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Introduction (french)

Depuis l’époque de ma thèse ([19]) l’étude, la caractérisation et la simulation des diffusions asymétriques
occupent une place centrale dans ma recherche. Par diffusion asymétrique on entend, dans un contexte
unidimensionnel, un processus qui est solution d’une Équation Différentielle Stochastique (EDS) faisant
intervenir le temps local du processus inconnu, et à coefficients discontinus. Ces EDS avec Temps Local
(EDSTL) sont, dans le cas homogène en temps, de la forme

dXt = σ(Xt)dWt + b(Xt)dt+
∑

1≤i≤I

βi dL
xi
t (X). (0.0.1)

Ici I ∈ N, les xi’s sont des points de R, et Lxi· (X) désigne le temps local symétrique de X au point xi (voir
Frequently used notations). Les coefficients σ et b sont autorisés à être discontinus aux points xi’s. Ce
type d’EDSTL a été étudié par J.-F. Le Gall dans l’article fondateur [43], où sont données des conditions
nécessaires et suffisantes pour qu’elles satisfassent une propriété d’unicité trajectorielle (par exemple,
parmi les hypothèses cruciales, on a le fait que |βi| < 1, 1 ≤ i ≤ I). Comme sous ces conditions on
a aussi l’existence d’une solution faible pour (0.0.1), il y a en conséquence une unique solution forte à
(0.0.1). Notons que, concernant l’étude théorique des telles équations, divers problèmes peuvent encore
faire l’objet de recherches: par exemple on peut étudier ce qui se passe quand les xi’s sont en nombre
infini et présentent un point d’accumulation (voir l’article récent [72], où ce problème est abordé à l’aide
de la théorie des formes de Dirichlet, dans le cas σ ≡ 1, b ≡ 0).

Mais en fait notre intérêt pour les EDSTL est principalement dû à leur lien avec les opérateurs sous
forme divergence à coefficients discontinus. Soient ρ(x), a(x) ≥ m > 0 et b(x) des fonctions de la variable
d’espace, considérons alors l’opérateur elliptique

ρ

2
∇
(
a∇ ·

)
+
(
b−

ρa′x,±
2

)
∇ (0.0.2)

(voir Frequently used notations, pour une définition précise de a′x,±). Si les coefficients (en particulier a)
sont suffisamment réguliers, on peut récrire (0.0.2) sous la forme non-divergence

1

2
σ2 ∆ + b∇ (0.0.3)

avec σ2 = ρa. Alors il est bien connu ([39]) que l’opérateur (0.0.3) - et donc (0.0.2) - est le générateur
infinitésimal d’un processus X qui est solution de

dXt = σ(Xt)dWt + b(Xt)dt. (0.0.4)

Si maintenant les coefficients ne sont pas réguliers (en particulier a est discontinu aux points xi, 1 ≤
i ≤ I), on ne peut pas récrire (0.0.2) sous la forme (0.0.3). Mais (0.0.2) est encore le générateur d’un
processus X et, comparé à (0.0.4), des termes de temps local vont apparâıtre dans la dynamique de X.
Plus précisément, on aura que X est solution de (0.0.1) avec

σ2 = ρa et βi =
a(xi+)− a(xi−)

a(xi+) + a(xi−)
, ∀1 ≤ i ≤ I. (0.0.5)

Notons que dans (0.0.2) le signe ∇ peut désigner soit la dérivée faible, comme par exemple quand on
étudie le problème dans un contexte L2 à l’aide des formes de Dirichlet ([72]), soit la dérivée classique,
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comme quand on travaille avec les semi-groupes de Feller. Notons que ces deux approches nécessitent
de préciser soigneusement le domaine de tels opérateurs, pour garantir que pour toute fonction ϕ dans
ce domaine, la dérivée faible de a∇ϕ existe en tant que fonction.

De plus, si on suppose que les coefficients sont définis par (0.0.5), et que σ et b sont réguliers en dehors
des points de singularité xi, 1 ≤ i ≤ I, on peut établir, via une formule de Feynman-Kac, le lien entre
la solution X de (0.0.1) et la solution classique u(t, x) d’une Équations aux Dérivées Partielles (EDP)
avec conditions de transmission (appelée le problème de Diffraction ou le problème de transmission
parabolique): l’EDP satisfaite par u(t, x) met en jeu l’opérateur (0.0.2), et u(t, x) doit satisfaire à tout
instant t la condition de transmission

a(xi+)u′x(t, xi+) = a(xi−)u′x(t, xi−)

pour tout 1 ≤ i ≤ I. En particulier, ce lien ouvre la voie à un vaste champs d’applications concernant par
exemple la dispersion au franchissement d’interfaces [2], la diffusion en milieu poreux [45], la magnéto-
électroencéphalographie [32] (voir aussi les références données dans [46]).

Pour les preuves concernant - dans le contexte homogène en temps évoqué plus haut - le lien entre
les solutions de (0.0.1), les opérateurs sous la forme (0.0.2), et les solutions d’EDP avec conditions de
transmission, on pourra consulter les articles fondateurs [62][56], les articles de synthèse [46], [71], et la
série de travaux [52], [53], [20], [19], [54], où des schémas numériques sont de plus présentés et étudiés.
Notons que ce type de questions semble toujours susciter un grand intérêt (voir les travaux récents [9],
[17]). Notons que le lien entre EDS et EDP ouvre la voie à l’usage des méthodes de Monte Carlo dans
les problèmes modélisés par ce type d’opérateur.

Durant ma thèse j’ai travaillé à produire des schémas numériques (avec erreur de discrétisation) pour
la simulation des diffusions asymétriques. Ces schémas étaient basés sur des approximations par marches
aléatoires (voir [20, 19] et [24]).

Après ma période de post-doc à Paris (2007-2008), où j’ai eu l’opportunité d’explorer d’autres sujets,
et depuis que je suis mâıtre de conférences à Grenoble, j’ai continué régulièrement à explorer le champ de
recherche constitué par les diffusions asymétriques, en me focalisant maintenant sur d’autres questions
([27, 28, 29, 30]).

Je vais présenter dans les chapitres 1 à 3 la série de travaux [27, 28, 29, 30]. J’ai choisi de présenter
les choses du plus général au plus particulier, et du plus théorique au plus numérique. Notons que de la
sorte, la chronologie des publications (ou des soumissions) ne sera pas respectée. Mais la présentation
sera plus satisfaisante du point de vue mathématique. Dans le chapitre 4, je résumerai plusieurs sujets de
recherche sur lesquels j’ai travaillé ces dernières années, mais qui sont en dehors du champ des diffusions
asymétriques.

Le chapitre 1 présente les résultats et idées du récent preprint [30]. Nous examinons une version
inhomogène en temps de (0.0.1), c’est à dire

dXt = σ(t,Xt)dWt + b(t,Xt)dt+

I∑
i=1

βi(t)dL
xi
t (X) (0.0.6)

(ici on a fait dépendre tous les coefficients du temps, y compris les xi(·)’s qui sont maintenant des courbes
fonctions du temps; voir Frequently used notation pour une définition précise du temps local sur une
courbe). On peut en premier lieu se demander si (0.0.6) a une solution. La réponse est affirmative:
en adaptant la démarche de [43] au cas inhomogène en temps, on montre des résultats d’existence et
d’unicité pour (0.0.6) (on utilise en particulier la récente formule d’Itô- Peskir donnée dans [61], qui est
une généralisation de la formule d’Itô-Tanaka pour des fonctions dépendant du temps). Les conditions
que nous mettons en évidence sur les coefficients sont très similaires à celles requises dans [43] pour le
cas homogène en temps (en particulier on a encore |βi(·)| < 1).

Une fois l’existence d’une solution X à (0.0.6) établie, on cherche un lien entre X et un opérateur
sous la forme (0.0.2), mais cette fois avec des coefficients ρ(t, x), a(t, x), b(t, x) dépendant du temps
(et toujours autorisés à être discontinus). On montre une formule de Feynman-Kac liant X et u(t, x),
la solution classique d’une EDP parabolique avec conditions de transmission. Cette EDP met en jeu
(0.0.2) avec σ2 = ρa, et les a(t, xi(t)+) − a(t, xi(t)−) proportionnel à βi(t) pour tous t, i. La condition
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de transmission est maintenant inhomogène en temps, elle devient

∀1 ≤ i ≤ I, a(t, xi(t)+)u′x(t, xi(t)+) = a(t, xi(t)−)u′x(t, xi(t)−), ∀t ∈ [0, T )

(T sera l’horizon temporel de l’EDP considérée). Bien sûr, pour que cette formule de Feynman-Kac
soit valide, on a besoin de l’existence effective de la solution classique u(t, x). Dans la littérature sur
les EDP que nous avons pu trouver sur le sujet, les choses sont le plus souvent étudiées avec ρ ≡ 1,
et des interfaces ne bougeant pas avec le temps. C’est le cas dans l’article de référence sur le sujet
par Ladyzhenskaya et al. ([40]), qui traite de solutions classiques (et ne se cantonne pas aux solutions
faibles). Ainsi nous avons été conduits à adapter ces résultats d’EDP à notre cas. Ces aspects EDP
représentent une large part du chapitre 1 (cependant, pour un grand nombre de résultats techniques on
se référera à [30]). Finalement on utilise ces résultats d’EDP pour caractériser X en tant que processus
de Markov inhomogène en temps (section 1.7).

Mais l’équation générale (0.0.6) n’est pas la première EDSTL inhomogène en temps que nous avions
rencontrée et traitée. Dans un de nos précédents articles [27] nous avons examiné le type le plus simple
d’EDSTL inhomogène en temps:

dBβt = dWt + β(t)dL0
t (B

β).

On appelle Bβ le Inhomogeneous Skew Brownian Motion (ISBM). Le ISBM apparait pour la première
fois dans un article de S. Weinryb ([78]) où un résultat d’unicité trajectorielle est prouvé, sous la seule
hypothèse que β est une fonction mesurable à valeurs dans [−1, 1]. Mais la question de l’existence ne
paraissait pas avoir été abordée, de sorte que dans [27] nous avions travaillé à lui fournir une réponse
positive, en même temps que nous travaillions à décrire certaines lois relatives à Bβ (voir aussi [14]).
Soulignons que l’esprit de [27] était assez différent de celui de [30]. En fait, Bβ se comporte le plus souvent
comme un mouvement brownien, mais il est de temps en temps perturbé par le terme de temps local.
Ainsi, on peut exploiter beaucoup de lois connus concernant le mouvement brownien, pour étudier Bβ .
Soulignons qu’on obtient un résultat d’existence pour β non régulier, ce qui est en dehors des résultats
fournis par le chapitre 1. Mais à un certain moment (début de la sous-section 2.5.2) les résultats du
chapitre 1 serviront d’ingrédient de base (voir cependant remarque 2.5.3). Ainsi dans le chapitre 2 on
cherche à récrire et résumer [27] à le lumière du chapitre 1. On insiste sur ce qui n’est pas contenu dans
le chapitre 1, et on ne reproduit pas ce qui pourrait être redondant avec ce chapitre, ainsi que certaines
preuves très techniques pour lesquelles on renvoie à [27]. Parmi les lois explicites que nous sommes
capables de donner figurent la densité de probabilité de transition de Bβ , et la tri-densité de Bβ , son
temps local time, et son dernier temps de sortie du point zéro.

Comme dit précédemment, une de mes préoccupations concernant les diffusions asymétriques est
de simuler leurs trajectoires. Revenons au cas homogène en temps (c’est en partie parce que les
travaux[28][29] dont il va être question maintenant ont été faits avant [30]; bien sûr on pourrait se
demander maintenant ce qu’on pourrait faire pour la simulation d’EDSTL inhomogènes en temps...).
Examinons un version très simple de l’équation (0.0.1),

dXβ
t = dWt + b(Xβ

t )dt+ βdL0
t (X

β). (0.0.7)

Ici le coefficient de dérive b est autorisé à avoir une discontinuité, au point zéro, le point où est pris
l’unique temps local dans l’EDS. On peut se demander s’il est possible de simuler exactement les trajec-
toires de Xβ solution de (0.0.7), dans l’esprit de Beskos et al. pour le cas C1 et β = 0 (cf [8] [6]).

Dans le chapitre 3 on a cherché à présenter dans un même cadre les deux articles [28][29] que nous
avons écrits sur le sujet ([28] traite du cas β 6= 0 et [29] traite du cas β = 0).

L’idée de Beskos et al. repose sur le fait que la loi de X solution de dXt = dWt + b(Xt)dt est
absolument continue par rapport à celle du mouvement brownien, avec une densité de type Girsanov
qui peut être rendue explicite (pour ces auteurs b est de classe C1). Grâce à des changements de
probabilité supplémentaires, Beskos et al. réussissent finalement à simuler exactement les trajectoires de
X en acceptant/rejetant des trajectoires de pont brownien (ils utilisent une fonction de rejet ad hoc, qui
dépend de b).

Examinons (0.0.7) avec β 6= 0. Notre premier problème pour adapter la méthodologie de Beskos et
al. est que la loi de Xβ n’est plus absolument continue par rapport à celle du brownien (cf Théorème
2.4 dans [43]). Cependant, dans [28], nous avons réussi dans un premier temps à calculer la densité de
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le loi de Xβ , β 6= 0, par rapport à celle de Bβ,µ solution de

dBβ,µt = dWt + µβ dt+ βdL0
t (B

β,µ)

(dans notre méthodologie µβ depend de b et β). Dans un second temps nous calculons la densité de
transition de Bβ,µ (on généralise ainsi un résultat de [75]). Ainsi, on peut appliquer la méthode de
Beskos et al., en utilisant une fonction de rejet similaire, et des ponts du processus Bβ,µ au lieu de ponts
browniens.

Dans [29] nous avons examiné le cas β = 0 dans (0.0.7) (mais avec b toujours discontinu). Cette
fois la loi de X0 est absolument continue par rapport à celle du brownien, mais la densité n’est pas
facilement exploitable. En effet, en raison de la discontinuité de b au point zéro, un terme de temps
local apparait dans cette densité. Nous avons choisi de contourner le problème en regardant le cas β = 0
comme limite du cas β 6= 0 pour β ↓ 0 (ainsi cette approche est très différente de celle du très récent
article [60]). Grâce à des propriétés de consistance des EDSTL (cf [43]), la solution de (0.0.7) converge
en loi, quand β ↓ 0, vers la solution de dX0

t = dWt + b(X0
t )dt. Le miracle calculatoire que nous avons

observé est que cette convergence a lieu aussi au niveau des algorithmes utilisés pour β 6= 0 (par exemple
les fonctions de rejet utilisées pour β 6= 0 tendent vers des fonctions limites). Il nous reste ainsi à prouver
mathématiquement que l’algorithme limite mis en évidence est bien un algorithme de simulation exacte
pour dX0

t = dWt + b(X0
t )dt.

Dans le chapitre 4, j’ai choisi trois autres sujets de recherche sur lesquels j’ai travaillé durant les
dernières années, et j’en ai fait une présentation rapide et synthétique. Ils sont en dehors du cadre des
diffusions asymétriques, mais représentent une expérience significative pour moi, car ils m’ont permis de
découvrir d’autres champs de recherche.

Au cours de ma période de post-doc (janvier 2007-août 2008) j’ai eu l’occasion de travailler sur des
méthodes de réduction de variance pour les méthodes de Monte Carlo appliquées à la finance. Plus
précisément sur la méthode dite de stratification. Cette méthode, pour amener une bonne réduction de
variance, nécessite de bien choisir les strates utilisées, ainsi que la politique d’allocation des tirages de
Monte Carlo à effectuer dans ces states. Ce choix peut se faire de façon adaptative: cette problématique
a fait l’objet des articles [23] et [21] (ils n’étaient pas publiés au moment de ma prise de poste MCF,
c’est pourquoi je crois bon de les mentionner).

Au LJK de 2009 à 2010 j’ai eu l’occasion de travailler avec Emmanuel Gobet sur des méthodes de
développement limité stochastique pour le calcul de prix d’options versant des dividendes discrets ([22]).
L’idée est de faire un développement autour du modèle de Black-Scholes (BS) 1D à coefficients constants,
pour lequel le prix explicite PBS est connu. Le prix d’intérêt apparait alors comme la somme de PBS et
de termes correctifs faisant intervenir les grecques dans le modèle de BS, elles aussi connues explicitement.
On obtient ainsi une méthode de calcul sans simulations Monte Carlo. Les preuves de convergence font
appel au calcul de Malliavin.

De septembre 2012 à septembre 2015 j’ai co-encadré au LJK la thèse de Ester Mariucci (à 50 %
avec Sana Louhichi). Cette thèse portait sur l’équivalence au sens de Le Cam d’expériences statistiques
mettant en jeu des processus de diverses natures (processus de Lévy, processus de diffusion, ...). On
dit que deux expériences statistiques P et Q, portant sur le même paramètre f , sont équivalentes, si le
risque de se tromper sur l’estimation de f dans l’expérience P, est contrôlé par celui dans l’expérience Q,
et vice-versa (cf [50]). Un de nos premiers résultats dans cette direction a été [25] (unpublished note).
De plus, pour prouver une telle équivalence, un des outils est le contrôle de la distance entre deux lois le
probabilités (type distance L1, distance de Kullback-Leibler etc...). L’article [26] établit un tel contrôle
pour les lois de processus additifs avec mesure de Lévy homogène en temps (c’est à dire que ces processus
ressemblent à des processus de Lévy, mais on a autorisé la dérive et le coefficient de diffusion à dépendre
du temps). Les techniques de preuves font appel notamment à des changements de probabilités de type
Girsanov et Esscher. Notons que Ester Mariucci a continué à utiliser ce type de calculs dans sa thèse et
ses articles, notamment [49][51].
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Introduction (english)

Since the time of my PhD thesis ([19]) the study, characterization and simulation of asymmetric diffusions,
has been at the very center of my research. By asymmetric diffusion we mean, in a one-dimensional
context, a process which is the solution of a Stochastic Differential Equation (SDE) that involves the
local time of the process itself, and that is with discontinuous coefficients. These SDEs with Local Time
(SDELTs) are, in the time-homogeneous case, of the form

dXt = σ(Xt)dWt + b(Xt)dt+
∑

1≤i≤I

βi dL
xi
t (X). (0.0.8)

Here I ∈ N, the xi’s are points of R, and Lxi· (X) stands for the symmetric local time process of X at
point xi (see Frequently used notations). The coefficients σ and b are allowed to be discontinuous at
the points xi’s. This kind of SDELT has been studied by J.-F. Le Gall in the seminal paper [43], where
necessary and sufficient conditions for its pathwise uniqueness property are given (for example, among
the crucial assumptions, is the fact that |βi| < 1, 1 ≤ i ≤ I). As under these conditions a weak solution
also exists to (0.0.8), there is consequently a unique strong solution to (0.0.8). Note that, concerning the
theory of such equations, various issues can still be addressed: for example one may study what happens
when the xi’s are in infinite number, and present accumulation points (see the recent paper [72], where
this problem is addressed with the help of Dirichlet forms, in the case σ ≡ 1, b ≡ 0).

But in fact our interest in SDELTs is mainly motivated by their link with divergence form operators
with discontinuous coefficients. Let ρ(x), a(x) ≥ m > 0 and b(x) be functions of the space variable, and
consider the elliptic operator

ρ

2
∇
(
a∇ ·

)
+
(
b−

ρa′x,±
2

)
∇ (0.0.9)

(see Frequently used notations, for a precise definition of a′x,±). If the coefficients (in particular a) are
smooth enough we can rewrite (0.0.9) in the non-divergence form

1

2
σ2 ∆ + b∇ (0.0.10)

with σ2 = ρa. Then it is well known ([39]) that the operator (0.0.10) - and thus (0.0.9) - is the infinitesimal
generator of a process X that solves

dXt = σ(Xt)dWt + b(Xt)dt. (0.0.11)

If now the coefficients are not smooth (in particular a is discontinuous at points xi, 1 ≤ i ≤ I), we cannot
rewrite (0.0.9) in (0.0.10). But (0.0.9) is still the generator of a process X and, compared to (0.0.11),
local time terms will appear in the dynamic of X. More precisely, we will have that X solves (0.0.8) with

σ2 = ρa and βi =
a(xi+)− a(xi−)

a(xi+) + a(xi−)
, ∀1 ≤ i ≤ I. (0.0.12)

Note that in (0.0.9) the ∇-sign can stand either for the weak derivative, for example when one studies
the problem in a L2-context with the help of Dirichlet forms ([72]), or for the classical derivative, when
one works with Feller semigroups. Note that both approaches require to carefully specify the domain of
the operator, guaranteeing that for any function ϕ in this domain, the weak derivative of a∇ϕ exists as
a function.
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Further, assuming the coefficients are defined by (0.0.12), and σ and b are smooth outside the points of
singularity xi, 1 ≤ i ≤ I, one can establish, via a Feynman-Kac formula, the link between the solution X
of (0.0.8) and the classical solution u(t, x) of some parabolic Partial Differential Equation (PDE) with
transmission conditions (the so-called Diffraction or transmission parabolic problem): the PDE satisfied
by u(t, x) involves the operator (0.0.9), and u(t, x) has to satisfy at any time t the transmission condition

a(xi+)u′x(t, xi+) = a(xi−)u′x(t, xi−)

for any 1 ≤ i ≤ I. In particular, this link opens an extended broadcast of applications such as dispersion
across interfaces [2], diffusions in porous media [45], magneto-electroencephalography [32] (see also [46]
and the references therein).

For proofs stating - in this time-homogeneous context - the link between solutions of (0.0.8), operators
of the form (0.0.9), and solutions of PDE involving transmission conditions, one may refer to the seminal
papers [62][56], the overviews [46], [71], and also to the series of works [52], [53], [20], [19], [54], where
numerical schemes are presented and studied. Note that this kind of questions still seems to rise a lot
of interest (see the recent papers [9], [17]). Note that the link between SDE and PDE aspects opens the
way to the use of Monte Carlo methods in models described by such operators.

During my PhD thesis I aimed at producing numerical schemes (with discretization error) for the
simulation of asymmetric diffusions. These schemes are based on random walk approximations (see the
mentioned references [20, 19] and [24]).

After my period of post-doc in Paris (2007-2008), where I explored other topics, and since I am an
assistant professor at Grenoble University, I have regularly continued to explore the world of asymmetric
diffusions, focusing now on other questions ([27, 28, 29, 30]).

I will present from Chapter 1 to Chapter 3 the series of work [27, 28, 29, 30]. I have chosen to present
things from the more general to the more particular, and from the more theoretical to the more numerical.
Note that by doing so, the chronology of the publications (or submission) will not be respected, but the
presentation will be more satisfying from a mathematical point of vue. In Chapter 4, I will sum up a
selection of several research topics I have worked on in the past years, but that have nothing to do with
asymmetric diffusions.

Chapter 1 presents the results and ideas of the recent preprint [30]. Here we have a look at a
time-inhomogeneous version of (0.0.8), namely

dXt = σ(t,Xt)dWt + b(t,Xt)dt+

I∑
i=1

βi(t)dL
xi
t (X) (0.0.13)

(here everything depends on time, even the xi(·)’s that are now time-curves; see Frequently used notation
for a definition of the local time on a curve). One can first wonder if (0.0.13) has a solution. The answer
is essentially affirmative: by adapting the methodology of [43] to the time-inhomogeneous case, we show
existence and uniqueness results for (0.0.13) (we use in particular the recent Itô- Peskir formula given in
[61], which is a generalization of the Itô-Tanaka formula to time-dependent functions). Our conditions
on the coefficients are very similar to those required in [43] for the time-homogeneous case (in particular
we have again |βi(·)| < 1).

Once the existence of a solution X to (0.0.13) is established, one seeks for a link between X and
an operator of the form (0.0.9), but this time with time-dependent (and still possibly discontinuous)
coefficients ρ(t, x), a(t, x), b(t, x). We show a Feynman-Kac formula linking X and u(t, x) the classical
solution of a parabolic PDE with transmission conditions. This PDE involves (0.0.9) with σ2 = ρa,
and the a(t, xi(t)+) − a(t, xi(t)−) proportional to βi(t) for all t, i. The transmission condition is now
time-inhomogeneous, it is

∀1 ≤ i ≤ I, a(t, xi(t)+)u′x(t, xi(t)+) = a(t, xi(t)−)u′x(t, xi(t)−), ∀t ∈ [0, T )

(T will be the finite horizon of the PDE problem). Of course to ensure the validity of the Feynman-Kac
formula, we need this classical solution u(t, x) to exist. In the PDE litterature we could find on the
subject, things are studied mostly with ρ ≡ 1, and with non-moving interfaces. That is the case with the
reference paper on the subject by Ladyzhenskaya et al. ([40]), that deals with classical solutions (and not
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only weak ones). We were thus led to adapt these PDE results to our case. These PDE aspects represent
a large part of Chapter 1 (however, for a lot of technical proofs we will refer to [30]). Finally we use
these PDE results in order to characterize X as a time-inhomogeneous Markov process (Section 1.7).

But the general equation (0.0.13) is not the first inhomogeneous SDELT we have dealt with. In one
of our previous paper [27] we have examined to most simple type of time-inhomogeneous SDELT, namely

dBβt = dWt + β(t)dL0
t (B

β).

We call Bβ the Inhomogeneous Skew Brownian Motion (ISBM). The ISBM appears in a seminal paper
by S. Weinryb ([78]) where a pathwise uniqueness result is proved, under the sole assumption that β is a
Borel function taking values in [−1, 1]. But the question of existence seemed not to have been addressed,
so that in [27] we worked at providing a positive answer, at the same time we were working at describing
some laws related to Bβ (see also [14]). We stress that the spirit of [27] was rather different than the
one of [30]. In fact Bβ behaves mostly like a Brownian motion, except that it is sometimes perturbed
by the local time term. Thus we can exploit a lot of known explicit laws about the Brownian motion,
in order to study Bβ . We stress that we get an existence result for a non smooth coefficient β, which is
outside the results provided in Chapter 1. But at some point (beginning of Subsection 2.5.2) the results
of Chapter 1 will serve as a basic ingredient (see however Remark 2.5.3). Thus in Chapter 2 we have
aimed at rewriting and summing up [27], in the light of Chapter 1. We insist on what is not contained in
Chapter 1, and drop what could be redundant with this chapter, along with some very technical proofs
for which we refer to [27]. Among the explicit laws we are able to give are the transition function of Bβ ,
and the trivariate density of Bβ , its local time and its last exit time from point zero.

As previously said, one of my preoccupations about asymmetric diffusions is to simulate their paths.
Let us come back to the time-homogeneous case (this is partly because the works [28][29] we will deal
with now have been made before [30]; one could wonder now what could be done about simulation of
time-inhomogeneous SDELTs...). Let us examine a very simple equation of the type (0.0.8),

dXβ
t = dWt + b(Xβ

t )dt+ βdL0
t (X

β). (0.0.14)

Here the drift component b is allowed to have one discontinuity, at point zero, the point where is taken
the unique local time in the SDE. One can wonder if it is possible to simulate exactly the paths of Xβ

solution of (0.0.14), in the spirit of the work by Beskos et al. for the case of a drift of class C1 and β = 0
(cf [8] [6]).

In Chapter 3 we have aimed at presenting in the same framework the two papers [28][29] we have
written to address this question ([28] deals with the case β 6= 0 and [29] deals with the case β = 0).

The idea of Beskos et al. relies on the fact that the law of X solution of dXt = dWt + b(Xt)dt is
absolutely continuous w.r.t. the one of Brownian motion, with a Girsanov type density that can be made
explicit (for them b is of class C1). Thanks to additional changes of probability, Beskos et al. finally
manage to simulate exactly the paths of X by accepting/rejecting Brownian bridge paths (they use an
ad hoc rejection function, depending on b).

Let us examine (0.0.14) with β 6= 0. Our first problem in order to adapt the methodology of Beskos
et al. is that the law of Xβ is no more absolutely continuous w.r.t. the one of Brownian motion (cf
Theorem 2.4 in [43]). However, in [28], we manage in a first time to compute the density of the law
of Xβ , β 6= 0, w.r.t. the one of Bβ,µ solution of

dBβ,µt = dWt + µβ dt+ βdL0
t (B

β,µ)

(in our methodology µβ depends on b and β). In a second time we compute the density of Bβ,µ (we thus
generalize a result of [75]). Thus, we can apply the method of Beskos et al., by using a similar rejection
function but bridges of Bβ,µ instead of Brownian bridges.

In [29] we have examined the case β = 0 in (0.0.14) (but b still discontinuous). This time the law
of X0 is absolutely continuous w.r.t. the one of Brownian motion, but with a density that is not much
tractable. Indeed because of the discontinuity of b at point zero, a local time term appears in this
density. We have chosen to avoid this problem by seeing the case β = 0 as the limit of the case β 6= 0 for
β ↓ 0 (thus this approach is different from the one of the very recent paper [60]). Thanks to consistency
properties of SDELTs (cf [43]), the solution of (0.0.14) converges in law, as β ↓ 0, to the solution of
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dX0
t = dWt + b(X0

t )dt. The computational miracle that we have observed is that this convergence also
occurs at the level of algorithms used for β 6= 0 (for instance the rejection functions used for β 6= 0 tend
to some limit functions). Then we prove mathematically that the exhibited Limit algorithm is indeed
an exact simulation algorithm for dX0

t = dWt + b(X0
t )dt.

In Chapter 4, I have chosen to present shortly three research topics I have worked on during the past
years, that are outside the field of asymmetric diffusions. But they represent a significative experience
for me, as they have allowed me to discover other fields of research.

During my postdoc period (2007-2008, CERMICS-ENPC then CMAP-École Polytechnique) I had the
opportunity to work on variance reduction methods for Monte Carlo computations applied to Finance.
More precisely on the method called stratification. This method, in order to yield a significant variance
reduction, requires a smart choice of the strata, and of the amount of Monte Carlo drawings to be done
in these strata. This choice can be done in an adaptive way: these issues have been addressed in the
papers [23] and [21].

At LJK (Grenoble) from 2009 to 2010 I had the opportunity to work with Emmanuel Gobet on
stochastic expansion methods for the pricing of options paying discrete dividends ([22]). The idea is to
perform the expansion around the Black-Scholes (BS) 1D model with constant coefficients, for which the
explicit price PBS is known. The price of interest appears then as the sum of PBS and of corrective
terms involving greeks in the BS model, for which closed explicit formulae are also available. One thus
obtains a computation method without any Monte Carlo simulation. The proofs for convergence require
Malliavin Calculus.

From september 2012 to september 2015 I have co-advised the PhD of Ester Mariucci (at 50 % with
Pr. Sana Louhichi). This PhD was on the equivalence in the Le Cam sense of statistical experiences
involving processes of various kind (Lévy processes, diffusion processes, ...). One says that two statistical
experiences P et Q, with the same parameter to estimate f , are equivalent, if the risk to be wrong on
the estimation of f in experience P, is controlled by the one in experience Q, and vice-versa (cf [50]).
One of our first results in this direction has been [25] (unpublished note). Besides, in order to prove
such an equivalence, one of the tools is the control of the distance between two probability measures
(L1-type distance, distance of Kullback-Leibler etc...). The paper [26] establishes such a control, for the
laws of additive processes with a time-homogeneous Lévy measure (that is to say these processes are
somehow similar to Lévy processes, but the drift and diffusion terms are allowed to depend on time).
The proofs require Girsanov and Esscher type changes of probability measure. Note that Ester Mariucci
has continued to use this type of computations in her thesis and articles, in particular [49][51].
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Frequently used notations

We denote by D the space of R-valued functions of [0, T ], T < ∞, that are right-continuous with left
limits (r.c.l.l.). It will be equipped with the σ-field D endowed by the Skorokhod norm, so that (D,D)
is the usual Skorokhod space.

We denote by (C, C) the space of R-valued continuous functions of [0, T ], T <∞, equipped with the
σ-field C endowed by the supremum norm.

We will denote ω = (ωt)t∈[0,T ] the canonical (coordinate) process defined on (C, C). That is to
say we denote ω = (ωt)t∈[0,T ] the usual canonical process Y = (Yt)t∈[0,T ] defined on (C, C) simply by
Y·(ω) = ω, ∀w ∈ C (i.e. Yt(ω) = ωt, ∀ω ∈ Ω,∀t ∈ [0, T ]). We claim that this will be clear from the
context if ω denotes the canonical process or an element of C, so that this notation brings simplicity and
clarity.

We denote (Ct) the canonical filtration (in fact the natural filtration of the canonical process ω, that
has been modified in order to verify the usual conditions).

Instead of [0, T ] we will sometimes work with [0,∞), keeping the same notations. This will be clear
from the context.

In Subsection 2.5.2 we will shortly consider the coordinate process ω̃ = (ω̃t)t≥0 defined in the same
spirit on

(
R[0,∞),B(R[0,∞))

)
(see [39] Section 2.2).

For any semi-martingale X the process L0
. (X) = (L0

t (X))t∈[0,T ] is the symmetric local time at point 0
of X. And for any continuous function of bounded variation γ : [0, T ] → R we denote by Lγ. (X) the
process defined by

Lγt (X) = L0
t (X − γ), ∀t ∈ [0, T ].

So that

∀t ∈ [0, T ], Lγt (X) = P− lim
ε↓0

1

2ε

∫ t

0

1|Xs−γ(s)|<ε d〈X〉s,

(see [64], Exercise VI-1-25, and [61]).

For any topological spaces U, V we denote by C(U) the set of continuous R-valued functions on U ,
and by C(U, V ) the set of continuous functions from U to V .

Cb(U) denotes the set of continuous bounded functions on U .
Cp(U), p ∈ N̄, denotes the set of continuous functions on U with continuous derivatives up to order p.

C0(R) denotes the set on continuous functions on R vanishing at infinity.

In the following notations an interval [0, T ] ⊂ R+ is given and kept fixed (with 0 < T <∞).
We denote E = [0, T ]× R and E◦ = [0, T )× R.

Let F ⊂ E an open subset of E. We denote by Cp,q(F ) the set of continuous functions on F , with
continuous derivatives up to order p in the time variable, and up to order q in the space variable (with
the convention that for example q = 0 corresponds to the continuity w.r.t. the space variable).

We denote by C0(E) the space of R-valued continuous functions of E, vanishing at infinity, i.e. when
|x| → ∞, (t, x) ∈ E. We will denote this space C0 in short when this causes no ambiguity. The spaces
C0(R) and C0(E) are endowed with the corresponding supremum norm, for which we use the common
notation || · ||∞ (which norm is meant will be made clear from the context ).

We denote by C∞,∞c (E) the set of R-valued functions of E that are C∞,∞(E), and of compact support
with respect to the space variable (i.e. for f ∈ C∞,∞c (E), for any t ∈ [0, T ], the function f(t, ·) is of
compact support).
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We denote by C∞,∞c,c (E) the set of R-valued functions of E that are in C∞,∞(E), and of compact
support K ⊂ (0, T )× R.

For a function in L2(R) we denote by df
dx its first derivative in the distribution sense. We denote by

H1(R) the usual Sobolev space of those functions f in L2(R) such that df
dx belongs to L2(R). We denote

by H−1(R) the usual dual space of H1(R).
We denote L2(0, T ;L2(R)) the set of measurable functions f(t, x) s.t.∫ T

0

∫
R
|f(t, x)|2dxdt <∞.

For f ∈ L2(0, T ;L2(R)) we denote by ||f ||2 the above quantity.
We denote by L2(0, T ;H1(R)) the set of mesurable functions f(t, x) such that for any t ∈ [0, T ] the

function f(t, ·) is in H1(R) and∫ T

0

∫
R
|f(t, x)|2dxdt+

∫ T

0

∫
R

∣∣df
dx

(t, x)
∣∣2dxdt <∞.

For a function f ∈ L2(0, T ;L2(R)) we denote by df
dt its first derivative with respect to time in the

distribution sense (see Remark 1.6.7 for some details).
We will denote byH1,1(E) the set of functions in L2(0, T ;H1(R)) such that df

dt belongs to L2(0, T ;L2(R)).

It is equipped with the norm f 7→
(
||f ||2 +

∣∣∣∣df
dx

∣∣∣∣2 +
∣∣∣∣df

dt

∣∣∣∣2)1/2

.

Finally we will denote by H1,1
0 (E) the closure in H1,1(E) of C∞,∞c,c (E) with respect to the just above

defined norm. Note that for ϕ ∈ H1,1
0 (E) we have ϕ(0, ·) = ϕ(T, ·) = 0, and lim|x|→∞ ϕ(t, x) = 0,

t ∈ [0, T ].
For 0 < m < M < ∞ we denote by Θ(m,M) the set of functions σ : [0, T ] × R → [m,M ] that are

measurable. We denote by Ξ(M) the set of functions b : [0, T ]× R→ [−M,M ] that are measurable.

For any function f : R→ R and any x ∈ R such that f(x+) = limy↓x f(y) and f(x−) = limy↑x f(y)
both exist, we will sometimes use the following notations :

f±(x) :=
f(x+) + f(x−)

2
and M f(x) =

f(x+)− f(x−)

2
.

In particular if f : R → R is differentiable, except on a finite number of points x1 < . . . < xI , where
f ′(xi±), 1 ≤ i ≤ I exist, note that the function f ′± is defined on the whole real line and represents the
absolute part of f ′(dx), the derivative of f in the generalized sense; in other words,

f ′(dx) = f ′±(x)dx+

I∑
i=1

2 M f(xi)δxi(dx).
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Chapter 1

Time inhomogeneous Stochastic
Differential Equations involving the
local time of the unknown process,
and associated parabolic operators

This Chapter is based on the paper Time inhomogeneous Stochastic Differential Equations involving
the local time of the unknown process, and associated parabolic operators ([30]), written with Miguel
Martinez.

1.1 Introduction

In this chapter we investigate time-inhomogeneous versions of SDEs with local time, namely equations
of the form

dXt = σ(t,Xt)dWt + b(t,Xt)dt+

I∑
i=1

βi(t)dL
xi
t (X), t ∈ [0, T ], X0 = x0. (1.1.1)

Here the generalization is three fold : first the coefficients σ and b are now allowed to depend on time,
second the coefficients βi are no longer constant but are also allowed to depend on time, and third
the functions xi : t 7→ xi(t) are now time-curves, so that (Lxit (X))t∈[0,T ] stands for the (symmetric)
local time of the unknown process (Xt)t∈[0,T ] along the time-curve xi (we recall that for any continuous
function of bounded variation γ : [0, T ]→ R we denote by Lγ. (X) = L0

· (X − γ)).
Then we establish the link between X solution of (1.1.1) and the solution of some parabolic PDE

with (time-inhomogeneous) transmission conditions, for which we give our proper treatment (but relying
deeply on [40] for the study of classical solutions). This PDE will imply operators of the form

ρ

2
∇
(
a∇ ·

)
+
(
b−

ρa′x,±
2

)
∇ (1.1.2)

with in particular ρa = σ2 and a(t, xi(t)+)− a(t, xi(t)−) proportional to βi(t) for any 1 ≤ i ≤ I and any
t ∈ [0, T ]. Then we exploit these results in order to characterize X as a (time-inhomogeneous) Markov
process.

Organization of the chapter. In Section 1.3, we give preliminary material for the study of equation
(1.1.1). This includes, results on the related martingale problem, recalls on some pathwise uniqueness
results to be found in [43] (available in a time-inhomogeneous context), and a slight adaptation of the Itô-
Peskir formula (in the case where the curves are C1 functions). Since we aim at studying the generator
of the solutions of equation (1.1.1), we also give introductory material to the semigroups associated to
time inhomogeneous Markov processes and Feller evolution systems.
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In Section 1.4 we use the result of Peskir ([61]) to prove a change of variable formula, that will be of
crucial use in the rest of the chapter. Then we give conditions for the equation (1.1.1) to admit a weak
or strong solution, to enjoy pathwise uniqueness. The method follows closely Le Gall [43] by means of a
space transform.

Section 1.5 is devoted to the proof of the Feynman-Kac representation linking the solution of (1.1.1)
and the solution of a parabolic partial differential equation with transmission conditions along the curves
xi’s. It is assumed that the solution of the parabolic PDE with transmission conditions is smooth enough
in order to apply the change of variable formula of Section 1.4.

Section 1.6 is naturally devoted to the study of the parabolic PDE with transmission conditions
appearing in the previous section. This PDE involves (1.1.2), once it has been rewritten in a divergence-
form fashion. We first study the weak interpretation of the PDE and manage to show, by adapting the
arguments in [48], that a weak solution exists. As regarding classical solutions, we rely on the main result
of the reference article [40], where ρ ≡ 1 and the sub-domains are cylindrical. Again, using the one-
dimensional context of the equation, it is possible to generalize the result to the solution of the parabolic
PDE with transmissions conditions, with ρ 6= 1 and several moving interfaces. Thus, the solution of the
parabolic PDE with transmission conditions is smooth enough to assert the validity of the Feynman-Kac
representation given in the previous section (see the conclusion at the end of Section 1.6).

Section 1.7 is an attempt to characterize the Markov generator of (Xt)t∈[0,T ] solution of (1.1.1). We
manage to do it fully in the case of non-moving interfaces. The case of moving interfaces seems more
difficult to handle since we do no longer have the continuity of the time derivative of the associated
parabolic transmission problem.

Some notations specific to the chapter are introduced in the next section.

1.2 Notations

Let I ∈ N∗. For each 1 ≤ i ≤ I, let xi : [0, T ] → R be a continuous function of bounded variation, and
assume that xi(t) < xj(t) for all t ∈ [0, T ] and all 1 ≤ i < j ≤ I.

Given such a family (xi)
I
i=1 we will denote Dx

0 = {(t, z) ∈ [0, T ] × R : z < x1(t)}, Dx
I = {(t, z) ∈

[0, T ]× R : z > xI(t)} and, for any 1 ≤ i ≤ I − 1, Dx
i = {(t, z) ∈ [0, T ]× R : xi(t) < z < xi+1(t)}.

We will denote
∆x = {(t, xi(t)) : 0 ≤ t ≤ T}Ii=1 ⊂ E (1.2.1)

(this will be clear from the context which family (xi)
I
i=1 is dealt with).

We define now the H(xi)-hypothesis for functions in Θ(m,M) in the following way:

(H(xi)) : g ∈ Θ(m,M) ∩ C0,1(E \∆x), max
1≤i≤I

sup
t∈[0,T ]

sup
xi(t)<x<xi+1(t)

|g′x(t, x)| <∞

and sup
t∈[0,T ]

sup
x<x1(t)

|g′x(t, x)| <∞, sup
t∈[0,T ]

sup
x>xI(t)

|g′x(t, x)| <∞.

We define the AJ(xi)-hypothesis (AJ for Average Jumps) in the following way

(AJ(xi)) : ∃0 < C <∞, ∞ > C

∫ T

0

∑
x≤z≤y

|g2(s, z+)− g2(s, z−)|ds ≥
∑

x≤z≤y

|g2(t, z+)− g2(t, z−)|,

for all x, y ∈ R, t ∈ [0, T ].

Remark 1.2.1. This roughly speaking, means that the size of the jumps of g are not allowed to go too
far from a kind of time-averaged size jump. See Remark 1.3.5 below for a comment on why this technical
hypothesis is needed.

For the study of the PDE aspects we define the H(t)-hypothesis for functions in Θ(m,M), in Ξ(M)
or in Cc(E), by
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(H(t)) : g ∈ C1,0(E \∆x), max
1≤i≤I

sup
t∈[0,T ]

sup
xi(t)<x<xi+1(t)

|g′t(t, x)| <∞

and sup
t∈[0,T ]

sup
x<x1(t)

|g′t(t, x)| <∞, sup
t∈[0,T ]

sup
x>xI(t)

|g′t(t, x)| <∞.

Note that the same kind of notations will be used for a family yi : [0, T ] → R, 1 ≤ i ≤ I, satisfying
the same assumptions (for example in Corollary 1.3.8 below).

Finally, we fix notations for two sets of type ∆x that play a special role in the sequel. Those are

∆ = {(t, i) : 0 ≤ t ≤ T}Ii=1 ⊂ E and ∆0 = {(t, 0) : 0 ≤ t ≤ T}. (1.2.2)

1.3 Preliminaries and known results concerning the stochastic
aspects of the problem

1.3.1 Well-posedness of the martingale problem associated to discontinuous
coefficients

Of crucial importance is the following result, to be found in [70].

Theorem 1.3.1 ([70], Exercise 7.3.3). Let σ̄ ∈ Θ(m̄, M̄) and b̄ ∈ Ξ(M̄) (for some 0 < m̄ < M̄ < ∞).
Then the martingale problem associated to σ̄2 and b̄ is well-posed.

The first important consequence of this result is that the for any (s, y) ∈ E the SDE

dYt = σ̄(t, Yt)dWt + b̄(t, Yt)dt, t ∈ [s, T ], Ys = y

has a weak solution ([70], Theorem 4.5.1), unique in law ([70], Theorem 5.3.2). The second one is
that this weak solution is (time-inhomogeneous) Markov ([70], Theorem 6.2.2; see also the forthcoming
Subsection 1.3.4 for comments on time-inhomogeneous Markov processes).

Remark 1.3.2. Note that the result of Theorem 1.3.1 is available for time-dependent coefficients, only
because the dimension of the space variable is d = 1. For d = 2, up to our knowledge, such results exist
but with a time-homogeneous diffusion matrix ([70], Exercise 7.3.4).

1.3.2 Pathwise uniqueness results and strong solutions of time-inhomogeneous
SDEs with discontinuous coefficients

We have the following results.

Theorem 1.3.3 (J.-F. Le Gall, [43]). Let σ̄ ∈ Θ(m̄, M̄) and b̄ ∈ Ξ(M̄) for some 0 < m̄ < M̄ < ∞.
Assume further that there exists a strictly increasing function f : R→ R such that

|σ̄(t, x)− σ̄(t, y)|2 ≤ |f(x)− f(y)|, ∀(t, x, y) ∈ [0, T ]× R× R. (1.3.1)

Then the SDE

dYt = σ̄(t, Yt)dWt + b̄(t, Yt)dt, t ∈ [0, T ], Y0 = y0 (1.3.2)

enjoys pathwise uniqueness.

As an immediate consequence we get the following corollary.

Corollary 1.3.4. Let I ∈ N∗. For each 1 ≤ i ≤ I, let yi : [0, T ] → R be a continuous function of
bounded variation, and assume that yi(t) < yj(t) for all t ∈ [0, T ] and all 1 ≤ i < j ≤ I.

Let σ̄ ∈ Θ(m̄, M̄) and b̄ ∈ Ξ(M̄) for some 0 < m̄ < M̄ <∞.
The SDE (1.3.2) has a weak solution.

Assume further that σ̄ satisfies the H(yi) and AJ(yi)-hypotheses.
Then the SDE (1.3.2) enjoys pathwise uniqueness and has in fact a unique strong solution.
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Proof. As already pointed in Subsection 1.3.1 Equation (1.3.2) has weak solutions. We aim now at using
Theorem 1.3.3. Then the well known results of Yamada and Watanabe ([80]) will provide the desired
conclusion.

First we notice that for all (t, x, y) ∈ [0, T ]× R× R,

|σ̄(t, x)− σ̄(t, y)|2 ≤ σ̄2(t, x) + σ̄2(t, y)− 2(σ̄2(t, x) ∧ σ̄2(t, y)) = |σ̄2(t, y)− σ̄2(t, x)|.

Thus, to get the result by Theorem 1.3.3 it suffices to find a stricly increasing function f : R→ R such
that

|σ̄2(t, x)− σ̄2(t, y)| ≤ |f(x)− f(y)|, ∀(t, x, y) ∈ [0, T ]× R× R. (1.3.3)

Using the H(yi)-hypothesis, we set

K = max
{

sup
t∈[0,T ]

sup
x<y1(t)

|(σ̄2)′x(t, x)|, max
1≤i≤I

sup
t∈[0,T ]

sup
yi(t)≤x<yi+1(t)

|(σ̄2)′x(t, x)|, sup
t∈[0,T ]

sup
x≥yI(t)

|(σ̄2)′x(t, x)|
}
<∞.

One can define a strictly increasing function f : R→ R by

f(x) = Kx+ C
∑
z≤x

∫ T

0

|σ̄2(s, z+)− σ̄2(s, z−)|ds,

where C is the constant involved in the AJ(yi)-hypothesis (note that as
∑
z≤x |σ̄2(s, z+)− σ̄2(s, z−)| is

finite and bounded -for any s-, Fubuni’s Theorem ensures that f take finite values). Then one can use

the H(yi) and AJ(yi)-hypotheses to check that for x < y,

|σ̄2(t, x)− σ̄2(t, y)| ≤ K(y − x) +
∑
x≤z≤y |σ̄2(t, z+)− σ̄2(t, z−)|

≤ K(y − x) + C
∫ T

0

∑
x≤z≤y |σ̄2(s, z+)− σ̄2(s, z−)|ds

= f(y)− f(x) = |f(y)− f(x)|.

Thus f satisfies (1.3.3).

Remark 1.3.5. It would be tempting to set f(x) = Kx+
∑
z≤x sups∈[0,T ] |σ̄2(s, z+)− σ̄2(s, z−)| in order

to try to check (1.3.1). But as sups∈[0,T ] |σ̄2(s, z+)−σ̄2(s, z−)| could be non zero for non countable values
of z the function f could be not well defined as a function from R to R. This justifies our assumption
AJ(yi).

1.3.3 The Itô-Peskir formula

Our fundamental tool is the following result due to G. Peskir (see [61]).

Theorem 1.3.6 (Time inhomogeneous symmetric Itô-Tanaka formula ([61])). Let Y a continuous R-
valued semimartingale. Let γ : [0, T ]→ R be a continuous function of bounded variation.

Denote C = {(t, x) ∈ [0, T ]× R : x < γ(t)} and D = {(t, x) ∈ [0, T ]× R : x > γ(t)}.
Let r ∈ C(E) ∩ C1,2(C) ∩ C1,2(D). Then, for any 0 ≤ t < T ,

r(t, Yt) = r(0, Y0) +

∫ t

0

1

2
(r′t(s, Ys+) + r′t(s, Ys−))ds+

∫ t

0

1

2
(r′y(s, Ys+) + r′y(s, Ys−))dYs

+
1

2

∫ t

0

r′′yy(s, Ys)1Ys 6=γ(s)d〈Y 〉s +
1

2

∫ t

0

(r′y(s, Ys+)− r′y(s, Ys−))dLγs (Y ).

(1.3.4)

Note that in the above Theorem, the assumption r ∈ C1,2(C)∩C1,2(D) means that r restricted to C
coincides with a function r0 laying in the whole space C1,2(E), and r restricted to D coincides with a
function r1 laying in the whole space C1,2(E).

However, when dealing with PDE aspects (Sections 1.5, 1.6 and 1.7), we will need to apply the
Itô-Peskir formula to functions that have less smoothness: these functions will only possess continuous
partial derivatives (of order one in time and at least two in the space variable) with limits all the way up
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to the boundary ∆γ = {(t, x) ∈ [0, T ]×R : x = γ(t)}. The price to pay, in order to get the same formula
(1.3.4), is then to require additional smoothness of the curve γ(t): we require it to be of class C1.

In Theorem 1.3.7 below, we give the adaptation of the Itô-Peskir formula that will be used in Sections
1.5, 1.6 and 1.7 (in fact the formula is the key the forthcoming Proposition 1.4.1, that will be used
repeatedly in the sequel). Note that the assumptions on the function r in Theorem 1.3.6 imply the
ones in Theorem 1.3.7. But of course, on the opposite, the fact that γ is C1 implies the fact that it is
continuous of bounded variation.

Theorem 1.3.7. Let Y a continuous R-valued semimartingale. Let γ : [0, T ]→ R be a function of class
C1, and consider ∆γ = {(t, x) ∈ [0, T ]×R : x = γ(t)}. Let r ∈ C(E)∩C1,2(E◦ \∆γ) such that the limits

r′t(t, γ(t)±), r′y(t, γ(t)±), and r
′′

yy(t, γ(t)±) exist and are continuous as functions of t ∈ [0, T ). Then, for
any 0 ≤ t < T , we have (1.3.4).

Proof. See the Appendix of [30].

For our purpose we need a more general formula, valid for multiple curves and local times. Such an
extension of the result of Theorem 1.3.7 was announced in [61] (see the Remark 2.3 therein) without
proof.

Corollary 1.3.8. Let Y a continuous R-valued semimartingale.
Let I ∈ N∗. For each 1 ≤ i ≤ I, let yi : [0, T ] → R be a continuous function of bounded variation,

and assume that yi(t) < yj(t) for all t ∈ [0, T ] and all 1 ≤ i < j ≤ I.

Let r ∈ C(E) ∩
(
∩Ii=0 C

1,2(Dy
i )
)

. Then, for any 0 ≤ t < T ,

r(t, Yt) = r(0, Y0) +

∫ t

0

1

2
(r′t(s, Ys+) + r′t(s, Ys−))ds+

∫ t

0

1

2
(r′y(s, Ys+) + r′y(s, Ys−))dYs

+
1

2

∫ t

0

r′′yy(s, Ys)1{Ys 6=yi(s), ∀1≤i≤I}d〈Y 〉s +
1

2

I∑
i=1

∫ t

0

(r′y(s, Ys+)− r′y(s, Ys−))dLyis (Y ).

The result remains valid if the curves yi’s are of class C1 and if r ∈ C(E) ∩ C1,2(E◦ \∆y) is such that

for all 1 ≤ i ≤ I, the limits r′t(t, yi(t)±), r′y(t, yi(t)±), and r
′′

yy(t, yi(t)±) exist and are continuous as
functions of t ∈ [0, T ).

Proof. See the Appendix of [30].

1.3.4 Time-inhomogeneous Markov processes, infinitesimal generator of the
associated space-time process

The presentation of Markov processes, especially when coming to the time-inhomogeneous case, varies
slightly from one book to the other. Here we precise some definitions and concepts. We follow mainly
[64] but we are also inspired by other references ([39], [79]; see also [13]).

Let (Ω,F ,P) a probability space, (Ft)t∈[0,T ] a filtration (Ft ⊂ F for any t ∈ [0, T ]) and consider
Z = (Zt)t∈[0,T ] an adapted process defined on this probability space, taking values in a measurable space
(U,U).

We will say that Z is a (Ft)-Markov process if for any 0 ≤ s ≤ t ≤ T , and any f ∈ Cb(U) we have

E[f(Zt) | Fs] = E[f(Zt) |Zs].

Denoting Es,x(·) = E(· |Zs = x) and defining the operator Ps,t by Ps,tf(x) = Es,x[f(Zt)], for any
f ∈ Cb(U), any x ∈ U , we clearly have E[f(Zt) | Fs] = Ps,tf(Zs). The family (Ps,t)0≤s≤t≤T is called the
transition function of Z. We will say that Z is a time-homogeneous Markov process if Ps,t = P0,t−s. In
the opposite case it is called time-inhomogeneous.

Now to fix ideas suppose the Markov process Z is R-valued, and denote (Ps,t) its transition function.

Consider the associated E-valued space-time process Z̃ = ((t, Zt))t∈[0,T ]. It is an exercise ([64], Exercise
III.1.10) to check that for any ϕ ∈ Cb(E) and any 0 ≤ s ≤ t ≤ T ,

E[ϕ(Z̃t) | Fs] = Pt−sϕ(Z̃s)
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with

∀(s, x) ∈ E, ∀ϕ ∈ Cb(E), ∀ 0 ≤ t ≤ T −s, Ptϕ(s, x) = Ps,t+sϕ(t+s, x) = Es,x[ϕ(s+ t, Zs+t)] (1.3.5)

(the value of Ptϕ(s, x) for t+ s > T is arbitrarily set to zero; see the forthcoming Remark 1.7.3). Thus
the space-time process Z̃ is always a time-homogeneous Markov process (Z being time-homogeneous or
not), with transition function given by (1.3.5).

Note that the family (Ps,t) satisfies Pt,t = Id and, thanks to the Markov property on Z, the evolution
property

Ps,u ◦ Pu,t = Ps,t, ∀0 ≤ s ≤ u ≤ t ≤ T. (1.3.6)

The family (Pt) satisfies P0 = Id, and thanks to the time-homogeneous Markov property on Z̃, the
semigroup property

Ps ◦ Pt = Pt+s, ∀0 ≤ s ≤ T, ∀ 0 ≤ t ≤ T − s. (1.3.7)

If the family (Ps,t) satisfies, in addition to (1.3.6), that for any f ∈ C0(R) we have Ps,tf ∈ C0(R),
||Ps,tf ||∞ ≤ ||f ||∞, Ps,tf ≥ 0 if f ≥ 0, and

lim
(s,t)→(v,w)

s≤t

||Ps,tf − Pv,wf ||∞ = 0 (1.3.8)

it is called a Feller evolution system.
If the family (Pt) satisfies, in addition to (1.3.7), that for any ϕ ∈ C0(E), we have Ptϕ ∈ C0(E),

||Ptϕ||∞ ≤ ||ϕ||∞, Ptϕ ≥ 0 if ϕ ≥ 0, and limt↓0 ||Ptϕ− ϕ||∞ = 0, then it is called a Feller semigroup.

We have the following result.

Theorem 1.3.9 ([13]). Let Z be a Markov process with corresponding transitions (Ps,t). Let (Pt) the

semigroup associated to the corresponding space-time process Z̃. Then the following statements are
equivalent:

i) (Ps,t) is a Feller evolution system.
ii) (Pt) is a Feller semigroup.

Proof. Note that our definition of the space-time process, which follows [64], is a bit different from the
one in [13],[79], which is more canonical. But in fact, the families of operators (Ps,t) and (Pt) that we
have defined above, are exactly the same than the ones in [13],[79]. Therefore is suffices to adapt the
proof if [13], which is written on a infinite time interval, to the finite time interval case.

We will say that Z is a Feller time-inhomogeneous Markov process if its corresponding evolution
system (Ps,t) is Feller, or equivalently if the semigroup (Pt) of the corresponding space-time process Z̃

is Feller (note that Z̃ is therefore a Feller process in the sense of [64]). We will focus on this latter
point of view, because we believe it provides a more synthetic setting in order to describe the operators
associated to a Feller time-inhomogeneous Markov process Z. More precisely we will work at identifying
the parabolic operator that is the infinitesimal generator of the space-time process Z̃.

At this point we recall the following definition.

Definition 1.3.10. Let Z̃ a E-valued Feller process, with associated Feller semigroup (Pt). A function
ϕ in C0 = C0(E) is said the belong to the domain D(L) of the infinitesimal generator of Z̃ if the limit

Lϕ = lim
t↓0

1

t
(Ptϕ− ϕ) (1.3.9)

exists in C0. The operator L : D(L)→ C0 thus defined is called the infinitesimal generator of the process
Z̃ or of the semigroup (Pt).

In order to identify such infinitesimal generators we will use the following proposition.

Proposition 1.3.11. Let Z = (Zt)t∈[0,T ] a R-valued Feller time-inhomogeneous (Ft)-Markov process

and let Z̃ = ((t, Zt))t∈[0,T ] the E-valued corresponding space-time process. Assume Z̃ has generator
(L, D(L)).
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If ϕ ∈ C0, and if there exists a function g ∈ C0 such that Mϕ,g = (Mϕ,g
t )t∈[s,T ] defined by

∀t ∈ [s, T ], Mϕ,g
t = ϕ(Z̃t)− ϕ(Z̃s)−

∫ t

s

g(Z̃u)du

is a (Ft)-martingale under Ps,x (for any (s, x) ∈ E), then ϕ ∈ D(L) and Lϕ = g.

Proof. See the proof of Proposition 2.11 in [30], where we adapt the proof of Proposition VII.1.7 in [64]
to the inhomogeneous case.

Remark 1.3.12. In the sequel, for any R-valued Markov process Z the family (Pt) will denote the
semigroup associated with the space-time process Z̃. This will be clear from the context, and there will
be no risk to take this semigroup for the one associated to Z, should this process be time-homogeneous
Markov (as Pt will act on functions from E to R).

Remark 1.3.13. For a time-inhomogeneous diffusion we can expect that Lϕ(t, ·) = (∂t+Lt)ϕ(t, ·), with
Lt a second order elliptic operator in the space variable. But in our case, with discontinuous coefficients
and singular terms, D(L) will not contain C1,2(E) functions (cf Section 1.7).

1.4 Getting solutions by the mean of a space transform

1.4.1 Main results

A probability measure P is given on (C, C), together with a (Ct)-brownian motion W = (Wt)t∈[0,T ] defined
on (C, C,P).

We will have the following main results: the first one (Proposition 1.4.1) is a change of variable
formula for time-inhomogeneous SDEs with local time (it is thus more general than the formula stated
in Theorem 3.1 of [61], but our assumptions are more restrictive). Assuming a solution Y exists to the
time-inhomogeneous SDE with local time (1.4.1) Proposition 1.4.1 gives the form of some transformed
process φ(t, Yt). This formula will be used extensively in the sequel. To start with, it allows to prove
Theorem 1.4.5, that gives existence and uniqueness results for the solution X = (Xt)t∈[0,T ] to Equation
(1.1.1), under some conditions on the coefficients σ(t, x), b(t, x), βi(t), 1 ≤ i ≤ I, and the curves xi(t).
But Proposition 1.4.1 will be again used in Sections 1.6 and 1.7.

Proposition 1.4.1. Let I ∈ N∗. For each 1 ≤ i ≤ I, let yi : [0, T ] → R a function of class C1, and
assume that yi(t) < yj(t) for all t ∈ [0, T ] and all 1 ≤ i < j ≤ I.

Let Y = (Yt)0≤t≤T a continuous R-valued semimartingale satisfying

dYt = σ̄(t, Yt)dWt + b̄(t, Yt)dt+

I∑
i=1

β̄i(t)dL
yi
t (Y ) (1.4.1)

where σ̄, b̄ : [0, T ]×R→ R are some bounded functions, and the functions β̄i : [0, T ]→ (−1, 1), 1 ≤ i ≤ I,
are of class C1.

Let φ ∈ C(E) ∩ C1,2(E◦ \∆y) such that for all 1 ≤ i ≤ I, the limits φ′t(t, yi(t)±), φ′y(t, yi(t)±), and

φ
′′

yy(t, yi(t)±) exist and are continuous as functions of t ∈ [0, T ).
Set Xt = φ(t, Yt) for any t ∈ [0, T ]. Then

dXt = (σ̄φ′y,±)(t, Yt)dWt + [φ′t,± + b̄φ′y,±](t, Yt)dt+ 1
2 (σ̄2φ′′yy)(t, Yt)1{Yt 6=yi(t), ∀1≤i≤I}dt

+
∑I
i=1[M φ′y(t, yi(t)) + β̄i(t)φ

′
y,±(t, yi(t))] dL

yi
t (Y ).

(1.4.2)

Assume further that φ ∈ C(E) ∩
(
∩Ii=0 C

1,2(Dy
i )
)

and

φ′y(t, y) > 0 ∀(t, y) ∈ E \∆y (1.4.3)

and denote, for any t ∈ [0, T ], Φ(t, ·) = [φ(t, ·)]−1 and

xi(t) = φ(t, yi(t)) (1.4.4)
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for all 1 ≤ i ≤ I. Then

dXt = σ(t,Xt)dWt + b(t,Xt)dt+

I∑
i=1

βi(t)dL
xi
t (X) (1.4.5)

with
σ(t, x) = (σ̄φ′y,±)(t,Φ(t, x))

b(t, x) = [φ′t,± + b̄φ′y,±](t,Φ(t, x)) + 1
2 (σ̄2φ′′yy)(t,Φ(t, x))1{x6=xi(t), ∀1≤i≤I}

and

βi(t) =
M φ′y(t, yi(t)) + β̄i(t)φ

′
y,±(t, yi(t))

φ′y,±(t, yi(t)) + β̄i(t) M φ′y(t, yi(t))
(1.4.6)

for all t ∈ [0, T ] and all x ∈ R.

Remark 1.4.2. Note that the curves xi’s defined by (1.4.4) are themselves of class C1, so that the local
times terms in (1.4.5) are still well defined.

In order to see that, let us focus on x1(t) = φ(t, y1(t)). As φ is in C(E) ∩
(
∩Ii=0 C

1,2(Dy
i )
)

one has

that φ restricted to Dy
0 coincides with a function φ0 ∈ C1,2(E), and that φ restricted to Dy

1 coincides
with a function φ1 ∈ C1,2(E). Thus, as φ is continuous, one has

φ0(t, y1(t)) = φ(t, y1(t)) = φ1(t, y1(t)), ∀t ∈ [0, T ].

Thus in particular x1(t) = φ0(t, y1(t)), and one sees by composition that x1 is of class C1.

Remark 1.4.3. Note that

M φ′y(t, yi(t)) + β̄i(t)φ
′
y,±(t, yi(t)) = φ′y(t, yi(t)+)(1 + β̄i(t))− φ′y(t, yi(t)−)(1− β̄i(t)) (1.4.7)

and that φ′y,±(t, yi(t)) + β̄i(t) M φ′y(t, yi(t)) = φ′y(t, yi(t)+)(1 + β̄i(t)) + φ′y(t, yi(t)−)(1 − β̄i(t)), so that
the new coefficients βi(t) in Proposition 1.4.1 may be rewritten

βi(t) =
φ′y(t, yi(t)+)(1 + β̄i(t))− φ′y(t, yi(t)−)(1− β̄i(t))
φ′y(t, yi(t)+)(1 + β̄i(t)) + φ′y(t, yi(t)−)(1− β̄i(t))

. (1.4.8)

Remark 1.4.4. Note that the result of Proposition 1.4.1 is a time-inhomogeneous version of Proposition
3.1 in [20] (or equivalently Proposition 2.2.1 in [19]).

Theorem 1.4.5. Let I ∈ N∗. For each 1 ≤ i ≤ I, let xi : [0, T ] → R be a function of class C1, and
assume that xi(t) < xj(t) for all t ∈ [0, T ] and all 1 ≤ i < j ≤ I.

Let σ ∈ Θ(m,M) and b ∈ Ξ(M) for some 0 < m < M <∞.

Assume that for each 1 ≤ i ≤ I, the function βi : [0, T ]→ [k, κ] (−1 < k ≤ κ < 1) is of class C1, and
that |β′i(t)| ≤M for any t ∈ [0, T ].

Then the time inhomogeneous SDE with local time

dXt = σ(t,Xt)dWt + b(t,Xt)dt+

I∑
i=1

βi(t)dL
xi
t (X), t ∈ [0, T ], X0 = x0

(i.e. Equation (1.1.1)) has a weak solution.

Assume further that σ satisfies the H(xi) and AJ(xi)-hypotheses.

Then the SDE (1.1.1) has a unique strong solution (as it enjoys pathwise uniqueness).

Remark 1.4.6. The conditions of Theorem 1.4.5 have to be compared to the conditions in [43]. In
particular, as in [43], it is required that the βi’s stay in (−1, 1).
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1.4.2 Proofs

Proof of Proposition 1.4.1. Applying Corollary 1.3.8 we get

dXt = φ′t,±(t, Yt)dt+ φ′y,±(t, Yt)dYt + 1
2φ
′′
yy(t, Yt)σ̄

2(t, Yt)1{Yt 6=yi(t), 1≤i≤I}dt

+
∑I
i=1 M φ′y(t, Yt)dL

yi
t (Y )

= (σ̄φ′y,±)(t, Yt)dWt + [φ′t,± + b̄φ′y,±](t, Yt)dt+ 1
2 (σ̄2φ′′yy)(t, Yt)1{Yt 6=yi(t), ∀1≤i≤I}dt

+
∑I
i=1[M φ′y(t, yi(t)) + β̄i(t)φ

′
y,±(t, yi(t))] dL

yi
t (Y ),

where we have used the fact that dLyit (Y ) = 1Yt=yi(t)dL
yi
t (Y ), for any 1 ≤ i ≤ I.

Thus, the first part of Proposition 1.4.1 is proved. To prove the second part it suffices to use the
following lemma.

Lemma 1.4.7. In the above context and under (1.4.3) we have

dLyit (Y ) =
dLxit (X)

φ′y,±(t, yi(t)) + β̄i(t) M φ′y(t, yi(t))
, ∀1 ≤ i ≤ I.

Proof. Let 1 ≤ i ≤ I. On one side we apply the symmetric Tanaka formula ([64] Exercise VI.1.25) to
the process X − xi. We get

d|Xt − xi(t)| = sgn(Xt − xi(t))d(Xt − xi(t)) + dL0
t (X − xi)

= dLxit (X)− sgn(Yt − yi(t))dxi(t)

+sgn(Yt − yi(t))σ(t, φ(t, Yt))dWt + sgn(Yt − yi(t))b(t, φ(t, Yt))dt

+
∑
j 6=i sgn(Yt − yi(t))[M φ′y(t, yj(t)) + β̄j(t)φ

′
y,±(t, yj(t))] dL

yj
t (Y ).

(1.4.9)

In the above expression we have first used the fact that sgn(Xt−xi(t)) = sgn(Yt−yi(t)) for any t ∈ [0, T ]
(as φ(t, ·) is stricly increasing). Second we have used the fact that with the symmetric sign function we
have

sgn(Xt − xi(t)) = sgn(Yt − yi(t)) = 0 for any t ∈ [0, T ] s.t. Yt = yi(t).

Third we have used dL
yj
t (Y ) = 1Yt=yj(t)dL

yj
t (Y ), for any 1 ≤ j ≤ I.

On the other side we may apply the first part of Proposition 1.4.1 (that is Equation (1.4.2); we stress
that at this stage this part is already proved) with the semimartingale Y and the function ζ : (t, y) 7→
|φ(t, y)− xi(t)|. We get

d|Xt − xi(t)| = d|φ(t, Yt)− xi(t)|

= (σ̄ζ ′y,±)(t, Yt)dWt + [ζ ′t,± + b̄ζ ′y,±](t, Yt)dt+ 1
2 (σ̄2ζ ′′yy)(t, Yt)1{Yt 6=yj(t), ∀1≤j≤I}dt

+
∑I
j=1[M ζ ′y(t, yj(t)) + β̄j(t)ζ

′
y,±(t, yj(t))] dL

yj
t (Y )

= −sgn(Yt − yi(t))dxi(t) + sgn(Yt − yi(t))σ(t, φ(t, Yt))dWt + sgn(Yt − yi(t))b(t, φ(t, Yt))dt

+
∑
j 6=i sgn(Yt − yi(t))[M φ′y(t, yj(t)) + β̄j(t)φ

′
y,±(t, yj(t))] dL

yj
t (Y )

+[φ′y,±(t, yi(t)) + β̄i(t) M φ′y(t, yi(t))]dL
yi
t (Y ).

(1.4.10)
In (1.4.10) we have used several facts (see the proof of Lemma 3.7 in [30] for details). The most crucial
ones concern the local time terms.

For j < i, we have yj(t) < yi(t) and thus φ(t, yj(t)) < xi(t) for any t ∈ [0, T ], which leads to

[M ζ ′y(t, yj(t)) + β̄j(t)ζ
′
y,±(t, yj(t))] = −[M φ′y(t, yj(t)) + β̄j(t)φ

′
y,±(t, yj(t))].
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Using dL
yj
t (Y ) = 1Yt=yj(t)dL

yj
t (Y ) we then get that

[M ζ ′y(t, yj(t)) + β̄j(t)ζ
′
y,±(t, yj(t))] dL

yj
t (Y ) = sgn(Yt − yi(t))[M φ′y(t, yj(t)) + β̄j(t)φ

′
y,±(t, yj(t))] dL

yj
t (Y )

We have the same result for j > i (plus sign replaces minus sign).
We now examine what happens for j = i. Because of the different sign of φ(t, yi(t)±)−xi(t) we have

[M ζ ′y(t, yi(t)) + β̄j(t)ζ
′
y,±(t, yi(t))] = [φ′y,±(t, yi(t)) + β̄i(t) M φ′y(t, yi(t))].

Therefore (1.4.10).
Comparing (1.4.9) and (1.4.10) we get the desired result.

Proof of Theorem 1.4.5. Inspired by [43], we will use the following bijection in space r(t, ·) (for
any t ∈ [0, T ]), that we now define.

For any t ∈ [0, T ] we define

µ(t, x) =
∏

xi(t)≤x

1− βi(t)
1 + βi(t)

(1.4.11)

(with the convention that µ(t, x) = 1 for any x < x1(t)).
Let then

R(t, x) =

∫ x

x1(t)

µ(t, z)dz. (1.4.12)

As µ(t, z) is strictly positive for any z ∈ R the function R(t, ·) is strictly increasing. Thus we can
define

r(t, y) =
[
R(t, ·)

]−1
(y). (1.4.13)

For any 1 ≤ i ≤ I we define
yi(t) = R(t, xi(t)) (1.4.14)

(note that y1 ≡ 0). It is easy to check that

r(t, y) =

∫ y

0

α(t, z)dz + x1(t) (1.4.15)

with

α(t, y) =
∏

yi(t)≤y

1 + βi(t)

1− βi(t)
(1.4.16)

(with α(t, y) = 1 for any y < y1(t)). Note that the function r(t, ·) is strictly increasing too.

Let us check that R is in C(E) ∩
(
∩Ii=0 C

1,2(Dx
i )
)

and that r is in C(E) ∩
(
∩Ii=0 C

1,2(Dy
i )
)

. We

focus on R(t, x), as the computations are similar for r(t, y).
Using (1.4.11)(1.4.12) it is easy to check that R(t, x) coincides on Dx

0 with the function R0(t, x) =
x− x1(t). On Dx

i , 1 ≤ i ≤ I, it coincides with the function

Ri(t, x) =

i−1∑
j=1

{∏
k≤j

1− βk(t)

1 + βk(t)

}
(xj+1(t)− xj(t)) +

{∏
k≤i

1− βk(t)

1 + βk(t)

}
(x− xi(t)).

Obviously, all the functions Ri(t, x), 0 ≤ i ≤ I are in C1,2(E), and thus we see that R(t, x) is in
∩Ii=0C

1,2(Dx
i ).

To see that R(t, x) is in C(E) it remains to prove that it is continuous at any point (t0, x0) ∈ ∆x.
For such a point we have (t0, x0) = (t0, xi(t0)), for some t0 ∈ [0, T ] and some 1 ≤ i ≤ I. But, together
with the relationship

R(t0, xi(t0)) = Ri−1(t0, xi(t0)) = Ri(t0, xi(t0))

the continuity of Ri−1 and Ri then yields the desired result. Thus, R is indeed in C(E)∩
(
∩Ii=0C

1,2(Dx
i )
)

.

Note that this implies that the yi’s defined by (1.4.14) are of class C1 (by the same arguments as in
Remark 1.4.2).
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We then set

σ̄(t, y) =
σ(t, r(t, y))

r′y,±(t, y)
and b̄(t, y) =

b(t, r(t, y))

r′y,±(t, y)
−
r′t,±(t, y)

r′y,±(t, y)
(1.4.17)

It is easy to check that σ̄ ∈ Θ(m̄, M̄) and b̄ ∈ Ξ(M̄) for some 0 < m̄ < M̄ <∞.
From now on the starting point x0 ∈ R is fixed. By Corollary 1.3.4 we have the existence of a weak

solution Y to
dYt = σ̄(t, Yt)dWt + b̄(t, Yt)dt, Y0 = R(0, x0). (1.4.18)

We wish now to use the second part of Proposition 1.4.1, with the function r(t, y) and the process Y
(and the curves yi’s). Note that by construction we have

(σ̄r′y,±)(t, R(t, x)) = σ(t, x),

[r′t,± + b̄r′y,±](t, R(t, x)) +
1

2
(σ̄2r′′yy)(t, R(t, x))1{x6=xi(t), ∀1≤i≤I} = b(t, x),

(we have used in particular r′′yy ≡ 0 in the above expression) and

M r′y(t, yi(t))

r′y,±(t, yi(t))
=

∏
j<i

1+βj(t)
1−βj(t)

1
2

( 1+βi(t)
1−βi(t) − 1

)
∏
j<i

1+βj(t)
1−βj(t)

1
2

( 1+βi(t)
1−βi(t) + 1

) =

2βi(t)
1−βi(t)

2
1−βi(t)

= βi(t)

(here we have computed (1.4.6) using the fact that there is no local time term in (1.4.18)).
So that by setting

Xt = r(t, Yt), ∀t ∈ [0, T ] (1.4.19)

we immediately see by Proposition 1.4.1 that X is a weak solution to (1.1.1).

In order to prove the last part of the theorem, we first notice that σ̄ satisfies the H(yi) and AJ(xi)-
hypotheses. Thus (1.4.18) enjoys pathwise uniqueness (Corollary 1.3.4). Assume X ′ is a second solution
to (1.1.1), then we could show that Y ′t = R(t,X ′t) is a solution to (1.4.18). Thus, using the pathwise
uniqueness property of (1.4.18), we would show that pathwise uniqueness holds for (1.1.1). Therefore
Theorem 1.4.5 is proved.

1.5 Feynman-Kac formula: link with a parabolic transmission
problem

Assume the curves xi, 1 ≤ i ≤ I and the coefficients βi, 1 ≤ i ≤ I are as in Theorem 1.4.5, b is in
Ξ(M) ∩ C(E \∆x), and σ is in Θ(m,M) ∩ C(E \∆x).

For λ ≥ 0, a source term g ∈ Cc(E) and a terminal condition f ∈ C0(R) ∩ L2(R), we will call a
classical solution of the parabolic transmission problem (Pλ∆x

(σ, b, β)) a function u(t, x) that is of class
C(E)∩C1,2(E◦\∆x), is such that for all 1 ≤ i ≤ I the limits u′t(t, xi(t)±), u′x(t, xi(t)±) and u′′xx(t, xi(t)±)
exist and are continuous as functions of t ∈ [0, T ), and that satisfies

(Pλ∆x
(σ, b, β))



[
u′t + 1

2σ
2u′′xx + b u′x − λu

]
(t, x) = g(t, x) ∀(t, x) ∈ E◦ \∆x

(1 + βi(t))u
′
x(t, xi(t)+) = (1− βi(t))u′x(t, xi(t)−) ∀1 ≤ i ≤ I, ∀t ∈ [0, T ) (?)

u(T, x) = f(x) ∀x ∈ R.

lim|x|→∞ |u(t, x)| = 0 ∀t ∈ [0, T ].

In particular we stress that the first and second line of this system of equations are satisfied in the
classical sense.

The question whether a classical solution u(t, x) exists to (Pλ∆x
(σ, b, β)) will be discussed in Section 1.6,

with the help of an equivalent formulation of this parabolic transmission problem, in a more divergence-
like form (Subsection 1.6.1). The condition (?) will be called the transmission condition in the sequel.

For the moment, assuming in this section the existence of such a solution u(t, x), we draw some
consequences on the solution X of (1.1.1): we have a Feynman-Kac formula linking X and u(t, x).

We have the following result.
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Theorem 1.5.1. Any classical solution u(t, x) of (Pλ∆x
(σ, b, β)) admits the stochastic representation

u(t, x) = Et,x
[
f(XT )e−λ(T−t) −

∫ T

t

g(s,Xs)e
−λ(s−t)ds

]
where X is the solution to (1.1.1); in particular such a classical solution u(t, x) is unique.

Remark 1.5.2. In this theorem the unicity of u(t, x) comes from the uniqueness in law of the weak
solution X (see Subsection 1.3.1).

Proof. We only sketch the proof, as the details are to be found in [30] (Theorem 4.1 therein). The
idea is to follow the lines of the proof of Theorem 5.7.6 in [39], and to use our Proposition 1.4.1 in the
computations. Let t ∈ [0, T ). Applying Proposition 1.4.1 and Equation (1.4.7) we get for any s ∈ [t, T ),

u(s,Xs)e
−λ(s−t) − u(t,Xt) =

∫ s
t
u′x,±(v,Xv)e

−λ(v−t)σ(v,Xv)dWv

+
∫ s
t
e−λ(v−t)[u′t,± + bu′x,± − λu

]
(v,Xv)dv

+ 1
2

∫ t
s
e−λ(v−s)u′′xx(v,Xv)σ

2(v,Xv)1{Xv 6=xi(v),1≤i≤I}dv

+ 1
2

∑I
i=1

∫ s
t

[
(1 + βi(v))u′x(v,Xv+)− (1− βi(v))u′x(v,Xv−)

]
dLxiv (X)

=
∫ s
t
u′x,±(v,Xv)e

−λ(v−t)σ(v,Xv)dWv +
∫ s
t
e−λ(v−t)g(v,Xv)dv

(1.5.1)
where we have used in particular the transmission condition (?) satisfied by u(t, x).

Using a localizing sequence of stopping times, taking the expectation Et,x(·), and using finally con-
vergence arguments we get the desired result.

1.6 Parabolic transmission problem with time-dependent coef-
ficients

1.6.1 Equivalent formulation in divergence like form and getting cylindrical
subdomains by the mean of a space transform

Assume that we have curves xi, 1 ≤ i ≤ I satisfy the same assumptions than in Theorem 1.4.5. Let us
consider coefficients ρ, a ∈ Θ(m′,M ′) ∩ C(E \∆x), and a coefficient B ∈ Ξ(M ′) ∩ C(E \∆x) (for some
0 < m′ < M ′ <∞).

For λ ≥ 0, a source term g ∈ Cc(E) and a terminal condition f ∈ C0(R) ∩ L2(R), we will call a
classical solution of the transmission problem in divergence form (Pλdiv,∆x

(ρ, a,B)), a function u(t, x)

that is of class C(E)∩C1,2(E◦ \∆x), is such that for all 1 ≤ i ≤ I the limits u′t(t, xi(t)±), u′x(t, xi(t)±)
and u′′xx(t, xi(t)±) exist and are continuous as functions of t ∈ [0, T ), and that satisfies

(Pλdiv,∆x
(ρ, a,B))



[
u′t +

ρ

2

(
au′x

)′
x

+B u′x − λu
]
(t, x) = g(t, x) ∀(t, x) ∈ E◦ \∆x

a(t, xi(t)+)u′x(t, xi(t)+) = a(t, xi(t)−)u′x(t, xi(t)−) ∀1 ≤ i ≤ I, ∀t ∈ [0, T ) (?)

u(T, x) = f(x) ∀x ∈ R.

lim|x|→∞ |u(t, x)| = 0 ∀t ∈ [0, T ].

For any ρ, a,B with ρa = σ2, a(t, xi(t)±) = pi(t)(1±βi(t)), 1 ≤ i ≤ I, t ∈ [0, T ) and B = b−ρ a′x,±/2,

it is clear that a classical solution to (Pλdiv,∆x
(ρ, a,B)) is a classical solution to (Pλ∆x

(σ, b, β)) (here pi(t)
is a non zero multiplicative factor that depends on 1 ≤ i ≤ I, t ∈ [0, T )). One may for example choose
for any (t, x) ∈ E

a(t, x) =
∏

xi(t)≤x

1 + βi(t)

1− βi(t)
, ρ(t, x) =

σ2(t, x)

a(t, x)
, B(t, x) = b(t, x) (1.6.1)
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(Note that here pi(t) =
1

1− βi(t)
∏
j<i

1 + βj(t)

1− βj(t)
). Note that the presence of the variable coefficient

ρ(t, x) is due to the fact that the coefficient σ(t, x) has been chosen independently from the βi(t)’s. Note
also that a convenient triple (ρ, a,B) is not unique.

Conversely, it is always possible to pass from a transmission problem in the form (Pλdiv,∆x
(ρ, a,B))

to another one in the form (Pλ∆x
(σ, b, β)), by setting in particular

βi(t) =
a(t, xi(t)+)− a(t, xi(t)−)

a(t, xi(t)+) + a(t, xi(t)−)
. (1.6.2)

In fact, in the PDE litterature, parabolic transmission problems are classically studied in the purely
divergence-like form of (Pλdiv,∆x

(ρ ≡ 1, a, B)). Up to our knowledge fewer studies exist in the non

divergence form (Pλ∆x
(σ, b, β)). The aim of this section is to present some known results on the problem

(Pλdiv,∆(ρ ≡ 1, a, B)), and to derive new ones for the general case.

In the case ρ ≡ 1, the transmission problem in divergence form (Pλdiv,∆x
(ρ, a,B)) is well studied

in the PDE litterature, concerning the existence and unicity of weak solutions (see the forthcoming
Subsection 1.6.2 for a definition of weak solutions). See for instance to [41], [48], [47].

Concerning classical solutions in the presence of a discontinuous coefficient a(t, x) like in our case,
it seems that less references are available. In the fundamental paper [40] it is shown that, still with
ρ ≡ 1, and in the case of cylindrical space-time subdomains (that is to say xi(t) = xi for all 1 ≤ i ≤ I,
0 ≤ t ≤ T ) every weak solution to (Pλdiv,∆x

(ρ ≡ 1, a, B)) is in fact classical. As a consequence there

exists a classical solution to (Pλdiv,∆x
(ρ ≡ 1, a, B)).

In the case ρ 6= 1 and in the presence of non-cylindrical subdomains some results are announced in
[40] and [41]. However they are stated without any complete proof (with the notable exception of the
proof of the existence of a unique weak solution in the case of cylindrical subdomains, but with ρ 6= 1,
pp 229-232 of [41]; see Subsection 1.6.2 for further comments).

We continue this subsection by noticing that in fact we can get rid of the difficulty of having non-
cylindrical subdomains, by applying a space transform trick, available only because the space dimension
is one. We choose to present things on the problem in its non-divergence form (Pλ∆x

(σ, b, β)) again.
From now on we assume I ≥ 3 and set

∀(t, x̂) ∈ E, ψ(t, x̂) =


x1(t) + (x2(t)− x1(t))(x̂− 1) if x̂ < 1

xj(t) + (xj+1(t)− xj(t))(x̂− j) if j ≤ x̂ < j + 1, j = 1, . . . , I − 2

xI−1(t) + (xI(t)− xI−1(t))(x̂− I + 1) if x̂ ≥ I − 1

For any t ∈ [0, T ] we note Ψ(t, ·) = [ψ(t, ·)]−1(·). Notice that

∆ = Ψ(∆x)

and that E \∆ appears as the union of some open cylindrical space-time domains.
We have the following result.

Proposition 1.6.1. A fonction u(t, x) is a classical solution to (Pλ∆x
)(σ, b, β) if and only if û(t, x̂) :=

u(t, ψ(t, x̂)) is a classical solution to

((P̂λ∆)(σ̂, b̂, β̂))



[
û′t + 1

2 σ̂
2û′′x̂x̂ + b̂ û′x̂ − λû

]
(t, x̂) = ĝ(t, x̂) ∀(t, x̂) ∈ E \∆

(1 + β̂i(t))û
′
x̂(t, i+) = (1− β̂i(t))û′x̂(t, i−) ∀1 ≤ i ≤ I, ∀t ∈ [0, T ) (?̂)

û(T, x̂) = f̂(x̂) ∀x̂ ∈ R.

lim|x̂|→∞ |û(t, x̂)| = 0 ∀t ∈ [0, T ],

where

σ̂(t, x̂) = σ(t, ψ(t, x̂))×Ψ′x,±(t, ψ(t, x̂)), b̂(t, x̂) = b(t, ψ(t, x̂))×Ψ′x,±(t, ψ(t, x̂)) + Ψ′t,±(t, ψ(t, x̂)),
(1.6.3)

27



ĝ(t, x̂) = g(t, ψ(t, x̂)), f̂(x̂) = f(ψ(T, x̂)) and

β̂i(t) =
(1 + βi(t))Ψ

′
x(t, xi(t)+)− (1− βi(t))Ψ′x(t, xi(t)−)

(1 + βi(t))Ψ′x(t, xi(t)+) + (1− βi(t))Ψ′x(t, xi(t)−)
. (1.6.4)

Remark 1.6.2. Note that

∀(t, x) ∈ E, Ψ(t, x) =


(x− x1(t))/(x2(t)− x1(t)) + 1 if x < x1(t)

(x− xj(t))/(xj+1(t)− xj(t)) + j if xj(t) ≤ x < xj+1(t), j = 1, . . . , I − 2

(x− xI−1(t))/(xI(t)− xI−1(t)) + I − 1 if x ≥ xI−1(t)
(1.6.5)

and that this function is of class C(E)∩C1,2(E\∆x). Besides, choosing ε < inf1≤j≤I−1 infs∈[0,T ](xj+1(s)−
xj(s)) and using the fact that ε < xj+1(t) − xj(t) ≤ sups∈[0,T ](xj+1(s) − xj(s)) we can see that there

exist constants 0 < m̂ < M̂ <∞ such that Ψ′x,± ∈ Θ(m̂, M̂). In addition Ψ′t,± remains bounded (thanks
in particular to the fact that the xi : [0, T ]→ R, 1 ≤ i ≤ I are of class C1). Thus the coefficients σ̂(t, x̂),

b̂(t, x̂) and β̂i(t), 1 ≤ i ≤ I, still satisfy the hypotheses of Section 1.5.

Proof of Proposition 1.6.1. We only prove the sufficient condition, the converse being proved in the same
manner.

First for any (t, x) ∈ E \∆x we have

u′x(t, x) = û′x̂(t,Ψ(t, x))×Ψ′x(t, x), (1.6.6)

and, as Ψ′′xx(t, x) = 0,

u′′xx(t, x) = û′′x̂x̂(t,Ψ(t, x))× [Ψ′x(t, x)]2. (1.6.7)

We also have

u′t(t, x) = û′t(t,Ψ(t, x)) + û′x̂(t,Ψ(t, x))×Ψ′t(t, x). (1.6.8)

So that for any (t, x̂) ∈ E \∆ we may use this with (t, x) = (t, ψ(t, x̂)) in the first line of (Pλ∆x
(σ, b, β))

and thus we get the first line of (P̂λ∆(σ̂, b̂, β̂)), with the newly defined coefficients σ̂, b̂ and ĝ.

Concerning the transmission condition (?̂), we notice that we have from (?) in (Pλ∆x
(σ, b, β))

∀t ∈ [0, T ], (1 + βi(t))Ψ
′
x(t, xi(t)+)û′x̂(t,Ψ(t, xi(t))+) = (1− βi(t))Ψ′x(t, xi(t)−)û′x̂(t,Ψ(t, xi(t))−)

for any 1 ≤ i ≤ I. As Ψ(t, xi(t)) = i for any 1 ≤ i ≤ I, an easy computation shows that this is equivalent

to (?̂), with the newly defined β̂i(t), 1 ≤ i ≤ I.

The third and fourth lines of (P̂λ∆(σ̂, b̂, β̂)) are straightforward.

We can sum up the preceding discussions in the following proposition.

Proposition 1.6.3. Assume the curves xi, and the coefficients βi, 1 ≤ i ≤ I, are as in Theorem 1.4.5,
and that b is in Ξ(M) ∩ C(E \∆x), and σ is in Θ(m,M) ∩ C(E \∆x).

Let σ̂, b̂, β̂i, 1 ≤ i ≤ I, defined by (1.6.3) (1.6.4). Let ρ̂, â, B̂ defined by (1.6.1), but with σ̂, b̂, β̂i,
1 ≤ i ≤ I instead of σ, b, βi, 1 ≤ i ≤ I.

Then (Pλ∆x
(σ, b, β)) has a classical solution if and only if (Pλdiv,∆(ρ̂, â, B̂)) has a classical solution

û(t, x̂). This classical solution of (Pλ∆x
(σ, b, β)) is given by u(t, x) = û(t,Ψ(t, x)) with Ψ(t, x) defined by

(1.6.5).

Without loss of generality we shall investigate the problem (Pλdiv,∆(ρ, a,B)) (i.e. with xi ≡ i, 1 ≤
i ≤ I). In Subsection 1.6.2 we deal with weak solutions. In Subsection 1.6.3 we present a way to get
classical solutions in the case ρ 6= 1, using the results of [40] for the case ρ ≡ 1, and again (different)
space transform tricks.
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1.6.2 Weak solutions

In this subsection it is assumed ρ, a ∈ Θ(m′,M ′) and B ∈ Ξ(M ′) for some 0 < m′ < M ′ <∞, and that
the coefficient ρ satisfies the H(t)-hypothesis.

We will call a weak solution of the parabolic problem (Pλdiv,∆(ρ, a,B)) a function u(t, x) in the space

L2(0, T ;H1(R))∩C([0, T ];L2(R)), with u(T, ·) = f a.e., and satisfying for any test function ϕ ∈ H1,1
0 (E)

the relation∫ T

0

∫
R
u

dϕ

dt
ρ−1 dxdt

+
1

2

∫ T

0

∫
R
a

du

dx

dϕ

dx
dxdt−

∫ T

0

∫
R
B

du

dx
ϕρ−1dxdt+

∫ T

0

∫
R
u(λ− ρ′t

ρ
)ϕρ−1dxdt = −

∫ T

0

∫
R
gϕρ−1 dxdt.

(1.6.9)
Indeed, imagine for a while that we have a classical solution u(t, x) of (Pλdiv,∆(ρ, a,B)). If we formally

multiply the first line of (Pλdiv,∆(ρ, a,B)) by a test function ϕ vanishing at infinity and with ϕ(0, ·) =

ϕ(T, ·) = 0, and integrate the resulting equation against ρ−1dxdt on [0, T ]× R we recover (1.6.9), using
in particular (?) in the integration by parts formula.

We first aim at proving the following result.

Proposition 1.6.4. The parabolic problem (Pλdiv,∆(ρ, a,B)) has a unique weak solution.

In fact this result is in essence contained in the discussion p 229-232 of [41], but we want here to give
our own, new and different proof, using the tools proposed in [48]. They differ from the ones used in
[41][47] but provide an elegant framework to handle the problem, and could be the starting point of the
use of Generalized Dirichlet forms in these questions (see some of our concluding remarks).

In order to use the tools in [48] we denote H = L2(0, T ;L2(R); ρ−1) the set of measurable functions
f(t, x) such that ∫ T

0

∫
R
|f(t, x)|2ρ−1(t, x)dxdt <∞,

equipped with the scalar product

∀u, v ∈ H, 〈u, v〉H =

∫ T

0

∫
R
u(t, x)v(t, x)ρ−1(t, x)dxdt.

We denote V = L2(0, T ;H1(R); ρ−1) the set of mesurable functions f(t, x) such that for any t ∈ [0, T ]
the function f(t, ·) is in H1(R) and∫ T

0

∫
R
|f(t, x)|2ρ−1(t, x)dxdt+

∫ T

0

∫
R
|df
dx

(t, x)|2ρ−1(t, x)dxdt <∞,

equipped with the scalar product

∀u, v ∈ V, 〈u, v〉V = 〈u, v〉H + 〈du
dx
,

dv

dx
〉H.

We will denote by || · ||H and || · ||V the norms corresponding to the above defined scalar products.
We denote by V ′ the dual of V. Note that we have V ⊂ H ⊂ V ′ with dense inclusions.

Remark 1.6.5. Note that as ρ ∈ Θ(m′,M ′), of course H (resp. V) is, as a set, just equal to L2(0, T ;L2(R))
(resp. L2(0, T ;H1(R))). Besides, as a set, V ′ is equal to L2(0, T ;H−1(R)).

We define a semigroup (Ut)t∈[0,T ] of contraction on V ′ by

Utf(s, ·) =

{
f(s+ t, ·) if 0 < s < T − t
0 otherwise.

We denote (Λ, D(Λ;V ′)) the infinitesimal generator of (Ut). We have the following elementary fact.
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Lemma 1.6.6. We have

D(Λ,V ′) =
{
u | u ∈ V ′, du

dt
∈ V ′, u(T, ·) = 0

}
and Λu =

du

dt
for any u ∈ D(Λ,V ′).

Remark 1.6.7. In Lemma 1.6.6, the time derivative
du

dt
is understood in the distribution sense. For

example, in the case u ∈ V ∩ D(Λ,V ′), we have 〈u, v〉V′,V = 〈u, v〉H for any v ∈ V, and for any
ϕ ∈ C∞,∞c,c (E)

〈du
dt
, ϕ〉V′,V = −

∫ T

0

∫
R
u(ϕρ−1)′tdxdt = −〈u, ϕ′t − ϕ

ρ′t
ρ
〉H.

Besides, for u ∈ V ∩D(Λ,V ′) and ϕ ∈ H1,1
0 (E) we have

〈du
dt
, ϕ〉V′,V = −〈u, dϕ

dt
− ϕρ

′
t

ρ
〉H (1.6.10)

(using the fact that C∞,∞c,c (E) is dense in H1,1
0 (E)). Note that ρ′t exists in the classical sense, even if it

is not continuous, thanks to the fact that the subdomains are cylindrical. Besides, ρ′t is bounded thanks
to the H(t)-hypothesis.

Proof. See [48], Section 3.4.3.

As ρ 6= 1 we cannot use directly Theorem 3.4.1 in [48]. We will use a natural generalization of this
result, that we have proved in [30] (besides note that we deal here with backward problems with terminal
condition).

Theorem 1.6.8. Assume A is a bilinear form on V satisfying

i) |A(u, v)| ≤ C||u||V ||v||V for all u, v ∈ V, where 0 < C <∞.

ii) A(v, v) + λ0||v||2H ≥ α0||v||2V for all v ∈ V (for some λ0, α0 > 0).

Then for any G ∈ V ′ and any f ∈ H there exists a unique u ∈ L2(0, T ;H1(R)) ∩C([0;T ];L2(R)) (in

particular u is in V) such that u(T, ·) = f , and with
du

dt
∈ L2(0, T ;H−1(R)) and

〈
− du

dt
, v
〉
V′,V +A(u, v) =

〈
G, v

〉
V′,V ∀v ∈ V. (1.6.11)

In order to apply Theorem 1.6.8 we now define for any u, v ∈ V

A(u, v) =
1

2

∫ T

0

∫
R
a(t, x)

du

dx
(t, x)

dv

dx
(t, x)dxdt−

∫ T

0

∫
R
B(t, x)

du

dx
(t, x)v(t, x)ρ−1(t, x)dxdt+ λ〈u, v〉H

(1.6.12)
and for any λ0 > 0

Aλ0(u, v) = A(u, v) + λ0〈u, v〉H. (1.6.13)

Proof. See the Appendix of [30].

Using the boundedness of ρ, a, b, and the strict ellipticity of ρ, a, we get the following result.

Lemma 1.6.9. The bilinear form A(·, ·) defined by (1.6.12) is continuous, i.e.

∀u, v ∈ V, |A(u, v)| ≤ C||u||V ||v||V , (1.6.14)

where C = C(m′,M ′, λ).
It is always possible to choose λ0 > 0 large enough such that Aλ0(·, ·) defined by (1.6.12)(1.6.13) is

coercive, i.e.
∀v ∈ V, Aλ0

(v, v) ≥ α0||v||2V . (1.6.15)

where α0 = α0(m′,M ′).
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Proof. See the Appendix of [30].

We are now in position to prove Proposition 1.6.4. Indeed, thanks to Lemma 1.6.9 we may apply
Theorem 1.6.8 with A(·, ·) defined by (1.6.12) and with G ∈ V ′ defined by 〈G, v〉V′,V = −〈g, v〉H for any

v ∈ V. For any ϕ ∈ H1,1
0 (E) ⊂ V, using (1.6.10) in the computation of the term

〈
− du

dt
, ϕ
〉
V′,V appearing

in (1.6.11) (ϕ replaces v), we get (1.6.9).

It is possible to go a bit further in the analysis of the weak solution and to prove the following lemma,
that asserts that the weak solution of (Pλdiv,∆(ρ, a,B)) is of class H1 in the time variable.

Lemma 1.6.10. The weak u solution of (Pλdiv,∆(ρ, a,B)) satisfies
du

dt
∈ L2(0, T ;L2(R)).

Proof. See the Appendix of [30].

The above result is one of the crucial steps in the study of the case ρ ≡ 1 in [40]. However, it seems
challenging to adapt all the other steps of [40] and [41] to our case ρ 6= 1, see Remark 1.6.13.

1.6.3 Classical solutions by the mean of space transforms

First we summarize the results of the seminal paper [40] for the problem (Pλdiv,∆z
(1,A,B)). In fact, for our

coming purpose, we consider a slightly more general problem, that we denote by (Pλdiv,∆z,(l,r)
(1,A,B))

(with −∞ ≤ l < r ≤ ∞). It is defined by the following system of equations:

[
v′t +

1

2

(
Av′z

)′
z

+ B v′z − λv
]
(t, z) = g(t, z) ∀(t, z) ∈ [0, T )× (l, r) \∆z

A(t, zi+)v′z(t, zi+) = A(t, zi−)v′z(t, zi−) ∀1 ≤ i ≤ I, ∀t ∈ [0, T ) (?)

v(T, z) = f(z) ∀z ∈ (l, r).

v(t, l) = fl(t) ∀t ∈ [0, T )

v(t, r) = fr(t) ∀t ∈ [0, T ).

Here we have l < z1 < . . . < zI < r and we have denoted ∆z = {(t, zi) : 0 ≤ t ≤ T}Ii=1. The
functions fl, fr giving the Dirichlet conditions are in L2(0, T ). Note that the problem (Pλdiv,∆z

(1,A,B))
corresponds simply to l = −∞, r =∞ and fl = fr = 0.

We should precise what we mean by a classical solution v(t, z) of (Pλdiv,∆z,(l,r)
(1,A,B)). For any

compact K ⊂ (0, T )× (l, r) this is a function of class C(K)∩C1,2(K \∆z) such that for all 1 ≤ i ≤ I the
limits v′t(t, zi±), v′z(t, zi±) and v′′zz(t, zi±) exist and are continuous as functions of t ∈ [0, T ) (we assume
for simplicity that K contains all the zi’s). Then v(t, z) satisfies in particular the first and second line
of (Pλdiv,∆z,(l,r)

(1,A,B)) in the classical sense.

Theorem 1.6.11 (O.A. Ladyzhenskaya et al., [40]). For any A ∈ Θ(m′,M ′) satisfying the H(xi) and
H(t)-hypotheses, any B ∈ Ξ(M ′) satisfying the H(t)-hypothesis, and provided that g satisfies the H(t)-
hypothesis, the parabolic problem (Pλdiv,∆z,(l,r)

(1,A,B)) has a classical solution v(t, z), that is Hölder

continuous (see Remark 1.6.12). Besides the time derivative v′t is itself Hölder continuous.

Remark 1.6.12. Here the Hölder continuity means more precisely that for any compact K ⊂ (0, T ) ×
(l, r) we have

∀(t, x), (s, y) ∈ K, |v(t, x)− v(s, y)| ≤ C|(t, x)− (s, y)|ν (1.6.16)

with C, ν positive constants depending on K,m′,M ′.

Proof of Theorem 1.6.11. See of course [40] and Subsection 5.3 in [30], where we aim at presenting the
structure and ideas of the proof of Ladyzhenskaya et al. Basically the idea is to prove that the weak
solution of (Pλdiv,∆z,(l,r)

(1,A,B)), which exists (see [41] and note that our Subsection 1.6.2 presents an

alternate proof), is in fact classical.
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Remark 1.6.13. In [41][40] the authors claim that this is feasible to mimic all the steps of the proof
of Theorem 1.6.11 in the case ρ 6= 1 (but without writing down the proofs, except for the existence of
the weak solution as already mentionned). However, in our opinion, to prove directly that the weak
solution u(t, x) is Hölder continuous (or even continuous) presents difficulties in the case ρ 6= 1.

We now aim at proving the following result.

Proposition 1.6.14. Let λ ≥ 0, a source term g ∈ Cc(E) and a terminal condition f ∈ C0(R)∩L2(R).
Let ρ, a ∈ Θ(m′,M ′) and B ∈ Ξ(M ′) for some 0 < m′ < M ′ < ∞. We assume that ρ, a satisfy the

H(i) and H(t)-hypotheses, and that B and g satisfy the H(t)-hypothesis.
The problem (Pλdiv,∆(ρ, a,B)) has a classical solution.

Proof of Proposition 1.6.14.

STEP1. The problem (Pλdiv,∆(ρ, a,B)) has a weak solution u(t, x) (see Subsection 1.6.2). We shall
aim at proving that u(t, x) is in fact a classical solution.

In the sequel we (arbitrarily) set δ = 1/4. We denote σ =
√
ρa.

STEP2. We treat in details what happens around the interface {(t, 1) : 0 ≤ t ≤ T}. We set

φ1(t, x) =

∫ x

1

dy

ρ(t, y)
,

A1(t, z) =
a

ρ
(t,Φ1(t, z)) (1.6.17)

and

B1(t, z) = [(φ1)′t,± +B(φ1)′x,±](t,Φ1(t, z)), (1.6.18)

where Φ1(t, ·) = [φ1(t, ·)]−1.
We set z1 = inft∈[0,T ] φ1(t, 2− δ). We will show that u(t, x) satisfies (Pλdiv,∆(ρ, a,B)) in the classical

sense in the subregion {(t, x) ∈ E : x ≤ Φ1(t, z1)}.
Note that for any t ∈ [0, T ] we have φ1(t, 1) = 0 and Φ1(t, 0) = 1, and that for any z ≤ z1, any

t ∈ [0, T ] we have Φ1(t, z) ≤ Φ1(t, z1) ≤ 2 − δ. So that the sole singularity of the coefficients A1(t, z)
and B1(t, z) in the region {(t, z) ∈ E : 0 ≤ t ≤ T, z ≤ z1} is for z = 0.

We consider the function v1(t, z) = u(t,Φ1(t, z)), 0 ≤ t ≤ T , z ≤ z1. We claim that this is a weak
solution to the problem (Pλdiv,∆0,(−∞,z1)(1,A1,B1)) defined by the system of equations

[
(v1)′t +

1

2

(
A1(v1)′z

)′
z

+ B1 (v1)′z − λv1

]
(t, z) = g(t,Φ1(t, z)) ∀(t, z) ∈ [0, T )× (−∞, z1) \∆0

A1(t, 0+)(v1)′z(t, 0+) = A1(t, 0−)(v1)′z(t, 0−) ∀t ∈ [0, T ) (?)

v1(T, z) = f(Φ1(T, z)) ∀z ∈ (−∞, z1)

limz→−∞ v1(t, z) = 0 ∀t ∈ [0, T )

v1(t, z1) = u(t,Φ1(t, z1)) ∀t ∈ [0, T )

(here, note that as u(t, x) lives in particular in L2(0, T ;L2(R)), the function t 7→ u(t,Φ1(t, z1)) is in
L2(0, T ), as required for the Dirichlet boundary condition).

Indeed if we suppose formally that u(t, x) is a classical solution to (Pλdiv,∆(ρ, a,B)) in the subregion
{(t, x) ∈ E : x ≤ Φ1(t, z1)}, then the reader can check by easy computations that v1(t, z) is a classical
solution to (Pλdiv,∆0,(−∞,z1)(1,A1,B1)) - below we will detail computations for the converse. But it is
possible to show that this is mathematically true at the level of weak solutions, using changes of variable
inside the weak formulation (see [30] for details).

But according to the proof of Theorem 1.6.11, the weak solution v1(t, z) is in fact also a classical
solution of (Pλdiv,∆0,(−∞,z1)(1,A1,B1)). We draw the consequences on the PDE problem solved by u(t, x)
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in the classical sense, using again u(t, x) = v1(t, φ1(t, x)) and the expression of the classical derivatives
(for t ∈ [0, T ], x ≤ Φ1(t, z1), x 6= 1)

u′x(t, x) = (v1)′z(t, φ1(t, x))(φ1)′x(t, x) (1.6.19)

u′t(t, x) = (v1)′t(t, φ1(t, x)) + (v1)′z(t, φ1(t, x))(φ1)′t(t, x) (1.6.20)

u′′xx(t, x) = (v1)′′zz(t, φ1(t, x))((φ1)′x)2(t, x) + (v1)′z(t, φ1(t, x))(φ1)′′xx(t, x). (1.6.21)

We first identify the transmission condition at the interface {(t, 1) : 0 ≤ t ≤ T}. We have, using in

particular (φ1)′x(t, x) =
1

ρ(t, x)
and (1.6.19),

a(t, 1+)u′x(t, 1+) = A1(t, 0+)ρ(t, 1+)u′x(t, 1+) = A1(t, 0+)(v1)′z(t, 0+)

= A1(t, 0−)(v1)′z(t, 0−) = A1(t, 0−)ρ(t, 1−)u′x(t, 1−) = a(t, 1−)u′x(t, 1−).
(1.6.22)

Second, for t ∈ [0, T ), x ≤ Φ1(t, z1), x 6= 1, we have[
u′t +

ρ

2

(
au′x

)′
x

+B u′x − λu
]
(t, x)

=
[
u′t +

σ2

2
u′′xx +

(
B +

ρa′x
2

)
u′x − λu

]
(t, x)

= (v1)′t(t, φ1(t, x)) + (v1)′z(t, φ1(t, x))(φ1)′t(t, x) +
(
B +

ρa′x
2

)
(t, x)(v1)′z(t, φ1(t, x))(φ1)′x(t, x)

+σ2(t,x)
2

(
(v1)′′zz(t, φ1(t, x))((φ1)′x)2(t, x) + v′z(t, φ1(t, x))(φ1)′′xx(t, x)

)
− λv1(t, φ1(t, x))

= (v1)′t(t, φ1(t, x)) + σ2(t,x)
2ρ2(t,x) (v1)′′zz(t, φ1(t, x))− λv1(t, φ1(t, x))

+(v1)′z(t, φ1(t, x))
[
(φ1)′t(t, x) +

(
B +

ρa′x
2

)
(t, x)(φ1)′x(t, x) + σ2(t,x)

2 (φ1)′′xx(t, x)
]

=
[
(v1)′t + 1

2 (A1(v1)′z)
′
z − λv1

]
(t, φ1(t, x))

+
[

(v1)′z

(
(φ1)′t ◦ Φ1 +

(
B(φ1)′x +

a′x
2

)
◦ Φ1 +

σ2(φ1)′′xx
2

◦ Φ1 −
(A1)′z

2

)]
(t, φ1(t, x))

=
[
(v1)′t + 1

2 (A1(v1)′z)
′
z + B1 (v1)′z − λv1

]
(t, φ1(t, x)) = g(t,Φ1(t, φ1(t, x)) = g(t, x).

(1.6.23)
Here we have used

(A1)′z(t, z) =
(a′x
ρ
− aρ′x

ρ2

)
(t,Φ1(t, z))ρ(t,Φ1(t, z)) = a′x(t,Φ1(t, z)) + σ2(t,Φ1(t, z))(φ1)′′xx(t,Φ1(t, z)).

In view of (1.6.22) and (1.6.23) we have proved that that u(t, x) satisfies (Pλdiv,∆(ρ, a,B)) in the classical
sense in the subregion {(t, x) ∈ E : x ≤ Φ1(t, z1)} (we can easily that u(t, x) has the required smoothness
and satisfies the terminal condition).

STEP3. We repeat Step 2 around each interface {(t, i) : 0 ≤ t ≤ T}, 2 ≤ i ≤ I. More precisely we
define for any 2 ≤ i ≤ I

φi(t, x) =

∫ x

i

dy

ρ(t, y)
, and zi,d = sup

t∈[0,T ]

φi(t, i− 1 + δ). (1.6.24)

For 2 ≤ i ≤ I − 1 we define zi = inft∈[0,T ] φi(t, i + 1 − δ). By computations similar to Step 2 we

will then prove that u(t, x) satisfies (Pλdiv,∆(ρ, a,B)) in the classical sense in each of the subregions
{(t, x) ∈ E : Φi(t, zi,d) ≤ x ≤ Φi(t, zi)}, 2 ≤ i ≤ I − 1, and in the region {(t, x) ∈ E : ΦI(t, zI,d) ≤ x}.
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In particular, at this stage, u(t, x) satisfies the transmission condition (?) in (Pλdiv,∆(ρ, a,B)) in the
classical sense, at each interface (for 1 ≤ i ≤ I).

STEP4. The trouble is that we cannot say for the moment that the first line of (Pλdiv,∆(ρ, a,B))
holds true in the whole domain E◦ \∆.

But using again Theorem 1.6.11, in a different manner, we can prove that u(t, x) satisfies (Pλdiv,∆(ρ, a,B))
in each of the subregions {(t, x) ∈ E : i < x < i+ 1}, 1 ≤ i ≤ I − 1 (see [30] for details).

Therefore Proposition 1.6.14 is proved.

We now give further properties of the solution u(t, x) considered in Proposition 1.6.14.

Lemma 1.6.15. In the above context the classical time derivative u′t is continuous.

Proof. That u′t is continuous at any point (t, x) /∈ ∆ is clear, by definition of a classical solution. Let
(t, x) ∈ ∆, i.e. we have (t, x) = (t, i) for some 1 ≤ i ≤ I. Considering (1.6.20) we have

u′t(t±, i±) = (vi)
′
t(t±, 0±) + (vi)

′
z(t±, 0±)(φi)

′
t(t±, 0±).

But by taking the time derivative of (1.6.24), and inverting this derivative and the integral sign, we see
that we simply have (φi)

′
t(t±, 0±) = 0. And thus

u′t(t±, i±) = (vi)
′
t(t±, 0±).

But as (vi)
′
t is continuous (Theorem 1.6.11) we see that u′t(t±, i±) = (vi)

′
t(t, 0) = u′t(t, i).

Remark 1.6.16. Note that the result of Lemma 1.6.15 is true because the interfaces are not moving. In
the case of moving interfaces u′t will not be continuous in general, because there is no reason the second
RHS term in (1.6.8) vanishes at the interface (contrary to what happens in (1.6.20)).

Conclusion of Section 1.6. In view of Propositions 1.6.3 and 1.6.14, it is now clear that if we
have the xi’s and βi’s as in Theorem 1.4.5, σ ∈ Θ(m,M), b ∈ Ξ(M), with σ satisfiying the H(xi) and
H(t)-hypotheses, and b and g satisfying the H(t)-hypothesis, then (Pλ∆x

(σ, b, β)) has indeed a classical
solution (unique thanks to Theorem 1.5.1).

1.7 Markov property, Feller semigroup and generator in the
strong sense

We first have the following result.

Proposition 1.7.1. In the context of Theorem 1.4.5, assume that σ satisfies the H(xi) and H(t)-
hypotheses and that b satisfies the H(t)-hypothesis.

Let X = (Xt)t∈[0,T ] a weak solution of (1.1.1).
Then X is a Feller time-inhomogeneous (Ct)-Markov process.

Proof. Remember that for any t ∈ [0, T ], Xt = r(t, Yt) where Y is the solution of (1.3.2) with the
coefficients defined by (1.4.17). As these coefficients satisfy the hypotheses of Theorem 1.3.1 we can see
from Theorem 6.2.2 in [70] that Y is Markov, as already pointed in Subsection 1.3.1.

Therefore we can easily see that X is Markov and that the associated family (PXs,t) satisfies (1.3.6).

Thus the family (PXt ) (associated to the space time process X̃) satisfies (1.3.7). The only point that
requires special attention is to show that (PXt ) is a Feller semigroup. Indeed, as the coefficients σ̄, b̄ in
(1.3.2) are not smooth, we cannot apply directly Corollary 3.1.2 in [70], to get the Feller property for
the family (PYs,t) associated to Y , and deduce the Feller property for (PXs,t).

Thus we will focus on (PYt ), and prove by our means that this is a Feller semigroup. We recall that

∀(s, y) ∈ E, ∀ϕ ∈ C0(E), ∀ 0 ≤ t ≤ T−s, PYt ϕ(s, y) = PYs,t+sϕ(t+s, y) = Es,y[ϕ(s+t, Ys+t)]. (1.7.1)

Then, one may show that (PXt ) inherits the Feller property of (PYt ). To that aim, one may denote now
r̃(t, y) = (t, r(t, y)), R̃(t, x) = (t, R(t, x)), use the relationship

∀(s, x) ∈ E, ∀ϕ ∈ C0(E), ∀t ∈ [0, T − s], PXt ϕ(s, x) = PYt (ϕ ◦ r̃)(R̃(s, x)),
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the continuity of r(t, z), R(t, x), and limy→±∞ r(t, y) = ±∞, limx→±∞R(t, x) = ±∞, for any t ∈ [0, T ].

That being said, we now prove that (PYt ) is Feller. We denote ∆y = R̃(∆x). Note that, thanks to the
assumptions on the coefficients, and Proposition 1.6.14, we have that (Pλ∆y

(σ̄, b̄, 0)) has a classical solution

for any finite time horizon, terminal condition f ∈ C0(R)∩L2(R), and g ≡ 0. Note that (Pλ∆y
(σ̄, b̄, 0)) is a

parabolic transmission problem with discontinuous coefficients, but with no transmission condition (more
precisely the transmission condition is simply of type u′y(t, yi(t)+) = u′y(t, yi(t)−) for any t ∈ [0, T )).

STEP1. Pick ϕ ∈ C∞,∞c (E). We will show that PYt ϕ is in C0 = C0(E).

a) Let (s, y) ∈ E fixed. We first show that PYt ϕ is continuous at point (s, y). Let δ > 0. For any
(r, z) ∈ E (we suppose that t+ s, t+ r < T ) we have

|PYt ϕ(s, y)− PYt ϕ(r, z)| ≤
∣∣Es,y[ϕ(t+ s, Yt+s)]− Er,z[ϕ(t+ s, Yt+s)]

∣∣
+
∣∣Er,z[ϕ(t+ s, Yt+s)]− Er,z[ϕ(t+ s, Yt+r)]

∣∣+ |PYr,t+rϕ(t+ s, z)− PYr,t+rϕ(t+ r, z)|.
(1.7.2)

Note that by virtue of Theorem 1.5.1, for any (r, z) we may regard Er,z[ϕ(t+s, Yt+s)] as ut+s(r, z), where
ut+s is the classical solution of the parabolic problem (P0

∆y
(σ̄, b̄, 0)) (with time horizon t+ s ≤ T ), with

terminal condition ϕ(t+ s, ·) ∈ C∞c (R) ⊂ C0(R) ∩ L2(R) and source term g ≡ 0.
As the function ut+s is continuous on E we may find η1 such that for any (r, z) with |(s, y)−(r, z)| < η1

we have ∣∣Es,y[ϕ(t+ s, Yt+s)]− Er,z[ϕ(t+ s, Yt+s)]
∣∣ < δ

3
.

We now turn to the second RHS term in (1.7.2). We have,∣∣Er,z[ϕ(t+ s, Yt+s)]− Er,z[ϕ(t+ s, Yt+r)]
∣∣ ≤ ||ϕ′x||∞Er,z|Yt+s − Yt+r|.

Further, we have

Er,z|Yt+s − Yt+r|2 ≤ 4
(
Er,z

∣∣ ∫ t+r

t+s

σ̄(u, Yu)dWu

∣∣2 + Er,z
∣∣ ∫ t+r

t+s

b̄(u, Yu)du
∣∣2) ≤ 4M̄2(|r − s|+ |r − s|2),

where we have used |a+ b|2 ≤ 4(|a|2 + |b|2) and the fact that σ̄, b̄ ∈ θ(m̄, M̄). Thus by Jensen inequality
we see that

Er,z|Yt+s − Yt+r| ≤ C(T )|r − s|1/2.

To sum up we may find η2 > 0 such that for any |(s, y)− (r, z)| < η1 ∧ η2 we have∣∣Er,z[ϕ(t+ s, Yt+s)]− Er,z[ϕ(t+ s, Yt+r)]
∣∣ < δ

3
.

To finish with, we turn to the third RHS term in (1.7.2). It is clear that we have

|PYr,t+rϕ(t+ s, z)− PYr,t+rϕ(t+ r, z)| ≤ ||ϕ(t+ s, ·)− ϕ(t+ r, ·)||∞ ≤ ||ϕ′t||∞ |r − s|,

so that we may find η3 > 0 such that for any |(r, z)− (s, x)| < η3 we have

|PYr,t+rϕ(t+ s, z)− PYr,t+rϕ(t+ r, z)| < δ

3
.

Thus, setting η = η1 ∧ η2 ∧ η3, we have

|PYt ϕ(s, x)− PYt ϕ(r, z)| < δ

for any |(r, z)− (s, x)| < η. Therefore the continuity of PYt ϕ is established.

b) We now show that lim|y|→∞ PYt ϕ(s, y) → 0 (for any s ∈ [0, T ]). Again we may see PYt ϕ(s, ·) as
the solution ut+s(s, ·) (at time s ∈ [0, t + s]) of (P0

∆y
(σ̄, b̄, 0)) with terminal condition ϕ(t + s, ·) (again

time horizon is t+ s and the source term is zero). The result then follows from the boundary condition
in problem (P0

∆y
(σ̄, b̄, 0)).
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STEP2. Pick ϕ ∈ C0. We may construct a sequence (ϕn) in C∞,∞c (E) such that ||ϕn − ϕ||∞ → 0
as n → ∞. As ||PYt f ||∞ ≤ ||f ||∞ for any f ∈ Cb(E), we get ||PYt ϕ − PYt ϕn||∞ ≤ ||ϕ − ϕn||∞, and we
see that the sequence (PYt ϕn) in Cb(E) converges uniformly to PYt ϕ. Therefore PYt ϕ is in C0, as each
PYt ϕn is in C0 by Step 1. This shows that for any t ∈ [0, T ], PYt C0 ⊂ C0.

STEP3. Let (s, y) ∈ E and ϕ ∈ C0. From (1.7.1) and the continuity of Y , we easily see by dominated
convergence that PYt ϕ(s, y)→ ϕ(s, y) as t ↓ 0. Using this and the conclusion of Step 2, we deduce from
Proposition III.2.4 in [64] that (PYt ) is a Feller semigroup.

Therefore the corresponding space-time process X̃ = ((t,Xt))t∈[0,T ] is a E-valued Feller homogeneous

(Ct)-Markov process (cf Subsection 1.3.4). We wish to identify the infinitesimal generator of X̃. For
technical reasons we only treat the case ∆x = ∆ (see Remark 1.7.4). To that aim we have to introduce
further notations.

With the same assumptions on the coefficients βi’s as in Theorem 1.4.5, we define

SX =
{
ϕ ∈ C(E) ∩ C1,2(E \∆) : with ϕ(T, ·) = 0, t 7→ ϕ′t(t, i) is continuous on [0, T ),

∀(t, i) ∈ ∆, ϕ′t(t, i±) = ϕ′t(t, i) and ϕ′x(t, i±) and ϕ′′xx(t, i±) exist with

σ2

2 (t, i+)ϕ′′xx(t, i+) + b(t, x+)ϕ′x(t, i+) = σ2

2 (t, i−)ϕ′′xx(t, i−) + b(t, i−)ϕ′x(t, i−).

Besides (1 + βi(t))ϕ
′
x(t, i+) = (1− βi(t))ϕ′x(t, i−) ∀1 ≤ i ≤ I, ∀t ∈ [0, T ) (?)

∀1 ≤ i ≤ I, ϕ′x(t, i±) and ϕ′′xx(t, i±) are continuous functions of t ∈ [0, T )

and lim|x|→∞
(
ϕ′t(t, x) + 1

2σ
2(t, x)ϕ′′xx(t, x) + b(t, x)ϕ′x(t, x)

)
= 0 ∀t ∈ [0, T ]

}
.

For any ϕ ∈ SX we define LXϕ by

∀(t, x) ∈ E \∆, LXϕ(t, x) = ϕ′t(t, x) + 1
2σ

2(t, x)ϕ′′xx(t, x) + b(t, x)ϕ′x(t, x)

∀(t, i) ∈ ∆, LXϕ(t, i) = ϕ′t(t, i) + σ2

2 (t, i+)ϕ′′xx(t, i+) + b(t, i+)ϕ′x(t, i+)

= ϕ′t(t, i) + σ2

2 (t, i−)ϕ′′xx(t, i−) + b(t, i−)ϕ′x(t, i−).

We will have the following result.

Theorem 1.7.2. Assume ∆x = ∆. In the context of Proposition 1.7.1 let X = (Xt)t∈[0,T ] the solution
of (1.1.1).

We then denote by (LX , D(LX)) the infinitesimal generator of the Feller space-time process X̃.
Then the operator (LX , D(LX)) is the closure of (LX ,SX).

Remark 1.7.3. Note that the condition ϕ(T, ·) = 0 in the definition of SX is here because we already
know that the functions ϕ in D(LX) have to satisfy ϕ(T, ·) = 0. Indeed, as we have set PXt ϕ(s, x) = 0
for t + s > T , this is needed in order to have the existence of the limit in (1.3.9) for s = T . This is
somehow the same issue than in the definition of the domain D(Λ,V ′) in Lemma 1.6.6.

Proof of Theorem 1.7.2. Take ϕ ∈ SX ⊂ C0 and notice that LXϕ is in C0. Then, using Proposition
1.4.1, Equation (1.4.7) and condition (?), we have for any 0 ≤ s ≤ t ≤ T ,

ϕ(X̃t)− ϕ(X̃s)−
∫ t

s

LXϕ(X̃u)du =

∫ t

s

ϕ′x,±(u,Xu)σ(u,Xu)dWu.

The above t-indexed process being a martingale we see by Proposition 1.3.11 that SX ⊂ D(LX) and
that LX coincides with LX on SX .
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We shall now prove that the closure of (LX ,SX) is the generator of a Feller semigroup on C0. Indeed
the result will then follow from Exercise VII.1.18 in [64] (note that in the language of [18] we have
(LX ,SX) ⊂ (LX , D(LX)), and that (LX , D(LX)) is closed, see Proposition VII.1.3 in [64]).

The idea is to apply Theorem 1.2.12 in [18], which is an Hille-Yosida type theorem, in the Banach
space C0 (see also their Theorem 4.2.2).

STEP1. Let g ∈ C1,0
c (E) ⊂ C0, and λ > 0. The equation

λu− LXu = −g (1.7.3)

with terminal condition u(T, ·) = 0 and with lim|x|→∞ u(t, x) = 0, has a classical solution u(t, x) satisfying
(?), living in C0(E)∩C1,2(E\∆), and satisfying all the other requirements for being in SX , thanks to the
results of Subsection 1.6.3 (see in particular Proposition 1.6.14, Lemma 1.6.15 and the Conclusion). Note
in particular that as (LXu)(t, x) = (g + λu)(t, x) for x great enough, and as g ∈ Cc(E) and u ∈ C0(E),
we clearly have that (LXu)(t, x)→ 0 as x→∞ (for any t ∈ [0, T ]).

Remember that C1,0
c (E) is dense in C0. Thus, denoting by R(λI − LX) the image of SX by the

operator λI − LX , we have
C1,0
c (E) ⊂ R(λI − LX) ⊂ C0,

and taking closures we see that R(λI − LX) is dense in C0.
STEP2. The domain SX is obviously dense in C0.
STEP3. We show now that (LX ,SX) is dissipative. Let λ > 0 and pick ϕ ∈ SX .

a) Assume ϕ reaches a positive maximum at a point (t0, x0) ∈ [0, T )× R.

If (t0, x0) /∈ ∆ it is clear that ϕ′t(t0, x0) ≤ 0, ϕ′x(t0, x0) = 0 and ϕ′′xx(t0, x0) ≤ 0, thus LXϕ(t0, x0) ≤ 0.

If (t0, x0) ∈ ∆ (i.e. x0 = i for some 1 ≤ i ≤ I) things are not so clear because of the lack of
smoothness of ϕ on ∆. But because (1 + βi0(t0)), (1 − βi0(t0)) > 0, ϕ′x(t0, x0+) and ϕ′x(t0, x0−) share
the same sign and this implies ϕ′x(t0, x0±) = 0.

Let us now prove that ϕ′t(t0, x0) ≤ 0. Indeed, since t 7→ ϕ(t, x0) is a C1 function, we may apply
the mean value theorem ensuring that for h > 0 there exists θ ∈ (0, 1) such that 1

h (ϕ(t0 + h, x0) −
ϕ(t0, x0)) = ϕ′t(t0, x0) + (ϕ′t(t0 + θh, x0) − ϕ′t(t0, x0)). Now, since ϕ reaches a positive maximum at a
point (t0, x0) ∈ [0, T )× R, the left hand side of the equality is negative. Then, letting h tend to zero in
the right hand side ensures that necessarily ϕ′t(t0, x0) ≤ 0.

Therefore we must have ϕ′′xx(t0, x0±) ≤ 0 and consequently LXϕ(t0, x0) ≤ 0.
Thus we have

||λϕ− LXϕ||∞ ≥ λϕ(t0, x0)− LXϕ(t0, x0) ≥ λϕ(t0, x0) = λ||ϕ||∞.

b) Assume now ϕ reaches a positive maximum at a point (T, x0), x0 ∈ R, therefore this positive
maximum is in fact zero. Thus, either ϕ is the null function and we have automatically λ||ϕ||∞ ≤
||λϕ − LXϕ||∞. Either this is not the case and ϕ reaches a strictly negative minimum on [0, T ) × R.
Thus considering −ϕ and applying Subset a) we get the desired inequality.

c) If it is −ϕ that reaches a positive maximum, we may repeat Substeps a)-b) to get λ||ϕ||∞ ≤
||λϕ− LXϕ||∞.

STEP4. We apply Theorem 1.2.12 in [18] to see that the closure of (LX ,SX) generates a strongly
continuous, contraction semigroup (Tt) on C0.

STEP5. It remains to see that (Tt) is positive, but this can be accomplished in the same manner
than in the proof of Theorem 4.2.2 in [18] (note that (Tt) is conservative, thanks to Proposition III.2.2
in [64]).

Remark 1.7.4. In fact, if we do not have ∆x = ∆, to prove that ϕ′t(t0, x0) ≤ 0 in Step 3-b) (case
(t0, x0) ∈ ∆) seems more difficult. Besides, note that we would have to define the domain SX in a differ-
ent manner, as we would no more have the continuity of u′t for u solving the resolvent equation (1.7.3)
(see Remark 1.6.16).
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Chapter 2

The special case of the
time-inhomogeneous Skew Brownian
Motion

This Chapter is based on the paper On the existence of a time inhomogeneous skew Brownian motion
and some related laws ([27]), written with Miguel Martinez.

Its structure differs slightly from the one of [27], as we can now rely on some results of Chapter 1. In
fact we want to highlight the results of [27] that are not contained in Chapter 1 (and therefore in [30];
note however that [30] is posterior to [27]).

2.1 Introduction

Consider the equation

dBβt = Wt + β(t)dL0
t (B

β), t ∈ [0, T ], Bβ0 = x0. (2.1.1)

If β : [0, T ] → [k, κ] (−1 < k ≤ κ < 1) is of class C1, with |β′(t)| ≤ M for any t ∈ [0, T ], we know
from Chapter 1 that (2.1.1) possesses a unique strong solution Bβ . We call this solution the time-
Inhomogeneous Brownian Motion (ISBM).

The ISBM appears in a seminal paper by S. Weinryb ([78]), where a pathwise uniqueness property
for (2.1.1) is proved. To prove this result no special smoothness of β is required: it is only assumed to
be a deterministic function taking values in [−1, 1] (see Remark 2.2.3).

But however, concerning the existence of weak solutions to (2.1.1), and although in [78] it is said that
”partial existence results were obtained by Watanabe [76, 77]”, we could find no satisfactory reference, by
the time we were working on [27] (note that this was before working on [30]; note the recent paper [14])).
Thus, in [27], apart from studying some laws related to the ISBM, we aimed at giving a positive answer
to the existence of solutions to (2.1.1), under the general assumption that β is measurable and takes
values in [−1, 1] (we are then outside the assumptions of [30] and Chapter 1).

In fact, as the process Bβ behaves like a Brownian motion that is (in a time-inhomogeneous fashion)
perturbed by the local time term, we can resort on known laws about the Brownian motion, in order
to study Bβ . Contrary to what happens in Chapter 1, where we resort to general stochastic calculus
arguments that need some smoothness assumptions, and where nothing is explicit.

In this chapter we give roughly speaking three type of results: the already mentioned existence result
for the solutions of (2.1.1), with a non smooth function β; the explicit transition probability density of
the process Bβ ; the explicit trivariate density of the process Bβ , its local time and its last exit time from
point zero.

Organization of the chapter. In Section 2.2 we fix some notations and gather some preliminary
material. In Section 2.3 we define a transition function that will reveal itself to be the one of the ISBM in
the sequel. In Section 2.4 we state our main results. In Section 2.5 we give a first proof of the existence
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of the ISBM: we construct in a canonical way a Markov process with transition function the one given
in Section 2.3, and show that this is weak a solution of (2.1.1). The starting point of this proof will be
provided by the results of Chapter 1. In Section 2.6 we prove the expression of the trivariate density of
the process Bβ , its local time and its last exit time from point zero. In Section 2.7 we evoke another
construction of the ISBM that was given in [27], using Brownian excursions.

2.2 Notations and preliminaries

To be consistent with the study in [27], we work in a infinite time horizon context (that is to say, from
now on t ∈ R+ replaces t ∈ [0, T ] in (2.1.1)).

In the following W is a standard Brownian motion defined on (C, C,P), where P is the Wiener measure.
Throughout the chapter, e denotes the exponential law of parameter 1 ; Arcsin is the standard

arcsin law with density (π
√
y(1− y))−1 on [0, 1]; R(p) denotes the Rademacher law with p parameter

i.e. the law of random variable Y taking values {−1,+1} with P(Y = 1) = p = 1− P(Y = −1).
We denote for all t ≥ 0,

Gt := sup{s < t : |Ws| = 0} and Gβt := sup{s < t : |Bβs | = 0}.

It is well known that G1
L∼ Arcsin (see [64] Chap. III, Exercise 3.20). We will also denote for all

0 ≤ u ≤ 1,

Mu :=
∣∣WG1+u(1−G1)

∣∣/√1−G1 and Mβ
u :=

∣∣Bβ
Gβ1 +u(1−Gβ1 )

∣∣/√1−Gβ1 .

The process M is called the Brownian Meander of length 1. It is well known that M1
L∼
√

2e (see [64],
Chap. XII, Exercise 3.8).

As in Chapter 1, the expectation Ex (resp. Es,x) refers to the probability measure Px := P( · |Bβ0 = x)
(resp. Ps,x := P( · |Bβs = x)).

Let β : R+ → [−1, 1] a Borel function. The following fundamental facts are the key of many

considerations of this paper.

Proposition 2.2.1. (see [78] or [64] Chap. VI Exercise 2.24 p. 246) Assume (2.1.1) has a weak solution
Bβ. Then under P0,

(|Bβt |)t≥0
L∼ (|Wt|)t≥0 .

We recall below the main result of [78].

Theorem 2.2.2. (see [78] or [64] Chap. VI Exercise 2.24 p. 246)
Pathwise uniqueness holds for the weak solutions of equation (2.1.1).

Remark 2.2.3. In the introductory article [78], it is shown that there is pathwise uniqueness for equation
(2.1.1) but with a slight modification : in [78] the local time appearing in the equation is the standard
right sided local time, so that the function β is supposed to take values in (−∞, 1/2]. Still, all the results
of [78] may be easily adapted for the case where L0

. (B
β) stands for the symmetric local time at 0. We

leave these technical aspects to the reader.

As L0
1(Bβ), Mβ

1 and Gβ1 (resp. L0
1(W ), M1 and G1) are measurable functions of the trajectories of

|Bβ | (resp. |W |), we get immediately the following corollary.

Corollary 2.2.4. We have

(|Bβ1 |, L0
1(Bβ), Gβ1 ,M

β
1 )
L∼ (|W1|, L0

1(W ), G1,M1).

The following known trivariate density will play a crucial role.
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Proposition 2.2.5. i) We have

(|W1|, L0
1(W ), G1) = (

√
1−G1M1,

√
G1l

0, G1), (2.2.1)

where l0
L∼
√

2e, and with G1,M1, l
0 independent.

ii) As a consequence, for all t, s > 0, and all `, x ≥ 0, the image measure P0[|Wt| ∈ dx, L0
t (W ) ∈

d`,Gt ∈ ds] is given by

1s≤t

√
2

πs3
` exp

(
− `2

2s

) x√
2π(t− s)3

exp

(
− x2

2(t− s)

)
ds d` dx. (2.2.2)

Proof. See [64], Chap. XII, Exercise 3.8.

Remark 2.2.6. Note that, by integrating (2.2.2) with respect to `, and using a symmetry argument we
get that

p(t, 0, y) =
|y|
2π

∫ t

0

1√
s(t− s)3/2

exp

(
− y2

2(t− s)

)
ds, (2.2.3)

where p(t, x, y) := 1√
2πt

exp
(
− (y−x)2

2t

)
is the transition density of a Brownian motion.

2.3 Transition probability density

All through the chapter the transition probability density of Bβ will be denoted pβ(s, t;x, y) (we show
that it exists).

Let us now give the analytical expression of the function pβ(s, t;x, y). It will be shown later (Sub-
section 2.5.2) that pβ(s, t;x, y) is a transition probability function (t.f.) (in particular it satisfies the
Chapman-Kolmogorov equations), and that the existing strong solution Bβ of (2.1.1) is indeed an inho-
mogeneous Markov process with transition function pβ(s, t;x, y).

Definition 2.3.1. For all t > 0, y ∈ R, we set

pβ(0, t; 0, y) :=
|y|
π

∫ t

0

1 + sgn(y)β(s)

2

1√
s(t− s)3/2

exp

(
− y2

2(t− s)

)
ds. (2.3.1)

Let us now introduce the shift operator (σt) acting on time dependent functions as follows:

β ◦ σt(s) = β(t+ s).

Assume for a moment that (2.1.1) has a solution Bβ which enjoys the strong Markov property and
satisfies

P0(Bβt ∈ dy) = pβ(0, t; 0, y)dy.

Let x 6= 0 be the starting point of Bβ at time s. Let

τ0 := inf(t ≥ s : Bβt = 0).

Since the local time L0
. (B

β) does not increase until Bβ reaches 0, the process Bβ , heuristically speaking,
behaves like a Brownian motion on time interval (s, τ0), implying that Ps,x(τ0 ∈ du) = |x| exp(−x2/2(u−
s))/

√
2π(u− s)3. Then it starts afresh from zero, behaving like an ISBM. Thus, for t > s,

Ps,x(Bβt ∈ dy) = Ps,x(Bβt ∈ dy ; s ≤ τ0 ≤ t) + Ps,x(Bβt ∈ dy ; τ0 > t)

= dy

∫ t−s

0

|x|e−x2/2u

√
2πu3

pβ◦σs◦σu(0, t− s− u; 0, y)du

+
1√

2π(t− s)

[
exp

(
− (y − x)2

2(t− s)

)
− exp

(
− (y + x)2

2(t− s)

)]
1xy > 0.

(2.3.2)
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The second line is a consequence of the assumed strong Markov property, while the third line is a
consequence of the reflection principle due to the fact that on the event {τ0 > t} the process Bβ behaves
like a Brownian motion.

But using (2.3.1), a Fubini-Tonelli argument, a change of variable, and (2.2.3), we get :∫ t−s

0

|x|e−x2/u

√
2πu3

pβ◦σs◦σu(0, t− s− u; 0, y)du

=

∫ t−s

u=0

∫ u

r=0

1 + sgn(y)β ◦ σs(u)

2

√
2

π

|y|
(t− (s+ u))3/2

e−
y2

2(t−(s+u))
|x|

2π
√
r(u− r)3/2

e−
x2

2(u−r) dr du

=

∫ t−s

0

1 + sgn(y)β ◦ σs(u)

2

|y|
π

e−
y2

2(t−(s+u))

√
u(t− s− u)3/2

e−x
2/2udu.

(2.3.3)
This leads us to the following definition.

Definition 2.3.2. For t > s, x, y ∈ R, we set

pβ(s, t;x, y) :=

∫ t−s

0

1 + sgn(y)β ◦ σs(u)

2

|y|
π

e−
y2

2(t−(s+u))

√
u(t− s− u)3/2

e−x
2/2udu

+
1√

2π(t− s)

[
exp

(
− (y − x)2

2(t− s)

)
− exp

(
− (y + x)2

2(t− s)

)]
1xy > 0. (2.3.4)

Remark 2.3.3. Note that in the case of Brownian motion (β ≡ 0) we have :

p(t, x, y) =

∫ t

0

|y|
2π

e−
y2

2(t−u) e−
x2

2u

√
u(t− u)3/2

du+
1√
2πt

[
exp

(
− (y − x)2

2t

)
− exp

(
− (y + x)2

2t

)]
1xy > 0. (2.3.5)

Thus, considering (2.3.4),

pβ(s, t;x, y) = p(t− s, x, y) +

∫ t−s

0

β ◦ σs(u)

2

y

π

e−
y2

2(t−(s+u))

√
u(t− s− u)3/2

e−x
2/2udu. (2.3.6)

This will be useful in forthcoming computations.

Remark 2.3.4. When β(s) ≡ β is constant, pβ(s, t;x, y) is just the transition density of the SBM given
for example in [64].

2.4 Main results

We now state the main results of the chapter.

Proposition 2.4.1. Let Bβ a weak solution of (2.1.1).
For all t > 0, y ∈ R, we have

P0(Bβt ∈ dy) = pβ(0, t; 0, y)dy,

where the function pβ(0, t; 0, y) is explicit in Definition 2.3.1.

Theorem 2.4.2. Let β : R+ → [−1, 1] a Borel function and W a standard Brownian motion. For
any fixed x ∈ R, there exists a unique (strong) solution to (2.1.1). It is a (strong) Markov process with
transition function pβ(s, t;x, y) given by Definition 2.3.2.

Still, a (very) little more work allows to retrieve the law of (Bβt , L
0
t (B

β), Gβt ) under P0.

Theorem 2.4.3. For all t, s > 0, all ` ≥ 0 and all x ∈ R, the image measure P0[Bβt ∈ dx, L0
t (B

β) ∈
d`,Gβt ∈ ds] is given by

1s≤t
1 + sgn(x)β(s)

2

√
2

πs3
` exp

(
− `2

2s

) |x|√
2π(t− s)3

exp

(
− x2

2(t− s)

)
ds d` dx. (2.4.1)
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2.5 A first proof of the existence of the ISBM

2.5.1 Law of the ISBM at a fixed time : proof of Proposition 2.4.1

Let β : R+ → [−1, 1] a Borel function and assume (2.1.1) has a weak solution Bβ (it will be shown in
the next subsection that this is indeed the case).

In this part, we note gt,x(λ) := Ex exp
(
iλBβt

)
the Fourier transform of Bβt starting from x and

hx(t) := Ex
∫ t

0

β(s)dL0
s(B

β). We start with two lemmas.

Lemma 2.5.1. We have h0(t) =
1√
2π

∫ t
0
β(s)√
s
ds.

Proof. Using the symmetric Tanaka formula and Proposition 2.2.1 we get E0(L0
t (B

β)) = E0|Bβt | =

E0|Wt| =
√

2
π

√
t. Consequently, we may apply Fubini’s theorem and we get that, h0(t) = E0

∫ t
0
β(s)dL0

s(B
β) =∫ t

0
β(s)d

(
E0L0

s(B
β)
)

= 1√
2π

∫ t
0
β(s)√
s
ds.

Lemma 2.5.2. We have for all λ > 0 and t > 0,

gt,0(λ) = e−λ
2t/2

(
1 +

i λ√
2π

∫ t

0

β(s)√
s
eλ

2s/2ds

)
.

Proof. Applying Itô’s formula ensures that for any fixed λ ∈ R the process (gt,x(λ))t≥0 is solution of the
first order differential equation :

gt,x(λ) = eiλx − λ2

2

∫ t

0

gs(λ)ds+ iλhx(t),

(see [78] or [64] Chap. VI Exercise 2.24 p. 246). Solving formally this equation, we find that for any
fixed λ > 0 :

gt,x(λ) = e−λ
2t/2

(
eiλx + iλhx(t)eλ

2t/2 − iλ3

2

∫ t

0

hx(s)eλ
2s/2ds

)
. (2.5.1)

Integrating by part, taking x = 0 and using Lemma 2.5.1 we get the announced result.

Proof of Proposition 2.4.1. In the following computations we note F̂−1(g)(z) := 2π
∫
R g(λ)e−izλdλ the

inverse Fourier transform of a function g. We will sometimes write F̂−1(g(λ))(z) to make the dependence
of g with respect to λ explicit.

We have for y ∈ R,

pβ(0, t; 0, y) = F̂−1(gt,0)(y)

= F̂−1(e−λ
2t/2)(y) + 2π

∫
R

iλ√
2π

( ∫ t

0

β(s)e−λ
2(t−s)/2
√
s

ds
)
e−iyλdλ

= p(t, 0, y) +
1√
2π

∫ t

0

β(s)2π
( ∫

R
iλ
e(iλ)2(t−s)/2
√
s

e−iyλdλ
)
ds

= p(t, 0, y) +
1√
2π

∫ t

0

β(s)F̂−1
(
iλ(t− s)e

(iλ)2(t−s)/2
√
s(t− s)

)
(y)ds

= p(t, 0, y) +
1√
2π

∫ t

0

β(s)F̂−1
( d
dλ

(e(iλ)2(t−s)/2
√
s(t− s)

))
(y)ds

= p(t, 0, y) +
1√
2π

∫ t

0

yβ(s)F̂−1
(e(iλ)2(t−s)/2
√
s(t− s)

)
(y)ds

= p(t, 0, y) +
y√
2π

∫ t

0

β(s)√
s(t− s)

F̂−1(e−λ
2(t−s)/2)(y)ds
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so that

pβ(0, t; 0, y) = p(t, 0, y) +
y√
2π

∫ t

0

β(s)√
s(t− s)

1√
2π(t− s)

exp
(
− y2

2(t− s)
)
ds

= p(t, 0, y) +
y

2π

∫ t

0

β(s)√
s(t− s)3/2

exp
(
− y2

2(t− s)
)
ds.

Using (2.2.3), we get the announced result.

2.5.2 First proof of Theorem 2.4.2

Let β : R+ → [k, κ] (−1 < k ≤ κ < 1) of class C1, with |β′(t)| ≤ M for any t ∈ R+. We know from
Theorem 1.4.5 and Proposition 1.7.1 that a solution Bβ exists to (2.1.1), and that this process is a Feller
time-inhomogeneous Markov process (in particular it is strong Markov).

Remark 2.5.3. In [27], to assert the existence result mentionned above, we proved the Proposition 5.1
therein. This is a proof that we have generalized in [30].

Thus we have indeed P0(Bβt ∈ dy) = pβ(0, t; 0, y)dy and, using the computations just after Defini-
tion 2.3.1, we can see that

Ps,x(Bβt ∈ dy) = pβ(s, t;x, y)dy, (2.5.2)

that is to say pβ(s, t;x, y) is indeed the transition function of Bβ . Thus this function satisfies the
Chapman-Kolmogorov equations∫ ∞

−∞
pβ(s, t;x, y)pβ(t, v; y, z)dy = pβ(s, v;x, z), 0 < s < t < v, x, z ∈ R (2.5.3)

(see Chap. III, sect. 1, p. 80 of [64]). Using now convergence arguments we can get the following result.

Proposition 2.5.4. Let β : R+ → [−1, 1] a Borel function. The family of measures pβ(s, t;x, y)dy of
Definition 2.3.2 is a (inhomogeneous) family of transition probabilities satisfying the Chapman-Kolmogorov
equation (2.5.3).

Proof. We may approximate β by a sequence of smooth functions βn(.) satisfying the requirements at the
beginning of the subsection. As the family pβn(s, t;x, y)dy satisfies (2.5.3) we recover the same result for
pβ(s, t;x, y)dy thanks to Lebesgue’s domination theorem (used successively in (2.3.4) and (2.5.3)).

In the following a Borel function β : R+ → [−1, 1] and a point x0 ∈ R are fixed.

The idea is the following: as we have by Proposition 2.5.4 a transition function pβ(s, t;x, y) satisfying
the Chapman-Kolmogorov equation, we can construct in a canonical way a Markov process with this
prescribed transition function. It will remain to prove that this process is a weak solution to (2.1.1).

More precisely: we can construct a probability measure W̃x0

β on (R[0,∞),B(R[0,∞))), such that the co-

ordinate process ω̃ = (ω̃t)t≥0 defined on this measurable space is a Markov process with t.f. pβ(s, t;x, y),

starting from x0, under W̃x0

β (Theorem 1.5 Chap. III in [64]).

Then we can show that a Kolmogorov’s continuity criterion holds for (ω̃t)t≥0 under W̃x0

β .

Proposition 2.5.5. There exists a universal constant C > 0 (independent of the function β(.)) such
that for all ε ≥ 0 and t ≥ 0,

EW̃x0
β

= |ω̃t+ε − ω̃t|4 ≤ C ε2. (2.5.4)
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Proof. Conditioning with respect to B([0, t]) and using the Markov property and (2.5.2) we get,

Ex|ω̃t+ε − ω̃t|4 = Ex
[ ∫ ∞
−∞

(y − ω̃t)4 pβ(t, t+ ε; ω̃t, y)dy
]

= Ex
[ ∫ ∞
−∞

(y − ω̃t)4 p(ε, ω̃t, y)dy

+

∫ ∞
−∞

dy (y − ω̃t)4

∫ ε

0

β ◦ σs(u)

2

y

π

e−
y2

2(ε−u)

√
u(ε− u)3/2

e−
|ω̃t|2

2u du
]

≤ Ex
[ ∫ ∞
−∞

(y − ω̃t)4 p(ε, ω̃t, y)dy

+

∫ ∞
−∞

dy (y − ω̃t)4

∫ ε

0

|y|
2π

e−
y2

2(ε−u)

√
u(ε− u)3/2

e−
|ω̃t|2

2u du
]

≤ 2Ex
[ ∫ ∞
−∞

(y − ω̃t)4 p(ε, ω̃t, y)dy
]

where we have successively used (2.3.6) and (2.3.5). As for the brownian density we have∫∞
−∞(y − ω̃t)4 p(ε, ω̃t, y)dy ≤ Cε2, we get the desired result.

This implies that we can construct a modification of (ω̃t)t≥0 with W̃x0

β -a.s. continuous paths. Trans-

porting the measure W̃x0

β on the set of continuous functions C (see [64] p.35 for details) we get the
following:

Proposition 2.5.6. There exists a probability measure Wx0

β on (C, C) under which the coordinate process

ω = (ωt)t≥0 is a Markov process with t.f. pβ(s, t;x, y)dy.

Further we have:

Proposition 2.5.7. under Wx0

β , the process (|ω|t)t≥0 is distributed as (|Wt|)t≥0 where W is a Brownian
motion starting from x0.

Proof. Let y, x > 0 and 0 < s < t. We compute

Wx0

β (|ωt| ∈ dy
∣∣ |ωs| = x) = Wx0

β (|ωt| ∈ dy
∣∣ ωs = x)Wx0

β (ωs > 0
∣∣ |ωs| = x)

+ Wx0

β (|ωt| ∈ dy
∣∣ ωs = −x)Wx0

β (ωs < 0
∣∣ |ωs| = x)

= dy
{
Wx0

β (ωs > 0
∣∣ |ωs| = x)

(
pβ(s, t;x, y) + pβ(s, t;x,−y)

)
+ Wx0

β (ωs < 0
∣∣ |ωs| = x)

(
pβ(s, t;−x, y) + pβ(s, t;−x,−y)

)}
= dy

{
Wx0

β (ωs > 0
∣∣ |ωs| = x)

(
p(t− s, x, y) + p(t− s, x,−y)

)
+ Wx0

β (ωs < 0
∣∣ |ωs| = x)

(
p(t− s,−x, y) + p(t− s,−x,−y)

)}
= dy [p(t− s, x, y) + p(t− s, x,−y)],

where we have used Equation (2.3.6), and the symmetry of (x, y) 7→ p(t, x, y) in the computations. The
final right hand side expression is the well-known (homogeneous) density of a reflected Brownian motion
|W | starting from x > 0.

As |ω| is Markov as well as |W |, and since both processes have continuous sample paths, we get the
desired result (see for example Theorem 1.5 Chap. III in [64]).

We are now in position to prove the following theorem.

Theorem 2.5.8. There exists a weak solution to (2.1.1).

45



Proof. Let s < t. The Markov property yields:

EWx0
β

(ωt|Cs) =

∫ ∞
−∞

y pβ(s, t;ωs, y)dy =

∫ t−s

0

∫ ∞
−∞

y|y|√
2π

e−
y2

2(t−s−u))

(t− s− u)3/2
dy
e−|ωs|

2

√
2πu

du

+

∫ t−s

0

β ◦ σs(u)

t− s− u

∫ ∞
−∞
|y|2 e−

y2

2(t−s−u))√
2π(t− s− u)

dy

 e−|ωs|
2

√
2πu

du

+

∫ ∞
−∞

y√
2π(t− s)

e−
(y−ωs)2

2(t−s) dy

= ωs +

∫ t−s

0

β ◦ σs(u)
e−
|ωs|2

2u

√
2πu

du.

Note that ω is a Markov process and |ω| is a reflected Brownian motion. Thus, ω admits a symmetric
local time, which is a continuous additive functional of ω. So that for s < t :

EWx0
β

(∫ t

0

β(u)dL0
u (ω) |Cs

)
=

∫ s

0

β(u)dL0
u (ω) + EWx0

β

(∫ t

s

β(u)dL0
u (ω) |Cs

)
.

But,

EWx0
β

(∫ t

s

β(u)dL0
u (ω) |Cs

)
= EWωs

β◦σs

(∫ t−s

0

β ◦ σs(u)dL0
u (ω)

)

= Eωs
(∫ t−s

0

β ◦ σs(u)dL0
u (|W |) |

)
=

∫ t−s

0

β ◦ σs(u)
e−
|ωs|2

2u

√
2πu

du.

(Here W is some brownian motion starting from ωs under the expectation of interest). Combining

these facts ensures that
{
ωt −

∫ t
0
β(u)dL0

u (ω) : t ≥ 0
}

is a (Ct) local martingale under Wx0

β . Since

〈ω〉t = 〈|ω|〉t = t, we deduce that
{
ωt −

∫ t
0
β(u)dL0

u (ω) : t ≥ 0
}

is in fact a (Ct) Brownian motion

(under Wx0

β ); we have thus constructed a weak solution of (2.1.1).

The existence of a weak solution, together with the pathwise uniqueness stated in the Theorem 2.2.2,
ensures the existence of a unique strong solution to (2.1.1) (see [80]). It is clear that this solution is a
Markov process with t.f. pβ(s, t;x, y)dy (as pathwise uniqueness implies uniqueness in law). Therefore
Theorem 2.4.2 is proved.

Remark 2.5.9. Note that in this approach we have used convergence arguments inside the explicit expres-
sion of the transition function given by (2.3.4). One can wonder if, without any such explicit expression,
it would be still possible to use regularization arguments, in order to treat the case on non smooth coeffi-
cients. That is to say if, using general consistance properties of time-inhomogeneous SDELTs, it would
be possible to handle the case of non smooth coefficients. But this goes beyond the scope of the study of
time-inhomogeneous SDELTs that we have led in [30]. This could be the subject of future research.

2.6 Azema’s projection of the ISBM and proof of the announced
trivariate density

Let β : R+ → [−1, 1]. We consider the strong solution Bβ of (2.1.1). The process Bβ is adapted to (Ct),
the filtration of the b.m. W driving (2.1.1). Recall also the definitions of

• CGβ1 , the σ-algebra generated by the variables HGβ1
, where H ranges through all the (Ct) optional

(and thus predictable) processes (see [64], Chap. XII p.488).

• CGβ1 +, the σ-algebra generated by the variables HGβ1
, where H ranges through all the (Ct) progres-

sively measurable processes (see [4]).
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2.6.1 Azema’s projection of the ISBM

Proposition 2.6.1. We have, under P0,(
sgn(Bβ1 ), Gβ1 ,M

β
1

)
L∼ (Y,G1,M1) , (2.6.1)

where G1
L∼ Arcsin, M1

L∼
√

2e, G1 and M1 are independent, and where Y denotes some r.v. independent
of M1 satisfying

L (Y |G1 = s)
L∼ R

(
1 + β(s)

2

)
.

moreover, in fact

E0
(

sgn(Bβ1 ) | CGβ1
)

= β(Gβ1 ). (2.6.2)

Remark 2.6.2. Notice that in particular sgn(Bβ1 ) is independent of Mβ
1 ; note that the sgn we work with

here is the symmetric one, i.e. with sgn(0) = 0.

Proof. Let H denote an arbitrary real bounded (Cs) predictable process. The balayage formula implies
on the one hand that

HGβt
β(Gβt )|Bβt | =

∫ t

0

HGβu
β(Gβu)sgn(Bβu )dWu

+

∫ t

0

HGβu
β(Gβu)dL0

u(Bβ).

On another hand it implies that

HGβt
Bβt =

∫ t

0

HGβu
dBβu

=

∫ t

0

HGβu
dWu +

∫ t

0

HGβu
β(Gβu)dL0

u(Bβ).

Making the difference, we see that

HGβt
Bβt −HGβt

β(Gβt )|Bβt | =
∫ t

0

HGβu
dWu −

∫ t

0

HGβu
β(Gβu)sgn(Bβu )dWu.

Thus, the process {
HGβt

(
sgn(Bβt )− β(Gβt )

)
|Bβt | : t ≥ 0

}
is a square integrable (Ct) martingale. In particular, we have that

E0

(
HGβt

sgn(Bβt )Mβ
t

√
t−Gβt

)
= E0

(
HGβt

β(Gβt )

√
π

2
(t−Gβt )

)
.

And since this equality is satisfied for all predictable process H,

E0
(

sgn(Bβt )Mβ
t | CGβt

)
=

√
π

2
β(Gβt ). (2.6.3)

This proves that sgn(Bβt ) and Mβ
t are conditionally uncorrelated. However, even though sgn(Bβt ) takes

only values in {−1, 1} P0-a.s., this equality is not enough to deduce the conditional law L
(

sgn(Bβt ) | σ(Gβt )
)

and we have to work a little more. In the following, we follow the lines of the article [4] p.290.

Let (Ht) the smallest right-continuous enlargement of (Ct) such that Gβ1 becomes a stopping time.
Then, according to Jeulin [37] p.77 and the exchange formula, we have

HGβ1 = CGβ1 + = σ
(
CGβ1

)
∨
⋂
n≥N∗

σ

(
WGβ1 +u : 0 ≤ u ≤ 1

n

)
. (2.6.4)
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Define for ε ∈ (0, 1), Gβ,ε1 = Gβ1 + ε(1−Gβ1 ) ; this is a family of (Ht) stopping times, such that : HGβ,ε1
=

CGβ,ε1
(see again [37]). Moreover, since (Ht) is right-continuous, we have :

CGβ1 + = HGβ1 =
⋂

ε∈(0,1)

CGβ,ε1
.

We now proceed to show that Mβ
1 is independent from HGβ1 . We first remark that the (Ct) submartingale

P
(
Gβ1 < t | Ct

)
(for t < 1) can be computed explicitly using the Theorem 2.2.1. We easily find that

P
(
Gβ1 < t | Ct

)
= Φ

(
|Bβt |√
1− t

)

where Φ(y) :=

√
2

π

∫ y

0

exp

(
−x

2

2

)
dx. We deduce from this, using the explicit enlargement formulae

that : (
|Bβ
Gβ1 +u

| − L0
Gβ1 +u

(Bβ)
)
−
(
|Bβ
Gβ1
| − L0

Gβ1
(Bβ)

)
= ϑu +

∫ u

0

ds√
1− (Gβ1 + s)

(
Φ′

Φ

) |Bβ
Gβ1 +s

|√
1− (Gβ1 + s)

 , for u < 1−Gβ1 , (2.6.5)

where {ϑu : u ≥ 0} is a
(
HGβ1 +u, u ≥ 0

)
Brownian motion, so that {ϑu : u ≥ 0} is independent from

HGβ1 .

Note that Bβ
Gβ1

= 0 and L0
Gβ1 +u

(Bβ) = L0
Gβ1

(Bβ) for 0 ≤ u < 1−Gβ1 .

Using Brownian scaling, we deduce that

mβ
v = γv +

∫ v

0

dh√
1− h

(
Φ′

Φ

)(
mβ
h√

1− h

)
for v < 1, (2.6.6)

where γv := 1√
1−Gβ1

ϑ(1−Gβ1 )v is again a Brownian motion which is independent from HGβ1 and mβ
v :=

|Bβ
G
β
1 +v(1−Gβ1 )

|
√

1−Gβ1
.

From this, we deduce that {mβ
v : v < 1} is the unique strong solution of a SDE driven by (γv).

Consequently, {mβ
v : v < 1} is independent of HGβ1 and by continuity of (mβ

v )0≤v≤1 so is mβ
1 := Mβ

1 .

From the fact that Bβ is a (Ct) predictable process and (2.6.4) (2.6.5), we deduce that⋂
n≥N∗

σ

(
Bβ
Gβ1 +u

: 0 ≤ u ≤ 1

n

)
⊆ CGβ1 +

and thus, since sgn(Bβ1 ) = sgn(Bβ
Gβ1 +1/n

) for all n > 0, the random variable sgn(Bβ1 ) is CGβ1 + measurable.

So that,

E0
(

sgn(Bβ1 )Mβ
1 | CGβ1

)
= E0

(
E0
(

sgn(Bβ1 )Mβ
1 | CGβ1 +

)
| CGβ1

)
= E0

(
Mβ

1

)
E0
(

sgn(Bβ1 ) | CGβ1
)

=

√
π

2
E0
(

sgn(Bβ1 ) | CGβ1
)
,

and identifying with (2.6.3) ensures that

E0
(

sgn(Bβ1 ) | CGβ1
)

= β(Gβ1 )
(

= E0
(

sgn(Bβ1 ) | σ(Gβ1 )
))

.
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Remark 2.6.3. The time t = 1 plays no role in the above reasoning so the relation E0
(

sgn(Bβt ) | CGβt
)

=

β(Gβt ) holds also for any time t. This proves that, up to a modification, the dual predictable projection

of the process (sgn(Bβt ))t≥0 on the filtration (CGβt ) is given by the process (β(Gβt ))t≥0.

This means that the fundamental equation of the Inhomogeneous Skew Brownian motion may be re-
interpreted like forcing with β a prescribed (CGβt )-predictable projection for (sgn(Bβt ))t≥0 in the following
equation {

Bβt = Wt +
∫ t

0
p
(
sgn(Bβs )

)
dL0

s(B
β)

p
(

sgn(Bβt )
)

= β(Gβt ),
(2.6.7)

where p (Y.) is a notation for the (CGβt ) predictable projection of the measurable process Y .

Remark 2.6.4. In [27] Proposition 2.6.1 was immediately used to prove the Markov property of Bβ (see
Proposition 4.4 in [27]). As this fact is directly clear from the construction made in Subsection 2.5.2 we
decide not to give this proof here (even if it is interesting in itself and directly available in the case of a
non smooth coefficient β).

2.6.2 Proof of Theorem 2.4.3

The result of Theorem 2.4.3 will appear as a consequence of the previous Proposition 2.6.1 and the
following lemma which appears again as a consequence of Proposition 2.2.1 and known results concerning
the standard Brownian motion :

Lemma 2.6.5. Under P0, the process {|B̌βt | := 1√
Gβ1
|Bβ
tGβ1
| : t ≤ 1} is the reflection (above 0) of a

Brownian Bridge independent of G := σ
{
Gβ1 , B

β

Gβ1 +u
; u ≥ 0

}
.

Proof. By the result of Proposition 2.2.1 and time inversion, |Bβt | := t |B̃β1
t

| is a reflected Brownian

motion. Note that

d̃β1 := inf
(
u > 1 : |B̃βu | = 0

)
=

1

Gβ1
.

So that, since B̃β1

G
β
1

= B̃β
d̃β1

= 0,

1√
Gβ1

|Bβ
tGβ1
| = t

√
Gβ1 |B̃

β
1

t G
β
1

| = t√
d̃β1

|B̃β1

G
β
1

+ 1

G
β
1

( 1
t−1)

− B̃β1

G
β
1

| = t√
d̃β1

|B̃β
d̃β1 +d̃β1 ( 1

t−1)
− B̃β

d̃β1
|.

Since
{
|B̃β
d̃β1 +u

− B̃β
d̃β1
| : u ≥ 0

}
is a reflected Brownian motion independent of C̃d̃β1 and B̃β

d̃β1
= 0, the pro-

cess |B̂βu | := 1√
d̃β1
|B̃β
d̃β1 +d̃β1u

| is also a reflected Brownian motion independent of C̃d̃β1 ; hence,
(
t|B̂β1

t−1
|
)
t≥0

is a reflected Brownian Bridge independent of C̃d̃β1 . This implies the result.

Corollary 2.6.6. We have that under P0,

L0
1

(
Bβ
)

=

√
Gβ1 `

0
1 (2.6.8)

where `01 is the symmetric local time at time 1 of a standard Brownian Bridge independent of G.

Proof. Under P0, we have that L0
1

(
Bβ
)

= L0
1

(
|Bβ |

)
= L0

Gβ1

(
|Bβ |

)
= L0

Gβ1

(√
Gβ1 |B̌

β

./Gβ1
|
)

.

Recall that the symmetric local time a semimartingale (Yt) is given by

L0
t (Y ) = lim

ε→0

1

2ε

∫ t

0

1(−ε,ε)(Ys)d〈Y 〉s.

So we find, using an obvious change of variable, that

L0
1

(
Bβ
)

=

√
Gβ1L

0
1

(
|B̌β |

)
=

√
Gβ1 `

0
1,

where the last equality comes from the result of Lemma 2.6.5.
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Combining this result and the result of Proposition 2.6.1 gives that(
Gβ1 , L

0
1

(
Bβ
)
, Bβ1

)
L∼
(
G1,

√
G1`

0
1, Y

√
1−G1M1

)
where G1

L∼ Arcsin, `01
L∼
√

2e, M1
L∼
√

2e are independent and where Y denotes a r.v. independent of
M1 and `01 and satisfying

L (Y |G1 = s)
L∼ R

(
1 + β(s)

2

)
.

This construction gives the result announced in Theorem 2.4.3.

2.7 Another construction of the ISBM: using Brownian Excur-
sions

Here we want to evoke another construction of the ISBM we have given in [27]. Some proofs are not
given as all the details are to be found in [27].

Let {Π : 0 = t0 < t1 < · · · < ti < · · · < tn = 1} be a partition of the interval [0, 1].
We define a function i : [0, 1]→ J0 : n− 1K by

i(t) = sup{0 ≤ k ≤ n− 1 : tk ≤ t}, ∀t ∈ [0, 1) and i(1) = n− 1.

Let β̄ : R+ → [0, 1] be a r.c.l.l. function with constant value in [−1, 1] on each interval [ti, ti+1). In
particular β̄ is a Borel function. In this section, we give a construction of a weak solution of (2.1.1) on
the interval [0, 1], obtained by changing the sign of the excursion of a reflecting Brownian motion. We
are inspired by [64], Chap. XII, Exercise 2.16 p. 487.

Let us follow the notations of [64] concerning the excursions of a Brownian motion B defined on
some space (Ω,F ,P): the excursion process is denoted by (es)s≥0, where the index s is in the local time
scale. Each excursion es(ω) has support [τs−(ω), τs(ω)), where τs(ω) =

∑
u≤sR(eu(ω)), and τs−(ω) =∑

u<sR(eu(ω)), with R(es(ω)) the length of the excursion es(ω). We recall that L0
t (B) can be recovered

as the inverse of τt.

The construction is the following : for each 0 ≤ i ≤ n−1 let (Y ik )k be a sequence of independent r.v.’s,

identically distributed with law R
(

1+βni
2

)
(with βni := β̄(ti)), and defined on some probability space

(Ω,F ,P). Let B be a standard Brownian motion independent of the Y ik ’s, constructed on (Ω,F ,P). The
set of its excursions es(ω) is countable and may be given the ordering of N.

We define a process X β̄ on [0, 1] by putting

∀t ∈ [0, 1], X β̄
t (ω) = Y

i(τs−(ω))
ks(ω) (ω)|es(t− τs−(ω), ω)|,

if τs−(ω) ≤ t ≤ τs(ω) and es(ω) is the ks(ω)-th excursion in the above ordering.
For τs−(ω) ≤ t ≤ τs(ω) we have τs−(ω) = gt(ω) where gt := sup{u < t : |Bu| = 0}, and

|es(t− τs−(ω), ω)| = |Bt(ω)|.
Note also that for a fixed ω ∈ Ω, the construction does not make a use of the entire double indexed

sequence (Y ik (ω))i∈{0,...,n−1},k∈N.

Proposition 2.7.1. The process X β̄ is a weak solution of equation (2.1.1) with parameter β̄ and starting
from zero.

Proof. 1st step : preliminary facts Note that X β̄ is constructed such that

(|X β̄
t |)t≥0

L∼ (|Wt|)t≥0 .

Moreover, defining Gβ̄1 := sup
(

0 ≤ s ≤ 1 : X β̄
s = 0

)
and M β̄

1 := |X β̄
1 |/
√

1−Gβ̄1 , we see from the con-

struction of X β̄ that (
sgn(X β̄

1 ), Gβ̄1 ,M
β̄
1

)
L∼ (Y,G1,M1) , (2.7.1)
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where G1
L∼ Arcsin, M1

L∼
√

2e, G1 and M1 are independent, and where Y denotes some r.v. independent
of M1 satisfying

L (Y |G1 = s)
L∼ R

(
1 + β̄(s)

2

)
.

Let
(
F̄t
)

the natural filtration of X β̄ that has been completed and augmented in order to satisfy the

usual conditions. From the construction of X β̄ , we see that

E
(

sgn(X β̄
t ) | F̄

Gβ̄t

)
= E

(
Y
i(Gβ̄t )
k
L0
t (|B|)

| F̄
Gβ̄t

)
= β̄(Gβ̄t ). (2.7.2)

2nd step : X β̄ is a
(
F̄t
)

Markov process
Because of these preliminary facts, we may repeat the arguments of the first part in the proof of

Proposition 4.4 in [27]: we see that for s < t and any measurable function f :

E
(
f(X β̄

t )1Gβt >s
|F̄s
)

=

∫ ∞
−∞

dξf(ξ)E0

 ∑
δ∈{−1,1}

∫ t−s

0

1 + δ(β ◦ σs)(u)

2

√
2

π

|ξ|e−
ξ2

2(t−(s+u))

(t− (s+ u))
3/2

e−
|Xβ̄s |

2

2u

√
2πu

du

 1δξ>0.

The part E
(
f(X β̄

t )1Gβt ≤s
|F̄s
)

is more complicated since we cannot refer to Equation (2.1.1).

Still, for a fixed time s > 0 we may set

Dβ̄
s := inf{u ≥ 0 : X β̄

s+u = 0}.

We have :

Dβ̄
s = inf{u ≥ 0 : X β̄

s+u = 0}

= inf{u ≥ 0 : X β̄
s +X β̄

s+u −X β̄
s = 0}

= inf{u ≥ 0 : X β̄
s + sgn(X β̄

s ) (|Bs+u| − |Bs|) = 0}

= inf{u ≥ 0 : (|Bs+u| − |Bs|) = −|X β̄
s |}.

But on the set {Gβt ≤ s} = {Dβ̄
s ≥ (t − s)} and for r < Dβ̄

s , the random variables Bs+r and Bs share

the same sign. We deduce that on the set {Gβt ≤ s},

Dβ̄
s =

{
inf{u ≥ 0 : (Bs+u −Bs) = −|X β̄

s |} := T+
s if Bs ≥ 0 ;

inf{u ≥ 0 : (Bs+u −Bs) = |X β̄
s |} := T−s if Bs < 0.

Let us introduce Ks := F̄s ∨ σ (Bs).
We have

E
(
f(X β̄

t )1Gβt ≤s
|Ks
)

= E
(
f
(
X β̄
s + sgn(X β̄

s )
(
|Bs+(t−s)| − |Bs|

))
1
Dβ̄s≥(t−s)|Ks

)
= 1Bs≥0E

(
f
(
X β̄
s + sgn(X β̄

s )
(
Bs+(t−s) −Bs

))
1T+

s ≥(t−s)|Ks
)

+ 1Bs<0E
(
f
(
X β̄
s − sgn(X β̄

s )
(
Bs+(t−s) −Bs

))
1T−s ≥(t−s)|Ks

)
.

Since (Bs+u −Bs : u ≥ 0) is a Brownian motion independent of Bs and of F̄s (and thus of Ks), we
may integrate this expression using the known laws of the Brownian motion killed when hitting 0 :

1Bs≥0E
(
f
(
X β̄
s + sgn(X β̄

s )
(
Bs+(t−s) −Bs

))
1T+

s ≥(t−s)|Ks
)

= 1Bs≥0

∫ ∞
−∞

dθf
(
X β̄
s + sgn(X β̄

s )
(
θ − |X β̄

s |
))

× 1√
2π(t− s)

[
exp

(
− (θ − |X β̄

s |)2

2(t− s)

)
− exp

(
− (θ + |X β̄

s |)2

2(t− s)

)]
1|Xβ̄s | θ>0

= 1Bs≥0

∫ ∞
−∞

dyf (y)
1√

2π(t− s)

[
exp

(
− (y −X β̄

s )2

2(t− s)

)
− exp

(
− (y +X β̄

s )2

2(t− s)

)]
1
Xβ̄s y>0
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where for the last line, we performed the change of variable y = sgn(X β̄
s )θ. We have a similar term on

the side {Bs < 0}, so that

E
(
f(X β̄

t )1Gβt ≤s
|Ks
)

=

∫ ∞
−∞

dyf (y)
1√

2π(t− s)

[
exp

(
− (y −X β̄

s )2

2(t− s)

)
− exp

(
− (y +X β̄

s )2

2(t− s)

)]
1
Xβ̄s y>0

= E
(
f(X β̄

t )1Gβt ≤s
|F̄s
)
.

Finally, adding both parts gives that E
(
f(X β̄

t )|F̄s
)

=
∫∞
−∞ dyf(y)pβ̄(s, t;X β̄

s , y). This is enough to

conclude that X β̄ is a Markov process with pβ̄(s, t;x, y)dy as its family of transition probability (satisfying
(2.5.3)).

3rd step : the process X β̄ is a weak solution of equation (2.1.1)
It suffices to perform the same computations as in the proof of Theorem 2.5.8. Indeed X β̄ is Markov

and, by construction, |X β̄ | is a reflected Brownian motion.

Finally, using the above construction and convergence arguments, we were able in [27] to give a
construction of the solution Bβ of (2.1.1) in the case the coefficient β : R+ → [−1, 1] is a Borel function
satisfying the so-called H-hypothesis:

”Let {Πn : 0 = tn0 < tn1 < · · · < tni < . . . tnn = 1, n ≥ 0} a sequence of partitions over [0, 1]. Assume
that

sup
0≤i≤n−1

|tni+1 − tni | −−−−−→
n→+∞

0.

It is possible to construct a decreasing (resp. increasing) sequence (β̌n) (resp. (β̂n)) of r.c.l.l. step
functions that are constant on each of the intervals [tni , t

n
i+1) in such a way that

β̌n(t) ≥ β(t) ≥ β̂n(t) and lim
n→+∞

β̌n(t) = lim
n→+∞

β̂n(t) = β(t), ∀t ∈ [0, 1].

”

By doing so we provided another proof than the one of Subsection 2.5.2. But the assumptions were
more restrictive (see Theorem 7.4 in [27]; see also [14] for further discussions).
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Chapter 3

Exact simulation issues
(time-homogeneous case)

This chapter is based on the papers Exact simulation of one-dimensional stochastic differential equations
involving the local time at zero of the unknown process (2013, [28]), and Exact simulation for solutions
of one-dimensional stochastic differential equations with discontinuous drift (2014, [29]), written with
Miguel Martinez.

3.1 Introduction

In this chapter we go back to the time-homogeneous equation

dXβ
t = dWt + b(Xβ

t )dt+ β dL0
t (X

β), t ∈ [0, T ], (3.1.1)

where |β| < 1 and b is a bounded function, possibly discontinuous at point zero. We aim at producing
an exact sampling method for (3.1.1), in the spirit of Beskos et al. ([8],[6]).

Exact simulation methods for trajectories of one-dimensional SDEs has been a subject of much interest
in the last years : see for example [8], [6], [7], [63], [68]. Unlike the classical simulation methods which
all involve some kind of discretization error (we mention [3] for the Euler Scheme), the exact simulation
methods are constructed in such a way that they do not present any discretization error, under the strong
hypothesis that the diffusion coefficient is constant and equal to one (but this is usually claimed to be
without loss of generality, by the use of a Lamperti transformation).

On another hand (3.1.1) corresponds, up to a Lamperti transformation (see for instance our Example
2 in Subsection 3.8.1), to an equation of the form (1.1.1). And we have already explained the link between
such equations and divergence form operators with discontinuous coefficients, and the importance of such
operators (Introduction and Chapter 1).

In the one-dimensional context, various Random Walks and an Euler Scheme have been studied for
the simulation of the solution of such SDEs : for Random Walks we mention [20], [19], [24], [44] ; for the
Euler Scheme see [52], [53], [54] in the case where the discontinuity of the coefficient in the divergence
operator appears at point zero. Of course, for such SDEs, the order of discretization error of these
discretization schemes is usually greater than those obtained in a more classical context.

An important problem in adapting the methodology of Beskos et al. to Equation (3.1.1) comes from
the fact the laws of the solution of such one-dimensional SDEs are no longer absolutely continuous with
respect to the Wiener measure (see [43], Theorem 2.4). Thus we cannot use the Wiener measure as a
reference measure in the rejection sampling procedure as in [6].

In fact, in the case β 6= 0, the law of Xβ solution to (3.1.1) is absolutely continuous with respect
to the law of some Skew Brownian Motion (SBM) with a constant drift component. The reason why
the SBM with drift appears naturally in our computations is explained in Section 3.4.1 (see Remark
3.4.1). So, contrary to the already mentioned discretization schemes where the standard SBM is used in
force, we do not longer deal with a simple SBM but with a SBM that possesses a drift component. As a
consequence, in order to adapt the method of [6] in this setting, we have to be able to simulate bridges
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of the SBM with drift. Therefore we will have to compute the transition function of such a SBM with
drift. These are roughly speaking all the issues adressed in [28].

In [29] we have studied the case β = 0, for which we cannot use directly the method used for the case
β 6= 0. In particular the convenient constant drift for the SBM with drift, used in the case β 6= 0, is no
longer defined in the case β = 0 (see again Remark 3.4.1).

However, we know from [43] that Xβ tends strongly to X0 as β tends to 0 (this processes having the
same variable drift b). This leads us to examine what happens at the level of the algorithms used in the
case β 6= 0, as β tends to 0. In fact, we check here by computations that there is indeed a convergence
phenomenon at the level of rejection functions involved in the exact simulation algorithms given for the
case β 6= 0. This convergence gives rise naturally to a nice and implementable Limit algorithm.

The main problem becomes then to prove rigorously that this Limit algorithm is indeed an exact
simulation algorithm for X0. Let us also emphasize that this new algorithm is still a rejection algorithm,
and one may naturally ask for a direct interpretation of its corresponding reference measure. At the
end of Subsection 3.4.2 we give an interpretation of the reference measure (corresponding to the limit
rejection algorithm) in terms of a standard Brownian motion conditioned on prescribed laws for its final
position and its local time at 0 at time horizon T . By our convergence arguments we avoid in fact to
have to deal with this interpretation.

It is worth noting that in the very recent paper [60] - posterior to [29] - the authors, on the opposite,
choose to deal in some way with conditioned paths of the couple (Brownian Motion , its local time), in
order to produce exact sampling for exactly the same equation - that is dX0

t = dWt + b(X0
t )dt with b

discontinuous at zero. However, their method seems computationally more complicated, and less suitable
for generalizations in the presence of several discontinuities (like in the recent work [17]).

Note that the simplest case of an equation of type (3.1.1), with β = 0 and b discontinuous at zero,
is surely the so-called ’Brownian motion with two valued drift’ solution of

dX0
t = Wt +

(
θ01X0

t>0 + θ11X0
t<0

)
dt, t ∈ [0, T ], (3.1.2)

where (θ0, θ1) ∈ R2. For a general reference concerning these types of motions, we refer to [39] p.440-
441 or [38]. These motions appear in stochastic control problems (see for example [5], [38]) and also
theoretical studies concerning representations of reflected Brownian motion with drift (see [35] in the case
θ0 = −θ1). Even though there exist explicit representation formulae for the densities of such Brownian
motions with two valued drift in terms of combination of convolution integrals (see [39] p.440-441), up
to our knowledge there is no exact numerical simulation algorithm for such motions available in the
literature. The algorithm presented in this chapter gives an answer to this question.

Organization of the chapter. In Section 3.2 we precise the hypotheses and define the problem we
will deal with. We also introduce notations used in the sequel. In Section 3.3 we state a fundamental
result on abstract rejection sampling algorithms and their convergence, that will be used extensively in
this chapter. In Section 3.4 we show that the law of Xβ , β 6= 0 (resp. X0), when starting from x, is

absolutely continuous with respect to a reference measure Ẑxβ , β 6= 0 (resp. w.r.t. Ẑx0), with the same

rejection function in both cases β 6= 0 and β = 0. In the case β 6= 0, the measure Ẑxβ is interpreted as
the law of a SBM with constant drift, and such that its final position follows a prescribed law. Therefore
we compute the transition function of the SBM with constant drift in Section 3.5. In Section 3.6 we
then explain how to sample exactly along Ẑxβ , using in particular bridges of the SBM with constant drift.

In Section 3.7 we show that Ẑx1/n
w−−−−→

n→∞
Ẑx0 and explain how to sample along Ẑx0 , using convergence

arguments. Finally, Section 3.8 is devoted to numerical experiments.

3.2 First notations and assumptions

A time horizon 0 < T <∞ is fixed.

We recall that C is the set of continuous mappings from [0, T ] to R, and C the Borel σ-field on C
induced by the supreme norm. We denote (Ct)t∈[0,T ] the usual canonical filtration.

We recall that for simplicity we will denote ω = (ωt)t∈[0,T ] the canonical process.
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Let P0 the Wiener measure on (C, C), so that W = ω (i.e. Wt(ω) = ωt for any ω ∈ C, any t ∈ [0, T ])
is a (Ct)-Brownian motion starting from zero under P0. We will have to consider Brownian motions
starting from any x ∈ R and will simply denote Px = P (· |W0 = x) (see Remark 3.2.1).

Throughout the whole chapter, we will make the following assumptions concerning the coefficients in
(3.1.1)

– The function b : R → R is bounded with bounded first derivative on R∗,+ and R∗,− with a
possible discontinuity at point {0}. We suppose that both limits limz→0+ b(z) = b(0+) and
limz→0− b(z) = b(0−) exist and are finite. The value b(0) of the function b at 0 is of no importance
and can be fixed arbitrarily to some constant (possibly different from either b(0+) or b(0−)). As
usual we denote b′ the absolute part of the derivative of b. We set M a constant such that

sup
z∈R
|b(z)| , sup

z∈R
|b′(z)| ≤M. (3.2.1)

– |β| < 1.

Note that the two above assumptions ensure the existence of a unique strong solution Xβ to (3.1.1),
associated to W defined on (C, C) as above. We recall that Xβ enjoys the strong Markov property. On
these points the reader can refer for example to Chapter 1, as the time-homogeneous case is a subcase
of the general case (possibly time-inhomogeneous).

We set

φ(x) :=
b2(x) + b′(x)

2
,

φ̃(x) = φ(x)−m with m = inf
x∈R

φ(x),

and

θ :=
b(0+)− b(0−)

2
. (3.2.2)

Let µ ∈ R. We will denote Bβ,µ the SBM of parameter β and drift µ. That is to say Bβ,µ is the
strong solution of (3.1.1) in the case b ≡ µ, namely :

dBβ,µt = dWt + µdt+ βdL0
t (B

β,µ). (3.2.3)

We will denote pβ,µ(t, x, y) the transition probability density of Bβ,µ.
Note that, with this notation, p0,µ(t, x, y) is the transition probability density of the Brownian motion

with constant drift µ ∈ R, namely

p0,µ(t, x, y) =
1√
2πt

exp
{
− (y − x− µt)2

2t

}
. (3.2.4)

Note also that pβ,0(t, x, y) is the transition probability density of the SBM of parameter β (without
drift), which is known (see [75], [46]). Let us now introduce the function vβ,µ(t, x, y) defined by

vβ,µ(t, x, y) = (1− exp(− 2xy
t ))1xy>0

+(1 + Sgn(y)β) exp(− 2xy
t 1xy>0)

[
1− βµ

√
2πt exp{ (|x|+|y|+tβµ)2

2t }N c(βµt+|x|+|y|√
t

)
]
,

(3.2.5)

where N c(y) = 1√
2π

∫∞
y
e−z

2/2dz.

One of our chief task will be to show that pβ,µ(t, x, y) = p0,µ(t, x, y)vβ,µ(t, x, y) (see Proposition
3.5.1).

To finish with, let us define P̂xβ (resp. Ŵx
β,µ), the probability measure induced on (C, C) by the law of

Xβ (resp. Bβ,µ) under Px. The measure P̂xβ is our target distribution. More precisely we will produce

exact samples of ωT under P̂xβ . Those are distributed as Xβ
T , the solution of (3.1.1) starting from x (in

other words as Xβ
T under Px).
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Remark 3.2.1. Note that the definition of Px is here different for example from the one of Ps,x in
Chapter 1, where we had Ps,x = P(·|Xs = x), with X the solution of the time-inhomogeneous EDSTL
(the family (C, C), (X̃t, Ct), {Ps,x} was therefore a Markovian family) - we recall that X̃ denotes the space-
time process associated to X. Indeed here it will be important in our computations to stress that x is
the starting point the Brownian motion W in (3.1.1). But (3.1.1) has just to be understood as Xβ

t =

Wt +
∫ t

0
b(Xβ

s )ds+ βL0
t (X

β) for any t ∈ [0, T ]. So that it is clear that under Px the solution Xβ starts
from x. But here (C, C), (Xt, Ct), {Px} is not a Markovian family.

3.3 Abstract rejection sampling algorithm and their conver-
gence

During all this chapter we will use several times the following fundamental result.

Proposition 3.3.1. i) Assume that we have a sequence (ξn) of probability measures on a measurable
space (S,S), and ξdom a probability measure on (S,S), satisfying for any n ∈ N

dξn
dξdom

=
1

εn
fn,

with εn > 0 and 0 ≤ fn ≤ 1.

Assume that fn → f as n→∞ point-wise on S.

Then, (ξn) converges towards a probability measure ξ satisfying

dξ

dξdom
=

1

ε
f, (3.3.1)

with ε = limn→∞ εn.

ii) Moreover, let (Yk, Ik)k≥1 be a sequence of i.i.d. random elements taking values in S × {0, 1} such
that Y1 ∼ ξdom and P[I1 = 1|Y1 = y] = f(y) for all y ∈ S. Define τ := min(k ≥ 1 = Ik = 1). Then,
P(Yτ ∈ dy) = ξ(dy).

Proof. For Point i) see [29], Proposition 2.1, and for Point ii) see [8], Proposition 1.

In the sequel the considered space (S,S) will be either (C, C), on which we will consider several
(Wiener type) probability measures (Section 3.4), or more simply (R,B(R)), when we will sample the
desired real random variables by rejecting simple normal random variables (see for example the sampling
from the density hxβ in Section 3.6).

3.4 Changes of probability measure on (C, C) for the exact sam-
pling procedure

3.4.1 Case β 6= 0

We set

µβ =
1 + β

2β
b(0+)− 1− β

2β
b(0−) (3.4.1)

and then bβ(x) = b(x)− µβ and Bβ(x) =
∫ x

0
bβ(z)dz.

We have

dXβ
t = dWt + bβ(Xβ

t )dt+ µβdt+ βdL0
t (X

β)

= dWSD
t + µβdt+ βdL0

t (X
β)
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where WSD
t := Wt +

∫ t
0
bβ(Xβ

s )ds is a Brownian motion (starting from x) under Wx
β,µβ

defined by

dPx

dWx
β,µβ

(ω) = exp
{∫ T

0
bβ(Xβ

t )dWt + 1
2

∫ T
0
b2β(Xβ

t )dt
}

(ω)

= exp
{∫ T

0
bβ(Xβ

t )dWSD
t − 1

2

∫ T
0
b2β(Xβ

t )dt
}

(ω)

= exp
{∫ T

0
bβ(Xβ

t )(dXβ
t − µβdt− β dL0

t (X
β))− 1

2

∫ T
0
b2β(Xβ

t )dt
}

(ω)

(3.4.2)

(this is an application of Girsanov’s theorem, see Theorem 3.5.1 in [39]; note that the assumptions on b
ensure that the Novikov condition is verified). But note that Xβ under Wx

β,µβ
is distributed as a SBM

with drift Bβ,µβ . So that (3.4.2) may be rewritten

dP̂xβ
dŴx

β,µβ

(ω) = exp
{∫ T

0
bβ(ωt)(dωt − µβdt− β dL0

t (ω))− 1
2

∫ T
0
b2β(ωt)dt

}

= exp
{∫ T

0
bβ(ωt)dw

SD
t − 1

2

∫ T
0
b2β(ωt)dt

}
with dwSDt = dωt − µβdt− βdL0

t (ω) a Brownian motion (starting from x) under Ŵx
β,µβ

.

Applying the symmetric Itô-Tanaka formula ([64], Exercise VI.1.25) we get

Bβ(ωT )−Bβ(ω0) =
∫ T

0
bβ(ωs−)+bβ(ωs+)

2 dωs + 1
2

∫
RB
′′
β(dx)LxT (ω)

=
∫ T

0
bβ(ωs)1ωs 6=0dw

SD
s +

∫ T
0
µβbβ(ωs)1ωs 6=0ds+ β

bβ(0−)+bβ(0+)
2 L0

T (ω)

+
∫
R
b′β(x)

2 1x 6=0L
x
T (ω)dx+

bβ(0+)−bβ(0−)
2 L0

T (ω).

By the occupation time formula we then get

Bβ(ωT )−Bβ(ω0) =
∫ T

0
bβ(ωs)1ωs 6=0dw

SD
s +

∫ T
0
µβbβ(ωs)1ωs 6=0ds+

∫ T
0

b′β(ωs)

2 1ωs 6=0ds

+
(
β

b(0−) + b(0+)

2
− βµβ +

b(0+)− b(0−)

2︸ ︷︷ ︸
(∗)

)
L0
T (ω)

Note that thanks to (3.4.1) we have (∗) = 0. Finally,∫ T

0

bβ(ωs)dw
SD
s − 1

2

∫ T

0

b2β(ωs)ds = Bβ(ωT )−Bβ(ω0)−
∫ T

0

φβ(ωs)ds

with φβ(z) =
b2β(z)+b′β(z)+2µβbβ(z)

2 = b2(x)+b′(x)
2 − µ2

β

2 = φ(z)− µ2
β

2 .

Notice that denoting mβ = infx∈R φβ(x) we have

φβ(x)−mβ = φ(x)−
µ2
β

2
− inf
x∈R

(φ(x)−
µ2
β

2
) = φ̃(x),

and then
dP̂xβ

dŴx
β,µβ

(ω) = e−mβT exp
{
Bβ(ωT )−Bβ(x)−

∫ T

0

φ̃(ωs)ds
}
.

Denote now Ẑxβ the probability measure induced on (C, C) by the law of Bβ,µ (under Px), conditioned

to Bβ,µT ∼ hxβ(z)dz, where hxβ is a probability density. Proposition 1 in [6] asserts that

dẐxβ
dŴx

β,µβ

(ω) =
hxβ

pβ,µ(T, x, .)
(ωT ).
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Choosing then hxβ(y) = Cxβ exp(Bβ(y)−Bβ(x))pβ,µ(T, x, y) (Cxβ is the normalizing constant that makes

hxβ a density), and setting cxβ = (Cxβ )−1e−mβT we get

1

cxβ

dP̂xβ
dẐxβ

(ω) = exp
{
−
∫ T

0

φ̃(ωt)dt
}
≤ 1. (3.4.3)

Therefore the idea is to sample along P̂x using rejection sampling with Ẑxβ as a reference measure.
One issue is to find a way to draw the Bernoulli random variables involved in Point ii) of Proposition
3.3.1. To that aim Beskos et al. proposed the following procedure in [6], that involves a Poisson point
process on the plane.

Let us denote by K an upper bound for φ̃(x).

EXACT SIMULATION ALGORITHM FOR THE SOLUTION OF (3.1.1) starting from x
(case β 6= 0)

1. Simulate a Poisson Point Process with unit density on [0, T ]× [0,K]. The result is a
random number N of points of coordinates (t1, z1), . . . , (tN , zN ) (sort these points in
order to have t1 < . . . < tN).

2. Simulate a skeleton (ωt1 , . . . , ωtN , ωT ) where ω ∼ Ẑxβ.

3. If ∀i ∈ {1, . . . , N} φ̃(ωti) ≤ zi accept the skeleton. Else return to step 1.

This algorithm produces an exact sampling of Xβ
T under Px: it is the final instance ωT of an accepted

skeleton.

The main issue in the above algorithm is to sample a skeleton of the canonical process under Ẑxβ
(Step 2). Indeed recall that this is the law of a SBM with drift whose terminal position follows a
prescribed density. This issue will be adressed in Section 3.5, where we compute pβ,µ(t, x, y), and in

Section 3.6, where the algorithm to sample (ωt1 , . . . , ωtn , ωT ), ω ∼ Ẑxβ , for any n ∈ N, will be fully
described.

Remark 3.4.1. Note that in the case b(0±) = b(0) we simply have µβ = b(0). Note that the definition
of bβ allows to get rid of the local time term involved in the exponential martingale of Girsanov’s theorem,
after the application of the Itô-Tanaka formula. This makes it tractable for a numerical perspective.

However note that in the case β = 0, the constant µβ is no more defined. In fact in the case β = 0
and b(0+) 6= b(0−), there is no constant µ such that proceeding as in the above computations with
b0(x) = b(x) − µ we can cancel the local time term appearing in the exponential weight. Therefore the
case β = 0 needs a specific approach.

3.4.2 Case β = 0

We start afresh and will define some new probability measures on (C, C) in order to handle the case
β = 0 and b(0+) 6= b(0−).

Again by Girsanov’s theorem we see that X0 is a Brownian motion under Qx defined by

dPx

dQx
(ω) = exp

{∫ T

0

b(X0
t )dX0

t −
1

2

∫ T

0

b2(X0
t )dt

}
(ω).

Writing again the above relation in a more canonical way we get

dP̂x0
dPx

(ω) = exp
{∫ T

0

b(ωt)dωt −
1

2

∫ T

0

b2(ωt)dt
}
.

We set B(x) =
∫ x

0
b(y)dy. By Itô-Tanaka,

B(ωT )−B(ω0) =
∫ T

0
b(ωt)dωt + 1

2

∫
RB
′′(dx)LxT (ω)

=
∫ T

0
b(ωt)dωt + 1

2

∫ T
0

b′(ωt)dt+ b(0+)−b(0−)
2 L0

T (ω),
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therefore we get for the moment

dP̂x0
dPx

(ω) = e−mT exp
{
B(ωT )−B(x)− θL0

T (ω)
}

exp
{
−
∫ T

0

φ̃(ωt)dt
}
.

Defining now

dẐx0
dPx

(ω) = Cx exp
{
B(ωT )−B(x)− θL0

T (ω)
}

(Cx is a normalizing constant) we get

1

cx0

dP̂x0
dẐx0

(ω) = exp
{
−
∫ T

0

φ̃(ωt)dt
}
≤ 1 (3.4.4)

with cx0 = (Cx)−1e−mT . Therefore the following exact algorithm in order to sample X0
T under Px.

EXACT SIMULATION ALGORITHM FOR THE SOLUTION OF (3.1.1) starting from x
(case β = 0)

1. Simulate a Poisson Point Process with unit density on [0, T ]× [0,K]. The result is a
random number N of points of coordinates (t1, z1), . . . , (tN , zN ) (sort these points in
order to have t1 < . . . < tN).

2. Simulate a skeleton (ωt1 , . . . , ωtN , ωT ) where ω ∼ Ẑx0 .

3. If ∀i ∈ {1, . . . , N} φ̃(ωti) ≤ zi accept the skeleton. Else return to step 1.

Of course the structure of this algorithm is exactly the same than in the case β 6= 0 (!). But we just

want to stress the fact that the issue here is to sample a skeleton along Ẑx0 . The interpretation of Ẑx0
cannot be the same as the one of Ẑxβ , β 6= 0. Indeed, under Ẑx0 , ω is a Brownian motion conditioned on

(ωT , L
0
T (ω)) ∼ h(y, `)dyd` with

h(y, `)dyd` ∝ exp (B(y)−B(x)− θ`)Px
(
ωT ∈ dy, L0

T (ω) ∈ d`
)
.

This makes it difficult to sample exactly ω under Ẑx0 (this is the approach we have avoided in [29],
and that Papaspiliopoulos et al. have tackled recently in [60]. Note however that their approach seems
less suitable to possible generalizations with multiple points of discontinuity - see the recent companion
papers [17, 16]).

Thus, in [29], we were led to use convergence arguments to produce a limit algorithm in order to

sample along Ẑx0 , taking advantage of our algorithm for Ẑxβ , β 6= 0, making β tend to zero, and using
Proposition 3.3.1. These arguments and the corresponding Limit algorithm will be fully described in
Section 3.7.

3.5 Transition function of the SBM with drift

The purpose of this section is to show the following proposition.

Proposition 3.5.1. We have for all t > 0, all x, y ∈ R,

pβ,µ(t, x, y) = p0,µ(t, x, y)vβ,µ(t, x, y). (3.5.1)

Remark 3.5.2. It can be shown that the quantity 1−βµ
√

2πt exp
{ (|x|+|y|+tβµ)2

2t

}
N c(βµt+|x|+|y|√

t
) involved

in vβ,µ(t, x, y) remains strictly positive, whatever the sign of βµ (see Remark 3.6.3).

In this section we will denote Bβ = Bβ,0 the SBM without drift of parameter β. Further we set

τ0 := inf
(
t > 0 : Bβt = 0

)
with the convention inf(∅) = +∞.
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We will denote by h(x, .) the density of τ0 under Px.
We start with two lemmas that are a consequence of the construction of Bβ starting from zero

that consists in changing the sign of each excursion of a reflected Brownian motion with probability
P0(Bβt > 0) = (1 + β)/2.

Let us recall briefly this construction, that we have already generalized to the time-inhomogeneous
case in Section 2.7 (the construction in itself goes back to [36]; for details see Exercise XII.2.16 in [64], and
[28]). We give us (Yn)n≥0 a sequence of independent r.v.’s taking the values 1 and −1 with probabilities
(1 + β) /2 and (1− β) /2 and independent of some reflected Brownian Motion |B| starting from zero.
With the same notations as in Section 2.7 we then put

Bβt (ω) = Yks(ω)(ω)|es(t− τs−(ω), ω)|

if τs− ≤ t ≤ τs.

The above process is distributed as the solution starting from zero of (3.1.1) with b ≡ 0, therefore the
common notation. Note that it is clear with the above construction that |Bβ | is distributed (under P0) as
a reflected Brownian motion starting from zero. Of course this could also be seen from Proposition 2.2.1.
A direct consequence is the following lemma (we recall that we are working with the symmetric local
time).

Lemma 3.5.3. We have for all t > 0,

P0
[
|Bβt | ∈ dy;L0

t (B
β) ∈ d`

]
= P0

[
|Wt| ∈ dy;L0

t (W ) ∈ d`
]
. (3.5.2)

Let us now state an intuitive result, which is somewhat not so easy to prove without using the above
explained construction. The difficulty comes from the presence of the local time in the equalities below
(for details, see the proof of Lemma 4.4 in [28]).

Lemma 3.5.4. We have for all t > 0,

P0
[
Bβt ∈ dy;L0

t (B
β) ∈ d`

]
=

1 + β

2
P0
[
|Bβt | ∈ dy;L0

t (B
β) ∈ d`

]
+

1− β
2

P0
[
− |Bβt | ∈ dy;L0

t (B
β) ∈ d`

]
.

Remark 3.5.5. Note that we could have get this result by integrating (2.4.1) with respect to s. But this
could seem counter-intuitive to resort to the time-inhomogeneous case, therefore we prefer to go back to
simpler arguments.

Using the two last lemmas we can prove the following result.

Proposition 3.5.6. We have for all t > 0, x ≥ 0,

Px
[
Bβt ∈ dy;L0

t (B
β) ∈ d`

]
= 1y≥01`>0

(1+β)(`+y+x)√
2πt3

exp
{
− (`+y+x)2

2t

}
dyd`

+1y≥0
1√
2πt

(
exp{− (y−x)2

2t } − exp{− (y+x)2

2t }
)
dyδ0(d`)

+1y<01`≥0
(1−β)(`−y+x)√

2πt3
exp

{
− (`−y+x)2

2t

}
dyd`.

Proof. Step 1. Combining the results of the Lemmas 3.5.3 and 3.5.4 we have

1y≥0P0
[
Bβt ∈ dy;L0

t (B
β) ∈ d`

]
= 1+β

2 P0
[
|Bβt | ∈ dy;L0

t (B
β) ∈ d`

]
= 1+β

2 P0
[
|Wt| ∈ dy;L0

t (W ) ∈ d`
]
.

Step 2. Let x ≥ 0. As 1y≥01`>0Px[Bβt ∈ dy;L0
t (B

β) ∈ d`; t < τ0] = 0, we have, using the strong
Markov property of Bβ ,

1y≥01`>0Px[Bβt ∈ dy;L0
t (B

β) ∈ d` ] = 1y≥01`>0Px[Bβt ∈ dy;L0
t (B

β) ∈ d`; t ≥ τ0 ]

= 1y≥01`>0Ex[1{t≥τ0}Px[Bβt ∈ dy;L0
t (B

β) ∈ d` |Cτ0 ]]

= 1y≥01`>0

∫ t
0
P0[Bβt−s ∈ dy;L0

t−s(B
β) ∈ d` ]h(x, s)ds.
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But h(x, .) is also the density of T0 = inf(t > 0 : Wt = 0). And using the first step of the proof we have

1y≥01`>0P0[Bβt−s ∈ dy;L0
t−s(B

β) ∈ d` ] = 1`>0
1 + β

2
P0[ |Wt−s| ∈ dy;L0

t−s(W ) ∈ d` ].

Using again the strong Markov property (of W ) we get

1y≥01`>0Px[Bβt ∈ dy;L0
t (B

β) ∈ d` ] = 1`>0Ex[1{t≥T0}
1+β

2 Px[ |Wt| ∈ dy;L0
t (W ) ∈ d` |FT0 ]]

= 1`>0
1 + β

2
Px[ |Wt| ∈ dy;L0

t (W ) ∈ d`; t ≥ T0 ]

= 1`>0
1 + β

2
Px[ |Wt| ∈ dy;L0

t (W ) ∈ d` ]

= 1y≥01`>0
(1 + β)(`+ y + x)√

2πt3
exp

{
− (`+ y + x)2

2t

}
dyd`

(see [10]).

Step 3. It is a consequence of the reflection principle for Brownian motion (and of the fact that the
SBM behaves like a brownian before τ0) that

1y≥0Px[Bβt ∈ dy;L0
t (B

β) = 0 ] = 1y≥0Px[Bβt ∈ dy; t < τ0 ]

= 1y≥0
1√
2πt

(
exp{− (y − x)2

2t
} − exp{− (y + x)2

2t
}
)
.

Using Step 1 to 3 we have the result for x ≥ 0 on R+×R+. In order to retrieve the result on R∗−×R+

we use Step 1 and 2 with 1+β
2 replaced by 1−β

2 and 1y≥0 replaced by 1y<0, and the fact that for x ≥ 0,

1y<0Px[Bβt ∈ dy;L0
t (B

β) = 0 ] = 1y<0Px[Bβt ∈ dy; t < τ0 ] = 0.

Remark 3.5.7. Note that the result of Proposition 3.5.6 (and consequently the result stated in Propo-
sition 3.5.1) differs slightly from results published by T. Appuhamillage et al. in [2] where there is a
computational error (see also [1] for a discussion). Here our computations are detailed for the sake of
completeness and clarification.

Proof of Proposition 3.5.1. We have

dBβ,µt = dWµ
t + βdL0

t (B
β,µ),

with Wµ
t = Wt+µt a Brownian motion starting from 0 under Q0

µ defined by
dQ0

µ

dP0
= exp{−µWt−

1

2
µ2t}.

For any bounded continuous function f and any t ≥ 0, we have

EPx [f(Bβ,µt )] = EP0 [f(Bβ,µt + x)]

= EQ0
µ
[f(Bβ,µt + x) exp{µWµ

t − 1
2µ

2t}]

=
∫ ∫

R2 f(y + x) exp{µw − 1
2µ

2t}P0[Bβt ∈ dy; Wt ∈ dw]

=
∫ ∫

R2 f(y) exp{µw − 1
2µ

2t}Px[Bβt ∈ dy; Wt − x ∈ dw]

(3.5.3)

Suppose β > 0.
We set Φx(z, `) = (z, z−x−β`) which defines a bijection Φx : R×R+ → Dx where Dx = {(y, w) ∈ R2 :

y− x ≥ w}. Note that (Bβt ,Wt − x) = Φx(Bβt , L
0
t (B

β)). Besides, almost surely, (Bβ , L0(Bβ)) ∈ R×R+

and (Bβ ,W − x) ∈ Dx.

For x > 0, Proposition 3.5.6 ensures that the measure Px[Bβt ∈ dy;L0
t (B

β) ∈ d` ] has a density with
respect to dy d` on R× R∗,+, and gives mass to the segments of R+ × {0} with the density

Px[Bβt ∈ dy;L0
t (B

β) = 0 ] =
1√
2πt

(
exp{− (y − x)2

2t
} − exp{− (y + x)2

2t
}
)
dy. (3.5.4)
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Let us denote ∆x := {(y, w) ∈ R+ × R : y = w + x} = Φx(R+ × {0}). The measure Px[Bβt ∈
dy; Wt − x ∈ dw] has a density gxBβ ,W (y, w) with respect to dy dw on Dx \ ∆x = Φx(R × R∗,+). But

it gives mass to the segments of the line ∆x. Let us denote Φ−1
x (y, w) := (Φ−1

1 (y, w),Φ−1
2 (y, w)) and

notice that Φ−1
1 (y, w) = y. Let A1 ⊂ R+ and A = {(y, w) ∈ R2 : y ∈ A1, y = w + x} ⊂ ∆x. As

Φ−1
x (A) ⊂ R+ × {0} we have

Px[(Bβt ,Wt − x) ∈ A] = Px[(Bβt , L
0
t (B

β)) ∈ Φ−1
x (A)]

= Px[Bβt ∈ Φ−1
1 (A);L0

t (B
β) = 0 ]

= Px[Bβt ∈ A1;L0
t (B

β) = 0 ].

Using this and (3.5.4) in (3.5.3) we get

EPx [f(Bβ,µt )] =
∫ ∫

Dx\∆x
f(y) exp{µw − 1

2µ
2t}Px[Bβt ∈ dy; Wt − x ∈ dw]

+
∫ ∫

∆x
f(y) exp{µw − 1

2µ
2t}Px[Bβt ∈ dy; Wt − x ∈ dw]

=
∫
R f(y)

∫ y−x
−∞ exp{µw − 1

2µ
2t}gxBβ ,W (y, w)dw dy

+
∫
R+
f(y) 1√

2πt
exp{µ(y − x)− 1

2µ
2t}
(

exp{− (y−x)2

2t } − exp{− (y+x)2

2t }
)
dy.

We now compute
∫ y−x
−∞ exp{µw − 1

2µ
2t}gxBβ ,W (y, w)dw with a change of variable and an integration by

parts. We have for y ≥ 0,∫ y−x

−∞
exp{µw − 1

2
µ2t}gxBβ ,W (y, w)dw =

e−
1
2µ

2t

β

∫ y−x

−∞
eµw

(1 + β)(y−w−xβ + x+ y)
√

2πt3
e−

(
y−w−x

β
+x+y)2

2t dw.

And,

∫ y−x
−∞ eµw(y−w−xβ + x+ y)e−

(
y−w−x

β
+x+y)2

2t dw = βeµ(y−x)
∫∞

0
e−βµw

′
(w′ + x+ y)e−

(w′+x+y)2

2t dw′

= βeµ(y−x)
(
te−

(x+y)2

2t − βµt
∫∞

0
e−βµw

′− (w′+x+y)2

2t dw′
)

= βeµ(y−x)
(
te−

(x+y)2

2t −
√

2πβµt3/2e
β2

2 µ
2teβµ(x+y)N c(x+y+tβµ√

t
)
)

= β t eµ(y−x)e−
(x+y)2

2t

(
1−
√

2πtβµe
(x+y+βµt)2

2t N c(x+y+tβµ√
t

)
)

which yields the desired result. The cases y < 0 and β < 0 are treated in a similar way.
For the case x < 0, we perform the change of variable x→ −x, y → −y, β → −β and µ→ −µ.

3.6 Sampling a skeleton along Ẑxβ, β 6= 0

3.6.1 Bounds for the transition function of the SBM with drift

We first aim at giving bounds on the transition function of the SBM with drift, in order to get bounds
for the forthcoming rejections procedures.

Let us set α = max( 1+β
2 , 1−β

2 ) and

γβ,µ(t, z) = 1− βµ
√

2πt exp(
(z + tβµ)2

2t
)N c(

βµt+ z√
t

). (3.6.1)

We also set

cβ,µt,x =

{
2α if βµ ≥ 0
2αγβ,µ(t, |x|) if βµ < 0.

(3.6.2)

We have two following lemmas.

Lemma 3.6.1. Let (β, µ) ∈ (−1, 1)× R. We have

vβ,µ(t, x, y) ≤ cβ,µt,x , ∀x, y ∈ R. (3.6.3)
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Proof. Case βµ ≥ 0. Let t > 0. It suffices to notice that

vβ,µ(t, x, y) ≤ (1− e−
2xy
t )1xy>0 + (1 + Sgn(y)β) exp

(
− 2xy

t
1xy>0

)
and it is then easy to check that vβ,µ(t, x, y) ≤ 2α for any value of x, y ∈ R.

Case βµ < 0. Let us denote Γβ,µ(t, x, y) := 1−βµ
√

2πt exp
{ (|x|+|y|+tβµ)2

2t

}
N c(βµt+|x|+|y|√

t
). For fixed

x ∈ R, y 7→ Γβ,µ(t, x, y) is an even function. As we have

∀z > 0, z e
z2

2

∫ ∞
z

e−
u2

2 du < 1, (3.6.4)

the function z 7→
√

2π exp( z
2

2 )N c(z) has negative first derivative on R+. Therefore y 7→ Γβ,µ(t, x, y) is
decreasing on R+ and we have maxy∈R Γβ,µ(t, x, y) = γβ,µ(t, |x|). Using this and 1 < γβ,µ(t, |x|) we have

vβ,µ(t, x, y) ≤ γβ,µ(t, |x|)
[
(1− e−

2xy
t )1xy>0 + (1 + Sgn(y)β) exp

(
− 2xy

t
1xy>0

) ]
and thus we get vβ,µ(t, x, y) ≤ 2αγβ,µ(t, |x|), using the same checking computations than in the case
βµ ≥ 0.

Lemma 3.6.2. Let (β, µ) ∈ (−1, 1)× R. We have

vβ,µ(t, x, y) ≤ cβ,µt,y , ∀x, y ∈ R. (3.6.5)

Proof. It suffices to notice that the role of x and y are symmetric in the quantity Γβ,µ(t, x, y) and then
to proceed similarly to the proof of Lemma 3.6.1.

Remark 3.6.3. Note that thanks to (3.6.4) we can see that γβ,µ(t, z) > 0 and thus vβ,µ(t, x, y) > 0 for
any t ∈ R∗,+, x, y, z ∈ R, even for large values of µ.

3.6.2 Sampling bridges of the SBM with drift

We denote by qβ,µ(t, T, a, b, y) the density defined (for t < T ) by

P(a)[Bβ,µt ∈ dy | Bβ,µ0 = a, Bβ,µT = b] = qβ,µ(t, T, a, b, y)dy.

The function (t, y) 7→ qβ,µ(t, T, a, b, y) is the transition density function of a bridge of a SBM with drift
relating points a and b in T unit time. Remember that Bβ,µ is homogeneous Markov so that

qβ,µ(t, T, a, b, y) =
pβ,µ(t, a, y)pβ,µ(T − t, y, b)

pβ,µ(T, a, b)
.

Besides q0,µ(t, T, a, b, y) = q0,0(t, T, a, b, y), thus by Proposition 3.5.1 we get,

qβ,µ(t, T, a, b, y) = q0,0(t, T, a, b, y)
vβ,µ(t, a, y)vβ,µ(T − t, y, b)

vβ,µ(T, a, b)
. (3.6.6)

Let us set

Cβ,µt,T,a,b =

{
4α2 if βµ ≥ 0
4α2γβ,µ(t, |a|)γβ,µ(T − t, |b|) if βµ < 0.

(3.6.7)

We have
qβ,µ(t, T, a, b, y)

q0,0(t, T, a, b, y)
=

Cβ,µt,T,a,b

vβ,µ(T, a, b)
fB,β,µa,b,t (y),

with

fB,β,µa,b,t (y) :=
vβ,µ(t, a, y)vβ,µ(T − t, y, b)

Cβ,µt,T,a,b

, (3.6.8)

63



where the superscript B appears for the word ”Bridge”.
Considering (3.6.2), (3.6.3), (3.6.5) and (3.6.7) it is clear that

fB,β,µa,b,t (y) ≤ 1, ∀y ∈ R.

We thus propose the following rejection algorithm in order to sample along qβ,µ(t, T, a, b, y)dy.

Auxiliary Algorithm 1: Sampling along qβ,µ(t, T, a, b, y)dy

1. Sample a Brownian bridge Y along q0,0(t, T, a, b, y).

2. Evaluate
fB,β,µa,b,t (Y ) ≤ 1.

3. Draw U ∼ U([0, 1]). If U ≤ fB,β,µa,b,t (Y ) accept the proposed value Y . Else return to
Step 1.

Remark 3.6.4. Note that the quantities vβ,µ, γβ,µ, cβ,µt,x , Cβ,µt,T,a,b, and fB,β,µa,b,t defined respectively in
(3.2.5),(3.6.1), (3.6.2) (3.6.7), and (3.6.8) involved in the above algorithm depend only on µ through the
product βµ. This computational fact gives the key ensuring the construction of the limit algorithm by
convergence performed at the beginning of Section 3.7.

3.6.3 Sampling along hxβ, β 6= 0

In order to sample a skeleton of ω under Ẑxβ , the first thing to do is to sample ωT along hxβ(y)dy. We
now handle this task, again by rejection sampling. We have

hxβ(y) =Cxβ exp
(
Bβ(y)−Bβ(x)

)
p0,µβ (T, x, y)vβ,µβ (T, x, y)

=Cxβ exp
(
− µβ(y − x) +

∫ y

x

b(z)dz
)
× exp

(
+ µβ(y − x)−

µ2
β

2
T
)
p0,0(T, x, y)vβ,µβ (T, x, y)

=Cxβe
−
µ2
β
2 T exp

(
B(y)−B(x)

)
vβ,µβ (T, x, y)p0,0(T, x, y).

Recall that M denotes an upper bound for the function z 7→ |b|(z) (see (3.2.1)). Then, using the result
of Lemma 3.6.1 and performing easy computations, we easily see that for any 0 < δ < 1 :

hxβ(y)

p0,0(T/(1− δ), x, y)
= Cxβ

eTM
2/δ

√
1− δ

e−
µ2
β
2 T c

β,µβ
T,x f

h,β,µβ
δ (y),

with

f
h,β,µβ
δ,x (y) =

√
1− δ exp

(
B(y)−B(x)− TM2

δ

)
p0,0(T, x, y)

p0,0(T/(1− δ), x, y)

vβ,µβ (T, x, y)

c
β,µβ
T,x

.

Using (3.6.3) one may easily check that f
h,β,µβ
δ,x (y) ≤ 1 for any y ∈ R. One might then optimize w.r.t.

δ ∈ (0, 1) in order to find f
h,β,µβ
δ,x closest to 1.

Let us set for simplicity, f
h,β,µβ
x = f

h,β,µβ
1/2,x . We deduce therefore the following procedure in order to

sample along hxβ(y)dy.

Auxiliary Algorithm 2: Sampling along hxβ(y)dy

1. Sample Y ∼ N (x, 2T ).

2. Evaluate
f
h,β,µβ
x (Y ) ≤ 1.

3. Draw U ∼ U([0, 1]). If U ≤ f
h,β,µβ
x (Y ) accept the proposed value Y . Else return to

Step 1.
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3.6.4 Sampling (ωt1 , . . . , ωtn , ωT ) under Ẑxβ
Let n ∈ N (this represent the number N of Poisson points in [0, T ]× [0,K] drawn at Step 1 of the Exact
simulation algorithm of Subsection 3.4.1). Let 0 < t1 < . . . < tn < T (this time instances are given by
the reordered first coordinates of the Poisson points).

We now describe the procedure used to draw (ωt1 , . . . , ωtn , ωT ) where ω ∼ Ẑxβ (that is to perform
Step 2 of the Exact simulation algorithm), using the results of Subsections 3.6.2 and 3.6.3.

Note that ω under Ẑxβ is Markov, and remember that ωT ∼ hxβ(y)dy by definition of Ẑxβ . Therefore
the following algorithm.

Performing Step 2 of the Exact Simulation Algorithm.
Sampling (ωt1 , . . . , ωtn , ωT ) under Ẑxβ, β 6= 0 (starting from x)(n = N)

1. Sample ωT along hxβ(y)dy using the Auxiliary Algorithm 2.

2. Sample ωt1 along qβ,µβ (t1, T, x, ωT , y)dy using the Auxiliary Algorithm 1.

3. For i = 2, . . . , n, sample ωti+1 along qβ,µβ (ti+1− ti, T − ti, ωti , ωT , y)dy using the Auxiliary
Algorithm 2.

Note that, using conditioning arguments, we can see that the law of (ωt1 , . . . , ωtn , ωT ) under Ẑxβ is
given by

hxβ(y)

n−1∏
i=0

qβ,µβ (ti+1 − ti, T − ti, yi, y, yi+1)dy1 . . . dyndy (3.6.9)

(we have set y0 = x to simplify the notations). This consideration will be used in the forthcoming section.

3.7 Sampling a skeleton along Ẑx0
We now aim at sampling (ωt1 , . . . , ωtn , ωT ) where ω ∼ Ẑx0 , using convergence arguments.

We consider a sequence (βn) converging to zero. To fix ideas we choose βn = 1
n . On one side we have

the following proposition.

Proposition 3.7.1. We have
Ẑx1/n

w−−−−→
n→∞

Ẑx0 .

Lemma 3.7.2 (Le Gall [43], Theorem 3.1, 1984). For any n ∈ N consider X1/n the solution of

dX
1/n
t = dWt + b(X

1/n
t )dt+

1

n
dL0

t (X
1/n), X

1/n
0 = x.

We have for all 0 < t < T ,
E
[

sup
0≤s≤t

|X0
s −X1/n

s |
]
−−−−→
n→∞

0.

Proof. We define fn(x) = 1x<0 + 1x≥0
1−1/n
1+1/n and Fn =

∫ x
0
fn(z)dz. For Y n = Fn(Xn) we have, using

Itô-Tanaka formula,
dY nt = fn ◦ F−1

n (Y nt )dWt + (bfn) ◦ F−1
n (Y nt )dt.

By dominated convergence we may show that for any K > 0 we have
∫K
−K |fn ◦ F

−1
n − 1|(x)dx→ 0 and∫K

−K |(bfn) ◦ F−1
n − b|(x)dx→ 0 as n→∞. Besides 0 < ε ≤ fn ≤M ′ and |bfn| ≤M ′ for all n ≥ 2 (for

some constants ε,M ′).
Thus by Theorem 1.5 in [43] we have E[sups≤t |Y ns −X0

s |] → 0 as n → ∞. But Fn → id uniformly
on each compact set. Thus as at the end of Theorem 3.1 in [43]

E[sup
s≤t
|Xn

s − F−1(X0
s )|] −−−−→

n→∞
0.

But here F−1 = id and we get the desired result.
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Proof of Proposition 3.7.1. As strong convergence implies convergence in law, it is clear from Lemma
3.7.2 that

P̂x1/n
w−−−−→

n→∞
P̂x0 . (3.7.1)

Let us define Φ : (C, C)→ R by

Φ(ω) := exp
{
−
∫ T

0

φ̃(ωt)dt
}
, ∀ω ∈ C.

Note that 0 < Φ(ω) ≤ 1. Thanks to (3.4.4) and (3.4.3) we have

dP̂x0
dẐx0

(ω) = cx0 Φ(ω) and
dP̂x1/n
dẐx1/n

(ω) = cx1/n Φ(ω)

and thus,

dẐx0
dP̂x0

(ω) =
1

cx0

1

Φ(ω)
and

dẐx1/n
dP̂x1/n

(ω) =
1

cx1/n

1

Φ(ω)
. (3.7.2)

Under the assumptions of Section 3.2, the functional ω 7→ 1/Φ(ω) is easily seen to be bounded and
continuous from (C, C) to R for the topology of the supreme norm. Using this and (3.7.1) we see that∫

C

P̂x1/n(dω)

Φ(ω)
−−−−→
n→∞

∫
C

P̂x0(dω)

Φ(ω)
. (3.7.3)

Since Ẑx1/n is a probability measure on (C, C), we also have 1 = Ẑx1/n(C) = Ẑx0(C). In view of (3.7.2) and

(3.7.3) this implies that necessarily (1/cx1/n)n is a convergent sequence and that

lim
n

1

cx1/n
=

1

cx0
. (3.7.4)

Therefore, for any bounded and continuous funcional ω 7→ F (ω) from (C, C) to R,∫
C

F (ω)Ẑx1/n(dω) =
1

cx1/n

∫
C

F (ω)
P̂x1/n(dω)

Φ(ω)
−−−−→
n→∞

1

cx0

∫
C

F (ω)
P̂x0(dω)

Φ(ω)
=

∫
C

F (ω)Ẑx0(dω)

and the result follows.

On the other side we will now use the two points of Proposition 3.3.1.

Recall the definition (3.2.2) of θ. Let us denote

vθ(t, x, y) = (1− e−2xy/t)1xy>0 + e−2xy/t
[
1− θ

√
2πt exp{ (|x|+ |y|+ tθ)2

2t
}N c(

θt+ |x|+ |y|√
t

)
]
,

γθ(t, z) = 1− θ
√

2πt exp(
(z + tθ)2

2t
)N c(

θt+ z√
t

),

cθt,x =

{
1 if θ ≥ 0
γθ(t, |x|) if θ < 0,

and Cθt,T,a,b =

{
1 if θ ≥ 0
γθ(t, |a|)γθ(T − t, |b|) if θ < 0.

Remember our definitions (3.2.5),(3.6.1),(3.6.2) and (3.6.7) and Remark 3.6.4. It is clear from (3.4.1)
that 1

nµ1/n → θ (as n tends to +∞), so that we have,

v
1
n ,µ1/n(t, x, y) −−−−→

n→∞
vθ(t, x, y) ∀(t, x, y) ∈ R+ × R× R,

γ
1
n ,µ1/n(t, z) −−−−→

n→∞
γθ(t, z) ∀(t, z) ∈ R+ × R,

c
1
n ,µ1/n

t,x −−−−→
n→∞

cθt,x ∀(t, x) ∈ R+ × R,

C
1
n ,µ1/n

t,T,a,b −−−−→n→∞
Cθt,T,a,b ∀(t, T, a, b) ∈ R+ × R+ × R× R.
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Let us now examine the sequence (f
h, 1
n ,µ1/n

δ,x ) of the rejection functions used in the Auxiliary Algo-

rithm 2. From the same reasons as above, it is clear that (f
h, 1
n ,µ1/n

δ,x ) converges towards

fh,θδ,x (y) =
√

1− δ exp

(
B(y)−B(x)− TM2

δ

)
p0,0(T, x, y)

p0,0(T/(1− δ), x, y)

vθ(T, x, y)

cθT,x
≤ 1.

Thus, applying Point i) of Proposition 3.3.1, the sequence of laws (hx1/n(y)dy) converges to some limit

law hxθ (y)dy satisfying

hxθ (y) ∝ fh,θδ,x (y)p0,0(T/(1− δ), x, y).

Thus applying Point ii) of the same proposition we can see that we can sample from hxθ (y)dy using the

following algorithm (here fh,θx simply denotes fh,θ1/2,x).

Limit Auxiliary Algorithm 2: Sampling along hxθ (y)dy

1. Sample Y ∼ N (x, 2T ).

2. Evaluate
fh,θx (Y ) ≤ 1.

3. Draw U ∼ U([0, 1]). If U ≤ fh,θx (Y ) accept the proposed value Y . Else return to
Step 1.

In the same manner, for any fixed a, b ∈ R, the sequence (f
B, 1

n ,µ1/n

a,b,t ) of rejection functions used in
Auxiliary Algorithm 1 converges towards

fB,θa,b,t(y) :=
vθ(t, a, y)vθ(T − t, y, b)

Cθt,T,a,b
≤ 1.

Consequently, the law q
1
n ,µn(t, T, a, b, y)dy converges towards a limit law qθ(t, T, a, b, y)dy, along which

it can be sampled using the following algorithm.

Limit Auxiliary Algorithm 1: Sampling along qθ(t, T, a, b, y)dy

1. Sample a Brownian bridge Y along q0,0(t, T, a, b, y).

2. Evaluate
fB,θa,b,t(Y ) ≤ 1.

3. Draw U ∼ U([0, 1]). If U ≤ fB,θa,b,t(Y ) accept the proposed value Y . Else return to
Step 1.

Let us now suppose n ∈ N is given, together with some time values be 0 < t1 < . . . < tn < T .
Consider the following global algorithm (whose name will be justified just afterwhile).
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Performing Step 2 of the Exact Simulation Algorithm.
Sampling (ωt1 , . . . , ωtn , ωT ) under Ẑx0 (starting from x)(n = N)

1. Sample ωT along hxθ (y)dy using the Limit Auxiliary Algorithm 2.

2. Sample ωt1 along qθ(t1, T, x, ωT , y)dy using the Limit Auxiliary Algorithm 1.

3. For i = 2, . . . , n, sample ωti+1 along qθ(ti+1 − ti, T − ti, ωti , ωT , y)dy using the Limit Aux-
iliary Algorithm 1.

It is clear that the vector (ωt1 , . . . , ωtn , ωT ) sampled by the above algorithm follows the distribution

hxθ (y)

n−1∏
i=0

qθ(ti+1 − ti, T − ti, yi, y, yi+1)dy1 . . . dyndy

(again we have denoted y0 = x). But this is what we get by passing to the limit (as n→∞) in (3.6.9).

Thus, in view of Proposition 3.7.1, the sampled vector is distributed as (ωt1 , . . . , ωtn , ωT ) where ω ∼ Ẑx0 .

In conclusion one will use the above algorithm in order to perform Step 2 of the Exact Simulation
Algorithm in the case β = 0.

3.8 Numerical experiments

3.8.1 Case β 6= 0

Example 1. We first deal with a toy example. We consider the following SDE

dXβ
t = dWt −

π

2
cos(

π

5
Xβ
t )dt+ βdL0

t (X
β), Xβ

0 = x, (3.8.1)

with β = 0.6, and x = 0.2. Note that, here, the drift b(x) = −π2 cos(π5x) is bounded with bounded first
derivative, and of class C∞ on the whole real line. For the exact procedure the constant drift involved
in Subsection 3.4.1, equals µβ = b(0) = −π2 . We have

φ̃(x) =
π2

8
cos2(

π

5
x) +

π2

20
sin(

π

5
x) +

π2

20
,

and take K = 9π2

20 as un upper bound for φ̃.
We plot on Figure 3.3 (top and bottom figures) the approximated density obtained with 106 simula-

tions of Xβ
T , sampled with our exact procedure. On the top figure we plot the approximated densities

obtained with 106 simulations of the Euler Scheme used in [52] and [53], for decreasing time steps. We
can observe the convergence of Euler type simulations to exact ones. Note that to have the Euler scheme
fitting the exact procedure we have to take a fine time step (namely ∆t = 10−4). This is because, as
shown in [52], the rate of weak convergence of the Euler scheme in this situation is of order (∆t)1/2−ε,
for a smooth initial condition.

On the bottom figure the approximated density is compared with the approximated densities obtained
with 106 simulations of the random walk based method studied in [24], for decreasing space steps. Again
we can observe the convergence of the process with discretization error.

In Table 3.5 we report the empirical acceptance ratios for the rejection step using φ̃ and the Poisson
point process in the Exact Algorithm (this corresponds to the column Exact Algorithm in the table),
and for the rejection sampling of bridges of the SBM with drift (this is the average acceptance ratio in
this case).

In Table 3.4 we report the CPU times needed to get the 106 simulations, with the three different
methods (and with the different discretization steps we have used). Programs were written in C-language
and executed on a personal computer equipped with an Intel Core 2 duo processor, running at 2.23 Ghz.
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Figure 3.1: Approximated densities of the positions at time T = 1.0 of 106 paths of the solution of (3.8.1)
starting from x0 = 0.2: exact versus Euler with time step ∆t = 10−n, for n = 2, 4 (top) and exact versus
random walk with space steps h = 1

10 ,
1

200 (bottom).
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Exact Algorithm Bridges

Acceptance Ratio 0.28 0.18

Table 3.1: Acceptance ratios in Example 1.

Exact Euler Random Walk
(∆t = 10−n, n = 2, 4) (h = 1

10 ,
1

200 )

239s 17s 3.52s
1680s 1411s

Table 3.2: CPU times for 106 simulations of XT .

On this example the exact simulation is competitive, compared to schemes with very fine grids.

Example 2. We want now to sample along the law of the continuous Markov process X generated
by the operator defined formely in divergence form by

L =
1

2

d

dx

(
a

d

dx
·
)

(3.8.2)

with

a(x) =


x2+x+1
(2x+1)2 if x ≥ 0

3x2−x+2
(6x−1)2 if x < 0.

Note that a(0+) = 1 6= 2 = a(0−). The coefficient a(x) is of class C1 on R∗,− and R∗,+, and uniformly
strictly positive and bounded, which ensures the existence of X; in addition X solves

dXt =
√
a(Xt)dWt +

a′x,±(Xt)

2
dt+

a(0+)− a(0−)

a(0+) + a(0−)
dL0

t (X), (3.8.3)

(see [20] or Chapter 1). We define the Lamperti transformation Φ(x) =
∫ x

0
dz/
√
a(z) and set Yt := Φ(Xt).

Then

dYt = dWt +
1

2
(
√
a)′ ◦ Φ−1(Yt)dt+

√
a(0+)−

√
a(0−)√

a(0+) +
√
a(0−)

dL0
t (Y ), (3.8.4)

(this follows from Proposition 3.1 in [20]; see also [44] and [59]). Firstly, note that
∣∣∣√a(0+)−

√
a(0−)√

a(0+)+
√
a(0−)

∣∣∣ < 1.

Secondly, we have

(
√
a)′(x) =


1

2
√
x2+x+1

− 2
√
x2+x+1

(2x+1)2 if x ≥ 0

− 1
2
√

3x2−x+1
+ 6

√
3x2−x+2
(6x−1)2 if x < 0,

Φ(x) =

 2
√
x2 + x+ 1− 2 if x ≥ 0

−2
√

3x2 − x+ 1 + 2
√

2 if x < 0,

and Φ−1(y) =


−1+
√

(y+2)2−3

2 if y ≥ 0

s
1−
√

1−12[2−(
√

2−y/2)2]

6 if y < 0.

As (
√
a)′(x) is bounded with bounded first derivative on R∗,− and R∗,+, the explicitly known coefficients

β =

√
a(0+)−

√
a(0−)√

a(0+)+
√
a(0−)

and b(y) = 1
2 (
√
a)′ ◦ Φ−1(y) satisfy the assumptions of Section 3.2. Thus we can
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Figure 3.2: DIVERGENCE FORM OPERATOR: Approximated density of the positions at time T = 1
of 107 paths of the solution of (3.8.3) starting from x0 = 0.0: exact versus random walk with space step
h = 3.10−3 and Euler scheme with ∆t = 10−4.

Exact Algorithm Bridges

Acceptance Ratio 0.017 0.5

Table 3.3: Acceptance ratios in Example 2.

perform exact sampling from (3.8.4), and, applying the exact inverse transformation Φ−1, get samples
from (3.8.3) with absolutely no discretization error.

Here we have,

µβ =
1

4

a′(0+)− a′(0−)√
a(0+)−

√
a(0−)

= − 26

4(1−
√

2)
,

and

φ̃(y) =
((1/2)(

√
a)′ ◦ Φ−1(y))2 + (1/2)((

√
a)′′
√
a) ◦ Φ−1(y)

2
,

with

(
√
a)′′(x)


− 2x+1

4(x2+x+1)3/2 − 1
(2x+1)

√
x2+x+1

+ 8
√
x2+x+1

(2x+1)3 if x ≥ 0

6x−1
4(3x2−x+2)3/2 − 3

(2x+1)
√

3x2−x+2
+ 72

√
3x2−x+2
(6x−1)3 if x < 0.

We take K = (6
√

2−1/2)2/4+(141−1/8)/2
2 as an upper bound for φ̃. We plot on Figure 3.5 the approximated

density computed with 107 simulations of XT for x0 = 0.0 and T = 1, obtained from the exact procedure.
We plot on the same figure the approximated densities obtained with the Euler scheme and the random
walk approximation mentioned in Example 1.

We report in Table 3.7 the acceptance ratios.
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Exact Euler
CPU times 2111s 9521s

Table 3.4: CPU times for 106 simulations of a Brownian motion with two-valued drift with θ0 = 2 and
θ1 = −1 (x = 0.0 and T = 1).

Exact Algorithm Bridges
Acceptance Ratio 20.4% 58,6%

Table 3.5: Acceptance ratios for the case of a Brownian motion with two-valued drift with θ0 = 2 and
θ1 = −1 (x = 0.0 and T = 1).

Remark 3.8.1. Note that the acceptance ratio for the algorithm in the first example in Table 3.5 is quite
low but decreases to less than 2% in Table 3.7 in the context of the second example. These figures are
closely related to the measurement of the ”distance” between the measure of the initial process from the
reference measure and so these limitations of the algorithm arise even in the ”classical” setting of the
reference article [6] (for example with a rapidly varying drift). Nevertheless, in terms of CPU time, the
performance of the algorithm seems quite competitive, in comparison with those of discretization schemes.

Remark 3.8.2. Note that, at least graphically and contrary to what we can see on Figure 3.3, the tran-
sition density plotted on Figure 3.5 seems to be continuous at 0 : this matches the well-known theoretical
result, which asserts that the transition density of diffusion semigroups corresponding to elliptic diver-
gence form operator of the form (3.8.2) is always continuous. We refer to Stroock [69] for a proof based
on the self-adjoint properties of these semi-groups and Nash’s inequality.

3.8.2 Case β = 0

Example 1: Exact simulation of a Brownian motion with two-valued (or alternate) drift.

In this paragraph, we choose to exhibit numerical results obtained with the exact limit algorithm for
the simplest non-trivial cases

dX0
t = dWt ± sgn(X0

t )dt, X0
0 = 0,

corresponding to either θ0 = −θ1 = ±1 in (3.1.2) (b(y) = ±Sgn(y) in (3.1.1)). Indeed, in this symmetric
case a benchmark is provided by the explicit and computable density of X0

T given in [39] p. 440-441.
We draw the renormalized histogram of 106 samples of X0

T and compare it to the explicit density of
X0
T (Figure 3.3 for the outgoing case θ0 = 1 and Figure 3.4 for the incoming case θ0 = −1).

In the non-symmetric case we can still use our limit algorithm but the density of X0
T becomes less

explicit (see formula (6.5.12) in [39]). Thus we will use as a benchmark the renormalized histogram of
106 samples an Euler Scheme with time step ∆ = T.10−5. We chose θ0 = 2, θ1 = −1, T = 1 and x = 0.0.
We plot the corresponding renormalized histograms on Figure 3.5.

In Table 3.4 we report the CPU times needed to get the 106 samples, with the exact limit algorithm
and the Euler scheme. Programs were written in C-language and executed on a personal computer
equipped with an Intel Core 2 duo processor, running at 2.23 Ghz. We report in Table 3.5 the acceptance
ratios.

On this example the acceptance ratios are good and the exact method is nearly four times faster than
the Euler scheme with time step ∆ = T.10−5.

Example 2: Exact simulation of an SDE with a discontinuous drift coefficient.

We consider now the SDE (3.1.1) with β = 0 and with

b(x) =

 −
π
2 cos

(
π
5x
)

if x ≥ 0

3π
2 −

π
2 cos

(
π
5x
)

if x < 0.
(3.8.5)
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Figure 3.3: Brownian motion with two-valued drift, case θ0 = −θ1 = 1 (T = 1).

Figure 3.4: Brownian motion with two-valued drift, case θ0 = −θ1 = −1 (T = 1).
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Figure 3.5: Limit algorithm v.s. Euler Scheme for Brownian motion with two-valued drift with θ0 = 2
and θ1 = −1 (x = 0.0 and T = 1).

Exact Euler
(∆t = 10−n, n = 2, 5)

CPU times 11813s 20s
12952s

Table 3.6: CPU times for 106 simulations of XT for the case where b is given by (3.8.5) (x = 0.0 and
T = 1).

Let 0 < T <∞. We wish to sample along X0
T .

We have θ = −3π/4 and

φ̃(x) =
b2(x) + b′(x)

2
+
π2

20
.

We take K = 2π2 + π2

10 as an upper bound for φ̃. This allows to use the limit Algorithm.
Figure 3.5 shows a comparison between a renormalized histogram of 106 samples of X0

T obtained with
the exact limit algorithm, and a renormalized histogram of 106 samples of an Euler Scheme with time
step ∆. We chose x = 0.0, T = 1 and time-steps ∆ = T.10−2 and ∆ = T.10−5. In Table 3.6 we report
the CPU times needed to get the 106 samples, with the exact limit algorithm and the Euler scheme (and,
for the later one, with the different time steps we have used). We report in Table 3.7 the acceptance
ratios.

On this example the exact simulation is competitive, compared to schemes with very fine grids.

Exact Algorithm Bridges
Acceptance Ratio 3.6% 50,7%

Table 3.7: Acceptance ratios for the case where b is given by (3.8.5) (x = 0.0 and T = 1).
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Figure 3.6: Limit algorithm v.s. Euler Scheme for the case where b is given by (3.8.5) (x = 0.0 and
T = 1).
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Chapter 4

Other research topics: a selection

This Chapter presents shortly some other research topics I have been involved in during the past years. It
is divided in three parts: adaptive stratification ([23][21]), stochastic expansion for options paying discrete
dividends ([22]) and equivalence of statistical experiences involving stochastic processes ([25][26]).

4.1 Adaptive stratification

Stratified sampling belongs to the panel of variance reduction techniques, used for example widely in
quantitative finance ([33]). In order to fix ideas let X a random variable taking values in A, and f : A→ R
s.t. E2f(X) <∞. We wish to estimate c = Ef(X) by Monte Carlo computations.

We partition A into strata Ai’s. Thus, instead of approximating c by the standard Monte Carlo
estimator

1

N

N∑
j=1

f(Xj), (4.1.1)

(here the Xj ’s are i.i.d. drawings of X) one writes c =
∑I
i=1 P(X ∈ Ai)E[f(X)|X ∈ Ai]. Then one

computes the stratified estimator

I∑
i=1

pi
Ni

Ni∑
j=1

f(Xj
i ) =

1

N

I∑
i=1

pi
qi

Ni∑
j=1

f(Xj
i ) (4.1.2)

where
∑
iNi = N , one has denoted pi = P(X ∈ Ai), and the Xi’s are distributed as X|{X ∈ Ai}. The

drawings Xj
i , 1 ≤ j ≤ N i, 1 ≤ i ≤ I, are independent. The variance of (4.1.2) is given by 1

N

∑I
i=1

p2
iσ

2
i

qi
,

where σ2
i = V(X|X ∈ Ai).

Assume the strata are fixed. The choice of the proportions qi’s in (4.1.2) is what we call the allocation
(or allocation policy) issue. By a convexity argument one may see that qi = pi (proportional allocation)
reduces that variance, compared to the one of (4.1.1) . But the optimal allocation is

q∗i =
piσi
I∑
j=1

pjσj

(4.1.3)

(see [33]). This means that we have better to invest drawings in strata with high probability and where

the approximation of Ef(Xi) by 1
Ni

∑Ni
j=1 f(Xj

i ) is the less precise. The reached optimal variance of
(4.1.2) is then

σ2
∗
N

=
1

N

( I∑
i=1

piσi

)2

≤ V(f(X))

N
. (4.1.4)

But in practice the σ2
i are not known, and one is simply led to use proportional allocation ([34]). But

one may construct a stratified estimator with adaptive allocation policy, which uses the already done
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drawings of the Xi’s, in order to estimate the σi’s. The amount of the next drawings to do in each
stratum are then corrected, and so on (therefore the term adaptive).

This was the subject of the paper [23], written with Benjamin Jourdain. In this paper we prove
a Central Limit Theorem (CLT) for the adaptive stratified estimator, which involves the optimal vari-
ance σ2

∗ (Theorem 3.1 in [23]): this means that the estimator is asymptotically optimal. The proof uses
the Law of Large Numbers and the CLT for martingales (these tools come from the world of stochastic
algorithms and optimization).

Further, in [21], we addressed the more difficult problem of finding the best way to stratify the state
space A (with Benjamin Jourdain, Gersende Fort and Éric Moulines).

In order to precise the ideas of this paper we have to precise some notations.

We have X ∼ Nd(0, Id) (in the applications of interest X is a gaussian vector). We are given
(
Ai
)I
i=1

a partition of R and µ ∈ Rd with ||µ|| = 1.

The strata are then defined by AA,µi = {x ∈ Rd : µ′x ∈ Ai}.
Note that it is easy to calculate pi = P(X ∈ AA,µi ) as µ′X ∼ N (0, 1).

Besides, on knows how to sample along X|X ∈ AA,µi ∼ X|µ′X ∈ Ai as X|µ′X = z ∼ Nd(uz, (Id −
uu′)).

We are then in the framework of the reference paper [34].

One may construct a partition (Ai) of R, using the definition

Ai = {x ∈ R : G−1(
i− 1

I
) < x ≤ G−1(

i

I
)}

with G(x) =
∫ x
−∞ g(y)dy and g a probability density on R.

Besides the allocations qi are determined by qi =
∫
Ai
χ(y)dy where χ is another probability density.

We have the first following result (we recall that the variance of the stratified estimator of c = Ef(X)
is proportional to

∑
i(p

2
iσ

2
i )/qi).

Theorem 4.1.1. Under mild assumptions on f one has

lim
I→∞

( I∑
i=1

p2
iσ

2
i

qi

)
(µ, g, χ) =

∫
R

[φ2(ζµ − ψ2
µ)χ−1](y)dy, (4.1.5)

where φ is the density of N (0, 1) and

ζµ(x) = E[f(X)|µ′X = x], et ψµ(x) = E[f2(X)|µ′X = x].

This result indicates that, for a large number of strata, the variance of the stratified estimator depends
on the allocation policy (through χ) and of the choice of the direction µ. But it is not sensitive to the
choice of the partition (Ai) of R (as g disappears in the RHS of (4.1.5)).

One thus sets

V (µ) :=
( I∑
i=1

piσi
)
(µ),

it is the optimal standard deviation of the stratified estimator. One will seek for argminµV (µ), using
a stochastic gradient type method. In the same time we will use again the used drawings in order
to estimate c, by an adaptive stratified estimator (adapting in the same time the allocations and the
direction µ).

An arbitrary partition
(
(ai−1, ai]

)I
i=1

of R is chosen, with large I.
One notes νi(h, µ) := E[h(X)1{µ′X∈(ai−1,ai]}]. One has

σ2
i (µ) =

νi(f
2, µ)

pi(µ)
−
(νi(f, µ)

pi(µ)

)2

, V (µ) =

I∑
i=1

√
νi(1, µ)νi(f2, µ)− ν2

i (f, µ), and

∇µV (µ) =

I∑
i=1

∇µνi(1, µ) νi(f
2, µ) + pi(µ)∇µνi(f2, µ)− 2νi(f, µ)∇µνi(f, µ)

2pi(µ)σi(µ)

Thanks to the following result we may compute the gradient by Monte Carlo.
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Proposition 4.1.2. Under mild assumptions on h : Rd → R one has

∇µνi(h, µ) = φ(ai−1)E[Xh(X)|µ′X = ai−1]− φ(ai)E[Xh(X)|µ′X = ai].

Using these considerations we produce a global algorithm that shows good behavior compared to the
initial approach in [34] (see tables at the end of [21]).

4.2 Stochastic expansion for the pricing of call options with
discrete dividends

This part is based on the paper [22] written with Emmanuel Gobet.

A maturity T <∞ is fixed. We consider European Call options on an underlying asset (stock) that
pays discrete dividends. More precisely, at the dividend payment dates 0 < t1 < . . . < tn ≤ T , the stock,
whose price process is denoted S(y,δ), pays

δi + yiS
(y,δ)
ti− .

So that
S

(y,δ)
ti = S

(y,δ)
ti− − [δi + yiS

(y,δ)
ti− ] = S

(y,δ)
ti− (1− yi)− δi. (4.2.1)

Between two dates ti’s the process S(y,δ) follows a Black-Scholes dynamic

dS
(y,δ)
t = σtS

(y,δ)
t dWt + (rt − qt)S(y,δ)

t dt. (4.2.2)

Here W is a standard Brownian motion under the risk-neutral probability measure P (the coefficients
σt, rt, qt are deterministic). We denote S0 the initial value of S(y,δ).

We introduce the notations Dt = exp(−
∫ t

0
(rs − qs)ds) and Mt = exp(

∫ t
0
σsdWs − 1

2

∫ t
0
σ2
sds).

Note that (S0Mt/Dt)t≥0 solves the SDE given by (4.2.2), with initial condition S0. We stress that
(S0Mt/Dt)t≥0 follows this Black-Scholes dynamic also at times ti’s, so that its paths are continuous,
contrary to those of S(y,δ).

We will denote π0,n =
∏n
i=1(1− yi) and δ̂i =

Dti
DT

δi
∏n
j=i+1(1− yj).

Using (4.2.1) and the dynamic (4.2.2) it is possible to show by induction the following lemma.

Lemma 4.2.1. We have S
(y,δ)
T = π0,nS0

MT

DT
−
∑n
i=1 δ̂i

MT

Mti

.

The idea is then the following (we present things at order 2 in order to simplify).

We take hN smooth, and we want to compute E(e−
∫ T
0
rsdshN (S

(y,δ)
T −K)).

Afterwards we will make hN tend to h(x) = (x)+ in order to get the price of the Call option. One
has

S
(y,δ)
T = π0,nS0

MT

DT
−

n∑
i=1

δ̂i(1 +
MT

Mti

− 1) = π0,nS0
MT

DT
−

n∑
i=1

δ̂i +

n∑
i=1

δ̂i(
MT

Mti

− 1).

Thus, E
[
e−

∫ T
0 rsdshN (S

(y,δ)
T −K)

]
= E

[
e−

∫ T
0 rsdshN (π0,nS0

MT

DT
−K(y,δ))

]
−

n∑
i=1

δ̂iE
[
e−

∫ T
0 rsdsh′N (π0,nS0

MT

DT
−K(y,δ))(

MT

Mti

− 1)

]
+ Error2(hN )

with K(y,δ) = K +
∑n
i=1 δ̂i. Using

E[e−
∫ T
0
rsdsh

(m)
N (αS0

MT

DT
− k)] = (−1)m∂mk E[e−

∫ T
0
rsdshN (αS0

MT

DT
− k)],

one has for example

−E[e−
∫ T
0
rsdsh′N (π0,nS0

MT

DT
−K(y,δ))] = ∂kE[e−

∫ T
0
rsdshN (π0,nS0

MT

DT
− k)]|k=K(y,δ) .
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For terms of type E[e−
∫ T
0
rsdsh′N (π0,nS0

MT

DT
−K(y,δ))MT

Mti
], one may see MT

Mti
as a Girsanov type density.

One thus obtains

E[e−
∫ T
0
rsdsh′N (π0,nS0

MT

DT
−K(y,δ))

MT

Mti

] = E[e−
∫ T
0
rsdsh′N (π0,ne

∫ T
ti
σ2
sdsS0

MT

DT
−K(y,δ))],

and finally

E[e−
∫ T
0
rsdsh′N (π0,nS0

MT

DT
−K(y,δ))

MT

Mti

] = −∂kE
[
e−

∫ T
0
rsdshN (π0,ne

∫ T
ti
σ2
sS0

MT

DT
− k)

]∣∣
k=K(y,δ) .

We get the following result.

Theorem 4.2.2. For smooth hN one has

E
[
e−

∫ T
0 rsdshN (S

(y,δ)
T −K)

]
= E

[
e−

∫ T
0 rsdshN (π0,nS0

MT

DT
−K(y,δ))

]
+

n∑
i=1

δ̂i

(
∂kE

[
e−

∫ T
0 rsdshN (π0,ne

∫ T
ti
σ2
sS0

MT

DT
− k)

]∣∣
k=K(y,δ) − ∂kE

[
e−

∫ T
0 rsdshN (π0,nS0

MT

DT
− k)

]∣∣
k=K(y,δ)

)
+ Error2(hN ) (4.2.3)

In order to get an approximated formula for the Call option price one needs to control Error2(hN )
uniformly in N . One has the following result.

Proposition 4.2.3. For smooth hN with |h′N |∞ = 1 one has (with σ ≤ σt ≤ σ),

|Error2(hN )| ≤ c(1 + Sp0 ) sup
i

(
δiσ
√
T − ti

)2

.

In the above proposition the parameter p is involved in our smoothness assumptions on hN . The idea
of the proof of the proposition is the following. From our second order Taylor expansion comes the fact
that

Error2(hN ) = E

(
e−

∫ T
0
rsds

( n∑
i=1

δ̂i(
MT

Mti

− 1)
)2
∫ 1

0

(1− λ)2

2
h′′N (FλT −K)dλ

)
where ∀0 ≤ λ ≤ 1 one has defined

FλT := S0
MT

DT
−

n∑
i=1

δ̂i − λ
n∑
i=1

δ̂i(
MT

Mti

− 1).

The issue is thus now to control quantities of type

E
[
(
MT

Mti

− 1)(
MT

Mtj

− 1)h′′N (FλT −K)
]
.

As we wish to take hN (x)→ h(x) = (x)+ we cannot use estimates on h′′N (they will explode as N tends
to infinity).

But one may use Malliavin calculus to go back to an expression involving h′N (the interest is that
this function satisfies |h′N |∞ = 1). One has

E
[
(
MT

Mti

− 1)(
MT

Mtj

− 1)h′′N (FλT −K)
]

= E[h′N (FλT −K)H1,λ
ij ],

where H1,λ
ij is the Malliavin weight of order 1 (we have used the Malliavin integration by parts formula;

see [58]). These weights do not depend on hN , neither on N . The most technical part of [22] (10 pages)

consists then in controlling the Hölder norm of weights H1,λ
ij . The computations imply the norms Dk,p,

in particular the one of D.(FλT ) (we use the common notations in [58]).

Then it remains to make hN tend to h, so that we can replace hN (x) by h(x) = (x)+ in Theorem 4.2.2.
We denote by CallBS(x, k) the price of a Call option with spot x and strike k in the Black-Scholes

model with coefficients σt, rt, qt. We have clearly for example

E
[
e−

∫ T
0
rsdsh(π0,nS0

MT

DT
−K(y,δ))

]
= CallBS(S0,K

(y,δ))

(this comes from the remark on the dynamic of (S0
Mt

Dt
)t≥0). One finally gets the following result.
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Theorem 4.2.4. One has

E(e−
∫ T
0
rsds(S

(y,δ)
T −K)+) = CallBS

(
π0,nS0,K

(y,δ)
)

+
∑n
i=1 δ̂i

(
∂kCallBS(π0,nS0e

∫ T
ti
σ2
sds,K(y,δ))− ∂kCallBS(π0,nS0,K

(y,δ))
)

+Error2(Call),

with |Error2(Call)| ≤ c supi

(
δi
S0

√
1− ti

T

)2

S0σ
√
T .

That is to say, in order to get the (approximated) price of the option of interest (the one on the asset
with discrete dividends), one has to compute a linear combination of price and greeks in the Black-Scholes
model (with no discrete dividends). But we have closed formulae for such quantities. Thus, in terms
of computation time, this method is particularly competitive (the method is nearly instantaneous). In
terms of precision the numerical tests are encouraging if we go up to order 3 or 4. This is what we have
done in [22]: the ideas are the same than at order 2, formulae and computations are much longer, but the
computation time remains very short (see Tables in [22]; we compare our method to available references
on the subject, in particular [11],[73] and [74]).

4.3 Equivalence of statistical experiences involving stochastic
processes

One considers two statistical experiences P = (A,A, (Pf , f ∈ F )) and Q = (B,B, (Qf , f ∈ F )), on the
same parameter of interest f ∈ F , but for which the observations can be of very different nature (for
example A can be a functional space, and B a vectorial space with finite dimension).

Lucien Le Cam ([42]) has developed the notion of equivalence between two statistical experiences: P
and Q are equivalent if the risk of being wrong about the estimation of f in experience P is controlled
by the one in experience Q, and vice versa (see [50] for a summary about equivalence in the sense of
Le Cam). One has then ∆(P,Q) = 0, where ∆(·, ·) denotes the (pseudo)-distance of Le Cam. These
tools allow for example to ”transport” known statistical mathematical results on problem P towards Q.
For example in [15], this type of (asymptotical) equivalence is proved, between a white noise model
with unknown non parametric drift function f(t) to estimate, and a gaussian regression model with the
same parameter of interest f(t). Thus, one can use known results on the white noise model towards the
regression one.

In this spirit we have proved in [25] asymptotical equivalence results between jumps Lévy processes
and their discrete counterpart. A horizon T <∞ is fixed and we recall that we denote D = D([0, T ];R).
For ν in the set of Lévy measureM′ν̃ (see [25] for a precise definition; in particular ν̃ is some dominating
measure and for ν in M′ν̃ the quantity ην =

∫
|y|≤1

|y|ν(dy) is finite) we denote P (ην ,0,ν) the law induced

on (D,D) by a pure jump Lévy process X with characteristic function

∀u ∈ R, ∀0 < t ≤ T, E(eiuXt) = exp
(
t

∫
R
(eiuy − 1)ν(dy)

)
.

Then the first statistical experience we define is

P ′(ην ,0,ν) =
(
D,D,

{
P (ην ,0,ν), ν ∈M′ν̃

})
.

The second one (the discrete counterpart) is

Q′Rm = (N2m2

,P(N2m2

), {Qm,Rν , ν ∈M′ν̃}),

where Qνm,R is the law on (N2m2

,P(N2m2

)) of the random vector

(R−∞, . . . , Rj,k, . . . , R∞), j = 1, . . . ,m, k = −m, . . . ,m− 1

where R−∞ ∼ Poi
(
Tν((−∞,m])

)
, R∞ ∼ Poi

(
Tν((m,∞))

)
and Rj,k ∼ Poi

(
Tν((k + j−1

m , k + j
m ])
)

for
all j = 1, . . . ,m, k = −m, . . . ,m− 1, these r.v. being independent. We have then:

81



Theorem 4.3.1. ∆(P ′(ην ,0,ν),Q′Rm )
m→∞−−−−→ 0.

Which means that P ′(ην ,0,ν) and Q′Rm are asymptotically equivalent. One possible interpretation is
the following:

Corollary 4.3.2. So far as the estimation of ν is concerned, observing a Lévy process X of charac-
teristic (ην , 0, ν) asymptotically gives the same amount of information as the a priori coarser process{∑

t≤T 1A(∆Xt)
}
A∈Am

where Am is the set defined by
{

(−∞,m], (m,∞), (k + j−1
m , k + j

m ], k =

−m, . . . ,m, j = 1, . . . ,m, (j, k) 6= (1, 0), (m,−1)
}

.

We shortly give an idea of the proof of the theorem (in [25] things are a bit more intricate as we
show in the same time two very similar results, varying the assumptions on the considered family of
measures). One introduces an intermediate problem Pm = (D,D, {P (ην̄m ,0,ν̄m), ν ∈M′ν̃}), where ν̄m is a
piecewise constant approximation of ν. Thanks to an Esscher type formula one can compute the density
of P (ην̄m ,0,ν̄m) w.r.t. P (ην ,0,ν), and thus control the L1-distance between P (ην̄m ,0,ν̄m) and P (ην ,0,ν): this
distance tends to zero, which yields ∆(P ′(ην ,0,ν),Pm) → 0 (thanks to one of the properties of the Le
Cam distance). Then, in order to conclude by triangular inequality, it remains to show that at fixed m
one has ∆(Pm,Q′Rm ) = 0. In order to do that, one shows, using again Esscher type arguments, that the
density of P (ην̄m ,0,ν̄m) w.r.t. P (ην̃ ,0,ν̃) exhibits a sufficient statistics that has law Qνm,R under P (ην̄m ,0,ν̄m)

(this kind of factorization argument is very common in the literature about Le Cam equivalence).

Ultimately we decided to leave unpublished the note [25]. Indeed we were maybe a bit green on the
subject by the time of this work, and several referees complained that the result was pointless from an
application perspective (...).

However this work has not been totally lost. First: Ester Mariucci has succeeded in recycling in her
further publications some of the computations and ideas in [25] (see in particular [49][51], and [26] that
I comment below).

Second: by reorganizing and extending the computation of the L1-distance in [25], we manage to show
a little result that has an interest per se about the L1-distance between the laws of additive processes with
time-homogeneous Lévy measure. This has been the subject of the paper [26]. By an additive process
with time-homogeneous Lévy measure, with characteristic triplet (f(·), σ2(·), ν), we mean a process X
with independent increments, r.c.l.l. paths, and characteristic function

E
[
eiuXt

]
= exp

(
iu

∫ t

0

f(r)dr − u2

2

∫ t

0

σ2(r)dr − t
∫
R

(1− eiuy + iuy1|y|≤1)ν(dy)
)

(note that here the Lévy measure ν is leaved time-homogeneous, therefore the terminology). We de-

note P
(f,σ2,ν)
T the law induced on (D,D) by such a process (the subscript stresses the time horizon

dependency). Our result is the following. We denote φ the density function of the standard normal law.

Theorem 4.3.3. Let ν1 and ν2 two Lévy measures such that ν1 is absolutely continuous with respect
to ν2 and satisfying: L1(ν1, ν2) <∞ Then, the following upper bounds hold, for any 0 < T <∞.

If σ2 > 0 then

L1
(
P

(f1,σ
2,ν1)

T , P
(f2,σ

2,ν2)
T

)
≤ 2 sinh

(
TL1(ν1, ν2)

)
+ 2

[
1− 2φ

(
− ξ

2

)]
.

If σ2 = 0 and f1 − f2 ≡ γν1 − γν2 , then

L1
(
P

(f1,0,ν1)
T , P

(f2,0,ν2)
T

)
≤ 2 sinh

(
TL1(ν1, ν2)

)
.

This result has to be compared with the one of Mémin and Shiryayev in [57]. Our assumptions (see
[26] for the very precise ones) are a bit more restrictive, but when applicable our bound is sharper. And
our proof is much simpler as, instead of relying on the general theory of (r.c.l.l.) semimartingales, it

only uses Girsanov and Esscher type changes of probability, in order to explicit the density of P
(f1,σ

2,ν1)
T

w.r.t. P
(f2,σ

2,ν2)
T , which allows to compute and bound the L1-distance of interest (we have used the tools

to be found in [66, 67]).
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Concluding remarks and
perspectives

Concerning asymmetric diffusions, and now that their existence and their link with PDE is established in
a one-dimensional and time-inhomogeneous context, one could ask what could be done about simulation
in this context. What comes immediately in mind is to use an adaptation of the method in [55]: indeed
we have identified in the proof of Theorem 1.4.5 the time-inhomogeneous transformation that removes
the local time in (1.1.1), and we know that the Euler scheme for a SDE with time-inhomogeneous
discontinuous coefficients converges ([81]). Another arising question is if we are able to simulate exactly
the ISBM, and maybe to take advantage of this to simulate exactly some simple time-inhomogeneous
SDELT. On a more theoretical level one could wonder if the theory generalized Dirichlet forms coud help
to study time-inhomogeneous SDELT with coefficients having even less smoothness (the publication [65]
presents some results in this direction; see some of our comments in [30]).

But in fact the most relevant challenge now is to handle the problem of simulation of asymmetric
diffusions in a multi-dimensional context. Indeed, for the time being, most of the works on asymmetric
diffusions (simulation with or without discretization error, theoretical existence issues, etc...) are done in
dimension one. This is partly because in order to manipulate SDELTs, they use tools that are particular

to dimension one (such as the Itô-Tanaka formula). But divergence form operators of type
ρ

2
∇(a∇)

still make sense in dimension d > 1, and still generate a Markov process (here a is some Rd×d-valued
discontinuous coefficient). But the stochastic dynamic of such a process is then difficult to describe.
Among the very few papers exploring this direction we can cite [12], where a(x) = a(x)I, with a(x) a
discontinuous coefficient with scalar values (I is the identity matrix). The case of a non-diagonal matrix
valued coefficient remains largely to explore. A possibility would be to use an Euler scheme, and to
correct its behavior when it crosses the interfaces where a is discontinuous. To that aim, we could look
at the analysis of the Euler scheme performed in [55] for d = 1, and read on this error analysis what
is the right correction to apply on the scheme to ensure its convergence. Miguel Martinez and I are
planning to investigate these questions.

After discussions with researchers from the PDE and SDE worlds, the idea of a companion project
has emerged in my mind: this would be to re-visit the fundamental paper [40] on the transmission PDE
problem. Indeed, as already mentioned, things are done in this paper with ρ ≡ 1. Bur for us, taking
ρ 6= 1 makes sense. We managed to treat the case d = 1, using change of variable tricks (Chapter 1).
But to treat the case d > 1 requires to do again the analysis performed in [40]. This is not clear that we
will recover in this general multi-dimensional setting all the results obtained in [40] for the case ρ ≡ 1.
Besides, the proofs of [40] deserve to be rewritten in more modern terms. I have noticed this paper is
often cited, but not totally understood. Of course this is a bit far from the world of Probabilities. But I
am in contact on this point with Faouzi Triki (LJK), a colleague of Gen Nakamura (cf [31]).
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of a Brownian motion with drift, Bernoulli 6 (2000), no. 4, 615–620. MR 1777686 (2002h:60171)
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