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Abstract

Theoriginal impulse for this thesis came as amotivation to improve the intuitiveness of human–computer
interfaces. In particular, machines should try to replicate human’s ability to process streams
of information continuously in real-time. Indeed, reading, listening to speeches or observing
a live scene are all natural activities we perform spontaneously and use extensively to interact
or communicate. However, the sub-domain of Machine Learning dedicated to recognition on
time series remains barred by numerous challenges: modelling patterns simultaneously over
time and within individual observations, dealing with high dimensional inputs from streams of
observations, conforming to real-time specifications, etc. Nevertheless, this research field has
progressed steadily over the last decades, with a recent renewal fuelled by advances on Neural
Network models.

To support our studies on this subject, gesture recognition was selected as the exemplar appli-
cation. This type of input presents several qualities in our eyes: firstly, gestures intermix static
body poses and movements in a complex manner to convey information; secondly, gesture data
is encoded under widely different modalities with low and high dimensional representations;
finally, the lack of expertise in this field — compared to handwriting or speech recognition —
emphasizes better the importance of automatically learning useful factors of variation, which
conditions cross-domain re-usability.

The first part of our work examines two state-of-the-art temporal models used in the context
of continuous sequence recognition, namely Hybrid Neural Network–Hidden Markov Models
(NN-HMM) and Bidirectional Recurrent Neural Networks (BDRNN) with gated units. Instead
of trying to improve their performances for a given task, this thesis puts more emphasis on
analyzing shortcomings, advantages, similarities or influential properties. To do so, we reim-
plement the two within a shared test-bed for continuous sequence recognition which is more
amenable to a fair comparative work. We propose adjustments to Neural Network training loss
functions and the Hybrid NN-HMM expressions to accommodate for highly imbalanced data
classes. Although most of recent contributions tend to prefer the Recurrent Neural Networks
on the basis of superior performances, we demonstrate that both models can in fact perform
competitively. However, our experiments also exhibit that Hybrid NN-HMM rely more on
their input transformation modules, in particular on the existence of a short-term temporal
pattern detector which we implement via Temporal Convolutions. Finally, we demonstrate
inter-compatibility between the representation learning stages of both solutions, indicating a
convergence of representations to encode factors of variations in the inputs.

Between humans, interactions and communications necessitate more that comprehension
alone, as we also learn and adapt quickly to novelties in our environment: new words, voices,
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symbols, etc. The pendant of this capability in Machine Learning is formalized under the one-
shot learning setting, which has been the subject of relatively few research works so far, in
particular for sequential inputs. To tackle this problem, we propose a model built around a
Bidirectional Recurrent Neural Network. Its effectiveness is demonstrated by testing the dis-
criminative performances on isolated gestures recordings from a sign language lexicon. We
propose several improvements over this baseline by drawing inspiration from related works and
evaluate their performances, exhibiting different advantages and disadvantages for each.
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Résumé

Cette thèse a pour but de contribuer à améliorer les interfaces Homme-machine. En particulier,
nos appareils devraient répliquer notre capacité à traiter continûment des flux d’informations.
En effet, nous lisons, écoutons et observons des scènes spontanément pour interagir ou com-
muniquer. Cependant, le domaine de l’apprentissage statistique dédié à la reconnaissance de
séries temporelles pose certains défis : la détection de phénomènes définis simultanément dans
le temps ou dans l’instant, le traitement de flux de données de grandes dimensions, l’inférence
en temps réel, etc. Néanmoins, la recherche dans ce domaine a progressé continuellement au
cours des dernières décennies, avec un nouveau souffle apporté par les récents progrès avec les
réseaux de neurones.

Pour appuyer notre étude de ce sujet, nous avons sélectionné la reconnaissance de gestes
comme exemple applicatif. Ce type de données présente de multiples avantages à nos yeux :
premièrement, la signification des gestes repose sur un mélange complexe de poses corporelles
et de mouvements, deuxièmement, les gestes sont encodés sous des formes très variées avec
des représentations en faible ou grande dimension ; enfin, la faible expertise présente dans ce
domaine —comparé à l’écriture ou la parole— permet de mieux mettre en valeur l’importance de
l’apprentissage automatique de représentations, qui conditionne la facilité à réutiliser un modèle
sur des domaines différents.

La première partie de notre travail examine deuxmodèles temporels de l’état de l’art pour la re-
connaissance continue sur des séquences, plus précisément l’hybride réseau de neurones–modèle
de Markov caché (NN-HMM) et les réseaux de neurones récurrents bidirectionnels (BD-RNN)
avec des unités commandées par des portes. Plutôt que de consacrer notre étude à l’optimisation
des performances, cette thèse se focalise sur l’analyse des propriétés majeures caractérisant ces
deux modèles. Pour ce faire, nous avons implémenté un environnement de test partagé qui est
plus favorable à une étude comparative équitable. Nous proposons des ajustements sur les fonc-
tions de coût utilisées pour entraîner les réseaux de neurones et sur les expressions du modèle
hybride afin de gérer un large déséquilibre des classes de notre base d’apprentissage. Bien que les
publications récentes semblent privilégier l’architecture BD-RNN, nous démontrons qu’il est
possible d’obtenir des performances comparables avec l’autre approche. Néanmoins, nos expér-
iences montrent aussi que le succès de l’hybride NN-HMM est conditionné sur la modélisation
des entrées dans les premières couches du modèle. Celles-ci doivent en particulier modéliser les
phénomènes temporels à court terme que nous détectons à l’aide de convolutions temporelles.
Nous montrons aussi que ces représentations sont largement inter-compatibles entre les deux
modèles, ce qui démontre une convergence dans la manière d’encoder les facteurs de variations
des entrées.
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La compréhension ne représente qu’un seul aspect des échanges et interactions entre hu-

mains. Nous utilisons aussi largement notre faculté à apprendre et à s’adapter rapidement à

des nouveautés de notre environnement : de nouveaux mots ou symboles, de nouvelles voix,

etc. L’équivalent de cette faculté en apprentissage statistique est formalisé par le paradigme

de l’apprentissage dit « en un coup », qui a reçu une attention relativement faible de la part de

la communauté scientifique, en particulier pour le traitement de données sous forme de séries

temporelles. Pour aborder ce problème, nous proposons une architecture de modèle construite

autour d’un réseau de neurones bidirectionnel. Son efficacité est démontrée par des tests de

classification sur des gestes isolés issus d’un dictionnaire de langage des signes. À partir de ce

modèle de référence, nous proposons de multiples améliorations inspirées par des travaux dans

des domaines connexes, et nous étudions les avantages ou inconvénients de chacun.
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Chapter 1

Introduction

Over the last 50 years, the volume of interaction between humans, computers and the rest of the

world has expanded immensely. Long gone is the time of physical terminals where a two-ways

textual communicationwith instructions and feedback gave access towhat could be summarized

as a general purpose automaton. With diverse sensors, actuators, and increased computation

power, computers have found uncountable applications inmost domains of human activity. One

fascinating branch of this expansion is Machine Learning, whose purpose is to equip computers

with somewhat generic models capable to learn and generalize from observations like humans

do.

Some compelling applications are now available for daily use by the laypeople: speech recog-

nition for dictation or virtual assistants, handwriting recognition, etc. Furthermore, expert tasks

have also integratedmachine learning in awide diversity of domains, for example: medicinewith

radiography or microscopic image segmentation [Ronneberger et al., 2015], mechanical failure

detection with non-invasive railway damage probing [Lee et al., 2016], image de-noising [Lehti-

nen et al., 2018], and biometric identification [Taigman et al., 2014].

This thesis focuses on sequential data, in practice a stream or a time series of observations

annotated by one or several labels possibly in a sequence as well. There are countless sources of

sequential data in our daily activities on which Machine Learning could prove useful: speech,

online handwriting, gestures, video recordings of objects, physical quantity measurements, etc.

To set a more concrete objective to this thesis, gesture recognition from videos and body poses

has been selected as an application example to illustrate and support the studies. The general

motivation was to select a task that encompasses multiple modalities of various natures, low and

high dimensional, and has a concrete application, in this case a human-computer interface.

The prediction of sequences can take different forms: in the isolated recognition task, a se-

quence of temporal observations containing a simple instance of a class is submitted for recog-

nition, whereas in the continuous recognition task, the model can be charged to identify the

successive instances of different gestures from a stream of input observations with possibly non-

gesture segments in between the gesture instances. As an additional requirement, one may seek

to obtain the temporal alignment of the instances (positioning beginning and end of gestures).
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1.1 Overview of Gesture Recognition

Another realistic setting is the one-shot or few-shot learning paradigm where only one or a few

training instances are available for each class. Such a model could potentially learn new classes

very quickly. Finally, one can foresee some use for the online learning and incremental learning

paradigms for user or task adaptation. To illustrate these settings in a real world environment,

one can imagine an industrial robot tasked to execute operations triggered by specific gestures

interpreted as instructions. The one-shot learning and incremental learning aspects would help

to program the robot for new instructions while the online learning could provide some level

of adaptation with the human operator.

1.1 Overview of Gesture Recognition

1.1.1 Motivations

From the universally known gestures such as pointing or waving to the standardized military

signs, gestures offers a flexible, practical and almost universal communication support which is

encountered daily in our lives. Consequently, it is easy to imagine applications of a recognition

system for human-computer interfaces in the line of existing solutions for speech and handwrit-

ing. The literature on the topic notably mentions video games [Ibañez et al., 2014], contact-less

computer control in medical environment [Jacob and Wachs, 2014] and industrial robot con-

trol [Duan et al., 2017] as examples.

From a technical standpoint, recognizing gestures is a fascinating challenge. Indeed, the

level of analysis and understanding of gestures is less extensive than in other fields with similar

objectives such as handwriting or speech recognition, which explains the need for significant

research effort on themodelling task. Moreover, appearance, shape andmovement all play a role

so that the information about gestures must integrate data sources of widely different structures

such as colour video frames, depth maps, body pose...

Continuous Gesture Recognition is generally described as the spotting and recognition of

segments carrying a specific meaning within a recorded stream of observations. These segments

may contain static poses or dynamic movements of the body, arms, hands, and facial expression

from a person who is trying to convey a message. Active communication through gestures

naturally implies a certain level of cooperation from the subject: centred position in front of the

camera with few or no occlusions, stable recording conditions to some extent without dramatic

lighting changes or varying background for example. This is to be distinguished from activity

recognition which tries to analyse a scene from a passive recording where the subject(s) need

not take into account the presence of a camera or sensors. Typical activities include running,

playing basketball, dancing, cooking, eating, observed by a sort of surveillance camera with

a large depth of field. While closely related to gesture recognition, activity recognition often

proceeds with different time scales, recording environments and needs to bear with additional

difficulties resulting from the passive observation of subjects.
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For recognition, the annotations of a dataset should at least contain the list of gestures iden-

tified in each recording (or the class for the single instance in isolated recognition). Optionally,

annotations may include temporal alignment providing the timestamps bounding each instance

of gesture. Those frontier annotations obviously suffer from a certain level uncertainty intro-

duced by transitioning movements that do not clearly belong to any class.

1.2 Continuous Recognition of Sequences

From a general perspective, continuous recognition of sequences belongs to the ensemble of

classification problems. Formally, the objective is to predict a target y given an observation x.

The sequential aspect means that x comes as a sequence of observations x = (xt)1≤t≤� where �
designates the length of that particular sequence. All observations xt contain the same type of

data, usually one vector for each source of data or modality. For a large majority of practical

cases, the observations are sampled uniformly along a dimension in space or time. As for the

labels, three distinct cases arise in practice; first, the simpler isolated recognition task where

each sequence bears a single class value y, for example a gesture label. In a more general case,

a sequence contain � < � class instances (yk)1≤k≤� to detect, for example a spoken word in

audio recordings. This formulation is themost commonly studied one in speech andhandwriting

recognition, as it exonerate the annotators from providing a mapping between observations

and targets; the existence of such a mapping is rarely obvious anyway since target instances

may overlap or have uncertain frontiers. Moreover, temporal annotations require an unrealistic

amount of annotation work for any reasonably large speech or handwriting datasets. Finally, the

continuous recognition taskwe explore in this thesis corresponds to situationswhere observation

time-steps y = (yt)1≤t≤� map one-to-one with a target label, therefore providing the temporal

placement of instances to be detected. To avoid confusion: no hypothesis claims that yt is fully

determined by the observation at the same time-step xt, in fact we will analyse the importance of

temporal context in details through our experiments.

Besides the inherent challenges posed by classification, this class of problems is subject to

additional difficulties. In absence of information about the temporal support related to a given

target yt (the set of observations which explain this particular outcome), one might need to pro-

cess a very large section of the input if not the whole sequence to generate a valid prediction.

Even under the hypothesis that only nearby time-steps relate to an output, the extent of the sup-

port for one class instance might vary from one sample to another and thus requires a model

which can deal with inputs of variable size. The two-dimensional pendant of this issue is the

recognition of objects at multiple scales in images. A second challenge stems from the dimen-

sion of the inputs, since their size essentially grows linearly with the number of time-steps per

sequence. Contrary to image datasets where the sample size is determined by the recording de-

vice resolution, temporal sequences can have widely varying sizes depending on the durations.

To put the dimension issue into perspective: 12 seconds of speech coded as a 26 feature vector

every 5ms have the same dimension as an image of 256 × 256 pixels.
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Depending on the desired application, a real-time inference constraint might be added, but

more realistically the requirement will be relaxed to a constant delay, meaning the model can

wait for a certain number of observations past a time-step t before returning a prediction for yt.

Given the objectives and challenges stated above, a range of models have been conceived for

various applications such as speech, handwriting or gesture recognition. It is generally safe to

assume thesemodels can be cast under the following pipeline (with different levels of integration

between the modules):

Input data aquisition: This part provides a raw stream of observations over time (eg. videos

frames, sound amplitude, etc.)

Feature extraction: This stage often comprises a set of basic pre-processing steps (standard-

ization, differentiation over time) or more elaborate field-specific transformations (mel-

spectrum or fourier transformations for speech, HOG features for RGB images, pose

regression on depth maps, tracking, etc.).

With the advances of deep learning, a parametric model (often a Neural Network) can

also provide suitable embeddings of the inputs for the upcoming recognition layers of the

model. While such embedding functions are generally not fully interpretable, they are

selected for their ability to provide semantically aware representations. The embedding

should remain invariant to variations of the input data which are not relevant for the

recognition task and should structure the representations so as to reflect principles of

compositionality, semantic proximity, etc. For example: it is desirable that a characteristic

hand shape from a gesture consistently binds to a given embedding vector regardless of

the position of the subject in the image and independently of left or right handedness.

Temporal modeling: This part of the model is in charge of capturing any temporal pattern or

temporal structure that may exist in the input. While this thesis will mainly focus on Hid-

denMarkovModels [Baum and Petrie, 1966] andRecurrentNeuralNetworks, many other

temporal models exist in the literature: Dynamic time warping [Vintsyuk, 1972], Con-

ditional Random Fields [Sutton, 2012], Maximum Entropy Markov Models [McCallum

et al., 2000] etc.

It should be noted that this stage can be made optional by the means of a prior segmen-

tation step which identifies distinct monolithic parts of a sequence. Subsequent classifi-

cation steps on these segments do not necessarily involve an explicit temporal model but

may simply rely on aggregated statistics, for example Bag of Words representations [Wang

et al., 2013].

Classifier: The separation between the temporal model and the classifier is not necessarily

explicit, but a final module should eventually produce the decision about the classes and

the temporal alignment of detected segments in the sequence if required. A vast number of

models are available for this module but the choice is mainly conditioned by the structure

of the temporal model and the desired type of outputs (isolated or continuous predictions,

localized segments or simple event enumeration, etc.).
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Focusing on building a relatively fast and light version of this pipeline, some works for iso-

lated recognition have suggested using dynamic time warping (DTW) directly over hand-crafted

features and run the comparison against reference prototypes [Li and Greenspan, 2011], there-

fore turning the classification into a re-identification task.

To relax the constraint of managing varying sequence durations in the model, several works

have contributed to solutions producing representations of fixed size from a sequence by sam-

pling a fixed number of key frames [Wanqing Li et al., 2008; Tripathi and Nandi, 2015], an ap-

proach that can incidentally provide invariance to execution speed and help control the dimen-

sion of the input for the classifier. Another straightforward solution to leverage classifiers for

fixed data size is to simply use a sliding window over the input sequence, which, assuming the

input window is sufficient to produce a confident decision, can effectively delegate the detection

of temporal patterns to the classification module. A noteworthy illustration of this approach for

continuous detection of gestures is given by [Neverova et al., 2014], where windows at multiple

time-scales are used to quickly increase the context size and add some invariance to execution

speed with a moderate computation cost.

Two temporal models are frequently used in state-of-the-art recognition models, Hidden

Markov Models (HMM) and Recurrent Neural Networks. Among other similarities, both adopt

an infinite recurrent process to model the evolution over time. Nevertheless, we also view these

models as characteristic from two different schools of thoughts to solve the same underlying

objective.

From a general perspective, HMMs build upon a probabilistic and generative approach fo-

cused on the observation data: judicious assumptions are made about the process that governs

the environment and lead to these observations. These hypotheses also serve as simplifications

which lead to more amenable inference computations within the probabilistic graphical model

family. From an adequately designed model, a lot of insight is gained on this underlying process

that can in turn help to solve a desired task, in our case continuous gesture recognition. HMMs

are based on a combination of an observation model with a transitions model jointly optimized

according to the maximum likelihood criterion [Baum and Petrie, 1966; Rabiner, 1989]. They

provide a fairly interpretable and flexible class of models giving access to their internals for anal-

ysis and tuning guided by expertise acquired in the field. Training and inference can be done ef-

ficiently and robustly using dynamic programming. To leverage more complicated observation

models, [Bourlard and Morgan, 1990] suggest some alterations to the HMM in order to trade

the observation probability with a discriminative model, in practice a Neural Network. While

the so-called Hybrid Neural Network Hidden Markov Model (NN-HMM) looses its generative

capabilities in the process, the discriminative model is discharged from selecting hypotheses and

learning the structure of observations. Those requirements can introduce additional learning

effort and limitations that are only necessary to generate sample observations, but not directly

relevant to the recognition task.

RNN and more generally Neural Networks proceed with a radically different approach,

largely focused on the target task where modelling focuses more on representing data than
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explaining it. Neural Network training revolves around the objective function that models the

task in mathematical terms. The objective helps to learn the underlying model of the data as part

of its optimization process and successfully does so on a large variety of tasks and data types.

Based on the success of Hybrid NN-HMMs, one may wonder why the Recurrent Neural Net-

works, which are similar in their structure were not so successful until the last decade. In their

vanilla implementation, the recurrent formulation unfortunately causes a rapid attenuation of

signal coming from past observations and from the back-propagated error gradient [Hochre-

iter, 1998; Pascanu et al., 2013]. To circumvent the issue, [Hochreiter and Schmidhuber, 1997]

proposed to replace the standard recurrent neurons with LSTM cells which are gated neurons

that can dynamically reduce the apparent depth of the network with respect to time. With addi-

tional refinements [Gers et al., 2000; Gers and Schmidhuber, 2001], more appropriate objective

functions [Graves et al., 2006, 2013] and increased computation power to train on large datasets,

this class of model has eventually reached state-of-the-art performances and seen its popular-

ity peak in a wide variety of sequence related problems: speech recognition [Graves and Jaitly,

2014], activity recognition [Donahue et al., 2014], video or image captioning [Xu et al., 2015],

translation [Sutskever et al., 2014], etc.

1.3 One-Shot Learning of Gestures

Despite the name, one-shot learning principally formalizes the inference and testing conditions

of a recognition model, within which a learning step occupies a predominant aspect. Indeed,

this framework stipulates that, given a few samples from classes never seen before, a single

instance in the most extreme one-shot case, a model should succeed in learning these classes

and recognizing other instances.

How to learn from a few samples admittedly represents the central challenge of this problem.

Indeed, traditionalmethods designed for large datasets representative of all observable variations

of classes obviously fail in this setting, and new model and training techniques are needed to

learn the most out of few training shots. Growing efforts contribute to bring the benefits of

Neural Networks’ robustness and adaptability to a setting with very little information to train-

on. Nevertheless, a lot of attention is also invested into preparing the model prior to the one-

shot learning session, which is why we view one-shot first as a testing paradigm rather than a

learning one.

One-shot learning is relevant to gestures in terms of application and usage: one may wish to

program home assistants or robots to react after specific gesture based instructions are given,

in the same way we already do with voice based activation. Obviously, end-users won’t partici-

pate in long and rigorous enrolment campaigns to provide numerous samples of their gesture

based order, hence the need for one-shot capability. This thesis focuses on the isolated gesture

recognition task, where a few labelled gestures instances is given as isolated data sequences, each

from a class never observed before, and the model must correctly classify these gestures in an

additional set of test sequences.
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Compared to a recognition task in the regular paradigm, one-shot learning remains a barely

investigated research field as of today. For example, we only found one publication studying

Neural Networks with sequential data [Pei et al., 2016]. This is partly due to the difficulty of the

task which requires a radically different approach to modelling and learning. However, recent

publications [Santoro et al., 2016; Vinyals et al., 2016a] have laid out more precise specifications

of the testing methodology, which help clarify the goals to achieve. The field is therefore quickly

gaining momentum. Existing learning methods have been extended to accommodate one-shot

conditions and new approaches have been developed: transfer learning, multi-task learning,

meta-learning [Schmidhuber, 1987], etc.

1.4 Contributions

At the core of this thesis lies the idea to learn and detect sequentially structured patterns, more

precisely temporal ones.

The first part of this thesis gathers work on continuous recognition of sequences, a research

framework with a long history that has reached end-users in their daily life with speech recog-

nition for example. Research on the subject is still very strong and active, pursuing numerous

objectives including the expansion to new application fields or data types and the improvement

of performances. Rather than focusing on optimization aspects, this work puts more emphasis

on the analysis of two state-of-the-art temporal models, namely the Hybrid NN-HMM and Re-

current Neural Networks. With their spectacular progress and state-of-the-art performances,

the latter have supplanted the former as a de-facto standard for continuous recognition. Yet both

models share interesting similarities, a Neural Network based representation learning stage at

the input to begin with. They also rely on state based hidden representations internally with dis-

crete states and real vectors for the HMM and RNN respectively, and their inference algorithm

both involve a recursion of linear transformations followed by a non-linearities. This work aims

to inspect more finely the differences and similarities between Hybrid NN-HMM and RNN

models using practical and realistic experiments able to demonstrate their advantges and weak-

nesses in practice. Gesture data shines for this purpose as it provides a variety of modalities and

data representations with different levels of complexity.

Our contributions begin with the creation of a testing framework with a modular design that

ensures a fair comparison between the twomodelswhile ensuring optimal training and inference

conditions for both models. We run tests on a gesture dataset from a former competition with

rigorous evaluation methods and compare our work to previous publications. Our design is

validated by demonstrating state-of-the-art performances for both models, on body-pose data,

video data and a combination thereof.

Following this essential step, we develop a series of studies that analyse and detail influential

aspects of the models and training procedures that impact recognition performances. In partic-

ular, we propose alterations to the training procedures of both models to take into account and

alleviate issues related to imbalanced representation of classes in the dataset.
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Inversely, we perform a detailed post-training analysis of errors and parameter values for

each model in order to reveal and explain important properties. Our experiments show that

RNNmodelsmanage to achieve a good frame-wise accuracywhilemissing the concept of gesture

duration nonetheless, which leads to noisy predictions and suboptimal performances on short

gestures.

Although the literature often report HybridNN-HMMwith inferior results compared to end-

to-end RNN models, we show that most of this difference can be bridged by adding sufficient

temporal context into the posterior state model. A comparative study is performed to ascertain

the role of this context. We observe that RNNs rely very little on that context and feature

a great robustness to the variation of input type and quality overall. We further verify this

robustness through a series of Transfer Learning experiments that challenge the model with

input representations that were not designed for the given model, but are known to contain

relevant gesture information. These experiments also reveal that both models learn largely

compatible representations of the input data within their respective representation learning

stage.

The second part of this thesis concentrates on a different gesture recognition task: one-shot

and few-shots learning of isolated gestures. Little work exists on one-shot sequence recognition

in general. Our work contributes to this field by proposing a model based on Recurrent Neural

Networks, which improves an existing proposition by [Pei et al., 2016] using a more modern

and refined architecture. Using this model as a baseline, we propose several improvements by

changing the inference method and training objectives. We also report experiments conducted

with the Matching Network model [Vinyals et al., 2016b] on our gesture data. This model adopts

themeta-learning principle in its design, a very promising area of research for one-shot learning.
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Chapter 2

State of the Art

This chapter will introduce the state-of-the-art models for continuous sequence recognition,

with a bias toward our select support application: Gesture Recognition. We first introduce

the Hybrid Neural Network - Hidden Markov Model and explain how it can be trained and

used for continuous sequence recognition. The same presentation is then provided for the

Recurrent Neural Network. Finally, a section is dedicated to an ensemble of recent Neural

Network techniques which participate substantially to the performances of our models.

Table 2.1 defines the notations used through this thesis, more specific notations will be intro-

duced when needed to facilitate comprehension.

�, � (bold) multidimensional data
s (small + thin) sets, scalarsS, K, � (straight) sets/constants/parameters

t, � (italic) variables/random variables� (calligraphic) sample spaces, ensembles

x ∼ � x sampled from random variable �
p(� = x ∣ � = y; �) conditional probability of � given � for a model parametrized by �

p(x ∣ y; �) implicit abbreviated version of the above.��[f(�)] expectation� ⟂ � � independent of �[�
1
, �

2
] concatenation operator⊕, ⊙ element-wise sum, product

Table 2.1 – Notations

2.1 Hybrid Neural Network - Hidden Markov Model

In this section, we introduce the HybridNeural Network—HiddenMarkovModel (NN-HMM).

This model is nowadays an industry standard solution for sequence recognition, for example in

speech where it comes as a ready-to-use speech recognition module in several software libraries
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such as CMUSphinx [Lamere et al., 2003] or HTK [Young and Young, 1994]. We will first in-

troduce the standard HMM model, then introduce the common design choices for sequence

prediction and finally detail the modifications needed to convert it to its hybrid formulation.

2.1.1 Hidden Markov Models: Definition

Hidden Markov Models define a family of Probabilistic Graphical Models for sequences of ob-

servations � = (�t)t∈[1..�] with � the length of the sequence. The hidden aspect is brought in by

adding series of latent state variables matching the observations at each time step � = (st)t∈[1..�].

The HMM model is built on the assumption that the hidden states at each time-step govern

the associated observations. In probabilistic words, this is enforced by setting a conditional

independence of the observations given the latent variables: ∀(t, t′), t , t′, �t ⟂ �t′ ∣ st. The

HMM also simplifies the temporal model by enforcing a Markov transition assumption on the

states: ∀t, st ⟂ (s
1
, .., st−2

) ∣ st−1
. The joint probability distribution therefore factorizes over

the shared transition and observation models as:

p(�, �) = p(s
1
)p(�

1
∣ s

1
) �∏
t=2

p(st ∣ st−1
)p(�t ∣ st) (2.1)

For the sake of clarity, we introduce a dummy state variable s
0
so that the initial state prior

p(s
1
) can be merged into the product:

p(�, �) = �∏
t=1

p(st ∣ st−1
)p(�t ∣ st) (2.2)

The states variables take discrete values in [1 .. K] with K to be defined for the task. It is

common to picture those values as K nodes in a graph and imagine that transitions from one

state to another correspond to hops from a corresponding node to another. That transition

model p(st ∣ st−1
) is governed by a categorical discrete distribution st ∼ �at(�st−1

) where �i,j is

the probability of the transition from i to j.

To model the observations, many distributions are available; a popular starting point for

continuousmultidimensional observations such as speech features is often theGaussianMixture

Model. Without loosing generality regarding the type of observation model, its parameters

will be denoted by � for the remaining of this section, leading to the expression of the full joint

distribution:

p(�, �; �, �) = �∏
t=1

p(st ∣ st−1
; �)p(�t ∣ st; �) (2.3)

For the sake of clarity, however, the parameters will be omitted in the following of this thesis

unless explicitly required.
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2.1.2 Hidden Markov Models: Inference and training

Observation likelihood

To calculate the likelihood of a sequence of observations p(�
1
, .., ��), one needs to eliminate

the latent variables from the expression of the joint distribution:

p(�
1
, .., ��) = ∑

(s
1
,..,s

�
)∈[1..K]�

p(�
1
, .., ��, s

1
, .., s�) (2.4)

The combinations in the sum above grow exponentially with the length of the sequence

rendering the direct naive summation impossible. Instead, a dynamic programming approach

breaks the summation in a recurrent way using the forward variable:

�t(i) def= p(�
1
, .., �t, st = i) (2.5)

which is the probability to reach the state i at time t after generating the first t observations. This

variable can take an efficient recursive formulation using the independence assumptions of the

HMM:

�t+1
(j) = p(�

1
, .., �t, �t+1

, st+1
= j) (2.6)

= p(�t+1
∣ st+1

= j)p(�
1
, .., �t, st+1

= j) (2.7)

= p(�t+1
∣ st+1

= j) K∑
i=1

p(�
1
, .., �t, st = i, st+1

= j) (2.8)

= p(�t+1
∣ st+1

= j) K∑
i=1

p(st+1
= j ∣ st = i)p(�

1
, .., �t, st = i) (2.9)

�t+1
(j) = p(�t+1

∣ st+1
= j) K∑

i=1

p(st+1
= j ∣ st = i)�t(i) (2.10)

(2.11)

with the initial values �
1
(j) = p(�

1
, s

1
= j) = p(s

1
= j)p(�

1
|s
1

= j) or �
0
(j) = 1 if a fictional

initial state is used. Using this recursion up to t = � takes only �(K2� ) operations and gives

access to the observation likelihood:

p(�
1
, .., ��) = K∑

i=1

��(i) (2.12)

Maximum-likelihood state assignment: Viterbi algorithm

The Viterbi algorithm is a variation of the previous algorithm for the estimation of the most

probable state sequence given a series of observations:

�∗ = arg max
�∈[1..K]�

p(�, �) (2.13)
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This is once again resolved through dynamic programming. Let �t(j) be the probability of the

most probable path ending in state j at time t; we note �t(j) the succession of states in that path,

then:

�t(j) def= max
�
1..t−1

∈[1..K]t−1

p(�
1..t−1

, st = j, �
1..t) (2.14)

def= p(�
1..t = �t(j), �

1..t) (2.15)

= max
k∈[1..K]

p(st = j ∣ st−1
= k)p(xt ∣ st = j)

× max
�
1..t−2

∈[1..K]t−2

p(�
1..t−2

, st−1
= k, �

1..t−1
)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

�t−1
(k)

(2.16)

The complete algorithm for the Viterbi maximum likelihood path computation is detailed in

Algorithm 2.1.

1: �
0
(j) = 1, j ∈ [1 .. K]

2: �
0
(j) = []

3: for t = 1 to � do

4: k = arg max k′∈[1..K] �t−1
(k′)p(st = j ∣ st−1

= k′)
5: �t(j) = [�t−1

(k), j]
6: �t(j) = �t−1

(k)p(st = j ∣ st−1
= k)p(xt ∣ st = j)

7: end for

8: return ��(arg max k′∈[1..K] ��(k′)) ▷ backtracking

Algorithm 2.1 – Viterbi algorithm

Maximum Likelihood parameters optimization

Since latent variables are present in the model, the maximum likelihood optimization of �
and �, the parameters of the observation and transition models, is usually achieved using the

Expectation Maximization (EM) scheme, also called Baum-Welch algorithm in that context. The

computation in the maximization step also involves dynamic programming methods, this time

with an additional backward pass which won’t be detailed here (please refer to [Bishop, 2006]

for additional details).

2.1.3 Hybrid Formulation

In this section, we detail how to use Neural Networks to estimate the observation probabilities

of theHMM p(�; �). The so-called hybrid implementation of this ideawas brought by [Bourlard

and Morgan, 1990; Morgan and Bourlard, 1995] and uses the Bayes rule on the observation

likelihood p(�t|st) in 2.3 to bring up a predictive state posterior term in the formula:

p(�, �) = �∏
t=1

p(st ∣ st−1
)p(st ∣ �t)p(�t)

p(st) (2.17)
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The Bayes rule gives rise to three terms: a categorical distribution of the state priors p(st), a
prior on the observations p(�t) which are assumed to be independent identically distributed,

and a predictive posterior model of the state probabilities given the observations p(st|�t). In

practice, the latter is taken as aNeural Network state classifier with a softmax output interpreted

as probabilities.

This modification does not alter the inference algorithms apart from the expansion of the

likelihood model into several terms. However, the training procedure now requires to assign

values to the states in order to fit the Neural Network parameters and the state priors. Since the

states are unobserved variables, it is common to employ yet again an Expectation Maximization,

leading to the training procedure described in Algorithm 2.2.

Algorithm2.2 –Training procedure forHybridNeural Network-HiddenMarkovMod-
els.

1: assign arbitrary1 state targets ỹ
2: while ̃y not converged do

3: for n epochs do

4: fit state posterior neural network p(st = ỹt ∣ �t; �)
5: end for

6: evaluate state priors p(st = ỹt; �)
7: fit transition model p(st+1

∣ st; �)
8: realign ỹ to maximize obs. likelihood for updated model (Viterbi)
9: end while

Two aspects of this algorithm require a special attention:

• Step 4 is a complete Neural Network training procedure by itself with multiple epochs,

learning rate schedules, etc.

• The state targets ̃y are solely used to fit the Neural Network. They are not tied to any

annotations and solely constrained by the maximum likelihood criterion; as such, the

whole training procedure remains unsupervised. In the next section, amendments to this

procedure are added to integrate partial supervision.

With the generic elements of the Hybrid NN-HMM introduced along with the training algo-

rithm, the final requirement to produce a working recognition system is to elaborate a proper

interpretation of the model for the recognition task.

2.1.4 Specialization for Subsequence Detection

Up to this point, the predictive capacity of the HybridNN-HMMmodel has not beenmentioned

nor have the target annotations been utilized; the training algorithm presented previously only

maximizes the likelihood of the observations. Since this work is mostly interested in continuous

1A better initialization will reduce the number of training iterations needed. A fairly robust heuristic will be
presented later on for the semi-supervised version of this algorithm.
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recognition, the objective considered here is to find the boundaries and the label for events

within a sequence of observations, or equivalently to classify each observation at each time step

in conformance with the annotations, for example: the event might be a word uttered over a few

time-steps within a longer recording of a speech; the moment and signification of this word is

given during training and must be inferred for prediction.

The approach which is largely used in the literature requires no modification to the HMM

model and simply relies on the values of the states to perform the predictions. More precisely

each state value is dispatched into one of the classes to be predicted so that given the most likely

path through the states for a series of observations, the mapped sequence of labels is also directly

available.

The number of states must be at least equal to the number of classes but it is often greater in

practice, resulting in multiple states for each class. This apparent redundancy is mostly needed

for composite classes built from several elementary units which can be handled by different

states. For example the gesture “hello” contains a raising arm motion, an open hand pose and

a lowering arm motion which are all very distinct elementary parts of the same class. While

the state posterior model could potentially capture all these sub-units into one state, having

several distinct ones facilitate learning and lets the transition model learn the interactions that

may exist between these states, such as an ordering or a repetition. Besides, expert knowledge

and assumptions can be injected more easily into the transition model for simple interpretable

concepts: for example one gesture may not transition to another half-way through its execution,

thereforemany transition probabilities can be zeroed out and excluded from the training process.

Figure 2.1 details the typical state structures and assumptions adopted for a speech or gesture

recognition transition model [Rabiner and Juang, 1986; Rabiner, 1989].

Now that the model can perform classification, the training procedure needs to be altered so

as to maximize the likelihood of the observations subject to predicting the annotated label sequence.

Algorithm 2.3 shows the updated training procedure for the Hybrid NN-HMM, modified for

supervised learning.

In effect, the states from each class are still realigned but only within the boundaries of each

instance of a class as illustrated on Figure 2.2.
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1: let (zt)t∈[1..� ] be the sequence of labels
2: let m ∶ ỹ → ̃z be the state-label mapping function
3: uniformly spread state targets ỹ within annotations ∀1 ≤ t ≤ � ,m(ỹt) = zt (refer to

Figure 2.2)
4: while ̃y not converged do

5: for n epochs do

6: fit state posterior neural network p(st = ỹt ∣ �t; �)
7: end for

8: evaluate state priors p(st = ỹt; �)
9: fit transition model p(st+1

∣ st; �) subj. to chosen hypotheses
10: realign ̃y to maximize likelihood subj. to ∀1 ≤ t ≤ � ,m(ỹt) = zt
11: end while

Algorithm 2.3 – Training algorithm for Hybrid Neural Network-Hidden Markov Mod-
els.

2.2 Recurrent Neural Networks

2.2.1 Recurrent Neural Networks: Definition

Recurrent Neural Networks (RNN) are a reformulation of the basic feed-forward Neural Net-

works which can handle a variable-length sequence of inputs observations (�t)t∈[1..� ]:

�t = f(�⊺[�t−1
, �t]) (2.18)

where (�t)t∈[1..� ] are the hidden state vectors, � are the parameters and f is a non linearity

function such as tanh or the sigmoid function. Thanks to the recursive expression, the model

itself is invariant through time translation but past inputs are still taken into account via the

hidden states. At any given time-step t, recent inputs (�t−1
, �t−2

, … ) affect the value of the

hidden state the most in practice, so the hidden states tend to behave as temporally conditioned

embeddings of the recent or current inputs. Similarly to a regular feed-forward Neural Network

layer, the output of the recurrent layer is composed of the hidden state vectors, a sequence in

this case: (�t)t∈[1..� ].

Sometimes, only the final hidden state �� is used because its value is conditioned on all

observations and might therefore summarize the information from the whole sequence. This is

mostly relevant for non-continuous recognition where the sequence as a whole carries one label.

A major advantage of this method is that it maps a variable length input to a fixed size vector

which can be more easily fed into a subsequent classifier. However this technique introduces

imbalance between the treatment of the first observations, which traverse many layers through

time, and the final observations. By contrast, a simple averaging of all hidden vectors gives all

time-steps a comparable importance, yet some of the first hidden vectors (�
0
, �

1
, … ) might be

irrelevant due to the lack of information at this level of progression in the sequence.

In the most general case, all hidden vectors are tied to either subsequent layers, for example
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One can compose multiple layers of Bidirectional Neural Networks by stacking them verti-

cally over a sequence in order to increase the representational power of the model, in the same

fashion as Multilayer Perceptron or Convolutional Neural Networks.

For very long sequences, it can be inconvenient to process a full sequence at once due to mem-

ory limitations and large padding overhead if multiple sequences of varying length are batched

together (the longest sequence imposes the number of time-steps). Moreover, one may not want

to wait for the end of the observation sequence to start reading predictions. Finally, the benefits

of the temporal context around any given time-step t are normally limited to a neighbourhood(t− �
1
, .., t+ �

2
) which can be small in comparison of the sequence duration: �

1
+ �

2
≪ T.

For example, in a full sentence of speech, observations from distant unrelated words most likely

cannot help determine the label for the current word. As a result, the Bidirectional Recur-

rent Neural Network usually processes a sequence in overlapping chunks of fixed duration:(�
1
, .., �c), (�c−o, .., �

2c−o), (�
2c−2o, .., �

2c−3o), … where c designates the chunk size and o the

overlap. The chunk size c is selected so as to include more context than is presumable necessary.

The edges of the outputs sequence are discarded to avoid returning predictions lacking from a

sufficient amount of context, while the overlap makes sure that all time-steps of the sequence

are eventually mapped to an output in one of the chunks.

Chunking solves all the aforementioned issues by compromising on the size of the temporal

context; it caps the memory requirements to a known constant, and lets the model return its out-

put within a constant delay since observations beyond the chunk will not influence its output.

If the computation speed of the whole model remains sufficiently high and the latency intro-

duced by the constant delay is judged negligible, this model can integrate a real-time prediction

framework.

2.3 Recent Advances in Neural Network Training

and Architectures

We compile here a series of short presentations for recent major contributions in the field of

Neural Networks. Although the core of our work does not focus primarily on designing Neu-

ral Network modules and optimizing them, the methods presented in this section contribute

noticeably to the performances of our proposed models.

Dropout

Dropout [Srivastava et al., 2014] is a noise based regularizer which disables (sets to zero) a fixed

proportion r of the neurons in a layer before applying the non-linearity.

Dropout belongs to the class of regularizers which injects a destructive noise inside the model

similarly to gaussian noise regularisation. However, randomly disabling neurons at each train-

ing iteration also amounts to temporarily train a different sub-model which contains only the

retained neurons and merge it back into the full Network which is a form of model averaging.
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Let ℬ denote the Bernoulli distribution. For any neuronwith output value h̃, the noisy output

is given by:

h = ⎧{⎨{⎩
̃h

1−r
if d ∼ ℬ(r) = 0

0 otherwise
(2.28)

The denominator scales up the non-dropped activations to preserve the average activation values

over a whole layer regardless of the dropout rate r. This correction is needed for validation and

testing where r is modified and set to 0.

The dropout rate, that is to say the proportion of disabled units, needs to be optimized for

each problem, but rates up to 0.5 are not uncommon.

Rectified Linear Units

Activation functions turn the set of nodes outputs in Neural Networks, which are essentially

a set of linear transformations, into a highly complex non-linear parametric function com-

posed of multiple elementary blocks. To avoid computational issues and mimic biological neu-

rons [Hodgkin and Huxley, 1952], bounded functions with an almost linear behaviour around

zero have often been used, for example with the sigmoid or tanh.

More recently, a simpler activation function known as Rectified Linear Units [Maas et al.,

2013] has become a de-facto standard for new Neural Network architectures:

�e��(x) = max(0, x) (2.29)

�eaky�e��(x) = 0.1 × min(0, x) + max(0, x) (2.30)

The leaky version is slightly more robust to the initial conditions during training. Indeed, its

small slope on ℛ− avoids back-propagating zero gradient for neurons which are rarely activated

as it sometimes happens during the first epochs.

Some of the motivations behind this non-linearity include:

• a non-symmetric behaviour which can implement more complex transformations

• a faster computation speed

• absence of shrinking or clipping effect on R
+ → preservation of the back-propagated

training signal

• increased activation sparsity and “dispersion”1 [Willmore et al., 2000]

• improved performance metrics observed on various problems

1property of the activation distribution where input patterns are encoded over many different neurons instead of a
few characteristic ones.
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Batch Normalization

BatchNormalization [Ioffe and Szegedy, 2015] stems from the observation that gradient updates

try to optimize all layers in parallel without taking care of the co-adaptation between them.

As a layer learns new patterns, the distribution of its outputs changes therefore impacting sub-

sequent layers. To reduce the impact of this shifting behaviour, Batch Normalization inserts a

normalization step so as to ensure that the distributions of activations maintains a zero mean

and unit standard deviation. The neuron outputs therefore becomes:

∀k, hk = f ( ak − � [ak]√� �� [ak]) (2.31)

where ak represents the activation of the k-th neuron. The expectation and variance are empir-

ically estimated on each minibatch during training whereas the correction during testing uses

running statistics learnt during the training phase. This transformation is reported to not only

accelerate training, its original purpose, but also to introduce some regularisation as well, there-

fore reducing the need for more destructive techniques based on noise injection.

Residual Networks

If the “Deep” aspect of Neural Networks has started to gain attention by 2009 [Krizhevsky,

2009], the number of layers in Neural Networks has truly soared with the introduction of gated

layers [Srivastava et al., 2015; He et al., 2016]. Their foundational idea is arguably the same as the

one introduced earlier for Recurrent Neural Networks with gated units, but this time the gating

mechanism happens vertically across stacked layers of multilayer Neural Networks: instead of

shorting time-steps as in RNN, gates render individual layers optional or “skippable” here. One

proposition of this concept is given by Residual Layers from [He et al., 2016] where each block of

a Neural Network proceeds by adding a correction to the output of the previous layer �� instead

of performing the usual affine transformation:

�l+1 = �elu (�l ⊕ ℬlock(�l)) (2.32)

where ℬlock contains a few Neural Network layers without the last non-linearity, which is

moved after the element-wise summation with the input �l. Figure 2.6 provides an equivalent

graphical representation of the Residual block. When �lock modifies the dimension of the

hidden representation, for example with max-pooling or a layer with a different number of

output neurons, the short-cut path is replaced with a very simple operation such as a linear

transformation that returns compatible outputs.

Residual Networks introduce a short-cut path with little attenuation from the output down

to the input layers. As a result, gradient descent is able to train very deep layers without major

difficulties, and the original ResNet paper effectively demonstrates the feasibility of a thousand

layer model.
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different parameters. Some parameters related to less frequent patterns will indeed receive less

frequent updates.

Some optimization algorithms try to escape flat regions of the loss function such as saddle

points by using second order approximations of the gradient, but this class of method has not

gained much traction in the Deep Neural Network community. Indeed, the second order ap-

proximation does not seem to apply well to this class of models in practice.

Instead, a family of “accelerated” gradient has been developed where the common principle

is to adapt the learning rate for every parameter so as to avoid slow or over-confident updates

for some subsets of the parameters. We briefly review here the Adaptative Moment Estimation

(ADAM) [Kingma and Ba, 2014] which is used in our experiments. A more comprehensive

definition along with a comparison to other variants of the gradient descent algorithms are

provided in [Ruder, 2016].

For readability, we omit arguments other than parameters, and the gradient of the loss func-

tion at the t-th iteration with respect to the i-th parameter will be noted gt,i = ∇⃗θi
� [�(�)].

ADAM composes its updates from the expectation of past gradients (gt′)t′≤t and squared gra-

dients (g2
t′
)t′≤t. More precisely, it maintains an exponentially decaying average of both which

can deal with a non-stationary distribution (the model changes at each update) while using little

memory:

mt = �
1
mt−1

+ (1 − �
1
)gt (2.34)

vt = �
2
vt−1

+ (1 − �
2
)g2t (2.35)

Due to the zero initialization m
0

= 0 and v
0

= 0, these quantities are biased toward zero, the

authors demonstrate that the true estimates are given by:

m̂t = mt

1 − �
1

(2.36)

v̂t = vt

1 − �
2

(2.37)

Finally, the update rule is defined as:

∀i, �t+1,i ← �t,i − λ
√v̂t,i + �m̂t,i (2.38)

with � a small value to avoid instabilities in computations. The authors use the analogy of signal to

noise ratio to describe the scaling factor √ ̂vt,i+� where the noise is estimated by ̂vt; the step size

grows when a series of consistent updates have passed indicating a good signal and conversely

decreases when an unexpected gradient value arrives. Additional arguments supporting this

method are provided in their paper.
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2.4 Brief Overview of Deep Learning

Before unveiling our contributions, this section draws the general outline of Deep Learning,

which surrounds most of the work presented in this thesis. This section comes at the end of the

chapter for different reasons. In terms of research interests, our work puts more emphasis on

the comparison between Hybrid NN-HMM and RNN than on the “Deep” aspect of these mod-

els. In fact, the number of layers we use largely results from a pragmatic model selection when

working with particular datasets and data types, and not from a deliberate architecture restric-

tion. Without anticipating on our findings, it can be said that the properties of Deep Learning

intervened more often in our analyses, observations and conclusions than in our research in-

tentions. As a result, the purpose of this section is not to provide a detailed overview of Deep

Learning but rather to exhibit certain aspects which influenced our work and our understand-

ing of experimental results.

The Deep Learning Book [Goodfellow et al., 2016] stands out as an authoritative source on

the matter, and provides this short definition of Deep Learning:

Deep learning is a particular kind of machine learning that achieves great power

and flexibility by learning to represent the world as a nested hierarchy of concepts,

with each concept defined in relation to simpler concepts, and more abstract rep-

resentations computed in terms of less abstract ones.

Deep learning in itself does not define a specific class of models or techniques, its existence

in fact started in the continuity of the existing Machine Learning research. For a large part,

the novelty lied on the commitment to have the model learn this hierarchy of concepts and to

focus the research on solving the resulting optimization challenge. While the idea of nesting

transformations was not completely new, it admittedly neglects theoretical work demonstrating

that a single Neural Network layer is enough to approximate any function with arbitrary preci-

sion [Cybenko, 1989]. Instead, Deep Learning increases the capacity to abstract more complex

factors of variations by adding more compositions into the computation graphs.

Representation Learning via Unsupervised Pre-training

Early works on the subject were rightfully concerned that the lack of training data would lead

to dramatically over-fitted models and focused on unsupervised learning which can leverage

large datasets of easily accessible unannotated data. These datasets are conceived to simulate the

“true” data distribution: they contain samples representative of all inputs that might be observed

later during testing. The Deep Belief Network (DBN, Figure 2.7) [Hinton et al., 2006a; Hinton

and Salakhutdinov, 2006], from the family of probabilistic graphical models, represents a no-

table instance of these models. They are usually built by stacking several Restricted Boltzmann

Machines (RBM), each trained successively to reconstruct their inputs based on an internal hid-

den representation composed of latent random variables. Although Deep Belief Networks are

generative probabilistic graphical models, the inference of the top hidden units probabilities

given the inputs happen to follow the same computation as a Neural Network. It is therefore
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RBM 3

RBM 2

RBM 1

Figure 2.7 – Deep Belief Network

easy to fit a DBN unsupervisedly and use it to set the initial parameters of an equivalent Neural

Network. Not only does the transition from DBN to Neural Network run smoothly in prac-

tice, but it also greatly reduces the number of training iterations needed by the full model to

converge. In fact, [Hinton and Salakhutdinov, 2006] further observes that training from scratch

may even fail for some datasets whereas pre-training renders the model viable. This multilayer

stacked architecture illustrates perfectly the notion of nested hierarchy composed by a series of

transformations.

A related model called Auto-Encoders [Vincent et al., 2010; Ronneberger et al., 2015] aims for

the same unsupervised learning objective using this time a regular end-to-endMultilayer Neural

Network trained to reconstruct its input. Due to the introduction of a low-dimensional “bottle-

neck” layer in the middle of the stack, the network cannot simply learn the identity function. To

reconstruct the input, the network must generate efficient (i.e. compact) representations of the

input at the bottleneck level that will discard irrelevant or redundant information but preserve

concepts that explain the input and help reconstruct it1.

Lifting Training Limitations

With the advent of large annotated datasets and the methods presented in the previous section

(Dropout, ReLU activation, Batch Normalisation, Gated neurons), unsupervised pre-training

seems to have lost some of its prevalence in later publications. In particular, theComputer Vision

community benefits from particularly large datasets featuring millions of annotated samples. In

that context, multilayer Neural Networks have demonstrated an impressive ability at learning

deep hierarchies of representations, trained in a supervised fashion on object classification tasks.

The sheer size and depth of the model alone does not explain this success. Convolutional layers

and pooling [Lecun et al., 1998] helped share parameter values efficiently and implement known

properties of images such as translation invariance into the models, eventually leading to a more

efficient use ofmodel parameters and amore efficient learning. The traditional approach to build

a Neural Network from a stack of layers trained end-to-end was demonstrated to work well on

surprisingly large models featuring as many as 19 layers and millions of parameters [Krizhevsky

1Note: not all information needed to reconstruct an input is relevant for a given task. On the opposite, notions
such as translation invariance can be difficult to implement via the reconstruction metric which serves as
objective function.
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Figure 2.8 – GoogLeNet with 2 intermediate and one final outputs.

et al., 2012; Simonyan and Zisserman, 2014]. These deep Neural Networks learn hierarchies

of more and more abstract features as indicated by the type of convolutional filters learned at

each layer. By cutting these models and reading the representation vectors at a certain layer,

a compromise can be found between the specialization for the training task and the level of

abstraction to describe concepts present in the input. In practice, these models once decapitated

of their specialized layers have been found to produce generic reusable features that perform

well on a variety of Computer Vision tasks beyond the initial object recognition.

Architectural Novelties

Nevertheless, tackling larger problems by trying larger Networks remains prone to over-fitting

issues. Besides, it should be acknowledged that the feasibility of theDeep Learning breakthrough

was largely conditioned on the existence of fast computers andmore preciselyGraphical Process-

ing Units (GPUs) reconverted for parallel computation, but the reduced rate of improvement

these days motivates new axes of research to improve the performance/computation ratio. The

remainder of this section describes contributions that we believe qualify into this general trend,

including notably some of the techniques introduced in the previous section. For example, the

Rectified Linear Units simplify the non-linearities to a binary mode transformation: either dis-

card or copy. Residual connections enforce the assumption that representations can be formed

by an iterative additive process instead of stand-alone transformations from one embedding

space to another. Batch Normalization enforces an assumption on the statistics of neurons ac-

tivations. In the inception Network [Szegedy et al., 2015], it is hypothesised that intermediate

hidden states contain representations that are sufficiently elaborate to produce early guesses

on the classification outcome over which loss functions are applied (Figure 2.8). Intermediate

objectives help to reinforce the gradient signal for training in the lower parts of this 22 layers

Networks. Some papers apply the divide and conquer principle by modularising their Neural

Networks into specialized parts each optimized for one subtask, with an optional supervision

on the subtask. For example, Spatial Transformer Networks [Jaderberg et al., 2015] use a Neu-

ral Network to eliminate deformations in images (scale, rotation, skew, etc.) before running an
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object detection model. The latter will obviously benefit from the reduced variability of its in-

puts. A related example is brought by [Girshick et al., 2014] where a region proposal Network

is trained to propose regions of interests that tightly enclose objects, the detection of which is

delegated to a second Neural Network. In the same vein, a large body of work has investigated

attention models which mimic the ability for humans to allocate brain resources on processing

a targeted subset of the sensory inputs while discarding the rest. In these models, one module of

the Neural Network is dedicated to select an attentional target and to produce a readout of the

input that is subsequently fed into the remaining parts of the model. This approach is particu-

larly useful when Natural Language is involved because the subject of the attention may evolve

along the subject of a sentence; for example in image captioning [Xu et al., 2015].

All of these contributions tend to restrict the model in ways that do not hinder its capacity to

learn representations but introduce simplifications and assumptions that help train more easily

and more efficiently the Neural Networks.
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Chapter 3

Comparing Hybrid Neural

Network - Hidden Markov

Models with Recurrent Neural

Networks for Continuous

Gesture Recognition

The latest developments in machine learning have seen the progressive replacement of Hidden

Markov Models, even in their Hybrid formulation [Hinton et al., 2012], by Recurrent Neural

Networks with Gated units in topics such as speech [Graves et al., 2006, 2013; Graves and Jaitly,

2014; Ravanelli et al., 2017], hand-writing [Graves and Schmidhuber, 2009; Bluche, 2015] or

gesture recognition [Chai et al., 2016; Pigou et al., 2016; Plappert et al., 2017]. Gated units have

now become a standard (all of the aforementioned publications use it) and the Bidirectional-

RNN is almost systematically used when applicable, forming a robust and efficient go-to model

to begin with on any experiments, at least as a strong baseline reference. In terms of recognition

performances, the RNN models are often reported to perform better than the HMM, even

under the Hybrid NN-HMM formulation which introduces Neural Networks into the posterior

state model. However, most comparisons are run between largely different models with the

RNN gaining the benefit of recent improvements in training techniques and model design. By

contrast, the thesis work on handwriting recognition from [Bluche, 2015] only finds a narrow

performance gap between these two models under comparable configurations. This chapter,

which composes the core of this thesis, investigates suspected explanations for the differences,

but also the existing similitude between Hybrid NN-HMM and RNN via a set of comparative

experiments designed to target and illustrate these specific hypotheses. We also discuss the

relative advantages of both models including (but not limited to) the detailed performances and

failure cases.
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At a broad level of observation the Hybrid NN-HMM and the Bidirectional RNN share some

similarities: the use of a neural network to transform the input, a transition model to capture

temporal structures, or even the existence of past and future context to back the prediction

at any time-step. By contrast, the most obvious difference comes from the transition models

themselves: the HMM receives a lot of expert knowledge in the form of a Markov transition

hypothesis along with a trimmed structured state graph with many forbidden transitions which

model known independence assumptions. Onedrawbackof theMarkovhypothesis is the limited

amount of information transiting from one time-step to another via the transition model: only

the index of the previous state.

The RNN transition model benefits from the flexibility and learning capacity of neural net-

works with a real state vector of fairly high dimension (�(100)−�(1000)) to carry information

across time. However, Recurrent Neural Networks, like most Neural Networks, are hardly in-

terpretable, and cannot enforce known hypotheses about the structure of the data as easily as

the HMM.

Another difference stems from the learning procedure: the RNN features a simple and co-

herent back-propagation algorithm from the output down to the input. The Hybrid NN-HMM

requires an iterative training procedure where the state posterior model is involved even though

it is initially trained on largely suboptimal targets. The posterior state model remains relatively

sensitive to the initialization heuristic and requires a careful balancing of the importance at-

tributed to each state.

Based on these observations, we formulated a set of questions that could help understand the

differences between the Hybrid NN-HMM and the bidirectional RNN:

1. Can the model learn by itself a representation from raw features which is suitable for the

subsequent detection part? This ability is especially important for domains with little

existing expertise and when working with complex high dimensional inputs.

2. How specific are the lower parts of the model with regard to the classification task? For

many real-world applications, the training of the low level representation learning might

be sub-optimal, for example due to the lack of training data or because the dataset is

slightly biased from the actual distribution as is the case with transfer learning or ar-

tificially generated samples. This question is concerned with the degradation of per-

formances in these cases where all the modules in the model were not fitted together,

regardless of the ability of the model to do such a training (previous question).

3. How robust and flexible is the model regarding the nature of its inputs?

4. What are the limits of the temporal aspect in the model?

To shed some light on each of these issues, the models have been modularized as much as

possible and a set of experiments has been devised so as to stress one particular aspect without

interference from the others. More precisely a first experiment concerned with the standard

end-to-end learning setting is run to establish a benchmark between the models, analyse their

properties, weaknesses and differences. With the assurance that ourmodels perform on par with
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the results reported in the literature, the models are then retrained on data of various complexity

and quality to exhibit robustness and adaptability. The inputs are changed from the simpler

preprocessed body pose features to include cropped images of the hands either separately or

jointly in a multi-modal configuration. The amount of temporal context is also varied to stress

the short-term temporal modelling capacity. Finally, a set of transfer learning experiments are

designed to explore the existence of model specific representation learning or on the contrary,

the ability to learn generic reusable representations.

At inputs, colour video frames, depth maps and regressed body pose coordinates constitute

the most commonly observed modalities in recent datasets from the field. They can be obtained

reliably with off-the-shelves hardware which facilitates the construction of larger datasets and

preserves the possibility of converting the recognition model into end-user applications easily.

The colour frames provide aspect and shape information about the subject, all projected onto

a 2D plane. Depth maps help to bring back the third spatial dimension which can be used to

disambiguate the position of body parts and helps regress the body pose in space which itself

provides a very informative cue when working with gestures.

The description of these experiments is preceded by several sections that provide a gradually

detailed description starting from the state-of-the-art in gesture recognition, followed by amore

detailed presentation of the supporting dataset data along with our data preprocessing pipeline

to finally detail the architecture of our models and of the learning algorithms.

3.1 Continuous Gesture Recognition: a Review

This section reopens the analysis of continuous recognition methods this time with a more

practical take geared toward continuous gesture recognition. The presentation follows the

commonly observed preprocessing and recognition pipeline startingwith data acquisitionwhich

we describe briefly, preprocessing and hand-crafted feature extraction, then representation

learning and temporal modelling, to finally conclude with the classification stage.

3.1.1 Data Acquisition

In one sentence, gestures are defined by a specific succession and combination of held body pose,

and movements. Depending on the task, “pose” description might reduce down to the relative

positions of the main upper-body limbs (forearms, arms, torso), maybe including the full body

posture with the legs, or even finer details (hand shape, head orientation, facial expression...).

For a human, gesture recognition is purely based on visual cues but will implicitly eliminate

appearance cues (color, texture, etc.) to focus on the underlying pose.

Logically, capturing data for automated gesture recognition should aim to extract as much

information as possible about the pose. As mentioned already in section 1.1.2, wearable devices

such as gloves with accelerometers and gyroscopes can provide this information with little data

preprocessing. Motion capture also provides body pose data; although its acquisition pipeline
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remains quite complex, it has been streamlined and perfected to high accuracy and reliability

over the last decade thanks to widespread use in animated films and video games.

The majority of research papers focuses on data originating from cameras, mainly because

recording requires little preparation from the subject and also due to the widespread availability

of recording devices, which makes this approach the most realistic for real-world utilization.

Although body pose cannot be readily extracted from camera feeds, algorithms have been im-

plemented to extract it either from colour video frames [Toshev and Szegedy, 2014] or depth

fields [Shotton et al., 2011]. Some gesture recognition models also skip these explicit pose re-

gression stages in favour of an end-to-end video frame to gesture recognition. [Shi and Kim,

2017] notably trains amodel with pose regression as a secondary task objective to help themodel

focus on this useful cue.

For this thesis, the decision was taken to opt whenever possible for options that reduce the

amount of work needed to implement a production ready gesture recognition system. Con-

sequently, the only data we used came from cameras available on the consumer market, more

precisely Microsoft Kinects, which combine a colour and a depth field sensor.

3.1.2 Hand-crafted Features

An exhaustive overview of hand-crafted features would certainly go far beyond the scope of this

manuscript, hence only a subset of the most illustrative and relevant methods is reported here;

[Zhu et al., 2016; D’Orazio et al., 2016] provide comprehensive surveys on the matter.

Using the colour video frames, a family of interest points detectors has been created using

either 2D techniques repeatedly applied over frames, or using 3D spatio-temporal volumes by

stacking consecutive frames.

A category of these methods rely on detecting interesting points in whole sequences. Scale

Invariant Feature Transformations (SIFT) is one such 2D method, which has been extended

into Spatio Temporal Interest Points (STIP) in [Laptev, 2005] and other similar methods using

various edges detection techniques. Dense tracking [Wang et al., 2013] propose to follow tra-

jectories in space and time instead of isolated points. The information from the data around

these points is then encoded using typical feature extractors such as HOG and HOF descriptors

or 3D extensions for the depth map [Kläser et al., 2008], or even temporally aware representa-

tions. The data extracted around these points or trajectories is then aggregated using the Bag of

Words technique to produce a fixed dimensional representation. Most of the time, the result-

ing feature vectors are low-dimensional or projected into a low-dimensional space via Principal

Component Analysis and therefore require moderate computational resources, which makes

them suitable for real-time processing or computationally limited applications as demonstrated

in [Yin and Davis, 2014].

Our early exploratory work involved some of these techniques and revealed a series of lim-

itations or shortcomings. Contrary to activity recognition, recognizing gestures sometimes

requires a fine analysis of detailed shapes or movements of a particular body part. Points of
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interest in their original formulation do not distinguish the semantic of points and statistical

representations such as Bag-of-Words lack in subtlety for smaller but meaningful details like

hand-shapes. We found that tracking and trajectory-based methods completely skipped fast dis-

placements of the hands which can be essential to detect transitional movements. Conversely,

held postures which also carry a semantic signification generate no trajectories and therefore

need to be analysed via different features. Overall, thesemethods require a lot of expertise which

generalizes poorly to other domains and does not contribute to the goals of this work, hence

our decision to rule them out in this thesis.

The features extracted from body pose coordinates rely on typical feature engineering meth-

ods:

• temporal filtering [Seddik et al., 2014; Neverova et al., 2014] or curve fitting of trajecto-

ries [Koller et al., 2015]

• body joints coordinates (articulations between limbs and characteristic points such as

hips and head) are often normalized around the centre of mass of the body, sometimes

with a rotation to correct non-frontal subjects. [Seddik et al., 2014; Neverova et al., 2014]

further propose to normalize limbs length to eliminate variations between subjects.

• orientation of the head, the torso and limbs [Miranda et al., 2014], angles formed by

the limbs, which are often encoded by the cosinus and sinus values to ensure continuity

between 0 and 2�
• pairwise distances between joints [Wu et al., 2012]

• first and second order derivatives, velocity and accelerations, [Lee and Kim, 1999] uses

quantized directions and encodes feature into discrete states.

• and many other...

We will review our selection of features with more details as we present the preprocessing stage

of our experiments.

3.1.3 Representation Learning of Observations

To produce a more abstract representation of the features, parametric models can be used to

generate an embedding. This work deliberately focuses on Neural Networks for this task as

they are predominant in the field as of today [Bengio et al., 2013], and also because they bind

elegantly with both the Hybrid NN-HMM and RNN models we wish to study.

In the case of gestures, the expert knowledge is quite limited when it comes to find optimal

features for the subsequent gesture detector. With video frame images in particular, the inter-

actions between the pixel values and the gestures are extremely complex and operate in high

dimensional spaces (do neighbouring pixels belong to the same object? Is the support deformable

or rigid ? Do two pixels from successive frames correspond to the same moving object? etc.). For

this type of problems, the so-called “Deep learning” methods regroup an ensemble of techniques

and Neural Network architectures capable of processing inputs with little expertise and yet re-

turning very compelling results. In fact, deep learning has helped improved the performances
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in numerous domains beyond computer vision. One of its downsides, however, comes from the

large amount of training data required in order to properly fit the parameters.

Besides the usual regularisation techniques (dropout, data augmentation, noise injection), a

typical solution to resolve the lack of training data is to train the first layers of the model on

another suitably large dataset. Indeed, these bottom layers often remain useful to produce sensi-

ble features on other datasets provided the underlying structure of the data remains similar. It

should be noted that the task (regression, classification, detection, …) needs not be the same be-

tween the original and the secondary dataset. Using these ’pre-trained’ parameters, the remain-

ing parts of the model can be fitted on the original dataset. For example, [Koller et al., 2016a]

reuses a Convolutional Neural Network model (CNN) designed for natural image classification

in a sign language detector on video sequences.

Another solution for small datasets consists in pre-training the model in an unsupervised

fashion, an approachwhich ismostly appealing on datasetswith a lot of unlabelled data. Plenty of

methods are mentioned in the literature, but to name a few: auto-encoders use self-supervision

to train a neural network [Hinton and Zemel, 1994; Vincent et al., 2010], Restricted Boltzmann

Machines [Hinton and Salakhutdinov, 2006] and Deep Belief Networks [Hinton et al., 2006b] fit

on the data a generative graphical model that can be used to initialize neural network parameters

(ex: [Wu et al., 2016] with body pose features for gesture recognition).

3.1.4 Temporal Modelling

The structure of temporal observation sequences shares with images the notion of local conti-

nuity between sample points: two consecutive observations are often closely related in the same

way that two neighbouring pixels of a picture are. The analogy continues with translational in-

variance since temporal events often happen at random location within the sequence in the same

way that objects might be placed anywhere within the field of view. A variable execution speed

would result in a different scale of the pattern in recording which once again comes close to the

apparent object size in the visual counterpart. As a result of these numerous shared properties,

both fields have naturally shared and successfully adapted their techniques.

However, dealing with sequence of widely different durations (long or short recordings) is

not rare, as long as individual patterns inside keep a similar structure, whereas managing images

of very different size and resolution altogether in the same model is a more peculiar requirement

in computer vision; the recording conditions aremore or less standardized formost applications

and datasets. Finally, continuous recognition of instance classes within a temporal sequence

usually needs to run without a given number of instances to detect, therefore narrowing down

the (still large) pool of potentially useful computer vision techniques.

Casting to Isolated Recognition

For the continuous recognition task, the model should account for the variable length of a

sequence and the unknown number of instances to look for.
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These two constraints can be isolated by dividing themodel into a first sub-sequence proposal

system which proposes locations for events to be detected. A classifier for isolated recognition

can then predict the label for each sub-sequence proposal. Its task is made considerably simpler

by having relaxed the continuous aspect of the problem in the previous module. A computer

vision analogy is naturally found in the region proposal systems as in [Girshick et al., 2014] for

example.

A simplified version of this two-step approach consists in predicting the classes from the vo-

cabulary over a sliding window (systematic division of the sequence) and then fusing repeated

class predictions into segments, a simple yet efficient solution as demonstrated on the Montal-

bano V2 gesture dataset by [Neverova et al., 2014; Pigou et al., 2016].

For a more refined selection of instance segments, blanks or silence detectors can sometimes

help to find frontiers as is the case for [Wu et al., 2012]. On the other hand, active region proposal

tries to detect where an instance starts and finishes. These two approaches do not account

for uninterrupted chains of instances with specific transitions, as it happens in speech with

successive phonemes of the same word.

Transition models which try to learn the pattern that connect two successive events are rarely

used in practice; indeed, the number of combinations grows quadratically in the vocabulary size

whereas the number of training pairs is inversely smaller with possibly missing combinations.

Besides, detecting transitions remains essentially the same task as identifying the gestures them-

selves but with different targets, so the difficulty remains at least as high as originally. An elegant

solution proposed by [Lee and Kim, 1999] takes the form of an adaptive threshold model which

runs in parallel to a continuous detection system, both of which are implemented by an HMM

in their work. The threshold model determines with its output the confidence level which must

be attained by the detection system before its predictions can be accepted, defaulting to the null

class otherwise. This discriminative method eliminates spurious detections which should fall

into the null class and also handle transitions without explicitly learning them.

Reshaping and Re-indexing Inputs

The previous section introduced methods to reduce the problem from continuous to isolated

recognition. Going one step further, some papers suggest to reduce the duration of the isolated

segments to a fixed dimension, which is more practical to feed into classifier models.

To do so, a simple averaging along time might provide a naive form of aggregation. A geomet-

rically decaying average such as the Motion History Images [Ahad, 2013] illustrated in Figure 3.1

can aggregate together successive observations with a focus on the more recent past.

To reduce rapidly the dimension of the input data without loosing information frame-wise,

sub-sampling might be an option to consider. Besides straightforward uniform sampling, key-

frame sampling detection builds on the assumption that most of the successive observations

are not only correlated but moreover redundant, and thus only a handful of them are truly

necessary to provide a compressed yet complete overview of a sequence [Bhuyan et al., 2004].
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Figure 3.1 – Motion History Image on silhouette with various decay rates �
Dynamic Time Warping also performs some sort of subsampling by dynamically reindexing the

frames along a monotonically (not strictly) increasing index [Li and Greenspan, 2011; Konecny

and Hagara, 2014].

Besides the inconvenience of manipulating variable length data, manipulating sequential data

can sometimes lead to very high dimensional inputs, beyond the possibilities of many models

and the hardware devices tasked to run them. Reducing the inputs as above will help to control

the size of the data below the learning and processing capacities. When working with video

images, one can sacrifice the holistic approach to focus on smaller regions of interest which are

expected to carry most of the relevant information: for example the hands or the arms in gesture

recognition [Neverova et al., 2014; Wu et al., 2016].

Statistical Temporal Models

Both previous subsections presentmethods that proceedmainly by circumventing the difficulties

arising frommodelling patterns in time. However, thesemethods often present some limitations

as a result:

• Strong simplifying assumption on the data or targets.

• Lack of compatibility with end-to-end training, which weakens reuse and portability to

other data types.

• Reliance on expertly designed features with the same issues as above.

• Poor compatibility with continuous on-line inference for real-time execution.

From the Probabilistic Graphical Model family, Hidden Markov Models provide a solution

to all of the above issues and have demonstrated excellent performances over the last decades.

Conditional Random Fields (CRF) offer a discriminative alternative and both models have seen

numerous variations to improve learning ofmore complex hierarchical temporal structures. For

example, [Lee and Kim, 1999] uses HMM with discrete distributions of gesture observations de-

scribed by codewords. [Kelly et al., 2009; Wu and Shao, 2014] evaluates HMMs with a Mixture

of Gaussian for the observation model on sign language and gesture recognition respectively.

Their model demonstrates a successful adaptation of acoustic speech recognition models [Ra-

biner, 1989]. [Kelly et al., 2009] further improve their model to eliminate non-gesture segments

with the addition of a threshold model
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[Kelly et al., 2009; Yang and Lee, 2011] demonstrate the capabilities of CRF model for similar

continuous recognition tasks. [Morency et al., 2007] proposes LDCRF, a variation of CRF with

latent states. [Kurakin et al., 2012] demonstrates the effectiveness of a different probabilistic

graphical model based on action graphs [Wanqing Li et al., 2008], which allows state sharing

between gestures, thus reducing the number of states and therefore the amount of training data

needed to fit the model.

More recent publications tend to favour the Hybrid HMM approach [Bourlard and Morgan,

1990]. For example, [Wu and Shao, 2014; Wu et al., 2016] uses a Deep Belief Network and a

Convolutional Neural Network for the posterior state probabilities of a gesture recognition

model taking body pose and video frames as inputs. Similarly, [Koller et al., 2016a,b] use a pre-

trained Convolutional Neural Network to process videos of hand shapes from a sign language

dataset.

Purely Neural Network-based temporal models only appeared in more recent publications

for gesture and sign language recognition. Their architecture are structurally similar to their

speech recognition counter-part with one or more layers of Bidirectional LSTM Recurrent

Neural Networks. However, image based inputs require a more specific transformation to

provide manageable input to the RNN layers. This transformation is automatically learnt in

an end-to-end fashion by connecting Convolutional Neural Networks applied to each frame

of the input as demonstrated by [Chai et al., 2016; Pigou et al., 2016]. Similar architectures are

observed in action recognition [Donahue et al., 2014] and captionning [Xu et al., 2015]1.

3.2 Gesture Data and Preprocessing

3.2.1 Montalbano v2 Dataset

For the remaining part of this chapter, gesture recognition is chosen as the targeted application

to illustrate continuous recognition on high-dimensional sequential data. Experiments are run

on the Montalbano v2 dataset [Escalera et al., 2014], which was introduced for the 2014 edition

of the Chalearn competition. This dataset is commonly used in the literature for its rigorous

setting and several qualities that make it suitable for deep learning:

• official separation of the training, validation and testing sets

• somehow controlled recording conditions (at least lighting and distance to subject)

• precise annotations in time (beginning and end of gestures), and of course in class labels

(Figure 3.2 shows a sample annotation)

• multi-modality: color frames, depth maps, and a reliable pose regression in 3D as shown

in Figure 3.3

• fairly good recording quality: 640 × 480 resolution at 20 fps with subjects occupying a

box of 300 × 500 pixels on average.

1This paper is concerned with static image captionning but processes them repeatedly in a sequence hence the
relation with works on video data.
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• large scale:

– 940 gesture sequences with 1360 frames and 15 gesture instances per sequence on

average

– 13880 gesture instances across all 20 classes of the vocabulary as shown in Figure 3.4

– 470 training gesture sequences containing 6847 individual gesture instances

Most of the gestures span between 20 and 60 frames with an average duration of 38.6 (Fig-

ure 3.5). Following up the discussion on temporal context and gated neurons in recurrent neural

networks from the previous chapter, the necessary context to efficiently recognize a gesture

might intuitively need to cover the last 20 to 60 observations so that the predictions for the end

of a gesture are taken with all the related gesture data. For an RNN, this requires to successfully

forward a signal through 20 to 60 effective layers over time, while grabbing incoming input data

on the way, a very challenging prospect for a neural network unless special care is taken.

3.2.2 Data Augmentation

Data augmentation remains a verywidespreadway to regularize a parametricmodel and tomake

sure it will abide by known invariance. While video datasets may seem large and augmenta-

tion useless at first sight, it should be noted that successive frames often bring highly redundant

information, and the same observation goes for neighbouring pixels within an image. Further-

more, with a majority of time spent by the subjects on resting idle between gestures, each label

is only present between 1.6% and 2.5% of the 636727 frames in the training set depending on

the class. The problem is not specific to gesture recognition but also commonly encountered in

related domains such as speech recognition with silences.

To generate augmented recordings, we apply to each sequence a set of simple and intuitive

transformations simultaneously for all modalities:

• flippingwith a probability of 0.15 to help themodel train on left-handed gestures normally

performed as right-handed.

• random tilting in the range −7° and 7°
• random linear deformation of each spatial dimension from −15% to +15%

A preview of these transformations is given in Figure 3.6. In all of our experiments, each training

sequence is augmented four times using the above transformations in addition to the original

unaltered version.

3.2.3 Data Preprocessing

The typical preprocessing adopted in this body of work takes its root from the commonly used

methods reported in the literature [Seddik et al., 2014; Neverova et al., 2014; Wu et al., 2016].

Due to the comparative aspect of our work, this preprocessing is not optimized for one specific

model. Instead, it is shared by all experiments to remove any interference with the matter of the

research.
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Figure 3.4 – Classes from the Montalbano v2 dataset

42











3. Comparing Hybrid NN-HMM with RNN

tion also include contextual observations as will be detailed later. By contrast, only the HMM

transition model and the Bidirectional RNN layers process their input sequentially.

The same architecture is enforced below the BD-RNN branch and the Hybrid NN-HMM

branch. However, the parameters are retrained unless specified otherwise. This shared architec-

ture with free parameters means that the same learning capacity is given outside of the temporal

model themselves, yet the final results will account for the ability to perform end-to-end learn-

ing.

Before unveiling the specific architectural details, it should be noted that state posterior mod-

els rarely run in a pure frame-wise fashion in order to achieve the best results. Depriving the

model from temporal context might seem like a necessary condition to the independence as-

sumption between the observations of the HMM. This hypothesis is used to factor the observa-

tion likelihood terms of the joint probability density function in equation 2.2. But it can rarely

be enforced in practice because this hypothesis is often broken at the input level already due to

the high correlation between successive observations. On the contrary, the best models usually

provide some temporal context in order to improve the reliability of state posterior estimations,

in particular with respect to input noise and frame ambiguity.

Consequently, the models in this work combine vectors from successive time-steps over a

sliding window before returning the input representation vector. Our representation Learn-

ing module more specifically adopts the approach proposed by [Pigou et al., 2016], where the

window of input values is aggregated into a fixed dimension vector by a dense neural network

layer instead of a mean or maximum pooling strategy. In practice, this transformation is most

efficiently implemented by a 1D convolutional neural network layer called Temporal Convolution

(TC) in that context.

The basis of inspiration for our architecture is [Wu et al., 2016] which also uses a Hybrid

NN-HMM model, and [Neverova et al., 2014] since both of these papers evaluate their models

on the Montalbano v2 dataset. The representation learning model of the former is initialized

by unsupervised pre-training using a Deep Belief Network mapped onto the representation

learning layers, a technique popularized by [Hinton and Salakhutdinov, 2006].

Our models only use supervised training but leverage more recent techniques such as batch-

normalization [Ioffe and Szegedy, 2015] and Rectified Linear Units [Hahnloser et al., 2000; Nair

and Hinton, 2010] which render pre-training optional. In fact the architecture presented here

uses fewer neurons than [Neverova et al., 2014] which operates on the same data modality, yet

our model still needs dropout regularization (with a dropping rate of 0.2 between the layers) to

prevent over-fitting, an evidence that the training procedure and models perform efficiently.

The specific architecture of the representation learning model for the body pose features has

the following specification (illustrated with Figure 3.10a):

• Two dense layers with 480 neurons taking frame-wise features followed by a Batch-

Normalization Layer and a Leaky Rectification1 [Maas et al., 2013].

1a variant of the ReLU non-linearity with a small slope on ℛ−: f(x) = max(0, x) + 0.01 × min(0, x)
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vectors. The modularized design of the models and the experiments led to the decision of not

using temporal convolution at this point since it would off-load an unknown portion of the

temporal modelling work from the BD-RNN module. As a result, this layer is simply repeated

across time and only takes the hidden states of the BD-RNN at one time step to issue the final

prediction.

3.4 Training Set-up and Parameters

For most experiments, the training procedure does not differ much from the standards observed

in the literature. There is however one aspect which rarely receives more than little attention in

publications but was deemed to have a fairly noticeable impact in our experiments nevertheless:

managing class imbalance.

To get an intuition about why class imbalance might affect the training quality, Figure 3.13

shows the count of frames by class in the dataset: the dataset used here contains a predominant

non-gesture class with an order of magnitude more samples than the other classes. The next

section explains how this problem is dealt with in our experiments. Then, several sections

provide detailed descriptions of our training procedures for completeness and reproducibility.

3.4.1 Training with imbalanced classes using loss re-weighting

Neural Network based classifiers such as the state posterior model or the RNN used in this

work usually do not cope very well with imbalanced data. In practice, a Neural Network trained

naively will be overloaded by samples from the a-priori most likely class ans simply predict ”∅”
most of the time; a behaviour that satisfies the accuracy or the cross-entropy objectives, but will

fail to fulfil related metrics such as the Jaccard Index. In particular, the existence of a distinct

null class in our problem introduces numerous types of errors unseen on regular classification

problems:

• false negative: a gesture frame is classified as non-gesture

• false positive: a non-gesture is mistakenly classified as a gesture

• misclassification: a gesture is classified as another one

• a gesture can be improperly delimited in time or completely missed

Some use-cases will require to penalize some errors more than others but training is often

performed based on the cross-entropy loss function anyway because it is differentiable and

numerically stable. With (yt)1≤t≤� a sequence of � target labels in a vocabulary of V classes,(ỹt)1≤t≤� a sequence of predicted class probability vectors, the cross entropy loss is given by:

���(y, ỹ) = �∑
t=1

V∑
j=1

−✶yt=j log(ỹt,j) (3.1)
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omitted for clarity):

�(�,� ) [�′
��

(y, ỹ)] = �� ,�|� [ V∑
j=1

− 1V ⋅ fj ⋅ ✶y=j ⋅ log(ỹj)]
= V∑

j′=1

p(� = j′) ⋅ ��|� =j′ [− 1V ⋅ p(y = j) ⋅ ✶y=j ⋅ log(ỹj)]
= V∑

j′=1

1V ⋅ ��|� =j′ [−✶y=j ⋅ log(ỹj)]
= ��,� ∼�(V) [���(y, ỹ)]

(3.3)

Yet, contrary to re-sampling, the selection of training sequences is unconstrained and accepts

sequences with any labels in any proportion.

Hybrid NN-HMM meta-parameters

The training procedure follows algorithm 3.1. For the neural network, the accelerated ADAM

1: assign state labels uniformly within annotated gesture boundaries (Figure 2.2)
2: initialize Neural Network with random parameters, HMM forward and skip transitions

probabilities with 0.15 and 0.05 respectively.
3: i ∶= 0

4: repeat

5: fit state posterior model for 20 epochs ▷ 7 suffice for i ≥ 2

6: fit transition probabilities until convergence
7: realign state labels within annotated gesture boundaries ▷ Viterbi
8: estimate state priors
9: if i = 0 then

10: reset Neural Network with random parameters▷ this step is not mandatory but considering that the first realignment step may substan-
tially alter the targets, a full retraining from scratch is used as a safety measure

11: end if

12: until convergence of target state assignment

Algorithm 3.1 – Detailed training procedure of the Hybrid NN-HMM model

gradient (defined in Section 2.3) is usedwith a base learning rate at 0.001 decreased by a factor 0.3

everytime the loss begins to stall. This heuristic offers a compromise between fast convergence

during an initial phase and finer adjustment later during the training iterations, and thus reduces

the overall number of training iterations.

Note that due to the large imbalance in the data, the re-weighting trick introduced in the

previous section is used when fitting the state posterior model, in this case with a smoothing

factor � = 0.7 established through cross validation.

In parallel, the division by priors p(st) in the expression of the Hybrid NN-HMM joint distri-

bution causes problems due to the extreme discrepancy between the prior of the gesture classes
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goes beyond the scope of this work and would intermix the two models under analysis, which

is undesirable.

3.4.2 Details on Design and Implementation

To minimize interferences with the comparison of the models, we have shown that our models

use shared representation learning layers. With the same intent, we use the same loss function,

learning rate and learning rate decay strategy for the training of the state posterior Neural

Network and BD-RNN models. More generally, the meta-parameters including the Neural

Network architectures have been selected to simultaneously maximize the performances for

both models. This constraint made it difficult to directly reuse existing model parts from the

literature, either from Gesture recognition or other related subjects. For example, we noted that

the Representation learning layers trained via the Hybrid NN-MMM set-up were more prone

to overfitting than they were in the BD-RNN model.

To optimize the numerous meta-parameters that define our models architecture (number

or type of layers, number neurons, activation functions, learning rate, etc.), a greedy cross-

validation strategy was used: starting from a sub-optimal Hybrid NN-HMM and RNN, settings

have evolved to the current configuration by iteratively selecting one of the most influential

parameters and cross-validating its optimal value. This is the only conceivable strategywe found

considering the combinatorial complexity of this optimization problem, and the heterogeneity

of settings to analyse.

Although our models have been redesigned for the purpose of our experiments, other publi-

cations have served as a source of inspiration as mentioned in the previous sections, with some

notable similarities and differences along the prediction pipeline:

1. Our body pose features are similar to the ones used in [Neverova et al., 2014; Seddik et al.,

2014; Wu et al., 2016], with pairwise joint distances in particular. We applied a few sim-

plifications compared to what was reported in the first two papers. The overall body size

was normalized, but not the limbs lengths as we feared it could distort the pose (cross

hands) and worsen pose regression errors. We found the Azimuth and Bending angles to

describe the limb orientation counter-intuitive, and replaced them with coordinates of

the vector normal to the plane formed by two consecutive limbs (noted ⃗n in Figure 3.7).

This three-dimensional representation matches the one of positions and pairwise differ-

ences but also removes issues with angle continuity between 0 and 2�.

Because we restrict the computation of features to the upper body parts joints, the dimen-

sion of our final feature vector is only 248 instead of 860 for [Neverova et al., 2014].

2. For the videomodule, [Pigou et al., 2016] uses a large rough crop of thewhole section of the

body on each side, which relaxes the need for a fine body pose detection. Like [Neverova

et al., 2014], we normalize the apparent distance but use a local contrast normalization

algorithm instead of normalizing themean and standard deviation on the cropped images,

as the latter behaves differently depending on the distribution of colours in the clothes and
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backgroundmore than the hands. Unlike both [Neverova et al., 2014] and [Wu et al., 2016],

we do not detect the dominant hand but rather augment the dataset to generate additional

left-handed samples. Indeed, a recognition system in real-life conditionswould lack access

to this informationwhich requires accumulatingmovement statistics over several gestures.

Besides, we do not think the subjects should be constrained to consistently use their

dominant hand. In an attempt to minimize the computational cost of our model, our crop

size is set to 32 instead of 72 × 72 in [Neverova et al., 2014] and 64 × 64 [Wu et al., 2016].

This also matches the input size Residual Convolutional Networks were designed for.

Finally, we restrict our input to the colour images converted to grey-scale and ignore the

depth unlike other publications. We are convinced that adding this modality would not

change the conclusions of our studies except for raw performance values, and discarding

it saved a considerable amount of computation time which was better invested into the

comparative analyses.

3. Although raw performances were, indeed, a secondary concern for our comparative study,

we sought to validate the correctness of our model by trying to achieve the best pos-

sible performances within the conditions imposed by our experiments. To do so, our

models combine several ideas or innovations. While these reused model parts have been

discussed previously, here is a summary for convenience: the temporal convolution was

suggested and tested by [Pigou et al., 2016], the multi-modal fusion strategy was proposed

in [Neverova et al., 2014], and the Hybrid NN-HMM model is similar the one in [Wu

et al., 2016], but also simply follows the standard transition model established over the

last decade [Pisoni, 1988]. Finally our models make use of various innovations such as

Rectified Linear unit activations, Batch Normalization, Dropout, Residual Units, Gated

Recurrent units and ADAM accelerated gradient.

For most parts, the code of our experiments has been written from scratch in Python: data

preprocessing, data sampling and loading, model architectures, some specific model parts such

as Temporal Convolution, the loss functions, and training routines with the Hybrid NN-HMM

procedure in particular. However, a lot of credit should go to several supporting libraries, all

open-source and publicly accessible, that provide optimized implementations of various elemen-

tary algorithms:

• OpenCV [Bradski, 2000] for some of the image preprocessing operations

• Theano [Theano Development Team, 2016] for fast GPU execution and automatic differ-

entiation of computation graphs.

• Lasagne [Dieleman et al., 2015] for the implementation of Neural Networks layers, accel-

erated gradients, and regularization operations.

• Pomegranate [Schreiber, 2018] for the implementation of HMM inference and training

algorithms.

• Scikit-learn [Pedregosa et al., 2011] for various machine learning algorithms.
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The manipulation of variable length sequences with high throughput requirements during

preprocessing, training, and inference, has proved to be particularly challenging. Indeed, the

dataset could not fit into memory so on-demand data loading, chunking, transformation and re-

composition was needed. Most of this logic has been externalized into a separate library called

SeqTools1 which will be maintained for reuse in future projects.

All the scripts were executed on a standard desktop computer equipped with an NVIDIA

1080Ti GPU, an Intel Xeon E5-1620v3 CPU, and the operating system ran a Linux kernel. On

this setup, the longest experiments took no more than four days.

3.5 Study 1: End-to-end Learning

In this section the models are simply trained “from scratch” according to the procedures de-

scribed previously without any modifications. This experiment serves three purposes: 1 – com-

pare the ability of the models for end-to-end learning, down to the input layers, 2 – establish a

baseline to build on for the following experiments and 3 – verify that the performances on our

implementation of the models is on par with the results reported by other publications.

To evaluate the model, the accuracy metric (Equation 3.4) gives an intuitive idea of the model

performances in terms of frame-wise correctness. However, it makes no distinction between the

different gesture classes and the non-gesture class. The reported score is computed by taking

the mean accuracy of the testing sequences, which is given by:

�cc(y, ỹ) = 1�
�∑
t=1

✶(yt = ̃yt) (3.4)

where (yt)1≤t≤� and (ỹ)
1≤t≤� contain the annotated and predicted labels for a sequence of �

time-steps.

Besides accuracy, the Jaccard index (JI, Equation 3.7) is also reported as it was originally

the scoring method selected for the Chalearn 2014 competition for which the Montalbano v2

dataset was assembled. Contrary to the edit distance which is popular in sequence recognition,

this metric not only penalizes classification errors but also mismatched alignments between

detections and targets; its value for one sequence is determined by the following expressions:

� = {y} ∪ { ̃y} ⧵ {∅} ▷ set of active classes (3.5)

∀l∈� ӿ�l(y, ỹ) = ∑t ✶(yt = l) ⋅ ✶(ỹt = l)
∑t max(✶(yt = l),✶(ỹt = l)) (3.6)

ӿ�(y, ỹ) = 1|�| ∑
l∈�

ӿ�l(y, ỹ) (3.7)

where | • | is the cardinal function, {•} designates the set of uniquely distinct elements from an

ensemble. The final reported score is the empirical estimation of the Jaccard Index on all the

1currently hosted at https://github.com/nlgranger/SeqTools

58



3. Comparing Hybrid NN-HMM with RNN

sequences of the dataset. This averaging notably discards any variation of length or difficulty

between sequences.

Both metrics are evaluated and averaged over the whole training, validation or testing dataset

to provide the final metric. Following the rules of the original competition, the length of the

sequences is not taken into account in the computation of the average.

3.5.1 Recognition Based on Body Pose Features

Table 3.1 summarizes the results for the Hybrid NN-HMM and the BD-RNN model using the

body pose features only. These inputs lie in a relatively low dimension space (248) and are

known to carry a lot of information about the gestures to detect. This is therefore the simplest

experiment to run at first. The proximity with state-of-the-art results demonstrates that the

restrictions to use a common preprocessing pipeline and representation learningmodule has not

impacted the performances. On the contrary, bothmodels achieve state-of-the-art performances

and the Hybrid NN-HMM only leaves a slight edge to the RNN on this experiment.

Model
Accuracy JI

validation test validation test

Hybrid NN-HMM (no filtering) 0.908 0.778
BDRNN (no filtering) 0.919 0.787

[Wu et al., 2016] Hybrid NN-HMM 0.783 0.779
Hybrid NN-HMM 0.911 0.912 0.789 0.788

BDRNN 0.921 0.922 0.814 0.811
[Neverova et al., 2016] DNN 0.831

Table 3.1 – Accuracy and Jaccard Index metrics with body pose features

As mentioned previously, the post-processing step that filters out gesture detections of abnor-

mal durations brings notable improvements to the JI score of the BDRNN. Our understanding

on this issue focuses on the architecture and training algorithms which probably fail to enforce

intuitive notions of compositionality between concepts as a human would expect. In this case,

the RNN does not naturally capture elementary notions such as decoupling the temporal ex-

tension from the signification of the gestures. Some multilayer Neural Network may “happen”

to provide interpretable behaviours (characteristic filters, responses to patterns, etc.), but our

experiment shows that architectural constraints such as a recurrent formulation or a temporal

convolution can be overridden in order to maximize the objective function.

Although the end-results are quite close after post-processing, the global metrics hide a differ-

ence in behaviour between the models which can be exhibited by comparison of the confusion

matrices in Figure 3.17. The difference between the confusion matrices is plotted as a heatmap

so that a blue shade at coordinates (i, j) indicates that more observations with label y = iwere

classified as ̂y = j by the Hybrid NN-HMM than by the BDRNN, and inversely for the red
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CNN might prove to be much more complex to train and should uncover any shortcoming in

the end-to-end learning capacity of each model.

As reported inTable 3.2, the gap between theHybridNN-HMMand theRNN is not negligible

on both evaluation metrics under this more complex architecture. The analysis of the errors do

not reveal any particular point of failure but rather an overall performance gap.

Model
Accuracy JI

validation test validation test

Hybrid NN-HMM 0.890 0.890 0.748 0.745
BDRNN 0.909 0.909 0.791 0.789

Table 3.2 – Accuracy and Jaccard Index metrics with hand crops video input

3.5.3 Analysis of Models and Interpretation of Prediction Er-

rors

To understand better our models, we analyse into more details the values of their parameters

and the most frequent error types to propose an interpretation thereof. Overall, both models

present the same kind of errors, so we do not necessarily provide the details for both models

unless the distinction contributes to the analysis.

Error Types and Statistics

For the RNN model on body pose data, the classification errors are divided into:

• 47% non-gesture frames classified as gestures. This category includes early detections,

late terminations or spurious detection of non-gestures segments that might contain

movements outside of the gesture vocabulary.

• 25% gesture frames into non-gesture. For example late detections, early terminations or

complete failures to detect any gesture at all.

• 28% gesture frames confused with other gestures, that is to say that a gesture was detected

but incorrectly classified.

Asmentioned previously, the balance between the number of errors for gestures and non-gesture

frames is largely controlled by the � parameters of our reweighing scheme in Equation 3.2. Its

value was cross validated to maximize the Jaccard Index metrics and set to 0.7 for the RNN and

slightly lower at 0.6 for the HMM since the latter faces more class imbalance with 100 gesture

states instead of 20 gesture classes.

By looking into more details at the confusion matrix in Figure 3.18, we observe that some

classes are more problematic on both input modalities. In fact, these mistakes are largely under-

standable considering the similarity between some pairs of classes in the data itself as shown in

Figure 3.19: some gestures have both similar pose and hand shapes.
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3.5 Study 1: End-to-end Learning

simultaneously. Basically, both inputs are read simultaneously and the embeddings h
pose

t and

hvideot from Figure 3.10, are concatenated to form a joint representation vector. The remaining

parts of the models are left unchanged.

Since the video image part is much slower to train and certainly much more complicated, a

competition between the modalities may occur that would lead to under-fitting the CNN and in-

vesting all the training effort on the body-pose side of themodel. To avoid this issue, theModrop

technique introduced by [Neverova et al., 2014] is used: it is a variation of the Dropout technique

that completely drops the whole feature vector for one modality so that the model is forced to

deal with the remaining ones. This method was selected because it preserves the architecture

of our models and we do not believe the Modrop technique will impact differently the Hybrid

NN-HMM or the BDRNN model. In our case, the body pose features are dropped 30% of the

time whereas the rate is set to 10% only for the hands images, due to the high computational

cost of training the whole model, these values have only been very validated very coarsely.

Table 3.3 summarizes the results for all experiments with the additional results for the fusion

set-up. One can observe that both models benefit from having the two modalities together,

meaning that they are both able to improve their performances given additional data, even

if it comes with a completely different structure and nature. The Hybrid NN-HMM partially

reduces the difference of performance with the RNN compared to the video image experiment,

but it is difficult to conclude whether the Hybrid NN-HMM can improve better on complex

multi-modal data or if the BD-RNN model has simply hit its maximum learning capacity on

this specific dataset. Indeed the results by the BD-RNN model are close to the state of the art

results reported in the literature for comparable inputs.

Model Modality
Accuracy JI

validation test validation test

[Wu et al., 2016] Hybrid NN-HMM P 0.783 0.779
Hybrid NN-HMM P 0.911 0.912 0.789 0.788

BD-RNN P 0.921 0.922 0.814 0.811
[Neverova et al., 2016] DNN P 0.831

Hybrid NN-HMM (P)V 0.890 0.890 0.748 0.745
BDRNN (P)V 0.909 0.909 0.791 0.789

[Neverova et al., 2016] CNN (P)VD 0.836
[Pigou et al., 2016] BD-RNN VD 0.906

Hybrid NN-HMM PV 0.926 0.927 0.829 0.826
BDRNN PV 0.935 0.934 0.852 0.846

[Neverova et al., 2016] DNN + CNN PVD 0.868

Table 3.3 – Accuracy and Jaccard Index metrics on various modalities: Pose P, implicit
pose for bounding box placement (P), colour images V and depth maps D.
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Experiments and Results

For both the Hybrid NN-HMM and the RNN based models, the temporal convolution improves

the performances and off-loads the next detection stages from processing short temporal pat-

terns. Meanwhile, the Hybrid NN-HMM and the BD-RNN can focus on long-range temporal

structures. Since the same Temporal Convolution layer is used for both models, the comparison

between the two keeps its fairness. However, it would be useful to stress the reliance of the two

temporal models on this preliminary step. Indeed, little reliance would indicate robustness to

the quality of the input, and to the temporal scale of patterns to be detected, two desirable prop-

erties when expert knowledge about that input is lacking. As a result, a series of experiments is

run with varying context sizes to measure the impact on the final detection metrics. Since the

number of parameters in the temporal convolution is proportional to the width of the window,

additional experiments have been run with strided convolutions or fewer filters so that the num-

ber of parameters remains comparable. The experiment is run over the body-pose features for

which both models are known to perform similarly well.

Observing the performance metrics reported in Figure 3.28, the Hybrid NN-HMM displays a

notable and continuous degradation of performances as thewindow size diminishes. Thismeans

the transition model of the HMM by itself is not capable of capturing the finer short-term

temporal patterns. Moreover, the filtering effect of the transition model, which disambiguates

sequences of states by looking at the whole sequence, fails to compensate the lower posterior

model accuracywhichdrops from0.790with awindowof 15 frames down to 0.708with 3 frames.

By contrast, the RNN-based model demonstrates an impressive resilience to the amount of

temporal context provided. We attribute the slight score regression at the largest window size

to over-fitting. To summarize, the Hybrid NN-HMM relies on its state posterior model to learn

and process small abstract temporal patterns before running the transition model. The latter

enforces an intuitively sound structure on the gestures. Early temporal modelling remains a

mostly optional stage for the RNN or can be reduced to a bare minimum. It is therefore not

surprising that many papers decide to skip any preprocessing layers or temporal context-based

embedding and use RNN layers right from the start in their model [Graves et al., 2006, 2013;

Graves and Jaitly, 2014; Bluche, 2015; Plappert et al., 2017]. One should ponder the value of

this advantage to the fact that short sequence filtering (Section 3.5.1) is necessary to eliminate

numerous spurious detections: the RNN manages to learn and detect temporal patterns of any

length but fails to strongly enforce a major characteristic of gestures which is their duration.

Interestingly, the number of parameters in the Temporal Convolution layer has little impact

on the metrics which implies that it is indeed the context size alone that causes the observed

variations and not the learning capacity or some under-fitting effect.

Our results rejoin similar observations made by [Bluche, 2015] on handwriting recognition.

However, their experiments introduced context by concatenation of input frames instead of

temporal convolution which is more easily interpretable, and they have not assessed the impact

of added parameters on under/over fitting. By contrast, [Pigou et al., 2016] advocates using

temporal convolutions in combination with Bidirectional LSTM. His experiments compare
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General Remarks

Before concluding this study, a reopening of the discussion onwhat is actually learnt by the RNN

seems appropriate. In the first end-to-end experiment, we observed that the RNN based model

did not seem to learn general properties of gestures when maximising the training objective,

for instance their average duration. We observe here that the GRU-RNN can simultaneously

model a broad range of inputs types including short-term and long-term patterns. Moreover,

the GRU-RNN demonstrates flexibility by compensating the limitations from the recurrent

layer with other model parts when possible, here with Temporal Convolution. It turns out that,

even though the model actually seems to learn a hierarchy of features, it failed to deduce general

characteristics of gestures (what is their expected duration) because it was not compelled to do so

by the objective function, and because the architecture of the Neural Network is not restrictive

enough to enforce it.

3.7 Study 3: Specialization and Generality of Learnt

Representations

Transfer Learning Experiments

The previous experiment varied almost directly the input quality of the temporal model via the

context size parameter. But another interesting aspect to explore is the specificities and qualities

of the representations learnt and then extracted from the input in order to feed the hybrid NN-

HMM and BDRNN models respectively.

The so called Deep Neural networks family is often reported to draw some of its success

from their ability to jointly train representation learning and task specific layers in an adequate

manner. Besides, the learnt representations of the input produced by the intermediate layers

demonstrate fairly strong generalization capabilities across different data sources from related

domains. It is therefore not uncommon to see a Computer Vision model pre-trained on a large

dataset and subsequently reused in other Computer vision tasks where the amount of data is

not sufficient to properly fit a full end-to-end Neural Network.

The experiments from this section aim to observe the relationship between the temporal

models, either the HMM’s transition model or the BD-RNN, and the preceding representation

learning layers. More precisely, the experiments are conceived to exhibit the reliance on a

model-specific representation and the ability to produce generic and reusable features. For that

purpose, we propose to exchange the representations learnt through each of the two temporal

models. “Representation” here designates the last hidden vector of the representation learning

layers. Figure 3.30 summarizes the modified training and inference procedure in the case of the

Hybrid NN-HMM to BD-RNN transfer experiment.

Neural networks have often demonstrated a propensity to facilitate transfer learning of rep-

resentations, especially in the domain of computer visionwhere large enough annotated datasets
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used to be scarcely available andwould therefore be re-used to pre-train largemodels before fine-

tuning on the actual task. In this case, the same dataset is used before and after the transfer, and

only the model is changed so a fair level of generality and re-usability is expected between the

embedding vectors. By contrast, any specificity required from the embedding vectors of either

model may result in catastrophic performances loss during the transfer learning experiment.

Besides the adaptability and generality of representations featured by each model, the com-

parative study of the performances between Hybrid NN-HMM and BD-RNN is pushed further.

In particular, we would like to verify whether the recurrent layers alone explains the slight ad-

vantage of the RNN based model reported in section 3.5 or if end-to-end training is necessary to

achieve maximum performances. For that reason, no fine-tuning is performed after the transfer

so that a model cannot unlearn the features from the other model and imprint new ones instead.

Table 3.4 compiles the results of the transfer learning experiments. In all configurations,

training over the transferred features incurs a small drop in performances compared to end-

to-end learning, but the loss is small enough to assume compatibility between the different

representations. For both the body pose and video images of the hands, the RNN based model

performs equally or better than the HMM fitted over the same data vectors via its posterior

model. This confirms the assumption that recurrent neural networks are slightly more capable

at learning temporal patterns than the state transition model regardless of the posterior model,

and that RNN are robust with regards to the nature of their inputs.

Model Source Accuracy JI �source �end-to-end

HMM RNN pose embeddings 0.899 0.752 −0.059 −0.036
RNN HMM pose embeddings 0.918 0.794 0.007 −0.016

HMM RNN hands embeddings 0.876 0.707 −0.081 −0.038
RNN HMM hands embeddings 0.900 0.758 0.013 −0.031

Table 3.4 – Performance metrics in transfer learning experiments. �source indicates the
difference with the Jaccard Index of the end-to-end trained model that provided the
representations, �

end−to−end
the difference with the model trained end-to-end from

scratch.

For completeness, and although it is not directly related to the objective of this experiment,

a special note should be given about the hyper-parameters in these experiments. To facilitate

early stopping and the selection of the best iteration, the learning rate had to be reduced so

that the BD-RNN-based architecture would not overfit already in the first few training epochs.

Besides, the re-weighting parameters on the loss functions in equation 3.2 was readjusted down

to � = 0.2 from its original value of 0.7, which equates to almost disabling the re-weighting of

observed classes frequencies. It would therefore seem that Neural Networks are only affected

by imbalanced classes when the input layers are being trained. This hypothesis remains open

for further investigations.
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BDRNN as a Transition Model over Posterior State Probabilities

In this experiment, we consider the posterior state probabilities p(st|�t) as a form of represen-

tation for the input observation sequences. While it might seem unusual to pass such an input

to a Neural Network, these values constitute the actual input to the temporal (transition) model

p(st|st−1
) contrary to the representation vectors that we used previously. Neural networks nor-

mally process real vectors of values distributed in a small range around zero, these represen-

tations are distributed meaning that information is encoded across multiple dimensions, and

sometimes structured so that the similarity or difference between vectors has a semantic inter-

pretation. By contrast, the state probability vectors p(st|�t) complies to different constraints:

unit sum value, high sparsity with many unrelated dimensions (states), relatively low dimension.

This experiment tests whether the BD-RNN model can mimic the HMM transition model

given the state probability vectors. The logic of the previous experiment remains untouched

apart from the slightly different transfer.

Table 3.5 summarizes the results of this experiments. We observe that even though a drop

in performances is observed, the RNN copes surprisingly well with this special type of inputs,

maintaining the same level of performances that the HMM achieved.

Model Source Accuracy JI �source �end-to-end

HMM RNN pose embeddings 0.899 0.752 −0.059 −0.036
RNN HMM pose embeddings 0.918 0.794 0.007 −0.016
RNN HMM pose state posteriors 0.910 0.782 −0.006 −0.029

HMM RNN hands embeddings 0.876 0.707 −0.081 −0.038
RNN HMM hands embeddings 0.900 0.758 0.013 −0.031
RNN HMM hands state posteriors 0.892 0.747 0.002 −0.042

Table 3.5 – Performance metrics for the BDRNN trained over posterior state probabil-
ities.

3.8 Discussions and Remarks

Comparison between Hybrid NN-HMM and BDRNN

With this series of parallel studies, a comparison of two temporal models has been proposed on

a fair test-bed that goes as far as sharing the representation learning layers to eliminate as many

uncontrolled variables as possible. Our transfer learning experiments show that both models

can be split into separate parts, with the representation layers beingmore or less interchangeable.

The temporal models are therefore not tied to a specific representation or do not lead to learn

highly specific features that cannot be found or used by the other model.

We have shown that Hybrid NN-HMM models can perform on-par with BD-RNN solutions,

although it takes some targeted optimizations to do so. Having implemented the models our-
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selves, we were able to pinpoint influential meta-parameters and settings. Different influential

training aspects are reported, notably how to manage the priors and class imbalance (that par-

ticular issue also affects the BD-RNN model to some extent). Our experiments showed that one

of the apparent shortcomings of the HMM model is its reliance on providing temporal context

of sufficient size to the state posterior model. This latter model sees its performances greatly

enhanced by the addition of context, which in turn benefits to whole Hybrid NN-HMM model.

Optimizing this particular aspect through the representation learning layers yields substantial

improvements and constitutes a central point of interest in the design of Hybrid NN-HMM

models.

In most of our experiments, the BD-RNN models equipped with gated units tend to perform

at least slightly better than theHMMcounterpart, an unsurprising outcome in light of numerous

other results reported in the literature on continuous sequence recognition.

A more interesting aspect for us stems from the robustness of the RNN with gated units in

general: with end-to-end learnt features or posterior state probabilities, with or without tem-

poral context, the BD-RNN often maintain fairly good results and demonstrates a remarkable

robustness and adaptability. Nevertheless, throughout the extended testing campaign of exper-

iments, the black-box nature of the Neural Networks made optimisation and debugging very

challenging at multiple occasions.

Deep Learning and its Impact on Model Properties

A particularly interesting property that showed up through our experiments is the decoupling

between interpretable parameters or values and the actual behaviour of theNeuralNetwork. For

instance, the combination of Temporal convolution, recurrent formulation of the RNN layers,

and hierarchy of patterns from short-term to long-term that we observe all-together fail to

prevent absurdly short or noisy predictions. Instead, Neural Networks seem to be largely driven

by the objective function, and desired properties should be preferably encoded through this

mean. To summarise: architectural decisions unlock the capability to learn particular patterns

more than they constrain the model to follow them.

This personal observation rejoins otherworks. For example, the contributors of the Inception

Network remark:

One must be cautious though: although the Inception architecture has become a

success for computer vision, it is still questionable whether this can be attributed to

the guiding principles that have lead to its construction. Making sure of this would

require a much more thorough analysis and verification. (Szegedy et al., 2015)

[Zhang et al., 2016] offers an original series of experiments to directly analyse this problematic,

but we believe that many other publications follow an unstated objective of gaining more con-

trol over what is learnt by Neural Networks. It should be noted that this hypothesis does not

contradict other explicitly stated objectives such as performance maximization, computation

efficiency or training speed acceleration, but merely characterizes contributions with a shared

orientation.
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To support this idea, we resume in the next paragraphs a brief overview of the evolutions in

Neural Network based Computer Vision over the last decade.

The first breakthrough with Deep Neural Networks was achieved by stacking up many lay-

ers with the intention to capture the compositional nature of visual object [LeCun et al., 2015]:

bottom layers extract low-level features such as edges that get gradually combined and organ-

ised into more abstract and elaborate features by successive layers along the way up to the final

classification layers. Having solved some major difficulties in training this class of model (with

improved non-linearity functions, gradients descent methods, regularization techniques, and se-

lection of sufficiently large datasets), it has become possible to exploit the exponential modelling

complexity that comes from stacking many layers. This architecture shares some similarities

with the Primary visual cortex of animals which is often quoted as a source of inspiration for

the Artificial Neural Network equivalent [Fukushima, 1980; Lecun et al., 1998]. The intuitive

motivation is supported by how easily the generic middle level features extracted by these CNN

models can be reused across a whole spectrum of Computer Vision applications: one can split

the model at a given layer to satisfy a certain level of compromise between specialization and

re-usability.

Nevertheless, after a brief period of development that lead to particularly large and deep

models such as VGGNet [Simonyan and Zisserman, 2014], later evolutions of Neural Networks

have focused on more targeted supervision and more efficient computation paths. For exam-

ple, the GoogLeNet model with its 22 layers uses multiple intermediate outputs, each bearing

a training objective so that deeper layers receive a more direct supervision signal than if the fi-

nal output alone was guiding the training process. Gated architectures such as Residual Neural

Networks [He et al., 2016; Zagoruyko and Komodakis, 2016] reorganise the usual stacked archi-

tecture by inserting short-cut paths into the computation graph so that the model can decide

whether or not one layer is necessary for the computation of the output prediction. Dense Neu-

ral Networks [Huang et al., 2017] push the concept one step further by systematically binding

each layer with the outputs of all the preceding ones. Reversing the viewpoint on this method

from top to bottom, the gating method can be interpreted as yet another way of connecting the

objective function more directly to the lower layers of the model.

Most of the above-mentioned techniques rely on static computation graphs, that is to say

the series of transformations from the input to the prediction is mostly deterministic (with

the notable exception of noise injection for regularization and minor random transformations).

Long Short-Term memory units [Hochreiter and Schmidhuber, 1997] still use a static execution

graph but introduce some variability with the use of dynamic gate values.

Static graphs introduce fundamental computational limitations in terms of computational

cost, but also tend to restrict the model to a more monolithic nature. More recently, a lot of

effort has been invested on partial model execution and more specifically attention models.

Similarly, to what the human brain does, attention in neural networks purposely restricts the

extent of inputs taken into consideration to a specific point in space or time in order to meet

computational requirements. With an appropriate selection of attentional target, it is assumed
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that the model will be able to provide a correct prediction at a fraction of the cost it would take

to process all available inputs. Besides, the elimination of irrelevant surrounding information

might reduce input noise and therefore prediction errors. These attention models add more

supervision into how the predictions are constructed and lead to more interpretable models as

a side effect.

Finally, a related approach activates parts of the model instead of reading parts of the input.

A notable example is given by [Shazeer et al., 2017] where a model containing multiple billion

parameters is trained but only uses a manageable portion of it at a time. The authors of this

paper propose a model and a training method that distributes the modelling work across a large

mixture of experts out of which only a sparse combination is used at any given time. Once again,

we can view this method as a strategy to control better what is learnt in each part of the model:

here the use of experts introduces more specialized sections into the model.

To conclude, we do not believe one of these techniques will specifically predominate, but we

point out that gaining more control on what Neural Networks learn may represent a substantial

part of future researches in this field.
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Chapter 4

One-Shot Learning for Gesture

Recognition

One-shot and few-shots learning is defined as the process of learning and generalizing new con-

cepts from a single or a few examples, for instance, learning to recognize new classes of objects

never seen before from single images [Fei-Fei et al., 2006], or new words from single utterances

in speech recognition [Lake et al., 2014, 2015; Santoro et al., 2016]. Plenty of applications may

benefit from one-shot capable models, ranging from biometric verification [Chopra et al., 2005]

to robotic arm programming [Duan et al., 2017].

For a long time, one-shot learning has remained beyond the reach ofmany supervised learning

models for any practical application, as most of them require numerous samples from each

label in order to grasp the underlying factors of variations. Such models trained naively over

a few samples rapidly over-fit because they are not able to distinguish sample-specific features

from generalizable concepts. Consequently, one-shot or even few-shots learning has often been

considered an inherent advantage of human intelligence over machine learning.

It is reckoned that humans succeed in few-shot learning by exploiting a life-long worth of

experience and general knowledge. This knowledge helps to promptly prune irrelevant features

from new observations and instead focus on pertinent concepts for the task to achieve. For

example, a human will quickly abstract away the notion of colour and viewpoint when tasked to

separate images of dogs and cats. This ability to quickly prioritize concepts in preparation for

a task is called inductive bias [Caruana, 1993; Thrun, 1998] which is more specifically defined

as “any basis for choosing one generalization over another, other than strict consistency with

the observed training instances” [Mitchell, 1980]. Inductive bias is now observable in virtually

all Machine Learning paradigms related to one-shot or few-shots learning, either implicitly or

explicitly, and constitutes a solid basis to help overcome the challenge of learning with little data.

The work presented in this section will cover sequence recognition algorithms, where plau-

sible applications may include robotic assistants controlled via gestures or voice. Such devices

should be able to learn new commands or tasks tailored to its user without requiring an exten-

sive enrolment stage or any expertise regarding Machine Learning. In this mindset, the work
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presented here will focus on isolated sequence recognition with a small but dynamic vocabulary

of gestures, each learnt from one or a few examples. Nevertheless, all effort invested to reduce

the amount of training data necessary to fit a model will strongly benefit to the field of sequen-

tial data recognition as a whole. Indeed, the acquisition and annotation of its datasets is often

slow, tedious and expensive.

The following section will introduce the main trends and notable contributions in the field.

Our work primarily focuses on sequential data, but since this aspect has received remarkably

little attention in the context of one-shot learning, the presentation will concentrate on more

general topics still applicable to our case. In particular, we will exhibit the common canvas

on which Neural Network based solutions build up and then summarize the different axes of

research followed by recent contributions.

After a statement of our objectives, we will provide a description of the supporting dataset for

our experiments. Then, we will introduce our baseline model and a series of suggested improve-

ments. Several studies follow to assess the impact of these propositions and feed a discussion

on predominant properties which affect the design of one-shot capable sequence recognition

models. Finally, we report experiments that we run using Matching Networks [Vinyals et al.,

2016b], a model which follows the principles of meta-learning [Schmidhuber, 1987; Hochreiter

et al., 2001] for its design.

4.1 Overview of One-Shot Learning

In general, a one-shot or few-shots capable classifier is only requested to distinguish a few classes,

usually in the order of �(10). But to do so, only S annotated samples are provided for each

class to train on, where S is known as the number of training shots and can be as little as one.

The model is then tested and evaluated on testing samples from these classes like any regular

classifier.

Recent publications have adopted the term “episode” [Santoro et al., 2016] to standardize the

evaluation procedure of a one-shot capable model. An episode comprises several steps:

1. Sampling of a vocabulary subset �ep from a large pool of available categories �.

2. Sampling of S annotated training shots for each class in �ep, noted (�ep, � ep).
3. One-shot or few-shots learning on the training shots (�ep, � ep).
4. Episodic testing on additional samples drawn from the same vocabulary subset �ep.

A formal definition is provided later in section 4.2.

One must insist on the distinction between any training phase prior to episodes and the

training phase in step 3 above. Early training typically aims to acquire background knowledge

or inductive bias which is kept across episodes. By contrast, the episodic framework is a testing

procedure which aims to evaluate the capacity of the model to learn new classes it has never seen

before. In other words, testing the generalization capacity is the true purpose of the episodic

procedure, whereas one-shot learning is only one step of each episode, albeit themost prominent
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one. As a result, any modification made by the one-shot training step to the model is reset after

each episode, otherwise the classes would not be new after their first appearance.

Adopting this testing methodology implies several additional properties. First and foremost,

the overall pool of distinct testing labels observed across episodes � must be large enough so as

to thoroughly assess generalization to any new class.

A training procedure prior to the episodic testing phase need not necessarily encompass

the notion of episode. In any case, it will most certainly involve not one but a large number

of classes to simulate the testing conditions and avoid specializing on these training classes.

Moreover, the testing episodes must not involve classes from this training phase. Otherwise,

the model would cheat and learn to recognize those categories but fail dramatically on unseen

classes, which contradicts the very purpose of one-shot learning.

Since the “training” step that happens inside the episodes is so minimal, virtually all para-

metric models rely on this prior training phase. The latter’s purpose is to acquire preliminary

background knowledge and develop the inductive bias which is often crucial to the success of

the model. To understand the frontier between this preliminary learning phase and episodic

learning, some authors draw a comparison with the long-term memory and working memory

from humans [Santoro et al., 2016; Graves et al., 2014; Kirkpatrick et al., 2017]: the working

memory helps to memorize recent observations and the method to process the current task,

whereas long-term memory outlives individual episodes to accumulate reusable general pur-

pose knowledge. We emphasise the double purpose of memory in this context: it can recall both

observations and the method to process them.

To facilitate the comprehension of this episodic testing framework and its consequences for

the preceding training procedure, we consider an imaginary task consisting in one-shot learning

animals from images. We suppose that users of this model will only ever use it on a handful of

classes, each specific to a particular user, and that the model cannot require more than a few

samples of these classes to become operational. For example, user 1 works with cat, dogs and

horses, user 2 has snakes, eagles and foxes, etc. In this example, each user corresponds to one

episode with its own instance of �ep. To train and evaluate the model, a dataset with a large set

of races � must be assembled using annotated images of horses, dogs, cats, salmons, goldfishes,

dolphins, tortoises, etc.

Assuming a Convolution Neural Network provides a feature extraction module in this case,

the few training shots of each episode cannot be relied on in order to fit the filter parameters

without over-fitting. Instead, a pre-training step must run prior to the episodes. For example,

the CNN layers can be temporarily extracted and topped by a few classification layers, then

trained for multi-class discrimination on a subset of randomly chosen classes from the datasets.

Once trained, the layers below the classification ones are then transferred back into the one-

shot model to serve as general-purpose feature extractors. Obviously, the resulting model is

biased toward the animals it has already seen, so these won’t be used for testing. Instead, testing

will sample episode vocabularies �ep from the remaining classes in order to assess how well

the model generalizes to unseen animal races using episodic training shots only. Moreover, the
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model is reset to its pre-trained state after each episode in order to avoid adaptation on these

testing samples.

Although pre-training the CNN might be vital to the success of this model, one shall not

disregard the importance of an episodic training (step 3 of the episode). If, for example, themodel

is destined to serve scientists each working on specific species such as reptiles or fishes, then

each episode will certainly involve different sets of relevant features for classification. Episodic

specialization would therefore have the potential to substantially improve the adequacy of the

model for each specific user.

Based on this general description of the one-shot classification paradigm, the following sec-

tions introduce the framework used by most one-shot capable Neural Network models, a basis

for many subsequent extensions.

4.1.1 Observation Embedding and Memory-based Classification

As mentioned previously, learning from a few episodic training shots and classifying subsequent

observations raises twomajor difficulties: learning quickly and avoiding over-fitting given some-

times as little as one sample for each class. Under such constraints, the k-Nearest Neighbours

(kNN) is often one of the first considered options: this model is relatively resilient to over-fitting

due to its non-parametric nature and makes an economical use of available samples. For any

test sample �, and training shots �ep, � ep, the Nearest Neighbour prediction is given by:

̃y = y
ep

k∗ where k∗ = arg min
k

‖� − �ep

k
‖ (4.1)

However, the correctness of this prediction lies on the hypothesis that samples with a shared

label tend to cluster together, and conversely scatter away for distinct classes. In practice, this

assumption is rarelymetwith raw sample data. For instance, the euclideanmetric between image

pixels rarely correlates with the semantic proximity of the represented objects as it lacks colour

or viewpoint invariance. Nevertheless, the desired property is attainable by first projecting the

samples into a suitable embedding space using either crafted transformations or automatically

learnt models such as Neural Networks.

Before discussing the multi-class situation and the kNN classifier involved, we focus on

the identity verification task with the Siamese Neural Network [Bromley et al., 1993; Chopra

et al., 2005] architecture. This small detour via a simpler problem serves a didactic purpose. A

verification model is charged to produce a binary classification between authorized users and

impostors. When challenged with a pretended identity and a test observation (which might

belong to an impostor), the model produces a matching prediction grounded on a set of one

or more enrolment observations used as references. Biometric access control at companies

entrances are one such example: each company’s security database contains reference shots,

employees’ badges provide the pretended identities and the biometric scanning devices the

test observations. Access is granted based on a verification run between these three sources of
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example, one can generate positive pairs and negative ones: cat-cat, mouse-mouse, horse-dog.

As a consequence, the training procedure from the verification model can still be used to train

the embedding function for a one-shot classification model, but the threshold-based classifier

must be replaced. The choice usually narrows down to non-parametric methods which tend

to be more resilient against over-fitting: k-Nearest Neighbours or “Shepard’s Method” [Thrun,

1998] are two such methods. These classifiers take all training shots from an episode as input

and infer the class of test observations.

This particular training and inferencemethod noticeably ignores the notion of episode during

pre-training. The Neural Network is simply optimized to learn general discriminative features

for any pair of observations ignoring all other samples. During episodic testing, the Neural

Network remains frozen and the kNN does not have any parameters to train, so the actual

episodic learning (step 3 of the episode) remains merely a memorisation exercise of the reference

training shots �ep, � ep, saved for later comparison against the test samples (step 4).

Many contributions in one-shot learning can actually get cast into this fundamental paradigm:

training of a general purpose embedding function maximizing between-class variance and min-

imizing the intra-class one, then followed by a task specific classification using little to no train-

ing. Additional refinements are then drawn from various related fields of Machine Learning.

The following section presents some of the most prominent ones as of today.

4.1.2 State of the Art and Related Works

Transfer Learning

Transfer learning designates a learning paradigm where training a model involves two consec-

utive stages. The first one uses a distinct but related dataset while the second one matches the

actual task of interest. For Neural Networks, this means training parts or all of the model on a

related task and dataset, and then pursuing training on the actual task objective with its dataset.

These two stages map to the notions of pre-training and fine-tuning a model respectively. It

should be noted that the subset of parameters learnt during pre-training may or may not receive

ulterior fine-tuning.

Through Transfer Learning, two related purposes are followed:

Representation learning: When the factors of variation in the samples from each dataset are

similar, it is expected that pre-training will learn useful and reusable pattern detectors in

the bottom layers of Neural Networks. For a large model with a small target task dataset,

training these layers is impossible without the help of this pre-training step.

A successful transfer requires from this pre-training dataset to present inputs of a similar

nature to the fine-tuning and testing data. Moreover, if the objective followed during

pre-training is different from fine-tuning, it must lead to learn patterns that are relevant

nonetheless. For example, one may pre-train an image classifier to distinguish objects

and then transfer its lower layers into an animal detection model.
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How compatible different tasks and datasets are ismostly based on intuition and expertise.

Moreover, one must also decide which parts of the model can be pre-trained and which

ones might be adversely affected by the specialization on a different task. To assist in

these choices, some of the most influential properties to consider are the size of available

datasets, the appreciation of the proximity of pre-training inputs with the final ones and

the expected role played by the different modules in the model.

Generalization by hypothesis learning and specialization: By hypotheses learning, we mean

learning the nature of features expected to be found in the data, for examples edges and

patterns in images.

With Neural Networks, one may assume that most of the hypotheses leading to good gen-

eralization are induced by careful architectural choices and regularization. For example,

shift invariance in images is emulated by using a combination of convolutional layers and

local pooling operations. However, [Zhang et al., 2016] observed that popular deep Neu-

ral Network architectures actually (over-)fit easily given totally random data to train on,

suggesting that Neural Networks do not enforce assumptions about natural images by

design. On the contrary, their experiment suggests that robustness and generalization ca-

pabilities are acquired, and that reusable and useful patterns must be learnt from the data

samples while optimizing the model for a given task. As a result, Transfer Learning might

also bring a form of regularization by imprinting useful assumptions extracted from the

pre-training dataset into the model.

A successful pre-training therefore serves two different purposes. Firstly, it optimizes models

for the target one-shot task as side effect of optimizing the pre-training objective. Learning

these patterns would be hard in a smaller dataset. Secondly, it enforces patterns which are not

prone to over-fitting but rather relevant and generalizable to all natural occurrences of input

observations.

Multi-task Learning

Directly related to the transfer-learningmethod,Multi-Task learning aims tomaintain the ability

of the model to perform multiple tasks it has been trained for. This is especially appropriate

in a situation more generally known as catastrophic forgetting [McCloskey and Cohen, 1989;

Kirkpatrick et al., 2017]where learning a new task or fine-tuning suddenly eliminates knowledge

from previous tasks.

For instance, [Shi and Kim, 2017] performs action recognition while regressing the body pose

as a side result. Body pose, while not strictly necessary, is known to carry a lot of information

about the gestures; adding it as a side target will help the network train on a slightly more

accessible objective and improve the action recognition faster as a side effect.

At the edge between Multi-task Learning and Transfer learning comes Incremental or Life-

Long Learning, where the model has an ever shifting objective such as learning new classes

as learning progresses. In the robotic assistant case we mentioned as an example, this would
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memory from the Neural Turing Machines model [Graves et al., 2014]. A related work has been

produced by [Vinyals et al., 2016b] which also processes episodic training shots sequentially, but

manages a short-term memory with the help of an attention model, allowing the model to peek

further back at previous hidden state representations instead of being limited to the current one.

More generally, the idea of meta-learning appears to influence most of the recent publica-

tions related to one-shot learning [Santoro et al., 2016; Vinyals et al., 2016b; Duan et al., 2017;

Woodward and Finn, 2017], with ambitions to improve performances and episodic specializa-

tion without sacrificing generalization.

4.2 Objectives and Methodology

With our work, we would like to address few-shots learning of variable length sequences, a

domain that has received relatively little attention so far, even though numerous potential ap-

plications exist in speech or gesture recognition. Foreseeable use-cases include: adding custom

commands in a vocal assistant, teaching new tasks to a robot, and more generally giving the pos-

sibility for an end-user to program additional features in a device without resorting to a long

and complicated enrolment process.

Our contribution aims to lay the foundations for a general purpose and reusable model to

start with one-shot learning over sequential data. Due to the added complexity of learning with

few-shots, we restrict the challenge to isolated sequences with a single instance to detect, for

example a video containing one gesture, or a recording of one spoken word.

Formally, let � = (�k)1≤k≤N and � = (yk)1≤k≤N be a dataset of N labelled sequences, S
the number of training shots, V the number of distinct classes in each episode. The evaluation

metric is then derived from the following expressions, where the ep superscript is applied to

episode-specific values:

�ep ∼ � V so that ∀i , j, vepi , v
ep

j (4.5)

draws a vocabulary subset of V distinct classes. Let �(v) = {i|yi = v} index all available

samples for each class label, then

�ep ∼ �(vep
1

)⏟
×S

× ⋯ × �(vepV)⏟
×S

(4.6)

gives the indices for the S training shots from each class of this episode, and:

k
ep

test ∼ (�(vep
1

) ∪ ⋯ ∪ �(vepV)) ⧵ �ep (4.7)

a testing sample to evaluate the model.

(4.8)
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Given the training samples�ep = (�j)j∈�ep , � ep = (yj)j∈�ep and the test observation�k
ep

test
, the

model should predict the true label ykeptest . Often, the predictions have a probabilistic interpretation

as posterior class probabilities. The model therefore returns p (y = v|�, �ep, � ep). In this work,

the prediction ̃y will be evaluated by the accuracy metric:

̃y = arg max
v∈�ep

p(y = v|�, �ep, � ep) (4.9)

�acc = ��ep,k
ep

test
[ỹ = ykeptest] (4.10)

and the rank metric, which gives the rank of the correct class within the sorted predictions

probabilities.

Most papers, and particularly the ones using the Siamese architecture, divide the model into

an embedding function �et ∶ � ↦ � and a classifier � ∶ �, �ep, � ep ↦ p (y = v|�, �ep, � ep).
Often, little to no episodic specialization is required from the embedding function, while this

property gets delegated to the second stage which must remain resilient to over-fitting. In

the Siamese model, the Neural Network remains completely independent of any particular

episode, and the non-parametric kNN takes care of the classification using the training shots.

Nevertheless, this first stage must produce reusable discriminative representations over the

whole spectrum of observations in the domain.

Given the objectives stated above, we have decided to focus on Neural Network based solu-

tions. To avoid misunderstandings, this decision has not been based primarily on performances,

but on the basis ofmodularity and flexibilitywith regards to supported input data typeswhichwe

seek to have in our contribution. In fact, contrary to other topics such as image or speech recog-

nition, their is no clear performance advantage to using Neural Networks once the few-shots

constraints are imposed, but we would like to propose a model that is not specific to a particular

type of sequences. To illustrate this compromise, a notable example is brought by [Lake et al.,

2015] and [Rezende et al., 2016]: the former provides a very compelling use of an interpretable

generative probabilistic model which implements a fine understanding of the handwriting pro-

cess into their model. They decompose character drawings model into an elaborate hierarchy of

sub-models starting with elementary primitives deformed into character parts which are them-

selves tied into strokes1. These strokes are in turn assembled according to a relational model to

form a complete character. The second paper, by contrast, features a Neural Network offering

enough adaptability to process not only handwritten characters from the same dataset, but also

videos of facial expressions and house street numbers.

To the best of our knowledge, the closest contribution in one-shot learning that also uses

Neural Networks for sequence recognition comes from [Pei et al., 2016], where a vanilla RNN

is proposed as an embedding function and trained for verification, following a Siamese set-up

as presented in section 4.1.1. Their model is capable of producing a fixed size representation

conditioned on the full sequence of inputs using the hidden states of a RNN. They evaluate their

1Parts of character drawn without lifting the pen.
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model on a series of pair-wise verification tasks: spoken words, speaker identities, signatures

and gestures.

After a brief section dedicated to the dataset supporting our experiments, a series of sections

present our work and propositions on one-shot sequence recognition. We have decided to build

our model by drawing inspiration from the proposition by [Pei et al., 2016], with the difference

that our work seeks to achieve episodic multi-label classification. A section is dedicated to the

introduction of this model and the modifications that we propose to improve its performances

and ensure the compatibility with gesture data. This section also include a description of the

training procedure which completes what we view as our baseline system. The subsequent sec-

tions present several propositions of improvements to this initial baseline. First, we propose to

use the triplet loss [Hoffer and Ailon, 2014] in lieu of a contrastive loss. Then we present the

Shepard’smethod [Thrun, 1998] as a replacement for the kNN classifier. A detailed performance

and error analysis is finally provided as part of a comparative study of these different proposi-

tions. In the last section, we modify our model to adopt the idea of Matching Networks [Vinyals

et al., 2016b] which implements the concept of meta-learning to improve episodic adaptation.

4.2.1 DEVISIGN 2014 Dataset

Contrary to the previous chapter, the predictions are here restricted to a single label per obser-

vation sequence, a configuration which is more amenable to episode-based evaluation systems.

Moreover, the inherent difficulty of one-shot learning motivates the analysis of this task to vali-

date ourmodels before attempting continuous recognition. Finally, one-shot learning evaluation

(and training in most cases) requires to have a large vocabulary of distinct classes to evaluate the

generalization capacity of a model, a property rarely found in continuous recognition datasets.

Given the stated requirements, the context of our research and past experiments, we have se-

lected a sign language lexicon to evaluate ourmodels, more precisely theDEVISIGNdataset [Wang

et al., 2016] which contains 2000 classes performed by 8 different signers. Such a number of

distinct classes is rarely found in gesture datasets and makes this one particularly suitable to

evaluate generalization of a one-shot capable model.

The recordings are very similar to the Montalbano v2 dataset used in the previous chapter:

frontal recordings with a clean and stable background as shown in Figure 4.3. The same depth

camera is used, which therefore provides colour frames, depth frames, and regression of the body

pose in 2D and 3D. Thanks to stricter andmore advantageous recording conditions, the subject is

placed more consistently in the frame, closer to the camera and without distracting or occluding

environment. Visual inspection gave us the clear impression that the body pose regression failed

less often and was more precise overall. For that reason and to keep the training data and model

at a reasonably manageable size, our experiments will only rely on this cue. Our experience

on continuous gesture recognition in the previous chapter have already demonstrated that this

modality contains a lot of information by itself and should provide a reasonable basis for our

study.
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Figure 4.3 – Sample crops of the subject from the DEVISIGN dataset

Our tests use a 1000/500/500 random split of the class labels between training, validation

and testing respectively. Due to the low number of recordings available for each subject (one or

two for each class), we have decided to not split the performers between training, validation and

test so that a sufficient variety of samples remains to train and evaluate the models.

4.2.2 Siamese Neural Network and Contrastive Loss Optimisa-

tion

Training methodology

As mentioned previously, this method fits a Neural Network embedding model which maxi-

mizes the similarity between pairs of latent vectors from genuine sample pairs and minimizes

it otherwise. Genuine pairs are characterised by a similarity above a certain threshold �. The

Contrastive Loss [Chopra et al., 2005] translates this objective into a differentiable metric which

was found to be both robust and effective:

�contrastive = ⎧{⎨{⎩
‖�i − �j‖22 if yi = yjmax(0, � − ‖�i − �j‖22) otherwise

(4.11)

This loss optimizes two different but related objectives. For positive pairs, the loss simply returns

the quadratic error to minimize the dissimilarity between embedding vectors from a same class.

For non-matching pairs, it can be viewed as the difference between a lower margin value � and

the dissimilarity measure ‖zi − zj‖22, with a minimum value of zero to ignore pairs that already

satisfy the margin. Indeed, points beyond this limit are considered to clearly originate from

different classes. At the end of a successful optimization, samples from a same class should lie

close to each other in the embedding space, while all other data points should lie far away, at a

distance greater than �.

The threshold � from the binary decision function in Equation 4.4 must place a compromise

between false rejection of imperfectlymatching positive pairs, and false acceptance of data points

that are abnormally close to other classes. As such, its optimal value usually lies between 0, which

would require perfectly similar positive pairs, and �, assuming perfectly dissimilar negative

pairs. Unfortunately, both hyper-parameters � and � must be cross-validated. Nevertheless,
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our experience shows that the value of � does not impact dramatically the outcome of the

experiments, and a coarse cross validation thus provides satisfactory results.

Although contrastive loss is frequently used in the one-shot learning community, the more

generic binary cross entropy objective is still used sometimes, even in recentworks such as [Koch

et al., 2015]. Overall, no consensus seems to have emerged on the loss function, but the training

objective remains the same anyway: finding an embedding that optimizes pairwise similarity

or dissimilarity between samples according to their labels. Once trained, it is hypothesized that

a k-Nearest Neighbours (kNN) classifier can exploit the latent projection of input samples to

perform episodic multi-label classification:

̃y = y
ep

k∗ with k∗ = arg min
k∈�ep

d(�, �ep

k
) (4.12)

Algorithm 4.1 summarizes the outline of the training procedure. Line 2 determines whether

to train on a genuine or an impostor pair. The proportion of genuine pairs r translates to a

compromise between false positive and false negative error rates. As already mentioned in

the continuous recognition chapter, extreme class imbalances (r close to 0 or 1) might hurt the

ability to learn anything at all in the Neural Network.

1: repeat

2: p ∼ ℬ(r)
3: i, j ∼ {[1 .. N]2 ∣ yi = yj if p else yi , yj} ▷ draw samples
4: �i, �j = �et(�i), �et(�j) ▷ compute embeddings
5: loss = �contrastive(�i, �j) ▷ evaluate model
6: update �et ▷ update parameters (gradient descent)
7: until termination criterion

Algorithm 4.1 – Detailed training procedure of Siamese Neural Networks ℬ is the
Bernoulli distribution, r the desired proportion of genuine pairs and �et the embedding
function.

Preprocessing and Embedding Function

Qualitatively, the recordings of both Montalbano v2 and DEVISIGN are very similar in nature.

As a result, the same augmentation and preprocessing techniques that were presented in sec-

tions 3.2.3 and 3.2.3 are reused here.

For the embedding function, [Pei et al., 2016] proposes to process the inputs with a single

layer of a Recurrent Neural Network equipped with vanilla units. For the representation vector�, they use either the final hidden state or the average of all hidden states as illustrated by options

1 and 2 in Figure 4.4. This architecture presents several limitations: firstly, the vanilla RNN

cells in a mono-directional setting drastically reduces the maximum sequence duration option

2 can process. The myopic effect of vanilla RNN cells discussed in section 2.2.2 affects this

model, and final observations will influence the representation largely more than early ones. By
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Regularization

During early experiments, we observed that our model would rapidly diverge and remain stuck

issuing an almost constant output. Clipping the gradient values to [−1, 1] proved insufficient,

meaning that the gradient descent was not overshooting but naturally converging to this prob-

lematic state. We explain this issue by the absence of feedback from the loss about pertinent

activity values: the loss function optimizes real vectors without taking into consideration the

bounded nature of the tanh non-linearity on the last layer. To increase the distance between

samples from a negative pair, training can try to increase activation values up to the saturation

regime of the tanh function at −1 and +1, at which point the gradient becomes very small and

training is stuck.

As a result we have decided to apply a regularization on the norm of vectors that would fall

past the range [1, 5]:

�norm(�) =
⎧{{⎨{{⎩

‖�‖
2

− 5 if ‖�‖
2

> 5

1 − ‖�‖
2

if ‖�‖
2

< 1

0 otherwise

(4.13)

loss = �contrastive + �norm (4.14)

This regularization solves the degeneration issue while remaining relatively unobtrusive for the

training process. Indeed its value is exactly 0 within the authorized range. Figure 4.6 shows the

effect of regularization during the first epoch where the distribution goes from two modes at−1 and 1 to a smoother uni-modal distribution centred on 0.

Figure 4.6 – Distributions of embedding neurons activations during the initial training
iterations. Histograms are layered in front of each other with iteration 0 at the back.

4.2.3 Triplet Loss Optimization of a Discriminative Latent Space

Notwithstanding the performance aspect which will be covered later in the comparative study,

contrastive loss suffers from several theoretical issues.
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ensures that the neighbourhood of any point only contains samples of the same class, but leaves

the size of this neighbourhood unconstrained.

The norm can change for any given problem as long as it satisfies the properties of a distance,

for example L1, L2, squared L2, cosine, etc. Finally, this method naturally balances the con-

trastive endeavour to minimize the intra-class distances and maximizing inter-class distances

without the need for an explicit ratio r.

4.2.4 Shepard’s Method

Definition

Both methods presented previously rely on the assumption that a pre-trained embedding func-

tion will maximize the classification accuracy of the Nearest Neighbour classifier. However, the

notion of episode is absent from the parameter fitting process, as it only uses pairs or triplets

of samples. Moreover, kNN classifiers cannot smoothly combine multiple training shots when

available. Instead, its parameter k sets a constant number of neighbours to consider. Yet some-

times, weighting some training shots more or less could prove more appropriate to account for

intra-class variability and the fact that some samples are more relevant than others.

[Thrun, 1998] proposed the Shepardmethod by introducing a differentiable decision function

that combines the embedding vectors of episodic training shots with a given testing sample to

return a class probability vector. The prediction for a test sample to belong to one class is the

sum of (normalized) similarities with the training shots of that class:

p(ỹ = l | �, �ep, � ep) = ∑
k∈�ep

a(�, �ep

k
) 1y

ep

k
=l (4.16)

where a is defined in [Thrun, 1998] by:

a(�, �ep

k
) =

1

‖�−�
ep

k
‖+�

∑k′∈�ep

1

‖�−�
ep

k′
‖+�

(4.17)

with � ≪ 1 to prevent computation issues.

And in [Vinyals et al., 2016a] by:

a(�, �ep

k
) = exp (cos (�, �ep

k
))

∑k′∈�ep exp (cos (�, �ep

k′
)) (4.18)

Both expressions share the same logic with a normalization on similarity measures. We opt for

the recent version which resembles attention models and content based memory access from

recent works [Xu et al., 2015; Graves et al., 2014]. Swapping the softmax normalization in a by a

sharper function can lead to a behaviour similar to the Nearest Neighbours classification, while

choosing a kernel function �(�, �ep

k
) will lead to a kernel density estimator.
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4. One-Shot Learning for Gesture Recognition

This classifier provides a drop-in replacement to the k-Nearest Neighbours, simply taking as

input the same training shots and test embeddings �ep and � as previously. Yet, being differen-

tiable, this classifier opens the possibility for end-to-end training directly over whole episodes

of samples. To avoid confusion: this parameter fitting is not the episodic training from the third

step of an episode but an optimization based on the predictions for test samples at step 4. This

is a form of pre-training similar to that of Siamese Networks with contrastive or triplet losses,

except that episodes are used to compute a loss and subsequently optimize the model.

Using episodes brings coherence between the pre-training and testing conditions and allows

episodic adaptation down to the embeddingmodel if desired (step 3 of the episodes), although our

current model architecture does not exploit this possibility yet. Indeed, the Neural Network can

take all training shots into account when generating an embedding: � = �et(�, �ep, � ep). For
example, [Vinyals et al., 2016b] runs a Recurrent Neural Network over training shot embeddings

to produce episode specific representations. We test and review their method in section 4.4.

Even-though the Shepard’s method has been formalized by [Thrun, 1998] back in 1998, most

of the later publications in one-shot learning have opted for siamese or triplet based training

procedure. However, [Vinyals et al., 2016b] accredited part of the success of their model to the

use of a Shepard’s classifier, which they used in conjunction with their proposed episode-aware

embedding function.

Hinge loss as objective function

Before concluding this presentation, it should also be noted that the convenient notion ofmargin

as offered by the triplet loss is not necessarily lost here. Based on our experiments, we propose

swapping the categorical cross-entropy traditionally used on classifiers for a multi-class hinge

loss:

�hinge = max(0, p (ỹ = y ∣ �, �ep, � ep)
− max

l≠y
p (ỹ = l ∣ �, �ep, � ep)

+ m)
(4.19)

which maximizes the margin between the correct class prediction and the most error-prone one

up to a safety margin m.

Not only does this formulation bind more closely to the idea of the triplet loss, but it also

seems intuitively more suitable than cross-entropy in the context of classification. Indeed, cross-

entropy might allocate a considerable amount of training effort to increase the confidence in

predictions when a sufficient margin mwould suffice. With hinge loss, the error value beyond

this margin becomes zero which lets the training procedure focus on more problematic samples.

This idea relates closely to the concept ofCurriculumLearning [Bengio et al., 2009]which usually

needs to be implemented manually via careful sampling heuristics but is modelled transparently

by the hinge loss.
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4.3 Studies and Experimental Validation of our Mod-

els

4.3.1 Study 1: Comparison of Training and Classification Meth-

ods

Through this study, we train and test the three proposed solutions on the same data samples

so that a more definite conclusion can be drawn about their respective advantages. Once the

embedding model is trained, the performance is evaluated using both the Shepard’s method and

a one-Nearest Neighbour as classifiers since both can be swapped easily. Using more than one

neighbour does not make sense when only one shot is available. Our tests with more training

shots showed that using more neighbours is harmful to performances anyway. Finally, the

episode size is set to 20 labels in all configurations.

Table 4.1 – Accuracy and target rank for 20 class vocabulary experiments. The distance
used by the Nearest Neighbours matches the norm in the loss function. When a model
is trained with Shepard’s classifier, the cosine distance is used.

Shots Metric Objective
Accuracy Rank

Shepard 1-NN Shepard 1-NN

1
�2 contrastive (�=2, r=0.1) 0.837 0.837 1.32 2.63�2 triplet (�=1) 0.851 0.851 1.30 2.49

cosine Shepard+hinge (m=0.5) 0.867 0.867 1.34 2.33
2

�2 contrastive (�=2, r=0.1) 0.880 0.879 1.20 2.21�2 triplet (�=1) 0.901 0.895 1.17 2.06
cosine Shepard+hinge (m=0.5) 0.908 0.910 1.18 1.91

The results are summarized in Table 4.1. With an accuracy above 80%, all training and testing

configurations demonstrate a strong ability to learn previously unseen classes, even in the more

difficult one-shot setting. The contrastive and triplet losses produce versatile and reusable

embedding functions: though first optimized for binary verification, the embedding functions

they produce adapt well to the multi-class problem. The Shepard’s method coupled with a multi-

class loss function achieves the best results while following a more straightforward optimization

scheme. By taking whole episodes at once, it can fit the multi-label classifier end-to-end directly

in the episodic setting.

During testing, we observe that the Shepard’s method and Nearest Neighbours perform simi-

larly on the accuracy metric. The accuracy in the one-shot setting is mathematically identical be-

cause both techniques return the same prediction, but in two-shots, the softmax normalization

in equation 4.16 apparently behaves almost like the hard maximum function from the Nearest

Neighbours method, hence the similar results. The ranking metric, which measures the rank

of the true class in sorted predictions, shows that Nearest Neighbour classification fails more

101
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dramatically when producing an erroneous prediction; whereas the Shepard’s method produces

“almost correct” predictions. However, some of our early experiments revealed that a weighting

between samples smoother than the softmax eventually leads to a lower testing accuracy, so a

compromise must be found between averaging and take the closest neighbour.

Among the three training techniques, Shepard’s classifier followed by a hinge loss yields the

best accuracy overall, while ranks are fairly similar. Part of the explanation lies in the episodic

training which tunes the model directly for the evaluation metric. We also suspect this training

technique might also be able to move the model into more optimal regions of the parameter

space which might not be accessible by other training strategies. Indeed, for an identical model

architecture, this is the only experiment where the model would reach very high (>95%) ac-

curacy on the training set: while the validation score hits a plateau, the training performance

continued to improve much longer, showing that the model architecture is not the limiting fac-

tor on this task.

Error Analysis

Analysing themost frequent error cases here did not uncover any unexpected behaviour. Among

themost frequent error cases are look-alike bodymovements that cannot be distinguished unless

additional visual cues such as the hand shape are available. Figure 4.9 illustrates one instance of

this error case.

Figure 4.9 – Similar gestures in DEVISIGN, the left arm slides below the right one in
both examples, but the hand is flat on the left whereas one finger is pointing on the right.

Some gestures are problematic overall as denoted by the horizontal lines in the pseudo-

confusion matrix in Figure 4.10. Visual inspection revealed that they correspond to more com-

plex gestures composed of multiple subparts.

4.3.2 Study 2: Robustness to Variable Testing Difficulty

To evaluate the robustness of the model for more difficult tasks, additional tests have been run

over various vocabulary sizes and training shots. To support the experiment, the one-shotmodel

with a Shepard classifier was initially trained on 20-classes episodes as above. Then the trained

model was challenged with episodes of varying vocabulary sizes and numbers of training shots.

Figure 4.11 summarizes the results.
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following the set of equations below:

�
0

= ⃗0 (4.26)

a(�k′−1
, ̃�ep) = softmax (�ep ⋅ (� + �k′−1

)⊺) ▷ attention weight (4.27)

�k′−1
= a(hk′−1

, ̃�ep) ⋅ ̃�ep ▷ attention readout (4.28)

�k′, �k′ = ��� �(�k′−1
, �k′−1

, �k′−1
) ▷ refinement of correction1 (4.29)

̃� = � + �k (4.30)

Matching Networks only require one meta-parameter k, the number of refinement iterations

performed by the function f . The number of LSTM units in each function is otherwise con-

strained by the size of the embedding vectors.

4.4.2 Experiments and Results

With many widely different classes, the DEVISIGN dataset contains many easily distinguishable

signs but also easily confused ones. Consequently, each episode will certainly contain prob-

lematic combinations of gestures requiring more classification effort, while others are easily

discriminated. With its attention model, Matching Networks could modify the embeddings by

focusing specifically on closest training samples which are potentially problematic (unless they

belong to the correct class). We therefore consider Matching Networks as good candidates to

try to adaptively adjust the model at the episodic level.

Matching Networks are a fairly straightforward modification to add into the models pre-

sented previously. Once implemented, it is sufficient to inject the functions g and f into the

computation graph prior to the classification step; both the rest of the model and the training

procedures remain unaltered by this change. To our knowledge, there is no public implemen-

tation of Matching Networks that is both complete and correct. As a result the model has been

implemented along with the rest of the experiments presented in this chapter. The code has

been specifically modularised to facilitate reuse independently of the embedding Neural Net-

work Network2.

Since the conditional embedding modifies the model and adds more parameters, the com-

parison with the previous experiments could be biased, for example due to more over-fitting.

As a result we have decided to add a separate baseline model as a more comparable reference.

This variation of the Matching Networks uses a residual block with a single Neural Network

layer featuring a hyperbolic tangent non-linearity. This layer imitates the functions g and f but

processes its inputs sample-wise, in other words it produces non-conditional embeddings.

1This equation is most likely erroneous in the Matching Networks paper. We base our work on the previous
publication from the same authors [Vinyals et al., 2016a] since it is indicated as the authoritative reference.

2available at https://gist.github.com/nlgranger/076ad1f7ce3c412a7983b9d1c02bc1b5
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Table 4.2 compiles the results and shows that the conditional embedding produced by Match-

ing Networks does not improve the performances over non-conditional embeddings from an

equivalent model. The model used in this experiment had k=5 refinement steps in the function

f and we were not able to improve the results by varying this hyper-parameter. The same con-

clusion was reached in [Vinyals et al., 2016b] for a one-shot character recognition experiment,

which seems to imply that Matching Networks only provide a benefit in specific situations.

Table 4.2 – One-Shot Learning with Matching Networks

Accuracy Rank

Matching Networks 0.850 1.42
non-conditional baseline 0.864 1.34

best from Section 4.3.1 0.867 1.34
During our experiments, we observed that the refinement steps operated by g and f (either

from the Matching Network or the non-conditional reference model) do modify the initial

embedding vectors �, but this transformation brings no benefits at all. In fact the predictions

based on the raw embeddings � achieve a slightly higher accuracy than when using ̃�, even

though the loss function optimizes the latter. It remains unclear what influential factors can

explain this inefficiency.

4.5 General Discussions and Remarks

In a way, this chapter on one-shot gesture recognition can be viewed as a detour from the previ-

ous chapter on continuous recognition. Indeed, we were able to leverage the Neural Network

architecture design from the previous chapter and integrate it relatively easily. By choosing a

gesture dataset (more precisely sign language), we forced ourselves to rely heavily on the repre-

sentation learning capabilities of the model to exploit low-level body-pose features. We show

that our model based on a bidirectional Recurrent Neural Network is capable of producing

small embeddings representing whole sequences. This feat constitutes a testimony to the great

modularity and flexibility of Neural Networks.

With our review of different models and training methods, we were able to identify Shep-

ard’s method as a superior method to provide an end-to-end differentiable neural network for

one-shot learning. When combined with a hinge loss, this method outperforms the most pop-

ular techniques used so far in the literature, namely Siamese Networks with contrastive loss

or triplet loss. We explain the advantages of the Shepard’s method by the adequacy between

training and testing conditions. Indeed, contrary to the Siamese Network which optimizes a

binary classification objective, Shepard’s method allows to keep the same inference algorithm

for training and testing. Doubled with our suggestion to use the hinge loss instead of the con-

trastive loss, the model is trained very specifically for the evaluation task instead of a related
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one, an issue that was already raised in the previous chapter when we observed that maximizing

frame-wise cross-entropy was not entirely adequate to maximize the Jaccard Index metric.

One-shot learning is a very active topic nowadays, and will probably gain more attraction in

the upcoming years considering the ubiquity of these learning conditions in real life. The litera-

ture on the topic adopts different paradigms to tackle the problem: multi-task learning, transfer

learning, meta learning, etc. The latter seems very promising since it focuses on specializing a

model at the episodic level without loosing sight of general prior knowledge, and in particular

without over-fitting. Matching Networks are one such instance of a meta-learning model, but

failed to improve the results on our dataset. We hope that research in the field will look for so-

lutions with the same ambitions as the Matching Networks, but with improved generality and

re-usability.

109





Chapter 5

Summary, Perspectives and

Future Work

As a user, I personally envision many applications for human-machine interfaces based on more

natural vectors of communication rather than the existingmethods which necessitate keyboards,

touch screens or other devices requiring physical interaction ruled by unnatural protocols. Typ-

ically, a robotic assistant should be able to interpret vocal instructions or non-verbal commu-

nication based on signs or gestures. It should process information from its environment as-is

without relying on an expert user to pre-process the data in a more optimal representation.

A large number of these naturally occurring sources of information share a common prop-

erty: they take the form of a temporal sequence; for example speech, visual scene observations,

handwriting... Having adopted this perspective on the long-term applications of this work, this

thesis has been organised to adopt a series of objectives and orientations. We have tried to invest

more effort on modularity, re-usability and generality rather than optimizing the models for

expertly designed hand-crafted features that are specific for one particular type of input modal-

ity. To comply with the idea of seamless interaction, our choice of models has been oriented

toward solutions that could realistically run in real-time (more precisely with a small delay at a

manageable computational cost).

The decision of using gestures was motivated by three reasons: first, the originality and

relatively low coverage by the scientific community matched our idea of reducing feature en-

gineering in favour of representation learning. A second related reason was later found when

we observed the great variability of execution in gestures, which largely reduces the worth of

efforts invested in feature engineering and motivates the development of robust and adaptable

models for representation learning and recognition. Finally, gestures are multi-modal with a

complementarity between low-dimensional body pose information and high dimensional video

frame representations so that the flexibility of the model can be tested within a unique frame-

work corresponding to a single task, which is convenient for comparative studies.

Parallel to our research objectives, the field of Sequential Data Recognition has witnessed

over the course of a few years a swift transition from Probabilistic Graphical Models toward
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Neural Networks, and the latter have without any doubt grabbed a large amount of attention

from the research community. Intrigued by the reasons behind this change more than by the

raw performance metrics, a large portion of the thesis has been invested on grounding the

detailed properties that explain and justify this sudden change. A second part of the work

has targeted Few-shots learning which aims to address learning in situations where only few

training examples are available. In terms of real-world application, one or few-shots learning

can benefit systems in isolation that need to learn to recognize new classes, execute new tasks

or adapt to a new user or environment. In such cases, it seems unrealistic to expect an end-user

to provide more than a few training instances, and even more to supply a representative variety

of samples that covers the runtime test conditions.

The following paragraphs summarize the different contributions of the thesis.

chapter 1 This chapter focuses on Continuous Gesture recognition in sequences of body poses

and video frames. We introduce an experimental setup that combines twomajor temporal

models, namely Hybrid Neural Networks and Bidirectional Recurrent Neural Networks

into a shared framework which is more amenable to comparative studies. Through the

elaboration of this pair of models, we were able to pinpoint influential properties and

parameters, notably how to deal with imbalanced class distribution in term of number of

samples.

To asses the robustness of the two temporal models, we trained the models on a variety

of inputs of different nature and complexity: body-pose data, hand-crop images, or a

combination of both. In all configurations, our models demonstrate close to state-of-the-

art performances which proves that our models are robust to the type of input, efficient in

training, and that the constraints introduced for the comparativework have not denatured

the qualities demonstrated by purely performance-oriented experiments reported in the

literature.

The stress testing methodology is extended with a series of experiments where the repre-

sentation learning layers that precede the temporal models are progressively deprived of

local temporal context to the point that all of the temporal modelling lies on the follow-

ing HMM transition model or Bidirectional Recurrent Neural Networks. The amount

of temporal context is regulated with Temporal Convolution Layers. Similarly to low-

level 2D filters in Convolutional Neural Networks, we show that these 1D temporal fil-

ters are interpretable and learn intuitively sound patterns. We verified experimentally

that these Temporal convolution layers effectively learn short-term patterns and simplify

the modelling work of the subsequent temporal modules. The Hybrid Neural Network-

Hidden Markov Model was found to be much more reliant on this prior short-term con-

text modelling, whereas the RNN-based model managed to compensate when necessary

and demonstrated a high level of robustness.

In a final study, we analysed the relationship between the lower part of the model, the

“representation learning” layers, and the upper layers; in particular, we tested whether the
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temporal model learnt highly specific features that were necessary to achieve the maxi-

mum performances or if the representations were mostly generic and interchangeable.

Our testing procedure implemented exactly this idea with a series of transfer learning

experiments where the representation learnt by one model is submitted to the other. Al-

though both of the HMM transition model and the BDRNN suffered a slight regression

from not having tailored inputs optimized via an end-to-end training procedure, the dif-

ference was found small enough to conclude that both models generate a similarly generic

and reusable representation learning model.

Notwithstanding the performance advantage which we find relatively small for common

usage outside benchmarks, the RNN-based model demonstrated more robustness and

proved easier to implement due to its homogeneous structure with a single objective gov-

erning the end-to-end training procedure. This monolithic nature and black-box training

aspect raised several issues nevertheless: difficulties in optimizing the architecture, diffi-

culties in tracing the source of errors, inadequacy between the training loss function and

the true objective.

The Hybrid NN-HMM presented a greater challenge with its two stage architecture and

the alternating training steps. We have already mentioned how class imbalance and local

temporal modelling constitute a difficulty for this model, but we found countermeasures

to alleviate their effects in our experiments, namely loss function re-weighting and Tem-

poral Convolution to embedded local context in the state posterior model.

chapter 2 With the one-shot setting, Machine Learning makes one more step toward the way

humans themselves rapidly acquire knowledge.

In our experiments, we started with an established method, Siamese Networks with con-

trastive loss, and improved it using the triplet loss, the Shepard’smethod and the hinge loss.

Our presentation of these methods emphasizes the striking similarities between them, as

they all gravitate around the idea of embedding input sequences into a latent euclidean

space of fixed dimension, with a semantic interpretation of the distance between samples.

In fact, our experiments all reuse the same neural network architecture to implement their

embedding function. Model centred around an embedding function have awidespread us-

age in Machine Learning, for example in content retrieval problems [Taigman et al., 2014;

Cao et al., 2017] where it is used explicitly, but was also in our representation learning

module from Chapter 3, and in many models where intermediate results may also serve

as latent representations. Obviously, this class of methods has largely benefited from the

advances in Deep Learning, which provides powerful embedding functions trained more

efficiently thanks to new models and techniques. Among the three analysed methods, the

Shepard’s one trained with hinge loss performs the best, a success we attribute to the ad-

equacy between training and testing configurations which leads to optimize the model

precisely for the intended purpose.

However, the training techniques used by these models cannot scale down to the episodic

training level, which provide too few training shots to allow adaptation without risk-
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ing over-fitting. A workaround is found by anticipating most of the training prior to

the episodes in a form of general background knowledge acquisition, leaving little to no

training work inside episodes. This concept in fact outreaches the one-shot learning set-

ting, since one can view unsupervised pre-training of early Deep Learning models as an

instance of that idea. Yet the datasets used for fine-tuning these models afterwards still

counted sufficiently many samples so that regular training methods remained applicable.

One-shot learning shines by formalizing training conditions which render the exami-

nation of this aspect central to solving the problem. It drives attentions to a different

class of models that can leverage previously learnt concepts and quickly adapt to various

local problems defined as small data episodes. We analysed and tested Matching Net-

works [Vinyals et al., 2016b], one example of the meta-learning principle, but observed

that it did not improve performances for our combination of model and dataset.

Combined with the modular design and the demonstrated re-usability of the different parts

of our model, the works presented in this thesis should be easily reproducible, reusable, and

adaptable for other tasks and purposes. The code for our experiments has beenmade available in

order to assist in either objectives. In particular, it should ease considerably the experimentation

on our suggested improvements.

Although we did not test other training methods, we are aware of work that jointly trains

the posterior and state transition models of Hybrid NN-HMMs, where the posterior model

must maximize a Mutual Information objective in a global sequence-wise fashion [Bahl et al.,

1986; Hinton et al., 2012]. Another axis of improvement is the scaling issue that comes with

the phoneme model used in most speech and gesture recognition works. Indeed the number of

states grows linearly with the size of the vocabulary. As a result, tied states and state clustering

are promising options to consider in order to improve our model.

Future work may also consider automating the construction of the state graph in order to

lower the amount of expertise needed to design it appropriately. Such knowledge might not

exist in all domains. This contribution would be two-sided though, since this graph is precisely

how a lot of knowledge is gained from the model or injected into it.

We consider the one-shot learning paradigm as a very motivating objective for future work

on Neural Networks for gesture recognition. Besides transfer learning, multi-task learning,

and meta-learning, the topic also draws inspiration from very recent axes of research, notably

algorithm learning where working memory is used to store short-term task-related informa-

tion [Graves et al., 2014]. Another possible source of inspiration is attention models, where

focusing is used to adaptively select relevant features and discard others. We reckon these works

will accelerate the pace of one-shot learning research.

As amore general perspective, one particular findingwe observed through our experiments is

the absence of tangible relationship between the architectural design of ourNeuralNetworks and

the properties or results they demonstrated after training. Besides the personal dissatisfaction

of having to work partially blindly to find new architectures, we believe this problem should be

more explicitly stated as part of the reasoning behind newNeuralNetwork designs, new training
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techniques and algorithms. Furthermore, some advances in Neural Network are difficult to

justify or quantify due to the complex interaction theymight exert on thewholeNeuralNetwork.

To conclude, our intuition about promising research in the field would begin with a conver-

gence of techniques that lead to more efficiency and control in the training and inference of

large modular models. Gesture recognition is one of these subjects where the computational

cost of managing videos inputs in real time justifies investing efforts on these specific points in

the short term. We also believe the work on one-shot learning we presented in the second chap-

ter is still in its infancy. One-shot learning defines a specific learning situation, and a particularly

challenging one, but the outcome of research on the subject may have far-reaching consequences

in terms of real-life applications with more seamless interfaces toward non-expert users.
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Appendix A

DEVISIGN 2014 dataset splits

The following randomly generated training/validation/testing split was used for all experiments:
training classes: 0, 3, 4, 5, 6, 9, 10, 11, 13, 15, 16, 17, 19, 26, 29, 30, 31, 32, 33, 34, 35, 37, 38, 42, 43, 45, 46, 52, 53, 55, 61, 64, 66, 67,

70, 71, 74, 75, 79, 83, 84, 85, 94, 96, 100, 101, 103, 104, 108, 113, 114, 117, 118, 121, 129, 130, 132, 136, 139, 141, 142, 143, 148, 151,
152, 155, 158, 159, 160, 163, 166, 167, 168, 170, 172, 174, 175, 177, 178, 180, 181, 183, 184, 185, 186, 191, 193, 197, 199, 200, 205,
212, 215, 216, 217, 218, 222, 223, 224, 226, 227, 228, 231, 234, 236, 238, 239, 242, 243, 245, 247, 248, 250, 251, 252, 253, 254, 255,
257, 258, 259, 260, 263, 266, 268, 269, 270, 273, 277, 278, 279, 280, 281, 282, 284, 285, 286, 287, 289, 290, 292, 293, 297, 299, 300,
302, 303, 304, 305, 306, 308, 311, 312, 313, 314, 315, 319, 321, 327, 329, 330, 331, 332, 333, 334, 335, 336, 338, 339, 340, 343, 347,
348, 350, 351, 352, 356, 361, 362, 363, 364, 365, 366, 368, 370, 372, 373, 379, 380, 381, 383, 385, 387, 389, 390, 391, 392, 395, 397,
401, 402, 405, 412, 414, 416, 418, 419, 420, 422, 424, 425, 428, 430, 432, 434, 435, 437, 439, 440, 441, 442, 443, 444, 446, 447, 448,
449, 450, 456, 457, 460, 463, 467, 469, 470, 472, 475, 478, 480, 483, 484, 485, 486, 492, 493, 498, 502, 503, 507, 508, 510, 512, 513,
515, 517, 518, 520, 524, 526, 527, 529, 533, 536, 542, 546, 547, 548, 550, 551, 552, 554, 555, 556, 557, 559, 560, 562, 563, 564, 568,
574, 575, 577, 578, 579, 580, 581, 583, 584, 585, 586, 588, 590, 592, 596, 597, 599, 601, 603, 604, 605, 609, 610, 615, 618, 621, 622,
625, 626, 628, 629, 632, 634, 635, 638, 639, 640, 641, 642, 643, 644, 646, 648, 651, 654, 657, 658, 662, 664, 667, 669, 676, 677, 678,
684, 685, 688, 690, 692, 693, 695, 696, 704, 706, 707, 708, 710, 712, 713, 717, 718, 722, 723, 729, 739, 743, 745, 746, 749, 755, 756,
757, 758, 759, 762, 768, 771, 772, 774, 776, 777, 778, 779, 782, 783, 784, 785, 786, 792, 793, 796, 797, 801, 804, 805, 806, 808, 809,
810, 814, 815, 816, 818, 826, 833, 834, 839, 840, 841, 844, 845, 846, 847, 848, 849, 850, 853, 855, 857, 859, 862, 863, 864, 865, 869,
872, 874, 877, 878, 881, 883, 884, 885, 886, 888, 890, 892, 893, 894, 898, 900, 902, 903, 906, 908, 910, 911, 912, 914, 916, 917, 918,
919, 920, 923, 925, 926, 931, 932, 934, 936, 937, 940, 943, 944, 945, 946, 948, 950, 951, 954, 955, 956, 957, 959, 961, 963, 964, 968,
972, 973, 974, 975, 976, 978, 979, 980, 983, 984, 986, 987, 988, 989, 990, 993, 995, 997, 998, 999, 1001, 1003, 1012, 1013, 1014, 1017,
1018, 1020, 1021, 1024, 1028, 1031, 1033, 1034, 1035, 1037, 1038, 1040, 1044, 1045, 1046, 1048, 1050, 1051, 1053, 1056, 1059, 1060,
1064, 1068, 1069, 1070, 1072, 1074, 1075, 1076, 1078, 1079, 1080, 1081, 1082, 1083, 1084, 1085, 1087, 1088, 1090, 1091, 1094, 1097,
1098, 1102, 1107, 1111, 1113, 1114, 1116, 1118, 1119, 1121, 1122, 1124, 1125, 1126, 1128, 1129, 1131, 1132, 1133, 1137, 1138, 1140,
1144, 1146, 1150, 1152, 1154, 1155, 1156, 1157, 1162, 1163, 1166, 1167, 1168, 1169, 1170, 1172, 1173, 1178, 1179, 1182, 1183, 1184,
1188, 1189, 1190, 1192, 1195, 1196, 1197, 1199, 1200, 1204, 1205, 1206, 1207, 1208, 1209, 1214, 1215, 1218, 1220, 1222, 1224, 1225,
1226, 1228, 1230, 1231, 1233, 1234, 1237, 1238, 1239, 1240, 1242, 1243, 1244, 1245, 1247, 1248, 1250, 1251, 1253, 1261, 1262, 1264,
1265, 1267, 1269, 1270, 1271, 1272, 1274, 1277, 1281, 1284, 1287, 1288, 1291, 1293, 1294, 1296, 1298, 1299, 1301, 1302, 1303, 1305,
1306, 1312, 1315, 1317, 1319, 1321, 1322, 1323, 1324, 1325, 1326, 1327, 1330, 1331, 1336, 1337, 1341, 1347, 1348, 1349, 1354, 1355,
1361, 1364, 1365, 1373, 1375, 1376, 1379, 1381, 1382, 1383, 1388, 1389, 1390, 1391, 1392, 1395, 1396, 1398, 1403, 1407, 1411, 1419,
1420, 1422, 1424, 1426, 1427, 1428, 1429, 1432, 1435, 1437, 1438, 1440, 1441, 1445, 1447, 1450, 1451, 1452, 1453, 1454, 1459, 1460,
1461, 1462, 1464, 1465, 1467, 1468, 1469, 1473, 1474, 1477, 1480, 1481, 1483, 1485, 1488, 1489, 1491, 1492, 1496, 1497, 1498, 1502,
1503, 1505, 1506, 1507, 1508, 1516, 1519, 1520, 1524, 1526, 1527, 1528, 1530, 1532, 1533, 1534, 1535, 1542, 1543, 1544, 1545, 1547,
1548, 1549, 1550, 1551, 1554, 1555, 1562, 1563, 1564, 1566, 1567, 1568, 1569, 1571, 1575, 1577, 1578, 1582, 1583, 1584, 1585, 1586,
1588, 1589, 1591, 1593, 1594, 1595, 1596, 1598, 1599, 1600, 1602, 1603, 1605, 1606, 1607, 1611, 1617, 1618, 1619, 1621, 1622, 1623,
1624, 1625, 1629, 1631, 1633, 1634, 1637, 1639, 1640, 1643, 1646, 1647, 1650, 1652, 1653, 1655, 1657, 1658, 1660, 1662, 1663, 1666,
1668, 1669, 1670, 1671, 1672, 1675, 1676, 1677, 1678, 1679, 1680, 1682, 1683, 1685, 1687, 1688, 1692, 1693, 1694, 1695, 1698, 1702,
1704, 1707, 1708, 1710, 1711, 1712, 1717, 1718, 1720, 1722, 1723, 1724, 1725, 1726, 1730, 1734, 1736, 1737, 1738, 1739, 1741, 1745,
1746, 1756, 1759, 1760, 1762, 1763, 1764, 1767, 1770, 1771, 1772, 1775, 1776, 1777, 1781, 1782, 1783, 1785, 1786, 1787, 1788, 1789,
1791, 1793, 1795, 1797, 1799, 1800, 1802, 1807, 1808, 1809, 1810, 1816, 1818, 1819, 1820, 1821, 1823, 1824, 1825, 1826, 1827, 1828,
1830, 1831, 1833, 1841, 1842, 1843, 1844, 1846, 1848, 1849, 1851, 1854, 1855, 1857, 1858, 1859, 1862, 1863, 1865, 1867, 1868, 1870,
1872, 1874, 1875, 1876, 1884, 1885, 1886, 1887, 1892, 1893, 1895, 1897, 1898, 1899, 1900, 1902, 1904, 1905, 1907, 1908, 1910, 1914,
1917, 1921, 1924, 1925, 1926, 1927, 1928, 1930, 1931, 1932, 1934, 1935, 1936, 1943, 1946, 1947, 1948, 1949, 1950, 1955, 1956, 1961,
1962, 1966, 1970, 1972, 1974, 1975, 1976, 1977, 1978, 1980, 1981, 1983, 1985, 1986, 1987, 1990, 1991, 1992, 1993, 1995, 1999

validation classes: 1, 2, 7, 14, 20, 21, 22, 25, 36, 39, 44, 50, 54, 57, 62, 63, 65, 68, 80, 82, 86, 87, 88, 90, 92, 93, 95, 97, 99, 105, 106,
109, 110, 111, 112, 115, 116, 120, 122, 126, 127, 131, 134, 137, 138, 140, 144, 147, 150, 153, 156, 157, 164, 165, 169, 171, 187, 188,
194, 196, 201, 202, 204, 214, 220, 225, 229, 230, 235, 244, 256, 261, 275, 276, 283, 288, 296, 298, 301, 307, 309, 317, 318, 320, 323,
326, 342, 344, 346, 349, 353, 354, 357, 358, 367, 371, 375, 376, 378, 386, 393, 396, 400, 408, 411, 415, 417, 421, 423, 427, 429, 431,
436, 445, 451, 453, 454, 458, 461, 464, 465, 466, 468, 471, 473, 482, 487, 488, 489, 491, 495, 500, 501, 504, 505, 506, 509, 511, 514,
516, 521, 522, 530, 531, 532, 534, 537, 543, 544, 558, 561, 565, 566, 570, 571, 573, 576, 582, 587, 602, 607, 611, 614, 616, 617, 624,
630, 633, 647, 650, 652, 653, 656, 660, 668, 671, 675, 680, 681, 682, 683, 686, 687, 689, 699, 700, 702, 705, 714, 715, 716, 719, 720,
721, 725, 727, 728, 730, 731, 733, 735, 737, 738, 741, 744, 752, 753, 761, 766, 767, 770, 775, 788, 789, 791, 794, 798, 799, 800, 802,
807, 811, 813, 817, 820, 821, 824, 825, 828, 830, 831, 832, 837, 842, 843, 851, 856, 860, 866, 867, 870, 871, 875, 880, 882, 887, 889,
895, 909, 915, 921, 924, 927, 930, 938, 941, 947, 952, 960, 962, 965, 966, 967, 969, 971, 977, 982, 996, 1000, 1002, 1004, 1006, 1007,
1008, 1009, 1015, 1016, 1019, 1023, 1026, 1027, 1029, 1030, 1032, 1036, 1039, 1042, 1043, 1052, 1057, 1058, 1065, 1066, 1067, 1071,
1073, 1077, 1089, 1103, 1104, 1110, 1112, 1115, 1117, 1120, 1134, 1135, 1139, 1141, 1142, 1143, 1148, 1161, 1164, 1175, 1180, 1185,
1186, 1191, 1193, 1198, 1202, 1211, 1212, 1213, 1216, 1221, 1223, 1232, 1249, 1252, 1273, 1275, 1276, 1280, 1285, 1289, 1292, 1295,
1304, 1307, 1310, 1311, 1314, 1316, 1318, 1320, 1329, 1333, 1342, 1343, 1344, 1346, 1350, 1357, 1358, 1360, 1363, 1366, 1368, 1369,
1371, 1372, 1374, 1377, 1378, 1380, 1386, 1393, 1399, 1404, 1405, 1406, 1410, 1414, 1415, 1416, 1418, 1421, 1423, 1431, 1444, 1449,
1456, 1458, 1471, 1472, 1476, 1478, 1486, 1504, 1514, 1517, 1521, 1531, 1538, 1559, 1570, 1572, 1576, 1580, 1590, 1608, 1609, 1610,
1614, 1616, 1620, 1626, 1627, 1628, 1644, 1648, 1649, 1651, 1654, 1659, 1661, 1664, 1667, 1674, 1681, 1686, 1689, 1690, 1699, 1701,
1703, 1705, 1709, 1719, 1728, 1729, 1740, 1742, 1744, 1750, 1751, 1752, 1758, 1766, 1768, 1769, 1773, 1779, 1780, 1796, 1798, 1801,
1804, 1805, 1812, 1814, 1817, 1822, 1829, 1832, 1836, 1837, 1839, 1845, 1850, 1861, 1864, 1866, 1873, 1877, 1878, 1879, 1882, 1883,
1891, 1903, 1906, 1909, 1911, 1912, 1913, 1919, 1920, 1922, 1923, 1937, 1939, 1941, 1942, 1951, 1953, 1954, 1957, 1960, 1964, 1967,
1969, 1984, 1988, 1989, 1994, 1996, 1997
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testing classes: 8, 12, 18, 23, 24, 27, 28, 40, 41, 47, 48, 49, 51, 56, 58, 59, 60, 69, 72, 73, 76, 77, 78, 81, 89, 91, 98, 102, 107, 119, 123, 124,
125, 128, 133, 135, 145, 146, 149, 154, 161, 162, 173, 176, 179, 182, 189, 190, 192, 195, 198, 203, 206, 207, 208, 209, 210, 211, 213,
219, 221, 232, 233, 237, 240, 241, 246, 249, 262, 264, 265, 267, 271, 272, 274, 291, 294, 295, 310, 316, 322, 324, 325, 328, 337, 341,
345, 355, 359, 360, 369, 374, 377, 382, 384, 388, 394, 398, 399, 403, 404, 406, 407, 409, 410, 413, 426, 433, 438, 452, 455, 459, 462,
474, 476, 477, 479, 481, 490, 494, 496, 497, 499, 519, 523, 525, 528, 535, 538, 539, 540, 541, 545, 549, 553, 567, 569, 572, 589, 591,
593, 594, 595, 598, 600, 606, 608, 612, 613, 619, 620, 623, 627, 631, 636, 637, 645, 649, 655, 659, 661, 663, 665, 666, 670, 672, 673,
674, 679, 691, 694, 697, 698, 701, 703, 709, 711, 724, 726, 732, 734, 736, 740, 742, 747, 748, 750, 751, 754, 760, 763, 764, 765, 769,
773, 780, 781, 787, 790, 795, 803, 812, 819, 822, 823, 827, 829, 835, 836, 838, 852, 854, 858, 861, 868, 873, 876, 879, 891, 896, 897,
899, 901, 904, 905, 907, 913, 922, 928, 929, 933, 935, 939, 942, 949, 953, 958, 970, 981, 985, 991, 992, 994, 1005, 1010, 1011, 1022,
1025, 1041, 1047, 1049, 1054, 1055, 1061, 1062, 1063, 1086, 1092, 1093, 1095, 1096, 1099, 1100, 1101, 1105, 1106, 1108, 1109, 1123,
1127, 1130, 1136, 1145, 1147, 1149, 1151, 1153, 1158, 1159, 1160, 1165, 1171, 1174, 1176, 1177, 1181, 1187, 1194, 1201, 1203, 1210,
1217, 1219, 1227, 1229, 1235, 1236, 1241, 1246, 1254, 1255, 1256, 1257, 1258, 1259, 1260, 1263, 1266, 1268, 1278, 1279, 1282, 1283,
1286, 1290, 1297, 1300, 1308, 1309, 1313, 1328, 1332, 1334, 1335, 1338, 1339, 1340, 1345, 1351, 1352, 1353, 1356, 1359, 1362, 1367,
1370, 1384, 1385, 1387, 1394, 1397, 1400, 1401, 1402, 1408, 1409, 1412, 1413, 1417, 1425, 1430, 1433, 1434, 1436, 1439, 1442, 1443,
1446, 1448, 1455, 1457, 1463, 1466, 1470, 1475, 1479, 1482, 1484, 1487, 1490, 1493, 1494, 1495, 1499, 1500, 1501, 1509, 1510, 1511,
1512, 1513, 1515, 1518, 1522, 1523, 1525, 1529, 1536, 1537, 1539, 1540, 1541, 1546, 1552, 1553, 1556, 1557, 1558, 1560, 1561, 1565,
1573, 1574, 1579, 1581, 1587, 1592, 1597, 1601, 1604, 1612, 1613, 1615, 1630, 1632, 1635, 1636, 1638, 1641, 1642, 1645, 1656, 1665,
1673, 1684, 1691, 1696, 1697, 1700, 1706, 1713, 1714, 1715, 1716, 1721, 1727, 1731, 1732, 1733, 1735, 1743, 1747, 1748, 1749, 1753,
1754, 1755, 1757, 1761, 1765, 1774, 1778, 1784, 1790, 1792, 1794, 1803, 1806, 1811, 1813, 1815, 1834, 1835, 1838, 1840, 1847, 1852,
1853, 1856, 1860, 1869, 1871, 1880, 1881, 1888, 1889, 1890, 1894, 1896, 1901, 1915, 1916, 1918, 1929, 1933, 1938, 1940, 1944, 1945,
1952, 1958, 1959, 1963, 1965, 1968, 1971, 1973, 1979, 1982, 1998
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Annexe B

Résumé

En l’espace de 50 ans, le nombre d’interactions entre les humain, les ordinateurs et le reste du

monde s’est accru considérablement. L’époque des terminaux physiques est un lointain souvenir,

lorsqu’une simple interface textuelle servait à envoyer des commandes et recevoir une réponse

d’un appareil qui n’était guère plus qu’un automate. Avec la multiplication des capteurs, des in-

terfaces, et l’augmentation considérable de la puissance de calcul, les ordinateur ont progressi-

vement intégré la majorité des activité humaines. Une branche de cette expansion nous semble

particulièrement fascinante : l’apprentissage statistique qui vise à équiper les ordinateurs de mo-

dèles d’apprendre et de généraliser des concepts à partir d’exemples. L’apprentissage statistique

permets de supplanter l’ajout de fonctionnalités par la programmation en imitant l’acquisition

de facultés nouvelles chez les humains.

Diverses applications de ce domaine sont désormais accessibles aux grand public : reconnais-

sance vocale pour la dictée ou pour des assistant vocaux, reconnaissance d’écriture, etc. L’appren-

tissage statistique traite aussi des tâches d’expertise dans une variété de domaines, par exemple :

la médecine avec la segmentation d’images radio-graphiques ou microscopiques [Ronneberger

et al., 2015], la détection non-invasive de failles mécaniques dans des rails de trains [Lee et al.,

2016], le débruitage d’images [Lehtinen et al., 2018] ou encore l’identification biométrique [Taig-

man et al., 2014].

Cette thèse se concentre principalement sur des données séquentielles, en pratiques des flux

d’observations temporelles qui sont annotés d’un labels, ou éventuellement d’une série de labels.

Les données séquentielles sont omniprésentes dans nos activités quotidiennes, ce qui motive

d’autant l’étude de l’apprentissage statistique sur ces modalités : la parole, l’écriture, les vidéos,

desmesures physiques, etc. Afin de définir plus concrètement l’objectif de cette thèse, nous avons

sélectionné comme exemple applicatif la reconnaissance de gestes dans des enregistrement de

vidéos et de poses corporelles. Le choix de cette tâche est notamment motivé par le caractère

multi-modal de ces données d’entrée, avec des représentations vectorielles de taille et de nature

très différentes. D’autre part, une reconnaissance de geste efficace pourrait démocratiser un

nouveau support de communication dans les interfaces homme-machine.
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B.1 Aperçu de la Reconnaissance de Gestes

La prédiction sur des séquences peut adopter différentes formes : dans le cas de la reconnais-

sance isolée, une séquence d’observations contant un unique geste est soumise au modèle de

classification, tandis que pour la reconnaissance continue, le modèle doit détecter les instances

de gestes successive éventuellement entrecoupées de blancs depuis un flux d’entrées. Cette se-

conde tâche peut éventuellement se combiner au découpage et à l’alignement temporel des gestes

comme objectif secondaire.

Un second axe de recherche exploré par cette thèse s’intéresse au paradigme d’apprentissage

one-shot, c’est à dire “en un coup”1. Dans ce paradigme, la base d’apprentissage est réduite à

un seul exemples pour de nouvelles classes encore jamais observées, ce qui oblige le modèle à

apprendre très rapidement et à généraliser de manière très robuste. Pour illustrer ce mode de

fonctionnement, on peut considérer un robot destiné commandé par des gestes spécifiques pour

accomplir sa tâche dans un environnement industriel, où l’utilisation de commandes vocale ou

bien d’un terminal de contrôle physique n’est pas toujours possible. L’apprentissage one-shot

permettrait ici de laisser l’utilisateur décider lui-même des gestes et d’entrainer rapidement le

robot à l’aide d’un unique exemple pour chaque commande.

B.1 Aperçu de la Reconnaissance de Gestes

Entre les gestes courants comme pointer du doigt et les directives militaires, la communication

gestuelle offre un vecteur de communication particulièrement flexible et universellement utilisé

dans la vie de tous les jours. Par conséquent, il semble naturel d’essayer d’agrémenter aussi les

interface homme-machine d’un système à base de geste afin de compléter les solutions existante

pour la voix ou l’écriture. La littérature dans ce domaine propose à titre d’exemples les jeux-

vidéos [Ibañez et al., 2014], le contrôle sans-contacte d’un ordinateur dans une salle d’opération,

ou encore le contrôle d’un robot industriel. D’un point de vue scientifique, la reconnaissance de

geste constitue un sujet particulièrement attractif. En effet, la niveau d’expertise disponible sur

l’analyse est moins étendu que pour d’autres exemples de reconnaissance séquentielle comme la

parole ou l’écriture, ce qui rend plus prépondérant l’apprentissage automatique de représenta-

tions par le modèle pour compenser. En outre, l’apparence la forme et le mouvement jouent un

rôle combiné pour donner une signification aux gestes, ce qui nécessite d’extraire des facteurs

de variations complexes depuis des source multimodales.

La reconnaissance en continue de gestes vise à détecter et reconnaitre des segments du flux

d’observations portant une valeur sémantique particulière. La signification du geste découle

d’une combinaison de poses statiques ou de mouvements du corps, des bras, des mains ou même

une expression faciale. Les gestes sont produits par individu dont on suppose qu’il cherche

activement à transmettre un message, par opposition à des formes d’interprétations passives

comme la reconnaissance d’activité où le sujet n’est à priori pas coopératif. Par conséquent, il est

raisonnable de considérer ici un sujet centré face à la caméra et visible sans occlusions majeures,

dans des conditions d’enregistrement stables.

1le domaine étant relativement méconnu, aucune traduction de référence n’existe pour cette expression
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B. Résumé

ces annotations doivent spécifier le ou les labels de gestes tels qu’il apparaissent dans la séquence.

Pour évaluer la qualité de la segmentation en plus de la reconnaissance, les annotations peuvent

aussi spécifier le découpage temporel du début et de la fin de chaque geste. Il est à noter que

ces frontières souffrent généralement d’un certain niveau d’incertitude lié aux mouvements de

transition qui délimitent les geste en eux-même.

B.2 Contexte Scientifique et Motivations

B.2.1 Reconnaissance en Continu sur des Séries Temporelles

Le reconnaissance sur des séquences est un cas particulier des problèmes de classification, c’est

à dire que l’on cherche à prédire une quantité discrète y étant donnée une observation x. Le

caractère continue découle de la structure séquentielle de x = (xt)1≤t≤� où � représente la

longueur de cette séquence. Toutes les observations xt contiennent le même type de données, en

général un vecteur réel pour chaquemodalité d’entrée. Dans lamajorité des cas, l’échantillonnage

temporel est uniforme. Pour les annotations y, on observe trois cas principaux :

• La tâche isolée où chaque séquence d’observation s’associe à un unique label.

• Dans un cas plus général, la séquence comporte� instances de classes successives (yk)1≤k≤<�,

par exemple des mots dans un enregistrement audio-phonique. Il s’agit de la formula-

tion la plus couramment utilisé en reconnaissance de la parole et de l’écriture car elle

n’implique pas de délimiter précisément l’étalement temporel des instances à détecter. En

effet, cet alignement n’est pas nécessairement possible en cas de recouvrements entre les

instances.

• Lorsqu’un alignement est néanmoins disponible, la reconnaissance continue de séquences

défini une classe à chaque instant : y = (yt)1≤t≤�. Cette approche accroit d’une part le

niveau de supervision dans l’apprentissage d’un modèle, et permet d’autre part d’évaluer

la qualité de l’alignement prédit. Produire ces annotations supplémentaires induit néan-

moins un surcout considérable lors de la fabrication d’un jeu de données, et génère parfois

des ambiguïtés en présence de phénomènes transitoires.

Cette thèse étudie le troisième cas, qui permet d’analyser plus finement les propriété temporelles

d’un modèle. Cette configuration nous permets aussi de comparer plus facilement notre étude

et nos résultats à des travaux existants sur la reconnaissance de geste.

Étant donnée les objectifs précisé ci-dessus et les principaux défis à surmonter pour les at-

teindre, différentes classes de modèles ont émergé au fil des années en particulier dans le cadre

de la reconnaissance de la parole et de l’écriture. Ces modèles adoptent approximativement la

même logique générale fondée sur une succession d’étapes logiques, tandis que les spécificités

sont dues aux variations de méthodes à l’intérieur de ces modules :

Acquisition des données : Cette étape regroupe l’acquisition des échantillons de données d’en-

trée à chaque instant.
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Extraction de facteurs de variation : Ce module comprend généralement deux étape succes-

sives. Tout d’abord, une série de transformation globales est appliquée pour obtenir une

représentation des données plus commode à manipuler que sous leur forme brute et éven-

tuellement pour augmenter l’invariance à des phénomène dont on sait qu’ils n’affecteront

pas la tâche ciblée. Par exemple la normalisation du contraste dans des images, la réduc-

tion de dimension par ACP sur de larges vecteurs réels.

Viennent ensuite des extractions de caractéristiques plus pertinentes et spécifiquement

conçue pour accomplir la reconnaissance en continu, par exemple les données HOG sur

les images, des mesures de vitesses, d’accélération et d’orientation pour des objets dans

l’espace, etc. Plus récemment, les avancées du deep learning ont permis d’utiliser des mo-

dèles paramétriques (souvent des réseaux de neurones) pour apprendre automatiquement

les transformations adaptées pour la tâche via un processus dit d’apprentissage de représen-

tations. Bien que ces modèles soient souvent difficile à interpréter, il parviennent souvent

à produire dans l’espace de représentation euclidien des notion sémantiques de haut ni-

veau présentes dans les entrée, par exemple la similarité ou la compositionnalité.

Modélisation temporelle : Lorsqu’elle n’est pas fusionnée dans l’étape précédente, un modèle

séparé peut servir à capturer les structures temporelles présentent dans les données. Cette

thèse se concentre principalement sur les chaînes deMarkovCachés (HMM) et les Réseaux

de Neurones Récurrents (RNN), mais de nombreuses autres approches existent dans la

littérature.

Il est à noter que cette étape peut être précédée d’une segmentation temporelle explicite

produisant des segment de donnéesmonolithiques àmodéliser, ce qui permet d’utiliser des

approches statistiques comme le Bag-of-Words pour étudier les propriété de ces segments.

Il n’est cependant pas toujours possible ou même pertinent de procéder à ce découpage

auquel cas on préfèrera un traitement en continu des séquences de données.

Classification : Un vaste panel de modèle est disponible pour assurer cette opération. Ce choix

dépendra notamment de la nature des représentations ; en effet, une représentation sé-

quentielle demandera un traitement spécifique par rapport à un vecteur de taille fixe. La

sélection devra aussi prendre en compte le type de prédictions demandée, c’est à dire uni-

quement les classe détectées ou aussi leur étendues temporelles.

On notera que la séparation avec le module précédent n’est pas toujours explicite, notam-

ment dans le cas d’un réseau de neurone multi-couches fonctionnant de bout-en-bout ou

d’un HMM.

Dans cette thèse, nous étudions plus particulièrement deux modèles temporels de l’état de

l’art an reconnaissance continue sur des séquence : Le modèle de chaîne de Markov Cachée

(HMM) et les réseaux de neurones récurrents (RNN). Ces deux approches s’articulent autour

d’une idée commune : modéliser des phénomènes séquentiels (temporels dans notre étude) par

des processus récursifs. Ces deux modèles appartiennent néanmoins à deux école de pensée

différentes dans la manière d’implémenter ce modèle.
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La HMM s’appuie sur un modèle probabiliste graphique dont la construction s’articule prin-

cipalement autour des données d’entrée : un ensemble d’hypothèse expertes est formulé pour ex-

pliquer le processus sous-jacent qui provoque les phénomènes observés, et résulte en un modèle

génératif capable de produire de nouvelle observation artificielles. Ces hypothèses simplifient le

modèles et rendent les calculs abordables. Dans le cas de notre étude, ce sont les calculs liés à la

détections et la classifications qui sont primordiaux. La HMM est subdivisé entre un modèle des

observations instantanée et un modèle de transitions, tous deux entraînés conjointement pour

maximiser la vraisemblance des données d’apprentissage. Elle offre un modèle à la fois flexible,

robuste et facile à interpréter, ce qui facilite la mise au point et permet éventuellement de mieux

comprendre le phénomène étudié. L’apprentissage et l’inférence avec la HMM sont très effi-

cace en raison de l’utilisation de la programmation dynamique qui limite la complexité des

calculs. Pour profiter de modèles d’observations plus complexes, [Bourlard and Morgan, 1990]

suggère de remplacer ce modèle probabiliste par un modèle discriminatif, en pratique un réseau

de neurones. Cette architecture, connu sous le nom d’hybride NN-HMM, dispense le modèle

d’apprendre le processus de génération des observations qui n’est pas nécessaire à l’usage de la

HMM pour la reconnaissance continue, et qui limite le choix de modèles.

À l’opposé de l’approche probabiliste, les réseaux de Neurones Récurrents suivent une ap-

proche largement axée autour de la tâche et des prédictions à produire. L’aspect modélisation,

bien que primordial pour la réussite dumodèle, n’intervient que pour faciliter l’accomplissement

de la reconnaissance continue. L’entraînement des paramètre du réseau de Neurone repose sur

l’utilisation d’une fonction objectif dont la maximisation traduit le succès avec lequel un modèle

accomplit son objectif. Si l’objectif et la logique diffèrent, l’architecture reste assez comparable à

la solution d’hybride NN-HMM. Suite au succès des modèles HMM, et en particulier la version

hybride qui fait intervenir les réseaux de neurones, il est donc raisonnable de se demander pour-

quoi l’approche RNN a tant tardé à rencontrer la réussite qu’on lui connait aujourd’hui. L’une

des raisons principale provient de la manière d’appliquer la récurrence dans les RNN standards,

qui provoque une atténuation rapide de l’information au cours des itérations, et limite donc la

capacité de modélisation à des phénomènes à court-terme. Pour surmonter ce problème, des

unités pontées (en référence aux ponts électroniques qui court-circuitent une portion d’un sys-

tème) ont été proposées. Ces dernière permettent de réduire la profondeur apparente d’un ré-

seau récurrent par rapport au temps et facilite donc la propagation des signaux d’apprentissage

ou de prédiction. Cette amélioration se combine à d’autres contributions plus générales dans

le domaine des réseaux de neurones et à l’accroissement substantiel de la puissance de calcul

disponible pour les faire fonctionner.

B.2.2 Apprentissage “en un coup”

En dépit du nom, l’apprentissage one-shot (en un coup) formalise surtout une méthodologie

d’inférence et de test, à l’intérieur de laquelle une étape d’apprentissage occupe une place centrale.

L’apprentissage one-shot stipule qu’à l’aide d’uniques exemples issues de classes jamais observées
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dans le passé, un modèle doit être capable d’apprendre à classer de nouvelles occurrences des

ces catégories.

Le défi central de cette forme de classification réside de toute évidence dans la manière d’ap-

prendre à partir d’un unique exemple. En effet, la plupart des techniques d’apprentissage né-

cessitant un large ensemble de données statistiquement représentatives de la réalité ne peuvent

s’adapter à cette situation extrême. De nouveaux modèles sont dont nécessaire pour exploiter au

mieux les exemples d’apprentissage. Des travaux essaie notamment de tirer parti de la robustesse

et de la flexibilité des réseaux de neurones pour cette tâche, tout essayant d’éviter les problème

de sur-apprentissage. Une partie de cet effort intervient en amont de la phase one-shot, où une

large partie de l’apprentissage des paramètres du modèle est effectuée sur une tâche annexe qui

réduit considérablement la dépendance sur les exemples observés en one-shot. Cette approche

conforte aussi le point de vue qui consiste à présenter l’apprentissage one-shot principalement

comme une méthodologie d’évaluation et non d’apprentissage.

L’apprentissage one-shot présente des perspective d’utilisations très intéressante pour la re-

connaissance de gestes, et c’est la raison pour laquelle nous avons décidé de l’étudier. En effet, un

utilisateur pourrait par exemple programmer un robot assistant pour réagir à ses commandes

de manière similaire aux systèmes vocaux actuellement. Cette thèse étudie ce paradigme d’ap-

prentissage et de test dans le cas de gestes isolés, c’est à dire que le modèle doit prédire la classe

pour des séquences contenant un seul geste à la fois.

Comparé aux paradigmes d’apprentissage et de classification traditionnels, le one-shot reste

jusqu’à aujourd’hui un domaine assez peu étudié, avec néanmoins une activité de recherche

croissante. Par exemple, il n’existe à notre connaissance qu’une seule contribution sur l’utilisation

de réseaux de neurones pour des données séquentielles [Pei et al., 2016]. Cette situation s’explique

notamment par la difficulté de la tâche qui requiert des techniques non-conventionnelles. Les

publications récentes [Santoro et al., 2016 ; Vinyals et al., 2016b] ont cependant définit un cadre

d’étude et une méthodologie plus précise pour étudier le sujet, ce qui permet de définir des

objectifs tangibles à accomplir et de canaliser l’effort de recherche sur ce domaine. Parallèlement,

des sujets de recherche connexes comme le apprentissage incrémental, multi-tâche ou le méta-

apprentissage [Schmidhuber, 1987] contribuent aussi à ce développement.

B.3 Expériences et Contributions

B.3.1 Reconnaissance de gestes en continu

La reconnaissance en continu sur des séquence possède un état de l’art très fourni avec de nom-

breuses applications déjà disponibles auprès du grand public. Le domaine reste cependant très

actif et continu de s’améliorer ou de se diversifier. Plutôt que de s’investir sur l’amélioration des

performances, notre travail porte l’emphase sur l’étude des propriétés de deux modèles de l’état

de l’art, l’hybride NN-HMM et les RNN. Avec leur amélioration notables ces dernières années
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et leurs performances à l’état-de-l’art, les second ont supplanté leur prédécesseur comme le mo-

dèle de facto pour aborder la reconnaissance en continu sur les séquences. Pour autant, les deux

modèle partagent un certain nombres de similitudes, notamment un réseau de neurone pour as-

surer l’apprentissage de représentations à partir des observations. Ils s’appuient tous deux sur un

mécanisme de représentation interne latente l’inférence repose dans chaque cas sur une expres-

sion récurrente qui alterne entre des transformations linéaires et non-linéaires. Notre travail

vise donc à mettre en lumière les différences, similarités, avantages et inconvénients de chaque

modèle. Cette étude s’appuie sur un cas d’utilisation concret : la reconnaissance de gestes ; un

support d’étude particulièrement intéressant puisque les données associés mélangent différents

types de représentations et niveaux de complexité.

Dans un premier temps, le travail de cette thèse a été investi sur la fabrication d’un modèle et

d’un environnement de test avec undesignmodulaire qui assure une comparaison équitable entre

les deux modèle. Cette objectif doit s’accomplir sans avoir à faire de compromis sur les capacité

d’apprentissage ou d’inférence observées pour chaque modèle optimisé de manière isolée. Pour

ce faire, notre étude s’appuie sur un jeu de données de gestes issu d’une compétition [Escalera

et al., 2014]. Celle-ci bénéficie d’uneméthode d’évaluation rigoureuse et d’unnombre conséquent

de publications illustrant notamment l’utilisation des Hybrides NN-HMM et des RNN, ce qui

nous permet de valider le fonctionnement optimal de ces modèles dans notre implémentation.

Comme mentionné dans la présentation du domaine, les modèles de reconnaissance séquen-

tielle (et en particulier de gestes), sont découpés en plusieurs modules conceptuels, notamment

un dédié a la modélisation temporelle. Notre approche pour une comparaison équitable a com-

mencé par un travail de fusion entre la solution à base d’hybrideNN-HMMet de RNNpour tous

les autres modules. En limitant les différences et donc les sources variations dans les résultats,

il devient plus facile d’analyser les propriétés liées spécifiquement aux modèles temporels. Par

ailleurs, le côté historique de l’approche avec les HMM implique que ses implémentations n’ont

pas systématiquement bénéficié des dernières évolutions en apprentissage de représentations.

La figure B.3 résume l’architecture globale et met en évidence le partage d’un même modèle d’ap-

prentissage de représentations dans les deux approches. On notera que l’architecture utilisée

pour le RNN est un modèle bidirectionnel utilisant des unités GRU [Cho et al., 2014]. De son

côté, l’architecture HMM repose sur un modèle de type phonème à 5 états semblable à ceux utili-

sés couramment pour la reconnaissance de paroles. Pour optimiser les méta-paramètres comme

le nombre de couches, leur taille, le pas de gradient... nous avons suivi une stratégie opportuniste

en optimisant successivement les paramètres qui semblent influencer le plus fortement les per-

formances. La figure n’inclue pas l’acquisition et le pré-traitement des observations ou encore

l’extraction de caractéristiques expertes. Là encore, nous appliquons les mêmes opérations pour

les deux approches dans un souci d’équité.

Lors de nos premiers essais pour entraîner le modèle de reconnaissance, nous avons observé

de multiples problèmes liés au déséquilibre entre la quantité d’observations de gestes et de non-

gestes. Ces dernière sont en effet regroupées au sein d’une classe de rejet largement omniprésente

dans les enregistrements. Pour les deux approches de modèle temporels, nous utilisons le fait
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d’un seuil de durée est préférable en terme de score. Le phénomène existe aussi pour le modèle

HMM, mais de manière moins prononcée. Cet exemple illustre le côté ambivalent de la flexibi-

lité des réseaux de neurones, toute inadéquation entre la fonction de coût et l’objectif réel risque

de mener à des prédiction erronées, et ce en dépit des contraindre architecturales imposées au

modèle. Ici, la présence de modèles temporels RNN et de convolutions temporelles dans l’ap-

prentissage de représentations n’empêchent pas la prédictions de gestes anormalement courts.

Les performances obtenues par nos modèles sont compilées dans la Table B.1 et montrent

que notre implémentation est en accord avec les résultats de l’état de l’art.

Modèle Modalité
Précision JI

validation test validation test

[Wu et al., 2016] Hybrid NN-HMM P 0.783 0.779
Hybride NN-HMM P 0.911 0.912 0.789 0.788

BD-RNN P 0.921 0.922 0.814 0.811
[Neverova et al., 2016] DNN P 0.831

Hybride NN-HMM (P)V 0.890 0.890 0.748 0.745
BDRNN (P)V 0.909 0.909 0.791 0.789

[Neverova et al., 2016] CNN (P)VD 0.836
[Pigou et al., 2016] BD-RNN VD 0.906

Hybride NN-HMM PV 0.926 0.927 0.829 0.826
BDRNN PV 0.935 0.934 0.852 0.846

[Neverova et al., 2016] DNN + CNN PVD 0.868

Table B.1 – Précision et Indice de Jaccard sur différentes modalités : Pose P, pose
utilisée indirectement pour la localisation (P), images V et cartes de profondeur D.

Une analyse plus approfondie des prédictions révèle que le modèle à base de HMM commet

principalement des erreurs entre les gestes et les non-gestes. De son côté, le modèle RNN com-

met plus d’erreurs entre les classes, et rencontre plus de difficultés avec les gestes de courte durée.

La seconde phase de notre étude s’intéresse à la robustesse de la modélisation temporelle

vis-à-vis de ses entrées. Pour se faire, nous modifions la largeur du contexte temporel présent

dans l’extraction de représentation qui précède la modélisation temporelle à proprement parler.

Ce contexte est modélisé par une convolution mono-dimensionnelle le long du temps sur les

vecteurs de représentation. La largeur de la fenêtre de convolution détermine ainsi la taille du

contexte. Dans le cas extrème d’une convolution assez large pour observer un geste entier, on

peut supposer que la convolution temporelle seule peut assurer la modélisation temporelle, c’est

d’ailleurs la stratégie adoptée dans [Neverova et al., 2014, 2016]. Inversement, une fenêtre courte

limite l’apprentissage de représentation aux facteurs de variation à court terme, obligeant ainsi

la HMM ou le RNN à modéliser les structures temporelle qui déterminent la signification d’un

geste. Dans le cas extrême sans convolution, toute la modélisation temporelle repose sur ces

modules.
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B.3.2 Apprentissage “en un coup”

Dans son mode de fonctionnement one-shot, la reconnaissance a lieu dans un contexte épiso-

dique caractérisé par la succession d’étapes suivantes :

1. tirage d’un vocabulaire �ep (typiquement une dizaine de classes) issu d’un large ensemble

de catégories disponibles �ep

2. tirage d’un (éventuellement plus) exemple d’apprentissage pour chaque classe de �ep, don-

nant ainsi lieu à un ensemble d’apprentissage (�ep, � ep)
3. entrainement d’un classifieur sur (�ep, � ep)
4. évaluation ou utilisation du modèle sur d’autres exemples

Onnotera que l’étape 3 d’apprentissage one-shot n’est qu’un étape dans l’utilisation dumodèle.

Elle a donc aussi lieu lors de a phase de test pour évaluer les performance d’un modèle. L’objectif

n’est donc pas de maximiser les performances pour un épisode particulier mais pour n’importe

quelle combinaison de classes �ep à distinguer les unes des autres. En d’autres termes, on n’évalue

pas le modèle entrainé mais sa capacité à apprendre (rapidement).

Il est à noter que cette procédure de test épisodique est souvent précédée d’une autre phase

d’apprentissage en amont qui prépare le modèle et facilite le travail de l’étape 3 dans laquelle

le faible nombre d’exemple limite la quantité d’information disponible. Les classes d’exemples

utilisées en test ne doivent toutefois pas apparaitre lors de ce pré-apprentissage, afin d’éviter la

spécialisation du modèle et les fuites entre l’ensemble de pré-apprentissage et de test. Pour la

majorité des modèles, cette étape de préparation est incontournable pour le succès de la recon-

naissance, tandis que les données épisodiques ne servent qu’à spécialiser le modèle en pratique.

La littérature sur le sujet apporte plusieurs implémentations possibles, comme le transfert d’ap-

prentissage depuis un modèle entraîné sur tâche différente d’un domaine connexe. Un exemple

de transfert est l’adaptation des travaux de vérification pour la biométrie. Pour toute base de

données compatible avec la classification en apprentissage one-shot, il est possible de constituer

un sous-problème de vérification en tirant des paires d’exemples issues de classes tirée au hasard.

Lorsque la taille de l’ensemble d’apprentissage (nombre d’exemples et de classes) est suffisante,

on peut aussi entrainer directement le modèle sur des épisodes en veillant toujours à isoler les

catégories utilisée de celles réservée au tests.

Nous expérimentons ces deux approches ainsi qu’une troisième solution dérivée de la vérifi-

cation, avec pour objectif d’apprendre des gestes issus du langage des signes. Un lexique de signes

enregistrés dans des vidéos nous offre en effet un nombre de classes suffisant (2000 pour la base

DEVISIGN [Wang et al., 2016] utilisée) pour tester la généralisation sur les classes, contraire-

ment aux bases de gestes usuelles avec au plus une centaine de catégorie. Pour des raisons de

temps et de ressources, nous n’avons exploité que les données de poses dans nos expériences,

mais cette base comprend les même modalités que dans les expériences de reconnaissance conti-

nue.

La plupart des publications sur l’apprentissage one-shot faisant appel à des réseaux de neu-

rones utilisent une stratégie commune : un réseau de neurone est entrainé pour générer un
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utilisons une mesure de distance non-paramétrique suivie d’un critère de seuil pour effectuer la

classification. Pour les tests sur des épisodes, qui impliquent de la classification multi-labels, la

distance et le seuillage sont replacés par la méthode du plus-proche-voisin. Cet exemple illustre

la méthodologie générale précédemment évoquée : un pré-entrainement sur une tâche connexe

sert à optimiser la majorité voire la totalité des paramètres d’un modèle de représentation des

entrée, ce dernier est ensuite coiffé d’un modèle non-paramétrique plus adapté au conditions

du one-shot.

Une variation de cette approche consiste à travailler sur des triplets d’observations [Hoffer

and Ailon, 2014 ; Hariharan and Girshick, 2017] et non des paires, avec dans chaque triplet deux

exemples d’une même classe et un intrus. Cette méthode dispense de déterminer la proportion

de paires positives ou négatives et de fixer un seuil de décision pour la tâche de vérification.

La troisièmeméthode implémente laméthode de Shepard proposée par ??, dont l’usage n’a pas

été très répandu jusqu’à récemment [Vinyals et al., 2016b]. Pour simplifier, la formule proposée

offre une variation dérivable de laméthode du plus proche voisin, ce qui permet donc d’entrainer

le réseau de neurone de bout-en-bout directement sur la tâche d’apprentissage one-shot en

générant des épisodes. Nos essais montrent que l’optimisation du réseau bénéficie sensiblement

de l’utilisation d’une fonction de coût hinge en lieu et place de l’entropie croisée couramment

utilisée. On notera que la méthode de Shepard peut servir non seulement au pre-apprentissage,

mais aussi en test pour toutes les méthodes présentées puisqu’elle remplace le k-plus-proches-

voisins.

La table B.3 résume les résultats obtenus pour les trois solutions étudiées. Avec un précision

Table B.3 – Précision et rang de la cible sur des épisodes de 20 classes. Notations :
shots → nombre d’exemples d’apprentissage par classe, 1-NN → plus proche voisin.

Shots Métrique Pré-apprentissage
Précision Rang

Shepard 1-NN Shepard 1-NN

1
�2 siamois 0.837 0.837 1.32 2.63�2 triplets 0.851 0.851 1.30 2.49

cosine Shepard+hinge 0.867 0.867 1.34 2.33
2

�2 siamois 0.880 0.879 1.20 2.21�2 triplet 0.901 0.895 1.17 2.06
cosine Shepard+hinge 0.908 0.910 1.18 1.91

supérieure à 80%, toutes les configurations testées présentent de solide performances, validant

ainsi l’architecture du réseau de neurone. La méthode de Shepard, dont on rappelle qu’elle en-

traîne le modèle directement sur la tâche finale à accomplir, présente un léger avantage sur la

mesure de précision, mais l’écart général entre les différentes méthodes reste assez faible. L’ana-

lyse des cas d’erreurs ne révèle pas de phénomènes particuliers, et la confusion entre certaines

classes est souvent expliquée par la similarité du mouvement associé.
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Des expériences complémentaires démontrent que ce modèle reste robuste, comme démon-

tré sur des épisodes allant jusqu’à 50 classes, où la précision atteint toujours 80%. Nous avons

aussi expérimenté une forme de méta-apprentissage avec les Matching Networks [Vinyals et al.,

2016b], mais les résultat n’ont pas été concluants. L’intention du méta-apprentissage est d’aug-

menter l’impact de la phase d’apprentissage avec les exemples à l’intérieur des épisodes, mais au

lieu d’avoir recours à des méthodes d’apprentissage traditionnelles, l’optimisation est confiée à

un modèle parent qui prédit les paramètres ajustés. Cette approche est le pendant de la mémoire

à long terme qui nous aide à trouver des solutions à de nouveaux problèmes au quotidien en

utilisant des concepts génériques et réutilisables.
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