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Finally, some progress has been made in the reduction of electromagnetism to a dynamical

science, by shewing that no electromagnetic phenomenon is contradictory to the

supposition that it depends on purely dynamical action.

James Clerk Maxwell



To my sister, Emma.
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SUMMARY

Thirty years after the demonstration of the production of high laser harmonics through

nonlinear laser-gas interaction, high harmonic generation (HHG) is being used to probe

molecular dynamics in real time and is realizing its technological potential as a table-

top source of attosecond pulses in the XUV to soft X-ray range. Despite experimental

progress, theoretical efforts have been stymied by the excessive computational cost of first-

principles simulations and the difficulty of systematically deriving reduced models for the

non-perturbative, multiscale interaction of an intense laser pulse with a macroscopic gas of

atoms. In this thesis, we investigate first-principles reduced models for HHG using classical

mechanics. On the microscopic level, we examine the recollision process—the laser-driven

collision of an ionized electron with its parent ion—that drives HHG. Using nonlinear dy-

namics, we elucidate the indispensable role played by the ionic potential during recollisions

in the strong-field limit. On the macroscopic level, we show that the intense laser-gas inter-

action can be cast as a classical field theory. Borrowing a technique from plasma physics,

we systematically derive a hierarchy of reduced Hamiltonian models for the self-consistent

interaction between the laser and the atoms during pulse propagation. The reduced models

can accommodate either classical or quantum electron dynamics, and in both cases, simula-

tions over experimentally-relevant propagation distances are feasible. We build a classical

model based on these simulations which agrees quantitatively with the quantum model for

the propagation of the dominant components of the laser field. Subsequently, we use the

classical model to trace the coherent buildup of harmonic radiation to its origin in phase

space. In a simplified geometry, we show that the anomalously high frequency radiation

seen in simulations results from the delicate interplay between electron trapping and higher

energy recollisions brought on by propagation effects.
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CHAPTER 1

INTRODUCTION

The electrons of an isolated atom are organized in a complex pattern, known as the ground-

state wave function. Loosely speaking, this pattern is a standing wave: a stationary solution

to the Schrödinger equation, describing the motion of the electrons. Nevertheless, exper-

imental measurements and quantum theory tell us that electrons exhibit wave-particle du-

ality: sometimes they behave like waves, other times they behave like particles, and, most

interestingly, they can even behave like both waves and particles. A striking manifestation

of this behavior occurs when an atom is subjected to an intense laser pulse. In this situ-

ation, the atom may ionize: one of the atomic electrons can be detached from the atom’s

ionic core, and subsequently accelerated away by the electric field of the laser. However,

the direction of the laser field oscillates periodically, meaning it does not take long before

it has reversed direction, and the electron is now accelerated back towards the ionic core.

With the right kind of laser, there is a significant probability that the electron subsequently

collides with the core, an event known as a recollision [1–3]. The electron may bring with

it significant kinetic energy that it acquired from the laser, triggering complex microscopic

processes within the ion.

So far, the description of the electron’s motion has been based on its particle nature,

and indeed, the electron can interact with the ion in particle-like ways. For example, it may

scatter off the ion while the other electrons remain undisturbed, leading to a change in direc-

tion and possibly energy. This outcome typically leads to above-threshold ionization (ATI).

On the other hand, it may collide with one of the other electrons, leading to the ionization

of a second or even third electron. In this phenomenon, termed non-sequential multiple

ionization (NSMI), each electron clearly behaves like a classical particle. However, it is in

the last possible scenario that the intricacies of the electron’s wave-particle nature emerge.

1



If the laser is not too strong, then the probability of single ionization is significantly less

than one, meaning that only part of the electron’s wave packet ionizes—the rest remains

in the standing-wave configuration around the ionic core. When this ionized, particle-like

part of the electron’s wave packet returns to the core, it typically has a different (smaller)

wavelength than the bounded part of the wave packet, because it has gained energy from

the laser field. Hence, the electron wave interferes with itself, through the beating between

the recolliding wave packet and the bounded wave packet. The beating during recollisions

translates into high frequency oscillations of the atomic dipole moment, and is therefore a

source of high frequency radiation.

This last phenomenon, termed high harmonic generation (HHG), has tremendous impli-

cations for the dynamical imaging of atoms and molecules and the generation of attosecond

pulses of high-frequency light (1 as = 10−18 s). The motion of the ionized electrons and

the subsequent reorganization of the ionic core unfold over a subfemtosecond time scale

(1 fs = 10−15 s). It turns out that the structure of the ionic core at the time of the recolli-

sion is encoded in the spectrum of emitted radiation. This opens the possibility of imag-

ing the structure of the ion with subfemtosecond resolution through high-harmonic spec-

troscopy [4–6]. On the other hand, HHG may be harnessed as a source of high-frequency

attosecond pulses, suitable for performing spectroscopic measurements with attosecond-

to-femtosecond resolution [7, 8]. The light produced by HHG is naturally coherent—that

is, phase-locked to the incident laser pulse—and has an attosecond time structure due to

the attosecond dynamics of the recolliding electrons. By taking advantage of macroscopic

effects, the high-harmonic light may emerge from the gas as a train of attosecond pulses

[9, 10] or an isolated attosecond pulse [11]. Indeed, macroscopic effects play a paramount

role in HHG: the radiation generated by a single atom is feeble, but the sum of the radiation

produced by a macroscopic gas of atoms is intense enough to be measured and used in

applications.

Why should we use classical mechanics to understand this fundamentally quantum phe-
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nomenon? There are many compelling reasons to do so. First and foremost, the predictions

of classical theories are in agreement with experimental measurements. Classical theories

successfully predict the high-harmonic cutoff, i.e. the maximum radiated frequency [2, 3],

the ocurrence and atomic-species dependence of NSMI in circularly-polarized fields [12–

14], and the critical laser ellipticity at which a bifurcation is observed in photoelectron

momentum distributions [15, 16]. Second, the classical picture is conceptually correct and

much more intuitive than the quantum picture, as it is based on electron trajectories rather

than wave functions. This allows for the design of effective control strategies, for exam-

ple for HHG, based on manipulating the trajectories of ionized electrons [10, 17]. Third,

the computational complexity of classical models typically scales linearly with the system

dimension, whereas it scales exponentially for quantum models. Indeed, within the con-

fines of today’s computational resources, classical models are sometimes the only feasible

option for the first-principles simulation of a laser-particle or laser-gas system. Lastly, us-

ing a classical theory as the underlying description of the laser-particle interaction allows

one to tap into the vast arsenal of mathematical techniques for studying classical dynam-

ical systems. The classical equations describing the motion of an atomic electron driven

by a laser field are chaotic, therefore they can be analyzed using nonlinear dynamics [14,

18–20]. Meanwhile, the atoms interact with each other indirectly via the self-consistent

electromagnetic field, much like charged particles in a plasma [21, 22]. Hence, special-

ized model-reduction methods rooted in the Hamiltonian properties of collisionless plasma

equations [23] are also germane to laser-gas interaction.

In this thesis, we investigate the mechanisms of recollisions and HHG using techniques

from nonlinear dynamics and theoretical plasma physics. First, we study the microscopic

dynamics of a single atom in a very intense laser field, so intense that the atom is certain to

ionize. Surprisingly, we find that delayed, high-energy recollisions persist in this regime,

and we explain this behavior using the invariant manifolds of an unstable periodic orbit of

the system. Then, we study the macroscopic buildup of high-harmonic radiation during the
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Figure 1.1: Reproduced from Ref. [24]. Schematic of a typical HHG experiment.

propagation of an intense laser pulse through an atomic gas. We derive both quantum and

fully classical reduced models for the self-consistent laser-gas interaction in a Lagrangian

framework on the one hand, and a Hamiltonian framework on the other. Through simula-

tions of the models in a simplified setting, we find that the high-harmonic cutoff may be

extended due to propagation effects. Phase-space analysis of the classical model reveals the

emergence of higher-energy recollisions driven by the reshaping of the laser-pulse during

propagation as the mechanism for this extension.

1.1 State of the art

Early observations of high harmonic generation (HHG) came from experiments in which

intense near-infrared linearly-polarized laser pulses of tens of picoseconds in duration were

focused onto rare gas jets of a few millimeters length in the pulse propagation direction.

Spectrometers on the other side of the gas measure the intensity of the transmitted light

as a function of frequency, as illustrated in Fig. 1.1. HHG was first reported in 1987 [25],

and the first plateau in the high harmonic part of the spectrum from such an experiment

followed in 1988 [26]. In the early experiments, spectra from atomic gases consisted of

odd harmonics of the laser, along with resonance lines at excited states of the neutral atoms

and ions. Typical spectra for three different gas species showing only the odd harmonic in-
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tensities are shown in Fig. 1.2. One observes an exponential decrease in harmonic intensity

until the 5th or 7th harmonic, followed by a region in which the intensity falls much more

slowly on average—this is referred to as the plateau region. The plateau extends for several

high harmonics up until a frequency called the high harmonic cutoff, where the harmonic

intensity again drops rapidly until no more harmonics are observed. This ubiquitous fea-

ture of high-harmonic spectra is a signature of the non-perturbative nature of HHG. Indeed,

perturbative calculations predict a rapid drop-off in harmonic intensity with harmonic or-

der, in stark contrast to the plateaus which are observed [27]. In Fig. 1.2, one also readily

observes a generic feature of HHG experiments: atomic gas species with smaller first ion-

ization potentials, or Ip, like Xe, have a lower cutoff but higher conversion efficiency per

harmonic. On the other hand, species with larger Ip, like Ar, have larger cutoffs but lower

conversion efficiency per harmonic [27].

Advances in laser technology and the desire to harness HHG for imaging applications

and attosecond pulse production have led to modifications to the HHG experiments de-

scribed above. On the laser side, two notable trends have been the reduction of pulse

duration and the increase in driving laser wavelength. Pulse durations first shrank to hun-

dreds or tens of femtoseconds [28–30] and eventually hit the sub-10-fs regime [31]. The

optical cycle of the oft-utilized 800 nm Ti:sapphire lasers is 2.7 fs, making this the few-

cycle regime. Shortening the pulse duration generally increases the maximum harmonic

order that is observed, though this may happen by an extension of the plateau, an extension

of the falloff region following the high harmonic cutoff, or some combination of the two,

depending on other experimental parameters. More recently, HHG has been investigated

with mid-infrared lasers [32–34], which has dramatically increased in the highest observed

harmonics to the thousands. This effect of increasing the wavelength of the driving laser is

illustrated by Fig. 1.3. On the gas side, certain experiments have replaced the millimeters-

long gas jet medium with a centimeters-long hollow-core optical fiber filled with gas [33,

35, 36]. These kinds of experimental modifications, along with increased driving laser in-
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Figure 1.2: Reproduced from Ref. [27]. Typical experimental HHG spectra from Xe, Kr,
and Ar with a peak laser intensity of I = 3 × 1013 W · cm−2, a wavelength of 1064 nm,
and a pulse duration of 40 ps. The first ionization potential Ip of each atom is indicated on
the horizontal axis. Only intensities of the odd harmonics are shown.
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Figure 1.3: Reproduced from Ref. [33]. High-frequency part of the spectrum from HHG
experiments in He with different wavelength lasers. In each case, the laser intensity and
gas pressure were selected to optimize the HHG signal.

tensity [37], gas length [38], or gas density [33, 35, 39, 40], can increase the efficiency of

the harmonic-conversion process and produce more intense attosecond pulses.

As the experimental parameters are pushed to further extremes, the shape of the high-

harmonic spectrum inevitably undergoes dramatic changes due to the increasing impor-

tance of propagation effects. The rapid falloff following the plateau and the discrete odd-

harmonic lines turn into a complicated, continuous signal over many harmonic orders, as

shown in Fig. 1.3. Under conditions of high free electron density, the driving laser field

undergoes tremendous reshaping while propagating through the gas due to the radiation

emitted by the ionizing atoms, leading for example to a blueshift and intensity reduction

[29, 41–43] throughout propagation. In this case, the high harmonic spectrum measured

after propagation crucially depends on which high harmonic frequencies were produced at

sufficient intensity all along the gas with just the right phase such that the radiation pro-

duced by the many atoms making up the gas adds up coherently, a collective effect referred

to as phase-matching [44, 45]. One can see phase-matching unfold along the length of
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Figure 1.4: Reproduced from Ref. [38]. High harmonic yield in Ar as a function of gas-cell
length. (a) Yield of harmonic 23 for different positions z of the gas-cell entrance relative
to the laser focus. (b) Yield of harmonic 25 at z = −2 mm (triangles), along with various
theoretical calculations.

the gas in the experimental measurements shown in Fig. 1.4. As the total length of the

gas is varied, the transmitted high-harmonic intensity, i.e. the yield, can exhibit large os-

cillations. This indicates alternating periods of constructive and destructive interference,

or phase-matched and phase-mismatched emission, respectively, along the gas. Thus, the

self-consistent interaction between the ionizing atoms and the laser field plays a decisive

role in shaping the high harmonic spectrum [33, 35, 45].

Initial theoretical explanations for the structure of the high-harmonic spectrum drew on

atomic physics, nonlinear optics, and plasma physics. Ideally, a theoretical or numerical

treatment of HHG must bridge the gap between the microscopic response of the atoms to

the electromagnetic field and the macroscopic propagation of the field through a gas of

billions of atoms [27]. Atomic physicists focused on obtaining the single-atom response in

the framework of the single-active-electron (SAE) approximation, studying the dynamics
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of a valence electron in the combined laser and static parent ion fields. Some early ap-

proaches included numerical integration of the corresponding time-dependent Schrödinger

equation (TDSE) [46, 47] and numerical integration of ensembles of classical trajectories

[48, 49]. Both approaches reproduced odd harmonic generation and qualitatively repro-

duced the high harmonic plateau and cutoff surprisingly well, despite only being single-

atom radiation spectra. On the other hand, plasma physicists were initially focused on

obtaining the macroscopic electromagnetic field after propagation through the gas. Early

works computed the spectra of a laser pulse propagating through a plasma with a time-

dependent electron density obtained from the single-atom tunneling ionization rates [50,

51]. While odd harmonic generation was clearly captured, the high harmonic plateau was

only obtained with mixed success.

Shortly thereafter, the widely-successful recollision model for the single-atom response

was introduced [2, 3], and it remains the most common departure point for theories in

strong field physics [53]. The recollision model follows a three-step scenario, as illustrated

in Fig. 1.5: the electron is first ionized, absorbs energy while following the laser, and then is

propelled back to the ionic core after the laser reverses direction, about one half laser cycle

after ionization. Ionization takes place via multiphoton absorption or tunneling, depending

on the intensity and frequency of the laser [54]. Once ionized, the motion of the electron

may be described using classical mechanics [2, 3]. When the electron returns to the core,

it exhibits quantum interference with the remaining bound state wave packet, radiating at

a frequency ω such that the photon energy ~ω is equal to the energy difference between

the bound and recolliding states [55, 56]. This step is often described more intuitively as

recombination into the ground state, with the electron’s excess kinetic energy released as

a high-frequency photon. The high-harmonic cutoff, or maximum photon energy ~ωmax,

may be determined from a purely classical calculation of the trajectory with the maximum-

energy recollision [2, 3]. This results in the ~ωmax = 3.17Up + Ip high-harmonic cutoff

law, where Up = e2E2
0/(4m

2
eω

2
L) is the pondermotive energy of an electron in an oscillating

9



Figure 1.5: Reproduced from Ref. [52]. Schematic of the recollision model for the laser-
atom interaction. An electron (1) ionizes by tunneling, (2) follows the oscillating laser field
away and then back towards its parent ion, and (3) collides with its parent ion, radiating an
attosecond pulse with a frequency approximately given by the electron kinetic energy.
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electric field of amplitude E0 and frequency ωL. This prediction is in agreement with

numerical simulations of the single-atom radiation spectrum [47], but for agreement with

experiments, macroscopic effects need to be taken into account [57].

For calculating the macroscopic HHG signal, the most rigorous calculation would re-

quire the self-consistent solution of Maxwell’s equations in three dimensions coupled to

TDSEs for the atoms [58–60]. Even today, the computational cost associated with this

approach can be prohibitive, precluding the simulation of experimentally relevant sample

lengths on the order of millimeters. Further, solutions of the TDSE provide limited intu-

ition into the electron dynamics behind the single-atom response to the laser field. Thus, a

common alternative consists of simplifying the description of the atomic response, splitting

it into a low-frequency part dominated by ionization [42] and a high-frequency part [24,

61] comprised of the radiation of recolliding electrons. A quasistatic tunneling approxima-

tion is used to obtain the ionization rate [62], while the strong-field approximation (SFA)

[63] is used to efficiently calculate the high-frequency part of the dipole radiation spectrum

[44]. In the spirit of the three-step model, the SFA describes the classical motion of ionized

electrons in the oscillating electric field of the laser while neglecting the Coulomb field,

and the contributions of different trajectories are added coherently using a semiclassical,

path-integral approach [55, 64]. This framework allows the simulation of experimental gas

lengths, and the semiclassical description of the atomic response in terms of trajectories

facilitates the development of control strategies based on the trajectories of electrons after

ionization [17, 37, 65].

However, both the splitting of the atomic response and the SFA have some serious

drawbacks. The SFA and the tunneling approximation are known to give misleading results

for the ionization probability [43, 54]. Moreover, by neglecting the Coulomb field for

ionized electrons, the SFA manifestly misses Coulomb focusing, i.e. the inhibited spread

of the electronic wave packet due to the ion’s long-range Coulomb attraction [54, 66–69].

This implies that the SFA underestimates the probability of recollision [66], and in fact
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it also underestimates the energy of the recollisions [70]. Furthermore, the simplifications

underlying the tunneling approximation and the SFA are inappropriate for the description of

the harmonics near and below the atomic ionization threshold Ip [71–74], which in certain

situations can strongly influence the yield of higher harmonics [65, 75, 76]. Additionally,

they leave out key elements of HHG in elliptically and circularly polarized fields [67, 77].

In addition to the aforementioned deficiencies, existing models of HHG do not provide

a clear picture of the mechanisms of phase-matched buildup of high-harmonic radiation

in the regime of strong mutual coupling between the atoms and the laser pulse. As a

consequence, proposals for optimizing HHG (e.g. by increasing the yield) are either based

on calculations of the response of a single atom to an external field [17, 78] or calculations

of the macroscopic response in the limit of weak mutual coupling between the atoms and

the laser [44]. The continued effectiveness of these strategies in the presence of strong

macroscopic effects needs to be checked a posteriori [37, 79]. A more robust approach

would explicitly exploit macroscopic effects, such as the ionization-driven reshaping of

the laser pulse throughout propagation, to enhance phase matching [80]. To realize this,

the reshaping of the electron trajectories during propagation needs to be understood [81],

ideally in a way that goes beyond the SFA. Therefore, a theoretical formulation is needed

which simultaneously accounts for the full complexity of the self-consistent atom-field

interaction, includes the influence of the core potential on the ionized electrons, and allows

for the understanding of the electron dynamics in phase space as the pulse propagates

through the gas.

In this thesis, we provide such a theoretical formulation that is completely based on

classical mechanics. Besides providing a representation of the electron dynamics in terms

of trajectories, a completely classical framework is advantageous because it lends itself

to analysis using the theory of nonlinear dynamics [82]. This theory is ideally suited to

uncovering the physical mechanisms underlying both large-scale Monte Carlo simulations

[48, 49, 83] and particular trajectories of relevance to HHG [2, 3, 70]. Nonlinear dynamics
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allows one to describe the qualitative behavior of ensembles of trajectories and predict how

these behaviors change as physical parameters are varied. This is accomplished through

an identification of the invariant solutions of a system (e.g. fixed points, periodic orbits)

and their invariant manifolds, when possible. In strong-field physics, this approach has

proven very effective, for example by providing the first theoretical explanation of rec-

ollision and correlated double ionization in a circularly-polarized laser field [13, 14, 84].

Furthermore, when the self-consistent interaction between a gas of atoms and the electro-

magnetic field is cast as a classical field theory, it becomes immediately apparent that it

bears many structural similarities to the theory of the self-consistent interaction of plasmas

with the electromagnetic field [23]. Problems in plasma physics have spurred the develop-

ment of a wide-ranging set of tools for the systematic derivation of reduced models which

preserve the variational structure of the parent model, whether it be the action principle

or the Hamiltonian structure [85–88]. Here, we exploit some of these tools to derive re-

duced classical models of the intense laser-gas interaction in a variational framework, and

we use these models to identify classical mechanisms behind the coherent buildup of high-

harmonic radiation.

1.2 Thesis work

In Ch. 2, we give brief overview of the mathematics and physics background relevant to this

work. We discuss elements of the nonlinear dynamics of low-dimensional systems. Then,

we describe a class of dynamical systems whose equations of motion can be obtained from

variations of a single functional. Namely, we discuss systems satisfying an action principle

on the one hand, and Hamiltonian systems on the other. We also cover some of the basic

assumptions relying most models of strong-field physics, which are used throughout the

thesis. Lastly, we give the definition of atomic units.

In Ch. 3, we investigate the electron dynamics behind HHG on a single-atom level, in

the high-intensity regime. The simplest model for this is a 1.5 degree-of-freedom Hamil-
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tonian system, describing one-dimensional (1D) electron motion in the potential of the ion

with an external, periodic laser forcing. Though the electron motion is nearly integrable in

the strong-field limit, the non-integrability has a dramatic effect on the long-time dynam-

ics, due in part to the unbounded configuration space of the electron. We show that the

non-integrability manifests itself through delayed, high-energy recollisions. Furthermore,

we compute the invariant manifolds of an unstable periodic orbit of this system and show

that they regulate this delayed-collision process [89]. This study lays the groundwork for

our analysis of HHG in the case where the laser field is determined self-consistently from

the electron dynamics.

In Ch. 4, we derive a hierarchy of reduced models from first principles which describe

the self-consistent interaction occurring during the pulse propagation through the gas [90].

The derivations are rooted in variational formulations of two parent models. On the one

hand, we use the Maxwell-Schrödinger equations as the parent model for a reduced quan-

tum model. On the other hand, we use an analog of the Maxwell-Vlasov equations as the

parent model for a reduced classical model. The latter constitutes the first purely classi-

cal reduced model for laser pulse propagation in atomic gases. In both cases, the systems

are reduced to 1D-1D models: one dimension for the laser field, and one dimension for

the motion of the electrons, as described previously. We show how the derivations could

be performed in either Lagrangian or Hamiltonian formulations. The latter allows for the

identification of Casimir invariants of the reduced models, which have hitherto gone unno-

ticed.

In Ch. 5, we carry out numerical simulations of some of the reduced models derived

in the previous chapter in order to shed light on the coherent buildup of high-harmonic

radiation. Our simulations show a high level of quantitative agreement between the clas-

sical and quantum models for the evolution of the laser field during propagation through a

singly-ionized gas. This opens the door to understanding the high-harmonic buildup seen

in the quantum calculation through a phase-space analysis of the classical model. Rather
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than computing invariant manifolds, which is complicated by the aperiodicity of the self-

consistent electric field, we employ a statistical trajectory analysis. We show for the first

time that propagation effects can lead to an increase in maximum recollision energy, along

with the concomitant increase of the high-harmonic cutoff. Our analysis highlights the

interplay between Coulomb effects and the reshaping of the laser field as the mechanism

for this cutoff extension [91]. We also investigate whether the classical model can be used

to describe harmonic generation occurring during the ionization process itself. We find

that the classical model can be optimized to match the quantum ionization rate, leading to

accurate classical propagation calculations, even with ground-state atoms (as opposed to

pre-ionized atoms). Based on this result, we use the classical model to trace the coherent

radiation observed in certain parts of the spectrum to its origin in phase space, by separating

the contributions of bound electrons from ionized electrons.
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CHAPTER 2

BACKGROUND

In this chapter, we give an overview of mathematical techniques and physical assumptions

used throughout the thesis. In Sec. 2.1, we review nonlinear dynamics for low-dimensional

systems [82]. In Sec. 2.2, we review the variational formulation of mechanical systems,

including discrete (finite-dimensional) and continuous (infinite-dimensional) systems. In

Sec. 2.3, we state some of the basic physical assumptions of strong-field physics that we

rely on in this thesis. Lastly, in Sec. 2.3, we define atomic units, which are used throughout

the rest of the thesis.

2.1 Nonlinear dynamics

A dynamical system is a set of variables z describing the state of the system, and an evo-

lution law that specifies how the state changes with time t. We take d to be the dimension

of the system, i.e. the number of variables. The space of all possible states is referred to as

state space, and here we assume z ∈ Rn. The evolution law is specified as

ż = F (z), (2.1)

where the over-dot signifies the time derivative d/dt and F : Rn → Rn is a function giving

the present velocity of the state. Here, we assume F has no explicit time-dependence,

because systems with time-dependence F (z, t) may be autonomized, i.e. brought into the

form of Eq. (2.1), by extending the state-space dimension to accommodate time as an

additional dynamical variable.

When d ≥ 3 and F is a nonlinear function, the solutions z(t) of Eq. (2.1) can be

chaotic. By chaotic, we mean these solutions are (i) extremely sensitive to the initial con-
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ditions z0 ≡ z(0), and (ii) recurrent, meaning that solutions can be found which return

near the vicinity of z0 an arbitrarily large number of times. It is possible to gain insight

into this complicated dynamical behavior by analyzing the system’s compact, invariant

sets of solutions. Examples include equilibria: solutions of F (z0) = 0 such that z(t) = z0;

and periodic orbits: solutions with a period T > 0 such that z(t + T ) = z(t). If z∗0 is

an initial condition along a periodic orbit of period T , then one can study the behavior

of infinitesimally-close initial conditions z∗0 + δz0 by linearizing the flow around z∗(t).

With this procedure, the initial displacement evolves to δz(t) = J(t)δz0, where J(t) is the

tangent-flow matrix corresponding to the periodic orbit z∗(t). It satisfies the differential

equation

J̇ = ∂zF (z∗(t)) · J, (2.2)

where the initial condition of J is the identity matrix, i.e. J(0) = Id. The eigenvalues

{λi}di=1 of J(T ) are uniquely determined by the chosen periodic orbit; in particular, they are

the same for any z∗0 chosen along the same orbit and in any coordinate system. Besides the

trivial marginal eigenvalue λ1 = 1 (for the eigenvector F (z∗0)), the rest of the eigenvalues

give information on the linear stability of the orbit.

Here, we concentrate on the d = 3 case, considering the situation where one of the

remaining eigenvalues is unstable, |λu| > 1, and the other is stable, |λs| < 1. At t = 0,

a displacement in the direction of the stable eigenvector would approach the periodic orbit

exponentially quickly as t → ∞, while a displacement in the direction of the unstable

eigenvector would approach the periodic exponentially quickly as t → −∞. Conversely,

for short positive times, the unstably-displaced trajectory escapes from the periodic orbit

exponentially quickly. Hence, an arbitrary displacement may evolve closer to the periodic

orbit along the stable direction, but eventually leaves the orbit by following the unstable

direction. The eigenvectors can be continued far away from the periodic orbit by defining
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the orbits’ stable and unstable manifolds,

Ws = {z0 | z(t)→ z∗(t) as t→∞}, (2.3a)

Wu = {z0 | z(t)→ z∗(t) as t→ −∞}. (2.3b)

The stable and unstable manifolds are the sets of initial conditions that asymptotically ap-

proach the periodic orbit in forwards and backwards in time, respectively. Due to their

asymptotic definition, they are invariant under the flow. Furthermore, for d = 3, these

manifolds are co-dimension 1. Therefore, they form time-independent barriers in state

space. The different regions which they carve out tend to exhibit qualitatively different dy-

namical behavior. When these manifolds intersect transversely, the system exhibits chaotic

behavior. By computing these manifolds and examining the different regions of state space

which they enclose, one can identify the mechanisms underlying features of interest of the

chaotic motion.

It is most straightforward to calculate the manifolds on the Poincaré surface of section.

The Poincaré section is a co-dimension 1 surface in state space which is selected such that

the orbits in a particular region of interest intersect the surface transversely. An example is

schematically illustrated in Fig. 2.1. The surface Σ is defined by a constraint on the state

space g(z) = 0, for a scalar function g, and an orientation, e.g. dg/dt > 0. A map on

the surface P : Σ → Σ can be defined which takes a point on the surface z0 to the point

z(TP), where TP is the next time the trajectory with initial condition z0 pierces the surface

of section. Thus, P(z0) = z(TP), as illustrated by the blue dots in Fig. 2.1. Here, we also

show that periodic orbits are fixed points of the Poincaré map, i.e. P(z∗0) = z∗0, illustrated

by the red dot. Hence, the problem of studying the flow of Eq. (2.1) in the 3D state space (in

this case) is reduced to studying a map P on a 2D surface Σ. The 2D invariant manifolds of

Eqs. (2.3) of the periodic orbit become 1D invariant manifolds of the fixed point ofP—they

are equivalent to the intersection of the full state-space manifolds with Σ. Significantly, no
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Figure 2.1: Illustration of the Poincaré section g(z) = 0 for some scalar function of the
dynamical variables g. The red curve depicts a periodic orbit, while the blue curve a typ-
ical, aperiodic trajectory. The points where the trajectories intersect the surface of section
constitute iterates of the Poincaré map.

dynamical information is lost by this apparent reduction, yet the analysis is simplified.

2.2 Dynamical systems with a variational formulation

A general dynamical system such as Eq. (2.1) can in principle be specified by d independent

scalar functions—the components of F—but certain dynamical systems may be obtained

by variations of a single scalar function (or functional) with respect to the d dynamical

variables [92, 93]. This is the case for the fundamental laws of physics. They can be

formulated either in terms of a principle of least action or as a Hamiltonian system, and

there is often a direct link between the two formulations. We do not review this link here,

focusing instead on practical aspects of each formulation separately.
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2.2.1 Action principles

Finite-dimensional systems

We consider a finite dimensional system with a configuration space Rd, whose configura-

tion at time t is specified by x(t) ∈ Rd. Here, configuration space has a different meaning

from state space, which we explain shortly. We assume that the evolution of the system’s

configuration x(t) obeys the principle of least action. That is, there is a scalar function

L(x, ẋ) and an action functional

A[x(t)] =

∫ t2

t1

L(x, ẋ)dt (2.4)

such that the trajectories x(t) satisfy δA = 0: they are extrema of the action functional. L

is called the Lagrangian of the system, and in general it may also depend on t, though we

do not consider this here for simplicity.

More precisely, the principle of least action means that, for small, arbitrary variations of

the trajectories x(t)→ x(t) + εδx(t) that vanish at the boundaries (δx(t1) = δx(t2) = 0),

the change in the action δA = A[x(t) + εδx(t)] − A[x(t)] is of order ε2. This implies

that Axi = 0 for each i, where Axi is the functional derivative of A with respect to xi(t),

defined by

A[x(t) + εδxi(t)x̂i]−A[x(t)] = ε

∫ t2

t1

Axi(t)δxi(t)dt+O(ε2). (2.5)

By substituting Eq. (2.4) into Eq. (2.5), we can apply the principle of least action to obtain

the Euler-Lagrange equations,

d

dt

(
∂L
∂ẋi

)
− ∂L
∂xi

= 0, (2.6)

for each i. To obtain these equations, in particular the explicit time derivative, integration
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by parts has been used. Additional work is required to identify the state space underlying

Eq. (2.6) in order to transform it into the dynamical system form of Eq. (2.1). For example,

if L contains quadratic terms of ẋ, its Euler-Lagrange equations are a system of second-

order differential equations. This situation is common for many mechanical systems, and

often the solution consists of defining the dynamical variables as (x,v) = (x, ẋ), allowing

the d second-order equations (2.6) to be transformed into 2d first-order equations, like

Eq. (2.1). However, when this cannot be done, the procedure may be more involved [94].

In any event, the existence of an underlying action principle of a given dynamical system is

a fundamental property of that system. Namely, it is independent of the coordinates chosen

to parametrize the configuration space. While one always has the flexibility of choosing the

coordinates most suitable for a particular problem, it is considerably easier to implement the

coordinate transformation on the action (2.4), rather than the d or 2d dynamical evolution

equations.

Infinite-dimensional systems

Going beyond finite-dimensional dynamical systems, one can consider infinite-dimensional

dynamical systems, i.e. systems of coupled partial differential equations with a privileged

evolution parameter t. Some of these systems have evolution laws that also can be obtained

from an action principle. We consider a set of n fields {φi(z, t)}, where φi : Rd+1 → R for

each i and z ∈ Rd is a continuous label for each field. The action generally takes the form

A[{φi(z, t)}] =

∫ t2

t1

L({φi}, {∂zφi}, {φ̇i})ddzdt, (2.7)

where L is referred to as the Lagrangian density. In this case, the principle of least action

δA = 0 implies Aφi = 0 for every i. This yields the Euler-Lagrange equations in the

continuous case,
d

dt

∂L

∂φ̇i
+ ∂z ·

∂L

∂(∂zφi)
− ∂L

∂φi
= 0. (2.8)
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Here, we have also used integration by parts, and we have assumed that the boundary terms

associated with the z domain vanish. Like in in the finite-dimensional case, the system of

equations above is not in the dynamical system form (Eq. (2.1) generalized for fields) in

general, so an additional effort needs to be made to bring them to this form.

2.2.2 The link with Hamiltonian systems

Here, we consider an action principle which is linear in the time derivatives of the config-

uration space variables, which motivates the definition of a Hamiltonian system to follow.

We focus on the finite-dimensional case, for simplicity. In this case, the action principle

takes the general form

A[x(t)] =

∫ t2

t1

[γj(x)ẋj −H(x)] dt, (2.9)

where the Einstein summation convention has been used. Here, γ : Rd → Rd is a vector of

functions of the configuration space variables x and H : Rd → R is a scalar function. The

Euler-Lagrange equations Axi
= 0 become

(∂iγj − ∂jγi) ẋj − ∂iH = 0, (2.10)

where we have used the shorthand notation ∂iF ≡ ∂xiF for a function F . Because the

Lagrangian of the action (2.9) is linear in ẋ, Eq. (2.10) constitutes a set of first-order dif-

ferential equations for x. If these equations can be brought to the form of Eq. (2.1), then

x would actually represent a proper set of dynamical variables—the configuration space

would be equivalent to the state space.

To investigate when this happens, we introduce the Lagrange matrixω, whose elements

are ωij(x) = ∂iγj(x) − ∂jγi(x). Thus, the Lagrange matrix is antisymmetric. Then,
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Eq. (2.10) can be rewritten in matrix form as

ω(x)ẋ = ∂xH,

Hence, if ω is invertible, then the above equation can be written in the form of Eq. (2.1).

We denote the inverse of ω as Π, and thus the equation above can be rewritten as

ẋ = Π(x)∂xH. (2.11)

This equation motivates the definition of Hamiltonian systems.

2.2.3 Hamiltonian systems

Hamiltonian systems are dynamical systems whose equations of motion may be obtained

from a Hamiltonian H and a Poisson bracket {·, ·}. The Hamiltonian is an observable,

meaning it is a scalar function of the dynamical variables and possibly the time t. Mean-

while, the Poisson bracket is a binary operation which takes two observables, F and G, and

produces a third observable {F,G}. The evolution equations for an arbitrary observable

F are obtained by Ḟ = {F,H} + ∂tF . The evolution equations for the dynamical sys-

tem are obtained by substituting the dynamical variables into this equation. For arbitrary

observables F , G, and H , the Poisson bracket satisfies the following properties:

{F,G} = −{G,F} (antisymmetry)

{F +G,H} = {F,H}+ {G,H}, {F,G+H} = {F,G}+ {F,H} (bilinearity)

{FG,H} = F{G,H}+G{F,H} (Leibniz rule)

{F, {G,H}}+ {G, {H,F}}+ {H, {F,G}} = 0 (Jacobi identity)

An immediate consequence of the antisymmetry of the bracket is that a Hamiltonian H

which does not depend explicitly on time is conserved by the flow, i.e. Ḣ = {H,H} =
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−{H,H} = 0.

Finite-dimensional systems

For a finite-dimensional system of dimension d, an arbitrary observable F is a scalar func-

tion of d variables, F = F (z), and the Poisson bracket reads

{F (z), G(z)} = Πij(z)∂iF (z)∂jG(z), (2.12)

where again the Einstein summation convention is used, and Π(z) is the d × d Poisson

matrix. The equations of motion for a system with Hamiltonian H(z) are obtained by

ż = {z, H}, giving

ż = Π(z)∂zH. (2.13)

This equation is exactly the same form as Eq. (2.11), which hints at the connection between

systems with an action principle of the form (2.9) and Hamiltonian systems. To make this

connection clearer, we now discuss how the conditions on the Poisson bracket, in particular

the Jacobi identity, are automatically satisfied when Π is obtained as the inverse of the

Lagrange matrix.

With the form of Eq. (2.12), it is clear that the Poisson bracket satisfies bilinearity and

the Leibniz rule. For antisymmetry, Π must be an antisymmetric matrix. This property

is automatically satisfied if Π is the inverse of ω, because ω is also antisymmetric. The

Jacobi identity imposes additional requirements on Π. We calculate explicitly the first term

of the Jacobi identity, for arbitrary observables F , G, and H:

{F, {G,H}} = Πin∂nΠjk∂iF∂jG∂kH + ΠinΠjk∂iF
(
∂2njG∂kH + ∂jG∂

2
nkH

)
. (2.14)

Now, the Jacobi identity is calculated by summing the right-hand side of the above expres-

sion over all three cyclic permutations of FGH . By the antisymmetry of Π, the second-
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derivative terms in the second term of Eq. (2.14) sum to zero; this is sometimes referred

to as Morrison’s lemma [95], and a proof is given in App. A. Hence, the Jacobi identity is

reduced to

Πin∂nΠjk + Πjn∂nΠki + Πkn∂nΠij = 0, (2.15)

for all i, j, and k. One sees immediately that if Π is antisymmetric and does not depend

on the dynamical variables, then the Jacobi identity is automatically satisfied. It is also

satisfied when Π is the inverse of the Lagrange matrix ω. To prove this, one uses the

following additional properties:

∂kωij + ∂iωjk + ∂jωki = 0, (2.16)

for all i, j, and k, and

∂iΠ = −Π∂iωΠ. (2.17)

The former is obtained from the definition of the Lagrange matrix and the commutativity of

derivatives with respect to the dynamical variables. The latter is obtained by differentiating

ωΠ = I2d. Equations (2.15) and (2.16) are each implied by the other. Therefore, the Jacobi

identity and the existence of an action principle are inextricably linked.

A time-independent Hamiltonian system is referred to as a canonical Hamiltonian sys-

tem when it is expressed in the following form. The dimension d = 2nmust be even, and n

is called the number of degrees-of-freedom (dof). The dynamical variables of such systems

are divided up as z = (q,p), where q ∈ Rn is the set of generalized position variables and

p ∈ Rn is the set of canonical momenta. For Hamiltonian systems, state space is also

referred to as phase space, and together, (q,p) are the so-called canonical coordinates of

phase space. They are such that the Poisson matrix Πc is expressed in block-diagonal form

as

Πc =
(

0 In
−In 0

)
. (2.18)
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This matrix is antisymmetric and, because it does not depend on the dynamical variables,

the Poisson bracket satisfies the Jacobi identity. Meanwhile, the canonical Lagrange matrix

is ωc = −Πc, with the vector γ = (p,0). Hence, the corresponding action has the form

A[(q(t),p(t)] =

∫ t2

t1

[p · q̇−H(q,p)] dt,

which is referred to as the phase space action principle. Because canonical Hamiltonian

systems satisfy q̇ = ∂pH , the integrand of the action above is recognized as the Legendre

transform of the Hamiltonian H(q,p), exchanging the variables p for q̇. This is the typical

relationship between the Hamiltonian and the Lagrangian L(q, q̇). However, this action

functional is distinct from one which depends only on q(t), because in the functional above,

p(t) can be varied independently of q(t).

Canonical Hamiltonian systems, i.e. dynamical systems obeying Eq. (2.13) with Π =

Πc, have constrained stability properties of their orbits. In particular, if λ is an eigenvalue

of the tangent flow matrix J(t) of an arbitrary orbit, then so is 1/λ. This is a consequence

of the fact that J(t) is a symplectic matrix, i.e. it verifies

JTΠcJ = Πc. (2.19)

This can be shown by observing that J(0) = I2n is a symplectic matrix, and then taking the

time derivative of Eq. (2.19) and using Eqs. (2.2), (2.13) and the fact that Π2 = −I2n. As a

consequence, there are no strictly attracting or strictly repelling orbits—that is, orbits with

all eigenvalues |λ| < 1 or |λ| > 1, respectively. This is the content of Liouville’s theorem,

which states that phase space volume is conserved (det J = 1).

In fact, these constraints hold for noncanonical Hamiltonian systems as well. Non-

canonical Hamiltonian systems are systems whose Poisson matrix Π(z) has a form other

than Eq. (2.18); in particular, it may explicitly depend on the dynamical variables. When

Π(z) is nondegenerate (implying the system is even-dimensional), Darboux’s theorem
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guarantees that one can always construct local canonical coordinates in any Hamiltonian

system [85], thus implying the same stability constraints as in the canonical case. Non-

canonical systems are also allowed to have degenerate Poisson matrices, i.e. Poisson ma-

trices with a nontrivial null space. An observable C whose gradient (with respect to the

dynamical variables) is in the null space of Π, i.e. Π(z)∂zC(z) = 0, is called a Casimir

invariant. Because of this property, Casimir invariants satisfy {C,F} = 0 for arbitrary

observables F . Hence, Casimirs, and any function of them, are conserved for any Hamil-

tonian H . One typical example of a Hamiltonian system with a Casimir invariant is any

odd-dimensional Hamiltonian system. Such a system must have at least one Casimir in-

variant, due to the antisymmetry of Π.

When one starts with a canonical n dof Hamiltonian system, one may modify the

Hamiltonian such that it has an explicit time-dependence, meaning the Hamiltonian is of

the form H(z, t). Here, the equations of motion are obtained in the same way, but the

system is said to have n + 1/2 degrees of freedom. Significantly, H is no longer a con-

served quantity when it depends explicitly on time. The phase space of a n + 1/2 dof

system is 2n+ 1-dimensional. In particular, for n = 1, dimension of phase space is d = 3.

Hence, the considerations of Sec. 2.1 for d = 3 dynamical systems are directly relevant.

Any n + 1/2 dof system can be autonomized: it can be transformed into an n + 1 dof,

time-independent Hamiltonian system. To accomplish this, the dimension of phase space

is extended by adding the variables (τ, k), where τ is akin to time and k is akin to energy.

The Hamiltonian Haut of the new system and the Poisson bracket {F,G}aut become

Haut(z, τ, k) = H(z, τ) + k, (2.20a)

{F,G}aut = {F,G}+ ∂τF∂kG− ∂kF∂τG. (2.20b)

In the autonomous system, τ̇ = 1, making the evolution of τ identical to time evolution,

while the equations for the z variables are the same as they were before. The additional
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equation for k, k̇ = −∂τH , serves to make Haut a conserved quantity.

Infinite-dimensional systems

Certain infinite-dimensional systems, i.e. dynamical systems involving fields, may also

have a Hamiltonian form. We consider a system of n fields {φi(z)}, where φi : Rd → R for

each i and z ∈ Rd is a continuous label for each field. Here, we have neglected to write the

time-dependence of the fields explicitly. For this system, observables are functionals of the

fields, F [{φi}]. The equations of motion for this system of fields are said to be Hamiltonian

if one can find a HamiltonianH[{φi}] and a Poisson bracket between observables, {F ,G},

H[{φi}] =

∫
H ({φi}, {∂zφi}) ddz, (2.21a)

{F ,G} =

∫
FφiΠ̂ij ({φk}, {∂zφk}, z)Gφjddz, (2.21b)

such that the field equations may be obtained using the evolution law φ̇k = {φk,H}. In

Eq. (2.21a), H is a scalar function called the Hamiltonian density, while in Eq. (2.21b),

Π̂ ({φk}, {∂zφk}, z) is a matrix of operators, which is allowed to have an explicit depen-

dence on the dynamical variables. The implicit sums in the bracket run from 1 to n.

For Eq. (2.21b) to be a Poisson bracket, it must satisfy all the properties stated at the

beginning of this section. Again, bilinearity and the Leibniz rule are inherent in the form

of the bracket. Antisymmetry requires that Π̂ij be anti-self-adjoint for all i and j. The

Jacobi identity allows one to derive a more restrictive constraint on the operator matrix Π̂,

in the spirit of Eq. (2.15), though the general expression in the continuous case is more

cumbersome [95]. In practice, it may be more straightforward to verify the Jacobi identity

of a given bracket directly. We remark that Casimir invariants, C[{φi}, {∂zφi}], defined

{C,F} = 0 for arbitrary observables F as in the finite-dimensional case, are very common

in infinite-dimensional Hamiltonian systems.
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2.3 Basic assumptions in strong-field physics

This thesis concerns the interaction of atoms with strong electromagnetic waves. Fre-

quently, the following assumptions are made before even writing down an interaction

Hamiltonian:

• single-active-electron (SAE) approximation,

• non-relativistic electrons,

• static ions,

• dipole approximation.

We explain and justify these assumptions in the following. The first assumption is that

the interaction of the electron of interest—usually described as the most loosely-bound

valence electron—with the rest of the atom’s electrons and nucleus can be described by a

time-independent potential V (x), where x ∈ R3 is the position of the privileged electron

relative to the ion. This is of course only sensible for single-electron processes, which are

the only kind we consider in this thesis. Of particular interest will be the motion of the

electron after ionization, when it is far away from the ionic core and thus primarily driven

by the laser. The ranges of interest for the laser parameters are peak intensities I ∼ 1013–

1016 W·cm−2 and wavelengths λL ∼ 0.8–2 µm. Thus, the importance of relativistic effects

may be judged by comparing the speed of light c to the quiver velocity of a non-relativistic

free electron,

vquiver =
eE0λL
2πmec

, (2.22)

where E0 =
√

2I/ε0c is the peak electric field amplitude of a wave with intensity I .

The largest value of vquiver/c encountered in this thesis, for I = 1016 W · cm−2 and

λL = 0.8 µm, is vquiver/c ≈ 0.07. Hence, we neglect relativisitc effects in the thesis,

as is routinely done by the strong-field community [24]. The motion of the ionic part of
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the atom can also be safely neglected. Indeed, already in the case of hydrogen, the quiver

velocity of the proton would already be mp/me ≈ 1836 times smaller than that of the

electron.

Under these three assumptions, the motion of the atomic electron in the potential of the

ion and an external electromagnetic field with vector potential A(x, t) is described by the

Hamiltonian

H(x,p, t) =
1

2me

|p + eA(x, t)|2 + V (x), (2.23)

where p is the canonically-conjugate momentum of the electron. The Poisson matrix is the

canonical one, Eq. (2.18). When the excursions of the electron x are small compared to

the length scale of spatial variations of A, then the dipole approximation, A(x, t) ≈ A(t)

can be made. The smallest scale of large-amplitude spatial variations of A is the laser

wavelength, λL. Meanwhile, the length scale of the excursions of an ionized (free) electron

is given by the quiver radius, xquiver = vquiverλL/2πc. We see that xquiver/λL = vquiver/2πc.

Hence, the dipole approximation can be justified in the non-relativistic regime.

We also autonomize the system, so that the Hamiltonian reads

H(x,p, τ, k) =
1

2me

|p + eA(τ)|2 + V (x) + k. (2.24)

This is referred to as the velocity-gauge formulation of the Hamiltonian [96]. One can

obtain the length-gauge formulation by making the following change of coordinates:

v = p + eA(τ), (2.25a)

k̃ = k + e∂τA · x. (2.25b)

With this change of coordinates, the Hamiltonian becomes

H̃(x,v, τ, k̃) =
1

2me

|v|2 + V (x) + eE(τ) · x + k̃, (2.26)
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where E(τ) = −∂τA(τ) is the electric field associated with the vector potential. Further-

more, this change of coordinates is a canonical one: the expression of the Poisson matrix

remains unchanged with these new variables.

Some additional assumptions are usually made to study this Hamiltonian. It is clear that

the potential V should approach the Coulomb potential far from the core, meaning V (x)→

−1/|x| as |x| → ∞. However, because it is generally the potential of an ion, instead of a

singly charged nucleus, it should have a different shape near the core. We thus typically use

the soft-Coulomb potential, V (x) = −1/
√
|x|2 + a2, where a is the softening-parameter,

which is routinely used in strong-field physics [84, 97]. This potential has the correct

behavior far from the core, and the parameter a can be adjusted in order to model different

kinds of atoms. In addition, the lack of a divergence at |x| = 0 compared to the true

Coulomb potential makes this potential convenient for classical numerical simulations.

This is particularly useful when the motion of an electron in a linearly-polarized laser

field, E(τ) = E(τ)x̂, is considered. Here, it is common to reduce the system to the motion

of the electron along the polarization axis, so that the Hamiltonian becomes

H(x, v, t) =
v2

2me

− 1√
x2 + a2

+ eE(t)x, (2.27)

where we have removed the k variable from the Hamiltonian. This 1.5 dof system con-

stitutes the simplest model of the interaction of an atom with an external laser field. The

case of linear polarization is of interest not only because it is simpler, but also because it

maximizes the probability of electron recollision after ionization [3]. Because recollisions

drive HHG, the high-harmonic yield is maximized when the incident laser polarization is

linear, and it decreases rapidly as the polarization is varied continuously towards circular-

polarization [29]. Hence, we focus exclusively on linearly-polarized light in this thesis.

The self-consistent interaction between a macroscopic collection of atoms, i.e. a gas,

with the electromagnetic field is treated in detail in Ch. 4. Here, we mention an underlying
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Table 2.1: Atomic units of various quantities in terms of SI units.

unit expression SI
length ~/(mecα) 5.291772109217× 10−11 m
time ~/(α2mec

2) 2.41888432650516× 10−17 s
velocity αc 2.187691263373× 106 m · s−1
energy α2mec

2 4.3597441775× 10−18 J
electric field α3m2

ec
3/(e~) 5.1422065211× 1011 V ·m−1

assumption of the models discussed in that chapter: neighboring atoms do not interact other

than through the macroscopic electromagnetic field. In other words, we assume Coulombic

interactions between neighboring atoms are negligible. This is justified when the atomic

gas density is low enough, specifically when xquiver is small compared to the typical inter-

atomic distance. If ρ is the number density of the atomic gas, a typical interatomic distance

may be estimated as ρ−1/3. The largest value of the ratio of the two distances encountered

in this thesis is xquiver/ρ−1/3 ≈ 0.38, for I = 5 × 1013 W · cm−2, λL = 1.2 µm, and

ρ = 2 × 1019 cm−3 While this is smaller than one, it is possible that collisions between

ionized electrons and neighboring atoms begin to play a role at this stage. Nevertheless, we

have not explored this possibility.

2.4 Atomic units

Throughout the rest of the manuscript, we use atomic units instead of SI units. Atomic

units are defined by setting the physical constants ~ = me = e = 1/4πε0 = 1. Conversions

between atomic units and SI units are given in Table 2.1. Here, α = e2/(4πε0~c) is the

fine-structure constant. Useful formulas for converting between atomic units of E0 and ωL

and laser parameters in typical units are

E0 [a.u.] = (5.338027006147334× 10−9)
√
I [W · cm−2],

ωL [a.u.] = (45.563352527599626)(λL [nm])−1.
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CHAPTER 3

PERSISTENCE OF COULOMB FOCUSING IN THE STRONG-FIELD REGIME

3.1 Introduction

The theoretical framework for ionization processes in matter exposed to intense linearly

polarized laser fields was established about twenty five years ago and remains the state-

of-the-art in strong field physics [1, 3, 98]. It centers on the “recollision” model, which

follows a three-step scenario: Electrons are first ionized, absorb energy while following the

laser, and then are propelled back to the ionic core after the laser reverses direction, about

half a laser cycle after ionization. The kinetic energy transfer in the core region causes

ionization of more electrons (nonsequential multiple ionizations - NSMI) [84] or generates

very high harmonics of the driving laser by high harmonic generation (HHG) [55]. This

model applies when the target matter consists of either atoms or small molecules [53].

Despite the wide-spread use of the three-step model, it is not widely appreciated that it

usually takes more than one recollision for the ionized electron to transfer its energy to

set the processes of multiple ionization or high-harmonic generation into motion. It is

reasonable to expect that the spreading of the electronic wave packet would make these

delayed collisions much less effective. Surprisingly, the opposite is the case, and it is due

to a process called Coulomb focusing [66]. The effectiveness of Coulomb focusing was

demonstrated convincingly in the pioneering work of Brabec et al. [66], who showed that

the nonsequential double ionization rate is enhanced by an order of magnitude by Coulomb

focusing.

Research in the last two decades has confirmed that Coulomb focusing (and the Coulomb

field in general) is a key player in the recollision process [54, 67–69, 83]. But it seems

that the opposite question –namely, when the Coulomb focusing does not matter– has not
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received the same attention. Perhaps the reason is that the answer seems obvious: the

Coulomb field can be ignored when the laser field is strong. After all, this is one of the

tenets of the Strong Field Approximation (SFA) [3, 53, 63] which ignores the Coulomb

field when the electron is moving in the laser field. But how strong is “strong” for the laser

field, and how weak does the Coulomb field have to be for us to neglect it altogether –i.e.,

is it possible to turn it off completely, as the three-step model would have us do?

In fact, the focusing effect of the Coulomb field persists well beyond what would be

expected based on the comparison of field strengths, and well beyond field strengths where

there is no potential barrier to trigger tunneling ionization at peak field. The consequences

of the persistence of Coulomb focusing go beyond a reduced spread of the electronic wave

packet. In this range of intensity, contrary to SFA predictions, delayed recollisions, i.e.

recollisions occurring after the first laser cycle, continue to manifest themselves and bring

back energy slightly above the 3.17Up high-harmonic cutoff. The kinetic energy brought

back by delayed recollisions is compatible with the value provided in the SFA for imme-

diate recollision (occurring half a laser cycle after ionization), but those energetic delayed

recollisions do not exist in the SFA. Thus, even in the strong field regime, the SFA does not

accurately describe the electronic dynamics on time scales longer than one laser cycle.

This chapter is structured as follows: In Sec. 3.2 we begin by reviewing how the re-

turn energy is maximized in the SFA, and characterize the trajectories bringing maximum

energy to the core. In Sec. 3.3 we investigate how the energy-maximizing classical rec-

ollision trajectories change when the Coulomb field is included. We show that delayed

energy-maximizing trajectories, which are not present in the SFA, emerge. We provide a

characterization of the delayed recollisions in phase space, and show that they are related

to the invariant manifolds of particular periodic orbits.
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3.2 Maximizing the Return Energy in the Strong Field Approximation

We begin with the derivation of some results on recollisions in the Strong Field Approxima-

tion. These results will form the basis for understanding the distinct effect of the Coulomb

field on recollision trajectories. In a linearly polarized field, the SFA may be described by

the one-dimensional classical Hamiltonian (in atomic units)

H(x, p, t) =
1

2

(
p+

E0

ω
cos(ωt+ φ)

)2
, (3.1)

where p is the canonical momentum, E0 is the electric field amplitude, ω is the laser fre-

quency, and the dipole approximation for the laser field is used. In the context of the

three-step model, this Hamiltonian describes the motion of the electron after its ionization,

which we define as occurring at t = 0 without loss of generality (up to a change of phase

φ). The three-step model does not specify the exact phase of the laser at the instant of

ionization, so we allow this phase φ to be a free parameter of the model.

We write Hamiltonian (3.1) in the velocity gauge as opposed to the more common

length gauge to make the translational invariance of the SFA apparent (i.e., independence

of Hamiltonian (3.1) with respect to x). Thus, it is clear that the momentum p is conserved,

and as a consequence, the resulting system is integrable. It is convenient to rescale the

variables so that x is in units of the quiver radius E0/ω
2, p is in units of E0/ω, and t is in

radians, so Hamiltonian (3.1) now looks like

H(x, p, t) =
1

2

(
p+ cos(t+ φ)

)2
. (3.2)

We also note that this Hamiltonian has the symmetry

(x, p, φ)→ (−x,−p, π + φ), (3.3)
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which allows us to narrow our focus to initial conditions with φ ∈ [0, π).

From Eq. (3.2) we write down the solution for x(t),

x(t) = x0 − sinφ+ p0t+ sin(t+ φ), (3.4)

and p(t) = p0. Just as the three-step model does not exactly specify the laser phase φ at

ionization, it also does not specify the position of the electron x0 at ionization. Thus, we

allow x0 to be a free parameter as well. Also, we note that Eq. (3.4) shows that p0 is the

constant drift momentum of the electron.

Equation (3.4) is used to compute the maximum return energy of the electron, which

provides an estimate of the high-harmonic cutoff [3, 55, 70]. First, it is assumed that the

electron reaches the ionic core at time tr, i.e. x(tr) = 0. By substituting this into Eq. (3.4),

one obtains

p0(tr, φ) =
sinφ− sin(tr + φ)− x0

tr
. (3.5)

Now, one may fix x0 and maximize the energy at return,

ε(tr, φ) =
1

2

(
p0 + cos(tr + φ)

)2
, (3.6)

with respect to tr and φ. Setting the derivatives equal to zero gives

∂trε =
(
p0 + cos(tr + φ)

)(
∂trp0 − sin(tr + φ)

)
= 0, (3.7)

∂φε =
(
p0 + cos(tr + φ)

)(
∂φp0 − sin(tr + φ)

)
= 0. (3.8)

We discard the solution p0 +cos(tr +φ) = 0 which corresponds to the zero-energy minima

of Eq. (3.6). Thus, we get ∂trp0 = ∂φp0, and carrying out these derivatives using Eq. (3.5)

immediately gives

ẋ(t = 0) = p0 + cosφ = 0, (3.9)

36



which corresponds to zero initial momentum in the length gauge. Though this result has

been known for x0 = 0, we have shown that it is independent of this condition and is valid

for any x0 6= 0.

In addition, Eq. (3.9) tells us that when the return energy is maximized, the initial

energy is zero and thus minimized, implying that the change in the energy

∆ε =
1

2

[(
p0 + cos(tr + φ)

)2
−
(
p0 + cosφ

)2]
,

is at a maximum as well. By rewriting ∆ε as

∆ε =
(
p0 +

1

2
cos(tr + φ) +

1

2
cosφ

)(
cos(tr + φ)− cosφ

)
, (3.10)

substituting Eq. (3.5) into Eq. (3.10), and using some trigonometric identities, it is shown

that

∆ε(tr, φ) = f(tr) sin(tr + 2φ) + g(tr, φ)x0, (3.11)

where f(tr) =
sin tr

2

(
2 sin tr

2
− tr cos tr

2

)
tr

, (3.12)

and g(tr, φ) =
2 sin tr

2
sin( tr

2
+ φ)

tr
. (3.13)

We first treat the case of the electron starting very close to the core, i.e. x0 = 0. In that case

Eq. (3.11) simplifies to

∆ε0(tr, φ) = f(tr) sin(tr + 2φ). (3.14)

To compute the maximum of this function, we first note that all the φ dependence is con-

tained in the multiplicative sine term. Also, one may find a φ such that sin(tr + 2φ) = ±1

for any tr. Therefore, the absolute maximum of ∆ε0 occurs where |f(tr)| is at its absolute

maximum for tr > 0, and sin(tr +2φ) is the sign of f(tr) at the extremum. Then we obtain

the absolute extremum of f(tr) in Eq. (3.12) by setting ∂trf = 0 and using trigonometric
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double angle identities, yielding

2− 2tr sin tr + (t2r − 2) cos tr = 0, (3.15)

in agreement with the literature. This equation’s first positive root, t∗r,0 ≈ 4.09, is the

absolute extremum of f(tr) for tr > 0, and f(tr) > 0. Thus, we obtain the exact relation

between the return time and the initial phase φ∗0 maximizing ∆ε0,

sin(t∗r,0 + 2φ∗0) = 1, (3.16)

or equivalently, t∗r,0 + 2φ∗0 =
π

2
+ 2πn, for n ≥ 0.

For n = 1, this gives φ∗0 ≈ 1.88. Substituting (t∗r,0, φ
∗
0) into Eq. (3.14), we finally get the

maximum change in energy ∆ε∗0 ≈ 3.17Up, where Up = E2
0/4ω

2, or simply 1/4 in rescaled

units, is the pondermotive energy.

Remarkably, we have found a very simple relation in Eq. (3.16) between the initial

phase of the laser and the return time by maximizing the change in energy instead of the

return energy itself. This relation is borne out by the numerical results for the local maxima

of ẋ(tr, φ) shown in Table 1 of Ref. [70], when taking care to subtract π/2 from each of the

phases in that table to reconcile our choice of sine versus cosine for the laser field term in

Hamiltonian (3.2). All odd multiples of π/2 appear in that table because local extrema are

being considered, and f(tr) < 0 for the minima, requiring sin(tr + 2φ) = −1. Equation

(3.16) follows naturally from maximizing ∆ε, and in our view, ∆ε is the fundamental

quantity to maximize because it is the energy gained by the electron from the laser field.

Thus, we will only consider maximizing ∆ε for the remainder of this chapter.

Now we will consider the effect of allowing x0 6= 0 on the trajectories that maximize

∆ε in the SFA, because in the three-step model the electron’s tunnel ionization implies its

starting position is not exactly x0 = 0. Though the consequences of x0 6= 0 are investigated

in Ref. [70], these simulations include the Coulomb field. Therefore it is not clear whether
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the observed effects are due to the inclusion of the Coulomb field or the relaxation of the

x0 = 0 condition, and we intend to clarify this. We have already shown that ẋ(t = 0) = 0

will persist when x0 6= 0, but to see the effect on the other quantities ∆ε in Eq. (3.11)

must be maximized. If we restrict x0 � 1, then we can treat the effect of x0 6= 0 on

the maximization of ∆ε perturbatively. This is not an unreasonable restriction because x0

just needs to be small compared to the quiver radius. For example, if one assumes that

ionization occurs around 1 a.u., the laser intensity is I = 6× 1013 W · cm−2, and the laser

wavelength is 800 nm, the corresponding value of x0 in rescaled units is x0 ≈ 0.08. For

the same frequency but an intensity of I = 1016 W · cm−2, which is used for numerical

simulations in this chapter, the corresponding value of x0 in rescaled units is even smaller:

x0 ≈ 6× 10−3.

To do the calculation, we assume first order perturbation expansions of t∗r and φ∗ in

integral powers of x0,

t∗r = t∗r,0 + t1x0 +O(x20), (3.17)

φ∗ = φ∗0 + φ1x0 +O(x20), (3.18)

with the zeroth order terms taking their values from the x0 = 0 case. We carry out the

calculation to first order by computing (t1, φ1). Recalling Eqs. (3.13) and (3.14) and setting

the partial derivatives of Eq. (3.11) with respect to tr and φ equal to 0, we get

∂tr(∆ε0) + x0 ∂trg = 0, (3.19)

∂φ(∆ε0) + x0 ∂φg = 0. (3.20)

Now we substitute the perturbation expansions (3.17) and (3.18) into Eqs. (3.19) and (3.20)

and discard terms of orderO(x20). By Taylor-expanding the derivatives of ∆ε0 to first order

in x0 and applying phase relation (3.16) to the (t∗r,0, φ
∗
0) terms, we get the system of linear
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Figure 3.1: Dependence on x0 of the maximum energy exchange ∆ε∗ (upper left panel),
return time t∗r (upper right panel), laser phase φ∗ (lower left panel) and t∗r + φ∗ (lower right
panel) from Hamiltonian (3.2). Solid red curves are the numerical values and the dashed
blue lines are the first order approximations. Grey dotted lines are the values for x0 = 0.
x0 is in units of E0/ω

2, ∆ε∗ is in units of Up, t∗r and φ∗ are in radians.

equations (
−∂2trtr(∆ε0)

∣∣
0

2∆ε∗0
2∆ε∗0 4∆ε∗0

)(
t1
φ1

)
=
(
∂trg
∂φg

) ∣∣∣∣
0

, (3.21)

where “|0” means to evaluate at the parameters from the x0 = 0 case. Equation (3.21)

yields (t1, φ1) ≈ (0.38,−0.29).

The results of these approximations are compared against numerical maximization of

Eq. (3.11) in Fig. 3.1. These approximations do work well for |x0| � 1, and even appear

to do a fair job closer to |x0| = 1. Note that the shift of the final phase tr + φ is slightly

less pronounced than for tr and φ, as its first order coefficient is small, t1 + φ1 = 0.09, so

that t∗r + φ∗ appears fairly constant.

We notice on the upper left panel of Fig. 3.1 that ∆ε∗ significantly exceeds the well-

known value of 3.17Up. This has already been noted in Ref. [70] [and is also easily seen

from Eq. (3.10) using Eq. (3.9)]: The maximum is expected to be at 8Up which occurs
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Figure 3.2: Energy exchange ∆ε at first recollision (after a six laser cycle integration) as a
function of initial condition, (x0, p0). The initial phase φ is fixed by Poincaré section con-
dition (3.22). Darker points correspond to higher energy. Left panel: The initial conditions
(x0, p0) bringing the maximum energy ∆ε at first recollision for each x0 are the blue curve.
Right panel: Zoom of the black-framed region on the left. Solid colored lines separate re-
gions of initial conditions that have their first recollision during different laser cycles, with
the colors corresponding to Fig. 3.3. x0 is in units of E0/ω

2, p0 is in units of E0/ω, ∆ε is
in units of Up.

at x0 = π (e.g., with parameters φ = π and tr = 3π with p0 = 1). However only the

region close to the core is physically relevant since the electron is initially bound to the

core. Therefore we do not expect significant variations of initial laser phase, ionization

time and maximum return energy from the values obtained from x0 = 0. In summary, the

typical energy-maximizing recollision occurs within one laser cycle and brings an amount

of energy close to 3Up. When the laser field is large, we expect a similar result by taking

into account the Coulomb field, and this is what we are going to investigate in the next

section.

When examining the effect of the Coulomb field on the energy-maximizing trajectories,

we need to study the location of their initial conditions in phase space in detail. Before

proceeding, it is enlightening to look at the phase space picture of energy-maximizing

trajectories in the SFA. In order to locate these trajectories in phase space, we consider a

Poincaré section of the trajectories. In the left panel of Fig. 3.2, we consider a grid of initial
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conditions (x0, p0) beginning on the Poincaré section

ẋ = 0 with ẍ < 0, (3.22)

and integrated for six laser cycles, with x0 ∈ [−0.08, 0.08] and p0 ∈ [−0.2, 0.35] in rescaled

units. We notice that the Poincaré section determines the initial phase such that cosφ =

−p0 and sinφ > 0. Since ẋ = p0 + cos(t + φ), the Poincaré section is a stroboscopic

plot with period 2π in the SFA. The condition ẋ = 0 is a natural section because we have

just shown that all of the trajectories maximizing ∆ε satisfy this condition in the SFA. For

all trajectories beginning on this Poincaré section, the electron begins at rest and starts to

move to the left. The reversal of the laser field causes the electron to reverse its direction

and move to the right, towards the core again. It is then possible for a recollision to occur,

and thus we define a “recollision” as crossing x = 0 moving to the right, i.e. with ẋ > 0.

In Fig. 3.2, we show the energy ∆ε brought back the electron on its first recollision

as a function of its initial condition. When starting at the top of the left panel of Fig. 3.2

and moving down, we observe a continuous gradient of ∆ε, until a series of discontinuous

changes beginning at small p0 > 0 and x0 < 0. These discontinuities are seen clearly

in the right panel of Fig. 3.2, which shows that the first discontinuous change in ∆ε is

a sudden increase in energy, followed by another continuous decreasing gradient of ∆ε.

This behavior repeats over and over as p0 gets closer and closer to 0. It turns out that

these sudden changes in energy as the initial conditions are varied correspond to changes

to the laser cycle during which the electron has its first recollision. These trajectories are

referred to as delayed recollisions in what follows, as opposed to immediate recollisions

which occur during the first laser cycle. The delayed recollisions are analogous to the

“higher-order returns” of Ref. [66].

In Fig. 3.3 we determine which laser cycle the first recollision will occur for a given

initial condition analytically using Eq. (3.4) and the Poincaré section condition (3.22). The
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Figure 3.3: Number of iterations of Poincaré map P until the first recollision has occurred,
as a function of initial conditions (x0, p0), where φ is fixed by the Poincaré section condition
(3.22). In the SFA, a single iteration of this map always corresponds exactly to the duration
of one laser cycle. x0 is in units of E0/ω

2, p0 is in units of E0/ω.

general structure in Fig. 3.3 is that immediate recollisions in the “1” region are separated

from the immediate ionizations in the “0” region by a small triangle in which the delayed

recollisions live. A closer look at the delayed recollision triangle in the inset of Fig. 3.3

shows that the triangle is bounded below by the line p0 = 0 and its rightmost point is

(x0, p0) = (0, 0). Furthermore, the triangle is clearly stratified, with each stratum corre-

sponding to a delayed recollision with a particular delay. The strata are well ordered in

phase space: as p0 decreases, the delay time increases. These observations are explained

by considering the mechanical scenario in this region: All trajectories starting on the sec-

tion will first move to the left, and as is evident from Eq. (3.4), they will eventually come

to rest (at approximately half of the laser cycle for small p0), move to the right, and come

to rest again, this time on the Poincaré section (with exactly one laser cycle elapsed). They

will have a displacement from their initial position of ∆x = 2πp0. Therefore, trajecto-

ries beginning with x0 < 0 and a small enough p0 > 0 such that x0 + ∆x < 0 will not

experience a recollision in the first laser cycle: they must wait for enough laser cycles n

such that the displacements accumulate and satisfy x0 + n∆x > 0. The smaller the p0, the

43



more laser cycles are needed for a recollision to occur, which explains the ordering of the

strata. This argument also explains why there are no recollisions if x0 < 0 and p0 < 0,

and none for x0 > 0 and p0 < −x0/2π. The lines that form the boundaries between the

delayed recollisions of differing delay times are plotted in the right panel of Fig. 3.2. We

note that the boundaries occur precisely where the return energy has discontinuous jumps,

as claimed earlier.

It should be noted that the highest energies associated with delayed recollisions are

an order of magnitude smaller than the immediate recollisions, which is reflected in the

change of color scale between the left and right panels of Fig. 3.2. Thus, when searching

for energy-maximizing trajectories in the SFA, these kinds of trajectories appear irrelevant,

not bringing enough energy to play a significant role in recollision-driven processes. How-

ever it should be emphasized that this is only on their first recollision. In the SFA, these

trajectories with very small p0 will have many recollisions, as is evident from Eq. (3.4).

With ẋ = p0 + cos(t + φ), the return kinetic energy of the later recollisions can only get

slightly higher than 2Up, still significantly below the usual prediction of 3.17Up. Moreover,

the maximum return kinetic energy of any recollision (i.e. not necessarily the trajectory’s

first recollision) occurring after the first laser cycle for a trajectory initiated near x = 0 is

bounded at approximately 2.4Up [70]. This changes when we turn on the Coulomb field:

even if the laser field is large, the Couloumb field allows delayed recollisions to bring back

energy greater than 3.17Up on their very first recollision. In addition, the trajectories ex-

periencing delayed recollision are particularly interesting because they spend a longer time

close to the core where they can exchange energy and experience the influence of the core

potential.
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Figure 3.4: The potential of Hamiltonian (3.24) in the length gauge, i.e. V (x) + xE(t),
as a function of x. Grey dotted is with E(t) = 0, black dashed with E(t) = 0.25 E0 (the
maximum field amplitude when I = 6.3×1014 W ·cm−2), and solid black with E(t) = E0.
x is in units E0/ω

2 and V is in units of Up.

3.3 Maximizing the return energy with the Coulomb field: Nonlinear dynamics of

delayed recollisions

3.3.1 Delayed Recollisions

In Sec. 3.2, we have identified the effects of x0 6= 0 on the recollision mechanism in the

strong field approximation. In particular we have assessed the effect of x0 6= 0 on the max-

imum ∆ε trajectories. We have shown that the energy-maximizing trajectories are the ones

which recollide within one laser cycle. In this section, we turn on the Coulomb interac-

tion and investigate how the strong field approximation picture for recollision trajectories

is affected by this interaction. The Hamiltonian, in atomic units, now becomes

H(x, p, t) =
1

2

(
p+

E0

ω
cos(ωt+ φ)

)2
− 1√

x2 + 1
, (3.23)

where we have used the infinite-mass approximation for the core and a soft-Coulomb po-

tential with a softening parameter of 1 [84, 97]. The soft-Coulomb potential is sufficiently

generic as to model any neutral single-active-electron atom or small molecule in a strong
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laser field. The general phase space picture associated with Hamiltonian (3.23) is com-

posed of two distinct regions [99]: the region near the core, referred to as the bounded

region, where the Coulomb attraction dominates compared to the laser forcing, and the

region sufficiently far from the core, referred to as the unbounded region, where the laser

field dominates. For low enough laser intensities, the electron never escapes the bounded

region. A common assumption in the unbounded region is to neglect the Coulomb interac-

tion for sufficiently large intensity, which corresponds to the second step in the three-step

model of recollisions. Here we investigate the validity of this assumption, using numerical

solutions of the equations of motion arising from Hamiltonian (3.23). In order to focus

on the effect of the Coulomb field in the unbounded region, we choose the parameters in

such a way that the bounded region is completely suppressed. In particular, we use a laser

intensity I = 1016 W · cm−2 and frequency ω = 0.057 a.u. (corresponding to an 800 nm

wavelength). At this laser frequency, the bounded region only exists for intensities below

I = 4.9 × 1015 W · cm−2. Thus, our choice of laser intensity is high enough that almost

every initial condition will lead eventually to ionization, meaning there are almost no tra-

jectories that remain indefinitely bounded to the core. In fact, this intensity is so high that

there is not even a potential barrier when the laser field is at its maximum, as shown in

Fig. 3.4, so classical ionization can account for all ionizations; it is not necessary to invoke

a tunneling argument.

We rescale this Hamiltonian as in Sec. 3.2, yielding

H(x, p, t) =
1

2

(
p+ cos(t+ φ)

)2
− ε√

x2 + a2
, (3.24)

where a = ω2/E0 = 6.077 × 10−3 and ε = ω4/E3
0 = 6.918 × 10−5. The parameter ε

is the effective strength of the Coulomb potential in the presence of the laser field: as the

intensity goes to infinity, ε goes to zero as does ε/a so the Coulomb potential becomes neg-

ligible. In this parameter regime it would appear that the Coulomb potential is ignorable

46



due to the small magnitude of the maximum Coulomb energy, ε/a ≈ 0.046Up. How-

ever, the relative importance of terms in the Hamiltonian is not determined by the absolute

values of the terms themselves but by the absolute values of the gradients of the terms,

because it is the gradients that actually appear in the equations of motion. In this param-

eter regime, the Coulomb force, equal to −εx/(x2 + a2)3/2 has a maximum amplitude of

2ε/(3a2
√

3) ≈ 0.7E0, which is comparable to the maximum electric force, and therefore

cannot be neglected.

In the same way as we did in Sec. 3.2, we examine the trajectories that maximize the

change in energy ∆ε between some starting position x0 at t = 0 and the final position at

the center of the core, x = 0, at the return time tr. With the inclusion of the Coulomb

field, the translational invariance of the SFA is broken, meaning the momentum p is no

longer conserved. Thus, this system is no longer integrable, so trajectories cannot be ob-

tained analytically. Here we numerically integrate the equations of motion associated with

Hamiltonian (3.24) in order to find the trajectories that maximize ∆ε. We notice that the

discrete symmetry (3.3) remains, meaning we may still confine our simulations to initial

conditions with φ ∈ [0, π). Using an explicit second-order symplectic integrator [100], we

again consider a large number of initial conditions (typically of the order of one thousand

for each value of x0) beginning on the Poincaré section (3.22), and look for the trajectories

that yield the highest ∆ε at the first recollision. The range of initial conditions is the same

as in the previous section, and with this choice of laser parameters the ranges of initial

conditions in atomic units correspond to x0 = [−13, 13] and p0 = [−1.9, 3.3].

In the top left panel of Fig. 3.5, we show the energy ∆ε brought back by the electron

on its first recollision as a function of its initial condition. Comparing this with Fig. 3.2, we

can evaluate the effect of the Coulomb field on the recolliding trajectories. The shape of the

curve of initial conditions leading to ∆ε-maximizing immediate recollisions is deformed

compared to the SFA, due to the presence of the Coulomb field. The actual energies of

these recollisions as a function of x0 are seen more clearly in Fig. 3.6. We see that the
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Figure 3.5: Energy exchange ∆ε at first recollision after a six laser cycle integration of
Hamiltonian (3.24) with a = 6.077 × 10−3 and ε = 6.918 × 10−5, as a function of initial
conditions, (x0, p0) with the initial phase φ is fixed by Poincaré section condition (3.22).
Darker points correspond to higher energy. Top left panel: The initial conditions (x0, p0)
bringing the maximum energy ∆ε at first recollision in the first laser cycle for each x0 are
the blue curve. Top right panel: Same as top left, with the stable manifoldWs ofO plotted
in black and its unstable manifold Wu in grey. Bottom left panel: Zoom of the lower
magenta framed region on top. Colored curves are the initial conditions (x0, p0) bringing
the maximum energy at first recollision for each x0 and iteration of Poincaré map P during
which the recollision happens. The colors correspond to Figs. 3.3 and 3.7. Bottom right
panel: Zoom of green framed region above. x0 is in units of E0/ω

2, p0 is in units of E0/ω,
∆ε is in units of Up.
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Figure 3.6: Maximum change in energy ∆ε as a function of x0. Thick black line: SFA,
immediate recollision. Light blue curve: Coulomb included, immediate recollision. Cyan
points: Coulomb included, second cycle delayed recollision. Thin blue curve: Coulomb
included, immediate recollision final energy, ε(tr). Dotted black line: 3.17 Up. Red line:
Estimate of delayed recollision energy “cutoff.” x0 is in units of E0/ω

2, ε is in units of Up.

immediate recollision curve is mostly close to the SFA curve, especially as |x0| increases.

At such a high laser intensity, its deviations from the SFA curve are in large part due to

the leading Coulomb correction to the final return energy ε(tr) [20], which is indeed even

closer to the SFA curve. Therefore, we now see clearly the differing effects of varying x0

versus turning on the Coulomb field on the return energy. If one considers the total energy

at return (as opposed to the energy difference or only the return kinetic energy), then the

effect of the Coulomb field on the value of the return energy compared with the SFA is

small for this laser intensity. The major deviations from 3.17Up come from varying x0, and

in the previous section we account for these effects using the SFA.

Now we re-examine the delayed recollisions with the Coulomb field included. The

continuous gradient of ∆ε in the upper left panel of Fig. 3.5 near the maximum energy of

immediate recollisions is again interrupted, at low values of p0, by a series of jumps, seen

more closely in the bottom left panel of Fig. 3.5. This is where the delayed recollisions

originate, which can be confirmed by inspecting Fig. 3.7. Like Fig. 3.3, Fig. 3.7 shows the

iteration of the Poincaré map during which each initial condition has its first recollision.
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Figure 3.7: Number of iterations of Poincaré map P until the first recollision has occured
after a six laser cycle integration, as a function of initial condition (x0, p0). The initial
phase φ is fixed by Poincaré section condition (3.22). Top left panel: The black dotted
line separates immediately ionizing trajectories from recolliding trajectories in the SFA.
Top right panel: Same as top left panel, with stable manifold Ws of O plotted in black.
Location of O− marked as the red cross. Bottom: Zoom of the magenta framed region
above. x0 is in units of E0/ω

2, p0 is in units of E0/ω.
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The Poincaré map is the discrete map (xi+1, pi+1) = P(xi, pi) that takes a point (xi, pi)

on the Poincaré section (3.22) to the next point (xi+1, pi+1) at which the trajectory started

with (xi, pi) pierces the surface of section. Thus, for the range of initial conditions we

consider, the iteration of the map P during which an initial condition (x0, p0) has its first

recollision is the smallest n such that xn > 0. As we stated earlier, in the SFA the map P

corresponds exactly to the duration of one laser cycle. With the Coulomb field included and

a large laser intensity, this correspondence continues to hold only approximately. Still, for

the remainder of the chapter, when we refer to a “cycle” during which a recollision occurs,

we really mean the iteration n of the Poincaré map P . Comparing Fig. 3.7 and Fig. 3.3

makes the significant qualitative differences between the SFA and the full Hamiltonian

(3.24) apparent. For example, the Coulomb focusing effect is clearly manifested by the

greater area of phase space that leads to recollisions compared with the SFA picture. The

curve that separates immediate ionizations from recolliding trajectories in Fig. 3.3 is plotted

on the upper panel of Fig. 3.7. The reduced spread of the electronic wave packet can be

inferred from the observation that a substantial area of the immediate ionizations in the

SFA are converted into recolliding trajectories with the Coulomb field on, especially in the

core region (small x0). In particular, the delayed recollisions are enhanced by the Coulomb

field. In the previous section we observe from Fig. 3.3 that the delayed recollision initial

conditions lay between the immediate recollisions and immediate ionizations in the region

of phase space with a small p0 > 0 and x0 < 0. With the Coulomb field on, we see in

Fig. 3.7 that the delayed recollision boundary extends to x0 > 0 and near x0 = 0 it takes a

significant dip in the direction p0 < 0, so the presence of the Coulomb field enables more

delayed recollisions.

In addition, the Coulomb field allows certain delayed recollisions to bring energy that

slightly exceeds the well known 3.17Up upon their very first recollision. This is shown in

the lower left panel of Fig. 3.5, where although we have changed the distribution of colors

on the color scale compared with the panel above it, the overall scale remains the same. It is
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true that most of each recollision region of a particular delay contains trajectories that first

recollide with a low amount of energy close to that brought by delayed recollisions in the

SFA, . 0.5Up. However, the energy at first recollision rapidly increases near the bound-

aries of the recollision regions of differing delays. The initial conditions bringing back the

maximum energy for each x0 and delay time are the colored curves. Actually these curves

are made up of discrete points (one for each x0 on our grid) that in most places are so close

together that they appear to form a continuous curve. The energies of the second-cycle

delayed recollisions as a function of x0 are plotted in Fig. 3.6. We observe that for any x0,

there exists a second-cycle delayed recollision that brings back energy exceeding 3.17Up.

Moreover, the amount of energy brought back by these delayed recollisions does not dis-

play the approximately linear dependence of ∆εmax on x0 characteristic of the immediate

recollisions, but rather approaches a constant value for large |x0| and has a jump near x = 0.

Surprisingly, the Coulomb well is all but invisible at maximum laser amplitude, yet its pres-

ence causes certain delayed recollisions to recollide with an energy above the usual SFA

prediction on their very first recollision. Though we do not show the maximum energies

brought by higher order delayed recollisions in Fig. 3.6, we argue in the next section that

for every x0 in the range we consider, there is a recollision of arbitrary delay that carries the

same energy as we observe the maximum energy second-cycle recollisions carry 1. There-

fore, during every laser cycle there are energetic recollisions with energies close to 3.17Up,

and this is due to the Coulomb field. We emphasize that the SFA misses this completely -

as discussed in Section 3.2, the energetic immediate recollisions are ionized after one laser

cycle, and only trajectories with sufficiently low drift momenta will continue to recollide

with energies . 2.4Up. In the next section, we explain the nonlinear dynamical origin of

the delayed recollisions, and the origin of the cutoff in their energy exchange.

1We omitted the maximum energies of the higher order delayed recollisions because the shrinking size
of the regions of phase space leading to recollisions with increasingly longer delays (see Fig. 3.7) makes
it challenging to accurately compute the initial condition that recollides with the maximum energy for a
particular delay.
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Figure 3.8: Left: Two typical ∆ε-maximizing trajectories in x-p phase space. An immedi-
ate recollision is in blue, and a third-cycle delayed recollision is in red. Left inset: Periodic
orbit O. Right inset: Periodic orbit O−. Right: ∆ε-maximizing trajectories of the left fig-
ure plotted as x vs. t, upper, and p vs. t, lower. The immediate recollision is also shown as a
dotted blue line, translated in time so its laser phase matches that of the delayed recollision.
x is in units of E0/ω

2, p is in units of E0/ω, t is in radians.

3.3.2 Building Blocks of Recollisions: Periodic Orbits and Their Invariant Manifolds

The qualitative character of both immediate and delayed recolliding trajectories can be un-

derstood by considering some periodic orbits of the system. The most relevant periodic

orbits are O and O−, shown as the insets on the left plot of Fig. 3.8. The importance

of O for recollisions was first described in Ref. [20], and in Ref. [101] it is shown that

O− [and O+, its symmetric copy via symmetry (3.3)] underlie ionization stabilization in

ultra-intense laser fields. Due to our choice of Poincaré section and our interest in initial

conditions beginning near the core, we need not consider O+ here. Each orbit has a period

of exactly one laser cycle. For the parameters we have chosen, both O and O− are hyper-

bolic, i.e. they are unstable. Thus, initial conditions in the vicinity of these orbits may take

trajectories qualitatively similar to the orbits for some time, before eventually ionizing.

This is precisely what we observe when we examine both the immediate and delayed

recollision trajectories in phase space and compare them with the periodic orbits. In the

left panel of Fig. 3.8, we have plotted an energetic immediate recollision and an energetic
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third-cycle delayed recollision. The immediate recollision resembles the motion of O, as

was noted in Ref.[20]. O’s main characteristics are motion between x ≈ −E0/ω
2 and

x ≈ E0/ω
2, with a small momentum kick due to the Coulomb field upon recollision. Cor-

respondingly, the energetic immediate recollision also travels out to x ≈ −E0/ω
2, before

recolliding, receiving a small momentum kick, and ionizing forever. Delayed recollisions

on the other hand spend some time following the orbit O−, before reaching the part of

phase space where immediate recollisions live and the motion of O dominates. O− is dis-

tinguished by its motion between x ≈ −2E0/ω
2 and x ≈ 0, with a comparatively large

momentum kick at the core. Inspection of the third-cycle delayed recollision confirms that

it has exactly this behavior for two laser cycles. After the end of the second laser cycle,

the momentum kick received by the electron is so large that the trajectory is moved into

the region of phase space from which the energetic immediate recollisions originate. Thus,

delayed recollisions follow the motion of O− for some number of laser cycles until they

are converted into immediate recollisions. At this stage, their motion is the same as an

immediate recollision. This can be observed from the right panels of Fig. 3.8, where we

have plotted the energetic recollisions of the left panel as both x vs. t and p vs. t, with the

immediate recollision also translated forward in time so that its laser phase matches that

of the delayed recollision. Clearly, these trajectories nearly overlap, illustrating that the

delayed recollisions eventually become immediate recollisions.

The arrangement of the delayed recollision initial conditions in phase space and their

transport to the realm of immediate recollisions is determined by the stable and unstable

manifolds, respectively, of O. The stable manifoldWs of a periodic orbit O is defined as

the set of initial conditions that approach O as t → ∞. Conversely, the unstable manifold

Wu is the set of initial conditions that approach O as t→ −∞, meaning those trajectories

escape from the orbit moving forward in time. It was already shown in Ref. [20] that O’s

invariant manifolds regulate the recollision dynamics. There, the initial conditions leading

to many recollisions were found to be concentrated nearWs, and trajectories would follow
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Wu on their way to ionization. It turns out that these manifolds also organize the delayed

recollisions: delayed recollisions begin near O’s stable manifold and then follow its unsta-

ble manifold to eventually recollide with the core. The former is seen in the right panel of

Fig. 3.7, where we showWs 2. Ws is obtained from the numerically calculatedWu by the

time-reversal symmetry (x, p, φ) → (x,−p, π − φ). We computeWu using the algorithm

of Ref. [102]. Briefly, (i) the initial part of the manifold is approximated by a very short

curve on the Poincaré section near O and along its unstable direction; (ii) points along this

curve are integrated to obtain the next section of the curve, with the points being selected

adaptively in order to sufficiently resolve the new section; (iii) step (ii) is repeatedly iter-

ated on the newest section of the manifold that has been calculated. Comparing the left and

right upper panels of Fig. 3.7 shows that all the delayed recollisions come from a region of

phase space in which the curves of the stable manifold are dense (compared with other re-

gions of phase space). Looking at the delayed recollision region more closely in the lower

panel of Fig. 3.7 shows that the stable manifold actually separates regions with differing

recollision delay times. This is seen at the boundaries between immediate/second cycle

recollisions, second/third cycle recollisions, and third/fourth cycle recollisions. We expect

that if the manifold is computed for longer times then it would also be seen to separate

the higher order recollisions. We note that there are parts of the manifold that are entirely

contained in a region of a particular recollision delay time. While these parts of the mani-

fold are not relevant for separating initial conditions with different delay times, we expect

they separate trajectories with another type of qualitative difference; for example, they may

separate regions of initial conditions that have differing total numbers of recollisions, as in

Ref. [20]. Additionally, the delayed recollisions are indeed located near the orbit O−, as

was suggested earlier by noting the similarities of the delayed recollision trajectories to the

periodic orbit.

When the initial conditions leading to delayed recollision are integrated, they follow

2We have not marked the location of O on the figure because on this Poincaré section O is located at
approximately (x, p) = (E0/ω

2, 0), far from the core.
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Wu, the unstable manifold of O, and this process underlies our observations regarding the

maximum energy available to a delayed recollision and the particular dependence of the

maximum energy on x0. Consider an initial condition leading to an n-cycle delayed recol-

lision. By definition, after one iteration of the Poincaré map, it must move into the region

of phase space from which (n − 1)-cycle recollisions originate, with x < 0. This will

happen repeatedly until the iteration immediately prior to recollision, when the trajectory

reaches the immediate recollision region of phase space. Additionally, the trajectories ac-

complish this motion by following Wu. Therefore, the recollision energies accessible to

delayed recollisions are the immediate recollision energies in the vicinity of the unstable

manifold. These can be read off by looking at the upper right panel of Fig. 3.5. Wu enters

the immediate recollision region above the region whereWs is dense and delayed recolli-

sions proliferate. We observe that in this regionWu is thickest for smaller p0, and in this

region the recollision energies are low, ∼ 0.5Up. This explains why most of the delayed

recollisions recollide with an energy . 0.5Up, as we remarked earlier in reference to the

lower left panel of Fig. 3.5. However,Wu does enter the region of high energy immediate

recollisions, and in fact it is seen to intersect the curve of maximum ∆ε immediate recolli-

sions in the lower right panel of Fig. 3.5. The delayed recollisions that end up in the region

near this intersection are the delayed recollisions maximizing ∆ε.

We look more carefully at the intersection of Wu with the curve of ∆ε-maximizing

immediate recollisions in Fig. 3.9. Here we have also plotted many second-cycle recolli-

sions on their first return to the Poincaré section (3.22). Firstly, the points are seen clearly

to lie very close to Wu, confirming our earlier claim that the delayed recollisions follow

Wu. Next, we observe that there are always continuous gradients of x0 perpendicular to

the manifold, including in the region where the manifold intersects the curve of maximum

energy immediate recollisions. This region is magnified in the inset of Fig. 3.9. This is

exactly why for any x0, it is possible to find a second-cycle delayed recollision with ∆ε
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Figure 3.9: P(x0, p0) for the initial conditions (x0, p0) in Fig.3.7 leading to a second-cycle
delayed recollision. Color scale shows x0. Light blue curve is the initial conditions leading
to a maximum ∆ε immediate recollision. Thin grey curve isWu of O . Inset: Zoom of the
magenta-framed region. x is in units of E0/ω

2, p is in units of E0/ω.

57



exceeding 3.17Up. The energy of these delayed recollisions is

∆εmax = ∆εmax,imm(xp) + ∆V (xp, x0), (3.25)

where ∆εmax,imm(x) is the maximum energy of an immediate recollision beginning at x,

xp is the position of the delayed recollision’s return to the Poincaré section on the cycle

immediately prior to its recollision, and ∆V (xp, x0) is the change in energy between the

delayed recollision at t = 0 and the time it returned to the Poincaré section prior to recol-

lision. Because the section condition is zero velocity, there is no change in kinetic energy

so ∆V is just the change in Coulomb potential energy. Therefore we can obtain an esti-

mate of the minimal ∆εmax for a delayed recollision by taking ∆V (xp, x0) = −ε/a and

∆εmax,imm to be the minimal maximum energy accessible to an immediate recollision in the

vicinity ofWu. This estimate is plotted for second-cycle delayed recollisions in Fig. 3.6,

and does a good job of providing a “cutoff” for the minimal maximum energy second-

cycle delayed recollision. The remaining shape of the maximum energies for the delayed

recollisions resembles the Coulomb potential and is mostly due to ∆V (xp, x0). Intuitively,

because xp takes a quite limited range of values, ∆εmax,imm(xp) is approximately constant

and ∆V (xp, x0) ≈ V (x̃p) − V (x0), where x̃p is some position where Wu intersects the

maximum energy immediate recollision curve. This explains why the delayed recollision

energy curve approximately takes the shape of minus the Coulomb potential.

In Fig. 3.9,Wu is seen to intersect the curve of ∆ε-maximizing immediate recollisions

in two places. In between the two intersections,Wu crosses into a region of lower energy

recollisions, seen in the lower right panel of Fig. 3.5, and thus we should expect that there

should actually be two energy maximizing delayed recollisions for each x0. Indeed this is

what we see, and this is the cause for the thickness of the set of points giving energy maxi-

mizing delayed recollisions in Fig. 3.6. This is seen even more clearly in Fig. 3.10, where

we have magnified a region containing second-cycle delayed recollision initial conditions
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Figure 3.10: Energy exchange ∆ε at first recollision as a function of initial conditions
(x0, p0). A region of second-cycle delayed recollisions is highly magnified here, revealing
two local maxima in ∆ε. Second-cycle delayed recollision initial conditions are in the
colored region, immediate recollisions in the white region. Darker colors correspond to
higher recollision energies. x0 is in units of E0/ω

2, p0 is in units of E0/ω, ∆ε is in units of
Up.
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and shown their energy exchange upon their first recollisions. We observe two ridges,

corresponding to the predicted two maximum energy recollisions for each x0.

It is also possible to find higher order delayed recollisions of an arbitrary delay that

return with an energy at least at the delayed recollision cutoff. As we have argued, every

laser cycle a delayed n-cycle recollision will move into the region of phase space from

which the n−1-cycle recollisions originate, with x < 0. Therefore, eventually any n-cycle

delayed recollision will end up in the second-cycle delayed recollision region of phase

space with x < 0, i.e. two laser cycles before its recollision. But we have just shown

that for any x0, there are second cycle delayed recollisions that recollide with an energy

above the delayed recollision cutoff. Thus, every laser cycle, there are delayed recollisions

arriving that bring an energy near 3.17Up to the core. Though the SFA does a reasonable

job of providing the energy cutoff, these kinds of trajectories are absent in the SFA, and are

a direct consequence of the ion’s Coulomb field and the organization of the dynamics by

the periodic orbits O and O± and the invariant manifolds of O.

3.4 Summary

In summary, we have shown that even in the high laser intensity regime where the strong

field approximation is expected to hold, the Coulomb field significantly impacts the dynam-

ics by inhibiting the spatial spread of the electronic wave packet and allowing delayed rec-

ollisions to bring high energy to the core region. We reported the effectiveness of Coulomb

focusing in a one-dimensional model, which is usually attributed to higher dimensional

models. We found that while the SFA gives adequate estimates of the maximum possible

return energy in the strong field regime, it misses the behavior of the electron for times

beyond the first laser cycle, when the Coulomb field causes trajectories to continue to rec-

ollide with energies near 3.17Up. We have unraveled the dynamical organization of these

delayed recollisions by looking at specific periodic orbits and their invariant manifolds.

The delayed recollision trajectories that we focused on are important not only because of
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the high energy they may recollide with, but also because they spend potentially many

laser cycles near the core. Thus, they have many opportunities to exchange energy with

the ion and the electromagnetic field (due to the acceleration imparted on such electrons by

the Coulomb force). We expect that the delayed recollisions are the mechanism underly-

ing HHG and thus explain the observation of the appearance of the plateau and ∼ 3.17Up

high-harmonic cutoff only after the first laser cycle, as in Ref. [20].
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CHAPTER 4

VARIATIONAL FORMULATION OF CLASSICAL AND QUANTUM MODELS

FOR INTENSE LASER PULSE PROPAGATION

The self-consistent interaction between charged particles and electromagnetic fields is per-

vasive in physics. Some common examples include laser-plasma interactions [103], free

electron lasers [104], and laboratory and astrophysical plasmas [21]. Attacking such prob-

lems theoretically or even numerically poses a formidable challenge due to the high dimen-

sionality of these systems: The coupling of Maxwell’s equations to the charged particle

dynamics leads to an infinite-dimensional dynamical system on large spatial scales. Even

if a complete representation of these dynamics were obtainable, it would contain far too

much information to allow a clear explanation of the results. In fact, frequently the re-

sults may be explained in terms of simple physical mechanisms which are not substantially

affected by the fine details contained in the complete description of the field-particle inter-

action. See, for example, the single-wave model for the free electron laser [87, 104] and

the beam-plasma instability [105]. Therefore, we are constantly motivated to seek reduced

descriptions which are both numerically tractable and simple enough to permit theoretical

analysis of the results and novel experimental predictions.

A powerful and widely-used framework for the reduction of parent models of self-

consistent field-particle interaction is the variational formulation [23]. It consists of casting

the first-principles equations either as an action principle or a Hamiltonian system. For

instance, an action principle for the Vlasov-Maxwell equations is given in Ref. [106] and

the corresponding Hamiltonian structure is found in Refs. [107, 108]. Then, simplifying

hypotheses for a given problem are incorporated directly into the variational formulation,

whether by applying the hypotheses to the action, the Hamiltonian and Poisson bracket

[87], or some combination of the two, as in gyrokinetic theory [86]. Employing a vari-
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ational formulation poses several advantages over a reduction performed directly on the

equations of motion. Consistently working in a variational formulation allows the reduced

models to preserve conserved quantities possessed by the parent model, avoiding the in-

troduction of unphysical dissipation to the system [23, 109]. Further, variational formula-

tions can provide convenient frameworks for performing arbitrary coordinate transforma-

tions [85]. Lastly, they provide a foundation for the development of specialized numerical

schemes which inherently respect the variational structure of the system [110–115] and

thus may be suitable for long-time integration [116, 117].

In this chapter, we consider a variational formulation suitable for describing the propa-

gation of intense, low-frequency laser pulses in gases. This is the setting for high-harmonic

generation (HHG) [24, 44], terahertz (THz) generation [118, 119], and filamentation [120,

121], to name a few examples. The parent model which most accurately describes this sys-

tem is the Maxwell-Schrödinger model [58], which describes the self-consistent interaction

between the three-dimensional macroscopic electromagnetic fields and the microscopic

wavefunctions describing the atomic or molecular response to the fields. A first-principles

description of the atomic or molecular response is essential for accurately capturing the spa-

tiotemporal evolution of the laser field over experimentally relevant propagation distances

[122, 123], which can be hundreds to thousands of times the initial spatial extent of the

pulse. In particular, a quantum or semi-classical description is required to obtain the high-

harmonic part of the radiation spectrum with quantitative accuracy [83]. In Ch. 5, we show

that a classical description of the atoms self-consistently coupled to the fields can success-

fully capture the low-frequency part of the spectrum during propagation, as compared with

a reduced Maxwell-Schrödinger model. The classical description is also germane for THz

generation, where the characteristics of the THz emission may be explained by studying

electron trajectories [119].

Here, our objective is to use the variational formulations of both the quantum and classi-

cal parent models describing intense laser pulse propagation to derive the simplest reduced
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models possible, whose behavior we investigate in detail in Ch. 5. We note that variational

formulations of Maxwell-Schrödinger models have already been considered for the case

of microscopic electromagnetic fields [96, 112, 124, 125], though they have not yet been

considered for macroscopic fields to the best of our knowledge. Also, Hamiltonian formu-

lations of reduced laser pulse propagation equations have been found a posteriori, i.e. after

reduction from a parent model at the level of the equations of motion [126, 127].

This chapter is organized as follows. In Sec. 4.1, we state the parent models for the clas-

sical and quantum systems and the main assumptions that we will incorporate sequentially

in order to build a hierarchy of reduced models. In Sec. 4.2, we provide the Lagrangian and

Hamiltonian derivations of the model with classical dynamics for the particles. In Sec. 4.3,

we provide the Lagrangian and Hamiltonian derivations of the model with quantum dy-

namics for the particles. In Sec. 4.4, we consider the spatial discretization of the fields

in the Hamiltonian formulation, which is a precursor to obtaining variational integrators

for the reduced-model equations. Finally, in Sec. 4.5, we summarize and make some con-

cluding remarks. In App. B, we discuss the Lagrangian and Hamiltonian formulations of a

more general classical model, from which the parent classical model of this chapter can be

derived.

4.1 Parent model

Our parent model consists of a classical electromagnetic field interacting with a gas under

some reasonable physical assumptions. For simplicity, we restrict ourselves to the case of

single-species single-active-electron (SAE) atomic gases. The SAE approximation means

that we assume the atom consists of a singly-charged ionic core and an electron. Further,

we assume the ions are heavy enough that they may be considered static, at least on the

short time scale of the laser pulse. We also assume the electron motion can be treated

in the dipole approximation. This means the electrons are non-relativistic and move on

spatial scales small compared to those of the spatial variations of the electromagnetic field,
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Figure 4.1: Schematic illustrating the typical geometry of an intense, linearly-polarized
laser pulse propagating through an atomic gas. The incident pulse is on the left and it
propagates in the positive z direction. The intensity profile of the focused laser beam is
shown in dark red. The gas atoms are the black dots distributed around the focus of the
laser beam. r is the macroscopic coordinate, such that the laser electric field is E(r, t) (in
red), the magnetic field is B(r, t) (in blue), and the gas density is ρ(r). The inset shows that
at each point r, a microscopic coordinate x is attached, giving the position of the electron
of an atom located at r.

implying magnetic effects are neglected. Lastly, we assume a low-density gas such that

collisions between electrons and neighboring atoms may be neglected, so each electron

only interacts with its parent ion and the macroscopic electric field. A more basic model,

where the dipole approximation is not made but the electrons are still non-relativistic, is

the subject of App. B.

We define the dynamical variables and coordinate systems of our parent model, illus-

trated in Fig. 4.1, as follows. The dipole approximation leads naturally to a separation

of length scales into a macroscopic scale and a microscopic scale. The coordinate of the

macroscopic scale, r = (x, y, z), gives the position of an arbitrary point in the gas. Mean-

while, the coordinate of the microscopic scale, x = (xe, ye, ze), gives the position of the

electron relative to the ionic core of an atom. The dynamical variables for the electro-

magnetic field are E(r, t) and B(r, t). The atomic number density is ρ(r), which is time-
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independent due to the assumption of static ions. For the quantum model, the dynamical

field variable for the particles is the electronic wavefunction ψ(x, t; r) of an atom located

at r. For the classical model, the dynamical field variable for the particles is x(r, t; x0,v0),

which gives the position x of the electron of an atom located at r at time t. The labels x0

and v0 define the initial position and velocity, respectively, i.e. x(r, 0; x0,v0) = x0 and

ẋ(r, 0; x0,v0) = v0.

The equations of motion for the electromagnetic fields are Maxwell’s equations, which

read [58]

Ė = c2∇×B− 4πṖ, (4.1a)

Ḃ = −∇× E, (4.1b)

∇ · E = −4π∇ ·P, (4.1c)

∇ ·B = 0. (4.1d)

Here, P is the macroscopic polarization which, in this case, can be expressed as

P(r, t) = −ρ(r)x(r, t), (4.2)

where x is the ensemble-averaged electron position of the atoms located near r at time t.

That is, we average over the large number of atoms ρ(r)d3r contained in a small volume

d3r around r (see Fig. 4.1). In order to solve Eqs. (4.1), we must specify a microscopic

model for the response of a single atom to the field, which allows one to determine x from

E.

Typically, a quantum model is employed to obtain the single-atom response to the field,
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as in the Maxwell-Schrödinger model [58]. The equations are

iψ̇ = −1

2
∇2

xψ +
[
V (x) + E(r, t) · x

]
ψ, (4.3a)

x(r, t) =

∫
x |ψ(x, t; r)|2 d3x. (4.3b)

Here, Eq. (4.3a) is the Schrödinger equation for the wave function ψ(x, t; r). The ion-

electron interaction is described by an effective potential V , such as the soft-Coulomb

potential V (x) = −(|x|2 + 1)−1/2 [84, 91, 97]. The use of the dipole approximation

is evident from the fact that E depends on the macroscopic coordinate r, but not on the

microscopic coordinate x. The latter is the sole degree of freedom of the electron, as

illustrated in Fig. 4.1. Equation (4.3b) is the quantum expectation value of the observable

x, with the integration carried out over all x ∈ R3. We assume that the ensemble of atoms

located at r is initially in a pure state ψ(x, 0; r) = ψ0(x), i.e. each of the atoms is in the

same initial state, so we do not need to consider a density matrix to describe the ensemble.

Note that, in principle, ψ0 could also depend on r, but we choose to make it independent

of r so that the initial state of the atoms is uniform. Thus, the expectation value x in

Eq. (4.3b) is indeed the ensemble-averaged electron position of the atoms at r. Together,

Eqs. (4.1)-(4.3) constitute the Maxwell-Schrödinger model, which we refer to here as the

parent quantum model.

The quantum model is particularly effective in the context of HHG, where it accurately

describes the evolution of the high harmonic radiation during propagation [58, 59]. How-

ever, the description of the electron dynamics in terms of a time-dependent wave function

lacks the intuitive and very relevant dynamical picture provided by the underlying classical

electron trajectories [2, 3, 20]. To address this issue, one option is to use purely classical

models for the electron dynamics [48, 49, 83, 91, 128, 129], in which the Schrödinger equa-

tion is replaced with the corresponding classical equations of motion for x(r, t; x0,v0), and

the quantum expectation value is replaced with a classical average over an ensemble of ini-
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tial conditions. The ensemble of initial conditions is typically chosen to capture as much

as possible the effects one would observe in a quantum description, such as wavepacket

spreading. The corresponding equations are

ẍ = −∇xV (x)− E(r, t), (4.4a)

x(r, t) =

∫
x(r, t; x0,v0)f0(x0,v0)d

3x0d
3v0. (4.4b)

The dipole approximation is reflected in the same way in Eq. (4.4a) as in the quantum case.

The integral in Eq. (4.4b) is carried out over all (x0,v0) ∈ R3 × R3. Meanwhile, f0 is the

probability distribution function to find an electron with the given initial conditions. By

averaging with respect to f0 in Eq. (4.4b), we obtain the ensemble-averaged position of the

electron relative to the ion x, which allows us to obtain the polarization using Eq. (4.2).

As in the quantum case, we assume the initial state of the atoms f0 is independent of r.

Together, Eqs. (4.1), (4.2), and (4.4) constitute the parent classical model. In App. B, we

show how this classical parent model can be derived from one where the dipole approxi-

mation is not assumed, so that magnetic effects are fully included. There, we show that the

source terms of Maxwell’s equations in the more general model are the microscopic charge

and current densities, as opposed to the macroscopic polarization and current.

For both parent models, it is not possible to solve the microscopic dynamics nor the

macroscopic dynamics analytically. Hence, one must resort to numerical simulations.

However, the computational cost of simulating the parent models is immense due to the

multiscale nature of the problem. For instance, numerically solving the quantum model re-

quires one to obtain the solution ψ(x, t; r) of Eq. (4.3a) at every time step for all r and x in

the computational domain. In the present day, such a feat can only be accomplished using

super-computers [58, 59]. Thus, reduced models with smaller computational requirements

are highly desirable.

In the following sections, we will build a hierarchy of reduced models stemming from
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Table 4.1: The various hypotheses underlying our reduced models. The left column con-
tains hypotheses on the response of the particles to the field (HP), while the right column
contains hypotheses on the fields themselves (HF).

HP 1 SAE approximation HF 1 Electromagnetic fields
solely depend on propagation
coordinate z

HP 2 static ions HF 2 z-component of the elec-
tric field is negligible

HP 3 dipole approximation HF 3 linearly polarized fields

HP 4 Particle fields solely de-
pend on propagation coordinate
z

HF 4 backward-propagating
waves are negligible

HP 5 reduced electron phase
space

the two parent models by sequentially incorporating the hypotheses outlined in Table 4.1.

The parent models already incorporate hypotheses HP 1-3. In this work, we choose to

focus on the simplification of the field part of the equations, because any dimensional

reduction on the macroscopic scale automatically results in fewer computationally-costly

microscopic computations [130]. Furthermore, reductions on the particle dynamics tend

to be less general and rely on specific hypotheses particular to certain sets of field param-

eters. Such reductions typically do not interfere with the structure of the self-consistent

interaction between the field and the particles, so they may be built on top of the models

we arrive at in this article. In fact, because we focus on reducing the electromagnetic fields,

the models we obtain may be readily generalized to other types of gas species or condensed

phase systems, simply by specifying the appropriate microscopic model for the reponse of

the medium to the fields [130].
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4.2 Classical reduced models

4.2.1 Lagrangian formulation

The classical model, Eqs. (4.1), (4.2), and (4.4), admits a Lagrangian formulation. First, we

introduce the electromagnetic potentials, the scalar potential ϕ(r, t) and the vector potential

A(r, t), from which the electric and magnetic fields are obtained as

E = −∇ϕ− Ȧ, (4.5a)

B = ∇×A. (4.5b)

Now, we define the action functional A[x(r, t; x0,v0), ϕ(r, t),A(r, t)] as

A[x, ϕ,A] =

∫
(LP + LEM)dt, (4.6a)

LP = 4π

∫
ρ(r)

[
|ẋ|2

2
− V (x) + x · ∇ϕ(r, t)− ẋ ·A(r, t)

]
dµ0d

3r, (4.6b)

LEM =
1

2

∫ (
|∇ϕ(r) + Ȧ(r)|2 − c2|∇ ×A(r)|2

)
d3r, (4.6c)

where we have introduced the notation dµ0 = f0(x0,v0)d
3x0d

3v0 and we recall ρ(r) is

the number density of the atomic gas. Hence, the Lagrangian is decomposed into a particle

Lagrangian LP and an electromagnetic Lagrangian LEM, in a manner similar to the Low

Lagrangian for the Vlasov-Maxwell equations [106]. We have made the dependence of

the electromagnetic potentials on r explicit here to make the distinction from a more fun-

damental model without the dipole approximation discussed in App. B; however, for the

remainder of this section we will suppress the functional dependence of the potentials.

Imposing δA = 0, i.e. Ax = Aϕ = AA = 0, and applying Eqs. (4.5) yields the parent

model equations (4.1) and (4.4). The subscript denotes the functional derivative, defined
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for a functional F [f(z)] of a function f on an n-dimensional domain by

F [f(z) + εδf(z)]−F [f(z)] = ε

∫
Ffδfdnz +O(ε2).

The first of these equations yields Eq. (4.4a), when one requires thatAx = 0 for an arbitrary

f0. The second yields

−(∇2ϕ+∇ · Ȧ) = 4π∇ ·
(
ρ

∫
x dµ0

)
. (4.7)

This is equivalent to Gauss’ Law, Eq. (4.1c), upon applying Eqs. (4.5a), (4.4b), and (4.2).

Similarly, the third yields

−(∇ϕ̇+ Ä) = c2∇× (∇×A) + 4πρ

∫
ẋ dµ0,

which is equivalent to the Maxwell-Ampère equation (4.1a). Meanwhile, Eqs. (4.1b) and

(4.1d) are automatically satisfied by virtue of Eqs. (4.5).

We remark that the existence of a variational priniciple is a fundamental property of the

system. That is, it is not a consequence of choosing a particular set of dynamical variables,

such as the electromagnetic potentials. For example, one may write an action principle

using the electric and magnetic fields themselves as dynamical variables, instead of the

potentials, but the formulation is more complicated as it requires constrained variations.

Thus, we use the electromagnetic potentials for convenience.

Now, we begin making assumptions and approximations appropriate to typical exper-

imental situations in order to obtain a hierarchy of reduced models. In experiments, the

radiation is generated by the propagation of spatially localized laser pulses with a given

polarization through the gas. The spatial localization comes from the focusing of the laser

beam, which typically leads to a Gaussian intensity profile with cylindrical symmetry about

the propagation axis (see Fig. 4.1). As such, the vacuum field intensity only depends
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on the propagation coordinate z and the distance from the propagation axis |r⊥|, where

r⊥ = (x, y). The time-dependent electric field then consists of the product of a spatial

envelope due to focusing, a temporal envelope due to finite pulse duration, and an oscilla-

tion at the carrier frequency of the laser ωL. Notably, the focusing leads to a z-dependent

maximum amplitude of the field as well as a z-dependent carrier-envelope phase, known

as the Gouy phase shift [131], even in vacuum. Focusing effects can be described effi-

ciently within the paraxial approximation, which is valid for laser beams that are not too

tightly focused. However, even within the paraxial approximation, the dimensionality of

the electromagnetic fields is not substantially reduced. The fields still depend on two spa-

tial coordinates, r⊥ and z. Furthermore, even though it is true that the fields are dominated

by the transverse components, i.e. the r⊥ direction, Gauss’ Law requires that they have a

longitudinal component as well [131]. Hence, the fields are still three-dimensional vectors

in the case of arbitrary laser polarization, and still two-dimensional in the simpler (and

very common) case of linear polarization. Lastly, the paraxial approximation inherently

assumes backward-propagating waves are negligible [123], but this is not necessarily the

case if the gas density is high enough [132].

Plane-wave fields (HP 1-4, HF 1)

Here, we make strong assumptions on the fields to bypass these difficulties. Namely, we

assume that the fields’ only spatial dependence is on z, invoking hypotheses HF 1 and HP

4 of Table 4.1. We take the fields to be plane waves of the form

ρ = ρ(z), (4.8a)

x = x(z, t; x0,v0), (4.8b)

ϕ = ϕ(z, t), (4.8c)

A = A⊥(z, t) = Ax(z, t)x̂ + Ay(z, t)ŷ. (4.8d)
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In writing the vector potential, we have employed the radiation gauge∇·A = 0 which, for

z-dependent fields, becomes ∂zAz = 0. While this technically allows Az to be a function

of time, we have chosen Az = 0 to avoid the presence of a uniform time-dependent electric

field. As is evident from Eq. (4.7), the main appeal of adopting the radiation gauge is that

all the space charge effects, i.e. those due to a spatially nonuniform charge distribution, are

encoded in ϕ.

Inserting Eqs. (4.8) into Eqs. (4.6), we obtain the Lagrangians of the reduced system as

LP = 4π

∫
ρ

[
|ẋ|2

2
− V (x) + ze ∂zϕ− ẋ⊥ ·A⊥

]
dµ0dz, (4.9a)

LEM =
1

2

∫ [
(∂zϕ)2 + |Ȧ⊥|2 − c2|∂zA⊥|2

]
dz. (4.9b)

By taking variations with respect to the present variables, we obtain the equations of motion

ẍ = −∇xV (x) + (∂zϕ)ẑ + Ȧ⊥, (4.10a)

∂2zϕ = −4π∂z(ρze), (4.10b)

c2∂2zA⊥ − Ä = 4πρẋ⊥. (4.10c)

Lagrangians (4.9) and the corresponding equations of motion constitute the first reduced

model we have obtained, including assumptions HP 1-4 and HF 1 in Table 4.1. Together,

they describe the self-consistent dynamics of arbitrarily polarized transverse electromag-

netic plane waves and longitudinal space charge waves propagating through a classical

atomic gas. Treating the fields as plane waves corresponds to assuming that the laser beam

is loosely focused and the focusing can be neglected altogether. Admittedly, this hypoth-

esis is rarely met in experiments, but it is the key to obtaining a substantial dimensional

reduction from the parent model. Later, we shall show how one can reintroduce some of
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the focusing effects externally.

Transverse, linearly-polarized fields (HP 1-4 and HF 1-3)

Next, we make an assumption which allows us to remove the scalar potential ϕ. Specifi-

cally, we assume that the Ez is negligible (HF 2). Since Ez = −∂zϕ, this is equivalent to

assuming ∂zϕ is negligible. This is easily justified for atoms, where the symmetry of the

ionic potential V and initially purely transverse electric field guarantee that ze(z, t) = 0 for

all z and t. In turn, this makes ∂zϕ(z, t) = 0 by virtue of Eq. (4.10b). Thus, the presence

of ∂zϕ makes no difference for the atomic response to the fields. However, ze need not be

zero for anisotropic media such as aligned molecules, where V is asymmetric. In that case,

it may still be reasonable to neglect ∂zϕ because it may be very small. In particular, this

hypothesis can always be met for a small enough density ρ, since under hypothesis HF 1,

the only possible source for the longitudinal component of the electric field is the radiation

of the particles.

Assuming ∂zϕ is negligible, we drop the terms containing it from the Lagrangian. Since

these are the only places where ϕ appears, it is eliminated as a dynamical field by hypoth-

esis HF 2. This leaves us with the Lagrangians

LP = 4π

∫
ρ

[
|ẋ|2

2
− V (x)− ẋ⊥ ·A⊥

]
dµ0dz, (4.11a)

LEM =
1

2

∫ [
|Ȧ⊥|2 − c2|∂zA⊥|2

]
dz. (4.11b)

Above we have the next reduced model in the hierarchy, incorporating hypotheses HP 1-4

and HF 1-2 of Table 4.1. The equations of motion are Eqs. (4.10a) and (4.10c), with the

∂zϕ term in Eq. (4.10a) omitted.

In what follows, we will restrict our attention to linearly-polarized waves for simplicity,

though our subsequent reductions apply equally well in the case of arbitrary polarization.
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We invoke assumption HF 3 and take Ay = 0. In this case, the equations of motion are

ẍ = −∇xV (x) + Ȧx̂, (4.12a)

c2∂2zA− Ä = 4πρẋe, (4.12b)

where we have omitted the x-subscript on A. Thus, in Eq. (4.12a) we have the equation of

motion for an atomic electron driven by the electric field E = −Ȧ of the electromagnetic

wave. Meanwhile, in Eq. (4.12b) we have a 1D wave equation forA, with the x-component

of the current density of the atoms on the right-hand side as a source term.

Moving frame

Before proceeding to the next reduced model, we perform a change of coordinates into a

moving frame which is better suited to the analysis of propagating laser pulses. Because

the laser pulse moves at nearly the speed of light through the gas, it is convenient to change

the coordinates of the fields to ξ = z and τ = t − z/c. This leads to an equivalent action

Ã[x̃(ξ, τ), Ã(ξ, τ)] =
∫

(L̃P + L̃EM)dτ , defined such that Ã[x̃, Ã] = A[x, A]. In particular,

the new arguments of Ã are defined such that

x̃(ξ, τ ; x̃0, ṽ0) = x(ξ, τ + ξ/c; x0,v0),

Ã(ξ, τ) = A(ξ, τ + ξ/c).

Here, we have introduced the positions and velocities of the atomic electrons at τ = 0,

when the laser pulse arrives to their location ξ along the propagation direction,

x̃0 = x(ξ, ξ/c; x0,v0),

ṽ0 = ẋ(ξ, ξ/c; x0,v0),
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which play the role of initial conditions in the moving frame. We also define the distribution

of electron initial conditions when the pulse arrives as f̃0(x̃0, ṽ0) = f0(x0,v0). Applying

the chain rule, we obtain the new Lagrangians

LP = 4π

∫
ρ

[
|∂τx|2

2
− V (x)− ∂τxeA

]
dµ0dξ, (4.15a)

LEM =

∫ [
c∂τA∂ξA−

c2

2
(∂ξA)2

]
dξ, (4.15b)

where we have omitted the tildes over the new Lagrangians and the new field variables.

The equations of motion for x have the same form in the moving frame because the micro-

scopic coordinates are unaffected by the moving-frame transformation. The equation for A

becomes

c2∂2ξA− 2c∂ξ∂τA = 4πρ∂τxe. (4.16)

We observe that, in these coordinates, the equation for A has become first-order in time τ ,

though it is still second-order in space ξ.

Unidirectional approximation (HP 1-4 and HF 1-4)

By making a certain hypothesis on the derivatives ofA, we remove the second-order deriva-

tive and obtain the next reduced model in our hierarchy. Looking at Lagrangian (4.15b),

we observe that if |∂ξA| � |∂τA|/c, then we can neglect the (∂ξA)2 term. Making the

order-of-magnitude estimate ∂τ ∼ ωL/2π and defining Lξ as the typical propagation dis-

tance over which the field shape changes substantially, this condition becomes equivalent

to λL � Lξ, where λL = 2πc/ωL is the incident laser wavelength. In other words, if the

field evolves over spatial scales which are large compared to the laser wavelength, then the
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second term of Lagrangian (4.15b) is negligible. In this case, the Lagrangians become

LP = 4π

∫
ρ

[
|∂τx|2

2
− V (x)− ∂τxeA

]
dµ0dξ, (4.17a)

LEM = c

∫
∂τA∂ξAdξ, (4.17b)

where the particle Lagrangian is unchanged. The equations of motion become

∂2τx = −∇xV (x) + ∂τAx̂, (4.18a)

− ∂ξ∂τA =
2πρ

c
∂τxe. (4.18b)

Now, the field evolution equation (4.18b) is only first order in ξ. While it is still technically

a second order equation for A, this equation can be seen as a first order equation for the

electric field in the moving frame E = −∂τA. In fact, E is the only quantity that appears in

the electron equations of motion (4.18a), so we obtain a well-posed set of equations for x

and E . The model given by Eqs. (4.17) and (4.18) incorporates assumptions HP 1-4 and HF

1-4 and describes the propagation of a solely forward-propagating electromagnetic wave

through a classical atomic gas. In Sec. 4.2.2, we will show that the assumption λ � Lξ

is equivalent to assuming that backward-propagating waves are negligible (HF 4), making

this a unidirectional approximation [130].

One-dimensional electron dynamics (HP 1-5 and HF 1-4)

A model with a reduced electron phase space may be obtained trivially. For example, the fi-

nal hypothesis HP 5 may be implemented by assuming x = xe(ξ, τ)x̂. Doing so only leads

to a modification of the particle Lagrangian LP. We make an additional step to highlight

the Lagrangian formulation with the Hamiltonian formulation to come. Namely, we pass

from a Lagrangian description of the particles (in the sense of a Lagrangian description of a

fluid) of Eq. (4.12a) to an Eulerian description in terms of f(xe, vx, τ, ξ) [23]. The function
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f is the phase space probability distribution to find an electron with position xe relative to

the ion and velocity vx at time τ and position ξ along the gas propagation direction, and it

is such that f(xe, vx, 0, ξ) = f0(xe, vx). Hence, the model equations are obtained:

∂τf = −vx∂xef + [∂xeV + E(ξ, τ)] ∂vxf, (4.19a)

∂ξE =
2πρ

c
vx(ξ, τ). (4.19b)

Focusing effects

Lastly, we consider the possibility of reintroducing some of the focusing effects which are

manifestly absent from the 1D wave equation. As mentioned earlier, the on-axis electric

field of the focused laser pulse has a z-dependent (equivalently, ξ-dependent) maximum

amplitude and phase, even in the vacuum. For example, it may be of the form

E0(ξ, τ) = a(ξ)g(τ) cos (ωτ + φ(ξ)) . (4.20)

Here, a is the ξ-dependent amplitude, φ is the ξ-dependent phase, and g is the temporal

envelope. Notably, this type of solution is precluded by the 1D model in vacuum [133],

because in that case, Eq. (4.18b) gives−∂ξ∂τA0 = ∂ξE0 = 0, whereA0 is the on-axis vector

potential of the focused laser pulse in vacuum. Therefore, we are not able to incorporate

phase and amplitude modulations due to the 3D focusing of the laser beam self-consistently.

However, we can incorporate them in an external fashion.

The idea is to let A represent only the radiation generated by the particles, while the

incident laser pulse is treated as a given external field A0. A0(ξ, τ) (or A0(z, t) in the static

frame) should be calculated by first solving Maxwell’s equations in vacuum for a focused

laser pulse, and then evaluating the resulting vector potential on-axis, i.e. at r⊥ = 0. By

following this procedure, one would obtain an on-axis electric field like Eq. (4.20) from the

relation E0 = −∂τA0. Because Maxwell’s equations are linear, the total vector potential is
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then given by A0 +A. As such, the only necessary modification to the Lagrangian is to add

an A0 term to LP so that it reads

LP = 4π

∫
ρ

[
|ẋ|2

2
− V (x)− ẋe(A+ A0)

]
dµ0dz.

Consequently, Eq. (4.12a) would be modified by the addition of Ȧ0x̂ on the right-hand side,

while Eq. (4.18b) would be unchanged. Additionally, one would need to subject Ȧ to an

initial condition that reflects that the radiation produced by the particles is zero before they

are reached by the incident laser pulse.

4.2.2 Hamiltonian formulation

The derivation of the sequence of reduced models may also be performed using a Hamil-

tonian formulation. While this approach is generally more involved, it possesses some

advantages over the Lagrangian derivation. Namely, the Hamiltonian formulation directly

yields the equations of motion of the system as a dynamical system, i.e. a coupled set of

differential equations which are first order in the evolution parameter t. In contrast, the

Lagrangian formulation may produce equations which are second order in t, and it may

even produce equations with multiple evolution parameters. For example, all the equations

of motion in Sec. 4.2.1 before Eq. (4.16) are second order in t. Meanwhile, in Eqs. (4.19),

there are two evolution parameters: τ is the evolution parameter for Eq. (4.19a), while ξ

is the evolution parameter for Eq. (4.19b). The Hamiltonian formulation also provides a

natural way of identifying conserved quantities of the reduced models, including Casimir

invariants.

In the following, we will specify the Hamiltonian structure of the classical parent model

[Eqs. (4.1) and (4.4)] and implement the hypotheses in Table 4.1 to obtain the sequence

of reduced Hamiltonian models corresponding to those derived in the previous section.

The model equations obtained from the Hamiltonian framework will thus be completely
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equivalent to those obtained from the Lagrangian framework.

We use the electron probability distribution function f(x,p, r) as the particle dynamical

variable, where p = (px, py, pz) is the canonical momentum of the electron. It is normal-

ized such that
∫
f(x,p, r)dµ = 1, where here dµ = d3xd3p. The field dynamical variables

are E(r) and A(r). Observables are thus functionals F = F [f(x,p, r),E(r),A(r)]. We

have omitted the implicit time-dependence of the field variables f , E, and A. In analogy

with the Vlasov-Maxwell system [108], the parent model Hamiltonian and non-canonical

Poisson bracket are

H[f,E,A] = HP +HEM, (4.21a)

HP[f,A] =

∫
ρ(r) f(x,p, r)

[
1

2
|p + A(r)|2 + V (x)

]
dµd3r, (4.21b)

HEM[E,A] =
1

8π

∫ (
|E(r)|2 + c2|∇ ×A(r)|2

)
d3r, (4.21c)

{F ,G} =

∫ {
ρ−1

∫
f [Ff ,Gf ] dµ+ 4π (FE · GA −FA · GE)

}
d3r. (4.21d)

We have introduced the canonical Poisson bracket notation [f, g] = ∂xf · ∂pg − ∂pf · ∂xg.

Like the Lagrangian, Hamiltonian (4.21a) is split into a particle Hamiltonian HP and an

electromagnetic HamiltonianHEM, a splitting which will likewise carry over to each of the

reduced models in the hierarchy. Physically, HP is the energy of the atomic electrons—

kinetic plus potential—while HEM is the energy of the electromagnetic field. Again, we

have explicitly specified the r dependence of the vector potential and electric field here to

distinguish this Hamiltonian from the dipole-approximation-free case, though this will be

omitted for the rest of this section.

The equations of motion for an observable are obtained using the observable evolution
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law Ḟ = {F ,H}. For the dynamical variables, they are as follows:

ḟ = −(p + A) · ∇xf +∇xV · ∂pf, (4.22a)

Ė = c2∇× (∇×A) + 4πρ(p + A), (4.22b)

Ȧ = −E. (4.22c)

In Eq. (4.22b), we have used the normalization of the distribution function and introduced

the ensemble average p(r) =
∫

pf(x,p, r)dµ. This system is completely equivalent to

Eqs. (4.1) and (4.4). Here, f provides an Eulerian description of the particles corresponding

to the Lagrangian description used in Eqs. (4.4). The substitutions v = p + A and B =

∇×A make the equivalence of Eq. (4.22b) and Eq. (4.1a) apparent, while taking the curl of

Eq. (4.22c) makes the equivalence to (4.1b) apparent. As before, Eq. (4.1d) is guaranteed

by the definition of A.

To obtain Gauss’ Law, Eq. (4.1c), one needs to consider the conserved quantities of this

system. Because the parent model equations (4.22) have a Hamiltonian structure given by

(4.21), conserved quantities may be found by searching for observables F which Poisson

commute with the Hamiltonian, i.e. {F ,H} = 0. Thus, H, the total energy of the system,

is conserved. Gauss’ Law is found by realizing that C(r′) = ∇ · [E(r′) − 4πρx(r′)] is

also a conserved quantity. Therefore, Eq. (4.1c) is satisfied for all times if it is satisfied

initially. There is also a family of global Casimir invariants of Poisson bracket (4.21d).

This family is of the form R[f ] =
∫
R(f)dµd3r [134], for arbitrary scalar functions R,

and it is associated with the relabeling symmetry [135].

From canonical momentum to velocity

As a first step in the derivation, we make the standard transformation from canonical mo-

mentum p to velocity v = (vx, vy, vz), by introducing the change of coordinates on the
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distribution function (see Ref. [108] for more details)

f̃(x,v, r) = f(x,v −A(r), r). (4.23)

The new observables are defined in terms of the old observables as F̃ [f̃ ,E,A] = F [f,E,A].

By using the chain rule, we obtain relations between the functional derivatives of the old

observables and those of the new observables. They are

Ff = F̃f̃ , FE = F̃E, FA = F̃A +

∫
f̃∂vF̃f̃dµ.

As for the partial derivatives ∂x and ∂p which arise in the canonical Poisson bracket [·, ·],

they transform according to the chain rule as

∂xFf = ∂xF̃f̃ , ∂pFf = ∂vF̃f̃ . (4.24)

This leads to the particle Hamiltonian and bracket

HP[f ] =

∫
ρ f

[
|v|2

2
+ V (x)

]
dµd3r, (4.25a)

{F ,G} =

∫ {
ρ−1

∫
f [Ff ,Gf ] dµ+ 4π (FE · GA −FA · GE)

+ 4π

∫
f (FE · ∂vGf − ∂vFf · GE) dµ

}
d3r, (4.25b)

where the tildes have been neglected for notational simplicity and the canonical bracket

[·, ·] is taken with respect to (x,v). Meanwhile, HEM remains as Eq. (4.21c). Note that,

now, dµ = d3xd3v. We also note that for bracket (4.25b), the family of Casimirs R

becomes slightly restricted to only allow scalar functions R that satisfy R(0) = 0. This

family of Casimirs persists in this form for all of the reduced models which follow. So far,

no approximations have been made.

We observe that the only change going from bracket (4.21d) to (4.25b) is the addition
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of the electric field-electron velocity coupling term. However, when performing the analog

of the change of coordinates Eq. (4.23) for the Vlasov-Maxwell system, an additional term

coupling the magnetic field to the electron velocity is generated due to the fact that A

depends explicitly on x [108]. It is absent here because magnetic effects are neglected in

the dipole approximation, i.e. in Eq. (4.23), A does not depend on x. This is just as well,

for in the Vlasov-Maxwell system, when one additionally changes variables from A to the

magnetic field B, this leads to a bracket which only satisfies the Jacobi identity under the

condition ∇ · B = 0 [95]. On the other hand, the bracket of Eq. (4.25b) and its analog

in the Vlasov-Maxwell case satisfy the Jacobi identity everywhere in phase space. While

this obstruction to the Jacobi identity when the variable B is used can be removed using

projectors [136], we would not need to resort to this here even if we switched from A to

B as the dynamical variable, because that bracket would still satisfy the Jacobi identity. A

proof of this fact is given in App. C, where the Jacobi identity for bracket (4.25b) is also

proved as a by-product.

Plane-wave fields (HP 1-4, HF 1)

Next, we implement hypotheses HF 1 and HP 4, that is, we restrict the fields’ macroscopic

spatial dependence to be on z only. We assume

ρ = ρ(z),

f = f(x,v, z),

E = E(z),

A = A⊥(z).

Here, we have also assumed that Az = 0 merely for convenience, since it will no longer

appear in the Hamiltonian due to HF 1. Thus, we may consider restricting our model to the

subset of observables F [f,E,A⊥] which do not depend on Az. This subset of observables
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forms a Poisson subalgebra of the algebra of observables under the bracket (4.25b). That

is, for two observables F and G which do not depend on Az, {F ,G} is also an observable

which does not depend on Az. As such, we are able to restrict our analysis to this subalge-

bra, meaning we are free to neglect the functional derivatives with respect to Az in bracket

(4.25b). The electromagnetic Hamiltonian and bracket become

HEM[E,A⊥] =
1

8π

∫ (
|E|2 + c2|∂zA⊥|2

)
dz, (4.27a)

{F ,G} =

∫ {
ρ−1

∫
f [Ff ,Gf ] dµ+ 4π (FE · GA⊥ −FA⊥ · GE)

+ 4π

∫
f (FE · ∂vGf − ∂vFf · GE) dµ

}
dz, (4.27b)

while the particle Hamiltonian is that of Eq. (4.25a) with d3r replaced with dz. The equa-

tions of motion at this stage become

ḟ = −v · ∇xf + (∇xV + E) · ∂vf, (4.28a)

Ė = −c2∂2zA⊥ + 4πρv, (4.28b)

Ȧ⊥ = −E⊥, (4.28c)

while the conserved quantity associated with C becomes C(z′) = ∂z[Ez(z
′) − 4πρze(z

′)].

For this system, it turns out that C is conserved because its primitive, C̃(z′) = Ez(z
′) −

4πρze(z
′) is a Casimir invariant of bracket (4.27b). Thus, the longitudinal electric field

is simply obtained from the longitudinal component of the microscopic dipole moment.

An additional global pair of conserved quantities is created by HP 4 and HF 1, given by

Q⊥ =
∫

(E⊥ − 4πρx⊥)dz.

Transverse, linearly-polarized fields (HP 1-4 and HF 1-3)

To implement HP 2, i.e. the assumption that Ez is negligible, we drop the E2
z term from

the Hamiltonian. Thus, H no longer depends on Ez, and we may consider restricting our
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model to the subset of observables F [f,E⊥,A⊥] which do not depend on Ez. This subset

of observables forms a Poisson subalgebra of the algebra of observables under bracket

(4.27b). That is, for two observables F and G which do not depend on Ez, {F ,G} is also

an observable which does not depend on Ez. As such, we are able to restrict our analysis

to this subalgebra, meaning we are free to neglect the functional derivatives with respect

to Ez in bracket (4.27b). In effect, the new bracket is (4.27b) with E replaced by E⊥.

Henceforth, we will also invoke hypothesis HF 3, so we shall drop the Ey and Ay terms

from the Hamiltonian. They may also be removed from the bracket with a subalgebra

argument. The electromagnetic Hamiltonian and bracket for the system under hypotheses

HP 1-4 and HF 1-3 become

HEM[E,A] =
1

8π

∫ [
E2 + c2(∂zA)2

]
dz, (4.29a)

{F ,G} =

∫ {
ρ−1

∫
f [Ff ,Gf ] dµ+ 4π (FEGA −FAGE)

+ 4π

∫
f (FE∂vxGf − ∂vxFfGE) dµ

}
dz, (4.29b)

where we have dropped the x subscripts on the electromagnetic fields and HP remains

unchanged. Now, the equations of motion are

ḟ = −v · ∇xf + (∇xV + Ex̂) · ∂vf, (4.30a)

Ė = −c2∂2zA+ 4πρvx, (4.30b)

Ȧ = −E. (4.30c)

Forward- and backward- propagating waves

Before implementing hypothesis HF 4, we perform a reduction on the field variables which

elucidates the natural separation of the electromagnetic field into a forward- and backward-
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propagating wave. The reduction is given by

α =
1

2
(E + c∂zA) , (4.31a)

β =
1

2
(E − c∂zA) , (4.31b)

where α is the forward-propagating wave and β is the backward-propagating wave. The

electric field is simply expressed in these reduced variables as E = α + β. The functional

derivatives appearing in bracket (4.29b) are obtained in terms of the new variables using

the chain rule:

FE =
1

2

(
F̃α + F̃β

)
,

FA = − c
2

(
∂zF̃α − ∂zF̃β

)
.

The electromagnetic Hamiltonian and bracket become

HEM[α, β] =
1

4π

∫ [
α2 + β2

]
dz, (4.33a)

{F ,G} =

∫ {
ρ−1

∫
f [Ff ,Gf ] dµ− 2πc (Fα∂zGα −Fβ∂zGβ)

+ 2π

∫
f (Fα∂vxGf − ∂vxFfGα + Fβ∂vxGf − ∂vxFfGβ) dµ

}
dz, (4.33b)

whileHP is unaffected. In these coordinates, the equations of motion are

ḟ = −v · ∇xf + [∇xV + (α + β)x̂] · ∂vf, (4.34a)

α̇ = −c∂zα + 2πρvx, (4.34b)

β̇ = c∂zβ + 2πρvx. (4.34c)

From these equations, it is clear that α is the forward-propagating part of the electromag-

netic field and β is the backward-propagating part. Indeed, in vacuum (ρ = 0), the solution
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of Eq. (4.34b) would be α(z, t) = α0(z − ct), where α(z, 0) = α0(z), and the solution of

equation Eq. (4.34c) would be β(z, t) = β0(z + ct), where β(z, 0) = β0(z).

Equations (4.31) do not constitute a change of variables because it is not possible to

determine A uniquely from α and β; it is only determined up to a constant. This constant

has no physical significance because Hamiltonian (4.29a) only depends on ∂zA. In fact, it is

a manifestation of the gauge freedom inherent to the potential description of the magnetic

field. Due to the reduction to α and β, which eliminates the remaining gauge freedom,

two global Casimir invariants of bracket (4.33b) are created. They are related to Q⊥, a

conserved quantity of the previous system, and are given by

Qα =

∫
(α− 2πρxe)dz, (4.35a)

Qβ =

∫
(β − 2πρxe)dz. (4.35b)

By direct calculation, it is possible to verify that bracket (4.33b) satisfies the Jacobi identity,

so it is a genuine Poisson bracket and this reduction has preserved the Hamiltonian structure

of the previous model.

Unidirectional approximation (HP 1-4 and HF 1-4)

Having clearly separated the forward- and backward- propagating parts of the electromag-

netic field, it becomes straightforward to make the unidirectional approximation and re-

move the backward-propagating part (HF 4). If β is assumed to be small, then the β2 term

may be neglected from Hamiltonian (4.33a). Then, the Hamiltonian no longer depends on

β, and it happens that observables F [f, α] which do not depend on β form a Poisson subal-

gebra under bracket (4.33b). This leaves the electromagnetic Hamiltonian and bracket for
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the system incorporating hypotheses HP 1-4 and HF 1-4:

HEM[α] =

∫
α2

4π
dz, (4.36a)

{F ,G} =

∫ {
ρ−1

∫
f [Ff ,Gf ] dµ− 2πcFα∂zGα

+ 2π

∫
f (Fα∂vxGf − ∂vxFfGα) dµ

}
dz. (4.36b)

The equations of motion are Eqs. (4.34a) and (4.34b), with β = 0.

Now, we are able to justify that neglecting backward-propagating waves is equivalent to

assuming λ� Lξ, which is used in Sec. 4.2.1 to implement HF 4. In the unidirectional ap-

proximation, the electric field becomes E = α. Thus, Eq. (4.34b) is the evolution equation

for the electric field of the laser. Comparing this equation to the corresponding one from

the Lagrangian derivation, Eq. (4.18b), we find that they are completely equivalent. The

equivalence may be seen either by moving Eq. (4.18b) back to the rest frame, or by moving

Eq. (4.34b) to the moving frame [E(ξ, τ) = α(ξ, τ + ξ/c)] and recalling that E = −Ȧ.

Each of these equations is obtained under seemingly unrelated hypotheses: that β is neg-

ligible for Eq. (4.34b), versus that λ � Lξ for Eq. (4.18b). Because the field evolution

equations resulting from each hypothesis are equivalent, we conclude that the hypotheses

are in fact equivalent. Therefore, the unidirectional approximation is the same as assuming

the laser field evolves over large length scales compared to the incident laser wavelength.

One-dimensional electron dynamics (HP 1-5 and HF 1-4)

As in the Lagrangian case, a reduced electron phase space model (HP 5) is straightforward

to implement. One simply considers a distribution function on a lower-dimensional phase

space. For example, for one-dimensional electron motion, one assumes f = f(xe, vx, z),

with the obvious modifications to Eqs. (4.36).
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Focusing effects

For incorporating focusing effects, the procedure is also similar to the Lagrangian case.

The dynamical field α is considered to be the radiation generated solely by the particles.

Meanwhile, the incident laser radiation is taken to be a given external, time-dependent field

E0(z, t). Then, one only needs to modify the particle Hamiltonian (4.25a) such that it reads

HP[f, t] =

∫
ρ f

[
|v|2

2
+ V (x) + xeE0(z, t)

]
dµdz, (4.37)

while HEM remains Eq. (4.36a) and the Poisson bracket remains Eq. (4.36b). Note that

Hamiltonian (4.37) is time-dependent, so we must expand our set of observables to allow

observables of the type F [f, α, t]. Further, we must redefine the evolution law as Ḟ =

{F ,H}+ ∂tF . Consequently, total HamiltonianH = HP +HEM is no longer a conserved

quantity. However, Qα remains a conserved quantity (because ∂tQα = 0), and it may be

restored to the status of Casimir invariant by autonomizing the system and extending the

Poisson bracket appropriately. We remark that focusing effects may also be incorporated

in this way to each of the previous reduced models in the hierarchy by adding the focusing

field to the model’s particle Hamiltonian (and using the corresponding bracket). Therefore,

Qβ and C̃(z′) are also conserved in the presence of a time-dependent external field.

4.3 Quantum reduced models

Each of the reduced models derived in the previous section has a quantum analog. These

models may be found by sequentially applying the assumptions of Table 4.1 to the parent

quantum model, Eqs. (4.1) and (4.3), and this may be also accomplished using a variational

formulation. Due to the similarity between the variational formulations of the classical and

quantum models and our focus on reducing the degrees of freedom associated with the

electromagnetic field, the derivation of the quantum models is nearly identical to that of the

classical models. Hence, we give few details on the calculations and focus on the results.

89



4.3.1 Lagrangian formulation

The action for the parent quantum model is given by

A[ψ(x, t; r), ψ∗(x, t; r), ϕ(r, t),A(r, t)] =

∫
(LP + LEM)dt.

The electron displacement field x(r, t; x0,v0) is replaced by the wave function ψ and its

complex conjugate, ψ∗. Here, and in each of the models of the hierarchy, LEM will be the

same as in the corresponding classical model. Meanwhile, for the parent quantum model,

LP is given by

LP = 4π

∫
ρ

{
iψ∗ψ̇ − ψ∗

[
−1

2
∇2

x + V (x)− x · (∇ϕ+ Ȧ)

]
ψ

}
d3xd3r. (4.38)

Recognizing the appearance of the Hamiltonian operator Ĥ = −∇2
x/2 + V (x) + E · x in

Eq. (4.38), it is clear that LP has a phase-space Lagrangian form [125]. Imposing Aψ∗ = 0

yields Schrödinger equation (4.3a) (with its complex conjugate for Aψ = 0), while setting

the variations with respect to the potentials to zero yields

− (∇2ϕ+∇ · Ȧ) = 4π∇ ·
(
ρ

∫
xψ∗ψ d3x

)
, (4.39a)

− (∇ϕ̇+ Ä) = c2∇× (∇×A) + 4πρ ∂t

(∫
xψ∗ψ d3x

)
. (4.39b)

The integrals on the right-hand sides of Eqs. (4.39) are clearly recognized as x, as de-

fined in Eq. (4.3b). With this and the definition of the potentials in mind, we confirm the

correspondence with Eqs. (4.1).

The first model in the hierarchy is obtained by applying hypotheses HP 4 and HF 1.

These hypotheses are summed up by Eqs. (4.8), with Eq. (4.8b) replaced by

ψ = ψ(x, t; z).
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The particle Lagrangian becomes

LP = 4π

∫
ρ

{
iψ∗ψ̇ − ψ∗

[
−1

2
∇2

x + V (x)− x · (∂zϕẑ + Ȧ⊥)

]
ψ

}
d3xdz,

and the Schrödinger equation becomes

iψ̇ = −1

2
∇2

xψ +
[
V (x)− ∂zϕ(z, t)ze − Ȧ⊥(z, t) · x⊥

]
ψ.

Meanwhile, the field equations remain Eqs. (4.10b) and (4.10c), with the ensemble averages

of the electron positions computed using the corresponding quantum expectation values. In

general, the field equations at each level of the hierarchy will be the same in the quantum

case as in the classical case.

Next, we implement hypothesis HF 2. The particle Lagrangian is

LP = 4π

∫
ρ

{
iψ∗ψ̇ − ψ∗

[
−1

2
∇2

x + V (x)− x⊥ · Ȧ⊥
]
ψ

}
d3xdz.

When also making assumption HF 3 (Ay = 0), the Schrödinger equation becomes

iψ̇ = −1

2
∇2

xψ +
[
V (x)− Ȧ(z, t)xe

]
ψ. (4.40)

The corresponding field equation is Eq. (4.12b). Eqs. (4.40) and (4.12b) are equivalent to

the model used in Ref. [137]. Now, we go into the moving frame ξ = z, τ = t− z/c. The

wave function in the moving frame ψ̃ is defined

ψ̃(x, τ ; ξ) = ψ(x, τ + ξ/c; ξ).

As in the classical case, the functional form of LP is unchanged by this transformation. The

moving-frame formulation of this model is employed in Ref. [132]. Finally, hypothesis

HF 4 is implemented only on LEM, just as in the classical model. The resulting model
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corresponds to what is referred to as the reduced model of Ref. [132]. Adding on hypothesis

HP 5 (taking ψ = ψ(xe, τ ; ξ)) leads to the particle Lagrangian

LP = 4π

∫
ρ

{
iψ∗∂τψ − ψ∗

[
−1

2
∂2xe + V (xe)− xe∂τA

]
ψ

}
dxedξ, (4.41)

with the corresponding field Lagrangian (4.17b). This leads to the quantum model equa-

tions that we used in Ref. [91],

i∂τψ = −1

2
∂2xeψ +

[
V (xe) + E(ξ, τ)xe

]
ψ, (4.42a)

∂ξE =
2πρ

c
vx(ξ, τ), (4.42b)

where we have again made the substitution E = −∂τA. Also, in Eq. (4.42b), we have used

Ehrenfest’s theorem, vx = −i
∫
ψ∗∂xeψ dxe = ∂τxe. If desired, focusing effects may be

added by adding the appropriate term to Eq. (4.41), similarly to the classical case.

4.3.2 Hamiltonian formulation

Now we provide the derivation of the quantum reduced model in the Hamiltonian formula-

tion. In this case, observables are functionals

F = F [ψ(x; r), ψ∗(x; r),E(r),A(r)],
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where we omit the implicit time-dependence of the variables. The Hamiltonian and bracket

of the quantum parent model are

H[ψ, ψ∗,E,A] = HP +HEM (4.43a)

HP[ψ, ψ∗,A] =

∫
ρψ∗

[
1

2
(−i∇x + A)2 + V (x)

]
ψ d3xd3r, (4.43b)

{F ,G} =

∫ {
−iρ−1

∫
(FψGψ∗ −Fψ∗Gψ) d3x + 4π (FE · GA −FA · GE)

}
d3r.

(4.43c)

The full HamiltonianH has the same splitting into particle and electromagnetic parts, with

the electromagnetic part given by Eq. (4.21c), as in the classical case. In fact, at every level

of the hierarchy, the electromagnetic Hamiltonian of the quantum model will by identical

to that of the classical model. The particle Hamiltonian Eq. (4.43b) is recognized to be the

expectation value of the Hamiltonian operator Ĥ = (−i∇x + A)2/2 + V (x), integrated

over the macroscopic gas. Thus, the physical meaning of HP—the sum of the energies of

all the atoms—is also the same in both the quantum and classical cases.

The equations of motion are obtained from Ḟ = {F ,H} which, for the wave function,

gives

ψ̇ = −i
[

1

2
(−i∇x + A)2ψ + V (x)ψ

]
, (4.44)

while those of the fields are given by Eqs. (4.22b) and (4.22c), as in the classical case.

Here, the ensemble-averaged canonical momentum is given by p = −i
∫
ψ∗∇xψd3x. This

system also possesses the same conserved quantity C(r′) as in the classical case, with the

ensemble average x computed in the appropriate way. In fact, each of the conserved quan-

tities of the classical hierarchy of reduced models have an analog in the quantum hierarchy

of reduced models. For instance, here also the quantum Hamiltonian Eq. (4.43a) is con-

served. Additionally, instead of the Casimirs R, the quantum system conserves the norms

of the wave functions, N (r′) =
∫
ψ∗(x; r′)ψ(x; r′)d3x (though they are not Casimirs of

bracket (4.43c)).
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Equation (4.44) is equivalent to Eq. (4.3a), which can be seen by making an appropriate

unitary transformation on ψ. This transformation is referred to as going from the velocity

gauge to the length gauge in the quantum description [96], and it is the analog of the change

from canonical momentum to velocity in the classical derivation (Eq. (4.23)). The change

of variables is given by

ψ̃ = exp[ix ·A]ψ, (4.45)

with the corresponding equation for ψ∗. Using the chain rule, the functional derivatives

transform as

Fψ = exp[ix ·A]F̃ψ̃, (4.46a)

Fψ∗ = exp[−ix ·A]F̃ψ̃∗ , (4.46b)

FA = ixψ̃F̃ψ̃ − ixψ̃
∗Fψ̃∗ , (4.46c)

FE = F̃E. (4.46d)

Substituting Eqs. (4.45) and (4.46) into Hamiltonian (4.43b) and bracket (4.43c), respec-

tively, yields

HP[ψ, ψ∗] =

∫
ρψ∗

[
−1

2
∇2

x + V (x)

]
ψ d3xd3r, (4.47a)

{F ,G} =

∫ {
− iρ−1

∫
(FψGψ∗ −Fψ∗Gψ) d3x + 4π (FE · GA −FA · GE)

+ 4πi

∫
[ψ (FEGψ −FψGE)− ψ∗ (FEGψ∗ −Fψ∗GE)] · x d3x

}
d3r, (4.47b)

where the tildes have been removed. Now, computing the equation of motion for ψ, one

obtains Eq. (4.3a).

Deriving the hierarchy of quantum models is straightforward because, as mentioned

previously, HEM is always the same as in the classical case. Furthermore, since only

HEM and the Poisson bracket are modified in deriving the classical reduced models (see

94



Sec. 4.2.2), the only new information here is the relevant Poisson bracket for each quan-

tum model. Meanwhile, HP is essentially always given by Eq. (4.47a). The first quantum

model in the hierarchy, taking into account hypotheses HP 1-4 and HF 1, has the following

Poisson bracket:

{F ,G} =

∫ {
− iρ−1

∫
(FψGψ∗ −Fψ∗Gψ) d3x + 4π (FE · GA⊥ −FA⊥ · GE)

+ 4πi

∫
[ψ (FEGψ −FψGE)− ψ∗ (FEGψ∗ −Fψ∗GE)] · x d3x

}
dz. (4.48)

Like in the classical case, this bracket has C̃ as a Casimir invariant and Q⊥ as a conserved

quantity. The corresponding Schrödinger equation is unchanged from the parent model,

while the field equations are given by Eqs. (4.28b) and (4.28c). Note that, here, the def-

inition of v is the same as the definition of p in the quantum case given previously. The

second quantum model, incorporating also HF 2, has the same bracket with E replaced by

E⊥.

Adding on HF 3, the bracket is simplified to

{F ,G} =

∫ {
− iρ−1

∫
(FψGψ∗ −Fψ∗Gψ) d3x + 4π (FEGA −FAGE)

+ 4πi

∫
[ψ (FEGψ −FψGE)− ψ∗ (FEGψ∗ −Fψ∗GE)]xe d3x

}
dz. (4.49)

Performing reduction (4.31) on the field variables, the bracket becomes

{F ,G} =

∫ {
− iρ−1

∫
(FψGψ∗ −Fψ∗Gψ) d3x− 2πc (Fα∂zGα −Fβ∂zGβ)

+ 2πi

∫
[ψ (FαGψ −FψGα)− ψ∗ (FαGψ∗ −Fψ∗Gα)

+ ψ (FβGψ −FψGβ)− ψ∗ (FβGψ∗ −Fψ∗Gβ)]xe d3x

}
dz. (4.50)

Again, the Casimirs (4.35) are created by the reduction. As in the classical case, imple-

menting HF 4 consists of removing the terms with functional derivatives with respect to β
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from bracket (4.50). Finally, hypothesis HP 5 is implemented by taking ψ = ψ(xe; z). For

reference, the Hamiltonian and bracket of the model taking into account HP 1-5 and HF

1-4 are

HP[ψ, ψ∗] =

∫
ρψ∗

[
−1

2
∂2xe + V (xe)

]
ψ dxedz, (4.51a)

{F ,G} =

∫ {
− iρ−1

∫
(FψGψ∗ −Fψ∗Gψ) dxe − 2πcFα∂zGα

+ 2πi

∫
[ψ (FαGψ −FψGα)− ψ∗ (FαGψ∗ −Fψ∗Gα)]xe dxe

}
dz, (4.51b)

withHEM given by Eq. (4.36a). The equations of motion stemming from this Hamiltonian

system are equivalent to Eqs. (4.42). Focusing effects may be incorporated by adding

E0(z, t)xe to the Hamiltonian operator in Eq. (4.51a).

4.4 Towards variational integrators for intense laser pulse propagation

In this section, we consider some elements of variational schemes for the numerical solu-

tion of the model equations derived in this chapter. We restrict our attention to the classical

model with one-dimensional atoms and plane-wave fields. For the numerical integration

of this model, the fields f(xe, vx, z), α(z) and β(z) must be discretized in space. If we

perform the spatial discretization at the level of the Hamiltonian and Poisson bracket, we

obtain a finite system of Hamiltonian ODEs that inherits the variational structure of the

parent model. From this point, one could then endeavor to construct a variational time-

integrator specific to this system using a temporal discretization of the Hamiltonian and

bracket, though we will not consider this here. We focus on the spatial discretization of the

field-part of the equations, and refer to [110] for the spatial and phase-space discretization

of the particle part of the equations.
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4.4.1 Fourier basis for forward and backward propagating waves

Here, the objective is to discretize the field part of Eqs. (4.34). One possibility is to use a

Fourier basis. We make a coordinate transformation from the radiated fields (α(z), β(z))

to their Fourier modes ({αk}, {βk}), defined as follows:

αk =
1

L

∫
α(z) exp

[
−i
(

2πk

L

)
z

]
dz (4.52a)

βk =
1

L

∫
β(z) exp

[
−i
(

2πk

L

)
z

]
dz, (4.52b)

where L is the length of the domain we intend to simulate and k takes integer values. The

inverse Fourier transform gives the fields as sum of their Fourier components

α(z) =
∞∑

k=−∞

αk exp

[
i

(
2πk

L

)
z

]
, β(z) =

∞∑
k=−∞

βk exp

[
i

(
2πk

L

)
z

]
. (4.53)

Now, we must express Hamiltonian (4.33a) and bracket (4.33b) in terms of the new func-

tionals F̃ [f, {αk}, {βk}] = F [f, α, β]. With the above relations and the definition of the

functional derivative one can show that

Fα =
1

L

∞∑
k=−∞

∂αk
F̃ exp

[
−i
(

2πk

L

)
z

]
, (4.54)

and similarly for Fβ . Substituting (4.54) into Eqs. (4.33) and using the orthogonality rela-

tion for Fourier modes,

1

L

∫
exp

[
i

(
2π

L

)
(k + k′)z

]
dz = δk,−k′ , (4.55)
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we obtain

HEM[{αk}, {βk}] =
L

4π

∞∑
k=−∞

(αkα−k + βkβ−k) , (4.56a)

{F ,G} =

∫
ρ−1f [Ff ,Gf ] dµdz − 4π2ci

L2

∞∑
k=−∞

[
k
(
∂αk
F∂α−k

G − ∂βkF∂β−k
G
)]

+
2π

L

∞∑
k=−∞

∫
f exp

[
−i
(

2πk

L

)
z

](
∂αk
F∂vxGf − ∂vxFf∂αk

G

+ ∂βkF∂vxGf − ∂vxFf∂βkG
)

dµdz. (4.56b)

In terms of these new coordinates, the Casimirs Qα and Qβ become

Qα = Lα0 − 2π

∫
ρxedz, (4.57a)

Qβ = Lβ0 − 2π

∫
ρxedz. (4.57b)

From here, obtaining a finite number of degrees-of-freedom for the wave variables is

straightforward. One may simply select a maximum mode kmax, and truncate all modes

such that |k| > kmax. The observables F [f, {αk}|k|≤kmax , {βk}|k|≤kmax ] form a Poisson

subalgebra of the observables F [f, {αk}, {βk}]. Therefore, as long as one truncates both

Hamiltonian (4.56a) and the bracket (4.56b), the truncated system preserves the Hamilto-

nian structure.

4.4.2 Hamiltonian formulation for the moving-frame

Equations (4.56) are necessary to consider backward-propagating waves in the lab frame,

but may be reduced even further for the study of unidirectional propagation in the moving

frame. As we showed in Sec. 4.2.2, removing backward-propagating waves is as simple

as removing the β terms from the Hamiltonian and bracket, since the remaining variables

form a Poisson subalgebra. However, an even greater simplification from a practical point

of view is going into the moving frame. The resulting equations (4.19) require much less
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computational effort to solve than Eqs. (4.34a) and (4.34b) in the lab frame because the

former only require the solution of the Liouville equation at a single ξ at a time, while the

latter require it to be solved at every z simultaneously for the entire simulation. While we

provided a Lagrangian formulation for the moving-frame equations, it is not obvious how

to obtain the Hamiltonian formulation. Namely, it is not clear how to translate the key step

in the Lagrangian formulation—going from A(z, t) to Ã(ξ, τ)—to the Hamiltonian formu-

lation. Even by extending the phase space of the Hamiltonian system to include a time

variable (and its canonically-conjugate, energy-like variable), making the transformation

τ = t− z/c does not make sense, because z is a label for the field variables, not a dynam-

ical variable. Here, we illustrate another approach towards a Hamiltonian formulation of

the moving-frame equations, although the end result is not exactly equivalent to Eqs. (4.19)

and not as useful in practice.

Our starting point is the Fourier-decomposed electromagnetic Hamiltonian and bracket

only considering the forward-propagating waves, for simplicity, with phase space extended

to contain the variables (τ, h). τ is equivalent to the time variable and h is the energy-like

variable canonically conjugate to τ . That is, we have

HEM[{αk}, τ, h] =
L

4π

∞∑
k=−∞

αkα−k + h, (4.58a)

{F ,G} =

∫
ρ−1f [Ff ,Gf ] dµdz − 2πi

L

∞∑
k=−∞

ωk∂αk
F∂α−k

G + ∂τF∂hG − ∂hF∂τG

+
2π

L

∞∑
k=−∞

∫
f exp

[
−iωkz

c

](
∂αk
F∂vxGf − ∂vxFf∂αk

G
)

dµdz, (4.58b)

where we have introduced the notation ωk ≡ 2πck/L. Note that, because this Hamiltonian

has no τ dependence, h is a conserved quantity. First, it is useful to make a time-dependent

coordinate transformation on the αk variables which accounts for their trivial time depen-

dence due to wave propagation. This will allow us to express the electric field as a function
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of the variable ζ = z − ct as opposed to z. The transformation is specified by

α̃k = αke
iωkτ for k 6= 0, (4.59a)

h̃ = h+
L

4π

∑
k 6=0

αkα−k, (4.59b)

where we see h̃ contains the energy of the forward propagating waves. This leads us to the

following Hamiltonian

HEM[{αk}, τ, h] =
L

4π
α2
0 + h, (4.60)

and bracket

{F ,G} =

∫
ρ−1f [Ff ,Gf ] dµdz + ∂τF∂hG − ∂hF∂τG −

2πi

L

∞∑
k=−∞

ωk∂αk
F∂α−k

G

+
2π

L

∞∑
k=−∞

∫
f exp

[
−iωkζ

c

](
∂αk
F∂vxGf − ∂vxFf∂αk

G
)

dµdz

+

∫
f (∂hF∂vxGf − ∂vxFf∂hG) (αmov(z, τ)− α0) dµdz, (4.61)

where we have omitted the tildes. The bracket differs from bracket (4.58b) on the second

line, where the electron location z has been replaced by ζ ≡ z − cτ , and additionally

contains the last line, where the field in the moving frame is

αmov(z, τ) =
∞∑

k=−∞

αk exp

[
iωkζ

c

]
. (4.62)

Additionally, because in the previous system (Eqs. (4.58)) we had h as a conserved quan-

tity, transformations (4.59) imply that in this system, we have a conserved quantity Qh

given by

Qh = h− L

4π

∑
k 6=0

αkα−k. (4.63)

This is readily verified by using Eqs. (4.60) and (4.61) and checking that {Q,H} = 0.
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Indeed, this is just a restatement of the fact that h is the energy of the forward propagating

waves.

At present, the variables {αk} describe the shape of the field on the domain of length L.

In principle, L is infinite: electromagnetic waves can propagate over unbounded domains.

In practice, i.e. for numerical simulations, L is finite and must be large enough to contain

the entire gas. Still, we may only be interested in the field profile over an even smaller

domain of length L0, co-moving with the incident laser pulse. Thus, we introduce a new

set of variables, {α̃m} for describing the shape of the fields on a domain of reduced finite

length L0. Henceforth, we will retain the tildes in order to refer to the Fourier modes on

the reduced domain. Accordingly, the possible wave vectors for this domain size have the

form (2π/L0)m, for integer m. We establish the relationship between the tilde amplitudes

and the old amplitudes by imposing

αmov(z, τ) =
∞∑

k=−∞

αk exp

[
iωkζ

c

]
= ΠL0(ζ)

∞∑
m=−∞

α̃m exp

[
iωmζ

c

]
(4.64)

ΠL0(ζ) is the gate function, which we define using Heaviside step functions Θ(ζ) as

ΠL0(ζ) = Θ(ζ + L0)−Θ(ζ) =


0 if ζ < −L0

1 if − L0 < ζ < 0

0 if ζ > 0

(4.65)

In what follows, j and k will always refer to Fourier modes on the domain of length L,

while m and n will be refer to Fourier modes on the domain of length L0. Hence, when we

write ωm, we mean ωm ≡ 2πcm/L0.

We may obtain expressions of the new coordinates in terms of the old coordinates by

carrying out integrations of both sides of Eq. (4.64) by L−10

∫ 0

−L0
dζ exp [−iωnζ/c]. By

Fourier orthogonality, this isolates a single new variable on the right hand side correspond-

ing to mode n, which yields an equation for each new variable in terms of the old variables.
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These equations are

α̃0 = α0 −
ic

L0

∑
k 6=0

1− exp [−iωkL0/c]

ωk
αk for n = 0, otherwise, (4.66a)

α̃n = − ic
L0

∑
k 6=0

1− exp [−iωkL0/c]

ωk − ωn
αk. (4.66b)

Likewise, we may obtain expressions of the old coordinates in terms of the new coordinates

by integrating both sides of Eq. (4.64) by L−1
∫ L−L0

−L0
dζ exp [−iωjζ/c]. The expressions are

α0 =
L0

L
α̃0 for j = 0, otherwise, (4.67a)

αj =
ic(1− exp[iωjL0/c])

L

∞∑
m=−∞

α̃m
ωj − ωm

. (4.67b)

Note that we have taken ζ ∈ [−L0, L− L0] for the original domain.

We remark that, although we can write both sets of coordinates in terms of the other,

this is not actually an invertible transformation. Obviously, we cannot describe a field

of arbitrary shape on the domain of length L, such as the one on the left-hand side of

Eq. (4.64), using only the variables {α̃m}. Eq. (4.64) is like a projection of a vector in a

vector space to a vector subspace. We project the electric field on the full domain of length

L, described by the set of variables {αk}, to the part of the electric field on the subdomain of

length L0, described by another set of variables {α̃m}. It just so happens that both of these

sets are infinite, so the dimensional reduction is not apparent from counting the number

of variables as it would be for a projection in the finite-dimensional case. However, the

transformation to {α̃m} is indeed a dimensional reduction, and like a projection in the

finite-dimensional case, this transformation is not invertible.

Now that we have the new variables expressed as functions of the old variables, we may

begin compute the new Poisson bracket by computing the Poisson matrix between the new

variables. Using Eqs. (4.66) and the relevant nonzero elements of the old Poisson matrix,
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given by

{αk, αj} =
2πiωj
L

δ−k,j (4.68a)

{αk, f} = −2π

L
exp[−iωkζ/c]∂vxf (4.68b)

we obtain

{α̃0, f} = −2π∂vxf

L

(
1− ic

L0L

∑
k 6=0

(1− exp [−iωkL0/c])

ωk
exp[−iωkζ/c]

)
(4.69a)

{α̃n, f} =
2πic∂vxf

LL0

∑
k 6=0

(1− exp [−iωkL0/c])

ωk − ωn
exp[−iωkζ/c] (4.69b)

{α̃0, α̃n} = −8πic2

LL2
0

∑
k 6=0

sin2(ωkL0

2c
)

(ωk + ωn)
(4.69c)

{α̃m, α̃n} = −8πic2

LL2
0

∑
k 6=0

ωk sin2(ωkL0

2c
)

(ωk − ωm)(ωk + ωn)
(4.69d)

First, we focus on Eqs. (4.69a) and (4.69b). These brackets may be identified with

the Fourier representations of two particular functions of ζ on the domain [−L0, L − L0].

Specifically, one can show that

ΠL0(ζ) =
1

L

(
L0 − ic

∑
k 6=0

(1− exp[−iωkL0/c])

ωk
exp[−iωkζ/c]

)
, (4.70a)

ΠL0(ζ) exp[−iωmζ/c] = −ic
L

∑
k 6=0

(1− exp[−iωkL0/c])

ωk − ωm
exp[−iωkζ/c]. (4.70b)

Substituting Eqs. (4.70) into brackets (4.69a) and (4.69b) brings them to the following

transparent form:

{α̃0, f} = −2π∂vxf

L0

ΠL0(ζ), (4.71a)

{α̃n, f} = −2π∂vxf

L0

ΠL0(ζ) exp[−iωnζ/c]. (4.71b)
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Meanwhile, the sums in Eqs. (4.69c) and (4.69d) may be evaluated analytically in the

limit L→∞. Here we sketch the procedure to evaluate the sums, while additional details

are in App. D. To proceed, we define ∆ = L0/L. Taking Eq. (4.69d) as an example, we

factor out 2πc/L0 from the ω variables and multiply by ∆/∆, yielding

{α̃m, α̃n} = −4ic

L2
0

∞∑
k=−∞

∆k sin2 (π∆k)

(∆k −m)(∆k + n)
∆ (4.72)

We are able to include k = 0 term in the sum above which is not present in Eq. (4.69d),

because this term is simply zero. Evidently, the sum in Eq. (4.72) is the Riemann sum

approximation of the integral of the expression in the summand. We are interested in the

limit L → ∞, which is equivalent to ∆ → 0 and thus corresponds exactly to integral, that

is,

lim
L→∞
{α̃m, α̃n} = −4ic

L2
0

∫ ∞
−∞

R sin2 (πR)

(R−m)(R + n)
dR. (4.73)

In App. D, we show that

∫ ∞
−∞

R sin2 (πR)

(R−m)(R + n)
dR = −nπ2δ−m,n. (4.74)

Thus, substituting Eq. (4.74) into Eq. (4.73) and reverting back to the frequencies ωm and

ωn, we get

lim
L→∞
{α̃m, α̃n} =

2πiωn
L0

δ−m,n. (4.75)

By following the procedure sketched here and in App. D, we can take the limit L→∞

for Eq. (4.69c) as well, yielding

{α̃0, α̃n} = 0. (4.76)

For brackets (4.71a) and (4.71b), there is no change in the L → ∞ limit. The last step to

writing the full bracket in terms of the new variables is to rewrite the last line of bracket

(4.61) in terms of the new variables. This is straightforward, because we already know
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αmov(z, t) in terms of the new variables is given by the right-hand side of Eq. (4.64), by

construction. On the other hand, α0 is given by Eq. (4.67a), and thus it vanishes in the limit

L→∞. Therefore, the final bracket is given by

{F ,G} =

∫
ρ−1f [Ff ,Gf ] dµdz + ∂τF∂hG − ∂hF∂τG −

2πi

L0

∞∑
m=−∞

ωm∂α̃mF∂α̃−mG

+
2π

L0

∞∑
m=−∞

∫
fΠL0(ζ) exp

[
−iωmζ

c

](
∂α̃mF∂vxGf − ∂vxFf∂α̃mG

)
dµdz

+

∫
f (∂hF∂vxGf − ∂vxFf∂hG) ΠL0(ζ)

∞∑
m=∞

α̃m exp[iωmζ/c]dµdz. (4.77)

and the Hamiltonian is given by

HEM[{α̃m}, τ, h] = h. (4.78)

In this system, a conserved quantity is obtained from Qh by substituting Eq. (4.67b)

into Eq. (4.63), giving

Qh = h− 1

πL

∞∑
m,n=−∞

∑
k 6=0

sin2(ωkL0

2c
)

(ωk − ωm)(ωk + ωn)
α̃mα̃n. (4.79)

By using the same strategy used to evaluate the {α̃m, α̃n} brackets in the L→∞ limit, we

can evaluate the above sum over k as well. This gives

Qh = h− L0

4π

∞∑
m=−∞

α̃mα̃−m. (4.80)

Eq. (4.80) shows that h is now equivalent to the energy of the part of the field in the moving

window. One can confirm that with Hamiltonian (4.78) and bracket (4.77), {Qh,H} = 0

indeed holds.

Lastly, we take the distribution function into the moving frame as well. Recall that the
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particle Hamiltonian is

HP[f ] =

∫
ρ f

[
v2x
2

+ V (xe)

]
dµdz. (4.81)

We make the coordinate transformation

f̃(x, v, ζ) = f(x, v, z) = f(x, v, ζ + cτ). (4.82)

With this change of variables, Hamiltonian (4.81) is essentially unchanged—one simply

makes the substitutions f → f̃ and dz → dζ . To obtain the bracket, we use the chain rule,

which yields

∂τF = ∂τ F̃ + c

∫
F̃f̃∂ζ f̃ , dµdζ. (4.83)

Meanwhile, all the other terms in bracket (4.77) are unchanged. Thus, the new bracket is

{F ,G} =

∫
ρ−1f [Ff ,Gf ] dµdζ + ∂τF∂hG − ∂hF∂τG −

2πi

L0

∞∑
m=−∞

ωm∂α̃mF∂α̃−mG

+
2π

L0

∞∑
m=−∞

∫
fΠL0(ζ) exp

[
−iωmζ

c

](
∂α̃mF∂vxGf − ∂vxFf∂α̃mG

)
dµdζ

+

∫
f (∂hF∂vxGf − ∂vxFf∂hG) ΠL0(ζ)

∞∑
m=∞

α̃m exp[iωmζ/c]dµdζ

+c

∫
f (∂hF∂ζGf − ∂ζFf∂hG) dµdζ. (4.84)

where we have also performed an integration by parts on the last line.

Equations of motion

Now, we have obtained the Hamiltonian and bracket for the propagation of a compactly-

supported laser pulse through a gas in the moving frame. Using Eqs. (4.81), (4.78), and
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(4.84), the equations of motion are

ḟ = −vx∂xef +

(
∂xeV + ΠL0(ζ)

∞∑
m=−∞

α̃m exp[iωmζ/c]

)
∂vxf + c∂ζf, (4.85a)

˙̃αm =
2π

L0

∫
vxρfΠL0(ζ) exp[−iωmζ/c]dµdζ, (4.85b)

τ̇ = 1, (4.85c)

ḣ =

∫
vxρfΠL0(ζ)

∞∑
m=−∞

α̃m exp[iωmζ/c] dµdζ. (4.85d)

Equation (4.85a) is the Liouville equation, with an additional term (the last one) causing the

advection of particles in the −ζ direction. This comes from our moving coordinate frame.

What is notable about the reduction to the domain of length L0 is that, due to the gate

function in Eq. (4.85a), the particles only experience the field for the finite time L0/c during

which they traverse ζ ∈ [−L0, 0], the present location of the pulse. Likewise, it is only the

particles in this region which contribute to the evolution of the field modes (Eq. (4.85b))

and exchange energy with the field (Eq. (4.85d)). Hence, Eqs. (4.85) are an improvement

over Eqs. (4.34a) and (4.34b), because only the particles in the region of interest need to

be accounted for at any given time, rather than those in the entire gas. However, they are

still not as convenient as Eqs. (4.19) (see Sec. 5.3.3 for their discretization). In a nutshell,

this is because the latter only require a representation of the particles at a single z location

at a time, whereas Eqs (4.85) require a representation of the particles over the entire spatial

domain ζ ∈ [−L0, 0] at each time. Therefore, the search for a variational integrator of

these equations might best begin from the action principle with Lagrangians (4.17), which

directly yields the more efficiently-solved Eqs. (4.19).

4.5 Summary

To summarize, we have presented derivations of a hierarchy of reduced classical and quan-

tum models for the propagation of intense laser pulses in atomic gases. Along the way, we
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derived the reduced quantum models used in Refs. [132, 137]. By consistently applying

simplifying hypotheses within a variational formulation, whether Lagrangian or Hamil-

tonian, we have ensured that our reduced models preserve the mathematical structure of

the parent models. Using the Hamiltonian formulation, we were able to easily identify

conserved quantities of both the classical and quantum systems. In particular, the con-

served quantities C̃(z′), Qα, and Qβ are interesting because as Casimir invariants, they are

conserved even in the presence of a time-dependent external field, unlike the Hamiltonian.

Knowledge of these conservation laws can provide a useful benchmark for numerical codes

for solving these model equations. While we focus on first-principles microscopic models

of the atomic response in gases, we anticipate that our methodology can be extended to

employ reduced models of the atomic response (e.g. in terms of a macroscopic polariza-

tion with an explicit nonlinear dependence on the electric field) which are commonly used

in nonlinear optics [123, 130]. Further, variational formulations employing microscopic

models of condensed phase systems should also be possible.
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CHAPTER 5

ANALYSIS OF REDUCED MODELS FOR INTENSE LASER PULSE

PROPAGATION

5.1 Introduction

The propagation of intense, low-frequency laser pulses through gases triggers a variety of

highly nonlinear, nonperturbative phenomena, such as high-harmonic generation (HHG)

[24, 44], terahertz (THz) generation [118, 119], and filamentation [120, 121]. These phe-

nomena intrinsically tie together two disparate length scales: the microscopic scale, de-

fined by the coupling of individual atoms (or molecules) to the electromagnetic field, and

the macroscopic scale, defined by the coupling of the electromagnetic field to the mean po-

larization induced across the entire gas. Further, the self-consistent interaction between the

gas particles and the field plays a paramount role in these processes. In the case of HHG and

THz generation, the observed spectra depend sensitively on which frequencies are phase-

matched over sufficiently long distances as the laser field is reshaped during propagation by

the radiation emitted by ionizing atoms; see [40, 44, 45] for examples in HHG and [138–

140] for examples in THz generation. Meanwhile, the interplay between the radiation of

bounded electrons and that of the tunnel-ionized electrons during propagation is at the heart

of filamentation [120]. Therefore, theoretical descriptions of these phenomena must bridge

the gap between the microscopic electron dynamics and the macroscopic evolution of the

laser field during propagation.

The most accurate description of this system is the Maxwell-Schrödinger model [58,

141]. This a first-principles model consisting of Maxwell’s equations in three-dimensions

for the macroscopic electromagnetic field, with source terms obtained from the microscopic

electronic wave functions of the gas atoms. Due to the vast separation of scales, simula-
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tions of this model under realistic conditions are only feasible using super-computers at

present [58, 141]. Therefore, reduced models are required. The most popular consist of

dimensionally-reduced unidirectional propagation equations for the electomagnetic field

[130], which are typically coupled to models of tunneling ionization [42] and nonlinear po-

larization [123, 142] for the low-frequency part of the atomic response, and a semi-classical

trajectory model for the high-frequency part [44, 55]. Besides missing intrinsically three-

dimensional effects, the approximations on the atomic response in these models can miss

important features of ionization and the generation of THz and low-order harmonic radi-

ation [73, 143], which become particularly important when propagation effects are taken

into account [65, 122].

As an intermediate alternative, dimensionally-reduced propagation models which re-

tain a first-principles description of the atomic response may be employed. For example,

reduced Maxwell-Schrödinger models have been derived, which retain a first-principles

wave-function description of the atomic response and its coupling to the electromagnetic

field [132, 137, 144]. Also, a reduced purely classical model has been considered, where

the wave-function is modeled by a distribution of classical trajectories [48, 128] coupled to

the field [90, 91]. This model combines a trajectory picture [2, 3], heavily relied upon in

control applications [17, 119], with an accurate description of the low-frequency part of the

spectrum that is in agreement with the corresponding quantum model [91]. The reduced di-

mensionality of these models manifestly precludes their use for studying three-dimensional

effects, such as the spatial confinement a laser beam in a filament. At the same time, they

are still versatile enough to provide a rigorous description of other ubiquitous propaga-

tion effects, such as ionization losses, dynamical blueshifting [43, 145], and high-pressure

phase-matching [132], which are of vital importance in cutting-edge experiments [33, 40,

146].

In this chapter, we describe the behavior of some of the first-principles reduced models

derived in Ch. 4. In Sec. 5.2, we specify the models we consider here and the protocol for
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their numerical simulation, as well as the observables used for the analysis of the simula-

tion results. In Sec. 5.3, we report the numerical methods used for the solution of the model

equations. In Sec. 5.4, an analysis of the unidirectional pulse-propagation equation coupled

to one-dimensional model atoms initiated in their ground states is presented, with an em-

phasis on the phenomena of ionization losses and dynamical blueshifting. In Sec. 5.5, we

study the high-harmonic spectra obtained from this model. Lastly, in Sec. 5.6, we report on

results of simulations of some of the higher-dimensional reduced models obtained in Ch. 4.

5.2 Framework for the simulations

5.2.1 Models

The reduced models we consider in this chapter describe the evolution of the electric field

E(z, τ) of a linearly-polarized (in the x direction) laser pulse propagating in the z-direction.

We will consider both one- and two-dimensional models for the motion of the atomic elec-

trons, either moving only in the x direction or moving in the x-y plane, respectively. In

principle, a two-dimensional model of the electron motion should be coupled to a two-

dimensional laser field, i.e. with a y component also. However, for the reduced models

in which the (x, y) dependence of the fields are neglected, an initially linearly-polarized

laser pulse will remain linearly-polarized due to the symmetry (ye, vy) → (−ye,−vy) of

the electron in the combined laser and Coulomb fields. Hence, we are able to ignore the y

component of the laser field.

Unidirectional pulse with one-dimensional atoms

The first model we shall consider is that of a solely-forward propagating laser pulse through

a gas of one-dimensional model atoms. For the classical model, this was derived as Eq. (4.19),

and for the quantum model, this was derived as Eq. (4.42). We employ a coordinate frame

moving at the speed of light c with the incident laser pulse, i.e. τ = t − z/c. In both the
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Figure 5.1: Schematic of the reduced model. The time-dependence of the laser electric
field E(z, τ) evolves as the pulse position advances in z through the gas.

classical and quantum models, the evolution equation for the field is given by

∂zE =
2πρ

c
v(z, τ), (5.1)

where ρ is the number density of the gas, v is the mean dipole velocity of the atoms, and

the x subscript has been omitted. Unless stated otherwise, we assume that ρ is constant,

independent of z. In Eq. (5.1), the evolution parameter is z, and it may be solved as an

initial-value problem with initial condition E(0, τ) = E0(τ). One simply needs to specify

how to compute v at a given z for the electric field at that position, E(z, τ). Unless stated

otherwise, we consider τ in the domain τ ∈ [0, τf ].

In the quantum model, the electron is described by the wave function ψ(x, z, τ), where

we have omitted the “e” subscript on the electron position x. The Schrödinger equation

governing the evolution of ψ and mean dipole velocity are then given by

i∂τψ = [−1

2
∂2x + V (x) + E(z, τ)x]ψ, (5.2a)

v(z, τ) = v0(z)−
∫ τ

0

[
E(z, τ ′) +

∫
∂xV |ψ(x, z, τ ′)|2dx

]
dτ ′, (5.2b)

where x is the electron position relative to the ion and V is the electron-ion interaction

potential, which we take to be the soft-Coulomb potential V (x) = −(x2 + 2)−1/2 [84, 97].
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The initial dipole velocity v0(z) is given by

v0(z) = −i
∫
ψ∗(x, 0; z)∂xψ(x, z, 0)dx.

We compute v in Eq. 5.2b by integrating the dipole acceleration in the given form instead

of computing the dipole velocity directly (as in Eq. (5.2.1)) because it also accounts for the

part of the wave function which has escaped beyond the finite-sized computational domain

used to represent it. This part of the wave function, typically representing ionized electrons

which never return to the core, still contributes to the dipole velocity through the oscillat-

ing motion of these electrons in the laser field. This contribution is accounted for by the

first term of Eq. (5.2b), while the second term accounts for the part of the electron dipole

velocity due to the Coulomb interaction for the part of the wave function that remains on

the computational grid. On the other hand, in the classical model, the dipole velocity is

computed by averaging over an ensemble of electron trajectories with a probability distri-

bution on the phase space f(x, v, z, τ). The Liouville equation governing the evolution of

f and the mean dipole velocity are then given by

∂τf = −v∂xf + [∂xV + E(z, τ)]∂vf, (5.3a)

v(z, τ) =

∫
vf(x, v, z, τ)dxdv. (5.3b)

Thus, to compute v at a given z in the quantum model, Eq. (5.2a) must be integrated

in time, from τ = 0 to τ = τf , with the electric field E(z, τ) at that z and an initial

condition ψ(x, z, 0) = ψ0(x, z). With the solution ψ(x, z, τ) in hand, v may be evaluated

with Eq. (5.2b), and the field equation Eq. (5.1) may be advanced in z. In the classical

model, on the other hand, v is obtained by integrating Eq. (5.2a) from τ = 0 to τ = τf with

initial condition f(x, v, z, τ) = f0(x, v, z) and applying Eq. (5.3b). Neither the Liouville

equation nor the Schrödinger equation have analytical solutions in this case, so we integrate

them numerically using the methods described in Sec. 5.3.
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Unidirectional pulse with two-dimensional atoms

For the propagation of a unidirectional linearly-polarized pulse through a two-dimensional

model atom, the propagation equation becomes

∂zE =
2πρ

c
vx(z, τ), (5.4)

where vx is the x component of the dipole velocity. Here, we only consider the quantum

model, where now the electronic wave function is ψ(x, y, z, τ). Its equation of motion and

the dipole velocity are given by

i∂τψ =

[
−1

2
(∂2x + ∂2y) + V (x, y) + E(z, τ)x

]
ψ, (5.5a)

vx(z, τ) = vx,0(z)−
∫ τ

0

[
E(z, τ ′) +

∫
∂xV |ψ(x, y, z, τ ′)|2dxdy

]
dτ ′, (5.5b)

where now the potential is V (x, y) = −(x2 + y2 + 2)−1/2.

Forward- and backward- propagating waves with one-dimensional atoms

In deriving Eq. (5.1), one of the assumptions invoked in the reduction process is that

backward-propagating waves are negligible. In Sec. 5.6, we provide evidence that this

hypothesis is met by investigating the behavior of a model that does contain backward-

propagating waves. Here, the total electric field becomes E(z, t) = α(z, t)+β(z, t), where

α and β are the forward- and backward- propagating waves, respectively, and we remain in

the lab frame. The Hamiltonian formulation (4.33) provides the most convenient form of

the field propagation equations,

α̇ = −c∂zα + 2πρv, (5.6a)

β̇ = c∂zβ + 2πρv. (5.6b)
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We have neglected the x subscript for the dipole velocity because we shall only consider

one-dimensional atoms here. Further, we shall use the classical model, for which the Liou-

ville equation is

ḟ = −v∂xf + [∂xV + α(z, t) + β(z, t)] ∂vf. (5.7)

5.2.2 Observables

We will assess the behavior of the models by looking at the electric field energy, electron

energy, instantaneous carrier frequency, and high-harmonic spectrum throughout propaga-

tion. Because the field spectrum is typically dominated by a narrow range of frequencies

around the laser fundamental ωL, even after propagation, the field energy and instantaneous

carrier frequency mainly reflect this part of the spectrum. We define the time-averaged field

energy density in the moving frame as

UEM(z) =
1

4πτf

∫ τf

0

E(z, τ)2dτ. (5.8)

In the lab frame, the conservation of energy allows one to relate the instantaneous field

energy to the instantaneous electron energy. This is not possible in the moving frame, but

nevertheless the change in UEM(z) may be related to the change in particle energy using

Eq. (5.1). In particular, multiplying both sides by E yields

∂z

(
E2

4π

)
=
ρ

c
v(z, τ)E(z, τ). (5.9)

This equation provides a local energy conservation law in the moving frame, analogous to

Poynting’s theorem, stating that the change in the field energy density is equal and opposite

to the power−ρvE supplied by the field to the electrons. Integrating Eq. (5.9) over τ yields

∂zUEM =
ρ

cτf

∫ τf

0

v(z, τ)E(z, τ)dτ = − ρ

cτf
∆E(z), (5.10)
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where ∆E(z) ≡ E(z, τf ) − E(z, 0) is the change in mean electron energy between times

τ = 0 and τ = τf for the electrons located at z. For the quantum model, the mean electron

energy E is defined as the expectation value of the electron Hamiltonian operator in the

absence of the electric field,

E(z, τ) =

∫
ψ∗(x, τ ; z)

[
−1

2
∂2x + V (x)

]
ψ(x, z, τ)dx. (5.11)

Meanwhile, in the classical model it is defined as the ensemble-average of the correspond-

ing classical electron energy H0(x, v) = v2

2
+ V (x), i.e.

E(z, τ) =

∫
H0(x, v)f(x, v, z, τ)dxdv. (5.12)

In practice, Eq. (5.11) may be inconvenient to implement, because part of the electronic

wave function typically escapes outside of the finite computational domain on which ψ

is defined due to ionization. Thus, E(z, τf ) does not account for the energy of this part

of the wave function and therefore underestimates the true electron energy. This effect

can be mitigated by choosing large enough computational domains. On the other hand,

this drawback is not present for the implementation of Eq. (5.12) because the numerical

scheme we choose for solving the Liouville equation consists of integrating the electron

trajectories, i.e. the characteristics of Eq. (5.3a) (see Sec. 5.3).

For computing the instantaneous carrier frequency, we use the Wigner-Ville transform

[147] of the electric field

W (τ, ω; z) =
1

π

∫ ∞
−∞
Ê∗(z, τ − τ ′)Ê(z, τ + τ ′)e−2iωτ

′
dτ ′, (5.13)

where the asterisk denotes the complex conjugate and Ê(z, τ) is the analytic representation

of the field E(z, τ). The analytic representation is, roughly speaking, the inverse Fourier
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transform of the positive-frequency part of a function’s Fourier transform, i.e.

Ê(z, τ) =
1

π

∫ ∞
0

Ẽ(z, ω)eiωτdω, where

Ẽ(z, ω) =

∫ ∞
−∞
Ep(z, τ)e−iωτdτ.

Here, Ep refers to the field E after post-processing, which may be necessary to perform a

meaningful Fourier analysis. For instance, post-processing may consist of windowing the

field with the function w(τ), in which case Ep(z, τ) = E(z, τ)w(τ − τc). We specify the

post-processing applied for each example we consider.

The analytic representation, itself complex, is a useful representation of the real field

because it satisfies Ep(z, τ) = Re[Ê(z, τ)]. Thus, it naturally decomposes the field into its

amplitude, |Ê(z, τ)|, and phase, arg[Ê(z, τ)] [147]. The Wigner transform (which uses E

instead of Ê in Eq.(5.13)) has proven effective at analyzing frequency-related propagation

effects [145, 148], and we have found that the Wigner-Ville transform is even better suited

to this task, especially in the case where E contains multiple frequency components. At a

given z, W (τ, ω; z) provides information on the frequency content of E at time τ . When E

consists of multiple frequency components, W (τ, ω; z) will typically contain several peaks

for at a given τ , one for each component. The instantaneous carrier frequency ωc(z, τ)

is defined as the frequency such that W (τ, ωc; z) is the maximum for a finite interval of

frequencies near ωL, the dominant frequency component of the field [148]. Further, we

define the maximum instantaneous carrier frequency as ωmax(z) = maxτ ωc(z, τ).

We assess high harmonic generation using several methods. On the field side, we eval-

uate the field spectrum |Ẽ(z, ω)|2 throughout propagation. Also, to understand the coherent

buildup of radiation in a particular frequency band [ωa, ωb], we track the evolution of the

frequency-filtered analytic field [44], i.e.

Êab(z, τ) =
1

π

∫ ωb

ωa

Ẽ(z, ω)eiωτdω. (5.14)

117



On the particle side, we study the evolution of the spectrogram of the dipole accelera-

tion da(τ) = −∂xV (τ) in the quantum model, which provides information on the time-

frequency properties of the emission [56, 149]. These spectrograms may be related to the

statistics of recollisions in the classical model [91]. We monitor recollisions by computing

a quantity R(κ, τ ; z) that we call the recollision flux. This quantity is a measure of the

probability of a recollision with kinetic energy κ occurring at time τ for the atoms at z, and

is defined

R(κ, τ ; z) =

∫
f(x, v, z, τ)Θ(xc − |x|)Θ(κc − |v2/2− κ|) dxdv, (5.15)

where Θ is the Heaviside step function. We take xc = 5 a.u. and adjust κc based on

the kinetic energy scale of a given simulation. To gain deeper insight into the classical

dynamics, we also visualize f(x, v, z, τ) itself and examine the electron trajectories which

underlie it.

5.3 Numerical methods

5.3.1 Schrödinger equation

The TDSEs (5.2a) and (5.5a) were solved using a second-order operator splitting scheme

[150]. Derivatives of the wave function with respect to the electron position (i.e. for the

application of the momentum and kinetic energy operators) were performed in the Fourier

domain. Absorbing boundary conditions were employed [151], consisting of sending the

wave function smoothly to zero within 32 a.u. of each domain boundary using a cos1/8

function. For the 1D case, the computational domain selected was x ∈ [−1800, 1800] a.u.,

discretized with a spatial step size of ∆x = 5/16 a.u. A fixed time-step of ∆τ = 0.1 a.u.

was used. We verified that for this set of integration parameters, the high-harmonic spec-

trum of a single atom in an external, monochromatic field (the one used as the initial field

in Sec. 5.5.1) was converged. That is, we compared the dipole velocity spectrum with
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these parameters to a spectrum calculated with either (i) a larger domain, (ii) a smaller

∆x, or (iii) a smaller ∆τ , and each of these was indistinguishable from the spectrum with

the above set of parameters. For the 2D case, the computational domain selected was

(x, y) ∈ [−450, 450]× [−300, 300] a.u., discretized with a spatial step size of ∆x = ∆y =

7/16 a.u.A fixed time-step of ∆τ = 0.1 a.u.was used. These parameters were determined

to give an almost-converged spectrum for a single atom in an external field, but they were

used nevertheless because a more accurate calculation would have taken too long.

5.3.2 Liouville equation (unidirectional pulse case)

To solve Liouville Eq. (5.3a), we employ the particle-in-cell (PIC) scheme described in

[110]. In a nutshell, the distribution function f(x, v, z, τ) at a fixed z is discretized at

τ = 0 on a uniform grid in phase space, and subsequently each grid point follows the

characteristics, or particle trajectories, of Eq. (5.3a). More precisely, we represent f by N

particles with trajectories (xj(z, τ), vj(z, τ)), such that

f(x, v, z, τ) =
N∑
j=1

wjδ(x− xj(z, τ))δ(v − vj(z, τ)). (5.16)

The particle trajectories obey the equations of motion of a classical electron in the com-

bined Coulomb and laser fields, i.e.

∂τxj = vj, (5.17a)

∂τvj = −∂xV (xj)− E(z, τ). (5.17b)

These may be derived from the single-particle time-dependent Hamiltonian

H(x, v, z, τ) =
v2

2
+ V (x) + E(z, τ)x, (5.18)
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where x and v are canonically conjugate and z acts as a label. Taking advantage of the fact

that Hamiltonian (5.18) is separable into kinetic and potential energy terms, we compute

the trajectories (xj(z, τ), vj(z, τ)) using a third-order explicit symplectic scheme [100].

We used a fixed time-step of ∆τ = 0.1 a.u., as in the quantum case. This value of τ

allows a point-wise comparison of the electric fields computed in the classical and quan-

tum models, and we verified that the single-atom dipole velocity spectrum for an external

monochromatic field (again, the initial field of Sec. 5.5.1) with this ∆τ is converged.

Because E(z, τ) is computed numerically at every z by solving Eq. (5.1), it is only

known at discrete values of τ . In other words, an explicit expression for E(z, τ) that may

be evaluated at any τ is unavailable. On the other hand, the scheme used for obtaining

(xj(z, τ), vj(z, τ)) requires the evaluation of E(z, τ) at times in between adjacent time

steps. To compute these values, it is ideal to discretize E(z, τ) with the same time steps

as those used in the trajectory calculation, with spacing ∆τ . Then, intermediate values

are obtained by quadratic interpolation of E(z, τ) using the values of E(z, τ) at the nearest

available time steps. That is, when advancing the trajectories from τm to τm + ∆τ , the

requisite intermediate-time values of E are obtained by quadratic interpolation of E(z, τm−

∆τ), E(z, τm), and E(z, τm+∆τ). Quadratic interpolation provides the intermediate values

of E to second-order accuracy in ∆τ , which is sufficiently accurate to retain the third-order

accuracy of the time integration scheme.

In Eq. (5.16), trajectory j’s contribution to f is weighted by wj , which is determined

by the trajectory’s initial condition (xj(z, 0), vj(z, 0)) and the initial distribution function

f0(x, v). N of these initial conditions are selected from a uniform, equally-spaced grid

of points on the (x, v) phase space. The boundaries of this grid are selected such that f0

is sufficiently large (i.e. non-negligble) for points within the boundaries, and the initial

conditions (xj(z, 0), vj(z, 0)) kept are those within the boundaries of the grid and with

f0(xj(z, 0), vj(z, 0)) > 0. Hence, N depends on how many points are contained in the

area of the grid where f0(x, v) > 0. In practice, we estimate the necessary resolution of
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Figure 5.2: Convergence of the classical dipole velocity spectrum with increasing N . A
sin4 window was applied to v(τ) prior to the calculation of the power spectrum. Each curve
corresponds to a different value of N used in the discretization Eq. 5.16 of the distribution
function.

our grid such that the number of grid cells in the nonzero-f0 area is approximately equal

to a target number of trajectories Ngoal. We typically choose a nice, round number for

Ngoal, and this yields an actual number N of trajectories which is close to Ngoal. For

example, the values of N reported in the legend of Fig. 5.2 correspond to Ngoal = 105,

Ngoal = 6 × 105, and Ngoal = 4 × 106, respectively. Finally, the weights are given by

wj = f0(xj(z, 0), vj(z, 0))/N , where N =
∑

j f0(xj(z, 0), vj(z, 0)) is a normalization

constant. Selecting the initial conditions on a uniform grid, rather than performing a Monte-

Carlo simulation, leads the spectrum of the dipole velocity v(z, τ) to converge more quickly

with increasing N [129].

The choice of N determines how many harmonics are accurately resolved by the clas-

sical calculation. In Fig. 5.2, we show classical dipole velocity spectra obtained from the

solution of Eq. (5.3a) with different values of N . The calculation was performed with the

initial electric field E0(τ) and the electron initial conditions f0(x, v) of the scattering ex-

periment (see Sec. 5.5.1). Increasing N is equivalent to increasing the fineness of the grid

from which the particle initial conditions are sampled from, because we make the bound-

aries of the grid independent of N . Naturally, this should improve the representation of
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the distribution function. As a consequence, we see in Fig. 5.2 that more and more har-

monics are converged as N increases. Comparing the spectrum for N = 100465 to the

one with N = 602910, we see that they are in agreement up until about 25ωL, after which

there are some deviations from 25–60ωL and significant deviations for ω > 120ωL. This

indicates that the spectrum with N = 100465 is converged up until about 25ωL. Simi-

larly, the N = 602910 spectrum is seen to be converged up to about 135ωL by comparison

with the N = 4007360 spectrum. Evidently, a very large number of particles is required

to accurately calculate the high harmonics in the classical model, which however are of

very low intensity. Unless stated otherwise, the calculations presented in this chapter em-

ploy Ngoal = 105, which for the scattering-propagation experiment would correspond to

N = 100465.

5.3.3 Unidirectional pulse equation

The numerical methods of the previous sections are used to evaluate v, which is the source

term of the unidirectional pulse-propagation equation (5.1) in the moving frame. Hence,

given E(z, τ), we can calculate v(z, τ) and advance the electric field in space by ∆z to

obtain E(z + ∆z, τ). To do this, we discretize E(z, τ) by Fourier transform, i.e.

Ẽk(z) =
1

τf

∫ τf

0

E(z, τ) exp

[
−i
(

2πk

τf

)
τ

]
dτ. (5.19)

for integer values of k. We take |k| ≤ kmax, where kmax depends on the number of time

steps n = bτf/∆τc used in the time-discretization of Eqs. (5.2a) or (5.3a). It is given by

kmax =


n/2 for n even,

(n− 1)/2 for n odd.
(5.20)
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Applying the Fourier transform to both sides of (5.1), we obtain

∂zẼk =
2πρ

c
ṽk(z) (5.21)

for each k. Hence, we have converted the PDE (5.1) into a finite set of coupled ODEs

(5.21). We solve this system of ODEs using the two-step implicit Adams-Moulton method

in Predict-Evaluate-Correct-Evaluate (PECE) mode [152], which is of third-order accu-

racy in the spatial step ∆z. Justification for the use of this method is provided in the next

subsection. In order to evaluate v(z, τ), one needs the electric field at the discrete time po-

sitions τm = m∆τ , which is obtained directly from the discrete inverse-Fourier transform

of Ẽk(z).

As an aside, we remark that it is important to use local interpolation, such as the

quadratic interpolation described in Sec. 5.3.2, to obtain the values of E(z, τ) in between

time steps, rather than evaluating the discrete inverse-Fourier transform at intermediate

times. That is, one may construct an approximation to E(z, τ) from the finite set Fourier

components of E , as

E(z, τ) ≈
∑

|k|≤kmax

Ẽk(z) exp

[
i

(
2πk

τf

)
τ

]
. (5.22)

In principle, one could then use this approximation to obtain E(z, τ) at arbitrary times,

including the intermediate times required for the integration of Eq. (5.3a). However, in

general, E(z, τ) is not periodic on its domain τ ∈ [0, τf ], and as a result, Eq. (5.22) exhibits

Gibbs oscillations. This leads to incorrect approximations of E(z, τ) at values in between

the time steps, especially near τ = 0 and τ = τf . This issue may be successfully avoided

by using local interpolation of the field.
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Figure 5.3: Comparison of the relative energy error for the propagation simulations
with a third-order Runge-Kutta scheme (RK3) and the two-step Adams-Moulton scheme
(AM2). The scattering-propagation experiment setup was used for the field and par-
ticle initial conditions. Each curve was computed with a different ∆z. Red curves:
∆z = (21/4)λL = 6.33 µm. Cyan curves: ∆z = (21/8)λL = 3.16 µm. Blue curves:
∆z = (21/16)λL = 1.58 µm. For the classical calculation, N ≈ 6 × 105 particles were
used for the solution of the Liouville equation.
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Verification

Here, we present evidence for the accuracy of our numerical computations. In the mov-

ing frame, there are no conserved quantities, but we can build one using Eq. (5.10). We

augment our system of equations (5.21) for the field modes with an equation for a variable

h(z) representing the mean field energy density, satisfying

∂zh =
ρ

cτf

∫ τf

0

v(z, τ)E(z, τ)dτ. (5.23)

Hence, h(z)−UEM(z) should be conserved during propagation, where UEM(z) is computed

using Eq. (5.8). Specifically, the integrand of Eq. (5.8) is discretized at times τm = m∆τ ,

with the values of the field E(z, τm) obtained by discrete inverse-Fourier transform of the

modes {Ẽk}, and it is summed using the trapezoidal rule. The right-hand side of (5.23) is

computed similarly. We take h(0) = UEM(0) and monitor the accuracy of our simulations

through the error |h(z)− UEM(z)|/h(0).

The error for the quantum and classical models is plotted in Fig. 5.3 for simulations in

the scattering-propagation experiment setup (see Sec. 5.5.1) for different values of ∆z. The

values of ∆z are reported in the caption of Fig. 5.3, where λL = 2πc/ωL is the wavelength

of the incident field. We also compare the behavior of a third-order Runge-Kutta method

(RK3) [152] with the two-step Adams-Moulton method (AM2) employed throughout this

chapter. We use the RK3 method here because it is of the same order as the AM2 method.

These plots show that h(z) − UEM(z) is a good indicator for the numerical accuracy of

our computations, in the sense that the error in the conservation of this quantity has the

expected scaling with (∆z)3: when ∆z is divided by 2, the error goes down by a factor

of 8. This scaling is observed in all cases, except the classical RK3 case. In general, the

behavior of the energy error for the AM2 method–a gradual growth at a constant rate–

is more typical than the behavior of the error for the RK3 method, which exhibits some

erratic oscillations. The cause of this behavior for the RK3 method is unclear, and may be
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a sign of stiffness of the model equations. Also, while both methods have a comparable

error for each ∆z, the AM2 method only requires two evaluations of v(z, τ) for each space

step (in PECE mode), compared to three for the RK3 method. Because evaluating v(z, τ)

is the computationally-expensive step of solving the model equations, this is a significant

advantage of AM2. For these reasons, we selected the AM2 method for the integration of

the model equations.

Next, we check the convergence of our calculations for the spectrum of E after propa-

gation to a given z. Figure 5.4 shows the spectra of E(z, τ) at z = 0.5 mm in the quantum

and classical models, with each of the ∆z of Fig. 5.3 used for propagation. In both cal-

culations, we see that the spectra are in good agreement for each ∆z, indicating that this

range of ∆z is small enough to obtain converged results. Furthermore, we see in both

cases that the spectra are indistinguishable up to a particular high frequency, after which

the differences between the spectra with different ∆z are visible. For the quantum case,

this frequency is ω ≈ 170ωL, near the high harmonic cutoff, where the spectrum with

∆z = (21/4)λL (red curve) is seen to depart from the spectra computed with smaller ∆z

(cyan and blue curves). The calculations with ∆z = (21/8)λL and ∆z = (21/16)λL are

indistinguishable from each other, indicating that the quantum calculation has converged

with ∆z = (21/8)λL. Meanwhile for the classical case, ω ≈ 80ωL is the frequency where

the ∆z = (21/4)λL spectrum begins to depart from the other two spectra. Further, the

∆z = (21/8)λL spectrum is only in excellent agreement with the ∆z = (21/16)λL spec-

trum up until ω ≈ 100ωL, after which some small deviations are visible. Thus, the classical

calculation is not completely converged with respect to ∆z for these frequencies. Note that

here, N ≈ 6× 105 particles were used in the classical calculation, indicating that the Liou-

ville equation is converged up to ω ≈ 135ωL, as shown in Fig. 5.2. Thus, while we cannot

draw any conclusions about frequencies greater than 135ωL, we can say that the frequen-

cies from 100–135ωL experience propagation dynamics on scales smaller than than those

resolved by ∆z = (21/8)λL. Nevertheless, the behavior of these high, very low-intensity
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Figure 5.4: Comparison of the electric field spectra after propagation to z = 0.5 mm (using
the two-step Adams-Moulton method). The scattering-propagation experiment setup was
used for the field and particle initial conditions. A sin4 window was applied to E(z, τ)
prior to computation of the spectrum. The insets show magnifications of the rectangles,
where the discrepancies between calculations with different ∆z begin to be observable.
Red curves: ∆z = (21/4)λL = 6.33 µm. Cyan curves: ∆z = (21/8)λL = 3.16 µm. Blue
curves: ∆z = (21/16)λL = 1.58 µm. For the classical calculation, N ≈ 6× 105 particles
were used for the solution of the Liouville equation.
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Figure 5.5: Effect of the time domain size on unidirectional pulse propagation with ground-
state atoms. The upper panels show the electric field E(z, τ) at z = 0.2 mm computed for
for two different time domains. The grey curves are for the domain τ ∈ [−0.5To, 9To],
and the dashed colored curves are the domain τ ∈ [0, 8To]. The lower panels show the
error (see text) between the fields in the two calculations as a function of z. a),c) Quantum
model. b),d) Classical model.

harmonics does not seem to influence the lower frequency components of the field, because

the latter are the same for each ∆z. Therefore, we trust the results of the simulations for the

lower, more intense harmonics in both the quantum and classical cases, even if we have not

fully converged the highest harmonics. As we shall see in the following sections, it is the

highest-intensity parts of the spectrum which are determinant for the electron dynamics.

We consider the effect of changing the time domain size for simulations in which a

pulse propagates through atoms initiated in the ground state. If τ = 0 is the time at which

the incident pulse starts, meaning E(z, τ) = 0 for all τ < 0, then extending the time

domain over which the simulation takes places to values of τ < 0 should not influence the

results. For times τ that the field is zero, so too should be the dipole velocity v(z, τ), so that

∂zE = 0. Also, if the atoms are in a stationary state before the onset of the laser pulse, then
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we should have ∂τψ = −iEψ and ∂τf = 0 in the quantum and classical cases, respectively,

where E is the energy of the quantum state. Thus, in theory, integrating the electron fields

for times τ < 0 should not influence their subsequent evolution. On the other hand, for a

given final time τf , changing the domain size to include times τ > τf should not change

the results for τ ≤ τf . This is because, for an arbitrary time τ ′, v(z, τ ′) depends on E(z, τ)

for all τ < τ ′, but no τ ≥ τ ′.

Figure 5.5 shows the degree to which our numerical schemes respect these properties

of the equations by comparing two different domain sizes: τ ∈ [−0.5To, 9To] on the one

hand and τ ∈ [0, 8To] on the other. Here, ρ = 2 × 1019 cm−3, ∆z = 1.6 µm, and the

initial conditions for the field and particles are those of Fig. 5.13. Figures 5.5a and 5.5b

show that, overall, the fields from the two calculations are in agreement after propagation

to z = 0.2 mm, for the times during which the domains overlap. Additionally, the field

computed on the longer domain has remained zero for τ < 0 throughout propagation. We

define the error as maxτ |Elong(z, τ) − Eshort(z, τ)|, where “long” and “short” refer to the

fields calculated with the longer and shorter domains, respectively, and the maximum is

taken over the time domain at which the two calculations overlap. This error is plotted in

Figs. 5.5c and 5.5d. Note that we have subtracted off the error at z = 0, which is nonzero

because the time steps in the two calculations were not exactly aligned. By the end of the

simulations, the quantum model error relative to the peak amplitude of the incident field

E0 = 0.0377 a.u. is about 10−4, while for the classical model the relative error is about

10−2. In both cases, the errors are likely due to the deviations of numerical representations

of the electron initial conditions ψ0(x) and f0(x, v) from true stationary states. This leads

to differing electron fields at τ = 0 in the long and short domain calculations. These errors

may be reduced by reducing the time step ∆τ , and by reducing the spatial step ∆x in the

quantum calculation or increasing the number of particles N in the classical calculation.
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5.3.4 Forward- and backward-propagating wave case

When we take backward propagating waves into account, we must solve Eqs. (5.6) coupled

to Eq. (5.7), in the case of the classical model. Because we are in the lab frame, the scheme

for solving these equations looks different than when we are in the moving frame. In that

case, time and space integration are separated, i.e. we integrate the Liouville equation at

a given z over a length of time so that we may advance the fields to the next point in

space. On the other hand, in the lab frame, we only perform time integration, i.e. the

Liouville equation and the field equations are simultaneously advanced in time, and we

need to account for the entire length of the z-domain at every time step. We will adopt the

spatial discretization zm = m∆z, with m ∈ [−nz + 1, nz − 1] an integer. Hence, the total

length of our domain is L = (2nz − 1)∆z, discretized using 2nz − 1 points. Our reduction

of the coupled system Eqs. (5.6) and (5.7) to a finite set of ODEs is described in the next

two sections.

Liouville equation

For the discretization of the Liouville equation, we use a scheme similar to that described

in Sec. 5.3.2. We will take the gas density as 0 for z < 0, and a constant ρ for z ≥ 0.

Thus, we only need to consider the distribution function for z ≥ 0. We generalize the PIC

discretization used for f in the unidirectional case, i.e. Eq. (5.16), by summing nz copies

of the distribution function in that equation multiplied by a Dirac delta function at each zm.

Precisely, we take

f(x, v, z, t) = ∆z
nz−1∑
m=0

Np∑
j=1

wjδ(x− xjm(t))δ(v − vjm(t))δ(z − zm). (5.24)

At each zm ≥ 0, we haveNp particles with trajectories (xjm(t), vjm(t)). For eachm, we use

the same set of Np initial conditions (xjm(0), vjm(0)) and weights wj , which are selected
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using the same scheme as in the unidirectional case. The particle trajectories satisfy

ẋjm = vjm, (5.25a)

v̇jm = −∂xV (xjm)− α(zm)− β(zm). (5.25b)

Field equations

For the discretization of Eqs. (5.6), we use the Fourier transform, similarly to the moving

frame. In this case, the discretization can be performed at the level of the Hamiltonian and

Poisson bracket, as shown in Eqs. (4.56). Briefly, the dynamical variables for each field

become the spatial Fourier modes {αk} and {βk}. We truncate the infinite set of Fourier

modes such that we keep all modes with k ≤ |kmax|. Similarly to the moving-frame case,

we determine kmax from our discretization of the z-axis. Because the z-axis is discretized

using 2nz − 1 points, we have kmax = nz. The field equations of motion are then obtained

from Hamiltonian (4.56a) and bracket (4.56b). They are

α̇k = −iωkαk + 2πk, (5.26a)

β̇k = iωkβk + 2πk, (5.26b)

where ωk = 2πck/L and (z, t) = ρ(z)v(z, t) is the current density, with spatial Fourier

modes

k(t) =
1

L

∫
vρ(z)f(x, v, z, t) exp

[
−i
(

2πk

L

)
z

]
dµdz.

The values of the fields α(zm) and β(zm) required for the particle equations (5.25) are ob-

tained by the discrete inverse-Fourier transform of {αk} and {βk}, similarly to the moving-

frame case.
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Figure 5.6: The time-dependence of the error in conserved quantities of the classical model
with forward- and backward-propagation waves in the lab frame. Left panel: Relative error
of the energy H(t). Middle panel: Relative error of the Casimir invariant Qα(t). Right
panel: the Casimir invariant Qβ(t), for which Qβ(0) = 0.

Verification

Equations (5.25) and (5.26) constitute a finite set of ODEs, which we integrate using the

standard fourth-order Runge-Kutta method. We select ∆t = 0.1 a.u., ∆z = c∆t, and

Np = 5048, for a total of nzNp = 25371248 particles. We consider initial conditions in

which β(z, t = 0) = 0, so that the initial field is solely forward propagating, and we take

the initial field α(z, t = 0) such that the front of the pulse is at z = 0, but is zero for all

z ≥ 0. Under these conditions, this system can only be integrated until time t = L/2c,

when the reflected waves, i.e. the backward-propagating waves generated at z = 0, first

reach the left boundary of the computational domain. This is because our use of Fourier

modes for the representation of the fields implies periodic boundary conditions. Thus,

for times t ≥ L/2c, the reflected waves would reappear at the right boundary and begin

propagating through the gas, which is obviously unphysical.

Furthermore, these equations have inherited the Hamiltonian structure of Eqs. (5.7) and

(5.6). The Hamiltonian structure of the field part of equations is contained in Eqs. (4.56).

The Hamiltonian structure of the full system, in particular Eqs. (5.25), may be obtained

from a discretization of Hamiltonian (4.56a) and bracket (4.56b) using Eq. (5.24) [110].

Thus, this system inherits the conserved quantities of the continuous system (4.56), namely

the energyH [for the field part of the energy see Eq. (4.56a)] and the two Casimir invariants
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Qα and Qβ [see Eqs. (4.57)]. The particle part of these quantities is obtained by substi-

tuting Eq. (5.24) into Eq. (4.25a). In Fig. (5.6), we show the error in the conservation of

these quantities as a function of time for a simulation with the initial conditions described

in Sec. 5.6.2. The relative error in the conservation ofH is less than 10−9, while forQα it is

less than 3× 10−7. Qβ , which is initially zero, remains less than 2× 10−14 a.u. throughout

the simulation. These behaviors provide evidence of a proper numerical implementation

of the model equations. However, we remark that the particle number of Np = 5048 at

each zm is not high enough to provide converged results for the radiated fields. Given that

the total number of particles is nzNp, there is a limit to how much larger we can take Np

while still maintaining reasonable computation times (and memory requirements). With

this set of parameters, the calculation leading to Fig. 5.6 takes 9.44 hours, running on a

desktop computer with the evaluation of the right-hand side of the particle equations of

motion (5.25) parallelized across 8 cores with OpenMP. See Fig. 5.30 and the accompany-

ing discussion for the manifestations of the lack of convergence of the simulations.

5.4 Unidirectional propagation through a gas of one-dimensional ground-state atoms

Here, we analyze the behavior of the reduced models for the propagation of a laser pulse

through a gas of ground-state atoms. The initial conditions are plotted in Fig. 5.7. We take

an incident laser pulse given by

E0(τ) =


E0 sin2( πτ

Tm
) cos(ωLτ) for 0 < τ < Tm,

0 for Tm < τ < τf ,

where E0 is the maximum field amplitude, ωL is the laser frequency, and Tm is the dura-

tion of the laser pulse. Here, we choose ωL = 0.0378 a.u., Tm = 7To, and τf = 8To,

where To = 2π/ωL is one optical cycle. These values correspond to a laser wavelength

λL = 1.2 µm, and a FWHM pulse duration of Tm/2 = 14 fs. Throughout this chapter,
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Figure 5.7: Initial conditions of the ground-state simulation. (a) Initial electric field E0(τ),
with a peak intensity I = 3.5 × 1014 W · cm−2. (b) Initial microscopic electron density
ρe(x). For the quantum model, ρe(x) = |ψ0(x)|2 is the orange solid curve, and for the
classical model, ρe(x) =

∫
f0(x, v)dv. The blue dashed curve is the classical model with

initial energy distribution g1, while the classical model with gσ is the purple dash-dotted
curve. (c) Contour plot of the Wigner transformW (τ, ω) of the initial electric field. The red
curve indicates the instantaneous carrier frequency ωc(τ). (d) Initial electron phase space
distribution f0(x, v) for the classical model with g1, with the probability density indicated
by the linear color scale.
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we employ this ωL unless stated otherwise. We will consider positions of the laser pulse

between z = 0 and z = 1 mm, where the gas is assumed to have a constant density ρ.

Everywhere else is assumed to be vacuum, as illustrated in Fig. 5.1, and the field does not

evolve in those regions.

For the quantum model, the initial state of the electron is taken as the ground state of

Eq. (5.2a) in the absence of the electric field, with energy Ip = −0.5 a.u. [153],

ψ0(x) = Nψ(1 +
√
x2 + 2) exp

[
−
√
x2 + 2

]
,

whereNψ is a normalization constant. Note that we take ψ0 to be independent of z, because

the initial state of the atoms is assumed to be uniform.

For the classical model, a variety of options have been considered for designing a suit-

able initial phase space distribution f0(x, v) corresponding to the quantum ground state,

given that it is not possible to obtain one in a strictly self-contained manner. If one is

concerned with maximizing the quantitative agreement between the classical and quantum

models, then the main difficulty is getting the classical model to exhibit a similar intensity-

dependent ionization probability as the quantum model. In this respect, the most naı̈ve

option for the classical ground state—a microcanonical ensemble at the quantum ground-

state energy E = Ip—does not perform well for the one-dimensional (1D) SAE model,

in part because the onset of ionization occurs too suddenly [128, 154]. As an alternative,

one can take a distribution of initial energies, E ∈ [Emin, Emax] with a probability density

g(E), leading to a distribution function of the form

f0(x, v) =

∫ Emax

Emin

g(E)NEδ(E −H0(x, v))dE. (5.27)

Meanwhile, NE is a normalization constant such that

NE

∫
δ(E −H0(x, v))dxdv = 1.
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Figure 5.8: Classical energy distributions and ionization probability. (a) Distribution of ini-
tial energies g(E) for the classical model. The distribution g1, similar to that of Ref. [128],
is the blue dashed curve, while the optimized sigmoid distribution gσ is the purple dash-
dotted curve (see text). (b) Probability of ionization at the end of the laser pulse Pion(Tm) as
a function of the peak intensity I of the incident pulse. The orange circles are the quantum
calculation, the blue triangles are the classical calculation with g1, and the purple crosses
are the classical calculation with gσ. (c) Time-dependent ionization probability for an in-
cident pulse with peak intensity I = 3.5 × 1014 W · cm−2. The solid orange curve is the
quantum calculation.

Note that, because f0 can be written as a function of H0, which is conserved along a tra-

jectory in the absence of the electric field, it is a stationary state of the field-free Liouville

equation (5.3a).

In the first example, we shall take the energy rangeEmin,1 = −0.638,Emax,1 = −0.325,

and the energy distribution g1(E) = a0 + a1E, with a1 = −7.656 and a0 chosen such that

g1(E) is normalized to one. We choose this distribution because it is very close to the

phase space distribution employed in Ref. [128], where it was shown to have reasonable

agreement with the quantum model for the intensity-dependent ionization probability. It
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also satisfies E =
∫
Eg1(E)dE ≈ Ip, meaning the mean energy of the classical ensemble

is equal to that of the quantum ground state. The energy distribution is plotted in Fig. 5.8a,

in blue, and the corresponding phase space distribution is plotted in Fig. 5.7d. We define

the time-dependent ionization probability Pion(τ) as the probability of finding the electron

with |x| > 10 a.u. at time τ [44]. Then, the probability of the electron being ionized at

the end of the pulse is Pion(Tm). In Fig. 5.8b, we compare the variation of this quantity

as a function of the peak-intensity I of the incident laser pulse for the quantum model

(orange circles) and the classical model with initial energy distribution g1 (blue triangles).

Evidently, for this laser frequency and pulse duration, there is much room for improvement

in terms of the agreement between intensity-dependent ionization probabilities. This is

seen across the range of intensities: at the lowest intensities, the classical model has no

ionization; at intermediate intensities, it overestimates the ionization probability; at high

intensity, it underestimates the ionization probability. We will see that it is possible to

improve the agreement between the quantum and classical calculations by using another

g(E) for the classical model, for which the ionization probabilities are the purple crosses

plotted in Fig. 5.8b.

5.4.1 High ionization fraction regime

Given these initial conditions, we simulate the propagation of the pulse from z = 0 to

z = 1 mm for a gas with density ρ = 5 × 1017 cm−3 using the quantum model and

the classical model with initial energy distribution g1. First, we will consider the high-

ionization fraction regime. We choose the peak intensity of the incident pulse as I =

3.5 × 1014 W · cm−2, corresponding to E0 = 0.1 a.u. This gives an initial ionization

probability, i.e. at z = 0, of Pion(Tm) ∼ 1 for the quantum model and Pion(Tm) ∼ 0.6 for

the classical model, as shown in Fig. 5.8c. For the field integration, we select the spatial

step ∆z = (21/8)λL = 3.16 µm. We verified that with this spatial step size, the spectrum

of the electric field after propagation was converged in both the quantum and classical
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Figure 5.9: Results of pulse propagation through 1 mm of ground-state atoms with density
ρ = 5× 1017 cm−3, and peak incident pulse intensity I = 3.5× 1014 W · cm−2. The solid
orange curves and circles correspond to the quantum model, while the blue dashed curves
and triangles correspond to the classical model with g1 as the initial energy distribution.
(a) Time-dependent electric field E(z, τ) at z = 1 mm. The dotted gray curve is the initial
field E0(τ). (b) Normalized pulse energy density UEM (curves, left axis) and maximum
instantaneous carrier frequency ωmax (markers, right axis) as a function of z. The scale
of the right axis is the same as in (c). (c) Time-dependent carrier frequency ωc(z, τ) at
z = 1 mm.
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calculations. That is, reducing the spatial step size did not lead to significant changes to the

spectrum, even the very low-intensity high-harmonic part.

In Fig. 5.9, we compare the electric fields E(z, τ) at z = 1 mm computed from each

model. We see the dominant propagation effects are captured by both models. Namely,

we observe a variation in the field amplitudes compared to their initial values and a time-

dependent blueshift [43, 133] in Fig. 5.9a. The field amplitudes are generally reduced dur-

ing the laser cycles 2-4, when most of the ionization takes place (see Fig. 5.8c). Meanwhile,

they are increased in the later cycles, when the high density of oscillating free electrons can

provide energy to the field, as dicated by Eq. (5.9). Overall, we see that the field energy

density UEM decreases during propagation, as shown in Fig. 5.9b, due to the fact that ion-

ized electrons have experienced a net increase in energy, in accordance with Eq. (5.10).

The time-dependent blueshift is evidenced by the time-varying advance of the electric field

wave crests with respect to E0(τ). The degree of the blueshift is well captured by the instan-

taneous carrier frequency ωc(τ, z), plotted in Fig. 5.9c, and its maximum in time ωmax(z),

also plotted in Fig. 5.9b.

While the classical and quantum calculations for these low-frequency observables are

qualitatively similar, the quantitative agreement can be improved. Because these observ-

ables are driven by ionization and the interaction of ionized electrons with the field, the

disagreement is likely due to the disagreement of intensity-dependent ionization probabil-

ity between the classical and quantum models. We have explored mitigating this issue by

searching for alternative initial energy distributions g(E) for the classical model that lead

to intensity-dependent ionization probabilities that are closer to the quantum calculation.

Before presenting results on examples of such distributions, we present results of propaga-

tion simulations in the low ionization fraction regime for the quantum model and classical

model with g1. These simulations reveal another significant drawback of g1 and suggest

some guidelines for the shape of alternative distributions that will allow a good agreement

between the quantum and classical propagation calculations over a range of incident peak
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pulse intensities.

5.4.2 Low ionization fraction regime

Next, we simulate the propagation of a lower intensity laser pulse, with I = 5 × 1013 W ·

cm−2, through 1 mm of a gas with density ρ = 2 × 1019 cm−3. This is the low ionization

fraction regime, with the quantum model giving Pion(Tm) ∼ 5 × 10−3 and the classical

model giving Pion(Tm) ∼ 0.05 for the incident pulse, as shown in Fig. 5.8b. We have in-

creased the density compared to the previous simulation so that the maximum free-electron

density, i.e. the density of ionized electrons, is comparable to the high ionization fraction

case. For the field integration, we select the spatial step ∆z = 1.3λL = 1.57 µm.

The results of the simulation are summarized in Fig. 5.10. Because of the much higher

density of neutral atoms, the group velocity of the pulse is now noticeably less than c, which

causes the pulse to drift to the right in the moving frame, as shown in Fig. 5.10a. Up until

z = 0.2 mm, this effect is captured equally well by the quantum and classical calculations

for τ/To < 3, and the agreement between the fields for larger τ is fair. The classical field

has a noticeable blueshift for larger τ and a much more substantial energy loss (Fig. 5.10b),

both of which are signatures of the higher ionization fraction in the classical model.

However, for larger z, the classical calculation significantly departs from the quantum

calculation. One symptom of the problem can be seen in Fig. 5.10b, where UEM(z) actually

starts increasing at a certain propagation distance. By energy conservation, i.e. Eq. (5.10),

this implies the mean electron energy must experience a net decrease. We can see the

precursors to this behavior in Fig. 5.10d and Fig. 5.11a. In Fig. 5.10d, we have plotted the

distribution of energies Ef at the end of the pulse, computed from the distribution function

f(x, v, z, τf ) at z = 0.2 mm, shown in Fig. 5.11a. We see that states with energies lower

than Emin,1 become populated by the end of the pulse—these are the states inside the red

ring in Fig. 5.11a. While this does not happen for the atoms at z = 0, such behavior

manifests itself in the course of the pulse propagation. Further, the electron energy loss
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Figure 5.10: Results of pulse propagation through 1 mm of ground-state atoms with density
ρ = 2×1019 cm−3, with a peak incident pulse intensity of I = 5×1013 W·cm−2. The solid
orange curves correspond to the quantum model, while the dashed blue curves correspond
to the classical model with g1 as the initial energy distribution. (a) Time-dependent electric
field E(z, τ) at z = 0.2 mm. The gray dotted curve is the initial field E0(τ). (b) Normalized
time-averaged pulse energy density UEM as a function of z. (c) Spectrum of the electric
field |Ẽ(z, ω)|2 at z = 0.2 mm. A sin2 window was applied prior to computation of the
spectrum. (d) Distribution of energies g(E) at τ = τf and z = 0.2 mm for the classical
model. The gray dotted curve is the initial energy distribution g1(E). (e) Probability density
for transitioning from a state with initial energy Ei to a state with final energy (at τ = τf )
Ef for the classical model at z = 0.2 mm. The density is indicated by a logarithmic color
scale. The red dashed line is Ef = Ei.
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Figure 5.11: Electron energy loss in the classical model at z = 0.2 mm (a),(c) and
z = 1 mm (b),(d). (a),(b) Electron distribution function at the end of the laser pulse
f(x, v, z, τf ). The red curve indicates the initial minimum energy H0(x, v) = Emin,1.
(c),(d) Electron trajectory x(τ) which ends with the smallest energy E.
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Figure 5.12: Same calculation as Fig. 5.10, with the results shown at z = 1 mm. (a) Time-
dependent electric field E(z, τ). The gray dotted curve is the initial field E0(τ). (b) Power
spectrum of the filtered electric field |Ẽ(z, ω)|2. (c) Probability density for transitioning
from a state with initial energy Ei to a state with final energy (at τ = τf ) Ef for the
classical model. The density is indicated by a logarithmic color scale. The red dashed line
is Ef = Ei.

becomes more severe as z increases, as seen in f(x, v, z, τf ) at z = 1 mm in Fig. 5.11b.

Eventually, the energy lost by these electrons outweighs the energy gained by the ionized

electrons, leading to the increase in field energy seen in Fig. 5.10b at z ∼ 0.5 mm. In the

quantum model, this cannot possibly happen when all the electrons are initialized in the

lowest possible energy state, i.e. the ground state. There, the pulse is always losing energy

throughout propagation because the gas is always strictly gaining energy by excitation and

ionization of the atoms. Hence, a net energy increase at any point throughout the pulse

propagation is an unphysical effect that we would like to avoid when using the classical

model for a gas of ground-state atoms.
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5.4.3 Improving the classical model

Looking more closely at the mechanism for this anomalous behavior provides some in-

tuition on what refinements may remedy the classical model. In Fig. 5.10e and 5.12c, we

have plotted the joint probability density ofEf andEi, the initial energy at τ = 0, for atoms

at z = 0.2 mm and z = 1 mm, respectively. Here, we see that the electrons most likely to

lose energy—which are represented by the part of the density below the line Ef = Ei—are

those with energies near the two possible extremes, Emin,1 and Emax,1. In between these

extremes, the energies of the electrons remain more or less at their initial values, a signature

of bounded electron motion [154] on invariant tori [99, 155]. As propagation proceeds, we

have observed that energy loss becomes more and more probable, with the range of ener-

gies at which this happens gradually creeping inward from both extremes, as indicated by

the arrows. This is indeed evident from the joint distribution of Ef and Ei at z = 1 mm,

plotted in Fig. 5.12c.

At the same time, we observe a resonant-like growth of the electric field modes with

frequencies near ω ∼ 14ωL, visible in the spectrum of the field |Ẽ(z, ω)|2 at z = 0.2 mm

in Fig. 5.10c and z = 1 mm in Fig. 5.12b. The classical spectrum displays a broad peak at

these modes, whose intensity grows rapidly in z and leads to a highly distorted electric field

for z > 0.2 mm. For example, the field at z = 1 mm is plotted in Fig. 5.12a. This field

bears only a faint resemblance to that of the quantum calculation, which does not exhibit

this behavior at z = 0.2 mm, as shown in Fig. 5.10c, nor for larger values of z, in particular

for z = 1 mm, as shown in Fig. 5.12b. In response to an incident quasi-monochromatic

field, the classical model is known to exhibit radiation at frequencies near that of the field-

free bounded electron motion [49, 156]. The frequency of the field-free orbits ωa(E) can

be approximated by expanding the exact expression for the frequency for small E − E∗

[155], where E∗ = −1/
√

2 is the energy of the equilibrium at x = 0 and the lower bound

on the electron energy in the classical model. In this case, the expansion to leading order is
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ωa(E) ≈ 2−3/4 − 9

213/4
(E − E∗). (5.28)

Using Eq. (5.28), we obtain ωa(Emin,1) ≈ 14ωL, in striking agreement with the location

of the broad peak in Fig. 5.10c. It is plausible that radiation at this particular frequency

stands out compared to radiation at lower frequencies coming from electrons with a larger

Ei, because g1(E) is effectively peaked at Emin,1.

Thus, it is likely that the radiation generated at these frequencies builds up in the early

part of the gas (for small z), until it is strong enough to interact resonantly with the electrons

naturally oscillating at those same frequencies in the later parts of the gas. This probably

triggers the electron energy loss observed at increasing z, beginning with the electrons

with energies Ei ∼ Emin,1, while continuing to feed the growth of radiation at frequencies

near 14ωL. Evidence of this is shown in Figs. 5.11c and 5.11d, where we have plotted

the trajectories x(τ) of the electron with the smallest energy at τf , at z = 0.2 mm and

z = 1 mm, respectively. At z = 0.2 mm, the electron experiences a gradual energy

loss, inferred from the gradually decreasing amplitude of the oscillations. Eventually this

becomes a sudden drop in energy, as seen for the electron trajectory at z = 1 mm right

before τ/To = 2, which one might expect for an electron driven by a resonant, out-of-

phase forcing.

Given these observations, we propose to improve the classical model by judiciously

selecting another initial energy distribution g(E) to mitigate the pitfalls of g1. On the

one hand, we want a distribution that improves the agreement between the classical and

quantum intensity-dependent ionization probabilities Pion(Tm). This ensures the classical

model can mimic the quantum model with respect to the blueshift, ionization losses, and

subluminal group velocity of the pulse. On the other, we want a distribution which is not

sharply peaked at an energy greater than E∗. Avoiding this may prevent the amplification

of the radiation of bounded electrons that subsequently also appears to trigger their energy

loss.
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We have found that the sigmoid distribution works well for low to intermediate ioniza-

tion fractions, while mitigating the bound-electron resonance. The distribution is given by

gσ(E) =
Nσ

1 + exp [k(E − Em)]
, (5.29)

defined on the energy range [E∗, Emax,σ], with Nσ a normalization constant. We choose

Emax,σ = −0.23 a.u. The free parameters k and Em were optimized to maximize the

agreement between the classical and quantum predictions for Pion(Tm) for the values of

intensity plotted in Fig. 5.8, yielding k = 93.22 a.u. and Em = −0.3709 a.u. In Fig. 5.8b,

we see that the ionization probabilities of gσ agree very well with the quantum ones for ion-

ization fractions below about 0.1, in stark contrast to those of g1. For higher ionization frac-

tions, the performance of gσ is similar to g1, with the ionization probabilities actually being

slightly lower in this range, as shown in Fig. 5.8c for a pulse with I = 3.5×1014 W ·cm−2.

However, even in Fig. 5.8c, we see that the improved performance of gσ for low-intensity

pulses has translated into a better performance compared to g1 for the time-dependent ion-

ization probability Pion(τ) during the low-intensity part of the pulse, i.e. for τ/To < 3.

Using gσ as the initial energy distribution for the classical model, we are now able to

successfully propagate the laser pulse to z = 1 mm in the low-ionization fraction regime,

without the pulse energy ever increasing or a resonance at a bound-electron frequency

developing. We show the results of the calculation under the same conditions as Fig. 5.10

in Figs. 5.13 and 5.14. The quantum and classical calculations agree well for the time-

dependent electric field (Fig. 5.13a), as well as the ionization losses and instantaneous

frequency (Figs. 5.13b and 5.13c, respectively). At the same time, we no longer see a

significant probability of energy loss among the low-energy bounded trajectories at any

point during the propagation. This can be seen by comparing Fig. 5.14 with Fig. 5.10e

and Fig. 5.12c. We thus confirm that our strategy of matching ionization probabilities and

appropriately shaping the classical initial energy distribution succeeds in improving the
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Figure 5.13: Results of pulse propagation through 1 mm of ground-state atoms with density
ρ = 2 × 1019 cm−3, and peak incident pulse intensity I = 5 × 1013 W · cm−2. The
solid orange curves and circles correspond to the quantum model, while the dash-dotted
purple curves and crosses correspond to the classical model with gσ as the initial energy
distribution. (a) Time-dependent electric field E(z, τ) at z = 1 mm. The gray dotted curve
is the initial field E0(τ). (b) Normalized pulse energy UEM (curves, left axis) and maximum
instantaneous carrier frequency ωmax (markers, right axis) as a function of z. The scale
of the right axis is the same as in (c). (c) Time-dependent carrier frequency ωc(z, τ) at
z = 1 mm.
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Figure 5.14: Final versus initial energy distributions for the classical model using gσ as the
initial energy distribution, at z = 0.2 mm (a) and z = 1 mm (b). The pulse propagation
parameters are the same as for Fig. 5.13. The dashed red line indicates Ef = Ei.

agreement between the classical and quantum propagation calculations.

We continue to observe this agreement in the intermediate ionization fraction regime,

as show in Fig. 5.15. Here, we have propagated a pulse with initial peak intensity I =

9 × 1013 W · cm−2 through 1 mm of a gas with density ρ = 1018 cm−3. For the field

propagation, we selected ∆z = 2λL = 2.4 µm. The density has been reduced by a factor of

20 compared to the previous simulation because the initial ionization fraction Pion(Tm) ∼

0.1 is approximately 20 times higher than at I = 5 × 1013 W · cm−2. In this regime, we

observe that both calculations show that the laser field is not substantially reshaped during

propagation, despite a maximum free electron density of about 1017 cm−3. This is due to a

balance between the neutral atom dispersion and free electron dispersion. These conditions

are favorable for the phase-matching of high harmonic radiation [45], and thus we will use

both models to investigate the coherent buildup of this radiation in the next section.

Refined classical model in the high ionization fraction regime

In Fig. 5.16, we show the results of a propagation calculation in the high ionization fraction

regime, with gσ as the initial energy distribution of the classical model. The conditions are
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Figure 5.15: Results of pulse propagation through 1 mm of ground-state atoms with density
ρ = 1018 cm−3, and peak incident pulse intensity I = 9×1013 W ·cm−2. The solid orange
curves and circles correspond to the quantum model, while the dashed-dotted purple curves
and crosses correspond to the classical model with gσ as the initial energy distribution. (a)
Time-dependent electric field E(z, τ) at z = 1 mm. The gray dotted curve is the initial field
E0(τ). (b) Normalized pulse energy UEM (curves, left axis) and maximum instantaneous
carrier frequency ωmax (markers, right axis) as a function of z. The scale of the right axis
is the same as in (c). (c) Time-dependent carrier frequency ωc(z, τ) at z = 1 mm.
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Figure 5.16: Results of pulse propagation through 1 mm of ground-state atoms with density
ρ = 5 × 1017 cm−3, and peak incident pulse intensity I = 3.5 × 1014 W · cm−2. The
solid orange curves and circles correspond to the quantum model, while the dash-dotted
purple curves and crosses correspond to the classical model with gσ as the initial energy
distribution. (a) Time-dependent electric field E(z, τ) at z = 1 mm. The gray dotted curve
is the initial field E0(τ). (b) Normalized pulse energy UEM (curves, left axis) and maximum
instantaneous carrier frequency ωmax (markers, right axis) as a function of z. The scale
of the right axis is the same as in (c). (c) Time-dependent carrier frequency ωc(z, τ) at
z = 1 mm.
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Figure 5.17: Results of pulse propagation through 1 mm of ground-state atoms with density
ρ = 5 × 1017cm−3, this time using g2 as the initial energy distribution of the classical
model (green dash-dotted curves and crosses). The results of the quantum calculation from
Fig. 5.9 are plotted again here for comparison. (a) Time-dependent electric field E(z, τ) at
z = 1 mm. The gray dotted curve is the initial field E0(τ). (b) Normalized time-averaged
pulse energy density UEM (curves, left axis) and maximum instantaneous carrier frequency
ωmax (markers, right axis) as a function of z. The scale of the right axis is the same as in
(c). (c) Time-dependent carrier frequency ωc(z, τ) at z = 1 mm.

the same as those for Fig. 5.9. We see that generally, the classical model with gσ does not

significantly outperform that with g1. However, we found an alternative initial condition

distribution, g2, that gives better agreement with the quantum calculation than g1 in the

high ionization fraction regime.

After experimenting with some different functional forms for g2, we found that the

following form would allow us to significantly improve classical intensity-dependent ion-

151



ization probability:

g2(E) = N2(E − Em)4, (5.30a)

N2 = 5
[
(Emax,2 − Em)5 − (Emin,2 − Em)5

]−1
, (5.30b)

where N2 ensures g2 is normalized, and Em is a parameter. To optimize the parameters of

g2, we used the following procedure. We fixed Emax,2 = −0.27 a.u., and allowed Emin,2

andEm to be free parameters. Then, we defined a cost function that penalizes discrepancies

between the quantum and classical intensity-dependent ionization probabilities Pion(Tm) at

the particular values of intensity plotted in the middle panel Fig. 5.7. Lastly, we optimized

the free parameters of g2 to minimize the cost function, under the constraint that E = Ip.

This resulted in Emin,2 = −0.5481 a.u. and Em = −0.2593 a.u..

The results of the classical model propagation with g2 with the quantum model are

shown in Fig. 5.17. For each observable plotted in Fig. 5.17, the classical calculation with

g2 gets closer to the quantum calculation than the classical calculation with g1. In particular,

the time-dependent blueshift (right axis of middle panels and right panels of Figs. 5.9 and

5.17) of the quantum model is better reproduced by the classical model with g2. However,

when doing a propagation calculation with g2 in the low-ionization fraction regime, we

observed the same bound-electron resonance behavior that we saw for g1.

For short pulses, a high ionization fraction is typically attained in the barrier-suppression

regime, where the potential barrier in the combined Coulomb and maximum laser fields is

depressed below the quantum ground-state energy [24]. At intensities above the barrier-

suppression intensity IBS, ionization takes place by over-the-barrier ionization, rather than

tunneling or multiphoton ionization. For this system with Ip = −0.5 a.u., we have IBS =

1.4× 1014 W · cm−2, and it turns out this is approximately where the intensity-dependent

ionization probabilities of the classical model with gσ depart from those of the quantum

model (Fig. 5.8b). Even though over-the-barrier ionization is essentially classical, our
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model is not effective in this regime because of the apparent drawback of having an energy

distribution which is peaked at an energy greater than E∗. In order to avoid the bound-

electron resonant interaction that plagues the classical model at low intensities, we chose

a distribution of energies that significantly populates classical states with energies E < Ip,

as seen in Fig. 5.8a. The lower the energy of the state, the higher peak intensity required

to ionize it [154]. Thus, many of these states remain bounded even for I > IBS, while in

the quantum case the atom becomes fully ionized. Consequently, when tuning the classical

model to accurately capture propagation effects, there is a trade-off between accuracy in the

low-to-intermediate ionization fraction regime and accuracy in the high ionization fraction

regime.

5.5 Dynamics of the high harmonic spectrum for unidirectional pulses with one-

dimensional atoms

The discrepancy between the quantum and classical ionization probabilities that remains

after optimization of the classical model is part of what hampers the agreement between

the classical and quantum calculations for the low frequency components of the field, espe-

cially near ωL. This can make it challenging to use the classical model to explain properties

of the quantum high harmonic spectrum after propagation directly. Because the electric

fields driving the atoms at each z are slightly different in the two calculations, the electron

dynamics in the two calculations will also be slightly different. However, the ionization

step can be artificially removed by performing a numerical experiment in which the elec-

trons are initialized in a scattering state, the so-called scattering experiment [20, 83, 157].

We show that in this case, the quantum and classical propagation calculations are nearly

indistinguishable for the dominant frequency component of the field. Hence, it is possible

to directly apply the classical model to uncover the mechanisms of high harmonic radiation

phenomena present in the quantum model.

In this section, we begin by close examination of this scenario, hereafter referred to as
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the scattering-propagation experiment. We perform a phase space analysis of the classical

model that explains the extension of the high harmonic cutoff past the 3.17Up + |Ip| cutoff

law observed in the quantum calculation. Then, we perform similar phase space analyses of

the classical model calculations of pulse propagation through a gas of ground-state atoms.

Our goal is to show that, even in the ground-state case, the classical model provides insight

into the buildup of the quantum harmonic spectrum, including the mechanisms of low-order

harmonic generation and the phase-matching of higher-order harmonics.

5.5.1 The scattering-propagation experiment

Initial conditions

We again consider the propagation of the laser electric field from z = 0 to z = 1 mm,

through a gas of density ρ = 5 × 1017 cm−3. Because we are not concerned with the

gradual ionization of the atom here, we are not obliged to use a realistic pulse shape for

the initial electric field. Thus, we initialize the field as a simple monochromatic wave,

E0(τ) = E0 cos(ωLτ), and we reduce the final time to τf = 3.5To. We take the same field

parameters as in the high-ionization fraction regime, i.e. E0 = 0.1 a.u. for an intensity of

I = 3.5×1014 W·cm−2, and for the field propagation, we use ∆z = (21/8)λL = 3.16 µm.

The electron is initialized as a Gaussian wave packet at rest, centered at the quiver radius

E0/ω
2
L, as in Refs. [20, 83, 157]. Thus, for the quantum case, the initial wave function is

ψ0(x) =

(
π

γ2

)−1/4
exp

[
−γ

2

2

(
x− E0

ω2
L

)2
]
,

where the parameter controlling the wave packet width is chosen as γ = 0.2236 a.u. [83].

Meanwhile, in the classical case, the corresponding initial distribution function is also a

Gaussian wave packet, with identical position and velocity spreads to the quantum wave

packet, i.e.

f0(x, v) =
1

π
exp

[
−γ2

(
x− E0

ω2
L

)2

− v2

γ2

]

154



0 0.5 1 1.5 2 2.5 3 3.5
-0.1

-0.05

0

0.05

0.1

0 0.5 1
0.9

0.95

1

0 0.5 1 1.5 2 2.5

1

1.05

1.1

Figure 5.18: Results of pulse propagation through 1 mm of a gas of atoms prepared in a
scattering state (see text) with density ρ = 5×1017 cm−3, and peak incident pulse intensity
I = 3.5× 1014 W · cm−2. The solid orange curves and crosses correspond to the quantum
model, while the purple circles and squares correspond to the classical model. (a) Time-
dependent electric field E(z, τ) at z = 1 mm. The dotted curve is the initial field E0(τ). (b)
Normalized pulse energy UEM (curve and circles, left axis) and maximum instantaneous
carrier frequency ωmax (crosses and squares, right axis) as a function of z. The scale of the
right axis is the same as in (c). (c) Time-dependent carrier frequency ωc(z, τ) at z = 1 mm.
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Unlike in the ground-state case, we have not performed any adjustments to the classical

distribution to optimize the agreement between the quantum and classical propagation cal-

culations. As we shall see, excellent agreement may already be obtained with this distribu-

tion. For the classical calculations, the number of particles chosen is N = 4007360.

Evolution of the dominant component of the field

Figure 5.18 shows the results of the pulse propagation calculations for the total field, energy

loss, and blueshift. For the calculations of ωc(z, τ), the post-processed field Ep was defined

on the interval τ ∈ [−3To, 3.5To], with a z-independent, smoothly ramped-up oscillation

for τ < 0, followed by E(z, τ) multiplied by a window which sends the field smoothly to

zero over the last computed laser cycle. Precisely, Ep is given by

Ep(z, τ) =


E0 cos2

(
πτ
6To

)
cos(ωτ) for − 3To ≤ τ < 0,

E(z, τ) for 0 ≤ τ < 2.5To,

E(z, τ) cos2
(
π(τ−2.5To)

2To

)
for 2.5To ≤ τ ≤ 3.5To.

(5.31)

This post-processing prescription allowed the computation of a clean Wigner-Ville trans-

form that leads to an instantaneous carrier frequency which clearly captures the blueshift

concentrated between 0 < τ < To, as seen by looking at Figs. 5.18a and 5.18c. We ob-

serve that in the scattering-propagation experiment, the classical and quantum calculations

are in excellent agreement for the observables reflecting the dominant frequency compo-

nent of the field, even better than in the ground-state case (Figs. 5.13, 5.15, and 5.16).

This corroborates our assertion that the main source of the discrepancy the classical and

quantum ground-state calculations is the description of ionization. Indeed, by beginning

in a fully ionized state instead of the ground state, we observe a massive improvement in

the agreement between the two calculations for an incident pulse with the same peak laser

intensity.
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Figure 5.19: High harmonic spectra for the scattering-propagation experiment at z =
0.37 mm. The quantum model is the solid orange curve, and the classical model is the
dash-dotted purple curve. The dashed lines indicate 3.17Up + |Ip|. Upper inset: a magnifi-
cation of the spectrum of the low-order harmonics. Lower inset: Spectrum of the harmonics
in the cutoff region for the quantum model as a function of z. The harmonic intensities are
indicated by the logarithmic color scale.

Evolution of the high harmonic spectrum

Figure 5.19 shows the power spectra of the electric fields of the classical and quantum

models at z = 0.37 mm. For these spectra, the post-processing consisted of applying

a sin4 window to the calculated electric fields. The classical and quantum spectra agree

well for the low-order harmonics, as shown in the upper inset of Fig. 5.19. However, a

high-harmonic plateau and cutoff are only observed in the quantum model, as observed

in single-atom calculations [83]. This confirms the fundamental role played by quantum

interference effects for high-harmonic emission, even when propagation effects are taken
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Figure 5.20: Electron dynamics at z = 0 (a),(c) and z = 0.37 mm (b),(d) for the scattering-
propagation experiment. (a),(b) Recollision fluxR(κ, τ ; z) from the classical model. (c),(d)
Spectrogram of the dipole acceleration da(τ) from the quantum model. The spectrograms
were computed using a cos4 window of duration 0.15To. The dotted lines indiciate 2Up +
|Ip| and 3.17Up + |Ip|. The left axes, indicating the recollision kinetic energy κ, are related
to the right axes, indicating the radiated frequency ω, by κ = ω.

into account. In the quantum spectrum, we see that the cutoff is extended well past the

usual 3.17Up + |Ip| cutoff law, which is valid for SAE atoms in monochromatic fields. The

lower inset of Fig. 5.19 shows the evolution of the cutoff region throughout propagation.

While 3.17Up + |Ip| = 160ωL is a reasonable approximation of the cutoff for small z, the

cutoff increases significantly during propagation, reaching about 180ωL before receding

again. To understand this anomalous cutoff extension driven by the pulse propagation, we

examine the electron dynamics.

The correspondence between recollisions and radiation is clearly seen when comparing
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the recollision flux of the classical model with the spectrogram of the dipole acceleration

from the quantum model. High-harmonic emission occurs when multiple electron energy

states are simultaneously occupied near the core, leading to interference in the quantum

model at frequencies equal to the difference in energy between all possible pairs of states

[56, 158]. Traditionally, one conceives of high harmonic radiation as occurring from the

interference between a recolliding electron with kinetic energy κ and the ground state of

total energy Ip [3, 55], which, estimating the potential energy of the recolliding electron as

Ip, leads to radiation at the frequency ω = (κ + Ip) − Ip = κ. One may also obtain high

harmonic emission from the interference of recollisions of two different energies, κ1 and

κ2, at a frequency ω = |κ1 − κ2| [158].

In Fig. 5.20, we observe both kinds of emission. First, we focus on Figs. 5.20a and

5.20c at z = 0, where the classical and quantum atoms are driven by an identical electric

field, E0(τ). For τ < To, even though there are recollisions, as seen in Fig. 5.20a, they are

peaked around a single energy at each time, while the ground state is initially completely

empty in the scattering experiment setup. Thus, no high harmonic emission is observed in

the quantum model, (Fig. 5.20c). Beginning at τ & To, part of the electron wave packet

becomes trapped near the core [83], leading to the population of the ground state [159].

Subsequently, high-harmonic emission from the interference of recolliding electrons with

the trapped electrons is evident from the direct correspondence between the spectrogram of

Fig. 5.20c and the recollision flux of Fig. 5.20a, particularly for the families of recollisions

with a maximum kinetic energy near 2Up + |Ip| and those with a maximum kinetic energy

near 3.17Up + |Ip|. This second family of recollisions does not emerge until τ & 1.5To,

and once it does, we also observe high-harmonic emission arising from the interference

between these two families of recollisions. These are the dark blue stripes of radiation with

a frequency decreasing in time from about 75ωL to 25ωL that appear every half laser cycle

for τ > 1.5To.

By z = 0.37 mm, the electric fields in the quantum and classical models are now
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different, as they have been driven by different dipole velocities in Eq. (5.1). Nevertheless,

the dominant component of the fields agree so closely throughout propagation, as shown

in Fig. 5.18, that we continue to observe a close correspondence between the quantum and

classical electron dynamics. This is reflected by the comparisons of the classical recollision

flux and the quantum dipole acceleration spectrogram at z = 0.37 mm in Figs. 5.20b and

5.20d. In particular, we still observe high-harmonic emission in the quantum case with a

timing and frequency matching the timing and energy of the classical recollisions. We also

observe radiation from the interference between different families of recollisions, which is

most clearly seen at τ ≈ 1.5To. Comparing the electron dynamics at z = 0.37 mm and

z = 0, we notice two striking changes. The first is that, at z = 0.37 mm, recollision-driven

radiation is observed for τ < To, whereas it was not at z = 0. This implies that electron

trapping near the core occurs earlier in the laser pulse as propagation proceeds. The second

is that, at z = 0.37 mm around τ = To, we observe recollisions and their corresponding

radiation at energies that significantly exceed the usual 3.17Up + |Ip| harmonic cutoff,

whereas this does not occur at z = 0. These recollisions drive the extension of the high-

harmonic cutoff that we observed in the electric field spectrum of the quantum calculation,

as seen in Fig. 5.19. By studying the electron dynamics in phase space using the classical

model, we can identify the mechanism of the cutoff extension.

In Fig. 5.21, we show snapshots of the classical electron distribution function f(x, v, z, τ)

at particular times τ and propagation positions z. With the initial conditions we have cho-

sen, the electron wave packet always begins at rest far on the right side of the core, and the

field is positive and at a maximum. Therefore, the electron is always initially driven to the

left, towards the core. At z = 0, the electron wave packet is predominantly on the left of the

ion by time τm when the laser field has reversed direction once and is again at an extremum.

When the field subsequently goes to zero at time τ0, the wave packet has almost completely

vacated the core region. However, as propagation proceeds, the blueshift causes the laser

field to reverse direction earlier in the pulse, and this causes the center of the wave packet
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Figure 5.21: Snapshots of the distribution function f(x, v, z, τ) in a logarithmic scale. Left
panels: f(x, v, z, τm), where τm > 0 is the first field intensity maximum after the start of
the pulse. Right panels: f(x, v, z, τ0), where τ0 > τm is the first zero of the field following
τm. The upper panels are at z = 0, while the lower panels are at z = 0.37 mm.
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Figure 5.22: Evolution of the anomalously high-harmonic radiation. (a) Normalized spa-
tiotemporal amplitude profile |Êab(z, τ)| of the radiation in the ω > 175ωL frequency band,
computed from the electric field of the quantum model. (b) Normalized yield of radiation
with ω > 175ωL, computed from the electric field of the quantum model. (c) Population
of bound states Pb and population of recolliding states Pr with energies κ > 3.78Up as a
function of z and τ , calculated from the classical model. The population of bound states
is indicated by the logarithmic blue color scale, and the population of recolliding states is
indicated by the logarithmic red color scale.

at time τm to be displaced to the right. By z = 0.37 mm, the wave packet is thus nearly

centered over the ion, with the electron velocities distributed about zero. When part of the

wave packet arrives to the core with a low kinetic energy like this, it has a high probability

of becoming trapped there [159], and indeed a trapped part of the wave packet is clearly

observed in the subsequent snapshot of the distribution function at τ0 (lower right panel of

Fig. 5.21). An example of such an electron trajectory is shown in Fig. 5.22b. This confirms

that a bound state is created earlier in the pulse after propagation through part of the gas.

Furthermore, this explains the emergence of recollision-driven high-harmonic radiation for

τ < 1 l.c. at longer propagation distances, despite this radiation being absent in this time

interval at z = 0.

Besides enabling the recollision-driven radiation for τ < To, these trapped states are

also important for the emergence of the anomalously high-frequency radiation. In Fig. 5.22c,

we show calculations of the bound state populations Pb(z, τ) and the anomalously high en-

ergy recollisions Pr(z, τ) from the classical model. We estimate the bound-state population

from the recollision flux by integrating R(κ, τ, z) over low kinetic energies, while we ob-
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tain the probability of anomalously high recollision by integrating the same over the highest

kinetic energies. Specifically, we define Pb and Pr as

Pb(z, τ) =

∫ κb

0

R(κ, τ, z)dκ for κb = 0.11Up

Pr(z, τ) =

∫ ∞
κr

R(κ, τ, z)dκ for κr = 3.78Up.

This choice of κb ensures that the instantaneous energy of the counted electrons is negative,

while this choice of κr corresponds to radiation at ωr = 175ωL. Here, it is clear that the

propagation induces the population of bound electron states earlier in the pulse. Indeed,

for z = 0, these states are not occupied until τ ≈ To, while by z = 0.1 mm, they become

occupied by τ = 0.5To. Likewise, it is evident that the high-energy recollisions emerge

only around z = 0.2 mm.

Figure 5.22b shows the yield of the harmonics greater than ωr from the quantum cal-

culation, i.e. the integral of the power spectrum
∫∞
ωr
|Ẽ(z, ω)|2dω. We see that these modes

are either amplified or absorbed for 0.2 mm < z < 0.7 mm; at other positions, they

are comparatively quiescent. This range corresponds exactly to the range of z in which

we observe an overlap in the bound state population and the recolliding population. In-

deed, it is only when both of these states are occupied that interference between them

can occur in the quantum model, leading to the emission (or absorbtion) of these modes

of the field. Furthermore, we show the time-profile of these modes as a function of z in

Fig. 5.22a, by plotting the amplitude of the analytic representation |Êab(z, τ)| computed for

the modes ω > ωr. We see that these high-harmonics are generated at the same times τ

as the recollisions. However, they have a nontrivial spatiotemporal evolution, indicating

rapidly evolving phase-matching conditions.

By looking at the electron trajectories, we can determine the mechanism of the increase

of the recollision energy beyond the usual 3.17Up + |Ip| cutoff. We have focused on the

trajectories belonging to the first family of recollisions containing the anomalously high-
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Figure 5.23: Trajectory analysis of 4Up recollisions at z = 0.37 mm, using the classical
model. (a) Joint probability distribution of (x, κ) on a logarithmic scale, for electrons
which come to rest at x near the first extremum of the laser field, i.e. near times τ = τm,
and then recollide with kinetic energy κ. (b) A typical trajectory from the classical model
with κ > 4Up (blue line), a typical trapped trajectory (red line), the SFA trajectory with
the same initial conditions as the 4Up trajectory (dashed cyan line), and the SFA trajectory
initiated at a time τ0 near time τ = τm with the maximum recollision kinetic energy (solid
cyan).

energy recollisions, with κ > κr exceeding 4Up, at z = 0.37 mm. We have observed that

most of these electrons come to rest at some position x > 0 near to the core, before achiev-

ing their first recollision. In Fig. 5.23a, we have plotted the joint probability distribution

of x and κ, the kinetic energy of each electron’s subsequent recollision. We see that the

electron’s x is highly correlated with its κ, and in particular the highest energy recollisions

come to rest at about x = 4.5 a.u., very close to the core. A typical example of such a

trajectory, with κ > 4Up, is plotted in Fig. 5.23b. Because these trajectories approach the

core with low kinetic energy, they very nearly become trapped there. This is evidenced by

the initial similarity of this recolliding trajectory to the typical trapped trajectory plotted in

Fig. 5.23b. Since these anomalously high energy recollisions come so close to the core that

they barely escape trapping, one may expect the Coulomb field to play a central role in the

increase in energy of these trajectories.

We assess the role of the Coulomb field through two calculations based on the strong-

field approximation (SFA), one in which the Coulomb field is neglected entirely [3], and

one in which it is treated a perturbation [20]. In the first calculation, we compute the
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trajectory of the electron with the same initial conditions (x0, v0) as the 4Up trajectory

plotted in Fig. 5.23, but neglecting the Coulomb field. Hence, xSFA(τ) = x0 + v0τ −∫ τ
0

∫ τ ′
0
E(z, τ ′′)dτ ′′dτ ′, where z = 0.37 mm, and this trajectory is plotted in Fig. 5.23.

We see that xSFA agrees well with the true trajectory until about τ = τm = 0.39To, the

extremum of the electric field, at which point the close encounter with the core takes place.

In the second calculation, we fix x0 = 4.5 a.u. and v0 = 0, and find the initial time

τ0 near τm such that the subsequent recollision kinetic energy of the SFA trajectory with

these initial conditions, κSFA, is at a maximum. This results in κSFA = 3.69Up, and the

corresponding trajectory is also plotted in Fig. 5.23. It is seen to be quite close to the true

high-energy recolliding trajectory. Furthermore, the effect of the Coulomb field on the

return kinetic energy may be included perturbatively [20]. This yields a maximum return

kinetic energy of simply κSFA− V (0) = 4.1Up. This value of the maximum kinetic energy

is in excellent agreement with the maximum energy recollision we observed for this z (see

Figs. 5.20b and 5.20d).

Therefore, while the Coulomb field has a decisive effect on the electron dynamics, it is

not responsible for the increase in the high-harmonic cutoff energy per se. The maximum

cutoff energy can be calculated using a Coulomb-perturbed SFA with E(z, τ), the propa-

gated electric field. Because the Coulomb perturbation is always present and independent

of the field, the increase in energy must be solely due to the change of shape of the field. In

other words, the SFA cutoff for an initially monochromatic field of κSFA = 3.17Up becomes

κSFA = 3.69Up after propagation to z = 0.37 mm due to the accumulated radiation at other

frequencies, and this causes the increase in the cutoff energy. Nevertheless, the Coulomb

interaction near τm, though brief, is critical for making these higher-energy recollisions

accessible to the electrons. Indeed, the only way that the trajectory shown in Fig. 5.23 can

bring back 4Up to the core is by becoming momentarily trapped there; the SFA trajectory

with the same initial condition, also shown in Fig. 5.23, does not come back to the core at

all. This recalls the mechanism by which delayed recollisions acquire recollision energies
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Figure 5.24: High harmonic spectra of the quantum and classical models at z = 1 mm in
(a) the low-ionization fraction regime and (b) the intermediate-ionization fraction regime.
The gas densities are chosen to give a similar peak free-electron density in each case. A
sin2 window was applied to the fields prior to computation of the spectra. (a) Incident pulse
peak intensity I = 5× 1013 W · cm−2, gas density ρ = 2× 1019 cm−3. (b) Incident pulse
peak intensity I = 9 × 1013 W · cm−2, gas density ρ = 1018 cm−3. The vertical axes are
directly comparable.

near the high-harmonic cutoff in the high-intensity regime, as explored in Ch. 3.

5.5.2 Harmonic generation from ground-state atoms

Now, we return to the more realistic case of pulse propagation through ground-state atoms,

focusing on the low- and intermediate-ionization fraction regimes. We will illustrate the

extent to which it is possible to unravel the buildup of the quantum spectrum through phase-

space analysis of the classical model.

Low-order harmonic generation

Figure 5.24 shows the spectra of the field |Ẽ(z, ω)|2 at z = 1 mm for the quantum model

and the classical model with the gσ distribution, henceforth referred to simply as the clas-

sical model. Similarly to the scattering-propagation experiment (Fig. 5.19), we see a good

agreement for the low frequencies, and no agreement for the high frequencies. We can

attribute the discrepancy in the structure of the high-harmonic spectrum to quantum in-
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terference effects, as before. However, the agreement for the low-order harmonics in this

case is actually quite remarkable, because here, most of the electrons are bound instead of

ionized. To probe the extent of this agreement deeper, we study the spatiotemporal evo-

lution of the harmonic radiation between 2ωL and 8ωL, as shown in Fig. 5.25. In the low

ionization fraction regime, the classical and quantum models agree for the amplitude of

the radiation in this frequency band in both z and τ , as seen by comparing Fig. 5.25a to

Fig. 5.25c, particularly for τ < 6To. They also match in phase, as seen in the filtered time-

dependent field at z = 1 mm in Fig. 5.25. This suggests that the generation mechanism

for these low-order harmonics is the same in both cases. In the intermediate ionization

fraction regime, the spatiotemporal evolution of the filtered field’s amplitude and phase is

close in the classical and quantum cases for τ < 3To, but for larger τ there are significant

discrepancies. This indicates that another mechanism of low-order harmonic generation

takes over in the quantum case in this regime.

Because the prominent low-order harmonics of Fig. 5.24 are absent in the scattering

spectrum in Fig. 5.19, we can conclude that these harmonics are due to the presence of

bound electrons. Aside from interfering with the recolliding electrons, the large popula-

tion of bound states contributes to harmonic radiation in two ways: through the nonlinear

response of bound electrons to the field [48, 49, 129, 160, 161], and through the tunneling

current. The radiation from the latter contribution is also known as Brunel radiation [50,

162]. Both of these mechanisms of bound state radiation dominate the response of the

atoms at the fundamental frequency and the low harmonic orders, i.e. those magnified in

the insets of Fig. 5.24. Because we tuned the classical model to match the ionization prob-

abilities of the quantum model, we should expect the Brunel contribution of both models

to be similar. On the other hand, if it turns out that the classical and quantum models also

agree for the nonlinear response of bound electrons, this is an added bonus. The advantage

of the classical model compared to the quantum model is that by looking in phase space, we

can distinguish the contributions of bound electrons from ionizing electrons. This allows
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Figure 5.25: Spatiotemporal evolution of low-order harmonics in the low-ionization frac-
tion case (a),(c),(e) and the intermediate ionization-fraction case (b),(d),(f). Frequencies
in the range [2ωL, 8ωL] were considered in the calculation of the filtered analytic field
Êab(z, τ), where the post-processing consisted of multiplying E by a sin2 window. (a),(b)
Harmonic amplitude |Êab(z, τ)| from the quantum model. (c),(d) Harmonic amplitude
|Êab(z, τ)| from the classical model. (e),(f) Time-dependent harmonic field Re[Êab(z, τ)]
at z = 1 mm. In both sets of panels, the fields are normalized by the maximum harmonic
amplitude obtained in the quantum model.
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us to confirm that in fact, the classical model does capture the bound electron radiation.

As suggested by Fig. 5.14, the electrons in the classical model follow very different

kinds of trajectories depending on their initial energy Ei. Bound electron trajectories are

certain to end in a state with energy Ef very close to Ei. In Fig. 5.14, there is clearly a crit-

ical energy which separates trajectories that are certain to remain bound from those which

have a significant probability of ionizing, i.e. ultimately ending with an energy Ef > 0.

Note that, in Fig. 5.14, we only represent Ef < 0, but the region of Ei where we observe

a wide-ranging distribution of Ef far from Ei actually coincides with the one from which

ionization takes place. We obtained this critical energy Ec(z) as a function of the propa-

gation distance from our propagation simulations. Subsequently, we split the distribution

function into two parts: the part consisting electrons with Ei < Ec and the part consisting

of electrons with Ei ≥ Ec. By averaging over the latter distribution, we obtained the clas-

sical tunneling current vt(z, τ), which is the mean dipole velocity of the electrons likely to

ionize, emulating quantum tunneling. Averaging over the former distribution gives the clas-

sical bound current vb(z, τ). Because the total distribution function is the sum of these two

distribution functions, the total classical current (or mean dipole velocity) is v = vb + vt.

Figure 5.26 compares the spectra of the tunneling current and the total current for

z = 0 and z = 0.5 mm in both the low- and intermediate-ionization regimes. In the

low-ionization fraction regime, where the initial ionization probability is about 5 × 10−3,

the tunneling current makes a small contribution to the first and third harmonics at z = 0,

as show in Fig. 5.26a, and by z = 0.5 mm, its contribution to the fifth harmonic becomes

relatively small as well, as shown in Fig. 5.26c. Therefore, most of the low-order har-

monic signal throughout propagation in the low-ionization fraction regime is due to the

bound-electron radiation, as opposed to Brunel radiation. The good agreement between the

classical and quantum ionization probabilities implies that the classical tunneling current

is in agreement with the tunneling current, and correspondingly the bound currents are in

agreement as well. Thus, we conclude that in the low-ionization fraction regime, the pri-
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Figure 5.26: Evolution of the classical tunneling current spectrum in the low-ionization
fraction case (a),(c) and the intermediate-ionization fraction case (b),(d). The dash-dotted
purple curves are the full dipole velocity spectrum |ṽ(z, ω)| from the classical model, while
the solid cyan curves are the spectrum of the classical tunneling current |ṽt(z, ω)|. A sin2

window was applied to the velocities for the computation of the spectrum.
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mary mechanism of low-order harmonic generation, at least up to the fifth harmonic, is the

bound-electron nonlinearity. Furthermore, the classical model and quantum model are in

agreement for the generation and propagation of these harmonics, as shown in Fig. 5.25.

For the intermediate-ionization regime, on the other hand, Figs. 5.26b and 5.26d indi-

cate that the tunneling current is comparable to the total current. Indeed, it seems to dom-

inate the total current at frequencies near ωL, and for the other harmonics the two currents

are comparable, indicating the bound radiation and Brunel radiation are also comparable.

However, in this regime the agreement between the classical and quantum low-order har-

monics for τ < 3To (Fig. 5.25b, 5.25d, and 5.25f) gives way to gradually worse agreement

for larger τ . The agreement for smaller τ , when the probability of ionization is still rela-

tively small, suggests that the radiation due to the bound electron motion in the classical

and quantum models are still in agreement, as in the low-ionization fraction regime. At

the same time, we also expect the tunneling current and thus the Brunel radiation to be

in agreement. Hence, the discrepancy must be due to quantum interference effects, which

at these low-harmonic orders may come from low-energy recollisions [73] and electron

trapping in excited states [163].

High-order harmonic generation

Now we consider the buildup of high-harmonic radiation during the laser pulse propagation

through ground-state atoms. In Fig. 5.27a-b, we have plotted the amplitude of the field E

in the quantum model for frequencies ω > 2Up + |Ip| in the (z, τ) plane, for the low -

and intermediate-ionization fraction regimes, respectively. Note that Up is larger in the

intermediate-ionization fraction regime, because of the higher initial peak intensity of the

pulse. We observe very different behavior in the two cases. In the low-ionization fraction

regime, the maximum amplitude of the high-harmonic radiation oscillates considerably

during propagation, a phenomenon known as Maker fringes [38, 164], limiting the coherent

buildup of the high harmonics. On the other hand, in the intermediate-ionization fraction
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Figure 5.27: Spatiotemporal buildup of high-harmonic radiation in the quantum model in
the low-ionization fraction case (a),(c) and the intermediate-ionization fraction case (b),(d).
Frequencies in the range [2Up + Ip,∞) were considered in the calculation of the filtered
analytic field Êab(z, τ) and the filtered analytic dipole velocity v̂ab(z, τ), where the post-
processing consisted of multiplication by a sin2 window. (a),(b) Amplitude of the high-
harmonic part of the field, normalized to the maximum amplitude recorded in each simula-
tion. (c),(d) Phase φab mod 2π of the high-harmonic emission, in radians, computed from
the phase of v̂ab(z, τ).
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regime, we observe two bursts of radiation, around τ = 3.6To and τ = 4.2To, which build

up continuously throughout propagation. The improved coherent buildup in this regime

compared to the low-ionization fraction regime is also reflected by the higher intensity

high-harmonic spectrum at z = 1 mm in Fig. 5.24b compared to Fig. 5.24a.

This behavior indicates differing phase-matching conditions in each regime, and this

can be revealed by computing the phase of the high-harmonic emission. The source of

the radiation is the dipole velocity of the atoms v. In order for the radiation to build up

coherently over a given propagation distance, the phase of the radiation contained in v must

not vary much over that distance. We compute the phase by first computing the analytic

dipole velocity v̂ab(z, τ) in the frequency range of interest, applying Eq. (5.14) to v. Now,

the phase of the complex v̂ab will tell us the phase of the emitted radiation. The phase will

have a natural evolution at the carrier frequency of the signal in this frequency range, so

we must subtract this off to observe variations in the phase about this reference phase. We

define the reference phase as

φref(τ) = arg[v̂ab(0, 0)] +

(
1

τf

∫ τf

0

d

dτ ′
arg[v̂ab(0, τ

′)]dτ ′
)
τ.

Hence, we define the phase of the high-harmonic emission as

φab(z, τ) = arg[v̂ab(z, τ)]− φref(τ).

We have plotted φab(z, τ) for the frequency range ω > 2Up + |Ip| in Figs. 5.27c-d. In

the low-ionization fraction regime, we see that the phase of emission varies significantly

throughout propagation, possibly at a constant rate which depends on τ . This behavior

is consistent with the oscillations in the amplitude of the radiated field at these frequen-

cies observed in Fig. 5.27a: a rotating phase during propagation would imply that the

high-harmonic modes alternate growing and receding as the radiation at a particular z al-

ternates from in-phase to out-of-phase with the incoming radiation. On the other hand, in
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Figure 5.28: Electron dynamics at z = 0 (a),(c) and z = 0.5 mm (b),(d) during laser-
pulse propagation through a ground-state gas in the intermediate-ionization fraction regime.
(a),(b) Recollision flux R(κ, τ ; z) from the classical model. (c),(d) Spectrogram of the
dipole acceleration da(τ) from the quantum model. The spectrograms were computed using
a cos4 window of duration 0.15To. The dotted lines indiciate 2Up + |Ip| and 3.17Up +
|Ip|. The left axes, indicating the recollision kinetic energy κ, are related to the right axes,
indicating the radiated frequency ω, by κ = ω.

the intermediate-ionization fraction regime, for certain fixed τ , we see bands of phase of

which are almost constant in z. The places where this occurs are consistent with the values

of τ for which the bursts of high-harmonic radiation are seen to build up.

Can we explain the phase properties of the high-harmonic emission using the classical

model? It is not immediately obvious how to do so. In Fig. 5.28, we compare the recolli-

sion flux from the classical model to the spectrogram of high-harmonic emission from the

quantum model in the intermediate-ionization regime. As in the scattering-propagation ex-

periment, we see a strong correspondence between the classical and quantum calculations,
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even after propagation to z = 0.5 mm. Comparing Figs. 5.28c and 5.28d, we see that

between z = 0 and z = 0.5 mm, the intensity of emission at given times and frequencies

has not changed significantly. On the other hand, Fig. 5.27d shows that at certain times, the

phase of the emission has changed significantly. Is there anything in the classical recolli-

sion flux plots which might provide an explanation for this behavior? One thing we have

observed in these plots is the following. We look at each branch of recollisions containing

the maximum-energy recollision for a given time-interval, i.e. the dark blue branches in

Fig. 5.28a. As propagation proceeds, we observe the part of these branches colored blue

(indicated the most probably trajectories) moves along these branches to the left, as indi-

cated by the arrows in Fig. 5.28b. The branches remain, but where they were once blue,

they are now either green or yellow, indicating a much lower probability. It is possible that

the different colors of the branches represent different families of trajectories, but a more

detailed trajectory analysis would be necessary to confirm this. Also, it appears that the co-

herent buildup seen in Fig. 5.27b occurs preferentially at the times τ where the recollision

branches in Fig. 5.28 remain blue the longest. More work needs to be done to clarify this,

in particular the relationship with the classical trajectories.

5.6 Higher-dimensional models

In this section, we report the results of simulations of models of higher dimensions than the

unidirectional pulse propagating through a gas of one-dimensional atoms. Up until now,

the analysis has focused on this case in part because its low dimension makes it fastest

to simulate and easiest to analyze. However, it also seems to be the minimal description

necessary to capture the HHG-related phenomena occurring in the parameter ranges of

interest. The simulations presented here are intended to provide some evidence that this is

indeed the case, i.e. that our results and conclusions are valid even when the dimension of

the model is increased in certain ways.
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Figure 5.29: High harmonic spectrum for the scattering-propagation experiment for the
quantum model with 2D atoms at z = 0.37 mm. The dashed lines indicate 2Up + |Ip|
3.17Up + |Ip|. For the 2D quantum atom, we estimate Ip . −0.339 a.u. using the vari-
ational principle with a Gaussian trial wave function for the ground state. Upper inset:
Normalized integrated yield of harmonics with ω > 175ωL as a function of z. Lower inset:
Spectrum of the harmonics in the cutoff region as a function of z. The harmonic intensities
are indicated by the logarithmic color scale.

5.6.1 Scattering-propagation experiment with two-dimensional quantum atoms

Figure 5.29 shows the result of a simulation of unidirectional pulse propagation through

2D quantum atoms, i.e. Eqs. (5.4) and (5.5), in the scattering-propagation setup. The initial

conditions are the same as in Sec. 5.5.1, except with an initial condition for the 2D wave

function of

ψ0(x, y) =

(
π

γ2

)−1/2
exp

{
−γ

2

2

[(
x− E0

ω2
L

)2

+ y2

]}
.
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The shape of the spectrum is qualitatively similar to the 1D case, seen in Fig. 5.19. This is

true throughout propagation, in particular for the cutoff region of the spectrum, evidenced

by the similarity between the lower insets of Figs. 5.19 and 5.29. The buildup and absorp-

tion of the anomalous high harmonics is also similar, seen when comparing the upper inset

of Fig. 5.29 and Fig. 5.22b. The similarity between the 1D and 2D results suggest that

the mechanism of the cutoff extension, namely the emergence of recollisions with higher

maximum kinetic energies, is robust with respect to the dimension of the atomic model.

This provides additional evidence that the 1D atomic models with a 1D field are sufficient

to understand the mechanisms of HHG in linearly-polarized fields.

5.6.2 Forward- and backward-propagating waves with one-dimensional classical atoms

Here, we investigate the strength of the backward-propagating waves compared to the

forward-propagating waves in the classical model with 1D atoms. We solve Eqs. (5.6)

coupled to Eq. (5.7). Because these equations require a numerical representation of the

particles at every z simultaneously, a simulation for realistic gas lengths (on the order of

millimeters) is prohibitively computationally expensive. Hence, we performed a much

smaller-scale simulation of the pulse entering the gas from vacuum. The initial conditions

of the fields α(z, t = 0) = α0(z) and β(z, t = 0) = β0(z) are taken as

α0(z) =


E0 cos

(
ωLz
c

)
sin2

(
2π(z−L/2)

L

)
for − L

2
≤ z < 0,

0 for 0 ≤ z < L
2
,

(5.32a)

β0(z) = 0, (5.32b)

whereE0 = 0.0377 a.u., ωL = 0.05 a.u., and L = 8cTo. These parameters correspond to a

peak incident pulse intensity of I = 5×1013 W ·cm−2, a wavelength λL = 0.9 µm, and an

incident FWHM pulse duration of 6 fs, and a domain length of L = 7 µm. They are meant

to be similar to the parameters of the low ionization fraction regime (Sec. 5.4.2), though a
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Figure 5.30: Forward and backward propagating waves at t = 4To. Left panel: backward
propagating wave β(z, t). Right panel: The part of the forward propagating wave due to
radiation, i.e. ∆α(z, t) = α(z, t)− α0(z − ct).

smaller wavelength and pulse duration are chosen here to reduce the computational time.

The gas density ρ(z) is taken as

ρ(z) =


0 for − L

2
≤ z < 0,

2× 1019 cm−3 for 0 ≤ z < L
2
.

With the above density and the field initial conditions (5.32), t = 0 corresponds to the

time the front of the pulse first enters the gas. The initial electron distribution function

f(x, v, z, t = 0) = f0(x, v) is given by Eq. (5.27) with gσ as the initial energy distribution.

Figure 5.30 shows the results of the simulation at t = 4To. We see that at at this

point, the backward propagating wave reaches the left boundary of the domain (left panel

Fig. 5.30) while the forward propagating wave reaches the right boundary. We have ob-

served that the high-frequency oscillations around z = 0 seen in the left panel of Fig. 5.30

are at least in part caused by our relatively coarse discretization of the distribution function:

when we increase Np, the amplitude of these oscillations decreases. However, the maxi-

mum amplitude of the radiated fields seems close to converged. For a fair comparison of

the typical amplitudes of the forward-propagating versus backward-propagating radiation,

we have plotted only the forward-propagating radiation due to the particles ∆α(z, t) =
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α(z, t)− α0(z − ct) in the right panel of Fig. 5.30. Because the propagation distance is so

short, neither of the fields’ amplitudes is comparable to E0: the larger of the two, ∆α(z, t)

has a maximum amplitude of about 3 × 10−3E0. However, the maximum amplitude of

β(z, t) is about 23 times smaller than that. Because it is so small, it is unlikely that it has

a significant influence on the electron dynamics. Thus, this provides some justification for

neglecting backward propagating waves from the reduced models.
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CHAPTER 6

CONCLUSION

The difficulty in painting a complete theoretical picture of high harmonic generation lies in

the multiscale, nonperturbative nature of the process. On the single-atom level, ionization

depends nonlinearly on the strength of the incident laser field, and the subsequent electron

dynamics is chaotic. This underlying complexity is reflected on the macroscopic scale by

the nontrivial spatiotemporal reshaping of the laser field during propagation. This reshap-

ing impacts the recolliding trajectories further along the gas, with the coherent buildup of

high harmonic radiation hinging on the continued in-phase emission from these trajecto-

ries all along the gas. In this thesis, we have examined these processes implicated in HHG

on both microscopic and macroscopic scales using classical mechanics. We have focused

on first-principles reduced models, which fully retain the nonlinear Coulomb interaction

on the microscopic scale and the self-consistent field interaction on the macroscopic scale

at the expense of describing the system’s behavior in three-dimensional space. Their re-

duced dimension makes the models tractable to theoretical analysis and numerical simula-

tion. Furthermore, we have exploited the phase space perspective provided by the classical

model to identify the mechanisms behind recollisions, coherent harmonic radiation, and

laser pulse reshaping observed in both classical and quantum calculations.

6.1 Summary

In Ch. 3, we undertook an analysis of recollision dynamics in very strong, external laser

fields, when one would expect the strong-field approximation to be valid. We found instead

that the Coulomb field plays an indispensable role, enhancing delayed recollisions and pro-

moting them to energies as high as the high-harmonic cutoff. Besides the physical effect

of recalling electrons, the Coulomb interaction introduces nonlinearity into the laser-atom
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system, which leads to the creation of unstable periodic orbits. The invariant manifolds of

one of these orbits was demonstrated to organize the delayed recollisions in phase space:

the stable manifold separates trajectories with different delays and the unstable manifold

regulates the recollision energy of each trajectory. Our results underscore the importance

of fully accounting for Coulomb effects when one studies recollision-driven harmonic gen-

eration, even in the over-the-barrier ionization regime where complete single ionization is

assured [158].

In Ch. 4, we derived tractable reduced models for intense laser pulse propagation from

first principles using the variational formulation. The Maxwell-Schrödinger equations in

the dipole approximation were cast as a classical field theory, with both an action principle

and a Hamiltonian formulation. A variant of the Vlasov-Maxwell equations was proposed

as the classical model corresponding to the Maxwell-Schrödinger equations, and its vari-

ational structure was shown to have similarities to that of the Vlasov-Mawell equations

and the Maxwell-Schrödinger equations. This similarity facilitated parallel derivations of

a hierarchy of classical and quantum reduced models for the self-consistent interaction be-

tween atomic electrons and electromagnetic waves. Because we consistently worked in the

variational formulation, our reduced models preserve the variational structure of the parent

models and contain no unphysical dissipation. The quantum model we derived agrees with

previously obtained reduced models [132, 137]. Moreover, the Hamiltonian formulation of

the reduced models allowed us to identify conservation laws for the classical and quantum

models, which for the quantum models had not yet been deduced.

In Ch. 5, we investigated the implementation of the classical model for intense laser

pulse propagation and used it to identify the mechanisms behind the coherent buildup of

high-harmonic radiation in phase space. Through comparisons with quantum simulations,

we showed how to build a classical analog of the electron’s ground-state wave function that

leads to quantitative agreement between quantum and classical propagation simulations.

These simulations can agree stunningly well for the dominant frequency components of
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the field near the incident laser frequency ωL, where ionization losses and the blueshift of

the driving laser are encoded. On the other hand, for high frequencies, we found that quan-

tum interference effects play an essential role in shaping the high-harmonic plateau and

cutoff. Nevertheless, we found that the classical model accurately predicted the timing and

frequency of HHG throughout propagation through its faithful portrayal of the recolliding

trajectories. Thus, we were able to explain the unexpected extension of the high-harmonic

cutoff seen in the quantum scattering-propagation calculation in terms of an increase of the

maximum possible recollision energy seen in the classical calculation. Furthermore, when

considering harmonic generation from ground-state atoms, we showed that the classical

and quantum models can exhibit quantitative agreement for low-order harmonic genera-

tion, and in this case the classical model conclusively shows this radiation comes from the

nonlinear response of bounded electrons.

6.2 Perspectives

We believe the reduced classical model for laser pulse propagation that we built in this

thesis opens up several potential avenues of further investigation. For HHG, the connec-

tion between the phase properties of the high-harmonic emission observed in the quantum

calculation and the corresponding recolliding trajectories of the classical calculation needs

to be explored further. Semiclassical calculations show that the classical action accumu-

lated along a trajectory and parameters such as the time between ionization and recollision

largely determine the phase of radiation from that trajectory [55, 64]. These quantities can

be directly extracted from our classical model, so perhaps combining a study of the evo-

lution of these quantities throughout propagation with semiclassical arguments can form

a more complete picture of high-harmonic buildup based on the classical model. There

are opportunities to advance the model itself as well. One obvious route is to extend the

model to allow for higher-dimensional electromagnetic fields. This is crucial not only for

modeling HHG in elliptically- and circularly-polarized fields, but also for accounting for
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three-dimensional effects, in particular plasma defocusing [40, 43].

Besides HHG, our model may also be relevant for understanding THz generation and

filamentation. For the latter, the classical model may address the increasing need for first-

principles models of the microscopic laser-atom interaction [121, 160]. An extension of

the model into three dimensions would be a prerequisite for filamentation. For THz gener-

ation, our present reduced model may already prove useful. A significant source of on-axis

THz emission is the spatially asymmetric distribution of ionized electrons with respect to

the x-direction [143, 165]. Furthermore, control of the THz generation process has been

demonstrated by modifying the electron trajectories after ionization using multicolor fields

[119, 140]. With the successes of the classical model in reproducing quantum ionization

rates and accurately describing electron trajectories during pulse propagation, it is likely

that all the necessary elements are in place for a study of THz generation based on the clas-

sical model. A particularly intriguing possibility is connecting the conserved quantities,

Qα and Qβ , Eqs. (4.35), to THz emission. These quantities contain a term proportional to∫
ρxedz, which is the average x-component of the electron’s position along the propagation

direction. This term should serve as a measure of the asymmetry of the ionized-electrons,

thus providing a potential link to THz emission.

A last possibility concerns using Hamiltonian control theory to optimize properties of

HHG emission, e.g. optimizing phase-matching to increase the range of coherent harmonic

buildup. Knowledge of a Hamiltonian system’s invariant solutions allows the application

of Hamiltonian control theory to steer a system’s behavior towards desired outcomes [166].

In the context of the free electron laser, which is also driven by the self-consistent inter-

action of electrons and the electromagnetic field, Hamiltonian control has been successful

in stabilizing the intensity fluctuations of the radiated light [167, 168]. Hence, it natural

wonder if, using Hamiltonian control of the classical model, one can stabilize the intensity

fluctuations of the high-harmonic light that occur during propagation, also known as Maker

fringes [38, 164].
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APPENDIX A

PROOF OF MORRISON’S LEMMA

In our discussion of the Jacobi identity for finite-dimensional Hamiltonian systems in Ch. 2,

we use a result sometimes referred to as Morrison’s lemma [95], which we prove here. The

lemma states that, for arbitrary observables F (z), G(z) and H(z) and an antisymmetric

Poisson matrix Π(z), we have

ΠinΠjk∂iF
(
∂2njG∂kH + ∂jG∂

2
nkH

)
+ ΠinΠjk∂iG

(
∂2njH∂kF + ∂jH∂

2
nkF

)
+ ΠinΠjk∂iH

(
∂2njF∂kG+ ∂jF∂

2
nkG

)
= 0,

where summation over each index is implied. To demonstrate this, we group together all

the terms containing the same orders of differentiation for each of F , G, and H on the

left-hand side of the above equation and rearrange, yielding

ΠinΠjk∂iF∂kH∂
2
njG+ ΠinΠjk∂jF∂iH∂

2
nkG

+ΠinΠjk∂iG∂kF∂
2
njH + ΠinΠjk∂jG∂iF∂

2
nkH

+ΠinΠjk∂iH∂kG∂
2
njF + ΠinΠjk∂jH∂iG∂

2
nkF

We have arranged the terms above such that the sequence of indices appearing across each

line are the same, with only the order of F , G, and H changing from line to line. Because

the indices in each term are just dummy indices that are summed over, they may be renamed

however we like. By renaming the indices k ↔ j followed by n ↔ k for the first term

of each line, and i ↔ j for the second term of each line, and using the commutativity of

derivatives, the FGH terms may be factored out of each line. This gives a common factor
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of a Poisson matrix term on each line, such that the final expression may be factored to give

(ΠikΠnj + ΠikΠjn)
(
∂iF∂jH∂

2
nkG+ ∂iG∂jF∂

2
nkH + ∂iH∂jG∂

2
nkF

)
.

By the antisymmetry of Π, the Poisson matrix term is zero, proving the lemma.

This lemma is extremely useful, because it simplifies calculations for verifying the

Jacobi identity for Poisson brackets. Indeed, as long as the Poisson matrix is antisymmetric

(which is a prerequisite), this lemma means one only needs to check whether Eq. (2.15) is

satisfied in order to verify the Jacobi identity. In fact, in Ref. [95], this lemma is proved

for the infinite-dimensional case. Specifically, it is shown that terms involving second-

order functional derivatives which arise from the calculation of the Jacobi identity will

automatically cancel out by virtue of the antisymmetry of the Poisson operator Π̂.
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APPENDIX B

DERIVING THE DIPOLE APPROXIMATION WITHIN THE VARIATIONAL

FORMULATION

In Ch. 4, our parent models in both the classical and quantum cases assume the dipole

approximation from the outset. Here, we show a higher-level parent model, only requiring

hypotheses HP 1-2. The electrons are still assumed to be nonrelativistic, but because we

do not make the dipole approximation, magnetic effects are included. We only show the

classical version here. We find it most natural to write down the action (or Hamiltonian)

first, and subsequently deduce the model equations. The action is

A[x, ϕ,A] =

∫
(LP + LEM)dt, (B.1a)

LP = 4π

∫
ρ(r)

[
|ẋ|2

2
− V (x)− ϕ(r, t) + ϕ(r + x, t)− ẋ ·A(r + x, t)

]
dµ0d

3r,

(B.1b)

LEM =
1

2

∫ (
|∇ϕ(r) + Ȧ(r)|2 − c2|∇ ×A(r)|2

)
d3r, (B.1c)

Here, we have suppressed the functional dependence of the electron displacement field

x, though it is the same as before, namely x = x(r, t,x0,v0). Compared to the action

Eq. (4.6) in the dipole approximation, the only change is to the particle Lagrangian LP.

The electrostatic potential ϕ now appears in two terms, with the first representing the elec-

trostatic energy of the ions, and the second the electrostatic energy of the electrons (which

is why their sign differs). Also, ϕ and A are now evaluated at r + x, the position of the

electron in the lab frame, as opposed to r, as was the case in Eq. (4.6b). This choice for

the Lagrangian is natural: the electromagnetic potential part of LP is essentially the Low

Lagrangian [106], with a term added to account for the electrostatic potential of the ions.
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We confirm that this Lagrangian properly captures the physics by computing the Euler-

Lagrange equations. These are

ẍ = −∇xV (x) +∇ϕ(r + x, t) + Ȧ(r + x, t)− ẋ× [∇×A(r + x, t)] , (B.2a)

−
[
∇2ϕ(r, t) +∇ · Ȧ(r, t)

]
= 4π

[
ρ(r)−

∫
ρ(r′)δ3 (r− r′ − x(r′, t,x0,v0)) dµ0d

3r′
]
,

(B.2b)

−
[
∇ϕ̇(r, t) + Ä(r, t)

]
= c2∇× (∇×A(r, t))

+ 4π

∫
ρ(r′)ẋ(r′, t,x0,v0)δ

3 (r− r′ − x(r′, t,x0,v0)) dµ0d
3r′. (B.2c)

The first equation is the Lorentz-force law for the electrons, which now includes the mag-

netic force and also evaluates the fields at r + x, instead of r. The second equation is

Gauss’ Law, with the source being the total microscopic charge density. This is the sum of

the ion charge density and the electron charge density, which is an integral over the elec-

trons whose present position in the lab frame is r = r′ + x(r′, t,x0,v0). The last equation

is the Maxwell-Ampère Law, where again the microscopic current density is computed by

integrating over the electrons presently located at r. Hence, the physical content of these

equations is reasonable and contains the elements we expected. To implement the dipole

approximation and derive the classical parent model of Ch. 4, one simply Taylor expands

the electromagnetic potential parts of Eq. (B.1b) about x = 0 to first order in x (and ẋ) and

truncates higher-order terms. Hence, the particle Lagrangian in the dipole approximation

Eq. (4.6b) is obtained. Using a similar approach, analogous results should be obtainable

for the quantum model.

As for the Hamiltonian formulation of the classical model without the dipole approx-

imation, only a simple change to Hamiltonian structure given by Eqs. (4.21) is required.
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Here, the Hamiltonian and bracket are

H[f,E,A] = HP +HEM, (B.3a)

HP[f,A] =

∫
ρ(r) f(x,p, r)

[
1

2
|p + A(r + x)|2 + V (x)

]
dµd3r, (B.3b)

HEM[E,A] =
1

8π

∫ (
|E(r)|2 + c2|∇ ×A(r)|2

)
d3r, (B.3c)

{F ,G} =

∫ {
ρ−1

∫
f [Ff ,Gf ] dµ+ 4π (FE · GA −FA · GE)

}
d3r. (B.3d)

The only change compared to Eqs. (4.21) is that in HP, the vector potential is evaluated at

r + x instead of r, just like in the Lagrangian. The equations of motion for this case are

ḟ = − [p + A(r + x)] · ∇xf + {∇V (x) + [p + A(r + x)] · ∇A(r + x)} · ∂pf,

Ė(r) = c2∇× (∇×A(r)) + 4π

∫
ρ(r− x)f(x,p, r− x) [p + A(r)] d3xd3p,

Ȧ = −E.

The first equation is very similar to the Vlasov equation, though it contains an additional

label r for the parent ion position and an explicit interaction between the electron and its

parent ion. By standard manipulations, this equation can be shown to be equivalent to

Eq. (B.2a). The second equation is the Maxwell-Ampère Law, equivalent to Eq. (B.2c),

with the current density again evaluated for the electrons with the present position r. The

last equation relates the electric field to the vector potential. To obtain Gauss’ Law, one

is again obliged to search for the corresponding conserved quantity of this Hamiltonian

system. Here, it turns out to be

C(r) = ∇ · E(r) + 4π

∫
ρ(r− x)f(x,p, r− x)d3xd3p,

as can be verified by showing that {C(r),H} = 0. Choosing C(r) = 4πρ(r) at t = 0

ensures that Gauss’ Law, i.e. Eq. (B.2b), is satisfied at all times. Finally, the classical parent
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Hamiltonian model of Ch. 4 is obtained by expanding the vector potential in Eq. (B.3b) to

zeroth-order about x = 0 and truncating higher-order terms. Put simply, one assumes that

A(r + x) ≈ A(r).
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APPENDIX C

PROOF OF THE JACOBI IDENTITY IN THE DIPOLE APPROXIMATION

In this appendix, we prove the Jacobi identity for the Poisson bracket of the parent classical

model of Ch. 4, i.e. Eq. (4.25b), when the bracket is expressed in terms of the physical

variables, f(x,v, r), E(r), and B(r). We also show that this proves the Jacobi identity for

the original bracket, which is expressed below as

{F ,G} = {F ,G}P + {F ,G}EM, where (C.1a)

{F ,G}P =

∫
f
{
ρ−1 [Ff ,Gf ] + 4π (FE · ∂vGf − ∂vFf · GE)

}
dµd3r, (C.1b)

{F ,G}EM = 4π

∫
(FE · GA −FA · GE) d3r. (C.1c)

Here, we have introduced the particle bracket {·, ·}P, which is the part containing f , and

the purely electromagnetic bracket {·, ·}EM. To proceed, we replace A as a dynamical

variable by the magnetic field B = ∇ ×A, as is done in the Hamiltonian formulation of

the Vlasov-Maxwell equations. The functional derivatives transform as

Ff = F̃f , FE = F̃E, FA = ∇× F̃B,

so that the particle bracket is unchanged and the electromagnetic bracket becomes

{F ,G}EM = 4π

∫
{FE · (∇× GB)− (∇×FB) · GE} d3r. (C.2)

In order to check the Jacobi identity for the full bracket expressed in these variables,

we need to calculate the functional derivatives of the bracket with respect to each variable.
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We obtain the following:

{F ,G}f ≈ {F ,G}Pf ≈ ρ−1 [Ff ,Gf ] + 4π (FE · ∂vGf − ∂vFf · GE) , (C.3a)

{F ,G}E ≈ 0, (C.3b)

{F ,G}B ≈ 0. (C.3c)

Here, we have used the notation “≈” to mean that we have only written the terms of the

functional derivatives of the bracket that contain first-order functional derivatives, while

neglecting to write any of the second-order derivative terms. Thanks to Morrison’s lemma

(see §A), we have no need to keep track of these terms, since the antisymmetry of bracket

(C.1a) guarantees that they will vanish under cyclic-permutation-summation. Using Eqs. (C.3),

we can calculate one of the terms of the Jacobi identity, {H, {F ,G}}, giving

{H, {F ,G}} ≈ {H, {F ,G}}P ≈
∫
ρ−2f

[
Hf , [Ff ,Gf ]

]
dµd3r

+ 4π

∫
f

{
ρ−1[Hf ,FE · ∂vGf − ∂vFf · GE] +HE · ∂v

(
ρ−1[Ff ,Gf ]

+ 4π(FE · ∂vGf − ∂vFf · GE)
)}

dµd3r. (C.4)

The fact that {H, {F ,G}} ≈ {H, {F ,G}}P follows from Eqs. (C.3b)-(C.3c).

Now, summing the above equation over the cyclic permutations of FGH will yield the

Jacobi identity. Doing so for just the first line of Eq. (C.4) yields a term proportional to

[Hf , [Ff ,Gf ]] + [Ff , [Gf ,Hf ]] + [Gf , [Hf ,Ff ]] = 0, by virtue of the Jacobi identity for the
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canonical bracket [·, ·]. Hence, we obtain

{H, {F ,G}}+ {F , {G,H}}+ {G, {H,F}}

=4π

∫
f

{
ρ−1
(
FE · [Hf , ∂vGf ]− GE · [Hf , ∂vFf ] +HE · [∂vFf ,Gf ] +HE · [Ff , ∂vGf ]

)
+4π

(
(HE · ∂v)(FE · ∂v)Gf − (HE · ∂v)(GE · ∂v)Ff

)
+ρ−1

(
GE · [Ff , ∂vHf ]−HE · [Ff , ∂vGf ] + FE · [∂vGf ,Hf ] + FE · [Gf , ∂vHf ]

)
+4π

(
(FE · ∂v)(GE · ∂v)Hf − (FE · ∂v)(HE · ∂v)Gf

)
+ρ−1

(
HE · [Gf , ∂vFf ]−FE · [Gf , ∂vHf ] + GE · [∂vHf ,Ff ] + GE · [Hf , ∂vFf ]

)
+4π

(
(GE · ∂v)(HE · ∂v)Ff − (GE · ∂v)(FE · ∂v)Hf

)}
d3µd3r

=0.

Thus, we have proved the Jacobi identity for bracket (C.1a) with the electromagnetic

bracket given by Eq. (C.2). In fact, we have also proved it when the electromagnetic

bracket is instead given by Eq. (C.1c), because the property that this proof relies on—

namely, {H, {F ,G}} ≈ {H, {F ,G}}P—is also satisfied by bracket (C.1).
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APPENDIX D

COMPUTATION OF THE INTEGRALS APPEARING IN THE POISSON

MATRIX

Here we show how to arrive at Eq. (4.74) and indicate the way to obtain the L→∞ limits

of Eqs. (4.69c)–(4.69d) and expressions like that in general. When −m 6= n, the integral

in Eq. (4.74) is zero. This can be seen by splitting the integral into two parts using a partial

fraction expansion:

∫ ∞
−∞

R sin2 (πR)

(R−m)(R + n)
dR = A

∫ ∞
−∞

R sin2 (πR)

R−m
dR +B

∫ ∞
−∞

R sin2 (πR)

R + n
dR (D.1)

A and B are the coefficients of the partial fraction expansion, and they satisfy A + B = 0

and An−Bm = 1. These improper integrals should be interpreted as

lim
Rmax→∞

∫ Rmax

−Rmax

dR. (D.2)

This interpretation originates from considering a finite-dimensional version of the model

described by Eqs.(4.60)–(4.62) by truncating the infinite set of harmonic modes with |k| >

kmax, and then letting kmax →∞.

We shift R by −m and n in the left and right integrals of Eq. (D.1), respectively, yield-

ing

A

(∫ ∞
−∞

sin2 (πR) dR +m

∫ ∞
−∞

sin2 (πR)

R
dR

)
+B

(∫ ∞
−∞

sin2 (πR) dR− n
∫ ∞
−∞

sin2 (πR)

R
dR

)
(D.3)

Thanks to interpretation (D.2) and the fact that A + B = 0, the first and third terms of
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expression (D.3) cancel each other out. Meanwhile, since both limits of the integrals go

to infinity simultaneously, we can safely say that the integral of any odd function is zero.

Thus, the second and fourth terms of expression (D.3) go to zero independently.

When −m = n, the value of the integral is −nπ2. To find this, start from the left-hand

side of Eq. (D.1) and immediately shift R by n, yielding

∫ ∞
−∞

R sin2 (πR)

(R + n)2
dR =

∫ ∞
−∞

sin2 (πR)

R
dR− n

∫ ∞
−∞

sin2 (πR)

R2
dR (D.4)

Once again, the first integral vanishes. This leaves the second term, which is a standard

integral that evaluates to π2.

Thus, we have shown that, for integer m and n,

∫ ∞
−∞

R sin2 (πR)

(R−m)(R + n)
dR = −nπ2δ−m,n. (D.5)

All of the sums (or integrals in the L → ∞ limit) appearing in Eqs. (4.69c), (4.69d), and

(4.79) may be evaluated using similar manipulations. In fact, based on the above sequence

of calculations one can identify by inspection which integrals will be zero and which will

not. The integrals that contain a k2 or a (k − m)2 term in the denominator will always

survive because after splitting the integrand using a partial fraction decomposition, these

terms will always integrate to a multiple of π2. All the other terms in the decomposition

will have only a term like k or k − m in the denominator, which leads to the integration

of an odd function over a symmetric domain and equals zero. If the denominator does not

contain any k2 or a (k −m)2 term [nor a (k −m)(k + n) term which becomes (k −m)2

when n = −m], then that integral has to be zero.
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Schrauth, A. Gaeta, C. Hernández-Garcı́a, L. Plaja, A. Becker, A. Jaron-Becker,
M. M. Murnane, and H. C. Kapteyn, “Bright coherent ultrahigh harmonics in the
kev x-ray regime from mid-infrared femtosecond lasers,” Science, vol. 336, p. 1287,
2012.

[34] G. Li, J. Yao, H. Zhang, C. Jing, B. Zeng, W. Chu, J. Ni, H. Xie, X. Liu, J. Chen,
Y. Cheng, and Z. Xu, “Influence of ionization suppression on high-harmonic gener-
ation in molecules: Dependence of cutoff energy on driver wavelength,” Phys. Rev.
A, vol. 88, p. 043 401, 2013.

198



[35] E. Constant, D. Garzella, P. Breger, E. Mével, C. Dorrer, C. Le Blanc, F. Salin, and
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[64] P. Salières, B. Carré, L. Le Déroff, F. Grasbon, G. G. Paulus, H. Walther, R. Kopold,
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