowledge, no previous work has studied MVP omnidirectional
video streaming. Nevertheless, it is reasonable to assume errors in translational movement predictions,
which would affect the interactivity of the application and could significantly impact the user’s QoE.
The design of an accurate client adaptation strategy, including a 6DoF movement prediction module, is
thus another open research topic.

In this Chapter, we analyze some MVP omnidirectional adaptive streaming scenarios, we describe the
general layout of the omnidirectional MVP acquisition configuration as well as the content navigation at
user side. We define the adaptation strategy of the dynamic adaptive streaming client as an optimization
problem and demonstrate that exploiting the knowledge upon the way the user is navigating the content
can maximize the QoE, while minimizing the bandwidth consumption. More precisely, we propose
four contributions in this Chapter:

• We discuss possible implementations of a MVP omnidirectional adaptive streaming system from
the server perspective, reviewing state of the art encoding solutions that could be used in this
scenario.

• For a given adaptation set, we formulate the client adaptation logic, i.e., the algorithm that selects
which representation to download for each segment, as a Mixed Integer Linear Programming
(MILP) optimization problem to jointly (i) maximize the visual quality in the user’s viewports, (ii)
minimize the viewpoint switching delay, and (iii) minimize the frequency and duration of video
playout stalls, subject to bandwidth constraints. We consider the ideal scenario, where the client
performs a perfect prediction of both the available bandwidth as well as the user’s navigation
patterns, as an upper bound scenario for the optimization.

• We then study two extreme strategies for the realistic scenario in which the client does not predict
the viewpoint switch. The first strategy is a proactive algorithm where the client systematically
downloads other viewpoints to anticipate viewpoint switches and enable minimum switching delay.
The second strategy is a reactive algorithm where the client downloads viewpoints only when the
user commands a translational movement, such that viewpoint switch requires some tolerance to
delay. Both strategies bound the spectrum of all viewpoint-switching adaptation algorithms that the
service providers could design.

• We acquired a four-minutes long omnidirectional MVP video sequence and developed an interface
for a 6DoF VR application to collect the navigation patterns of some users watching our video
sequence. An analysis of the navigation patterns of our set of users is presented. We gathered
multiple existing tools together to emulate the MVP omnidirectional DASH streaming, to extract
users’ viewports from the reconstruct bit-stream with non-homogeneous quality, and to compute
some objective video quality metrics.
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Figure 4.2: Example of omnidirectional video frame in cube-map baseball layout: the spherical

frame is mapped to the plane via the cube-map projection and the faces of the

cube are arranged into a rectangular frame with 3:2 aspect ratio by minimizing

discontinuities between the cube faces.

The Chapter is organized as follow. Section 4.2 presents the related work on the topic of
omnidirectional video streaming and multi-view adaptive video streaming. Section 4.3 describes the
layout of a general MVP omnidirectional content acquisition and navigation framework, introducing
the notation and terminology used in the Chapter, and exhibits the options considered in this Chapter to
encode a MVP omnidirectional at the server side. Section 4.4 presents the client of a MVP
omnidirectional video streaming system, as well as the metrics used to model the user’s QoE in such a
system. Section 4.5 introduces the proposed formulation of the client adaptation logic as an
optimization algorithm. Section 4.6 describes the MVP video content used for the evaluation, as well
as the test conditions used to simulate the streaming session, and discusses the results. Finally,
Section 4.7 concludes the Chapter.

4.2 related work

We are not aware of any paper dealing with MVP omnidirectional video streaming for 6DoF VR.
The bibliography that we report in the following is related to multi-view perspective (as opposed to
omnidirectional) videos. The bibliography related to the streaming of single-camera omnidirectional
videos (such as heterogeneous spatial video encoding, user behavior prediction and representation
request) is elaborated in Chapter 2. We focus on those topics because MVP omnidirectional videos can
be seen as a mix between single-camera omnidirectional videos and multi-view perspective videos and
so innovation in one of those fields may also be beneficial to MVP omnidirectional video technology.

Multi-view video streaming considers content acquired by multiple cameras having limited disparity.
Often, depth information is also available, which can be used to synthesise additional views. The
studies addressing multi-view video streaming over HTTP can be clustered according to their focus
on (i) the strategy used to create the adaptation set, thus, the multi-view video encoding strategy used
to optimize the storage space at server side and allow rate-adaptive video transmissions and (ii) the
optimal request or delivery scheme, to account for the priority of the view that clients request as well
as the view-switching probabilities.

Multi-View Adaptation set. To exploit the redundancy that is present in multiple views of the same
scene, Su et al. [126] propose an HEVC multi-view streaming system where the multi-view video
and depth content is encoded using the scalable extension of HEVC. The scalable coding introduces
dependencies between representations of different views. Scalable video coding of multi-view video
including depth content is also used by Zhao et al. [161], who propose a cloud-assisted streaming
system where virtual views can be synthesized at server or client side depending on the network
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conditions and the cost of the cloud-based server. Recently, Toni and Frossard [134] have proposed
to formulate the adaptation set design at server side as an integer linear programming optimization
problem, in order to optimize storage constraints while offering a good navigation quality to the
different users.

Optimal Request or Delivery Scheme. Focusing on the adaptation logic at the client side, Hamza
and Hefeeda [50, 51] propose a quality-aware rate adaptation method for free-viewpoint streaming,
based on a rate-distortion model that relates the distortion of the texture and depth components
of reference views and target virtual views. This model enables the client to find the best set of
representations to request from the server. The adaptation strategy takes into consideration the user
interaction with the scene, assuming that the navigation trajectory of the user is predicted at client
side. The problem of minimising the latency of the view-switching at client side has been addressed by
multiple works in literature. Xiao et al. [147] propose two view switching approaches which exploit
data buffering at client side, in order to reduce the view switching delay. Carlsson et al. [18] propose a
prefetching policy implemented at client side, so that the requested view and rate are adapted based
on the stream switching probabilities and the current bandwidth constraints. Yun and Chung [153]
use a buffer occupancy controller at client side, as well as parallel streaming and server push policy
to minimize the view-switching delay. Finally, Zhang et al. [160] propose a priority-based adaptive
scheduling algorithm implemented at the server side when multiple viewpoints are simultaneously
transmitted over bandwidth constrained network to multiple clients.

In this paper, we study adaptive streaming for MVP omnidirectional videos. To the best of our
knowledge, neither the single-camera omnidirectional video, nor the multi-view perspective video
delivery are directly related to the system we address here. Regarding single-camera omnidirectional
video, we adopt most of the techniques that have been developed in the recent years to match the
delivered content to the displayed viewport. But no previous work has dealt with multiple viewpoints.
Regarding multi-view delivery, the cameras in our case exhibit a high variation of the disparity and only
a fraction of a viewpoint is displayed. Note however that multi-view techniques can be used to generate
virtual cameras, which may become new viewpoints in the MVP omnidirectional video system. But
virtual viewpoint synthesis is out of the scope of this paper.

4.3 multi-viewpoint omnidirectional framework and notation

In this section we introduce the geometry of a single viewpoint, generalize the framework to a MVP
system focusing on the viewpoint switching conditions, and present the options available to a service
provider to encode MVP omnidirectional videos. We describe the general layout of content acquisition
and navigation of MVP omnidirectional content, introducing the notation and terminology used in the
paper.

In this Chapter we consider the same Euclidean space as introduced in Section 2.2. This space is
associated with the reference frame

(

O, #»
ı , #»
 ,

#»

k
)

.

4.3.1 One Viewpoint

In this Chapter we define a omnidirectional camera as in Section 2.3.2 except that its center of projection
can now be any point v ∈ R3. The camera projects any point in R3 to a point on the spherical imaging
surface of radius r, usually considered unitary, i.e., the viewing sphere S v centered at v. Formally,
S v ≔

{

p ∈ R3 : ‖p − v‖ = r
}

. The omnidirectional video signal is defined on S v. The viewing sphere
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is associated to the orthonormal frame
(

v, #»
ı , #»
 ,

#»

k
)

: a translation T ∈ R3 transforms
(
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k
)

into
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 ,
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k
)

.

A user watching the omnidirectional video is assumed to be at the center of the viewing sphere.
At each instant in time, the user visualizes only a portion of the spherical surface, depending on his
viewing orientation. During the video duration, the user can change his viewing orientation to navigate
the video. We associate the user’s head to the orthonormal frame

(

v,
#»

ı
′ ,

#»


′ ,

#»

k′
)

, where
#»

ı
′ goes through

the front of the user’s head,
#»


′ through his left ear, and

#»

k′ through the top of his head. A rotation
R ∈ SO(R3) transforms

(

v, #»
ı , #»
 ,

#»

k
)

into
(

v,
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ı
′ ,
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′ ,

#»

k′
)

. Thus, at a given instant in time, the user’s

viewing orientation within the viewing sphere centered at v is uniquely identified by R.
#»

ı
′ = R( #»

ı ) is
then the user viewing direction.

The viewport attended to the user at a given instant, as defined in Section 2.3.2, and extracted by the
client, is then uniquely defined by (v, R) (i. e. by the user viewing position and viewing orientation).

4.3.2 Multiple Viewpoints

An omnidirectional MVP video content corresponds to a finite set of L omnidirectional video sequences
of the same scene, captured by omnidirectional cameras located at different positions in space, and
synchronised in time, at frame precision. We refer to each omnidirectional video, corresponding to a
camera at a particular position in space, as a viewpoint. We denote byV = {v j}, with j ∈ {1, . . . , L},
the finite set of all viewpoints in the MVP omnidirectional content.

Since the MVP omnidirectional streaming applications are still in their early stages of development,
the interfaces for viewpoints switching that will become the most popular are not known yet. We
present hereafter several options. We denote byN j,R ⊆ V the set of viewpoints accessible from a given
viewport (v j, R).

Teleportation without restriction Users can switch to any viewpoint without restriction,
formally N j,R = V. It means the 6DoF VR application authorizes teleportation, without regards to
the physics nor the visibility of the viewpoint.

Step by step moves Users can only switch to neighbor viewpoints. Formally, N j,R contains only

the neighbors of v j that are at most at distance d from v j: N j,R ≔
{

vk ∈ V : 0 < ‖vk − v j‖ 6 d
}

.
This option respects the law of physics since it binds the user to the most immediate moves in the
Euclidean space. The user can decide to switch to a viewpoint that is not in her current viewport: the
use can move backward or sideways.

Teleportation within the viewport Users can switch to any viewpoint in their current viewport.
Teleportation is still possible, but users can only switch to visible viewpoints. Formally,N j,R contains

all viewpoints vk within a certain angular distance from
#»

ı
′ , where

#»

ı
′ denotes the the user’s viewing

direction (as introduced in Section 4.3.1).

Step by step moves within the viewport N j,R is not only restricted to the nearest viewpoints to
v j, but also to the viewpoints that are located in the current viewport. This implementation is the
most natural since it restricts the user to moving as in the real world. Formally, viewpoint vk belongs
to N j,R if and only if the switching direction vk, is within a given angular distance from the user’s

viewing direction
#»

ı
′ and if the distance between vk and v j is smaller than a given value d.

The temporal aspects of the switch are discussed in Section 4.4.
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4.3.3 Multi-viewpoint Omnidirectional Encoding Options

We consider the case of a content provider, which implements dynamic adaptive streaming technologies,
such as MPEG DASH, to stream omnidirectional MVP video content to its clients. We do not consider
any storage limitation at server side, i. e. the server has unlimited storage capacity. The adaptation logic
is implemented at client side, i. e. the client selects the video segments to request, since most of the
adaptive streaming technologies implemented nowadays use this solution. The content provider has to
choose how to encode the MVP omnidirectional data.

We consider a scenario where the representation bit-rate varies but the resolution remains constant.
The choice of the encoding solution results in different adaptation sets stored on the streaming server. In
this Chapter, we consider two encoding options that result in corresponding adaptation sets (Figure 4.3):

No T iling The simplest encoding option to create the adaptation set is to encode each viewpoint as
one independent spatial entity, at multiple bit-rates. The adaptation set, as illustrated in Figure 4.3,
contains one representation per bitrate (i. e., quality level) and per viewpoint. Each representation can
be downloaded independently of the others. To select the representation to download, the client needs
a prediction algorithm for both available bandwidth and viewpoint switching. When decoding the
stream, the client uses only one representation per viewpoint. All other downloaded representations
are dropped and the bandwidth used to download them is wasted.

T iling Each viewpoint can be spatially divided into non-overlapping, independently decodable
portions, i. e. tiles. The tile-based adaptive streaming optimization that has been proposed for mono-
view omnidirectional video streaming can be extended to the MVP case. Each video corresponding
to a viewpoint is split into the same number T of tiles, according to the same tilling pattern. The
adaptation set is then composed of T representations per viewpoint and per bitrate (i. e. quality level),
as illustrated in Figure 4.3 with T = 2. Each tile can be downloaded and decoded independently of
the others. Only one quality can be used by the decoder for a given tile and viewpoint. Downloading
tiles at different position in a given viewpoint with different quality level allows the decoder to
generate an output omnidirectional video with variable quality within the omnidirectional frame. If
the user watches a viewpoint v0, all downloaded representations of other viewpoints are wasted.

More complex encoding scenarios, exploiting the inter-view redundancy by using scalable video
coding, have been successfully used to create adaptation sets for adaptive streaming of perspective
videos [56, 71, 112], even in the case of multi-view perspective videos, as discussed in Section 4.2.
While such scalable encoding solutions could be suitable for the MVP omnidirectional scenario,
eventually in combination with tiling, these options are out of the scope of this dissertation: we only
consider encoding scenarios that do not use scalability.
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4.4 client side

The goal of the client is to download video segments so that it can display with a high quality the
viewport requested by the user in the right viewpoint. The client has a limited downloading capacity
for each video segment. We denote by Bi the average available downloading bandwidth during video
segment i.

4.4.1 Switching Decision and Timing

We first focus on viewpoint switching, which is a key novel feature of the MVP 6DoF video streaming
system. We suppose a user can at most switch viewpoint once during a segment. We consider that any
representation (whether it is the full omnidirectional video or a tile) has frequent RAPs, i. e., frames
without any dependency to any prior frame. To display a given video frame, a client should have
downloaded and decoded all the frames since the last RAP before the said frame. For the sake of
simplicity and in conformance with the recommendations for implementation of dynamic adaptive
streaming systems, we suppose that each segment in the adaptation set starts with a RAP and contains
no other RAP.

Let us consider a user switching at instant t from a viewpoint v j to another viewpoint vk ∈ N j. To
enable an immediate switch, the MVP omnidirectional streaming system should both (i) have in buffer
the frames of the omnidirectional video of the viewpoint vk, and (ii) have decoded all the frames of
viewpoint vk since the latest RAP. In practice, a standard user device does not concurrently decode
multiple videos (multiple viewpoints of the same scene) due to memory and computing resource
consumption. We thus consider two more realistic cases, whether the translation movement command
results in a viewpoint switch to the immediately following RAP of viewpoint vk or to the next one.
Let denote by i the identifier of the currently displayed segment and by tr the starting time of the next
segment, i. e. segment i + 1.

• If the client, at instant t, has already downloaded tiles of segment i + 1 for viewpoint vk or if the
client has still time to download to download those tile before tr, then the switching can be done at
tr.

• If the client has not downloaded tiles of segment i + 1 for vk and it has no time to download them
until the deadline tr, then the switch cannot be done at the next RAP.

In the graphical interface, typically in Google Earth VR, the implementation of the translation
movement includes a transition effect based on a “tunneling” animation, so that the switch appears as
if it was instantaneous: upon the movement command, a blurred animation of the content (basically
simulating motion) is shown until the time at which the display of the new viewpoint can be done.

4.4.2 Download Decision and Scheduling

To fuel the video decoder buffer in input, we propose a serialized iterative request process with a unique
buffer, as illustrated in Figure 4.4. The client issues a request for one representation at one segment
in one viewpoint. We suppose, for modeling simplification, that once a segment is requested, the
download cannot be canceled and has to be completed. Not that in practice representation downloads
can be canceled by the client. Once the download is complete, the downloaded segment is stored in the
buffer, and then the client can issue another request for another representation.

At the beginning of a video segment i, the client selects, among the video representations that
are buffered for this segment i, the representation to decode. We suppose that (i) the client can only
select fully downloaded and fully decodable representations; (ii) the client cannot start decoding
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bandwidth, future user’s head orientation and future selected viewpoint to download

representation for some tiles and fill its download buffer. The red block illustrate the

viewport positions and show that many representation are downloaded but never

actually displayed. See Figure 3.3 to compare with the mono-viewpoint streaming

architecture proposition and Figure 2.8 for the traditional DASH architecture.

another representations afterwards during the course of the segment; (iii) for each tile, at most one
representation can be selected for decoding ; and (iv) the client can only select representations of the
same viewpoint (i. e. cannot decode tiles from different viewpoints in parallel).

4.4.3 Assessing the Quality of Experience

Three objective metrics can be considered to evaluate the QoE felt by a user watching a MVP
omnidirection video. Evaluating the correlation between those metrics and the subjective evaluation of
the QoE is out of scope for this paper. Those metrics are:

D istortion The objective quality of the displayed viewports is related to the quality of the selected
representations. For a given displayed representation, and for a given viewport during a segment,
we extract the same viewport from the original full-quality omnidirectional video of this viewpoint.
This latter is the reference video. We can then run an objective video quality metric to compare the
displayed viewport with the viewport from the original content. Video quality metrics include the
PSNR and the MS-SSIM. See Section 2.4.2 for more details on objective quality metrics.

Stalls This event, sometime denoted as rebuffering event, happen when the client pauses the display
of the content to wait for the next frames to be downloaded. A stall happens when no representation
has been received on time. In the MVP scenario, a stall is likely to occur after unanticipated viewpoint
switch.

V iewpoint Switching Lag It is the duration between the time the user commands a translation
move and the time the first viewport of the requested viewpoint is displayed. The impact of this
lag on the QoE is an open question. Even if not supported by any subjective testing, the shorter is
the transition, the better is the feeling of immersion. It requires however the MVP omnidirectional
system to anticipate the switch by downloading neighboring viewpoints, which may be not watched.
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4.5 algorithms

We start this Section by a discussion about the requirements of the algorithms that need to be
implemented at the client side to enable good performance for 6DoF video streaming systems. Then,
we study optimal algorithms, which correspond to some specific conditions. These algorithms aim to
provide a theoretical framework for the study of MVP omnidirectional video systems and to highlight
some radical implementation choices.

4.5.1 Toward Practical Algorithms

The system performance depends on the capacity of the client to predict (i) the network conditions in
the next seconds, in particular the available bandwidth; (ii) the next head orientation rotations, which
correspond to the interactive feature of traditional 3DoF video systems: yaw, pitch, and roll; (iii) the
next translation movements, which are the three novel interaction features of 6DoF systems, here
restricted to viewpoint switch. We would like to emphasize again that the accuracy of the prediction
algorithms on those three parameters is critical to the success of the implementation. The ongoing
efforts to develop prediction strategies, for both traditional adaptive streaming and single-camera
omnidirectional videos can be reused here.

The prediction of the client can then be used when the client has to take a decision on which
representation to download next. This decision contains up to four choices:

• The segment. The request can be for a representation that will be played in the immediate next
segment (typically if a viewpoint switch just happened or if the latest head rotations reveal that
previous head rotation predictions were wrong), or can be for longer term segments to anticipate
the movements and have the time to download high-quality representations.

• The bit-rate. The higher the bit-rate the lower is the distortion. However the client should also take
into consideration that requesting a high-quality representation will monopolize the bandwidth for
a long time, at the expense of the next requests. Furthermore the client has to request representation
such that the downloading can be completed before the decoding and displaying time.

• The viewpoint. The prediction of the next translation movements enable the client to decide to
request representations in the current viewpoint (if the client does not anticipate any move in the
near future) or in another viewpoint (if the client anticipates a move soon). The client can also
request representations in other viewpoint as a proactive strategy in case of unanticipated moves.

• The tile (if implemented). It is here the prediction of the next head orientation rotations that make
the client request tiles in various locations of the frame in the given viewpoint. As for the viewpoint,
the request depends on the estimated accuracy of the prediction.

Multiple parameters have to be considered for the implementation of efficient algorithms in practice.
In this Chapter, we do not design practical algorithms in this regard. We focus instead on analyzing
optimal algorithms for two extreme strategies: a proactive strategy where the client always proactively
downloads all other viewpoints to anticipate possible viewpoint switches, and, on the contrary, a
reactive strategy where the client reacts only to movement commands. Our analysis provides some
bounds, which will hopefully serve a comparison basis for future work on practical algorithms.

4.5.2 Optimal Decision with Perfect Predictions

We first consider an omniscient client, which is able to perfectly predict the future available bandwidth,
the future head orientation rotations, and the future switching decisions. The goal is thus to schedule the
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representation requests so that every video that is displayed in the viewport (i. e., every displayed tile in
the right viewport) is downloaded on time at the highest possible quality. For the sake of simplicity,
we will not consider the case of scalable coding. The model can easily be upgraded by introducing a
decoding dependency constraint to include this case. We present the model in the context of the tiling
encoding scenario because the non tiling scenario can be seen as a tiling scenario with only one tile per
viewpoint.

The objective is to maximize the QoE for the user, with respect to the three metrics described in
Section 4.4.3: distortion, stalls, and switch lag. We combine these three metrics into one by applying
two float weight parameters α and β so that the function to maximize is a traditional image distortion
metric, plus α times the stall metrics, plus β times the switch lag. Subjective quality assessment
campaigns will be necessary to set these weights based on the relative impact of those metrics on the
subjective QoE.

The notation is as follows. We denote by ri,q,v,τ the representation for tile τ of viewpoint v with
quality level q for the segment i. To model this decision problem, we introduce a set of binary variables
xi,q,v,τ such that:

xi,q,v,τ =



























1, if the client selects the representation ri,q,v,τ

to generate the viewports of segment i

0, otherwise

We introduce the binary variables yi,v such that:

yi,v =



























1, if viewpoint v is selected for display

during segment i

0, otherwise

The video distortion observed by the user for a segment i is computed as follows. We denote by
Qi,q,v,τ the average distortion observed by a user having its viewports totally inside the representation
ri,q,v,τ during the segment i. We suppose the distortion observed by a user having its viewports inside
multiple tiles is equal to the weighted average of the average distortion of each tile representations,
weighted by the ratio of the viewports surface within each tile. This is for instance the property of the
MSE when the distortion is evenly spatially distributed within each representation. We denote by Vi,τ

the average ratio of the surface of the viewports of the user within the tile τ during the segment i. Then,
the distortion observed by the user during the segment i is

Qi =
∑

v,τ

Vi,τ · (
∑

q

(xi,q,v,τ · Qi,q,v,τ))

Other notations include ℓi,v, which is a constant equal to 0 if the user wants to display the viewpoint
v during the video segment i, and 1 otherwise. The set of float variables di, j,q,v,τ is the downloading
ratio of representation ri,q,v,τ at the time of segment j. The integer variable s j represents the duration
(expressed in number of segment duration) of a stall during the downloading segment j, and S j is a
binary variable equal to 1 if and only if s j is greater than 0.

The optimal model can be formulated as follow:
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min
{xi,q,v,τ}

∑

i

(Qi + β · li,v · yi,v) + α
∑

j

(s j + S j)

s.t.
∑

i,q,v,τ

di, j,q,v,τ · bi,q,v,τ 6 (1 + s j)B j ∀ j (4.1a)

∑

j

di, j,q,v,τ 6 1 ∀i, q, v, τ (4.1b)

N
∑

j=i+1

di, j,q,v,τ = 0 ∀i, q, v, τ (4.1c)

xi,q,v,τ =
∑

j

di, j,q,v,τ ∀i, q, v, τ (4.1d)

Vi,τ 6
∑

v

L
∑

q=0

xi,q,v,τ ∀i, τ (4.1e)

∑

v

yi,v = 1 ∀i (4.1f)

xi,q,v,τ 6 yi,v ∀i, q, v, τ (4.1g)

yi,v 6 yi−1,v + (1 − ℓi,v) ∀i, v (4.1h)

The set of equations (4.1) formally defines the optimization problem into an MILP problem.
Equation (4.1a) defines the bandwidth constraint for each segment, including the extra bandwidth
obtained when the client pause the video display. Equation (4.1b) limits each representation to be
downloaded at most once. Equation (4.1c) forbids the download of a representation after its display
deadline. Equation (4.1d) indicates that a representation can only be selected for decoding if it was
fully downloaded, and forbids the optimal solution to download not displayed representations.
Equation (4.1e) enforces the model to select one available representation when the tile is visible during
the segment. The minimization problem implies that if this constraint is active, only one representation
is selected. Equation (4.1f) guarantees that one and only one viewpoint is displayed during a segment.
Equation (4.1g) states that a representation of segment i can only be selected for display if it belongs to
the displayed viewpoint during segment i. Equation (4.1h) indicates that a viewpoint can be selected
for display either if the user requested to watch it or if it was displayed during the previous segment.

4.5.3 Optimal Proactive Strategy for Fast Switch

We consider now the case of a content provider that guarantees that the viewpoint switching lag is
minimal, i. e. whenever the user commands a translation move, the new viewpoint is displayed at
the next segment. This strategy can typically be implemented by a content provider that implements
accurate bandwidth and head orientation prediction algorithms, but has no clue on the user behavior
regarding translation movements.

The implementation of this strategy imposes to download, for every segment, at least one
representation for the predicted tiles in every viewpoint among all the possible switchable viewpoints.
For instance, if the client is in viewpoint v j at segment i, then the requests for segment i + 1
proactively include the tiles corresponding to the predicted head rotation R for all viewpoints in N j,R.
To ensure a smooth transition, we also force the quality to be the same for all downloaded tiles of the
same segment.

This strategy guarantees a minimal switching delay at the expense of the displayed video quality,
wasted download resources, and stall if the bandwidth is too low. Indeed, at the start of a new video
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segment, representations for all viewpoints have been downloaded but only one viewpoint is decoded
and displayed. The price to pay for guaranteed interactivity is thus entire viewpoint downloading
waste. Note that the design choices of the content provider regarding the switching conditions (see
Section 4.3.2) can have a significant impact on the performance.

To model this strategy and to allow fair comparison with the other tested strategies, we suppose a
perfect bit-rate and head orientation prediction. The Equation (4.1d) is updated to additionally enforce
the download of a representation if a representation with the same quality, at the same tile and segment
was selected at any viewpoint. We consider the worst case in Section 4.3.2: teleportation without
restriction.

∑

v′
xi,q,v′,τ =

∑

j

di, j,q,v,τ ∀i, q, v, τ (2d)

4.5.4 Optimal Reactive Strategy

We consider finally the opposite case of the previous strategy. The content provider now agrees that a
viewpoint switch can be postponed. It can typically be the case if the graphical animation for viewpoint
switching can be elegantly implemented. The prediction of bit-rate and head orientation is still perfect
and, again, no prediction for translation movement is available. The client does not anticipate any
viewpoint switch, and thus implement a reactive strategy.

In this strategy, the client requests only representations in the current displayed viewpoint. The
strategy is said reactive because representations in the new viewpoint are requested only when the user
commands a translation moves. If the client has no time to download any representation until the start
of the next segment, then the switch is postponed to the following segment. In this strategy, the waste
of representation downloading is minimized, and thus the video quality is maximized.

To model this strategy, we insert the following constraints in the omniscient model:

di, j,q,v,τ 6 ymax( j,0),v + ymax( j+1,0),v∀i, j, q, v, τ (3h)

If user switch to viewpoint v at segment j + 1:
∑

i,q,τ

di, j,q,v,τ 6 (1 − t j + s j)B j ∀v, j (3j)

Equation (3h) allows the client to download only representations that will be displayed during the next
video segment or during the current video segment. Constraint (3j) indicates that if the user decides
to switch viewpoint t j seconds after the beginning of the current downloading segment, the client
cannot download segment for the new viewpoint before the decision was made. We additionally add a
constraint to enforce representations to be downloaded in display order (i. e. if a representation of video
segment i is downloaded during segment j then representations of segment i − k cannot be downloaded
during segment j + k′ with k, k′ integers greater than 1).

4.6 evaluation

In this Section we evaluate the two extreme strategies introduced in Sections 4.5.3 and 4.5.4 and
compare them to the optimal omniscient client defined in Section 4.5.2.
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Videos Quality 0 Quality 1 Quality 2

PSNR [dB] rate [Mbit s−1] PSNR [dB] rate [Mbit s−1] PSNR [dB] rate [Mbit s−1]

no tile 46.25 5.01 47.12 8.01 48.45 16.02

3 × 2 tiles 46.22 5.02 47.10 8.02 48.44 16.02

6 × 4 tiles 46.19 5.08 47.06 8.08 48.42 16.08

Table 4.1: Bit-rate and distortion expressed in PSNR for the encoded video, averaged over all

segments, over all tiles, and over all three cameras, for the three tiling scenarios and

the three quality levels.

4.6.1 Test-bed

The evaluation test-bed is made of four main components.

• A four-minute long multi-view omnidirectional video, captured by three Orah Live Spherical VR
Camera 4i omnidirectional cameras. The cameras were aligned in a hallway, inside a building.
Each camera showed in different offices with people working/moving inside. Each camera records
a 4K equirectangular video at 30 fps. Cameras are positioned such that their local reference frames
are aligned.

• An Android application to navigate into the MVP omnidirectional video and record users’
trajectories. The application is based on Google Daydream3 framework. The neighboring
viewpoint are represented by small white sphere, as in Figure 4.1; users switch by using a
controller. The video is streamed over Wi-Fi, with 2K resolution, at a constant quality level using
DASH. The video is split into one-second long segments. The user can switch at any time but the
switch is only effective at the beginning of the next segment. Around 60 times per seconds, the
system logs a timestamp, the user’s viewports orientation, and the current displayed viewpoint. The
switching decision times are also recorded in the log file.

• An offline optimization software, used to solve the three optimization problems introduced in
Section 4.5. The input are the distortion and the bit-rate of each encoded video segment, the user
trajectories inside the MVP video, and the average download bandwidth available during each
download chunk. The outputs are the list of downloaded segments, the viewpoint that was displayed
to the user, and indication of the necessary stalls. The software is implemented in C++, and use
the IBM ILOG CPLEX Optimization Studio. We released it open-source, and made it available on
Github4 to reproduce the results of this Chapter (see Appendix B.1).

• A Python3 script which combines Gpac MP4Box [76] and ffmpeg,5 to generate the decodable
bit-stream that the client would have obtained. The script then extracts, for each video frame, the
viewport inside the generated video, with the orientation indicated by the user navigation trace, and
in parallel inside the original video. This extraction is performed using an open-source software
named 360Transformations.6

We used the following procedure to encode the MVP omnidirectional video. First we project the
omnidirectional video of each viewpoint onto a 3 × 2 compacted cube-map baseball as illustrated in
Figure 4.2. For each tile set-up (no tile, 3 × 2, and 6 × 4 tiles), we used the open-source Kvazaar [69]
software to encode each projected viewpoint into three representations, encoded with an average bit-rate
target: 5 Mbit s−1, 8 Mbit s−1 or 16 Mbit s−1. When tiles are used, we used the MCTS configureation
of Kvazaar, and we enforced each tile to have the same dimensions, so that tiles are restricted to the

3 https://developers.google.com/vr/
4 https://github.com/xmar/MultiViewpoint360_MMSys18
5 https://www.ffmpeg.org/
6 https://github.com/xmar/360Transformations/tree/master/transformation
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User A User B User C User D

Sex F F F F

Age 34 31 27 27

Nb. switch event 18 10 4 13

Ang. Vel. [Deg./s]:

global 28.81 20.88 28.44 20.00

2 s before a switch 8.48 3.42 3.24 7.53

2 s after a switch 59.57 46.88 54.25 51.21

between two switches 29.38 20.45 28.79 20.42

Table 4.2: Information about the users: sex, age, number of switching event, median angular

velocity. The median angular velocity is ether computed globally, two seconds before

a switch event, two seconds after a switch event or in the period between two switch

events.

faces of the cube-map projection. The resulting video were split into one-second DASH segments
using GPAC MP4Box. We also used MP4Box to extract each tile of each video segment into a different
bit-stream file. Table 4.1 summarizes the PSNR measured by Kvazaar during the encoding process,
and the average bit-rate of each representation. The PSNR is measured in comparison to the original
video, on the whole frame (even for the tiled videos), in the cube-map domain, on the luma component
of the pixels. The bit-rate is computed on the DASH-ed files by adding the size of each file (including
the initialisation files) and dividing by the video duration.

The objective function of the three optimization models uses the parameters α and β. The parameter
α can be interpreted as a weight for the dissatisfaction on the user for every stall events; we set it to
100 times the maximal MSE in our adaptation set. The parameter β is the weight of the dissatisfaction
for every second of lag; we set it to α

10 .7

4.6.2 User Behavior in Multi-viewpoint (MVP) omnidirectional Video

Table 4.2 shows some statistics about the navigation traces that we captured on four users (all female),
whose age ranges from 27 to 34. All users had already watched single-viewpoint omnidirectional
videos before. They switched to new viewpoints in average 11 times during the four-minute long MVP
video but the variance is here significant (more than four times more switches between user A and user
D).

We extracted the median angular velocity from head movements, and we identified a switch
preparation time and a discovery time respectively before and after switching events. Indeed, the
median angular velocity is significantly lower than the median velocity two seconds before a switching
event (around 20 ° s−1 lower), while it is significantly higher two seconds after a switching event
(around 30 ° s−1 higher). Should these first observations be confirmed by more measurements, the
prediction of viewpoint switching events could become an easy process in standard behavior.
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Figure 4.5: QoE metrics for the omniscient scenario

4.6.3 Results: Optimal with Perfect Prediction

We first analyse the choices of the omniscient optimal client, illustrated in Figure 4.5. This theoretical
client uses its perfect knowledge of the future head orientation of the client to minimize the objective
function. The objective function is split into three sub-objectives: minimizing the distortion in the
displayed viewports, minimizing the time required to switch to a new viewpoint, and minimizing the
duration the video display was paused by the client. Our results show the interplay between these
sub-objectives, with respect to our weight parameters α and β.

Figure 4.5a represents the median MS-SSIM [143] inside the video displayed in the viewports for
various available bandwidth (see Section 2.4.2). We observe that the distortion on the user viewports is
reduced when the available download bandwidth increases. Moreover, the encoding with tiles allows the
client to select only the displayed tiles in high quality, which results, for a given download bandwidth
budget, in a viewport video with less distortions.

Figure 4.5b shows the average duration of a switching lag per requested viewpoint switching, for
different average available bandwidth budget, and different number of tiles. The results are represented
inside a box plot (from bottom to top, the horizontal lines represent respectively the minimum, the
25th, the median, the 75th, and the maximum value of the average switching lags for a given scenario).
When the budget is higher or equal to 5 Mbit s−1, the client does not decide to delay the switch.8 When
the bandwidth is less than 5 Mbit s−1 the client does not have enough bandwidth to download a full
viewpoint at the lower quality level (encoded at 5 Mbit s−1) and it has sometimes to delay the switch to
allow the display of viewports with better quality.

Figure 4.5c depicts the cumulated stall duration relative to the duration of the video. The results are
also represented in box plots, which are defined as the box plots in Figure 4.5b. When the bandwidth is
higher than 5 Mbit s−1 (at least the bit-rate of the video with lowest quality), the client decides to never
pause the video. However, when the bandwidth is not enough, the client decides to pause the video to
get extra time to download better quality segments.

Figure 4.6 depicts the optimal value of the objective function depending on the available bandwidth
for the three encoding scenarios and the omniscient scheduler. The lower the objective value the better
the quality of the experience. The vertical axis uses a logarithmic scale. We observe that, taking into

7 Reader should note that the value of α and β have been chosen to represent the bias of the authors on how the stall, the switching
lag, the image distortion respectively impact the quality of experience of the users. Further study should be perform to accurately
select the value of those parameter to better represent the user QoE

8 The small variations in the switching delay come from the fact the users switches at any time in the course of a segment.
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Figure 4.6: Raw objective function value for the omniscient scenario
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Figure 4.7: Median of the gap between the displayed viewports PSNR of reactive or guaranteed

scenario with the omniscient scenario.

account all metrics, using tiles improve the the quality of experience. In this scenario, after 20 Mbit s−1

there are enough bandwidth and all tiling scenarios become equivalent from the quality outlook.

We highlight the complex interplay between the three options in case of bandwidth shortage: reduce
visual quality by switching to lower quality representations, or pause, or delay a switch, or combinations
of them. Here, the omniscient optimal client picks in every of these behaviors to optimize the objective
function with regards to the set weight parameters. This complex behavior calls for a campaign of
subjective tests to model the parameters that reflect the interplay with better accuracy.

4.6.4 Results: Proactive and Reactive Strategies

We now compare the performance and the behavior of both client strategies against the optimal
performance of the omniscient client. These two strategies are extremum of the possible downloading
strategies that the client may implement. The proactive strategy does not accept any compromise on the
viewpoint switching. The excessive anticipative viewpoint downloading generates bandwidth shortage,
which can only be mitigated by stalls and distortion. On the contrary, the reactive strategy tolerates
switch lags, with expected gains regarding video quality and stalls.

Figure 4.7 represents the median of the difference between the PSNR in the viewports for both
strategies and the PSNR in the viewports of the omniscient client. The reactive client manages to
obtain viewport videos with distortion close to the optimal, although the viewport distortion of the
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Figure 4.9: Ratios of lag durations in segment duration unit, aggregated for bandwidth between

5 Mbit s−1 to 20 Mbit s−1, for the different scenarios and for different number of tiles

proactive client is higher. Note that the proactive strategy compensates the bandwidth shortage in
different ways. For very high shortage (3 Mbit s−1 bandwidth), the client prefers to pause the video long
enough to get a good quality video. However, the quality increases less quickly with the increase of the
bandwidth than for the omniscient client. We also observe the advantage of using tiles: the client can
more efficiently use the available bandwidth to get high-quality images in the user viewing direction.
This effect is amplified by our assumption of perfect head orientation prediction.

Figure 4.8 depicts the CDF of the stall duration, relatively to the video duration, for both strategies.
The CDF is generated using the stall duration for each user, aggregated for available bandwidth ranging
from 5 Mbit s−1 to 20 Mbit s−1. The proactive client has to pause the video display for a duration at
least equal to the video duration in 25 % of the cases when no tile are used, and in 20 % of the cases
when 3 × 2 tiles are used. There is at least one stall of 250 ms in 20 % of the case for the 6 × 4 tiles
scenario. This long stalls are the price to pay for downloading the tiles in all the viewpoints (which
guarantees minimum-lag viewpoint switch). The client requires around three times more download
bandwidth than the two other clients to download a given displayed tile at a given quality. On the
contrary, the reactive client never pauses the video for the 6 × 4 and 3 × 2 tiles scenarios and pause in
only 5 % of the cases for the no tile scenario. Increasing the number of tiles decreases the needs for
both strategies to pause the video.

Figure 4.9 represents the distribution of the delay between the switch command and the actual
display of the new viewpoint. The delay is measured in terms of number of segments. The results are
aggregated for the download bandwidth ranging from 5 Mbit s−1 to 20 Mbit s−1. We do not represent the
proactive strategy since the switch is by definition always performed immediately after the command.
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The optimal omniscient does not need any delay to switch viewpoint for this bandwidth, which means
that a perfect prediction of viewpoint switches enables high-quality interactive QoE. On the contrary,
the reactive strategy needs to compensate the unanticipated switch events by delaying viewpoint switch.
Depending on the setting of the tile encoder, the strategy differs. When no tile is implemented, the
strategy manages to switch immediately in 84 % of cases, but it compensates by a few more stalls and,
more importantly, switch delayed by two or more segments in 9 % of cases. The flexibility offered by
the tiling encoding enables the reactive strategy to implement more consistent switches in the 6× 4 and
3 × 2 tiles scenarios. Then, no switch is delayed by more than one segment.

Figure 4.10 indicates the optimal objective value, for the reactive scheduler and the proactive
scheduler, compared with the omniscient scheduler. The plot display the difference between the
measured objective values and the objective value of the omniscience scheduler measured for the same
bandwidth budget and encoding scenario. We observe, as for the omniscient scenario, that the more
bandwidth the better that total quality. As expected no scheduler performs better than the omniscient
scheduler (the objective value gaps are greater than 0). When the bandwidth is greater than 16 Mbit s−1

the objective value of each scheduler become almost equivalent to the objective value of the omniscient
scheduler.

4.7 conclusion

In this Chapter, we discuss the new challenges that are brought by 6DoF VR applications. We focus
on a restricted version of 6DoF applications where the scene is simultaneously captured by several
synchronized omnidirectional cameras. This Chapter shows that such an application permits different
implementations of viewpoint switching. It also describes different options to encode the MVP videos
into segments friendly to existing encoders and adaptive streaming technologies. The Chapter introduces
the key trade-off the client has to consider when scheduling the video segment downloading to maximize
the user experience. We identify the main objective metrics that correlate with the user’s feeling of
immersion and QoE. We design an optimization model, which bounds the achievable performance,
and two client strategies: a reactive client and a proactive client with guaranteed fast viewpoint switch.
A real MVP omnidirectional video is used, and real user navigation traces are exploited to evaluate
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the performance of these algorithms. Our main observations include that (i) tiling improves service
performance and is thus a key technology for 6DoF VR applications, and (ii) proactive strategies based
on anticipated systematic neighboring viewpoint downloads represent an excessive price to pay. A
compromise between the reactive strategy (which tends to delay switches) and the proactive strategy
(which has to pause the videos to get a decent image quality) has to be found, but to date, the reactive
strategy seems a better option.

Being a first step in the field of MVP omnidirectional video systems, this Chapter reveals many
open research questions, including (i) viewpoint switching prediction (the early results show that it
should be possible to exploit the change in user behavior before switching); (ii) subjective tests to better
understand the interplay between the various options when unanticipated events happen; (iii) graphical
transition effects during switch, which may allow for delayed viewpoint switches by increasing image
quality and reduce stalls; (iv) exploiting at the client side multiple decoders in parallel at the client
to allow near frame delay viewpoint switching; (v) novel encoding strategies based on multi-view
correlations, to increase the number of virtual cameras, and thus to get closer to continuous 6DoF VR
applications.
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S P H E R I C A L S A M P L I N G : A N O F F S E T P RO J E C T I O N S T U DY

5.1 introduction

To deliver omnidirectional videos, the content providers implement viewport-adaptive streaming
solutions [33, 98, 123], where the delivered video is characterized by heterogeneous spatial quality:
some regions of the frame have a better quality than others [32] (see Section 2.6.1). The motivation
is twofold: (i) display a high-quality video in the viewport of the client, and (ii) reduce the delivered
bit-rate by encoding less information in the regions that are unlikely to be watched.

In a video with a spatially heterogeneous quality, each pixel is associated with a target quality, which
ranges in a given ordered set. The rationale behind the mapping between quality and pixels, whether it
comes from a statistical analysis of previous sessions [34, 82, 145] or from a content analysis [78], is
out of the scope of this Chapter. We assume that the content provider has defined a small set of qualities
and a set of regions consisting of contiguous pixels with the same quality. An ideal implementation of
spatially heterogeneous quality in an omnidirectional video is characterized by:

Precision The visual quality of a region in the frame reflects the specifications, both in terms of
region boundaries and relative quality with respect to the quality in other regions.

Smoothness The pixels at the boundary of two contiguous regions enable a smooth transition between
both regions.

Encoding Efficiency The bit-rate budget that is necessary to implement the spatially heterogeneous
quality is low with respect to the obtained visual quality of the regions.

Universality The process of preparing the video can be implemented and widely deployed.

Requirement The resources (in particular, computing power and memory) that have to be
provisioned to prepare the video are available in standard media servers.

To prepare heterogeneous spatial quality in videos, the concept of tiling has received the most
attention. Tiling is offered by the MCTS feature in the HEVC encoder [52, 75, 113, 157] (see
Section 2.6.1). The drawbacks of tiling become evident when analyzed with regards to the
aforementioned fundamental characteristics. First, the precision of tiling depends on the number of
tiles. A large number of tiles comes at the price of a lower encoding efficiency [26] and an increased
resource requirement (high signalling overhead and heavier CDN management). Moreover, the visual
quality changes abruptly at the boundary of two contiguous tiles. Finally, tiling is not yet widely
supported in open source fast encoders. So far, the only fast open-source HEVC encoder to implement
tile encoding is Kvazaar [69]. Hence, despite being the most widely used method, tiling is not an
ultimate solution, and the preparation of heterogeneous spatial quality in omnidirectional videos is still
an open research question.

In this Chapter we study how sphere-to-plane projection could be used to overcome the limitations
of tiling. We propose a new metric to evaluate the heterogeneous quality of a given projection: the
spherical pixel sampling. We propose a formal study of the offset projections [162, 163]. The idea is
for the content provider to patch a “classic” sphere-to-plane projection to map more pixel of the planar
image onto a given area on the sphere (i. e. increase the spherical sampling of this area). Despite the
interest in this approach, the impact of the offset parameters on the visual quality after video encoding
has never been formally studied.

63
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In our MMSP’18 paper [54], we study a second approach named Gaussian Pyramid Composition.
The idea is to process the input video pixel-wise using multiple decreasing qualities, arranged in
a Gaussian pyramid. For each pixel in the output video, the content provider picks a pixel from a
Gaussian level with respect to the expected quality at this pixel. The results is that low quality part
of the content is blurred and become easier to compress. Such a pixel-wise approach has never been
explored for preparing heterogeneous spatial quality in omnidirectional videos but we will not discuss
about this proposition in this Chapter.

This Chapter is organized as follow. Section 5.3 introduces the mathematical principles of the
spherical sampling. Section 5.4 describes the formally the offset projection and analyse the correlation
between the spherical pixel sampling and the visual quality of uncompressed content. Finally Section 5.5
compare the offset projection (unequal pixel sampling approach) with the tiling (leveraging encoder
distortion approach) and Section 5.6 conclude the Chapter.

5.2 definitions

The concept of heterogeneous spatial quality is defined by two input parameters. First, we define Q
as an ordered set of qualities. This set is not formally associated with any precise measurable scale.
Following the definition from MPEG [59], the quality is a rather vague indicator. We thus consider
that there exist Q qualities in Q, denoted qi for i ∈ {0, 1, . . . , Q − 1}, where q0 is the lowest quality, and
qQ−1 is the best quality.

Second, we define a set of regions, which are sets of contiguous pixels in a frame. The idea behind
the concept of quality-region is the following. The content provider considers that the pixels in a
given region have approximately the same probability to be displayed in the viewport, so they must be
encoded at the same quality, i. e. the higher the probability to be displayed in the viewport, the higher
the quality. Here, we do not restrict the regions to spherical rectangles. On the contrary, we assume
that the regions may have any shape. We denote the set of regions by R. The regions do not overlap
and cover the whole frame. The quality of a region R ∈ R is a spatial function denoted q(R) ∈ Q. The
qualities of any two regions in R can be either different or the same. In Chapter 6 we model the quality
allocation for each regions based on regions viewing probabilities and on the number of representation
the content provider is ready to generate.

5.3 spherical pixel density

5.3.1 Theory

To study how plane-to-sphere projection, and especially the offset projections introduced in Section 5.4,
continuously degrades the quality of the spherical image, we measure the sampling density of the
projection on the sphere. The sampling density, sometimes denoted only as sampling, is a number
that represents the number of pixels per surface unit on the sphere, it is measured in m−2. It can be
computed for any point on the sphere. If we consider only a finite number of pixels W × H on the
plane, a point p on the sphere is projected inside a unique pixel sp on the plane. The sampling density
σ at point p on the sphere can be approximated by the inverse of the surface of the pixel sp, once sp is
projected back on the sphere. If each pixel have exactly the same surface on the sphere, the sampling
is uniform. For traditional planar pictures, each pixel has the same surface on the plan so the planar
sampling density is uniform.

We are interested in studying how a plane-to-sphere projection affect the spherical sampling. The
planar picture contains a uniform grid of rectangular pixel, but once projected on the sphere this grid
is not uniform anymore. We denote by f : R3 → R2 a piecewise continuously differentiable sphere-
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to-plane projection and by f −1 : R2 → R3 the corresponding piecewise continuously differentiable
plane-to-sphere projection. The piecewise continuity is needed to allow a study of pixel neighborhood
on the sphere from the planar picture. In traditional projection used with omnidirectional video, this
continuity is wanted to allow good compression efficiency with traditional planar video encoder.

Metric tensors are mathematical tools of tensor geometry introduced, among other things, to study
the deformations generated by this kind of projections [43]. In this Section we will present a simplified
overview of the mathematical tools needed to compute the spherical sampling from the plane-to-sphere
projection. Reader interested in more details may for instance read the book “Tensor Geometry” written
by Dodson and Poston [43].

#»vu = ∂ f−1

∂u (u, v) is a vector in R3 corresponding to the variation of the function f −1 at the position
(u, v) on the planar picture when applied an infinitesimal variation du on u:
∂ f−1

∂u (u, v) ≈ f−1(u+du,v)− f−1(u,v)
du . Similarly #»vv = ∂ f−1

∂v (u, v) represents the variation of f −1 at position
(u, v) for an infinitesimal variation of v.

On the planar picture, pixels are aligned on the grid formed by #»u and #»v . If there were an infinite
number of pixel, the pixel would be spaced horizontally (respectively vertically) with an infinitesimal
distance du (respectively dv). So on the sphere, neighbor pixels of f −1(u, v) are f −1(u, v) + #»vudu and
f −1(u, v)+ #»vvdv. The surface of the parallelogram generated by #»vu and #»vv is then a good approximation
of the infinitesimal surface s of the pixel at position (u, v) when there are an infinite number of pixel
on the planar picture: i. e. s = ‖ #»vu × #»vv‖ and σ = 1

s .

5.3.2 Equirectangular Projection Example

In this Section, we will illustrate the theory on spherical sampling introduced in the previous Section
by studying the Equirectangular projection already introduced in Section 2.3.3.

We know that
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Hence s(u, v) = 2π2

HW |cos( vπ
H )| and σ(u, v) = HW

2π2 cos( vπ
H )

It confirms that the sampling is constant at a given elevation (i. e. for constant v) and increases the
closer we get to the poles. The sampling diverges to infinity at the pole (i. e. when v = ±H

2 ). See
Figure 2.11a for a representation of the normalized pixel density of the equirectangular projection:
σ(u, v)/σ(0, 0).

5.4 offset projection

The offset transformation [73] is a bijective sphere-to-sphere transformation, which increases the quality
of an omnidirectional video near an emphasized direction

#»

b . When two pixels on the sphere are close
to (respectively far from) the emphasized direction

#»

b , the offset transformation decreases (respectively
increases) the angular distance between the two pixels. The offset projection is a composition of a
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sphere-to-plane projection with an offset transformation. First, the spherical image is distorted using the
offset transformation, then the distorted spherical image is projected to a plane using a sphere-to-plane
projection. The offset projection maps on the plane more pixels close to

#»

b and fewer pixels far from
#»

b compared to the original sphere-to-plane projection. The spatial sampling (thus, the quality) of the
video decreases when the angular distance to

#»

b increases.

5.4.1 Theory

The offset projection has been experimentally studied by Zhou, Li, and Liu [162] and Zhou et al. [163]
in the case of the cube-map projection. It is characterized by the following parameters: a projection
function f : R3 → R2, an emphasized direction

#»

b , and an offset amplitude α. The projection function
f can be any sphere-to-plane projection. The emphasized direction

#»

b is a unit vector, pointing to the
direction of space emphasized by the offset projection, and α is a real value in [0, 1).

A sphere-to-plane projection maps a spherical pixel, characterized by a unit vector #»a pointing from
the origin of the sphere to the pixel, to a point (u, v) on the plane.

The offset transformation F : R3 → R3 distorts the sphere by mapping the vector #»a to the vector
(

#»a + α
#»

b
)

/‖ #»a + α
#»

b ‖. The offset projection g : R3 → R2 is then given as follows:

g( #»a ) , f ◦ F( #»a ) = f
(

(

#»a + α
#»

b
)

/‖ #»a + α
#»

b ‖
)

(5.1)

In Equation (5.1), both projection functions f and g transform a given viewing direction #»a into planar
coordinates (u, v). The inverse offset projection g−1, transforming coordinates (u, v) on the planar
picture into a viewing direction #»a , is defined as follows:

g−1(u, v) = F−1 ◦ f −1(u, v) (5.2)

where f −1 is the plane-to-sphere projection corresponding to f , and F−1 is:

F−1( #»a ) =

(

#»a · α #»

b +
√

( #»a · α #»

b )2 − α+ 1

)

#»a − α #»

b (5.3)

with · being the inner vector product defined in Section 2.2.

In what follows, σα,r denotes the sampling density function for the equirectangular offset projection
with an amplitude α, an emphasized direction

#»

b = (1, 0, 0) and a resolution r(W × H). Hereafter,
r ∈ [0, 1] refers to the resolution ratio.

Increasing the amplitude α for a constant r increases the sampling near the emphasized direction
and decreases it near the direction opposite

#»

b . Put differently, when α increases, more pixels from the
plane are assigned to spherical angles near the emphasized direction and less in the opposite direction.
Figure 5.1 depicts the offset sampling density compared to the sampling density at the same position
in the original video, i.e. it depicts σα,r/σ0,1. When α = 0, the sampling density ratio is constantly
equal to r. As illustrated by the curve for r = 0.36 in Figure 5.1, when α tends towards 1, the sampling
density ratio tends toward 0 for points farther than 90° from

#»

b , and tends towards 4r in the emphasized
direction

#»

b (i.e. tends towards 1.44 for r = 0.36). The latter means that the offset projection with an
amplitude α > 0 cannot increase the sampling σ0,r in the emphasized direction more than four times
the sampling for α = 0. Indeed, if we apply the computation step introduced in Section 5.3 on g−1

with f −1 being the equirectangular projection, we get in the emphasized direction:

σα,r(0, 0) =

√

8α6 − 16α5 + 25α4 − 19α3 + 12α2 + 4 (2α5 − 3α4 + 4α3 − 2α2 + α)
√
α2 − α+ 1 − 3α+ 1

α2 − α+ 1
r

which is equal to 4r when alpha tends towards 1.

Furthermore, when α > 0, the sampling decreases with the distance from the
#»

b and the transition
between the emphasized and non-emphasized regions is smooth. Hereafter, we define the QER for the
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Figure 5.1: Sampling ratio σα,r/σ0,1 for the equirectangular offset projection for
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b = (1, 0, 0)
at constant latitude π

2
.

offset projection as being the zone of the video for which the sampling density ratio is at least equal to
the original sampling ratio (in Figure 5.1, the original sampling ratio is constant and equal to 1). For a
given resolution ratio r, there exists at most one value of α such that the angular size of the QER is
equal to a given value. For instance, Figure 5.1 shows that for r = 0.64, a region of angular size 90°
(i. e. 45° from

#»

b ) is a QER when α = 0.37 (resp. α = 0.98 for r = 0.36 and α = 0.16 for r = 0.81).
Figure 5.2 illustrates, for the rollercoaster video used in Chapter 8, how an equirectangular picture is
distorted when using the offset transformation with those parameters (the offset amplitude α and the
downsampling ratio r).

5.4.2 Experiments and analysis

We now evaluate the impact of r and α on the visual quality of the videos. So far, only Zhou et al. [163]
have studied the quality distortion caused by the offset approach. The authors compare the video
quality degradation of the offset cube-map projection to the quality of the original equirectangular
video. Their experiments show that, for a given α, the offset cube-map projection produces videos
with similar quality as a video at a higher resolution within a certain angular distance from the offset
center. However, Zhou et al. do not elaborate on the choice of α and, more importantly, how this choice
influences the quality of the offset videos. Hereafter, we present a more thorough analysis of the quality
distortion, caused by the offset (equirectangular) projection given various video resolutions and various
values of the offset amplitude.

We applied the offset equirectangular projection on three omnidirectional videos using three
resolution ratios, i.e. r ∈ {0.81, 0.64, 0.36}, and five amplitude values, i. e. α ∈ {0, 0.25, 0.5, 0.75, 0.9},
for each resolution ratio r. The three videos are rollercoaster, venice, and timelapse from our public
dataset [34] described in Chapter 8. To reduce the content-related bias in the quality measurement, we
computed the offset projection eight times per video by applying different sphere rotations (yaw
rotations of 0 rad, π/4 rad, π/2 rad, 3π/4 rad, π rad, 5π/4 rad, 3π/2 rad and 7π/4 rad). To measure
the distortion, introduced by the offset projection, we computed the PSNR on the luma components of
the pictures between viewports from both the original equirectangular video and the offset videos. We
extracted viewports with FoV 110°×90° and resolution 1920 × 1080 at varying angular distances from
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(a) Resolution: 100 % (3840 × 2048) α = 0

(b) Resolution: 81 % (3456 × 1844) α = 0.16

(c) Resolution: 64 % (3072 × 1638) α = 0.37

(d) Resolution: 36 % (2304 × 1228) α = 0.98

Figure 5.2: Examples of offset projection applied on equirectangular pictures. The resolution

ratio between the different version is respected.
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Figure 5.3: PSNR between viewports, extracted from the original equirectangular video, and

viewports, extracted from the equirectangular offset projection for various values of

the amplitude α and three resolution ratios r.

the emphasized direction
#»

b to illustrate the relation between quality degradation and distance to the
offset center.

Figure 5.3 shows the PSNR quality curves for each considered resolution ratio r and each amplitude
α. The curves for α = 0, i. e. when no offset is applied, are referred to as baselines. Each baseline
measures the distortion caused by the resolution decrease (by r). The PSNR remains constant regardless
of the distance to the spherical center. In contrast, for α > 0, the video quality varies depending on the
angular distance to the emphasized direction

#»

b . The PSNR curves show that, for α > 0, the quality
of the viewports close to

#»

b is higher than the baseline quality. The farther we get from the center of
emphasis, the higher the distortion.

Furthermore, for all resolution ratios r, the more we increase the amplitude α, the more we improve
the video quality near the emphasized direction

#»

b and the more we degrade the quality near the
opposite direction to

#»

b . The plots in Figure 5.3 show that the quality curves intersect the baseline at
smaller angles when α increases. For instance, the curve for α = 0.5 intersects the baseline at 60°,
whereas the curve for α = 0.9 intersects the baseline at 40°. The latter means that the higher the
amplitude α, the smaller the emphasized region. As shown in Figure 5.1, for high amplitude values,
e. g. α = 0.98, most of the samples are concentrated in a small region, centered at the emphasized
direction

#»

b , and there are less samples for regions away from the center of emphasis. This explains the
rapid decrease in the quality when the distance from

#»

b increases.

Figure 5.4 depicts the relation between the PSNR measured experimentally inside extracted viewports
and the spherical pixel density computed using the equations introduced in Section 5.3. In this Figure
we only consider the density variation due to the offset transformation, ignoring the extra oversampling
introduced by the equirectangular projection. Here a pixel density equal to 1 m−2 means same pixel
density at the same position on the sphere for the equirectangular projection with the original resolution
(r = 1). Point with the same color uses the same value for α and points with the same shape use
the same value for the resolution ration r. We observe that for a given set of parameter α and r, then
spherical pixel density and the PSNR are highly correlated (Pearson Correlation Coefficient (PCC)
between 0.986 and 0.998). For a given ampha (i. e. points with the same color), we also observe a very
high linear correlation (PCC between 0.965 and 0.990). For a fixed resolution r, the linear correlation is
lower but still significant (PCC between 0.811 and 0.813). Globally the PCC is equal to 0.814 showing
a high linear correlation between the PSNR and the pixel density on the sphere. We observe that when
the pixel density is close to zero (for high offset amplitude α at opposite direction to

#»

b ) the PSNR stop
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Figure 5.4: Correlation between the experimentally measured PSNR and the theoretical

computed spherical pixel density

being linearly correlated with the spherical pixel density. Future work should study how this correlation
stand with better quality metric and with other projections.

5.5 evaluation

In Table 5.1, we summarize the main differences between the two approaches tested in this Chapter
with regards to four out of the five main characteristics introduced in Section 5.1. The analysis of
the computing and storage requirements for composing omnidirectional videos as well as the user
reaction to abrupt quality changes are left for future work. Here, we focus on the encoding efficiency
by measuring the visual quality of the videos created using the three approaches, for a similar overall
bit-rate.

Tile Offset

Precision depends on the nb. of tiles low

Smoothness no yes

Universality require specific encoder require metadata to undo the projection

Requirements depends on the nb. of tiles low

Table 5.1: Summary of main characteristics

Visual Quality Metric. We lack a metric to capture the heterogeneity of quality in a omnidirectional
video. To fill this gap, we created a new metric based on the Spherical Peak Signal to Noise Ratio (S-
PSNR) introduced by Yu, Lakshman, and Girod [152]. The S-PSNR first maps some predefined points
on the sphere to their corresponding location on the original and the encoded video to interpolate their
color. Then, the color values are used to compute the distortion between the original video and the
encoded video. This distortion can be computed even if the original and the encoded planar picture
have not the same resolution or do not use the same sphere-to-plane projection (because the color
errors are computed on the sphere). Finally, the errors for all spherical points are averaged to compute
the S-PSNR. However, the concept of heterogeneous spatial quality in omnidirectional videos takes its
root from the fact that not all spherical pixels are equal (as some pixels have higher probability to be
in the clients’ viewports). To capture this heterogeneity, we propose to weigh the error of each pixel
with respect to its expected quality. We thus use our quality function q(R) to weigh the S-PSNR and
obtain a new weighted metric, denoted Weighted Region of Interest - Spherical - Peak Signal Noise to
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Ratio (WRoI-S-PSNR). The highest weight is assigned to spherical points which, after projection, lie
in the region with the highest quality. The weights of the spherical points lying within the other quality
regions decrease exponentially.

To sum up, the S-PSNR measures the average quality of the entire encoded video, whereas the
WRoI-S-PSNR measures the quality with respect to the given quality regions. We combine both metrics
to obtain an interpolated quality estimation, denoted IS-PSNR.

Quality Regions. We consider two configurations of quality regions (Figure 5.5), which represent
common viewport movements [32]. The �-shape is common for a video where viewers stably focus on
a single location, whereas the V-shape may appear when the object of interest is moving.

Video Preparation. We use three equirectangular omnidirectional videos from our public dataset [34]
(rollercoaster, venice, and timelapse). Their resolution is 3840 × 2048 (4K). We use the Kvazaar
encoder [69] with three bit-rate targets: 6 Mbit s−1, 9 Mbit s−1 and 14 Mbit s−1. Specific settings include:

T iles We set 8×8 tiles. We encode four tiled videos with four bit-rate targets (3 Mbit s−1, 7 Mbit s−1,
13 Mbit s−1 and 21 Mbit s−1). We extract each tile from each tiled video into independent files using
GPAC MP4Box toolkit. To obtain a quality-variable video matching the quality regions and the
bit-rate target, we select for each tile one of the four qualities and merge the bit-stream together so
that the overall bit-rate is close to the target.

Offset We chose two resolutions: 3456×1844 (r = 81 % of the original video) and 2304×1228
(r = 36 %). The offset intensity α is set so that a 90° of the QER (resp. 50°) is oversampled for the
�-shape (resp. V-shape).

Result Analysis. In Figure 5.5a (resp. in Figure 5.5b), we show the IS-PSNR for the three bit-rate
targets and for the �-shape (resp. V-shape) quality regions. The lowest and the highest values of the
bars correspond to the S-PSNR and the WRoI-S-PSNR respectively. In Figure 5.6, we show snapshots
of the back viewports and thus highlight the different approaches (distorting, and reducing bit-rate by
encoding).

First, we observe that all approaches manage to prepare omnidirectional videos with heterogeneous
qualities. In each configuration, the visual quality in the emphasized regions, measured by the WRoI-S-
PSNR, is higher than the visual quality, measured by the S-PSNR. The difference between both metrics
is greater or equal to 10 dB, which is a significant gap.

The offset approach is relevant for low encoding bit-rates, but it does not benefit from extra bit-rates.
Also, the offset is sensitive to the viewport location, with large quality range between the S-PSNR
and the WRoI-S-PSNR, especially at low resolutions. To obtain a high quality in a large QER despite
the low resolution, the price we pay is a severely degraded quality in the opposite direction to

#»

b , as
epitomized in Figure 5.6. Finally, the tiling approach appears more stable. It offers a consistent good
quality in the best cases and the quality never reaches very low levels (unlike the offset). The back
viewport in Figure 5.6 has also a good visual quality. However, tiling requires specific encoders, and
the abrupt changes between tiles can degrade user’s experience.

5.6 conclusion

In this Chapter, we study the preparation of heterogeneous spatial quality in omnidirectional videos.
We propose a novel metric named spherical pixel density and present the theoretical framework one
can used to computed this metric from the plane-to-sphere projection. We then analyze the theoretical
principles of the offset projection. We identify two families of approaches to generate heterogeneous
spatial quality video: a quality degradation by the encoder (tiling), and an unequal projection (offset
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projection). We compare the two approaches in terms of encoding efficiency. A third approach (a
blurring approach) is introduced in our MMSP paper [54].

This Chapter presents one of the first work that formally study heterogeneous spatial quality in
omnidirectional videos. Each of the proposed approaches deserves a deeper analysis to better understand
the impact of the settings on the overall performance. We show a high correlation between the spherical
pixel density metric and the PSNR measured in user’s viewports in the context of equirectangular offset
projection. This correlation could be used to predict the impact of different projections on the users
QoE. The integration of the propositions in the global delivery chain of viewport-adaptive streaming
solutions also deserves a deeper analysis with respect to the constraints of the services, including
definition of quality regions, live requirements, and implementation in CDN.





6
O P T I M A L Q UA L I T Y E M P H A S I Z E D R E G I O N F O R V I E W P O RT A DA P T I V E
S T R E A M I N G

6.1 introduction

Previous Chapters have introduced the viewport-adaptive streaming as a solution to stream, with
little modifications to existing streaming technologies, omnidirectional videos with a limited wast
of bandwidth and a higher average quality withing users’ viewports [33, 52, 93, 123]. Chapter 3
presents an example of viewport-adaptive streaming architecture. We also presented the concepts of
heterogeneous spatial quality encoding. Different implementations of heterogeneous spatial quality are
possible which can be based on tiling [157] or offset projections [162] as presented in Chapter 5, or
based on scalable coding [16, 151].

The design of efficient viewport-adaptive streaming systems requires the understanding of the
complex interplay between the most probable viewport positions, the coding efficiency, and the
resulting QoE with respect to the traditional constraints of delivery systems such as bandwidth and
latency. MPEG experts have proposed the concept of quality region, which is a rectangular region
defined on a sphere, characterized by a quality level ranging from 1 to 100. The main idea is that the
content provider determines some quality regions based on offline external information (e. g., content
analysis and statistics about viewport positions), and then prepares multiple quality-variable versions
of the same omnidirectional video based on these quality regions.

We provide in this Chapter a theoretical analysis of this concept of quality regions for omnidirectional
videos. We present an optimization model to determine the optimal quality distributions, subject to a
population of clients, the number of quality-variable video versions to generate, and the bandwidth. We
aim at maximizing the video quality displayed in the client viewports by identifying (i) the location of
the quality region, (ii) their dimensions (or area size), and (iii) the quality inside and outside the regions.
Our model enables content providers to prepare omnidirectional videos based on the analytics of the
head movements collected from the first content consumers. Using a dataset of real head movements
captured on an HMD, and further described in Chapter 8, we study an optimal set of video versions
that are generated by our algorithms and evaluate the performance of such optimal viewport-adaptive
streaming. We demonstrate that, for a given overall bit-rate, the bit-rate spent on covering the viewports
can be increased by 102 %, thus significantly improving the quality perceived by the user.

6.2 related work

In this Section we present the related work on viewport-adaptive streaming and on RoI. Related work
on heterogeneous spatial quality video can be find in Section 2.6.1 and chapter 5.

In this Chapter, we focus on an optimization model to generate heterogeneous spatial quality video
versions for viewport-adaptive streaming that maximize the quality inside users’ viewports when
number of video versions available to the user is limited. To the best of our knowledge, nobody studied
before us optimal parameters to generate limited number of heterogeneous spatial quality versions for
omnidirectional videos.

75



76 optimal quality emphasized region for viewport adaptive streaming

6.2.1 Regions of Interest

Our work has also some common roots with the literature on RoI in video delivery. The human vision
system can only extract information at high resolution near the fovea, where the gaze focuses its
attention; the vision resolution decreases with eccentricity. Within the same video picture, it is common
that most users focus their gaze on some specific regions of the picture, named RoI. Researchers have
studied saliency map, which measures the gaze location of multiple users watching the same video. The
goal is to extract RoI and, if possible, to corroborate RoI with picture structures to enable automatic
RoI prediction [15, 42]. However, the concept of saliency map should be revisited with omnidirectional
videos, because the head movement is the prevailing factor to determine the attention of users. To the
best of our knowledge, the relation between gaze-based saliency map and head movements in HMD
has not been demonstrated.

The attention-based video coding [13, 62, 78, 110] is a coding strategy, which takes advantage of
the gaze saliency prediction. The quantization parameters of the encoder are adjusted to allocate more
bits near the different RoI and less bits farther away. A live encoder can perform attention-based video
coding by using either feedback from a set of specific users or predicted RoI.

We revisit this approach to omnidirectional videos in this Chapter. Our work is both to study per-
segment RoI localization based on head movement information and to generate RoI-based encoded
video representations. The creation of spherical heterogeneous spatial quality video versions based on
head movement analysis enables viewport-adaptive streaming in the same manner that saliency map
and attention-based video coding enable efficient video delivery on regular planar videos [42].

6.3 heterogeneous spatial quality videos

We first introduce a model for heterogeneous spatial quality omnidirectional videos and then provide
some illustrations of this model on some implementation proposals.

6.3.1 Generic Model

Spherical videos. The unit sphere that underlies the omnidirectional video is split into N non-
overlapping areas that cover the full sphere. The set of areas is denoted byA. In essence, each area
corresponds to a part of the video signal projected on the sphere. Let us denote by sa the surface of
an area a on the sphere and observe that the smallest possible surface sa is the pixel (in which case
the setA is the full signal decomposition and N is the video resolution). However, video preparation
processes are generally based on a video decompositionA with larger surface sa, such as the concept
of tiles in HEVC [85]. For the preparation of omnidirectional videos, any decomposition of the video
intoA can be considered if it respects that it covers the whole sphere, formally

∑

a∈A sa = 4π.

Area Quality. The goal of a video encoder is to compress the information of the video signal
corresponding to a given area a into a decodable byte-stream (lossy compression generating distortion
when the video is eventually played). An encoder uses a compression algorithm with various parameter
settings to encode the video. For a given encoder, the more compression due to the encoding settings,
the more distortion in the decoded and played video. Using MPEG terminology, we use the generic
term quality to express the settings of the encoding scheme on a given area, regardless of the used
area encoding process. The number of different ways to encode areas is finite, which results in a
set of available qualities Q for this encoder (typically this set of quality ranges can be advertised by
the region-wise quality ranking from MPEG-OMAF). The set Q is totally ordered with a transitive
comparison function, noted with >.
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We provide some natural notations: qmin (respectively qmax) is the lowest (respectively highest)
possible quality for areas. The encoder processes an area a ∈ A with a quality q to generate a byte-
stream of size ba,q. Given the usual strictly increasing feature of the rate-distortion performance of
video encoders, we get that if a quality q1 ∈ Q is better than a quality q2 ∈ Q (formally q1 > q2), then
we have ba,q1 > ba,q2 , ∀a ∈ A.

Video Version. We use the term version to represent the transportable full video signal byte-stream.
It is the video as it can be delivered to clients. Based on the definitions of areas and qualities, a version
is a function that associates with every area a ∈ A a unique quality q ∈ Q, which corresponds to the
encoding quality of a. Let us denote by R the set of all possible versions. Please note that the number of
possible versions is finite since both the set of areasA and the set of qualities Q are finite. However, the
number of different versions is N |Q|. We use the notation r(a) to denote the quality q that corresponds
to the quality at which the area a ∈ A is encoded in the version r ∈ R.

Let B be a positive real number. We denote by RB the subset of versions in R such that r ∈ RB

satisfies that the sum of the byte-stream sizes for every area a ∈ A is equal to B. Formally, we have :

∀r ∈ RB,
∑

a∈A
ba,r(a) = B

Viewport. One of the peculiarities of omnidirectional videos is that at a given time t a user u watches
only a fraction of the whole video, which is generally called the viewport. The viewport displays only
a subset of all the areas of the sphere. Let vu,t,a be a real number equal to the ratio of the surface of
area a that is inside the viewport of user u at time t and let vu,a be the average value of vu,t,a during
all time t in a video segment: vu,a =

∑

t vu,t,a/T , with T the duration of the segment. With respect to
the same definition of quality, we have that the average viewport quality during a video segment can
be defined as being the sum of the qualities of all the areas that are visible in the viewports, formally
∑

a vu,a · r(a). In practice, the satisfaction of the user watching a viewport is more complex since it
depends not only on the visible distortion of the different areas in the viewport but also on the possible
effects that different levels of distortion on contiguous areas can produce. Nevertheless, for the sake of
simplicity, and with regards to the lack of formal studies dealing with subjective satisfaction evaluation
of multi-encoded videos, we consider here that the satisfaction grows with the sum of qualities of the
visible areas.

6.3.2 Illustration: Offset Projections & Tiling

Offset Projections. We introduced the offset projection in Section 5.4, and saw that this projection is
characterized by four parameters: the original plane-to-sphere projection f −1, the offset direction

#»

b ,
the offset amplitude α, and the resolution ratio ∇ (denoted r in the previous Chapter). We show how to
compute the spherical pixel density variation σ introduced by the offset transformation and indicates
its linear correlation with the viewport distortion. It is then possible to model the offset projection by
the set of version r ∈ R such that ∀a ∈ A,

r(a) = c1
σ(a)

σ(
#»

b )
r(ao f f set)

with σ(a) the spherical pixel density in the direction of the center of a, and c1 a real constant.

Tiling. To model a tiled version, we consider only versions r ∈ R such that for all areas a and a′

belonging to the same tile, r(a) = r(a′). In other word, we consider only versions that assigns a unique
quality within each tile.
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6.4 viewport-adaptive streaming

An adaptive streaming system is modeled as being one client and one server, where the server offers
J different versions of the video, and the client periodically selects one of these versions based on a
version selection algorithm.

Server. The main question is to prepare J versions in R among all the possible combinations of
qualities and areas. In the practical omnidirectional video streaming system described by
Zhou, Li, and Liu [162], the number of versions J is equal to 30, while the solution that is promoted
by Niamut et al. [93] is to offer all the combinations of tiles (typically 8× 4) and qualities (typically 3).
In practice, a low number of versions J is suitable since it means less files to manage at the server side
(96 files in the latter case) and less complexity in the choice of the version at the client side (more than
32 thousand combinations in the aforementioned case). The main variable of our problem is the
boolean xr, which indicates whether the server decides to offer the version r ∈ R. Formally, we have:

xr =















1, if the server offers r ∈ R
0, otherwise

Since the server offers only J different versions, we have
∑

r∈R xr = J. In the following, we restrict
our focus on the case of a given overall bit-rate budget B, which is a real number. The main idea is to
offer several versions of the video meeting the same bandwidth requirement but with different quality
distributions. All the versions have thus the same overall bit-rate “budget” but they differ by the quality
of the video, which is better at some directions in the sphere than others.

To allow bandwidth adaptation in addition to viewport adaptation, the server shall solve the
optimization problem for multiple bit-rate budget to offer the client choice between multiple bit-rate.
In the following we will only consider one bit-rate value B for the sake of simplicity.

Client. The version selection algorithm first determines the most suitable bit-rate, here B, and then
selects one and only one versions among the J offered versions for every segment of the videos, ideally
the version that is the best match to user viewport. To simplify notations, we omit in the following the
subscripts related to temporal segments, and we thus denote by yu,r the binary variable that indicates
that user u selects r ∈ R for the video. Formally:

yu,r =















1, if the client u selects r ∈ R
0, otherwise

Since the user selects only one offered versions, we have
∑

r∈R yu,r · xr = 1. We consider an ideal
version selection algorithm and we thus assume that the client always selects the version that maximizes
the viewport quality as previously defined, which is r such that

∑

a vu,a · r(a) is maximum.
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6.4.1 Model Formulation

Our objective is to determine, for a given set of users who request the video at bit-rate B, the J versions
that should be prepared at the server side so that the quality of the viewports is maximum. In its most
generic form, the problem can thus be formulated as follows.

max
yu,r

∑

u

∑

r∈R
yu,r ·

∑

a

vu,a · r(a)

Such that:
∑

a

ba,r(a) = B ∀r ∈ R (6.1a)

∑

r

xr 6 J (6.1b)

∑

r

yu,r = 1 ∀u (6.1c)

yu,r 6 xr ∀r, u (6.1d)

Note that with this formulation the problem is tractable.

6.5 practical optimization model

We take into account some practical additional constraints and some further hypothesis to formulate a
tractable optimization problem, which meets key questions from content providers.

6.5.1 Practical Hypothesis

We first suppose that each area a ∈ A in the whole spherical video has the same coding complexity.
This means we suppose that for a given quality, the byte-stream size of a area is proportional to its size.
We derive the concept of surface bit-rate, which expresses in bit s−1 m−2 the amount of data that is
required to encode an area at a given quality. We obtain that bmax (respectively bmin) corresponds to
the surface bit-rate for the maximum (respectively minimum) quality.

Second, we restrict our study to only two qualities per version. We follow in that spirit the MPEG
OMAF testing conditions of viewport-dependent coding schemes [130] for the implementation of
quality-variable 360-degree video versions. Let sr be the overall surface of the areas that are in the
QER for a given version r ∈ R. The bit-rate constraints (6.1a) can thus be expressed as follow:

sr · bqer + (4π − sr) · bout = B (6.2)

Third, we introduce a maximum gap between both qualities. The motivation is to prevent the video
to have too visible quality changes between areas. This quality gap ratio, denoted by rb, can be defined
as the maximum ratio that relate the qualities bqer and bout:

bqer

bout
< rb (6.3)

This hypothesis supposes that the quality differences are linearly proportional to the bit-rate differences.

Finally, we define the QER as a rectangular region defined on the sphere as shown in Figure 6.1.
We thus adopt the restriction that has been introduced in the MPEG OMAF [59] to delimit a so-called
rectangular region on the sphere. We also adopt the same way to define the region by delimiting two
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hDim

vDim

c

Figure 6.1: A rectangular region of the sphere: in blue the two small circle that delimit the region

and in red the two great circles that delimit the region.

small circles (angular distance vDim), two great circles (angular distance hDim) and the spherical
coordinates of the region center is (1, θ,ϕ).

In the following, we consider only video versions r ∈ R such that there exists −π 6 θ 6 π, 0 6 ϕ 6 π,
−π 6 hDim 6 π, and 0 6 vDim 6 π such that for all area a ∈ A, if a is inside the rectangle
characterized by (θ,ϕ, hDim, vDim), the bit-rate of a is bqer otherwise it is bout. We denote such a
version by rθ,ϕ,hDim,vDim.

6.5.2 Bit-Rate Computation

The objective function (6.1) imply that if two versions have a QER containing the same areas, the
optimal set of offered video versions can only contains the version that maximize the bqer subject to
the bit-rate constraint (6.2) and the ratio constraint (6.3).

In order to simplify the complexity of the model, we pre-computed the value of bqer and bout

depending on the size of the QER sr. We identify four different cases depending on the size of the QER
sr. For simplicity, we provide in the following the main ideas of the algorithm and put the details of the
mathematical model in the Appendix C.

We first combine the constraints given by the overall bit-rate budget with Equation (6.2) and the
knowledge that bmin 6 bout < bqer 6 bmax. There are two cases, depending on whether the QER is
small or not:

• When the surface of the QER is small, i.e., sr 6
B−4πbmin
bmax−bmin

(see in Appendix) , the constraint on the
maximum surface bit-rate prevails for bqer. The surface bit-rate inside the QER can be maximum.
The bit-rate budget that remains after deducing the bit-rate in the QER is B − (sr · bmax). This
remaining bit-rate budget is large enough to ensure that the surface bit-rate for the areas outside the
QER is greater than bmin. We obtain that bqer is equal to bmax and bout is derived as:

bout =
B− (bmax · sr)

4π − sr
(6.4)

• When the surface of the QER is large, i.e., sr >
B−4πbmin
bmax−bmin

, the constraint on the minimum surface
bit-rate prevails. The surface bit-rate inside the QER cannot be bmax, otherwise the remaining
bit-rate that can be assigned to the video area outside the QER would not be large enough to ensure
that bout is greater than bmin. Here, we first have to set bout to bmin and then assign the remaining
budget B− (bmin · (4π − sr)) to the QER area.

bqer =
B− (bmin · (4π − sr))

sr
(6.5)
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1. set bqer = bmax

2. set bout with the
remaining bit-rate
B − (bqer · sr)

1. set bout =
B−(bmax·sr )

4π−sr

2. set bqer = rb · bout

3. get extra bit-rate
sr · (bmax − bqer)

4. re-allocate the
extra bit-rate in
the QER and
non-QER areas

1. set bout = bmin

2. set bqer = rb · bout

3. get extra bit-rate
B −

bmin(4π − sr) − rb ·

bmin · sr

4. re-allocate the
extra bit-rate in
QER and non-QER
areas

1. set bout = bmin

2. set bqer with the
remaining bit-rate
B −

(bout · (4π − sr))

sr = 0
sr =

4π·bmax−B·rb

(1−rb)·bmax
sr =

B−4πbmin
bmax−bmin

sr =
4π·bmin−B

(1−rb)·bmin sr = 4π

Figure 6.2: Algorithm for surface bit-rates in and out of the QER. The algorithm depends on

the surface of the QER sr. We show here the four different cases, for various surfaces

(smallest to largest from left to right).

Next, we consider the quality gap ratio, which applies to both previously discussed cases:

• When the QER is small, setting bqer = bmax and br,out to (6.4) can lead to not respect Equation (6.3).
It occurs for any QER such that (see in Appendix) :

sr ≥
4π · bmax − B · rb

(1 − rb) · bmax

The surface bit-rate bqer should be instead reset as bqer = rb · bout. This constraint makes that some
extra bit-rate are not assigned: sr · (bmax − rb · bout). These extra bit-rates can thus be re-assigned
to both bqer and br,out (see in Appendix) .

• When the QER is large, setting bout = bmin and br,qer with Equation (6.5) can also lead to not
respect Equation (6.3). It occurs for any QER such that:

sr 6
4π · bmin − B

(1 − rb) · bmin

Similarly as in the previous case, resetting bqer with respect to the quality gap ratio leads to release
of some extra bit-rates, which can be re-assigned to both bout and bqer.

We represent in Figure 6.2 the algorithm with the four cases when it applies to standard settings1 of
the overall bit-rate B, the maximum surface bit-rate bmax, the minimum surface bit-rate bmin, and the
quality gap ratio rb. Finally, we show in Figure 6.3 how the surface bit-rates are assigned depending on
the surface sr for a given parameter configuration (see in caption and in Section 6.6). Here the thin
gray vertical lines correspond to the threshold at which the algorithm runs a different case.

6.6 evaluation – case study

6.6.1 Settings

We used a custom-made C++ software publicly available on github.2 This software uses the IBM Cplex
library to solve our optimization problem.

1 In some configurations, it is possible that some of the presented cases do not hold since the threshold for the cases can be negative,
greater than 4π, or interfering with a prevailing constraint. This however does not occur for the most common configuration
parameters such that a quality gap ratio not too large and consistent values for both bmin and bmax.

2 https://github.com/xmar/optimal-set-representation-viewport-adaptive-streaming
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Figure 6.3: Surface bit-rates as a function of the QER surface. The overall video bit-rate B
is 12.56 Mbit s−1, so the surface bit-rate for a uniform quality is 1 Mbit s−1 m−2.

The maximum surface bit-rate bmax is 2.1 Mbit s−1 m−2 while the minimum bmin is

0.45 Mbit s−1 m−2. Finally, the quality gap ratio rb is 3.

Dataset of Head Movements. We used the public head movement dataset that we recently extracted
and shared with the community [34].3 This dataset contains the head orientation of 59 persons watching,
with a HMD, five 70-second-long omnidirectional videos. In this paper we used the results from only
two out of the five videos available: roller-coaster and diving. We selected those videos because users
exhibit different behaviors while watching them: most users focus on a single RoI in the roller-coaster
video while people move their heads to explore the scene in the diving video. The dataset is further
presented in Chapter 8.

number of offered versions J 4

overall bit-rate B 12.56 Mbit s−1

maximum surface bit-rate bmax 2.1 Mbit s−1 m−2

minimum surface bit-rate bmin 0.45 Mbit s−1 m−2

quality gap ratio rb 3.5

number of areas N 400

video segment size 2 s

Table 6.1: Default evaluation settings

Content Provider Case Study. The default parameters are summarized in Table 6.1. The content
provider generates up to K = 4 video versions and solves the optimization problem for every video
segment (i.e., each video segment has its own set of versions). The parameters related to the bit-rates
are similar as in Figure 6.3: a total bit-rate budget B of 12.56 Mbit s−1, a maximal surface bit-rate
bmax of 2.1 Mbit s−1 m−2 and a minimal surface bit-rate bmin of 0.45 Mbit s−1 m−2. We restricted the
positions of the center of the QER on the sphere to 17 possible latitudes and 17 possible longitudes.
Moreover the angular distance hDim and the angular distance vDim can take 12 different values. We
split the sphere into a total of N = 400 areas. We cut the videos of the dataset into 2 s long segments.
We solved the optimization model independently for each video segment, using the IBM Cplex solver2.

3 http://dash.ipv6.enstb.fr/headMovements/
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Figure 6.4: Visible surface bit-rate depending on the global bit-rate B. The horizontal red arrow

shows the difference in total bit-rate to deliver viewports with the same average

quality as a user would observe with a video encoded with a uniform quality.

The vertical red arrow indicates the gain in quality (measure in surface bit-rate)

compared to viewports extracted at the same position on a video with uniform

quality with the same total bit-rate.

6.6.2 Theoretical Gains of Viewport-Adaptive Streaming

Our first goal is to evaluate the possible (theoretical) gains that the implementation of viewport-adaptive
streaming can offer to the content providers. The gains can be evaluated from two perspectives: either
the opportunity to save bandwidth while offering the video at the same level of quality as if the video
was sent with uniform quality, or the opportunity to improve the quality of the video that is displayed at
the client side for the same bit-rate as for a standard delivery. We computed the average surface bit-rate
inside the viewport of the users (named visible surface bit-rate in the following) for different bit-rate
budgets. The average visible surface bit-rate bvqer in the viewport during a segment can be formally
written as follow, with Nu the number of user:

bvqer =
∑

r,u

yu,r ·
(

∑

a vu,a · br(a) · sa

Nu ·
∑

a vu,a · sa

)

(6.6)

Figure 6.4 represents the mean average visible surface bit-rate for all segments of the two selected
videos. The horizontal dashed line shows the average visible surface bit-rate for the bit-rate budget of
12.56 Mbit s−1 that is uniformly spread on the sphere, while the vertical dashed line indicates the quality
for a constant bit-rate of 12.56 Mbit s−1. We also represent the gains from the two aforementioned
perspectives (either bit-rate savings or quality).

For a constant average quality inside the user viewports, the delivery of optimally generated QER
versions enables 45% bandwidth savings. For a constant bit-rate budget, the optimal viewport-adaptive
delivery enables an average increase of visible surface bit-rate of 102%.

6.6.3 Video Content vs. Delivery Settings

We now study the settings of the viewport-adaptive streaming systems, especially the parameters related
to the number of different versions (J) and the segment size (T ). We compare the set of versions that
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Figure 6.5: Visible surface bit-rate depending on the number of offered QER versions. The dark

red line represents the visible surface bit-rate of a video encoded with the same

overall bit-rate but with uniform quality.

are generated by the optimal solver for both selected videos. We are interested in studying whether
there exists a common best-practice setting to generate versions, regardless of the video content, or
whether each video should be prepared with respect to the content by a dedicated process with its own
setting. We show the results computed separately for the roller-coaster and the diving video. Recall
that the roller-coaster video has a single static RoI and most of the 59 users focus on it. On the contrary,
the diving video has multiple moving RoI, which most users alternatively watch.

Figure 6.5 represents the average visible surface bit-rate bvqer of the optimal QER versions for each
user and each video segment for both videos: the roller-coaster video is in plain-green lines while the
diving video is in dashed-blue lines. The results are shown with a box plot, with the 10th, 25th, 50th,
75th and 90th percentiles for the 30 segments watched by the 59 users of each video in an optimal
viewport-adaptive delivery system.

The viewport-adaptive streaming systems make that the higher the number of QER versions offered
by the content provider, the better the average quality watched by the users because the set of versions
covers more user behaviors. However, we notice that there exists a threshold value after which increasing
the number of versions does not significantly improve the quality of the viewport of the users. This
threshold depends on the video content. For the roller-coaster video, the limit is four QER versions
while this limit is eight for the diving video. Please note that both threshold are significantly lower than
the thirty versions that are generated by state-of-the-art viewport-adaptive delivery systems [73].

In Figure 6.6 we fix the number of QER versions to four and we evaluate the impact of the segment
size on the generated QER versions. Like for Figure 6.5 the results are displayed with a box plot, which
follows the same color code.

The median quality decreases while the size of the segments increases. Indeed, the higher the
segments size, the wider are the head movements of the users. But, similarly as in the number of video
versions, we notice that the median average displayed quality for the diving video is more sensitive to
the segment size than for the roller-coaster video. For the latter, the quality decreases for segments
longer than 2 s while for the diving, the quality decreases for segment longer than 1 s.
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Figure 6.6: Visible surface bit-rate depending on the size of the segment. The dark red line

represents the visible surface bit-rate of a video encoded with the same overall bit-

rate but with uniform quality.

6.6.4 QER Dimensions vs. Overall Bit-rate

We study the main characteristics of the generated QER versions with a focus on the impact of the
global bit-rate budget on the dimensions. We evaluate both the size of the QER inside each video
version and the shape of the QERs.

Figure 6.7 represents the CDF of the surface of the QER inside each generated optimal version, for
different global bit-rate budget, for both video. The dashed vertical black line represents the surface of
the viewports of the users as it is seen in a HMD with a FoV of 110°×90°.

The size of the QERs increases with the overall bit-rate budget. If the bit-rate budget is small, the
size of each QERs is smaller than the surface of the viewports. It means that no user has a viewport
with full quality everywhere. The optimal solver prefers here to keep a high quality on an area that is
common to the viewport of many users. If we increase the available bit-rate budget, the surface of the
optimal QERs increases and is now wider than the viewport, so when a user who moves the head can
nevertheless still have a viewport within the QER.

Figure 6.8 represents the probability density function (PDF) of the difference between the horizontal
and vertical dimensions of the generated QERs. For instance, Figure 6.8a indicates that 21 % of the
QERs have a horizontal size hDim that is within the range [−1 + vDim,−0.5 + vDim). The more
occurrences of QER on the right, the more horizontal QERs are generated by the optimal solver.

QERs have often a squared shape (the horizontal dimension is close to the vertical dimension),
and are mostly more horizontal than vertical. The horizontal shape can be explained by the fact that
users move more often horizontally than vertically (they often stay close to the horizon). Moreover,
when the bit-rate budget is limited, shapes are less often squared. Our interpretation is that, given that
the generated QERs are narrower, the optimal solver generates QERs that cover various positions,
corresponding to more users whose attention is on various positions around the horizon.

6.7 conclusion

This Chapter investigates some theoretical models for the preparation of omnidirection video for
viewport-adaptive streaming systems. Viewport-adaptive streaming has recently received a growing
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attention from both academic [33, 94, 103] and industrial [7, 41, 129] communities. Despite some
promising proposal, no previous work has explored the interplay between the parameters that
characterize the video area in which the quality should be better. We denote this special video area a
QER. In this Chapter, we address, on a simplified version of our theoretical model, the fundamental
trade-off between spatial size of the QERs and the aggregate video bit-rate. We show that some new
concepts, such as the surface bit-rate, can be introduced to let the content provider efficiently prepare
the content to be delivered. Finally, we demonstrate the potential benefits of viewport-adaptive
streaming: the gains compared to streaming of a video version with a uniform quality are greater than
102 % in terms of displayed quality to a user given a constant bit-rate budget, and a bit-rate budget
reduction for more than 45 % for the same displayed video quality.

In this Chapter, we assumed that content provider already has some user head movement statistics.
In future work we will study the generic QERs parameters that the provider can use to generate initial
video versions of a omnidirection video, without video specific statistics. When the provider receives
enough analytic, he will be able to generate versions adapted to real user behavior on each video
segment. Such functionality would be required in both the processed and the live video viewport-
adaptive streaming. Additionally, in this Chapter we studied only a simplified version of the theoretical
model with only two different levels of quality per versions.
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7
O P E N S O F T WA R E : 3 6 0 T R A N S F O R M AT I O N S

7.1 introduction

Omnidirectional videos are by essence spherical content, but in order to keep using existing technologies
related to video compression and video streaming, omnidirectional videos are usually stored as planer
video using sphere-to-plane projections (see Section 2.3). In 2015, when we started to work on this
thesis, very few open software existed to manipulate projected omnidirectional videos.

In this Chapter we present 360Transformations, an open-source software we developed to manipulate
omnidirectional video: project, pack and unpack them. The software is openly available on Github [28].
360Transformations was design to read omnidirectional videos with any projection and packing formats,
to project the videos from any format into any other format, to extract viewports at static location,
to replay viewports extraction from head orientation datasets, and to compute some omnidirectional
objective quality metrics. The software architecture allows easy addition of new projection and packing.

This software was used in most of our work to evaluate the proposed solutions. In Chapter 3, the
software is used to generate the representations with a projection based QER, to extract viewports and
to compute the objective quality metrics inside the viewports. In Chapter 4 the software is used to
extract viewports from the original video and from the recomposed bit-stream generated after selecting
tiles with different quality. Extracted viewports follow the recorded user’s trajectory available in the
MVP dataset. In Chapter 5, the software is used to generate the offset projection videos with different
offset parameters (amplitudes and directions), to extract the viewports, to computes the S-PSNR and
the Weighted Spherical - Peak Signal Noise to Ratio (WS-PSNR). Finally the software is compatible
with the dataset presented in Chapter 8 and a part of the dataset evaluation is done using this software.

The rest of the Chapter is organized as follow. Section 7.2 discusses similar existing software,
Section 7.3 presents an overview of 360Transformations, describes its usage and its architecture,
Section 7.4 shows an example of configuration file, Section 7.5 emphasized the scientific interests
related this software, Section 7.6 explains how to compile the software and emphasize the different
licenses and finally Section 7.7 concludes.

7.2 existing software

The goal of 360Transformations is to allow the community to easily manipulate omnidirectional
content by changing the projection and the mapping of the omnidirectional signal on planar videos.
The principle of sphere-to-plane mapping was introduced in Section 2.3.3. In this Section we will
discuss the different existing software with a similar purpose as 360Transformations.

The Joint Video Exploration Team (JVET)1 and MPEG2 have developed a reference software named
360Lib [65] to project and pack omnidirectional videos, and to perform omnidirectional objective quality
evaluation. The first version of 360Lib was released in December 2016. Ye, Alshina, and Boyce [149]
provide in a technical report a deep description of the software and of the different projections and
quality metrics available. This software integrates the latest version of the HEVC reference software
named HM. This software is mono-threaded and can only manipulate raw YUV videos or HEVC

1 ITU-T VCEG (Q6/16)
2 JTC 1/SC 29/WG 11
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binary stream. It support nine projections including the equirectangular, the cube-map and the viewport
projections. Our software perform multi-threaded computation when possible and is based on ffmpeg
library to support all formats and codecs supported by ffmpeg.

Other applications exist but do not have the same functionality or the same purpose as
360Transformations or are not openly available. Facebook Transform360 is a ffmpeg filter that can
transform a omnidirectional video from an equirectangular projection into a cube-map projection with
flexible configurations. At the time this Chapter was written, only the equirectangular to cube-map
transformation is supported. Google Spatial Media is a software used to inject and/or read metadata for
spherical video and audio into a MPEG-4 Part 14 (MP4) container. It manipulates only the metadata.
with a FoV of 110°×90°

7.3 software overview

360Transformations is a C++ application, developed from scratch to take advantages of latest features
from the C++11 and C++14 standards [64].

360Transformations can read omnidirectional videos encoded with any codec supported by ffmpeg.
The video bitstream or the raw video should be encapsulated into a MP4 or a Matroska (MKV)
container so that enough metadata is available for ffmpeg to decode the video stream. Multiple videos
can be processed at the same time. Frames with the same id in each video are processed synchronously.
The frame format of the input videos can be any of the implemented projections and packing (such as
4 × 3 cube-map or equirectangular).

The software takes for input an INI configuration file. This configuration file indicates the path
to each input video and describes their packed format: the sphere-to-plane pixel mapping used. The
INI can define multiple sphere-to-plane mapping and sphere-to-sphere transformations. Each sphere-
to-plane mappings, such as equirectangular or cube-map projections, are characterized by multiple
parameters:

Projection Type A type indicating which projection to used. The type should correspond to one
the of projection implemented in the software

Planar P icture Resolution the spatial resolution of the planar picture

Local Reference Frame Orientation the orientation of the local reference frame used to
perform the projection. The orientation is measured compared to the world reference frame which is
supposed immutable. The orientation is the rotation that transform the world reference frame into
the local reference frame.

Projection Specific Parameters some projection type specific parameters used to modify the
behaviours of some projection. For instance, with the cube-map projection it is possible to indicate
the position and orientation of each face of the cube on the planar picture.

A sphere-to-sphere transformations an optional transformation, such as the offset
transformation studied in Chapter 5, applied on the sphere before the projection to modify the
behavior of the transformation. It is characterized by a transformation type, a local reference frame
orientation and some transformation specific parameters.

Then the INI file defines a transformation flow for each input video. A transformation flow is a set of
consecutive sphere-to-plane transformation applied, frame by frame, on a video.

Each frame of the input videos goes through its transformation flow, as specified in the configuration
file. The frames outputted from a transformation flow can be displayed on the screen and/or encoded
into a new videos. The format of the output video have to be a format supported by ffmpeg. One should
notes that ffmpeg support single image output or input, so do 360Transformations. It is not possible
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to generate output videos with HEVC’s MCTS yet because libx265 [146], the open-source HEVC
encoder used by default by ffmpeg does not implement tile encoding. To generate MCTS a user would
have to pipe the output video to an encoder that supports MCTS, such as Kvazaar [69].

Omnidirectional Objective Quality Metrics. The software implements some omnidirectional full-
reference objective quality metrics. The metrics are computed frame by frame and use the output of the
first transformation flow as reference. Five metrics are currently implemented:

PSNR, SSIM and MS-SSIM The PSNR , Structural Similarity (SSIM) and MS-SSIM are the
traditional objective quality assessment metric used with planar videos (see Section 2.4.2). They
do not take into account any properties related to projected omnidirectional videos. They require
the two compared videos to have the same resolution and to use the same projection with the same
parameters.

S-PSNR The Spherical - Peak Signal Noise to Ratio (S-PSNR) projects the two compared video on
the sphere and get color samples on the sphere at 655 362 predefined positions. The color samples
are interpolated when they do not match a projected pixel center. Usually the interpolation used
is a bilinear interpolation performed on the original projected picture, but other interpolation can
be used such as the nearest neighbor, the bi-cubic, or the lanczos interpolations. Then a classic
PSNR computation is performed on the luminance value of those 655 362 colors for the two pictures.
The advantages of the S-PSNR is that it does not requires the two compared video to use the
same projection nor the two compared video to have the same resolution. This metrics was used in
Chapter 5.

WS-PSNR The WS-PSNR computes a regular PSNR between two pictures but weight the errors
in the MSE computation using the size on the sphere of the projection of each pixel of the planar
picture. Thereby, a pixel that take up a big portion of the sphere has more influence on the WS-PSNR
value than a smaller pixel on the sphere. This metric, like the traditional PSNR requires the two
compared pictures to use the same projection and to have the same resolution.

7.3.1 Software Architecture

The code of 360Transformations can be separated in five parts.

The main function. This function initialize all the sphere-to-plane projections and the sphere-to-
sphere transformation used in the INI configuration file, and run the main loop that read pictures one
by one in all input videos and apply the transformation flow on them.

Configuration Parser. This function reads a section of the INI configuration file and transform it
into an instance of a concrete class that defines a sphere-to-plane projections or a sphere-to-sphere
transformation.

Layouts. Inside the 360Transformations a Layout is the name used to define a sphere-to-plane
projections. A virtual class named Layout is the based class to any sphere-to-plane projections. This
virtual class defines the basic interface to manipulate any projections. For instance, the main function
manipulate only Layout objects with the need to understand which actual projection is used. This
structure allow ease addition to new projections inside the software. The interface define two publics
functions: From2dTo3d and From3dTo2d. From2dTo3d transforms the coordinates (u, v) of a pixel
in the planar picture into a viewing direction #»a indicating the position of this pixel on the sphere.
From3dTo2d does the inverse transformation: it takes a viewing direction #»a and return the coordinate
(u, v) of the corresponding pixel on the planar picture. Here the pixel coordinates may be fractional and
an interpolation should be used to compute the color of the direction pointed out by #»a . Other functions
are defined to initialized the layout, to update dynamic layout (projection with properties that change
with time) or to get the surface of a specific pixel on the unit sphere.
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VectorialTrans. As the Layout class, VectorialTrans is a virtual class that defines a unique interface
to manipulate sphere-to-sphere transformations. Any sphere-to-sphere transformations should inherit
from VectorialTrans. The VectorialTrans defines two functions: one to perform the sphere-to-sphere
transformation and one to perform the inverse transformation.

LibAvWrapper. This is the part of the code used to interface with ffmpeg library.

In the version of 360Transformations available at the time this dissertation is written, seven types
of sphere-to-plane projections are implemented. Figure 7.1 displays an example of each projection
available. Those formats are: (i) The standard Equirectangular projection. (ii) The Equirectangular
projection splits into tiles. (iii) The Cube-Map projection with a compact packing or with the classic
4 × 3 packing. (iv) A square based pyramid projection with a compact or not compact packing. (v) A
Rhombicdodeca projection with a compact packing. Finally (vi), viewport can be extracted using the
FlatFixed or the gnomonic projection.

Two sphere-to-sphere transformations are currently implemented. The offset transformation,
introduced in Chapter 5, which generalizes the offset cube-map projection used by Facebook for the
Oculus HMD as described by Zhou, Li, and Liu [162] and Zhou et al. [163]. The second
transformation implemented is the horizontal plane offset transformation. This transformation is very
similar to the offset transformation except that it preserves horizontal lines. It was also introduced by
Facebook to be more “encoder friendly”.

For each layout and transformation, it is possible to apply a rotation on the spherical signal. This
means that the center of the projection can be moved to any direction. We denote by center of the
projection, the direction of #»

ı (as defined in Section 2.2), which has for Cartesian coordinate (1, 0, 0)
before applying the rotation. For instance for the Cube-Map projection, the front face of the cube can
be rotated to any direction.

Viewports can be extracted using the FlatFixed projection or the gnomonic projection. For each, two
options are available. (i) extract the viewports at a static location: for each frame of the video the
viewport is extracted at the same position. (ii) replay a recorded head-movement trajectory. The
trajectory should have the same format as trajectories in the dataset of
Corbillon, Simone, and Simon [34], presented in Chapter 8. The relative timestamps of the frame is
used to select which position of the trajectory to use to extract the viewport.

7.3.2 Software Behaviors

360Transformations always starts by reading the INI configuration file. It reads the “LayoutFlow” field,
initializes a video decoder for each video listed, and initializes a Layout for each packed format needed
by the “LayoutFlow”.

To transform a frame from one projection to another, the software generates an empty picture with
the same resolution as required by the output projection. Then, as illustrated in Figure 7.2, it iterates in
parallel over all pixels of the output picture, asks the output Layout for the coordinates of the viewing
direction vector corresponding to the selected pixel, then asks the input Layout for the coordinates of
the input pixel corresponding to this viewing direction vector, and then interpolates the color of the
output pixel. This operation is done consecutively for all projection present in transformation flow of
an input videos.

7.4 configuration examples
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Equirectangular

Equirectangular with 8 × 8 tiles

packed with different resolutions

4 × 3 cubemap

Compact cubemap

Pyramid

Compact pyramid

Compact

rhombicdodecahedron

FlatFixed: viewport

Figure 7.1: Illustration of the currently available projection and frame packing: without

rotations, without offset projections, and, except for the Equirectangular with tiles

paking, with the same resolution on each faces
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pixel coordinates in
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Normalized face
information on the
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3D direction vector
associated to this
pixel
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between sphere-
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transformations
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Face 0
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Normalized face
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previous format
and set it to the
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Figure 7.2: Projection transformation steps. Those steps are executed, for each projection

transformation in a transformation flow, for each pixel in the new video frame.

[Global]

fps=24

layoutFlow= [["./input1.mp4", "Equirectangular1"],
["./input1.mp4", "Equirectangular1", "Cubemap1"]]

displayFinalPict=true

videoOutputName= outputVideo.mp4

videoOutputBitRate=0

qualityOutputName = quality.txt

qualityToComputeList = [S-PSNR-I]

nbFrames= 5

startFrame= 0

[Equirectangular1]

type=equirectangular

upscale=false

refWidth=3840

refHeight=2048

rotation= {"type":"euler", "yaw":0.0, "pitch":0.0, "roll":0.0}

relativeResolution=true

width=1

height=1

bitrate=1

offsetRatio=0

[CubeMap1]

type=cubeMap2

refWidth=3840

refHeight=2048

relativeResolution=true

rotation= {"type":"angleAxis", "angle":90, "x":0.0, "y":0, "z":1}

Listing 2: Example of Configuration File

Input Video

Equirectangular1

Equirectangular1 Cubemap1 output2Cubemap1.mp4

quality2Cubemap1.txt

output1Equirectangular1.mp4

Figure 7.3: Processing flow described in the configuration file
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In this Section we illustrate how 360Transformations can be used to manipulate projected
omnidirectional video.

Listing 2 presents a simple configuration file that takes one Equirectangular omnidirectional video,
projects it into a Cube-Map and packs it into a 4 × 3 Cubemap layout. Then, it computes the S-PSNR
objective metric to compare this Cube-Map projection with the original Equirectangular projection.
It also re-encode the output frames into new HEVC videos. Figure 7.3 illustrates this transformation
flow. Here the computed quality metric is stored into a “.txt” file, and the output videos are stored into
“.mp4” files.

The Global.layoutFlow key contains a list of transformation flow. In each transformation flow we
first indicate the path to the input video and then the name of the section that describe the projection
used by this input video (here Equirectangular1). We stop there for the first flow because we want to
keep the reference frame with original projection of the video. For the second flow, we add Cubemap1
after the Equirectangular1 format in order to transform the frame into a 4 × 3 Cube-Map projection.

In the Equirectangular1 section and the Cubemap1 section, we describe the two different packed
frame formats used. The Equirectangular1 section indicates the resolution of the Equirectangular
picture and indicates that no rotation was performed. In the Cubemap1 section, we indicate the
resolution of the output cube-map frame, indicate that we want all faces to use their standard resolution
(no upscaling nor downscaling) and then indicate that we want to rotate the cube 90° around the vertical
axis (axis

#»

k ). This rotation means that the front face of the cube will face the original “right” direction.

7.5 scientific interest

We designed and implemented 360Transformation to manipulate omnidirectional videos. At the time
we started to work on this software, only Facebook ffmpeg filter to extract flat-fixed viewports or to
generate cube-map from equirectangular and equirectangular from cube-map was available. The use
of this filter was limited as only the three projections implemented by Facebook was available and
extension with now projections was quite challenging. Moreover, interfacing this filter with scripts to
allow reproducible scientific experiment was hard.

360Transformation was designed to allow the community to easily add new projections and new
spherical transformations. This is possible by taking advantage of polymorphism to manipulate only
abstract base classes inside the body of the software. A user who want to add a new projection or a
new sphere-to-sphere transformation only need to implement a new class that inherit from the right
base class, and then needs to describe what fields from the INI configuration file should be used to
initialized the new projection/transformation.

360Transformation can be used only by manipulating the INI configuration file. If no new projection
or transformation are needed, there is no need to manipulate the C++code. Then it is easy to use for
instance Python3 to generates configuration files with different set of parameters, running the software
to generate videos with new projection and/or to extract viewports, and to compute objective quality
metrics. The quality metrics output can then be parsed, and statistics can be computed. To reproduce
the results, only the configuration file (our the script used to generate the configuration files), the input
videos are needed.

In order to fairly compare different viewport-adaptive streaming strategies (server content preparation
strategies or client segment download strategies) it is needed to be able to replay head orientation
dataset with different input omnidirectional videos (different versions with QERs, different bit-streams
generated with tiles selected with different qualities) to extract viewports in the same positions in all
tested scenario. 360Transformation is able to read head orientation datasets and to extract viewports at
the same positions as the user did.
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7.6 installation and license

360Transformations is an open source software, release under the MIT License, and provided as a tool
for researchers. 360Transformations uses three external libraries: ffmpeg libav (LGPL v2.1) to decode
and encode the videos, OpenCV (3-clause BSD) to manipulate the frames, and Boost (Boost license)
to parse the input configuration file.

To install 360Transformations, you need a C++11 ready compiler (for instance gcc version 5 or
greater). You also need cmake in order to generate the Makefile that will be used to compile the software.
Compilation instruction are available on the Github homepage [28].

A Docker3 container named xmar/trans360 and available on Docker Hub4 allows the community to
use the software directly without the need to compile it. The container can also be used to test new
projections/transformations without the need to install the dependency of 360Transformations first.

We did all our testing on Archlinux OS and on Debian OS.

7.7 conclusion

In this Chapter, we described the 360Transformations software made to manipulate omnidirectional
videos. This software is able to read omnidirectional videos encoded with standard codecs, projected
and packed in any implemented formats. It is able to sequentially change the projection and the packing
of the frames of multiple input videos. It supports sphere-to-sphere transformations, such as the offset
transformation introduced by Facebook, to apply modification on any projection. For each input video,
the final projected and packed frame can be encoded into a new output video, and/or an objective
quality metric can be computed. 360Transformations was designed to allow easy addition of new
projection and new frame packing and is able to replay recorded head orientation datasets. Next Chapter
describes the head orientation format accepted as input of 360Transformations, and will describe the
head-orientation dataset we recorded.

Future work on this software may focus on adding support of stereoscopic omnidirectional videos,
and adding new projections and packing formats such as the barrel projection or the truncated pyramid
projection. Adding the possibility to perform pixel color interpolation on the sphere and not only on
the planar picture as it is today. Indeed, in current version of the software, to interpolate the color of the
pixel in the projected picture (using nearest neighbor, bi-linear, or the bicubic interpolation) we project
the pixel on the original planar picture and perform the interpolation on this planar picture. But pixels
near on the planar picture are not mandatory near (or at least not with the same ratio of distance) on the
sphere. The interpolation might introduce less noise if performed directly with neighboring pixels on
the sphere instead of neighboring pixels on the original planar picture.

3 https://www.docker.com/
4 https://hub.docker.com/r/xmar/trans360/
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A DATA S E T O F U S E R S ’ H E A D M OV E M E N T S I N O M N I D I R E C T I O NA L
V I D E O S

8.1 introduction

The adoption of viewport-adaptive streaming raises many open questions regarding the navigation
patterns of users. For instance: how fast do people move their heads when wearing an HMD? Do
different people focus on the same parts of the sphere? Does the user’s behaviour depend on the type of
video? Does this behaviour depend on the user’s characteristics? In order to answer these questions,
the availability of data collected while users are watching omnidirectional videos via HMDs is critical.

For this reason, in this Chapter, we present an omnidirectional video head movement dataset gathered
by recording the navigation patterns of 59 users watching five 70 s long omnidirectional videos. The
dataset is available on our website [31].1 In order to help the community to reproduce our results and to
upgrade this dataset, we release the open source software developed for our data collection campaign
and allow new contributors to share their datasets on our website [31].

The rest of the Chapter is organized as follow. Section 8.2 reviews the existing works that have
reported an analysis of the navigation patterns of viewers consuming omnidirectional content via
HMDs. Section 8.3 describes the choices made to setup our data collection, the software and the
experimental conditions. Section 8.4 details the structure of our dataset so that it can be reused by the
community. Section 8.5 portrays a first analysis of the collected data to illustrate the kind of information
that can be extracted from the dataset. Finally, Section 8.6 concludes this Chapter.

8.2 related work

Yu, Lakshman, and Girod [152] use the average viewport-based head motion trajectory of ten users
viewing ten omnidirectional videos to compute a weighted version of the PSNR. The authors observed
that the users tend to look around the equator more than the poles. The average viewing probability
map is reported in the paper, but the navigation patterns per user and content are not publicly available.
Also, the viewing conditions and test material used to collect the data are not disclosed.

Upenik, Rerabek, and Ebrahimi [137] describe a test-bed to perform controlled quality assessment
experiments on omnidirectional images via HMDs. The software allows to capture, among other
data, the viewing direction of the user at a chosen sampling rate. Examples of average viewing
probability maps obtained during a quality assessment subjective test are reported for three test images.
The method used to process the information on user’s head movements and derive saliency maps is
described by Upenik and Ebrahimi [136].

De Abreu, Ozcinar, and Smolic [40] describe a study of navigation patterns collected during static
omnidirectional image viewing on a HMD. The test-bed and collected dataset are publicly available.

Since the work presented in this Chapter was done, multiple head-orientation datasets of subjects
watching omnidirectional video was publicly released by the community. Wu et al. [145] performed
two subjective experiments: a task-free scenario and a scenario where user were asked to pay attention
to the scene. In both experiments, 48 young subjects (with sex parity) watched 9 omnidirectional

1 http://dash.ipv6.enstb.fr/headMovements/
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videos selected from YouTube (different set of videos for each experiment). Subjects used a HTC Vive
HMD. They recorded the HMD orientation (using unit quaternion representation) and the HMD spatial
position (storing the coordinates of its centroid). They observe that in the task-free scenario users
head trajectories are more diverse than in the scenario with a task. Our dataset record only the head
orientation and represents a task-free scenario. Song et al. [121] recorded a dataset of head movement
of 58 users watching 76 omnidirectional videos. The videos were a few second long (10 s to 80 s). The
dataset is, at the date this dissertation is written, not publicly available anymore. Lo et al. [82] recorded
50 users watching 10 one minute long omnidirectional videos extracted from YouTube. The users wear
a Oculus Rift DK2 HMD. They store the users’ head orientation using Euler angles representation
(yaw, pitch, and roll). Fremerey et al. [46] presents a dataset of 48 users watching 20 omnidirectional
videos, 30 s long, on an HTC Vive HMD in a task-free scenario. The content was 4K video downloaded
from YouTube and ARTE. A simulator sickness questionnaire was filled after each viewing session.
The questionnaire answers show a significant difference in spatial disorientation between female
and male subjects showing that female users are more sensitive to spatial disorientation or answer
to the questionnaire more honestly. David et al. [39] generated the first dataset that records not only
the head orientation by also the gazing position of 57 users watching 19 omnidirectional videos
downloaded from YouTube during a free-task experiment. Previews datasets recording gazing position
in omnidirectional content exists only for static omnidirectional images [105].

8.3 experimental settings

In this Section we describe the notation chosen to describe user’s head movements, the software
implemented to capture these movements during omnidirectional video consumption on a HMD, as
well as the test material and conditions considered during the viewing sessions.

8.3.1 Head Orientations

Since current delivery platforms and HMD technologies are restricted to 3DoF, we captured rotational
head movements and ignored the translational movements of users. To measure the head position we
chose the following conventions, illustrated in Figure 8.1:

• We consider the same Euclidean space and direct orthonormal basis (O, #»
ı , #»
 ,

#»

k ) as introduced in
Section 2.2.

• We denote by (O,
#»

ı
′ ,

#»


′ ,

#»

k′) the direct orthonormal basis linked to the user’s head position. The
#»

ı
′ axis goes through the center of the HMD, the

#»


′ axis goes through the viewer’s left ear and

the
#»

k′ axis goes through the top of the head. This basis is linked to the viewport reference frame
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(Op, #»u , #»v ), introduced in Section 2.3.1, by the following properties: #»u (respectively #»v ) is collinear

to
#»


′ (respectively

#»

k′) with the same direction.

• The reference head position (i.e. the position without any rotation) is the position where (O, #»
ı , #»
 ,

#»

k ) and (O,
#»

ı
′ ,

#»


′ ,

#»

k′) coincide. The reference position (i.e. the (O, #»
ı , #»
 ,

#»

k ) basis) is set at boot
time by the HMD.

Note that in practice, the world reference frame is fixed by the HMD after each reboot. The HMD
always choose

#»

k vertical but #»
ı and #»

 can change each time the HMD restarts (but are always
horizontal). Between two reboots the world reference frame (and so the reference viewport) never
change.

Using the software described at Section 8.3.2, we captured any variation of the head position during
a viewing session, with respect to the reference position. This is described by the rotation R that
transforms (O, #»

ı , #»
 ,

#»

k ) into (O,
#»

ı
′ ,

#»


′ ,

#»

k′). There are many ways to characterize a rotation in R3 [23]:
we use the unit Hamiltons quaternions representation. According to Euler’s rotation theorem, any
rotation or sequence of rotations of a three-dimensional coordinate system with fixed origin is equivalent
to a single rotation around an axis, represented by a unit vector #»v = (x, y, z) = x #»

ı + y #»
 + z

#»

k in R3,
and by a given angle θ, using the right hand rule. This axis-angle representation of R can be expressed
by four scalars defining the unit quaternion [23]:

q = (q0, q1, q2, q3) = (q0, q1
#»
ı + q2

#»
 + q3

#»

k ) = (cos(θ/2), sin(θ/2) #»v )

.

We chose the quaternion representation because (i) it has the advantage of being a compact
representation (four scalars instead of the nine required by the 3 × 3 matrix representation), (ii)
quaternion are not subject to the gimbal lock [139], which is a well-known issue of the Euler angles
representation, and (iii) quaternion representation of rotations is less sensitive than matrix
representation to rounding errors occurring when scalars are represented at floating point precision.
Note that if q is a unit quaternion representing the rotation R, then −q represents the same rotation R.

8.3.2 Software

We developed a omnidirectional video player to capture and save to a log file the user’s head orientation
at each frame or whenever a head movement (i.e. a motion event) occurs during the visualization of
a video on an HMD. The main purpose of the software is to accurately associate each motion event
to a timestamp corresponding to a video timestamp at frame level, thus, to the id of the video frame
displayed by the HMD when the motion event occurred.

Please note that we share the software in a public repository [31] with the MIT open source
license [86]. Therefore, it can now be used by the scientific community, potentially to extend the dataset
with more viewers, more videos, and different viewing conditions.

The software has been implemented in C++, based on the Open-Source Virtual Reality (OSVR)
Application Programming Interface (API) [14], the Open Graphics Library (OpenGL) [95], and the
ffmpeg library [80]. We performed all tests and the data collection campaign on Linux OS with the
Razer OSVR Hacker Development Kit 2 (HDK2) HMD [104] but the software is expected to be
compatible with any HMD and Windows OS.2 Figure 8.2 illustrates a high-level diagram of the input
and output interfaces of our software.

The experimenter can set some input parameters by using a configuration file. This file specifies:
(i) the sphere to plane projection used to produce the planar video file ; (ii) the time offset in second
starting from which the video file is displayed; (iii) the number of video frames, i.e. the duration of the

2 The OSVR API is available on Linux and Windows OS and is agnostic to the HMD used.
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Figure 8.2: High level diagram of components and interfaces of our OSVR Video Player and

head movement logger. The gray block is the components we developed.

YouTube Id Name Content Description & Expected Focus of Attention Spatial Resolution
Frame

Rate
Bit Rate

Start

Offset

2bpICIClAIg Elephants
Elephants along a river side. Fixed camera, main content along
the equator line.

3840 × 2048 pixels 30 fps 16 522 kbitps 15 s

One main azimuthal focus expected along the equator line.

7IWp875pCxQ Rhinos
Rhinos in the nature. Fixed camera, main content along the
equator line.

3840 × 2048 pixels 30 fps 13 462 kbitps 15 s

Focus expected along the equator line.

2OzlksZBTiA Diving Diving scene. Slowly moving camera, no clear horizon. 3840 × 2048 pixels 30 fps 19 604 kbitps 40 s

No main focus expected within the sphere.

8lsB-P8nGSM Rollercoaster
Rollercoaster. Fast moving camera fixed in front of a moving
roller-coaster.

3840 × 2048 pixels 30 fps 16 075 kbitps 65 s

Strong main focus following the rollercoaster trail.

CIw8R8thnm8 Timelapse
Timelapse of city streets. Fixed camera, clear horizon with a lot
of fast moving

3840 × 2048 pixels 30 fps 15 581 kbitps 0 s

people/cars, many scene cuts. Focus expected along the equator
line.

s-AJRFQuAtE Venice Virtual aerial reconstruction of Venice. Slowly moving camera. 3840 × 2048 pixels 25 fps 16 101 kbitps 0 s

No main focus expected within the sphere.

sJxiPiAaB4k Paris Guided tour of Paris. Static camera with some smooth scene cuts. 3840 × 2048 pixels 60 fps 14 268 kbitps 0 s

Focus expected along the equator line.

Table 8.1: Description of the YouTube omnidirectional videos used. The entries with grey

background in the table identify the videos used for training.

segment, to be displayed. The time offset and duration are specified because the input omnidirectional
video can be a video of several minutes of duration: the configuration file allows to specify what portion
of the video to display to the user, so that the navigation patterns are measured over a fixed limited
duration.

The player communicates with the OSVR Server API to get the last known position of the user’s
head. With this information, the player extracts from the input video the viewports to be displayed
(one for each eye) and sends them to the HMD using the OSVR API. In parallel, the audio signal is
sent to a headphone. Each time a new head position is measured, the quaternion that represents the
rotation of the head with respect to the reference head position is stored in a log file alongside the
current timestamp and the picture id of the displayed video frame.

8.3.3 Test Material

The navigation patterns in the dataset have been collected on five omnidirectional YouTube videos,
described in Table 8.1. We limited the test material to few videos to be able to perform a viewing

Number of users Minimum age Average age Maximum age Ratio of women
Ratio of users using a

HMD for the first time

59 6 34.15 62 20% 61%

Table 8.2: Statistics on the users who took part to the experiment
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Figure 8.3: Flow for a new user evaluation

session of reasonable duration and collect data from many users. Therefore, the test videos have been
chosen to span a wide range of omnidirectional content, including tourism, thrill, and discovery, for
which different viewer’s involvement, thus navigation patterns, could be expected. Each video file
has been downloaded in equirectangular format, at the maximum resolution and bit-rate available on
YouTube (reported in Table 8.1), The videos do not have the same frame rate but this does not impact
the data collection since the head position is captured for each motion event, rather than at a fixed rate.
A 70 s-long portion of each video (starting at the offset indicated in Table 8.1) has been selected and
used in the viewing session. Two additional videos (with grey background in Table 8.1) have been used
as training material to familiarise the users with the viewing set-up.

8.3.4 Viewing Session

All participants to our study performed one viewing session of a total duration of seven minutes.
Before the beginning of the session, oral instructions were provided to describe the main steps of the
viewing session and explain that the user’s navigation patterns were going to be recorded. Each user
was informed about the presence of a training session, to familiarize with the omnidirectional viewing
experience and adjust the HMD calibration, if needed, followed by a viewing session of seven minutes,
consisting of the sequential display of videos, separated by a grey screen, displayed for 5 s to 10 s
between two consecutive videos.

The exact flow (Figure 8.3), followed by every user, is described hereafter:

1. Before the user puts the HMD on, he/she is asked to fill in a questionnaire, displayed on a computer
via a Graphical User Interface (GUI), concerning the user’s gender, age, vision impairments if any,
and the level of familiarity with HMDs.

2. The training session takes place, during which a 70 s training video, randomly selected for each
user by the GUI, is displayed. Viewers were orally instructed to adjust the HMD vision correction
settings, if needed, by using the wrench adjuster under the HMD and familiarise with the
omnidirectional viewing experience by moving their heads.

3. All five test videos are consecutively displayed in a random order.

4. At the end of the viewing session, the user is asked to remove the HMD.

We invited people to stand during the entire viewing session but some asked to sit for some videos
(often for the Rollercoaster). When seated, people sat on a rolling chair and were still able to turn
easily in any direction. An operator always stood next to the user to hold cables out of user’s range and
guarantee free movements.

8.3.5 User Sample

At the time this paper was written, 59 users took part to our data collection. Most people in the sample
group are students or staffs from the IMT Atlantique school in France. Some are children from staff
members and some are employees from IMT Atlantique’s startups. Table 8.2 shows some statistics
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about this sample group. Users are aged from 6 to 62 with an average age equal to 34 years. 80 % of
the sample is composed by men and 61 % of the sample was using a HMD for the first time. Half of
the users who had already used a HMD, did it for less than 12 minutes.

8.4 dataset structure

The dataset was created and structured to allow other research teams to use it and add new traces,
while protecting the privacy of the users. The folder structure, data format and meaning of the results
collected by using the software described at Section 8.3 are detailed hereafter.

8.4.1 Result Folder Structure

Figure 8.4 pictures the structure of the result folder. When a new user participates to the data capture,
he receives a unique identifier [77] that guarantees there will be no naming collision. The data collected
for each user is stored in a dedicated folder, named “uid-X”, with X being the user’s identifier. This
folder contains:

• one file named “formAnswers.txt”, containing the answers of the user to the questionnaire;

• one folder per viewing session , named “testN”, with N being the viewing sessions id associated
to the viewing session, generated by the GUI , useful to structure the results when the same
user participates to multiple viewing sessions. This folder contains: (i) a file named “testInfo.txt”,
reporting on each line a video id followed by the MD5 sum [107] of the video file. These identify the
videos displayed to the user during the corresponding viewing session test, according to the order
of presentation, the first video being the training video; for each video id in the file “testInfo.txt”,
(ii) a corresponding file named “videoid.txt”, reporting the configuration file of the C++ OSVR
video player and head movement logger used to displayed this video to the user (see Section 8.3.2
for more details about the software), and (iii) a folder named “videoid” containing the user’s head
movements for this specific video, according to the format detailed in the next subsection.

8.4.2 Head Position Log Structure

Each log file of the user’s head position has the same structure. There is one sample per line. Values
are separated by spaces, according to the following format :

timestamp frameId q0 q1 q2 q3

The first value, at floating-point precision, is the timestamp in second relative to timestamp 0:
timestamp 0 is the time when the video player started to display the first frame and is the first timestamp
in the file. The second value, an integer, is the picture order counts (POC) of the video frame displayed
at time equal the timestamp. Here, POC zero corresponds to the first picture displayed after the player
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seeks to the start offset of the video. The next four values, at floating-point precision, are the q0, q1, q2

and q3 values of the unit quaternion q used to identify the head position of the user (cf. Section 8.3.1):
q = (q0, q1

#»
ı + q2

#»
 + q3

#»

k ).

In the log files, head position samples are recorded each time the video player renders a new picture
for the HMD. This means the sampling rate is not constant and may vary within each test. Note that
rendering refresh rate can be higher than the video frame rate.

8.5 a typical usage of the dataset

In this Section we illustrate a possible use of the dataset by focusing on the viewport adaptive streaming
scenario presented in Chapter 3. This analysis does not aim to be exhaustive of all possible usages of
the dataset. The evaluation in presented in Chapter 6 is an other example on how the dataset can be
used.

8.5.1 Pre-Processing

The population of users from which we collected the dataset is close to the typical audience expected
for viewport adaptive streaming, therefore there is no need to filter the users.

In Section 8.4.2, we mentioned that the head position sampling rate is not constant. This means that
some sample are very close in time and some are farther away. In order to compute head movement
statistics, we resampled the collected data, i.e. the quaternions, using a sampling frequency of 30 Hz.
We chose 30 Hz because most of the videos used to generate the dataset have a frame rate of 30 fps.
There are multiple ways to interpolate quaternions based on existing samples: we chose to use the
spherical linear interpolation (SLERP) [89], using the two samples that are the closest in time to
the timestamp we want to extract. The SLERP formula assumes that the user moves on the shortest
great-circle arc between the two measured positions, with a constant velocity.

8.5.2 Head movements

With adaptive streaming, it is often not possible to switch from video representations once a specific
representation started to be displayed to the user, so it is important for the video segment size to be
short enough to allow frequent representation switching. On the other hand, if the video segment is too
short, video codecs are less efficient and the service provider needs to store and transmit more metadata
to describe the segments.

To estimate the maximum duration a video segment should have, we compute "how static the user
is". Particularly, for each user, we compute the angular distance between the center of the viewport at
the beginning of a segment and the center of each viewport attended by the user during the duration of
a segment. Figure 8.5 shows the CDF of the maximum angular distance traveled during a fixed duration
inside each segment by each user and for each video. We used segments of length 1 s, 2 s, 3 s, and 5 s.
It can be noticed that, for instance, within a segment duration of 2 s, 95% of the users move less that
π/2 radians. This means that within a 2 s length segment, 95% of the users stay inside the hemisphere
centered on the head position of the user at the beginning of the segment. Therefore, we conclude that
2 s is probably a good compromise for the duration of the segment.

Figure 8.6 shows the CDF of the maximum angular distance per video for a segment length of
2 s. The data shows that, in this dataset, there are three categories of videos: a video triggering very
few head movements (Roller-Coaster), a video triggering many head movements (Timelapse), and
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Figure 8.8: In red the area of the symmetric difference between viewport V1 and viewport V2

represented in the equirectangular domain.

intermediary videos (Venice and Diving). The video Paris is an hybrid, triggering very few head
movements at the beginning and many more towards the end.

8.5.3 Viewing probability

Statistics on where users looked at in a specific omnidirectional video can be used to (i) re-encode
representations with QERs, adapted to a majority of users, or (ii) send information to the client to help
its representation selection decision.

Figure 8.7 shows the probability for a pixel in the equirectangular domain to be inside the viewport of
the user, aggregated for the whole video duration. Figure 8.7a shows the statistics for the Roller-Coaster
video and Figure 8.7b for the Timelapse video. We observe that for the Roller-coaster video there is a
very well defined RoI at the center of the equirectangular picture. This is in the direction of the rails.
For the Timelapse video, there is no prominent viewing direction, but most viewports stay near the
horizon.

To have a better understanding of the time variation of the concentration of the viewports in the
videos and similarity across users navigation patterns, we compute for each video frame the area of
the symmetric difference between all possible couple of viewports attended by each user during the
navigation. Figure 8.8 depicts the symmetric difference of two viewports. The area of the symmetric
difference is a pseudo-distance that is equal to zero when the two viewports are identical and is equal
to two time the area of a viewport when the intersection of the two viewports is empty. Figure 8.9
represents the median distance between all couple of viewports attended by each user inside the same
frame during video segments of 2 s. We observe that for the Roller-coaster video, the users focus their
gaze in the same direction after 10 s (5 segments of 2 s). For the Timelapse, Venice, and Diving videos,
user viewports are spread across multiple directions. Regarding the Paris video, at the beginning of
the video, most people look in the same direction (at the tourist guide) and then most users look in
different directions.
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8.6 conclusion

In this Chapter we presented a dataset including the head positions of 59 users recorded while they
were watching five 70 s-long omnidirectional videos using the Razer OSVR HDK2 HMD [104]. The
dataset is available on our website [31] alongside the used videos and the open-source software that we
developed to collect the dataset. We described our settings, the test material and how we performed
the data collection. We also detailed the structure of the dataset. Finally we introduced examples of
statistics that can be extracted from the dataset to provide an overview of the users’ behaviour and the
videos characteristics, focusing on the viewport adaptive streaming scenario.

We expect that this dataset will help researchers to study and understand omnidirectional video
consumption. The prediction of navigation patterns is a cornerstone of the new generation viewport-
adaptive streaming systems for omnidirectional content. The dataset will hopefully enable researchers
to test new prediction algorithms.
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C O N C L U S I O N & F U T U R E W O R K

9.1 dissertation conclusion

In this dissertation we presented the work accomplished since 2015 on the adaptive streaming of
omnidirectional video. We split this work into six main contributions, each presented in its own
Chapter.

Chapter 3 presents a viewport-adaptive streaming architecture. This architecture is compatible with
Dynamic Adaptive Streaming over HTTP (DASH), the main deployed adaptive streaming protocol,
with Content Delivery Networks (CDNs) and with content provider architectures. We propose to
generate, at the server side, video representation characterised by a predefined Quality Emphasized
Region (QER). We evaluated this architecture with video versions prepared with a QER following
the shape of the face of Three Dimensional (3D) geometrical objects used in the projection process.
We showed, based on a small head movement dataset, that (i) the cube-map projection is the most
efficient projection compared to the equirectangular, the square base pyramid and the dodecahedron
projections, based on the the encoding technique and parameters used in this experiment, (ii) it is not
needed to generate more than six representation per omnidirectional video, and (iii) two-seconds is a
good compromise for the segments duration.

Chapter 4 proposes an extension of the viewport-adaptive streaming architecture to stream Multi-
ViewPoint (MVP) omnidirectional videos. MVP omnidirectional videos offer the user the possibility
to perform a finite number of predefined translational movement inside the scene in addition to the
rotational movement available in omnidirectional videos. We evaluated some optimal download client
strategies based on the proposed architecture. We introduce the key trade-off the client has to consider
when scheduling the downloading of such videos to maximize the user experience. We emphasize the
improvement of service performance introduced by the tiling and show that proactive strategies in this
scenario introduces a too expensive cost on the Quality of Experience (QoE). With the current state of
the research a reactive download strategy seems the best option.

In Chapter 5 we study the offset projection introduced by Facebook, generalize it to any projection
with the offset transformation, and propose to use the spherical pixel density to estimate the distortion
inside viewports extracted from those videos. We showed that the spherical pixel density metric, in the
context of offset transformation, is highly correlated to the distortion introduced inside the viewports.
Our evaluation points out that tilling is globally more efficient than offset transformation regarding the
distortion but the offset transformation allows the use of planar projected video with lower resolution
which is compatible with most of the available decoding hardware. It is possible to generate bit-streams
with lower resolution using tilling as demonstrated by Sreedhar et al. [123], but we did not evaluate
this scenario.

In Chapter 6 we propose a model to generate version with heterogeneous spatial quality. The
model uses viewing statistics (measured or predicted) to allocate a fixed bit-rate budget inside the
omnidirectional video in order to maximize the overall users satisfaction using a viewport-adaptive
streaming architecture as described in Chapter 3. We demonstrate the potential gains of viewport-
adaptive streaming compared to the streaming of omnidirectional video with uniform surface bit-rate in
term of increase of the bit-rate inside the generated viewports for constant bandwidth usage (+102 %)
or in term of decrease of bandwidth usage for constant bit-rate inside the viewports (-45 %).

111
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Chapter 7 describes the open-source software we developed to manipulate projected omnidirectional
videos. This open-source software was used to evaluate most of our proposed solution.

Finally Chapter 8 presents the head-movement dataset we collected in order to better understand
users behaviors inside omnidirectional content and to better evaluate viewport-adaptive streaming. The
dataset contains 59 users watching five 70 s-long videos in free-task scenario. Analysis of this dataset
confirms that segment duration of two seconds is a good trade-off between encoding efficiency and
user head movements velocity in the context of representations with a QER. We emphasize that users
head movements velocity vary depending on the video content type and that group of users can have
similar behaviors. This dataset is now part of Moving Picture Experts Group (MPEG) official test for
conformance datasets under the name “IMT Atlantique dataset”.

9.2 perspective and future works

Omnidirectional video streaming has become, since 2015, a trending subject with a growing
involvement of the multimedia community. MPEG experts have already release a first version of the
Omnidirectional MediA Format (OMAF) tool kit and are actively working on the second version. They
are pushing, through MPEG – Immersive (MPEG-I), toward full six Degrees of Freedom (6DoF)
content, opening a new era of convergence between videos and video-games.

Even with the growing interest of the community and of standardization groups, many questions
related to the streaming of omnidirectional content are still open.

How subjective evaluation should be performed with omnidirectional content? The experimental
conditions to evaluate the user subjective QoE when watching a traditional planar content are strictly
defined by international standards, but those experimental conditions do not consider user watching
content through a Head-Mounted Display (HMD). Even if the experimental conditions are defined
properly, it is still very hard to aggregate the QoE measured by different users. Indeed, the inherent
freedom offered by omnidirectional videos makes it highly unlikely that two users watch exactly the
same content (i. e. that for all given display timestamps, the same viewport is displayed to each users).
Comparison of Mean Opinion Scores (MOSs) in this condition is not trivial.

We have already seen in the related work Chapter that assessing the QoE with real users is a
challenging, time consuming, and not a cost efficient task. Objective quality metrics have been
developed for traditional video to automatically assess the QoE of users. They are not always highly
correlated with the MOS but are still very useful for automatic evaluation. It is still not clear how
quality of omnidirectional video should be objectively assess. Some objective metrics such as the
Spherical - Peak Signal Noise to Ratio (S-PSNR), and the Weighted Spherical - Peak Signal Noise to
Ratio (WS-PSNR) compute objective metrics on the whole projected omnidirectional video but are not
adapted to representations with heterogeneous quality. Others extract viewports and compute classic
objective metrics inside. Some methodologies have been proposed to evaluate the quality of
omnidirectional video with heterogeneous quality [7] but they are usually not compared to subjective
QoE and no methodology exist to predict users subjective QoE from those metrics.

Viewport-adaptive streaming requires accurate medium-term user’s head orientation prediction to
allow clients to prefetch video segments which offer high quality in the viewports the user will attend.
Wrong prediction results in lower quality viewports and too short prediction period makes the system
more sensitive to bandwidth variations. Studies of omnidirectional saliency maps and omnidirectional
sound correlation with head movements may improve the accuracy and the predictions.

New compression and storage of omnidirectional data could be investigated to improve the
performance of viewport-adaptive streaming. Indeed, new omnidirectional encoding techniques should
investigate how fast representation switching can be done without introducing high bit-rate or high
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computation overhead. The goal is to offer the lowest motion-to-high-quality delay to the users with
the lowest computational cost and the highest possible compression efficiency.

Overall, we start to observe a paradigm change in the multimedia world by slowly moving from
sender-centric to receiver-centric architectures. Previous architectures were designed to enable servers
to stream, in a cost efficient way, the same content to a great number of users. The switch from
broadcast content to adaptive streaming was already a first step toward the receiver, as its bandwidth
and characteristics are now considered in the streaming process. With immersive content and higher
degrees of freedom, users receive more and more unique data as two users are unlikely to attend exactly
the same parts of the content. On the one hand the content size is drastically increasing, and on the
other hand the part of the content attended by the user is decreasing. For low latency interactivity
it is becoming critical to offer smaller elementary retrievable and decodable data units. With a full
receiver-centric architecture, those elementary data units could be distributed in a cloud fashion, and
the client could retrieve just the required data units, compose a decodable bit-stream and extract the
viewport to display to the user.

There are still plenty of open questions and existing scientific problems to be solved to provide
future users highly immersive experiences at the minimum cost.
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A
R É S U M É E N F R A N Ç A I S : R E N D R E P O S S I B L E L A T R A N S M I S S I O N V I A
L’ I N T E R N E T D E S P RO C H A I N E S G É N É R AT I O N S D E V I D É O S
I N T E R AC T I V E S

a.1 contexte général

Au cours de la dernière décennie, le temps passé par les hommes à visionner les médias sur l’Internet a
explosé, et les analystes prédisent qu’Internet deviendra la principale source de divertissement au cours
de la prochaine décennie [159]. Cette tendance, illustrée par la Figure 1.1a, est principalement due
à la possibilité d’accéder de plus en plus facilement à des médias de haute qualité. Cette facilitation
est majoritairement influencée par trois facteurs : (iv) Comme le montre la Figure 1.1b, la vitesse
moyenne de l’accès à Internet a fortement augmentée au cours de la dernière décennie, ce qui permet
aux utilisateurs de consommer, sans délai, du contenu de meilleure qualité. Le déploiement à grande
échelle des réseaux d’accès sans fil, tels que le Wi-Fi et la 4G, permet aux utilisateurs de consommer
du contenu où et quand ils le souhaitent. (v) Les dispositifs capables de décoder du contenu en haute
qualité et capables de se connecter à un réseau à haut débit sont devenus courants. Enfin, (vi) le nombre
de contenus disponibles sur Internet a explosé, grâce aux fournisseurs de contenus, tels que YouTube,
Dailymotion, Netflix, Hulu et Twitch, qui permettent aux producteurs de partager toujours plus de
contenu multimédias sur Internet. La diversité des types de contenu, tels que les vidéos à la demande
(VoD), les rediffusions de programmes de télévision (TV) ou la diffusion en direct d’événements
sportifs en ligne, contribue à attirer un large éventail de la population vers ces services.

Parmi tous les médias consommables sur Internet, les utilisateurs passent la majeur partie de leur
temps à visionner des vidéos, consommant ainsi une grand partie des ressources de l’Internet. Par
exemple, au premier trimestre 2018, plus de 4.80 milliards d’heures de contenu vidéo ont été diffusées
sur Internet (ce qui équivaut à 6 siècles de contenu diffusé chaque jour), avec une augmentation de
114 % par rapport à la même période en 2017 [27]. De plus, le streaming de vidéos représentait jusqu’à
73 % du trafic Internet mondial en 2016 et devrait atteindre 82 % d’ici 2021 [25].

Par rapport aux programmes TV traditionnels, les services de streaming de vidéos sur Internet offrent
plus de liberté aux utilisateurs et donnent un véritable sentiment de services personnalisés. L’utilisateur
peut décider quand et où regarder un contenu, il peut faire une pause, passer une partie et continuer à
regarder le contenu plus tard. Cette flexibilité est l’une des principales forces des services de streaming
de vidéos. Le sentiment de services personnalisés vient de la possibilité pour le fournisseur d’adapter
la qualité de la vidéo transmise selon comment l’utilisateur consomme le média (sur son téléphone
portable ou sur un téléviseur, avec une connexion Internet haut ou bas débit), mais surtout grâce
aux services très efficaces de recommandation de contenus proposés par la plupart des fournisseurs.
L’utilisateur est toujours en mesure de trouver le contenu qu’il aime et de continuer à utiliser la plate-
forme du fournisseur de contenu. Ces fournisseurs de contenu sont des sociétés Over-The-Top (OTT) :
ils diffusent le contenu multimédia directement sur les appareils de leurs clients sans intermédiaire, ce
qui leur permet de collecter des informations précieuses sur leurs utilisateurs.

Les fournisseurs OTT sont capables de diffuser autant de contenu sur Internet grâce aux technologies
de streaming utilisant le principe de débit binaire adaptatif (ABR), principe mis en œuvre dans
les protocoles du type HTTP Adaptive Streaming (HAS). Le seul HAS disposant d’un standard
international est Dynamic Adaptive Streaming over HTTP (DASH). Avec HAS, les fournisseurs de
contenu transmettent les vidéos à leurs clients comme les diffuseurs TV classique (c’est-à-dire le même
contenu pour plusieurs utilisateurs) tout en leur donnant le sentiment de services personnalisés. L’idée
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principale est d’encoder les vidéos en différentes représentations ayant chacune des résolutions et/ou
des débits binaires différents. Chaque représentation est divisée en segments de quelques secondes
(généralement entre 2 s et 3 s). L’appareil des utilisateurs, généralement nommé client, peut décider du
segment à télécharger, en fonction de la bande passante de téléchargement disponible et des ressources
de l’appareil, en envoyant des requêtes HTTP. Le fournisseur de services n’a besoin d’envoyer que le
segment demandé au client avec un serveur HTTP standard et sans aucun traitement dédié. Toutes les
décisions sont prises par le client. Cette technologie peut facilement passer à l’échelle, en évoluant en
fonction du nombre de clients et du nombre de vidéos pour s’adapter aux besoins des utilisateurs.

La dernière décennie a aussi été marquée par la montée de l’intérêt des utilisateurs pour les médias
interactifs, principalement parce que la technologie nécessaire est de plus en plus abordable. Les médias
interactifs sont des contenus multimédias qui peuvent être modifiés activement par un utilisateur pendant
la visualisation. Ils utilisent de nouvelles générations de lecteurs vidéos qui exploitent les capacités
de calcul croissantes des appareils des utilisateurs pour permettre de nouvelles formes d’interactions.
Par exemple, l’utilisateur peut changer la position de la caméra, zoomer à l’intérieur de la vidéo ou
même interagir avec des objets à l’intérieur de la vidéo. De nombreux services OTT utilisent des vidéos
interactives comme par exemple les jeux vidéos dans les nuages (cloud-gaming), les vidéos multi-vues
et les vidéos omnidirectionnelles.

Une vidéo omnidirectionnelle, aussi appelée vidéo sphérique ou vidéo 360°, est une vidéo avec des
pixels capturés dans toutes les directions de l’espace. Lorsqu’un utilisateur regarde une telle vidéo,
seule une petite partie de la vidéo, nommée viewport (ou fenêtre de visualisation en français), est
affichée à l’écran de l’utilisateur. On peut représenter une vidéo omnidirectionnelle par une vidéo sur la
surface intérieure d’une sphère. Pour générer le viewport, une « caméra virtuelle » est positionnée au
centre de la sphère et n’extrait que la partie de la vidéo dans son Champ de Vision (CdV). L’orientation
de la caméra virtuelle est contrôlée par un retour de l’utilisateur : si la vidéo est visionnée à l’aide d’un
Casque de Réalité Virtuel (CRV), le lecteur de vidéo omnidirectionnelle utilise l’orientation de la tête
de l’utilisateur, sinon il utilise les entrées d’un clavier ou d’une télécommande.

Le contenu multimédia en Réalité Virtuelle (RV) vise à offrir aux utilisateurs une sensation
d’immersion élevée. Les utilisateurs doivent avoir l’impression de vivre une expérience réelle : la
barrière entre réalité et virtualité disparaît. Un tel niveau d’immersion ne peut être atteint qu’avec un
haut niveau d’interactivité entre les utilisateurs et le contenu multimédia.

Pour assurer une bonne immersion dans le contenu, la résolution spatiale de la viewport doit être
d’au moins 4096 × 2048 pixels (4K), sinon l’utilisateur peut voir le bord des pixels lorsqu’il utilise un
CRV. Les vendeurs de CRV recommandent que l’ensemble du système puisse réagir au mouvement de
la tête aussi vite que la période de rafraîchissement du CRV pour éviter le mal des simulateurs [87] :
11 ms pour les CRV à 90 Hz. En d’autres termes, le temps de réaction mouvement/photon, c’est à dire
le délai entre un mouvement de la tête et l’affichage de la première vue correspondant à ce mouvement
de tête, doit être inférieur à 11 ms.

Streamer de tels contenus omnidirectionnels sur Internet est un défi. Pour obtenir des viewport
avec une résolution d’affichage 4K, l’ensemble de la vidéo omnidirectionnel doit être équivalente à
une vidéo avec une résolution d’au moins 16 384 × 8192 pixels (16K). La diffusion en continu de
l’ensemble du contenu (une vidéo 16K par œil) à 90 images par seconde avec les technologies de
streaming existantes nécessiterait plus de 150 Mbit s−1 [96], ce qui est bien plus élevé que la vitesse
médiane des connexions d’accès à Internet pour les particuliers (64 Mbit s−1 sur une connexion fixe
aux États-Unis et 22 Mbit s−1 sur une connexion mobile aux États-Unis [122]).

L’objectif de cette thèse est de proposer et d’évaluer les modifications de l’architecture existante de
diffusion OTT et de proposer de nouvelles façons de représenter les vidéos omnidirectionnelles afin de
permettre le streaming de ce type de contenu interactif et immersif sur Internet.
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Depuis que Neumann, Pintaric et Rizzo [90] ont publié en 2000 le premier article introduisant un
système de capture de vidéos « omnidirectionnelles », de nombreux chercheurs ont travaillé sur des
vidéos/images omnidirectionnelles. Mais ce que l’on appelle souvent « vidéo omnidirectionnelle »
ou « vidéo panoramique » dans la littérature n’est pas exactement la même chose que ce que nous
dénotons par vidéo omnidirectionnelle dans cette thèse. Souvent, il s’agit d’un contenu cylindrique,
avec des pixels proches de l’équateur, capturés à 360°, sans pixel près des pôles. Il s’agit d’un contenu
où les utilisateurs ne peuvent tourner que sur eux-mêmes (i. e. rotation en lacet seulement). Dans cette
thèse, on désigne par vidéos panoramiques les vidéos cylindriques à un degré de liberté (1DoF) (voir
Figure 1.2a), et par vidéos omnidirectionnelles les vidéos sphériques à trois degrés de liberté (3DoF)
(voir Figure 1.2b), et nous nous concentrons principalement sur ces dernières.

Avant le début de cette thèse, peu de publications ont étudié le streaming de vidéos
omnidirectionnelles dans le cadre de HAS pour les entreprises OTT, ciblant les CRV. Les travaux
existants peuvent être classés en trois groupes : (i) la diffusion en continu de vidéos panoramiques sur
des écrans de télévision traditionnels, sur des tablettes ou sur d’immenses écrans « omnidirectionnels »
appelés écrans de type CAVE [36, 111], (ii) l’étude des moyens efficaces de calculer les images à
afficher (usuellement appelé faire le rendu du contenu) [8, 9], et (iii) l’étude des nouvelles interactions
possibles entre l’utilisateur et le contenu [99]. Alface, Macq et Verzijp [6] sont les premiers, en 2012,
à étudier le découpage de vidéos omnidirectionnelles en tuiles. Ils modélisent la sélection de la qualité
des tuiles, dans le contexte d’un streaming avec bande passante limitée, en un problème d’optimisation
linéaire en nombres entiers (OLNE). Ils n’ont pas réalisé l’étude avec le codec vidéo à haute efficacité
(HEVC) du Moving Picture Experts Group (MPEG), qui dispose d’une option de tuilage, mais avec le
codec pour image JPEG 2000, qui ne permet pas de faire du tuilage pour le streaming. De plus ils
n’ont pas discuté de l’intégration du système dans des architectures de streaming de type HAS.
Niamut et al. [92] ont été les premiers en 2013 à proposer une architecture de streaming complète pour
diffuser des vidéos panoramiques en streaming. Leur solution ne se concentre pas sur les vidéos
omnidirectionnelles et n’exploite pas les caractéristiques de ces vidéos. Il n’y avait pas vraiment de
consensus au sein de la communauté sur la meilleure façon de préparer le contenu omnidirectionnel
avant la diffusion en continu, et sur la façon dont les technologies existantes peuvent être mises à
niveau pour soutenir un streaming efficace de vidéos omnidirectionnelles en haute qualité. Le but de
cette thèse est de contribuer à combler cette lacune.

Dans cette thèse, nous nous sommes concentrés sur le streaming de vidéos omnidirectionnelles vers
des CRV, dans le contexte des fournisseurs de contenu OTT : Architectures HAS, faible temps de
réaction mouvement/photon et bande passante variable dans le temps. Dans l’état de l’art, on constate
que peu de travaux ont été réalisés sur ce domaine avant 2015. De plus aucun enregistrement publique
de trajectoires d’utilisateurs regardant des vidéos omnidirectionnelles avec un CRV n’existait, rendant
l’étude des comportements des utilisateurs à l’intérieur d’un contenu omnidirectionnel difficile. Nous
discuterons plus en détail de l’état de l’art et des travaux connexe dans le Chapitre 2.

Les objectifs de la thèse sont alors triples :

i. Architecture de streaming : Proposer et évaluer une architecture de streaming compatible avec
HAS et en particulier avec le protocole DASH largement déployé.

ii. Théorique : Proposer une analyse théorique de l’architecture proposée, de la façon de générer les
représentations des vidéos pour cette architecture et de la façon d’évaluer objectivement la qualité
de chaque représentation.

iii. Outils pratiques : Proposer des outils pratiques pour évaluer les différentes propositions et
permettre à la communauté de reproduire les résultats de nos travaux.
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a.3 contributions et organisation du manuscrit

Nous présentons dans ce manuscrit les contributions liées au streaming de vidéos omnidirectionnelles.
Nous avons exploité les caractéristiques du contenu omnidirectionnel pour proposer des solutions de
streaming adaptatives compatibles avec les architectures de streaming OTT actuelles : principalement
avec les architectures de type DASH. Nos contributions dans ce domaine peuvent être classées en
trois groupes, présentés dans la Section précédente et détaillés ci-dessous : (i) Architecture, (ii) Études
théoriques, et (iii) Outils pratiques.

La reproductibilité des travaux de recherche est la pierre angulaire de la science. Pour aider la
communauté à reproduire nos travaux, nous avons publié, avec toutes nos publications, les logiciels, les
scripts et les datasets (ensembles de données) utilisés pour produire les résultats. La seule exception est
lorsque le titulaire des droits d’auteur des données utilisées interdit la publication des données brutes.

Nos contributions liées au streaming de vidéos omnidirectionnels présentées dans ce manuscrit
ne représentent pas tout l’étendu du travail effectué pendant la thèse. La figure 1.3 représente une
chronologie des contributions de la thèse commencée en mars 2015 et terminée en mai 2018. Nous
avons choisi de ne pas parler des contributions liées au filtrage de trame (avec un fond gris clair dans la
Figure) dans le corps de cette thèse pour garder un document cohérent et concis. Les lecteurs de vidéos
modernes sont capables de décoder le flux binaire d’une vidéo encodée même s’il manque des trames.
Les trames manquantes introduisent de la distorsion dans les images de la vidéo décodée (artefacts de
décodage dus à des informations manquantes), mais certaines trames manquantes introduisent plus
de distorsions que d’autres. Dans le contexte du streaming de vidéos avec une faible latence, nous
avons étudié la possibilité de ne pas transmettre certaines des trames qui introduisent peu de distorsion
afin d’atténuer les effets d’une pénurie temporaire de bande passante sur la qualité de la vidéo reçu et
afin d’éviter les mises en pauses. Nous avons appliqué cette idée sur un ordonnanceur multicouche
de trames vidéos pour Multi-Path Transmission Control Protocol (MPTCP), et sur un ordonnanceur
applicatif de trames vidéos utilisant les nouvelles fonctionnalités de HTTP/2. Les lecteurs intéressés
pour en savoir plus sur ces contributions peuvent lire Corbillon et al. [29, 30].

Le manuscrit est structuré comme suit : La partie I contient cette introduction et présente l’état de
l’art, la partie II présente et évalue une architecture de streaming qui s’adapte aux viewports et une
extension possible à la diffusion vidéo à six degrés de liberté (6DoF), la partie III présente quelques
études théoriques sur les vidéos omnidirectionnelles, la partie IV présente quelques outils pratiques
développés pour mieux étudier le streaming qui s’adapte aux viewports, les projections des vidéos
omnidirectionnelles et les comportements des utilisateurs à l’intérieur du contenu 360°, et enfin la
partie V conclut.

Les sous-sections suivantes présentent les contributions qui seront discutées plus en détail dans le
corps du manuscrit.

a.3.1 Architecture de Streaming

Nous proposons une nouvelle architecture de streaming adaptatif, compatible avec les protocoles de
type DASH, pour diffuser des vidéos omnidirectionnelles sur Internet. Nous introduisons le concept de
représentations à qualité spatiale hétérogènes, qui sont des représentations vidéo où la qualité n’est pas
la même partout. Si une vidéo omnidirectionnelle est encodée avec une qualité spatiale hétérogène,
les viewports extraits dans des zones de haute qualité auront moins de distorsion que les viewports
extraits dans des zones de qualité inférieure. Nous avons introduit le concept de Région de Qualité plus
Élevée (RQE), qui est un sous-ensemble connexe de la sphère avec une qualité supérieure à celle des
autres régions sphériques, et le concept de Centre de la Qualité plus Élevée (CQE), qui est le barycentre
de la RQE, pour proposer une architecture de streaming viewport adaptatif, qui s’adapte non seulement
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à la bande passante disponible mais aussi à l’orientation de la tête de l’utilisateur. Ce travail a été publié
dans les actes de la conférence IEEE ICC 2017 [33] et est présenté dans le Chapitre 3.

Cette architecture ne peut qu’offrir 3DoF. En effet, les utilisateurs ne peuvent que tourner leur tête à
l’intérieur du contenu. Ils ne peuvent pas faire de translation. Offrir, à la demande, du contenu avec
6DoF reste un défi parce que ça nécessite soit une énorme ressource informatique dédiée pour chaque
utilisateur (comme ce qui est fait avec les jeux vidéos dans le cloud), soit nécessite l’utilisation de
technologies qui ne sont pas encore matures comme par exemple l’utilisation d’images du champ de
lumière (lightfield images en anglais).

Nous avons étudié une prochaine étape possible pour atteindre une expérience utilisateur avec 6DoF :
les vidéos omnidirectionnelles multi-vues. Il s’agit d’un ensemble de vidéos omnidirectionnelles
synchronisées qui filme la même scène à partir de différents points de vue. L’utilisateur peut se
téléporter d’un point de vue à un autre. Il ne s’agit pas d’un scénario 6DoF complet mais plutôt d’un
scénario 6DoF discret où l’utilisateur peut choisir librement l’orientation de sa tête mais ne peut
se déplacer que vers un sous ensemble fini de position prédéfinie de l’espace. Notre étude discute
différentes possibilités d’implémentation pour streamer de telles vidéos omnidirectionnelle multi-vues,
modélise la stratégie de téléchargement optimale et évalue deux stratégies radicales de téléchargement.
Ce travail a été publié dans les actes de la conférence ACM MMSys’18 [35] et est présenté au
Chapitre 4.

a.3.2 Étude Théorique

Une projection de la sphère vers le plan est généralement utilisée pour permettre aux vidéos
omnidirectionnelles d’être encodées avec des encodeurs conçus pour les vidéos rectangulaires
traditionnelles à deux dimensions (2D). Pour mieux comprendre l’impact de la projection de la sphère
vers le plan sur la qualité des viewports extraits, nous avons étudié la relation entre la densité de pixels
sur la sphère et la distorsion introduite à l’intérieur des viewports. Nous dénotons par échantillonnage
sphérique, ou densité de pixels sur la sphère, le nombre de pixels par unité de surface sur la sphère.
L’approche de l’échantillonnage sphérique est utile pour étudier les projections qui dégradent de
manière continue la qualité de la vidéo. C’est le cas par exemple de « l’offset projection », proposée
par Facebook pour générer une représentation avec un RQE et utilisée dans le cas particulier de la
projection cube-map [73, 162]. Nous généralisons cette transformation à décalage à n’importe quelle
projection. Ce travail est publié dans les actes de la conférence IEEE MMSP’18 [54] et présenté au
Chapitre 5.

Savoir générer des représentations avec une RQE n’est pas suffisant, nous avons ausi besoin d’outils
pour décider automatiquement de la forme et de la position de la RQE. Notre objectif est de modéliser
l’allocation de la RQE indépendamment de la projection de la sphère vers le plan utilisée, en utilisant
les statistiques de visualisation des utilisateurs spécifiques au contenu. Nous modélisons ce problème
en un problème d’allocation de débit binaire d’encodage dans la vidéo sphérique. L’objectif est de
générer n représentations qui respectent une contrainte de débit binaire total, et qui maximisent la
qualité à l’intérieur des viewports générés par les trajectoires des mouvements de tête enregistrées.
Pour réaliser cette allocation, nous avons introduit la notion de débit binaire surfacique. Ce travail a été
publié dans les actes de la conférence ACM MM’17 [54] et est présenté au Chapitre 5.

a.3.3 Outils Pratiques

Afin d’évaluer la performance du streaming viewport adaptatif avec différentes projections sphère vers
plan, de prédire les futures orientations de tête, nous avons développé un logiciel open source capable
de convertir des vidéos omnidirectionnelles d’une projection à l’autre, d’extraire des viewports, de
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Figure A.1 : Illustration de l’architecture de streaming viewport adaptatif. Le serveur prépare

différentes représentations de la même vidéo, avec chacune un région avec une

qualité plus élevée que le reste et avec un débit binaire différent. Un client reçoit une

description des segments disponibles et télécharge ceux, en respectant la contrainte

de débit disponible, qui maximisent la qualité dans les viewport prédit.

rejouer des enregistrements de trajectoires de mouvements de tête et de calculer différentes métriques
objectives de distorsion. Le logiciel est conçu pour permettre l’insertion facile de nouvelles projections
sphère vers plan. Ce logiciel a été utilisé dans la plupart de nos travaux pour évaluer notre proposition
et est disponible pour la communauté sur GitHub [28]. Le chapitre 7 décrit sa conception.

Des enregistrements de la trajectoire du mouvement de la tête d’utilisateurs regardant des vidéos
omnidirectionnelles sont nécessaires pour permettre à la communauté d’évaluer les différentes
propositions de streaming adaptatif, pour comprendre les comportements globaux des utilisateurs dans
le contenu omnidirectionnel et pour développer des algorithmes permettant de prédire les positions
futures de la tête des utilisateurs. Par exemple, le streaming viewport adaptatif suppose que les
mouvements de la tête des utilisateurs peuvent être prédits quelques secondes à l’avance. La définition
d’un petit ensemble de RQE suppose qu’il existe des régions d’intérêt (RdI) bien définies et que la
plupart des utilisateurs se concentrent sur ces régions.

Pour pallier à ce manque, nous avons mesuré les mouvements de tête de 59 utilisateurs regardant
cinq vidéos de 70 s et nous avons publié en libre accès cet ensemble de données. Cet enregistrement
est, avec Wu et al. [145] et Lo et al. [82], l’un des trois premiers datasets publiques de mouvements de
têtes dans les vidéos omnidirectionnelles. Ce dataset a été publié dans les actes de la conférence ACM
MMSys’17 [34] et est décrit au chapitre 8.

a.4 résultats

Dans le Chapitre 3, nous présentons une architecture de streaming viewport adaptatif compatible
avec le protocole de streaming standardisé Dynamic Adaptive Streaming over HTTP (DASH) et avec
les architectures de streaming existantes des fournisseurs de contenu. Notre solution, illustrée par la
Figure A.1, considère que le fournisseur de service est capable de générer plusieurs représentations
d’une vidéo avec les propriétés suivantes : le client peut sélectionner des segments de vidéo de façon
à obtenir une vidéo omnidirectionnelle avec une qualité plus élevée dans une direction que dans les
autres ; le client peut sélectionner le débit binaire du flux téléchargé. Nous avons étudié la possibilité
pour le serveur de générer une RQE en utilisant les faces des objets géométriques à trois dimensions
(3D) utilisées pour projeter la vidéo sphérique en une vidéo plate. Nous avons montré, grâce à un
petit jeu de traces de mouvements de tête dans des vidéos omnidirectionnelles, que (iv) la projection
cube-map est la projection la plus efficace dans notre contexte d’étude, (v) qu’il est suffisant de générer
six représentations au plus, et que (vi) que deux secondes est un bon compromis pour la durée des
segments de la vidéo.
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Figure A.2 : Moyenne du débit binaire surfacique moyen visible dans les viewport des

utilisateurs en fonction dans la quantité totale de bande passante disponible. Les

flèches rouges indiquent les gains comparés à la solution de streaming utilisant une

vidéo encodée avec une qualité uniforme.

Nous avons proposé dans le Chapitre 4 une extension à notre architecture de streaming viewport
adaptatif pour transmettre des vidéos omnidirectionnelles à multiple points de vue (MVP). Une vidéo
omnidirectionnelle MVP est une scène enregistrée à l’aide de plusieurs caméras omnidirectionnelles
synchronisées. Un utilisateurs peut alors choisir de se téléporter d’un point de vue à l’autre en plus de
choisir l’orientation de son viewport. Les téléportations possibles sont définies à l’avance. Nous avons
évalué les solutions optimales de trois stratégies de téléchargement côté client utilisant l’architecture
proposée. Nous avons mis en évidence le compromis fondamental que tout client doit prendre en
considération lors de la planification des segments à télécharger pour maximiser la qualité d’expérience
utilisateur. Notre étude met en évidence les gains obtenus lors de l’utilisation de l’encodage par tuilage
avec contrainte de mouvement (MCTS), montre qu’une stratégie de téléchargement purement proactive
est trop couteuse et que, à l’heure actuel, une stratégie réactive est la meilleure option.

Dans le Chapitre 5 nous étudions l’offset projection introduite par Facebook pour la projection
cube-map. Nous la généralisons à toutes projections et nous introduisons la notion de densité sphérique
de pixel pour estimer la distorsion introduite par la projection dans les viewports. Nous montrons que
la densité sphérique de pixel, dans le contexte de l’offset transformation, est fortement corrélée à la
quantité de distorsion introduite dans les viewports. Notre évaluation montre que le tuilage MCTS est
globalement plus efficace que l’offset transformation en terme de distorsion mais l’offset transformation
permet l’utilisation de vidéos plates avec une faible résolution, autorisant l’usage du codec Advanced
Video Coding (AVC) mieux déployer que HEVC.

Le Chapitre 6 présente un modèle permettant la génération de RQE en générant des vidéos à qualité
spatialement non homogène. Le modèle utilise des statistiques de visionnage des vidéos pour allouer
le débit binaire de manière optimale entre chaque zone de la vidéo. L’objectif est de maximiser les
QoE perçu par un utilisateur utilisant une solution de streaming viewport adaptatif comme décrit dans
le Chapitre 4 tout en minimisant le nombre de représentations nécessaires. Nous démontrons le gain
théorique obtenu en résolvant optimalement ce problème comparé au cas où une vidéo préparée avec
une qualité uniforme est streamée. Les viewports affichés à l’écran des utilisateurs ont un débit binaire
moyen supérieur de 102 % par rapport au débit binaire moyen des viewports extraient depuis la vidéo
à qualité uniforme. Si on stream le contenu avec un débit binaire moyen constant dans les viewport
alors le streaming viewport adaptatif permet de réduire de 45 % la bande passante nécessaire pour le
streaming. La Figure A.2 illustre ces résultats.
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Le Chapitre 7 présente notre logiciel open-source développé pour manipuler les vidéos
omnidirectionnelles. Ce logiciel a été conçu pour faciliter l’ajout par la communauté de nouvelles
projections sphère-vers-plan et pour calculer des métriques de qualité objective sur les vidéos
omnidirectionnelles. Ce logiciel permet d’extraire des viewports et permet de rejouer des
enregistrements de déplacements d’utilisateurs qui regardent des vidéos omnidirectionnelles.

Finalement le Chapitre 8 présente le jeu d’enregistrements d’orientations de tête de 59 utilisateurs
regardant 5 vidéos omnidirectionnelle d’une durée de 70 s. Nous présentons des statistiques associées
à ce dataset. Nous montrons que les statistiques de vitesse de déplacement de tête des utilisateurs
varient selon le contenu de la vidéo, mais que globalement un segment de deux secondes reste un
bon compromis entre l’efficacité de l’encodage et la distance parcouru par l’utilisateur. Notre jeu de
données fait maintenant partie des données officielles utilisées par MPEG, sous le nom de « IMT
Atlantique dataset » pour effectuer les tests de conformité des nouveaux standards.
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R E P RO D U C I B I L I T Y O F R E S U LT S O N M V P O M N I D I R E C T I O NA L V I D E O
S T R E A M I N G

b.1 open software

We release a part of the software and of the dataset used to generate the results on multi-viewpoint
omnidirectional video streaming presented in Chapter 4. In this Annexe, we describe briefly this
software and where you can find it.

b.1.1 Description

The open software is available on Github at the following web address: https://github.com/xmar/
MultiViewpoint360_MMSys18. Readme files and docker containers are available to help the reader
to run the software.

The software is split into two main pieces:

MILP_Multiview contains the C++ implementation of the Mixed Integer Linear Programming
(MILP) presented in Section 4.5, using the IBM ILOG CPLEX Optimization Studio.

reconstruct contains a Python3 1 script that read the output results from the MILP to construct the
bitstream as the client would have received it, and use the user head movement records to extract the
viewport in the original videos and in the reconstruct bitstream to compute distortion metrics.

Docker2 containers are available to run the software, and bash script are available to start the docker
containers with the right shared resources. The docker images are available on docker hub3 with the
tag mmsys18, but the reader can build the images from scratch using the Dockerfiles available in
the repository. The docker images were compiled and tested using docker version 18.03.0-ce on an
Archlinux (4.15.12-1-ARCH x86_64) machine.

The reconstruct script requires docker to run the 360Transformations4 software.

The video dataset is downloaded when running the bash script inside the reconstruct folder. Only
the 34 s of the video are currently available.

The raw head movement and viewpoint switching dataset is available in the folder
rawNavigationTrace.

b.1.2 Docker Installation

It is not mandatory to use docker to run the different pieces of software but we only provide instructions
to use the docker containers.

1 https://docs.python.org/3/
2 https://www.docker.com/
3 https://hub.docker.com
4 https://github.com/xmar/360Transformations/tree/master/transformation
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If docker is not installed on your machine, please follow the instructions to install the docker
Community Edition available on docker official website5. Docker website provides installation
instructions for all major operating systems.

Do not forget to start the docker server before trying to run the containers.

b.1.3 License

The software is released under the MIT license6.

b.1.4 Usage Examples

In this Section we indicates how to run the two pieces of software with docker. It may take a few
hours to run each pieces of software. If you want to build the docker images yourself, please read the
README files in the github repository. In the following we suppose docker is already installed on
running on your machine.

To run the MILP program, open a terminal inside the folder named MILP_Multiview, and run the
bash script named ./runDockerContainer.sh.

To run the viewport extraction program, open a terminal inside the folder named reconstruct, run the
bash script ./buildDockerContainer.sh to build the last layer of the docker images and then run the bash
script ./runDockerContainer.sh.

5 https://docs.docker.com/install/
6 https://opensource.org/licenses/mit-license.php
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O P T I M A L Q UA L I T Y E M P H A S I Z E D R E G I O N F O R V I E W P O RT A DA P T I V E
S T R E A M I N G : B I T- R AT E A L L O C AT I O N

c.1 limits in the optimal bit-rate algorithm

Constraint on maximum and minimum bit-rate. Let set bqer = bmax, which makes that sr · bmax

bit-rate are used for the QER. The remaining bit-rate can be used to the non-QER: bout =
B−(sr ·bmax)

4π−sr
.

We know that bmin 6 bout. So:

bmin 6
B− (sr · bmax)

4π − sr

sr 6
B− 4πbmin

bmax − bmin

Constraint on the quality gap ratio. Let set bqer = bmax and bout be computed from Equation (6.4).
However, for some sr, it can happen that rb · bout is lower than bmax:

rb ·
B− bmax · sr

4π − sr
6 bmax

sr >
4πbmax − rb · B
(1 − rb)bmax

Extra bit-rate assignment. In some cases, the algorithm obtains (at the step 3 in Figure 6.2) some
so-called extra bit-rate, which comes from the quality gap ratio. This extra bit-rate must be assigned to
both the QER and non-QER areas while still maintaining the constraints. Let E be the extra-bit-rate.
Let y be the ratio of the extra bit-rate that is assigned to the non-QER areas. Let bint be an intermediate
surface bit-rate computed as in the step 1 in Figure 6.2. We have:

bout = bint + y · E

4π − sr

bqer = rb · bint + (1 − y) · E

sr

Given that the quality gap ratio is the prevailing constraint in the considered cases, bqer = rb · bout. We
thus obtain:

rb · bint + (1 − y) · E

sr
= rb ·

(

bint + y · E

4π − sr

)

y =
4π − sr

4π+ sr · (rb − 1)
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Titre : Rendre Possible la Transmission via l’Internet des Prochaines Générations de

Vidéos Interactives

Mot clés : Vidéo Omnidirectionelle, Vidéo 360°, Streaming Viewport Adaptif, DASH, HEVC

Résumé : Les vidéos omnidirectionnelles,

également appelées vidéos sphériques ou vidéos

360°, sont des vidéos avec des pixels enregistrés

dans toutes les directions de l’espace. Un

utilisateur qui regarde un tel contenu avec

un Casques de Réalité Virtuelle (CRV) peut

sélectionner la partie de la vidéo à afficher,

usuellement nommée viewport, en bougeant la

tête. Pour se sentir totalement immergé à l’intérieur

du contenu, l’utilisateur a besoin de voir au

moins 90 viewports par seconde en 4K. Avec les

technologies de streaming traditionnelles, fournir

une telle qualité nécessiterait un débit de plus de

100 Mbit s
−1, ce qui est bien trop élevé.

Dans cette thèse, je présente mes

contributions pour rendre possible le streaming de

vidéos omnidirectionnelles hautement immersives

sur l’Internet. On peut distinguer six contributions :

une proposition d’architecture de streaming

viewport adaptatif réutilisant une partie des

technologies existantes ; une extension de cette

architecture pour des vidéos à six degrés de

liberté ; deux études théoriques des vidéos à

qualité spatiale non-homogène ; un logiciel open-

source de manipulation des vidéos 360°; et un jeu

d’enregistrements de déplacements d’utilisateurs

regardant des vidéos 360°.

Title : Enable the Next Generation Interactive Video Streaming

Keywords : Omnidirectional Video, 360°Video, Viewport-Adaptive Streaming, DASH, HEVC

Abstract : Omnidirectional videos, also denoted

as spherical videos or 360° videos, are videos

with pixels recorded from a given viewpoint in

every direction of space. A user watching such

an omnidirectional content with a Head Mounted

Display (HMD) can select the portion of the video

to display, usually denoted as viewport, by moving

her head. To feel high immersion inside the content

a user needs to see viewport with 4K resolution

and 90 Hz frame rate. With traditional streaming

technologies, providing such quality would require

a data rate of more than 100 Mbit s
−1, which is far

too high compared to the median Internet access

bandwidth.

In this dissertation, I present my contributions

to enable the streaming of highly immersive

omnidirectional videos on the Internet. We can

distinguish six contributions : a viewport-adaptive

streaming architecture proposal reusing a part

of existing technologies ; an extension of this

architecture for videos with six degrees of freedom ;

two theoretical studies of videos with non-

homogeneous spatial quality ; an open-source

software for handling 360° videos ; and a dataset

of recorded users’ trajectories while watching 360°

videos.
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