
HAL Id: tel-02012149
https://theses.hal.science/tel-02012149

Submitted on 8 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Cryptanalysis of symmetric encryption algorithms
Colin Chaigneau

To cite this version:
Colin Chaigneau. Cryptanalysis of symmetric encryption algorithms. Cryptography and Security
[cs.CR]. Université Paris Saclay (COmUE), 2018. English. �NNT : 2018SACLV086�. �tel-02012149�

https://theses.hal.science/tel-02012149
https://hal.archives-ouvertes.fr

N
N

T
:2

01
8S

A
C

LV
08

6

Cryptanalyse des algorithmes
de chiffrement symétrique

Thèse de doctorat de l’Université Paris-Saclay
préparée à l’Université de Versailles Saint-Quentin-en-Yvelines

Ecole doctorale n◦580 Sciences et Technologies de
l’Information et de la Communication (STIC)

Spécialité de doctorat : Mathèmatiques et Informatique

Thèse présentée et soutenue à Versailles, le mercredi 28 novembre 2018, par

Colin Chaigneau

Composition du Jury :

M. Louis GOUBIN
Professeur, Université de Versailles
Saint-Quentin-en-Yvelines, France Président

M. Thierry BERGER
Professeur Émérite, Université de Limoges, France Rapporteur

Mme. Marı́a NAYA-PLASENCIA
Directrice de Recherche, INRIA Paris, France Rapporteure

M. Patrick DERBEZ
Maı̂tre de Conférence, Université de Rennes 1, France Examinateur

Mme. Marine MINIER
Professeure, Université de Lorraine, France Examinatrice

M. Gilles VAN ASSCHE
Senior Principal Cryptographer, STMicroelectronics,
Belgique Examinateur

M. Henri GILBERT
Expert, ANSSI - Chercheur Associé, Université de
Versailles Saint-Quentin-en-Yvelines, France Directeur de thèse

Titre :Cryptanalyse des algorithmes de chiffrement symétrique

Mots clés : Cryptographie symétrique, cryptanalyse, chiffrement par bloc, chiffrement à flot, chiffrement authentifié

Résumé : La sécurité des transmissions et du stockage des
données est devenue un enjeu majeur de ces dernières années et la
cryptologie, qui traite de la protection algorithmique de l’information, est
un sujet de recherche extrêmement actif. Elle englobe la conception
d’algorithmes cryptographiques, appelée cryptographie, et l’analyse de
leur sécurité, appelée cryptanalyse.

Dans cette thèse, nous nous concentrons uniquement sur la
cryptanalyse, et en particulier celle des algorithmes de chiffrement
symétrique, qui reposent sur le partage d’un même secret entre l’en-
tité qui chiffre l’information et celle qui la déchiffre. Dans ce manus-
crit, trois attaques contre des algorithmes de chiffrement symétriques
sont présentées. Les deux premières portent sur deux candidats de
l’actuelle compétition cryptographique CAESAR, les algorithmes AEZ
et NORX, tandis que la dernière porte sur l’algorithme Kravatte, une
instance de la construction Farfalle qui utilise la permutation de la fonc-
tion de hachage décrite dans le standard SHA-3. Les trois algorithmes
étudiés présentent une stratégie de conception similaire, qui consiste à
intégrer dans une construction nouvelle une primitive, i.e. une fonction
cryptographique élémentaire, déjà existante ou directement inspirée de
travaux précédents.

La compétition CAESAR, qui a débuté en 2015, a pour but de
définir un portefeuille d’algorithmes recommandés pour le chiffrement
authentifié. Les deux candidats étudiés, AEZ et NORX, sont deux al-
gorithmes qui ont atteint le troisième tour de cette compétition. Les
deux attaques présentées ici ont contribué à l’effort de cryptanalyse
nécessaire dans une telle compétition. Cet effort n’a, en l’occurrence,

pas permis d’établir une confiance suffisante pour justifier la présence
des algorithmes AEZ et NORX parmi les finalistes.

AEZ est une construction reposant sur la primitive AES, dont l’un des
principaux objectifs est d’offrir une résistance optimale à des scénarios
d’attaque plus permissifs que ceux généralement considérés pour les
algorithmes de chiffrement authentifié. Nous montrons ici que dans
de tels scénarios il est possible, avec une probabilité anormalement
élevée, de retrouver l’ensemble des secrets utilisés dans l’algorithme.

NORX est un algorithme de chiffrement authentifié qui repose sur
une variante de la construction dite en éponge employée par exemple
dans la fonction de hachage Keccak. Sa permutation interne est ins-
pirée de celles utilisées dans BLAKE et ChaCha. Nous montrons qu’il
est possible d’exploiter une propriété structurelle de cette permutation
afin de récupérer la clé secrète utilisée. Pour cela, nous tirons parti
du choix des concepteurs de réduire les marges de sécurité dans le
dimensionnement de la construction en éponge.

Enfin, la dernière cryptanalyse remet en cause la robustesse de
l’algorithme Kravatte, une fonction pseudo-aléatoire qui autorise des
entrées et sorties de taille variable. Dérivée de la permutation Keccak-
p de SHA-3 au moyen de la construction Farfalle, Kravatte est efficace
et parallélisable. Ici, nous exploitons le faible degré algébrique de la
permutation interne pour mettre au jour trois attaques par recouvre-
ment de clé : une attaque différentielle d’ordre supérieur, une attaque
algébrique ”par le milieu” et une attaque inspirée de la cryptanalyse de
certains algorithmes de chiffrement à flot.

Title : Cryptanalysis of symmetric encryption algorithms

Keywords : Symmetric cryptography, cryptanalysis, block cipher, stream cipher, authenticated encryption

Abstract : Nowadays, cryptology is heavily used to protect stored
and transmitted data against malicious attacks, by means of security
algorithms. Cryptology comprises cryptography, the design of these al-
gorithms, and cryptanalysis, the analysis of their security.

In this thesis, we focus on the cryptanalysis of symmetric encryption
algorithms, that is cryptographic algorithms that rely on a secret value
shared beforehand between two parties to ensure both encryption and
decryption. We present three attacks against symmetric encryption al-
gorithms. The first two cryptanalyses target two high profile candidates
of the CAESAR cryptographic competition, the AEZ and NORX algo-
rithms, while the last one targets the Kravatte algorithm, an instance of
the Farfalle construction based on the Keccak permutation. Farfalle is
multipurpose a pseudo-random function (PRF) developed by the same
designers’ team as the permutation Keccak used in the SHA-3 hash
function.

The CAESAR competition, that began in 2015, aims at selecting a
portfolio of algorithms recommended for authenticated encryption. The
two candidates analysed, AEZ and NORX, reached the third round of
the CAESAR competition but were not selected to be part of the fina-
lists. These two results contributed to the cryptanalysis effort required

in such a competition. This effort did not establish enough confidence to
justify that AEZ and NORX accede to the final round of the competition.
AEZ is a construction based on the AES primitive, that aims at offering
an optimal resistance against more permissive attack scenarios than
those usually considered for authenticated encryption algorithms. We
show here that one can recover all the secret material used in AEZ with
an abnormal success probability. NORX is an authenticated encryption
algorithm based on a variant of the so-called sponge construction used
for instance in the SHA-3 hash function. The internal permutation is
inspired from the one of BLAKE and ChaCha. We show that one can
leverage a strong structural property of this permutation to recover the
secret key, thanks to the designers’ non-conservative choice of redu-
cing the security margin in the sponge construction.

Finally, the last cryptanalysis reconsiders the robustness of the Kra-
vatte algorithm. Kravatte is an efficient and parallelizable PRF with in-
put and output of variable length. In this analysis, we exploit the low
algebraic degree of the permutation Keccak used in Kravatte to mount
three key-recovery attacks targeting different parts of the construction:
a higher order differential attack, an algebraic meet-in-the-middle attack
and an attack based on a linear recurrence distinguisher.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

R E M E R C I E M E N T S

Ce sont sans doute les premières pages que liront beaucoup de personnes,
mais elles sont surtout les dernières auxquelles je me serais consacré durant
cette thèse, complétant ainsi trois années de belles aventures. Et quel chemin
parcouru depuis les premiers pas foulés sur le sol parisien. J’ai eu l’occasion
de rencontrer beaucoup de personnes intéressantes, à tous je vous remer-
cie. Je m’excuse par avance pour les mots que je n’arriverai pas forcément
à trouver pour exprimer toute la gratitude que je pourrais avoir pour vous,
leur absence n’entame en rien ce que j’éprouve. Si par malchance votre nom
serait omis et que vous arriveriez à prouver que cette absence n’est pas jus-
tifié je m’engage alors à me faire pardonner en vous offrant une boîte de
mes délicieux cookies aux kinder maxi (ou alors tout simplement si vous en
éprouvez l’envie et la gourmandise, mais il faudra alors me persuader que
vous les méritez).

Je tiens tout d’abord à remercier mon directeur de thèse, Henri Gilbert, sans
qui tout cela n’aurait pas été possible. Henri merci pour ta gentillesse, ta
patience et ta sagesse durant ces trois années, ces qualités s’ajoutant aussi à
l’extrême justesse dont tu fais preuve dans tes raisonnement. J’ai beaucoup
appris à tes côtés et j’espère en avoir encore l’occasion, pour cela je te suis
reconnaissant. Merci à toi.

J’aimerais ensuite remercier María Naya-Plasencia et Thierry Berger d’avoir
accepté d’être mes rapporteurs.
Merci aussi aux membres de mon jury, Marine Minier, Louis Goubin, Patrick
Derbez et Gilles Van Assche, pour avoir accepter d’être présent pour ma sou-
tenance.

Je remercie le projet BRUTUS pour avoir financé ma thèse ainsi que tous les
collaborateurs que j’ai eu l’occasion de rencontrer.
Je tiens aussi à remercier Thierry Berger, qui en plus d’avoir été mon pro-
fesseur de cryptographie symétrique m’a aussi aiguillé vers les cryptographes
de la région parisienne.

Merci à tous les membres de l’ANSSI, avec qui j’ai passé de très bon mo-
ments durant ces trois années et demie (depuis le début de mon stage à
l’ANSSI), et ce n’est pas sans une certaine tristesse que je fermerais l’épicerie
de mon bureau. Merci donc Henri, Thomas, Jean-René, Jérémy, Aurélie,

i

Guénaël, Jérôme, Yannick, Jean-Pierre, Mélissa, Adrian, Guillaume, Ryad,
Boris, Emmanuel, Thomas, Louiza, David, Karim, Éliane, Christophe, José,
Valentin, Philippe, Pierre-Michel. Vous contribuez tous à cette bonne am-
biance qui caractérise si bien l’ANSSI (et ce malgré les innombrables mo-
queries que j’ai dû subir durant toutes ses années...).
Je remercie aussi en particulier mes co-auteurs, Henri, Thomas, Jérémy, Jean-
René, avec qui j’ai eu l’occasion de collaborer et d’apprendre beaucoup.

Merci à l’équipe CRYPTO de m’avoir accueilli durant ma thèse : Louis,
Christina, Ilaria, Luca, Michael, Valentin, Alexandre, Florent, Édouard, Axel
et Élise tout récemment.
Louis merci pour les conseils, les discussions et l’aide apportée pour se dé-
faire des démarches administratives. Merci Christina pour les conseils et les
discussions que l’ont a pu avoir. Ilaria merci pour toutes ces conversations,
verres et autres bon moments, bonne chance au pays des frites et du chocolat.

Je remercie aussi ceux qui me font confiance dans l’enseignement : Louis,
Michael, Christina, Sandrine et Franck. J’ai découvert le plaisir d’enseigner
avec ces TD. Merci aussi à tous les étudiants que j’ai pu avoir, j’en apprend
encore tous les jours.
Merci à tous les membres du LMV, Christophe, Catherine, Nadège et ceux
du département d’informatique, Sandrine, Franck, Thierry, Sébastien et Marie
avec qui j’ai eu l’occasion de discuter et partager.
Merci aux doctorants de math avec qui j’ai eu l’occasion de passer quelques
bons moments : Patricio, Antoine, Maxime, Camilla, Sibylle et Salim.

Merci aussi à tous ceux que j’ai pu rencontrer sur la fac et avec qui j’ai
partagé de très bon moments : Alicia, Amélie, Angélo, Axelle, Axelle, Béni,
Cassandre, Cylia, Feriel, Florian, Jérémy, Lucas, Lucie, Marius, Mathieu, Nico-
las, Rémi, Ségolène, Théoo, Vincent, Zachary. J’espère avoir l’occasion de
passer encore de bons moments.

Je remercie ensuite tout les doctorants et post-doc crypto que j’ai eu l’occasion
de rencontrer : Anca, Dahmoun, Romain, Alain, Yann, Sébastien, Virginie,
Léo, Isabella, Sarah, Lucas, Mathilde, André, Ferdinand, Julien, Baptiste. Un
merci aussi à tout les cryptographes un peu plus vieux (j’ai dit un peu plus
vieux) : Anne, Gaëtan, María, Pierre, Brice, Thomas, Patrick, Marine, Pierre-
Alain, Mathieu. La communauté cryptographique est, je trouve, une belle
famille.

Je remercie aussi chaleureusement les camarades du master CRYPTIS dont
un certain nombre ont finalement rejoint Paris et ses environs : Élise et Tom

ii

(dans cet ordre là), Nico, Anthony, Zoé, Adrien, Chloé, Maël et Paul. Une
pensée particulière à Maël et Paul avec qui j’ai partagé plusieurs années
d’université et que j’espère pouvoir revoir bientôt.

Puisqu’il est question des études, je tiens aussi à remercier tout les en-
seignants de l’Université de Limoges dont j’ai eu la chance d’assister aux
cours, certains m’ont conforté dans les choix que je faisais, d’autres m’ont
aiguillé, tous ont en tout cas participé à ce que je suis maintenant et je les en
remercie.
Je remercie aussi les professeurs de math du lycée Bernard Palissy pour avoir
entretenu cette attraction pour les mathématiques.

Si beaucoup de rencontres durant la thèse furent le fruit de cette passion
pour la cryptographie, beaucoup d’autres en sont le résultat d’autres pas-
sions communes.
Merci donc aux membres de la B.A.B., Julie, Julie, Elisa et Emy. Qui aurait
cru que cette soirée ratée il y a maintenant un peu plus de deux ans aurait
aboutie à cette amitié. Merci aussi à Franky pour toutes ces soirées et ces
bons moments (l’avenir approche !). Merci aussi à Ibrahim, Camille, Claire,
Cynthia, Jessica, Manon, Marine, Julie, Alizée. Merci aussi à Magali pour
l’organisation de ces soirées à la librairie. Seuls des moldus ne pourraient
comprendre les raisons de cette passion.
J’ai aussi eu l’occasion de rencontrer des trolls plutôt affectueux et qui égayent
maintenant mes mercredis soirs, merci donc à Arthur, Aurel, Arnaud, Guil-
laume, Sébastien et Jessica.
Merci aussi à tout ceux que je ne vois pas forcément souvent : Guix, Jean,
Sarah, Nicolas, Xavier, Agathe.
Merci en particulier à Julie que je connais maintenant depuis quelques an-
nées, merci pour ces FaceTime épiques et tout ces délires, reste comme tu es.

Je termine enfin ces remerciements par les personnes les plus importantes.
Même si je vis maintenant un peu loin d’eux, j’ai une pensée particulière
pour toute ma famille. Je vous aime beaucoup et vous remercie pour tout ce
que vous avez fait pour moi, et tout ce que vous m’avez apporté.

iii

P U B L I C AT I O N S

[CG16] Colin Chaigneau and Henri Gilbert.

Is AEZ v4.1 Sufficiently Resilient Against Key-Recovery At-
tacks?

IACR Transactions on Symmetric Cryptology, December 2016.

[CFG+17] Colin Chaigneau, Thomas Fuhr, Henri Gilbert, Jérémy Jean, and
Jean-René Reinhard.

Cryptanalysis of NORX v2.0.

IACR Transactions on Symmetric Cryptology, March 2017.

[CFG+18a] Colin Chaigneau, Thomas Fuhr, Henri Gilbert, Jian Guo, Jérémy
Jean, Jean-René Reinhard, and Ling Song.

Key-Recovery Attacks on Full Kravatte.

IACR Transactions on Symmetric Cryptology, March 2018.

[CFG+18b] Colin Chaigneau, Thomas Fuhr, Henri Gilbert, Jérémy Jean, and
Jean-René Reinhard.

Cryptanalysis of NORX v2.0.

Journal of Cryptology, 2018. To appear.

https://www.springerprofessional.de/en/
cryptanalysis-of-norx-v2-0/15826164.

C O N T E N T S

1 introduction 1
1.1 What is Cryptography? . 2
1.2 Symmetric Encryption Algorithms 3

1.2.1 Basic Security Notions . 5
1.2.2 Symmetric Primitives . 6
1.2.3 Primitives are Used in Larger Constructions 10

1.3 Beyond Confidentiality, Authenticity 15
1.3.1 Message Authentication 16
1.3.2 Formalisation . 16
1.3.3 Security of AE Schemes 17
1.3.4 Constructions and Modes of Operations to Achieve Au-

thentication . 18
1.4 How to Build Strong Cryptographic Primitives? 19

1.4.1 Attack Success . 19
1.4.2 Context of Cryptanalysis 20
1.4.3 Cryptanalysis Strategies 21

1.5 Contributions . 21
2 caesar competition 25

2.1 Context and Goals . 25
2.2 Timeline . 27
2.3 Finalists . 27

2.3.1 ACORN v1.2 . 28
2.3.2 Ascon v1.2 . 29
2.3.3 AEGIS v1.1 . 30
2.3.4 MORUS v2 . 32
2.3.5 OCB v1.1 . 33
2.3.6 COLM v1 . 35
2.3.7 Deoxys-II v1.41 . 36

3 cryptanalysis of aez 39
3.1 Description of AEZ . 42

3.1.1 Tweaked Instances of AES4 and AES10 Used in AEZ . . . 43
3.1.2 AEZ-hash universal hashing 44
3.1.3 PRF Function . 44
3.1.4 AEZ Core . 44
3.1.5 Tweaks from AEZ v3 . 45

3.2 Attacks on AEZ . 47
3.2.1 Birthday Attacks . 47
3.2.2 AES4 Cryptanalysis . 53
3.2.3 Results of Our Attack . 62

vii

viii contents

3.3 Conclusion . 63
4 cryptanalysis of norx 65

4.1 Specifications of NORX . 68
4.1.1 Description of NORX v2.0 68
4.1.2 Security Claims . 72
4.1.3 NORX Variants . 72

4.2 Cryptanalysis of NORX v2.0 . 73
4.2.1 Non-Random Properties of F 74
4.2.2 Ciphertext-Only Forgery of NORX v2.0 Without Padding 76
4.2.3 Forgery Attack Against NORX v2.0 77
4.2.4 Adversarial Model Discussion 78
4.2.5 Key-Recovery Attack Against NORX v2.0 79

4.3 Pseudo-code for the Ciphertext-only Forgery and Key-Recovery
Attack . 80

4.4 Application to Other Variants of NORX 80
4.5 Discussion About NORX Security Claims 83

5 cryptanalysis of kravatte 87
5.1 Specifications of Farfalle and Kravatte 90

5.1.1 The Farfalle Construction for Permutation-Based PRFs 90
5.1.2 The Kravatte Pseudo-Random Function 91
5.1.3 Round Function of the Keccak-p Permutation 93

5.2 Algebraic Cryptanalysis of Full Kravatte 94
5.2.1 Meet-in-the-Middle Algebraic Attack 94
5.2.2 Cancellation of Monomials Using a Linear Recurrence . 97

5.3 Higher Order Differential Cryptanalysis of Full Kravatte . . . 101
5.3.1 Construction of Affine Spaces in the Accumulator 102
5.3.2 Higher Order Differential Attacks Against Kravatte . . 103
5.3.3 Last-Round Attacks . 104

5.4 Optimization Techniques for the Cryptanalysis 105
5.4.1 Minimizing the Number of Variables for Two Inverse

Rounds . 105
5.4.2 Super Structure of Input Messages 108
5.4.3 Counters . 110
5.4.4 Optimizing the Attacks 113

5.5 Concluding Remarks and Discussion 115

bibliography 117

L I S T O F F I G U R E S

Figure 1 Albus sending encrypted data to Barty. 2
Figure 2 Combination of symmetric and asymmetric encryp-

tion to send data. 4
Figure 3 SPN and Feistel networks. 7
Figure 4 Stream Cipher Construction. 10
Figure 5 ECB mode of operation. 13
Figure 6 CBC, CFB, OFB and CTR modes of operation. 14
Figure 7 Sponge construction. 14
Figure 8 monkeyDuplex construction. 15
Figure 9 Generic compositions of an encryption scheme and a

MAC. 18
Figure 10 ACORN algorithm - encryption process. 29
Figure 11 Ascon algorithm - encryption session. 31
Figure 12 AEGIS state update (up) and encryption (down) process. 32
Figure 13 MORUS state update (up) and encryption (down) process. 34
Figure 14 OCB encryption process without padding. 35
Figure 15 COLM encryption process without plaintext padding. . . 36
Figure 16 Deoxys-II encryption process with 4 plaintext blocks

and 3 AD blocks. Tag generation (up) and ciphertext
computation (down). 38

Figure 17 AEZ-core scheme. 46
Figure 18 Difference propagation in the birthday attack to re-

trieve I. 52
Figure 19 AES4 scheme. 54
Figure 20 Differential path. 55
Figure 21 Bytes numbering in AES state. 55
Figure 22 Difference propagation within AEZ-core. 56
Figure 23 Other possible differential characteristics. 58
Figure 24 NORX v2.0 mode: the padded bit-strings of 12w-bit blocks

A = A0|| · · · ||Aa−1, M = M0|| · · · ||Mm−1 and Z =

Z0|| · · · ||Zz−1 are processed by the monkeyDuplex sponge
construction. 70

Figure 25 Function G applies on state columns. 71
Figure 26 Function G applies on state diagonals. 71
Figure 27 Forgery first step: assume the capacity is symmetric

(probability 2−2w). 77
Figure 28 Forgery second step: attempt forgery with rotated ci-

phertext and tag. 77

ix

x List of Figures

Figure 29 NORX v3.0 serial mode. 82
Figure 30 The Kravatte primitive. The input message M is padded

and split into the b-bit blocks mi. The function n
refers to the linear function x → rolln(x). 93

Figure 31 Meet-in-the-middle algebraic attack on Kravatte, with
n1 forward and n2 backward rounds, n1 + n2 = ne. . . . 95

Figure 32 Linear recurrence in the Kravatte branches: the se-
quence (yj

i)j of highlighted bits at a prescribed Posi-
tion i across the branches j = 0, . . . , `o − 1 follows a
linear recurrence described by the polynomial (X +

1) · Proll . 98
Figure 33 Higher order differential distinguisher on Kravatte.

Summing over the whole affine space Acc(S) the states
obtained after application of ` = nd + ne− ε rounds to
the blocks Xi of the affine space, i.e., summing along
every bold line, yields zero. 103

Figure 34 Notations used in Section 5.4.1. 105
Figure 35 Example of structure/message membership matrix,

with (n, t) = (2, 2). 110

L I S T O F TA B L E S

Table 1 Summary of the CAESAR competition finalists 28
Table 2 Main cryptanalyses results on Ascon. 31
Table 3 Main cryptanalyses results on Deoxys. 37
Table 4 AEZ attacks complexities. 41
Table 5 Birthday attacks complexities. 53
Table 6 AES4 attack complexities. 62
Table 7 Full attack complexities. 62
Table 8 Rotation constants in the permutation G. 71
Table 9 Key-recovery attacks against Kravatte instantiations

for several (nd, ne) values. All attacks are independent
of nb and nc, and ? means that nd can take any value.
The reference points to the section describing the at-
tack type. The complexity figures are obtained after
the selection of optimizations described in Section 5.4. 90

Table 10 Number of monomials in input (resp. output) vari-
ables after n rounds of Keccak-p or Keccak-p−1 for
b = 1600 (log2 scale). 96

Table 11 Degree and computation time of recurrence polyno-
mial for all monomials in y after n1 rounds of Keccak-p,
and attack complexity against Kravatte-(nd, ne), for
any nd and ne = n1 +n2. For optimized attacks, see Sec-
tion 5.4. 102

xi

1
I N T R O D U C T I O N

"Paypal notification: you have paid 133.7€ to Steam Marketplace". This notifica-
tion on the lock screen of your phone has at least two implications. You spent
money on games you will probably never use. And by the time this notifica-
tion reached you, several cryptographic protocols and algorithms have been
involved to ensure a secure transaction, from transmission to authentication
and payment.

This is an insignificant example of what nowadays, in our ubiquitous
world that depends heavily on the Internet, cryptography became: predomi-
nant in our daily lives, and vital in many domains. The application spectrum
of cryptography is broad but whether it is intended to protect our private in-
formation and our communications, or to ensure safe transactions and many
other uses, cryptography needs to be fast, reliable and secure. Building a
cryptographic system with these qualities is uneasy, but can be achieved
with relevant choices and analyses and the knowledge of previous works.

Cryptanalysis is the study by cryptanalysts of cryptographic algorithms
from the point of view of an adversary who is trying to break the secu-
rity of the cryptographic systems. Informally, the longer an algorithm has
been analysed the more reliable it will be considered by the cryptographic
community. The new proposals can be inspired by previous cryptographic
systems which gained trust from the cryptographic community and benefit
from the previous security analysis, or they can be built from scratch, of-
fering new design strategies that improve performance, security, or both. In
either case, they need to be carefully examined. It is only when confidence,
gathered by strong design rationale and cryptanalysis and spread among
the cryptographic community that a cryptographic algorithm can start being
used in real-world situations. Even if an algorithm does not exhibit critical
flaws, the discovery of undesirable properties can justify untrustworthiness.
When some flaws are exhibited after a widespread implementation, conse-
quences can be harmful. It can lead to the exploitation of these vulnerabili-
ties by dishonest people and requires quick fixes to prevent these potential
attacks. The WEP protocol is a perfect example of what cryptanalysis is
dedicated to avoid. While the WEP protocol was broadly adopted in secure
transmission, in Wi-Fi networks for instance, an attack1 focusing on its un-
derlying cryptographic algorithm led to a complete and practical security

1 By Fluhrer et al. [FMS01]

1

2 introduction

breakdown of this protocol. Hence, cryptanalysis is primordial in the pro-
cess of designing and adopting new cryptosystems and justifies investing a
sufficient amount of time in analysis and studies.

1.1 What is Cryptography?

Cryptology is the study of secure communications, and addresses the ques-
tion of how to efficiently protect data from untrusted parties. Cryptology
encompasses the design, cryptography, and the analysis, cryptanalysis. We
depict the fundamentals of cryptography in the first sections and focus on
cryptanalysis in Section 1.4.

The process of concealing data is achieved with a so-called encryption al-
gorithm, and the reverse operation is performed by a decryption algorithm.
Both algorithms are parametrized by an encryption, resp. a decryption key. An
encryption algorithm takes as input unprocessed data called plaintext and
returns a ciphertext. The high-level process of encryption is depicted in Fig-
ure 1, where Albus wants to send a message to Barty while preventing any
third party from deciphering it2.

ALBUS

Encryption
Algorithm

Albus’s
Plaintext

Encryption
Key

Ciphertext

BARTY

Decryption
Algorithm

Albus’s
Plaintext

Decryption
Key

Figure 1: Albus sending encrypted data to Barty.

With this encryption scheme, we can distinguish two algorithm families:
those that use the same key for the encryption and the decryption, and
those that use two different keys, one for the encryption and another one,
impossible to derive from the former one, for the decryption. The family of
algorithms involving a unique key to encrypt and decrypt messages belong

2 They use cryptography because the owl postal service is assuredly a non-secure communica-
tion channel, which does not prevent malicious people to intercept messages.

1.2 symmetric encryption algorithms 3

to symmetric cryptography. When a different key is used for encryption and
decryption, the encryption/decryption algorithm belongs to the asymmetric
cryptography family.

Using a symmetric or an asymmetric algorithm implies profound differ-
ences on the design of these algorithms. Asymmetric cryptography is built
around hard mathematical problems, e.g. factorization of large numbers,
discrete logarithm on finite fields or elliptic curves, lattice problems, etc.
Symmetric cryptography, on the other hand, uses basic arithmetic, logical
operations and/or look-up tables, and its security is based on Shannon’s
confusion and diffusion principles [Cla45]. The use of basic operations in
symmetric encryption enables efficient software and hardware implementa-
tions, but this scheme assumes that the secret key required for encryption
and decryption has been securely exchanged beforehand. Asymmetric cryp-
tography is much slower since mathematical objects lay in structures that are
more complex to run and implement in software and hardware. But there
is no key exchange required in asymmetric cryptography, Albus and Barty
both have a public and a private key. To perform encryption, Albus encrypts
his plaintext with Barty’s public key and sends the computed ciphertext to
Barty, who just has to decrypt the ciphertext with his private key. Anyone
can encrypt messages and send them to Barty, but he is the only one who
knows the private key that can decipher them.

In practice, both cryptographic families are complementary and used in a
combined way: asymmetric cryptography ensures that a secret key is safely
shared, and symmetric algorithms use this shared key to efficiently protect
large amounts of data. An illustration of how the two sides of cryptography
are jointly used to achieve secure encryption is depicted in Figure 2.

The following section focuses on symmetric cryptography and provides
an overview of this family. Hence, we now exclusively consider symmetric
algorithms parametrized by a secret key only shared between two parties.

1.2 Symmetric Encryption Algorithms

Symmetric encryption, as said before, relies on a unique secret key used both
for encryption and decryption. Symmetric encryption can be formalized as
follows: an encryption algorithm Enc takes as input a secret key of length k
bits denoted by K and a plaintext string P of p bits. The encryption algorithm
returns a ciphertext C of c ≥ p bits.

Enc : {0, 1}k × {0, 1}p −→ {0, 1}c

(K, P) 7−→ C = EncK(P).

4 introduction

ALBUS

Symmetric
Encryption
Algorithm

Albus’s
Plaintext

Secret
Key

Asymmetric
Encryption
Algorithm

Barty’s
Public Key

Ciphertext

Encrypted
Secret Key

BARTY

Symmetric
Decryption
Algorithm

Albus’s
Plaintext

Secret
Key

Asymmetric
Decryption
Algorithm

Barty’s
Private Key

shared secret key

Figure 2: Combination of symmetric and asymmetric encryption to send data.

Its reverse operation Dec, for decryption, takes as input a ciphertext and
the secret key to recover the initial plaintext,

Dec : {0, 1}k × {0, 1}c −→ {0, 1}p

(K, C) 7−→ P = DecK(C),

with Enc and Dec verifying ∀P, DecK(EncK(P)) = P.

Confidentiality

Since cryptography is used to conceal messages, the main property targeted
by a symmetric encryption algorithm is confidentiality. Confidentiality means
that no unauthorized party can recover secret information on the system and
no information can be retrieved from previous encryptions in order to pre-
dict the future behaviour of the algorithm. For instance, the knowledge of
some previously encrypted plaintext/ciphertext pairs must reveal no infor-
mation on a ciphertext which could be used to recover any information on
its associated plaintext.

To achieve this property, designers ensure that the output of their algo-
rithm is unpredictable. The notion of unpredictability is specific to the consid-
ered symmetric cryptographic object.

1.2 symmetric encryption algorithms 5

1.2.1 Basic Security Notions

Before introducing the main families of symmetric primitives we formalize
three following theoretical objects: a Pseudo Random Function (PRF), a Pseudo
Random Permutation (PRP) and a Pseudo Random Number Generator (PRNG).
These definitions are useful for capturing the security requirements on sym-
metric primitives.

Pseudo Random Function - PRF

We denote fK a function of n bits to m bits parametrized by a secret key K
taken from the set K of all k-bit secret keys under the uniform distribution.
We denote f ∗ a random function from the space of all possible functions of
n bits to m bits. We denote A a probabilistic algorithm that given a function
f outputs 1 or 0. The goal of the algorithm A is to distinguish a function fK

with a random secret key K from f ∗.

We say that the collection F = { fK | K ∈ K} is a PRF if the advantage of
any probabilistic algorithm A for distinguishing fK, a random instance of F,
from f ∗, defined by

AdvPRF
F (A) =

∣∣Pr[A(fK) = 1]− Pr[A(f ∗) = 1]
∣∣

is small.

Pseudo Random Permutation - PRP

The definition of a PRP derives naturally from the definition of a PRF. We
denote πK a permutation of n bits parametrized by a secret key K taken from
the set K of all k-bit secret keys under the uniform distribution. We denote
π∗ a random permutation from the space of all possible permutation of n bits
to n bits. We denote A a probabilistic algorithm that given a permutation π

outputs 1 or 0. The algorithm A is able to distinguish a random permutation
πK from π∗.

We say that the collection Π = {πK | K ∈ K} is a PRP if the advantage of
any probabilistic algorithm A for distinguishing πK, a random instance of
Π, from π∗, defined by

AdvPRP
Π (A) =

∣∣Pr[A(πK) = 1]− Pr[A(π∗) = 1]
∣∣

is small.

6 introduction

Pseudo Random Number Generator - PRNG

We denote s a function that takes as input a secret key K of k bits and outputs
a binary string of m bits. We denote s∗ a random binary string of m bits. We
denote A a probabilistic algorithm that given a binary string outputs 1 or 0.
The algorithm A is able to distinguish s(K), with K random, from s∗.

We say that s is a PRNG if the advantage of any probabilistic algorithm A
for distinguishing s(K) from s∗, defined by

AdvPRNG
s (A) =

∣∣Pr[A(s(K)) = 1]− Pr[A(s∗) = 1]
∣∣

is small.

1.2.2 Symmetric Primitives

A primitive is a low-level cryptographic algorithm that performs operations
on data. Primitives are not encryption algorithms on their own, they are the
building blocks of wider constructions.

In symmetric cryptography, we traditionally distinguish two families of
primitives, block ciphers and stream ciphers. As their names suggest, the
former comprises encryption algorithms that process blocks of data, while
the latter comprises encryption algorithms that perform encryption by gen-
erating a keystream, i.e. a binary string which is combined with the plaintext
to generate the ciphertext. Recently, while block ciphers were widely used
as primitives, several cryptographic algorithms were proposed relying on
a permutation instead. In the following we provide an overview of these
families.

Block Cipher

By definition, a block cipher primitive is an algorithm that performs encryp-
tion of blocks. Formally, it can be defined as a family of n bits to n bits
permutations parametrized by a secret key. The expected security of a block
cipher primitive is the PRP criterion. Thus, we can see a block cipher as a
PRP that takes as input a secret key and returns a permutation of n-to-n bits.

The first standardized block cipher algorithm was the Data Encryption
Standard (DES) in 1977 [DES77]. Currently, the main standardized block
cipher is the Advanced Encryption Standard (AES) [AES01], which replaced
the DES in 2001. The design of a block cipher relies on a round function
parametrized by a round key. The round keys are derived from the secret

1.2 symmetric encryption algorithms 7

key with a key-schedule algorithm. The encryption of a block of data is
performed by successive iterations of this round function, with a sufficient
number of rounds chosen to guarantee comfortable security.

The structure of the two main types of block cipher designs, Substitution
Permutation Networks (SPN) and Feistel networks, is depicted in Figure 3. SPN
make use of a non-linear substitution layer and a linear diffusion layer while
Feistel networks rely on a single non-linear function.

Round Function

Round Function

SPN

Input Block

Substitution Layer

Linear Diffusion Layer

Round Key Addition

Substitution Layer

Linear Diffusion Layer

Round Key Addition

Output Block

Feistel Networks

Input Block

Round Key

Non-linear
Function

•

Round Key

Non-linear
Function

•

Round Key

Non-linear
Function

•

Round Key

Non-linear
Function

•

Output Block

Figure 3: SPN and Feistel networks.

AES Block Cipher

Currently, the state-of-the-art block cipher primitive is the broadly adopted
Advanced Encryption Standard (AES) algorithm [AES01]. AES is a block cipher
designed to encrypt blocks of 128 bits with a 128, 192 or 256-bit secret key.

8 introduction

AES is built on a 10, 12 or 14-round3 SPN construction. The round function
is the composition of a non-linear substitution layer with two linear diffusion
layers and a round-key addition layer. The current state value is viewed as a
4× 4 matrix of bytes. With this representation the four layers are operating
as follows:

– SubBytes, each byte of the matrix is processed through the same S-Box.
A S-Box is a n-bits to m-bits non-linear map that is efficient and easy to
implement, for instance through its lookup table representation. The
AES S-Box is a 8-to-8 bits non-linear map.

– ShiftRows, that applies left circular rotations of 1, 2 and 3 bytes on the
last three rows of the matrix.

– MixColumns, a linear mixing operation performed on the columns of
the matrix.

– AddRoundKey, where the current round key derived from the secret key
is xored with the state matrix.

Note that the first round is preceded by an AddRoundKey operation and the
last round is performed without the MixColumn operation.

Tweakable Block Cipher and XEX Construction

A tweakable block cipher (TBC) is another primitive, first proposed by Liskov
et al. [LRW11]. A TBC is a block cipher that takes, in addition of a secret key
and a block of data, a third input denoted tweak. The role of the tweak is
to modify the behaviour of the block cipher, that is two TBC calls with the
same secret key and input block but different tweak values will return two
"independent" output block values. Several algorithms relying on a TBC are
depicted in Section 2.3, with OCB, COLM and Deoxys, and in Chapter 3 with
AEZ.

The TBC used in the algorithms mentioned above are all based on the so-
called XOR-Encrypt-XOR (XEX) construction [Rog04]. In this construction
two offsets are derived from the input tweak value. To process a block of
data, a first offset is xored to the input block, followed by the block cipher
primitive and a xor with the second offset. Remark that the offset can also
depend of the secret key, this is the case in the AEZ algorithm.

3 Depending on the key size.

1.2 symmetric encryption algorithms 9

Stream Cipher

A stream cipher is an encryption algorithm built around an internal state
initialized from a secret key and an Initial Value (IV). This state is iteratively
updated to generate a keystream. The plaintext is xored with the generated
keystream to compute the ciphertext. Figure 4 depicts a classical stream ci-
pher construction.

The IV is an important element in a stream cipher. Without an IV a stream
cipher generates a keystream that only depends from the key. Thus, with
the knowledge of one plaintext/ciphertext pair one can deduct the gener-
ated keystream computed from the secret key and be able to further decrypt
messages without the knowledge of the secret key value, compromising the
security. Hence, encryption of several plaintext without an IV must be per-
formed with different secret keys, which is not convenient. Using an IV al-
lows the encryptions of several plaintext without key replacement, assuming
that the IV is changed for each encryption.

A stream cipher construction with IV can be seen as a family of functions
parametrized by a secret key K that take as input an IV of n bits and generate
a keystream of variable length. The expected security of a stream cipher with
IV is the PRF criterion. Without an IV the stream cipher construction can be
seen as a family of number generators taking a secret key K of k bits as the
seed, and generating a keystream of variable length. The expected security
of a stream cipher without IV is the PRNG criterion. The latter construction,
without an IV is rarely used.

Remark that the plaintext and/or ciphertext can also be injected in the
internal state to produce the keystream. We refer to a synchronous stream
cipher when the keystream depends only on the key/IV pair and to an asyn-
chronous stream cipher when the keystream also depends on the plaintext
and/or ciphertext.

Permutations

As said before, the use of permutations as primitives instead of block
cipher is a recent trend. Several propositions follow this idea, as the two
cryptographic algorithms analysed latter in this manuscript (cf. Chapter 4
and Chapter 5). A permutation is defined as a bijection mapping n bits to
n bits with n the width of the permutation. Seen as a parameter, the width
of a permutation can be modified to suit specific implementations allowing
versatility in the use of a permutation.

10 introduction

Internal State

Feedback Function

Keystream Function

Plaintext

Ciphertext

Figure 4: Stream Cipher Construction.

The security expected from a permutation is not easy to formalize and
depend on the use of the permutation. Heuristically, a good permutation
should avoid any structural property that can be satisfied for given input
and output pairs. In Chapter 4, where we analyse the NORX algorithm, we
provide a compelling example of such a structural property and exploit it to
mount an attack.

1.2.3 Primitives are Used in Larger Constructions

Stream ciphers, by definition, can generate keystreams of arbitrary length.
Therefore, encryption of a plaintext can be done with only one call to the
primitive, that generates a keystream combined with the plaintext to pro-
duce the ciphertext. Hence, the stream cipher primitive is generally used on
its own and not embedded in a wider construction to perform encryption.

Block ciphers, however, can only encrypt one block at the time. To perform
encryption of plaintexts of arbitrary length a block cipher has to be incorpo-
rated in a larger construction named mode of operation. A mode of operation
is an algorithm which specifies plaintexts of variable length how should be
encrypted with a primitive. This definition also comprises the recent use of
permutations as primitives, embedded in a more involved construction.

1.2 symmetric encryption algorithms 11

Before detailing the design of some modes of operation, we must define
the expected security for a mode.

Security Notion for Encryption Algorithms

The main security notion sought for an encryption algorithm is the notion
of indistinguishability [BDJR97]. The definition of indistinguishability can be
viewed as a game between an adversary and an oracle, that is an indepen-
dent third party that will receive queries and send non-deterministic re-
sponses. Three main versions are usually considered, IND-CPA for indistin-
guishability under Chosen Plaintext Attack, IND-CCA (or IND-CCA1) for in-
distinguishability under chosen ciphertext attack4 and IND-CCA2 for indis-
tinguishability under adaptive chosen ciphertext attack. They differ from the
adversary freedom with IND-CCA2 allowing the largest variety of queries
by the adversary. IND-CCA2 security implies IND-CCA1 security which in
turns implies IND-CPA security.

We denote SE = (E ,D,K) a symmetric encryption scheme defined by an
encryption algorithm E , a decryption algorithm D and a set of secret keys
K. The adversary is denoted A.

The IND-CPA security can be formalized with the following Guess game:

1. The oracle randomly computes a value b $←− {0, 1}, and chooses a ran-

dom secret key K $←− K;

2. the adversary A can query encryption of arbitrary plaintexts to the
oracle, then he chooses two plaintexts of equal length M0 and M1, and
sends them to the oracle;

3. the oracle encrypts the plaintext Mb under the secret key K and sends
the ciphertext C = EK(Mb) to A;

4. A returns a value b′ = GuessSE (A) to the oracle and wins if b′ = b, that
is he correctly guessed which plaintext was encrypted by the oracle.

We define the IND-CPA advantage of A for the symmetric scheme SE by

AdvIND−CPA
SE (A) = |Pr[GuessSE (A)⇒ win]− Pr[GuessSE (A)⇒ loss]| .

A symmetric encryption scheme is considered secure with respect to the
IND-CPA security notion or equivalently semantically secure if this advan-
tage remains small.

4 Non-adaptive chosen ciphertext attack.

12 introduction

The IND-CCA1 and IND-CCA2 securities can be formalized as follows:

1. The oracle randomly computes a value b $←− {0, 1}, and chooses a ran-

dom secret key K $←− K;

2. the adversary A can query encryption or decryption of arbitrary plain-
texts and ciphertexts to the oracle, then he chooses two plaintexts M0

and M1, and sends them to the oracle;

3. the oracle encrypts the plaintext Mb under the secret key K and sends
the ciphertext C = EK(Mb) to A;

4. in the IND-CCA2 setting, the adversary is allowed to query encryp-
tion or decryption of more plaintexts or ciphertexts to the oracle, but
obviously cannot query the ciphertext returned by the oracle in the
previous step;

5. A returns a value b′ = GuessSE (A) to the oracle and wins if b′ = b.

We define the IND-CCA1 (resp. IND-CCA2) advantage of A for the sym-
metric scheme SE by

AdvIND−CCA∗
SE (A) = |Pr[GuessSE (A)⇒ win]− Pr[GuessSE (A)⇒ loss]| .

A symmetric encryption scheme is considered secure with respect to the
IND-CCA1 or CCA2 security notion if this advantage remains small. What
differs in the IND-CCA2 notion in comparison with the IND-CCA1 notion
is the ability for the adversary to ask the decryption of a ciphertext C′ built
from C in order to distinguish Mb.

Modes of Operation

The simplest mode of operation is the Electronic Code Book (ECB) [Dwo01]
and simply consists of the independent encryption of each plaintext block
with the same block cipher instance, as seen in Figure 5.

Although being efficient and simple to implement, the ECB mode offers
no semantic security or IND-CPA security. Indeed, two blocks with the same
value will give the same ciphertext output blocks independently of their po-
sitions in the plaintext. Thus, the IND-CPA game can be correctly guessed by
providing to the oracle two messages with a specific structure, for instance

1.2 symmetric encryption algorithms 13

Plaintext
Block

Block
Cipher

Key

Ciphertext
Block

Plaintext
Block

Block
Cipher

Key

Ciphertext
Block

Plaintext
Block

Block
Cipher

Key

Ciphertext
Block

Plaintext
Block

Block
Cipher

Key

Ciphertext
Block

Figure 5: ECB mode of operation.

M0 = (B0, B1) and M1 = (B1, B1) where B0 and B1 are two arbitrary dif-
ferent blocks5. Such behaviour is not desirable, especially when encrypting
large files such as pictures, where encryption with the ECB mode does not
"randomize" the output, and provides no confidentiality.

Fortunately, other modes of operation exist [CSA16], such as Cipher Block
Chaining (CBC), Cipher FeedBack (CFB), Output Feedback (OFB) and Counter
(CTR) modes, all displayed in Figure 6. All these modes are IND-CPA secure
but not IND-CCA secure. Remark that OFB and CTR modes can be viewed
as stream ciphers with a keystream generated in blocks instead of single bits.

Sponge Construction Based on an Unkeyed Permutation

The sponge construction is a mode of operation relying on an unkeyed per-
mutation instead of a block cipher primitive that was initially introduced to
derive a hash functions, another symmetric cryptography tool [BDPA11b].
The concept of the sponge construction is very simple: an internal state
split into two parts, the rate and the capacity, is updated with a permutation
through an absorbing and a squeezing phase. In the absorbing phase, blocks
of data are injected in the rate part of the sponge, leaving the capacity part
of the sponge unaltered. In the squeezing phase, the value of the rate part
is returned after each state update. The processed input and output blocks
are separated by a state transition performed by the unkeyed permutation
as seen in Figure 7.

Formalizing the security expected from a sponge function is not trivial,
proofs of security for the sponge construction are achievable in an idealized

5 If the oracle encrypts M0 then the two blocks of the ciphertext will be different while the two
blocks of the ciphertext will be equal if the oracle encrypts M1.

14 introduction

IV

CBC mode
Plaintext

Block

Block
Cipher

Key

Ciphertext
Block

Plaintext
Block

Block
Cipher

Key

Ciphertext
Block

Plaintext
Block

Block
Cipher

Key

Ciphertext
Block

IV

CFB mode

Block
Cipher

Key

Plaintext
Block

Ciphertext
Block

Block
Cipher

Key

Plaintext
Block

Ciphertext
Block

Block
Cipher

Key

Plaintext
Block

Ciphertext
Block

IV

OFB mode

Block
Cipher

Key

Plaintext
Block

Ciphertext
Block

Block
Cipher

Key

Plaintext
Block

Ciphertext
Block

Block
Cipher

Key

Plaintext
Block

Ciphertext
Block

CTR mode

Counter #1

Block
Cipher

Key

Plaintext
Block

Ciphertext
Block

Counter #2

Block
Cipher

Key

Plaintext
Block

Ciphertext
Block

Counter #3

Block
Cipher

Key

Plaintext
Block

Ciphertext
Block

Figure 6: CBC, CFB, OFB and CTR modes of operation.

R
ate

C
apacity

Initial
State

Perm
utation

Perm
utation

Perm
utation

Perm
utation

Perm
utation

Perm
utation

A
bsorbing

Phase

Squeezing
Phase

Input
B

lock

Input
B

lock

O
utput

B
lock

O
utput

B
lock

Figure 7: Sponge construction.

model where the actual and fully instantiated permutation is replaced by an
ideal permutation [ADMA15, DMA17].

1.3 beyond confidentiality, authenticity 15

While initially introduced to construct hash functions, the sponge con-
struction can also be used for further applications. The duplex version of
this design [BDPVA11] enables additional encryption features. Duplexing the
sponge consists in mixing the absorbing and squeezing mechanisms, that is
input and output blocks are processed by pairs between two state transitions
as depicted in Figure 8. The block of ciphertext is generated by combination
of the input with the output block.

R
ate

C
apacity

Initial
State

Perm
utation

Perm
utation

Perm
utation

Input
B

lock

Input
B

lock

O
utput

B
lock

O
utput

B
lock

Figure 8: monkeyDuplex construction.

More Than Confidentiality ?

We saw that constructions and modes based on strong cryptographic prim-
itives such as block ciphers or permutations allow encryption of arbitrary
long messages while providing the confidentiality of the data. But these con-
structions can also be used to target further cryptographic purposes, like
message authentication, described in the next section.

1.3 Beyond Confidentiality, Authenticity

Transmission of encrypted data on a public channel can be subject to many
alterations. Senders and receivers want to protect their messages against

16 introduction

events that come from the channel itself, like packet loss or poor signal, or
from the data manipulation by malicious people. This is where authenticated
encryption algorithms (AE), come into play with further security objectives
than mere confidentiality.

1.3.1 Message Authentication

Beyond confidentiality, an authenticated encryption algorithm aims at pro-
viding message authentication, that is, combining the ability to verify the iden-
tity of the sender and the integrity of the data. Verifying the identity of the
sender means that the receiver can verify the source of the data while in-
tegrity ensures that the ciphertext was not modified during the transmis-
sion. Authentication is obtained by a ciphertext expansion, that is the output
of an AE algorithm is larger than the original message, which is necessary
to guarantee the two notions simultaneously.

1.3.2 Formalisation

The encryption part of an AE algorithm can be defined as the following map,

{0, 1}k × {0, 1}p × {0, 1}n × {0, 1}ad −→ {0, 1}c+τ

(K, P, N, AD) 7−→ C = EncK(K, P, N, AD),

where K and P are key and plaintext as for a block cipher, and where AD are
associated data (also sometimes referred to as a header) and N a nonce or an
Initializing Vector (IV). The associated data are optional and not encrypted,
this is a feature to allow authentication of additional data which do not re-
quire encryption. When allowing associated data, we refer to an authenticated
encryption with associated data (AEAD) algorithm. The nonce is by definition
a value that can be used only once. One role of the nonce is to make the en-
cryption non-deterministic, using two different nonces to encrypt the same
message will result in two different ciphertexts. Note that some AE construc-
tions omit the nonce. The ciphertext expansion mentioned above involves an
expansion of τ bits. The decryption function is defined as follows,

{0, 1}k × {0, 1}c+τ × {0, 1}n × {0, 1}ad −→ {0, 1}p ∪⊥
(K, C, N, AD) 7−→ DecK(C, N, AD) = P or ⊥.

One can note that the output of the decryption algorithm can be an er-
ror message, denoted ⊥. To protect the confidentiality of the plaintext no
information must be revealed before the authentication is verified. If the
verification of the authentication fails then an error message is returned. In
most cases, the plaintext needs to be recovered before the verification of the
validity of the ciphertext.

1.3 beyond confidentiality, authenticity 17

1.3.3 Security of AE Schemes

The expected security property of an AE scheme in addition to the ciphertext
indifferentiability requirement of a classic encryption scheme is to provide
integrity of ciphertexts, as defined by Bellare and Namprempre in [BN00]. The
integrity of ciphertexts means that the probability for an adversary to suc-
cessfully produce a valid ciphertext of a plaintext not previously encrypted
by the sender must remain negligible without the knowledge of the secret
key.

The first solution to convert an encryption system into an AE scheme is
the use of an additional dedicated algorithm, denoted Message Authentica-
tion Code (MAC). A MAC is an algorithm parametrized by a secret key that
takes a string of data to authenticate and returns an authentication tag of fixed
length. The security expected for a MAC is the non-forgeability. The proba-
bility for an adversary to produce a valid authentication tag for a message
without prior knowledge of the secret key must be negligible6. Note that two
secret keys are required to ensure security, one for the encryption algorithm
and one for the MAC, and must be distinct to avoid security issues. Three
generic composition methods can be found in the literature:

– Encrypt-and-MAC, the plaintext is encrypted to produce a ciphertext
and a MAC of the plaintext is concatenated to the ciphertext;

– MAC-then-Encrypt, a MAC of the plaintext is produced first, following
by the encryption of both the plaintext and the MAC;

– Encrypt-then-MAC, the plaintext is encrypted to produce a ciphertext
and a MAC of the ciphertext is appended.

These three compositions are considered secure when used with a nonce,
and only the Encrypt-then-MAC composition can be considered secure if the
nonce is omitted. Figure 9 depicts each composition.

Misuse Resistance [RS06] (MRAE algorithms) is a stronger security notion
for AE schemes. MRAE addresses the possibility for an adversary to violate
some of the requirements for an AE algorithm. For instance, a MRAE algo-
rithm allows an adversary to repeat the public nonce to encrypt different
messages with the same key (nonce misuse). MRAE also encompasses the re-
lease of unverified plaintexts, that is plaintexts are released even if the tag
verification fails instead of a resulted error message. Remark that this secu-
rity notion is not attainable by an Online AE scheme, that is an algorithm
where the encryption of the n + 1-th block depends only on the last n-th
block ciphertext value. Online AE schemes are used for the encryption of
large messages for instance.

6 At most 2−τ for a tag of length τ.

18 introduction

Encrypt-and-MAC

Plaintext

Encryption
Mode

MAC

Ciphertext Tag

MAC-then-Encrypt

Plaintext

MAC

Encryption
Mode

Ciphertext

Encrypt-then-MAC

Plaintext

Encryption
Mode

MAC

Ciphertext Tag

Figure 9: Generic compositions of an encryption scheme and a MAC.

1.3.4 Constructions and Modes of Operations to Achieve Authenti-
cation

The first modes of encryption were designed to encrypt long messages with
block ciphers and provide confidentiality, but lacked of authentication prop-
erties. When the need for message authentication began to spread, the first
response was to use an additional algorithm dedicated to authentication,
leading to CBC-MAC, a MAC based on the CBC construction. But CBC-
MAC was not flawless7, so HMAC8 [BCK96] and CMAC9 [BR00], two mes-
sage authentication modes, were adopted.

But these MAC modes only provide message authentication, meaning that
performing encryption and authentication with one of these modes should
require two distinct secret keys in two dedicated algorithms, in order to
avoid security issues. Thus, the community began to design modes of en-
cryption combining both confidentiality and authenticity under the same
key. This led to the first authenticated encryption modes of operation like
Counter with CBC-MAC (CCM) [DD07] or Galois/Counter Mode (GCM)
[MV04a]. But these modes of operation do not suit all modern cryptographic
purposes, like security in constrained resource environments or improved
performance on high-end system, and the cryptographic community contin-
ues to seek for more secure and/or efficient AE algorithms. In Chapter 2 we
provide an overview of CAESAR, an open competition aiming at selecting
the next AE algorithms dedicated for these new cryptographic purposes.

7 It requires for instance to input only constant-length messages since enabling variable-length
messages leads to simple attacks.

8 Hash-based Message Authentication Code.
9 Cipher-based Message Authentication Code.

1.4 how to build strong cryptographic primitives? 19

1.4 How to Build Strong Cryptographic Primitives?

We saw in the previous sections that primitives are used in wider construc-
tions named modes of operation. To achieve secure encryption or authenti-
cation with these modes their underlying primitives must comply with the
adequate security. Hence, while modes can rely on security proofs, how can
primitives and ad hoc constructions that do not rely on a trusted primitive
and security proof be considered secure?

The main answer is cryptanalysis of cryptographic objects, that is the study
of the security claimed by their designer. By analysing the structure of a cryp-
tosystem, cryptanalysts try to exhibit flaws that could be turned in attacks
and lead to a security breakdown. Before detailing the main cryptanalysis
strategies, we need to define under which criteria a cryptanalysis can be
considered strong and efficient.

1.4.1 Attack Success

In symmetric cryptography, the use of secret keys of fixed length implies that
every cryptosystem can be broken within a finite amount of time. Indeed,
since the secret key has a fixed length, recovering the secret key can be done
by exhausting all the possible values, the verification requiring only one (or
a few)10 known plaintext/ciphertext pairs. Once the secret key is revealed
an adversary can then encrypt and authenticate any messages of his choice,
and confidentiality and authenticity collapse.

Hence, no encryption scheme parametrized by a secret key is uncondi-
tionally secure. This method is called exhaustive-key search, and involves only
computational power. Assuming that the length of a secret key is k bits, any-
one can recover the value of this secret key with one (or few) plaintext/ci-
phertext pairs and 2k encryptions. When designing a symmetric algorithm,
the authors calimed a security level measured in bits. This means they as-
sume that no attack can be performed with a time complexity whose binary
logarithm is lower than the claimed security level.

For instance, the designers of the AES-128 block cipher claim 128 bits of
security. This means that no attack can be performed to break the AES se-
curity with a complexity lower than 2128 operations. The complexity of an
attack is measured in basic operations performed by a computer and encom-
passes time, memory and data complexity. Nowadays, on a regular computer
with a basic AES implementation, one can verify approximatively 230 keys by

10 If the plaintext size is lower than the key size.

20 introduction

minute11, it implies that the recovery of an AES-128 secret key would take
more than 1023 years, which is highly non-practical. The current minimal key
size recommendation to ensure a sufficient /medium/long term security of
a strong block cipher is 128 bits [ANS14].

The efficiency of an attack relies on two factors:

– its complexity, that is how much the security claimed by the designer is
deteriorated; a practical cryptanalysis will have a heavier impact than
a cryptanalysis that breaks the claim security by a small margin;

– the criticality of the attack, that is which security is damaged; a distin-
guisher is less harmful than a full-key recovery.

Yet, we must emphasize that every cryptanalysis is relevant, since it is a
direct contradiction with the security claimed by the designers. Furthermore,
a small attack can be the vector for new ideas and be extended with further
analyses to a more relevant one.

1.4.2 Context of Cryptanalysis

The impact of a cryptanalysis also depends on the context of the attack.
By context, we mean what data is required for an adversary to perform
the attack. We can distinguish four categories of attacks, sorted from less
constrained to most constrained.

– ciphertext-only attack: the adversary only knows the value of some ci-
phertext outputs and may have some knowledge about the plaintext
distribution;

– known-plaintext attack: the adversary has access to plaintext/ciphertext
pairs encrypted under the same key;

– chosen-plaintext attack: the adversary has access to an encryption oracle
to retrieve ciphertexts corresponding to plaintexts of his choice;

– chosen-ciphertext attack: the adversary has access to a decryption oracle,
in addition of an encryption oracle, and can retrieve the plaintext value
for ciphertexts of his choice.

Note that in the case of a chosen-plaintext (resp. chosen-ciphertext) attack,
the set of the required plaintexts (resp. ciphertexts) may have to be specified
before processing the attack. If the adversary has the ability to choose the

11 230 keys by minute performance is a naive approximation which does not take into account
of possible software optimization, parallelization and other techniques to speed-up the ex-
haustive search.

1.5 contributions 21

value of the processed plaintext (resp. ciphertext) from the knowledge of
previous encryptions (resp. decryptions), the attack is known as an adaptive
chosen plaintext (resp. adaptive chosen-ciphertext) attack.

1.4.3 Cryptanalysis Strategies

We can group the strategies used to target symmetric encryption algorithm
in three main categories: statistical attacks, algebraic attacks and structural
attacks.

Statistical attacks are performed by exploiting statistical biases in the out-
put of a cipher or some intermediate values, and/or abnormal correlation
with the inputs. With the appropriate input, the anomalous statistical be-
haviour can be detected and used to recover secret information on the orig-
inal plaintext or the secret key. These statistical attacks usually require a
large data complexity to exploit this undesired statistical behaviour. Differ-
ential [BS91] and linear [TG91] cryptanalysis of block cipher such as DES
represent the most famous statistical attacks.

Algebraic attacks recover secret information by generating and solving mul-
tivariate algebraic systems over a finite field, expressed in the secret key or
a plaintext. The structure and solvability of the system depends on the inter-
nal design of a cipher. To thwart algebraic attacks, designers try to increase
the non-linearity of their system and improve the linear diffusion through-
out the cipher. For instance, Courtois published in [Cou03] algebraic attacks
on a family of LFSR-based stream ciphers.

The last category, structural attacks, relies on the specific design of system
to exhibit vulnerabilities. They do not take account internal properties of the
elementary components, like statistical or algebraic properties, and focus on
the construction itself. For example, the square attack that first targeted the
Square cipher [DKR97] and also applies to a round-reduced version of AES,
is exploiting structural properties of the ciphers.

1.5 Contributions

This thesis focuses on the cryptanalysis of symmetric encryption algorithms.
After an introduction in Chapter 1 of the fundamental notions encountered
in symmetric cryptography along with a motivation for cryptanalysis, Chap-
ter 2 provides an overview of the CAESAR competition that aims at selecting
a portfolio of new AE algorithms. The main results of this thesis are three
cryptanalyses, that target two high profile candidates of the CAESAR com-

22 introduction

petition and one PRF with variable input and output length proposed by the
SHA-3 designers.

In Chapter 3, we describe a cryptanalysis of the CAESAR candidate AEZ
v4.1 [CG16]. AEZ is an authenticated encryption construction that involves
a mixture of a 4-round reduced version of AES-128 and the full 10-round
version of AES-128. These two underlying primitives are encompassed in the
XEX construction to build a tweakable block cipher primitive. In AEZ, three
sub-keys are derived from the secret key and used to compute the input and
output offsets in the tweakable block cipher. The attack is a combination
of attacks with birthday-bound complexity that target the tweakable block
cipher and a differential attack that focuses on the 4-round reduced version
of AES. The combination of these attacks allows to recover the full secret key
with overwhelming probability more efficiently than a generic exhaustive-
key search.

In Chapter 4, we analyse the security of another CAESAR candidate,
namely NORX v2. NORX is an authenticated encryption scheme based on the
so-called Duplex sponge construction. The permutation underlying NORX is
inspired from the permutation used in BLAKE [AHMP10] or ChaCha [Ber08].
We exploit a strong structural distinguisher of this permutation. Due to the
non-conservative design choice of increasing the rate part of the sponge as
compared with the initial version of NORX, we can leverage the structural
distinguisher to mount a ciphertext-only forgery attack and a key-recovery
attack with complexities far below the claimed security.

In Chapter 5, we depict a cryptanalysis of the recent Kravatte algorithm,
an instance of Farfalle, a pseudo-random function with input and output
of variable length. Farfalle is an efficient and parallelizable construction
that relies on so-called rolling functions and a set of permutations based on
the Keccak round function. We take advantage of the low algebraic degree
of the underlying Keccak permutation to mount three key-recovery attacks
targeting different parts of the construction: a higher order differential at-
tack, an algebraic meet-in-the-middle attack and an attack based on a linear
recurrence distinguisher. All the depicted attacks exhibit far below security
claims complexities.

These three cryptanalyses have been published in the journal Transaction
on Symmetric Cryptology and presented at the companion conferences FSE
2017 and FSE 2018 under the following titles:

– "Is AEZ v4.1 Sufficiently Resilient Against Key-Recovery Attacks?" [CG16];

– "Cryptanalysis of NORX v2.0" [CFG+17];

1.5 contributions 23

– "Key-Recovery Attacks on Full Kravatte" [CFG+18a].

Note that an extended version of "Cryptanalysis of NORX v2.0" will also
be published in Journal of Cryptology [CFG+18b].

2
C A E S A R C O M P E T I T I O N

Throughout the history of cryptography, needs for standardization rose sev-
eral times, to replace an ageing algorithm, to fulfill a specific requirement
or to prevent attacks from forthcoming adversaries. These needs led to var-
ious cryptographic competitions aiming at specifying new standardized al-
gorithms.

The most famous example is the AES algorithm [AES01], which replaced
the previously standardized block cipher DES [DES77]. The need for a more
resilient block cipher arose with the increase of computational power pro-
vided by computers, especially against brute-force attacks, since the 56-bit
key of the DES was becoming small. To find the successor of the DES algo-
rithm the NIST established a competition, namely the AES competition, in
order to select the next standardized block cipher. The performance and secu-
rity of fifteen initial submissions were scrutinized and confronted between
each other. Finally, the NIST declared the Rijndael algorithm, designed by
Vincent Rijmen and Joan Daemen, as the winner. In November 2001, AES
was officially announced by NIST as the new standardized FIPS PUB 197
algorithm.

After the AES competition, many others have been initiated, and surely
more will be in the future. Different topics were targeted by these competi-
tions such as hash functions for the SHA-3 competition, stream ciphers for
eSTREAM, or more recently, quantum-resistance in public-key cryptography
algorithms with the Quantum-Safe Cryptography call for proposals. Along
them the CAESAR competition is on-going, and this chapter will provide a
detailed overview of this competition.

2.1 Context and Goals

CAESAR is the acronym for Competition for Authenticated Encryption: Secu-
rity, Applicability, and Robustness. As its name suggests, this competition aims
at selecting new authenticated encryption algorithms. It is supervised by a
secretary, Daniel J. Bernstein, and monitored by the CAESAR committee, a
panel of cryptographers.

The CAESAR competition is motivated by the need for dedicated, trust-
worthy and more resilient than current AE algorithms that fit the needs of

25

26 caesar competition

modern applications. As explained in Section 1.3, most of the current sys-
tems rely on two dedicated algorithms: one for encryption and one for au-
thentication. Hence, implementation of these dedicated algorithms is prone
to errors and must be handled carefully to avoid security breaches. An al-
gorithm providing both confidentiality and data authentication is expected
to be more user-friendly, with only one algorithm to implement. Moreover,
the algorithms which will succeed in the competition are expected to ben-
efit from the confidence of the cryptographic community towards a broad
adoption.

Currently, the available state-of-the-art AE algorithm is AES-GCM [MV04b].
Although providing good performance, it does not suit all modern imple-
mentations. For instance, with the exponential growth of devices connected
to the internet, the so-called Internet of Things, confidentiality and data au-
thentication are required inside constrained environments. When embedded
in tiny hardware like RFID tags or small electronic devices, secure algo-
rithms have to deal with limited computational resources, e.g., a low area,
and still provide a required level of security.

Furthermore, AES-GCM strongly requires a nonce-respecting utilisation, and
is vulnerable to key-recovery attacks if the nonce is repeated, as shown by
Joux in [Jou06]. Hence, algorithms more resilient against misuse scenarios
are in the scope of the CAESAR competition.

Unlike the AES process where only one winner had been selected, a port-
folio of algorithms will be released at the end of the CAESAR competition
as the winners. To be selected in this final portfolio, candidates require to
provide equal or better performances than AES-GCM; more resilience against
misuse scenarios; and/or to exhibit suitability for resource-constrained envi-
ronments. These criteria are covered by the three following use cases1 (which
are not mutually exclusive):

– use case 1 : lightweight applications, that is constrained environments
with few resources like IoT2 or RFID tags;

– use case 2 : high-performance applications, that is efficiency on high-
end platforms like computers, servers or smartphones;

– use case 3 : defence in depth, that is resilience and robustness in misuse
scenarios like nonce repetition or release of unverified plaintexts.

1 Defined in the Google group of the competition at https://groups.google.com/forum/#!
topic/crypto-competitions/DLv193SPSDc.

2 IoT stands for Internet of Things and comprises all devices connected to internet, such as clock,
electrical appliances, etc.

https://groups.google.com/forum/#!topic/crypto-competitions/DLv193SPSDc
https://groups.google.com/forum/#!topic/crypto-competitions/DLv193SPSDc

2.2 timeline 27

Candidates which exhibit suitability for one or more of the above use
cases, along with secure, reliable, and efficient authenticated encryption will
likely be part of the final portfolio.

2.2 Timeline

The competition has been announced at the Early Symmetric Crypto work-
shop in January 2013 with a deadline for the call for submissions set to
March 2014. Fifty-seven candidates have been submitted for the initial round.

With block cipher, stream cipher, or sponge oriented constructions, and
novel designs or modes of operation with existing cryptographic primitives,
a wide variety of designs have been submitted to the first round of the
competition. Sixteen months later, in July 2015, the second-round candidates
were announced. At this time, nine submissions had been withdrawn due
to critical cryptanalyses. The weakest candidates did not reach the second
round and twenty-eight candidates remained in July 2015, then further re-
duced to fifteen in August 2016 for the third round.

From the fifty-seven initial submissions, seven were selected on March
2018 for the final round. If no new relevant cryptanalysis is found, all the
finalists should be in the final portfolio. Winners of the competition should
be announced by the end of the year 2018. Below is the list of the selected
finalists along with their targeted use case3:

– ACORN (v3) [Wu16], use case 1,

– Ascon (v1.2) [DEMS], use case 1,

– AEGIS (v1.1) [WP16], use case 2,

– MORUS (v2) [HW16], use case 2,

– OCB (v1.1) [RBBK01], use case 2,

– COLM (v1) [ABD+16b], use case 3,

– Deoxys-II (v1.41) [JNPS16], use case 3.

2.3 Finalists

As said before, a wide variety of algorithms have been submitted to the CAE-
SAR competition. The seven remaining algorithms are still a reflection of this
variety, and Table 1 provides a summary of the parameters, the construction

3 As defined by the CAESAR committee, not by the designers.

28 caesar competition

and the data limitations of each finalist. For some algorithms, several sets of
recommended parameters are defined by the designers.

Table 1: Summary of the CAESAR competition finalists

Algorithm Key (bit) Nonce (bit) Tag (bit) Construction Data Cap Limitb

ACORN 128 128 128 Asynchronous Stream Cipher 264 bits*

Ascon 1281,2 1281,2 1281,2 MonkeyDuplex 264 blocks

AEGIS 1281,2, 2563 1281,2, 2563 1281,2,3 Asynchronous Stream Ciphera 264 bits*

MORUS 1281,2, 2563 1281,2,3 1281,2,3 Asynchronous Stream Ciphera 264 bits*

OCB 128, 192, 256 128 64, 96, 128 AES Mode of Operation 248 blocks

COLM 1281,2 641,2 1281,2 AES Mode of Operation 264 bits*

Deoxys-II 1281, 2562 1201,2 1281,2 TBC + Mode of Operation 2128 bytes**

a Blocks of keystream are generated instead of a single output bit.
b The amount of data that can be processed under the same key/nonce pair.
* Up to 264 bits of associated data and up to 264 bits of plaintext.
** Total size of associated data and plaintext. Up to 264 messages processed under the same key.
1,2,3 Primary, secondary and tertiary recommendation.

An overview of the finalists is provided in the following.

2.3.1 ACORN v1.2

ACORN [Wu16] is an AEAD algorithm targeting lightweight applications de-
signed by Hongjun Wu with a structure close to the one of an asynchronous
stream cipher. ACORN is based on an 293-bit internal state updated at each
state transition to generate a single keystream bit. ACORN differs from a tradi-
tional stream cipher by the injection of the plaintext inside the internal state.
The internal state is built from the concatenation of several linear feedback
shift registers (LFSR). Two quadratic functions, namely the feedback and
keystream function, complete the construction. Note that since the feedback
function depends on the keystream bit, updates of the internal state depend
on the previously encrypted bits. ACORN makes use of a simple operation set,
XOR, AND, NOR, and rotation, whose hardware implementation costs are
low.

Encryption of a plaintext requires four different steps: initialization of the
state, associated data loading, encryption with keystream, and tag gener-
ation. Each step consists of an iteration of the state update function with
slight variations depending on the current step. The state update function
combines the LFSR update mechanism and the computation of a feedback
bit injected in the internal state, with a keystream bit generated only during
the encryption step. The whole process is depicted in Figure 10.

2.3 finalists 29

Internal State - LFSR based

Non-linear Feedback Function

Non-linear Keystream Function

PlaintextKeystream

Plaintext

Ciphertext

Figure 10: ACORN algorithm - encryption process.

The feedback and keystream function, both quadratic and lightweight,
along with the LFSR structure make the ACORN design really suitable for
lightweight applications of use case 1, implementation on constrained envi-
ronments and low computational cost. While the construction of ACORN is
quite aggressive, several cryptanalyses4 [LLMH16, JS15, SWB+15, CFG15,
LL14] concluded that its security level remains unaltered as soon as the
nonce is not repeated under the same key. To confirm the security degrada-
tion under nonce repetition, we showed in a joint work with Thomas Fuhr
and Henri Gilbert made before my thesis [CFG15] that the repeated use of
the same couple key/nonce pair to encrypt messages with specific differ-
ence patterns allows to recover the internal state in practical time, but this
requires to abuse the nonce-respecting requirement of the author and thus
does not contradict the security claims of ACORN. Recovering the internal state
in the first version of ACORN was equivalent to a successful forgery or a key
recovery since each state update operation could be computed backwards
or forwards. The author thwarted this potential key recovery in the second
version by injecting the secret key in the initialization phase. In the current
third version, internal state recovery can still allow tag forgeries.

2.3.2 Ascon v1.2

Ascon is a family of AEAD designs submitted by Dobraunig et al. [DEMS]
that targets use case 1. Ascon is built from the MonkeyDuplex sponge con-
struction [BDPVA11], with a 320-bit internal state. The rate and capacity
sizes are defined for two instances, a primary recommendation with 64-bit

4 See https://groups.google.com/forum/#!topic/crypto-competitions/dzzNcybqFP4 for
a list of the cryptanalyses along with the comments of the author.

https://groups.google.com/forum/#!topic/crypto-competitions/dzzNcybqFP4

30 caesar competition

rate and 256-bit capacity, and a secondary recommendation with 128-bit rate
and 192-bit capacity.

The permutation used in the sponge mode of Ascon is based on a substitu-
tion-permutation network. Viewed as a 5 by 64 matrix, the internal state
is processed vertically by a substitution layer of 64 parallel 5-bit S-boxes,
and horizontally by a linear diffusion layer with 64-bit rotations and xor
operations. A constants addition completes the substitution and linear lay-
ers to form one round of the permutation. Each round is repeated 6, 8 or
12 times, depending on the position of the permutation in the encryption
process (cf. Figure 11).

Four steps are required to encrypt a message with Ascon: initialization,
associated data, encryption, and tag generation. Initialization consists of set-
ting a value for the initial state and applying 12 rounds of the permutation.
The key is xored in the capacity of the state after the first permutation to
avoid the backward computation of the initial state from an internal state re-
covery. Associated data and plaintext are split in blocks of 128 bits and xored
with the rate; between consecutive blocks a 6-or 8-round permutation is pro-
cessed (resp. for the primary and secondary instance of Ascon). Ciphertext
blocks are generated from the rate value after the plaintext xor. Finally, to
generate the authentication tag, the key is xored to the capacity, 12 rounds
of the permutation are processed and the first 128 bits of the capacity are
used as tag after a final key addition in the capacity. The whole process is
described in Figure 11.

The permutation used in Ascon can be easily implemented in small de-
vices, as done in [GWDE15] where the authors describe an efficient hard-
ware implementation, thanks to the parallel application of the same 5-bit S-
box and the use of rotation in the linear diffusion layer. Some cryptanalyses
had targeted Ascon [Tez16, DEMS15, GRW16, LDW17], but none succeeded
to break the full 12-round version and the best results achieve a successful at-
tack on the 7-round reduced version. The complexities of the cryptanalyses
mentioned above are displayed in Table 2.

2.3.3 AEGIS v1.1

AEGIS is an AEAD algorithm using the AES round as the underlying prim-
itive, developed by Hongjun Wu and Bart Preneel [WP16] and selected
for use case 2. AEGIS can be seen as an asynchronous stream cipher built

2.3 finalists 31

R
ate

C
apacity

Initial
State

12-round
Perm

utation

6
or

8-round
Perm

utation

6
or

8-round
Perm

utation

6
or

8-round
Perm

utation

12-round
Perm

utation

Key

Tag

KeyKeyA
D

End
Phase

C
onstant

A
ssociated

D
ata

B
lock

A
ssociated

D
ata

B
lock

Plaintext
B

lock

C
iphertext

B
lock

Figure 11: Ascon algorithm - encryption session.

Table 2: Main cryptanalyses results on Ascon.

Reference Targeted version Method Time complexity

[Tez16] 5/12 rounds Truncated/Impossible Diff. 258*or 2128

[Tez16] 6/12 rounds Cube-like 266

[LDW17] 7/12 rounds Cube-like 277**or 2103.9

* For a set of 264 weak keys.
** For a set of 2117 weak keys.

around an internal state of 1024, 640 or 768 bits5 which generates a block of
keystream at each state update.

Encryption of a message with AEGIS goes by initialization, associated data
injection, encryption and tag generation, all performed by updating the state
iteratively. The state update relies on a single round of the AES primitive. At
each update the state is divided in 128-bit words, then, the value of each

5 Resp. for primary, secondary and tertiary recommendation.

32 caesar competition

word processed through the AES round is xored to its next right neighbour.
Note that, like ACORN, blocks of plaintext are also injected in the internal
state. The keystream block used to perform encryption is computed from a
non-linear combination of internal words of the state. The whole process is
depicted in Figure 12.

State Word #1 State Word #2 State Word #3 State Word #4 State Word #5

AES AES AES AES AES

State Word #1 State Word #2 State Word #3 State Word #4 State Word #5

Plaintext

State

State Update Function

State

Plaintext Keystream

Plaintext

Ciphertext

Figure 12: AEGIS state update (up) and encryption (down) process.

AEGIS exploits the support of the AES-NI instruction set available in recent
CPUs since 2008, along with a simple and parallelizable stream-cipher-like
processing, to provide suitability for software implementations with high ef-
ficiency. In [Min14] Minaud exhibits linear biases on AEGIS keystream. Since
the biases discovered in the keystream of AEGIS do not depend on the key
the data complexities of the attacks are not limited by the usage cap limit.
However, only the tertiary recommendation could arguably be considered
weakened. No other cryptanalysis has been performed against AEGIS.

2.3.4 MORUS v2

MORUS is an AEAD algorithm designed by Hongjun Wu and Tao Huang
[HW16], that targets high-end platforms. MORUS shares many similarities
about its internal design or its encryption process with AEGIS.

2.3 finalists 33

MORUS is built around a 1280-bit state (640 bits for the secondary recom-
mendation) which is iteratively updated to perform the same encryption
process as AEGIS. The main difference between MORUS and AEGIS is the state
update function. While both perform operations on 128-bit words, instead
of using the AES round function as a primitive, MORUS uses AND, XOR, and
rotations. Since the encryption process is the same for AEGIS and MORUS, it
will not be recalled here. Figure 13 depicts the construction used in MORUS.

The use of a simple function combined with an efficient design, similar to
AEGIS, allows MORUS to achieve high performance in both software and hard-
ware implementations [AA16]. The similarities between MORUS and AEGIS do
not stop at design specifications. In a recent cryptanalysis [AEL+18] Ashur
et al. described linear biases on the keystream output of MORUS, that allows
an adversary to distinguish a keystream with 2152 encryptions. While it does
not threaten the security claims for the primary and secondary recommen-
dation, the tertiary recommendation in which a 256-bit key is used, can be
targeted by this attack. Note that since the bias is in the keystream, it does
not depend on the key and the limitation of the data encryption capability
without key update imposed by the author does not prevent this attack.

2.3.5 OCB v1.1

OCB [RBBK01] is a mode used in AEAD settings developed by Ted Krovetz
and Phillip Rogaway that was selected as a finalist for use case 2. Nine in-
stances are described in the OCB submission, parametrized by the use of the
underlying block cipher AES with a 128-bit, 192-bit or 256-bit key and the
size of the generated tag, 128, 96 or 64 bits.

The encryption process with OCB is easy to describe. First an offset is de-
rived from the nonce using a so-called incremental function, the number of
offsets generated is equal to the number of data blocks to process, that is
associated data and plaintext, plus a final offset for the tag generation. A
checksum, equals to the xor of all plaintext blocks, is computed to generate
the authentication tag. Each block of plaintext and the checksum are then
xored with its corresponding offset, encrypted with the AES, and ultimately
xored with the same offset to generate the ciphertext block and the authen-
tication tag. The encryption process of OCB is depicted on Figure 146. The
offset-encrypt-offset construction can be seen as a tweakable block cipher
based on the XEX construction. In the OCB construction, the position of the
current block is the tweak value resulting in a different offset at each block
position. This feature provide security by ensuring that the same block of

6 Only the case with no padding is depicted, refer to [RBBK01] for more details.

34 caesar competition

State Word #1 State Word #2 State Word #3 State Word #4 State Word #5

State Word #1 State Word #2 State Word #3 State Word #4 State Word #5

AND

AND

AND

AND

AND

Rotations

Rotations

Rotations

Rotations

Rotations

Rotation

Rotation

Rotation

Rotation

Rotation

Plaintext

Plaintext

Plaintext

Plaintext

State

State Update Function

State

Plaintext Keystream

Plaintext

Ciphertext

Figure 13: MORUS state update (up) and encryption (down) process.

data processed at different positions through the message does not generate
the same output block, adding randomness to the ciphertext.

2.3 finalists 35

Plaintext

Offset #1

AES

Offset #1

Ciphertext

Plaintext

Offset #2

AES

Offset #2

Ciphertext

Plaintext

Offset #3

AES

Offset #3

Ciphertext

Plaintext

Offset #4

AES

Offset #4

Ciphertext

Nonce

Incremental Function

Offset #1

Incremental Function

Offset #2

Incremental Function

Offset #3

Incremental Function

Offset #4

Final Incremental Function

Final Offset

Checksum

Final
Offset

AES

Final
Offset

Tag

Figure 14: OCB encryption process without padding.

We can see in Figure 14 that only one call to the underlying block cipher
is required to produce one ciphertext block, and one more to produce the
final tag7. This makes OCB really efficient in both software and hardware im-
plementation. The only drawback is that OCB is not resilient against a birth-
day paradox collision attack as pointed out by Niels Ferguson in [Fer02]. To
thwart this attack, the authors limit the number of blocks of data processed
under the same key to 248.

2.3.6 COLM v1

COLM is an Encrypt-LinearMix-Encrypt mode developed by Andreeva et al.
[ABD+16b] and selected for use case 3 (defence in depth). This mode is
based on an underlying block cipher, the AES with 128-bit key and ensures
confidentiality and integrity even in misuse scenarios

COLM relies on the AES primitive, comprised in a mode involving layers of
linear mixing and offset additions to perform encryption. The encryption
process is depicted in Figure 15. The linear mixing is a linear function that
outputs two different blocks computed from linear combinations of the in-
put blocks and the offset values depend on the position of the current block
of data. Remark that COLM is an online algorithm, meaning that the cipher-
text and tag generation only requires one pass of the associated data and
the plaintext data to be computed and that the plaintext can be processed

7 It also requires one additional call to the AES function to generate the first offset value.

36 caesar competition

intermittently. Indeed, additional blocks of plaintext can be appended in the
flow since the generation of a new ciphertext block only depend of the lin-
ear mixing function output, which can be computed from the last ciphertext
block.

Initial Value

Nonce Offset

AES
Blockcipher

Associated Data

AD1 Offset

AES
Blockcipher

Associated Data

AD2 Offset

AES
Blockcipher

Plaintext

P1 Offset

AES
Blockcipher

Linear Mix

AES
Blockcipher

C1 Offset

Ciphertext

Plaintext

P2 Offset

AES
Blockcipher

Linear Mix

AES
Blockcipher

C2 Offset

Ciphertext

Plaintext

P3 Offset

AES
Blockcipher

Linear Mix

AES
Blockcipher

C3 Offset

Ciphertext

Plaintext Sum

PS Offset

AES
Blockcipher

Linear Mix

AES
Blockcipher

CS Offset

Tag

Figure 15: COLM encryption process without plaintext padding.

COLM takes its internal design from the best of the COPA [ABD+16a] and
ELmD [DN16] designs, thus its security claims rely on the security analysis
conducted on COPA and ELmD [ABD+]. Currently, no cryptanalysis threatens
the security of COLM.

2.3.7 Deoxys-II v1.41

Deoxys [JNPS16] is an AEAD algorithm proposed by Jérémy Jean, Ivica
Nikolić, Thomas Peyrin and Yannick Seurin that was selected for use case 3.
Deoxys relies on a tweakable block cipher Deoxys-BC inspired by the AES and
incorporated in two modes proposed by the authors. The first one, Deoxys-I,
is an instantiation of θCB and must be used without nonce repetition, the sec-
ond mode, Deoxys-II, is designed to target resilience in misuse scenarios.
Only the latter, Deoxys-II, has been selected as finalist for defence-in-depth
applications. Two instances of Deoxys-II are described by the authors that
differ by the TBC used, Deoxys-BC-256 with a 128-bit key or Deoxys-BC-384
with a 256-bit key.

2.3 finalists 37

The mode used in Deoxys-II draws its inspiration from the Synthetic
Counter-in-Tweak mode, SCT [PS15], which uses a tweakable block cipher
to provide authenticated encryption with nonce and associated data. In
Deoxys-II, the authors preserved the design of the encryption part of SCT,
but modified the tag computation part "in order to provide graceful degradation
of security for authentification with the maximal number of repetitions of nonces"
[JNPS16]. Two steps are required to encrypt a message. First, a tag is gen-
erated from the nonce, plaintext and associated data. Then, this tag is used
as a tweak of the TBC Deoxys-BC to compute the keystream blocks used
to encrypt the plaintext. The encryption process of Deoxys-II is depicted
in Figure 16. Remark that Deoxys is not online since two passes are required
to produce the ciphertext and the tag.

While AES-GCM provides 64-bit security against nonce-misuse, Deoxys-II
offers full 128-bit authentication security in nonce-misuse scenarios, making
it really suitable for defence in depth, use case 3 of the CAESAR competition.
Several cryptanalyses have been presented, targeting Deoxys with reduced
variants of the TBC. The results are depicted in Table 3, note that only the
results targeting variants of the TBC without modifying the key size are
depicted, the main results of these cryptanalyses target TBC variants with a
modified key size.

Table 3: Main cryptanalyses results on Deoxys.

Reference TBC Variant Method Time compl. Data Compl. Attack Mode

[CHP+17] Deoxys-BC-256 9/14 Boomerang attack 2118 2117 Related-Key

[CHP+17] Deoxys-BC-384 12/16 Boomerang attack 2127 2127 Related-Key

[mMS18] Deoxys-BC-256 8/14 Impossible diff. 2118 2118 Single-Key

[mMS18] Deoxys-BC-256 9/14 Impossible diff. 2118 2118 Related-Key

[ZDW18] Deoxys-BC-256 9/14 Impossible diff. < 2128 2124 Related-Key

38 caesar competition

Associated Data

Deoxys-BC

A
D

1
Tw

ea
k

Associated Data

Deoxys-BC

A
D

2
Tw

ea
k

Associated Data

Deoxys-BC

A
D

3
Tw

ea
k

Plaintext

Deoxys-BC
Pl

ai
n1

Tw
ea

k

Plaintext

Deoxys-BC

Pl
ai

n2
Tw

ea
k

Plaintext

Deoxys-BC

Pl
ai

n3
Tw

ea
k

Plaintext

Deoxys-BC

Pl
ai

n4
Tw

ea
k

Deoxys-BC

Ta
g

Tw
ea

k

Tag

Padded Nonce

Deoxys-BCTa
g

Plaintext

Ciphertext

Padded Nonce

Deoxys-BCTa
g

Plaintext

Ciphertext

Padded Nonce

Deoxys-BCTa
g

Plaintext

Ciphertext

Figure 16: Deoxys-II encryption process with 4 plaintext blocks and 3 AD blocks.
Tag generation (up) and ciphertext computation (down).

3
C RY P TA N A LY S I S O F A E Z

This chapter focuses on the AEZ candidate of the CAESAR competition, and
presents a cryptanalysis developed in a joint work with Henri Gilbert that
targets the latest version of the algorithm at that time, namely AEZ v4.1. Our
results were published in the paper Is AEZ v4.1 Sufficiently Resilient Against
Key-Recovery Attacks? [CG16] and presented at FSE 2017.

AEZ [HKR15b, HKR15a] is an AES-based AE scheme designed by Hoang,
Krovetz, and Rogaway. AEZ is a high-profile CAESAR candidate and was
selected in August 2016 for the third round of the competition. The AEZ
construction can be viewed as a mode of operation of an underlying block
cipher – more precisely of a mixture of AES versions with 4 and 10 rounds
denoted AES4 and AES10. AEZ uses secret offsets and round keys derived
from the authenticated encryption key K. AEZ is parallelizable and particu-
larly well suited for software implementations on processors equiped with
the AES-NI instruction set. On such environments, its computational cost is
lower than the one of AES-GCM and close to the one of OCB [RBBK01]. AEZ
aims at providing an unusually strong nonce and decryption misuse resis-
tance and more generally best achievable security given the selected amount
of plaintext expansion. These security properties are captured by the notion
of robust authenticated encryption (RAE), a demanding security notion that
comprises the MRAE notion defined in Section 1.3.3, not attainable by on-
line AE schemes, i.e. AE schemes allowing a single-pass blockwise plaintext
encryption with constant memory [HRRV15]. The RAE security notion and
the security arguments underlying the AEZ construction were detailed in the
Eurocrypt 2015 paper [HKR15b].

Related Work and Our Contributions. In this chapter, we analyze the re-
silience of AEZ v4.1 (October 2015) [HKR15a] that was selected for the third
round of CAESAR, against key-recovery attacks. We show that the AEZ mod-
ifications introduced in 2015, that were partly motivated by thwarting a key
derivation attack with birthday complexity against AEZ v3 published at Asi-
acrypt 2015 by Fuhr, Leurent and Suder [FLS15], do not prevent the exis-
tence of key derivation attacks of birthday complexity against AEZ v4.1. In
both cases, the attack rests on the fact that AEZ was designed as to be po-

39

40 cryptanalysis of aez

tentially usable either without nonce1 or with a ptentially repeated nonce
values without other security impact than the detectability of repeated (asso-
ciated data, message) pairs. Unlike the attack of [FLS15], our most efficient
key recovery attack relies on the use of AES4 in AEZ2.

Neither the AEZ v3 attack of [FLS15] nor our attack on AEZ v4.1 violates
the security claims of AEZ since the designers made no claim for beyond-
birthday security. It should also be noted that if one takes into account the
limitation of the amount of data processed under the same key to 248 bytes
required by the designers, their success probability becomes relatively low.

We nevertheless believe that the vulnerability of AEZ v4.1 to a key deriva-
tion attack of birthday complexity3 represents an undesirable property, par-
ticularly for an algorithm that otherwise aims at satisfying a very strong
notions of security and at being exceptionally resilient in various misuse
situations. Indeed, even though the existence of distinguishers of birthday
complexity against modes of operation of block ciphers is not so unusual,
the existence of full key derivation attacks of birthday complexity is far less
frequent and raises in the case of AEZ v4.1 the following resilience questions
(exactly the same as those raised by the attack of [FLS15] in the case of AEZ
v3). First, our attack allows to recover the whole key material with a much
higher success probability than the one that would result from generic at-
tacks for typical key sizes, e.g. 128, 256, or 384 bits even if the below-birthday
data limitation of 248 bytes imposed by the designers is respected. Second,
this probability can become arbitrarily close to 1 in the algorithm misuse
case where the data limitation of 248 bytes cannot be enforced and “birth-
day” amounts of data can be processed.

Our results are summarized in Table 1. Our most efficient attack essen-
tially consists of two phases. In a first phase, 128 bits of key material used
for pre-whitening the inputs to some AES4 and AES10 computations are de-
rived, using a birthday attack. We show that the universal hashing part of
the AEZ computations, on which the attack of [FLS15] concentrated, can still
be targeted by some birthday attacks. However the key material informa-
tion this provides is less suited for continuing the attack than a 128-bit sub-
key that can be derived by targeting instead the encipherment part of the
AEZ computations. This sub-key determines the pre-whitening of some AES4
computations also involved the encipherment procedure. In a second phase

1 This is allowed by the specification, with the warning that “a nonce must be used unless
one has certitude that, even in the presence of the adversary, all encrypted [(associated data,
message)] pairs will be distinct[...]” [HKR15a].

2 It can therefore not be transposed to the more conservative but less efficient scaled up version
of AEZ where only AES10 is used instead of a mixture of AES10 and AES4.

3 And to a resulting below-birthday attack of abnormally high success probability, as discussed
below.

cryptanalysis of aez 41

of the attack, we encrypt particular plaintext structures and detect plaintext
pairs leading to a special differential behaviour in the last three rounds of
these AES4 computations. This allows to recover the remaining of the key
material.

Table 4: AEZ attacks complexities.

AEZ version Data complexity (blocks)4 Success prob. Ref.

AEZ v4.1 266.5 0.5 Our work

AEZ v4.1 244 2−45.7 Our work

AEZ v3 266.6 1 [FLS15]

AEZ v3 244 2−45.2 [FLS15]

Subsequent versions of AEZ. Two versions of AEZ have been introduced
since AEZ v4.1:

– AEZ v4.2 (September 2016) the authors acknowledge the existence of
key-recovery attacks with birthday-bound complexities. No algorith-
mic change.

– AEZ v5 (March 2017) has been introduced to rework the secret offsets
computation after Leurent et al. [BDD+17] pointed out a bug in the
tweakable block cipher definition. Two distinct tweak values may could
result in the same offset value, destroying the authenticity of the AEZ
construction. The modifications introduced in AEZ v5 do not attempt
to thwart our attack.

Organization. The chapter is organized as follows. Section 3.1 outlines
the parts of the AEZ v4.1 specifications that are useful for our attack and
the main differences between AEZ v4.1 and AEZ v3. Section 3.2 first describes
partial attacks of birthday complexity allowing to recover a 128-bit piece
of the key material (Section 3.2.1). The combination of these partial attacks
can be viewed as a suboptimal key derivation attack of birthday time and
data complexity. Then we detail our most efficient key-recovery attack on
AEZ v4.1 (Section 3.2.2), that exploits the use of AES4 in AEZ. The attack of
Section 3.2.2 has the property (not shared by the suboptimal key-recovery
attack of Section 3.2.1) that its success probability remains abnormally high

4 Chosen plaintexts mode.

42 cryptanalysis of aez

if the amount of data processed under the same key is limited to the below-
birthday threshold of 248 bytes.

3.1 Description of AEZ

The following input and output arguments are used in AEZ:

– a plaintext P of plen bits;

– a key K of arbitrary length klen bits. The default value of klen is 384
bits and klen values of at least 128 bits are recommended;

– a nonce N of length nlen bits. The use of nonce values of length at
most 128 bits is recommended and nlen = 0 is allowed, as well as the
use of several nonce lengths for authenticated encryptions under the
same key;

– a string-valued or more generally vector-valued associated data A =

(A1, · · · , Am) of m strings, of total length alen bits. A string-valued
associated data can be viewed as a vector with m = 1 components;

– a ciphertext C of clen bits.

Although their lengths are defined in bits, all these arguments are required
to consist of an integer number of bytes.

AEZ is also parametrized by the authenticator byte length Abytes of default
value 16. The corresponding number of bits τ = 8× Abytes represents the
plaintext expansion clen− plen and also the number of zero bits that shall
be appended to the plaintext P before encipherment if P is not the empty
string. The augmented plaintext (P || 0τ) is denoted by P in the sequel and
the binary representation of τ as a 128-bit word is denoted by [τ]128.

The AEZ authenticated encryption process can be viewed as follows. First
a vector-valued tweak T = ([τ]128, N, A1, · · · , Am), that encodes the triplet
(τ, N, A) is derived. Then, depending on the the plaintext length plen, differ-
net encipherment functions are applied:

– AEZ-prf(K, T, τ) is returned if plen = 0,

– AEZ-tiny(K, T, P) is returned if 0 < plen < 256− τ,

– AEZ-core(K, T, P) is returned if 256− τ ≤ plen.

The way the tweak argument T is processed in all these functions consists
of deriving an associated universal hash value ∆ = AEZ-hash(K, T) of length

3.1 description of aez 43

128 bits and then using ∆ as an offset in some parts of the encipherment
computations.

Since we do not use AEZ-tiny in our attack, we only describe AEZ-prf and
AEZ-core.

3.1.1 Tweaked Instances of AES4 and AES10 Used in AEZ

AEZ uses AES-based tweakable block ciphers [LRW11] (TBC) using the XE
and XEX constructions. Three sub-keys I, J, and L, of length 128 bits each,
are used in these TBC, which are derived from the key K in a way that
depends of the key length klen :

– if klen = 384, then I || J || L = K;

– if klen 6= 384, then I || J || L = BLAKE2b(K), using an instance of
the cryptographic hash function BLAKE2b [AHMP10] that produces
384-bit hash values.

Given two input tweaks i, j, the TBC Ei,j
K is defined as follows:

i j Ei,j
K k

−1 N Ei,j
K = AES10k(X ⊕ jJ) (0, I, J, L, I, J, L, I, J, L, I)

0 N Ei,j
K = AES4k(X ⊕ jI) (0, J, I, L, 0)

1 N Ei,j
K = AES4k(X ⊕ δj I) (0, J, I, L, 0)

2 N Ei,j
K = AES4k(X ⊕ δj I) (0, L, I, J, L)

≥ 3 0 Ei,j
K = AES4k(X ⊕ δiL) ⊕ δiL (0, J, I, L, 0)

≥ 3 N∗ Ei,j
K = AES4k(X ⊕ δiL ⊕ δj J) ⊕ δiL ⊕ δj J (0, J, I, L, 0)

where δi = 2i−3 and δj = 23+b(j−1)/8c + (j − 1) mod 8. In the former table,
AES4 (resp. AES10) are AES variants that consist of 4 (resp. 10) full AES rounds
parametrized by 5 (resp. 11) independent sub-keys. Thus, if we denote the
composition of SubBytes, ShiftRows, and MixColumns by aesr we get

AES4k(X) = aesr(aesr(aesr(aesr(X ⊕ k0) ⊕ k1) ⊕ k2) ⊕ k3) ⊕ k4),

with k = (k0, k1, k2, k3, k4), AES10 can be defined in the same way.

44 cryptanalysis of aez

3.1.2 AEZ-hash universal hashing

To describe AEZ-hash(K, T), we assume that the tweak T = (τ, N, A1, . . . , Am),
where (A1, . . . , Am) is a m-component vector. This allows to cover both the
cases of string- and vector-valued associated data. Let us rewrite T as T =

(T1, . . . , Tt), where t = m + 2. For each mi-block component Ti = Bi,1 . . . Bi,mi

of T, whose last block Bi,mi can be complete or incomplete, a partial hash
value ∆i is computed as follows:

∆i =

 Ei+2,1
K (Bi,1) ⊕ Ei+2,2

K (Bi,2) ⊕ · · ·⊕ Ei+2,mi−1
K (Bi,mi−1) ⊕ Ei+2,mi

K (Bi,mi) if |Bmi | = 128

Ei+2,1
K (Bi,1) ⊕ Ei+2,2

K (Bi,2) ⊕ · · ·⊕ Ei+2,mi−1
K (Bi,mi−1) ⊕ Ei+2,0

K (Bi,mi || 10∗) if |Bmi | < 128
.

Finally, AEZ-hash(K, T) = ∆ def
= ∆1 ⊕ · · ·⊕ ∆t.

3.1.3 PRF Function

AEZ-prf is designed with the purpose to provide a PRF of settable output
length τ, that can be viewed as an encipherment of the empty plaintext. The
output of AEZ-prf is the τ-bit string given by

AEZ-prf(K, T, τ) = (E−1,3
K (∆) || E−1,3

K (∆ ⊕ [1]128) || E−1,3
K (∆ ⊕ [2]128) || . . .)[1..τ],

with ∆ = AEZ-hash(K, T).

3.1.4 AEZ Core

AEZ-core is the encipherment function used to process augmented plaintexts
of at least 256 bits. It takes as input the key K, the tweak vector T and the
augmented plaintext P. The vector T is first preprocessed by computing the
universal hash value:

∆ = AEZ-hash(K, T),

which will be used as an offset value at some subsequent steps of the enci-
pherment computation.

Then, the augmented plaintext is split as follows into (in)complete 128-bit
blocks:

P = P1P′1 || P2P′2 || · · · || PmP′m || PuPv || PxPy,

where |P∗| = |P′∗| = 128 except for at least one of the values Pu and Pv, that
satisfy |Pu|+ |Pv| < 256. In detail, to split P one needs to

3.1 description of aez 45

1. Take the 256 last bits of P to form PxPy. This is always possible since
|P| ≥ 256;

2. For every remaining pair of entire blocks if any form PiP′i (starting
from the beginning of P);

3. Letting r = plen + τ mod 256, if r 6= 0, the remaining bits form

– Pu if r < 128,

– PuPv with an empty block Pv if r = 128

– PuPv with |Pv| = r mod 128 if 128 < r < 256.

The ciphertext blocks are then computed as shown in Figure 17, up to the
fact that in the first case (r < 128), the v-column is omitted and the paddings
and compressions represented by trapezoids on the v-column are moved to
the u-column.

For a more detailed description of AEZ-core and more generally on AEZ
v4.1, we refer to the AEZ v4.1 specification [HKR15a].

3.1.5 Tweaks from AEZ v3

In a nutshell, the main differences between AEZ v3 and AEZ v4.1 are the
following:

– the procedure for deriving the subkeys I, J, and L from the key K
was entirely modified. The AEZ v3 derivation procedure, that did not
involve the BLAKE2b hash function, had indeed the undesirable prop-
erty that for key lengths such as | K |= 128 bits, the knowledge of one
of the subkeys implied the knowledge of the key K. Moreover, while a
key length of at least 128 bits is recommended in both AEZ v3 and AEZ
v4.1, a default key length of 384 bits was introduced in AEZ v4.1;

– the tweakable block ciphers involved in the AEZ-hash universal hash-
ing use the XEX construction in AEZ v4.1, whereas they were using the
XE construction in AEZ v3. Moreover the offset values used in the def-
inition of the various tweakable block ciphers Ei,j

K used in AEZ were
modified.

One of the motivations for these changes was to thwart the birthday attack
on AEZ v3 introduced by Fuhr, Leurent, and Suder in 2015 [FLS15]. This at-
tack indeed recovered one of the subkeys (namely J) by leveraging its use in
the pre-whitening keys of the XE construction of the AEZ-hash computation
underlying the AEZ-prf function. It then took advantage from the undesir-
able property of the AEZ v3 subkey derivation procedure mentioned above
to recover the key K.

46 cryptanalysis of aez

P1 P′1 Pm P′m Pu Pv Px Py

1, 1 1, m 0, 1

0, 0 0, 0 0, 4 0, 5 −1, 1

S S

2, 1 2, m −1, 4 −1, 5 S

0, 0 0, 0 −1, 2

1, 1 1, m 0, 4 0, 5 0, 2

C1 C′1 Cm C′m Cu Cv Cx Cy

X1

Y1

Xm

Ym

Xu

S

Yu

Xv

S

Yv

X

∆

∆

Y

Figure 17: AEZ-core scheme.

i, j = Ei,j
K (X)

Xi = E0,0
K (Pi ⊕ E1,1

K (P′i)) i ∈ [1..m]

Xu = E0,4
K (Pu)

Xv = E0,5
K (Pv10∗)

X = X1 ⊕ · · ·⊕ Xm ⊕ Xu ⊕ Xv

S = ∆ ⊕ X ⊕ E0,1
K (Py) ⊕ E−1,1

K (∆ ⊕ X ⊕ E0,1
K (Py)) ⊕ Py

Yi = Pi ⊕ E1,1
K (P′i) ⊕ E2,1

K (S) i ∈ [1..m]

Yu = E0,4
K (Pu ⊕ E−1,4

K (S))

Yv = E0,5
K (Pv ⊕ E−1,5

K (S)[1..|Pv|] || 10∗)

Y = Y1 ⊕ · · ·⊕ Ym ⊕ Yu ⊕ Yv

While the attack described by Fuhr et al. does not work anymore on AEZ
v4.1, we will see in Section 3.2.1 that the use of the XEX construction in

3.2 attacks on aez 47

AEZ-hash does not prevent birthday attacks, and Section 3.2.2 will show that
the knowledge of I can be leveraged for recovering the other subkeys J and
L.

3.2 Attacks on AEZ

In this section, we describe two key derivation attacks:

– First, a combination of three independent birthday attacks allowing to
retrieve one of the sub-keys I, J, and L each. One limitation of this
combined attack comes from the fact that the amount of data that can
be processed under one single key is limited to 248 bytes, below the 264

blocks birthday bound. Its success probability, equal to the product of
the success probabilities of the underlying birthday attacks, becomes
in the case of a 128-bit key lower than the one of a generic attack.

– Second, a more efficient attack that consists of two phases. In the first
phase, of birthday complexity, one of the three former partial attacks is
applied to retrieve the value of I. In the second phase, the knowledge of
I is leveraged to mount a differential attack against some of the AES4
instances of the encipherment computations. For any reasonable key
length, e.g. at least 128 bits, its success probability remains abnormally
high (i.e. higher than the one of a generic attack) if the amount of data
that can be processed under one single key is limited to 248 bytes.

3.2.1 Birthday Attacks

We describe in this subsection three partial attacks of birthday complexity
each allowing to recover one of the three sub-keys.

All these partial attacks are based on the following informal observation.
Let F and G denote two one-block to one-block functions parametrized by
secret keys, δ1 and δ2 denote two secret one-block offset values and n denote
the block length. Let us assume that an adversary is able to access H(x) =
G(F(x ⊕ δ1)⊕ F(x ⊕ δ2)) for sufficiently many chosen block values x. Let us
show that if a small multiple of 2

n
2 values of x are tried this allows (under

mild conditions on F and G that we will not detail here) to determine the
secret offset difference δ1 ⊕ δ2 with an overwhelming probability. Indeed,
with overwhelming probability, there exists a pair (x, x′) such that x ⊕ x′ =
δ1 ⊕ δ2. It is easy to see that for such a pair, H(x) = H(x′) since the single
difference between the computations of H(x) and H(x′) is that the entries
of the first and second invocations of F are swapped. Conversely, if H(x) =

48 cryptanalysis of aez

H(x′), x ⊕ x′ provides a candidate value for x ⊕ x′ = δ1 ⊕ δ2 that is easy to
test using a few extra H computations.

Note that all attacks presented below can be conducted under the assump-
tion of a fixed nonce length, i.e. nlen = 128. We emphasize that the attacks
can be transposed, with slight adjustements, to a situation where the nonce
is omitted (i.e. nlen = 0).5

Collisions in AEZ-hash

Detecting suitable collisions in the AEZ-hash function allows to recover the
two sub-keys J and L by birthday attacks. While AEZ-hash is an internal pro-
cedure whose ouput is not directly available to the adversary, such collisions
on AEZ-hash can nevertheless be detected by collisions they induce in some
AEZ-prf output blocks.6 Let ∆ be the output of AEZ-hash under an unknown
key and a chosen entry

∆ = AEZ-hash(K, T) with T = (τ, N, A)

where we assume that |A| = 128. For simplicity, we also assume τ = 128
bits, but the attack also applies to others value of τ.

Following the description of AEZ-hash, we get:

∆ = E3,1
K (τ) ⊕ E4,1

K (N) ⊕ E5,1
K (A).

By replacing Ei,j
K (X) by its expression we obtain:

∆ = AES4K(τ ⊕ L ⊕ 8J) ⊕ AES4K(N ⊕ 2L ⊕ 8J) ⊕ AES4K(A ⊕ 6L ⊕ 8J)

⊕ 8J ⊕ 7L.

If we restrict ourselves to (A, N) pairs of blocks such that A = N, the
former expression becomes

∆ = AES4K(τ ⊕ L ⊕ 8J) ⊕ AES4K(N ⊕ 2L ⊕ 8J) ⊕ AES4K(N ⊕ 4L ⊕ 8J)

⊕ 8J ⊕ 7L.

5 The assumption that nlen = 0 was used in the AEZ v3 attack of [FLS15].
6 Collisions on AEZ-hash could alternatively be detected by collisions they induce on some
AEZ-core output blocks. We will however not detail this slight variant here.

3.2 attacks on aez 49

With this expression, we are able to create a collision on hash values ∆
associated to (N, N) pairs and this can be used to retrieve the difference 6L
between the first and second offset values applied to N. Indeed, if N′ =
N ⊕ 6L, let us denote by ∆′ the associated hash value. We have:

AES4K(N′⊕ 2L ⊕ 8J) ⊕ AES4K(N′⊕ 4L ⊕ 8J)

= AES4K(N ⊕ 6L ⊕ 2L ⊕ 8J) ⊕ AES4K(N ⊕ 6L ⊕ 4L ⊕ 8J)

= AES4K(N ⊕ 4L ⊕ 8J) ⊕ AES4K(N ⊕ 2L ⊕ 8J).

Hence, when N′ = N ⊕ 6L, we have ∆ = ∆′. Note that this can be viewed
as a direct consequence from the former observation. Indeed, in the former
expressions of ∆, N is added with the offsets δ1 = 2L ⊕ 8J and δ2 = 4L ⊕ 8J,
of difference L, before being input to the function F = AES4K.

Recovering the Sub-key L

The former remark allows to build the following birthday attack:

1. Collect H(N) = AEZ-prf(K, T, τ) with T = (τ, N, N) for 264 values of
N,

2. If a collision occurs, this implies H(N′) = H(N) since AEZ-prf is just
an overencryption of the AEZ-hash output and therefore 6L is likely to
be equal to N ⊕ N′.

3. L can be computed easily from 6L in F2128

For this attack we need about 264.2 pairs (N, A = N) of input blocks to suc-
ceed with a probability of about 0.5. If the amount of input data is restricted
to the limit of 244 blocks imposed by the designers, the success probability
drops to 2−43.

Recovering the Sub-key J

The previous method can be used to retrieve J in a nonce-misuse scenario
where a fixed nonce value N is repeated (which should result in no security
degradation if the other AEZ input data are not repeated since an optimal
nonce-misuse resistance is claimed). Indeed one can remark that using the
previous notation except letting

T = (τ, N, A, A),

50 cryptanalysis of aez

where N is a fixed nonce value of length 128 bits, A is a variable one-block
string, and the default value of 128 bits is assumed for τ. Using the descrip-
tion of AEZ-hash one can write

∆ = AES4K(τ ⊕ L ⊕ 8J) ⊕ AES4K(N ⊕ 2L ⊕ 8J) ⊕ AES4K(A ⊕ 4L ⊕ 8J)

⊕ AES4K(A ⊕ 4L ⊕ 9J) ⊕ 3L ⊕ J.

.
Hence if A′ = A ⊕ J, one obtains

AES4K(A′⊕ 4L ⊕ 8J) ⊕ AES4K(A′⊕ 4L ⊕ 9J)

= AES4K(A ⊕ J ⊕ 4L ⊕ 8J) ⊕ AES4K(A ⊕ J ⊕ 4L ⊕ 9J)

= AES4K(A ⊕ 4L ⊕ 8J) ⊕ AES4K(A ⊕ 4L ⊕ 9J),

which implies ∆ = ∆′. One can then build the following attack to recover J.

1. Collect H(A) = AEZ-prf(K, T, τ) with T = (τ, N, A, A) for 264 values
of A,

2. If a collision happens, this implies H(A′) = H(A) and therefore J is
likely to be equal to A ⊕ A′.

To reach 264.2 queries and a probability of success of about 0.5 we need to
run the algorithm with 265.8 blocks of data. If the amount of input data is
restricted to 244 blocks, the recovery of J succeeds with probability 2−44.2.

3.2.1.1 Collision in AEZ-core

The last sub-key that remains unknown is I. We show how to recover it using
a birthday attack within the AEZ-core function.

Let us consider 6-block augmented plaintexts:

P =

P1,P′1︷ ︸︸ ︷
0128 || B ||

P2,P′2︷ ︸︸ ︷
0128 || B ||

Px ,Py︷ ︸︸ ︷
0128 || 0τ,

where B denotes a one-block string and τ = 128 bits. In this partial attack,
we assume that a fixed nonce value N and no associated data are used. Note
that plaintext messages of length only five blocks are being used since the
last block 0τ corresponds to the ciphertext expansion.

3.2 attacks on aez 51

Next, we denote by X the intermediate value associated with the two first
pairs of blocks, that is used as an offset in the Px, Py part. We remind that
X = X1 ⊕ · · ·⊕ Xm in general. In our case, we have X = X1 ⊕ X2 which,
once developed, becomes

X = E0,0
K (E1,1

K (B)) ⊕ E0,0
K (E1,2

K (B)) ⊕ B ⊕ B.

We can rewrite this expression as

X = AES4K(AES4K(B ⊕ 8I)) ⊕ AES4K(AES4K(B ⊕ 9I)),

and notice that if B′ = B ⊕ I then X = X′. This leads to a similar attack to
the one on J and L. Indeed one can remark that collisions on the value of X
induce collisions in the value of Cy since the single difference affecting the
(Px, Py) part of the computation is the introduction of distinct values Y and
Y′, that only affect the value of Cx, not the value of Cy.

In summary, we search for collisions on the value of Cy to detect collisions
on X (as shown in Figure 18).

The following steps describe the attack exploiting the preceding remark.

1. Collect Cy,B from the encipherments AEZ-core(K, T, P) associated to
264 values of B.

2. If a collision occurs, i.e. Cy,B = Cy,B′ , then I is likely to be equal to
B ⊕ B′ and this is easy to test using another value of B.

We need to encrypt 266.3 blocks of data to expect a collision with probabil-
ity 0.5. If the amount of input data is restricted to 244 blocks, the recovery of
I succeeds with probability 2−45.6.

3.2.1.2 Summary of Birthday Attacks

We have presented three partial attacks, each allowing to recover one of
the three sub-keys I, J, and L. The following table summarizes the data
complexity required by each attack for a success probability of 0.5 and their
success probabilities if the amount of input data is limited to 244 blocks. The
time complexity of these attacks is equal to the time complexity for a single
query multiplied by the query complexity.

The former partial attacks can be combined to recover the three sub-keys.
However, when restricted to the encryption of 244 blocks, this combined

52 cryptanalysis of aez

0128 B 0128 B 0128 0128

1, 1 1, m 0, 1

0, 0 0, 0 −1, 1

S S

2, 1 2, m S

0, 0 0, 0 −1, 2

1, 1 1, m 0, 2

C1 C′1 C2 C′2 Cx Cy

X1 X2

Y1 Ym

X

∆

∆

Y

Figure 18: Difference propagation in the birthday attack to retrieve I.

attack succeeds, in the case of a 128-bit key, with a lower probability than a
classical brute-force attack.

3.2 attacks on aez 53

Table 5: Birthday attacks complexities.

Retrieved key Data complexity (blocks)a Queries Success probability

I 266.5 264.2 0.5

I 244 241.7 2−45.6

J 265.8 264.2 0.5

J 244 242.4 2−44.2

L 265.2 264.2 0.5

L 244 243 2−43

I, J, Lb 268.1 265.8 0.5

I, J, L 244 242.5 2−142.4

a Chosen plaintexts.
b In this row, the data and query complexities were derived as the sum of the data (resp. query)

complexities for recovering I, J, and L with a probability of 0.51/3 in three birthday attacks,
as to ensure that the success probability is 0.5 for the combined attack.

3.2.2 AES4 Cryptanalysis

We previously described partial attacks allowing to recover one of the three
sub-keys used in AEZ and a resulting combined attack. We now describe
an attack which, assuming the sub-key I has been retrieved using the last
partial attack presented before, allows to efficiently recover the two others
sub-keys J and L.

As in the partial attack allowing to recover I, we assume that τ = 128
and we use a fixed nonce value N and no associated data in all considered
encryptions.

3.2.2.1 Conducting Idea

Mounting a differential attack that targets the first AES4 encryption of the Pu

part of the AEZ-core function allows to leverage the knowledge of I to re-
cover J and L. Since I is known, this eventually boils down to attacking only
three AES rounds instead of four. Although the differential cryptanalysis of
3-round AES is simple and well studied, the context of the attack for AEZ is

54 cryptanalysis of aez

more constrained and requires dedicated analysis. We therefore describe in
some detail how to take these constraints into account.

Let

P = Pu || 0128 || 0τ︸ ︷︷ ︸
Px ,Py

,

where Pu denotes a 128-bit block. Since (plen + τ) mod 256 = 128, an empty
block Pv is introduced in the computation of X, that we denote by R =

E0,5
K (1 || 0127).The resulting offset value X is:

X = E0,4
K (Pu) ⊕ R

= AES4K(Pu ⊕ 4I) ⊕ R.

The detailed computation of X is summarized in Figure 19.

Predictable

Pu

4I

SB SR MC

S0

J

SB SR MC

S1

I

SB SR MC

S2

L

SB SR MC X

R

Figure 19: AES4 scheme.

To obtain information on J and L, one can search pairs of Pu values whose
differential behaviour in the three last rounds of the AES4 computation fol-
lows a 4-1-4 differential characteristic. In other words, at the input to the
second, third, and fourth rounds, we want the associated state values to
only differ on 4 bytes, resp. 1 and 4 bytes, as shown in Figure 20.7

We are using the numbering convention of Figure 21 for the AES state
bytes.

7 We would like to acknowledge the work of Jérémy Jean with his repository “TikZ for Cryp-
tographers” [J´] for providing inspiration for the AES figures.

3.2 attacks on aez 55

aesr aesr

∆S0 ∆S1 ∆S2

Figure 20: Differential path.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Figure 21: Bytes numbering in AES state.

Let us denote by ∆(x1, . . . , xl) the vector space of difference values equal
to zero everywhere outside from the byte positions x1, . . . , xl . The expected
differential behaviour at rounds 2, 3, and 4 is the following.

AES round 2 : ∆(0, 5, 10, 15) SB SR−−−−→ ∆(0, 1, 2, 3) MC−→ ∆(0)

AES round 3 : ∆(0) SB SR MC−−−−−−→ ∆(0, 1, 2, 3)

AES round 4 : ∆(0, 1, 2, 3) SB SR−−−−→ ∆(0, 7, 10, 13) MC−→

Output : MC(∆(0, 7, 10, 13)).

Let (S0, S′0) denote a pair of chosen second round input values before the
addition of J, of difference S0 ⊕ S′0 ∈ ∆(0, 5, 10, 15)) and δx denote a differ-
ence value from MC(∆(0, 7, 10, 13)). (S0, S′0) can be derived from the chosen
pair of Pu values (Pu = aesr−1(S0)⊕ 4I, P′u = aesr−1(S′0))⊕ 4I) and one can
test whether the differential behaviour of this pair is the desired one and the
resulting AES4 output difference is equal to δx.

Indeed, let (Px, P′x) be a pair of Px blocks of difference Px ⊕ P′x = δx and
Py = 0, and let

(Cv, Cx, Cy) = AEZ-core(K, T, (Pu, Px, Py))

(C′v, C′x, C′y) = AEZ-core(K, T, (P′u, P′x, Py)).

56 cryptanalysis of aez

Then we get Cy = C′y since the differences on the X offset values and on the
Px values cancel out. In Figure 22, the difference propagation is represented
by the red pattern. Note that Cy = C′y happens with a negligible probability
of about 2−128 if the tested condition is not met.

Pu Px Py

0, 1

0, 4 −1, 1

−1, 4 S

−1, 2

0, 4 0, 2

Cu Cx Cy

δx

S

Y

δx

R
∆

∆

Y

Figure 22: Difference propagation within AEZ-core.

We now show that the use of appropriate structures of (Pu, Px) values –
obtained as the cartesian product of smaller structures of Pu and Px values –
allows to efficiently get Cy = C′y collision.

3.2.2.2 Structure of Pu values

We want to test at least one pair (S0, S′0) of difference value S0 ⊕ S′0 ∈
∆(0, 5, 10, 15) that leads after the second round to a difference value that
belongs to the set ∆(0). A simple heuristic argument indicates that testing
about 224 (S0, S′0) pairs should suffice for this to happen. Since picking S0

and S′0 from a subset of S of ∆(0, 5, 10, 15) of size 2m, m ≤ 16, allows to cover
approximately 22m−1 such pairs, selecting a structure S of 212.5 such values

3.2 attacks on aez 57

can be expected to suffice to obtain a good pair with a sufficient probability.

The resulting structure of Pu values that we use in the sequel is U =

aesr−1(S) ⊕ 4I. We expect at least one pair of U elements to have the ex-
pected differential behaviour.

3.2.2.3 Structures of Px and P′x values

At the output of the AES4 function we want the difference to belong to the
image of ∆(0, 7, 10, 13) by MixColumns. Since MixColumns is a linear operation,
such a difference, denoted δx, can be expressed as follows,

δx = δx,(0,7) ⊕ δx,(10,13)

with δx,(0,7) ∈ MC(∆(0, 7)) and δx,(10,13) ∈ MC(∆(10, 13)).

This decomposition, in combination with the previous structure, allows
to reduce by a squared factor the sets of tested Px and P′x values. This is
explained in the next section.

3.2.2.4 How to Find a Good Pair

We can use cartesian products of the structures defined above to find a
collision with an improved data complexity.

We encrypt the plaintexts associated with the two following structures of
(Pu, Px) pairs:

(Pu, Px) ∈ U × MC(∆(0, 7))

(P′u, P′x) ∈ U × MC(∆(10, 13)).

We call observation the block Cy,Pu,Px resulting from the encryption of the
plaintext Pu || Px || 0128. With the previous notations, one can remark that if
Cy,Pu,Px = Cy,P′u,P′x then with overwhelming probability:

E0,4
K (Pu) ⊕ Px = E0,4

K (P′u) ⊕ P′x

or equivalently

E0,4
K (Pu) ⊕ E0,4

K (P′u) = P′x ⊕ P′x.

58 cryptanalysis of aez

By construction, Pu and P′u values are selected in such a way that the
resulting round 2 input difference δin = aesr(Pu ⊕ 4I) ⊕ aesr(P′u ⊕ 4I) be-
longs to ∆(0, 5, 10, 15), and Px and P′x values were selected in such a way that
their difference δout = Px ⊕ P′x can take any value from ∆(0, 7)⊕ ∆(10, 13) =
∆(0, 7, 10, 13).

Therefore we can expect at least one equality Cy,Pu,Px = Cy,P′u,P′x to happen
and with overwhelming probability the underlying (Pu, P′u) pair is a good
pair of second round input difference δin and fourth round output difference
δout.

On can also note that this method can be extended to the following differ-
ential patterns.

aesr aesr

aesr aesr

aesr aesr

Figure 23: Other possible differential characteristics.

3.2.2.5 Sub-keys Recovery

Once a collision Cy,Pu,Px = Cy,P′u,P′x occurs, we obtain a good pair (Pu, P′u) with
a known AES4 output difference δout = Px ⊕ P′x. This can be used to retrieve
information on the sub-keys J and L.

We know that the sub-key J has the property to allow a differential transi-
tion

∆(0, 5, 10, 15) SB SR MC−−−−−−→ ∆(0)

in the second round. Let us denote by J a candidate value for J which leads
to such a differential transition.

3.2 attacks on aez 59

To each of the possible differences in ∆(0) we can associate a difference in
∆(0, 5, 10, 15) by MC−1 ◦ SR−1. We denote such a difference by δmid. There are
255 possible values δmid.

Let S0 = aesr(Pu ⊕ 4I), and S′0 = aesr(P′u ⊕ 4I) = S0 ⊕ δin. For a given
trial value δmid we want to find J values that satisfy

SB(S0 ⊕ J ⊕ δin) = SB(S0 ⊕ J) ⊕ δmid.

With a variable substitution X = S0 ⊕ J this amounts to finding X such
that

SB(X ⊕ δin) = SB(X) ⊕ δmid.

Let us denote by Bi the i-th byte of a block B and by sbox the AES S-box.
The former conditions amount to finding X0, X5, X10, X15 such that

sbox(Xi ⊕ δin,i) = sbox(Xi) ⊕ δmid,i, i = 0, 5, 10, 15.

We know that at least one J, the actual sub-key J, fulfils these conditions.
But one can expect a larger set of candidates to fulfil these conditions, 275
in average (as shown in Section 3.2.2.6) and another step is thus required to
retrieve the right candidate. We expect to test about 2754 = 232.4 values to
find J.

Assuming that we have collected the candidates for the four 4-byte parts
of J, namely Ji, we can retrieve the right value of J by the following method
(similar to the method used in the birthday attacks)

1. Compute all the ∆i = AEZ-prf(K, (τ, N, Ji, Ji), τ) and the reference
value ∆ = AEZ-prf(K, (τ, N, 0128, 0128), τ).

2. Find the value ∆m such that ∆m = ∆. The right value for J is then
J = Jm. This is due to the former observation used for the birthday
attacks.

Once J is recovered, one can apply a similar one-round differential tech-
nique to recover L. Indeed, for good pairs, the input values to the fourth
round S2 = aesr(aesr(aesr(Pu ⊕ 4I)⊕ J)⊕ I and S′2 = aesr(aesr(aesr(P′u ⊕
4I) ⊕ J) ⊕ I are known, their difference δmid = S2 ⊕ S′2 ∈ ∆(0, 1, 2, 3) is
known, and the AES4 output difference δout is known. The latter difference

60 cryptanalysis of aez

induces a known difference value (SR−1 ◦ MC−1)(δout) after the fourth round
SubBytes. Since the differences before and after SubBytes are completely
fixed, only about 16 candidates values in average will satisfy

SB(X ⊕ δmid) = SB(X) ⊕ (SR−1 ◦ MC−1)(δout).

By using the other differential transitions the remaining 12 bytes of L can
be completely recovered and the sub-key L is found by testing about 216

candidates for L. A similar method to the one used to find the right value of
J, based on the former observation used for the birthday attack, can be used
in order to find the right value of L.

3.2.2.6 Computation of the Average Number of Candidates for a Quartet
of Bytes of Sub-key J

If we let a, b represent two non-zero random one-byte differences, then
the equation sbox(X ⊕ a) = sbox(X) ⊕ b may have 0, 2 or 4 solutions (sbox
corresponds to the AES S-box). These number of solutions stand with their
respective probabilities which are:

#{X | sbox(X ⊕ a) = sbox(X) ⊕ b} =

0 with p0 = 128

255

2 with p2 = 126
255

4 with p4 = 1
255

.

For a random pair δ = (δ1, δ2, δ3, δ4), δ′ = (δ′1, δ′2, δ′3, δ′4) of quartets of non-
zero difference bytes, the average number of solutions of

sbox(X ⊕ δi) = sbox(X) ⊕ δ′i for i = 1, 2, 3, 4

is given by

(2p2 + 4p4)
4 ' 1.015.

Hence, out of the 255 possible pairs (δin, δmid), we can expect 254 of them
to bring an average of 254 × 1.015 = 257.8 candidates since they are not
expected to exhibit the right guess on J. For the last one we know it will
bring the right guess of J, at least one solution will be obtained. The previous
expression for the average number of solutions has to be slightly modified
and becomes (

2× 126
127

+ 4× 1
127

)4

' 16.5.

The former heuristic reasoning shows that we can expect to have to test
an average of about 275 candidates for each differential transition.

3.2 attacks on aez 61

3.2.2.7 Algorithm and Complexity to Recover J and L

In summary, the following algorithm allows to find the values of J and L
assuming that I is known.

1. Compute the observations Cy,Pu,Px associated with all pairs (Pu, Px) ∈
U × MC(∆(0, 7)).

2. Compute the observations Cy,P′u,P′x associated with all pairs (P′u, P′x) ∈
U × MC(∆(10, 13)).

3. Find (Pu, P′u, Px, P′x) such that Cy,Pu,Px = Cy,P′u,P′x and compute δin =

aesr(Pu ⊕ 4I) ⊕ aesr(P′u ⊕ 4I), δout = Px ⊕ P′x.

4. Repeat Steps 1,2 and 3 for the three other differential transitions as
to finally either get (δ1

in, δ1
out), (δ

2
in, δ2

out), (δ
3
in, δ3

out) or (δ4
in, δ4

out) for each
good pair.

5. For each good pair, compute the about 275 candidate quartets of J
bytes that are compatible with δi

in.

6. Test with AEZ-prf all the candidate values to find J.

7. For each good pair, compute the candidate quartets of L bytes that are
compatible with the δi

out.

8. Test with AEZ-prf all the candidate values to find L.

To compute the complexity of our attack, we need to compute the cost of
each step

– Step 1 & 2 : We need to go through U ×MC(∆(0, 7)) and U ×MC(∆(10, 13))
to compute all the observations. This costs 2× |U| × |MC(∆(0, 7))| =
2 × 212.5 × 216 = 229.5 queries of 2 blocks i.e. 231.5 blocks have to be
encrypted.

– Step 3 : Finding a collision can be achieved with a time complexity of
about 233.3. This is a computational cost, so the query complexity is not
affected.

– Step 4 : 4× 231.5 = 233.5 blocks have to be encrypted.

– Step 5 : With pre-computation of all solutions for SB(X ⊕ δin) = SB(X)⊕
δmid with any δin, δmid the candidates are easily computed with a time
complexity of 224. As for Step 3 this phase does not require additional
queries.

62 cryptanalysis of aez

– Step 6 : We need to compute AEZ-prf(K, (τ, X, X), τ) for 2754 = 232.4

values of X i.e. 2× 232.4 = 233.4 blocks have to be encrypted.

– Step 7 : No more cost since the pre-computation used in Step 5 can be
reused here.

– Step 8 : We need to compute AEZ-prf(K, (τ, N, X, X), τ) for 216 values
of X i.e. 3× 216 = 216.6 blocks have to be encrypted.

The final cost to find J and L is given in Table 6 below.

Table 6: AES4 attack complexities.

Data complexity (bytes) Offline time complexity Queries complexity

234.6 233.3 232.1

This part of the attack was successfully validated on the public implemen-
tation of AEZ v4.1. This allowed to confirm that J and L can be recovered
once I has been recovered.

3.2.3 Results of Our Attack

As described our attack works in two phases : first, find the sub-keys I by
a birthday attack, and then, recover the two other sub-keys J and L by attack-
ing AES4. Since the number of queries needed in the attack is far greater than
the offline time complexity, the latter is insignificant in comparison of other
costs and so, not included in the complexity of our attack. The final cost of
our attack, depending on whether the data limit of 248 bytes is respected or
not, is given in the following Table 7

Table 7: Full attack complexities.

Data complexity (blocks)a Queries complexity Success probability

244 241.7 2−45.6

266.5 264.2 0.5
a Chosen plaintexts.

3.3 conclusion 63

3.3 Conclusion

One of the purposes of the modifications between AEZ v3 and AEZ v4.1 was
to fix an undesirable property allowing to recover the whole key from one of
the sub-keys used in AEZ. Our work shows that this property remains despite
the changes. We describe a key-recovery attack that allows to recover the
three sub-keys from the knowledge of only one. These modifications were
also partly motivated by thwarting an attack of birthday complexity allowing
to recover one of the subkeys. We described three birthday attacks on AEZ
v4.1 allowing to retrieve one of the three sub-keys.

Even though no claim for beyond birthday security has been made and our
attack does not violate the security claims for AEZ, it raises some doubts re-
garding the resilience of AEZ against key-recovery attacks when the amount
of processed data approaches the birthday bound.

4
C RY P TA N A LY S I S O F N O R X

This chapter presents a cryptanalysis of the NORX algorithm developed
jointly with Thomas Fuhr, Henri Gilbert, Jérémy Jean and Jean-René Rein-
hard. Our results were published in the paper Cryptanalysis of NORX v2.0
[CFG+17] and presented at FSE 2017.

NORX is a family of AEAD algorithms designed by Aumasson, Jovanovic
and Neves, and is one of the 15 CAESAR candidates that were selected in
August 2016 for the third round of the competition. The overall structure of
the NORX algorithm adopts the so-called monkeyDuplex construction, which
is derived from the sponge construction and iterates a keyless permutation
P of a large state [BDPV12]. The design of the permutation P used by NORX
is partly inspired from those of the stream cipher ChaCha [Ber08], the SHA-3
finalist BLAKE [AHMP10] and its more efficient variant BLAKE2 [ANWW13].
This permutation operates over states that can be represented as 4× 4 matrix
of words whose size w is either 32 or 64 bits. It follows a design close to so-
called ARX primitives, as it uses only “R” operations (circular rotations and
shifts), “X” (exclusive or) operations, and modified “A” operations (modular
additions, modified in that carries only propagate to one position to the left).
The key length k, the default tag length t, and the claimed security level of
NORX are all equal to 4w, in other words either all equal to 128 bits or to 256
bits depending on the value of w.

Three consecutive versions of the NORX specification were published by
the designers during the CAESAR competition : NORX v1.0 (March 2014),
the initial submission to the CAESAR competition; NORX v2.0 (August 2015),
the version that was evaluated and selected for the third round; NORX v3.0
(September 2016), a version published shortly after the beginning of the third
round that served as a basis for the third-round evaluation. In all versions,
the NORX family consists of two main sub-families of algorithms associated
with the word sizes w = 32 and w = 64.

Lightweight variants of NORX [AJN15c], called NORX-8 and NORX-16, have
also been proposed by the same designers apart from the CAESAR compe-
tition. They follow the same generic strategy as NORX v2.0, with word sizes
w = 8 and w = 16.

65

66 cryptanalysis of norx

Related Work. There exists a handful of papers that study the security of
NORX, which we briefly recall here. First, the designers of NORX provided their
own analysis of the permutation P in the specifications and [AJN15a]. They
conclude that no high-probability differential exists in the primitive, that
word-level rotational cryptalysis does not threaten the scheme, and that no
structural distinguisher of the permutation can be used in an attack on the
mode. Later in [DMM15], Das et al. describe statistical variants of zero-sum
distinguishers that allow to distinguish 3.5 rounds of the permutation of
NORX-32 and the full-round permutation of NORX-64 from random permuta-
tions. At FSE 2016, Bagheri et al. show in [BHJ+16] that the slow diffusion of
G−1 can be leveraged into a state/key recovery for a reduced versions of NORX
v2.0 where the underlying permutation applies half the rounds (two out of
four). More recently, Dwivedi et al. [DKM+16] analyze the state-recovery
resistance of several CAESAR candidates, including NORX, with respect to
SAT solvers. About NORX, they conclude that state recovery is only possible
on NORX-32 when the underlying permutation does not apply more than
1.5 round. Finally, throughout this chapter, we also refer to [JLM14] where
Jovanovic et al. give a security proof of the NORX mode.

Our Contributions. Our main result is an attack on NORX v2.0 that shows
that the security level of the NORX v2.0 algorithms is at most 2w + 2 bits, i.e.
about 66 or 130 bits depending whether w = 32 or w = 64, instead of the 4w
bits claimed by the designers. The attack can be viewed in two ways:

1. as an existential forgery attack with success probability 2−2w−2, for in-
stance 2−66 if w = 32 bits, that requires to get the authenticated en-
cryption of one single short chosen plaintext or,

2. as an existential forgery attack with success probability greater than
50% that requires the knowledge of 22w+2 ciphertexts with their associ-
ated tags and the same number of forgery attempts.1

Both variants of the attack break the claim of the designers stating that
NORX v2.0 offers a 4w-bit level of security. We additionally observe that once
a forgery attempt succeeds, a key-recovery attack can be easily mounted
as the secret key is only injected during the initialization phase. Namely,
a successful forgery can reveal the full internal state at the expense of an
extra offline computation of about 22w operations. Then, same as was done
in [DJ15] on the FIDES authenticated encryption scheme [BBK+13], the full
sponge can be inverted, which reveals the initial state that contains the secret
key. This can be achieved if we assume either chosen-plaintexts attacks, or
that a ciphertext-only adversary interacts with a decryption oracle and gets

1 Enforcing a limitation of the amount of data handled with a single key does not thwart our
attack as changing the key does not drop the marginal success probability of a single forgery
attempt.

cryptanalysis of norx 67

the plaintext corresponding to any successful forgery. We have implemented
and experimentally verified the correctness of the attacks on a toy version of
NORX v2.0, where the word size w is reduced to 8 bits.

The attack leverages an interaction between the two following properties
of NORX v2.0, due to non-conservative designers choices.

– The capacity of the NORX sponge is low: only 4w bits, one fourth of the
state size, i.e. 128 bits if w = 32 bits and 256 bits if w = 64 bits. This
more aggressive choice than the 6w-bit capacity that was selected for
NORX v1.0 was motivated by performance considerations, as it allowed
to increase the rate of the sponge construction by a factor 1.25. It was
also supported by the security bounds derived from the security proofs
of [JLM14] (substantiated in the security goals section of the algorithm
specification [AJN15b]), up to the fact that the underlying permutation
P does not behave like an ideal permutation.

– The permutation P used in the NORX sponge has strong structural prop-
erties that substantially deviate from the expected behavior of an ideal
permutation. Our attack leverages the structural property that P com-
mutes with a circular rotation of the columns of the internal state 4× 4
matrix. This property has some connection with the weaker structural
property of P already observed by the designers in [AJN15a] that the
set of states whose four columns are equal is invariant under P.

The former attack can be viewed as a kind of rotational cryptanalysis at
the state level rather than at the word level as considered in [AJN15a] on
NORX or more generally in [KN10]. It also has some connection with the in-
variant permutation attacks sub-class of invariant subspace attacks introduced
in [LMR15], since in both cases a permutation of the state words that com-
mutes with a cryptographic state permutation is leveraged, one difference
being that an invariant permutation property is used here in a keyless and
constant-less context.

While the two non-conservative properties leveraged by the attack (the
low capacity and the existence of a commuting rotation) still hold for NORX
v3.0, one of the “tweaks” introduced in NORX v3.0 appears to thwart the
former attack, namely the involvement of the key in the finalization of the
tag computation, using an Even-Mansour-like construction. This finalization
was also selected during the conception of another monkeyDuplex-based
CAESAR candidate, namely Ascon [DEMS].

Finally, we also investigate the security claims of NORX v2.0 and NORX v3.0.
We show that the generic success probability of a forgery attack has to be
related to the cumulative length of forgery attempts (instead of the total

68 cryptanalysis of norx

number of forgery attempts), as it is also the case for other AEAD schemes
such as GCM. Moreover, we show that even if the total length of decryption
queries is strongly limited, the authenticity bound of the proof does not
guarantee the security level of 24w claimed for NORX.

Organization. The rest of this chapter is organized as follows. Section 4.1
gives detailed descriptions of NORX variants discussed in this chapter. In Sec-
tion 4.2, we describe our attack on NORX v2.0. In Section 4.4, we study the
applicability of our attack to other variants of NORX. Finally, in Section 4.5,
we discuss the results of our attack and compare them to the security claims
made by the designers of NORX and to the bounds derived from the security
proofs.

4.1 Specifications of NORX

We provide in this section a description of the NORX family of Authenticated
Encryption with Associated Data (AEAD) algorithms, through the description
of NORX v2.0. We start by detailing in Section 4.1.1 the keyed-sponge mode
and its core permutation. Then, in Section 4.1.2, we describe the security
goals claimed by the designers. Finally, we outline in Section 4.1.3 the main
differences between NORX v2.0 and the other members of the NORX family.

Notations. In the sequel, we use x||y to denote the concatenation of two
bit-strings x and y, and |x| to represent the bit-length of the bit string x.

4.1.1 Description of NORX v2.0

We now describe NORX v2.0, which is the version our attack targets. It relies
on w-bit words operations, with w ∈ {32, 64}. We note NORX-w when we
consider NORX with a given w value.

Mode of Operation. NORX is based on the monkeyDuplex sponge construc-
tion [BDPVA11] and relies on a 16w-bit permutation P that we describe later.

The monkeyDuplex sponge construction operates on an internal state S,
which in the case of NORX v2.0 is divided into two distinct parts of respective
bit-sizes r = 12w and c = 4w for a total size of 16w bits. We represent the

4.1 specifications of norx 69

16w-bit internal state S of the construction as a 4× 4 matrix of w-bit words
as follows

S =

s0 s1 s2 s3

s4 s5 s6 s7

s8 s9 s10 s11

s12 s13 s14 s15

 .

The value r is called the rate of the sponge, and denotes the amount of
data that can be processed by each call to permutation P. The rate part Sr of
the state consists of its first 12 words. The value c is called the capacity and
informally represents the security level expected from the construction. The
capacity part Sc of the state consists of its last four words. The internal state
S can then be written as S = Sr||Sc.

The encryption algorithm Enc takes as inputs a k-bit key K, an n-bit nonce
N, a plaintext M and associated data in the form of a header A and a trailer
Z. The header, plaintext and trailer are three optional strings. The encryption
algorithm computes a t-bit authentication tag T, and a ciphertext C of same
bit-length as the plaintext. Similarly, the decryption algorithm Dec takes as
inputs (K, N, A, C, Z, T) and returns either ⊥ or M depending on the validity
of the authentication tag T.

Encryption and decryption algorithms begin by an initialization phase

that sets the internal state to Sinit: it consists in storing the 4w-bit key K def
=

k0||k1||k2||k3, the 2w-bit nonce N def
= n0||n1 and some initialization constants

(ui) in the internal state, as follows:

Sinit =

n0 n1 u2 u3

k0 k1 k2 k3

u8 u9 u10 u11

u12 u13 u14 u15

 .

After this step, some parameters of the cipher are XORed to s12, s13, s14 and
s15. Finally, P is applied to the full state.

The processing of the header, plaintext and trailer are similar. We assume
that header, plaintext and trailer are split in blocks of bit-length 12w. To
achieve this, any non-empty field A, M or Z is padded using the so-called
multi-rate padding function pad, which works as follows:

pad(X) = 10 f (X,w)1,

where f (X, w) is the smallest nonnegative integer such that 12w divides the
total bit-length of X||pad(X). Header, plaintext and trailer blocks are then

70 cryptanalysis of norx

processed iteratively. The whole mode of operation is depicted in Figure 24.
Each block B is handled as follows.

1. A domain separation constant is first XORed to the last word of the
internal state, namely s15. Its value depends on the type of data being
processed: 0x01 for the header, 0x02 for the plaintext, and 0x04 for the
trailer.

2. The permutation P updates the internal state S; that is: S← P(S).

3. The header, plaintext, or trailer block B is XORed in the rate part of the
state; that is: Sr ← Sr ⊕ B.

4. If B is a plaintext block Mi, the rate part (after XOR with B) is used
as ciphertext block Ci. Note that if Mi is the last plaintext block, the
part of Ci obtained from the padding is not returned as part of the
ciphertext.

The last step is the tag generation. To compute the tag, first domain sepa-
ration constant 0x08 is XORed to s15. Then, P is applied twice to S. The t-bit
tag T (where t = 4w) is extracted as the 4-tuple of state words (s0, s1, s2, s3).

0

0

init(K, N, w, l, t)

P P

01

P

A0

01

/
r

/
c P

Aa−1

02

P

M0 C0

02

P

Mm−1 Cm−1

04

P

Z0

04

P

Zz−1

08

P
T/

t

Figure 24: NORX v2.0 mode: the padded bit-strings of 12w-bit blocks
A = A0|| · · · ||Aa−1, M = M0|| · · · ||Mm−1 and Z = Z0|| · · · ||Zz−1 are

processed by the monkeyDuplex sponge construction.

The permutation P. The permutation P consists of l consecutive applica-
tions of a round function F, i.e. P = Fl . The function F in turns consists of
two layers of a smaller permutation denoted G, which acts on 4w bits. The
permutation G is first computed in parallel on the four columns of S, then
on its four diagonals, as depicted in Figure 25 and Figure 26. The pseudo-
codes for both functions F and G are given in Algorithm 1 and Algorithm 2,
respectively.

4.1 specifications of norx 71

s0

s4

s8

s12

G

s1

s5

s9

s13

G

s2

s6

s10

s14

G

s3

s7

s11

s15

G

Figure 25: Function G applies on
state columns.

s0

s5

s10

s15

s1

s6

s11

s2

s7

s8

s13

s3

s4

s9

s14s12

G

G

G
G

Figure 26: Function G applies on
state diagonals.

Algorithm 1 – Compute F(S)

Require: Internal state (s0, . . . , s15)
Ensure: Updated (s0, . . . , s15)

1: (s0, s4, s8, s12)← G(s0, s4, s8, s12)
2: (s1, s5, s9, s13)← G(s1, s5, s9, s13)
3: (s2, s6, s10, s14)← G(s2, s6, s10, s14)
4: (s3, s7, s11, s15)← G(s3, s7, s11, s15)

5: (s0, s5, s10, s15)← G(s0, s5, s10, s15)
6: (s1, s6, s11, s12)← G(s1, s6, s11, s12)
7: (s2, s7, s8, s13)← G(s2, s7, s8, s13)

8: (s3, s4, s9, s14)← G(s3, s4, s9, s14)

9: return S

Algorithm 2 – Compute G(a, b, c, d)

Require: 4w-bit tuple (a, b, c, d)
Ensure: Updated (a, b, c, d)

1: a← H(a, b)
2: d← (a⊕ d) ≫ r0

3: c← H(c, d)
4: b← (c⊕ b) ≫ r1

5: a← H(a, b)
6: d← (a⊕ d) ≫ r2

7: c← H(c, d)
8: b← (c⊕ b) ≫ r3

9: return (a, b, c, d)

Internally, the G function uses linear rotations of words and a non-linear
operation, denoted by H, that mimics the modular addition modulo 2w of
bit-strings x and y:

H(x, y) = (x⊕ y)⊕ ((x ∧ y)� 1).

The rotation constants r0, r1, r2 and r3 used in G depend on the word size
(see Table 8).

Table 8: Rotation constants in the permutation G.

Instance r0 r1 r2 r3

NORX-32 8 11 16 31

NORX-64 8 19 40 63

72 cryptanalysis of norx

4.1.2 Security Claims

First of all, the designers of NORX claim no security in the event where nonces
are reused: a key/nonce pair should be used only once for encryption. Sim-
ilarly, there is no guarantee of security under the release of unverified plain-
text [ABL+14]. Namely, if during the decryption of a ciphertext, any infor-
mation on the plaintext leaks before the tag has been successfully verified,
the security can no longer be ensured.

In other cases, the designers of NORX claim security levels for both confi-
dentiality and authenticity that are equivalent to an exhaustive search of the
key, which corresponds to a level of security of 128 bits for NORX-32 and 256
bits for NORX-64.

The designers also impose limitations on the amount of data that can
be processed with one key. In particular, the security claims are valid as
long as the usage of a key K induces fewer than 22w calls to the underlying
permutation2 P. Additionally, any forgery attack in which the adversary has
x forgery attempts should succeed with probability close to x · 2−t.

4.1.3 NORX Variants

We outline here the differences between NORX v2.0 and the other members of
the NORX family, either the successive entries to the CAESAR competition, or
the lightweight variants. We also mention a parallel alternative to the serial
mode of operation presented in Section 4.1.1.

NORX v1.0. NORX v1.0 (also named NORX v1 in some submission documents)
is the initial version of NORX submitted to the CAESAR competition in March
2014. The main difference between NORX v1.0 and NORX v2.0 relates to the
capacity size, which has been reduced from 6w bits to 4w bits. This change
yields an increased rate with a direct impact on the efficiency of the cipher,
and has been justified by security proofs, e.g. [JLM14]. The security claims
are left unchanged between the two versions.

NORX v3.0. NORX v3.0 is the latest version of NORX submitted to the CAESAR
competition in September 2016. Several changes have been brought to NORX
between versions 2.0 and 3.0. In previous versions, a potential state-recovery
attack would enable the adversary to forge valid tags by computing the en-
cryption forwards, or even to recover the key by deducing the internal state

2 Note that the NORX specifications (v2.0 and v3.0) are unclear whether the data limitation refers
either to a number of initializations or to a number of calls to the core permutation. We chose
the latter as it captures both cases.

4.2 cryptanalysis of norx v2 .0 73

after initialization by computing backwards. In v3.0, this is no longer possi-
ble as the key K is XORed to the capacity part of the state after the initial-
ization step, and after each of both applications of P during the generation
of the authentication tag. Consequently, the tag is extracted as the capacity
part Sr of the state after the last key addition.

Another modification is that NORX v3.0 uses 4w-bit nonces instead of 2w-
bit nonces for previous versions. Again, the security claims are the same as
in NORX v2.0.

NORX-8 and NORX-16. These two primitives target lightweight applications
and are variants of the NORX v2.0 design, with smaller word sizes, namely
w = 8 and w = 16, respectively. To achieve decent security levels, their
capacities cannot be limited to 4w words (which would be 32 and 64 bits,
respectively). Instead, their respective capacities are increased to 88 bits and
128 bits, respectively, and their capacity parts are defined as (s5, . . . , s15) and
(s8, . . . , s15), respectively.

The respective key lengths for NORX-8 and NORX-16 are 80 and 96 bits, and
the tag length is again the same as the key length, which define the security
levels claimed for these two primitives.

In the case of NORX-8, the tag length exceeds the rate of the sponge con-
struction. Consequently, the tag cannot be extracted at once. Instead, the 40
bits of the rate part are extracted as the first half of the tag, then an extra
constant 0x08 is XORed to s15, P updates the internal state, and the second
half of the tag is extracted as the rate part of the state.

The amount of data processed with a given key is limited to respectively
224 and 232 messages.

Parallel Mode of Operation. The NORX variants submitted to the CAESAR
competition offer a parallel mode of operation, which enables to process
in parallel p > 1 blocks of plaintext simultaneously. Basically, the state of
the mode of operation is diversified into p branches, the plaintext blocks
are dispatched over the branches for processing, the branches are combined,
and the trailer and tag are handled as in the serial mode.

4.2 Cryptanalysis of NORX v2.0

We give in this section the details of a ciphertext-only forgery attack on
NORX v2.0 that exists due to a combination of aggressive choices made by
the designers. The attack indeed relies on strong non-random properties

74 cryptanalysis of norx

of the underlying permutation P = Fl used in a keyed-sponge mode, as
well as a relatively small sponge capacity. Additionally, we show that the
forgery attack yields a plaintext-recovery attack and a key-recovery attack
with the same complexities. We begin in Section 4.2.1 by giving non-random
properties of F that extend to P, describe a simplified version of the forgery
attack in Section 4.2.2 and then the full attack in Section 4.2.3. We discuss
requirements for the adversarial model in Section 4.2.4 and give extensions
of the attack in Section 4.2.5.

4.2.1 Non-Random Properties of F

In the specification document of NORX [AJN15b] and in another analysis
paper [AJN15a], the designers acknowledge the use of a permutation that
presents non-random properties. They argue that distinguishers on the per-
mutation do not affect the overall monkeyDuplex construction since domain
separation constants are used at the mode level. Security proofs have been
written for the NORX mode, e.g. [JLM14], which assumes an ideal permuta-
tion and sets aside its structural weaknesses.

In the sequel, we recall a strong distinguisher on F and later show how
to leverage it to attack the full primitive. We note that our attack does not
invalidate the security proofs of the mode, which rely on the assumption
that the permutation is ideal and does not present any distinguisher like the
one we describe.

Previous Work. First, in [AJN15b], the designers use the constraint solver
STP to confidently assume that the permutations used in all NORX variants
present only a single fixed-point, namely the all-zero state: {x, F(x) = x} =
{0}. Later in [AJN15a], the same authors introduce a class of 24w weak states
of the form

a a a a

b b b b

c c c c

d d d d

 , (a, b, c, d) ∈ GF(2w),

where all the four columns of the state are equal. Due to the column/diago-
nal applications of G in the permutation F (see Section 4.1), it is easy to see
that the set of these weak states is stable by F: starting from a weak state,
applying F any number of times leads to a weak state. In particular, the set
of weak states is stable by P = Fl .

4.2 cryptanalysis of norx v2 .0 75

A Stronger Distinguisher. We note here that there exists a larger class of
28w states behaving in a similar way, where the two left columns equal the
two right ones; namely, states of the form:

a e a e

b f b f

c g c g

d h d h

 , (a, b, c, d, e, f , g, h) ∈ GF(2w).

Again, this larger class is stable by F and P.

Additionally, we note that one can slightly generalize the notion by consid-
ering “rotated” variants of one state. More formally, we denote by S≪i the
state S where the columns are left-rotated by i positions. Given xi ∈ GF(2w),
0 ≤ i < 16, consider the state

S =

x0 x1 x2 x3

x4 x5 x6 x7

x8 x9 x10 x11

x12 x13 x14 x15

 ,

and the three states obtained by rotating the columns of S by one, two and
three positions:

S≪1 =

x1 x2 x3 x0

x5 x6 x7 x4

x9 x10 x11 x8

x13 x14 x15 x12

 , S≪2 =

x2 x3 x0 x1

x6 x7 x4 x5

x10 x11 x8 x9

x14 x15 x12 x13

 ,

S≪3 =

x3 x0 x1 x2

x7 x4 x5 x6

x11 x8 x9 x10

x15 x12 x13 x14

 .

Our main observation is that F and the column rotations commute, that is:

∀i ∈ {1, 2, 3}, F(S≪i) = F(S)≪i.

We define by symmetric a state S that is invariant by rotation by two positions:
S = S≪2. Similarly, we say that the capacity part of an internal state is
symmetric if this internal state restricted to that part is invariant by rotation
by two positions.

76 cryptanalysis of norx

In the following section, we show how the small proportion of the internal
state allocated to the capacity in both NORX-32 v2.0 and NORX-64 v2.0 allows
to use this structural distinguisher to mount a ciphertext-only forgery attack
on these two primitives.

4.2.2 Ciphertext-Only Forgery of NORX v2.0 Without Padding

Recall that the security of NORX-w relies on a capacity of 4w bits, and its key
and tag sizes are of the same size 4w bits.

We now consider a modified version of NORX, in which the plaintext (and
therefore ciphertext) lengths are always a multiple of the block size 12w.
Therefore, no padding needs to be added to the plaintext before encryption.
This modification enables us to describe a simplified version of our attack,
which can be adapted to the full NORX v2.0 as shown in Section Section 4.2.3.

The following describes a ciphertext-only forgery attack against NORX v2.0
without padding, that requires q valid ciphertext/tag pairs (C, T), performs
q forgery attempts, and has success probability

1−
(

1− 1
22w

)q

.

In particular, the forgery attacks succeeds with probability 1− 1/e ≈ 63%
for q = 22w, and with probability about q · 2−2w for smaller values of q. We
require that there is no trailer, that the plaintexts and ciphertexts lengths are
multiples of the block size, and that the cipher does not apply any padding.
Without loss of generality, we assume there is no header and that the plain-
text and ciphertext length is exactly one block. If it is not the case, the attack
applies directly be applying ciphertext modifications only on the last block.

Assume that an attacker has q known tuples (Ni, Ci, Ti) in its posses-
sion, resulting from the NORX-w encryption of unknown messages Mi, under
known pairwise distinct nonces Ni and unknown key K:

(Ni, Ci, Ti) = Enc(K, Ni, Mi).

Given such a tuple, (N, C, T), the attacker attempts to produce a forgery
by considering the message (N, C≪2, T≪2). The ciphertext and tag parts of
the message are rotated variants of the initial ciphertext and tag. In the event
that the capacity part of the state is symmetric before the last two calls to P
for the generation of the tag (see Figure 27), the states S∗ and S′∗ at the same
point of the computation are rotated versions of each other, and due to the

4.2 cryptanalysis of norx v2 .0 77

0

0

init(K, N, w, l, t)

P P

01

P

M0 C0

08

Symmetric (p = 2−2w)

P
T/

t
/
r

/
c

Figure 27: Forgery first step: assume
the capacity is symmetric

(probability 2−2w).

0

0

init(K, N, w, l, t)

P P

01

P

C≪2
0

08

Assumed to be symmetric

P
T≪2?/

t
/
r

/
c

Figure 28: Forgery second step:
attempt forgery with

rotated ciphertext and tag.

fact that P and the rotation commute, this is also satisfied by the tags. More
formally, we have the internal state S′∗ as

S′∗ = C≪2
0 || Sc

∗,

= C≪2
0 || (Sc

∗)
≪2 ,

= (C0 || Sc
∗)

≪2 .

and evaluate the two last applications of P, which gives

P2(S′∗) = P2
(
(C0 || Sc

∗)
≪2
)

,

=
(
P2 (C0 || Sc

∗)
)≪2

,

and then yield the equality on the authentication tags

T′∗ = T≪2
∗ .

The probability for a tuple to yield an internal state such that its capacity
is symmetric before the last two calls to P for the generation of the tag
(see Figure 27) is 2−2w.

All in all, as an attacker has a probability of 2−2w to forge a valid message
due to the symmetries in P, he only needs about 22w known ciphertext/tag
pairs to launch the attack and break the authenticity of NORX-w.

4.2.3 Forgery Attack Against NORX v2.0

We now adapt the attack to take into account the padding systematically
applied by NORX to any non-empty plaintext.

The difficulty introduced by the padding is that the attacker has no longer
access to the whole rate part of the state S∗: the part corresponding to the
padding is not included in the ciphertext. In order to minimize this unknown

78 cryptanalysis of norx

component, we consider only messages of size 12w− 2 bits, which lead to
the minimal padding length of two bits.

In order to forge a message using the commuting rotation property of
P, the attacker has to produce a ciphertext C′ such that the state S′∗ is the
rotated version of state S∗. In addition to the constraint that the capacity
part of the state remains unchanged, new constraints are introduced by the
padding, stemming from the matching between

(
S′∗
)r

=

c′0 c′1 c′2 c′3
c′4 c′5 c′6 c′7
c′8 c′9 c′10 c′11 || v

 and (Sr
∗)

≪2 =

 c2 c3 c0 c1

c6 c7 c4 c5

c10 c11 || v c8 c9

 ,

with v the unknown part of Sr
∗. Note that the 2-bit padding v only depends

on C and C′ through their length, and is thus repeated in both S∗ and S′∗.
Denoting by x the last two bits of x, the padding constraints are satisfied if
we set the bits of C′ to the corresponding known bits of C, and additionally

c′9 = v and c9 = v.

Setting c9 = c′9, the constraints boil down to c9 = v which holds with proba-
bility 2−2.

Overall, taking the padding into account results in a decrease of the advan-
tage of the attacker, that can be limited to a factor 2−2 for the most favorable
message length. This attack can trivially be extended to any padding length
p ≤ 2w with complexity 22w+p instead of 22w+2.

4.2.4 Adversarial Model Discussion

Our attack is efficient on the padded version of NORX only if the length of the
padding appended to the plaintext leading to the ciphertext the adversary
tries to modify is minimal. Formally, if we keep the minimal padding length
of two bits, this can lead to the following two scenarios:

– In a chosen-plaintext setting, the adversary can select plaintexts of
length equal to 12w − 2 (mod 12w). The success probability of each
forgery attempt is then 2−2w−2.

– In a ciphertext-only setting, the attack still works as the adversary does
not need to know the value of the corresponding plaintext. However,
it requires that ciphertexts whose last block has a specific length are
available. Under the hypothesis that the length of the message follows
a uniform distribution modulo 12w, the adversary can try to modify
only those ciphertexts, which introduces a factor 12w in the data com-
plexity.

4.2 cryptanalysis of norx v2 .0 79

We note that this constraint relies on the general description of NORX at the
bit level, whereas the functional requirements of the CAESAR competition
acts on byte strings. Consequently, to launch the attack in that case, cipher-
texts of L bytes are required, with L = −1 (mod 12w/8) and the advantage
of the attacker becomes q · 2−2w−8. If this requirement on L does not hold,
the data complexity would increase by a factor 12w/8, assuming again that
the ciphertext byte-lengths modulo 12w/8 are uniformly distributed.

4.2.5 Key-Recovery Attack Against NORX v2.0

Recovering the Key. We now discuss whether it is possible to recover
the encryption key from a successful forgery attempt. Once the adversary
achieves such a forgery, he knows that with overwhelming probability, the
capacity part of the state at the end of the encryption step is symmetric.
Therefore, only 22w values are possible for the capacity part of the state at
that point. As the adversary knows the value of the rate part, he can recover
the full state by an exhaustive search over these 22w values. Trying all 22w

possible symmetric values at the input of F8 allows to filter (on average) one
internal state.

Let us suppose that the adversary additionally knows at that point the
value of the plaintext returned by the decryption algorithm on his success-
ful forgery. He can then compute backwards up to the initialization of the
state and filter the correct guess on the 4w-bit constants, which subsequently
reveals the 4w-bit secret key.

We have successfully verified the forgery and key-recovery attacks on a
toy version of NORX v2.0, by taking the word size w = 8 and adopting the
rotation constants of NORX-8. The pseudo-code of the attack can be found
in Section 4.3.

Adversarial Models. In a ciphertext-only setting, the adversary does not
get the value of the plaintext after the decryption and cannot perform the last
step of the key-recovery attack. It is however possible in chosen-plaintext or
chosen-ciphertext settings. If the adversary can query a decryption oracle, he
gets the value of the plaintext he needs to compute backwards and recovers
the key.

If the adversary can query an encryption oracle, he can encrypt arbitrary
one-block plaintexts and try to forge valid ciphertexts by modifying the an-
swers of the oracle. He can then perform the key-recovery attack on the
initial plaintext-ciphertext pair.

80 cryptanalysis of norx

4.3 Pseudo-code for the Ciphertext-only Forgery and Key-
Recovery Attack

The pseudo-code for the forgery and key-recovery attacks are given in the
following Algorithm 3. We have implemented the attack on a toy example
of NORX v2.0 derived from the source code provided by the designers as part
of the CAESAR competition. We in particular emphasize that due to the
CAESAR requirements, all the inputs are byte strings, hence the padding
cannot be restricted to less than one byte.

Algorithm 3 – Forgery and Key-Recovery Attack on NORX v2.0

Require: 22w ciphertext/tag pairs (Ci, Ti), 2w-bit nonce N = n0||n1

Ensure: Secret key K

1: for each ciphertext Ci = (c0, . . . , c10) and tag Ti = (t0, . . . , t3) do
2: C

′
i ← (c2, c3, c0, c1, c6, c7, c4, c5, c10, c9, c8)

3: T
′
i ← (t2, t3, t0, t1)

4: M′ ← Dec(N, C
′
, T′)

5: if M′ 6= ⊥ then
6: for all words a, b do
7: S← (c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c9, a, b, a, b)
8: S← S⊕M′||0c

9: s15 ← s15 ⊕ 08
10: S← P−1(S)
11: s15 ← s15 ⊕ 02
12: S← P−1(S)
13: if (s0, s1, s2, s3) = (n0, n1, u2, u3) then
14: return K = (s4, s5, s6, s7)

15: end if
16: end for
17: end if
18: end for

4.4 Application to Other Variants of NORX

In this section, we study the application of our attack to other versions or
variants of NORX. Namely, we show the following properties that we explain
below.

1. NORX-8 is not harmed at all by our attack.

2. The parameters chosen in NORX v1.0 and NORX-16 makes our attack just
as efficient as generic attacks. A consequence is that increasing the key
and tag sizes for these versions would not increase their security. In

4.4 application to other variants of norx 81

particular, a surprising behavior is that if one increases the key and tag
lengths of NORX-16 to 128 bits, then the security drops to 266.

3. NORX v3.0 has a small class of keys on which our attack is as efficient
as a generic key-recovery attack.

NORX v1.0. We recall that the main difference between NORX v1.0 and NORX
v2.0 is that in NORX v1.0, the rate part of the state consists of words (s0, . . . , s9)

and the capacity part of the state consists of words (s10, . . . , s15).

Let us consider an adversary who tries to launch our attack against NORX
v1.0. Let us suppose that the bit-length of the last block is exactly 8w. He can
can only apply the rotation on the first two rows of the state after the output
of the last ciphertext block, which are filled with the last eight ciphertext
words. On the last row, the same symmetry condition as in NORX v2.0 has to
hold, which occurs with probability 2−2w.

The adversary then has to ensure that the third row of the state during its
forgery attempts can be derived by a column-wise rotation of the third row
of the state during the generation of the ciphertext he tries to modify. The
third row of the state during the encryption equals (s8, s9, s10, s11), where s8

and s9 have just been updated by XORing the padding.

Then, during the verification of the forgery attempt, the third row contains
the same value (s8, s9, s10, s11), The symmetry relations he tries to obtain are
as follows:

s8 = s10, s9 = s11,

which hold with probability 2−2w.

The overall success probability of the adversary is thus 2−4w, which is
exactly the success probability of a generic forgery attempt as the tag length
is t = 4w.

NORX v3.0. During the tag generation phase, the only difference between
NORX v2.0 and NORX v3.0 consists in XORing the key K after each application
of P, as depicted on Figure 29.

As a consequence, the rotation property between the states during the
real encryption and the forgery attempt can only be preserved before the
last application of P if the key K = k0||k1||k2||k3 is itself symmetric; that is,
if k0 = k2 and k1 = k3. In that case, our attack still works.

82 cryptanalysis of norx

0

0

init(K, N, w, l, t)

P P

K 01

P

A0

01

/
r

/
c P

Aa−1

02

P

M0 C0

02

P

Mm−1 Cm−1

04

P

Z0

04

P

Zz−1

08

P

K

T

K

/
t

Figure 29: NORX v3.0 serial mode.

These relations can be seen as defining a class of 22w weak keys on NORX
v3.0. However, the resulting attack enables an adversary to generate forgeries
with data complexity 22w, which is equivalent to the size of the weak key
set. Furthermore, the forgery attack cannot be trivially turned into a key-
recovery attack against NORX v3.0. Our attack therefore has a very limited
impact on the security of NORX v3.0.

NORX-8. Recall that NORX-8 is very similar to NORX v2.0, but that the authen-
tication tag cannot be fully extracted at once from the rate part of the state.
Instead, after the extraction of the first 40 tag bits, a diversification constant
is injected in the state, P is computed and the last 40 tag bits are extracted
from the rate part of the state.

Even if the adversary achieves the rotation property after the last cipher-
text block, this property is broken after the addition of the diversification
constant, and no predictable property holds for the second half of the tag.
In that case, only the first 32 bits of the tag (which are extracted from the
first row of the state) can be predicted, leading to a forgery with probability
232−80 = 2−48.

Furthermore, the rotation property itself only holds with probability 2−48,
due to symmetry conditions on the last three rows of the state, which contain
the capacity part. The overall success probability of our attack is therefore
2−96, making it less efficient than a generic attack.

NORX-16. In NORX-16, the capacity part of the state covers the last two
rows, i.e. (s8, . . . s15). Therefore, the rotation property holds with probabil-
ity 2−4w = 2−64. NORX-16 uses 96-bit keys and produces 96-bit tags, which
are extracted as (s0, . . . , s6) after the last application of P. If the rotation prop-
erty holds, the adversary knows the target values of (s0, . . . , s3) (by rotation
of the valid tag), but he still needs to guess s4 and s5. Taking account of the
2-bit loss due to the padding, the overall success probability of each forgery
attempt is 2−64−2×16−2 = 2−98, which is just below the generic bound for a
forgery attempt.

4.5 discussion about norx security claims 83

This shows that increasing the key and tag sizes of NORX-16 would not
increase its security, as our attack would still be valid. More surprisingly,
using 128-bit tags would enable the adversary to always forge successfully
once the rotation property is verified, leading to an attack with success prob-
ability 2−66 for each forgery attempt.

4.5 Discussion About NORX Security Claims

NORX v2.0 Security Claims In [AJN15b, Section 3], the NORX designers
claim that no forgery attack with q attempts should succeed with probabil-
ity significantly greater than q · 2−4w. Our attack succeeds with probability
about q · 2−2w−2, which violates this claim.

The designers also claim that no key-recovery attack should cost fewer
than 24w operations. Our attack costs 22w+2 operations on average. One could
argue that the limitation of the amount of data treated with a given key
limits the success probability of our attack. Nevertheless, contrary to attacks
based on the birthday paradox, the marginal success probability of a single
forgery attempt using our attack does not drop once the key is changed.
Consequently, our attack enables the adversary to find the value of one of
the keys used with time and data complexity of about 266 operations (for
w = 32), regardless of the change frequency.

Forgeries Against NORX v3.0 for Long Messages. For both NORX v2.0 and
NORX v3.0, the security claim saying that any forgery attack with q attempts
should have a success probability of about q · 2−4w does not totally hold.

For any long ciphertext C that contains, say, 2m + 1 blocks of 12w bits, one
can modify only the first block of the ciphertext, keep the same tag value
and obtain a forgery with probability about 2m−4w. Indeed, before each ap-
plication of P during the decryption phase, the internal state during the
forgery attempt collides with the internal state during the decryption of the
initial message with probability 2−c = 2−4w. Once a collision occurs, it holds
for all the subsequent steps of the decryption process, as the two decrypted
ciphertexts have common suffixes. The overall collision probability is there-
fore approximately 2m × 2−4w, and such a collision leads to equal tag values,
making the forgery attempt successful. We note that this technique shares
some ideas with the long-message internal collision attack on iterated MACs
discussed in [PvO95, Section 3].

For NORX v2.0 and NORX v3.0, this property still holds when the nonce is
modified in the forgery attempt. For NORX v2.0, as no key is involved after
the initialization phase, one consequence of this property is that a given

84 cryptanalysis of norx

ciphertext of 2m blocks has the same tag value under two different keys and
nonces with probability 2m−4w.

The impact (at least on NORX v3.0) of this remark has to be mitigated by
the fact that similar properties can apply to other AEAD schemes such as
AES-GCM [MV04a]. It is also covered by the security proof, which leads to
bounds involving the total length of encryption and decryption queries, and
not only the number of forgery attempts.

NORX Security Proof. In [AJN15b], the designers partly derive their secu-
rity analysis from security proofs of the keyed-sponge mode of operation
which can be found in [JLM14]. Namely, the distinguishing advantage of
any chosen-plaintext adversary against NORX is upper bounded by:

Pr[Privacy] ≤
3(qp + σE)

2

2b+1 +

(
8eqpσE

2b

)1/2

+
rqp

2c +
qp + σE

2k .

Similarly, the upper bound for the success probability of any forgery at-
tempt is given by:

Pr[Forgery] ≤
(qp + σE + σD)

2

2b +

(
8eqpσE

2b

)1/2

+
rqp

2c

+
qp + σE + σD

2k +
(qp + σE + σD)σD

2c +
qD
2t .

In these formulae, b is the state size, c is the capacity, r is the rate, qp is
the number of calls to the internal permutation, qD is the number of forgery
attempts, and σE and σD are the number of total computations of the internal
permutations during encryption and decryption queries, respectively.

Our attack succeeds with probability qD/22w+2, which is significantly larger
than this bound for a small number of queries (as we would have σE = σD =

4qD as we only need to make one-block encryption and decryption queries).

We emphasize that our attack does not contradict the proof of the NORX
mode of operation, as it relies on the use of an ideal internal permutation
instead of P. However, it reveals that the proof does not apply to the instanti-
ation of the mode chosen by the designers, as the selected NORX permutation
presents (at least) one strong structural distinguisher.

Security Level of NORX-8. In [AJN15c], the authors do not provide an ex-
plicit link between the above security bounds and the claimed security level
of NORX-8 and NORX-16. In particular, they only state that no more than 224

(resp. 232) initialization phases should be performed with the same key, but
they do not give any limit to the total length of messages encrypted with a

4.5 discussion about norx security claims 85

key. We can notice that if one encrypts constant 0 blocks, NORX can be viewed
as a stream cipher, and therefore the Babbage-Golić [Bab95, Gol97] Time-
Data tradeoff applies. In particular, NORX-8 has an internal state of only 128
bits. Therefore, if one can encrypt 2m � 248 message blocks under the same
key with NORX-8, the security level drops below 80 bits since a state-recovery
attack of time and memory complexity at most 2128−m can be mounted, that
can in turn easily be converted into a key-recovery attack using backward
computations.

Interpretation of the NORX Proof. Finally, we would like to raise the fol-
lowing problem. In the bound derived from the proof of the NORX mode of
operation, the term qpσD/2c appears. In the case of NORX-32 for both v2.0
and v3.0, the capacity equals c = 128. Note that σD can roughly be consid-
ered as the total length of decryption queries, and is only limited to 264 in
the specifications. In real-life applications, σD could possibly reach between
240 and 248.

In that case, qp has to be smaller than 280 to 288 if one wants to conclude
any meaningful information from the bound. Note however that qp repre-
sents the number of calls to the internal permutation made by the adversary.
In our view, as P is an unkeyed permutation, these calls do not involve any
secret and can therefore be interpreted as offline computations. The security
of NORX as derived from the security proof then drops between 80 and 88
bits.

However, this remark is very unlikely to lead to an attack on NORX v3.0
that would match this bound, for two reasons. First, when looking at the
details of the proof, this term captures the event that a direct call to P by
the adversary collides with an application of P during the verification of a
decryption query. As the adversary does not get much information from de-
cryption queries, it is unlikely that he can detect such an event. Second, the
mode of operation of NORX v3.0 (with key additions after initialization and
during the tag computation) is close to the sandwich sponge construction
by Naito [Nai16]. In the same paper, this construction is proved to be indis-
tinguishable from a PRF up to a bound without such a term proportional to
online-times-offline complexity; whereas a similar term still appears in the
best known bounds for the usual sponge construction.

5
C RY P TA N A LY S I S O F
K R AVAT T E

In this last chapter, we present several attacks on the Kravatte algorithm, an
instantiation of the permutation-based PRF construction Farfalle. Theses
attacks were developed in a joint work with Thomas Fuhr, Henri Gilbert,
Jian Guo, Jérémy Jean, Jean-René Reinhard and Ling Song. Our results were
published in the paper Key-Recovery Attacks on Full Kravatte [CFG+18a] and
presented at FSE 2018.

Farfalle is an efficiently parallelizable permutation-based construction of
a variable input and output length pseudorandom function (PRF) recently pro-
posed by Bertoni et al. [BDH+16]. It represents an extremely versatile build-
ing block for the design of symmetric mechanisms. It can indeed be used
either directly as a message authentication code (MAC), as the keystream
generation part of a stream cipher, as a key derivation function (KDF), or
otherwise in a mode of operation allowing to convert it into a more com-
plex mechanism, for instance an authenticated encryption scheme or a block
cipher of variable block length.

Farfalle takes as input a key and a (sequence of) data string(s) of arbi-
trary length(s) and produces an output of arbitrary length. Its construction
involves two basic ingredients: a set of permutations of a b-bit state, and a
family of so-called rolling functions used to derive distinct b-bit mask values
from a b-bit mask key or more generally b-bit variants of a b-bit state.

The Farfalle construction consists of a compression layer followed by an
expansion layer. The compression layer produces a single b-bit accumulator
value from a tuple of b-bit blocks representing the input data. The expansion
layer first non-linearly transforms the accumulator value into a b-bit rolling
state and then non-linearly transforms a tuple of variants of this rolling state,
produced by iterating the rolling function into a tuple of (truncated) b-bit
output blocks. Both the compression and the expansion layer involve b-bit
mask values derived from the key by the key derivation part of the construc-
tion.

An efficient instantiation of the Farfalle construction named Kravatte is
also specified in [BDH+16]. The underlying components are a set of Keccak-p

87

88 cryptanalysis of kravatte

permutations of a b = 1600-bit state, and a family of simple F2-linear rolling
functions. The variants of Kravatte are addressed according to the number
of rounds in the internal permutations: nb rounds for the key derivation, nc

rounds for the compression layer, nd rounds for the non-linear transforma-
tion applied of the accumulator, and ne rounds for the expansion layer. The
specifications of Kravatte published on the IACR ePrint in July 2017 use
(nb, nc, nd, ne) = (6, 6, 4, 4) and an announcement at ECC 2017 of a strength-
ened variant [BDH+17b] uses (nb, nc, nd, ne) = (6, 6, 6, 6).

Our Contributions

In this chapter, we present three families of attacks against full Kravatte
(IACR ePrint and ECC versions), whose time and data complexities are far
below the security claimed by the designers. Furthermore, one of them can
even be successfully applied to strengthened variants of Kravatte.

The first two attack strategies focus on the expansion layer after the ap-
plication of its initial non-linear transformation. They exploit that all out-
put blocks are generated from the same initial rolling state, and the small
number of Keccak-p rounds between the rolling state diversification and the
block outputs. They require a long Kravatte output generated from a single
and possibly unknown message. The compression layer and the derivation
of the rolling state from the accumulator value do not contribute any secu-
rity against these attacks. The third strategy focuses on a property of the
compression layer.

Meet-in-the-Middle Algebraic Attack. The first attack can be seen as a
meet-in-the-middle (MITM) algebraic attack, and bears some resemblance
to the meet-in-the-middle approach applied to interpolation attacks [JK97].
The rolling state and the output masking key are the unknowns of an al-
gebraic system built by forming expressions of the same intermediate state,
either by forward computation from the rolling state, or by backward com-
putation from the output. The expansion mechanism makes it possible to
collect enough equations to solve the system by linearization.

Linear Recurrence Distinguisher. The second attack strategy leverages
the linear branch diversification mechanism of the expansion layer: the rolling
state can be assimilated to a short LFSR state, due to the restriction of the
rolling function to only 320 bits of the 1600-bit state. As a consequence, the
linear complexity of the sequence of blocks obtained by application to con-
secutive rolling state values of a small number of the low-degree Keccak
round function is also limited, i.e., this sequence satisfies a linear recurrence
of order far smaller than what is expected from the size of the state. Further-
more, the recurrence polynomial of this sequence of blocks can be derived

cryptanalysis of kravatte 89

at a moderate cost. This observation provides the linear recurrence distin-
guisher used in our attack.

Higher Order Differential Distinguisher. The last attack strategy is essen-
tially a higher order differential distinguisher. First, the compression layer of
Farfalle produces an accumulator state equal to the exclusive or of non-
linear permutations of the b-bit blocks representing the input data. This
property allows the compression layer to satisfy the design requirements of
being efficiently parallelizable and incremental.1 However, it also allows an
adversary to construct simple structures of 2n n-block input values whose
images by the compression layer form an affine subspace of dimension n of
{0, 1}b.

Moreover, Kravatte relies on the Keccak-p permutation, whose round
function has an algebraic degree only two and the rolling function is F2-
linear. Therefore, if we denote by r the number of Keccak-p rounds of the par-
tial computation —on input the accumulator state and up to ε final Keccak-p
rounds— of any of the output blocks of the expansion layer, the algebraic
degree of this partial expansion is upper bounded by 2r. This implies that
if n > 2r, the sum of the outputs of this partial expansion over the accumu-
lator values associated with one of the structures mentioned above is equal
to zero. This observation provides the higher order differential distinguisher
used in our attack.

Last Round Attacks. The attacks all rely on the capacity to “invert” up to
two of the last rounds of the expansion layer despite a final masking of the
output values by a key block. This can be done algebraically, by expressing
the intermediate values as a function of the Kravatte output block and
of the unknown key block, setting up a system of multivariate polynomial
equations, and solving this system by linearization. Surprisingly, this is more
efficient than expected from the algebraic degree of the inverse of the last
rounds due to the limited diffusion in a small number of iterations of the
inverse round function of Keccak.

This notably offers the possibility to leverage distinguishers on partial ver-
sions of Kravatte, and then mount key-recovery attacks on the full primitive.
We give in Table 9 a list of the key-recovery attacks that are described in the
rest of the chapter.

Optimizations. Various technical improvements can be applied to the at-
tack strategies in order to optimize the time, memory, or data complexity. We
already note that some of these techniques improve some of the complexities

1 Incremental means that if two input data share the same prefix, their compression layer com-
putations can be partly shared.

90 cryptanalysis of kravatte

Table 9: Key-recovery attacks against Kravatte instantiations for several (nd, ne) values. All attacks are
independent of nb and nc, and ? means that nd can take any value. The reference points to the

section describing the attack type. The complexity figures are obtained after the selection of
optimizations described in Section 5.4.

(nd, ne) Type Data Memory Time Reference

blocks bits basic op.

(4, 4) Higher Order 274.7 262.3 2112.2 Section 5.3

(?, 4) MITM 227.8 276.9 2115.3 Section 5.2.1

(?, 4) Linear Recurrence 251.2 251.2 265.1 Section 5.2.2

(?, 4) Linear Recurrence 229.9 262.3 287.0 Section 5.2.2

(?, 6) Linear Recurrence 288.4 288.4 2134.6 Section 5.2.2

but downgrade some others, which makes the selection of improvements a
trade-off process. We discuss these optimizations in a dedicated section (Sec-
tion 5.4) after the presentation of the attack strategies.

Organization. We give a description of Kravatte in Section 5.1, an in-
stantiation of the Farfalle construction. In Section 5.2, we describe a MITM
algebraic attack and an attack based on the linear recurrence distinguisher of
Kravatte partial expansion layer. Both attack strategies focus on the expan-
sion layer of Kravatte. In Section 5.3, we describe a higher order differential
attack on Kravatte. In Section 5.4, we describe technical optimizations that
can be applied to the attack strategies in order to improve their complexities,
and provide a selection of attacks optimized either for time, memory or data
complexity. Finally, we discuss in Section 5.5 the insights gained from these
attacks.

5.1 Specifications of Farfalle and Kravatte

In this section, we give a description of permutation-based mode Farfalle
and its original instantiation Kravatte, which is based on the permutation
used in Keccak [BDPA11a, NIS14]. The two primitives Farfalle and Kra-
vatte have both been designed by Bertoni et al., originally published on the
IACR ePrint in [BDH+16], and strengthened versions have been accepted at
ToSC and presneted at the FSE 2018 conference [BDH+17a].

5.1.1 The Farfalle Construction for Permutation-Based PRFs

Kravatte is a permutation-based variable input and output length pseudo-
random function. It takes as input a key and a sequence of bit strings, and
returns an arbitrary-length output. It relies on the Farfalle construction,

5.1 specifications of farfalle and kravatte 91

which allows to build a PRF from parallel applications of fixed permutations.
In this chapter and without loss of generality, we focus on input sequences
that contain only one bit string, while the general construction allows for
vectors of bit strings.

Farfalle makes use of four permutations (possibly identical or related),
denoted pb, pc, pd and pe of a b-bit block. Its instantiation requires the defi-
nition of three so-called rolling functions, denoted rollc, rolle and roll f . These
functions should ensure that for an unknown value x, an adversary cannot
predict the value of any number of iterations of the rolling functions rolli(x),
nor the value of rolli(x) ⊕ roll j(x) for i 6= j.

The Farfalle construction takes as input a key K and a message M. For
an `i-block input message and a `o-block output, Farfalle consists of the
three following steps:

mask derivation : The key K is padded into a b-bit string K‖10∗, on
which the permutation pb is applied and yields kin = pb(K‖10∗). De-
noting kout = roll`i+1

c (kin), `i + `j masks are then computed as kin
i =

rolli
c(kin) for i = 0, . . . , `i − 1, and kout

j = roll j
f (k

out) for j = 0, . . . , `o −
1.

compression layer : The message M is padded into a `i sequence of b-
bit blocks mi, by appending a 1-bit and a sequence of 0-bits. Then, one
compresses these data into a single b-bit block accumulator x, by XOR-
ing a key mask to each block, applying the permutation pc to the re-
sults, and XOR-ing all the results together: Acc(M) = ∑i pc

(
mi ⊕ kin

i
)

.

expansion layer : In a first step, the permutation pd is applied on the
accumulator to get y = pd(Acc(M)). Then, in a second step, `o output
blocks zj are computed from this value by applying consecutively a
rolling function, the permutation pe, and an XOR with the key mask
kout

j : namely, zj = pe

(
roll j

e(y)
)

⊕ kout
j for j = 0, . . . , `o − 1.

The output of Farfalle is the concatenation of bit strings z0‖ · · · ‖z`o−1.

5.1.2 The Kravatte Pseudo-Random Function

Kravatte is an instantiation of the Farfalle construction, which specifies
the internal components. The Figure 30 outlines the overall primitive that
relies on four different Keccak-p permutations [NIS14] on a block size of
b = 1600 bits. The only distinction between those four permutations named
pb, pc, pd and pe lies in their number of rounds, that we denote respectively
by nb, nc, nd and ne.

92 cryptanalysis of kravatte

Since the first publication, the designers substantially changed the con-
struction of Farfalle and Kravatte, and as of the IACR ePrint Kravatte
specification [BDH+16], the permutations pb and pc consist of nb = nc = 6
rounds of the Keccak-p permutation, while the remaining two permutations
contain nd = ne = 4 rounds. In a private communication,2 upon discovery
of the higher order differential attack described in Section 5.3, the designers
considered increasing the numbers of rounds to (nb, nc, nd, ne) = (6, 6, 6, 6).
The resulting updated version has been presented by the designers at the
ECC 2017 conference [BDH+17b].

To conveniently address the various versions throughout the chapter, we
use the notation Kravatte-(nd, ne) to refer to a version with specific nd (resp.
ne) number of rounds in the permutation pd (resp. pe). Our results are inde-
pendent of pb and pc, which is why we do not mention nb and nc.

Like in Keccak, the 1600-bit state is represented as a 5 × 5 × 64 three-
dimensional bit array B, where each bit is denoted Bx,y,z, with x, y = 0, . . . , 4
and z = 0, . . . , 63. Arithmetic operations performed on indices x, y and z are
reduced modulo 5, 5 and 64, respectively, and we omit the modulo for the
sake of simplicity.

Additionally, while Farfalle uses several rolling functions, the ECC ver-
sion of Kravatte only relies on one, that we simply denote by roll, and
whose n-th iteration is depicted as n on Figure 30. More precisely, rollb =

rollc = rolld = roll and rolle is the identity. The roll function transforms a
state A into B = roll(A) as follows:

Bx,y,z ← Ax,y,z if y < 4,

Bx,4,z ← Ax+1,4,z if x < 4,

B4,4,z ← A0,4,z−7 ⊕ A1,4,z if z > 60,

B4,4,z ← A0,4,z−7 ⊕ A1,4,z ⊕ A1,4,z+3 if z ≤ 60.

Following the communication of the cryptanalysis to the designers, a
tweaked version of Kravatte was released in December 2017 and published at
FSE 2018 [BDH+17a], in which the rolle function is replaced by a non-linear
rolling function.

Security Claims. In the original document, the designers of Kravatte
claim a security of 256 bits when the amount of data does not exceed 2137

input and output blocks, that is `i + `o ≤ 2137.

2 November 5, 2017.

5.1 specifications of farfalle and kravatte 93

K||10∗ pb

`i+1

pd
Acc(M) y

pc

0 kin

m0 0 pe

kout

z0
y0

pc

1 kin

m1 1 pe

kout

z1
y1

pc

`i−1 kin

m`i−1 `o−1 pe

kout

z`o−1
y`o−1

· · · · · ·

M

Figure 30: The Kravatte primitive. The input message M is padded and split into

the b-bit blocks mi. The function n refers to the linear function

x → rolln(x).

5.1.3 Round Function of the Keccak-p Permutation

We now give a brief description of the Keccak-p permutation, which can
also be found in [NIS14]. It is based on the iteration of a round function,
defined as the composition of the following operations (in this order), that
each produce a state A′ from A:

linear diffusion θ : The sum of the five bits of columns with indices
(x − 1, z) and (x + 1, z − 1) are added to bit each bit (x, y, z) of the
state:

A′x,y,z ← Ax,y,z ⊕
4

∑
j=0

Ax−1,j,z ⊕
4

∑
j=0

Ax+1,j,z−1.

lane-wise rotation ρ: Each lane of the state is rotated by a different
number of positions, whose exact values are not relevant for the de-
scription of the attacks.

lane-preserving permutation π : Lanes positions are switched accord-
ing to a constant pattern: A′x,y,z ← Ax+3y,x,z

substitution layer χ: A 5-bit Sbox of degree two is computed on each
row (y, z) of the state. More specifically, each output bit depends on
three input bits by the following equation (omitting y and z indices):

A′x ← Ax ⊕ Ax+1 · Ax+2.

constant addition ι: A round constant produced by an LFSR is XOR-
ed to the lane indexed by (0, 0). We omit the exact values of the con-
stants, as they are not relevant to understand the cryptanalysis. We
refer the interested reader to [NIS14] for more details.

94 cryptanalysis of kravatte

In the remaining of the chapter, we also use the inverse of the Keccak-p
round function, obtained by inverting the sequence of operations. The trans-
formations ι, ρ and π all have straightforward inverses. The inverse Sbox
χ−1 has algebraic degree three, and omitting y and z indices, its polynomial
expression is given by

A′x ← Ax+1 · Ax+3 · Ax+4 ⊕ Ax+1 · Ax+2 ⊕ Ax.

The transformation θ−1 is a high-density linear layer whose exact expression
is not relevant for the analysis conducted in the chapter. It consists in XOR-
ing to each bit of the state the sum of all five bits of about half of the columns
of the state, and we note that, for a given column, the value XOR-ed to all
the five positions is the same.

5.2 Algebraic Cryptanalysis of Full Kravatte

In this section, we describe key-recovery algebraic attacks against Kravatte-
(nd, ne) for any nd and ne ∈ {4, 6} and for a single message. These attacks
rely on a remark on the linearization of the algebraic systems describing
iterated Keccak-p−1 rounds, on the structure of the expansion layer in the
Kravatte construction, and on the small number ne of Keccak-p rounds in
the pe permutation. We note that these attacks are entirely independent of
the compression layer of Kravatte as well as the application of pd on the
accumulator that initiates the expansion layer.

We first describe an attack based on a meet-in-the-middle strategy (Sec-
tion 5.2.1), which can be enhanced by an observation borrowed from stream-
cipher cryptanalysis (Section 5.2.2). This last technique can be further im-
proved by refining the study of the linearization of iterated Keccak-p−1

rounds, which is covered in Section 5.4.

5.2.1 Meet-in-the-Middle Algebraic Attack

We present a key-recovery meet-in-the-middle (MITM) algebraic attack on
full Kravatte. The key observation underlying the attack is that the same
unknown value at the output of pd is used at the input of all the branches
in the expansion phase. If we denote this value by y, then the j-th output
block becomes zj = pe(roll j(y)) + kout. By considering a system of equations
where the unknowns are bits of both kout and of y, we can mount a meet-
in-the-middle attack by equating two states for Branch j: Aj = Bj, where Aj

corresponds to n1 forward rounds of Keccak-p applied on yj = roll j(y), and
Bj to n2 backward rounds of Keccak-p applied on zj +kout, with n1 + n2 = ne.
The A-states contain expressions in y and can be precomputed, while the B-
states contain output-dependent expressions in kout. By considering a single

5.2 algebraic cryptanalysis of full kravatte 95

y

0 Keccak-pn1 Keccak-p−n2

kout

z0

y0

1 Keccak-pn1 Keccak-p−n2

kout

z1

y1

`o−1 Keccak-pn1 Keccak-p−n2

kout

z`o−1

y`o−1...

A-states = B-states

Figure 31: Meet-in-the-middle algebraic attack on Kravatte, with n1 forward and
n2 backward rounds, n1 + n2 = ne.

input message (possibly unknown) together with its `o-block output, for `o

sufficiently large, we can collect enough equations to form a system that can
be solved through linearization, which recovers kout.

Linearization Principle. Linearization is a well-known technique to solve
multivariate polynomial systems of equations. It relies on a fairly simple
idea: the system of polynomial equations is turned into a system of linear
equations by adding new variables that replace all the monomials of the sys-
tem whose degree is strictly greater than 1. This linear system of equations
can be solved using linear algebra if there are enough equations to make
the linearized system overdetermined, typically at least on the same order
as the number of variables after linearization. All the attacks in this chapter
heavily rely on this technique.

In the case of the MITM algebraic attack on Kravatte, the middle state
can be described as a polynomial expression in y bits (resp. kout bits) in the
forward (resp. backward) direction. By linearization and summation of both
expressions, one gets a linear equation in y and kout monomials, with no
composite monomial involving both types of unknowns.

Basic Linearization. The most straightforward way to linearize algebraic
expressions in n unknowns of degree limited by d is to introduce a new
variable for every monomial in the unknowns of degree at most d. The set
of monomials considered has cardinality

S(n, d) def
=

d

∑
i=1

(
n
i

)
.

This approach can be used directly in the context of the MITM algebraic
attack on Kravatte. The algebraic degree of Keccak-p (resp. Keccak-p−1) is
two (resp. three) and roll is linear, thus the number of monomials involved
by a basic linearization is approximately S(b, 2n1) + S(b, 3n2). We give in Ta-
ble 10 the number of monomials required to describe the forward and back-
ward parts of the meet-in-the-middle algebraic system.

96 cryptanalysis of kravatte

Table 10: Number of monomials in input (resp. output) variables after n rounds of
Keccak-p or Keccak-p−1 for b = 1600 (log2 scale).

n Keccak-p Keccak-p−1

Basic Improved

1 20.3 29.3 13.0

2 38.0 77.3 36.5

3 69.8 194.0 106.4

Improved Linearization in the Backward Direction The number of mono-
mials to consider in the backward direction can be drastically reduced if we
take into account the row structure of χ−1 non-linear layers and the absence
of diffusion before the first χ−1 layer encountered. Indeed, through the back-
ward computations, new monomials are only created in χ−1 layers through
multiplicative combination of input sum of monomials. There are two limit-
ing factors to the combination power of the χ−1 layers. First, the χ−1 has only
degree three, restricting the newly created monomials to the product of at
most three input monomials. Secondly, it operates on only five inputs, which
has a significant effect since input monomials for the external χ−1 layer can
be limited by position: as no diffusion takes places after the unmasking by
kout, only five kout bit variables can occur in the monomials occurring at the
output of a given Sbox. Consequently, the number of monomials required to
express the outputs of an Sbox is upper bounded by S(5, 3), so that express-
ing the outputs of all Sboxes only requires N = b

5 S(5, 3) monomials. The
input bits of internal χ−1 layers have undergone linear diffusion, so they
cannot be restricted in the same manner. However, the degree limitation still
applies, and since N monomials can be used to describe the polynomial
expressions of all bits before the χ−1 layer, the number of monomials that
appear in the output bits of this layers is upper-bounded by S(N, 3). This can
be iterated to cover more rounds. Note that the improved linearization does
not apply in the forward direction due to the application of roll and θ prior
to the first χ layer. We give in Table 10 estimates for the number of mono-
mials to consider for a small number of Keccak-p rounds in the backward
direction.

For ne = 4, choosing n1 = n2 = 2, Kravatte can be attacked by a meet-in-
the-middle algebraic attack. The attack requires 1

1600 (2
38.0 + 236.5) ≈ 227.8

output blocks to get enough equations, has memory complexity (238.0 +

236.5)2 ≈ 276.9 bits to represent the system and the time for the resolution
of the linearized system is at most cubic in the number of monomials, which
yields about (238.0 + 236.5)3 ≈ 2115.3 elementary operations.

5.2 algebraic cryptanalysis of full kravatte 97

The time complexity to build the system boils down to the construction
of the 227.8 equations, where each requires to compute the expressions com-
ing from both sides of the meet-in-the-middle. For one equation, the back-
ward contribution is dominated by the product of three polynomials in
320S(5, 3) = 8000 monomials, while the forward contribution is dominated
by the multiplication of two polynomials of at most S(1600, 2) ≈ 220.29 mono-
mials in y. All in all, the time complexity is dominated by the time for solv-
ing the system.

The above observations about how to linearize the backward computation
of up to two last rounds of Keccak-p and the results of Table 10 will be
re-used in the key-recovery part of the attacks introduced in Section 5.2.2
and Section 5.3.

5.2.2 Cancellation of Monomials Using a Linear Recurrence

We now describe a second attack that exploits the linearity of the rolling
function to cancel the monomials in y from the system. Indeed, after the
application of pd, the first half of the remaining expansion layer can be seen
as a filtered linear recurrent sequence of states, with update function roll and
output function Keccak-pn1 . Filtered linear recurrences, e.g. filtered LFSR, are
classic stream cipher constructions, which have been deeply studied. A line
of work [Key76, RH07, RGH07] observes that not only do the LFSR state
bits follow linear recurrences, but the same holds for the monomials that are
formed from these bits.

In this section, we start by exposing a recurrence polynomial of sequences
of values taken by bits of the rolling state. We then show how this can be
generalized to obtain a recurrence polynomial for sequence of values taken
by products of bits of the rolling state. As the state Aj can be expressed
as a sum of such products of yj bits, this constitutes a linear complexity
distinguisher on partial Kravatte, with the last n2 Keccak-p rounds and final
masking removed. Finally, we show this can be used to combine equations
of the system describing the expansion phase of Kravatte to eliminate the
monomials in y.

Linear Recurrence of Rolling State Bits. As stated above, the beginning of
the expansion layers acts like a LFSR filtered by the fixed non-linear function
Keccak-pn1 . After the initial value y = pd(Acc(M)) of the rolling state is
formed, it is updated linearly through the rolling function roll: the value of
the rolling state that appears at the start of Branch j is given by yj = roll j(y).
The rolling function roll is a linear transformation of the rolling state that
leaves Planes 0 to 3 unchanged. The matrix Mroll of size 320 describing how
roll affects Plane 4 has a primitive characteristic polynomial Proll of degree

98 cryptanalysis of kravatte

y

0
y0

i
1

Keccak-pn1

1
y1

i
1

Keccak-pn1

2
y2

i

Keccak-pn1

`o−1

y`o−1
i

Keccak-pn1

...

Figure 32: Linear recurrence in the Kravatte branches: the sequence (yj
i)j of

highlighted bits at a prescribed Position i across the branches
j = 0, . . . , `o − 1 follows a linear recurrence described by the polynomial

(X + 1) · Proll .

320. By the Cayley-Hamilton theorem, we know that Proll(Mroll) = 0. We
can associate to Bit i of Plane 4 a vector ei of the standard basis of F320

2 , and
the values taken by the Bit i of Plane 4 of the state yj in Branch j is then
given by eT

i ·M
j
roll · yroll , where yroll is the restriction of y to Plane 4. Then,

we observe that the sequence of values taken by a given state bit of the part
affected by roll over the branches of the expansion layer (see Figure 32) is a
linear recurrence sequence with recurrence polynomial Proll . Indeed, noting
Proll = ∑n cnXn, we have for all j:

Proll(y
j
i) = eT

i ·
(

∑
n

cnMj+n
roll

)
· yroll

= eT
i ·
(

Mj
roll · Proll(Mroll)

)
· yroll

= 0.

Furthermore, the bits in Planes 0 to 3 follow a linear recurrence with re-
currence polynomial X + 1, so all the state bits follow the linear recurrence
given by (X + 1) · Proll .

Linear Recurrence of Monomials Formed on the Rolling State. This can
be generalized to the monomials formed from the bits of the rolling state.
In the same way that Mroll describes the evolution of state bits, one can con-
sider the matrix M≤d

roll describing the evolution through roll of monomials of
degree at most d in the yj state bits, since the transformation is also linear
on this set. Indeed, the updated value of every state bit after roll is a linear
combination of state bits before the update, so the product of d updated val-
ues can be written, by developing the product of the linear combinations, as
a linear combination of monomials of state bits before update with degree
at most d. The characteristic polynomial P≤d

roll of this matrix provides a re-
currence polynomial for all S(320, d) monomials of degree at most d in the
320 variables of Plane 4. It is also a recurrence polynomial for monomials of

5.2 algebraic cryptanalysis of full kravatte 99

degree at most d in all state variables with at least one variable coming from
Plane 4, since the product of variables of Planes 0 to 3 is constant and can be
factored out, leaving a monomial of degree strictly less than d of variables
from Plane 4. Monomials with variables only from Planes 0 to 3, together
with the constant monomial, are constant and have X + 1 as recurrence poly-
nomial. Thus, (X + 1) · P≤d

roll is a recurrence polynomial for all monomials of
degree at most d in all 1600 variables of the rolling state. Since Keccak-p has
degree two, the recurrence polynomial (X + 1) · P≤2n1

roll cancels the sequences
of all monomials involved in the algebraic expression of the outputs of the
first part of the expansion layer. Its degree is S(320, 2n1) + 1. We give esti-
mates of this value for n1 = 2, 3, 4 in Table 11. For larger values of n1, the
technique is not applicable since the degree of the polynomial, e.g., 2146.5 for
n1 = 5, and 2227.3 for n1 = 6 goes beyond the limit set on the data complexity
in the security claims of Kravatte.

Computing the Recurrence Polynomial for Monomials of Degree at Most
d. Computing the characteristic polynomial of a matrix usually requires to
compute a determinant, but can be done in the case of P≤d

roll in time quasilin-
ear in the size of the matrix M≤d

roll , without even forming the matrix, due to
algebraic properties of linear recurring sequences. Indeed, it has been shown
in [Key76] that the roots of this polynomial are all simple and elements of the
algebraic extension F2[X]/Proll . Denoting by α the class of X, they are given
by αt, were t ∈ [1, 2320 − 1] takes all values with Hamming weight at most d.
Thus, P≤d

roll can be formed as the product of N = S(320, 2n1) polynomials of
the form X + αt.

In a first stage, the polynomials whose roots are conjugates are multiplied
together, resulting in a set of irreducible polynomials in F2[X]. In a sec-
ond stage, these polynomials are multiplied together. Multiplication of two
polynomials in F2[X] of degree at most n can be performed efficiently for
large n using the Schönhage algorithm [Sch77], with asymptotic complexity
M(n) = O(n log n log log n). This algorithm has been implemented in the
gf2x library [BGTZ08] and experimental data indicates the hidden constant
is small. To take full advantage of fast polynomial multiplications, the com-
putation of P≤d

roll can be performed tree-wise: At each step, polynomials are
multiplied by pairs, resulting in a set of half as many polynomials with dou-
ble degree. Taking into account the asymptotic complexity of fast polynomial
multiplication, the complexity TP of the computation can be estimated by

log N

∑
i=0

2i M
(

N
2i

)
≤ N log2 N log log N.

We give estimates of this time complexity TP for small values of n1 in Ta-
ble 11.

100 cryptanalysis of kravatte

Impact on the Cryptanalysis of Kravatte. Using the linear recurrence
given by the polynomial (X + 1) · P≤2n1

roll = ∑j djX j, we eliminate all mono-
mials in y from the system. More precisely, the i-th equation is obtained by
summing Ai+j ⊕ Bi+j = 0 equations:

∑
j

dj · Keccak-pn1
(

rolli+j(y)
)

⊕ ∑
j

dj · Keccak-p−n2
(

kout ⊕ zi+j
)
= 0,

and since the first sum is null due to the relation from the linear recurrence,
this yields

∑
j

dj · Keccak-p−n2(kout ⊕ zi+j) = 0. (1)

As a consequence, in the case n2 = 2, the number of monomials to write
this system goes down to 236.5, since only the monomials in kout remain
(see Table 10). Each equation of the system requires S(320, 2n1) consecutive
output blocks to be formed, but since a sliding-window mechanism can be
used to form the equations, only S(320, 2n1) + 1

1600 236.5 blocks are necessary
to form the system. We can process the available blocks on the fly: For each
block, we add its contribution to the system of kout monomials in the equa-
tions prescribed by the recurrence polynomial, i.e., Block zj contributes to
Equation i if dj−i = 1. This does not increase the memory complexity, but in-
creases the time complexity of building the system by a factor of S(320, 2n1).

Applying this attack with n1 = 2, we can attack Kravatte-(nd, 4) for any
nd. The recurrence polynomial to store has degree 228.7, so to collect enough
data to solve the linearized system, we need 228.7 + 1

1600 236.5 ≈ 228.8 out-
put blocks. Computing the recurrence polynomial requires about 240.7 ba-
sic operations(see Table 11). Solving the linearized system requires Tsolve =

(236.5)3 ≈ 2109.5 operations, and a memory of
(
236.5)2 ≈ 273 bits. However,

the most time-consuming part of the attack resides in the construction of
the system. For each output block and every bit of the intermediate state,
the bit is written as a linearized algebraic expression of bits in kout, depend-
ing on zj, as explained at the end of Section 5.2.1. Then, this expression is
added to the equations it contributes to build, depending on the recurrence
polynomial. Every equation is built by the addition of at most S(320, 2n1)

contributions, and the cost of adding one contribution is given by the size
of an expression, which is about 236.5. Computing the algebraic expression
of one bit essentially boils down to the multiplication of three polynomials
in 320S(5, 3) = 8000 monomials each that appear in the inversion of n2 = 2
rounds of Kravatte. Overall, constructing the system amounts to approxi-
mately

Tbuild =

(
S(320, 2n1) +

1
1600

236.5
)
· 1600 · 80003 + S(320, 2n1) ·

(
236.5)2

5.3 higher order differential cryptanalysis of full kravatte 101

operations. We give estimations of the overall time complexity TP + Tbuild +

Tsolve in Table 11.

With n1 = 4, the attack breaks the security claim of Kravatte-(nd, 6) for
any nd. Indeed, the recurrence polynomial has degree 288.4 and can be com-
puted in about 2104 simple operations, which allows to collect the equations
using about 288.4 output blocks. Then, the system can be constructed as be-
fore (with non-optimized computations, it requires about 2161.4 basic opera-
tions) and solved similarly as in the case n1 = 2.

We summarize the attack complexities in Table 11. In this table, the two
first lines provide attacks for the ePrint version of full Kravatte-(4, 4), and
the last line gives an attack for the strengthened variant announced at ECC
2017.

The Particular Case of One Backward Round. In the case of one back-
ward round, i.e., n2 = 1, (1) can be solved by exhaustive search. Note that
the linear layer of the round considered can be removed from the analysis,
and thus no diffusion takes place. As a consequence, it is possible to recover
kout Sbox by Sbox, by guessing the five kout bits corresponding to a given
Sbox, and checking that sums of χ−1(kout ⊕ zj) over positions j determined
by the recurrence polynomial yields zero, which is the case for the correct
guess. For each sum, this gives a t = 5-bit test on the g = 5 guessed bits
of kout. With only one sum, the probability that no false alarm occurs is
(1− 2−t)2g−1 ≈ 0.37, so the rate of Sboxes with false alarms on correspond-
ing kout bits is too high to recover the complete kout by key enumeration.
However, with two sums, one gets a t = 10-bit test, and the probability of
absence of false alarms raises to 0.97, which amounts to about 10 Sboxes with
false alarms, making a final offline key candidate enumeration possible.

With (n1, n2) = (3, 1), it is thus possible to attack Kravatte-(nd, 4) for any
nd with a data complexity of 251.2 blocks and a time complexity dominated by
the recurrence polynomial computation time Tp = 265.1. The attack requires
to precompute and store P≤3

roll and thus has memory complexity 251.2.

5.3 Higher Order Differential Cryptanalysis of Full Kra-
vatte

In this section, we highlight the existence of higher order differential attacks
against Kravatte. We describe in Section 5.3.1 a property of the compression
layer of Farfalle, which weakens the overall construction against higher or-
der differential attacks. The process of our attack is depicted in Section 5.3.2.

102 cryptanalysis of kravatte

Table 11: Degree and computation time of recurrence polynomial for all monomials in y after
n1 rounds of Keccak-p, and attack complexity against Kravatte-(nd, ne), for any nd

and ne = n1 + n2. For optimized attacks, see Section 5.4.

ne n1 + n2 deg
(

P≤d
roll

)
TP Data∗ Memory∗ Time∗

4 2 + 2 228.7 240.7 229.3 273.0 2109.5

4 3 + 1 251.2 265.1 251.2 251.2 265.1

6 4 + 2 288.4 2104.0 288.4 288.4 2161.4

∗: These complexities are given without the optimizations addressed in Section 5.4.

To experimentally validate the correctness of the approach, we use a round-
reduced variant of Kravatte.

In Section 5.3.3, we show how an adversary can use the higher order distin-
guisher to mount a chosen-message key-recovery attack against Kravatte-
(nd, ne) such that nd + ne ≤ 8.

In the last section of this chapter dedicated to various optimizations, we
present a variant of this attack allowing to improve the overall data com-
plexity (Section 5.4.2) and various techniques to substantially decrease the
complexities.

5.3.1 Construction of Affine Spaces in the Accumulator

We describe here a property of the compression layer of Farfalle, already
identified in [BDH+16, Section 5.4], that enables an adversary to construct
an affine space of dimension n in the accumulator block. Given an n-block
padded message M = (m0, . . . , mn−1), we recall that we denote Acc(M) the
associated accumulator value ∑n−1

i=0 pc
(
mi ⊕ kin

i
)
.

Let M0 = (m0
0, . . . , m0

n−1) and M1 = (m1
0, . . . , m1

n−1) denote an arbitrary
pair of padded messages such that m0

i 6= m1
i for all i. These messages are

used to build the following structure of 2n n-block input messages: S =

{(mε0
0 , . . . , mεn−1

n−1), (ε0, . . . , εn−1) ∈ {0, 1}n}.

We denote by δi the one-block difference δi = pc
(
m0

i ⊕ kin
i
)

⊕ pc
(
m1

i ⊕ kin
i
)
.

If n � b = 1600, the δi are linearly independent with overwhelming proba-
bility. It is easy to see that Acc(S) is then the n-dimensional affine subspace
Acc(M0) ⊕ 〈δ0, . . . , δn−1〉.

In other words, we can easily build structures of 2n n-block messages that
are transformed by the compression layer into an affine space of one-block
accumulator values of dimension n. Note that this does not depend on the
number of rounds in pc.

5.3 higher order differential cryptanalysis of full kravatte 103

0 Keccak-pne−ε Keccak-pε z0
iz0
i

koutkout

S0
iS0
i

1 Keccak-pne−ε Keccak-pε z1
iz1
i

koutkout

S1
iS1
i

`o−1 Keccak-pne−ε Keccak-pε z`o−1
iz`o−1
i

koutkout

S`o−1
iS`o−1
i

pdXi ∈ Acc(S)

...

ne rounds

0 Keccak-pne−ε Keccak-pε z0
iz0
i

koutkout

S0
iS0
i

1 Keccak-pne−ε Keccak-pε z1
iz1
i

koutkout

S1
iS1
i

`o−1 Keccak-pne−ε Keccak-pε z`o−1
iz`o−1
i

koutkout

S`o−1
iS`o−1
i

pdXi ∈ Acc(S)

...

ne rounds

0 Keccak-pne−ε Keccak-pε z0
iz0
i

koutkout

S0
iS0
i

1 Keccak-pne−ε Keccak-pε z1
iz1
i

koutkout

S1
iS1
i

`o−1 Keccak-pne−ε Keccak-pε z`o−1
iz`o−1
i

koutkout

S`o−1
iS`o−1
i

pdXi ∈ Acc(S)

...

ne rounds

0 Keccak-pne−ε Keccak-pε z0
iz0
i

koutkout

S0
iS0
i

1 Keccak-pne−ε Keccak-pε z1
iz1
i

koutkout

S1
iS1
i

`o−1 Keccak-pne−ε Keccak-pε z`o−1
iz`o−1
i

koutkout

S`o−1
iS`o−1
i

pdXi ∈ Acc(S)

...

ne rounds

0 Keccak-pne−ε Keccak-pε z0
iz0
i

koutkout

S0
iS0
i

1 Keccak-pne−ε Keccak-pε z1
iz1
i

koutkout

S1
iS1
i

`o−1 Keccak-pne−ε Keccak-pε z`o−1
iz`o−1
i

koutkout

S`o−1
iS`o−1
i

pdXi ∈ Acc(S)

...

ne rounds

∑
i

Sj
i = 0

Figure 33: Higher order differential distinguisher on Kravatte. Summing over the
whole affine space Acc(S) the states obtained after application of

` = nd + ne − ε rounds to the blocks Xi of the affine space, i.e., summing
along every bold line, yields zero.

5.3.2 Higher Order Differential Attacks Against Kravatte

We can use the property of Farfalle described above to mount higher order
differential attacks on Kravatte-(nd, ne), as long as nd + ne ≤ 8.

Summing the images of a function f over an affine subspace of dimension
n is equivalent to applying the n-th differential of f to an element of the sub-
space [Lai94]. The round function of the Keccak-p permutation used in the
Kravatte instance is of algebraic degree two. Hence, the partial expansion
layer, starting from the accumulator value and applying ` permutation lay-
ers, is of degree 2`. By building an affine space of dimension n = 2` + 1 with
an input structure S of 2n messages, each one containing n blocks, the sum
over this affine space of the intermediate values after the partial expansion
is zero (see Figure 33).

This distinguishing property can then be used to mount last-round attacks:
Starting from the Kravatte output values of the plaintext in the structure,
by inverting the last ε = nd − ne − ` permutation layers of the expansion
layer, and summing all the contributions, one gets equations on the output
key kout: namely, ∑m∈S Keccak-p−ε(kout ⊕ zm) = 0.

To demonstrate the validity of the higher order differential distinguisher
described above, we applied it on ShortKravatte. In ShortKravatte, nd =

0 so that the expansion layer consists of four rounds of the Keccak-p permu-
tation, instead of nd + ne = 8 rounds for the full Kravatte instance. Hence,
with a structure of 216+1 input messages of 17 blocks, the higher order dif-
ferential distinguisher spans the whole expansion layer and can be observed
by summing directly the output values of the messages in the structure.

104 cryptanalysis of kravatte

5.3.3 Last-Round Attacks

One Last-Round Attack. One can apply the higher order differential strat-
egy to mount a basic key-recovery attack against Kravatte-(nd, ne), nd +

ne ≤ 8, by considering a 7-round partial expansion layer and a final last-
round (i.e., ε = 1). This implies to use structures of 227+1 = 2129 messages
of 129 blocks. The higher order differential distinguisher continues to apply
through the linear layer of the last round. Thus, no diffusion takes place
in the inverted part of the last round, and the key-recovery method given
at the end of Section 5.2.2 for the case of one backward round applies,
with the small variation that one gets t = 10-bit tests by requesting two
output blocks per message. This attack has a time and data complexity of
2129 × (129 + 2) ≈ 2136.0, and negligible memory complexity.

We have implemented this attack on a reduced version of Kravatte where
nd + ne = 5 using structures of 217 messages of 17 blocks, and find that the
number of candidates for kout is reduced from 2256 to about 218. We note that
kout can be uniquely determined using three to six output blocks.

Two Last-Round Attack. We now describe how to improve the time and
data complexity, leveraging the analysis of the algebraic expression of Keccak-
p−2(kout ⊕ z), in the same way as for the previous attack (Section 5.2.1). This
enables to consider a higher order distinguisher over ` = 6 Keccak-p rounds
(i.e., ε = 2). The adversary builds a structure S of 265 plaintexts of 65 blocks
as described above. As a consequence, the 265 intermediate values at any bit
position before the penultimate non-linear layer sum to zero.

As described in the previous section (see Table 10), the number of mono-
mials involved in the system corresponding to the inversion of the two last
rounds of Kravatte is about 236.5, and the system can be solved if one col-
lects about the same number of equations. These can be obtained consider-
ing, for every message of the structure, outputs of 1

1600 236.5 ≈ 225.9 blocks.
The total data complexity (expressed as the sum of all input and output
blocks) of this attack is therefore 265 × (65 + 225.9) ≈ 290.9 blocks. The sys-
tem of equations can be computed on the fly, therefore there is no need
to store all the inputs and outputs of Kravatte. However, storing the sys-
tem requires (236.5)2 = 273.0 bits of memory. The evaluation of the time
complexity is more involved, as one needs to consider all the steps of the
attack. For each equation and each input, the most expensive step consists
in computing the penultimate χ−1 layer, which requires to get the product of
three polynomial expressions, each of which can contain up to 8000 mono-
mials. Therefore, we can estimate the complexity of this step of the attack to
236.5 × 265 × 80003 ≈ 2140.4 bit operations. Solving the system of equations is

5.4 optimization techniques for the cryptanalysis 105

far less expensive, as its time complexity is at most cubic in the number of
equations, which leads to (236.5)3 = 2109.5 operations.

As we show in Section 5.4, these “naive” data and time complexities can
be substantially improved using various optimizations.

5.4 Optimization Techniques for the Cryptanalysis

5.4.1 Minimizing the Number of Variables for Two Inverse Rounds

In this section, we improve further the linearization of Keccak-p−2. Notations
used in the following are summarized on Figure 34.

χ−1 θ−1 (π ◦ ρ)−1 χ−1

kout

F j E j D j C j B j
A j

Figure 34: Notations used in Section 5.4.1.

The attacks described in Section 5.2 and Section 5.3 are all based on the
construction and the linearization of polynomial expressions whose vari-
ables are the bits of kout. Each bit of Fj can be expressed as a low-degree
polynomial in key bits kout, whose coefficients are functions of the output
states Aj. We have seen in Section 5.2.1 that using the row structure of χ−1

layers and the absence of diffusion before the first χ−1 layer enables to de-
crease the number of variables to be considered in the linearized expressions.
We now show that this can be improved further by additionally considering
the number of monomials in the polynomial expression of χ−1, by limiting
the number of considered bit positions of Fj and by summing two positions
of Fj. We note that this improvement comes at the cost of a slight increase of
the data complexity, since only one equation is extracted from each output
block. We also note that this last optimization is compatible with the attacks
presented in Section 5.2 and Section 5.3 because the sum over sets of output
block messages they consider are performed consistently on all the positions
of the blocks. We study each of the successive layers of the backward com-
putation of Kravatte.

External χ−1 Layer. The inverse Sbox has algebraic degree three. More
precisely, we get the following expressions (we omit indexes y and z and the
block number j):

Cx = Bx+1Bx+3Bx+4 ⊕ Bx+1Bx+2 ⊕ Bx

=
(
kout

x+1 ⊕ Ax+1 ⊕ 1
) (

kout
x+3 ⊕ Ax+3 ⊕ 1

) (
kout

x+4 ⊕ Ax+4
)

⊕
(
kout

x+1 ⊕ Ax+1 ⊕ 1
) (

kout
x+2 ⊕ Ax+2

)
⊕
(
kout

x ⊕ Ax
)

.

106 cryptanalysis of kravatte

Introducing the new variables wx = kout
x+1kout

x+3kout
x+4 ⊕ kout

x+1kout
x+2 ⊕ kout

x , ux =

kout
x+3kout

x+4 ⊕ kout
x+2, and vx = kout

x kout
x+2, this can be rewritten as wx ⊕ Px(A),

where Px(A) is an affine combination of ux, vx+1, vx+4, kout
x+1, kout

x+3, kout
x+4,

with coefficients determined by A. The definition of new variables for the
sum of monomials sharing the same coefficient instead of for each mono-
mial enables us to limit the number of variables per bit of the C state to 8,
including the variable w with constant coefficient and the coefficient of the
degree-0 monomial. The total number of variables over the state is however
the same with both approaches. For each of the 320 Sboxes, one generates
10 variables u, v of algebraic degree two in key bits and 5 variables w of al-
gebraic degree three. Taking into account the key bits, the total number of
variables is therefore 320× (5 + 10 + 5) = 6400 at that point. This already
improves on Section 5.2.1 since all degree-3 variables are not considered any-
more.

Intermediate Inverse Affine Layer. The linear layers consist in the bit-
moving layers ρ and π and the linear diffusion layer θ. All these layers do
not create new monomials: monomials are simply moved or added to other
polynomial expressions. The linear layers only contribute indirectly to the
complexity of the algebraic expressions by breaking any independent subset,
leading to consider that any bit of the state can be affected by monomials
in variables coming from any position of the final state A. This is especially
true for the high-diffusion transformation θ−1, whose output bits depend on
approximately half of its input state. This has the effect to allow the creation
during the next non-linear layer of nearly all the combinations of monomials
output by the previous non-linear layer.

More precisely, ρ−1 and π−1 move every bit of the state. We denote σ the
permutation such that bit σ(x, y, z) of the state is moved to position (x, y, z).
Then, θ−1 is a linear diffusion layer with the following property. For each
column Dx,z of the state, there is a set of bit positions Sx,z such that each bit
after θ−1 is given by

Ex,y,z = Dx,y,z ⊕ ∑
(x′,y′,z′)∈Sx,z

Dx′,y′,z′ .

Therefore, we have

Ex,y,z = Cσ(x,y,z) ⊕ ∑
(x′,y′,z′)∈Sx,z

Cσ(x′,y′,z′)

= wσ(x,y,z) ⊕ Pσ(x,y,z)(A) ⊕ ∑
(x′,y′,z′)∈Sx,z

(
wσ(x′,y′,z′) ⊕ Pσ(x′,y′,z′)(A)

)
= w′x,y,z ⊕ Pσ(x,y,z)(A) ⊕ Qx,z(A).

In this expression, w′x,y,z is a new variable defined as the linear combination
of all the w variables involved in the expression of Ex,y,z, and Qx,z(A) is the

5.4 optimization techniques for the cryptanalysis 107

sum of the P’s over position set Sx,z. Please note that each Qx,z is considered
to potentially involve all the u, v and kout variables, whereas Px,y,z only has
7 potentially nonzero variables. Also, w variables influence of E and F is
completely given by w′ variables, which are independent of A. Therefore, w′

variables can replace w variables in the description of the algebraic expres-
sions of all Fj.

Partial Internal χ−1 Layer. We now consider only two bits of information
from the state Fj in a same column, e.g., at Positions (0, 0, 0) and (0, 1, 0),
and sum their algebraic expressions. With this approach, we cancel out the
multiplication of the term contributing the most monomials to the expres-
sions of these bits, decrease the total number of variables and therefore limit
the time and memory complexity of our attack by reducing the complexity
of the final linearized system. To this end, we denote P′x,y,z = w′x,y,z + Pσ(x,y,z).
Omitting index z, we have:

F0,y =
(

P′1,y ⊕ Q1

)(
P′3,y ⊕ Q3

)(
P′4,y ⊕ Q4

)
⊕
(

P′1,y ⊕ Q1

)(
P′2,y ⊕ Q2

)
⊕
(

P′0,y ⊕ Q0

)
.

When considering F0,0 ⊕ F0,1, all products of Q-components cancel out, as Q
polynomials are identical over a column. In particular, all arbitrary products
of three u, v and kout variables do not occur anymore. We get:

F0,0 ⊕ F0,1 =
(

P′1,0 ⊕ P′1,1
)

Q3Q4 ⊕
(

P′3,0 ⊕ P′3,1
)

Q1Q4 ⊕
(

P′4,0 ⊕ P′4,1
)

Q1Q3

⊕
(

P′1,0P′3,0 ⊕ P′1,1P′3,1

)
Q4 ⊕

(
P′1,0P′4,0 ⊕ P′1,1P′4,1

)
Q3

⊕
(

P′2,0 ⊕ P′3,0P′4,0 ⊕ P′2,1 ⊕ P′3,1P′4,1

)
Q1 ⊕

(
P′1,0 ⊕ P′1,1

)
Q2

⊕
(

P′0,0 ⊕ P′1,0P′2,0 ⊕ P′1,0P′3,0P′4,0 ⊕ P′0,1 ⊕ P′1,1P′2,1 ⊕ P′1,1P′3,1P′4,1

)
.

All the Q polynomials are affine combinations of the same set of all the
320 × (5 + 10) = 4800 kout, u and v variables, and each P′ polynomial is
an affine combination of 7 variables. Taking into account the constant coef-
ficients of these polynomials, the number of variables required to linearize
the expression of F0,0 ⊕ F0,1 is therefore:

3× 2× 8×
(

4801
2

)
+
(
3× 2× 82 + 2× 2× 8

)
× 4801 + 2×

(
8 + 82 + 83) ,

which gives approximately 229.0 variables, instead of the approximately 236.5

monomials obtained with the simpler bound from Section 5.2.

Note that there is a trade-off between the number of variables of the lin-
earized system and the number of equations that are obtained from on block.
Indeed, by considering more than one pair of positions, additional w′ vari-
ables have to be considered, together with the monomials resulting from the

108 cryptanalysis of kravatte

products of these variables with kout, u and v variables. We do not investi-
gate further this trade-off, since we are mainly concerned with the reduction
of the size of the system in order to improve the attacks time complexity,
and because this reduction of the system size limits the degradation of the
data complexity.

5.4.2 Super Structure of Input Messages

As already presented in Section 5.3, the higher order differential distin-
guisher used for the attack is based on the sum of output messages over
a structure of input messages of dimension n = 65. Due to the property
of Farfalle and the algebraic degree of the Keccak-p round function, this
is guaranteed to lead to a sum of corresponding intermediate states equal
to zero. In order to improve the data complexity, we use a super structure
of messages, from which structures of dimension 2n can be extracted. This
technique has been used previously, e.g, in [DLMW15].

Principle. Let us consider the set of messages obtained by the concatena-
tion of n + t blocks, Block j being chosen among two possibilities (mi

j)i∈{0,1}:

S =
{
(mε0

0 , · · · , mεn+t−1
n+t−1), (ε0, · · · , εn+t−1) ∈ {0, 1}n+t} .

We can then extract from this super structure several n-dimensional struc-
tures by fixing the values of the blocks at t given positions, and subsequently
build from each of these structures equations in the output key bits kout.

When extracting n-dimensional structures from an n + t super structure,
care has to be taken to avoid linear dependencies that decrease the expected
amount of equations that can be formed. Indeed, let us consider S∗, an (n +

1)-dimensional super structure, and the n-dimensional structures S0∗ = m0 ∗
. . . ∗, S1∗ = m1 ∗ . . . ∗, S∗0 = ∗ . . . ∗m0 and S∗1 = ∗ . . . ∗m1, where ∗ denotes
consecutive positions with two possible values at each position, and 0 (resp.
1) denotes a position with fixed m0 (resp. m1), value. Then, we have S0∗ ∪
S1∗ = S∗ = S∗0 ∪ S∗1. As a consequence, given the sum of the intermediate
states over three of these five structures, we can derive linearly the sum
over the remaining structures, and thus they does not provide additional
equations to include into the system.

We can obtain (n+t
t) structures by selecting m0 blocks at exactly t positions

of the super structure, and keeping the choice among two values on the
other n positions. These structures lead to linearly independent equations
since the message containing n blocks equal to m1 at given positions only
appear in one specific structure.

5.4 optimization techniques for the cryptanalysis 109

Increasing the Number of Structures Extracted from a Super Structure.
More generally, we can obtain S(n + t, t) structures by selecting m0 blocks
at any given 0 ≤ i ≤ t positions of the super structure, and keeping the
choice among two values on the other n positions. Indeed, let us associate to
every structure an integer, whose binary representation represents the inde-
terminate positions of the structure. Let us also associate to every message
an integer whose binary representation is the selection pattern of m0 and
m1 blocks. Ordering the structures by decreasing value of their representa-
tive and the messages by decreasing values of their associated integers, the
binary structure/message membership matrix (δMj∈Si)i,j is in row echelon
form (see Figure 35), which proves the linear independence of equations
generated from these structures.

Finally, we remark that the (n + t − i)-dimensional structures generated
above can be generated linearly from the n-dimensional structures where the
fixed message blocks are selected from {m0, m1}. It it thus possible to select
S(n + t, t) such n-dimensional structures leading to independent equations.

Computing Equations from Super Structures. There are at least two pos-
sible strategies to build the equation system using super structures. First, we
can store all the data blocks that we get, and compute the system equation by
equation, recomputing the contribution from each block of a given structure.
Otherwise, we can handle the data block per block, building all the system
of equations at once.

The first strategy requires to store all the data blocks during the compu-
tation of the system, whereas the second approach has no specific memory
requirements and potentially allows to spare computation time. Neverthe-
less, extra memory can be required for the construction of the system of
equations itself. This will be studied in Section 5.4.3. In the following, we
assume that we select the second approach, and compute all equations si-
multaneously, handling the available data block by block.

Complexity Analysis. The major benefit of using super structures of input
messages is to reduce the data complexity of the attack. By considering super
structures of size n+ t and `o output blocks per message, the data complexity
is (n + t + `o)2n+t blocks. The number of equations we get is b`oS(n + t, t),
assuming one does not use the optimization from Section 5.4.1 and computes
b equations per structure. Otherwise, only one equation is recovered per
structure, and the total number of equations is `oS(n + t, t).

We select the parameters of our attack as follows. One aims at getting Neq

equations, therefore we need that b`oS(n + t, t) ≥ Neq (resp. `oS(n + t, t) ≥
Neq) if we do not reduce (resp. we reduce) the number of equations. Thus,

110 cryptanalysis of kravatte

we choose `o = dNeq/(S(N + t, t)b)e (resp. `o = dNeq/S(N + t, t)e. As our
aim is to reduce the amount of data necessary for the attack, we then need
to choose t so as to minimize (n + t + `o)2n+t.

If we combine these super structures with the reduction of the number
of equations, we need Neq ≈ 229.0. This leads to t = 5, `o = 4 and a data
complexity of 274.7 blocks. If we use only super structures, we need Neq ≈
236.5 equations. We then compute t = 4, `o = 5 and reach a data complexity
of 273.9 blocks.

1111 1110 1101 1100 1011 1010 1001 1000 0111 0110 0101 0100 0011 . . .

**** 1 1 1 1 1 1 1 1 1 1 1 1 1 . . .
***0 1 1 1 1 1 1 . . .
**0* 1 1 1 1 1 1 . . .
**00 1 1 1 . . .
*0** 1 1 1 1 . . .
*0*0 1 1 . . .
00 1 1 . . .
0*** 1 1 1 1 1 . . .
0**0 1 1 . . .
0*0* 1 1 . . .
00** 1 . . .

Figure 35: Example of structure/message membership matrix, with (n, t) = (2, 2).

5.4.3 Counters

We specify here two algorithms that the adversary might use to build a
system of equations from the outputs, and study their time and memory
complexities, in order to determine the optimal choice in each version of our
attack.

Description of the Systems of Equations. The attacks we want to opti-
mize are either based on the higher order differential property or on the
use of a polynomial derived from a stream-oriented description of the ex-
pansion layer of Kravatte. Each equation of the system is derived from a
linear relation on bit values two rounds before the output. It is obtained
by summing the contributions of several output blocks. The expression of
such a contribution requires the computation of the polynomial expression

5.4 optimization techniques for the cryptanalysis 111

of one bit (or one linear combination of bits) two rounds before the end of
Kravatte, considering key bits as variables.

In the following, we consider that the bottleneck of such an operation con-
sists in the multiplications of three polynomials that stems from the degree-3
term of the internal χ−1 layer. The complexity of such an operation is esti-
mated as the product of the number of terms of each of the three polynomi-
als.

Definitions and Notations. We call equation a relation involving key bits
and newly introduced key-dependent variables. The equations we use are
computed by summing polynomials that depend on one output block. We
use the generic term expression to refer to such a polynomial, which is com-
puted by inverting two rounds of Kravatte. The addition of a given expres-
sion when building an equation is called a contribution.

We use Neq to denote the total number of equations that is needed to solve
the system, which is supposed to be equal to the number of variables. There-
fore, we have Neq = 229.0 if optimization of Section 5.4.1 is implemented,
and 236.5 otherwise. We denote by S the number of contributions that one
needs to add to get each equation. This number depends on the kind of
distinguisher that is used. For the 6-round higher order differential distin-
guisher, we have S = 265. If we use the linear recurrence distinguisher, we
need to sum expressions over all the block positions given by the nonzero
coefficients of the recurrence polynomial. We estimate it as half the degree
of the polynomial (see Table 11). Conversely, we call R the average num-
ber of equations each computed expression contributes to. When handling
a specific output block, one computes the polynomial expression of bits two
rounds before the output, then add its contribution to the R equations (on
average) it is involved in. We also denote by Npar the maximum number
of equations that are being computed at the same time during the process.
When using the linear recurrence distinguisher or the higher order differen-
tial distinguisher with super structures, we compute all equations in parallel,
and Npar = Neq, whereas for the higher order differential distinguisher with-
out super structures, we build 1 or 1600 equations in parallel, depending
on the number of bits of information we use per block. We also denote by
Nprod the number of products of three monomials that one needs to compute
when inverting the internal χ−1 layer. In the general case, Nprod is dominated
by the product of three polynomials in 8000 variables, which can be consid-
ered to cost 80013 ≈ 238.9 elementary operations. If we apply optimizations
of Section 5.4.1, the most expensive part consists in 6 multiplications of 3
polynomials: 1 with 8 nonzero coefficients and 2 with 4801 nonzero coeffi-
cients. We then have Nprod = 6× 8× 48012 ≈ 230.0 elementary operations.

112 cryptanalysis of kravatte

A Direct Approach. The most straightforward way to proceed is to run
through all the output blocks that are needed to get enough equations: For
each of them, we compute each expression that is needed to build the system,
and add it to all equations it contributes to.

Using this technique does not require a specific amount of memory, other
than the one used to store the linearized system. We assume that all expres-
sions originating from a single block of output are computed independently.
The time complexity to compute each expression in key bits that contributes
to the system of equations is Nprod operations. The total number of contribu-
tions is Neq × S, and therefore the total number of expressions one needs to
compute is Neq × S/R. After computing these expressions, one needs to add
them to the equations they contribute to. The total number such additions
is Neq × S. As the number of equations equals the number of variables, such
an addition costs Neq elementary operations. Therefore, the time complexity
Tdirect of this technique is given by

Tdirect = Neq × S×
(

Nprod/R + Neq

)
.

An Optimization Based on the Use of Parity Counters. Our second tech-
nique relies on the following observation. Each of the polynomials that are
multiplied during the internal χ−1 layer are linear combinations of output
bits of the external χ−1 layers. Such a bit only depends on the five bits of the
output block corresponding to one Sbox output. Moreover, when expanding
the products of the internal χ−1 layer, one gets the sum of products of three
such bits, which only depends on 15 bits of the output blocks, corresponding
to the outputs of three Sboxes.

For each equation, the computation of all the S contributions leads to
computing several times these products, as soon as S exceeds 215. Our idea
is then to compute these products only once for each value V of the 15 output
bits. This can be done in a precomputation step. Then, the contribution of
each of these results is added to the final equation if and only if the number
of occurrences of V is odd (as the sum of an even number of identical values
cancels out in characteristic two). This can be achieved as follows: For each
output block, one runs through all useful sets of three Sboxes, and update
a parity counter for the 15 output bits of these Sboxes, for each equation
the current output block contributes to. Each parity counter consists of 215

parity bits, which are used to store the parity of the number of occurrences
of all values of the 15 output bits of the set of three Sboxes defining the
counter. Then, one adds to each equation the contribution corresponding of
each possible value of each counter.

5.4 optimization techniques for the cryptanalysis 113

We denote by Nctr the number of counters that are used for each equation.
In the general case, one needs a parity counter set for each possible combi-
nation of three output Sboxes, which makes Nctr = (320

3) ≈ 222.4. When the
number of equations is optimized, we consider the multiplications of six bits
after the external χ−1 layer with two dense polynomials. Therefore, one only
needs at most Nctr = 6× (320

2) ≈ 218.2.

The memory complexity of this step is the amount of memory that is
needed to store all the parity bits, which is Mctr = Npar × Nctr × 215 bits.
The time required for the attack encompasses the updates of parity coun-
ters and the addition of contributions of individual counter values to all the
equations. The value of each counter only contributes to the coefficients of
monomials in key bits at the 15 same positions. Therefore, adding the con-
tribution of such a counter requires at most 215 key additions. For each set
of three Sboxes, there are 215 counter values to consider. Therefore, we have:
Tctr = Neq × Nctr × (S + 230).

Comparison Between the Two Techniques. From the formulae above,
we always have Tdirect > N2

eq × S. If Tctr is smaller than this value, the
time complexity of the second algorithm is better. This is equivalent to
Nctr × (S + 230) < Neq × S. Moreover, the number of possible counters is
bounded by (320

3) ≈ 222.4, whereas the number of equations is at least 229.0

when optimization of Section 5.4.1 is implemented. Therefore, a sufficient
condition for the second algorithm to be more efficient becomes S + 230 ≤
229.0−22.4, which is equivalent to S ≥ 230−6.6 = 223.4. In our attacks, S is the
number of elements of an affine space of a higher order differential distin-
guisher or the number of nonzero coefficients of a recurrence polynomial. In
all cases we focus on, it is larger than this bound.

The parity counter based attack should therefore be used in any case, un-
less one aims at optimizing the memory required by the attack and the stor-
age of counter values is its bottleneck in terms of memory complexity.

5.4.4 Optimizing the Attacks

The high number of different attacks and potential combinations of optimiza-
tions makes it difficult to give an exhaustive list of all the possible combina-
tions and their complexities. However, we give numerical applications for a
few of them. These complexities are summarized in Table 9. We explain here
how we obtain the optimized complexities.

Linear-Recurrence Attack on Kravatte-(?, 4) with ne = 2 + 2. We use
both optimizations of Section 5.4.1 and Section 5.4.3. The precomputation
step, as shown in Section 5.2.2, has a time complexity of TP = 240.7 elemen-

114 cryptanalysis of kravatte

tary operations and a memory complexity of 228.7 bits to store the recurrence
polynomial. As we reduce the number of variables, we only get one expres-
sion per block. The data complexity is then changed to 228.7 + 229.0 ≈ 229.9

blocks (from 228.7 + 1
1600 236.5). The time complexity to build the system is

about 277.5 operations, and the memory complexity to store the counters is
262.2 bits. Finally, solving the system requires

(
229)3

= 287 operations, and
storing it about 258 bits. Overall, the time complexity of the attack is 287 basic
operations, the memory complexity is 262.3 bits and the data complexity is
229.9 blocks.

Linear-Recurrence Attack on Kravatte-(?, 6) with ne = 4+ 2. We use the
same optimizations for the attack on ne = 6 rounds. The memory required
for the attack is now mainly due to the storage of the recurrence polynomial,
which requires 288.4 bits. As the data complexity mainly comes from the high
degree of this polynomial, it is still 288.4 blocks as in Section 5.2.2. Finally, the
time complexity of this attack is dominated by the construction of the system,
which amounts to 2134.6 elementary operations.

Higher Order Differential Attack on Kravatte-(4, 4) Using All Optimiza-
tions. We now focus on attacks based on the higher order differential dis-
tinguisher, and first try to apply all three optimizations. As shown in Sec-
tion 5.4.2, the data complexity is 274.7 blocks. During the construction phase,
the memory required for the parity counters is again 262.2 bits, and its time
complexity is 2112.2 operations, which is the most time-consuming part of the
attack. The memory and time complexities of the system resolution are the
same as for the linear-recurrence attack, increasing the memory complexity
to 262.3 bits.

Memory-optimized Higher Order Differential Attack on Kravatte-(4, 4).
As the memory required mainly comes from the storage of parity counters,
we can drop the optimization based on super structures. The data complex-
ity goes up to 265 × (65 + 229) ≈ 294 blocks, and the memory complexity
drops to the 258 bits required to store the system. The time complexity is left
unchanged.

Data-optimized Higher Order Differential Attack on Kravatte-(4, 4).
Similarly, to minimize the amount of data needed for the attack, we can
drop the optimization of Section 5.4.1. As shown in Section 5.4.2, the data
complexity decreases to 273.9 blocks, but the number of equations required
increases to 236.5. The time and memory complexities of the construction
step are respectively increased to 2123.9 operations and 273.9 bits. Adding
the storage of the system (273 bits), the memory complexity of the attack
becomes 274.5 bits.

5.5 concluding remarks and discussion 115

5.5 Concluding Remarks and Discussion

We depicted in this chapter several key-recovery attack strategies breaking
the security claims of the recent PRF proposal Kravatte. The attacks are
primarily focused on either the convergence point or the divergence point
of the high-level structure that allows to compress virtually any number of
blocks to a single one in an incremental way, and conversely, to expand a
single block to almost any number of output blocks. The properties of these
two sensitive points of the computation, where all the input information
is packed into a single block (right after the compressing phase and right
before the second step of the expansion phase), together with the low alge-
braic degree of the Keccak-p permutation, are leveraged in our attacks. From
this ambitious and aggressive design structure and the proposed attacks, we
would like to draw some high-level conclusions.

First, the non-linear permutations pc in the compression layer do not pre-
vent the construction of an affine space at its output. This is inherent to the
design and cannot be thwarted by simply increasing the number of rounds
in pc. Secondly, the middle non-linear permutation pd applied to the accu-
mulator does not increase the security of the expansion layer, as one can
target the second step of the expansion layer, i.e., applications of pe to the
evolving rolling state, independently. The design incentive was probably to
factor out a part of the non-linear transformations of the expansion layer to
increase the performances of the output generations, but it appears that such
an optimization strongly decreases the security. Finally, the last non-linear
permutations pe used to produce each output block in Kravatte have low
algebraic degree and are applied after a small linear diversification mecha-
nism. This results in a bit mixing much simpler than expected, which can be
distinguished before the end of the expansion layer and used to recover the
key by inverting the remaining part.

We note that one can interpret all ours attacks in terms of stream ci-
pher analysis, with either attacks on the IV-processing part (the compression
layer) or on the keystream generation part (the expansion layer). Recasting
Kravatte in this light may help to improve its design.

B I B L I O G R A P H Y

[AA16] Ralph Ankele and Robin Ankele. Software benchmarking of the
2nd round caesar candidates. Cryptology ePrint Archive, Report
2016/740, 2016. https://eprint.iacr.org/2016/740.

[ABD+] Elena Andreeva, Andrey Bogdanov, Nilanjan Datta, Atul Luykx,
Bart Mennink, Mridul Nandi, Elmar Tischhauser, and Kan Ya-
suda. Security of COLM. https://competitions.cr.yp.to/
round3/colm-addendum.pdf.

[ABD+16a] Elena Andreeva, Andrey Bogdanov, Nilanjan Datta, Atul Luykx,
Bart Mennink, Mridul Nandi, Elmar Tischhauser, and Kan Ya-
suda. AES-COPA v.2. Submission to the CAESAR Competition,
2016.

[ABD+16b] Elena Andreeva, Andrey Bogdanov, Nilanjan Datta, Atul Luykx,
Bart Mennink, Mridul Nandi, Elmar Tischhauser, and Kan Ya-
suda. COLM v1. Submission to the CAESAR Competition, 2016.

[ABL+14] Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink,
Nicky Mouha, and Kan Yasuda. How to securely release unver-
ified plaintext in authenticated encryption. In Sarkar and Iwata
[SI14], pages 105–125.

[ADMA15] Elena Andreeva, Joan Daemen, Bart Mennink, and Gilles Van
Assche. Security of keyed sponge constructions using a modular
proof approach. In Fast Software Encryption - 22nd International
Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015, Revised
Selected Papers, pages 364–384, 2015.

[AEL+18] Tomer Ashur, Maria Eichlseder, Martin M. Lauridsen, Gaëtan
Leurent, Brice Minaud, Yann Rotella, Yu Sasaki, and Benoît
Viguier. Cryptanalysis of MORUS. Cryptology ePrint Archive,
Report 2018/464, 2018. https://eprint.iacr.org/2018/464.

[AES01] Advanced Encryption Standard, National Institute of Standards
and Technology (NIST), FIPS PUB 197, U.S. Department Of
Commerce. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.197.pdf, 2001.

[AHMP10] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and
Raphael C.-W. Phan. SHA-3 proposal BLAKE. Submission to
NIST (Round 3), 2010.

117

https://eprint.iacr.org/2016/740
https://competitions.cr.yp.to/round3/colm-addendum.pdf
https://competitions.cr.yp.to/round3/colm-addendum.pdf
https://eprint.iacr.org/2018/464
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197.pdf

118 bibliography

[AJN15a] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves.
Analysis of NORX: Investigating differential and rotational
properties. In Diego F. Aranha and Alfred Menezes, edi-
tors, LATINCRYPT 2014, volume 8895 of LNCS, pages 306–324.
Springer, Heidelberg, September 2015.

[AJN15b] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves.
NORX v2.0. Submission to the CAESAR Competition, 2015.

[AJN15c] Jean-Philippe Aumasson, Philipp Jovanovic, and Samuel Neves.
NORX8 and NORX16: Authenticated Encryption for Low-End
Systems. Cryptology ePrint Archive, Report 2015/1154, 2015.

[ANS14] ANSSI. Référentiel Général de Sécurité version 2.0, 2014.

[ANWW13] Jean-Philippe Aumasson, Samuel Neves, Zooko Wilcox-
O’Hearn, and Christian Winnerlein. BLAKE2: Simpler, smaller,
fast as MD5. In Michael J. Jacobson Jr., Michael E. Locasto,
Payman Mohassel, and Reihaneh Safavi-Naini, editors, ACNS
13, volume 7954 of LNCS, pages 119–135. Springer, Heidelberg,
June 2013.

[Bab95] Steve Babbage. Improved “Exhaustive Search” Attacks on
Stream Ciphers. In European Convention on Security and Detection,
no. 408 in IEE Conference Publication, pages 161–166. IET, 1995.

[BBK+13] Begül Bilgin, Andrey Bogdanov, Miroslav Knežević, Florian
Mendel, and Qingju Wang. Fides: Lightweight authenticated
cipher with side-channel resistance for constrained hardware.
In Guido Bertoni and Jean-Sébastien Coron, editors, CHES 2013,
volume 8086 of LNCS, pages 142–158. Springer, Heidelberg, Au-
gust 2013.

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash
functions for message authentication, 1996.

[BDD+17] Xavier Bonnetain, Patrick Derbez, Sébastien Duval, Jérémy Jean,
Gaëtan Leurent, Brice Minaud, and Valentin Suder. AEZ forg-
eries. Post by G. Leurent to the “Cryptographic competitions”
Google group on March 12, 2017. Available at http://goo.gl/
3P4K51., 2017.

[BDH+16] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters,
Gilles Van Assche, and Ronny Van Keer. Farfalle: parallel
permutation-based cryptography. Cryptology ePrint Archive,
Report 2016/1188, 2016.

http://goo.gl/3P4K51
http://goo.gl/3P4K51

bibliography 119

[BDH+17a] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters,
Gilles Van Assche, and Ronny Van Keer. Farfalle: Parallel
Permutation-Based Cryptography. IACR Transactions on Symmet-
ric Cryptology, 2017(4), 2017.

[BDH+17b] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters,
Gilles Van Assche, and Ronny Van Keer. Innovations in
Permutation-Based Crypto. Slides from ECC 2017, 2017.

[BDJR97] Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway.
A concrete security treatment of symmetric encryption, 1997.

[BDPA11a] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. The Kec-
cak reference. Round 3 submission to NIST SHA-3, 2011.

[BDPA11b] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van
Assche. The keccak reference, 2011.

[BDPV12] Guido Bertoni, Joan Daemen, Michael Peeters, and Gilles Van
Assche. Duplexing the sponge: Single-pass authenticated en-
cryption and other applications. In Ali Miri and Serge Vaude-
nay, editors, SAC 2011, volume 7118 of LNCS, pages 320–337.
Springer, Heidelberg, August 2012.

[BDPVA11] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles
Van Assche. Duplexing the sponge: single-pass authenticated
encryption and other applications. In International Workshop on
Selected Areas in Cryptography, pages 320–337. Springer, 2011.

[Ber08] Daniel J. Bernstein. ChaCha, a variant of Salsa20, 2008.

[BGTZ08] Richard P. Brent, Pierrick Gaudry, Emmanuel Thomé, and Paul
Zimmermann. Faster Multiplication in GF(2)[x]. In Algorithmic
Number Theory, 8th International Symposium, ANTS-VIII, Banff,
Canada, May 17-22, 2008, Proceedings, pages 153–166, 2008.

[BHJ+16] Nasour Bagheri, Tao Huang, Keting Jia, Florian Mendel, and
Yu Sasaki. Cryptanalysis of reduced NORX. In Thomas Peyrin,
editor, FSE 2016, volume 9783 of LNCS, pages 554–574. Springer,
Heidelberg, March 2016.

[BN00] Mihir Bellare and Chanathip Namprempre. Authenticated En-
cryption: Relations among notions and analysis of the generic
composition paradigm. Cryptology ePrint Archive, Report
2000/025, 2000. https://eprint.iacr.org/2000/025.

[BR00] John Black and Phillip Rogaway. CBC MACs for arbitrary-
length messages: The three-key constructions. In Annual Inter-
national Cryptology Conference, pages 197–215. Springer, 2000.

https://eprint.iacr.org/2000/025

120 bibliography

[BS91] Eli Biham and Adi Shamir. Differential cryptanalysis of DES-
like cryptosystems. Journal of Cryptology, 1991.

[CFG15] Colin Chaigneau, Thomas Fuhr, and Henri Gilbert. Full
key-recovery on ACORN in nonce-reuse and decryption-
misuse settings, 2015. https://groups.google.com/d/msg/
crypto-competitions/RTtZvFZay7k/-_nVcA7EadUJ.

[CFG+17] Colin Chaigneau, Thomas Fuhr, Henri Gilbert, Jérémy Jean, and
Jean-René Reinhard. Cryptanalysis of NORX v2.0. IACR Trans-
actions on Symmetric Cryptology, 2017(1):156–174, Mar. 2017.

[CFG+18a] Colin Chaigneau, Thomas Fuhr, Henri Gilbert, Jian Guo, Jérémy
Jean, Jean-René Reinhard, and Ling Song. Key-Recovery At-
tacks on Full Kravatte. IACR Transactions on Symmetric Cryptol-
ogy, 2018(1):5–28, Mar. 2018.

[CFG+18b] Colin Chaigneau, Thomas Fuhr, Henri Gilbert, Jérémy Jean,
and Jean-René Reinhard. Cryptanalysis of NORX v2.0,
2018. To appear, https://www.springerprofessional.de/en/
cryptanalysis-of-norx-v2-0/15826164.

[CG16] Colin Chaigneau and Henri Gilbert. Is AEZ v4.1 Sufficiently
Resilient Against Key-Recovery Attacks? IACR Transactions on
Symmetric Cryptology, 2016(1):114–133, Dec. 2016.

[CHP+17] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling
Song. Cryptanalysis of Deoxys and its Internal Tweakable Block
Ciphers. Cryptology ePrint Archive, Report 2017/693, 2017.
https://eprint.iacr.org/2017/693.

[Cla45] Claude Shannon. A Mathematical Theory of Cryptography,
1945.

[Cou03] Nicolas T. Courtois. Fast Algebraic Attacks on Stream Ciphers
with Linear Feedback, 2003.

[CSA16] ECRYPT – CSA. D5.2 Algorithms, Key Size and Protocols Re-
port, 2016.

[DD07] Morris J Dworkin and MJ Dworkin. Recommendation for block
cipher modes of operation: The CCM mode for authentication
and confidentiality, 2007.

[DEMS] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and
Martin Schläffer. Ascon v1.2.

https://groups.google.com/d/msg/crypto-competitions/RTtZvFZay7k/-_nVcA7EadUJ
https://groups.google.com/d/msg/crypto-competitions/RTtZvFZay7k/-_nVcA7EadUJ
https://www.springerprofessional.de/en/cryptanalysis-of-norx-v2-0/15826164
https://www.springerprofessional.de/en/cryptanalysis-of-norx-v2-0/15826164
https://eprint.iacr.org/2017/693

bibliography 121

[DEMS15] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and
Martin Schläffer. Cryptanalysis of Ascon. Cryptology ePrint
Archive, Report 2015/030, 2015. https://eprint.iacr.org/
2015/030.

[DES77] Data Encryption Standard, National Bureau of Standards, NBS
FIPS PUB 46, U.S. Department Of Commerce, january 1977.

[DJ15] Itai Dinur and Jérémy Jean. Cryptanalysis of FIDES. In Carlos
Cid and Christian Rechberger, editors, FSE 2014, volume 8540
of LNCS, pages 224–240. Springer, Heidelberg, March 2015.

[DKM+16] Ashutosh Dhar Dwivedi, Miloš Klouček, Pawel Moraw-
iecki, Ivica Nikolić, Josef Pieprzyk, and Sebastian Wójtowicz.
SAT-based Cryptanalysis of Authenticated Ciphers from the
CAESAR Competition. Cryptology ePrint Archive, Report
2016/1053, 2016.

[DKR97] Joan Daemen, Lars Knudsen, and Vincent Rijmen. The block
cipher Square. In Fast Software Encryption, pages 149–165, Berlin,
Heidelberg, 1997. Springer Berlin Heidelberg.

[DLMW15] Itai Dinur, Yunwen Liu, Willi Meier, and Qingju Wang. Op-
timized interpolation attacks on LowMC. In Tetsu Iwata and
Jung Hee Cheon, editors, ASIACRYPT 2015, Part II, volume 9453
of LNCS, pages 535–560. Springer, Heidelberg, November / De-
cember 2015.

[DMA17] Joan Daemen, Bart Mennink, and Gilles Van Assche. Full-state
keyed duplex with built-in multi-user support. In Advances in
Cryptology - ASIACRYPT 2017 - 23rd International Conference on
the Theory and Applications of Cryptology and Information Security,
Hong Kong, China, December 3-7, 2017, Proceedings, Part II, pages
606–637, 2017.

[DMM15] Sourav Das, Subhamoy Maitra, and Willi Meier. Higher Order
Differential Analysis of NORX. Cryptology ePrint Archive, Re-
port 2015/186, 2015.

[DN16] Nilanjan Datta and Mridul Nandi. Proposal of ELmD v2.1. Sub-
mission to the CAESAR Competition, 2016.

[Dwo01] Morris Dworkin. Recommendation for block cipher modes
of operation. methods and techniques. Technical report,
NATIONAL INST OF STANDARDS AND TECHNOLOGY
GAITHERSBURG MD COMPUTER SECURITY DIV, 2001.

[Fer02] Niels Ferguson. Collision Attacks on OCB, 2002.

https://eprint.iacr.org/2015/030
https://eprint.iacr.org/2015/030

122 bibliography

[FLS15] Thomas Fuhr, Gaëtan Leurent, and Valentin Suder. Collision At-
tacks Against CAESAR Candidates - Forgery and Key-Recovery
Against AEZ and Marble. In ASIACRYPT (2), volume 9453 of
Lecture Notes in Computer Science, pages 510–532. Springer, 2015.

[FMS01] Scott Fluhrer, Itsik Mantin, and Adi Shamir. Weaknesses in the
key scheduling algorithm of RC4. In International Workshop on
Selected Areas in Cryptography, pages 1–24. Springer, 2001.

[Gol97] Jovan Dj. Golić. Cryptanalysis of Alleged A5 Stream Cipher. In
Walter Fumy, editor, Advances in Cryptology - EUROCRYPT ’97,
International Conference on the Theory and Application of Crypto-
graphic Techniques, Konstanz, Germany, May 11-15, 1997, Proceed-
ing, volume 1233 of Lecture Notes in Computer Science, pages 239–
255. Springer, 1997.

[GRW16] Faruk Göloğlu, Vincent Rijmen, and Qingju Wang. On the di-
vision property of S-boxes. Cryptology ePrint Archive, Report
2016/188, 2016. https://eprint.iacr.org/2016/188.

[GWDE15] Hannes Groß, Erich Wenger, Christoph Dobraunig, and
Christoph Ehrenhöfer. Suit up! Made-to-Measure Hardware
Implementations of Ascon. Cryptology ePrint Archive, Report
2015/034, 2015. https://eprint.iacr.org/2015/034.

[HKR15a] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. AEZ
v4.1: Authenticated Encryption by Enciphering. http://web.cs.
ucdavis.edu/~rogaway/aez/aez.pdf, 2015.

[HKR15b] Viet Tung Hoang, Ted Krovetz, and Phillip Rogaway. Robust
Authenticated-Encryption AEZ and the Problem That It Solves.
In EUROCRYPT (1), volume 9056 of Lecture Notes in Computer
Science, pages 15–44. Springer, 2015.

[HRRV15] Viet Tung Hoang, Reza Reyhanitabar, Phillip Rogaway, and
Damian Vizár. Online Authenticated-Encryption and its Nonce-
Reuse Misuse-Resistance. In Advances in Cryptology - CRYPTO
2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2015, Proceedings, Part I, pages 493–517, 2015.

[HW16] Tao Huang Hongjun Wu. The Authenticated Cipher MORUS
(v2). Submission to the CAESAR Competition, 2016.

[J]́ Jérémy Jean. TikZ for Cryptographers. http://www.iacr.org/
authors/tikz/.

[JK97] Thomas Jakobsen and Lars R. Knudsen. The interpolation attack
on block ciphers. In Eli Biham, editor, FSE’97, volume 1267 of
LNCS, pages 28–40. Springer, Heidelberg, January 1997.

https://eprint.iacr.org/2016/188
https://eprint.iacr.org/2015/034
http://web.cs.ucdavis.edu/~rogaway/aez/aez.pdf
http://web.cs.ucdavis.edu/~rogaway/aez/aez.pdf
http://www.iacr.org/authors/tikz/
http://www.iacr.org/authors/tikz/

bibliography 123

[JLM14] Philipp Jovanovic, Atul Luykx, and Bart Mennink. Beyond 2c/2

security in sponge-based authenticated encryption modes. In
Sarkar and Iwata [SI14], pages 85–104.

[JNPS16] Jérémy Jean, Ivica Nikolić, Thomas Peyrin, and Yannick Seurin.
Deoxys v1.41. Submission to the CAESAR Competition, 2016.

[Jou06] Antoine Joux. Authentication failures in NIST version of
GCM, 2006. https://csrc.nist.gov/csrc/media/projects/
block-cipher-techniques/documents/bcm/comments/
800-38-series-drafts/gcm/joux_comments.pdf.

[JS15] Rebhu Johymalyo Josh and Santanu Sarkar. Some observations
on ACORN v1 and Trivia-SC. In Lightweight Cryptography Work-
shop, NIST, USA, pages 20–21, 2015.

[Key76] E.L. Key. An Analysis of the Structure and Complexity of Non-
linear Binary Sequence Generators. IEEE Transactions on Infor-
mation Theory, 22(6):732–736, 1976.

[KN10] Dmitry Khovratovich and Ivica Nikolić. Rotational cryptanaly-
sis of ARX. In Seokhie Hong and Tetsu Iwata, editors, FSE 2010,
volume 6147 of LNCS, pages 333–346. Springer, Heidelberg,
February 2010.

[Lai94] Xuejia Lai. Higher Order Derivatives And Differential Crypt-
analysis. Kluwer International Series In Engineering And Computer
Science, pages 227–227, 1994.

[LDW17] Zheng Li, Xiaoyang Dong, and Xiaoyun Wang. Conditional
Cube Attack on Round-Reduced ASCON. Cryptology ePrint
Archive, Report 2017/160, 2017. https://eprint.iacr.org/
2017/160.

[LL14] Meicheng Liu and Dongdai Lin. Cryptanalysis of Lightweight
Authenticated Cipher ACORN, 2014. https://groups.google.
com/d/msg/crypto-competitions/2mrDnyb9hfM/tjlpmfSZ0TcJ.

[LLMH16] Frédéric Lafitte, Liran Lerman, Olivier Markowitch, and
Dirk Van Heule. SAT-based cryptanalysis of ACORN. Cryp-
tology ePrint Archive, Report 2016/521, 2016. https://eprint.
iacr.org/2016/521.

[LMR15] Gregor Leander, Brice Minaud, and Sondre Rønjom. A generic
approach to invariant subspace attacks: Cryptanalysis of robin,
iSCREAM and Zorro. In Elisabeth Oswald and Marc Fischlin,
editors, EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages
254–283. Springer, Heidelberg, April 2015.

https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/comments/800-38-series-drafts/gcm/joux_comments.pdf
https://eprint.iacr.org/2017/160
https://eprint.iacr.org/2017/160
https://groups.google.com/d/msg/crypto-competitions/2mrDnyb9hfM/tjlpmfSZ0TcJ
https://groups.google.com/d/msg/crypto-competitions/2mrDnyb9hfM/tjlpmfSZ0TcJ
https://eprint.iacr.org/2016/521
https://eprint.iacr.org/2016/521

124 bibliography

[LRW11] Moses Liskov, Ronald L. Rivest, and David Wagner. Tweakable
Block Ciphers. J. Cryptology, 24(3):588–613, 2011.

[Min14] Brice Minaud. Linear biases in AEGIS keystream. In Interna-
tional Workshop on Selected Areas in Cryptography, pages 290–305.
Springer, 2014.

[mMS18] Alireza mehrdad, Farokhlagha Moazami, and Hadi Soleimany.
Impossible Differential Cryptanalysis on Deoxys-BC-256. Cryp-
tology ePrint Archive, Report 2018/048, 2018. https://eprint.
iacr.org/2018/048.

[MV04a] David McGrew and John Viega. The Galois/Counter Mode of
Operation (GCM). Submission to NIST., 2004.

[MV04b] David A. McGrew and John Viega. The Security and Perfor-
mance of the Galois/Counter Mode (GCM) of Operation. In
INDOCRYPT, volume 3348 of Lecture Notes in Computer Science,
pages 343–355. Springer, 2004.

[Nai16] Yusuke Naito. Sandwich Construction for Keyed Sponges: Inde-
pendence Between Capacity and Online Queries. In Sara Foresti
and Giuseppe Persiano, editors, Cryptology and Network Security
- 15th International Conference, CANS 2016, Milan, Italy, November
14-16, 2016, Proceedings, volume 10052 of Lecture Notes in Com-
puter Science, pages 245–261, 2016.

[NIS14] NIST Computer Security Division. SHA-3 Standard:
Permutation-Based Hash and Extendable-Output Functions.
FIPS Publication 202, National Institute of Standards and Tech-
nology, U.S. Department of Commerce, May 2014.

[PS15] Thomas Peyrin and Yannick Seurin. Counter-in-Tweak: Authen-
ticated Encryption Modes for Tweakable Block Ciphers. Cryp-
tology ePrint Archive, Report 2015/1049, 2015. https://eprint.
iacr.org/2015/1049.

[PvO95] Bart Preneel and Paul C. van Oorschot. MDx-MAC and build-
ing fast MACs from hash functions. In Don Coppersmith, editor,
CRYPTO’95, volume 963 of LNCS, pages 1–14. Springer, Heidel-
berg, August 1995.

[RBBK01] Phillip Rogaway, Mihir Bellare, John Black, and Ted Krovetz.
OCB: a block-cipher mode of operation for efficient authenti-
cated encryption. In ACM Conference on Computer and Communi-
cations Security, pages 196–205. ACM, 2001.

https://eprint.iacr.org/2018/048
https://eprint.iacr.org/2018/048
https://eprint.iacr.org/2015/1049
https://eprint.iacr.org/2015/1049

bibliography 125

[RGH07] S. Rønjom, G. Gong, and T. Helleseth. On Attacks on Filtering
Generators Using Linear Subspace Structures. In SSC, pages
204–217, 2007.

[RH07] S. Rønjom and T. Helleseth. A New Attack on the Filter Gen-
erator. IEEE Transactions on Information Theory, 53(5):1752–1758,
2007.

[Rog04] Phillip Rogaway. Efficient instantiations of tweakable blockci-
phers and refinements to modes ocb and pmac, 2004.

[RS06] Phillip Rogaway and Thomas Shrimpton. Deterministic
Authenticated-Encryption: A Provable-Security Treatment of
the Key-Wrap Problem. Cryptology ePrint Archive, Report
2006/221, 2006. https://eprint.iacr.org/2006/221.

[Sch77] Arnold Schönhage. Schnelle Multiplikation von Polynomen
über Körpern der Charakteristik 2. Acta Inf., 7:395–398, 1977.

[SI14] Palash Sarkar and Tetsu Iwata, editors. ASIACRYPT 2014, Part
I, volume 8873 of LNCS. Springer, Heidelberg, December 2014.

[SWB+15] Md Iftekhar Salam, Kenneth Koon-Ho Wong, Harry Bartlett,
Leonie Simpson, Ed Dawson, and Josef Pieprzyk. Finding
State Collisions in the Authenticated Encryption Stream Cipher
ACORN. Cryptology ePrint Archive, Report 2015/918, 2015.
https://eprint.iacr.org/2015/918.

[Tez16] Cihangir Tezcan. Truncated, Impossible, and Improbable Dif-
ferential Analysis of Ascon. Cryptology ePrint Archive, Report
2016/490, 2016. https://eprint.iacr.org/2016/490.

[TG91] Anne Tardy-Corfdir and Henri Gilbert. A known plaintext at-
tack of FEAL-4 and FEAL-6. In Advances in Cryptology - CRYPTO
’91, 11th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 11-15, 1991, Proceedings, pages 172–181,
1991.

[WP16] Hongjun Wu and Bart Preneel. AEGIS: A Fast Authenticated
Encryption Algorithm (v1.1). Submission to the CAESAR Com-
petition, 2016.

[Wu16] Hongjun Wu. ACORN: A Lightweight Authenticated Cipher
(v3), howpublished = Submission to the CAESAR Competition,
2016.

[ZDW18] Rui Zong, Xiaoyang Dong, and Xiaoyun Wang. Related-
Tweakey Impossible Differential Attack on Reduced-Round

https://eprint.iacr.org/2006/221
https://eprint.iacr.org/2015/918
https://eprint.iacr.org/2016/490

126 bibliography

Deoxys-BC-256. Cryptology ePrint Archive, Report 2018/680,
2018. https://eprint.iacr.org/2018/680.

https://eprint.iacr.org/2018/680

	Acknowledgements
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 What is Cryptography?
	1.2 Symmetric Encryption Algorithms
	1.2.1 Basic Security Notions
	1.2.2 Symmetric Primitives
	1.2.3 Primitives are Used in Larger Constructions

	1.3 Beyond Confidentiality, Authenticity
	1.3.1 Message Authentication
	1.3.2 Formalisation
	1.3.3 Security of AE Schemes
	1.3.4 Constructions and Modes of Operations to Achieve Authentication

	1.4 How to Build Strong Cryptographic Primitives?
	1.4.1 Attack Success
	1.4.2 Context of Cryptanalysis
	1.4.3 Cryptanalysis Strategies

	1.5 Contributions

	2 CAESAR Competition
	2.1 Context and Goals
	2.2 Timeline
	2.3 Finalists
	2.3.1 ACORN v1.2
	2.3.2 Ascon v1.2
	2.3.3 AEGIS v1.1
	2.3.4 MORUS v2
	2.3.5 OCB v1.1
	2.3.6 COLM v1
	2.3.7 Deoxys-II v1.41

	3 Cryptanalysis of AEZ
	3.1 Description of AEZ
	3.1.1 Tweaked Instances of AES4 and AES10 Used in AEZ
	3.1.2 AEZ-hash universal hashing
	3.1.3 PRF Function
	3.1.4 AEZ Core
	3.1.5 Tweaks from AEZ v3

	3.2 Attacks on AEZ
	3.2.1 Birthday Attacks
	3.2.2 AES4 Cryptanalysis
	3.2.3 Results of Our Attack

	3.3 Conclusion

	4 Cryptanalysis of NORX
	4.1 Specifications of NORX
	4.1.1 Description of NORX v2.0
	4.1.2 Security Claims
	4.1.3 NORX Variants

	4.2 Cryptanalysis of NORX v2.0
	4.2.1 Non-Random Properties of F
	4.2.2 Ciphertext-Only Forgery of NORX v2.0 Without Padding
	4.2.3 Forgery Attack Against NORX v2.0
	4.2.4 Adversarial Model Discussion
	4.2.5 Key-Recovery Attack Against NORX v2.0

	4.3 Pseudo-code for the Ciphertext-only Forgery and Key-Recovery Attack
	4.4 Application to Other Variants of NORX
	4.5 Discussion About NORX Security Claims

	5 Cryptanalysis of KRAVATTE
	5.1 Specifications of Farfalle and Kravatte
	5.1.1 The Farfalle Construction for Permutation-Based PRFs
	5.1.2 The Kravatte Pseudo-Random Function
	5.1.3 Round Function of the Keccak-p Permutation

	5.2 Algebraic Cryptanalysis of Full Kravatte
	5.2.1 Meet-in-the-Middle Algebraic Attack
	5.2.2 Cancellation of Monomials Using a Linear Recurrence

	5.3 Higher Order Differential Cryptanalysis of Full Kravatte
	5.3.1 Construction of Affine Spaces in the Accumulator
	5.3.2 Higher Order Differential Attacks Against Kravatte
	5.3.3 Last-Round Attacks

	5.4 Optimization Techniques for the Cryptanalysis
	5.4.1 Minimizing the Number of Variables for Two Inverse Rounds
	5.4.2 Super Structure of Input Messages
	5.4.3 Counters
	5.4.4 Optimizing the Attacks

	5.5 Concluding Remarks and Discussion

	Bibliography

