
HAL Id: tel-02014711
https://theses.hal.science/tel-02014711

Submitted on 11 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of checkpointing and execution model for
an implementation of OpenMP on distributed memory

architectures
van Long Tran

To cite this version:
van Long Tran. Optimization of checkpointing and execution model for an implementation of OpenMP
on distributed memory architectures. Distributed, Parallel, and Cluster Computing [cs.DC]. Institut
National des Télécommunications, 2018. English. �NNT : 2018TELE0017�. �tel-02014711�

https://theses.hal.science/tel-02014711
https://hal.archives-ouvertes.fr

DOCTORAT EN CO-ACCREDITATION
TÉLÉCOM SUDPARIS - INSTITUT MINES-TÉLÉCOM

ET L’UNIVERSITÉ PIERRE ET MARIE CURIE - PARIS 6

Spécialité: Informatique

École doctorale EDITE

Présentée par

Van Long TRAN

Optimization of checkpointing and Execution model
for an implementation of OpenMP on Distributed

Memory Architectures

Soutenue le 14/11/2018 devant le jury composé de:

Rapporteurs:
Denis BARTHOU Professeur - LaBRI - ENSEIRB-MATMECA - Bordeaux
Hacène FOUCHAL Professeur - Université de Reims
Examinateurs:
Christine MORIN Directrice de recherche - IRISA - INRIA
Jean-Luc LAMOTTE Professeur - Université Paris 6
Viet Hai HA Docteur - Université de Hue - Viet Nam
Directeur de thèse :
Éric RENAULT Maître de conférences HDR - Télécom SudParis

Thèse numéro : 2018TELE0017

Acknowledgments

First of all, I would like to express my gratitude and thanks to my supervisor, Dr. Éric
Renault, for his excellent guide, theoretical and technical help, useful discussion. He has
encouraged and guided me very well both in research and in life in France with his great
knowledge, patience, and understanding. I would like to thank for his financial support also.

I would like to thank Dr. Viet Hai Ha, my teacher from Hue University and my co-
supervisor in this thesis for his encouragement, support, and helping during my life since I
was went to university.

I deeply indebted to the Vietnamese government for the scholarship to study abroad.
Thank College of Education, Hue University, Viet Nam and Hue Information of Technology
Center (HueCIT), Viet Nam for their support to do experiments on their clusters. I also
thank TSP for good working conditions.

I am grateful to Valérie Mateus, Xayplathi Lyfoung, Veronique Guy, and all members of
TSP for their helps for administrative procedures.

I would like to thank Xuan Huyen Do and my friends living in France for their sharing
and supports.

Finally, I deeply thank my wife, my daughter, and all of members in my family for their
understanding, encouragement, and support. Thank my parents for helping us take care of
my daughter since she was born. I dedicate this thesis to all the members of my family.

Abstract

OpenMP and MPI have become the standard tools to develop parallel programs on
shared-memory and distributed-memory architectures respectively. As compared to MPI,
OpenMP is easier to use. This is due to the ability of OpenMP to automatically execute
code in parallel and synchronize results using its directives, clauses, and runtime functions
while MPI requires programmers do all this manually. Therefore, some efforts have been
made to port OpenMP on distributed-memory architectures. However, excluding CAPE, no
solution has successfully met both requirements: 1) to be fully compliant with the OpenMP
standard and 2) high performance.

CAPE stands for Checkpointing-Aided Parallel Execution. It is a framework that au-
tomatically translates and provides runtime functions to execute OpenMP program on
distributed-memory architectures based on checkpointing techniques. In order to execute an
OpenMP program on distributed-memory system, CAPE uses a set of templates to translate
OpenMP source code to CAPE source code, and then, the CAPE source code is compiled
by a C/C++ compiler. This code can be executed on distributed-memory systems under
the support of the CAPE framework. Basically, the idea of CAPE is the following: the
program first run on a set of nodes on the system, each node being executed as a process.
Whenever the program meets a parallel section, the master distributes the jobs to the slave
processes by using a Discontinuous Incremental Checkpoint (DICKPT). After sending the
checkpoints, the master waits for the returned results from the slaves. The next step on the
master is the reception and merging of the resulting checkpoints before injecting them into
the memory. For slave nodes, they receive different checkpoints, and then, they inject it
into their memory to compute the divided job. The result is sent back to the master using
DICKPTs. At the end of the parallel region, the master sends the result of the checkpoint
to every slaves to synchronize the memory space of the program as a whole.

In some experiments, CAPE has shown very high-performance on distributed-memory
systems and is a viable and fully compatible with OpenMP solution. However, CAPE is in
the development stage. Its checkpoint mechanism and execution model need to be optimized
in order to improve the performance, ability, and reliability.

This thesis aims at presenting the approaches that were proposed to optimize and improve
checkpoints, design and implement a new execution model, and improve the ability for
CAPE. First, we proposed arithmetics on checkpoints, which aims at modeling checkpoint’s
data structure and its operations. This modeling contributes to optimize checkpoint size
and reduces the time when merging, as well as improve checkpoints capability. Second, we
developed TICKPT which stands for Time-stamp Incremental Checkpointing as an instance
of arithmetics on checkpoints. TICKPT is an improvement of DICKPT. It adds a time-
stamp to checkpoints to identify the checkpoints order. The analysis and experiments to
compare it to DICKPT show that TICKPT do not only provide smaller in checkpoint size,
but also has less impact on the performance of the program using checkpointing. Third,
we designed and implemented a new execution model and new prototypes for CAPE based

on TICKPT. The new execution model allows CAPE to use resources efficiently, avoid the
risk of bottlenecks, overcome the requirement of matching the Bernstein’s conditions. As a
result, these approaches make CAPE improving the performance, ability as well as reliability.
Four, Open Data-sharing attributes are implemented on CAPE based on arithmetics on
checkpoints and TICKPT. This also demonstrates the right direction that we took, and
makes CAPE more complete.

List of Publications

[1] Van Long Tran, Éric Renault, and Viet Hai Ha. Improving the Reliability and the Per-
formance of CAPE by Using MPI for Data Exchange on Network. In International Con-
ference on Mobile, Secure and Programmable Networking (MSPN), pp. 90-100. Springer,
2015.

[2] Van Long Tran, Éric Renault, and Viet Hai Ha. Analysis and evaluation of the perfor-
mance of CAPE. In 16th IEEE International Conference on Scalable Computing and
Communications (ScalCom), pp. 620-627. IEEE, 2016.

[3] Viet Hai Ha, Xuan Huyen Do, Van Long Tran, and Éric Renault. Creating an easy
to use and high performance parallel platform on multi-cores networks. In International
Conference on Mobile, Secure and Programmable Networking (MSPN), pp. 197-207.
Springer, 2016.

[4] Van Long Tran, Éric Renault, and Viet Hai Ha. Optimization of checkpoints and ex-
ecution model for an implementation of OpenMP on distributed memory architectures.
In Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGRID), pp. 711-714. IEEE Press, 2017.

[5] Van Long Tran, Éric Renault, Xuan Huyen Do, and Viet Hai Ha. Design and implemen-
tation of a new execution model for CAPE. In Proceedings of the Eighth International
Symposium on Information and Communication Technology (SoICT), pp. 453-459. ACM,
2017.

[6] Van Long Tran, Éric Renault, Xuan Huyen Do, and Viet Hai Ha. A new execution model
for improving performance and flexibility of CAPE. In 26th Euromicro International
Conference on Parallel, Distributed and Network-based Processing (PDP), pp. 234-238.
IEEE, 2018.

[7] Van Long Tran, Éric Renault, Xuan Huyen Do, and Viet Hai Ha. Time-stamp incremen-
tal checkpointing and its application for an optimization of execution model to improve
performance of CAPE. In International Journal of Computing and Informatics (Infor-
matica), pp. 301-311, Vol 42, no. 3 , 2018.

[8] Van Long Tran, and Éric Renault. Checkpointing Aided Parallel Execution: modèle
d’exécution et optimisation. Journées SUCCES, Grenoble 16-17 octobre 2017. (Poster)

[9] Van Long Tran, Éric Renault, Xuan Huyen Do, and Viet Hai Ha. Implementation of
OpenMP Data-Sharing on CAPE. Ninth International Symposium on Information and
Communication Technology (SoICT), Da Nang, Viet Nam, 6-7/12/2018. (accepted)

[10] Van Long Tran, Éric Renault, and Viet Hai Ha. Arithmetic on checkpoints and appli-
cation for optimization checkpoints on CAPE. (to be submitted)

[11] Van Long Tran, Éric Renault, Viet Hai Ha, and Xuan Huyen Do. Using TICKPT to
improve performance and ability for CAPE. (to be submitted)

Résumé

OpenMP et MPI sont devenus les outils standards pour développer des programmes
parallèles sur une architecture à mémoire partagée et à mémoire distribuée respectivement.
Comparé à MPI, OpenMP est plus facile à utiliser. Ceci est dû au fait qu’OpenMP génère
automatiquement le code parallèle et synchronise les résultats à l’aide de directives, clauses
et fonctions d’exécution, tandis que MPI exige que les programmeurs fassent ce travail
manuellement. Par conséquent, des efforts ont été faits pour porter OpenMP sur les ar-
chitectures à mémoire distribuée. Cependant, à l’exclusion de CAPE, aucune solution ne
satisfait les deux exigences suivantes̃: 1) être totalement conforme à la norme OpenMP et
2) être hautement performant.

CAPE signifie «Checkpointing-Aided Parallel Execution». C’est un framework qui
traduit et fournit automatiquement des fonctions d’exécution pour exécuter un programme
OpenMP sur une architecture à mémoire distribuée basé sur des techniques de checkpoint.
Afin d’exécuter un programme OpenMP sur un système à mémoire distribuée, CAPE utilise
un ensemble de modèles pour traduire le code source OpenMP en code source CAPE, puis
le code source CAPE est compilé par un compilateur C/C++ classique. Fondamentale-
ment, l’idée de CAPE est que le programme s’exécute d’abord sur un ensemble de nœuds
du système, chaque nœud fonctionnant comme un processus. Chaque fois que le programme
rencontre une section parallèle, le maître distribue les tâches aux processus esclaves en util-
isant des checkpoints incrémentaux discontinus (DICKPT). Après l’envoi des checkpoints, le
maître attend les résultats renvoyés par les esclaves. L’étape suivante au niveau du maître
master consiste à recevoir et à fusionner le résultat des checkpoints avant de les injecter
dans sa mémoire. Les nœuds esclaves quant à ceux reçoivent les différents checkpoints, puis
l’injectent dans leur mémoire pour effectuer le travail assigué. Le résultat est ensuite renvoyé
au master en utilisant DICKPT. À la fin de la région parallèle, le maître envoie le résultat
du checkpoint à chaque esclave pour synchroniser l’espace mémoire du programme.

Dans certaines expériences, CAPE a montré des performances élevées sur les systèmes à
mémoire distribuée et constitue une solution viable entièrement compatible avec OpenMP.
Cependant, CAPE reste en phase de développement, ses checkpoints et son modèle d’exécution
devant être optimisés pour améliorer les performances, les capacités et la fiabilité.

Cette thèse vise à présenter les approches proposées pour optimiser et améliorer la ca-
pacité des checkpoints, concevoir et mettre en œuvre un nouveau modèle d’exécution, et
améliorer la capacité de CAPE. Tout d’abord, nous avons proposé une arithmétique sur les
checkpoints qui modélise la structure des données des checkpoints et ses opérations. Cette
modélisation contribue à optimiser la taille des checkpoints et à réduire le temps nécessaire
à la fusion, tout en améliorant la capacité des checkpoints. Deuxièmement, nous avons
développé TICKPT qui signifie «Time-Stamp Incremental Checkpointing» une implémenta-
tion de l’arithmétique sur les checkpoints. TICKPT est une amélioration de DICKPT, il a
ajouté l’horodatage aux checkpoints pour identifier l’ordre des checkpoints. L’analyse et les
expériences comparées à DICKPT montrent TICKPT sont non seulement plus petites, mais
qui’ils ont également moins d’impact sur les performances du programme. Troisièmement,
nous avons conçu et implémenté un nouveau modèle d’exécution et de nouveaux prototypes
pour CAPE basés sur TICKPT. Le nouveau modèle d’exécution permet à CAPE d’utiliser
les ressources efficacement, d’éviter les risques de goulots d’étranglement et de satisfaire à
l’exigence des les conditions de Bernstein. Au final, ces approches améliore significativement

les performances de CAPE, ses capacités et sa fiabilité. Le partage des données implémenté
sur CAPE et basé sur l’arithmétique sur des checkpoints est ouvert et basé sur TICKPT. Cela
démontre également la bonne direction que nous avons prise et rend CAPE plus complet.

Table of contents

1 Introduction 5
1.1 Introduction . 5
1.2 Problem definition . 7
1.3 Organization of the thesis . 7

2 State of the Art 9
2.1 OpenMP and MPI . 10

2.1.1 OpenMP . 10
2.1.2 MPI . 12

2.2 OpenMP on distributed memory architectures 14
2.2.1 Solutions based on translation to software DSM 14
2.2.2 The use of a Single System Image . 17
2.2.3 Solutions based on a Translation to MPI 17
2.2.4 Intel Clusters OpenMP . 20
2.2.5 Using Global Array . 20
2.2.6 Based on Checkpointing . 21
2.2.7 Summary . 24

2.3 Checkpointing techniques . 24
2.3.1 Complete checkpointing . 26
2.3.2 Incremental checkpointing . 27
2.3.3 Discontinuous incremental checkpointing 28

2.4 Checkpointing Aide Parallel Execution (CAPE) 33
2.4.1 Execution model . 33
2.4.2 System organization . 33
2.4.3 Translation prototypes . 35

3 Optimization of chekpointing on CAPE 39
3.1 Motivation . 40
3.2 Arithmetic on checkpoints . 40

3.2.1 Checkpoint definitions . 41
3.2.2 Replacement operation . 41
3.2.3 Operations on Checkpoints memory members 44
3.2.4 Operations on Checkpoints . 46
3.2.5 Conclusion . 47

3.3 Time-stamp Incremental Checkpointing (TICKPT) 48
3.3.1 Identifying the time-stamp . 48
3.3.2 Variable analysis . 48
3.3.3 Detecting the modified data of shared variables 50

3.4 Analysis and Evaluation . 51
3.4.1 Contributions of Arithmetics on Checkpoints 51
3.4.2 Detection modified data with TICKPT 54
3.4.3 TICKPT vs. DICKPT . 56

3.5 Conclusion . 57

4 Design and implementation of a new model for CAPE 59
4.1 Motivation . 60
4.2 New abstract model for CAPE . 60
4.3 Implementation of the CAPE memory model based on the RC model 61
4.4 New execution model based on TICKPT . 63
4.5 Transformation prototypes . 65

4.5.1 The parallel construct . 66
4.5.2 Work-sharing constructs . 66
4.5.3 Combined construct . 68
4.5.4 Master and Synchronization constructs 70

4.6 Performance evaluation . 72
4.6.1 Benchmarks . 72
4.6.2 Evaluation context . 75
4.6.3 Evaluation results . 76

4.7 Conclusion . 80

5 OpenMP Data-Sharing on CAPE 83
5.1 Motivation . 83
5.2 OpenMP Data-Sharing attribute rules . 84

5.2.1 Implicit rules . 84
5.2.2 Explicit rules . 85

5.3 Data-Sharing on CAPE-TICKPT . 86
5.3.1 Implementing implicit rules . 86
5.3.2 Implementing explicit rules . 87
5.3.3 Generating and merging checkpoints 87

5.4 Analysis and evaluation . 89
5.5 Conclusion . 90

6 Conclusion and Future works 91
6.1 Contribution of the thesis . 91
6.2 Future Works . 92

Appendix A 95
A.1 MPI programs . 95

A.1.1 MAMULT2D . 95
A.1.2 PRIME . 96
A.1.3 PI . 96
A.1.4 VECTOR-1 . 97

A.1.5 VECTOR-2 . 97
A.2 Translation tool for CAPE . 99

Bibliography 100

xii

List of Tables

2.1 Execution time when running the HRM1D code on Kerrighed. 17
2.2 Comparison of implementations for OpenMP on distributed systems. 25

3.1 OpenMP’s reduction operations in C. 42
3.2 OpenMP data-sharing clauses. 50
3.3 Size of checkpoint memory members (in bytes) for method 1 and 2. 55
3.4 Execution time (in milliseconds). 57

4.1 Directives used in the OpenMP NAS Parallel Benchmark programs. 65
4.2 Comparison of the executed steps for the PRIME code for both CAPE-

TICKPT and MPI. 79

5.1 The summary of which OpenMP data-sharing clauses are accepted by which
OpenMP constructs. 85

5.2 CAPE runtime functions associate with their OpenMP clauses. 88

1

2 List of Tables

List of Figures

2.1 The Fork-Join model. 10
2.2 Shared and local memory in OpenMP. 11
2.3 OpenMP directives syntax in C/C++. 11
2.4 Translation from sequential code to parallel code using OpenMP directives. . 12
2.5 Translation of the sequential code into MPI code by programmers. 13
2.6 Architecture of the ParADE parallel programming environment. 16
2.7 OpenMP execution model vs. CAPE execution model. 22
2.8 Template for OpenMP parallel for loops with complete checkpoints. 23
2.9 The state of a process can be saved in a checkpoint. 26
2.10 Page table entry in i386 version of the Linux Kernel. 27
2.11 The abstract model of DICKPT on Linux. 29
2.12 An example of use of DICKPT’s pragma. 29
2.13 The principle of the DICKPT monitor. 30
2.14 Amount of memory needed to store the modified data of a memory page. . . . 32
2.15 Translation of OpenMP programs with CAPE. 33
2.16 CAPE execution model. 34
2.17 System organization. 35
2.18 Template for the parallel for with incremental checkpoints. 37
2.19 Form to convert pragma omp parallel to pragma omp parallel for. 37
2.20 Form to convert parallel sections to parallel for. 38

3.1 Allocation of program variables in virtual process memory. 49
3.2 An implementation of the fork-join model based on checkpointing. 52
3.3 An example of OpenMP program using a reduction() clause. 53
3.4 The Recursive Doubling algorithm. 53
3.5 OpenMP program to compute the sum of two matrices. 54
3.6 Execution time (in milliseconds) for method 1 and 2 55
3.7 Size of checkpoint memory member (in bytes) for TICKPT and DICKPT. . . 56

4.1 New abstract model for CAPE. 60
4.2 Operations executed on cape_flush() function calls. 61
4.3 Ring algorithm to gather and merge checkpoints. 62
4.4 Recursive Doubling algorithm to gather and merge checkpoints. 62
4.5 The new execution model of CAPE. 64

3

4 List of Figures

4.6 General form of CAPE prototypes in C/C++. 66
4.7 Prototype to transform the pragma omp parallel construct. 66
4.8 Prototype to transform pragma omp for. 67
4.9 Prototype to transform pragma omp sections. 68
4.10 Prototype to translate pragma omp sections. 69
4.11 Prototype to translate pragma omp parallel for. 69
4.12 Prototype to translate pragma omp parallel sections. 70
4.13 Prototype to translate pragma omp master. 71
4.14 Prototype to translate pragma omp critical. 71
4.15 Multiplication of two square matrices with OpenMP. 72
4.16 The OpenMP code to count the number of prime numbers from 1 to N. . . . 73
4.17 The OpenMP function to compute the value of PI. 73
4.18 OpenMP function to compute vectors using sections construct. 74
4.19 OpenMP function to compute vectors using for construct. 75
4.20 Execution time (in milliseconds) of MAMULT2D with different size of matrix

on a 16-node cluster. 77
4.21 Execution time (in milliseconds) of MAMULT2D for different cluster sizes. . . 77
4.22 Execution time (in milliseconds) of PRIME on different cluster sizes. 78
4.23 Execution time (in milliseconds) of PI on different cluster sizes. 79
4.24 Execution time (in milliseconds) of VECTOR-1 on different cluster sizes. . . . 80
4.25 Execution time (in milliseconds) of VECTOR-2 different cluster sizes. 80

5.1 Update of shared variables between nodes. 86
5.2 Template to translate pragma omp threadprivate to CAPE function call. . . 87
5.3 Template to translate OpenMP constructs within data-sharing attribute clauses. 88
5.4 Checkpoint size (in bytes) after merging at the master node for both techniques. 89

6.1 The execution model for CAPE while using multi-cores. 93

Chapter 1
Introduction

Contents
1.1 Introduction . 5
1.2 Problem definition . 7
1.3 Organization of the thesis . 7

1.1 Introduction

In order to minimize programmers’ difficulties when developing parallel applications, a par-
allel programming tool at a higher level should be as easy-to-use as possible. MPI [1], which
stands for Message Passing Interface, and OpenMP [2] are two widely-used tools that meet
this requirement. MPI is a tool for high-performance computing on distributed-memory en-
vironments, while OpenMP has been developed for shared-memory architectures. If MPI is
quite difficult to use, especially for non programmers, OpenMP is very easy to use, requesting
the programmer to tag the pieces of code to be executed in parallel.

Some efforts have been made to port OpenMP on distributed-memory architectures.
However, apart from Checkpointing-aided Parallel Execution (CAPE) [3, 4, 5], no solution
successfully met the two following requirements: 1) to be fully compliant with the OpenMP
standard and 2) high performance. Most prominent approaches include the use of an SSI [6],
SCASH [7], the use of the RC model [8], performing a source-to-source translation to a tool
like MPI [9, 10] or Global Array [11], or Cluster OpenMP [12].

Among all these solutions, the use of a Single System Image (SSI) is the most straight-
forward approach. An SSI includes a Distributed Shared Memory (DSM) to provide an ab-
stracted shared-memory view over a physical distributed-memory architecture. The main ad-
vantage of this approach is its ability to easily provide a fully-compliant version of OpenMP.
Thanks to their shared-memory nature, OpenMP programs can easily be compiled and run
as processes on different computers in an SSI. However, as the shared memory is accessed
through the network, the synchronization between the memories involves an important over-
head which makes this approach hardly scalable. Some experiments [6] have shown that the
larger the number of threads, the lower the performance. As a result, in order to reduce
the execution time overhead involved by the use of an SSI, other approaches have been pro-
posed. For example, SCASH that maps only the shared variables of the processes onto a

5

6 Introduction

shared-memory area attached to each process, the other variables being stored in a private
memory, and the RC model that uses the relaxed consistency memory model. However, these
approaches have difficulties to identify the shared variables automatically. As a result, no
fully-compliant implementation of OpenMP based on these approaches has been released so
far. Some other approaches aim at performing a source-to-source translation of the OpenMP
code into an MPI code. This approach allows the generation of high-performance codes on
distributed-memory architectures. However, not all OpenMP directives and constructs can
be implemented. As yet another alternative, Cluster OpenMP, proposed by Intel, also re-
quires the use of additional directives of its own (ie. not included in the OpenMP standard).
Thus, this one cannot be considered as a fully-compliant implementation of the OpenMP
standard either.

In order to bypass these limitations, CAPE is a solution that provides a set of proto-
types and frameworks to automatically translate OpenMP programs for distributed memory
architectures and make them ready for execution. The main idea of this solution is using
incremental checkpointing techniques (ICKPT) [13, 14] to distribute the parallel jobs and
their data to the other processes (the fork phase of OpenMP), and collect the results after
the execution of the jobs from all processors (the join phase of OpenMP).

CAPE is developed over two stages. In the first stage of development, CAPE used
Complete Checkpointing [3]. The checkpointing extracts all modification of data and stores
in checkpoint files before sending them to slave node to distribute jobs. By this way, the
result checkpoints are also extracted from slave nodes and sent back to the master to merge
together. This approach has demonstrated the fully compliant with OpenMP of CAPE, but
the performance is not so good. In the second stage, CAPE used Discontinuous Incremental
Checkpointing [4, 15, 5] – a kind of Incremental Checkpointing. The checkpointing extracts
only the modified data of the master nodes when dividing jobs and sends them to slave
nodes to distributed jobs. After execution the divided jobs, each slave node also extracts the
modified data and stores into a checkpoint, then sends back to the master node to merge
and inject into its application memory. This approach has shown that CAPE is not only
fully compliant with OpenMP, but also improve significantly the performance.

Although CAPE is still under development, it has shown its ability to provide a very
efficient solution. For instance, a comparison with MPI showed that CAPE is able to reach
up to 90% of the MPI performance [4, 15, 5]. This has to be balanced with the fact that
CAPE for OpenMP requires the introduction of few pragma directives only in the sequential
code, ie. no complex code from the user point of view, while writing an MPI code might
require the user to completely refactorise the code. Moreover, as compared to other OpenMP
for distributed-memory solutions, CAPE promises a fully compatibility with OpenMP [4, 5].

Besides the advantages, CAPE should be continued to develop more optimally. The main
restrictions in this version are:

• CAPE can only execute OpenMP programs that match the Bernstein’s conditions,
only OpenMP parallel for directives with no clauses and nested constructs have
been implemented in the current version.

• Discontinuous Incremental Checkpointing (DICKPT) as applied on CAPE extracts all
modified data including private variables. Therefore, it contains unnecessary data in
checkpoints. This leads to a larger amount of the data transferred over the network
and reduces the reliability of CAPE.

Problem definition 7

• Checkpoints on CAPE do not contain any information that identifies the order of the
generated checkpoints on the different nodes. Therefore, the merging of checkpoints
requires that no memory elements appear in different checkpoints at the same address,
or the checkpoints need to be ordered.

• For the execution model, CAPE always takes 1 node to be responsible for the master
node. It divides jobs, distributes them to slave nodes, and waits for results but does
not take any part in the execution of the divided jobs. This mechanism not only wastes
the resources but also leads to risk of bottleneck. The bottleneck may occur at the
join phase when checkpoints from all slave nodes are sent to the master node, as the
master receives, merges the checkpoints all together, and sends the result back to all
the slave nodes.

1.2 Problem definition

After analyzing the restrictions, this thesis focuses on the optimization of checkpoints and
the execution model of CAPE. This improves the performance, reliability, and ability of this
solution.

For the optimization of checkpoints, we focus on modeling the checkpointing techniques
and applying on CAPE to improve CAPE’s ability, reliability as well as performance. Here,
the data structures of checkpoints need to be modeled to provide operations that are used
directly to compute on checkpoints. Therefore, it reduces the amount of duplicated data in
a checkpoint and the execution time when merging checkpoints. Based on this model, a new
checkpointing technique has been developed and applied on CAPE to solve the three first
restrictions indicated above.

For the optimization of the execution model, we designed and implemented a new execu-
tion model based on this new checkpointing technique. In this model, all nodes are involved
in the computation of a part of the divided jobs to reduce the execution time. In addi-
tion, the new merging mechanism takes benefits of the new checkpointing techniques and
is applied to avoid the risk of bottleneck as well as contributing to improve the perform of
CAPE.

1.3 Organization of the thesis

The thesis is organized as follows: Chap. 2 presents the state of the art. The solutions for
the optimization of checkpoints and the execution model of CAPE are presented in Chap. 3
and 4. Chapter 5 describes the methods to implement OpenMP data-sharing on CAPE. The
conclusion and future works of this thesis are presented in Chap. 6.

In Chap. 2, the two main standard tools in parallel programming, i.e. OpenMP and MPI,
are reminded. Then, we present an overview of the solutions that tried to port OpenMP
on distributed-memory architectures, and together with checkpoint techniques. In addition,
the previous version of CAPE is summarized and presented in this chapter.

Chapter 3 presents the modeling on checkpoints including checkpoint definitions and
operations. Based on this model, Time-stamp Incremental CheckPoinT (TICKPT) is intro-
duced as a case study. Then, Sec. 3.4 presents the analysis and evaluation of these approaches
and compares them with DICKPT.

8 Introduction

Chapter 4 presents a new design and implementation for an execution model of CAPE
based on TICKPT. Section 4.2 and 4.3 describe the abstract model and the implementation
of the CAPE’s memory model respectively. Section 4.4 presents a new execution model
for CAPE while Sec. 4.5 presents CAPE’s transformation prototypes. The analysis and
performance evaluation are presented in Sec. 4.6

Chapter 5 describes the implementation of the OpenMP Data-sharing model on CAPE
and reminds OpenMP data-sharing attribute rules. Then, Sec. 5.3 and 5.4 present the
implementation as well as the analysis and evaluation of this approach on CAPE.

The last chapter highlights the contributions of this thesis and some points to continue
to develop in the future.

Chapter 2
State of the Art

Contents
2.1 OpenMP and MPI . 10

2.1.1 OpenMP . 10
2.1.1.1 Execution model . 10
2.1.1.2 Memory model . 11
2.1.1.3 Directives, clauses, and functions 11
2.1.1.4 Example . 11

2.1.2 MPI . 12
2.2 OpenMP on distributed memory architectures 14

2.2.1 Solutions based on translation to software DSM 14
2.2.1.1 TreadMarks . 14
2.2.1.2 Omni/SCASH . 15
2.2.1.3 ParADE . 15
2.2.1.4 NanosDSM . 16

2.2.2 The use of a Single System Image . 17
2.2.3 Solutions based on a Translation to MPI 17

2.2.3.1 Extending OpenMP to directly generate communication code on
top of MPI . 18

2.2.3.2 Translating OpenMP programs to MPI based on the partial
replication model . 18

2.2.4 Intel Clusters OpenMP . 20
2.2.5 Using Global Array . 20
2.2.6 Based on Checkpointing . 21
2.2.7 Summary . 24

2.3 Checkpointing techniques . 24
2.3.1 Complete checkpointing . 26
2.3.2 Incremental checkpointing . 27
2.3.3 Discontinuous incremental checkpointing 28

2.3.3.1 DICKPT mechanism . 28
2.3.3.2 Design and implementation . 29

9

10 State of the Art

2.3.3.3 Data structure . 31
2.4 Checkpointing Aide Parallel Execution (CAPE) 33

2.4.1 Execution model . 33
2.4.2 System organization . 33
2.4.3 Translation prototypes . 35

2.4.3.1 Prototype for the pragma omp parallel for 36
2.4.3.2 Translation of the other directives to pragma omp parallel for

. 36

2.1 OpenMP and MPI

OpenMP [2] and MPI [1] are two widely used tools for parallel programming. Originally,
they run on shared and distributed memory architecture systems respectively.

2.1.1 OpenMP

OpenMP provides a high level of abstraction for the development of parallel programs. It
consists of a set of directives, functions and environment variables to easily support the
transformation of a C, C++ or Fortran sequential program into a parallel program. A pro-
grammer can start writing a program on the basis of one of the supported languages, compile
it, test it, and then gradually introduce parallelism by the mean of OpenMP directives.

2.1.1.1 Execution model

OpenMP follows the fork-join execution model with threads as presented in Figure 2.7.
When the program starts, only one thread is running (the master thread) and it executes
the code sequentially. When it reaches an OpenMP parallel directive, the master thread
spawns a team work including itself and a set of secondary threads (the fork phase), and
the work allocated to each thread in this team starts. After secondary threads complete
their allocated work, results are updated in the memory space of the master thread and all
secondary threads are suspended (the join phase). Thus, after the join phase, the program
executes only one thread as per the original. Fork-join phases can be carried out several
times in a program and can be nested.

Figure 2.1: The Fork-Join model.

OpenMP and MPI 11

2.1.1.2 Memory model

OpenMP is based on the use of threads. Thus, it can only run on shared-memory architec-
tures as well as all threads use the same memory area. However, in order to speed up the
computations, OpenMP uses the relaxed-consistency memory model [16]. With this memory
model, threads can use a local memory to improve memory accesses. The synchronization of
the memory space of the threads is performed automatically both at the beginning and at the
end of each parallel construct, or can be performed manually by specifying flush directives.
Figure 2.2 illustrates shared and local memory in an OpenMP program.

Figure 2.2: Shared and local memory in OpenMP.

2.1.1.3 Directives, clauses, and functions

For C, C++ or Fortran compilers supporting OpenMP, directives and clauses are taken
into consideration through the execution of specific codes. OpenMP offers directives for the
parallelization of most classical parallel operations including parallel region, worksharing,
synchronization, data environment, etc. In addition, OpenMP provides a set of functions
and environment variables in order to set or get the value of runtime environment variables.

Figure 2.3 presents the syntax of OpenMP directives in C/C++. Each directive has to
start with #pragma omp followed by the name of the directive. Then, depending on the
properties of the directive, some clauses might be provided to monitor the synchronization
or data sharing properties.

#pragma omp directive-name [clause[[,] clause] ...]
code-block

Figure 2.3: OpenMP directives syntax in C/C++.

2.1.1.4 Example

Figure 2.4 presents an example of translation of a piece of sequential code into a parallel code
using OpenMP. The sequential block is a function to compute the multiplication of two square

12 State of the Art

matrices, and can easily be transformed into a parallel code based on OpenMP directive.
The parallel code can execute in parallel under support of the OpenMP environment.

void matrix_mult(int A[], int B[], int C[], int n){
int i, j, k;
for(i = 0; i < n; i ++)

for(j = 0; j < n; j++)
for (k = 0; k < n; k++)

C[i][j] += A[i][k] * B[k][j];
}

↓ is easy to translate to parallel code ↓

void matrix_mult(int A[], int B[], int C[], int n){
int i, j, k;
#pragma omp parallel for
for(i = 0; i < n; i ++)

for(j = 0; j < n; j++)
for (k = 0; k < n; k++)

C[i][j] += A[i][k] * B[k][j];
}

Figure 2.4: Translation from sequential code to parallel code using OpenMP directives.

2.1.2 MPI

MPI is an Application Programming Interface (API) developed during the 90s. This inter-
face provides essential point-to-point communications, collective operations, synchronization,
virtual topologies, and other communication facilities for a set of processes in a language-
independent way, with a language-specific syntax, plus a small set of language-specific fea-
tures.

MPI uses the SPMD (Single Program Multiple Data) programming model where a single
program is run independently on each node. A starter program is used to launch all processes,
with one or more processes on each node and all processes first synchronize before executing
any instructions. At the end of the execution, before exiting, processes all synchronize again.
Any exchange of information can occur in between these two synchronizations. A typical
example is the master-slave paradigm where the master distributes the computations among
the slaves and each slave returns its result to the master after the job completes.

Although it is capable of providing high performance and running on both distributed-
memory architectures, MPI programs require programmers to explicitly divide the program
into blocks. Moreover, some tasks, like sending and receiving data or the synchronization of
processes, must be explicitly specified in the program. This makes it difficult for program-
mers for two main reasons. First, it requires the programmer to organize the program into
parallel structures which are bit more complex structures than in sequential programs. This
is even more difficult for the parallelization of a sequential program, as it severely disrupts

OpenMP and MPI 13

the original structure of the program. Second, some MPI functions are difficult to under-
stand and use. For these reasons, and despite the fact that MPI achieves high performance
and provides a good abstraction of communications, MPI is still not very easy to use for
parallel programming.

Figure 2.5 illustrates a piece of code that parallelize the sequential code presented in
Section 2.1.1.4. It is important to note that the division of tasks for processors and synchro-
nization of data between processes are explicitly done by programmers. The programmers
can do in different algorithms, and receive different performances.

void matrix_mult(int A[], int B[], int C[], int n){
int numtasks, taskid, i, j, k;

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &taskid);
MPI_Comm_size(MPI_COMM_WORLD, &numtasks);
//divide tasks for the processors
int __l__ = taskid * n /numtasks ;
int __r__ = (taskid + 1) * n / numtasks ;
//caculate at each processor
for(i = __l__; i < __r__; i ++)

for(j = 0; j < N; j++)
for (k = 0; k < n; k++)

C[i][j] += A[i][k] * B[k][j];

//syncronize the result
int nsteps = log2 (numtasks);
unsigned long msg_size = (n * n)/ numtasks ;
int partner;
int __nl__, __nr__;
for(i = 0; i < nsteps; i ++){

partner = taskid ^ (1 << i);
MPI_Sendrecv(&__l__, 1, MPI_INT, partner, i,

&__nl__, 1, MPI_INT, partner, i,
MPI_COMM_WORLD, &status);

MPI_Sendrecv(&C[__l__][0], msg_size, MPI_INT, partner, i,
&C[__nl__][0], msg_size, MPI_INT,

partner, i,
MPI_COMM_WORLD, &status);

__l__ = (__l__ <= __nl__) ? __l__ : __nl__ ;
msg_size = msg_size * 2 ;

}
MPI_Finalize();

}

Figure 2.5: Translation of the sequential code into MPI code by programmers.

14 State of the Art

2.2 OpenMP on distributed memory architectures

Many efforts have tried to port OpenMP on distributed memory architecture system to
provide a very easy-to-use tool at higher level. The typical approaches are listed below.

2.2.1 Solutions based on translation to software DSM

Distributed Shared Memory system (DSM) is the traditional approach to allow OpenMP on
clusters. The goal of this method is to transparently implement shared-memory paradigm on
a distributed-memory system without any modifications of the source code. Some software
DSMs have their own API, so that a translator has been provided to translate shared memory
paradigms of OpenMP into relevant calls to these API. Some of them were designed to
implement OpenMP without source code translation. As well as OpenMP memory model,
to improve performance, the relaxed consistency model is used to implement shared memory
abstraction in software DSMs (e.g. TreadMark [17] and SCASH [7]). However, in some
approaches, a restricted sequential consistency model is used to increase the portability of
the implementation (e.g. NanosDSM [18]).

The main issues of performance in software DSMs are the need to maintain coherence
of the shared memory and global synchronizations at the barriers. Therefore, most software
DSMs relax coherent semantics and impose a size limitation on the shared area to reduce the
cost of coherent maintenance. A memory management module is used to detect accesses to
shared memory, usually by page granularity. In the case of reading and writing to the same
page by different processors, the writing processor invalidates all copies of the page more
than the one in its local cache, which results in a page fault when the reading processor tries
to use it. That is called false sharing problem. In some software DSMs, such as TreadMarks
or SCASH, the multiple writer protocol [17, 7, 19] allows different processors to write a
page at the same time and merges their modifications at the next synchronization point,
so that the false sharing problem can be reduced in some context. In another efforts, the
false sharing can also be reduced by using cache-line sized granularity [20] and single-byte
granularity [21].

As can be seen in the results shown in [19], a native translation of a realistic shared-
memory parallel program for distributed-memory systems using software DSMs cannot pro-
vide satisfactory performance.

2.2.1.1 TreadMarks

TreadMarks [17] provides an API for emulating shared memory, and the SUIF toolkit to
translate OpenMP code to the code to be executed on the software DSM. Generally, the
OpenMP program is translated to a Treadmarks program like that: OpenMP synchroniza-
tion directives are replaced by TreadMarks synchronization operators; parallel regions are
encapsulated into different functions and translated into a fork-join code; OpenMP’s data
environment is converted into shared data using parameters of procedures. In TreadMarks,
shared and private variables are allocated on the heap and the stack respectively.

In TreadMarks, a multiple-writer protocol and a lazy invalidation version of Release
Consistency (RC) is implemented to reduce the amount of communication involved in im-
plementing the shared-memory abstraction. RC is a relaxed-memory consistency model that
divides shared-memory accesses into acquire and release accesses, which are realized using

OpenMP on distributed memory architectures 15

lock acquire and release operations. RC allows a process to write shared data in its local
memory before it reaches a synchronization point.

To reduce the cost of a whole page movement, the concepts of twin and diff were intro-
duced. The former copies a page when it is written for the first time, the later stores the
modifications of a page by comparing the twin and current page.

2.2.1.2 Omni/SCASH

SCASH [22] is a page-based software DSM, based on the RC memory model with multiple
writer protocols, so the shared memory area is synchronized at each synchronization point
called barrier. It also provides invalidate and update protocols so that programmers
can select one of them at runtime. Invalidate and update protocols send an invalidation
message for a dirty page and the new data on a page to remote host where the page copy
is kept at the synchronization point, respectively. For the shared memory areas, it has to
be allocated explicitly by the shared memory allocation primitive at runtime, otherwise it is
considered as a private area. This mechanism is called shmem memory model.

In SCASH, the concept of base and home node has been designed in order to implement
the dynamic home node real location mechanism. The home node of a page is the node that
stores the latest data of this page and the page directory that represents the nodes sharing
the page. If a node wants to share a page, it has to copy the latest data of the page found on
the home node. When reaching the barrier, the nodes having modified a shared page have
to be sent to the home node the difference between the former and the new page data. The
home updates the modified data into the page to maintain the latest page data. The base
node is the node that stores the latest home node, and it has to be referenced by all nodes.

To execute in parallel on clusters, an OpenMP C/Fortran program can be translated to
SCASH C/Fortran program [7, 23] using the Omni OpenMP compiler [24]. When SCASH
is targeted, the compiler converts the OpenMP program into a parallel program using the
SCASH static library, moving all shared variables into SCASH shared memory areas at
runtime.

The big challenge of this approach is to translate OpenMP shared variables to the SCASH
shmem memory model. In OpenMP, global variables are shared by default. However, in
SCASH, variables declared in global scope remain private. To solve this, the translators use
the following steps:

1. Transform all global variables to global variable pointers. These pointers point to a
region in the shared address space where the actual global variables are stored.

2. Change the references of global variables to indirect references via the corresponding
pointers.

3. Generate a global data initialization function for each compilation unit. These func-
tions allocate the global variables in the shared address space and store their addresses
in the corresponding global variable pointers.

2.2.1.3 ParADE

ParADE [25], which stands for Parallel Application Development Environment, is an OpenMP
programming environment on top of a multi-threaded software DSM using a Home-based
Lazy Release Consistency (HLRC) [26, 27] protocol. Figure 2.6 presents the architecture of

16 State of the Art

the ParADE programming environment. OpenMP translator and runtime system are the
most important components of ParADE. The former translates the OpenMP source code
into a ParADE code based on the ParADE API which in turn involves POSIX threads and
MPI routines. The latter provides an environment to execute these APIs. To improve per-
formance, the runtime system provides explicit message-passing primitives for synchronizing
the small data structures at some synchronization points and work-sharing directives. This
is a key feature of ParADE.

Figure 2.6: Architecture of the ParADE parallel programming environment.

In ParADE, OpenMP parallel directives are replaced by ParADE runtime interfaces to
realize the fork-join execution model. The for work-sharing directive is only supported for
static scheduling, and is recalculated the range of the iterations. The critical directive
is translated to use pthreadlock and MPI to synchronize within a node and between nodes
respectively.

Based on a multi-threaded software DSM that detects a process’s access to shared mem-
ory pages by catching the SIGSEGV signal generated by the operating system, ParADE
performs the operations to update the shared memory page to the remote nodes. ParADE
also has to solve the atomic update and change right problem [28] or mmap() race condi-
tion [29]. This problem occurs when a thread in a node may access a shared page while
another thread was handling a SIGSEGV signal and updating this page. To solve this,
different methods have been introduced: using a file mapping, System V shared memory, a
new mdup() system call, a fork() system call [25, 30].

2.2.1.4 NanosDSM

NanosDSM [18] is an everything-shared software DSM, which was implemented in Nthlib [31]
runtime library designed to support distributed memory environment. The OpenMP pro-
gram is compiled by NanosCompiler [32] to execute in parallel with NanosDSM on a DSM.

NanosDSM was designed achieving two conditions: 1) the whole address space is shared
– not only the explicitly shared memory areas, but also stack and other regions are shared

OpenMP on distributed memory architectures 17

among processes, 2) the system offers a sequential semantic – the modification at any node
is updated immediately in the others.

To reach the sequential semantic, NanosDSM has implemented a single-writer multiple-
readers coherence protocol [33]. Any node has to ask the permission to modify a memory
page. The permission is managed by a master node of the page, and a page has a single
master. This master node is migrated to any nodes depending on the first node that modified
the page or the first node that started the application.

2.2.2 The use of a Single System Image

Single System Image (SSI) is the property of a system that presents users and applications
a single unified computing resource [34]. It aims at focusing on a complete transparency
of resource management, scalable performance, and system availability in supporting user
applications on cluster-based systems. However, this mechanism is not enough to support the
execution of OpenMP programs on cluster system directly as OpenMP threads are created
and executed on a single machine.

Based on SSI, Kerrighed [35] is a single system image operating system for clusters
which is successful to provide an environment to execute OpenMP programs on distributed-
memory systems [6]. It supports memory sharing between threads and processes executing
on different nodes of the cluster and aims at providing a high-performance, high-availability,
and easy-to-use system [36]. In Kerrighed, the global shared memory is designed based on
the container concept [37]. This container is a software object that allows storing and share
memory with a page-based granularity on cluster.

The main advantage of Kerrieghed when executing OpenMP on cluster is its ability to
provide a fully-compliant version of OpenMP. An OpenMP program can execute on this
cluster system without any modifications. It is only a special compiler that needed linking
target programs with the gthreads library. However, there are two factors that strongly
reduce the global performance: the number of requirement of synchronizations and the
physical expansion of the memory on the different machines [38]. In a demonstration [6],
the results show that the larger the number of threads is, the lower the performance is (ref.
Table 2.1).

Number of OpenMP threads Execution time in seconds
1 19,78
2 31,57
4 42,71

Table 2.1: Execution time when running the HRM1D code on Kerrighed.

2.2.3 Solutions based on a Translation to MPI

MPI has become the standard programming tool for distributed-memory systems because
of its high performance and portability. Specifying the pieces of code executing on each
process and the explicit data communication mechanism between processes help to reduce
the amount of transferred data over the network and make synchronization more flexible.
However, it requires more efforts from the programmers. As a result, some efforts tried

18 State of the Art

to implement OpenMP on top of MPI [39, 9, 10], with the target to achieve have similar
performance.

MPI uses a distributed-memory model where each process has its own memory space
and no shared with the others. With OpenMP, the shared-memory and relax consistency
memory models allow threads to use the same location in memory and have their own private
memory. Therefore, to port OpenMP on MPI, the main challenge is to implement a shared-
memory model on the distributed-memory system. There have been two different approaches
to solve this problem [9, 10].

2.2.3.1 Extending OpenMP to directly generate communication code on top of
MPI

In this approach, Antonio J. Dorta et al. introduced language llc – an extension of OpenMP,
and a compiler llCoMP [10]. llCoMP is a source-to-source compiler implemented on top of
MPI. It transforms OpenMP code with a combination of llc directives into C code which
explicitly calls MPI routines. The resulting code is compiled into an executing code by a
MPI compiler.

The llc language is designed basing on the OTOSP (One Thread is One Set of Pro-
cessors) computational model [40]. The memory of each processor is private, the sequential
codes are executed at the same in a set of processors – called a processor set. To implement
the fork-join model, the set is divided into subsets (fork) as a consequence of the execution
of a parallel directive, and they join back together (join) at the end of the execution of
the directive. When joining, the modified data in the different subsets are exchanged.

For the translation of an OpenMP parallel loop, the shared variables in the left-hand
side of an assignment statement inside a parallel loop have to be annotated with an llc
result or nc_result clause. This notifies the compiler that these memory regions can be
modified by the processor sets after being executed in the divided jobs.

In llCoMP, Memory Descriptors (MDE) are used to guarantee the consistency of the
memory at the end of the execution of a parallel construct. MDE are composed of data
structures that hold information in a set of pairs (addr, size). They store the necessary
information about memory regions modified by a processor set. The communication pattern
involved in the transaction of a llc result or nc_result is all-to-all in most of the cases,
and the data can be compressed to minimize the communication overhead.

This approach has shown the achievement of high performance in some experiments [10].
However, it also includes some drawbacks. It requires the programmer to add some pieces
of code to identify the region of memory to be synchronized between processes. Moreover,
other directives such as single, master, and flush are not easy to implement using the
OTOSP model.

2.2.3.2 Translating OpenMP programs to MPI based on the partial replication
model

In this approach, Ayon Basumallik et al. [9] use the concept of partial replication to reduce
the amount of data communication between nodes. In this model, shared data are stored on
all nodes, but no the shadow coping or management structure need to be stored. In addition,
the arrays with fully-regular accesses are distributed between nodes by the compiler.

The fork-join model is transferred in to the Single-Program-Multiple-Data (SPMD) com-
putational model [41] with the flowing characteristics:

OpenMP on distributed memory architectures 19

• The master and single directives inside parallel regions, and the sequential regions
are executed by all participating processes.

• Iterations of OpenMP parallel for loops are partitioned between processes using block-
scheduling.

• Shared data are stored on all process memories.

• The concept of producers and consumers prevail for shared data and there is no concept
like an owner for any shared data item.

• At synchronization points, each participating process exchanges the produced shared
data.

Basically, translating from OpenMP to MPI follows these three steps:

1. Interpretation of OpenMP Semantics Under Partial Replication. In this step, the com-
piler converts the OpenMP program to the SPMD form. It translates the OpenMP
directives, performs the requisite work partitioning, constructs the set of shared vari-
ables, and does computation re-partitioning. The shared variables are analyzed and
stored in the shared memory areas of DSM using Inter-Procedural Analysis Algorithm
for Recognizing Shared Data algorithm [42]. Computation re-partitioning transforms
the patterns where the OpenMP application contains loops partitioned in the situation
that multiple dimensional arrays are accessed along different subscripts in different
loops. It then maintains data affinity by changing the level at which parallelism is
specified and partitions work using the parallelism of the inner loops.

2. Generation of MPI Messages using Array Dataflow. In this step, the compiler inserts
MPI functions to exchange data between producers and potential future consumers.
The relationships between producers and consumers are identified based on perform-
ing a precise array-dataflow analysis. To characterize accesses to shared arrays, this
compiler constructs bounded regular section descriptors [43]. A control flow graph is
generated with a vertex mapped to a program statement. The regular section descrip-
tors (RSDs) and stating points of OpenMP are recorded by annotating the vertices
of the control flow graph and loop entry vertices, respectively. This graph is used to
implement relaxed memory consistency model of OpenMP.

3. Translation of Irregular Accesses. Irregular accesses are the reading and the writing
that cannot be analyzed precisely at compile-time. To handle that, a technique based
on the property of monotonicity is used [9, 44]. However, in the cases that indirection
functions are not provably monotonic or irregular write operation are not in the form of
an Array[indirection function], this compile-time scheme can not be applied. In these
specific cases, a piece of code is inserted to record the write operation at runtime.
These code allocated a buffer on each process to store the written elements in the form
of an (address, value) pair. And this buffer is intercommunicated at the end of a loop
that contains the irregular write operation.

The results presented in [9] have shown the high performance of this approach. However,
only Steps 1 and 2 are implemented in the compiler. Step 3 has to be done manually.
Therefore, this approach is also not fully compliant with OpenMP.

20 State of the Art

2.2.4 Intel Clusters OpenMP

Intel Cluster OpenMP (ClOMP) [12, 45] is the first commercial software which ports OpenMP
on distributed-memory systems. It is developed by Intel corporation. It now fully supports
OpenMP 2.5 standard for C, C++, and Fortran except for nested parallel regions.

ClOMP is implemented based on a software DSM. Moreover, to identify the shared
variables among threads, it adds shareable directive into the OpenMP specification. This
directive must be explicitly declared by the programmer in order to indicate the shared
variables which are managed by the software DSMs.

In ClOMP, the runtime library is responsible for the consistency of shared variables
across the distributed nodes. Shared variables are grouped together and allocated on certain
pages in memory. The runtime library uses the mprotect system call to protect these pages
against reading and writing. When the program reads from the page, the SIGSEGV signal
is generated by the operation system, ClOMP executes a set of operations to update from
all nodes that modified the page since it was last brought up-to-date. Then, the reading
protection of the page is removed, the page is updated, and the instruction is restarted.
When the program writes to a writing protection page, the similar page fault mechanism is
performed, ClOMP makes a copy of the page (called a twin), and removes all protections
from the page. The twin makes it possible to identify the modification in a page. At the
synchronization points, the status of modification of these pages are sent to all nodes in the
system to notify that they are not up-to-date.

Experiences in [12, 46] have shown the high performance of ClOMP. It takes advantage of
the relaxed consistency memory model of OpenMP. However, users have to add shareable
directive into some relevant pieces of codes to ensure it to perform correctly.

2.2.5 Using Global Array

Global Array (GA) [47, 48] is a set of library routines to simplify the programming method-
ology on distributed-memory systems. It aims at combining the better features of message
passing and shared-memory – simple coding and efficient execution. The key concept of
GA is providing a portable interface, where each process in a MIMD parallel program can
asynchronously access logical blocks of physically distributed matrices, and no need for ex-
plicit cooperation by other processes. That can be used by programmers to write parallel
program on clusters using a shared memory access, specifying the layout of shared data at a
higher level. In addition, the GA programming model acknowledges the difference of access
time between remote and local memory, which requires the programmer to determine the
needed locality for each phase of the computation. Furthermore, since GA is a library-based
approach, the programming model works with the most popular language environments:
currently bindings are available for FORTRAN, C, C++ and Python.

OpenMP programs can be automatically translated into GA programs because each has
the concept of shared data and the GA library features match with most OpenMP directives.
This statement has also been realized by the efforts of L. Hang et al. in [11, 49, 50, 51].
According to L. Hang et al., apart from the dynamic settings or changing of the number of
threads like omp_set_dynamic, omp_set_num_threads, most OpenMP library routines and
environment variables can also be translated into GA routines.

The strategy of translation from OpenMP to GA program as follows: a fixed number of
processes are generated at the beginning of GA program, each OpenMP thread is mapped
to a GA process. The global arrays are only shared variables in GA processes, the others are

OpenMP on distributed memory architectures 21

private. OpenMP shared variables are translated to global arrays that are distributed and
communicate automatically between processes. The most important transformations are:

• OpenMP parallel constructs are translated to MPI_Init and GA_INITIALIZE routines
to initialize processes and the memory needed for storing distributed global arrays in
GA.

• GA_NODEID and GA_NNODES are called to get ID and number of processes, respectively.

• OpenMP parallel loops (the loops inside parallel constructs) are translated into GA
by invoking a generated GA program to calculate the loop bounds depending on the
specified schedule so as to assign works. Depending on the new lower and upper bounds,
and the array region accessed in the local code, the GA_GET in the GA program copy
the relevant part of the global arrays. Then, the GA process performs its work and
calls GA_PUT or GA_ACCUMULATE to put back the modified local copies into the global
location.

• The GA_CREATE routine is called to distribute global arrays in the GA program when-
ever shared variables in parallel regions of OpenMP have appeared.

• The GA_BRDCST routine is responsible for the implementation of the OpenMP firstprivate
and copyin clauses. The OpenMP reduction clause is translated by calling the
GA_DGOP routine.

• OpenMP synchronizations are replaced by GA synchronization routines. As well as
OpenMP, GA synchronizations ensure that all computations in parallel regions have
been completed and their data has been updated to global arrays. For example,
OpenMP critical and automic directives are translated by calling of GA locks and
Mutex routine, GA put and get routines are used to replace OpenMP flush, GA_SYNC
library calls are used to replace OpenMP barrier as well as implicit barriers at the
end of OpenMP constructs, etc..

• The OpenMP ordered clause cannot be translated directly to GA routines, so MPI_Send
and MPI_Recv are used to guarantee the execution order of processes.

In some experimental results [11, 49, 50, 51], the approach of translation from OpenMP
to GA programs shown high performance. However, the drawbacks of this method are the
requirements to explicitly specify shared variables, and some OpenMP routines that cannot
be translated into GA routines. This problem prevents it to become a fully compliant with
OpenMP on distributed-memory system.

2.2.6 Based on Checkpointing

CAPE [3, 4] is an approache based on checkpointing techniques [13, 52] to implement the
OpenMP fork-join model. In that model, the program is only initialized in a thread called
the master thread. The master thread is also the only one in charge of the execution of the
sequential region. When it reaches the parallel region, the master thread creates additional
threads – called slave threads, and distributes code and data to them automatically. That
processing is called the fork phase. Then, all threads including the master execute the
parallel code – called the compute phase. During the compute phase, data in each thread

22 State of the Art

is allowed to store locally. At the end of a parallel region – the join phase – data at all
threads are updated into shared-memory, and all slave threads are suspended or released.

Two versions of CAPE have been developed so far. The first version (CAPE-1) [3] uses
complete checkpoints, while the second version (CAPE-2) [4] uses incremental checkpoints.
Both of two versions use processes instead of threads. Figure 2.7 shows the association of
the OpenMP execution model and CAPE-1 execution model. The different phases are:

Figure 2.7: OpenMP execution model vs. CAPE execution model.

• fork phase: the master process divides the jobs into smaller parts or chunks and send
them to slave processes. At the beginning of each part, the master process generates a
complete checkpoint and sends it to a distant machine to create a slave process. After
sending the last part, the master waits for the results from the slave processes.

• compute phase: the slave processes resume the process from the complete checkpoint
sent by the master in order to compute the divided jobs. After computation, the result
at each slave is extracted and saved into a complete result checkpoint. Unlike OpenMP,
during this phase, the master process does not take part in the divided jobs. It only
waits for the results from the slave processes.

• join phase: the result checkpoint at each slave process is sent to the master process,
and all are merged altogether on the master. Then, the merged checkpoint is used to
resume the execution. At this time, the master is the only active process in the system.

Currently, CAPE only supports for OpenMP program using C/C++. To execute on
CAPE, the OpenMP program need to be translated to a CAPE program by a set of CAPE

OpenMP on distributed memory architectures 23

prototypes. A CAPE program is a C/C++ program that substitutes OpenMP directives
to CAPE functions that be compiled by any C/C++ compile: Figure 2.8 presents the
translation of the OpenMP parallel for construct to a CAPE code with CAPE-1.

pragma omp parallel for
for (A ; B ; C)

D ;

↓ automatically translated into ↓

1 parent = create (original)
2 if (! parent)
3 exit
4 copy (original, target)
5 for (A ; B ; C)
6 parent = create (beforei)
7 if (parent)
8 ssh hostx restart (beforei)
9 else
10 D
11 parent = create (afteri)
12 if (! parent)
13 exit
14 diff (beforei, afteri, deltai)
15 merge (target, deltai)
16 exit
17 parent = create (final)
18 if (parent)
19 diff (original, final, delta)
20 wait_for (target)
21 merge (target, delta)
22 restart (target)

Figure 2.8: Template for OpenMP parallel for loops with complete checkpoints.

The CAPE-1 functions used in Fig. 2.8 are described as follows:

• create (file): generates a complete checkpoint and save it into file .

• copy (file1 , file2): copies the content of file1 into file2.

• diff (file1 , file2 , file3): finds the difference between file1 and file2 and
saves the result into file3.

• merge (file1 , file2): merges file1 into file2.

• wait_for (file): waits for the results from slave processes and stores the resulting
checkpoint in file.

24 State of the Art

• restart (file): resumes the execution of the current process from the checkpoint
file provided as a parameter.

In some comparisions [5, 53], CAPE has shown that it is a promising solution that can
fully support OpenMP directives, clauses and functions. In addition, CAPE has achieved
high performance. For more details, checkpointing techniques and CAPE-2 are presented in
the next sections.

2.2.7 Summary

There have been many efforts to port OpenMP on distributed-memory systems. However,
apart from Checkpointing-Aide Parallel Execution, there are no solution that are able to
achieve the two requirements: 1) fully-compliant with OpenMP, and 2) high-performance.
Table 2.2 presents the summary of advantages and drawbacks of all presented tools.

2.3 Checkpointing techniques

Checkpointing is the technique that saves the image of a process at a point during its lifetime,
and allows it to be resumed from the saving’s time if necessary [13, 52]. Using checkpointing,
processes can resume their execution from a checkpoint state when a failure occurs. So, there
is no need to take time to initialize and execute it from the begin. These techniques have been
introduced for more than two decades. Nowadays, they are used widely for fault-tolerance,
applications trace/debugging, roll-back/animated playback, and process migration.

To be able to save and resume the state of a process, the checkpoint saves all necessary
information at the checkpoint’s time. It can include register values, process’s address space,
open files/pipes/sockets status, current working directory, signal handlers, process identities,
etc.. The process’s address space consists of text, data, mmap memory area, shared libraries,
heap, and stack segments. Depending on the kind of checkpoints and its application, the
checkpoint takes all or some of these information. Figure 2.9 illustrates the data of a process
that can be saved in a checkpoint file.

Basically, checkpointing are categorized [54, 55, 56, 57] into two approaches: system-level
checkpointing (SLC) and application-level checkpointing (ALC).

System-level checkpointing is implemented and performed at the operation system level.
It stores the whole state of the processes (register values, program counter, address space,
etc.) in a stable storage. The main advantage of this method is its transparency. Programs
can be checkpointed using SLC checkpointing without any efforts from the programmer or
the user point of view. However it is no portable because it depends on the operating system
library and system architectures. In addition, as compared with other approaches that only
store necessary data, its cost is much higher. Some typical examples are Kerrighed [58] –
checkpoint/recovery mechanisms for a DSM cluster system, CHPOX [59], Gobelins [60] –
process migration as a primitive operation, and KeyKOS [61] – implementation of rollback
recovery.

Application-level checkpointing is performed at the program level and only necessary
data are stored into the checkpoint file. It can be transparent or non-transparent with the
user. The ALC transparent methods [13, 62, 63, 64, 65] is achieved by compiling the program
with a provided special checkpointing library, or by rewriting executable files, or injecting

Checkpointing techniques 25

Method Platform Principle Advantages Drawbacks

Tread-
Marks
[17]

DSM,
cluster of
SMPs

extends the original
TreadMarks

high perfor-
mance

difficulty to automat-
ically identify shared
variables

SCASH [7,
23]

DSM maps only shared vari-
ables on the global
shared memory

high perfor-
mance

use of additional direc-
tives

RC model
[25, 18, 21]

DSM uses the HLRC model to
implement the OpenMP
memory model

high perfor-
mance

difficulty to automat-
ically identify shared
variables and imple-
mentation of flush,
reduction, atomic...

SSI [6, 35] DSM uses a SSI as a global
memory for threads

fully OpenMP
compliant

weak performance

llCoMP
[10]

MPI translates to MPI high perfor-
mance

use of additional direc-
tives; difficulty to im-
plement single, master,
flush

Partial
Replica-
tion model
[9]

MPI translates to MPI; au-
tomatically specifies ex-
changed data between
nodes

high perfor-
mance

not completely im-
plemented; difficulty
to implement single,
master...

ClOMP
[12, 45]

DSM maps only shared vari-
ables on the global
shared memory

high perfor-
mance

use of additional direc-
tives

GA [50,
11, 49, 51]

GA translates to Global Ar-
ray

high perfor-
mance

difficulty to automat-
ically identify shared
variables

CKPT [3,
4]

Checkpoint uses checkpoint tech-
niques to implement the
fork-join model

high per-
formance
and poten-
tial fully-
compliant
with OpenMP

current version for pro-
grams that only match
Bernstein conditions

Table 2.2: Comparison of implementations for OpenMP on distributed systems.

26 State of the Art

Figure 2.9: The state of a process can be saved in a checkpoint.

checkpointing into running processes. For ALC non-transparent methods [66, 67, 68], it
requires adding checkpointing directives into the source code of the program by the user.

Further more, basing on the structure and contents of the checkpoint file, checkpointings
are categorized into two groups: complete and incremental checkpointing.

2.3.1 Complete checkpointing

Complete checkpointing [52, 69, 70] saves all information regarding the process at the points
that it generates checkpoints. The advantages of this technique are reduction of the time of
generation and restoration. However, not only a lot of duplicated data stored each time a
checkpoint is taken, there are also duplications in the different generated checkpoints. For
example, the code segment is never changed during execution but it is stored every time a
checkpoint is taken. In the heap, few bytes of data maybe changed but it saves the whole
segment. Therefore, checkpoints based on this techniques contain a lot of duplicated data,
so that the checkpoint’s size is too large. To solve this drawback, some methods have been
proposed and applied:

• Data Compression is a straightforward approach to reduce checkpoint size based on
data compression algorithms [71]. For example, the CATCH compiler [69] implemented
on the LZW data compressor [72] that shows a significant reduction of the complete
checkpoint size.

• Data Deduplication is a technique based on data compression to remove the re-
peating data [73, 74]. It splits the input data into different blocks and calculates a
fingerprint for each of them. If there exists any blocks sharing the same fingerprint,

Checkpointing techniques 27

these blocks are considered as duplications, and checkpointing only need to save the
index number for the duplicated blocks. Otherwise, it is unique, and data of that
blocks has to be saved in the checkpoint file. The analysis and experiments in [70]
shows a reducing factor from 10% to 30% of the checkpoint’s size on a single node
system, and from 47% to 50% on distributed memory systems.

• Adaptive Checkpointing aims at taking checkpoints at desirable points of time. It
reduces checkpoint size by reducing the number of checkpoints. This method is useful
for programs with large run-time variation in checkpoint size [69].

2.3.2 Incremental checkpointing

Incremental checkpointing [13, 75, 14, 76, 77, 55, 56, 78] only saves the modified data. This
has to be compared with the previous checkpoint. This technique reduces checkpoint’s
overhead and checkpoint’s size. Therefore, it is widely used in distributed computing.

The main challenges of these techniques is to detect the modified regions of the process’s
address space while it is running. Currently, four approaches are handling this problem:

• Use of the dirty bit. Figure 2.10 shows the structure of a Page Table Entry (PTE)
in Linux Kernel for i386. The dirty bit is a high importance for memory management
in Linux, especially for the page cache [55]. When a page is written, the hardware
sets the dirty bit in the corresponding page. Therefore, when taking a checkpoint,
all the PTEs are checked to identify if the page has been changed since the begin of
the program or since the previous checkpoint. Then, all writable pages are marked as
clean (status non-dirty). The biggest problem of this method is that all dirty bits
are cleaned when the main memory associated with these pages written back from the
cache. In order to maintain the correct kernel functionality, the original dirty bit is
duplicated in one of the unused bits in the PTE [79]. The low-level functions used by
the kernel to access this bit are properly updated.

Figure 2.10: Page table entry in i386 version of the Linux Kernel.

• Use of the virtual memory page fault handler. After a checkpoint or at the
beginning of the program, all writable pages of the virtual memory are set to write-
protection. When the a page is written by the program for the first time, a page fault
exception is thrown out. The page fault exception handler uses one of the available
bits of the PTE (9th to 11th bit in Fig. 2.10) to mark the page has been modified, or
saves the address of this page in a list. Then, the write-protection is removed, and the
program can write in that page. When taking a checkpoint, the data of all modified
pages is copied and stored into the checkpoint.

28 State of the Art

• Use of a hash function. This method consists in using a hash function to recognize
the changes in the memory blocks [77]. In this method, a hash function F () is selected
to generate the hash values of the memory blocks. Each memory block X has a unique
hash value F (X). At the beginning of the program or after taking a checkpoint, the
hash values of the memory blocks are computed and saved in a hash table. When
taking the next checkpoint, the hash values of these blocks are re-computed and stored
in another hash table. The two hash tables are compared to find the differences.
If the hash values of a block in the two hash tables are different, this memory block
is marked with a modified status, and is saved in the checkpoint file.

There are two important factors in this methods: 1) the choice of the hash function, 2)
identify the granularity of the blocks. For the hash function, theneeded space to store
the hash values is much smaller than the size of the memory blocks, and it has to have
correctness and performance, for instances, MD5, SHA1 and SHA2 [80]. Regarding
the granularity, the smaller the block size is, the larger the opportunity to optimize
the checkpoint size is. However, the performance maybe reduced because of taking
time to compute the hash values. This granularity can be identified adaptively based
on the variables in the program [81].

• Use of variable-based approaches. This method detects the modified variables and
saves them into the checkpoint file. The detection of modified variables is presented
in [82] where a compiler is modified to detect variable changes, and in [83] where an
executable editing library is added.

For efficient optimization incremental checkpoints, beside applying optimizations on com-
plete checkpoints, many other approaches have been proposed. Some typical approaches are
1) using live variable analysis [56] – ie. select variables are live during the checkpoint, avoid-
ing storage of dead variables, 2) using user-directed checkpointing [13] – ie. exclude the
unnecessary memory, or 3) using word-level granularity [76, 14] – ie. combine virtual mem-
ory page fault handler and save page’s data to find the difference at word-level granularity,
etc..

2.3.3 Discontinuous incremental checkpointing

Discontinuous Incremental Checkpointing (DICKPT) [14] was designed based on incremental
checkpointing. It uses virtual memory page fault handler, combined with save page’s data to
detect the modified memory space at a word-level granularity. In addition, some additional
directives are provided to improve the ability of taking checkpoint in a part of a program.

2.3.3.1 DICKPT mechanism

The mechanism of DICKPT is designed based on a virtual memory page fault handler on
incremental checkpointing. However, it does not perform transparently. There are three
pragma directives that are defined to identify the piece of code and the locations in the
program taking checkpoints:

• pragma dickpt start: identifies the place that set write-protection to all writable
pages and start monitoring.

Checkpointing techniques 29

• pragma dickpt save file_name: identifies the position that generates and saves in-
cremental checkpoint into file_name.

• pragma dickpt stop: identifies the place that removes write-protection and stops
monitoring.

When a modified page is identified by page fault handler, its data is copied into a list. At
the time it takes a checkpoint, data in that list are compared to the current data in memory
using word-level granularity. The different data in memory are stored in the checkpoint file.

2.3.3.2 Design and implementation

Figure 2.11 shows the abstract model of DICKPT on Linux Kernel for i386. It is implemented
at both user level and kernel-levels [84].

Figure 2.11: The abstract model of DICKPT on Linux.

Application: An application using DICKPT must be inserted the three pragma directives
in to the pieces of code where the checkpoint needs to be taken. At execution, the application
are called to execute and are traced by a monitor. Figure 2.12 presents a piece of code that
illustrate the use of DICKPT’s pragma directives in an applications.

int main (int argc, char * argv []){
functionA();
#pragma dickpt start
functionB();
#pragma dickpt save file1.ckpt
functionC();
#pragma dickpt save file1.ckpt
#pragma dickpt stop
functionD();
return 0 ;

}

Figure 2.12: An example of use of DICKPT’s pragma.

When reaching #pragma dickpt start, #pragma dickpt save, and #pragma dickpt
stop directives, signals START, SAVE, and STOP are respectively sent to the monitor. In
addition, when the application writes to a memory page with the write protection set, the
SIGSEGV signal is thrown out by the operating system. Then, this signal and the page address
are also sent to the monitor.

30 State of the Art

Figure 2.13: The principle of the DICKPT monitor.

Checkpointing techniques 31

Monitor: The Figure 2.13 presents the flowchart of the monitor based on DICKPT. At
the beginning, the monitor calls and runs the program in a child process. It also tracks the
program memory under the provision of the ptrace Linux system call. While the program
is running, the monitor waits for the signals sent by the program. On the arrival of the
signal, the monitor executes the relevant functions to generate DICKPTs. These functions
are explained in the following:

• set_wprtect(pages): sets all writable pages of the application memory to write
protection. This function calls a system function provided by the driver.

• remove_wprtect(pages): removes the write protection of an application memory
page. It calls a system function provided by the driver.

• save(page): reads application’s memory by page address and saves it into a buffer.
The read memory function is also implemented in the driver.

• diff(list, current): compares the buffer with the current application’s memory to
find the modified data. The word-level granularity is implemented in DICKPT.

• save(regs, ickpt): saves application’s registers values and the modified data into
checkpoint file. Register values are provided by a function implemented in the driver.

• clear(list): clear the list of buffers.

Driver: At the kernel-level, a character device driver [85] has been implemented to provide
system functions. This allows the monitor to manipulate the application memory more easily.
The main functions of DICKPT’s driver are:

• lock_process_image() sets all memory pages of the application process to write pro-
tection.

• unlock_process_image() sets all memory pages of the application process to their
initial status.

• unlock_a_page(addr) sets a memory page of the application process indicated by
addr to its initial status.

• read_range(addr, length, dst) reads length bytes of data from the process mem-
ory, starting at addr. The result is saved at the the dst address in the user space.

• write_range(addr, length, values) write length bytes data to the process mem-
ory, starting at addr. The written data are located at the values in the user space.

2.3.3.3 Data structure

The checkpoint generated by DICKPT contains two sets of data: a) register values – ie. all
registers values at the checkpoint’s time, and b) process’s address space – ie. all modified
data as compared to the previous checkpoint of the executing process.

For modified data, the memory granularity is world-level (4-byte word in this case), so in
most of the cases a lot of space is needed to store the address of each word. In [14], authors
have proposed four structures to optimize the checkpoint size:

32 State of the Art

Figure 2.14: Amount of memory needed to store the modified data of a memory page.

• Single data (SD). For each modification of a word, the data are stored in the format
of 8-bytes: 4 bytes for the address, and 4 bytes for the data. The structure of the data
is {(addr, value)}.

• Several successive data (SSD). The data are stored in a structure of type {(addr,
size, values)}. The checkpoint saves values of size bytes, from addr address into
checkpoint file. In DICKPT, the maximum for size is the page size.

• Many data (MD). The data are stored in a structure of type {(addr, map, values)}.
Here, map is presented using a single bit per memory location (per word). For 4-kB
pages, the size of the map is 1024 bits.

• Entire page (ED). In this case, the whole page is stored, so the structure of the data
is {(addr, values)}. The size is identified automatically by the page size.

Figure 2.14 presents the comparison of the amount of memory to store the modified data
on a 4-kB page by the 4 data structures [14]. SD, MD, and EP only depend on the number
of updates. SSD depends on the number of updates and the distribution of the updated
memory locations. The best case (SSDmin) is achieved when the set of contiguous memory
location has been updated is single and the worst case (SSDmax) occurs when the distributed
memory location of updated memory is reached the maximum number of times.

Each structure has advantages and drawbacks depending on the number and location
of the modifications on each memory page. For example, EP is the best solution if the
modified region is always the whole page, SD is always the best choice if only few words are
updated but not many, MD is really good if there are a lot of modifications and in different
locations, while SSD is an interesting solution when the number of updates is smaller than
34. Currently, data structures of DICKPT implements the SSD structure.

Checkpointing Aide Parallel Execution (CAPE) 33

2.4 Checkpointing Aide Parallel Execution (CAPE)

In the previous works, there were two versions of CAPE having been developed. The later
one using DICKPT has shown the higher performance compared with the previous one
using completed checkpoints [4]. This section, only focuses on the present CAPE ie. the
later version.

In order to execute an OpenMP program on distributed-memory systems, CAPE uses a
set of templates to translate an OpenMP source code into a CAPE source code. Then, the
generated CAPE source code is compiled using a traditional C/C++ compiler. At last, the
binary code can be executed independently on any distributed-memory system supporting
the CAPE framework. The different steps of the CAPE compilation process for C/C++
OpenMP programs are shown in Fig. 2.15.

Figure 2.15: Translation of OpenMP programs with CAPE.

2.4.1 Execution model

The CAPE execution model is based on checkpoints that implement the OpenMP fork-join
model. This mechanism is shown in Fig. 2.16. To execute a CAPE code on a distributed-
memory architecture, the program first runs on a set of nodes, each node being run as a
process. Whenever the program meets a parallel section, the master node distributes the jobs
among the slave processes using the Discontinuous Incremental Checkpoints (DICKPT) [14,
4] mechanism. Through this approach, the master node generates DICKPTs and sends them
to the slave nodes, each slave node receives a single checkpoint. After sending checkpoints,
the master node waits for the results to be returned from the slaves. The next step is different
since it depends on the nature of the node: the slave nodes receive their checkpoint, inject
it into their memory, execute their part of the job, and send it back the result to the master
node by using DICKPT; the master node waits for the results and after receiving them all,
merges them before injection into its memory. At the end of the parallel region, the master
sends the resulting checkpoint to every slaves to synchronize the memory space of the whole
program.

2.4.2 System organization

In CAPE, each node consists of two processes. The first one runs the application program.
The second one plays two different roles: the first as a DICKPT checkpointer and the
second as a communicator between the nodes. As a checkpointer, it catches signals from the
application process and executes appropriate handles. In the communicator role, it ensures
the distribution of jobs and the exchange of data between nodes. Figure 2.17 shows the
principle of this organization.

34 State of the Art

Figure 2.16: CAPE execution model.

Checkpointing Aide Parallel Execution (CAPE) 35

In the current version, the master node is in charge of managing slave nodes and does
not execute any application jobs in the parallel sections. Checkpoints are sent and received
using sockets. The principle of sending and receiving is described as follows:

• The master node uses two sockets, the first one to listen to the requests from slave
nodes, and the second one to send/receive checkpoints. The slave uses one socket to
communicate with the master node.

• In order to send checkpoints from the master to the slave node, the monitor of the
master maintains a loop to connect one by one with each slave. At each time, the
master can only connect and send checkpoints to one slave.

• In order to receive checkpoints from the slaves, the master also sets up a connection
with the slave, and receive the checkpoint from the current slave. The loop is created
in order to connect and communicate with all slaves.

Figure 2.17: System organization.

2.4.3 Translation prototypes

To be compliant with OpenMP, CAPE provides a set of prototypes to translate OpenMP
source code to CAPE source code (see Fig. 2.15). In work sharing constructs [2], only pragma
omp parallel for and pragma omp single are implemented, the others are fist translated
to pragma omp parallel for.

36 State of the Art

2.4.3.1 Prototype for the pragma omp parallel for

The prototype to translate pragma omp parallel for is presented in the Fig. 2.18. The
fundamental CAPE’s functions are described below:

• start(): associated with the pragma dickpt start directive as presented in Sec. 2.3.3.
It sets write protection to all writable pages and starts or resumes checkpointing.

• stop(): associated with the pragma dickpt stop directive as presented in Sect. 2.3.3.
It removes write protection to all write-protected pages and suspends checkpointing.

• create(file): associated with the pragma dickpt save directive as presented in
Sect. 2.3.3. It generates an incremental checkpoint and saves file to the buffer.

• send(file): the master sends the incremental checkpoint indicated by file to all
slave nodes.

• broadcast(file, node): sends the content of file from the current node to node.

• receive(file): the slave node receives the checkpoint sent by the master and save
it into file.

• wait_for(file): the master waits for receiving the incremental checkpoint files from
all slave nodes and it merges these checkpoints to a file.

• inject(file): injects the content of the incremental checkpoint indicated by file
into the application process’s memory. In CAPE, the program counter of each execut-
ing process is not updated by this value in the incremental checkpoint file.

2.4.3.2 Translation of the other directives to pragma omp parallel for

1) parallel directive. In OpenMP, this directive creates a team of threads and distributes
the same region to all created threads in order to execute. However, on CAPE, the master
does not execute any parts of jobs of the construct, and it is converted to pragma omp
parallel for as presented in the Fig. 2.19.

2) parallel sections directive. In OpenMP, they contain a set of construct blocks.
These blocks are distributed among and executed by the threads. In CAPE, it can be
converted to parallel for before applying the existing prototype. Figure 2.20 presents an
example of conversion of a parallel sections with three section blocks to a parallel
for.

3) for and sections directives. These two work sharing constructs have to be declared
inside the parallel construct. Therefore, for and sections are combined with a parallel
construct to become parallel for and parallel sections constructs respectively.

Checkpointing Aide Parallel Execution (CAPE) 37

pragma omp parallel for
for (A ; B ; C)

D ;

↓ automatically translated into ↓

1 if (master ())
2 start ()
3 for (A ; B ; C)
4 create (before)
5 send (before, slavex)
6 create (final)
7 stop ()
8 wait_for (after)
9 inject (after)
10 if (! last parallel ())
11 merge (final, after)
12 broadcast (final)
13 else
14 receive (before)
15 inject (before)
16 start ()
17 D
18 create (afteri)
19 stop ()
20 send (afteri, master)
21 if (! last parallel ())
22 receive (final)
23 inject (final)
24 else
25 exit

Figure 2.18: Template for the parallel for with incremental checkpoints.

pragma omp parallel
D ;

↓ is converted to ↓

pragma omp parallel for
for (i = 0 ; i < number_of_slave_nodes - 1 ; i ++)

D ;

Figure 2.19: Form to convert pragma omp parallel to pragma omp parallel for.

38 State of the Art

pragma omp parallel sections
{

pragma omp section
P0 ;
pragma omp section
P1 ;
pragma omp section
P2 ;

}

↓ is converted to ↓

pragma omp parallel for
for (i = 0 ; i < 3 ; i ++) {

switch (i) {
case 0 :

P0 ;
break ;

case 1 :
P1 ;
break ;

case 2 :
P2 ;

}
}

Figure 2.20: Form to convert parallel sections to parallel for.

Chapter 3
Optimization of chekpointing on CAPE

Contents

3.1 Motivation . 40
3.2 Arithmetic on checkpoints . 40

3.2.1 Checkpoint definitions . 41
3.2.2 Replacement operation . 41

3.2.2.1 Definition . 41
3.2.2.2 Properties . 43

3.2.3 Operations on Checkpoints memory members 44
3.2.3.1 Merging a memory element into a Checkpoint memory member 44
3.2.3.2 Excluding a memory element from Checkpoint memory member 45
3.2.3.3 Merging of Checkpoints memory members 45
3.2.3.4 Excluding of Checkpoints memory members 46

3.2.4 Operations on Checkpoints . 46
3.2.4.1 Merging of Checkpoints . 46
3.2.4.2 Excluding of Checkpoints . 47

3.2.5 Conclusion . 47
3.3 Time-stamp Incremental Checkpointing (TICKPT) 48

3.3.1 Identifying the time-stamp . 48
3.3.2 Variable analysis . 48
3.3.3 Detecting the modified data of shared variables 50

3.3.3.1 Method 1: page write-protection mechanism 51
3.3.3.2 Method 2: shared-variables duplication 51

3.4 Analysis and Evaluation . 51
3.4.1 Contributions of Arithmetics on Checkpoints 51
3.4.2 Detection modified data with TICKPT 54
3.4.3 TICKPT vs. DICKPT . 56

3.5 Conclusion . 57

39

40 Optimization of chekpointing on CAPE

3.1 Motivation

Checkpointing techniques are the most important factors for the implementation of OpenMP
on distributed-memory system using CAPE. CAPE-1 [3, 86] was implemented based on
complete checkpoints, while CAPE-2 [4, 5] is based on incremental checkpoint. In spite of
using different kinds of checkpoints, both CAPE-1 and CAPE-2 use checkpoints to divide jobs
into work-sharing constructs and distribute instructions to slave nodes, and to automatically
detect modified data after executing divided jobs on each slave node, then send them back
to the master.

Discontinuous Incremental Checkpointing (DICKPT) [14] in CAPE-2 is a development
based on incremental checkpoint containing two kinds of data, register’s values and modified
data of the process after executing a block of code. In which, the first one is copied from all
register’s values of the process at the checkpoint time, and the second one is identified based
on write-protection techniques. The advantages of DICKPT over complete checkpoints on
the two versions of CAPE, was shown through a comparison of the performance of CAPE-1
and CAPE-2 in [5].

In spite of the achieved results, the limitation of DICKPT mechanism on CAPE is the
parallel regions in the OpenMP program that have to match the Bernstein’s conditions [87].
This means the different nodes executing the divided jobs of a parallel region accessed to the
different parts of data. Moreover, DICKPT detects all modified data in process’s memory
including shared and private variables, and saves them to checkpoint file. This does not only
reduce the performance but also make wrong results for the program.

To solve these problems, we have proposed and developed an arithmetic model as well as
a new mechanism of checkpointing. It was designed to implement the fork-join parallelism
model, especially to apply to CAPE. The challenges which have to resolve in new checkpoint
techniques are:

• Detecting the modified shared variables of the OpenMP program only.

• Storing data in checkpoint files with the data structure so that one can clearly identify
the order the checkpoint files were generated on the different nodes.

• Proving the operations that can used to combine and find the different contents of the
checkpoints.

In the results, we expect not only to reduce the checkpoint size and to improve the
performance the implementation using checkpointing, but also overcome the limitations of
OpenMP programs that need to match with Bernstein’s conditions.

3.2 Arithmetic on checkpoints

Basing on the checkpointing techniques mentioned in Sec. 2.3, checkpoint contains the cur-
rent information of the registers and a set of data for the process in memory. Each piece of
data is informed by a word of the process’s memory at a time. For complete checkpoint, it
consists in a capture of all information in memory at the time of the generation of the check-
point. For incremental checkpoints, it only contains the modified data in memory compared
to the previous checkpoint. The checkpoints can be defined and denoted as follows.

Arithmetic on checkpoints 41

3.2.1 Checkpoint definitions

Definition 1. Checkpoint
A Checkpoint contains both the registers values and the set of triples address, value and

timestamp that represent the state of a running program at a time. It can be represented
as follows:

C = (Rt, {(a, v)t})

where:

– t is a timestamp, t ∈ {0, 1, 2, 3...N}.

– Rt is the set of register values at time t and is called the register member of C. Denote
Rt = {(ri)t},∀ri ∈ register_values.

– {(a, v)t} is the set of memory members of C, it saves value v at address a at time t, the
memory member is saved word by word. Denote St = {(a, v)t} = {(a1, v1)t1 , (a2, v2)t2 , ..., (an, vn)tn}.

Remark.

There cannot exist two memory elements having the same address in a Checkpoint.
If S ∈ C and (a, v)t ∈ S then (a, v′)t′ /∈ S.

Definition 2. Empty memory element
There can exist a Checkpoint with no memory element. It is called the empty memory

element. Denoted by ε.

Definition 3. Range of a Checkpoint
When a checkpoint is required to save the state of a process in specific ranges of memory,

these ranges are called the range of the checkpoint. Denoted by:

RC = {list_of_memory_of_program}

Definition 4. Equality of two Checkpoints.
Let C ′ = (Rt′ , S

′) and C ′′ = (Rt′′ , S
′′) be two checkpoints. C ′ and C ′′ are equal if:

C ′ = C ′′ ≡


Rt′ = Rt′′

S′ = S′′

(3.1)

3.2.2 Replacement operation

3.2.2.1 Definition

Definition 5. A replacement operation is treated for checkpoints’ memory elements.
Let (a, vi)ti and (a, vj)tj be memory elements from different checkpoints having the same

address. The replacement operation, denoted by �, is defined as follows:

(a, vi)ti � (a, vj)tj = (a, vi � vj)max(ti,tj) (3.2)

42 Optimization of chekpointing on CAPE

where, � can be any commutative and associative mathematical operations such as
the OpenMP reduction operations are presented in Table 3.1 if it is provided by program,
otherwise, it is calculated by:

vi � vj =


vi if ti > tj

vj if ti < tj

(3.3)

Operations (�) Initialization value Description

+ 0 Addition

∗ 0 Multiplication

& 1 Binary AND operator

| 0 Binary OR operator

ˆ 0 Binary XOR operator

&& 1 Logical AND operator

|| 0 Logical OR operator

Table 3.1: OpenMP’s reduction operations in C.

Remark. The replacement operation has following properties:

(i) Communicative:
v1 � v2 = v2 � v1 (3.4)

Proof. From Equation (3.3), we have:

v1 � v2 =


v1 if t1 > t2

v2 if t1 < t2

=


v2 if t2 > t1

v1 if t2 < t1

= v2 � v1

Arithmetic on checkpoints 43

(ii) Associative:
(v1 � v2)� v3 = v1 � (v2 � v3) (3.5)

Proof. From Equation (3.3), we have:

(v1 � v2)� v3 =



v1 if (t1 > t2) and max(t1, t2) > t3

v2 if (t1 < t2) and max(t1, t2) > t3

v3 if max(t1, t2) < t3

=



v1 if (t1 > t2) and (t1 > t3)

v2 if (t1 < t2) and (t2 > t3)

v3 if (t1 < t3) and (t2 < t3)

=



v1 if t1 > max(t2, t3)

v2 if (t2 > t3) and (t1 < t2)

v3 if (t2 < t3) and (t1 < t3)

=



v1 if t1 > max(t2, t3)

v2 if (t2 > t3) and (t1 < max(t2, t3))

v3 if (t2 < t3) and (t1 < max(t2, t3))

= v1 � (v2 � v3)

Definition 6. The replacement operation with empty memory element.
Let (a, v)t be a memory element and ε be the empty memory element, the replacement

operation on memory element and empty memory element can be defined as follows:

(a, v)t � ε = ε� (a, v)t = (a, v)t (3.6)

3.2.2.2 Properties

Let (a, v1)t1 , (a, v2)t2 , and (a, v3)t3 be memory elements of different checkpoints. We have:

44 Optimization of chekpointing on CAPE

(i) Commutative :
(a, v1)t1 � (a, v2)t2 = (a, v2)t2 � (a, v1)t1 (3.7)

Proof. From Definition 5 we have:

(a, v1)t1 � (a, v2)t2 = (a, v1 � v2)max(t1,t2)

� and max are communicative and associative mathematical operations. Thus,

v1 � v2 = v2 � v1
and

max(t1, t2) = max(t2, t1).

Therefore,

(a, v1)t1�(a, v2)t2 = (a, v1�v2)max(t1,t2) = (a, v2�v1)max(t2,t1) = (a, v2)t2�(a, v1)t1

(ii) Associative :

((a, v1)t1 � (a, v2)t2)� (a, v3)t3 = (a, v1)t1 � ((a, v2)t2 � (a, v3)t3) (3.8)

Proof. From Definition 5, we have:

((a, v1)t1 � (a, v2)t2)� (a, v3)t3 = (a, (v1 � v2)� v3)max(max(v1,v2),v3)

� and max are communicative and associative mathematical operations. Thus,

(v1 � v2)� v3 = v1 � (v2 � v3)

and

max(max(v1, v2), v3) = max(v1,max(v2, v3))

Therefore, ((a, v1)t1 � (a, v2)t2)� (a, v3)t3

= (a, (v1 � v2)� v3)max(max(v1,v2),v3)

= (a, v1 � (v2 � v3))max(v1,max(v2,v3))

= (a, v1)t1 � ((a, v2)t2 � (a, v3)t3)

3.2.3 Operations on Checkpoints memory members

3.2.3.1 Merging a memory element into a Checkpoint memory member

Definition 7. Merging a memory element e = (aj , vj)tj into a Checkpoint memory member
S = {(a1, v1)t1 , (a2, v2)t2 , ..., (ai, vi)ti} is denoted by S ⊕ e and can be defined as follows:

S ⊕ e =


S ∪ {(aj , vj)tj} if 6 ∃(aj , •)• ∈ S

(S \ (aj , vi)ti) ∪ ((aj , vi)ti � (aj , vj)tj) if ∃(aj , •)• ∈ S
(3.9)

Arithmetic on checkpoints 45

3.2.3.2 Excluding a memory element from Checkpoint memory member

Definition 8. Excluding a memory element e = (aj , vj)tj from a Checkpoint memory
member S = {(a1, v1)t1 , (a2, v2)t2 , ..., (ai, vi)ti} is denoted by S 	 e and can be defined as
follows:

S 	 e =


S if 6 ∃(aj , •)• ∈ S

S \ (aj , vi)ti if ∃(aj , •)• ∈ S
(3.10)

3.2.3.3 Merging of Checkpoints memory members

Definition 9. The result of Merging two Checkpoint memory members
S1 = {(a1, v1)t1 , (a2, v2)t2 , . . . , (ai, vi)ti} and S2 = {(a1, v1)t1 , (a2, v2)t2 , . . . , (aj , vj)tj} is a
Checkpoint memory members, denoted S1 ⊕ S2 that can be defined as follows:

S1 ⊕ S2 = {(ai, vi)ti ∈ S1/ 6 ∃(ai, vj)tj ∈ S2}

∪ {(aj , vj)tj ∈ S2/ 6 ∃(aj , vi)ti ∈ S1}

∪ {(ai, vi)ti � (aj , vj)tj/∀(ai, vi)ti ∈ S1, ∀(aj , vj)tj ∈ S2 and ai = aj}

(3.11)

Theorem 3.2.1. The Merging operation of checkpoints memory members is communicative
and associative.

(i) Communicative: S1 ⊕ S2 = S2 ⊕ S1 .

Proof. From Equation (3.11), we have:

S1 ⊕ S2 = {(ai, vi)ti ∈ S1/ 6 ∃(ai, vj)tj ∈ S2}

∪ {(aj , vj)tj ∈ S2/ 6 ∃(aj , vi)ti ∈ S1}

∪ {(ai, vi � vj)max(ti,tj)/(ai, vi)ti ∈ S1, (aj , vj)tj ∈ S2 and ai = aj}

union, max, and replacement operations are communicative, then:

S1 ⊕ S2 = {(aj , vj)tj ∈ S2/ 6 ∃(aj , vi)ti ∈ S1}

∪ {(ai, vi)ti ∈ S1/ 6 ∃(ai, vj)tj ∈ S2}

∪ {(aj , vj � vi)max(tj ,ti)/(aj , vj)tj ∈ S2, (ai, vi)ti ∈ S1, and aj = ai}

= S2 ⊕ S1

46 Optimization of chekpointing on CAPE

(ii) Associative: (S1 ⊕ S2)⊕ S3 = S1 ⊕ (S2 ⊕ S3) .

Proof. Let:

A1 = {(ai, vi)ti ∈ S1/ 6 ∃(ai, vj)tj ∈ S2 and 6 ∃(ai, vk)tk ∈ S3}
A2 = {(aj , vj)tj ∈ S2/ 6 ∃(aj , vi)ti ∈ S1 and 6 ∃(aj , vk)tk ∈ S3}
A3 = {(ak, vk)tk ∈ S3/ 6 ∃(ak, vi)ti ∈ S2 and 6 ∃(ak, vj)tj ∈ S2}
B12 = {(ai, vi)ti ∈ S1/∃(ai, vj)tj ∈ S2 and 6 ∃(ai, vk)tk ∈ S3}
B13 = {(ai, vi)ti ∈ S1/∃(ai, vj)tj ∈ S3 and 6 ∃(ai, vj)tj ∈ S2}
B21 = {(aj , vj)tj ∈ S2/∃(aj , vi)ti ∈ S1 and 6 ∃(aj , vk)tk ∈ S3}
B23 = {(aj , vj)tj ∈ S2/∃(aj , vk)tk ∈ S3 and 6 ∃(aj , vi)ti ∈ S1}
B31 = {(ak, vk)tk ∈ S3/∃(ak, vi)ti ∈ S1 and 6 ∃(ak, vj)tj ∈ S2}
B32 = {(ak, vk)tk ∈ S3/((∃(ak, vj)tj ∈ S2 and 6 ∃(ak, vi)ti ∈ S1}
E1 = {(ai, vi)ti ∈ S1/∃(ai, vj)tj ∈ S2 and ∃(ai, vk)tk ∈ S3}
E2 = {(aj , vj)tj ∈ S2/∃(aj , vi)ti ∈ S1 and ∃(aj , vk)tk ∈ S3}
E3 = {(ak, vk)tk ∈ S3/∃(ak, vi)ti ∈ S2 and ∃(ak, vj)tj ∈ S2}
From Equation (3.11), we have:

(S1 ⊕ S2)⊕ S3 =
(A1 ∪A2 ∪ (B12 �B21)) ∪A3 ∪ (((E1 � E2)� E3) ∪ (B13 �B31) ∪ (B23 �B32))

As ∪ and � operations are communicative and associative:

(S1 ⊕ S2)⊕ S3 =
A1 ∪ (A2 ∪A3 ∪ (B23 �B32)) ∪ ((E1 � (E2 � E3)) ∪ (B12 �B21) ∪ (B13 �B31)) =
S1 ⊕ (S2 ⊕ S3)

3.2.3.4 Excluding of Checkpoints memory members

Definition 10. Excluding of Checkpoint memory member S′′ = {(a1, v1)t1 , (a2, v2)t2 , . . . , (aj , vj)tj}
from Checkpoint memory member S′ = {(a1, v1)t1 , (a2, v2)t2 , . . . , (ai, vi)ti}, is denoted by
S′ 	 S′′ and can be defined as follows:

S = S′ 	 S′′ = S′ 	
∑
e∈S′′

(e) (3.12)

where, e = (aj , vj)tj is a memory member of S′′.

3.2.4 Operations on Checkpoints

3.2.4.1 Merging of Checkpoints

Definition 11. The result of Merging two checkpoints C1 = (Rt1 , S1) and C2 = (Rt2 , S2),
denoted by C = C1 ⊕ C2, is a checkpoint that can be represented as follows:

C = C1 ⊕ C2 = (Rmax(t1,t2), S1 ⊕ S2) (3.13)

Arithmetic on checkpoints 47

Theorem 3.2.2. The Merging operation on checkpoints is communicative and associative.

(i) Communicative: C1 ⊕ C2 = C2 ⊕ C1 .

Proof. From Definition 11, C1 ⊕ C2 = (Rmax(t1,t2), S1 ⊕ S2) . It holds that: (i)
Rmax(t1,t2), and (ii) S1 ⊕ S2.

For part (i), as max is a communicative operation, Rmax(t1,t2) = Rmax(t2,t1).

For part (ii), as operator ⊕ is communicative (see Theorem 3.2.1), S1 ⊕ S2 = S2 ⊕ S1
Therefore, C1 ⊕ C2 = (Rmax(t2,t1), S2 ⊕ S1) = C2 ⊕ C1.

(ii) Associative: (C1 ⊕ C2)⊕ C3 = C1 ⊕ (C2 ⊕ C3) .

Proof. From Definition 11, we have:

(C1 ⊕ C2)⊕ C3 = {(Rmax(max(t1,t2),t3), (S1 ⊕ S2)⊕ S3)}.

It holds that: (i) Rmax(max(t1,t2),t3), and (ii) (S1 ⊕ S2)⊕ S3.

For part (i), as max is associative operation, Rmax(max(t1,t2),t3) = Rmax(t1,max(t2,t3)).

For part (ii), as operator ⊕ is associative (see Theorem 3.2.1), (S1 ⊕ S2) ⊕ S3 =
S1 ⊕ (S2 ⊕ S3)

Therefore, (C1 ⊕ C2)⊕ C3 = (Rmax(t1,max(t2,t3)), S1 ⊕ (S2 ⊕ S3)) = C1 ⊕ (C2 ⊕ C3).

3.2.4.2 Excluding of Checkpoints

Definition 12. The Excluding operation of checkpoint C2 = (Rt2 , S2) from checkpoint
C1 = (Rt1 , S1), denoted by C = C1 	 C2, is a checkpoint that can be presented as follows:

C = C1 	 C2 = (Rmax(t1,t2), S1 	 S2) (3.14)

3.2.5 Conclusion

In this section, we present data structure of a checkpoint and mathematical model to rep-
resent and computer on them. The timestamp is very useful in determining the order of
checkpoints, especially when they are generated by a program that is executed in parallel on
different processes. The operations provide a mechanism for calculating directly on check-
points regardless of the order of the checkpoints being generated, the overlapping of the
address space on checkpoints, or the operations used in the program to merge results after
computing in parallel like reduction() clause of OpenMP. That reduces the checkpoint size
and the time it takes to gather checkpoints. The next part of this chapter presents the
application of the arithmetic on checkpoints in CAPE as a case study.

48 Optimization of chekpointing on CAPE

3.3 Time-stamp Incremental Checkpointing (TICKPT)

To implement the arithmetic on checkpoints proposed above, we have developed a new
checkpoint technique called Time-stamp Incremental Checkpointing (TICKPT). TICKPT
is an improvement of DICKPT that adds a new factor – timestamp – into incremental
checkpoints and removes unnecessary data based on selecting only the modified data of
shared variables of the OpenMP program.

Basically, TICKPT contains three mandatory elements including register values, mod-
ified regions of shared variables in the memory of the process, and their timestamp. As
well as DICKPT, in TICKPT, the register values are extracted from all registers of the
process in the system. A time-stamp is a value that identifies the order of checkpoints in
a program generated for different processes when the program is executing in parallel. The
challenge with this method is the identification of the timestamp, and shared variables, and
the detection of modified region of shared variables in the process memory.

3.3.1 Identifying the time-stamp

Time-stamp is one of the most important elements of TICKPT. It is used to identify the
order of updates at the same memory address in different virtual address spaces by the
different processors, and the last register values of the program when it is executing.

The concept of activation tree [88] can be used to represent the execution order of proce-
dures during the execution of a program. Each node is associated with one activation tree.
The root is the activation of the main function. At a node, for an activation of procedure p,
the children correspond to the activation of the procedures called by this activation of p. As
a result, the order of these activations are obtained by reading the tree from left to right.
Therefore, it can be used to identify the sequence of function called in a program.

However, in particular cases when applied on CAPE, the program is initialized on all
processors at the begin, and checkpoints are always generated at the synchronization points
that are declared at the same level in function calls. It has been implemented using a simple
method that depends on the situations following:

• If each processor executes a different part of the program, the timestamp is identified
by the value of the program counter before calling checkpoint generation.

• If each processor executes a different part of a loop of the program, the timestamp is
the last iterator of each part dedicated to the processor.

• If each processor executes exactly the same piece of code in the program, the timestamp
is value processor_id complemented to total_processors - 1.

3.3.2 Variable analysis

In TICKPT, the program variables are monitored. Variables declared in the global scope of
the program and in activation functions of the activation tree are marked as live variables.
Otherwise, they are not live variables. Live variables are managed by the monitor.

In an OpenMP program, data-sharing variable attributes can be set up either implicitly
or explicitly [2]. Figure 3.1 presents the location of these variables in the virtual address
space of a process. The default context of shared variables is determined by reaching one of
the following conditions:

Time-stamp Incremental Checkpointing (TICKPT) 49

Figure 3.1: Allocation of program variables in virtual process memory.

50 Optimization of chekpointing on CAPE

• Global variables are stored in the data segment.

• Variables are declared using the static keyword allocated in the data segment.

• Dynamic variables are allocated in the heap segment.

• The other variables (automatic and local variables) are declared outside any parallel
constructs are allocated in the stack.

These variables can be detected at the running time by a function provided by the
checkpoint monitor. These functions save and manage the address, length, and attributes of
implicitly shared variables.

To explicitly change the status of a variable, the programmer can use data-sharing
attributes like OpenMP directive #pragma omp thread private (list of variables) or
relative clauses. Therefore, it is easy to detect and modify the attributes of variables that
are managed by the monitor. The OpenMP data-sharing clauses are reminded in Table 3.2.

Clauses Description

default(none|shared) Specifies the default behavior of variables

shared(list) Specifies the list of shared variables

private(list) Specifies the list of private variables

firstprivate(list) Allows to access the value of the list of private variables
when entering parallel region

lastprivate(list) Allows to share the value of the list of private variables
when exiting the parallel region

copyin(list) Allows to access the value of threadprivate variables

copyprivate(list) Specifies the list of private variables that should be
shared among all threads.

reduction(list, ops) Specifies the list of variables that are subject to a reduc-
tion operation at the end of the parallel region.

Table 3.2: OpenMP data-sharing clauses.

3.3.3 Detecting the modified data of shared variables

For the memory members of checkpoints, as well as for the incremental checkpointing pre-
sented in Sec. 2.3.2 and 2.3.3, TICKPT has to identify the modified regions in the process’s
memory. We have implemented and tested two methods: page write-protection, and dupli-
cation of shared variables. For both methods, it is only modified data of shared variables
that is detected.

Analysis and Evaluation 51

3.3.3.1 Method 1: page write-protection mechanism

Similar to DICKPT as presented in Sec 2.3.3, TICKPT - Method 1 uses the page write-
protection mechanism to detect the modified pages when executing the program. However,
instead of setting write-protection to all pages in the virtual memory of the process as
DICKPT does, TICKPT does it to all pages containing shared variables only. Data of these
pages are also copied when SIGSEGV signals occur. During the executing of the program,
the attribute of shared variables can be changed by runtime functions, and these status are
saved. When reaching pragma tickpt save, the copied data is compared with the current
data at the same location in the virtual memory, and the modified data of shared variables
are selected to write to the checkpoint file.

To save this part, we have use a SSD structure (see Sec 2.3.3.3). The modified data in
each page is saved in the form of {(address, len, data)} triples, in which a maximum
value of len bytes is the size of the page.

3.3.3.2 Method 2: shared-variables duplication

In this method, to avoid the sad effect on the performance of the program using TICKPT
based on page write-protection mechanism, a shared-variables duplication method was im-
plemented. When reaching pragma tickpt start, instead of setting write-protection to all
pages that contain shared variables like TICKPT - Method 1 does, the value of these vari-
ables are copied. As well as TICKPT - Method 1, the attribute of shared variables can be
updated by using the runtume library. At the pragma tickpt save, the copied data are
compared with the current data, and the modified parts of shared variables are written to
the checkpoint file. The buffer is cleared whenever the program meets pragma tickpt stop.

The SSD structure (see Sec 2.3.3.3) is used to store this part of checkpoint. However,
unlike the previous method, the maximum value for len is not limited to the page size, but
the maximum size of variables in the program.

3.4 Analysis and Evaluation

This section analyses the contribution of Arithmetics on Checkpoint for the implementation
of fork-join model to overcome the limitations of the previous implementation. The result of
experimentations are presented in next chapter. Besides, advantages and drawbacks of both
methods implemented in TICKPT, as well as a comparison with DICKPT are analyzed and
evaluated below.

3.4.1 Contributions of Arithmetics on Checkpoints

Arithmetics on Checkpoints as presented in Section 3.2 have a very important role in the
optimization of checkpointing, especially when applied to implement the fork-join model.
It provides a theoretical model to implement and improve checkpointing on CAPE that
overcomes the limitations of Bernstein’s condtions. Moreover, based on this model, the
checkpoint size and the communication time are significant reduced.

Considering an implementation of fork-join model is based on checkpointing on dis-
tributed memory systems that shows in Figure 3.2. In the previous implementations, the
complete checkpoint in CAPE-1 and DICKPT in CAPE-2 (see Sec. 2.4.1, p. 33), the OpenMP
program is required to match with Bernstein’s conditions. This means that each node in the

52 Optimization of chekpointing on CAPE

Figure 3.2: An implementation of the fork-join model based on checkpointing.

system has to modify different locations of the whole program address space to ensure the
result of the execution is correct.

In this new theoretical model, we proposed to add a timestamp – a new element into
checkpoints (see Definition 1, p. 41). A timestamp is an element in checkpoint that can
be used to identify the order of data were modified, and develop the checkpoint operations.
Thank to this model, which allows data at a single location to be modified at different nodes.
Checkpoint operations are responsible for merging them at synchronization points and ensure
the correctness of the result. Moreover, this model allows the use of these operations to
implement the OpenMP reduction clause to be computed directly in checkpoint memory
members.

For instance, considering the execution of an OpenMP code as shown in Fig. 3.3 on
a 4-node cluster is based on the proposed model of checkpointing. This parallel code
does not match the Bernstein’s conditions. There is only 1 shared variable (sum). After
executing the divided jobs, each node generates a checkpoint that contains the value of
sum only in its memory member by the form of (address, len, value). The OpenMP
reduction(+:sum)computes the sum of sum values from 4 nodes. In this case, the merging
checkpoint operation provided in Definition 11 implicitly implements the operation.

Regarding communication aspects, the previous model use the master node to store the
lastest status of registers. The master node does not take any parts in divided jobs. The
result checkpoints from the slave nodes are sent back to the master. After merging, this
checkpoint is distributed to all slave nodes to resume the execution. Let p be the number
of nodes in the system, n (in byte) be the size of checkpoints in each slave node, t1 and t2
be the latency times for sending/receiving 1 byte of data over the network, respectively. In
this modeling we ignoring the merging time and assume that the number of nodes is power

Analysis and Evaluation 53

int cal_pi(int n){
double sum = 0.0, x = 0.0 , aux, step;
int i;
step = 1.0 / (double) n;
#pragma omp parallel private(i,x,aux) shared(sum)
{

#pragma omp for reduction(+ : sum)
for(i=0; i< n; i++){

x = (i+ 0.5) * step;
aux = 4.0/(1.0 + x*x);
sum += aux;

}
}
return (step * sum);

}

Figure 3.3: An example of OpenMP program using a reduction() clause.

of two. The total time of synchronization in this case is:

Tcomm1 = 2(p− 1)t1 + (p− 1)nt2 + (p− 1)n(p− 1)t2

= 2(p− 1)t1 + p(p− 1)nt2

= (p− 1)(2t1 + npt2)

(3.15)

In the new theoretical checkpointing model, checkpoints can be merged together without
requirement of ordering. The order checkpoints are considered is saved in each of them,
so this can be performed by using the Recursive Doubling algorithm [89] as illustrated in
Fig. 3.4.

Figure 3.4: The Recursive Doubling algorithm.

At the first step the amount of transferred data is n bytes. At the second step, it is 2n
bytes, etc., and after step k, it is (2k − 1)n bytes. The total number of steps in this case is
2log(p). Therefore, the time of synchronization is:

Tcomm2 = log(p)t1 + (1 + 2 + · · ·+ 2log(p)−1)nt2

= log(p)t1 + (p− 1)nt2
(3.16)

From Equation (3.15) and (3.16), the new theoretical model provides a mechanism that
significantly reduce the communication time at the join phase.

54 Optimization of chekpointing on CAPE

3.4.2 Detection modified data with TICKPT

In terms of checkpoint size, both methods use the SSD structure based on triplet (address,
len, data) to store the modified value of shared variables. However, for a continuously
modified memory area that is larger than the page size, the first method divides it to page
size, but not the second. Therefore, with more than one continuous page of modified data,
the first method takes at least 8 bytes than the second one to store the same data.

Another aspects is that setting write-protection to virtual memory and handling SIGSEGV
signal with the first method reduces the performance of the program. In order to compare
the size of checkpoint memory members of two methods and the effect on the performance
of the program, some experiments have been done.

#define N 100000
int A[N][N], B[N][N], C[N][N];
int sum_vector(int n){

int i, j;
#pragma omp parallel private(A,B) shared(C)
{

#pragma omp for nowait
for(i=0; i< n; i++)

for(j=0; j< n; j++){
A[i][j] = rand() % 100;
B[i][j] = rand() % 100;

}
#pragma omp for nowait
for(i=0; i< n; i++)

for(j=0; j< n; j++)
C[i][j] = A[i][j] + B[i][j];

}
return 0;
}

Figure 3.5: OpenMP program to compute the sum of two matrices.

As can be seen in Figure 3.5, the program was used to do the experiments that computes
the sum of two two matrices composed of random integer numbers. The block of code
in omp parallel is taking checkpoints. The size of matrices are varied to compare the
size of checkpoint memory members for the two methods, and the effect on performance
of the program. These experiments were performed on a Notebook includes 4x Intel(R)
Cores(TM) i5 (3rd Gen) 3320M CPU@2.6GHz and 4GB of RAM. The machine is operated
with the Ubuntu 14.04.5 LTS 32-bit system.

Table 3.3 shows the size of checkpoint memory members (in bytes) that are generated by
the two methods. Both methods recognize shared memory area containing matrix C, and
private areas that containing the variables i, j, A, and B. Therefore, only memory area of
C is handled to detect the modified data.

As analyzed above, if the continuous modified data in memory are larger than the page
size, method 1 breaks them into page size segment to store them into the checkpoint. There-
fore, it takes more space than method 2 to store relevant data. Hence, in the case of

Analysis and Evaluation 55

N TICKPT -
Method 1

TICKPT -
Method 2 Difference Percentage (%)

10 408 408 0 0.0

100 40088 40008 80 0.20

1000 4007824 4000008 7816 0.20

2000 16031256 16000008 31248 0.19

3000 36070320 36000008 70312 0.19

4000 64125008 64000008 125000 0.19

6000 144281256 144000008 281248 0.19

8000 256500008 256000008 500000 0.19

Table 3.3: Size of checkpoint memory members (in bytes) for method 1 and 2.

continuous modified data less than the page size (eg. N = 10), the size of checkpoint mem-
ory member is equal for the two methods. In the other cases, method 2 is around 0.19%
smaller than with method 1.

Figure 3.6: Execution time (in milliseconds) for method 1 and 2

The execution times of programs using both methods of TICKPT are presented in
Fig. 3.6. When method 1 is used, a series of operations such as set write-protection, catching
SIGSEGV signals, coping data, removing write-protection, re-writing data to the page, etc.
takes a lot of time. As a result, in the Fig. 3.6, the larger the number of modified pages, the
longer time. For method 2, shared variables are copied at the start pragma of checkpoint-
ing and no time is spent in operations like method 1. Experimental results show that the

56 Optimization of chekpointing on CAPE

execution time using method 1 is much higher as compared with method 2.
The drawback of method 2 is that it takes more space to store shared variables data at

the begin blocks to checkpoint. However, this drawback can be handled by programmers in
OpenMP programs by explicitly setting variables attributes.

From the analysis and experiments above, we decided to use the duplication of shared
variables for CAPE. From now on, when referring to TICKPT, only method 2 is considered.

3.4.3 TICKPT vs. DICKPT

TICKPT is an improvement of DICKPT that consist in adding time-stamps in checkpoints,
selects only modified values of shared variables, and uses the duplication of shared variable
method to detect modified values. This checkpointing method supports the implementation
of arithmetic on checkpoint as presented in Sec. 3.2.

To compare checkpoint sizes and the effect on the execution time of the program, some
experiments were conducted using the same program and environment as presented in
Sec. 3.4.2. As the size of register members is equal for both TICKPT and DICKPT, only
checkpoint memory members generated by both techniques have been measured.

Figure 3.7: Size of checkpoint memory member (in bytes) for TICKPT and DICKPT.

Fig. 3.7 presents the size of checkpoint memory members generated by two techniques.
The size of checkpoint memory member of DICKPT are 3 times larger than the one with
TICKPT. This is due to the fact that DICKPT detects the modified values of the whole
memory allocated to the program. It includes variables i, j, A, B, and C, whereas TICKPT
only identifies the modified data of shareable variables – typically variable C in this case.

To assess the impact of the different checkpointing techniques to the program’s execution
time, we measured and compared the execution time for three situations: program not using
checkpoints, program using TICKPT, and program using DICKPT. Table 3.4 presents the
results of these measurements for different sizes of N . It shows that the impact of TICKPT

Conclusion 57

N Without
Checkpointing Using TICKPT Using DICKPT

1000 36 45 142

2000 136 168 1528

3000 307 391 8210

4000 536 649 38790

Table 3.4: Execution time (in milliseconds).

to execution time of program on this situation is around 20-25%, while with DICKPT it
is more than 290%. In fact DICKPT sets write-protection to all memory pages allocated
to execute the program, handles SIGSEGV signal, removes write-protection, etc. These
operations affect the execution time of the program for too much.

Indeed, the analysis and experiments show the outstanding advantages of TICKPT over
DICKPT. Hence, using TICKPT instead of DICKPT in CAPE improves its performance
and capability. Furthermore, TICKPT supports arithmetic on checkpoints, that improves
the reliability of the program.

3.5 Conclusion

To sum up, this chapter presented arithmetics on checkpoints, including the definitions and
operations that can performed on checkpoints. This theoretical model allows checkpoints
to be merged, find the difference without any requirements like matching with Bernstein’s
conditions, etc. This contributes to improve the capability and reliability of the system to
port OpenMP on distributed memory architectures based on checkpointing.

In addition, the analysis showed that the theoretical model is able to provide a mechanism
for merging checkpoints in different nodes without requirement of checkpoint’s ordering. We
also developed TICKPT, an improvement of DICKPT, which can uses checkpoint operations.
TICKPT was implemented using two methods to compare and select the best one for CAPE.
The analysis and experiments results show that checkpoints generated by TICKPT are
significantly reduced as compare with DICKPT. Moreover, the performance of the program
using TICKPT is not impacted as much. As a result, TICKPT improves the performance
of CAPE.

58 Optimization of chekpointing on CAPE

Chapter 4
Design and implementation of a new model
for CAPE

Contents
4.1 Motivation . 60

4.2 New abstract model for CAPE . 60

4.3 Implementation of the CAPE memory model based on the RC model 61

4.4 New execution model based on TICKPT 63

4.5 Transformation prototypes . 65

4.5.1 The parallel construct . 66

4.5.2 Work-sharing constructs . 66

4.5.2.1 for construct . 67

4.5.2.2 sections construct . 67

4.5.2.3 single construct . 68

4.5.3 Combined construct . 68

4.5.3.1 parallel for construct . 68

4.5.3.2 parallel sections construct 70

4.5.4 Master and Synchronization constructs . 70

4.5.4.1 master construct . 70

4.5.4.2 critical construct . 71

4.5.4.3 flush construct . 71

4.5.4.4 barrier construct . 71

4.6 Performance evaluation . 72

4.6.1 Benchmarks . 72

4.6.2 Evaluation context . 75

4.6.3 Evaluation results . 76

4.7 Conclusion . 80

59

60 Design and implementation of a new model for CAPE

4.1 Motivation

CAPE have been using DICKPT to implement the OpenMP fork-join model. The jobs of
OpenMP work-sharing constructs are divided and distributed to slave nodes using check-
points. At each slave node, these checkpoints are used to resume execution. In addition, the
results after executing the divided jobs on each slave node are also extracted using check-
points and sent back to the master. It has been demonstrated that this solution is fully
compliant with OpenMP and provide high performance. However, there are some limita-
tions:

• OpenMP programs that work on CAPE must fulfill with Bernstein’s conditions. This
is reason why the matrix-matrix product has been extensively use in the previous
experiments.

• The implementation of CAPE wastes the resources. In the implementation of OpenMP
work-sharing constructs on CAPE, the master does not perform a part of the compu-
tation. It waits for checkpoint results from the slave nodes and merges them together
(see Fig. 2.16).

• The risk of bottlenecks and low communication performance at the implementation
of the join phase. After executing the divided jobs, each slave node extracts a result
checkpoint and sends it back to the mater. The master receives, merges checkpoints
together and sends the result back to the slave nodes in order to synchronize data (see
Fig. 2.16).

This chapter presents the design and implementation of a new model for CAPE based
on TICKPT to bypass the drawbacks shown above. The new implementation based on
TICKPT improves the performance, capability, and reliability of this solution.

4.2 New abstract model for CAPE

Figure 4.1 presents the new abstract model for CAPE. It is designed based on TICKPT and
uses MPI to transfer data over the network.

Figure 4.1: New abstract model for CAPE.

Implementation of the CAPE memory model based on the RC model 61

As presented in the previous version, CAPE provides a set of prototypes to translate
OpenMP codes into CAPE codes. An OpenMP CAPE code in C or C++ is replaced by a
set of calls to CAPE runtime functions. The steps for the translation and the compilation
are presented in Fig. 2.15.

In new the version, the CAPE translator prototypes are modified and added to adapt
to the new mechanism based on TICKPT. This provides a set of prototypes to translate
the common constructs, clauses, and runtime functions of OpenMP. The details of these
prototypes are presented in Sec. 4.5.

For the CAPE Runtime library, apart from providing functions to handle OpenMP in-
structions and to port them on distributed memory systems, some functions have been added
to manage the declaration of variables and the allocation of memory on heap. To transfer
data among nodes in the system, instead of using the functions based on sockets like in the
previous version, MPI_Send and MPI_Recv functions are called to ensure high reliability.

In new version, the page-fault mechanism is no longer used. Therefore, the driver included
in the kernel no longer exists. This definitively improves the portability of CAPE.

4.3 Implementation of the CAPE memory model based on the
RC model

As presented in Sec. 2.1.1.2, OpenMP uses the Relaxed-Consistence (RC) memory model.
This model allows shared memory allocated in local memory of thread to improve memory
accesses. When a synchronization point is reached, this local memory is updated in the
shared memory area that can be assessed by all threads.

CAPE completely implements the RC model of OpenMP on distributed-memory systems.
All variables – including private and shared variables are stored at all nodes of the system,
and they can be only assessed locally. At synchronization points, only the modified data of
shared variables at each node are extracted and saved into a checkpoint. This checkpoint is
sent to the other nodes in the system, and is merged using the merging checkpoint operation
with the other. Then, the result checkpoint is injected into the application memory to
synchronize data.

In the CAPE runtime library, there are two fundamental functions which are called
implicitly at synchronization points:

• cape_flush() generates a TICKPT, gathers, merges, and injects them into the ap-
plication memory. This function is described by pseudo code in Fig. 4.2. Here, the
all_reduce() function is responsible for gathering and merging the checkpoints gen-
erated by generate_checkpoint() function. The gathering and the merging is imple-
mented using both Ring and Recursive Doubling algorithm illustrated in Fig. 4.3 and
Fig. 4.4 respectively. Ring or Recursive Doubling algorithm is automatically selected
to execute by the system depending on the size of the checkpoint.

Cid ← generate_checkpoint(op_flag);
C ← all_reduce (Cid, id, nnodes, [operators]);
inject(C) ;

Figure 4.2: Operations executed on cape_flush() function calls.

62 Design and implementation of a new model for CAPE

ring_allreduce(int id, int nnodes){
left ← (id - 1 + nnodes) % nnodes;
right ← (id + 1) % nnodes;
C ← Cid;
M ← Cid ;
for(i = 1; i < nnodes; i++){

Send M to right ;
Receive M from left ;
C ← merge(C, M, [operators]);

}
return C ;

}

Figure 4.3: Ring algorithm to gather and merge checkpoints.

recursive_doubling_allreduce(int id, int nnodes){
nsteps ← log(nnodes);
C ← Cid;
for(i = 0; i < nsteps; i++){

partner ← id XOR (1 << i);
M ← C ;
Send M to partner ;
Receive M from partner ;
C ← merge(C, M, [operators]);

}
return C ;

}

Figure 4.4: Recursive Doubling algorithm to gather and merge checkpoints.

New execution model based on TICKPT 63

• cape_barrier() sets a barrier and update shared data between nodes. This func-
tion calls MPI_Barrier() of the MPI runtime library, and then uses cape_flush() to
update shared data.

4.4 New execution model based on TICKPT

Figure 4.5 illustrates the new execution model of CAPE. The idea of this model is the use of
TICKPT to identify and synchronize the modified data of shared variables of the program
among the nodes. OpenMP threads are replaced by processes, and each process runs in a
node. At the beginning, the program is initialized and executed at the same time in all
nodes of the system. Then, the execution works as the following rules:

• The sequential region or the code inside the parallel construct but not belong to any
other constructs is executed in the same behavior at all nodes.

• When the program reaches a parallel region, at each node, CAPE detects and saves
the properties of all shared variables that are implicitly declared as sharing. If there are
any OpenMP clauses declared in the parallel construct, the relevant runtime func-
tions are called to modify variable properties. Then, the start directive of TICKPT
is called to save all data of the shared variables.

• At the end of a parallel region, the implementation of the barrier construct is
implicitly called to synchronize data, and the stop directive of TICKPT is called to
remove all relevant data.

• For the loop constructs, each node (including the master node) is responsible for com-
puting a part of the work based on the re-calculation of the range of iterations.

• For the sections construct, each node is divided into one or more parts of works that
are indicated in section construct.

• At the barrier, the implementation of the flush construct is called to synchronize
data.

• When the program reaches the flush construct, a TICKPT is generated and synchro-
nized among the nodes to update the modification of shared data. According to [2], a
flush is implicit at the following locations:

– At the barrier

– At the entry to and the exit from parallel, critical, and automic constructs.

– At the exit from for, sections, and single constructs unless a nowait clause is
present.

In this execution model, instead of using the master node to divide jobs and distribute
to slave nodes based on incremental checkpoints in order to implement OpenMP work-
sharing constructs, each node calculates and executes the divided jobs automatically. At
synchronization points, a TICKPT is generated at each node. It contains the modified
data of shared variables and their time-stamps after executing the divided jobs. These
checkpoints are gathered and merged at all nodes in the system using Recursive Doubling

64 Design and implementation of a new model for CAPE

Figure 4.5: The new execution model of CAPE.

algorithm [89] as illustrated in Fig. 3.4. This allows CAPE to void the bottleneck and
improve the performance of communication tasks as the analysis presented in Sec. 3.4.1.

With the features of TICKPT, checkpoints are possible to use checkpoint’s operations
presented in Sec. 3.2. This allows memory elements to have the same address when comput-
ing during merging. Therefore, it allows CAPE to work without the need for the program
to match with Bernstein’s conditions. Moreover, the master node takes a part in the com-
putation of the divided jobs. This uses all the resources and improves the efficiency of the
system.

The main drawback of this implementation is that dynamic and guided scheduling of
work-sharing construct have not been implemented yet. However, they can be translated
into static scheduling.

Transformation prototypes 65

4.5 Transformation prototypes

To execute on distributed memory system under the support of the CAPE runtime library,
the OpenMP source code is translated into a CAPE source code. There, each construct,
clause, and runtime function of the OpenMP source code is translated into the relevant
runtime function on CAPE. This translation works under the provision of a set of CAPE
prototypes.

At present, CAPE prototypes are totally different from the previous ones in order to
adapt the new execution model based on TICKPT. Moreover, it allows CAPE to translate
into the work-sharing constructs and other ones which are placed inside the omp parallel
construct. However, it does not support nested omp parallel construct yet.

BT CG EP FT IS LU MG SP

parallel 2 2 1 2 2 3 5 2

for 54 21 1 6 1 29 11 70

parallel for 3 1

master 2 2 1 10 4 2 1 2

single 12 5 2 10

critical 1 1 1 1 1

barrier 1 2 3 1 3

flush 6

threadprivate 1

Table 4.1: Directives used in the OpenMP NAS Parallel Benchmark programs.

The current work focuses on the implementation of OpenMP runtime functions, popular
directives and their clauses. There have been considered as they are the most used in NAS
parallel benchmark programs [90, 91]. The number of occurrences of these constructs is
shown in Table 4.1.

Based on the general syntax of OpenMP directives as presented in Fig. 2.3, the general
form of CAPE prototypes was designed and is illustrated in Figure 4.6. They are explained
in the following:

• cape_begin and cape_end are CAPE runtime functions which perform the actions for
entering and exiting OpenMP directives. The directive-name is a label declared by
CAPE which corresponds to the relevant CAPE runtime functions. Depending on this
label, the cape_barrier() function is called to update the shared data of the system.
parameter-1 and parameter-2 are used to store the range of iterations for for loops,
otherwise they both are assigned to zero. The reduction-flag is assigned to TRUE if
there was a declaration of OpenMP reduction clause, otherwise it is FALSE.

• The cape_clause_functions is a set of CAPE runtime functions which is used to
implement OpenMP clauses. These functions are presented in detail in Chap. 5.

• ckpt_start() marks the location where to start the checkpointing. When reaching
the ckpt_start() function, the value of shared variables is copied.

66 Design and implementation of a new model for CAPE

cape_begin(directive-name, parameter-1, parameter-2);
[cape_clause_functions]
ckpt_start();

//code blocks

cape_end(directive-name, reduction-flag);

Figure 4.6: General form of CAPE prototypes in C/C++.

Some directives are transformed by irregular form. The details of there prototypes and
their functions is presented below.

4.5.1 The parallel construct

omp parallel is the fundamental construct of OpenMP. It aims at creating a set of threads
to execute a code region in parallel. In CAPE, the program is already executed in a set of
nodes, hence the cape_begin() function is called to record the list of shareable variables and
their properties. After executing the jobs in the parallel region, the cape_end() function
calls the cape_barrier() function and performs a set of operations to synchronize the shared
variables among nodes and clean unnecessary data of the execution memory.

pragma omp parallel [clauses]
D ;

↓ is translated to ↓

cape_begin(PARALLEL, 0, 0);
[cape_clause_functions]
ckpt_start();

D;
cape_end(PARALLEL, reduction-flag);

Figure 4.7: Prototype to transform the pragma omp parallel construct.

4.5.2 Work-sharing constructs

An OpenMP work-sharing construct distributes the execution of the associated region among
the threads generated by a parallel construct [2]. There is no barrier at the entry. However,
if the nowait clause is not included, an implied barrier is performed at the end of this
construct. This mechanism has been implemented on CAPE. The cape_barrier() function
is automatically called by the cape_end() function to synchronize shared data if no nowait
clause is declared.

Transformation prototypes 67

4.5.2.1 for construct

The OpenMP for construct is designed for C/C++ program. It requires for loop to match
with the canonical loop form [2]. When reaching a for loop construct, the OpenMP pro-
gram distributes the iterations of for loop across the threads. This construct allows adding
the schedule, nowait, and data-sharing clauses. In CAPE, the prototype to transform this
construct is presented in Fig. 4.8.

pragma omp for [nowait | other-clauses]
for (A ; B ; C)

D ;

↓ is translated to ↓

cape_begin(FOR | FOR_NOWAIT, A, B);
[cape_clause_functions]
[ckpt_start();]
for (LEFT ; RIGHT ; C)

D ;
cape_end(FOR | FOR_NOWAIT, reduction-flag);

Figure 4.8: Prototype to transform pragma omp for.

cape_begin() calculates LEFT andRIGHT of for loop in each node. When the nowait
clause is not indicated, the ckpt_start() updates the value of shareable variables after
updating their properties which is performed by the relevant clauses. cape_end() performs
cape_barrier() to update the shared data after executing the divided jobs. Otherwise,
ckpt_start() does not exists and cape_end() does nothing. Currently, dynamic and guided
parameters of the schedule clause have not been implemented yet.

4.5.2.2 sections construct

The OpenMP sections construct is a non-iterative work-sharing construct. It contains a
set of structured blocks that are distributed and executed by the threads generated by the
parallel construct. Each structured block is executed once by one of the threads. This
construct is translated into CAPE by the prototype presented in Fig. 4.9.

The cape_section() function is responsible for identifying which structured block is
executed on the current node. At present, structured blocks are indexed and are assigned to
nodes so that block i is assigned to node id if id is divides i.

When the nowait clause is not indicated, the cape_start() function copies the value
of shared variables after executing the clause functions. The cape_barrier() function is
called by cape_end() to update shared data among the nodes. Otherwise, ckpt_start()
does not exist and cape_end() does nothing.

68 Design and implementation of a new model for CAPE

#pragma omp sections [nowait | other-clauses]
{

[#pragma omp section]
D1;
[#pragma omp section]
D2;
...

}

↓ is translated to ↓

cape_begin(SECTIONS | SECTIONS_NOWAIT, 0 , 0);
[cape_clause_functions]
[ckpt_start();]
if (cape_section())

D1;
if (cape_section())

D2;
...

cape_end(SECTIONS | SECTIONS_NOWAIT, reduction-flag);

Figure 4.9: Prototype to transform pragma omp sections.

4.5.2.3 single construct

The OpenMP single construct specifies the associated structured block executed by only
one of the threads generated by the parallel construct. The executed thread may not be
the master one. When a thread is executing, other threads are waiting at a barrier at the
end of the single construct unless a nowait clause is indicated. The translation prototype
for this construct is presented in Fig. 4.10.

To implement this mechanism, cape_single() is used to identify the first node that
enters structured block D. This node is responsible for the execution of D. The others wait
for the cape_barrier() function if no nowait clause is indicated. Otherwise, they continue
the execution of the next instructions.

4.5.3 Combined construct

4.5.3.1 parallel for construct

The OpenMP parallel for construct is a shortcut for specifying a parallel construct
that contains one for construct and no other statement. This construct does not accept the
nowait clause. Its syntax and translation prototype in CAPE is shown in Fig. 4.11.

At the cape_begin() function, the system re-compute the LEFT and the RIGHT
values to identify the divided jobs for each node. The cape_barrier() function is always
executed at cape_end() to update shared data after executing the divided jobs.

Transformation prototypes 69

#pragma omp single [nowait | other-clauses]
{

D;
}

↓ is translated to ↓

cape_begin(SINGLE | SINGLE_NOWAIT, 0 , 0);
[cape_clause_functions]
[ckpt_start();]
if (cape_single())

D;
cape_end(SINGLE | SINGLE_NOWAIT, FALSE);

Figure 4.10: Prototype to translate pragma omp sections.

pragma omp parallel for [clauses]
for (A ; B ; C)

D ;

↓ is translated to ↓

cape_begin(PARALLEL_FOR, A, B);
[cape_clause_functions]
ckpt_start();
for (LEFT ; RIGHT ; C)

D ;
cape_end(PARALLEL_FOR, reduction-flag);

Figure 4.11: Prototype to translate pragma omp parallel for.

70 Design and implementation of a new model for CAPE

4.5.3.2 parallel sections construct

The OpenMP parallel sections construct is a shortcut for specifying a parallel con-
struct that contains one sections construct and no other statements. This construct does
not accept nowait clause. Its syntax and transformation prototype in CAPE is shown in
Figure 4.12.

#pragma omp parallel sections [clauses]
{

[#pragma omp section]
D1;
[#pragma omp section]
D2;
...

}

↓ is translated to ↓

cape_begin(PARALLEL_SECTIONS, 0 , 0);
[cape_clause_functions]
ckpt_start();
if (cape_section())

D1;
if (cape_section())

D2;
...

cape_end(PARALLEL_SECTIONS, reduction-flag);

Figure 4.12: Prototype to translate pragma omp parallel sections.

As well as we did for the implementation of parallel and sections constructs, the
cape_section() function is called to identify which structured blocks are executed by which
nodes. At the cape_end() function, cape_barrier() is called automatically to update the
shared data among the nodes.

4.5.4 Master and Synchronization constructs

4.5.4.1 master construct

The OpenMP master construct indicates the associated structured block executed by the
master thread from the set of threads generated by parallel construct. It is no necessary to
updated shared data after executing [2]. The translation prototype is presented in Fig. 4.13.
In this case, the cape_master() function returns TRUE at the master node, and FALSE
at the others.

Transformation prototypes 71

#pragma omp master
D ;

↓ is translated to ↓

if (cape_master())
D;

Figure 4.13: Prototype to translate pragma omp master.

4.5.4.2 critical construct

The OpenMP critical construct specifies the associated structured block executed in one
thread at a time. After executing, a barrier is set implicitly to update shared data. The
Fig. 4.14 illustrates the translation of this construct. Currently, the order of the execution
is set depending on the node index. After execution at each node, cape_barrier() is called
to update shared data among nodes.

#pragma omp critical
D;

↓ is translated to ↓

for(__i__ = 0; __i__ < cape_get_num_nodes(); __i__++)
{

if (__i__ == cape_get_node_num())
D;

cape_barrier();
}

Figure 4.14: Prototype to translate pragma omp critical.

4.5.4.3 flush construct

The OpenMP flush construct executes the flush() operation. Hence, when reaching this
construct, it is translated into a cape_flush() function call.

4.5.4.4 barrier construct

The OpenMP barrier construct specifies an explicit barrier at the point the construct
appears. This construct is translated into a call to the cape_barrier() function in CAPE.

72 Design and implementation of a new model for CAPE

4.6 Performance evaluation

In order to evaluate the perforance of this new approach, we designed a set of micro bench-
marks and tested them on a Desktop Cluster. The designed programs are based on the
Microbenchmark for OpenMP 2.0 [92, 93]. These programs have been translated to CAPE
and executed on a Cluster to compare the performance. Details of the programs and exper-
imental environment are explained below.

4.6.1 Benchmarks

1) MAMULT2D: This program computes the multiplication of two matrices. Originally,
it was written in C/C++ and used the OpenMP parallel for construct. It matches
Bernstein’s conditions. Therefore, it has been used extensively to test CAPE in the previous
works. The code is shown in Fig. 4.15.

int matrix_mult(int A[], int B[], int C[], int n){
#pragma omp parallel for
for(i = 0; i < n; i ++){

for(j = 0; j < n; j++)
{

for (k = 0; k < n; k++)
{

c[i][j] += a[i][k] * b[k][j];
}

}
}
return 0;

}

Figure 4.15: Multiplication of two square matrices with OpenMP.

2) PRIME: This program counts the number of prime numbers in the range form 1 to
N as presented in Fig. 4.16. The OpenMP code uses the parallel for construct with
data-sharing clauses.

3) PI: This program computes the value of PI by mean of the numeric integration method
using Equation (4.1).

π =

∫ 1

0

4

1 + x2
dx (4.1)

The OpenMP code is presented in Fig. 4.17. It contains parallel and for constructs,
and data-sharing clauses that is accepted by these construct. This program uses different
types of variables in order to test the adaptive granularity implemented on TICKPT.

4) VECTOR-1: This program performs operations on vectors. It contains OpenMP
runtime functions, data-sharing clauses, a nowait clause, and parallel and sections con-
structs. The OpenMP code is presented in Fig. 4.18.

Performance evaluation 73

int count_prime(int n){
int i,j, prime, total = 0;

pragma omp parallel for shared (n)
private(j, prime)
reduction(+: total)

for (i = 2; i <= n; i++){
prime = 1;
for (j = 2; j < i; j++){

if (i % j == 0){
prime = 0;
break;

}
}

total = total + prime;
}
return total;

}

Figure 4.16: The OpenMP code to count the number of prime numbers from 1 to N.

double pi(int NUM_STEPS){
double x , aux, sum, pi, step;
int i;
x = 0;
sum = 0.0;
step = 1.0 / (double) NUM_STEPS;
#pragma omp parallel private(i,x,aux) shared(sum)
{

#pragma omp for reduction(+: sum)
for(i=0; i< NUM_STEPS; i++){

x = (i+ 0.5) * step;
aux = 4.0/(1.0 + x*x);
sum += aux;

}
}
pi = step * sum;
return pi;

}

Figure 4.17: The OpenMP function to compute the value of PI.

74 Design and implementation of a new model for CAPE

int vector(float A[], float B[], float C[], float D[], int n){
int i, nthreads, tid;
#pragma omp parallel shared(C,D,nthreads) private(A, B, i,tid)

{
tid = omp_get_thread_num();
if (tid == 0)
{

nthreads = omp_get_num_threads();
printf("Number of threads = %d\n", nthreads);

}
printf("Thread %d starting...\n",tid);
#pragma omp sections nowait
{

#pragma omp section
printf("Thread %d doing section 1\n",tid);

for (i=0; i<N; i++)
{

for (j= 0 ; j< N; j+=25)
A[j] = A[j] * 0.15 ;

C[i] = A[i] + B[i];
printf("Thread %d: C[%d]= %f\n",tid,i,C[i]);

}
#pragma omp section
printf("Thread %d doing section 2\n",tid);
for (i=0; i<N; i++)
{

for (j= 0 ; j< N; j+=25)
B[j] = B[j] + 10.25 ;

D[i] = A[i] * B[i];
printf("Thread %d: D[%d]= %f\n",tid,i,D[i]);

}
} /* end of sections */

} /* end of parallel section */
return 0;

}

Figure 4.18: OpenMP function to compute vectors using sections construct.

Performance evaluation 75

5) VECTOR-2: This program performs some operations on vectors. It contains OpenMP
parallel and for constructs with a nowait clause. The OpenMP code is shown in Fig. 4.19.

int vector2(int A[], int B[], int Y[], int Z[], int n, int m)
{

int i,j;
#pragma omp parallel private(A,Z) shared(B, Y)
{

#pragma omp for nowait
for (i=1; i<n; i++){

for(j=0; j<n ; j+=20)
A[j] = A[j] + 10.25

B[i] = (A[i] + A[i-1]) / 2;
}
#pragma omp for nowait
for (i=0; i<m; i++){

for(j=0; j<m ; j+=20)
Z[j] = Z[j] * 0.025 ;

Y[i] = Z[i] * i;
}

}
return 0;

}

Figure 4.19: OpenMP function to compute vectors using for construct.

4.6.2 Evaluation context

The experiments have been performed on a 16-node cluster with different computer’s con-
figurations. There are 2 computers with Intel(R) Pentium(R) Dual CPU E2160 @1.80GHz,
2GB of RAM, 5GB of free HDD; 7 computers with Intel(R) Core(TM)2 Duo CPU E7300
@2.66GHz, 3G of RAM, 6GB of free HDD; 5 computers with Intel(R) Core(TM) i3-2120
CPU @3.30GHz, 8GB of RAM, 6GB of free HDD; and 2 computers AMD Phenom(TM)
II X4 925 Processor @2.80GHz, 2GB of RAM, 6GB of free HDD. All of these machines
are operated by Ubuntu 14.03 LTS operation system with OpenSSH-Server and MPICH-2.
They are interconnected by a 100Mbps LAN network.

To evaluate the performance of CAPE based on TICKPT and the new execution model
(CAPE-TICKPT), we translated and ran the programs presented Sec. 4.6.1. Each experi-
ment has been performed at least 10 times to measure the total execution times measure the
total execution times and a confidence interval of at least 95% has been always achieved for
the measures. The execution time is the mean of the items. These times are compared with
those after being performed by the previous version of CAPE – CAPE based on DICKPT
(CAPE-DICKPT) and other solutions as translated into MPI.

At present, CAPE-DICKPT only provide prototypes and support for the omp parallel
for construct. This version also provide no support for multiple OpenMP directives, OpenMP
clauses, and OpenMP programs that do not match with Bernstein’s conditions. Therefore,
it can only translate and provide the framework to execute the MAMULT2D program.

76 Design and implementation of a new model for CAPE

For the translation to MPI, these OpenMP programs were translated manually into MPI
programs using the same behaviors as CAPE. The difference is that, at the synchronization
points, CAPE-TICKPT detects the modified data automatically to synchronize while MPI
does the same by explicit instruments of the programmers. The translation principle of
OpenMP programs into MPI used in this experiment are described as follows:

• The OpenMP reduction() clause is translated into the MPI_Reduce() function. The
other OpenMP clauses are ignored in the MPI program.

• Each section directive in omp sections is translated to execute in a process in MPI.

• The iterators of omp for are re-calculated to be assigning for the processes in MPI.

• Shared data are manually identified and sent to relevant processes at the synchroniza-
tion points.

• The MPI_SendRecv() is used to send and receive data between a couple of processes.

• The MPI_Bcast() is used to broadcast data from a process to all processes.

4.6.3 Evaluation results

Fig. 4.20 and 4.21 present the execution time in milliseconds for the MAMULT2D program
for various size of matrices and different sizes of cluster respectively. Note that, there are
many kinds of processors in different nodes. Some of them include many cores, but a single
core at each node was used during the experiments. Three measures are presented at each
time: the left one (yellow) is associated with CAPE-DICKPT (the previous version), the
middle one (blue) is associated with CAPE-TICKPT (the current version), and the right
one (red) is associated with MPI.

Fig. 4.20 presents the execution time for various of matrix sizes on a 16-node cluster.
The size increases from 800x800 to 6400x6400. The figure shows that the execution times
of all methods are proportional to the matrix size. It also shows that the execution time of
CAPE-DICKPT is much higher than that of CAPE-TICKPT and MPI (around 35%) while
the execution time of CAPE-TICKPT and MPI are roughly equal. This is due to three
major reasons as follows:

• During the computation phase, besides computing the divided jobs, CAPE-DICKPT
has to do a series of operations to extract the modified data into an incremental
checkpoint, such as set write-protection to all pages of virtual memory, try to write
data to write-protection pages, catch SIGSEGV signal, copy data of the page, remove
write-protection, and re-write the results into that page. While at this phase, on MPI,
modified data are identified explicitly by the programmer, while CAPE-TICKPT copies
the shared variables at the beginning of this phase, and compares old and new values
of variables to identify the modified data at the end of the phase. The analysis and
evaluation in Sec. 3.4 showed that the DICKPT mechanism takes a large point in the
reduction of the performance of the program.

• At the join phase, on CAPE-DICKPT, all slave nodes have to send incremental check-
points to the master, the master receives, merges them together and then sends the
result back to all slave nodes to inject it into their application’s memory while MPI

Performance evaluation 77

and CAPE-TICKPT are implemented using Ring or Recursive Doubling algorithms
(see Sec. 4.3).

• On the execution model of CAPE-DICKPT (see Sec. 2.4.1), only 15 slave nodes are
responsible for computing the divided jobs, while the master only waits for the results
form the slaves after distributing jobs to them. With MPI and CAPE-TICKPT, all
nodes in the system (including the master) have to compute a part of the job.

Figure 4.20: Execution time (in milliseconds) of MAMULT2D with different size of matrix
on a 16-node cluster.

Figure 4.21: Execution time (in milliseconds) of MAMULT2D for different cluster sizes.

78 Design and implementation of a new model for CAPE

Fig. 4.21 presents the execution time for a matrix size of 6400x6400 on different size of
a cluster. The number of nodes in turn is 4, 8, and 16. The result presented in this figure
also shows the similar trend with the result on different matrix size. The execution time of
CAPE is significantly reduced so that it now much closer to an optimized human-written
program using MPI.

To demonstrate the new version of CAPE can run OpenMP programs that do not only
match with the Bernstein’s conditions while archiving high performance, we did other exper-
iments and compared the performance of CAPE-TICKPT with MPI. All of the four other
programs presented in Sec. 4.6.1 have been used to measure the execution time.

Figure 4.22: Execution time (in milliseconds) of PRIME on different cluster sizes.

Figure 4.22 presents the execution time in milliseconds of PRIME with N = 106 on
different cluster sizes for CAPE-TICKPT and MPI. It shows that the execution time of MPI
is only around 1% smaller than CAPE-TICKPT. In this experiment, the OpenMP parallel
for directive with the shared(), private() and reduction() clauses are translated and
tested for both two methods. Table 4.2 describes the steps executed by the program for the
two methods. The main different step is the join phase. It gathers the results from all nodes
and computers the sum of them. The MPI program is clearly specified the values that need
to be gathered and calculated the sum, so that the MPI_Reduce() function is called after.
CAPE-TICKPT automatically identifies the modified value of the shared variables, extracts
into a TICKPT, and then gathers all checkpoints from all the nodes with the merging
checkpoint operator. However, as the execution time of CAPE-TICKPT is nearly equal to
the one of MPI. We considered that we reached to achieve high performance with CAPE.

Fig. 4.23 presents the execution time in milliseconds of PI with NUM_STEPS = 108 on
different cluster sizes using CAPE-TICKPT and MPI. In this experiment, the OpenMP for
directive with reduction clause placed inside the omp parallel construct with some clauses
are tested. As well as the previous experiments, this figure also shows that CAPE-TICKPT
achieves similar performance as MPI.

Performance evaluation 79

Step CAPE-TICKPT MPI

Fork

updates the properties of
variables, saves data of shared
variables, and re-computes the

iterators

re-computes the iterators

Computation computes the divided jobs computes the divided jobs

Join
generates checkpoints, and calls

the merging checkpoint
operator with the sum operator

calls MPI_Reduce to gather and
sum the results

Table 4.2: Comparison of the executed steps for the PRIME code for both CAPE-TICKPT
and MPI.

Figure 4.23: Execution time (in milliseconds) of PI on different cluster sizes.

Fig. 4.24 shows the execution time in milliseconds for the VECTOR-1 program with
N = 106 for different cluster sizes using CAPE-TICKPT and MPI. In this experiment,
OpenMP functions and the sections construct with two section directives are tested. The
figure shows that on the larger the number of nodes, the longer the execution time for both
methods. The execution time with MPI is smaller than the one of CAPE-TICKPT, but the
difference is not significant. Note that there are only two section directives in this program,
so that both CAPE-TICKPT and MPI distribute the execution to two nodes only. Each node
receives and executes the code of a section. However, the result has to be synchronized to
all nodes on the system. Therefore, the execution time increases when increasing the number
of nodes.

Fig. 4.25 shows the execution time in milliseconds for VECTOR-2 with N = 106 and
M = 1.6×106 on different cluster sizes for both CAPE-TICKPT and MPI. This experiment
aims at testing two omp for directives with nowait clause. The size of the two vectors are

80 Design and implementation of a new model for CAPE

Figure 4.24: Execution time (in milliseconds) of VECTOR-1 on different cluster sizes.

Figure 4.25: Execution time (in milliseconds) of VECTOR-2 different cluster sizes.

different from each other to ensure the nodes take different time to execute the divided jobs.
The execution on each node is marked nowait until reaching the end bock of the parallel
region. The figure shows the same trend as the previous experiments. The execution time
for CAPE-TICKPT is very close to MPI, the difference being negligible.

4.7 Conclusion

This chapter presented the design and implementation of a new execution model and proto-
types for CAPE based on TICKPT. With this new capability included, CAPE improves the

Conclusion 81

reliability and can run OpenMP programs that do not require to match the Bernstein’s condi-
tions. In addition, the analysis and evaluation of performance of this chapter demonstrated
that CAPE-TICKPT achieves performance very close to a comparable human-optimized
hand-written MPI program. This is mainly due to the fact that CAPE-TICKPT take bene-
fits of the advantages of TICKPT such as checkpoints operators and can use resources more
efficiently. The synchronization phase of the new execution model also avoids the risk of
bottlenecks that may have occurred in the previous version.

82 Design and implementation of a new model for CAPE

Chapter 5
OpenMP Data-Sharing on CAPE

Contents
5.1 Motivation . 83
5.2 OpenMP Data-Sharing attribute rules 84

5.2.1 Implicit rules . 84
5.2.1.1 Data-sharing attribute rules for variables referenced inside a par-

allel region but outside any construct 84
5.2.1.2 Data-sharing attribute rules for variables referenced in a parallel

region and in another construct 85
5.2.2 Explicit rules . 85

5.3 Data-Sharing on CAPE-TICKPT . 86
5.3.1 Implementing implicit rules . 86
5.3.2 Implementing explicit rules . 87
5.3.3 Generating and merging checkpoints . 87

5.4 Analysis and evaluation . 89
5.5 Conclusion . 90

5.1 Motivation

OpenMP provides a relaxed-consistency shared-memory model [2]. All OpenMP threads
can access the same place in the memory to store and retrieve variables. This memory is
called the shared memory. Besides, each thread is allowed to have its own memory, called
the local memory. The local memory provides a temporary view of the shared memory.
On the one hand, it allows the threads to cache the shareable variables and thereby to
avoid going to shared memory for every access to a variable. The updating of shareable
variables from the local memory to shared memory is only a mandatory requirement at the
synchronization points. On the other hand, the local memory allows the threads to store
the private variables accessed by the owner only. The shared or private property of variables
determines the updating of the shared memory. In OpenMP, it not only has a set of rules
to identify the variables property implicitly, but also provides the threadprivate construct
and a set of clauses that allow the programmers to set property for variables explicitly.

83

84 OpenMP Data-Sharing on CAPE

In the previous works presented in [84], CAPE implemented the RC shared-memory
model of OpenMP on distributed-memory architectures. Thank to this method, the shared
and private variables of the program are stored in the memory of the different nodes. They
are independently accessed by the owner. When the program reaches the synchronization
points, these data are synchronized using DICKPT. However, this implementation has not
handled data-sharing attributes yet, all modification of memory including private data at
each node is extracted to store into a DICKPT. These checkpoints from all slave nodes are
sent to and merged at the master node at the join phase. Then, the merged checkpoint is
distributed to all slave nodes to update the application memory. This implementation does
not only transfer unnecessary data, but also makes the program work incorrectly.

To solve these issues, in the new design and implementation of CAPE based on TICKPT,
the modified data of shared variables are selected to synchronize. To do so, the variable
attributes are handled followed by the OpenMP data-sharing attribute rules. In addition,
checkpoints are merged using the operations presented in Sec. 3.2. In this chapter, we present
the method to handle data-sharing attribute for variables in CAPE-TICKPT.

5.2 OpenMP Data-Sharing attribute rules

To synchronize the shared data from the local memory to the shared memory, an OpenMP
program has to determine the data-sharing attribute of variables. A data-sharing attribute is
identified when entering and exiting a parallel region and may be re-identified by entering
and exiting the location of other constructs that are placed inside the parallel construct.
The identification rules are set either implicitly or explicitly.

5.2.1 Implicit rules

The implicit rules to determine the data-sharing attribute of variables are described in two
groups: 1) variables referenced inside a parallel region but outside any constructs; 2) variables
referenced in parallel region and in another construct. In this section, we only describe the
rules that applies in C/C++.

5.2.1.1 Data-sharing attribute rules for variables referenced inside a parallel
region but outside any construct

The OpenMP data-sharing attributes of variables that are referenced in parallel regions,
but not in a construct, are determined as follows:

• Variables declared outside any parallel regions are shared.

• Variables with static storage duration declared in the region are shared.

• Variables with const-qualified type having no mutable member are shared.

• Objects with dynamic storage duration are shared.

• Static data members are shared if they do not appear in a threadprivate directive.

• Formal arguments of called routines in the region passed by reference inherit the data-
sharing attributes of the associated actual argument.

• Other variables declared in the region are private.

OpenMP Data-Sharing attribute rules 85

5.2.1.2 Data-sharing attribute rules for variables referenced in a parallel region
and in another construct

For constructs located inside a parallel construct, the OpenMP data-sharing attributes of
variables are inherited from the parallel region it belongs to. In addition, it is re-determined
implicitly by the rules as follows:

• Variables appearing in the threadprivate directive are private.

• The loop iteration variables in the for or parallel for are private.

• Object with dynamic storage duration is shared.

• Static data members are shared.

• Variables with static storage duration that are declared in a scope inside the construct
are shared.

5.2.2 Explicit rules

In the OpenMP program, the data-sharing attribute of variables can be explicitly determined.
In order to do so, it provides a threadprivate directive and a set of clauses associated with
some constructs.

According to [2], threadprivate is a declarative directive. It specifies those replicated
variables , in which each thread has its own copy. The syntax of the threadprivate directive
is as follows:

#pragma omp threadprivate(list)

where list is a comma-separated list of file-scope, namespace-score, or static block-score
variables that do not have incomplete types.

The syntax of OpenMP clauses is presented in Fig. 2.3. They have to follow a construct
that accepts theses clauses. Table 5.1 summaries what OpenMP data-sharing clauses are
accepted by which OpenMP constructs. And the functions of theses clauses are also described
in Table 3.2.

parallel for sections single parallel for parallel sections

private X X X X X X

firstprivate X X X X X X

lastprivate X X X X

shared X X X

default X X X

copyin X X X

copyprivate X

reduction X X X X X

Table 5.1: The summary of which OpenMP data-sharing clauses are accepted by which
OpenMP constructs.

86 OpenMP Data-Sharing on CAPE

5.3 Data-Sharing on CAPE-TICKPT

Based on the distributed-memory mechanism, the memory is totally distributed on different
nodes. Thanks to this, CAPE can design and implement a RC memory model as similar as
the OpenMP one. Here, all variables of the program including shared and private variables
are stored at all nodes executing the program. When reaching synchronization points, only
the modified values of shared variables are extracted into TICKPT and synchronized between
all nodes as illustrated in Fig. 5.1. In order to select and extract only the modified values
of the shared variables, CAPE-TICKPT is designed within a set of rules and translated
prototypes that implement implicit and explicit attribute rules for variables.

Figure 5.1: Update of shared variables between nodes.

5.3.1 Implementing implicit rules

For detecting the default property of variables, CAPE is designed to follow the OpenMP
rules with a small change. It is also added some functions to recognize the variables. Below
are the rules for adding functions and for determining the variables’ attributes implicitly:

1. CAPE functions are added whenever the program meets the declarations of a variable.
These functions save the address and the attribute of the declared variable.

2. For dynamic memory allocation on the heap, the allocation and the destruction of the
memory are handled by adding CAPE functions. They add or remove these allocated
space from the variable list.

Data-Sharing on CAPE-TICKPT 87

3. Variables declared outside parallel regions are shared, unless they are included in a
threadprivate directive.

4. All variables declared inside a parallel construct that are not static or dynamic
variables are private.

5. The data-sharing attribute of variables of the constructs placed inside a parallel
construct are inherited from parallel.

5.3.2 Implementing explicit rules

For the case of explicit rules of data-sharing attribute for variables, OpenMP directives and
clauses are translated into the relevant CAPE runtime functions in order to handle their at-
tributes. Fig. 5.2 and 5.3 present the templates used to translate OpenMP threadprivate
directive and clauses to CAPE code respectively. Here, the OpenMP threadprivate direc-
tive is translated into a call to the cape_set_threadprivate() function, and the OpenMP
clauses are translated into the relevant CAPE clause functions. The cape_set_threadprivate()
function sets the private attribute to the variable at the corresponding address. The CAPE
clause functions are implemented with the same behavior as the OpenMP clauses. They are
responsible for changing the variable attributes before taking the checkpoints. The CAPE
runtime functions associated with OpenMP clauses are presented and described in Table 5.2.

pragma omp threadprivate(var1, var2, ...);

↓ is translated to ↓

cape_set_threadprivate(&var1);
cape_set_threadprivate(&var2);
...

Figure 5.2: Template to translate pragma omp threadprivate to CAPE function call.

5.3.3 Generating and merging checkpoints

CAPE-TICKPT performs a series of operations to generate checkpoints containing the mod-
ified value of the shared variables after executing a region of the program. Two important
steps of these operations are 1) copying data at the beginning and 2) finding different data
at the end of region that marks the checkpoint generation. Here, the ckpt_start() func-
tion performs the first step. When called, it copies all data of variables that have shared,
lastprivate, copyin, or copyprivate property (DATA-0). The second step is called at the
synchronization point.

To find the different data, the CAPE monitor compares DATA-0 with the current data
(data that are read from memory at the time of reaching the synchronization point). The
modified data are stored into the checkpoint file. In addition, if the reduction property is
set to some variables, their data are also saved into the checkpoint regardless their changes.

88 OpenMP Data-Sharing on CAPE

pragma omp directive clause-1(var1) clause-2(var2) ...
D ;

↓ is translated to ↓

begin-directive
cape-clause-function-1(&var1, ...);
cape-clause-function-2(&var2, ...);
...
ckpt_start();

D;
end-directive

Figure 5.3: Template to translate OpenMP constructs within data-sharing attribute clauses.

OpenMP clause CAPE runtime function Description

default(none) cape_set_default_none() ; Sets property of all variables
are private.

shared(a1, a2,...) cape_set_shared(&a1);
cape_set_shared(&a1); ...

Sets property of a1, a2,...
variables are shared.

private(a1, a2, ...) cape_set_private(&a1);
cape_set_private(&a2); ...

Sets property of a1, a2,...
variables are private.

firstprivate(a1, a2,...) cape_set_firstprivate(&a1);
cape_set_firstprivate(&a2); ...

Sets property of a1, a2,...
variables are firstprivate.

lastprivate(a1, a2,...) cape_set_lastprivate(&a1);
cape_set_lastprivate(&a2); ...

Sets property of a1, a2,...
variables are lastprivate.

copyin(a1, a2, ...) cape_set_copyin(&a1);
cape_set_copyin(&a2); ...

Sets property of a1, a2,...
variables are copyin.

copyprivate(a1, a2, ...) cape_set_copyprivate(&a1);
cape_set_copyprivate(&a2); ...

Sets property of a1, a2,...
variables are copyprivate.

reduction (Op: a1, a2, ...) cape_reduction(&a1, OP);
cape_reduction(&a2, OP); ...

Sets property of a1, a2,...
variables are reduction with
relevant operator.

Table 5.2: CAPE runtime functions associate with their OpenMP clauses.

Analysis and evaluation 89

This is their initial values and it is necessary to perform the indicated operation in the
reduction clause.

After generating checkpoints, they are sent to partner nodes. These checkpoints are
merged together using the merging checkpoint operator (see Sec. 3.2.4). The resulting
checkpoint after the join phase is injected into the application’s memory to update the
shared data.

5.4 Analysis and evaluation

The performance evaluation presented in Sec. 4.6 has demonstrated the performance of
CAPE-TICKPT are higher than the previous version. Unfortunately, the previous version
of CAPE was not able to support the execution of multiple OpenMP directives as well as
OpenMP clauses in a program. Therefore, we cannot run OpenMP containing clauses on
top of CAPE-DICKPT to compare performance just like we can do it for the checkpoint
size.

This section presents a comparison of checkpoint size for CAPE-TICKPT with the cur-
rent version of CAPE but data-sharing attribute for variables were not implemented. The
VECTOR-2 program is executed on a 16-node cluster (see Sec. 4.6 on p. 72) in order to
measure and compare the checkpoint size for both methods.

Figure 5.4: Checkpoint size (in bytes) after merging at the master node for both techniques.

Figure 5.4 shows a comparison of the checkpoint size for both methods when executing
the VECTOR-2 program on a 16-node cluster with various size of N and M . Here, we
assigned N = M and increased the value from 2000 to 14000. According to the figure, the
checkpoint size of CAPE-TICKPT is always smaller than the one of CAPE-DICKPT for all
measures. This is due to the fact that CAPE-TICKPT only extracts the modified values of
shared variables. This means, the modified value of variable i, vector A, and vector Z of
the VECTOR-2 program are not saved into the checkpoint file. Unlike CAPE-TICKPT, the
previous methods save all modified data, including variables i, j, A, B, Y , and Z.

90 OpenMP Data-Sharing on CAPE

5.5 Conclusion

This chapter presented the implementation of OpenMP with data-sharing attributes for
variables on CAPE. It does not only provide a new capability for CAPE, but also contributes
to reduce checkpoint size and improves the performance. The experiments show that the new
method makes CAPE more able to reduce the checkpoint size significantly. Moreover, we also
found that the programmer can use CAPE efficiently if he/she use OpenMP clauses efficiently
to manage data-sharing attributes for variables. We suggest using the default(none) clause
to set to all variables as private, and then using the share() clause to set the sharable
property to variables that he/she wants to share among processes.

Chapter 6
Conclusion and Future works

Contents
6.1 Contribution of the thesis . 91

6.2 Future Works . 92

OpenMP and MPI become the standard tools to develop parallel application on shared
and distributed-memory architectures. OpenMP is higher level programming tool than MPI.
It is very easy to use. However, it is only developed for shared-memory architectures. CAPE
is based on Checkpointing technique had shown the advantages. It translates automatically
the OpenMP programs and provides a framework to execute them in parallel on distributed-
memory architectures. That help the users to develop parallel application on distributed-
memory architecture in easy way.

CAPE have developed and tested over three stages. In the first stage, CAPE is developed
based on complete checkpointing. In that, the master node divides jobs and distributes to the
slaves using complete checkpoints. The checkpoints size is not optimized in this approach but
CAPE have shown that it is a promised approach to port OpenMP on distributed memory
architecture while meet fully compliant with OpenMP requirement. In the second stage,
CAPE is designed and developed based on Discontinuous Incremental Checkpointing (a kind
of Incremental Checkpointing). To execute, the program is initialized and executed at all
nodes in the system. The checkpoint technique only take the modified of data. Therefore, the
execution time is improved significantly. In the third stage, the checkpoint techniques and
execution model of CAPE is optimized. The works presented in this thesis have successfully
and significantly improved the ability, reliability, and performance of CAPE.

6.1 Contribution of the thesis

In summary, the main contributions of the thesis are:

• We proposed arithmetics on checkpoints, that defines the data structures and opera-
tions to compute directly on checkpoints. From the arithmetics on checkpoints, the
checkpoints of a program executed in parallel on different processors can be combined
altogether and do not require a parallel program matching with Bernstein’s conditions

91

92 Conclusion and Future works

anymore, which improved the merging time significantly, and improved the reliability
of program too.

The checkpoint’s data structure contains two main components: register values and
memory members. Each component have its own time-stamp in order to record the or-
der when they are taken. The checkpoint’s operations are defined, such as replacement
of memory elements,merging and excluding checkpoints, etc. that allow merge or find
the difference of checkpoints more efficiency. The analysis showed that the execution
time of performing these operations are reduce significantly.

• We developed Time-stamp Incremental Checkpoint (TICKPT), a new checkpoint tech-
nique as a case study for arithmetics on checkpoints. TICKPT proved that the size
can be significantly reduced as compared to DICKPT. In addition, a comparison of
the bad affect on the execution time of programs using checkpointing, TICKPT affects
performance much less than DICKPT (see Sec. 3.3 and 3.4 on p. 48 and 51).

To develop TICKPT, we also have implemented two different methods 1) page write-
protection and 2) duplication of shared variables to compare and select the best one.
The experiment results showed that the method 2) is better than method 1) in the
term of checkpointing time and checkpoint’s size.

• We designed and implemented a new execution model and new prototypes for CAPE
based on TICKPT. This has improved the performance and ability of CAPE. The
experiments shown that CAPE can execute OpenMP programs that do not match
with the Bernstein’s conditions. Moreover, the performance are equivalent to the ones
of MPI and are much higher than the previous versions (see Chap. 4 on p. 59).

In the new execution model of CAPE, when reaching the parallel region, a CAPE
functions set up an environment in order to detect the modified data of shared variables.
The modification is extracted and stored into TICKPT at the synchronization points.
The TICKPTs are automatically synchronized among nodes in the system.

• We implemented OpenMP data-sharing attributes on CAPE. The implementation of
OpenMP data-sharing attributes for variables have reduced the checkpoint size gen-
erated at the join phase, and contributed to improve the global performance. In
particular, it increases CAPE’s ability as well as reliability (see Chap. 5 on p. 83).

6.2 Future Works

In the near future, we would like to develop CAPE more complete to distribute an open
source solution. To do that, firstly, we have to develop more completely the translation tool
that translates from OpenMP source to CAPE source code. That can adapt any kind of
OpenMP program. Then, this translation tool is integrate in to a C/C++ compiler. In
which, the code can be easier to analyze, re-organize and optimize that can improve the
performance of CAPE.

In addition, today, computers are increasingly equipped with more CPUs, GPUs and
other accelerators. Then, CAPE have to develop to use efficiently the resource and improve
the performance. There are two directions that can be continued to develop CAPE:

• Develop CAPE to support multi-cores. The are two approaches: 1) re-call OpenMP
on each node when it executes the divided jobs, or 2) develop checkpoint technique on

Future Works 93

CAPE for multi-cores. For method 1), it is easy to develop, we can keep OpenMP code
and add some CAPE runtime functions as well as the previous implementation. The
new execution model of this approach likes the illustration at Figure 6.1. For method
2), the checkpoint techniques on CAPE have to improve to adapt with execution on
multi-cores and avoid the conflict of memory.

Figure 6.1: The execution model for CAPE while using multi-cores.

• Develop CAPE to support accelerators. In this direction, we will develop checkpoint
techniques for CAPE on accelerators. The checkpoints from the accelerators of different
nodes should be developed to merge and resume execution portability.

Further more, an another plan is improving the CAPE framework to execute over com-
puters connected through the Internet. Each computer having CAPE framework installed
can join the community to compute a part of a parallel job if possible. The master node
manages the resources, divides jobs and extracts the checkpoints, distributed to the slave
nodes, and handle the returned results. This direction can take the advantages of check-
point techniques. In that, a part of program code can be saved, sent to another machine,
and resumed the execution.

94 Conclusion and Future works

Appendix A
A.1 MPI programs

To compare CAPE with MPI, we manually translated OpenMP source code to MPI source
code. This section presents the translated source code in MPI for the benchmark presented
in Sec. 4.6.1 (p. 72) .

A.1.1 MAMULT2D

int mpi_mamult2d(int A[], int B[], int C[], int n){
int numtasks, taskid, i, j, k;
// 1) divide jobs
int left = taskid * n /numtasks ;
int right = (taskid + 1) * n / numtasks ;
// 2) compute divided jobs
for(i = left; i < right ; i ++)

for(j = 0; j < N; j++)
for (k = 0; k < n; k++)

C[i][j] += A[i][k] * B[k][j];
// 3) syncronize the result
int nsteps = log2 (numtasks);
unsigned long msg_size = (n * n)/ numtasks ;
int partner, nleft, nright;
for(i = 0; i < nsteps; i ++){

partner = taskid ^ (1 << i);
MPI_Sendrecv(&left, 1, MPI_INT, partner, i,

&nleft, 1, MPI_INT, partner, i,
MPI_COMM_WORLD, &status);

MPI_Sendrecv(&C[left][0], msg_size, MPI_INT, partner, i,
&C[nleft][0], msg_size, MPI_INT, partner, i,
MPI_COMM_WORLD, &status);

left = (left <= nleft) ? left : nleft ;
msg_size = msg_size * 2 ;

}
return 0;

}

95

96

A.1.2 PRIME

int mpi_prime(int n, numnodes, nodeid)
{

int i, j prime, total = 0, result = 0 ;
// 1) divide jobs
int s = 2; // This value will be set at the compile time
int left = nodeid * (n - s) / numnodes + s;
int right = (nodeid + 1) * (n - s) / numnodes + s;
// 2) Compute the divided jobs
for (i = left; i <= right; i++){

prime = 1;
for (j = 2; j < i; j++){

if (i % j == 0){
prime = 0;
break;

}
}
total = total + prime;

}
//3) Synchronize the result
MPI_Reduce(&total, &result, 1, MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);
MPI_Bcast(&result, 1, MPI_INT, 0, MPI_COMM_WORLD);
return 0;

}

A.1.3 PI

int mpi_pi (int number_of_steps, int numnodes, int nodeid)
{

double x = 0.0 , aux=0.0 , sum=0.0, result=0.0, pi=0.0;
double step;
int i;
step = 1.0 / (double) number_of_steps;
//1) divide jobs
unsigned int n = number_of_steps;
unsigned int s = 0; // This value will be set at the compile time
unsigned int left = nodeid * (n - s) /numnodes + s;
unsigned int right = (nodeid + 1) * (n - s) / numnodes + s;
//2) compute divided jobs
for(i = left ; i < right ; i++){

x = (i+ 0.5) * step;
aux = 4.0/(1.0 + x*x);
sum += aux;

}
//3) Synchronize the results
MPI_Reduce(&sum, &result, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);

MPI programs 97

MPI_Bcast(&result, 1, MPI_DOUBLE, 0, MPI_COMM_WORLD);
return 0;

}

A.1.4 VECTOR-1

float a[], float b[], float c[];
//...
int mpi_vector1 (int n, int numnodes, int nodeid)
{

int i, tid, nthreads;
tid = nodeid;
if (tid == 0){

nthreads = numnodes;
}
// node 0: execute block 1
if (tid == 0){

for (i=0; i<n; i++){
for (j= 0 ; j< n; j+=25)

b[j] = b[j] * 0.15 ;
c[i] = a[i] + b[i];

}
}
// node 1: execute block 2
if(tid==1){

for (i=0; i<n; i++){
for (j= 0 ; j< n; j+=25)

b[j] = b[j] + 10.25 ;
d[i] = a[i] * b[i];

}
}
// Synchronize results
MPI_Bcast(&c, n, MPI_FLOAT, 0, MPI_COMM_WORLD) ;
MPI_Bcast(&d, n, MPI_FLOAT, 1, MPI_COMM_WORLD) ;
return 0;

}

A.1.5 VECTOR-2

float a[N], b [N], y[M], z[M];
\\...
int mpi_vector2 (int n, int m, int numnnodes, int nodeid){

int i,j;
//1) devide jobs
unsigned int s_n = 0;
unsigned int left_n = nodeid * (n - s_n) /numnodes + s_n;

98

unsigned int right_n = (nodeid + 1) * (n - s_n) / numnodes + s_n;
unsigned int s_m = 0;
unsigned int left_m = nodeid * (m - s_m) /numnodes + s_m;
unsigned int right_m = (nodeid + 1) * (m - s_m) / numnodes + s_m;
//2) compute divided jobs
for (i=left_n; i<right_n; i++){

for(j=0; j<n ; j+=20)
a[j] = a[j] + 10.25 ;

b[i] = (a[i] + a[i-1]) / 2.0;
}
for (i=left_m; i<right_m; i++){

for(j=0; j<n ; j+=20)
z[j] = z[j] * 0.025 ;

y[i] = z[i] * i;
}
//3) Synchronize data
int nsteps = mylog2 (numnodes);
unsigned long msg_size_N = n/ numnodes ;
unsigned long msg_size_M= m/ numnodes ;
int partner;
int nl;
int ml;
for(i = 0; i < nsteps; i ++){

partner = nodeid ^ (1 << i);
MPI_Sendrecv(&left_n, 1, MPI_INT, partner, i,

&nl, 1, MPI_INT, partner, i,
MPI_COMM_WORLD, &status);

MPI_Sendrecv(&left_m, 1, MPI_INT, partner, i,
&ml, 1, MPI_INT, partner, i,
MPI_COMM_WORLD, &status);

MPI_Sendrecv(&b[left_n], msg_size_N*4,MPI_CHAR, partner,i,
&b[nl], msg_size_N*4,MPI_CHAR, partner,

i,
MPI_COMM_WORLD, &status);

MPI_Sendrecv(&y[left_m], msg_size_M*4, MPI_CHAR, partner,i,
&y[ml], msg_size_M *4,MPI_CHAR, partner

,i,
MPI_COMM_WORLD, &status);

left_n = (left_n <= nl) ? left_n : nl ;
left_m = (left_m <= ml) ? left_m : ml ;
msg_size_N = msg_size_N * 2 ;
msg_size_M = msg_size_M * 2 ;

}
return 0;

}

Translation tool for CAPE 99

A.2 Translation tool for CAPE

In order to translate form OpenMP code to CAPE code, we used a tool implemented by
Patricia Reinoso, a MSc. students at Télécom Sudparis. This tool is implemented based on
TXL language [94] and the CAPE prototypes presented in Sec. 4.5 (p. 65).

100

Bibliography

[1] MPI Forum, “Message passing interface forum.”

[2] OpenMP ARB, “OpenMP application program interface version 4.0,” 2013.

[3] É. Renault, “Distributed implementation of OpenMP based on checkpointing aided par-
allel execution,” in A Practical Programming Model for the Multi-Core Era. Springer,
2007, pp. 195–206.

[4] V. H. Ha and E. Renault, “Design and performance analysis of CAPE based on discon-
tinuous incremental checkpoints,” in 2011 IEEE Pacific Rim Conference on Communi-
cations, Computers and Signal Processing, 2011.

[5] ——, “Improving performance of CAPE using discontinuous incremental checkpoint-
ing,” in High Performance Computing and Communications (HPCC), 2011 IEEE 13th
International Conference on. IEEE, 2011, pp. 802–807.

[6] C. Morin, R. Lottiaux, G. Vallée, P. Gallard, G. Utard, R. Badrinath, and L. Rilling,
“Kerrighed: a single system image cluster operating system for high performance com-
puting,” in Euro-Par 2003 Parallel Processing. Springer, 2003, pp. 1291–1294.

[7] M. Sato, H. Harada, A. Hasegawa, and Y. Ishikawa, “Cluster-enabled OpenMP: An
OpenMP compiler for the SCASH software distributed shared memory system,” Scien-
tific Programming, vol. 9, no. 2, 3, pp. 123–130, 2001.

[8] S. Karlsson, S.-W. Lee, and M. Brorsson, “A fully compliant OpenMP implementation
on software distributed shared memory,” in High Performance Computing—HiPC 2002.
Springer, 2002, pp. 195–206.

[9] A. Basumallik and R. Eigenmann, “Towards automatic translation of OpenMP to MPI,”
in Proceedings of the 19th annual international conference on Supercomputing. ACM,
2005, pp. 189–198.

[10] A. J. Dorta, J. M. Badía, E. S. Quintana, and F. de Sande, “Implementing OpenMP for
clusters on top of MPI,” in Recent Advances in Parallel Virtual Machine and Message
Passing Interface. Springer, 2005, pp. 148–155.

[11] L. Huang, B. Chapman, and Z. Liu, “Towards a more efficient implementation of
OpenMP for clusters via translation to global arrays,” Parallel Computing, vol. 31,
no. 10, pp. 1114–1139, 2005.

101

102 Bibliography

[12] J. P. Hoeflinger, “Extending OpenMP to clusters,” White Paper, Intel Corporation,
2006.

[13] J. S. Plank, M. Beck, G. Kingsley, and K. Li, Libckpt: Transparent checkpointing under
unix. Computer Science Department, 1994.

[14] V. H. Ha and É. Renault, “Discontinuous incremental: A new approach towards
extremely lightweight checkpoints,” in Computer Networks and Distributed Systems
(CNDS), 2011 International Symposium on. IEEE, 2011, pp. 227–232.

[15] V. L. Tran, E. Renault, and V. H. Ha, “Analysis and evaluation of the performance of
CAPE,” in IEEE Conferences on Ubiquitous Intelligence & Computing, Advanced and
Trusted Computing, Scalable Computing and Communications, Cloud and Big Data
Computing, Internet of People, and Smart World Congress. IEEE International Sym-
posium on. IEEE, 2016, pp. 620–627.

[16] S. V. Adve and K. Gharachorloo, “Shared memory consistency models: A tutorial,”
computer, vol. 29, no. 12, pp. 66–76, 1996.

[17] C. Amza, A. L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and
W. Zwaenepoel, “Treadmarks: Shared memory computing on networks of workstations,”
Computer, vol. 29, no. 2, pp. 18–28, 1996.

[18] J. J. Costa, T. Cortes, X. Martorell, E. Ayguadé, and J. Labarta, “Running openmp
applications efficiently on an everything-shared sdsm,” in Parallel and Distributed Pro-
cessing Symposium, 2004. Proceedings. 18th International. IEEE, 2004, p. 35.

[19] A. Basumallik, S.-J. Min, and R. Eigenmann, “Towards openmp execution on software
distributed shared memory systems,” in International Symposium on High Performance
Computing. Springer, 2002, pp. 457–468.

[20] Z. Radovic and E. Hagersten, “Removing the overhead from software-based shared mem-
ory,” in Supercomputing, ACM/IEEE 2001 Conference. IEEE, 2001, pp. 9–9.

[21] H. Matsuba and Y. Ishikawa, “Openmp on the fdsm software distributed shared mem-
ory,” in The Fifth European Workshop on OpenMP, EWOMP, vol. 3, 2003.

[22] H. Harada, Y. Ishikawa, A. Hori, H. Tezuka, S. Sumimoto, and T. Takahashi, “Dynamic
home node reallocation on software distributed shared memory,” in High Performance
Computing in the Asia-Pacific Region, 2000. Proceedings. The Fourth International
Conference/Exhibition on, vol. 1. IEEE, 2000, pp. 158–163.

[23] Y. Ojima, M. Sato, H. Harada, and Y. Ishikawa, “Performance of cluster-enabled
openmp for the scash software distributed shared memory system,” in Cluster Com-
puting and the Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM International
Symposium on. IEEE, 2003, pp. 450–456.

[24] M. Sato, S. Satoh, K. Kusano, and Y. Tanaka, “Design of openmp compiler for an smp
cluster,” in Proc. of the 1st European Workshop on OpenMP, 1999, pp. 32–39.

[25] Y.-S. Kee, J.-S. Kim, and S. Ha, “Parade: An OpenMP programming environment for
smp cluster systems,” in Proceedings of the 2003 ACM/IEEE conference on Supercom-
puting. ACM, 2003, p. 6.

Bibliography 103

[26] L. Iftode, Home based shared virtual momory. Citeseer, 1998.

[27] L. Whately, R. Pinto, M. Rangarajan, L. Iftode, R. Bianchini, and C. L. Amorim,
“Adaptive techniques for home-based software dsms,” in Proceedings of the 13th Sym-
posium on Computer Architecture and High-Performance Computing. Citeseer, 2001,
pp. 164–171.

[28] F. Mueller, “Distributed shared-memory threads: Dsm-threads,” in Workshop on Run-
Time Systems for Parallel Programming. Citeseer, 1997, pp. 31–40.

[29] M. Pizka and C. Rehn, “Murks-a posix threads based dsm system,” PDCS’01, pp. 642–
648, 2001.

[30] Y.-S. Kee, J.-S. Kim, and W.-C. Jeun, “Atomic page update methods for openmp-aware
software dsm,” in Parallel, Distributed and Network-Based Processing, 2004. Proceed-
ings. 12th Euromicro Conference on. IEEE, 2004, pp. 144–151.

[31] X. Martorell, J. Labarta, N. Navarro, and E. Ayguadé, “A library implementation of
the nano-threads programming model,” in European Conference on Parallel Processing.
Springer, 1996, pp. 644–649.

[32] M. Gonzalez, E. Ayguadé, X. Martorell, J. Labarta, N. Navarro, and J. Oliver,
“Nanoscompiler: supporting flexible multilevel parallelism exploitation in openmp,”
Concurrency - Practice and Experience, vol. 12, no. 12, pp. 1205–1218, 2000.

[33] H. Kopetz and J. Reisinger, “The non-blocking write protocol nbw: A solution to a real-
time synchronization problem,” in Real-Time Systems Symposium, 1993., Proceedings.
IEEE, 1993, pp. 131–137.

[34] R. Buyya, T. Cortes, and H. Jin, “Single system image,” The International Journal of
High Performance Computing Applications, vol. 15, no. 2, pp. 124–135, 2001.

[35] INRIA, “Kerrighed,” 2010. [Online]. Available: http://www.kerrighed.org

[36] C. Morin, P. Gallard, R. Lottiaux, and G. Vallée, “Towards an efficient single system
image cluster operating system,” Future Generation Computer Systems, vol. 20, no. 4,
pp. 505–521, 2004.

[37] R. Lottiaux and C. Morin, “Containers: A sound basis for a true single system image,”
in Cluster Computing and the Grid, 2001. Proceedings. First IEEE/ACM International
Symposium on. IEEE, 2001, pp. 66–73.

[38] J. Breitbart, “Analysis of a memory bandwidth limited scenario for numa and gpu
systems,” in Parallel and Distributed Processing Workshops and Phd Forum (IPDPSW),
2011 IEEE International Symposium on. IEEE, 2011, pp. 693–699.

[39] O. Kwon, F. Jubair, R. Eigenmann, and S. Midkiff, “A hybrid approach of OpenMP for
clusters,” in ACM SIGPLAN Notices, vol. 47, no. 8. ACM, 2012, pp. 75–84.

[40] A. J. Dorta, J. A. Gonzalez, C. Rodriguez, and F. De Sande, “llc: A parallel skeletal
language,” Parallel Processing Letters, vol. 13, no. 03, pp. 437–448, 2003.

http://www.kerrighed.org

104 Bibliography

[41] F. Darema, D. A. George, V. A. Norton, and G. F. Pfister, “A single-program-multiple-
data computational model for epex/fortran,” Parallel Computing, vol. 7, no. 1, pp.
11–24, 1988.

[42] S.-J. Min, A. Basumallik, and R. Eigenmann, “Optimizing openmp programs on software
distributed shared memory systems,” International Journal of Parallel Programming,
vol. 31, no. 3, pp. 225–249, 2003.

[43] P. Havlak and K. Kennedy, “An implementation of interprocedural bounded regular
section analysis,” IEEE Transactions on Parallel and Distributed Systems, vol. 2, no. 3,
pp. 350–360, 1991.

[44] Y. Lin and D. Padua, “Compiler analysis of irregular memory accesses,” ACM SIGPLAN
Notices, vol. 35, no. 5, pp. 157–168, 2000.

[45] J. Hoeflinger, “Intel cluster openmp,” 2010. [Online]. Available: https://software.intel.
com/en-us/articles/cluster-openmp-for-intel-compilers

[46] C. Terboven, D. An Mey, D. Schmidl, and M. Wagner, “First experiences with intel
cluster openmp,” in International Workshop on OpenMP. Springer, 2008, pp. 48–59.

[47] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global arrays: A portable" shared-
memory" programming model for distributed memory computers,” in Supercomput-
ing’94., Proceedings. IEEE, 1994, pp. 340–349.

[48] ——, “Global arrays: A nonuniform memory access programming model for high-
performance computers,” The Journal of Supercomputing, vol. 10, no. 2, pp. 169–189,
1996.

[49] L. Huang, B. Chapman, Z. Liu, and R. Kendall, “Efficient translation of openmp to
distributed memory,” in International Conference on Computational Science. Springer,
2004, pp. 408–413.

[50] L. Huang, B. Chapman, and R. Kendall, “OpenMP for clusters,” in The Fifth European
Workshop on OpenMP, EWOMP, vol. 3, 2003.

[51] L. Huang, B. Chapman, and R. A. Kendall, “Openmp on distributed memory via global
arrays,” in Advances in Parallel Computing. Elsevier, 2004, vol. 13, pp. 795–802.

[52] I. Cores, M. Rodríguez, P. González, and M. J. Martín, “Reducing the overhead of
an MPI application-level migration approach,” Parallel Computing, vol. 54, pp. 72–82,
2016.

[53] V. L. Tran, E. Renault, and V. H. Ha, “Improving the reliability and the performance
of CAPE by using MPI for data exchange on network,” in Mobile, Secure, and Pro-
grammable Networking: First International Conference, MSPN 2015, Paris, France,
June 15-17, 2015, Selected Papers, vol. 9395. Springer, 2015, p. 90.

[54] J. S. Plank, “An overview of checkpointing in uniprocessor and distributed systems,
focusing on implementation and performance,” Technical Report UTCS-97-372, Tech.
Rep., 1997.

https://software.intel.com/en-us/articles/cluster-openmp-for-intel-compilers
https://software.intel.com/en-us/articles/cluster-openmp-for-intel-compilers

Bibliography 105

[55] J. Mehnert-Spahn, E. Feller, and M. Schoettner, “Incremental checkpointing for grids,”
in Linux Symposium, vol. 120. Citeseer, 2009.

[56] I. Cores, G. Rodríguez, P. González, R. R. Osorio et al., “Improving scalability of
application-level checkpoint-recovery by reducing checkpoint sizes,” New Generation
Computing, vol. 31, no. 3, pp. 163–185, 2013.

[57] V. F. Nicola, Checkpointing and the modeling of program execution time. University of
Twente, Department of Computer Science and Department of Electrical Engineering,
1994.

[58] R. Badrinath, C. Morin, and G. Vallée, “Checkpointing and recovery of shared memory
parallel applications in a cluster,” in Cluster Computing and the Grid, 2003. Proceedings.
CCGrid 2003. 3rd IEEE/ACM International Symposium on. IEEE, 2003, pp. 471–477.

[59] O. O. Sudakov, I. S. Meshcheriakov, and Y. V. Boyko, “Chpox: transparent checkpoint-
ing system for linux clusters,” in Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications, 2007. IDAACS 2007. 4th IEEE Workshop on.
IEEE, 2007, pp. 159–164.

[60] G. Vallée, C. Morin, R. Lottiaux, J. Berthou, and I. D. Malen, “Process migration based
on gobelins distributed shared memory,” in Cluster Computing and the Grid, 2002. 2nd
IEEE/ACM International Symposium on. IEEE, 2002, pp. 325–325.

[61] C. R. Landau, “The checkpoint mechanism in keykos,” in Object Orientation in Operat-
ing Systems, 1992., Proceedings of the Second International Workshop on. IEEE, 1992,
pp. 86–91.

[62] J. Ansel, K. Aryay, and G. Coopermany, “Dmtcp: Transparent checkpointing for cluster
computations and the desktop,” in Parallel & Distributed Processing, 2009. IPDPS
2009. IEEE International Symposium on. IEEE, 2009, pp. 1–12.

[63] G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fedak, C. Germain, T. Herault,
P. Lemarinier, O. Lodygensky, F. Magniette et al., “Mpich-v: Toward a scalable fault tol-
erant MPI for volatile nodes,” in Supercomputing, ACM/IEEE 2002 Conference. IEEE,
2002, pp. 29–29.

[64] G. Bronevetsky, D. Marques, K. Pingali, and P. Stodghill, “Automated application-level
checkpointing of MPI programs,” ACM Sigplan Notices, vol. 38, no. 10, pp. 84–94, 2003.

[65] G.-M. Chiu and J.-F. Chiu, “A new diskless checkpointing approach for multiple proces-
sor failures,” Dependable and Secure Computing, IEEE Transactions on, vol. 8, no. 4,
pp. 481–493, 2011.

[66] A. Beguelin, E. Seligman, and P. Stephan, “Application level fault tolerance in het-
erogeneous networks of workstations,” Journal of Parallel and Distributed Computing,
vol. 43, no. 2, pp. 147–155, 1997.

[67] L. M. Silva, J. G. Silva, S. Chapple, and L. Clarke, “Portable checkpointing and re-
covery,” in High Performance Distributed Computing, 1995., Proceedings of the Fourth
IEEE International Symposium on. IEEE, 1995, pp. 188–195.

106 Bibliography

[68] D. Cummings and L. Alkalaj, “Checkpoint/rollback in a distributed system using coarse-
grained dataflow,” in Fault-Tolerant Computing, 1994. FTCS-24. Digest of Papers.,
Twenty-Fourth International Symposium on. IEEE, 1994, pp. 424–433.

[69] C.-C. Li and W. K. Fuchs, “Catch-compiler-assisted techniques for checkpointing,” in
Fault-Tolerant Computing, 1990. FTCS-20. Digest of Papers., 20th International Sym-
posium. IEEE, 1990, pp. 74–81.

[70] Z. Chen, J. Sun, and H. Chen, “Optimizing checkpoint restart with data deduplication,”
Scientific Programming, vol. 2016, 2016.

[71] D. Ibtesham, D. Arnold, K. B. Ferreira, and P. G. Bridges, “On the viability of check-
point compression for extreme scale fault tolerance,” in European Conference on Parallel
Processing. Springer, 2011, pp. 302–311.

[72] T. A. Welch, “Technique for high-performance data compression,” Computer, no. 52,
1984.

[73] M. Lillibridge, K. Eshghi, and D. Bhagwat, “Improving restore speed for backup systems
that use inline chunk-based deduplication.” in FAST, 2013, pp. 183–198.

[74] X. Lin, G. Lu, F. Douglis, P. Shilane, and G. Wallace, “Migratory compression: coarse-
grained data reordering to improve compressibility.” in FAST, 2014, pp. 257–271.

[75] J. Heo, S. Yi, Y. Cho, J. Hong, and S. Y. Shin, “Space-efficient page-level incremen-
tal checkpointing,” in Proceedings of the 2005 ACM symposium on Applied computing.
ACM, 2005, pp. 1558–1562.

[76] J. S. Plank, J. Xu, and R. H. Netzer, “Compressed differences: An algorithm for fast
incremental checkpointing,” Citeseer, Tech. Rep., 1995.

[77] N. Hyochang, K. Jong, S. J. Hong, and L. Sunggu, “Probabilistic checkpointing,” IEICE
TRANSACTIONS on Information and Systems, vol. 85, no. 7, pp. 1093–1104, 2002.

[78] M. Vasavada, F. Mueller, P. H. Hargrove, and E. Roman, “Comparing different ap-
proaches for incremental checkpointing: The showdown,” in Linux’11: The 13th Annual
Linux Symposium, 2011, pp. 69–79.

[79] R. Gioiosa, J. C. Sancho, S. Jiang, F. Petrini, and K. Davis, “Transparent, incremental
checkpointing at kernel level: a foundation for fault tolerance for parallel computers,” in
Proceedings of the 2005 ACM/IEEE conference on Supercomputing. IEEE Computer
Society, 2005, p. 9.

[80] J. Katz, A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook of applied
cryptography. CRC press, 1996.

[81] S. Agarwal, R. Garg, M. S. Gupta, and J. E. Moreira, “Adaptive incremental check-
pointing for massively parallel systems,” in Proceedings of the 18th annual international
conference on Supercomputing. ACM, 2004, pp. 277–286.

[82] F. A. F. B. Gomes, Optimizing incremental state-saving and restoration. University of
Calgary, 1996.

Bibliography 107

[83] D. West and K. Panesar, “Automatic incremental state saving,” in ACM SIGSIM Sim-
ulation Digest, vol. 26, no. 1. IEEE Computer Society, 1996, pp. 78–85.

[84] V. H. Ha, “Optimisation de la gestion mémoire sur machines distribuées,” Ph.D. disser-
tation, Informatique, Télécommunications et Electronique de Paris, Télécom SudParis,
10 2012.

[85] P. J. Salzman, M. Burian, and O. Pomerantz, “The linux kernel module programming
guide,” 2007. [Online]. Available: https://www.tldp.org/LDP/lkmpg/2.6/html/index.
html

[86] L. Mereuta and É. Renault, “Checkpointing aided parallel execution model and analy-
sis,” in High Performance Computing and Communications. Springer, 2007, pp. 707–
717.

[87] A. J. Bernstein, “Analysis of programs for parallel processing,” IEEE Transactions on
Electronic Computers, no. 5, pp. 757–763, 1966.

[88] V. Alfred, S. L. Monica, S. Ravi, and D. U. Jeffrey, Compilers Principles, Techniques,&
Tools. Addion Wesley, 2006, vol. 2.

[89] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective communication
operations in MPICH,” International Journal of High Performance Computing Appli-
cations, vol. 19, no. 1, pp. 49–66, 2005.

[90] NASA Advanced Suppercomputing Division, “Nas parallel benchmarks.” [Online].
Available: https://www.nas.nasa.gov/publications/npb.html

[91] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum, R. A.
Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber et al., “The nas parallel
benchmarks,” The International Journal of Supercomputing Applications, vol. 5, no. 3,
pp. 63–73, 1991.

[92] J. M. Bull and D. O’Neill, “A microbenchmark suite for openmp 2.0,” ACM SIGARCH
Computer Architecture News, vol. 29, no. 5, pp. 41–48, 2001.

[93] EPCC, “Epcc openmp micro-benchmark suite.” [Online]. Available: https://www.
epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/
epcc-openmp-micro-benchmark-suite

[94] H.-H. Charles and C. James, “The txl programming language,” May 2017. [Online].
Available: https://www.txl.ca

https://www.tldp.org/LDP/lkmpg/2.6/html/index.html
https://www.tldp.org/LDP/lkmpg/2.6/html/index.html
https://www.nas.nasa.gov/publications/npb.html
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www.epcc.ed.ac.uk/research/computing/performance-characterisation-and-benchmarking/epcc-openmp-micro-benchmark-suite
https://www.txl.ca

	Introduction
	Introduction
	Problem definition
	Organization of the thesis

	State of the Art
	OpenMP and MPI
	OpenMP
	MPI

	OpenMP on distributed memory architectures
	Solutions based on translation to software DSM
	The use of a Single System Image
	Solutions based on a Translation to MPI
	Intel Clusters OpenMP
	Using Global Array
	Based on Checkpointing
	Summary

	Checkpointing techniques
	Complete checkpointing
	Incremental checkpointing
	Discontinuous incremental checkpointing

	Checkpointing Aide Parallel Execution (CAPE)
	Execution model
	System organization
	Translation prototypes

	Optimization of chekpointing on CAPE
	Motivation
	Arithmetic on checkpoints
	Checkpoint definitions
	Replacement operation
	Operations on Checkpoints memory members
	Operations on Checkpoints
	Conclusion

	Time-stamp Incremental Checkpointing (TICKPT)
	Identifying the time-stamp
	Variable analysis
	Detecting the modified data of shared variables

	Analysis and Evaluation
	Contributions of Arithmetics on Checkpoints
	Detection modified data with TICKPT
	TICKPT vs. DICKPT

	Conclusion

	Design and implementation of a new model for CAPE
	Motivation
	New abstract model for CAPE
	Implementation of the CAPE memory model based on the RC model
	New execution model based on TICKPT
	Transformation prototypes
	The parallel construct
	Work-sharing constructs
	Combined construct
	Master and Synchronization constructs

	Performance evaluation
	Benchmarks
	Evaluation context
	Evaluation results

	Conclusion

	OpenMP Data-Sharing on CAPE
	Motivation
	OpenMP Data-Sharing attribute rules
	Implicit rules
	Explicit rules

	Data-Sharing on CAPE-TICKPT
	Implementing implicit rules
	Implementing explicit rules
	Generating and merging checkpoints

	Analysis and evaluation
	Conclusion

	Conclusion and Future works
	Contribution of the thesis
	Future Works

	Appendix
	MPI programs
	MAMULT2D
	PRIME
	PI
	VECTOR-1
	VECTOR-2

	Translation tool for CAPE

	Bibliography

