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Professeur, École Centrale de Lyon Rapporteur

Liliana BUDA-PREJBEANU
Enseignante-chercheuse, CEA-SPINTEC Rapporteur

Myriam PANNETIER-LECOEUR
Directrice de Recherche, CEA-Service de Physique de l’État
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1
I N T R O D U C T I O N

In recent years artificial intelligence demonstrates impressive progress
allowing to achieve cognitive tasks such as image or speech recog-
nition which were initially too complex to be done by computers.
Henceforth, beyond the execution of precise instructions, computation
becomes more and more synonymous of systems able to learn from
data and adapt their response as a function of their environment. This
breakthrough was led by the development of innovative brain-inspired
algorithms since the 50’s. First observations of biological brain by
neuroscientists gave rise to the development of one the most popular of
such kind of algorithms, called artificial neural networks. Despite lack
of understanding how the biological brain fully works, these algorithms
were able to outperform humans in several particular tasks. A striking
example of the power of these brain-inspired algorithms was high-
lighted through recent defeats of masters at the game of Go [16][17].
Even if this is a major feat in artificial intelligence AI community, it
should not mask an important failure in the way these computation
successes were achieved. Indeed, the energy consumption of computers
running AI algorithms is much larger than the one of the biological
brain, and it should continue to increase with the increase of the num-
bers of parameters required to be tuned for more and more complex
tasks. One reason why running brain-inspired computing consumes
more energy than the brain comes from fundamental architecture dif-
ferences between the biological brain and nowadays computers where
memory and processing are spatially separated causing an important
back and forth transport of data and as a consequence a large energy
dissipation. On the contrary, the brain is a massively parallel archi-
tecture where neurons and synapses holding processing and memory
are entangled and close to each other. For this reason, conventional
computers are not optimized for running brain-inspired algorithms.
These observations motivate developing alternative approaches taking
inspiration from biology, called bio-inspired computing approaches,
and build alternative physical systems which combine high computing
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performances for cognitive tasks and low energy consumption. In order
to develop these brain-inspired systems, it is important to be able to
emulate the behavior of biological neurons [18][19][20].

These computational units of the brain can be seen as small nonlin-
ear oscillators connected to each other through tunable connection
called synapses. Physicists and neuroscientists have developed different
computing models based on assemblies of nonlinear oscillators [21][22].
For instance, leveraged dynamical phenomena occurring in the brain,
such as synchronization, to compute. Such models are more powerful
at pattern recognition when the number of oscillators is large (there
are 1011 neurons and 1015 synapses in the brain). Implementing these
models in hardware therefore necessitates assembling huge number
of nonlinear oscillators. In order to avoid enormous circuit sizes, the
physical devices emulating neurons and synapses should be sufficiently
small. For this reason, nanodevices that can emulate the functionali-
ties of neurons and synapses are required for building brain-inspired
physical hardware. In particular, nano-oscillators are very promising to
emulate biological neurons. Despite numerous theoretical attempts to
achieve brain-inspired operations using assemblies of nano-oscillators,
no physical demonstration was reported. This was mainly due to the
high sensitivity of devices to noise at the nanoscale and the difficulty
to tune the properties of such nano-oscillators. However, recently, by
leveraging the exceptional properties of magnetic nano-oscillators, a
first demonstration of brain-inspired computing was achieved using
a single spin-torque nano-oscillator [23] for spoken digit recognition.
However, to achieve more complex cognitive tasks, it is necessary
to assemble together several oscillators, and to demonstrate a very
important property of a neural network: learning. An iterative process
through which a neural network can be trained using an initial frac-
tion of the inputs and then adjusting internal parameters to improve
its recognition or classification performance. One difficulty is that
training assemblies of nano-oscillators requires tuning the coupling
between them.

This thesis presents a first experimental demonstration of brain-
inspired computing with a physical assembly of coupled nano-oscillators.
This demonstration leverages the synchronization of spin-torque nano-
oscillators for pattern classification illustrated through the demon-
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stration of vowel recognition task. Importantly, through the high
frequency tunability of spin-torque nano-oscillators, the learning abil-
ity of coupled nano-oscillators is demonstrated for the first time [24].

The first chapter of the thesis presents the main motivation of brain-
inspired computing and focuses on the way oscillations observed in
biological neurons can be leveraged to build computational models
that can be implemented with assemblies of nano-oscillators. Different
nano-oscillator technologies promising to achieve this goal are pre-
sented.

The second chapter introduces spin-torque nano-oscillators. The phys-
ical phenomena and principle leading to oscillations are described. A
particular focus is given to the nonlinear dynamics and the synchro-
nization ability of spin-torque nano-oscillators which will highlight
their potential for brain-inspired computing.

The third chapter introduces briefly the particular class of magnetic
vortex- spin-torque nano-oscillators studied in this thesis. The par-
ticular dynamics and synchronization ability of these oscillators is
presented both theoretically and experimentally. I will show that the
phase-locking properties of a spin-torque nano-oscillator to an external
microwave source can be modified though the coupling to another
oscillator.

The fourth chapter presents the main experimental brain-inspired
computing results. I will show that four coupled spin-torque nano-
oscillators can classify spoken vowels by synchronizing to external
stimuli. The experimental learning procedure leads to a recognition
rate of 88%.

The fifth chapter presents simulation studies performed in order
to understand the origin of the recognition performances observed
experimentally. The simulations show that the frequency tunability
and mutual coupling between oscillators are crucial to obtain high
recognition rates.

The sixth chapter presents a simulation approach for building larger
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arrays of spin-torque nano-oscillators. I will present an analytical
model that allows to optimize the operating points and the physical
properties of the oscillators for brain-inspired computing. I show that
array size of about 300 spin-torque nano-oscillators can be achieved
taking into account the physics of the oscillators and manufacturing
constraints.

Finally, I will present the main conclusions of both experimental and
simulation approaches developed in this thesis. Several perspectives
of this work will be briefly discussed.
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2
O S C I L L AT I O N S F O R C O M P U T I N G

In this chapter, I will present the main motivation of taking inspi-
ration from the brain and in particular from its oscillatory features to
realize energy efficient computing devices. This will allow to introduce
the brain-inspired computing approach developed in this thesis. In
the first part of this chapter, a particular focus will be given to brain
architecture and to biological neurons that can be seen as nonlinear
oscillators. Then, brain-inspired computing approaches both in terms
of algorithms and hardware will be briefly introduced, and the main
brain-inspired approaches based on coupled oscillators, in particular
those where synchronization phenomena is leveraged, will be described.
Finally, a brief overview of nano-oscillator technologies available for
building brain-inspired computing systems will be briefly introduced
in the last section of this chapter.

2.1 oscillations in the brain

 

Neuron

Synapse

Figure 1: Schematic of a parallel network of neurons and synapses

Despite impressive progress since last century in the development of
computing algorithms and hardware, for many cognitive tasks such as
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speech or visual recognition, the brain is still much more energy effi-
cient than classical computers. To have an idea, its power consumption
is relatively low, of the order of 20 W [25]. From the computing point
of view, this observation motivates to understand the way biological
brain computes.

At the end of 19s and beginning of 20s century, first descriptions
of the architecture of the brain were initiated by the work of Golgy
and Ramon y Cajal, where the cellular texture was identified. Biolog-
ical brain is composed by an astronomic number of interconnected
nervous cells, called neurons which are estimated to be of the order
1011 in the human brain (see Fig. 1). These cells are connected to
each other through tunable connections called synapses, which are es-
timated to be of the order of 1015. The plasticity of the brain, allowing
learning are due to this tunability of synapses. Synaptic mechanisms
behind these processes are still not well understood. In this thesis,
the main focus on the brain will concern biological neurons which are
often seen as the "computation" unit of the brain.

2.1.1 Description of biological neurons

Biological neurons emit electrical signals which have a spiky shape
if one draws the temporal evolution of the signal. Those spikes are
emitted when neurons experience an external stimulus. They receive
incoming trains of spikes from their dendrites (see Fig.2.b)). Thus,
a very important process which occurs is the integration of these
temporal stimuli in the cell body (as an electrical capacitor). Indeed,
those electrical stimuli charge the membrane potential of the cell body
(see Fig.2.c)). This integration occurs with a certain leakage. Then,
when a certain threshold is reached for the membrane potential, the
neuron fires an electrical spike (voltage) in the axon part (see Fig.2.d))
called as action potential.
Different models were proposed to describe the integration process
of biological neurons [26], and a first detailed model describing the
mechanisms behind the firing of the action potential was proposed in
50’s by Hodgkin and Huxley [27]. In this model, the ion flows through
the chemical permeable behavior of the membrane are described [28].
The model can be described as follows: the outside of the neuron
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Figure 2: a) Schematic of a neuron composed of three main parts: cell body,
dendrites and axon. b) Incoming signals from the dendrite. c)
Leaky integration in the cell body. d) Firing of action potential in
the axon.

is filled in majority by Sodium ions Na+, while the inside is filled
in majority by Potassium ions K+. Two chemical gradients try to
lead to a situation where the concentration of both ions are equal
inside and outside of the membrane. It should be noticed that the
membrane of the neuron (yellow in Fig.3.a)) has pores which allow
ionic exchanges between the inside and outside of the membrane. In
addition, ion pumps (represented in orange in Fig.3.a)) try to expels
K+ ions and bring back Na+ ions inside of the membrane. Due to
chemical mechanisms, there are more positive charges outside than
inside the neuron. Thus, the membrane has a negative potential which
is evaluated to -70 mV.

When it increases in the presence of external stimuli, the membrane
potential reaches a first step at -55 mV. At this potential, the ion
gated channels for Na+ (represented in clear green) open, and Na+
ions enter massively inside of the membrane causing an increase of
the membrane potential. This phase is called as the "depolarization"
phase. When the membrane potential reach a second threshold at
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Figure 3: a) Schematic of the axon membrane: the inside of the neuron cell
is in majority filled with potassium ions (K+) while the outside
medium is in majority filled with sodium ions (Na+). The ions
migrate through leak and gated channels, while an ion pump
maintains the higher potassium concentration inside the neuron.
b) Hodgkin-Huxley model: a capacitance models the membrane,
the ion leak channels are modeled by a resistance and a generator,
each gated channel for potassium and sodium ions is modeled by
a gated resistance and a generator.

+35 mV, the Na+ gated channels close and K+ gated channels open.
At this moment, K+ ions are massively expelled from the cell which
causes a decrease of the membrane potential. This phase is called
"repolarization". After this phase, both ion gated channels remain
close and the ion pumps bring back the K+ and Na+ concentrations
to the initial levels. This last phase is called "refractory" phase, and
during it the membrane potential comes back to its initial level of -70
mV.

This spiking phenomena can be described by an equivalent electrical
circuit presented in Fig.3.b). The capacitance CM corresponds to the
membrane, the generator EL and resistance RL corresponds to the
ion pump and ion leak channels. The generator and gated resistance
(EK , RK) and (EN , RN ) represent the gated channels respectively for
K+ and Na+ ions. External stimulus is represented by the current I.
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Figure 4: a) Schematic of the membrane potential evolution in time during
the firing of an action potential. b) Depolarization phase: the
sodium (Na+) gated channels opens c) Repolarization phase: the
sodium gated channel close and the potassium (K+) gated channels
open. d) Refractory time: both gated channels for potassium and
sodium are closed. The ion pump brings the membrane potential
back to it initial level.

It should be noticed that this model can be simplified by consid-
ering that once the membrane potential reaches a threshold (-55 mV),
it spikes. Thus, one can consider that when neurons receive external
stimuli, it integrates the signal with a leakage, then when a certain
threshold is reached for the membrane potential, a spike occurs which
is sent to the axon. The LIF model is called Leaky-Integrate and Fire
model (LIF) [26]. This simpler model doesn’t describe the biological
refractory phase or the origin of the spike, however it constitutes a
easier approach for computation. The equivalent electrical circuit of
this model corresponds to the circuit presented in Fig.3.b) but without
the two central branches containing the tunable resistances. In this
model, the membrane potential leaks with a certain time constant
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τM = RLCM and the temporal evolution of the spike can be assimi-
lated to a Dirac function.

2.1.2 Why can neurons be modelled as nonlinear oscillators?

Figure 5: a) Temporal evolution of the input stimulus sent to a neuron
following the LIF model. b) Temporal evolution of the membrane
potential of LIF neuron. c) Output spike train.

Fig.5 shows how a neuron following the LIF model will react to two
constant stimuli. For the first input step stimulus having a smaller
amplitude, the potential membrane of the neuron doesn’t reach the
spiking threshold. Thus after the input step, the neuron leaks and
comes back to its initial membrane potential. For the second input
step having a higher amplitude, the membrane potential reaches the
spiking threshold, thus the neuron spikes. This phenomena occurs
periodically as long as the constant amplitude of the input stimulus
is higher than a certain threshold value. One can even calculate the
frequency of these emitted spikes (in the LIF model), called firing rate.
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Figure 6: Evolution of the frequency of the firing rate of a neuron following
the LIF model as a function of the input current (schematic).

The firing rate is plotted in Fig.6 as a function of the amplitude of the
input current stimulus. Thus, using the LIF model, one can see from
the evolution of the spiking frequency that the neuron is a nonlinear
oscillator. Here, the nonlinear behavior comes from the fact that under
a certain amplitude input stimuli, the neuron does not fire (is not os-
cillating) but once this threshold is reached it starts to oscillate with a
frequency which depends nonlinearly on the amplitude of the stimulus.

From this important observation obtained using a simple spiking
model for the neuron, and which can be also obtained with more
elaborate models [29], the brain itself can be seen an assembly of
small nonlinear oscillators (neurons), that are interconnected to each
other through tunable connections (synapses). This approach is also
consistent with various nonlinear phenomena observed in the brain
and which characteristic of nonlinear dynamical systems, namely syn-
chronization [21], complex transients [30], or chaos[31]. Even if the way
the brain computes is not fully understood today [22], the previous
observations motivated theoretical models to compute with assemblies
of nonlinear oscillators [32][33] (presented in the next section) in order
to build brain-inspired computing systems that can carry interesting
features of the brain such as its low energy consumption. Following
this line of thinking, in this thesis, we will focus on the implementation
of brain-inspired computing systems made of assemblies of nonlinear
oscillators. In particular their synchronization ability will be leveraged.
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2.2 brain-inspired computing

In this section, the general context of brain-inspired computing both
in terms of brain-inspired algorithms and dedicated brain-inspired
hardware used for computing will be presented. At the end, a particular
focus on brain-inspired approaches leveraging the oscillatory behavior
of neurons (seen in the previous section) will be emphasized.

2.2.1 Artificial neural networks

Despite the lack of a complete understanding on how the biological
brain fully works, first observations in neuroscience gave rise to a
series of brain-inspired algorithms called as artificial neural networks.
Those algorithms which are the first example of brain-inspired or
neuromorphic computing approaches are today one of the most fa-
mous and widely used algorithms for solving complex problems in
the field of "machine learning". For many problems, where it is very
difficult or even impossible to implement an explicit rule for solving
them, machine learning methods are able to learn an implicit rule.
Machine learning algorithms find such implicit rules, by tuning their
inner parameters. This tuning depends on the structure of the data
on which those algorithms are applied. Different classes of learning
can be identified such as: supervised learning, unsupervised learning
and also reinforcement learning.

Nowadays, the most famous and widely used class of learning is
the supervised learning class, popularized through the development of
deep-learning in the last decades [34]. In this learning framework, two
distinct phases should be distinguished: training and inference. During
the training phase, the input data used for the learning process are
initially labeled, meaning the algorithm a priori has an access to the
class of the incoming input data. For instance, in the case of image
classification problems, the image data are labeled by the name of the
concept they represents (cat or dog for example). During this training
phase, the inner parameters of the algorithms are modified. Once the
algorithm has been trained successfully on this labeled data, those
parameters become fixed. Then, the algorithm is then used to realize
the inference phase. During this phase, new unlabeled data which
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were not presented during the training procedure are sent as input
and the algorithm applies what it learned during the training phase.

As opposite to supervised learning, unsupervised learning corresponds
to algorithms for which the incoming data used for learning are not
explicitly labeled, the unsupervised algorithm itself detect some regu-
larities or structure in the input data without having any access to
additional information. One famous example of unsupervised learning
is K-clustering techniques [35]. This class of learning algorithms is
typically used for problems where labeled input data are not available.
Finally, reinforcement learning is a other distinct class of learning
algorithms for which one should consider a framework problem where
an agent takes action in an environment which should be explored.
As a consequence of the action of that agent in this environment, its
state variable is modified (for instance its position) and in addition it
receives a cumulative reward as long as it acts in the environment.

The learning technique used in this thesis for the demonstration
of neuromorphic operations with the magnetic nano-oscillators (intro-
duced in next sections), will belong to supervised learning class. For
this reason, we focus in the following on supervised learning methods,
which are the most powerful today. First supervised learning algo-
rithms appeared in the 50s through the development of perceptron
algorithms allowing to find the linear combination parameters to fit
data. After facing few disinterest periods refereed as "AI’s winter",
supervised learning encountered new success in 80s and 90s, partly
due to the progressive increase of computational power. Many famous
machine learning approaches were developed in the framework of
supervised learning, namely support vector machine (SVM), kernel
methods, and in particular artificial neural network. This last ap-
proach will be leveraged in the context of this thesis in order to realize
neuromorphic computing.

Artificial neural network algorithms are constituted of a network
of nonlinear units, called artificial neurons. Those artificial neurons
are interconnected to each other through tunable connections called
as synapses. Initially, most artificial neurons were spiking neurons,
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Figure 7: Schematic of a formal neuron.
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Figure 8: Most common activation functions used in artificial neural net-
works: a) Arc tangente function. b) Sigmoid function. c) Rectified
Linear Unit function (ReLu).

however nowadays the most commonly used neurons are formal neu-
rons which have a continuous response and as a consequence are much
simpler than biological neurons presented in the previous section,
see Fig.7. Those formal neurons achieve simply two tasks: they sum
the inputs they receive, and apply to the resulting sum a nonlinear
function called as activation function. The result of the application
of this nonlinear function corresponds to the output of the formal
neurons. In terms of neuroscience analogy, the activation function of
such formal neurons can be seen as the firing rate response of the
neuron presented in the previous section, see Fig.6. The most widely
used activation functions are arctan, sigmoid, or rectified linear units
(ReLu) drawn in Fig.8.

In the framework of supervised learning, artificial neural networks
achieve the crucial learning step, by adjusting the connections weights
between formal neurons. These adjustments are realized during the
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training phase. During the inference phase where the ability of the arti-
ficial neural network is tested, the weights are fixed. In this phase, the
input data encounters a series of nonlinear transformations learned
during the training phase. In the following, we will focus on two
examples of artificial neural network architectures widely used for
supervised learning: feed-forward and reccurent neural networks.

2.2.1.1 Feed forward neural networks

In the 2000’s, feed-forward neural networks became famous due
to their achievement in state-of-the-art image recognition and web
advertising. Such networks consist of several layers of neurons which
are connected to each other, one after the other (neurons of the same
layer are not connected to each other). In order to train this kind of
architecture, an algorithm introduced in 80’s called backpropagation
[36] is used. Two important examples of feed-forward neural networks
are fully connected neural networks and convolutional neural networks.
In the case of fully connected networks, each neuron of a given layer
is connected to all the neurons of the next layer, see Fig.9. As a result
the number of weight connections in such a network is very large, and
scales as the square of the number of neurons in each layer. For this
reason, when the number of neurons in layers is increased, training
such network become relatively complex. This occurs for problems
where data have already a large dimension, for instance this is the
case for image recognition.

Figure 9: Schematic of a fully connected feed-forward neural network.

In order to solve image recognition problems, convolutional neural
networks are used. Using them, the state-of-the-art in image recogni-
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Figure 10: Schematic of the LeNet5, a convolutional neural network proposed
by Y. LeCun for digit recognition.

tion is achieved [37]. In this kind of neural network, a filter forming
a feature map (see Fig.10) realizes a convolution operation from one
layer to the next. Here, only the parameters of the filter are tuned
during the learning. As a consequence, the number of parameters to
tune in convolutional neural network is much smaller than in fully
connected neural networks. As for fully connected neural networks,
learning is achieved using back-propagation algorithms. This kind
of network shows very impressive results for image recognition tasks
and is nowadays widely used in computer vision problems. As an
example, inception network [38] was able to achieve, a recognition rate
of 97%, which is better than human performance from the same task.
However, it should be noticed that the training and inference of such
feed-forward neural networks is computationally very costly. In the
case of the inception network, 35 million parameters were adjusted to
achieve training, and every inference requires 19 billions of operations
[39]. In addition, feed-forward neural network can not be used to solve
problems requiring to take into account sequential order in data, for
instance problems such as time series prediction or speech recognition.
For solving such problems recurrent neural networks are required.

2.2.1.2 Recurrent neural networks

Contrary to feed-forward neural networks, recurrent neural networks
have a much larger connection possibility between neurons, and are
not constrained to layer-to-layer connections. Those connections can
form inner loops in the network and thus can cycle in different ways,
see Fig.11. Due to architecture of such networks, the information
cycles in the network can be seen as a memory, which is necessary to
process sequential data as a sentence in speech recognition. Recurrent
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neural networks were able to achieve state-of-the-art performances in
speech recognition [40][41], in particular using two examples of such
architecture namely bidirectional neural network (BRRN)[42], and
long short term memory (LSTM) neural network [43]. In addition
mixtures of convolutional neural network and LSTM neural networks
were used to realize word transcription with human performance [44].
Later in this thesis, LSTM neural networks will be used to achieve
a comparaison with the performances of the experimental oscillator-
based neural network studied in chapter 5. Despite of numerous success
of recurrent neural network, it is important to emphasize the fact that
training such neural network is relatively difficult compared to feed-
forward neural network, in particular, the algorithms may not converge
to a solution even after an infinite number of training steps [45] [46].
In addition, the training algorithm used in such networks (LSTM
and BRNN) called as back propagation through time [47] requires a
large number of training operations and training steps. An alternative
approach to train recurrent network is reservoir computing [48][49],
where the internal connections of the recurrent network are not trained,
and only connections required for the output read-out are trained.
This particular approach will be discussed later in the oscillatory
based architecure section where a first experimental demonstration
using a spintronic nano-oscillator [23], was successfully achieved.

 

X

Y

Figure 11: Schematic of a recurrent neural network.
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2.2.2 Limits of classical computers for running brain-inspired algo-
rithms

Nowadays, artificial neural networks became one of the most power-
ful computing algorithms used to solve tasks in the context of artificial
intelligence. Indeed, as it was shown in the previous subsection, for
tasks as image recognition or speech recognition, the performances
overcome the human ones. Due to these high performances, they
are currently used for big-data analytics such as financial trading
and banking, on-line advertising, health care, medical diagnosis, au-
tonomous driving cars, etc and will be an important development
factor of the sector of the Internet of Things. However, it is important
to emphasize that these brain-inspired algorithms require relatively
large number of computational operations. For instance, few billions
of operations [39] only for inference not considering the learning
are required. Due to this large number of operations, running these
brain-inspired algorithms on non brain-inspired hardware can be an
important source of energy dissipation cost. Indeed, those algorithms
are running on classical architecure computers were the foundation is
refereed to as the Von-Neumann architecure. As can be seen in Fig. 12,
in this architecture, the memory unit is spatially separated from the
processing unit (CPU). In order to achieve a task, classical computers

Figure 12: Schematic of the Von Neumann architecture.

follow a sequence of instructions: retrieve an information in the mem-
ory unit, send it to the processing unit to perform a computation, and
finally store the result in the memory unit. Thus, data are processed
and stored one by one in sequential manner. Due to this architec-
ture, the bus is shared between memory and processing unit which
is referred as "Von Neumann bottleneck" [50]. In this architecture,
information needs to be retrieved in the memory which induces delays
longer than the time required to do the computational operation.
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Moreover, retrievement and storage of information is quite energy
costly compared to the computation itself [51]. For these reasons, the
Von Neumann bottleneck limits both the computational speed and is
a problem in terms of energy consumption. On the contrary, neural
network are massively parallel architecures, where a large number of
parameters of the order of hundred millions [39] need to stored in the
memory and retrieved. This corresponds to an important data flow
between the memory and processing unit. For all of these reasons, the
Von Neumann architecture is not well suited to run brain-inspired
algorithms such as artificial neural networks.

Several hardware approaches were proposed to improve the computa-
tion efficiency of classical computers, for instance using multi-cores
computing devices (corresponding to multiple Von Neumann archi-
tectures) and leverage graphical processing units (GPU) computing
capability in order to accelerate computations to run neural networks
used for example for image recognition [52]. Beyond the time delay
for running these algorithms, some alternative approaches can also
reduce the energy consumption with comparable results on few tasks,
which is the case of the Field Programmable Gate Arrays (FPGA)
[53]. Another solution is to use optical interconnects to reduce the
bottleneck between logic and memory [54][55]. Recently, new hard-
ware chip approaches specialized for machine-learning operations were
proposed by the industrial sector. Some of the most famous example
of those chips often called Application-Specific Integrated Circuits"
(ASIC) are the Tensor Processing Units (TPU) developped by Google
involved in recent alphaGo successes [16][17], A11 bionic neural engine
(Apple), Holographic Processing Unit (Microsoft), NPUs (Nvidia).

In comparison with a single CPU unit, these approaches allow to
gain orders of magnitude in term of energy consumption. Nevertheless,
it still remains orders of magnitudes higher than the energy consump-
tion of the biological brain, several tens to hundreds of kW compared
to 20W [25]. Indeed, for all computing devices presented in this section,
the Von Neumann bottleneck still remains an important energetic
issue. The energy efficiency of the biological brain can be explained
by its architecture where processing carried by neurons is spatially
entangled with memory hold by synapses. As a result, the information
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do not travel long round trips between memory and processing as in
the Von Neumann architecture. This important observation motivates
taking inspiration of the biological brain, not only for powerful brain-
inspired algorithms developed in the last decades, but importantly for
building physical hardware which can perform computation.

2.2.3 Hardware for neuromorphic computing

In the context of very large scale integration (VLSI), the term "neu-
romorphic" was introduced by Mead [56] at the end of the 80’s. At that
time, the first approach was to develop brain-inspired hardware using
complementary metal oxide semiconductor (CMOS) technology. Thus,
several implementation devices were realized emulating neurons follow-
ing the Hodgkin-Huxley model [57], or the LIF model [58][59][60]. In
order to look towards architectures with smaller area occupancy than
those proposed in CMOS, some complementary approaches based on
threshold switching materials were also developed. For instance, re-
cently Pickett et al. proposed a scalable neuron implementation which
resembles the Hodgkin-Huxley model using Mott insulators [61][20].
It should be noticed that in addition to trying to emulate neurons
in hardware, a large effort is focused on leveraging tunable devices
often refereed as memristors, in order to reproduce the behavior of
synapses [62]. In this thesis, we will focus on another approach namely
using oscillations and synchronization phenomena for computing. In
this section, the main neuromorphic chips proposed for brain-inspired
computing will be presented. Some of the implementations emulating
individual neurons will be presented in the "nano-oscillators" section.

In the past decade, different neuromorphic chips were proposed to
reproduce the behavior of large neural networks namely to emulate
the way the brain works and also recently in order to build energy
efficient computing devices. All of these neuromorphic chips were
implemented with the classical CMOS technology and were developed
both through academic (Human Brain Project, Brain in Silicon, ETH
Zurich) and industrial (IBM and Intel) initiatives.

In 2012, as a part of the BrainScaleS project (part of the Human
Brain Project), a neuromorphic chip called HICANN [63] [64] was
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implemented. The main goal was to simulate large neural networks
to understand the behavior of the brain. In this chip, the neurons
are analog devices while synapses and the communications are digital.
Each of these chips implements 128 000 synapses and 512 neurons
where each neuron is modeled using the LIF model. The size of each
neuron is close to 150×10µm2.

In the same approach, another neuromorphic chip called Neurogrid
[65] developed in a different group (Brain in Silicon, Standford Uni-
versity) was used to run brain-inspired computational models. In
this chip, the LIF model was used to emulate the behavior of the
neurons. As for HICANN, the neurons are analog, while synapses are
digital components, and the area occupied by each neuron was also
comparable, of the order of 50 × 50 µm2. However, an important
difference compared to HICANN is that its transistors work in the
sub-threshold conduction regime.

This sub-threshold regime of transistors was also used to implement
analog neuron devices in neuromorphic chips proposed by Indiveri et
al. [19] called Dynap-se. The area occupied by these neurons remains
smaller than for Neurogrid, of the order of 20 µm2. In this chip, the
synaptic connections remains digital. Those chips were used to achieve
ECG signals classification [66].

A fully digital neuromorphic chip called SpinNNaker was also im-
plemented to simulate brain-inspired neural networks (as a part of the
Human Brain Project) [67]. In this case, all the neurons were simulated
using classical micro-processors (ARM processors), see Fig. 13(left).
Those chips were assembled in a large cluster platform made of 500k
cores, see Fig. 13(right). If in terms size and power consumption, the
SpiNNaker approach is still orders of magnitudes from the biological
brain, it is a good example of a brain simulation implementation which
consumes less energy than a classical supercomputer. Interestingly,
with SpinNNaker, different kinds of neuron models can be used (LIF,
Izkhevich model) which is important for the computational neuro-
science community.

Another approach is the fully digital neuromorphic chip developped
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Figure 13: Left: Circuit board of the SpiNNaker device composed of ARM
processors. Righ: The 500 000 cores SpinNNaker Human Brain
platform. Extracted from Hopkins et al. [1].

by IBM, called TrueNorth [2]. The chip emulates 1 million spiking
neurons. The physical layout of this circuit is composed of 256 neurons
which are used to simulate 4000 neurons by time-multiplexing. Each
neuron emulates the LIF model. The size of each of these neurons
is of the order of 100×10 µm2, see Fig. 14. According to authors,
this chip shows better energy consumption performances: consuming
769 times less than SpiNNaker and 176 000 times less than regular
computing processors. This chip was able to realize real-time object
detection tasks, however an important drawback is that it can not
perform learning.

Figure 14: Physical lay-out of the TrueNorth chip, extracted from Merolla
et al. [2].
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More recently, in 2018, a similarly fully digital neuromorphic chip
was proposed by Intel, called Loihi [68]. This chip can emulate 130
000 neurons, where each neuron is modeled using the LIF model.
Contrary to the IBM chip, Loihi is able to perform learning, and it
can solve tasks such as the LASSO optimization problem. As in all
digital approaches, the size of its neurons is still quite large, of the
order of tens of micrometer.

As a conclusion, mixed-analog-digital and fully digital neuromorphic
chips where implemented using CMOS technology. In order to emulate
large neural networks of spiking neurons, the energy consumption of
these approaches is more efficient than the one of classical computers.
However, it is still much larger than the one of biological brain. In
addition, the hardware CMOS circuits used to emulate neurons in
neuromorphic chips still have large lateral sizes (from few micrometers
to few tens of micrometers [2][68] ), which is detrimental to emulate
large and dense on-chip neural networks. For these reasons, in order to
emulate neurons and synapses, it is important to complement CMOS
devices by alternative nanodevices which rich physics can emulate
individually the nonlinear dynamics of the neurons observed in biology.
Very promising nano-devices for this purpose are nano-oscillators, that
will be presented later in this thesis.

2.2.4 Computing using coupled oscillators

In this subsection, we present briefly some computing approaches
leveraging the dynamics of oscillators. Here, those are categorized
in two classes: approaches which aim to solve a specific computing
problem without necessarily leveraging a brain-inspired architecture,
and those for which the oscillator dynamics is used to realize brain-
inspired operations.

2.2.4.1 Computing with coupled oscillators beyond the scope of brain-
inspired approaches

Since the 50’s, oscillators were used to realize computing operations
in binary computers called parametrons. Interestingly, in those initial
approaches, the synchronization dynamics of oscillators was leveraged.
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Two binary states were possible (bits of 0 or 1) depending on the phase
difference of oscillators which in a synchronization situation can be 0
or π. Based on different coupling approaches between those oscillators,
different logical gate operations were implemented in parametrons [69].
The oscillators used at that time were based on classical RLC circuits
which were macroscale. However, in order to build more energy efficient
computing devices, recently a new interest was found in parametron’s
model at the nanoscale, using super conducting nano-oscillators [70],
relaxation nano-oscillators [71], or electromechanical nano-oscillators
(NEMS)[72]. These different nano-oscillators technologies will be de-
scribed in more details in section 2.3.

The dynamics of oscillators found also some interest in particular
computing applications requiring heavy numbers of operations when
using classical computers. In particular, a NP-hard problem called
vertex coloring where an individual variable named "color" need to be
attributed to each node of a graph in such a way that two neighboring
connected nodes will have a distinguishable color, and this by minimiz-
ing the total number of different colors used in the all graph. In order
to find this set of colors, one should choose accurately the coupling
between oscillators in such a way that when they synchronize their
phase repel (anti-phase)[73]. Using the idea, the vertex coloring prob-
lem was demonstrated to be solved using relaxation nano-oscillators
(V O2) [74], for different graph size and topologies.

Another problem requiring large number of operations is image seg-
mentation which corresponds to merging together pixels belonging to
a certain image region following a criteria which could be brightness of
color. For this task, one can consider a 2D array of coupled oscillators,
where every oscillator have a natural frequency corresponding to the
input image. Due to the coupling in this array, and the resulting local
synchronization, the frequency of oscillators converge to each other
for some image regions having similar frequencies. This approach was
studied in simulations using oscillator models that can be applied to
neural, chemical, or electromechanical oscillators [75]. In particular,
recently an interest was also found through simulations, to use coupled
spin-torque nano-oscillators to achieve this task [76].
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The dynamics of oscillators is also used to solve some degree-of- match
problems which again are costly in terms of computation on classical
computers. To evaluate the degree of match (for example between two
images), it is necessary to calculate a distance between two vectors
which can have relatively large dimensions requiring an increasing
number of arithmetic operations as the dimension of the vectors grows.
In the case of an assembly of coupled oscillators, the order parameter
which can be seen as a measure of the synchronization of the assembly,
is used to approximate the degree of match (DOM)[77]. Implemen-
tations using relaxation oscillators (V O2) were proposed [78]. Based
on the same idea, an implementation using four spin-torque nano-
oscillators was proposed in simulations [76] to evaluate DOM. Similar
approaches, including other kind of spintronic devices called spin-hall
nano-oscillators were also recently proposed numerically [79]. It should
be noticed that this degree of match evaluation is an important step
to realize pattern classification task which will presented in the next
subsections.

2.2.4.2 Auto-associative memory using Hopfield networks

Auto-associative memory is a type of memory process observed in
biological brains where a specific memorized pattern can be retrieved
from a noisy, incomplete or altered input information. For instance,
using their auto-associative memory, many readers will be able to
complete the following quote: "I came, I saw, ..." Without a huge effort,
their brain will spontaneously find the complete sentence: "I came,
I saw, I conquered." Auto-associative memories play an important
role in auto-completion or error correction applications [80]. From the
previous example, associative memory operations seem very easy and
simple to realize in the brain, however they are very computationally
costly if they are done on classical computers. To reduce the difficulty
of achieving such operations, alternative approaches which try to take
advantage of the physics of devices were proposed. In particular, in
order to realize such auto-associative memory operations, Hopfield
network [80] is an important example to mention. This network which
belongs to the class of artificial recurrent neural networks is composed
of a set of binary artificial neurons, which can have a value of 0 or 1.
Inspired from condensed matter physics, these neurons can interact
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with each other. By tuning the interaction between those neurons, the
final state of the neurons matches the known pattern desired to be
stored. This approach can be applied to dynamical systems, where
the attractor of the system will correspond to the stored pattern.
When a noisy or incomplete version of this pattern is presented to the
network, the system is set according this input pattern and thus is
away from attractor states. Because of the internal interactions in the
network, the system dynamics leaves its initial state, and converge to
the closest attractor, which coincides with the reconstruction of the
complete corresponding pattern.

Based on first theoretical works on Hopfield networks [80][32], im-
plementations leveraging the dynamics of coupled oscillators were
proposed to realize auto-associative memories. Auto-associative mem-
ory for binary words was proposed using electromechanical oscillators
(MEMS) [81][82], and some implementations using optical laser os-
cillators [83] were investigated. An approach using spin-torque nano-
oscillators [76] was also imagined. However, it should be noticed that
in such associative memories, the coupling between oscillators needs to
be continuously tuned during operations. This tuning can be realized
at the macro-scale for electrical van der Pol oscillators using arbi-
trary waveform signals [84][85] which is very difficult to achieve at the
nano-scale. Another disadvantage of such architectures is that their
scalability is limited. Indeed, for a network of N coupled oscillators,
in order to achieve low error rate recognition theoretically 0.138N
patterns can be stored, and this number is even lower in practical
implementations [86].

2.2.4.3 Hetero-associative memories and pattern classification

Hetero-associative memories are an extension of auto-associative
memory concept. Instead of associating an incomplete or altered in-
put pattern to the same type of complete pattern, hetero-associative
memories can associate for one input pattern type, a different pattern
type. For instance, the biological brain can associate a certain smell
to a a certain visual memory, in this case the type of pattern is com-
pletely different. According to some neuroscience investigations, this
hetero-associative memory process is correlated with particular types
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of oscillations in the brain [87]. This observation motivates the use
of oscillators to implement computing architectures that can achieve
hetero-associative memory operations. In a case where the associated
pattern is a certain defined label, for instance "cat" or "dog" labels
while the inputs are images of cats and dogs, the operation is similar
to pattern classification. Here, the picture of the dog is associated
to his name (and respectively for the cat). Thus, by recognizing a
presented input pattern and associating it to a certain label, pattern
classification is achieved. It should be emphasized that nowadays, in
the context of machine learning, pattern classification is an important
operation for various applications, for instance for medical diagnosis
[88], or for image and object detection used by autonomous driv-
ing cars [89]. This use of pattern classification operations motivates
the implementation of oscillator-based approaches which will be able
through their dynamics to efficiently classify patterns. In the following
approaches using oscillators in order to realize pattern classification
will be presented.

One approach is to leverage the way assemblies of oscillators are
able to efficiently evaluate the degree of match (see previous section)
between stored patterns of a defined class and a new presented input.
This evaluation of the matching pattern can be achieved in parallel
using different assemblies of coupled oscillators in a circuit. In order
to realize such kind of associative memories, several models were
imagined with electromechanical oscillators (MEMS) [81], spin-torque
nano-oscillators [90], or CMOS ring oscillators [91]. The architectures
proposed in these works are interesting because they do not require an
important tuning of coupling between oscillators (this is the case for
instance in the architecture proposed by Holzel et al. [84] ). However,
as the number of stored pattern examples increases, a higher number
of read-out circuits (often large in CMOS technology) for assemblies
of oscillators are necessary. This is an important scalability problem
for these architectures.

2.2.4.4 Vassilieva’s architecure

Vassilieva et al. [3] proposed an alternative oscillator-based classifi-
cation approach, where the number of oscillators is independent of
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the number of stored examples. To achieve this goal, the associated
labels of presented input examples correspond to the different synchro-
nization read-outs that can be identified in an assembly of tunable
coupled oscillators. Interestingly, this approach only requires to tune
the natural frequencies of the oscillator assembly and to read-out
the resulting synchronization states appearing in the network. These
characteristics of the architecture make it very suitable for oscillator
based hardware implementations at the nanoscale. Fig.15 shows the
architecture and different synchronization states that can emerge as a
function of the frequency of input oscillators. Interestingly, a learning
approach where the natural frequency of oscillators is modified was
proposed in order to realize pattern recognition. The architecture
which was initially introduced in a theoretical context was adapted
later by Vodenicarevic et al. [4] for physical implementations involving
nanodevices. In particular, a detection scheme for the readout of
synchronization states using counters was proposed [92].

Figure 15: a) Diagram of the oscillator-based architecture proposed by Vas-
silieva et al. [3]. It is composed of two input oscillators A and
B and four core oscillators labeled as 1,2,3 and 4. Blue arrows
represent the coupling between core oscillators and orange arrows
represent the coupling between core oscillator and one of the two
input oscillators (A and B). b) Simulated output synchronization
read-out map. Every colored area corresponds to a particular
synchronization pair of core oscillators labeled in the colorbar.
Figure extracted from Vodenicarevic et al. [4].

Due to presented advantages, this oscillator-based architecture and
its learning approach will be adapted in chapter 4 to realize a first
physical demonstration of pattern classification using spin-torque
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nano-oscillators. Those oscillators, as it will be seen in following chap-
ters, are particularly suitable to implement oscillatory networks such
as the last one presented here. Nevertheless, other nano-oscillators
are available and can be good candidates for similar implementations.
Those will be presented in the next section.

2.3 nano-oscillators

In this section, I present the main categories of nano-oscillators able
to synchronize and that can be useful to build an oscillation-based
computing system. It is important to note that other unmentioned
valuable oscillator technologies can be found, but here we mainly
select those which synchronization ability was demonstrated and that
show a potential to be scaled down to the nanoscale. In this section,
spin-torque nano-oscillators which are the central devices studied in
this thesis are not included. They will be presented in details in the
next chapter.

2.3.1 Why do we need nano-oscillators?

As it was presented in the beginning of this chapter, the brain
has a tremendous number of interconnected neurons and synapses:
1011 neurons and 1015 synapses. Even in the case of brain-inspired
algorithms such as alphaGo [93], one million of artificial neurons are
required. From the observation of such large numbers, one can see that
in order to build reasonable size physical brain-inspired computing
system, the size of the physical devices emulating neurons and synapses
need to be sufficiently small. From a simple numerical calculation,
one can deduce that in order to implement a neuromorphic chip of 1
cm2 surface area emulating more than 108 neurons, the lateral size of
the physical neuron need to be smaller than 1 µm. This observation
motivates brain-inspired implementations realized with nano-devices
in order to emulate neurons and synapses. Thus, following this line of
thinking and the oscillator-based computing approach described in the
previous section, a particular focus is given to nanometric oscillators,
called nano-oscillators.
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2.3.2 Nano-oscillators based on switching devices

In general, these nano-oscillators are composed of a material able
to switch between two or more internal states (physical or chemical).
These switching materials are enclosed by two electrical electrodes
through which an external voltage is applied. As shown in the previous
chapter, such devices are very attractive to build neuristors that can
emulate spiking neuron models such as the Hodgkin-Huxley or the
LIF model [20]. But beyond this aspect, they also can be seen as
auto-oscillators , called relaxation oscillators, that, for some of them
are able to synchronize.

Their auto-oscillation property can be explained as follows. These
devices leverage a large class of different materials that present an
abrupt variation of their electrical property (resistance or voltage)
due to a modification of their physical or chemical state. Importantly,
those states themselves are also modified when the material experi-
ences an applied voltage variation. That voltage variation is often due
to the prior variation of the electrical material property. The combi-
nation of these two inter-dependent variations causes an oscillating
electrical signal at the two terminals of the enclosed material. In terms
of electrical transport measurement, this crucial property is often
translated as a negative differential resistance. In order to deliver an
applied voltage variation due to the prior variation of the electrical
material property, a capacitive device connected in parallel or parasitic
capacitance effects are required. Due to the voltage variations caused
by the enclosed material, this capacitive device is periodically charged
and discharged, see Fig. 16.

From an auto-oscillator point of view, the neuristor proposed by
Pickett et al. [20] based on two Mott insulator Nb2O5 based memris-
tors can be seen as a relaxation nano-oscillator that can emit spikes
periodically when it is biased by a constant voltage. The lateral dimen-
sions of the switching device (enclosed material) of such nano-oscillator
can be nanometric, of the order of 100× 100 nm2 [20] but according
to predictions it can be scaled down to 10 nm [61]. In terms of energy
consumption, data on power consumption are scarce. However, the
energy for one switching event was evaluated to be smaller than 100
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Figure 16: a) Auto-oscillator based on a memristive switching device: a
capacitance C is in parallel of resistance switching device M.
A load resistance R is connected in series. b) Schematic of the
voltage vs time. c) Schematic of the current voltage curve for the
resistance switching device M.

fJ [61]. The maximal spiking frequency of such devices can be of the
order of 1 GHz (1 ns switching time)[20]. Still, the frequency tunability
of such devices needs to be demonstrated experimentally, as well as
their synchronization ability.

Another well studied example of such oscillators are those based
on resistance switching materials experiencing a metal-insulating tran-
sition, such as V O2, for which tunable oscillation frequencies between
90 and 300 kHz can be obtained [94][95]. Frequencies higher than
tens of MHz can be reached [95]. Those oscillators show an endurance
close to 250 millions cycles [96] which still needs to be improved.
Their synchronization was demonstrated recently [97]. In these first
works, the area that the switching device occupies (not considering
capacitive elements), is close to the micrometer square (3× 3µ m2)
[95] but according to author predictions they can be scaled down to
100 nm2. Importantly, oscillators based on V O2 attract researchers
to demonstrate neuromorphic operations for image processing [98][99]
or to find the degree of pattern matching [100]. Recently, such devices
were also used to emulate neurons using the Hodgkin-Huxley model
[101].

Other auto-oscillators based on TaOx, TiOx were proposed to realize
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neuromorphic computing [102][103]. By including CMOS transistors,
these oscillators show high frequency tunability comprised between 30
kHz and 300 MHz [102] and a frequency close to GHz was predicted
[102]. Their synchronization was demonstrated [102] and first attempts
to build an oscillatory neural network that can realize some associative
memory operations [104][33] similar to the work of Hölzel et al. [85]
are proposed. Finally, the area of the switching device is smaller than
the micrometer, of the order of 700× 700 nm2 (not considering the
capacitive element) and authors predict that the device lateral size
can be decreased down to 3 nm [102][105].

As a conclusion of this subsection, it should be noticed than in or-
der to have auto-oscillations with switching devices, the presence of
a capacitive element is crucial, thus the chip-integration of all the
oscillator presented in this subsection should be mainly imposed by
the size of the capacitor, which can be large. The other point is that,
as it was discussed for neuristor devices, for many of those oscillators,
an estimation of the number of operation cycles is still required. In
addition, the existing estimations do not take into account the mean
number of operation cycles of a large number of such devices which
can be quite small considering the device to device variabilities.

2.3.3 CMOS ring oscillators

In order to build a fully CMOS based oscillator computing device,
CMOS ring oscillators are quite attractive. Those oscillators consist
of an odd number of "NOT" logic gates connected to each other and
forming a ring scheme, see Fig. 17 [5]. Due to parasitic capacitive
effects in such kinds of circuits, each of these logic gates switches
with a certain delay time. As a result the signal propagating through
this CMOS ring circuit is oscillating. Due to the fact that this type
of oscillator is based on fully-digital CMOS technology, it is quite
convenient in CMOS integrated circuit requiring an oscillating signal.

The frequency of these oscillators can be tuned by modifying the
time delay of the switching which can be achieved by changing an
additional current entering in each logic gate (Ictrl, see Fig. 18).
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Figure 17: Schematic of a CMOS ring oscillator extracted from Retdian et
al. [5].

Figure 18: Schematic of the electrical circuit of a CMOS ring oscillator, for
which the oscillation frequency can be tuned by modifying the
current Ictrl, extracted from Retdian et al. [5].

Through this technique, a single oscillator can have a large frequency
tunability, as an example from 8 to 16 GHz [106]. In terms of energy
efficiency some of them have relatively low power consumption of
the order of 1.2 nW for a frequency of 1.49 GHz [107]. However
they still occupy large areas (between 105µm2 [106] and 40 µm2).
Synchronization of CMOS ring oscillators was demonstrated [106],
and some models involving such kind of oscillators were proposed
to build hetero-associative memory architectures [91], but still no
physical implementation was reported.
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2.3.4 Electromechanical nano-oscillators

Another important class of nano-scale oscillators are electromechani-
cal oscillators used in nano-electromechanical systems (NEMS). These
oscillators have a part that can oscillate mechanically in space. For
read-out, mechanical oscillations are electrically measured through
piezoelectric effects or electro-static interactions where a mechanical
modification is converted into an electrical signal. Beyond the de-
tection of an eventual oscillation, the read-out allows to actuate the
mechanical motion of the NEMS cantilever. Without this feedback of
the read-out, the cantilever behaves like a spring and thus cannot be
seen as an auto-oscillator. For this reason this feed-back is essential
to obtain auto-oscillations [108].

Fig. 19 shows the image of a NEMS cantilever with a co-integrated
CMOS feedback circuitry, which implements an electromechancial
auto-oscillator [6]. The read-out of the position of the cantilever is
realized through the modification of the electrical capacitance between
the cantilever and the electrode. The resulting electrical signal is am-
plified using a CMOS amplifier and then it actuates the cantilever
through the electrostatic interaction. The presented NEMS device
can reach mechanical frequency oscillations of the order of 8 MHz.
The chip area occupied by the system was 50×70µm2 which is still
larger than the micrometer scale. Higher oscillation frequencies, as
f = 428 MHz [7] with a high quality factor Q = 2500 were reported
which make NEMS auto-oscillators quite attractive. The frequency
of these oscillators can be tuned either by modifying dynamically
the feed-back loop circuitry characteristics [109] or by modifying the
stiffness of the moving part [110].

Several approaches propose to use NEMS for boolean computing,
namely by implementing logic gates [111] or transistor switching de-
vices [112] or by being implemented in memristive crossbar structures
[113]. A hybrid NEMS-CMOS system was also proposed to emulate
the LIF model of the neuron [114] (preliminary simulation work),
for which a firing rate of 10 to 250 Hz was obtained. The energy
consumption of such implementation was smaller than the one for a
fully CMOS technology.
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Interestingly, NEMS auto-oscillators are able to synchronize with
each other using various coupling mechanisms, in particular through
their mutual vibration corresponding to a mechanical coupling [115].
They can also synchronize through optical coupling [116]. In these
cases, the coupling is a local mechanism involving neighboring NEMS
oscillators. In addition, a global coupling solution based on electri-
cal coupling [117], allows through an electrical circuitry to sum all
the oscillating signals of the NEMS oscillators which are then sent
back to each of them by actuating the mechanical oscillations. The
nano-oscillators are attractive for computing, some preliminary sim-
ulation works propose hybrid CMOS-NEMS architectures to realize
neuromorphic computing [114].

a) b)

Figure 19: a) SEM image of the NEMS device and its CMOS circuit, ex-
tracted from Philippe et al. [6]. b) Image of the NEMS implemen-
tation including the feed-back loop, extracted from [7].

2.3.5 Josephson junction nano-oscillators

A Josephson junction is a junction made of two superconducting
electrodes separated by a thin barrier which can be a thin insulating
layer or a normal metal. When such a junction is voltage biased, an os-
cillating super-current is emitted. The frequency of this super-current
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is defined as f = V

φ0
where φ0 = 2.07mV/THz and V is the time av-

eraged bias voltage across the Josephson junction [118]. By modifying
the bias voltage, the frequency of this kind of nano-oscillator can be
tuned from 100 kHz to 1 THz [119]. Interestingly, several Josephson
junctions can electrically couple and synchronize to each other which
allows to reduce considerably the frequency linewidth of the total
emission of the array of Josephson junctions [120][121][122][123]. Since
the observation of these synchonization phenomena, the nonlinear dy-
namics community became attracted to Josephson junctions [124] and
applied the Kuramoto model to decribe its nonlinear dynamics. The
size of such devices is often larger than the micrometer, however some
studies shows that such Josephson junction based devices can scale
down to the nanometer [125] which is attractive for circuit integration.

Recently, an experimental work [126] presents results where two
Josephson junctions were used to emulate two coupled neurons. The
energy per spike of such kind of Josephson neurons was evaluated to
10−17J/spike. Those results open interesting perspectives for neuronal
computation and neuromorphic computing using Josephson junctions.

Despite of the presented advantages, unfortunately, Josephson junc-
tion nano-oscillators can not work at the room temperature. Even
for high Tc superconductors with Tc=90K [127], a nitrogen based
cooling system is still required. Nevertheless, they remain attractive
for super-computing applications.

2.4 conclusion

We have seen briefly in this chapter the main motivations of taking
inspiration from the brain to realize computing devices. Nowadays,
brain-inspired algorithms allow achieving complex cognitive tasks
as pattern recognition. However, these powerful algorithms are still
running on current sequential computers which have a very different
architecture compared to the brain. In particular, the Von Neumann
bottleneck is an important source of energy dissipation in these con-
ventional computers. On the contrary, as we saw in the beginning
of this chapter, the brain is a massively parallel architecture where
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memory and processing are entangled in the form of neurons and
synapses. This architecture difference can explain partly the rela-
tive low energy consumption of the brain compared to nowadays
computers. For these reasons, brain-inspired computing is one the
most promising approaches towards energy efficient computing. In
this general context, one approach is to emulate the way neurons
compute dynamically. For instance, these "computation" units of the
brain can be seen as a nonlinear oscillators, and thus the brain as an
assembly of nonlinear oscillators interconnected together by tunable
connections. As a nonlinear dynamical system, the brain shows a large
variety of nonlinear phenomena and in particular synchronization.
This dynamical state which is believed to play an important role in
memory processes of the brain, was leveraged by different computing
models to realize various brain-inspired computing operations. Thus,
the use of available oscillators able to synchronize to emulate neurons
is an interesting approach. However, a major issue is the scalability
of oscillator based architectures. Indeed, regarding the tremendous
number of neurons and synapses in the brain, in order to build on-
chip computing implementations, physical devices with a lateral size
smaller than the micrometer are required to emulate those biological
units. For this reason, nanometric oscillators called nano-oscillators
are important for building such brain-inspired computing systems.
For this purpose, several types of nano-oscillators available nowadays
were presented at the end of this chapter. Despite of their suitable
nanometric size for many applications, their low power consump-
tion, the existing adapted computing models, and their demonstrated
ability to synchronize, due to their high sensitivity to noise, no demon-
stration of neuromorphic computing at the nano-scale was reported
with these nano-devices. In the next chapter, an exclusive focus will
be given to magnetic nano-oscillators, more precisely to spin-torque
nano-oscillators, through which first demonstrations of neuromorphic
computing were established.
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3
S P I N - T O R Q U E N A N O - O S C I L L AT O R S

In this chapter, I will present the theoretical and experimental state
of the art of spin-torque nano-oscillators. The main physical phenom-
ena behind spin-torque nano-oscillators, namely magnetoresistance
and spin-transfer, will be presented. Those will allow to introduce the
general concept of spin-torque nano-oscillator. Then, I will mainly
focus on the dynamical response of these oscillators in presence of
external stimuli, leading to the synchronization phenomenon which
will be crucial in the neuromorphic approach presented in this thesis.
Finally, the main potential application of spin-torque oscillators will
be considered.

3.1 physical phenomena

Spin-torque nano-oscillators are spintronic devices. Spintronics, also
called spin electronics, studies the influence of a quantum property
of electrons, called spin, on transport properties in materials. To
see this influence, ferromagnetic materials were intensively studied
since Mott (1936)[128]. These materials provide the core foundation
of spintronic devices. In order to understand the physical principle
of spin-torque nano-oscillators, two important phenomena should
be highlighted: magnetoresistance and spin-transfer. To understand
how ferromagnetic materials give rise to these two phenomena, the
electronic transport in ferromagnets is presented in the following.

3.1.1 Electronic transport in ferromagnets

In ferromagnetic materials, electrons contributing to the local mag-
netization, are separated in two categories of population, according
to their spin state: a majority of spin states having a magnetic mo-
mentum parallel to the local magnetization of the ferromagnet, called
majority spins, and a minority spin states having a magnetic mo-
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mentum antiparallel to this magnetization, called minority spins. By
convention these two populations will be respectively referred to as
spins ↑ and ↓. At room temperature, two main classes of materi-
als present ferromagnetic behavior: 3d transition metals and 4f rare
earths. Due to the high electrical resistance and presence of localized
conduction electrons, 4f rare earths are less used in spintronic devices
and are mainly found in permanent magnets [129].

Importantly, 3d transition metals and their alloys, such as Co, Ni or
Fe, combine excellent transport property and ferromagnetic behavior
at room temperature, enabling their wide use for spintronic devices.
At the Fermi level, 3d-transition metals possess an electronic struc-
ture with two kinds of conduction band-shells: 4s and 3d. Fig. 20-a
corresponds to the electronic band structure of these materials having
a high magnetization, such as Nickel or Cobalt. The 4s electrons are
mainly non localized in the material and they have a band structure
close to the one of classical metals. The electrical conduction in this
material is mainly due to the 4s electrons while the ferromagnetism
comes from the electrons of the 3d band.

In these materials, the exchange interaction encourages electrons
to have the same spin direction as their neighbors. Therefore, the
energy of an electron having its spin aligned with the local spin, will
be smaller than the one which will be opposite to it. This induces
an energy splitting of the 3d conduction shell into two energetically
shifted sub-shells 3d↑ and 3d↓ (see Fig. 20-a). An asymmetry of the
number of electrons of spin ↑ and ↓ is thus observed leading to different
density of states at the Fermi level: D↑(EF ) 6= D↓(EF ).

In the corresponding electronic band structure, one can see an overlap
of 3d and 4s bands. Due to this overlap, when 4s electron charge
carriers pass through the metal, they are scattered by the 3d localized
states having the same energy and spin orientation. The difference
of the density of state at the Fermi level implies a different scatter-
ing probability depending on the spin orientation. As an example in
Fig. 20-a , the Fermi level is higher in terms of energy than the 3d↑
sub-shell. Therefore, in absence of localized d-band electrons, the 4s↑
conduction electrons are not scattered. While, on the contrary 4s↓ con-
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duction electrons are scattered because 3d↓ electrons are still present
at the Fermi level. At the end, considering these scattering processes,
the resistivity of electrons ↓ is higher than electrons ↑: r↓ > r↑. There-
fore, the conductivity of the ferromagnetic material is spin dependent
and can be described as two separate parallel conductive channels
with different resistance ↑ and ↓ (see Fig. 20-b). This circuit model
is often called the "two-currents" model used by Fert and Campbell
[130]. In this case, the total resistivity r of the ferromagnetic material
can be expressed as follows:

r = r↑r↓
r↑ + r↓

(1)

However thermal fluctuations and defects in the metal can induce
spin-flips, and therefore an additional term r↑↓ should be taken into
account.

Figure 20: Figure extracted from [8]. a) Illustration of the electronic band
structure of a 3d transition metal as Co or Ni. b) Equivalent
conduction circuit representing the "two-currents" model.

To summarize, the resistivity of ferromagnetic materials based on
3d transition metals depends on the spin orientation of 4s conduction
electrons. This leads to the "two-currents" model presenting two
different resistivity channels for majority ↑ and minority spins ↓.

3.1.2 Magnetoresistance effect

One important consequence of the the spin dependent transport
in ferromagnetic materials, presented in the previous subsection, is
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the magnetoresistance effect. This effect was observed and studied in
spin-valves having the following kind of stack structure: Ferromagnetic
FM1/Non-magnetic/Ferromagnetic FM2 multi-layers.

If the non-magnetic layer is conductive, the structure is often called
a metallic spin-valve, while if it is an insulating one, the structure is
called a magnetic tunnel junction (MTJ). Depending on the direction
of the injected current, with respect to the plane of layers in these
structures, two different types of transport can be distinguished: cur-
rent in the plane (CIP) or current perpendicular to the plane (CPP).
In this thesis, the studied spin-torque nano-oscillators used for the
neuromorphic operations will all have a magnetic tunnel junction
MTJ structure and the current will be injected perpendicularly to the
plane (CPP).

3.1.2.1 Physical insight of Giant Magnetoresistance

In magnetic multi-layers, the magnetoresistance effect was first
explored in metallic spin-valves. This led to the discovery of the Giant
magnetoresistance GMR effect by Fert and Grunberg [131][132].

Figure 21: Figure extracted from [8]. Illustration of the "two-currents" model
applied to a spin-valve.

Fig. 21 shows the equivalent resistance circuit depicting scattering
of electrons in a spin-valve composed of two ferromagnetic layers
separated by a metallic spacer. In order to simplify the transport
description, one can neglect the scattering of electrons in the metallic
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spacer, and assume that electrons stay half of their trajectory inside
of one of the two ferromagnetic layers. Therefore, the two currents
model presented in the previous subsection can be applied to this
magnetoresistive device. Here we define the resistance of majority spin
channel as R2 and the resistance of of minority spin channel as r2. As
seen in the previous subsection, the resistance of the majority spin
channel will be larger than the one for minority spins: R > r.

In the parallel P configuration ↑↑, the magnetizations of the two
magnetic layers are pointing in the same direction. Electrons passing
through the multi-layer have the same spin (majority or minority) in
the two ferromagnets. Therefore, one conduction electron has either
a majority spin or either a minority spin in both ferromagnets. The
total resistance of the multi-layer can be expressed as follows:

Rp = Rr

R+ r
(2)

In the antiparallel AP configuration ↑↓, the magnetization of the two
layers are pointing in opposite directions. Electrons passing through
the multi-layer do not have the same spin (majority or minority)
in the two ferromagnets. Therefore, one conduction electron has a
majority spin in one ferromagnet and has a minority spin in the other
ferromagnet. The total resistance of the multi-layer can be expressed
as follows:

Rap = R+ r

4 . (3)

The difference of resistance between the parallel and antiparallel
configurations corresponds to the giant magnetoresistance GMR effect
characterized by the following ratio:

GMR = Rap −Rp
Rp

= (R− r)2

4Rr (4)

In a more general case (intermediate configuration between AP and
P configuration), where the magnetizations of the two ferromagnetic
layers are noncollinear, the resistance of the magnetoresistive device
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will depend on the relative angle between the two magnetizations θ
[133][134]:

R = Rp[1 +
GMR

2 (1− cosθ)] (5)

The "two-currents" model applied to a spin valve gives a physical
insight in the magnetoresistive effect, but in order to take into account
the effect of temperature and materials defects, one should consider
the Valet-Fert [135] model, including spin diffusion and accumulation
effects at the interfaces of the magnetic layers.

3.1.2.2 Magnetoresistance in magnetic tunnel junction: tunnel mag-
netoresistance

In magnetic tunnel junctions, where the non magnetic spacer is an
insulating material, electrons are tunnel from one ferromagnetic layer
to the other one. As for the classical electron conduction, described in
the previous subsection, this tunneling process is spin dependent. As
for metallic spin valves, the "two-currents" model can give a physical
insight, but is not satisfactory to describe the magnetoresistance effects
in magnetic tunnel junctions. In 1975, Jullière proposed a model [136],
which assumes that the spin is conserved during the tunneling process,
and that the tunneling probability of the electron is proportional to
the product of the density of states at the Fermi level of either sides
of the tunneling barrier (Fermi golden rule). Therefore, tunneling
is achieved through two different spin-dependent channels. Fig. 22
illustrates these two tunneling channels in parallel and antiparallel
configurations. The red and blue horizontal segments represent the
density of states at the Fermi level respectively for majority D↑(EF )
and minority D↓(EF ) spins. The relative size of these segments helps
to see that the density of states of majority and minority spins are
not the same due to the energy shift of the two sub-shells. In the
parallel configuration, majority spins tunnel to majority spin states
and respectively for minority spins. Therefore, the conductance in this
situation can be expressed as follows:

GP ∝ D1
↑(EF )D2

↑(EF ) +D1
↓(EF )D2

↓(EF ) (6)

On the contrary, in the antiparallel configuration, majority spins tunnel
to the minority states and respectively minority spins to majority
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states. Therefore, the conductance in this situation can be expressed
as follows:

GAP ∝ D1
↑(EF )D2

↓(EF ) +D1
↓(EF )D2

↑(EF ) (7)

Again, as for the "two-currents" model, the difference of conductance
between the parallel and antiparallel configurations GAP 6= GP ,
arises from the the difference of the density of states at the Fermi
level in the two ferromagnetic layers for majority and minority spins:
D↑(EF ) 6= D↓(EF ). Jullière defined a spin polarization variable Pi
at each ferromagnet i (i =1, 2) which is used to evaluate the tunnel
magnetoresistance ratio TMR:

Pi =
Di
↑(EF )−Di

↓(EF )
Di
↑(EF ) +Di

↓(EF ) (8)

TMR = Rap −Rp
Rp

= 2P1P2
1−P1P2

(9)

This simple model was used too evaluate the TMR ratio of Fe/Ge/Co
magnetic tunnel junction which was of the order of 10% [136].

Figure 22: Figure extracted from [9]. Principle of the tunneling process in two
different configurations: parallel and antiparallel. This schematic
illustrates the Jullière model. Thicker arrows signifies a higher
probability to tunnel.

A more precise model was proposed by Slonczewski in 1989 [137]
assuming two identical ferromagnetic layers separated by an insulating
barrier. This model was obtained by solving the Schrödinger equation
considering a rectangular potential shape barrier with an energy height
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higher that the Fermi level. In this approach, the spin polarization
depends on the wave vectors of majority spins k↑ and minority spins
k↓ and, interestingly, also on the exponential attenuation of evanescent
states ∝ exp(−2κd) in the barrier where κ depends on the energy
height of the barrier and d is the spatial distance from the barrier.
For this reason, the size of the barrier should be as small as possible
to minimize the attenuation κ. According to this model the spin
polarization is defined as follows:

Pi =
ki↑ − ki↓
ki↑ + ki↓

κ2 − ki↑ki↓
κ2 + ki↑k

i
↓

(10)

Considering this definition for the polarization, similarly to Eq. 5, the
conductance of the MTJ can be expressed as a function of the relative
angle between the magnetization of the two ferromagnetic layers θ
and the mean conduction of the MTJ called G0:

G = G0[1 + P1P2(1 + cosθ)] (11)

For the TMR ratio, the same definition than the one for the Jullière
model Eq. 9 holds, if the spin polarizations are replaced by their new
expressions.

Experimentally, in first magnetic tunnel junctions based on amor-
phous aluminum oxide insulating layer, the highest TMR value found
at room temperature was around 70% [138][139][140]. In 2004, the
first MTJs with epitaxial MgO insulating barriers(Fe/MgO/CoFe)
were fabricated by Yuasa[141] and Parkin[142]. Besides the height and
width of the insulating barrier, the TMR ratio of these MTJs was im-
proved due to the nature of the barrier, which became crystalline, and
also due to crystalline orientation considerations at the interface [143].
Indeed in this crystalline MgO barriers, a filtering mechanism due to
the coupling between the ferromagnetic Bloch states and evanescent
states, occurs at the interface. This causes a faster decay of tunneled
minority spins due to this coupling and as a consequence, a higher
spin polarization and TMR of the MTJ. The magnetoresistance ratio
can be relatively large compared to first generation of MTJs and
also compared to metallic spin-valves having a GMR ratio ranging
between 1% and 10% [144][145][146]. As an example in 2008, for
CoFeB/MgO/CoFeB MTJs, TMR reached 600% at room temperature
[147].
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3.1.3 Spin-transfer torques: Slonczewski and field-like torques

The magnetoresistance effect presented in the previous subsection
shows that the orientation of magnetization modifies the amount of
electric current flow. Inversely, a spin polarized current can modify
the orientation of the magnetization. Detailed reviews on spin transfer
torques by Stiles, Miltat and Ralph can be found in [10][148].

In 1978, the spin-transfer torque was first predicted by Berger [149]
and was experimentally investigated later to move magnetic domain
walls [150][151] in large magnetic devices, which required high applied
currents (45 A). The interest in spin-transfer torque was relaunched
in 1996, in the case of CPP metallic spin-valve multi-layers, where
Slonczewski [152] and Berger [153] independently predicted that by
applying a sufficiently high current, a high enough spin-transfer torque
can modify the direction of magnetization of one of the layers.

Figure 23: a) Principle of spin-transfer torque in a spin-valve multi-layer
structure. b) The transverse component of the magnetic current
is transfered to the local magnetization of the second ferromagnet.
Figure extracted from [8].

Fig. 23-a shows the principle of spin-transfer torque in thin FM1/NM/FM2
spin-valve multi-layer in a CPP configuration, where the applied dc
current is injected perpendicularly to the layers. As represented in
this figure, the first ferromagnetic layer F1 is thick while the second
ferromagnetic layer F2 is thin. Thus, F1 plays the role a fixed spin
polarizing layer and F2 has a free magnetization which is sensitive
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to the injection of external spin current. As presented previously,
the non magnetic layer can be metallic or an insulating barrier. The
non collinear magnetizations of the two ferromagnetic layers −→M1 and−→
M2 form an angle θ. The initial injected dc current becomes spin-
polarized by passing through the first ferromagnetic layer F1 (see 3.1.1
for more details). The electrons of this spin-current carry a magnetic
moment aligned with −→M1. Then, this spin polarized current passes
through the nonmagnetic layer (through metallic transport or tun-
neling) and eventually is injected in the second ferromagnetic layer F2.

Since the magnetizations −→M1 and −→M2 are non colinear, the magnetic
moment carried by the spin polarized current in the non-magnetic
layer has a transverse component to −→M2. This transverse component
is referred to as −→p⊥ in Fig. 23-b. By passing through F2, the electrons
of the spin polarized current modify the direction of the magnetic
moment they carry and align it along −→M2. As a consequence, they
lose their initial transverse component −→p⊥. Due to the conservation of
angular momentum, this lost −→p⊥ is transferred to the local magnetiza-
tion of the ferromagnet F2 which can be seen as a torque acting on
the magnetization −→M2. This torque is referred to as the spin-transfer
torque −→Γ ∝ −→p⊥ = −→M2 × (−→M2 ×

−→
M1).

This simple description of the spin-transfer phenomenon gives an
intuitive insight, however is not fully satisfactory for experimental
spin-torque observations, in particular it can not predict an additional
torque called field-like torque observed in experiments (as will be
discussed in the following). In reality, there are strong evidences that
spin-transfer torque is an interfacial effect [154][155]. Thus, at the
NM/FM2 interface, for an incident spin polarized current Iinc, one
should consider both spin polarized currents which are transmitted
Itrans, and reflected Irefl (See Fig. 24).

In a case where there is no action of the spin polarized current on the
local magnetization, the transmitted component is exactly equal to the
sum of the incident and reflected ones ( −−→Irefl+

−−→
Iinc = −−−→Itrans). In a case

where the spin polarized current acts on the local magnetization, this
equality is not valid. Due to the conservation of angular momentum,
a spin-transfer torque is transferred to the local magnetization. Thus,
the spin-transfer torque is expressed as −→Γ = −−→Irefl +

−−→
Iinc −

−−−→
Itrans[10].
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a)

b)

Figure 24: a) Principle of reflection and transmission phenomena of an inci-
dent spin-polarized current at an NM/M interface. b) Schematic
of mechanisms occurring at the interface. In the lower left corner,
the incident spin polarized current is represented with electrons
having the same spin state which is transverse to the direction
of the magnetization of the ferromagnetic layer. These electrons
come with different random incident direction (here represented
as having three different incident directions). In the top left cor-
ner, the reflected spins are distributed over many directions. In
the right corner, the transmitted electron spins are precessing as
a function of their distance from the interface. Figure extracted
from [10].

In order to have a spin-polarized current exerting a torque on the
magnetization −→M2 of the free-layer, this one should not be collinear to
the magnetization −→M1. Therefore only the perpendicular components
of the spin polarized current will contribute to the spin-transfer torque,
−→
Γ =

−−→
I⊥inc +

−−→
I⊥refl −

−−−→
I⊥trans.
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Due to different mechanisms affecting the spin polarized currents
at the interface, the spin-transfer torque quantity does not cancel
out. A first mechanism called "spin precession" allows the complete
absorption of the perpendicular transmitted component <

−−−→
I⊥trans >≈ 0

if FM2 is thick enough. Indeed, when the transmitted electron enter in
the ferromagnetic material, they precess spatially around the effective
field caused by the energy splitting between majority and minority
spins (k↑ 6= k↓). Due to this precession, over all transmitted electrons,
which travel various distances in the material, the total transmit-
ted spin current average out after few lattice parameter penetration
<
−−−→
I⊥trans >≈ 0.

Through a second mechanism refereed as "spin rotation" which is
here a quantum mechanical phenomenon, the perpendicular reflected
component <

−−→
I⊥refl > is affected. Depending on the spin propagation

direction of the incident electron spin, the reflected electron rotates its
spin. In metallic junctions, due to this spin rotation, over all reflected
electrons, the total reflected spin current average out <

−−→
I⊥refl >≈ 0.

However, in magnetic tunnel junctions this quantity is not negligi-
ble <

−−→
I⊥refl >6= 0, mainly because the transport is realized through

tunneling electrons which are mostly propagating perpendicularly
to the barrier. This imposes a smaller propagation dispersion and
therefore a reduced spin dephasing for reflected electrons. Finally the
net spin-torque in magnetic tunnel junctions is expressed as follows:

<
−→
Γ >≈<

−−→
I⊥inc > + <

−−→
I⊥refl > (12)

The incident component contributes to a spin-torque acting in the
(−→m,−→p ) plane, where −→m and −→p are respectively the unit vectors
defining the direction of the local magnetization −→M and the transverse
component −→p⊥. This spin-torque is referred to as the in-plane torque or
more commonly as the Slonczewski torque −−−→ΓSlonc, which is similar to
the intuitive vision initially presented at the beginning of this section.

−→
Γ Slonc = γSlonc

−→m × (−→m ×−→p ) (13)
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The reflected component gives rise to a torque which is perpendicular
to the (−→m,−→p ) plane, referred to as the out-of-plane torque or field-like
torque −→Γfl:

−→
Γ fl = γfl(−→m ×−→p ) (14)

The efficiency of spin-transfer torque depends on the applied voltage
[156][157] and asymmetry of electrodes [158] of the magnetic tunnel
junction. In order to take into account the action of the two aforemen-
tioned spin-transfer torques in spin-torque nano-oscillators studied in
this thesis, we assume the following expressions at low applied bias
voltages [159][160]:

γSlonc = ajJMs γfl = bjJMs (15)

Where J is the applied charge current density, Ms is the saturation
magnetization of the free-layer of the tunnel junction, aj and bj are
respectively the Slonczewski and field-like torque efficiencies. Those
efficiencies are expressed as following [159][160]:

aj = |g|µB2|e|
P
LMs

bj = rflaj (16)

Here |g| is the Lande factor, µB is the Bohr magneton, |e| is the
elementary charge, P is the spin polarization of the junction (see
previous section), L is the thickness of the free-layer and rfl is a fixed
constant that varies between 0.1 and 0.4 in magnetic tunnel junctions
[154][161][162].

3.2 magnetization dynamics and spin-torque nano-
oscillators

3.2.1 Landau-Lifshitz-Gilbert equation

The spin-transfer torque phenomena introduced in previous sub-
section modifies the magnetization dynamics. Here we introduce the
differential equation which describes the magnetization dynamics. In
the absence of spin-transfer effect, in a case where the magnetic config-
uration is away from equilibrium, the magnetization precesses around
the local field −→H eff of the magnetic material. In order to describe this
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magnetization precession, Landau and Lifshitz proposed an equation
of motion in 1935 [163], which includes a phenomenological damping
term. Later in 1955, Gilbert introduced a different variant [164] that
gave rise to the Landau-Lifshitz-Gilbert (LLG) equation:

d−→m
dt

= −γ0
−→m ×−→H eff + α−→m × d−→m

dt
(17)

Here γ0 is defined as γ0 = µ0γ where µ0 is the magnetic constant or the
permeability of free space, and γ is the gyromagnetic ratio of the free-
electron. α is the phenomenological Gilbert damping coefficient which
corresponds to the energy dissipation of the magnetic system. This
coefficient can be assimilated to a frictional coefficient and varies from
one magnetic material to another (αNiFe ≈0.007-0.008, αFeB ≈0.01
[165]). More details about the origin of this damping can be found in
[166][167]. In order to take into account the effect of spin-transfer on
the magnetization dynamics, the spin-transfer torque is simply added
to the right hand side of the LLG equation 17:

d−→m
dt

= −γ0
−→m×−→H eff +α−→m× d−→m

dt
−γSlonc−→m× (−→m×−→p )−γfl(−→m×−→p )

(18)

The field-like torque can be seen as a local field −−→Hfl = γfl
γ0

−→p that can
be contained in the expression of a modified effective field [8]. Thus,
the equation 18 can be simplified as following:

d−→m
dt

= −γ0
−→m × (−→H eff +

−−→
Hfl)+α−→m × d−→m

dt
− γSlonc−→m × (−→m ×−→p )

(19)

In order to emphasize the role of the Slonczewski torque on the
magnetization dynamics, one can assume that the spin polarization
vector −→p = 1

||
−−−→
Heff ||

−−−→
Heff is collinear with the effective field and that

the field-like torque do not contribute to the magnetization dynamics
γfl = 0. Thus, as α is small [168], by neglecting terms in α2, one can
rewrite the LLG equation as the following:

− 1
γ0

d−→m
dt

= −→m ×−→H eff +
∼
α−→m × (−→m ×−→H eff ) (20)
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Where, we define the effective damping (using Eq. 15):

∼
α = α+

γSlonc

γ0||
−→
H eff ||

= α+
ajMs

γ0||
−→
H eff ||

J (21)

From this effective damping term definition, we see that the spin-
transfer torque due to the Slonczewski torque can be seen as an
extra-term added to the damping. Depending on the sign of the
applied charge current J this term is an extra-damping (J > 0) or
an anti-damping (J < 0) term. In particular, for a sufficiently large
applied current, the spin-torque compensates the damping term and
therefore the effective damping can be zero (∼α = 0). In Fig. 25 the

𝐻𝑒𝑓𝑓

𝑚

𝛼 𝑚 ×
𝑑𝑚

𝑑𝑡 −𝛾0(𝑚 × 𝐻𝑒𝑓𝑓)

ԦΓ𝑆𝑙𝑜𝑛𝑐ԦΓ𝑓𝑙

Figure 25: Schematic showing the torques acting on the local magnetization
in presence of an effective magnetic field. The red arrow represents
the damping which tries to bring back the magnetization along the
effective field. The blue arrow corresponds to the magnetization
precession around the effective field. The green and orange arrows
correspond respectively to the Slonczewski and field-like torques.

action of the Slonczewski torque exerting on the magnetization −→m for
J < 0 is presented. In this situation, the Slonczewski torque is against
the natural damping. For sufficiently high applied current, the initial
stable equilibrium determined by the effective field becomes unstable.
Depending on the shape of the potential energy, two situations can
occur: either it leads to a new stable static equilibrium or to steady

57



initial magnetization oscillations around the equilibrium. The first
case is refereed to as magnetization switching and the second case
as sustained magnetization oscillations which plays a key role in
spin-torque nano-oscillators (see next section).

3.2.2 Principle of spin-torque nano-oscillators and brief history

The spin-torque nano-oscillator concept was born from the com-
bination of spin-transfer and magnetoresistance phenomena. This
spintronic device generates electrical oscillations when a dc current is
applied to it. Spin-torque nano-oscillators can be seen as spin valve
FM1/NM/FM2 magnetic structures (metallic spin valve or a magnetic
tunnel junction). As seen in the previous sections, the two magnetic
layers do not play the same role, one is required to obtain a spin-
polarized current and is refereed to as a fixed or pinned layer because
its magnetization is fixed in one direction, while the other one refereed
to as the free-layer can easily modify its magnetization direction. By
choosing adequate thicknesses and magnetic materials, one can control
the magnetization of both these layers. As an example, often at the
begining of the development of spin-torque oscillators, the thickness
of the fixed layer was larger than the one of the free-layer. Indeed, the
larger is the volume of the magnetic layer, the higher is the current
density needed to modify its magnetization through the spin-torque.
On the contrary, for low thicknesses of the free-layer, smaller current
density can easily modify the magnetization of the free-layer and
destabilizes it. Beyond this thickness consideration, strong develop-
ments were also focused on the choice of magnetic stack materials
allowing a control of the magnetization of the layers. A very common
approach is to use a synthetic antiferromagnet structure (SAF). This
approach which was used in the structure of samples measured in this
thesis, corresponds to an AF/F1/M/F2 stack structure where AF is
an antiferromagnetic layer (PtMn), F1 and F2 are two ferromagnetic
layers separated by a thin metallic layer(Ru). Due to a bias exchange
interaction between AF and F1, the magnetization of F1 is pinned
in one direction. One second interaction called RKKY (Ruderman-
Kittel-Kasuya-Yosida [169]) is established between the two F1 and
F2 ferromagnetic layers. By accurately choosing the thickness of the
metallic layer, this RKKY interaction leads to a situation where the
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magnetization of the ferromagnetic layers (F1 and F2) are coupled
in opposite directions. Here, the upper ferromagnetic layer F2 cor-
responds to the fixed layer. Due to the strong interactions with the
magnetization of lower magnetic layers, the magnetization of F2 can
not be easily modified, meaning that strong applied magnetic field will
be required for this modification. The (F1/M/F2) structure which can
be seen as a bilayer antiferromagnet and is referred as the synthetic
antiferromagnet structure (SAF), it allows to mutually cancel the
dipolar field radiated by F1 and F2. Thus, the free-layer will not be
strongly affected by the very small stray field generated by the lower
magnetic layers.

Figure 26: Principle of a spin-torque nano-oscillator. An applied dc current
is injected through the magnetic structure. The electrons of this
current become spin-polarized following the direction of the po-
larizing layer (the thick one). This spin-polarized current applies
a spin-transfer torque on the magnetization of the free layer (the
thin one) which can lead to sustained precession. Due to the
magnetoresistance effect (GMR or TMR), those oscillations are
converted into oscillations of electrical resistance.

Fig. 26 shows the working principle of spin-torque nano-oscillators.
When an applied dc current is injected to this structure, its electrons
becomes spin polarized following the magnetization of the polarizer
(FM1). Then, this spin-polarized current interacts with the free-layer
(FM2) and exerts a spin-transfer torque (see section 3.1.3) on its mag-
netization. As shown in the previous section, for particular conditions
of applied dc current and applied magnetic field, this spin-transfer
torque leads to sustained oscillation of the free-layer magnetization.
During these oscillations, the relative angle between the magnetization
of the free-layer and the fixed layer varies. Due to the magnetoresis-
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tance effect (GMR or TMR, see section 3.1.2.2), this variation of the
relative angle induces a modification of the electrical resistance of
the magnetic structure. In this way, one can measure an oscillating
voltage across the two terminals of the device. Therefore, a spin-torque
nano-oscillator converts an applied dc current into an electrical ac
signal. As we will see later, the frequency of these oscillations depends
on the applied dc current and on the applied magnetic field.

The development of spin-torque nano-oscillators occurred with several
distinct geometries: nano-pillar, nano-contact and hybrid geometries.
Those geometries presented in Fig. 27 allow to induce a sufficiently
high current density necessary to reach local magnetization precession.
In the nano-pillar geometry the entire structure is etched during fabri-
cation. Different techniques are used to fabricate nano-pillars such as
electron beam lithography and ion-milling [170] or electrodeposition
[171] or other techniques [172]. The typical size of nano-pillars is
between 100 and 500 nm. In a nano-contact geometry, the applied
current is injected in spatially expanded multilayers. The contact can
be realized using a sharp mechanical contact, where the dimension of
the nano-contact can reach 10 nm [173]. Nano-contacts can be also
fabricated using lithography techniques, in this case the size of the
nano-contact is of the order 100 nm [174][175]. For more details, one
can read [176]. In addition, in the hybrid geometry, one magnetic layer
is spatially extended (as for nano-contact geometry) while the other
one is etched (as for nano-pillar geometry).

First experimental indirect observations of magnetization dynamics
due to spin-torque were realized in 1998 by Tsoi et al. [173]. How-
ever, first direct experimental observation of magnetic oscillations
were done in 2003 by Kiselev et al. [177] for nano-pillar geometry
and in 2004 by Rippard et al [178][179] in point contact geometry.
The electrical power of the observed oscillations were very small, of
the order 100 pW , mainly because those first implementations were
metallic spin valve structures (respectively Cu/Co, CoFe/NiFe) with
a low GMR≈ 1%. Later, due to the higher TMR (10% to 100%) ratio
obtained by replacing the non-magnetic metallic layer by an insulting
one (MgO), the power of oscillations increased reaching up to 10 nW
[180] and 40 nW [181]. Since the early days of spin-torque oscillators,
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Figure 27: Different geometries of spin-torque nano-oscillators. Thick and
thin arrows correspond respectively to the magnetization of the
reference and free layers. Figure extracted from [11]. The yellow
regions correspond to the metallic electrodes bringing the electri-
cal current. The burgundy regions correspond to the magnetic
layers. The dark blue region corresponds to the spacer (metallic
or insulating). The white regions correspond to insulating mate-
rials surrounding the spin-torque nano-oscillator. a) nano-pillar
geometry. b) nano-contact geometry. c) hybrid geometry.

in order to reach the performances of standard oscillators (for instance
out-put power of the order of 1 mW for VCOs [182]) and also to
improve the signal to noise ratio for their detection, the development
of spin-torque oscillators were pushed to increase their out-put power.

In 2014, the power of oscillations of spin-torque nano-oscillators based
on MgO magnetic tunnel junction structures continued to increase and
reached 3.6µW with a high quality factor (a maximum of Q=6400 for
an oscillation power of 1.4 µW ) [183]. Recently an oscillation power
higher than 10 µW was reported in 2016 [184]. Fig. 28 shows the
evolution of the output power of spin-torque oscillators since 2003.
As a general view, for highest output power devices, one can see
an exponential increase of the output power as a function of recent
decades (+3 dBm/year).

One other important direction for spin-torque oscillators was the
improvement of their spectral coherence. For this reason, spin-torque
oscillators with a vortex magnetization distribution in their free-layer
were extensively studied. First spin-torque vortex oscillator was pro-
posed in 2007 by Pufall et al.[185] in point-contacts. After the concept
was extended to MgO based magnetic tunnel junctions [186][183].
Using these vortex based oscillators, in 2016, a frequency linewidth
of 116 kHz was reported [184] which is much smaller than the ones
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Table 1: Comparison between different spin-torque nano-oscillators. NP, NC,
and V correspond respectively to nano-pillar geometry, nano-contact
geometry and nano-pillar with a vortex configuration. GMR and
MTJ indicate if the the spin-torque oscillator has a metallic spin-
valve or a magnetic tunnel junction structure. P , f , ∆f , Q, MR,
and R correspond respectively to the output power, oscillation
frequency range, minimal frequency linewidth, maximum quality
factor, magnetoresistance ratio and static resistance which were
reported.

Ref Type Size(nm2) P f(GHz) ∆f Q MR/R

[177] NP(GMR) 9100 89pW 5-10 - - 1%,8Ω

[190] NP(GMR) 1300 20pW 11-12 3.2MHz - 0.4%,13Ω

[191] NP(GMR) 5000 0.1nW 11-12 3.8MHz 3150 1%,3Ω

[192] NP(GMR) 11700 5nW 10-11 10MHz 1124 3%,9Ω

[193] NP(GMR) 6600 1nW 3.5-4 - 266 12%,8Ω

[178] NC(GMR) 1250 87pW 5-40 58 800 2%,4Ω

[179] NC(GMR) 1250 87pW 9.7-34.4 1.89 18000 1%,15Ω

[189] NC(GMR) 1250 70pW 10-46 4.5 7300 0.4%,6Ω

[194] NC(GMR) 15000 25nW 0.8-2 3 - 10%,10Ω

[195] V(GMR) 9500 0.8pW 0.9-2.2 0.3 4000 1%,19Ω

[196] NP(MTJ) 49000 20nW 4-7 21 238 48%,16Ω

[197] NP(MTJ) 5000 25nW 4-10 26 1000 100%,3kΩ

[198] NP(MTJ) 45000 142nW 3-12 20 - 70%,43Ω

[199] NP(MTJ) 13000 550nW 4-7 47 - 66%,143Ω

[200] NP(MTJ) 31000 200nW 2.6-2.8 80 35 88%,4kΩ

[187] NP(MTJ) 11000 500nW 2-6.3 46.6 135 66%,2kΩ

[188] NC(MTJ) 7500 2.4µW 2-5 12 350 46%,38Ω

[201] NC(MTJ) 7500 63nW 2.5-15 3.4 3200 38%,55Ω

[186] V(MTJ) 23000 5µW 0.4-0.9 1.1 718 14%,57Ω

[183] V(MTJ) 70000 1.4µW 0.5-0.5 0.07 6400 128%,35Ω

[184] V(MTJ) 82000 10.1µW 0.15-0.3 0.16 2000 190%,57Ω

obtained with spin-torque oscillators having a uniform magnetization
distribution [187][188]. However, it should be noticed that the reach-
able frequency of spin-torque vortex oscillators is generally comprised
between hundreds of MHz and 2.2 GHz, which is much smaller than
the ones of oscillators presenting uniform magnetization distributions
which can reach frequencies up to 65 GHz [189]. The size of spin-torque
vortex oscillators is also of the order of hundreds of nm and remains rel-
ativelly large compared to some uniform spin-torque oscillators which
can be scaled-down to tens of nm [178]. A more detailed comparison
of the state of the art of spin-torque nano-oscillators is given in Tab. 1.
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Nevertheless, the fact that spin-torque vortex oscillators present high
signal to noise ratio and low frequency linewidth [184], and also that
their magnetization dynamics is well understood and match quantita-
tively with experimental results [160], make them very attractive for
demonstration purposes. For this reason, in the experimental part of
this thesis, the spin-torque oscillators used for bio-inspired operations
will be exclusively vortex-based spin-torque nano-oscillators. These
kind of oscillators will be presented in more details in the next chapter.

Figure 28: Evolution of the output power of spin-torque nano-oscillators in
dBm as a function of the publication year. The black dash line
corresponds to the trend line evolution of highest output powers
reported in last decades.

In order to observe experimentally oscillations in first spin-torque
nano-oscillators, often an external applied magnetic field was required
[177][178]. Different strategies were developed to avoid the use of an
external applied field. By designing the angular shape of the spin-
torque ("wavy shape")[202] or by controlling the direction of the
remanent field of the ferromagnetic layers [203][204][205], different
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groups were able to observe in absence of external magnetic field
microwave oscillations in spin-torque oscillators presenting uniform
magnetization. In the case of nano-pillar oscillators presenting vortex
magnetization distribution in their free-layer, other kinds of strategies
were used: either by choosing a perpendicular magnetization [206][160]
or by choosing a vortex configuration [207][208] for the polarizing layer.
Here, these approaches are not presented individually, however the
main goal of all of them is to reach a configuration where the spin-
torque acting on the magnetization remains opposite to the damping
torque acting on it and this for all the precession trajectory [10].

3.2.3 Nonlinear auto-oscillator theory

In order to describe the dynamics of spin-torque oscillators, a gen-
eral formalism called "auto-oscillator model" was proposed by Slavin
et al. [168]. Importantly, this nonlinear auto-oscillator is not only
dedicated to spin-torque nano-oscillators, and can be generalized to a
more vast class of nonlinear oscillators such as Van der Pol oscillators
[209]. This model allows to describe conditions required to obtain
self-sustained oscillations and is also particularly used to estimate
the effect of thermal noise on oscillations. Importantly, this model
allows to describe conditions for the synchronization of nonlinear
oscillators to external signals, and for this reason it will be used in
the experimental and simulation results of this thesis.

This model describes the dynamics of a single excited mode in a
two dimensional plane space defined using its power amplitude

√
p(t),

and its phase φ(t). Its dynamics can be written using a complex
variable c(t) =

√
p(t)eiφ(t) and is described by the following equation

(i2 = −1):

dc

dt
+ iω(p)c(t) + [Γ+(p)− Γ−(p)]c(t) = f(t) (22)

Here, ω is the oscillator resonance frequency, Γ+ is the intrinsic damp-
ing for energy dissipation, Γ− is the negative damping for energy
dissipation, and f is the driving force which models the interaction
with external signal. In the case of a spin-torque oscillator, Γ+ cor-
responds to the intrinsic damping due to the Gilbert damping, Γ−
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corresponds to the effect of spin-torque. This model is qualified as
nonlinear, because it can be seen from this equation that most of
its parameters depends on the auto-oscillation power p (for instance
damping terms and the resonance frequency).

In the case of self-sustained oscillations not interacting with an external
force (f = 0), the auto-oscillation dynamics can be described through
its power amplitude p, and its phase φ (p = |c|2, and φ = arg(c)):

dp

dt
+ 2[Γ+(p)− Γ−(p)]p = 0 (23)

dφ

dt
+ ω(p) = 0 (24)

One can find stationary condition c0(t) = √p0e
iφ(t) for which the

power amplitude is constant in time dp

dt
= 0. Thus, from Eq. 23,

the stable solution p0 is given where there is compensation between
positive and negative damping terms Γ+(p0) = Γ−(p0). Those two
damping terms increase and decreases as a function of the oscillation
power p in general, thus a unique stable condition p0 can be found.
The particular case Γ+(p = 0) = Γ−(p = 0) corresponds to the thresh-
old for self-sustained oscillations.

In the case of spin-torque oscillators the following expressions for
damping terms and frequencies can be found in the case of a magnetic
vortex configuration [160]:

ω(p) ≈ ω0 +Np

Γ+(p) ≈ αω0(1 +Qp)

Γ−(p) ≈ αω0
I

Ith

(25)

Here, ω0 is the resonant frequency of the auto-oscillator, N is the coef-
ficient of the nonlinear frequency shift, α is the damping parameter, Q
is nonlinear damping parameter, I is the applied current contributing
to the negative damping term corresponding to the spin-torque, and
Ith is the current corresponding to the threshold for self-sustained
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oscillations. The presented expressions Eq. 25 which only slightly differ
from the one of spin-torque oscillators having a uniform magnetiza-
tion distribution [168] will be used in chapter 5 to realize simulations
of the dynamics of spin-torque vortex oscillators in the nonlinear
auto-oscillator formalism presented here.

3.3 dynamics in presence of external force stimuli

When an external oscillating signal with a certain frequency fext is
sent to a spin-torque nano-oscillator its dynamics is modified leading
to different non-autonomous regimes: injection-locking corresponding
a regime were the oscillator synchronizes to the frequency of an ex-
ternal source, mutual synchronization corresponding to a situation
where two or more oscillators mutually synchronize with each other
to a common frequency. Other regimes such as parametric excita-
tion [210][211], resonant excitation [212], or frequency modulation
[213][214] can occur but those last ones will not be described in this
thesis. Here, a particular focus will be given to synchronization phe-
nomena occurring with oscillators, and in particular with spin-torque
nano-oscillators.

3.3.1 Coupling and mutual synchronization of spin-torque nano-
oscillators

Huygens was the first to introduce the notion of synchronization
in 17th century. He observed than two oscillating clocks were able
to synchronize to each other: they ended up oscillating at a common
frequency (in anti-phase). By analyzing this phenomenon, Huygens dis-
covered that synchronization was due to the coupling provided by the
common vibration of the stand to which clocks were suspended. Since
this discovery, this mutual synchronization phenomena was widely
observed in different domains such as in Josephson junctions [120],
neural activity of the brain [21], millennium bridge [215], clapping
audiences [216] circadian rhythms [217], assemblies of metronomes
[217], financial stock markets [217], ecosystems [218], and crickets
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[219]. For more details, a review on synchronization is proposed by
Pikovsky et al. [217].

In the case of spin-torque nano-oscillators mutual synchronization can
be categorized following the coupling mechanisms leading to this phe-
nomenon. Three mechanisms should be distinguished: those mediated
by spin-waves, mediated by dipolar magnetic fields, and mediated by
self-generated microwave currents. Here we briefly introduce some of
the experimental synchronization measurements realized recently with
spin-torque oscillators. In these experimental observations, in terms
of frequency spectrum, synchronization occurs when the individual
frequency peaks of the oscillator merge to one common frequency peak.
As predicted by theory, this leads to a reduction of the frequency
linewidth and a high output power which is higher than the sum of
the individual out power emissions [217].

Mutual synchronization between spin-torque nano-oscillators was
first demonstrated by Kaka et al. [220], and Mancoff et al. [221] in
nano-contact spin-torque oscillators having uniform magnetization
configuration. The two nano-contacts separated by few hundreds of
nanometers interact with each other through propagating spin-waves.
Those nano-contacts are fed by independent or common applied cur-
rents and they share the same free-layer. One can find more details
and explanation on this interaction in [222][223][224]. Using the same
approach, Ruotolo et al. [225] demonstrate the synchronization of
four nano-contacts having a magnetic vortex configuration. Recently
Houshang et al. [226], demonstrated the synchronization of up to 5
nano-contacts mediated by spin-waves. The same coupling mechanism
was used beyond the class of spin-torque nano-oscillators in assemblies
of spin-Hall nano-oscillators [227] allowing the synchronization of up
to 9 of such oscillators. In these class of oscillators the spin-torque
exerted on the magnetization is due to a spin-polarized current gen-
erated by the spin-Hall effect appearing for instance in heavy metal
materials such an Platinum. These oscillators will not be evoked in
this thesis, but they are an active research area and interestingly
recently their potential for neuromorphic applications was highlighted
by the group of Akerman et al. [228]. It should be noticed, that in
these implementations mediated by spin-waves, spin-torque oscillators
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can also be coupled through dipolar magnetic fields. However, several
theoretical and experimental works show that spin-wave mechanism
was the dominant interaction leading to synchronization [229][223].
Due to the attenuation length of spin waves (which is for instance
around 1.5 µm in Permalloy NiFe), this coupling remains mainly local
and efficient between neighboring oscillators. This can be an issue
if a large array of spin-torque oscillators is required to be synchronized.

Another local mechanism leading to synchronization between spin-
torque nano-oscillators is the coupling due to their emitted dipolar
magnetic fields [230]. In the case of oscillators having a uniform mag-
netization, this interaction is weaker than the one due to spin-waves.
However, according to micromagnetic simulations done by Belanovsky
et al. [231] in the case of vortex based spin-torque nano-oscillators
this interaction can be sufficiently efficient. A first demonstration of
mutual synchronization of spin-torque nano-oscillators through dipo-
lar fields was demonstrated by Locatelli et al. [232] for two metallic
spin-valves nano-pillars separated by 100 nm distance. According to
simulations realized by Abreu Araujo et al. [233], even in optimal
magnetic configuration the dipolar magnetic field interaction is not
efficient for distances higher than 600 nm. Nevertheless, this coupling
is interesting because it emerges naturally in densely packed arrays
of oscillators, and recently an original approach in order to control
the synchronization between two dipolarly coupled vortex spin-torque
nano-oscillators were proposed using a third one in between [234].

In order to escape from the distance constraint imposed by spin-
waves and magnetic dipolar interactions, one alternative approach
is to leverage the electrical coupling due to the common microwave
currents generated by spin-torque oscillators. Indeed, in their self-
sustained regime, each oscillator generates a microwave electrical
currents having the frequency of its oscillator. When this alternating
current is sent to a different oscillator using electrical connections,
it exerts an alternating spin-torque on the dynamics of this oscil-
lator. Therefore, through this additional spin-torque, the electrical
microwave emission of one oscillator acts on the dynamics of the other
oscillator and vice versa. This approach was first proposed by Grollier
et al. [235] in 2006 and was adapted to different electrical circuit
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symmetries [236]. A first demonstration of mutual synchronization
of two electrically coupled vortex spin-torque nano-oscillators was
established by Lebrun et al. [237]. Recently, up to eight oscillators
were synchronized through electrical coupling mechanism [238]. The
main advantage of this coupling is the fact it is global, meaning that
instead of being restricted to neighbors, all oscillators of an assem-
bly will interact through the common microwave signal. This is an
important point for building large array of interacting spin-torque
nano-oscillators. For this reason, in this thesis the electrical coupling
approach will be used to couple spin-torque nano-oscillators together.

3.3.2 Injection-locking of spin-torque nano-oscillators

In this subsection, we focus on a particular synchronization effect
called injection-locking which occurs between an oscillator in its self-
sustained regime and an external source signal forcing the oscillator
dynamics. Contrary to mutual synchronization, the interaction in
this case is unidirectional meaning that the external source is not
affected by the oscillator dynamics. This particular synchronization
case has a large importance in this thesis and it will be leveraged in
both experiments and simulations in order to achieve neuromorphic
operations using spin-torque nano-oscillators (Chapter 4 to 6).

Injection-locking can be described analytically in the nonlinear auto-
oscillator formalism presented in the previous subsection. In this
case, Slavin et al. [168] consider an external oscillating forcing f(t) =
fee
−iωet having a frequency ωe in the right hand-side of the Eq. 22. The

insertion of this external source term leads to the following amplitude
and phase equations:

dp

dt
+ 2[Γ+(p)− Γ−(p)]p(t) = 2√pFecos(ωet+ φ−ψe) (26)

dφ

dt
+ ω(p) = − Fe√

p
sin(ωet+ φ−ψe) (27)

Here Feis the real amplitude of the external source (Fe = |fe|) ,
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and ψe is its initial phase (ψe = arg(fe)).

In order to see the influence of the external source on the oscilla-
tor dynamics, it is convenient to do a change of variable where a slow
auto-oscillator phase Φ is introduced: Φ = ωet+ φ− ψe. In the case
of a linear oscillator, meaning that its frequency can be considered
as a constant ωg and not depending on the oscillation power, these
considerations applied to a stationary state (dp

dt
= 0) lead to the

following equation often called Adler equation [239]:
dΦ

dt
= (ωe − ωg)−

Fe√
p0
sin(Φ) (28)

Injection-locking in this equation corresponds to a situation where
the oscillator and the external source have a constant relative phase
dΦ

dt
= 0 which leads to the expression (coming from |sinΦ| < 1)

defining the injection locking range ∆0:

|ωe − ωg| <
Fe√
p0

= ∆0 (29)

This injection-locking range ∆0 corresponds to the frequency band-
width on which the oscillator shares the same frequency as the external
source (dφ

dt
= ωe). It should be noticed that this description is valid

for the first harmonic of the oscillating signal and can be extended to
higher order harmonics by adapting the Eq. [239] with a new defini-
tion of the phase difference Φ = nωet+mφ−ψe where n and m are
integers.

In the case of nonlinear oscillators, which frequency depends on the
oscillation power through a relation such as the one presented in the
previous subsection: ω = ω0 +Np, the same calculation presented for
the linear case can be adapted leading to a larger injection locking ∆
range than in the linear case:

|ωe − ωg| <
Fe√
p0

√
1 + ν2 =

√
1 + ν2∆0 = ∆ (30)

Here ν is the normalized nonlinear frequency shift defined as follows:

ν = N

dΓ+(p)
dp

− dΓ−(p)
dp

(31)
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The presented definition of injection locking-range ∆ will be used
in chapter 6 in order to simulate large arrays of spin-torque nano-
oscillators synchronizing with external sources. In addition, the defini-
tion of ∆ highlights three factors which influence the injection-locking
range: the real amplitude of the external force, the nonlinearity of the
oscillator, and its oscillation power.

In order to evaluate the synchronization frequency bandwidth, the
injection-locking experience consists in observing the evolution of the
oscillator frequency as a function of the frequency of the external
source ωe which is swept around the natural frequency of the oscillator
ω ≈ ωg. A typical frequency evolution is represented in Fig. 29. It
should be noticed that injection-locking can also occur for external
frequencies close to integer numbers of natural frequencies of oscillator
ω ≈ nωg. In particular, in chapter 2, injection-locking experiments
will be presented for the case n = 2.

Figure 29: Schematic of the evolution of the frequency of an oscillator in
presence of an external frequency ωe having a natural frequency
ωg. Figure adapted from [12].

First experimental observation of injection-locking with spin-torque
nano-oscillators was reported by Rippard et al. in 2005 [240] for
metallic spin-valves having uniform magnetic configurations. Such
kind of synchronization experiments were used to evaluate the cou-
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pling electrical coupling strength leading to synchronization [241] and
were extended to the case of oscillators having a magnetic tunnel
junction structure [242]. In 2011, first injection-locking experiments
for magnetic tunnel junctions spin-torque oscillators having a vortex
configuration were achieved by Dussaux et al. [243] demonstrating
the large synchronization ability of these oscillator both at f and
2f and even at fractional frequencies such as 3

2f . In all of these
injection-locking experiments, the microwave electrical coupling was
the mechanism for the synchronization. Injection-locking experiments
presented in the chapter 3 of this thesis, will be achieved through this
electrical mechanism.

Another important mechanism leading to injection-locking of spin-
torque oscillators is due to dipolar magnetic fields that can be provided
by a micro-strip antenna fabricated in the vicinity of the oscillator.
The external microwave electrical signal is sent into this antenna
which generates the microwave fields acting on the dynamics of the
spin-torque oscillators. This approach was used in the case of magnetic
oscillators having a uniform magnetization by Urazhdin et al. [212] and
was extended to the case of vortex based nano-oscillators by Hamadeh
et al. [244]. This approach using the antenna will be used experimen-
tally in chapter 4 in order to achieve individual injection-locking of
an assembly of four oscillators for neuromorphic applications.

3.4 applications potential of spin-torque nano- os-
cillators

Spin-torque nano-oscillators are good candidates for several differ-
ent application fields. Indeed these spintronic devices have numerous
advantages such as their nanometric size, compatibility with CMOS
technology, large frequency tunability [189], tolerance to radiations
[245]. In this section few applications of spin-torque nano-oscillators
will be briefly presented in this section. Importantly, it should be men-
tioned, that magnetic-tunnel-junction structure involved in spin-torque
oscillators is starting to be a part of the manufacturing process of
microelectronics foundries. Indeed, a large effort for building magnetic
access memory MRAM devices was achieved in the recent decade, and
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first commercialized devices appeared recently [246]. These memories
will not be described here, however they are an important illustration
of the fact that magnetic-tunnel-junction structures are technology-
ready for large on-chip integration. Therefore, implementations with
large numbers of nano-oscillators are quite promising with spin-torque
nano-oscillators compared to the other nano-oscillator technologies
presented in the first chapter.

3.4.1 Microwave emission

A straightforward field of applications for spin-torque nano-oscillators
is the one of microwave emitters. Today, a wide range of emitted fre-
quencies need to be covered, for instance from 100 MHz to 5 GHz for
mobile, and from 5 to 25 GHz for spatial or radar applications. There-
fore, the large frequency bandwidth (100 MHz to 65 GHz) covered by
oscillators is good advantage. In addition, their small size (order of
100 nm) compared to voltage control oscillators (VCO) having often
a size larger than the micrometer, make spin-torque oscillators very
suitable for miniaturized on-board systems. However, an important
issue remains the phase noise of these oscillators (-90 dBc/Hz) which is
still larger than the one of VCOs (-110 dBc/Hz)[247]. In order to solve
this problem several strategies were proposed, namely implementing a
phase-locked-loop circuit for the spin-torque nano-oscillators [248][249]
or by synchronizing an assembly of spin-torque nano-oscillators which
improves both the output power and the coherence [238].

Interestingly, spin-torque nano-oscillators can also be used in order
to transmit information for wireless applications through the discrete
changes of the amplitude of their carrier signal as a function of the
modulation current. This approach called "amplitude-shift-keying" was
demonstrated experimentally allowing a transmission of information
with a rate of 200 kbit/s, which can be improved to 1.5Gbit/s [250].
Using a different approach leveraging frequency changes of the oscil-
lator called "frequency-shift-keying" higher information transmission
rate was demonstrated experimentally up to 400 Mbit/s [251][252].

Another application field of spin-torque oscillators concerns the read-
heads of hard-disk drives. Read-heads are often made of magnetic-
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tunnel-junctions which through magnetoresistance effects modify their
resistance in presence of the stray field of magnetic bits. In order to ac-
celerate the reading rate, an alternative approach is to use spin-torque
nano-oscillators [253] as a read-head. By interacting with the magnetic
stray-field of stored bits, spin-torque nano-oscillators can modify their
frequency and therefore read the bit which should improve the data
transmission rate.

3.4.2 Microwave detection and frequency mixing

When spin-torque nano-oscillators are excited by a microwave signal
with a certain frequency they can rectify their dc voltage [247]. When
the frequency of this microwave signal is close to an eigenfrequency
of the magnetic free-layer, the magnetization starts to oscillate. This
oscillation is converted to a microwave oscillation of the resistance of
the oscillator. Therefore, the voltage of the device will corresponds
to the product of two oscillating microwave variables: the injected
microwave current and the resulting microwave resistance. The time
average of this product leads to a non-zero rectified dc voltage. This
effect is called spin-diode effect and was proposed for the detection of
microwave currents. Contrary to Schottky diodes used for rf detection,
spin-torque oscillators have smaller size and can have higher detection
sensitivity [254] (of the order of 12000 mV/mW while for Shottky
diodes it is close to 3800 mV/mW). In the last decade, different strate-
gies as vortex expulsion or injection-locking were leveraged to obtain
a sufficient spin-diode effect respectively for building rf detectors [255]
and agile frequency spectrum analyzers [256].

Another application of this effect is to use spin-diode effect in or-
der to build energy harvesters [257]. Indeed by capturing neighboring
microwaves, spin-torque nano-oscillators through the spin-diode effect
can generate a sufficient rectified dc voltage that can be used to feed
other electric devices such as photo-sensors autonomously. Spin-diode
results reported by Fang et al. [258] for broadband input microwave
frequencies are encouraging approach towards building such kind of
nanometric energy harvesters.
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3.4.3 Neuromorphic application potential

As it was mentioned in the first chapter, spin-torque nano-oscillators
are promising building blocks to emulate neuron-like units and different
computation models involving spin-torque oscillators are achieved nu-
merically. By studying the impact of different transformations used at
this numerical step, the critical role of the spin-torque nano-oscillator
and, in particular, its nonlinear amplitude response in order to solve
the problem was highlighted. The approach used to train to recognize
digits corresponds to reservoir computing. Beyond the application
context of spin-torque nano-oscillator today, this work is an important
demonstration proof of using nano-oscillators in order to achieve neu-
romorphic computing at the nano-scale. In the same line of thinking,
next chapters of this thesis will present neuromorphic computing
results using a different approach leveraging synchronization with this
time four coupled spin-torque nano-oscillators.

3.5 conclusion

We have seen in this chapter fundamental spintronic physical
phenomena underlying the features of spin-torque nano-oscillators.
Through the state-of-the art of these nano-oscillators the important
properties required to building a hardware oscillator-based assembly
than can emulate biological neural network were presented. Through
their small size, nonlinear response, compatibly with CMOS technol-
ogy, well-known magnetization dynamics, high frequency tunability,
low frequency linewidth and high output power at the nano-scale and
other working properties, they are very promising for neuromorphic
applications. In particular, their ability to synchronize was highlighted
which will be leveraged in next chapters to realize first neuromorphic
operations. The large application field of spin-torque oscillators was
also briefly presented which emphasizes the fact that beyond funda-
mental studies, these spintronic oscillators and technology-ready for
implementations.
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4
O S C I L L AT I O N S A N D S Y N C H R O N I Z AT I O N O F
S P I N - T O R Q U E V O RT E X O S C I L L AT O R S

In this chapter, I will present the theoretical and experimental
properties of a particular class of spin-torque nano-oscillators that
were mainly studied in this thesis called spin-torque vortex nano-
oscillator. The dynamics leading to oscillations and synchronization
phenomena that were observed experimentally will be emphasized.
In particular, the synchronization of two coupled spin-torque vortex
oscillators in presence of an electrical mutual coupling will be studied
both experimentally and by simulations. This will give rise to a
preliminary understanding of synchronization of those oscillators in
presence of coupling which will be an important feature in order to
demonstrate an array of coupled spin-torque nano-oscillators able to
realize neuromorphic operations in chapter 5.

4.1 vortex spin-torque nano-oscillators

As mentioned in the previous chapter, the first spin-torque nano-
oscillators had uniform magnetization distributions for their free-layer.
Since then, spin-torque nano-oscillators with a vortex magnetization
configuration in their free layer have been investigated, and have
generated a high interest in the community due to their low frequency
linewidth and higher signal to noise ratio [195][186][184]. In this
section, the static properties of magnetic vortices will be described,
as well as their dynamics under spin-transfer torque.

4.1.1 The magnetic vortex

The magnetization distribution depends on both the size and shape
of the ferromagnetic studied system. In a static case, any magne-
tization distribution (uniform or non-uniform) is resulting from a
competition between different categories of energy in the ferromag-
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netic system: exchange, dipolar and Zeeman energy. In particular, at
remanence, the magnetization distribution which minimizes these two
energies in ferromagnetic disks can be a magnetic vortex distribution.
Depending on the height, radius of the ferromagnetic cylinder, and

the exchange length of the material LE =
√

2A
µ0M2

s

, three distinct

ground states can be distinguished: uniform in-plane, uniform out-of-
plane and non-uniform vortex configurations. Here A is the stiffness
exchange constant and Ms is the saturation magnetization of the
material. (For typical ferromagnetic materials used in the free-layer of
the sample of this thesis, this length can be evaluated to LE(NiFe)≈
5.7 nm and LE(FeB)≈ 11.8 nm.) Fig. 30 presents regions for which
the radius of the cylinder and its height lead to one of these three
configurations.

For radius and height values leading to vortex configuration ground
state, the majority of the magnetization curls in-plane except in a
small region called vortex-core where it becomes out-of-plane. A mag-
netic vortex is characterized by its polarity and chirality. The polarity
corresponds to the direction of the magnetization component which
is out-of-plane P = mz(0) = ±1. The chirality corresponds to the
curling direction of the in-plane magnetization, C = 1 if it is anti-
clockwise and C = −1 if it is clock-wise. At the end, four different
(C,P) configuration can occur and are shown in Fig. 31.

Different analytical approaches were proposed to describe the magne-
tization distribution [259] [259] [260] namely by reducing the problem
by finding an analytical function for the out-of-plane magnetization
distribution giving rise to different models. For more details, a com-
parison between these models (Usov is the most commonly studied)
are proposed by Gaidedei [261]. Here we mainly present the magnetic
vortex state appearing in a circular section, however it can be also
found in elliptical [262] or square ferromagnetic sections [263].

For a circular ferromagnetic cylinder, at the remanence, the mag-
netic vortex is located in the center of the section of the ferromagnetic
cylinder. However, when a applied magnetic field is applied in the
plane of the section, the vortex core is displaced and leaves the cen-
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II

Figure 30: Stability diagram of the three different configurations of the
magnetization distribution in a ferromagnetic cylinder having
a section radius R and height L. This diagram was originally
taken from Metlov et.al.[13]. The diagram presents three distinct
regions. I: magnetic vortex state, II: magnetized uniformly in-
plane, III: magnetized uniformly out-of-plane. The dashed region
corresponds to a metastable configuration between the three
different ground states.

ter of the disk. Through this vortex core position displacement, the
magnetization distribution tries to align its mean planar magneti-
zation with the direction of the applied magnetic field. This allows
to minimize the total magnetic energy which includes the dipolar,
exchange and also the Zeemann energy (due to the applied magnetic
field). The stability of the vortex state was studied in presence of
an in-plane applied magnetic field both in simulations [264][265] and
experimentally [266][267][268]. For high in-plane applied magnetic
field, the magnetization is uniform and is aligned with the direction
of the applied magnetic field. By decreasing this field, the transition
between the uniform configuration and the vortex one occurs at the
nucleation field Hn. Close to this field value, during this transition
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𝑚𝑧 𝑚𝑧

Figure 31: Four different (C,P ) configurations for the magnetization distri-
bution: (1,1), (1,-1), (-1,1), (-1,-1), figure extracted from [11]. Blue
and red colors correspond respectively to positive and negative
out-of-plane magnetization mz.

an intermediate metastable state can appear which corresponds to a
magnetization that is curly in the plane while the vortex core is absent
from the disk. This intermediate state is often called to "C-state".

For a case where the magnetic vortex is inside the ferromagnetic
disk, several analytical description for the spatial magnetization dis-
tribution of the vortex were proposed [259][261].

4.1.2 Dynamics of vortex spin-torque oscillators

The magnetic vortex presents several different dynamical modes.
These modes were observed experimentally [269][270][271] and con-
firmed by simulations and analytical studies [272][273], and their
frequency depends on the aspect ratio of the ferromagnetic disk. The
fundamental mode is called the gyrotropic mode and corresponds to
the spatial oscillation of the vortex core around the magnetic equi-
librium center of the disk. Higher modes corresponding to radial and
azimuthal modes can be observed but those will not be considered
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in the following. In the rest of this thesis, an exclusive focus will be
given to the dynamics of the magnetic vortex in the gyrotropic mode.

In order to describe the dynamics of the gyrotropic mode, one should
consider the Thiele equation approach proposed in 70’s to describe
the dynamics of vortex in semi-infinite wires [274]. Importantly, the
magnetization dynamics in this case can be seen as a translation
of the magnetization distribution and therefore can be reduced to
the description of magnetization of one particular point. In the case
of a magnetic vortex in a ferromagnetic disk, the description of the
dynamics can be reduced to the center of the vortex core Xc cor-
responding to cylindrical coordinates (sc, θc) in the 2D plane of the
ferromagnetic disk. Here sc corresponds to the normalized radius
position in a feromagnetic disk of radius R. When the vortex leaves
its equilibrium state corresponding to the center of the disk, several
hypothesis should be considered in this formalism to simplify the
calculations, namely the translation of the vortex core, the absence
of magnetization deformation or the introduction of an image vortex
outside of the ferromagnetic disk to cancel the apparition of magnetic
charges at the border of the disk (~m.~dr = 0 where ~dr is the elementary
radial vector defined at the border of the disk) called the Two-vortex
Ansatz (TVA). Here, those hypothesis will not be detailed but detailed
descriptions are given in [275][12].

In order to establish the Thiele equation of motion for the vortex
core, the Landau-Lifschiz-Gilbert equation Eq. 18 is projected in a
spherical basis defined in the ferromagnetic disk. Then by integrating
the energy variations overall the disk a new dynamical equation can
be derived:

G× dXc
dt
−D(Xc)dXc

dt
− ∂W

∂Xc
+ FSTT = 0 (32)

The details of the calculation to establish this equation from Eq. 18
can be found in [12]. The different terms of this equation will be de-
scribed in the following. The different terms of Eq. 32 can be seen as
four different forces acting on the center of the vortex core having a po-
sition Xc. The first term G× dXc

dt
corresponds to the Gyroforce. This
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Vortex core

Figure 32: a) Schematic representation of the vortex core position coordinate
used in the 2D plane of the ferromagnetic disk. b) Schematic
representation of the different forces acting on the vortex core in
the Thiele formalism. Figure extracted from Lebrun et al. [8]

.

force is responsible for the rotational motion of the vortex core around
the center of the dot. The gyrovector G is associated to the cross
product of magnetization gradients and is pointing perpendicularly
to ferromagnetic disk surface. In the case of an applied perpendicular
field H⊥, the gyrovector magnitude can be defined as follows:

G = (2πLMs

γ0
P )(1− P cos θ0) (33)

Here, θ0 = cos−1 H⊥
µ0Ms

is the free layer magnetization angle which
allows to take into account the influence of the perpendicular applied
magnetic field H⊥ on the magnetization of the free-layer, P is the
vortex polarity, Ms is the saturation magnetization of the free-layer,
L is the free-layer thickness.

The second term of Eq.32 represents the damping force pointing in
the opposite direction of the motion of the vortex core. The amplitude
of this damping term is defined as follows and depends nonlinearly on
the amplitude position of the vortex core:

D = D0(1 + ξ(sc
R

)2) (34)
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Where D0 corresponds to the following expression:

D0 = α(2πLMs

γ0
)(1

2 ln
(
R

2b

)
− 1

8) sin2 θ0 (35)

Here, ξ = 0.6, α is the Gilbert damping coefficient defined previously,
R is the radius of the ferromagnetic disk, and b corresponds to the

size of the vortex core radius b = 2Lex = 2
√

2A
µ0M2

s

(here A is the

exchange stiffness constant introduced previously). The calculation
giving this term can be found in [11]

The third term of Eq.32 corresponds to the confinement forces which
are applied in the 2d plane of the vortex core trajectory. It tends to
return the vortex core to the dot center in order to reduce the total
energy. This planar confinement force regroups two different types
of terms deriving from the integration of two energies present in the
effective field of Eq.18, Wms and WOe. Those terms are due to the
Zeeman interaction with respectively the magneto-static field and the
Oersted field appearing when an electrical current is applied:

W = Wms +WOe (36)

The magnetostatic energy can be expressed as follows:

Wms = 1
2κmss

2
c +

1
4κ
′
ms

s4
c

R2 +O(s6
c) (37)

And the energy due to the Oersted field confinement can be expressed
as follows:

WOe = 1
2κOeCJs

2
c +

1
4κ
′
OeCJ

s4
c

R2 +O(s6
c) (38)

Here, C corresponds to the chirality of the vortex, and J is the
electrical current density injected in the nanopillar. The different
coefficients involved in these two expressions were calculated through
the evaluation of the energy integrals by Guslienko et al. [276], Gaididei
et al. [261] and Khvalkovskiy et al. [206]. Concerning the magnetostatic
term those coefficients are defined as follows:

κms = (10
9 )µ0M

2
s

L2

R
sin2 θ0 (39)

83



κ
′
ms = 0.25κms (40)

Concerning the term due to the Oersted field confinement they are
defined as follows:

κOe = 0.85µ0MsLR sin θ0 (41)

κ
′
Oe = −0.5κOe (42)

The last term of Eq.32, corresponds to the force due to spin-torque
due to the Slonczewski and field-like torque introduced in the previous
chapter(see Eq. 18). The force due to the Slonczewski torque can be
decomposed in two components: FSlonc

⊥ and FSlonc
‖ due respectively to

the perpendicular pz and in-plane px components of the magnetization
of the polarizer p = pzz + pxx. Thus, the force due to spin-torque
can be defined as follows:

FSTT = FSlonc
⊥ + FSlonc

‖ + Ffield−like (43)

The first force term FSlonc
⊥ will act as an anti-damping force. De-

pending on the sign of the applied current J , it will acts in the same
direction than the damping force (J > 0) or in the opposite direction
(J < 0). This force can be expressed as follows:

FSlonc
⊥ = ajJ(z×Xc) (44)

Where aj corresponds to the following expression:

aj = π
h̄P
2e pzsin

2θ0 (45)

Here, P is the spin polarization of the magnetic junction, h̄ =
1.054× 10−34J.s−1, and e = 1.602× 10−19C. It should be noticed
that perpendicular component of the magnetization of the polarizer
pz depends on saturation magnetization Mpol

s of the polarizer and
also on the applied perpendicular magnetic field H⊥ [160]:

pz = H⊥

µ0M
pol
s

(46)
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The second force term FSlonc
‖ will act as an in-plane magnetic field.

This force can be expressed as follows:

FSlonc
‖ = axj Jx (47)

Where axj corresponds to the following expression:

axj = π
h̄P
2e bC (48)

Here, p is the polarity of the vortex, b is the radius of the vortex core
which in the first approximation is related to the exchange length of
the free-layer b ≈ 2LE . However the applied perpendicular magnetic
field Hperp affects this radius and one can also take into account this
contribution using simulations (see [275]).

The third force term Ffield−like will also act as an in-plane magnetic
field. This force can express as follows:

Ffield−like = bjJ(z× p) (49)

Where bj corresponds to the following expression:

bj = Cπ
h̄P
2e

2
3Rrfl (50)

Here C is the chirality of the vortex, R is the the radius of the
free-layer disk and rfl is the amplitude ratio of the field-like torque
over the Slonczewski torque defined in the previous chapter (varies.
between 0.1 and 0.4). In the case of a uniform polarizer, the in-plane
contribution of the Slonczewski torque FSlonc

‖ and the field-like torque
Ffield−like average out for one gyration of the vortex core. Therefore,
in this case their impact on the gyration dynamics can be neglected.

By including all of the other terms in the expression of the four
forces acting on the vortex core in the Thiele equation Eq. 32 and
projecting this equation in the 2D plane of the ferromagnetic disk
following the procedure described by Dussaux et al., one can find a
differential system where phase θc and amplitude sc are coupled to
each other [159].

dθc
dt

= κ

G
(1 + η(sc

R
)2) (51)
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dsc
dt

= D0κ

G2 (Joc − (η+ ξ)(sc
R

)2) (52)

Where, κ = κms + κOeJ , η = κ
′
ms + κ

′
OeJ

κms + κOeJ
, and Joc = ajJG

D0κ
. This

system of differential equations is used to simulate the magnetization
dynamics of spin-torque vortex oscillators studied in this thesis. It
should be noticed that the expression of these equations and those
defined in the Slavin et al. formalism (Eq. 23 and 24) are quite similar
and illustrates the nonlinearity of spin-torque vortex oscillators in
their gyrotropic mode. One can also see that the frequency of the
oscillator can be obtained by evaluating dθc

dt
.

4.2 electrically coupled vortex spin-torque nano-
oscillators

In this section, I present both experimental results and simulations
concerning the synchronization of a spin-torque vortex nano-oscillator
to an external microwave signal when it is electrically coupled to an-
other oscillator. More precisely an enhancement of the synchronization
bandwidth to the external signal also called injection-locking range
was observed compared to a situation not including mutual coupling.
This evolution of the injection-locking range was studied for different
coupling strengths. This work is mainly described in [14].

4.2.1 Samples

The experimental results presented in this chapter are obtained
for magnetic tunnel junctions fabricated by with the following composi-
tion: Ta/CuN/Ta/ PtMn(20)/CoFe(2)/Ru(0.85)/CoFeB(2.2)/CoFe(0.5)/MgO(1)/
CoFeB(1.5)/Ta(0.2)/NiFe(7)/Ta. Here PtMn(20)/CoFe(2)/ Ru(0.85)/CoFeB(2.2)
is a synthetic ferrimagnet (SyF) uniformly magnetized in-plane, that
is used as a polarizer, CoFeB(1.5)/Ta(0.2)/NiFe(7) is the free layer.
Thicknesses are given in brackets in nm. Samples were grown by
sputter-deposition and patterned down to the bottom electrode into
circular nanopillars with a diameter of 200 nm. The nano-pillars ex-
hibit a TMR of 64% at room temperature. These samples (RFHR008)
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were fabricated by collaborators working in International Iberian Lab-
oratory (INL) together with CEA LETI and Spintec in the context of
the MOSAIC project.

4.2.2 Experimental injection locking in a system of electrically cou-
pled spin-torque vortex oscillators

The samples used for this experimental study are the same ones
presented in the previous section 4.2.1. Two of such kind of spin-
torque nano-oscillators are connected in series, and electrically coupled
through their own electrical microwave emissions. In order to obtain
an efficient spin-transfer torque acting on the magnetic vortex core
of the free-layer, a magnetic field µ0H⊥ = 0.240 T perpendicular to
the magnetic layers is maintained constant during the measurement.
Fig. 33 shows the corresponding electrical circuit measurement. In
each nano-oscillator, the applied dc current is injected perpendicularly
to the layers and as it was described in the previous section, it leads
to vortex core dynamics and induces through magneto-resistive effects
a microwave oscillating resistance variation that can be read-out. It
should be noticed that the circuit allows an individual control on the
dc current flowing through each nano-oscillator independently. For
this reason, the dc current is supplied by two different dc current
sources. Therefore, this individual control on the two injected dc
currents, allows to tune the frequency of the two nano-oscillators
independently. As in the circuit described in the previous section, an
external microwave current is injected in the circuit using a microwave
source. The power amplitude of the signal injected to circuit is -15
dBm and its frequency is around twice the frequency of the carrier
frequency of the two oscillators. Finally, a spectrum analyzer is used
to record the total microwave signal of the coupled nano-oscillators 1
and 2 (called STO1 and STO2 in Fig. 33)
Using this approach, the injection-locking range of oscillator 1 to

the external microwave signal can be studied while it is also coupled
to the oscillator 2. The dc current flowing in oscillator 1 is kept con-
stant ISTO1 = 6.3 mA and the injection-locking range experiments
(presented in the previous sections) are performed. These experiments
are done for different values of flowing dc current through oscillator 2
ISTO2. The injection locking experiments were focused on oscillator

87



Figure 33: Schematic of the electrical circuit of the experimental system of
two electrically coupled nano-oscillators.

1, because experimentally it exhibits a larger ability to adapt its
frequency in presence of external stimuli.

Fig. 34 summarizes an injection-locking experiment obtained in the
studied two coupled nano-oscillator system. The red filled square
curve corresponds to the frequency of oscillator 1 in a situation where
it is not electrically coupled the oscillator 2. Here, this situation is
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obtained when the flowing current in oscillator 2 is zero ISTO2 = 0
mA, which corresponds to an absence of oscillation and therefore
microwave emission from this oscillator. In this situation, one can see
that for frequencies of the external source between Fext = 762.8 MHz
and Fext = 766.18 MHz, the frequency of oscillator 1 is locked to the
half of the frequency of the external source. Thus, one can deduce an
injection-locking range of ∆STO1

uncoupled = 1.69 MHz.

Figure 34: Injection locking experiments with oscillator 1 uncoupled
(ISTO2 = 0 mA, red squares) and with oscillator 1 coupled to
oscillator 2 (ISTO2 = 3.25 mA, black dots, solid dots represent
the frequency of oscillator 1 and open dots the one of oscillator 2).
The current applied to oscillator 1 is kept fixed (ISTO1 = 6.3 mA).
Vertical arrows highlight the injection locking range of oscillator
1, delimited by horizontal dashed lines.

Then, by injecting a sufficient dc current through oscillator 2 in
order to induce its oscillation, the two oscillators couple together
electrically. It should be noticed that the strength of coupling between
oscillators is inversely proportional to their frequency difference [217].
In particular, for a small frequency difference this can lead to mutual
synchronization [237]. For the studied experimental system, this oc-
curs for a frequency difference lower than 2 MHz. Here, the mutual
synchronization of oscillators is avoided by tuning the frequency of
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the oscillators to obtain a frequency difference slightly larger than 2
MHz.

The black filled dots in Fig. 34 represent the frequency of oscilla-
tor 1 in a situation where this oscillator is coupled to oscillator 2
obtained for a current of ISTO2 = 3.25 mA. Black open dots cor-
respond to the frequency of oscillator 2 for this particular flowing
current. One can see on the frequency evolution of oscillator 1, that
its injection-locking range is expanded in a one side compared to a
case where it is not coupled to the oscillator 2 (ISTO2 = 0 mA). As a
result, the injection-locking range grows from ∆STO1

uncoupled = 1.69 MHz
in the uncoupled case to ∆STO1

coupled = 2.77 MHz in the case it is coupled.

When the frequency of the external source is increased (from left
to right in Fig. 34), at some point the oscillator 1 starts to get at-
tracted by the external source, thus its frequency is pulled down
towards half of the frequency of the external source. Therefore, the
frequency of oscillator of 1 becomes closer to the one of the oscillator
2. This causes an increase of their mutual interaction in such a way
that the oscillator 2 starts to assist the external source in pulling
down the frequency of oscillator 1. Due to this additional force, the
frequency of oscillator 1 decreases further and gets locked to the com-
mon frequency shared by the oscillator 2 and the external source. This
observed phenomena occurs at an external frequency Fext = 760.6
MHz. As can be seen in Fig. 34, this frequency value is well lower than
the value at which oscillator 1 gets locked to the external source in the
uncoupled case corresponding to Fext = 762.8 MHz. To summarize,
the injection-locking range increases by 64 % in the coupled case
compared to the uncoupled case.

In order to confirm the injection locking enhancement mechanism,
numerical simulations were performed in both uncoupled and coupled
cases. The frequency evolution of the two oscillators 1 and 2 obtained
in these simulations are shown in Fig. 35. As for the experimental
injection-locking results, the red square curves represent the frequency
of the oscillator 1 in the uncoupled case, the black filled curve represent
this frequency in the coupled case, and open black curve represent
the frequency of the oscillator 2.
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Figure 35: Numerical simulations of injection locking with oscillator 1 un-
coupled (ISTO2 = 0 mA, red squares) and coupled to oscillator 2
(ISTO2 = 3.57 mA, black dots, solid dots represent the frequency
of oscillator 1 and open dots the one of oscillator 2). The current
applied to oscillator 1 is kept fixed (ISTO1 = 2.6 mA).

In these simulations, the magnetization dynamics of two electri-
cally coupled vortex oscillators is obtained by solving numerically
the differential Thiele equation (presented in the previous sections)
simultaneously for the two vortex i = 1, 2:

Gi ×
dXi
dt
−Di(Xi)

dXi
dt
−
∂Wi(Icomrf )

∂Xi
+ FSTT

i (Icomrf ) = 0 (53)

Here, Xi = (xi, yi) is the vortex core position, Gi is the gyrovector,
Di is the damping, Wi is the potential energy of the vortex, FSTT

i
is the spin-transfer force. The total microwave current Icomrf flowing
through the oscillators consists of the external microwave current
provided by the source, as well as the microwave currents emitted by
the oscillators themselves. This current is described as an additional
common alternating current that goes through all N nano-oscillators
[277] Icomrf = 1

Z0 +
∑N
i=1Ri

∑N
i=1 λ∆RiI

i
dcyi. Here ∆Ri is the mean

resistance variation due to the vortex core gyrotropic motion through
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tunnel magnetoresistance, Z0 is the load impedance which is equal to
50 Ω, Ri is the resistance of the junctions and λ = 2/3[278]. The ma-
terial parameters considered are extracted from the analytical fitting
of the experimental response of each oscillator and are summarized in
Tab. 2. As in the injection locking experiments presented previously in

Parameters STO1 STO2
TMR 32% 8.6%
D (kg.rad−1.s−1) 5.5× 10−15 1.14× 10−15

G (kg.rad−1.s−1) 1.65× 10−13 1.09× 10−13

aJ (kg.m2.A−1.s−2) 20× 10−17 9.43× 10−17

bj (kg.m2.A−1.s−2) 5.0× 10−17 1.14× 10−17

κms (kg.s−2) 3× 10−4 1.43× 10−4

κ
′
ms (kg.s−2) 7.5× 10−4 7.18× 10−15

κOe (kg.m2.A−1.s−2) 5× 10−16 8.25× 10−16

κ
′
Oe (kg.m2.A−1.s−2) −4.2× 10−15 −6.2× 10−15

ξ 0.5 8.0

Table 2: Individual parameters of the two nano-oscillators used to simulate
the experimental network of coupled spin-torque vortex oscillators.
Here the TMR parameter corresponds to an effective value used
in order to take into consideration the reduction induced by the
applied dc current.

this section, the dc current flowing through oscillator 1 is kept constant
ISTO1 = 2.6 mA. The value of the applied dc current in this simulation
is chosen is such a way to obtain oscillation frequencies comparable
to the experimental one. The frequency obtained in simulations for
the two vortex oscillators, are extracted from 5 µs time traces of the
angular evolutions of the vortex core trajectories of the two oscillators.
These simulations point out the fact that the observed synchronization
ability at half of the frequency of the external signal is mainly due to
the field-like torque (introduced in the previous sections).

As shown in Fig. 35, the injection-locking range presented in Fig. 34
increases due to the electrical coupling. Indeed, due to the electrical
coupling between oscillator 1 and 2 in simulations, the injection-locking
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range of oscillator 1 is increased from 3 MHz to 4.32 MHz. This corre-
sponds to an enhancement of 42 % of its injection-locking range. These
numerical results are in good agreement with the general behavior
observed in injection-locking experiments in presence of coupling. In
particular, it allows to reproduce the unidirectional injection-locking
range enhancement. In fact, only the left frequency boundary of the
locking range is modified in the presence of electrical coupling, while
the upper bound of the locking range remains constant.

4.2.3 Influence of the the coupling strength on the injection locking-
range

Figure 36: Experimental injection locking experiments at 2f and P=-15 dBm
of oscillator 1 uncoupled (red curve) or coupled to oscillator 2
(black, blue, orange, and brown curves) for different ISTO2 values
of the dc current flowing through oscillator 2: respectively from
left to right: ISTO2 = 0 mA (red), ISTO2 = 2.95mA (black),
ISTO2 = 3.05 mA (blue), ISTO2 = 3.25 mA (orange), ISTO2 =
3.35 mA (brown). Arrows highlight the injection locking range of
oscillator 1, delimited by horizontal dashed lines. Figure extracted
from [14]

In order to evaluate experimentally the influence of the coupling
strength on the injection-locking range, the flowing dc current in
oscillator 2 ISTO2 is varied while the flowing dc current in oscillator 1
is maintained constant (ISTO1 = 6.3 mA). Using this procedure, the
frequency difference between the two oscillators is modified, which
corresponds to the tuning of the electrical coupling strength between
the two oscillator. More precisely, in the conditions of the experiment,
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Figure 37: Simulations of injection locking experiments at 2f and P=-15
dBm of oscillator 1 uncoupled (red curve) or coupled to oscillator
2 (black, blue, orange, and brown curves) for different ISTO2
values of the dc current flowing through oscillator 2: respectively
from left to right: ISTO2 = 0 mA (red), ISTO2 = 3.3 mA (black),
ISTO2 = 3.35 mA (blue), ISTO2 = 3.57 mA (orange), ISTO2 =
3.65 mA (brown). Arrows highlight the injection locking range of
oscillator 1, delimited by horizontal dashed lines. Figure extracted
from [14]

an increase of the dc current flowing in oscillator 2 ISTO2 is translated
into a decrease of the frequency detuning between the two oscillators,
and as a consequence to an increase of the coupling strength. In this
line of thinking, the injection-locking range is performed at different
values of ISTO2. Fig.36 and Fig.37 show injection-locking range re-
sults obtained at few different chosen ISTO2 values, respectively in
experiments and simulations. The first red graph of both of these two
experimental and simulation figures (Fig.36 and Fig.37) correspond
to the frequency evolution of the oscillator 1 where it is uncoupled to
the other oscillator (ISTO2 = 0 mA). The rest of the injection-locking
graphs, represents injection locking situations where the oscillators
are coupled: From left to right (black, blue, orange, and brown), these
graphs are obtained for values of ISTO2 increasing from 2.95 mA to
3.35 mA. In each of such graphs, the value of the injection-locking
range of the oscillator 1 was extracted and its enhancement compared
to a reference injection-locking range obtained in the uncoupled case
is displayed in Fig. 38 and Fig. 39 respectively for experiments and
simulations. In the case where the two oscillators are coupled, these
two figures show how the injection-locking of oscillator 1 is enhanced
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as a function of the flowing dc current in oscillator 2 ISTO2. In par-

Figure 38: Experiments: Enhancement of the injection locking range of oscil-
lator 1 due to its coupling to oscillator 2 as a function of the dc
current applied on oscillator 2 ISTO2. The frequency difference
between oscillators decreases as ISTO2 increases. Filled dots are
from the injection-locking data shown in Fig. 36 and are plot-
ted with the same color than the corresponding injection-locking
curves. Figure extracted from [14]

ticular, these figures show that by taking advantage of the coupling to
oscillator 2, the experimental injection-locking range can be enhanced
up to a value of 65% larger than the injection-locking range obtained
in the uncoupled case. From the observation of these figures, one can
also deduce 3 different trends in the evolution of the locking range as a
function of ISTO2 (see Fig. 38). In good agreement with experiments,
the same qualitative bell shape evolution dependence as a function of
ISTO2 with the corresponding 3 trends is found. In both Fig. 38, the
following regions can be distinguished:

- Region 1 (R1 in Fig. 38 ) corresponds to ISTO2 lower than 3mA. In
this region, the influence of the coupling is weak namely because the
frequency detuning between oscillator 1 and 2 is still relatively large.
In this region, the mechanism of enhancement of the injection-locking
range of oscillator is due to the frequency pulling of oscillator’s 1
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Figure 39: Simulations: enhancement of the injection locking range of oscil-
lator 1 due to its coupling to oscillator 2 as a function of the dc
current applied on oscillator 2 ISTO2. Filled dots are from the
simulated injection-locking data shown in Fig. 37 and are plot-
ted with the same color than the corresponding injection-locking
curves. Figure extracted from [14]

frequency caused by the coupling to the oscillator 2, see Fig. 38-black
curve. Due to injection-locking of oscillator 2 to the external signal,
its frequency becomes close to the frequency of oscillator 1. Due to
this effect, the frequency of oscillator 1 is strongly pulled down. As
a consequence of this pulling mechanism, the injection-locking of
oscillator 1 is enhanced up to 2.56 MHz which corresponds to an
enhancement of 53% compared to the reference uncoupled situation.
This behavior is also captured by numerical simulations and similar
frequency evolutions can be seen in Fig. 39-black and blue curves. It
should be noticed that an additional feature was identified in those
figures, before the oscillator 1 is synchronized to the external source.
In fact, the frequency of oscillator 1 evolves with a different slopes
than the one given by the frequency of the external source. This effect
was easier to highlight in simulations, however it is also present in
experimental graphs and was identified as the locking of the oscillator
1 to a modulation signal defined as Fext− fSTO2. In addition, concern-
ing the region 1, Fig. 38 also shows that the injection locking range
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of oscillator 1 sharply increases as a function of ISTO2. This observed
phenomena can be explained by two factors:

First, the increase of ISTO2 causes a reduction of the frequency de-
tuning and oscillator 2 locks better and better to the external source.
As a consequence, the frequency of oscillator 2 is more and more
increased through injection locking. This increase of the frequency of
oscillator 2 increases the interactions with oscillator 1 and allows a
more efficient pulling of the frequency of oscillator 1.

The second factor corresponds to the increase of the power emit-
ted by oscillator 2 when its applied dc current is increased. This
increase of the emitted power is translated into an increase of the elec-
trical coupling between the two oscillators and thus into an increase
of the ability of oscillator 2 to attract the the oscillator 1.

- Region 2 (R2 in Fig. 38 ) corresponds to ISTO2 between 3 and
3.25 mA. Due to the higher current applied in oscillator 2, the fre-
quency detuning in this region is smaller than in region 1. Therefore
the coupling between the two oscillators is also stronger. In this re-
gion R2, the injection locking range of oscillator 1 occurs through
the simultaneous locking of oscillator 1 to oscillator 2 and to the
external source. The blue curve of Fig. 38 shows how this injection
locking occurs in this region R2. As in the region R1, a frequency
pulling effect occurs towards the frequency of oscillator 1 (point P1
in Fig. 38-blue curve). It should be noticed that the frequency of
oscillator 1 here is well below the minimum frequency of oscillator 1
in the reference uncoupled case corresponding to the red curves of
Fig. 38. Upon increasing Fext, oscillator 1 gets eventually locked to
both the external source and oscillator 2. This effect can be seen when
the frequency of oscillator 2 is increased due to frequency locking to
the external source (point P2 in Fig. 38-blue curve). In this configura-
tion, the injection locking range of oscillator 1 was estimated to 2.74
MHz which corresponds to an enhancement of 62% compared to the
uncoupled case. When the frequency detuning between two oscillators
is reduced further (see Fig. 38-orange curve) oscillator 1 gets locked
to the external source at external frequency values Fext around the
upper boundary of the injection-locking range of the oscillator 2. As
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it is shown in Fig. 39-orange curve, simulations reproduced the exper-
imental observed behavior.

By observing the injection-locking evolution shown in region 2 of
Fig. 38, one can see that the injection-locking range of oscillator
1 increases as a function of ISTO2 but in a slower manner than in
region 1, meaning that the reduction of the frequency detuning in
this region does affect injection-locking range of oscillator 1. This can
be explained by the fact that oscillator 1 does not only experience
frequency pulling, but is also locked to the common frequency shared
by the external source and the oscillator 2. In this situation, it should
be noticed that there is a range of Fext external frequency values for
which the oscillator 2 has the same frequency than the external source
fSTO2 = Fext

2 and is therefore independent from its applied dc current
ISTO2. In this context, oscillator 1 gets lock to the external source,
for a external frequency value (defining the lower boundary of the
injection-locking range for the oscillator 1) which is independent of the
frequency detuning. Therefore, the injection-locking range of oscillator
1 is independent can be seen as independent of the frequency detuning.

However, it should be noticed that upon increasing ISTO2, the power
emitted by oscillator 2 continues to increase which increases the electri-
cal coupling strength between the two oscillators. For this reason, the
injection-locking range of oscillator 1 continue to increase slightly in
region R2 while its evolution is independent of the frequency detuning.
Highest injection-locking range enhancements were obtained in this
region for ISTO2 = 3.25 mA, which corresponds to an enhancement of
64% of the injection-locking range compared to the reference uncou-
pled situation.

- Region 3 (R3 in Fig. 38 ) corresponds to ISTO2 higher than 3.25
mA. In this region the frequency detuning is smaller and the cou-
pling strength is stronger compared to regions R2 and R1. Here, it
should be noticed that for similar applied dc currents ISTO2, in a case
where oscillator 2 is uncoupled, this oscillator shows a high emitted
power and lower nonlinearity (see previous chapter). Due to these
properties, the injection-locking range of oscillator 2 is small while it

98



attracts more strongly oscillator 1. As it is shown in Fig. 38-brown
curve, oscillator 1 experiences a frequency pulling effect towards the
external source which leads to the frequency locking between the two
oscillators 1 and 2. It should be noticed that in this frequency locking
configuration the oscillator 2 is not yet locked to the external source
(point P3 in Fig. 38-brown curve). For higher external source frequency
values Fext, oscillator 1 gets eventually locked to the external source.
However, this occurs only in a situation where Fext2 > fSTO2 (point
P4 in Fig. 38-brown curve).

This observed behavior was also captured by numerical simulations,
see Fig. 39-brown curve. It should be noticed that in these simulation
results, the minimum frequency reached by oscillator 1 is considered to
be the lower boundary of its injection-locking range. In experimental
results, this boundary corresponds to the frequency of oscillator 2.
Using this definition for the injection-locking range of oscillator 1
decreases in region 3 upon increasing ISTO2. This observed decrease
is due to the fact that in this region, the frequency of oscillator 2
which imposes the lower boundary of the injection-locking range of
oscillator 1, is above the optimal frequency for which a maximum
injection-locking range can be obtained (reached for ISTO2 = 3.25 mA,
in the region 2), see Fig. 38-brown curve. Therefore, by increasing
ISTO2, the frequency of the oscillator 2 continue to increase which is
translated as a reduction of the injection locking range of oscillator 1.

4.2.4 Conclusion

As a conclusion, the electrical coupling between spin-torque nano-
oscillators allows to increase their ability to synchronize to external
signal. More precisely, it allows to enhance the injection-locking range
of one spin-torque oscillator to external sources. By modifying the
coupling strength between the oscillators, this locking range can be
tuned. As it was presented in this section, experimentally this was
achieved by controlling the dc current flowing in the other oscillator.
Two different mechanisms explain the enhancement of the injection-
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locking: frequency pulling and frequency locking between oscillators.
Due to these two different mechanisms, different trends in the depen-
dencies of the injection-locking range on the frequency detuning were
observed.

4.3 conclusion

Experimental and simulation results concerning the enhancement
and control of the synchronization ability of coupled spin-torque nano-
oscillators to external signals was demonstrated. This is an important
preliminary understanding on how synchronization of such oscillators
in presence of electrical coupling can be controlled in assemblies of
coupled oscillators. Indeed, the synchronization of such electrically
coupled assemblies will be leveraged to realize neuromorphic comput-
ing operations.

The main results of this chapter are:

• Experimental demonstration of the control of the coupling be-
tween spin-torque oscillators thourgh their frequency detuning.

• Enhancement of the injection locking-range by a factor of 1.64,
due to the electrical coupling

• Control of the synchronization ability of coupled spin-torque
nano-oscilaltors.

• Identification of mechanisms explaining the evolution of the
injection locking enhancement as a function of the frequency
detuning.
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5
F I R S T D E M O N S T R AT I O N O F PAT T E R N
R E C O G N I T I O N W I T H C O U P L E D
S P I N - T O R Q U E N A N O - O S C I L L AT O R S

In this chapter, I will present an experimental neuromorphic imple-
mentation of an array of four coupled oscillators based on spin-torque
nano-oscillators. The pattern recognition of spoken vowels with a high
success rate and the experimental demonstration of real-time learning
based on the synchronization of nano-oscillators are the main results
of this chapter. (This work is mainly described in [24]).

5.1 computation paradigm leveraging synchroniza-
tion pattern

5.1.1 Oscillator-based network architecture for pattern recognition

In this section the general architecture of the oscillator-based neu-
ral network that will be implemented experimentally is presented.
The major point here is to highlight how synchronization phenomena
occurring in such a network is leveraged in our experimental imple-
mentation. At the end, this network will be used to achieve pattern
recognition (see last sections of this chapter). Importantly, in the
same line of thinking presented at the end of chapter 1 [104] [33] [85],
the neurons of the neural network, presented in the following, will be
emulated by oscillators which possess their own natural frequency.

Fig. 40 presents the oscillatory neural network used for pattern
recognition in this chapter. It consists of a network of oscillators
illustrated in gray color which communicate with each other using
bidirectional connections represented by blue arrows. We define those
oscillators as "processing" ones. Each of them is connected to all the
other ones. This connection layout correspond to an all-to-all coupling.

The input of this network is provided by a set of input oscillators which
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Figure 40: Schematic of the oscillatory-based neural network.

are represented in red color. Those oscillators possess unidirectional
couplings to the processing oscillators. This means that on the one
hand the input oscillators perturb the oscillation of the processing
oscillators and on the other hand their oscillation frequency is not in-
fluenced by input oscillators. The inputs of the network are encoded in
the natural frequency of these input oscillators that we call fA and fB .

In this present architecture, the output of the network corresponds to
the synchronization state that can occur in the network. Depending on
the inputs sent (fA, fB), distinct synchronization states can emerge
from the network. It can be a synchronization between some of the
processing oscillators or it can be a synchronization between input
oscillators and the processing oscillators.

As seen in chapter 1, the pattern recognition potential of this oscillator-
based neural architecture was already studied theoretically. In these
studies, a slightly different variant of the presented network was pro-
posed to realize pattern recognition tasks [3] [279] (see Fig. 15 of
Chapter 1). In this variant, instead of having unidirectional connec-
tions as in Fig. 40, input oscillators have bidirectional ones. This
means that the input oscillator itself is influenced by the other oscil-
lators. The reason for the choice of unidirectional connections made
for the experimental implementation, is that it simplifies the way the
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inputs are presented to the network.

5.1.2 Learning ability

In order to realize complex cognitive tasks as image or spoken
recognition, it is important to be able to perform learning which is
ubiquitous in current artificial neural networks. The network pre-
sented in the previous subsection has the ability to perform learning
to classify inputs properly. For this purpose, it is necessary to adjust
the coupling strength between pairs of oscillators, similarly to the
adjustment of synaptic connections between biological neurons (see
chapter 1) in these networks. This led to approaches where each indi-
vidual coupling between pairs of oscillators is manipulated during the
learning process [33][85].

To achieve this goal, one way is to implement a strong coupling
between oscillators leading to perfect synchronization. Beyond the
fact that strong coupling is far from what is observed biologically in
the brain where coupling between neurons is weak [280], this approach
is difficult to implement physically in hardware. The difficulty of this
approach comes from the fact that implementing hard-wired all-to-all
connections between oscillators is required which can occupy large
space in large network implementations. In addition, having a physical
control on the coupling between oscillators in hardware, in particular
at the nano-scale, still remains difficult to realize.

For all of these reasons, in order to achieve learning with spintronic
nano-oscillators, we choose a different approach where we take inspira-
tion from the learning scheme proposed by Vassieleva et al. [3]. In this
approach, strong coupling and perfect synchronization between oscilla-
tors are not required. Instead, weak coupling and quasi-synchronization
(see chapter 1) of the oscillator network are leveraged. In addition, this
approach proposes a learning method where the natural frequencies
of oscillators are adjusted. Indeed, a modification of natural frequency
of two coupled oscillators can be translated as a modification of the
coupling strength between them. As an example, for close natural
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Figure 41: Bottom: Illustration of the synaptic connection between two
biological neurons. Top: its spintronic oscillatory based equivalent
composed of two coupled spin-torque nano-oscillators with a
control on their oscillation frequency F1 and F2 using individual
injected dc currents.

frequencies the coupling between oscillators will be stronger than for
far natural frequencies.

A general view of the presented approach is shown in Fig. 41 where
by analogy, the coupling phenomenon can be seen as a synaptic
connection. In this schematic, the two interacting spin-torque nano-
oscillators, with distinct natural frequencies F1 and F2, can be seen as
two connected biological neurons. Different types of coupling between
spin-torque nano-oscillators can occur. For instance it can be due
to spin waves, dipolar fields or electrical microwave currents. As in
the previous chapter, in order to manipulate those couplings, a modi-
fication of the natural frequency detuning F1 − F2 can be achieved
by modifying the dc currents injected in each nano-oscillators. In
the previous chapter, the synchronization properties of oscillators
to external microwave signals was modified by changing their fre-
quency detuning [14]. Following this approach, in the next sections,
experimental learning will be achieved through the modification of
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the natural frequency of each spin-torque nano-oscillator using the
adjustment of the individual applied dc currents.

5.2 experimental implementation

5.2.1 Samples

The samples used for the demonstration of neuromorphic oper-
ations in this chapter are magnetic tunnel junctions with a MgO
tunnel barrier. Contrary to the samples studied in the previous
chapter, these samples have a FeB free-layer instead of a permal-
loy (NiFe) one. Those samples were fabricated in the group of S.
Yuasa in the National Institute of Advanced Science and Technol-
ogy (Tsukuba, Japan). They have a stacking structure of buffer/
PtMn(15)/ Co71Fe29(2.5)/ Ru(0.9)/ CoFe20B20(1.6)/ Co70Fe30(0.8)/
MgO(1)/ Fe80B20(4)/ MgO(1) / Ta(8)/ Ru(7) (thicknesses are given
in brackets in nm)(Fig. 42). One should notice that the FeB layer is
sandwiched in a stack of MgO/FeB/MgO/Ta. An additional MgO
layer between FeB and Ta allows to reduce spin-pumping effects and
as a consequence reduces the effective damping for which a smaller
spin-torque is needed to destabilize the magnetization of the free-layer
[165]. The resistance-area product (RA) is 3.6 Ωµm2. Samples were
patterned with a diameter of 375 nm using Ar ion etching and e-beam
lithography. The resistance of the samples is close to 40 Ω and the
magneto-resistance ratio is about 100 % at room temperature. For
the considered FeB free-layer dimensions (2R=375 nm, L=4 nm), as
for the samples of the previous chapter the ground state is a magnetic
vortex. Once again, we choose to use spin-torque nano-oscillators
with a vortex magnetic texture because they have a high signal to
noise ratio and the analytical description of their dynamics is well
understood and matches experimental results quantitatively.

5.2.2 Experimental set-up

We transpose to hardware the neural network described in the
previous section and illustrated in (Fig. 40) in the set-up illustrated in
(Fig. 43). The symmetric neural interconnections between two neurons
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Figure 42: Schematic of the sample stack structure used for the neuromorphic
task.
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Figure 43: Schematic of the electrical circuit of the experimental nano-
oscillator network used for bio-inspired operations.

illustrated in (Fig. 40) are implemented experimentally by connecting
electrically the four nano-oscillators using millimeter-long aluminum
wires. In this way, an electrical microwave loop is obtained where
all microwave currents generated by every nano-oscillator propagate
and in turn influence the common network dynamics. This mutual
influence occurs because those emitted microwaves currents gener-
ate a microwave spin-torque in each nano-oscillator. This additional
torque modifies the individual dynamics of every nano-oscillator, and
in particular their frequency. Therefore, the four nano-oscillators are
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electrically coupled. In this configuration, nano-oscillators are not
coupled by the magnetic dipolar fields they radiate because they are
too far away from each other (they are millimeters away). As in the
previous chapter, a magnetic field is applied perpendicularly to all the
four coupled spin-torque nano-oscillators. During all the experimental
measurements presented in this chapter, this applied magnetic field
is maintained constant: µ0H⊥ = 0.530 T. To obtain self-sustained
oscillations of the magnetization of each nano-oscillator, an applied
dc current needs to be injected in each of them.

An important feature of the presented circuit is to have a control
on the oscillation frequency of every nano-oscillator. To achieve this
goal, we exploit the tunability property of oscillators. For this pur-
pose, an individual control on the dc current flowing through each
nano-oscillator was realized. Four dc currents (Idc1 , I

dc
2 , I

dc
3 , I

dc
4 ) are

supplied to the circuit by four different sources. The current flowing
through each nano-oscillator (ISTNO1 , ISTNO2 , ISTNO3 , ISTNO4 ) can be
deduced by applying the Kirchhoff’s current law:

ISTNO1 = Idc1

ISTNO2 = Idc1 + Idc2

ISTNO3 = Idc1 + Idc2 + Idc3

ISTNO4 = Idc1 + Idc2 + Idc3 + Idc4

(54)

In order to inject two external microwave signals to the circuit, two
different electrical microwave sources are used. Each of those sources
A and B provide alternating monochromatic microwave currents with
frequencies fA and fB with the same power amplitude Pext = 9 dBm.
These microwave currents are injected into a stripline fabricated on
the top of the four nanopillars, therefore creating two alternating
microwave magnetic fields in the vicinity of all of the four spin-torque
nano-oscillators. The amplitude of these rf magnetic fields Bind

rf seen
by the active magnetic layer of the oscillators can be estimated by
applying the Maxwell-Ampere’s law. This amplitude depends only
on two spatial parameters: the strip-line cross section and the dis-
tance between the strip-line and the nano-oscillator free-layer. The
length of the strip-line antenna is set by the number of oscillators it
should cover. In our case, the strip line has a width of 2.5 µm and
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is fabricated 370 nm above the four nano-pillars. In order to moder-
ate the injection of microwave eddy-currents due to the rf magnetic
field, an insulating layer separates the strip-line and the nano-pillars.
The resulting microwave fields seen by every nano-oscillator have an
amplitude of Bind

rf =0.1 mT. The magnetization dynamics of the four
nano-oscillators is strongly affected by those microwave fields and as
a result, the microwave emissions of the network is modified.

To detect microwave emissions of the four coupled nano-oscillator
network, the alternating electrical current components are measured
using a spectrum analyzer as shown in Fig. 43. A typical experimental
frequency spectrum is shown in Fig. 44.

5.3 experimental results on learning and pattern
recognition

5.3.1 Experimental synchronization states of the network

In this section, we present the experimental synchronization states
measured in the nano-oscillator network. The light blue curve of
Fig. 44 show the frequency spectrum without inputs. In this case, we
observe four different frequency peaks corresponding to the emitted
microwave oscillations of the four spin-torque nano-oscillators. This
spectrum also shows that the oscillator network is in a regime of
moderate coupling where the oscillators dynamically influence each
other but do not mutually synchronize.

The inputs of our experimental neural network are encoded in the
frequencies fA and fB of the two fixed-amplitude microwave signals.
When we send the inputs to the neural network, in other words when
we inject the two microwave signals with frequencies fA and fB into
the strip-line antenna, the frequency landscape of the network is mod-
ified. This output modification is shown in Fig. 44 by the frequency
spectrum illustrated in dark blue. In this spectrum, we observe the
apparition of two new narrow peaks represented in red in Fig. 44 with
frequencies fA and fB. Therefore, the input signals from the strip-line
can be detected in addition to the oscillator emissions. The presence of
these input signatures in the frequency spectrum is due to capacitive
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coupling between the strip line antenna and the metallic electrodes
connecting the nano-oscillator. Therefore, an electrical microwave
current is induced in the circuit.

The other microwave output change observed is that the peaks of
oscillators 1 and 2 are shifted to lower frequencies. We interpret this
shift as a frequency pulling effect where the frequency of those oscilla-
tors are attracted by the frequency fA. An important observation on
this dark blue spectrum is that the peak of oscillator 4 disappeared.
This is because oscillator 4 is synchronized to the microwave input
with frequency fB. Therefore, for the illustrated frequency spectrum
obtained with the set of microwave inputs (fA = 325 MHz, fB = 370
MHz), we are in presence of one particular synchronization state that
we label (4B). In order to distinguish the different synchronization
states of the network, we adopt the following notations:

- if oscillator (i) is synchronized to input X then the synchronization
state is labelled as (iX).

- if oscillator (i) is synchronized to input X and at the same time
oscillator (j) is synchronized to input Y then the synchronization
state is labeled as (iX,jY ).

By changing the set of microwave inputs (fA,fB), we have access to
distinct synchronization states. As shown in (Fig. 45-left), by sweeping
only one input frequency fA and fixing the other one fB , we were able
to observe four different synchronizations states. When the frequency
of the external source fext becomes close to the frequency of one
of the oscillators f (i)

STNO, the strong signal of the source pulls the
adaptable frequency of the oscillator towards its own frequency value.
One after the other, the four oscillators phase-lock to the external
input illustrated by the red line. This synchronization occurs when
the frequency of the external signal approaches the individual natural
frequency of the oscillators shown by the blue dashed lines. In the
locking range, the oscillator (i) shares the same frequency than the
external signal. More generally, if the oscillator frequency f

(i)
STNO

coincides with the frequency of one of the external signals fext, we
consider that the oscillator is synchronized to it. Practically, in our
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analysis, we consider that the oscillator (i) is synchronized to an
external signal if the following criteria is verified:

| f (i)
STNO − f

ext |< εexp (55)

In our analysis we chose a threshold value εexp = 0.5 MHz.

Keeping the dc currents through the oscillators fixed, the possible out-
puts of the neural network, represented in different colors in (Fig. 45-
right), are the different synchronization configurations that appear for
different frequencies of the two input signals. For every set of inputs
(fA,fB), we measure the output frequency spectrum and deduce the
corresponding synchronization states. Depending on the frequencies
of the inputs (fA, fB), zero (grey regions), one or two oscillators are
phase-locked. For example, in the petrol blue region labelled (2A),
oscillator 2 is synchronized to input A. In the white region labelled
(1A, 3B), oscillators 1 and 3 are synchronized to inputs A and B
respectively. The synchronization state (4B) observed in the frequency
spectrum of Fig. 44 is depicted in white-yellow color and can be seen
as a rectangular frequency region.

To summarize, we experimentally identified 20 distinct synchronization
states. All of these synchronization states measured here correspond
to configurations where one or two oscillators are synchronized to one
of the two external microwave inputs A or B.

5.3.2 Spoken vowel classification task

In this subsection, we present the classification task that we choose
to implement using our experimental nano-oscillator network. We
choose the spoken vowel classification task because, as the input of
our neural network, this problem is already encoded in the frequency
domain. This kind of frequency inputs is a particular example of what
can be processed. Other kind of inputs could be sent and classified by
our oscillator-based network.

In the case of spoken vowel classification task, vowels can be natu-
rally described by a set of characteristic frequencies called formants.
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Figure 44: Microwave output emitted by the network of four oscillators with-
out (light blue) and with (dark blue) the two microwave signals
applied to the system. The two curves have been shifted vertically
for clarity. The four peaks in the light blue curve correspond to
the emissions of the four oscillators. The two red narrow peaks
in the dark blue curve correspond to the external microwave sig-
nals with frequencies fA and fB . These frequency spectrum were
obtained for an applied dc current set of I1 = 4.7 mA, I2 = 6.2
mA, I3 = 6.1 mA and I4 = 5.5 mA.
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Figure 45: Left: Evolution of the four oscillator frequencies when the fre-
quency of external source A is swept. Right: Experimental syn-
chronization map of the nano-oscillator network in presence of two
microwave stimuli having distinct frequencies. The x and y axis
represent respectively the two frequencies fA and fB . Every color
in this map illustrates one particular measured synchronization
state appearing in the network, as described in the colorbar.

As shown in Fig. 46, by analyzing the Fourier transform of the tem-
poral waveform of the pronounced vowel, the formant frequencies
labeled as F1, F2, F3, F4 and F5 can be identified on frequency spectra
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as distinct frequency peaks. Fig. 47 shows the frequency distribution
of the first and second formants F1 and F2 of 10 different spoken
vowels represented by the 10 different elliptical curves containing cloud
of points. Every point results from the pronunciation of a different
speaker. It should be noticed that in the following we didn’t choose
this (F1, F2 ) representation of vowels to classify them because as
shown in Fig. 47 the different clusters of vowels overlaps with each
other. This means that distinct classes of vowels will have very similar
F1 and F2 frequencies. For this reason, we also take into account in
the inputs the additional formant frequencies to be able to distinguish
classes of vowels between each other.

Figure 46: Top: Frequency spectrum of a vowel pronounced by a
speaker. Bottom: Temporal waveform of a vowel pro-
nounced by a speaker. This figure was extracted from
Robert Mannell, http://clas.mq.edu.au/speech/acoustics/
speech_spectra/fft_lpc_settings.html

We use as input data a subset of the Hillenbrand database com-
prising the following seven vowels pronounced by 37 different female
speakers: "ae", "ah", "aw", "er", "ih", "iy" and "uw". Each vowel is char-
acterized by 12 different frequencies. Those 12 frequencies correspond
to 3 formants F1, F2 and F3 evaluated in 4 different steps from the
temporal waveforms. The first step is to evaluate those frequencies
considering the temporal trace of the pronounced vowel in its steady
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Figure 47: First two formant frequency distribution of different phonetic
vowels extracted from Hillenbrand.[15]

state. The second, third and fourth steps are to evaluate formant
frequencies respectively from the last 20%, 50% and 80% of the vowel
waveform. To refer to these frequencies obtained using these four
methods, we choose the following notation: fsteady−statei , f20%

i , f50%
i

and f80%
i .

As illustrated in Fig. 46, the three first formant frequencies are typi-
cally in the range between 500 and 3500 Hz, therefore a transformation
is needed to obtain input frequencies (fA, fB) in the range of operation
of our oscillators between 325 and 380 MHz and that fit the grid-like
geometry of the oscillator synchronization maps. For this purpose,
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we perform two different linear combinations of these 12 formants in
order to obtained two new characteristic frequencies (fA, fB):

fA = A1.f
steady−state
1 +B1.f

steady−state
2 +C1.f

steady−state
3

+D1.f
20%
1 +E1.f

20%
2 +G1.f

20%
3

+H1.f
50%
1 + I1.f

50%
2 + J1.f

50%
3

+K1.f
80%
1 + L1.f

80%
2 +M1.f

80%
3

+N1

(56)

fB = A2.f
steady−state
1 +B2.f

steady−state
2 +C2.f

steady−state
3

+D2.f
20%
1 +E2.f

20%
2 +G2.f

20%
3

+H2.f
50%
1 + I2.f

50%
2 + J2.f

50%
3

+K2.f
80%
1 + L2.f

80%
2 +M2.f

80%
3

+N2

(57)

this is
an ah

ah

uw

synchronized

this is
an uw

synchronized

FA

FB

FA

FB

Figure 48: Principe of the vowel recognition procedure using synchronization.

The value of the coefficients of the two linear combinations are
given in Appendix A.2. In order to choose these coefficients, we first
record an experimental synchronization map, which is used as a cal-
ibration of the network. This synchronization map corresponds to
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Spoken vowel Synchronization pattern Associated frequency difference vector

"ae" (1A,3B) dae =

 fi
A − f1

0

fi
B − f3

0


"ah" (3A,1B) dae =

 fi
B − f1

0

fi
A − f3

0


"aw" (2A,1B) dae =

 fi
B − f1

fi
A − f2

0

0


"er" (1A,2B) dae =

 fi
A − f1

fi
B − f2

0

0


"ih" (3B) dae =

 0

0

fi
B − f3

0


"iy" (4B) dae =

 0

0

0

fi
B − f4


"uw" (1B) dae =

 fi
B − f1

0

0

0


Table 3: Table illustrating the synchronization states that we choose to

assign to the seven vowels that we want to classify. The third
column corresponds to a vector that will be evaluated during the
learning procedure (see section 5.3.4).

a situation where all the synchronization states of the network are
equally spaced in frequency from each other. In the next chapter, we
will discuss the reason why we choose this specific synchonization map
configuration to obtain high classification performances. Then, we
assign a synchronization pattern to each vowel that we want to classify.
Those assigned synchronization states are presented in Tab. 3. Then,
the linear transformation of the formants that best matches the data
points of each vowel with its associated synchronization pattern is
determined through fitting by least square regression. The coefficients
used in the two linear combinations and the two frequencies fA and
fB corresponding to each vowel are given.
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Figure 49: Inputs applied to the system, represented in the (fA, fB) plane.
Each color corresponds to a different spoken vowel and each data
point corresponds to a different speaker.

As a result, a new frequency representation of the spoken vowels
is obtained in the plane (fA, fB). Fig. 49 illustrates the new vowel
frequency distribution of the spoken vowels. Each point corresponds
to one speaker. The spread in frequency for each vowel indicates that
each speaker has a different pronunciation. Our goal is to recognize
the vowel presented as input to the oscillator network independently
of the speaker. Ideally, when different speakers pronounce the same
vowel, we should expect the same output response of the neural net-
work, which will be unique for the considered class of vowels. This
principle is illustrated in Fig. 48. As shown in this figure, depending
on the class of vowel presented to the network ("ae" or "aw"), the
oscillator network will be in one unique synchronization state. Practi-
cally, one synchronization state corresponds to a situation where some
oscillators of the network will be synchronized to one of the input
stimuli. The important point is that vowels pronounced by different
speakers but belonging to the same class of vowel should lead to the
same synchronization state. And as a consequence, vowels belonging to
different class of vowels should lead to different synchronization states.
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This recognition principle can be translated graphically in our ex-
perimental synchronization state maps. Indeed, the scattered points
corresponding to each vowel pronounced by different speakers should
all be contained inside a different region of the oscillator synchro-
nization map (Fig. 45-right). When we project those scattered points
graphically in a configuration where the frequency of the oscillators
are randomly chosen, as shown in (Fig. 53-a), the points corresponding
to the same vowel class are spread through different synchronization
states and the majority of them are not contained in a unique one. In
order to approach a situation where most of the points corresponding
to one vowel class are well contained in one unique synchronization
state, it is necessary to modify the frequency position of the syn-
chronization states. This modification of the frequencies is achieved
through a learning procedure. The learning that was developed in this
implementation is a supervised one.

5.3.3 Cross validation procedure

As the majority of supervised systems, our learning procedure is
divided in two distinct stages: training and testing. Training was
achieved using 80% of the total number of vowels in the database. The
testing procedure was done using the remaining 20% data points. This
allows estimating how a system is able to generalize what it learned in
presence of unknown data points. To have a more precise estimation
of this generalization performance, we apply a cross-validation tech-
nique. This technique allows estimating accurately the recognition
performances of our network by repeating the training/testing proce-
dure 5 times over distinct data point samples. Each time the selected
data points used for testing are different: in the first (respectively
second, third, fourth and fifth) cross-validation period, we use the
first (respectively second, third, fourth and fifth) quintile (20%) of the
data points for testing. This repartition of data points is illustrated
in Fig. 50. The final recognition rate was obtained by averaging the
testing recognition rates of the 5 cross-validation experiments. The
same cross-validation procedure is used for all the neural networks
(experimental and simulated).
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First experiment testing training training training training

Second experiment training testing training training training

Thirth experiment training training testing training training

Fourth experiment training training training testing training

Fifth experiment training training training training testing

Total number of datasets

Figure 50: Schematic of the cross validation procedure. The total dataset is
divided in five distinct subcategories (20%) where one of them
corresponds to testing points illustrated in blue here. In our cross-
validation procedure, we consider five different experiments where
each time the testing dataset is chosen to be one of these five
subcategories.

5.3.4 Learning algorithm

During the training stage, the internal parameters of the network
need to be finely tuned until each synchronization region encompasses
the cloud of points corresponding to the vowel it has been assigned.
For this purpose, we take advantage of the high frequency tunability
of spin-torque nano-oscillators to modify the synchronization map by
tuning the dc current through each oscillator. This was achieved by
adapting a training algorithm proposed by Vassieleva et al. [3] and
described in the first section of this chapter.
The analysis of the output, which depends on the frequencies of

the microwave inputs, can therefore easily be used to classify the
spoken vowels. Using automatic LabView-Matlab program routines,
we optimized our frequency spectrum analysis technique in order to be
able to detect the synchronization states of the network in real-time
during the experimental measurement.

Each spectrum recorded with the spectrum analyzer is sent to the
computer, where a program analyzes it. The information we use as
input to this program is: (i) the value of the two frequencies of the
external microwave signals (fA, fB) and (ii) the oscillator frequencies
at each dc current values in the absence of external microwave signals
(f1,0, f2,0, f3,0, f4,0). The output data that we extract from each
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Experimental 

set-up 

Computer

(Learning algorithm)
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Oscillators

Figure 51: Experimental set-up used to achieve real-time training of the
nano-oscillator network for vowel recognition task. The set-up
can be seen as a feed-back loop between the experimental network
and a computer.

spectrum analysis are the four values of the oscillator frequencies in
the presence of microwave inputs. Then, another program takes these
oscillator frequencies to extract the synchronization states and check
if the applied vowel was properly recognized.

From this analysis, the synchronization pattern that corresponds
to the input vowel is determined. This is compared to the synchro-
nization pattern initially assigned to that specific vowel to check if
it was successfully classified or not. If we are in the training proce-
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dure and the vowel is not properly classified, the on-line learning
algorithm calculates how the four dc currents should be modified to
reduce the recognition error. This information is then sent back to the
experimental set-up, where the dc currents are automatically modified
accordingly.

Now, we present the training procedure that was applied to our
spin-torque nano-oscillator network to learn to recognize different
classes of input stimuli. We focus on synchronization states that were
assigned to each class of vowel (Tab. 3). It should be noticed that
possible mutual synchronization states due to the synchronization of
pairs of oscillators are not considered. Only synchronization occurring
between oscillators and external inputs are considered.

Graphically, to have a perfect recognition of one class of vowel, all
data points in the frequency input map that correspond to this vowel
(Fig. 49) must be contained in their assigned synchronization pattern
in the experimental map (Fig. 45-right). If this is not the case, for
each association spoken vowel-synchronization state we define a fre-
quency difference vector with four components that will be used in
the learning procedure. This vector is described in the third colomn
of Tab. 3. Starting from a random map configuration Fig. 45-right,
the automatic learning rule that I developed allows us to converge
to a configuration where most data points for each vowel class are
contained in their respective assigned synchronization pattern. This
learning rule can be seen as a sign-stochastic gradient descent (sign-
SGD) [281] which works in the following way:

a) We present to the network a randomly chosen input data point
i belonging to one vowel class. This is equivalent to sending two mi-
crowave input stimuli with frequencies f iA and f iB.

b) From the resulting spectra, we extract the frequencies of the four
spin-torque oscillators (f1, f2, f3, f4) in presence of the microwave
input stimulus.

c) We determine the resulting synchronization configurations by
comparing the oscillator frequencies to the input frequencies f iA and
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f iB. Then, we compare the obtained synchronization configuration
with the one assigned to this vowel.

d) For each vowel presented to the network, we define an associated
frequency difference vector, which describes the frequency distance
between the applied input and the assigned synchronization region.
For instance, if the presented data point belongs to the vowel class

«ae», we compute dae =


f iA − f1

0
f iB − f3

0


If one of the two synchronization events assigned to «ae» has

occurred, we only compute the frequency difference which corresponds
to the other event. For instance, if oscillator 1 is correctly synchronized
to external source f iA , then we compute only

dae =


0
0

f iB − f3

0


e) We repeat steps a) to d) for all seven vowel classes.

f) We compute the sign of the vector sum of all seven associated
frequency difference vectors D:

D = sgn(dae + dah + daw + der + dih + diy + duw) =


D1

D2

D3

D4



g) Then, we compute a new dc current set


I
′
1

I
′
2

I
′
3

I
′
4

, which will be

applied to the four oscillators. This new dc current set is deduced
from the following equation where the present injected dc current is
updated:
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
I
′
1

I
′
2

I
′
3

I
′
4

 =


I1

I2

I3

I4

+ µ.



D1.sgn[(∂f1
∂I

)I=I1 ]

D2.sgn[(∂f2
∂I

)I=I2 ]

D3.sgn[(∂f3
∂I

)I=I3 ]

D4.sgn[(∂f4
∂I

)I=I4 ]


In this equation, µ = 0.1 mA is the learning rate of our algorithm.

At each step, the applied dc current through each oscillator can be
modified only by ±µ. Here sgn[(∂fk

∂I
)I=Ik ] represents the sign of the

frequency evolution versus injected dc current of the k-th-oscillator at
the value of current Ik. For this, the frequency versus current depen-
dence of each independent oscillator has been previously characterized.
Upon modifying the dc currents following this learning procedure, the
oscillator frequencies change. This translates into a displacement of
the synchronization patterns in the experimental synchronization map.

We repeat all previous stages (stage a) to g)) N times where N
is the total number of training steps. At each iteration (step i), the
synchronization map evolves towards an optimal configuration where
the global frequency difference vector dtot = dae +dah +daw +der +

dih + diy + duw is minimized.

In the next section, we will see that by increasing the number of
training steps N, we experimentally observe an increase of the recog-
nition rate of all the vowels until it saturates.

5.3.5 Demonstration of real-time learning for vowel recognition

In Fig. 53, the synchronization maps obtained at different stages
of the training process are illustrated: (a) step 0 (b) step 7 (c) step
15 and (d) step 86. Graphically, we see that step after step, cloud
of vowels are less spread through different synchronization regions.
In particular, in the synchronization map corresponding to step 86
(d), the majority of input points of the same class of vowels are well
contained in one synchronization state. This situation corresponds
to the case where the oscillator network learned to classify vowels
correctly.
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Figure 52: Principe of vowel recognition algorithm. Step after step, the
synchronization state that was assigned to vowel "ae" is modifying
its frequency position. This occurs in a such a way that the
distance between the center of the synchronization state and one
random chosen vowel at each step is reduced. The red arrow
illustrates the distance vector at every step. An the end, the
majority of the vowel cloud is contained in the synchronization
state.

In Fig. 54, the dc current applied through each oscillator and the
individual natural frequency of each of them are plotted during the
learning process as a function of the training steps. The most impor-
tant modification of applied dc current and frequency are observed
at the beginning stages of the training process. After 48 training
steps, dc currents and frequencies stop evolving, indicating that an
optimum was found by the system. In order to know if at this final
stage the oscillator network learned to classify vowels properly we
need to evaluate the vowel recognition rate.

The average recognition rate for the seven vowels is represented as
a function of the number of training steps in Fig. 55. Recognition
rates obtained with the set of data points used for training and for
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A Training step 0 Training step 7ba  

c Training step 15 d Training step 86

Figure 53: Experimental synchronization states maps measured at four dif-
ferent learning steps: step 0 (map a), step 7 (map b), step 15 (map
c) and step 86 (map d). The circular colored points plotted on
the top of every synchronization map correspond to the frequency
distribution of the vowel input that should be recognized by the
network.

testing are illustrated respectively by the red and orange curve. At
step 0, the recognition rate is almost zero, signifying that vowels are
not recognized at all. After step 48, this recognition rate saturates and
stop increasing, signifying that the training process can be stopped.
For the illustrated synchronization maps showing the learning process,
the final recognition rates on the training and testing data sets reach
values up to 89% and 88% respectively.

Using the cross validation technique presented in subsection 5.3.3,
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Figure 54: Top: experimental evolution of the individual applied dc currents
I1, I2, I3 and I4 received by the four nano-oscillators as a function
of the training steps of the learning process. Bottom: correspond-
ing individual frequency evolution of the four nano-oscillators as
a function of the training steps of the learning process.

we extract a reference value for the experimental recognition rate by
repeating the training procedure experimentally several times with dif-
ferent combinations of training and testing sets. This cross-validation
technique yields an average value of 84.3% for the experimental recog-
nition rate on the testing set.

This performance of our oscillator network will be discussed and
compared to the ones obtained with other forms of neural networks
used in machine learning in section 5.3.7 of this chapter. A numeri-
cal study of this oscillatory-based network will be presented in the
next chapter to understand and identify oscillator properties that will
impact the obtained recognition performances.
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Figure 55: The experimental vowel recognition rate evolution as a function
of the number of training steps during the learning process for
both training examples (in red) and testing examples (in orange).

5.3.6 Learning and recognition of higher number of vowel classes

To go further, we show here that the scheme that we used to learn
to classify 7 vowels can be extended to classify all twelve vowels of the
Hillenbrand database. For this, we use a larger number of the twenty
experimentally observed synchronization states and combine several
of them to recognize the same class of vowel.

The initial and final map of synchronization states with the cor-
responding vowels is shown in Fig. 57. Similarly to the previous
section, the currents injected in the oscillators, their frequency and
the recognition rate during training are plotted in Fig. 57. We reach
a recognition rate of 68.4% on train and test datasets.
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This recognition rate is lower than the one obtained to classify 7
vowels. However, it can be increased in the future by increasing the
number of oscillators in the system. Indeed, the number of synchro-
nization regions that can be used and combined for recognition scales
as N2 where N is the number of oscillators [279].

5.3.7 Comparison with static neural networks

In order to have a deeper insight on the experimental recognition
rates obtained with our oscillatory-based network, we compare it to
more conventional forms of neural networks. The software simulation
of these networks was realized with the help of our collaborators in
C2N (Damir Vodenicarevic, Maxence Ernoult, Nicolas Locatelli and
Damien Querlioz). In this comparison, the recognition performances
that we consider are those obtained to classify the 7 class of vowels
(see section 5.3.5). For this comparison study, we first consider a
conventional, static, multi-layer neural network. This kind of network
can achieve better-than-human recognition rates at complex tasks,
such as image classification. This performance however, comes at the
expense of the large number of parameters that need to be trained, a
major hurdle for hardware implementation.

Fig. 58-b shows the recognition rate of a multilayer perceptron, trained
in software through backpropagation on the same database as the
experimental neural network, with 30,000 vowel presentations. As
illustrated in Fig. 58-a, this network, composed of static neurons,
takes as inputs the 12 formant frequencies characterizing each pro-
nounced vowel. The first layer of this network corresponds to the
linear combination that was applied to formants for our experiments.
The hidden layer neurons, with tanh activation functions, receive a
weighted sum of these inputs (plus a bias term). The output layer,
with softmax activation functions, has seven neurons, one for each
vowel class.

As can be seen in Fig. 58-b, the recognition rate is excellent, reaching
97% when the number of trained parameters is large (synaptic weights
illustrated in red in Fig. 58-a). However, the performance rapidly
degrades for small numbers of trained parameters, diving below 65%
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for 27 trained parameters. This result is quite general: state-of-the-art
networks with feedback such as standard Recurrent Neural Network
(RNNs) or Long Term Short Term Memory networks (LSTMs) have
limited performance when the number of trained parameters is small.
In contrast, the recognition rate of our experimental oscillatory neural
network is over 84% for only 30 trained parameters: as illustrated in
red in Fig. 58-c, the 26 weights converting formants to inputs, and
the currents through the oscillators. For an ideal, noiseless, oscillatory
network, the success rate reaches 89% after cross validation (see next
Chapter). The networks also learn rapidly (350 vowel presentations
are used).

This high performance with a small number of trained parameters
comes from the combination of two phenomena: as shown in Fig. 58-c
the oscillatory network can do better than the sum of its individual
components due to its complex, coupled, dynamical features and in
addition, the oscillators collectively contribute to pattern recognition
by synchronizing to the inputs. This result shows that the performance
of hardware neural networks can be boosted by enhancing neuron
functionalities beyond simple non-linear activation functions, through
oscillations and synchronization.

5.4 conclusion

We have seen in this chapter the first experimental demonstration
of brain-inspired computing operation with a network of coupled
nano-oscillators. We focused on the spoken vowel recognition task
and were able to demonstrate the recognition of 7 of them with a
success rate of 88%. To reach this performances, we were able to
realize the experimental demonstration of learning capabilities with
coupled oscillators. This learning capability was possible through the
tunability property of the studied oscillators.
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The main results of this chapter are:

• Design of the experimental oscillatory based neural network
implementing electrical microwave connections coupling four
spin-torque nano-oscillators.

• Experimental demonstration of the recognition of seven vowels
using nano-oscillators with the performances close to the state
of the art: 88%.

• Experimental demonstration of learning ability of the nano-
oscillator network through the adjustments of natural oscillator
frequencies using the modification of the individual applied dc
currents.

• Experimental demonstration of the recognition of twelve vowels
using nano-oscillators with a success rate of 68.4%.
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(a) Before learning

(b) After learning

Figure 56: Recognition of twelve vowels using experimental synchronization
states maps measured at two different learning steps: before
learning (map a) and after learning (map b). The circular colored
points plotted on the top of every synchronization map correspond
to the frequency distribution of the vowel inputs that should be
recognized by the network.
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Figure 57: Left: Experimental evolution of the individual applied dc currents
received by the four nano-oscillators as a function of the training
steps (top). Corresponding individual frequency evolution of the
four nano-oscillators as a function of the training steps of the
learning process (bottom). Right: Experimental recognition of
twelve vowels as a function of the number of training steps during
the learning process for both training examples (in red) and
testing examples (in orange).
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Figure 58: a) Schematic diagram of the multilayer perceptron artificial neural
network simulated in order to perform spoken vowel recognition.
b) Evolution of the vowel recognition rate as a function of the num-
ber of trained parameters for the simulated multilayer perceptron
and its comparison to the experimental results of the oscillator
network for the same task. c) Schematic diagram of the equiva-
lent artificial neural network corresponding to our experimental
oscillator network.
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6
O P T I M I Z I N G T H E R E C O G N I T I O N
P E R F O R M A N C E S O F C O U P L E D
N A N O - O S C I L L AT O R S

In this chapter, in order to understand and optimize the recog-
nition performances of coupled nano-oscillator networks, I simulate
numerically arrays of coupled nano-oscillators. I present the numer-
ical simulations that were performed to investigate the important
features that oscillators should possess to classify accurately. I mainly
evaluate the impact of different oscillator characteristics as tunability
and mutual coupling on the classification performance of the network.
Two type of simulations were realized: one where I focus numerically
on the behavior of the experimental spintronic neuromorphic imple-
mentation including natural nano-device variabilities presented in
the previous chapter, and the other one where I consider the case of
general nonlinear oscillators. (This work is partly described in [24]).

6.1 numerical implementation

6.1.1 Numerical study of spin-torque vortex oscillator array: results
reproducing experiments

The model of coupled Thiele equations was used to reproduce
the recognition performances observed in the experiment presented
in the previous chapter. This requires to reproduce quantitatively
the frequency position of synchronization states of the network. For
this purpose, we first calibrate the individual model describing each
nano-oscillator. Therefore, before considering the case of coupled
nano-oscillators, we simulate analytically the behavior of every nano-
oscillator of the experimental network which are different from each
other. These differences are due to nano-oscillator variabilities which
can appear because of the manufacturing process.
The black curves shown in Fig. 59 are the experimental frequency

versus applied dc current response of the four oscillators used in the

135



5.5 6.0 6.5 7.0 7.5
330

340

350

360

370

380

 Experiment

 Simulation

Oscillator 2

 

 

F
re

q
u

e
n

c
y
 (

M
H

z
)

Injected dc current (mA)

6.0 6.5 7.0 7.5 8.0 8.5
330

340

350

360

370

380

 Experiment

 Simulation

Oscillator 3

 

 

F
re

q
u
e

n
c
y
 (

M
H

z
)

Injected dc current (mA)

6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0
330

340

350

360

370

380

 Experiment

 Simulation

Oscillator 4

 

 

F
re

q
u

e
n

c
y
 (

M
H

z
)

Injected dc current (mA)

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5
330

340

350

360

370

380

 

 
F

re
q

u
e

n
c
y
 (

M
H

z
)

Injected dc current (mA)

 Experiment

 Simulation

Oscillator 1

Figure 59: Experimental (black) and numerical (blue) frequency versus ap-
plied dc current evolution of the four spin-torque vortex nano-
oscillators used for neuromorphic computation.

experimental network presented in the previous chapter. These mea-
surements were performed before the demonstration of neuromorphic
operations under a perpendicular applied magnetic field µ0H⊥ = 0.530
T. The blue line drawn on top of those experimental curves of the
Fig. 59 are the simulated frequency versus applied dc current re-
sponses obtained by solving the individual Thiele equations. As it is
shown we find a relatively good agreement between the experiment
and the simulation. The simulation parameters defined in chapter
2 (vortex dynamics section) used to obtain this good agreement are
presented in Tab. 4. Those parameters slightly differ from the the-
oretical ones but still remain in the same expected order of magnitude.
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Parameters Oscillator1 Oscillator2 Oscillator3 Oscillator4 Theoretical

TMR 74.35% 91.67% 80.58% 74.35% 100%

bj 1.05× 10−17 1.13× 10−17 7.44× 10−18 2.73× 10−17 -

D (kg.rad−1.s−1) 5.5× 10−15 1.14× 10−15 5.5× 10−15 1.14× 10−15 4.05× 10−15

G (kg.rad−1.s−1) 2.43× 10−13 2.47× 10−13 2.73× 10−13 2.37× 10−13 1.53× 10−13

aj (kg.m2.A−1.s−2) 1.76× 10−16 1.62× 10−16 1.24× 10−16 1.63× 10−16 5.55× 10−16

κms (kg.s−2) 4× 10−4 4× 10−4 4× 10−4 4× 10−4 1.23× 10−4

κ
′
ms (kg.s−2) 9.6× 10−5 9.6× 10−5 1× 10−3 1× 10−3 3.08× 10−5

κOe (kg.m2.A−1.s−2) 2.93× 10−15 2.93× 10−15 2.93× 10−15 2.93× 10−15 2.30× 10−15

κ
′
Oe (kg.m2.A−1.s−2) −6.75× 10−15 −6.75× 10−15 −4.25× 10−15 −2.93× 10−15 1.15× 10−15

ξ 3.5 2.1 4.0 1.1 0.6

Table 4: Individual parameters of the four nano-oscillators used to simulate
the experimental network of coupled spin-torque vortex oscillators.
The last column corresponds to the theoretical values expected for
the oscillators used in the experiment.

6.1.2 Simulation of the synchronization states of the experimental
network

Once the individual frequency versus applied dc current responses
are well described by the simulation, we go a step further to reproduce
the synchronization states observed experimentally. For this purpose,
we numerically solve the differential system of the four coupled Thiele
equations in presence of two distinct external forces A and B. This
differential system of coupled Thiele equations is simply an extension of
the model used in chapter 3 from two to four coupled nano-oscillators
(see Eq. 53). The magnetization dynamics of the four nano-oscillators
is obtained by solving numerically the coupled differential Thiele
equation 58 simultaneously for the four vortex i = 1, 2, 3, 4.

Gi ×
dXi
dt
−Di(Xi)

dXi
dt
−
∂Wi(Icomrf )

∂Xi
+ FSTT

i (Icomrf ) = 0 (58)

Here, Xi = (Xi, Yi) is the vortex core position, Gi is the gyrovector,
Di is the damping, Wi is the potential energy of the vortex, FSTT

i is
the spin-transfer force.

As in chapter 3, the electrical coupling between nano-oscillators due
to their microwave emissions is described as an additional common
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alternating current that goes through all nano-oscillators [277] Icomrf =
1

Z0 +
∑4
i=1Ri

∑4
i=1 λ∆RiI

STNO
i yi. Here ∆Ri is the mean resistance

variation due to the vortex core gyrotropic motion through tunnel
magnetoresistance, Z0 is the load impedance which is equal to 50 Ω,
Ri is the resistance of the junctions and λ = 2/3 [278]. Here yi = Yi

ri
is the Y position of the vortex core in the nano-dot plane (X, Y )
normalized by the radius of the free-layer ri. This description of the
resistance variation is obtained for a magnetization of the reference
layer which is aligned with the x axis.
As in the experiment described in the previous chapter, the two

forces A and B are introduced to our simulation model as two distinct
microwave magnetic fields acting on the vortex core trajectory. They
have the same amplitude with two distinct frequencies that we call
fA and fB (as previously).

With a frequency step of df = 0.2 MHz, we sweep the frequency
fA and fB of the two external forces in the same frequency range
than in the experiment between 320 and 380 MHz. Thus each simu-
lated synchronization map (see Fig. 60) is constituted of 300x300=90
000 simulated points. These simulated points are independent from
each other. This allows us to run simulations in parallel on GPUs
(Graphics Processing Unit). Every simulated pixel in the map is
calculated by numerically solving the system of coupled differential
equation 58 using a fourth order Runge-Kutta scheme in absence of
thermal fluctuations (T=0 K). By evaluating the Cartesian position
and velocity of each vortex core in the dot-plane (x, y), we extract
the instantaneous frequency of each oscillator through the angular
evolution f(t) = 1

2π
dφ

dt
. The steady state frequency of each oscillator

is obtained by computing the temporal average of the instantaneous
frequency over the last 20% of the simulated time trace. The duration
of every complete time trace was 5 µs. As in the experiment, the
synchronization between oscillators and external microwave signals
is detected by analyzing the frequency difference between oscillators
and external sources (see criteria of chapter 4, Eq. 55) with the same
frequency threshold εexp = 0.5 MHz. It should be noticed that these
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simulations do not capture the noisy response of oscillators at the
nano-scale.

1

Experimental map Simulations

Figure 60: Left: Experimental synchronization state map obtained at the
step 86 of the training process presented in the previous chapter.
Right: Simulated synchronization state map obtained using the
parameters presented in Tab. 4.

As it is shown in Fig. 60, we find a good agreement in terms
of frequency between the synchronization state obtained at step 86
of the training process presented in the previous chapter and the
synchronization state map obtained from the simulation of coupled
Thiele equation in presence of external microwave stimuli. The set
of applied dc currents in the simulated model differs quantitatively
from the ones used in the experiment. This is mainly due to the fact
that frequency versus applied dc current characteristics slightly differs
between the experimental measurement and the analytical description
(see Fig. 59 ). This good agreement between experiment and simulation
is also confirmed for other sets of applied dc current corresponding to
distinct training steps in the experiment. As an example, the measured
synchronization states illustrated in Fig. 61 corresponding respectively
to steps 7, 15, 35 and 44 of the training process, are similar in frequency
positions to the simulated synchronization states obtained for the dc
current sets applied in the experiments. The observed good agreement
between the presented simulations and our experiments, validates the
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Figure 61: Left colomn: Experimental synchronization states obtained at
steps 7, 15, 35 and 44 of the training process. Right column:
Simulated synchronization state maps corresponding to training
steps of the experiment.
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choice of our model which will be used in the sections 6.2 and 6.3 to
evaluate the recognition performances of our implementation.

6.1.3 Numerical study of general ideal nonlinear oscillators

Besides the particular case of spin-torque nano-oscillators, the in-
terest of a more general model should be emphasized. Indeed, using
a more general model will allow to not only use spintronic nano-
oscillators but also open the perspective of taking advantage of other
categories of nonlinear oscillators. For this reason, we simulate arrays
of ideal nonlinear oscillators. By ideal, we mean that the oscillators
are noiseless and can have an arbitrary large ability to modify their
dynamics. To simulate those oscillators, we consider the van der Pol
model of nonlinear dynamics that captures the main qualitative fea-
tures of spin-torque nano-oscillators and can be generalized to other
nonlinear oscillators (see examples in chapter 1). Another important
feature of this numerical study is the absence of variability from an
oscillator to another which was not the case in the model presented
in the previous section. Indeed, we consider four identical nonlinear
oscillators which only differ by their natural frequencies ω0,i. More
precisely, their natural frequency differ by a relative mismatch of
2%. ( ω0,i+1 = 1.02× ω0,i) which is analogous to the mismatch ob-
served experimentally. The dynamics of oscillators are modified by
two microwave signals A and B with a force amplitude Fe and dis-
tinct frequencies ωe,A and ωe,B . This leads to the following differential
equations Eq. 59-60 in polar coordinates (si, φi), where the index i
(i = 1, 2, 3, 4) represents the i-th oscillator:

dsi
dt

= −αω0,i(1−
I

Ith
+Qs2

i )si

+Fecosφi(cos(ψe,A − ωe,At) + cos(ψe,B − ωe,Bt))

+εFecosφi

N∑
j=1

sjcosφj

(59)
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dφi
dt

= ω0,i(1 +N0si)

+
Fe
si
sinφi(cos(ψe,A − ωe,At) + cos(ψe,B − ωe,Bt))

+ε
Fe
si
sinφi

N∑
j=1

sjcosφj

(60)

In these equations, ω0,i is the natural angular frequency of the oscil-
lator, α = 0.013 is the damping coefficient, Q = 3.0207 is the nonlinear
damping parameter, I is the dc current injected in the oscillator, Ith=1
mA is the threshold dc current of self-sustained oscillations of the
magnetization, N0 is the nonlinear frequency shift normalized by the
natural angular frequency. Concerning the external microwave forces
injected into the model, ωe,A and ωe,B are the respective angular fre-
quencies of the two external microwave inputs A and B, ψe,A and ψe,B
are their relative phase shifts (Here ψe,A = ψe,B = 0). Fe = 1.3× 10−3

is the coupling strength to each external microwave input signal A
and B, and ε is the mutual coupling strength between oscillators,
normalized by the coupling to the inputs.

6.1.4 Evaluation of recognition performances in simulations

Beyond the agreement level that can be expected from the two
presented oscillator models with our experiments, an important goal
of these simulations is to evaluate the classification performances
of such network as a function of the oscillator parameters namely
tunability N0 and mutual coupling strength ε. The modification of
these two parameters is not an easy task to realize experimentally.
Indeed, the modification of these properties would require to modify
the size or the material of the nano-oscillator. Therefore, a numerical
evaluation of recognition performances as a function of the oscillator
parameters can give insights about the key properties required to
maximize recognition performances.

Following this line of thinking, tunability and mutual coupling strength
are modified and a new optimized classification rate is calculated for
each new set of tunability or mutual coupling strength parameters.
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Each set of parameters corresponds to different oscillator behaviors
and thus give rise to different synchronization state maps. In particular
the range of operation of the oscillators is modified and, in conse-
quence, the linear combination previously applied to the formants
(See Eq 56 and 57) to obtain two characteristic frequencies fA and fB
in the range of operation of the oscillators is no longer optimal. Due to
this, the linear combination of the formants should be adapted for each
oscillator parameter. Therefore, for each set of oscillator parameters
that we modify it is important to calibrate the linear combination
that will be applied to formants frequency inputs. This calibration is
done for a synchronization map where a maximum recognition rate is
expected. In our implementation, the best recognition rate with the
newly considered oscillator parameters is optimized when:

The natural frequency ω0,i difference between oscillators δij = |ω0,i −
ω0,j | is similar, meaning that only 5% deviation is possible:

δ12 ≈ δ23 ≈ δ34 (61)

, in a such way that the following is verified:

|δ12 − δ23| < 0.05× δ12

|δ23 − δ34| < 0.05× δ12
(62)

The width of the injection locking range ∆(i) of all 4 oscillators is
similar:

∆(1) ≈ ∆(2) ≈ ∆(3) ≈ ∆(4) (63)

in a such way that the following is verified:

|∆12 −∆23| < 0.05×∆12

|∆23 −∆34| < 0.05×∆12
(64)

Thus, we first estimate which values of ωi and ∆(i) fulfill these re-
quirements and we calculate the linear transformation of the formants
whose final frequencies (inputs to the network) better fit the synchro-
nization map expected from these ωi and ∆(i).

143



Finally, for each oscillator parameters and associated linear com-
bination of the formants, we simulate numerically the learning process
and find the optimum recognition rate. Following this procedure, we
study the influence of oscillator tunability (section 6.2) and mutual
coupling (section 6.3) on the classification ability of our network for
both ideal and non-ideal oscillator models.

6.2 impact of frequency tunability

In this section, we present the simulated recognition performances
obtained for oscillator networks where we vary their ability to syn-
chronize by modifying their frequency tunability. This study was first
realized considering identical ideal oscillator model for simulation.
Then it was extended to the case of spin-torque nano-oscillators repro-
ducing experimental results including variabilities between oscillators.
In order to study only the impact of the frequency tunability, we realize
those simulations in absence of mutual coupling between oscillators.

6.2.1 Impact of frequency tunability in the case of identical ideal van
der Pol oscillators

By modifying the nonlinear frequency shift parameter N0, we di-
rectly vary the frequency tunability of van der Pol oscillators presented
in the model of ideal identical oscillators (see Eq. 59 and 60). For
every tunability value N0 we realize the same learning procedure de-
scribed previously to classify the seven vowels. As in the experimental
procedure, once the linear combination of formant frequency inputs is
determined it is kept constant during all the simulated training. At
the end, the maximum recognition rate to classify properly the seven
vowels is evaluated for each tunability value.

In Fig. 62, in black squares, the obtained recognition rate is shown as a
function of the nonlinear frequency shift N0 of the simulated network
of identical ideal oscillators. As it is shown, in absence of frequency
tunability corresponding to N0 = 0 the recognition performances are
very poor and are smaller than 50%. The recognition rate increases
with tunability reaching values higher than 90% for N0 = 0.18. For
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higher tunability values, the recognition rate appears to saturate
above 90%. In Fig. 63, we illustrate the final synchronization state
maps obtained at the end of the learning process for three tunability
values: N0 = 0, N0 = 0.14, N0 = 0.2.

For the N0 = 0 case, shown in Fig. 63-(1), clouds of vowels are
not well classified mainly because the majority of frequency input
vowels fall in states where oscillators are not synchronized. In the
absence of frequency tunability N0 = 0, the free-running frequency of
oscillators is constant and cannot be modified by varying the applied
dc current. For this reason, synchronization region remains at the
same frequency position, and it is not possible to modify their position
in order to adapt to the input vowel frequency. As a consequence,
the oscillator network is not able to learn. In addition, the size of
the synchronization region is too small. This is due to the fact that
the frequency of the oscillator is not depending on the evolution of
amplitude and, in consequence the oscillator is less able to modify
its own frequency to be synchronized to external signal. In the for-
malism of the non-linear auto-oscillator theory, this corresponds to
a case where the injection locking range of the oscillator defined as

∆ =
√

1 + ν2
√
p0

Fe is reduced to ∆ = 1
√
p0
Fe (see Chapter 2 for more

details about notations and theory).

On the contrary, for the N0 = 0.2 case, shown in Fig. 63-(3), the ma-
jority of the frequency input vowels fall in one unique synchronization
states. This can be explained by two facts. First, the frequency width
of synchronization regions are larger due to the increase of the tun-
ability. Second, the frequency position of the synchronization region
can be modified in a sufficient frequency range because, by modifying
the applied current, the free-running frequency of oscillators covers a
large frequency range. This allows to adapt the synchronization map
as a function of the vowel inputs and achieve learning.

More systematically, for all the observed synchronization state maps
that were obtained, we observe that the recognition rate is closely
related to the way the synchronization regions are positioned with
respect to each other. As an example in a case where synchronization
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regions are separated by an intermediate region where synchroniza-
tion is not occurring, the classification performances are low. On the
contrary, in a case where synchronization regions are not separated by
an intermediate non synchronized area, meaning that synchronization
regions are bordering each other (see Fig. 63-(3)), the classification
performances are higher.

In order to highlight this effect on recognition performances, we evalu-
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Figure 62: Evolution of the maximum vowel recognition rate of a network
of four identical van der Pol oscillator obtained as a function of
the normalized tunability of the oscillators (black). Evolution of
the ratio of the mean injection locking range normalized by the
mean frequency difference between oscillators as a function of the
normalized tunability (violet).

ate the mean injection locking range ∆̄ = 1
4(∆(1) +∆(2) +∆(3) +∆(4))

normalized by the mean frequency (free-running) difference between os-
cillators δ̄ = 1

3(δ12 + δ23 + δ34) where δ12 = |ω1 − ω2|, δ23 = |ω2 − ω3|

and δ34 = |ω3 − ω4|. This ratio denoted as ρ = ∆̄

δ̄
, is shown in purple
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  N0 = 0.14N0 = 0 N0 = 0.2

Figure 63: Simulated synchronization state maps obtained at the end of the
training process corresponding to recognition rates illustrated in
Fig. 62 for respectively (from left to right) N0 = 0, N0 = 0.14
and N0 = 0.2

on the top of the recognition rate versus tunability graph of Fig. 62. In
this graph, we observe that the recognition rate and ρ follow the same
trend as a function of the normalized tunability N0. Therefore, the
maximum recognition rate should be expected in the case where ρ = 1,
corresponding to a situation where all the synchronization regions
are perfectly bordering each other in terms of frequency position. For
sufficient normalized tunability N0 > 0.18, this situation tends to be
realized using identical ideal oscillators. In the next subsection, we
study the case of non-identical oscillators including variabilities and
reproducing the behavior of spin-torque nano-oscillators used in our
experiments.

6.2.2 Impact of frequency tunability in the case of spin-torque nano-
oscillators with experimental variability

In this subsection, we see how the frequency tunability impacts
the recognition performances of a network of four nano-oscillators
with variabilities corresponding to the experimental implementation.
For this purpose, the simulated Thiele model of spin-torque nano-
oscillators that was used to reproduce our experimental results (See
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subsections 6.1.1 and 6.1.2) is exploited. As in the previous case, the
mutual coupling is not taking into account in the simulation.
In order to change the tunability in the description given by the

Thiele formalism, we choose to modify the nonlinear magnetostatic
and Oersted κ

′
Oe and κ

′
ms confinement in equations. Therefore, we

introduce a hyperparameter η that we vary in order to modify those pa-
rameters as following: ˜κ′ms = ηκ

′
ms and ˜κ′Oe = ηκ

′
Oe. This modification

of the nonlinear confinement is equivalent to a modification of the non-
linear frequency shift expressed as follows (see the theory introduced

in Chapter 2 ): ˜NThiele =
˜κ′ms +

˜κ′OeJ
G

= η
κ
′
ms + κ

′
OeJ

G
= ηNThiele.

Here η goes from 0 to 1.5 with a step of 0.1. To be able to compare
the tunability variations realized in this study with those realized
in the model of identical ideal oscillation (previous subsection), we
extract for every η the corresponding normalized tunability N0 for
every oscillator. These extracted values are not identical from one
oscillator to the other one and thus we focus on their mean average
over the four oscillators of the network.

Therefore, as for the identical van der Pol model, for each normal-
ized tunability N0, we repeat the vowel recognition evaluation and
report the maximum recognition rate. Black circles in Fig. 64 show
the evolution of this maximum recognition rate as a function of the
normalized tunability N0. As for the identical van der Pol model, in
the absence of tunability, N0 = 0, the oscillator network is not able
to classify properly vowels, then the recognition rate is close to 30%.
By increasing the tunability of the oscillators the recognition rate
increases, reaching almost 90% for N0 > 0.20. By taking into account
variabilities in the behavior of the four oscillators of this simulated
network, for the same normalized tunability N0, we obtain as expected
a smaller recognition rate that the one that can be obtained in the
case of identical ideal van der Pol oscillators (previous subsection).
Indeed, as it is shown in Fig. 64 and Fig. 62, for the same tunabilty
N0 = 0.18, in the case of identical ideal oscillators the recognition
rate was of the order of 91% while in the case of a network including
variabilities the recognition rate was at 74%. As in the case of ideal van
der Pol oscillators, this last recognition rate is related to the relative
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Figure 64: Evolution of the maximum vowel recognition rate of a simulated
network of four spin-torque nano-oscillators with experimental
variabilities as a function of the normalized tunability of the
oscillators (black circles). Evolution of the ratio of the mean injec-
tion locking range normalized by the mean frequency difference
between oscillators as a function of the normalized tunability
(violet).

positioning of synchronization regions. This effect is captured by the
mean injection locking range normalized by the frequency difference of
the oscillators ρ. As for the recognition rate, for the same normalized
tunability N0, the coefficient ρ is smaller than the one obtained in the
case of ideal van der Pol oscillators. We interpret this effect as the fact
that variability causes an asymmetry in both the size of the synchro-
nization regions and the operating frequency ranges from one oscillator
to another one. As an example, in Fig. 65, the corresponding synchro-
nization maps can have different widths for the synchronization region.

To summarize, the oscillator variability degrades the vowel classi-
fication performances with regards to Fig. 62. It should be noticed
that for a normalized tunability corresponding to the experimental
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 

Figure 65: Simulated synchronization state maps obtained at the end of the
training process corresponding to recognition rates illustrated in
Fig. 64 for respectively (from left to right) N0 = 0, N0 = 0.18
and N0 = 0.23

conditions N exp
0 = 0.18, the recognition rate is only 74%, below the

case of identical oscillators (90% in Fig. 62), but also well below
the recognition rates that we obtained experimentally with mutually
coupled oscillators (89%). This result highlights the importance of
coupling for successful classification, which we study in more detail in
the next subsection for N0 = 0.18.

6.3 impact of coupling

6.3.1 Impact of electrical mutual coupling on recognition perfor-
mances

In this section, we see how mutual coupling impacts the classifi-
cation performance of the spin-torque nano-oscillator network. For
this purpose, the influence of coupling between oscillators on the
recognition performances has been studied through the differential
equations (see Eq. 32), following the formalism of Thiele. The coupling
between oscillators is modified by introducing a hyperparameter k in
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the simulation model. It tunes the impact of the microwave signal Irf
emitted by all the four oscillators on the dynamics of each of them.

Irf = 1

Z0 +
N=4∑
i=1

R(i)

(
N=4∑
i=1

kλ∆R(i)I
dc
(i)y(i)) (65)
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Figure 66: (Left): Evolution of the vowel recognition rate of a simulated
network of four spin-torque nano-oscillators with experimental
variabilities as a function of the normalized tunability of the oscil-
lators (black circles) and its corresponding mean injection locking
range normalized by the mean frequency difference between oscil-
lators as a function of the normalized tunability (violet). (Right):
Evolution of the vowel recognition rate of the same simulated
network as a function of the normalized coupling of the oscillators
(black circles). Evolution of the corresponding ratio of the mean
injection locking range normalized by the mean frequency differ-
ence between oscillators as a function of the noramlized coupling
(violet). The red star illustrates the recognition rate obtained
experimentally.

The case where k = 0 signifies that oscillators are not coupled to
each other. The case where k = 1 corresponds to a configuration
where oscillators are expected to be coupled as in the conditions of our
experiments. The coupling strength is modified gradually by tuning
k from 0.0 to 1.8 with a step of 0.2. In order to be able to compare
the coupling variations realized in this study with the strength of
external sources, we extract for each k the corresponding normalized
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e = 0  e = 3.2e = 1.78

Figure 67: Simulated synchronization maps obtained at the end of the train-
ing process corresponding to recognition rates illustrated in Fig. 66
for respectively (from left to right) ε = 0, ε = 1.78 and ε = 3.2.

coupling ε. This quantity can be interpreted as the effective force
applied between oscillators due to mutual coupling normalized by the
external force Fe: ε = Fcoupling

Fe
.

In our case, the coupling between oscillators is due to the electri-
cal connections in series and arises mainly from the field-like torque
[282], while the external force is applied through microwave fields.
Therefore ε = βjJrf

µ0Hrf
with Jrf = Irf

πR2 the total current density emit-
ted by the four oscillators [283], Hrf the amplitude of the applied
microwave field, βj the field-like torque efficiency. Finally, as for the
simulations concerning the impact of the tunability (previous sec-
tion), we repeat the vowel recognition evaluation for distinct coupling
strength ε and evaluate the maximum recognition rate. We use basic
microwave characterizations and injection locking measurements to
quantify βj , Jrf and Hrf ( µ0Hrf = 0.27 mT), from which the experi-
mental value of the coupling coefficient is estimated to be εexp = 1.79.

Fig. 66 shows the dependence of the recognition rate with the normal-
ized coupling strength ε. As can be seen in Fig. 66 there is a range of
intermediate coupling for which the recognition rate is optimized. As
for the tunability study of the previous section, this high recognition
rate is also related to a higher mean injection locking range normalized
by mean frequency difference noted as ρ. Indeed, for high recognition
rate we observe a higher ρ ratio illustrated in violet in Fig. 66. This
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observation shows that electrical mutual coupling causes an increase of
the size of the injection locking ranges while the frequency difference
between oscillators remains unchanged or decreased. It should be
noticed that this behavior was already observed in the case of two
coupled oscillators in presence of one external source signal in chapter
3. Those observations can give a qualitative understanding of this
phenomenon of increasing injection locking range due to coupling.
However, the presence of an additional external source and other
oscillators with a high coupling ability can lead to complex and hardly
predictable dynamics. In particular, for values of coupling above the
optimum range ε > 2, the recognition rate decreases upon increasing
coupling. This coincides with the synchronization maps becoming
noisier and noisier upon increasing the coupling (see Fig. 67), which
explains the decrease in classification performance. In order to better
understand the reasons behind these noisy maps, we focus in the next
section on the stability of synchronization state in presence of high
coupling regimes.

6.3.2 Instabilities at high coupling regimes

In order to see the impact of high coupling, we first studied the
evolution of the frequency of two coupled oscillators when one of
them is initially synchronized to an external source. For this simple
case we varied the strength of the electrical coupling between oscil-
lators. Fig. 68 shows the simulated frequencies of the two oscillators
labeled oscillators 1 and 2 when oscillator 1 is initially locked to the
external source. As can be seen, when the coupling strength becomes
large enough, the attractive force between oscillators is so strong that
oscillator 1 gets unlocked from the external microwave signal and
eventually synchronizes to oscillator 2. This explains how an initially
stable synchronization state (between one oscillator and one source)
can be destroyed if mutual coupling between oscillators is large enough.

Therefore, for a value of the coupling coefficient ε > 2.24 the mutual
coupling destroys the injection locking of the oscillator to an external
source given the conditions under consideration in Fig 66. The afore-
mentioned behavior explains by itself a reduction of synchronization
regions to the external source and thus of the recognition rate when
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the ε is greater than 2. But it is not the reason behind the noisy maps
obtained in this range of high coupling shown in Fig. 67-(3).

To elucidate this point, for each coupling condition ε, we have re-
peated in Fig 69 the simulated maps for several different sets of initial
conditions. This corresponds to solve the coupled Thiele equation for
distinct initial vortex core positions (X0, Y0). For 4 distinct coupling
values ε (0, 1.78, 2.49 and 3.20), we choose 10 different initial vortex
positions, simulate the oscillator network and observe the final syn-
chronization states that can occur (See Fig 69).

While for low and intermediate coupling only the edges of synchro-
nization regions are dependent on initial conditions, for large coupling
we obtain different noisy maps where for the majority of frequency
inputs (fA, fB) the final synchronization states are highly sensitive
to initial conditions. In other words, given the same values of input
frequencies fA and fB, a different synchronization state is obtained
depending on the initial conditions. This suggests that for high cou-
plings the dynamics of the oscillator network tends to become chaotic.
These numerical results are still preliminary and would require further
studies including the computation of Lyapounov exponents. It should
be noticed that several theoretical studies already report presence
of chaos in high coupling regimes in arrays of coupled Kuramoto
oscillators [284][285].
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Figure 68: Frequency evolution of two simulated nano-oscillators (1) and (2)
in the presence of an external source with frequency fext = 346.8
MHz (dashed blue line) as a function of the mutual electrical
coupling. For low coupling regime, oscillator 1 is initially sycnhro-
nized to the external source.
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𝜀 = 0

𝜀 = 3,20

𝜀 = 1,78

𝜀 = 2,49

Figure 69: Sensitivity of synchronization states to initial conditions as a
function of coupling ε. The maps have been simulated with 10
different initial conditions. The final state is indicated as red if
at least one of the final states differs from the others.
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6.4 conclusion

We have seen in this chapter that both frequency tunability and
intermediate mutual coupling are key ingredients to optimize the
recognition performances of an array of four coupled nano-oscillators.
In the case of ideal identical van der Pol oscillators, the recognition
rate increases with the tunability of oscillators. A maximum recogni-
tion rate higher than 90% can be obtained for high tunability values.
This behavior is also observed in the case of an array of spin-torque
nano-oscillators having experimental variability, but the recognition
rate remains lower than the one obtained with identical van der Pol
oscillators. For a tunability value corresponding to the experimental
conditions, the simulated recognition rate for uncoupled oscillators
is lower than the maximum that can be reached and is also smaller
that the one obtained experimentally. However, by including mutual
coupling interaction between oscillators, we observe an improvement
of the initial recognition performances. For coupling strength corre-
sponding to experimental conditions, we were able to reproduce in
simulations the recognition performances observed experimentally. For
higher coupling regimes, we observe a decrease of the recognition rate.
We relate this decrease to frequency instabilities due to the desynchro-
nization of oscillators from external stimuli and to synchronization
behaviors that tend to become chaotic.

The main results of this chapter are:

• Using the Thiele equation approach, we were able to reproduce
in simulations the synchronization states observed in experiment
at different steps of the learning process.

• The recognition performance of oscillator arrays increases with
the frequency tunability of oscillators.

• For a given tunability, the recognition rate is improved by the
presence of an intermediate mutual coupling between oscillators.

• For high coupling regimes, the recognition rate is deteriorated
due to instabilities in the frequency and final synchronization
state of oscillators.
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7
L A R G E A R R AY S O F S P I N - T O R Q U E
N A N O - O S C I L L AT O R S

In order to compete with large neural networks used in machine
learning, the number of training parameters in our oscillator-based
network should be larger. A natural way to achieve this goal is to
increase the number of nano-oscillators in the interacting array. Such
arrays are promising for broadband microwave signal detection and
processing as well as neuromorphic computing. For these applications,
large arrays of spin-torque nano-oscillators able to process microwave
inputs over a wide frequency range with high sensitivity are needed.
Since individual oscillators respond to inputs in a narrow range around
their frequency, the frequency of oscillators should be tuned to be
equally spaced, while maintaining the range of frequency sensitivity
equal in all the oscillators. Following this line of thinking, in this
chapter, I show that large arrays of nano-oscillators able to respond
to microwave inputs over a wide range of frequency can be designed.
I calculate the optimal operating points (applied DC currents) and
physical properties (size and aspect ratio) of the oscillators in the
array, and we explore the limits of these arrays considering realistic
nano-fabrication techniques. I first design an array of 100 oscillators.
Then, for realistic manufacturing physical size and applied dc current
parameters, we show using analytics that the maximum number of
spin-torque nano-oscillators that can be assembled in an array with
these characteristics exceeds several hundreds. Finally, I perform
simulations including mutual electrical coupling between oscillators,
and show that the analytical findings remain robust.
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Figure 70: a) Schematic illustration of the spin-torque nano-oscillator having
a magnetic vortex configuration for the free layer (blue). The
yellow layer illustrates the non-magnetic layer and the gray layer
corresponds to the pinned layer. The magnetization of the free
layer is planar except in the vortex core area where it becomes out
of plane. b) The schematic illustrates an array of N interacting
spin-torque nano-oscillators receiving microwave frequency inputs.
The different synchronization states of this array correspond to
the output.

7.1 designing large arrays of spin-torque nano-
oscillators

7.1.1 Models

In order to design large arrays of spin-torque nano-oscillators, we
first perform an analytical study of the oscillator geometry and applied
direct current for every nano-oscillator. As illustrated in Fig. 70-a, we
focus on spin-torque nano-oscillators with a vortex configuration in
the free layer [13] because the analytical description of their dynamics
matches quantitatively experimental results [276, 286, 160](or see
6.1.1). However, it should be noticed that the methods we use can be
extended to all types of spin-torque nano-oscillators[168].

We consider the Thiele equation [274, 159] describing the trajec-
tory of the vortex core. Now, in this section, we solve this equation
in the steady-state. This give us analytical expressions for important
variables which will affect the oscillations and the synchronization
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ability of oscillators. In this line of thinking, the frequency of the
vortex oscillations f (i) can be determined Eq. 66 [159].

f (i) = 1
2πG(i) {κ

(i)
ms + κ

(i)
OeJ

(i) + (κ′(i)ms + κ
′(i)
Oe J

(i))p(i)
0 } (66)

As it was shown in the previous chapter, this oscillator is nonlinear
and as a consequence, its frequency depends on the power amplitude
of oscillations p(i)

0 described by Eq. 67[159].

p
(i)
0 =

a
(i)
j G

(i)

D(i) J (i) − (κ(i)
ms + κ

(i)
OeJ

(i))

κ
′(i)
ms + κ

′(i)
Oe J

(i) + ξ(κ(i)
ms + κ

(i)
OeJ

(i))
(67)

The nonlinearity of such auto-oscillator is characterized by the
nonlinear frequency shift parameter [168] ν(i) Eq. 68.

ν(i) = G(i)

D(i)
κ
′(i)
ms + κ

′(i)
Oe J

(i)

κ
′(i)
ms + κ

′(i)
Oe J

(i) + ξ(κ(i)
ms + κ

(i)
OeJ

(i))
(68)

This ν parameter combined with the power amplitude p(i)
0 affects

the frequency injection-locking range ∆(i) where the oscillator syn-
chronizes its oscillations to an external microwave signal of amplitude
Fe. Here, we remind the injection locking-range expression described
by Eq. 69[168].

∆(i) =

√
1 + ν(i)2√
p

(i)
0

Fe (69)

All the terms of these equations are described in Tab. 5 and 6.
These parameters correspond to FeB free-layers. Tab. 5 shows constant
parameters that we didn’t modify during the study presented in this
chapter, while Tab. 6 shows parameters which were varied during
the study from one oscillator to other. This was due to the choice of
the free-layer radius R(i), thickness L(i), and applied dc current I(i)

dc .
Indeed, as shown in Tab. 6, the presented coefficients corresponding
to electrical current density J (i), the damping D(i), the confinement
due to the Oersted field κ(i)

Oe, the magnetostatic confinement κ(i)
ms and

the gyroforce G(i), depend on the free-layer radius R(i), thickness L(i),
and applied dc current I(i)

dc .
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H⊥ = 0.530 T (fixed perpendicular applied magnetic field)
Ms = 1.5× 10−7A.m−1 (free-layer saturation magnetization)
α = 0.0054 (Gilbert damping)
A = 20× 10−11A.m−1 (exchange constant)
P = 0.26 (spin polarization of the magnetic junction)
Mpol
s = 1.2× 10−6A.m−1 (polarizer magnetization)

ξ = 0.6 (nonlinear damping coefficient)[160, 287]
θ0 = cos−1 H⊥

µ0Ms
(free layer magnetization angle)

b = 2Lex = 2
√

2A
µ0M2

s

(vortex core radius)

aj = π
h̄P

2e
H⊥

µ0M
pol
s

sin2θ0 (spin-transfer torque efficiency)

Table 5: Constant parameters of the study for FeB free-layer. Here µ0 =
4π × 10−7T.m.A−1, h̄ = 1.054 × 10−34J.s−1, γ0 = 1.76 ×
1011rad.s−1.T−1 and e = 1.602× 10−19C

D(i) = α(2πL(i)
Ms

γ0
)(1

2 ln
(R(i)

2b

)
− 1

8) sin2 θ0 (damping)[159]

G(i) = (2πL(i)
Ms

γ0
)(1− cos θ0) (gyrovector magnitude)

κ
(i)
ms = (10

9 )µ0M
2
s

L(i)2

R(i)
sin2 θ0 (magnetostatic confinement)[276, 261]

κ
′(i)
ms = 0.25κms (nonlinear magnetostatic confinement)[261]
κ

(i)
Oe = 0.85µ0MsL(i)R(i) sin θ0 (Oersted field confinement)[287]
κ
′(i)
Oe = −0.5κOe (nonlinear Oersted field confinement)[287]

Table 6: Parameters depending on the applied dc current I(i)
dc , the free-layer

radius R(i) and the free-layer thickness L(i).

7.1.2 Design procedure

We now use the analytical model presented in the previous sub-
section to design an array of spin-torque nano-oscillators that can
process a wide range of input frequencies, without gaps, and with
the same individual input bandwidth response to all frequencies. We
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will tune the applied dc current I(i)
dc , the free-layer radius R(i) and

the free-layer thickness L(i) in the model to design this array. In this
design, the individual frequency of oscillators are regularly spaced,
and each oscillator has a synchronization range equal to this spacing.
To do this, the frequency f (i) and the injection locking range ∆(i) of
every spin-torque nano-oscillator of the array need to be tuned to
fulfill the following two conditions:

(i) | f (i+1) − f (i) |= δf ± ε. (70)

(ii)∆(i) = δf ± ε
′
. (71)

ε and ε
′ are respectively the maximal frequency and injection-

locking range deviations that we tolerate in the choice of our indi-
vidual parameters, here chosen as 5% of the frequency spacing value
(ε′ = ε = 0.05δf ). In the neuromorphic computing design of [24],
conditions (i) and (ii) gave the highest performances at pattern clas-
sification both in experiments and in simulations for a small array of
4 spin-torque nano-oscillators. Eq. 69 and 66 show that the frequency
f (i) and the injection locking range ∆(i) of each oscillator (i) can be
tuned by three parameters: the free-layer radius, thickness and applied
dc current {R(i), L(i), I

(i)
dc }.

We chose to separate the individual frequencies with a frequency
step δf of 5 MHz, which corresponds to easily achievable locking ranges
for this type of oscillators [24]. In order to take into account the reach-
able size accuracy during the nano-dot manufacturing processes, we
also impose a minimal dot radius variation between nano-oscillators
of δR = 2.0 nm and a minimal free layer thickness variation of
δL = 0.1 nm from one nano-dot to another one | R(i) −R(j)| > δR,
| L(i) −L(j)| > δL.

It should be noticed that for large free-layers, the amount of ap-
plied current required to reach the current density needed to obtain
auto-oscillations will increase. This increase of applied dc current
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causes large Joule heating that can be detrimental. To avoid this, we
consider a maximum nano-dot radius size of 300 nm. Furthermore,
the maximum and minimum nano-pillar radius (300 and 150 nm) and
thickness (8.1 and 3.0 nm) are chosen in such a way that the magnetic
ground state of the FeB layer is always a vortex state. Considering
FeB exchange length Lex ≈ 11.8nm, we verified the magnetic state
configurations expected for cylindrical nanopillars. According to the
magnetic stability diagram calculated by Metlov et al. [13] presented
in Fig. 71, for FeB free layer thicknesses L(i) comprised between 3.0
and 8.1 nm and radi R(i) larger than 47.5 nm, the magnetic configu-
ration is a stable vortex ground state.

Finally, the applied dc currents I(i)
dc are chosen according to the

accuracy of the electric circuit supplying them. Therefore, we impose
a minimal current variation of δI = 0.1 mA from one oscillator to the
other: | I(i)

dc − I
(j)
dc |> δI.

7.1.3 Numerical results

Fig. 72-a and b show the calculated values of free-layer radius,
thickness and applied dc current that fill these constraints as well
as conditions (i) and (ii). In the different panels, each colored dot
corresponds to one of the 100 oscillators of the array. The bottom panel
of Fig. 72-a shows the auto-oscillation frequencies of the oscillators
as a function of their radius R(i). The corresponding thicknesses L(i)
are represented in different colors. The resulting frequencies cover a
microwave range of 510 MHz starting from 145 MHz and ending at 655
MHz. The top panel of Fig. 72-a shows the corresponding injection-
locking ranges of each nano-oscillator. The distribution of this injection
locking range is narrow around 5 MHz with a dispersion of the order
of 0.5 MHz. This means that, as desired, every nano-oscillator of the
array has a similar sensitivity to the external inputs that it receives.
In Fig. 72-b, the dc currents applied to each individual oscillator are
shown. As can be seen, those applied dc currents have been chosen
higher than the critical dc current I(i)

c (dashed lines) required to
obtain auto-oscillations. In addition, the applied dc current is always
set smaller than the breakdown current (red straight line) which
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Figure 71: Stability diagram of the magnetic configuration in cylindrical
nano-pillars. This diagram is taken from Metlov et al.[13]. The
diagram presents three distinct regions. Purple region: magnetic
vortex state, dark gray: magnetized uniformly in-plane, light gray:
magnetized uniformly out-of-plane. The vertical red dashed line
correspond to FeB free-layer thicknesses L = 3 nm and L = 8.1
nm. The horizontal red dashed line corresponds to a corresponding
free-layer FeB radius of R = 47.5 nm.

should not be reached, otherwise the magnetic junction would be
damaged.

To summarize this section, we were able to design a large array of
spin-torque nano-oscillators for which the aforementioned conditions
70 and 71 were verified. This design highlights the numerous con-
straints on both the free-layer size and applied dc current and shows
that the choice of parameters depends strongly on those constraints.
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Figure 72: a) Lower graph: analytical auto-oscillation frequency of each nano-
oscillator resulting from the application of the selected individual
dc current as a function of the chosen nano-dot radius. The
color code indicates the corresponding free layer thickness. Upper
graph: distribution of the analytical injection locking range for
an external microwave signal amplitude Pext = −3 dBm, as a
function of the chosen nano-dot radius for different thicknesses.
The analytical injection locking range remains contained around 5
MHz. b) Chosen applied dc current versus nano-dot radius for the
different chosen free-layer thicknesses, dashed lines correspond
to the critical current to obtain auto-oscillations. The red line
evaluates the dc current corresponding to the breakdown voltage.
All of these results were obtained for a fixed applied perpendicular
field H⊥ = 0.530 T and other constant parameters presented in
Tab. 5.

7.2 maximum size of the arrays

7.2.1 Impact of frequency separation δf

Maximizing frequency sensitivity and frequency bandwidth on which
the array of oscillators would respond requires increasing the number
of oscillators in the array. In this part we explore the condition that
are required to build such larger arrays, while insuring frequency and
synchronization requirements (i) and (ii). Based on individual Thiele
equation solutions Eq. 66-67-69 given by the minimal variations of the
free-layer size (δR, δL) and applied dc current δI, we determine the
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maximum number of nano-oscillators in the array for the constraints.

Frequency gap between oscillators 𝛿F (MHz)
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Figure 73: Variation of the maximum number of nano-oscillators in array
depending on the frequency gap between their auto-oscillation
frequencies. For small frequency gaps δf = 1.5 MHz, arrays
of more than 300 nano-oscillators with suitable frequency and
synchronization features can be designed.

Initially, for fixed minimal variations on free-layer radius δR = 2.0
nm, thickness δL = 0.1 nm and dc current δI = 0.1 mA, we varied
the frequency separation allowed between auto-oscillation frequen-
cies δf from 1.0 to 8.0 MHz (Fig. 73). Decreasing this frequency
separation means that every nano-oscillator will be sensitive to a
smaller portion of the input frequency bandwidth. As shown in Fig. 73
with the frequency spacing decrease, the maximum size of the nano-
oscillator arrays increases in such a way that it reaches more than 300
nano-oscillators size for a frequency spacing of δf ≈ 1.5 MHz.
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7.2.2 Impact of miminimum size variations (δR, δL) and applied dc
current variations δI

The minimum size variation (δR, δL) for the free-layer of nano-
oscillators also influences the maximum working-size of large arrays.
Fig.74-a shows the calculated maximum number of nano-oscillators
in the array with the following dc current and frequency constraints:
δI = 0.05 mA and δf = 5.0 MHz. The red region corresponding
to arrays larger than one hundred nano-oscillators are obtained for
conditions where the allowed minimal variation on radius and thickness
are the smallest ones (δR < 2 nm and δL < 2 nm).

Figure 74: Maximum number of nano-oscillators in array illustrated as color
representation which depends on the minimal radius and thickness
variation allowed for the nano-pillars for a minimal dc current
variation of a) δI = 0.10 mA and b) δI = 0.05

Nevertheless, if we allow a smaller minimal dc current variation
(δI = 0.05 mA, in Fig.74-b ), we observe that the red region expands,
meaning that arrays of more than 100 nano-oscillators can be de-
signed for less limited nano-pillar dimension constraints (δR < 2 nm
and δL < 2 nm). These analytical results highlight the concurrent
impact of both nano-pillar size constraints (δR, δL) and dc current
and frequency constraints (δI, δf ) on the maximum working size of
nano-oscillator arrays.

To summarize, the maximum number of nano-oscillators strongly
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depends on minimal dc current variation δI and minimal free-layer
size variations (δR, δL). However, this study also shows that even
if R and L cannot be precisely designed in order to reach a a cer-
tain number of nano-oscillators in the array, an improvement of the
precision on I helps to reach a similar number of nano-oscillators.

7.3 behavior of large arrays in presence of elec-
trical coupling and external microwave inputs

7.3.1 Model

As shown in Fig. 72, the largest arrays are obtained for the smallest
frequency spacing, for which spin-torque nano-oscillators are highly
coupled and can be mutually synchronized which can affect their
ability to be synchronized to an external signal. This collective cou-
pling effect is not captured by the individual analytical description of
each nano-oscillator presented in sections 7.1 and 7.2. In this section,
we examine the impact of oscillator mutual couplings on the array
behavior through numerical simulations. For this purpose, we first
study the collective behavior of an array of 100 electrically coupled
spin-torque nano-oscillators receiving the sum of two distinct external
microwave magnetic fields. The parameter set of all nano-oscillators
in the array are the ones determined and depicted in Fig. 72.

As in the previous chapter, the electrical coupling between nano-
oscillators resulting from their microwave emissions is described as
an additional common alternative current that goes through all nano-
oscillators[277] Icomrf = 1

Z0 +
∑N
i=1Ri

∑N
i=1 λ∆RiI

i
dcyi. Here ∆Ri is

the mean resistance variation due to the vortex core gyrotropic mo-
tion through tunnel magnetoresistance, Z0 is the load impedance
which is equal to 50 Ω, Ri is the resistance of the junctions, Iidc is
the individual applied dc current, and λ = 2/3[278]. Here yi = Yi

Ri
is the Y position of the vortex core in the nano-dot plane (X, Y )
normalized by the radius of the free-layer Ri. We used the same
simulation framework used previously to reproduce numerically the
synchronization state features observed experimentally for an array of
two [14] and four[24] coupled nano-oscillators in presence of external
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microwave stimuli.

As in the previous chapter, the magnetization dynamics of the nano-
oscillators is obtained by solving numerically the coupled differential
Thiele equation 72 simultaneously for the N vortex i = 1, 2, ..N .

Gi ×
dXi
dt
−Di(Xi)

dXi
dt
−
∂Wi(Icomrf )

∂Xi
+ FSTT

i (Icomrf ) = 0 (72)

Here, Xi = (xi, yi) is the vortex core position, Gi is the gyrovector,
Di is the damping, Wi is the potential energy of the vortex, FSTT

i is
the spin-transfer force.

7.3.2 Simulation of large arrays in presence of external microwave
inputs and with electrical coupling

Fig. 4a shows the large variety of synchronization states obtained
when two distinct external microwave stimuli with frequencies (fA, fB)
are injected to the array of one hundred spin-torque nano-oscillators.
By sweeping the frequency of these external stimuli in the frequency
range covered by the nano-oscillator array from 145 MHz to 655 MHz,
each nano-oscillator is regularly synchronized and desynchronized from
the external signal around its free-running auto-oscillation frequency.
Every colored square corresponds to one unique synchronization state.

In this configuration, 9900 different synchronization states can be
achieved (by comparison, previous experimental work with four cou-
pled nano-oscillators showed only 12 synchronization states[24]). As
shown on the synchronization map of Fig. 4a and its corresponding
frequency zoom area Fig. 4b, the individual injection-locking ranges
and the frequency gap between closest nano-oscillator frequencies are
very similar and, as designed, have a frequency size deviation smaller
than 5%. This deviation from the desired frequency features ((i) and
(ii)) varies with the collective electrical coupling conditions.

7.3.3 Impact of higher electrical coupling in large arrays

To highlight the aforementioned deviation, we study a smaller array
of 10 coupled spin-torque nano-oscillators in presence of two injected
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Figure 75: Simulated synchronization state map of the 100 nano-oscillators
with chosen free-layer dimensions and applied dc currents. The
x and y axis correspond to the two frequency microwave inputs
injected electrically to the array. Depending on the frequency of
these frequency inputs, regularly one spin-torque nano-oscillator
synchronize to one of the two microwave inputs. Each small
square represent one particular synchronization state. (Different
synchronization states can have the same color). Small zoom on
the square area of the main synchronization map.

microwave signals and simulate the system as it was done for the
array of 100 nano-oscillators but varying the electrical coupling. To
simulate distinct electrical coupling environments, we multiply the
common emitted microwave current generated by all spin-torque nano-
oscillators Icomrf by an arbitrary factor k and consider the following
new common microwave current Icomrf = k.Icomrf . As shown in Fig. 4c,
the increase of coupling modifies the mean injection-locking range size
of the 10 spin-torque nano-oscillators of the array in such a way that
in the high coupling regimes corresponding to k > 1.5, the synchro-
nization response of the array diverges from the initially designed one.
For such electrical coupling conditions, the spin-torque nano-oscillator
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array will not be sensitive to input microwave frequencies. It should
be noticed that the observed injection locking range decrease is not
occurring for standard experimental coupling condition corresponding
to k = 1. This numerical result shows that the analytical approach
to designing large size arrays that we propose is robust to electrical
coupling effects.

2 3k= 0 k= 1 k= 21

1 2

3

a) b)

Figure 76: a) Mean injection locking-range of 10 simulated coupled spin-
torque nano-oscillators versus the arbitrary coupling factor k, k=1
corresponds to standard experimental conditions. b) Correspond-
ing synchronization state maps obtained respectively from left to
right k=0, k=1, k=2.

Fig. 76-b illustrates the corresponding synchronization state maps
from which the mean injection locking range was evaluated. As it can
be seen on these maps, for intermediate coupling conditions corre-
sponding to k=1 the synchronization states are regularly spaced and
are well defined while for higher coupling conditions corresponding to
k=2, the synchronization states are no more well defined and other
undesired synchronization states represented by gray color appear in
those regions. This explains why the mean injection-locking range
corresponding to this high coupling condition is smaller.

7.4 conclusion

According to the analytical study presented in this chapter, the in-
dividual dimensions of the free layer and the applied direct current are
sufficient parameters to obtain suitable frequency and synchronization
bandwidth to design large spin-torque nano-oscillator arrays sensi-
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tive to wide input frequency bandwidths. The precision that can be
achieved on this parameters, due to nano-processing and electrical cir-
cuit design, imposes the maximum size of spin-torque nano-oscillator
arrays. We have shown that the maximum size of such array is 300
spin-torque nano-oscillators for realistic manufacturing parameters.
Finally, we have shown numerically that mutual couplings in the
array modifies the effective injection locking range of the oscillators.
However, for low and intermediate electrical couplings corresponding
to typical experimental conditions, the spin-torque nano-oscillator
arrays show the same sensitivity to the whole input frequency band-
width as designed. In summary, we have shown through simulations
the possibility to build a device made of a large array of electrically
coupled spin-torque nano-oscillator able to respond to a wide range
of microwave input frequency with a constant sensitivity in the whole
operating bandwidth.

The main results of this chapter are:

• By choosing analytically appropriate individual applied dc cur-
rent and free-layer size of spin-torque nano-oscillators, we were
able to design an array of 100 spin-torque nano-oscillators, for
which the expected analytical frequencies are regularly spaced
and the individual synchronization bandwidth are similar.

• The maximum number of nano-oscillators in such arrays was
determined, giving the minimum applied dc current and free-
layer size variations. For most optimal constraints, we estimate
that we can design arrays of more than 300 nano-oscillators.

• For low and intermediate electrical couplings corresponding to
typical experimental conditions, the spin-torque nano-oscillator
arrays show the same sensitivity to the whole input frequency
bandwidth as initially designed for the uncoupled case.
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8
S U M M A RY A N D C O N C L U S I O N S

This thesis shows the first experimental demonstration of brain-
inspired computing with an array of coupled nano-oscillators. This
demonstration was possible through the exceptional properties of
spin-torque nano-oscillators. In order to realize this demonstration
the synchronization ability of these nano-oscillators was leveraged to
achieve a pattern recognition task corresponding to vowel recognition.
The other important aspect of this demonstration was the achievement
of experimental learning with coupled nano-oscillators which would
not be possible without the high frequency tunability of the stud-
ied coupled nano-oscillators. The recognition performance obtained
through this small implemented neural network is of the order of
88% which is high considering that the network comprises only four
oscillator-like neurons. The recognition performance comparison with
artificial neural network algorithms highlighted the fact that this high
recognition performance is due to the rich physics of the hardware
neurons implemented here by nonlinear oscillators.

Simulations of studied experimental nano-oscillators reveal the crucial
role of both high tunability and intermediate coupling between oscilla-
tors to optimize the recognition response of nano-oscillator networks
leveraging synchronization for pattern classification tasks. It should be
noticed that the network used for the demonstration of brain-inspired
operations was very small and in order to achieve more difficult tasks,
larger hardware neural network need to be implemented. Thus, the per-
spective of building arrays of hundreds of spin-torque nano-oscillators
with the constraints of nanotechnology was studied numerically. These
results could help to open new paths towards scaling-up arrays of
coupled spin-torque nano-oscillators for brain-inspired computing.

A possible perspective to this thesis could be the physical imple-
mentation of large arrays of spin-torque nano-oscillators in order to
realize complex cognitive tasks. This kind of future implementation
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can require to tune and control large number of physical parameters
such as the applied dc current. This feature can be achieved through
dedicated peripheral electronic circuits specially designed to modify
the behavior of the oscillator array.

An important issue that should be taken into account in the fu-
ture realization of computing systems based of spin-torque oscillators
is their energy consumption. Beyond the energy contribution due to
the read-out and control circuits surrounding nano-oscillators, it is
important to reduce their individual energy consumption. Indeed, as
the number of the spin-torque oscillators becomes larger, the energy
contribution to make them operate should become more and more
predominant. In order to reduce the energy consumption due to oscil-
lators, an important challenge is to reduce the value of the individual
applied dc current. To achieve this goal, one approach is to reduce
the spin-torque oscillator lateral size to 10-20 nm [288], allowing high
current densities with small applied dc currents. Interestingly, such
dimensions are already achieved for magnetic tunnel junctions used
in STT-MRAM magnetic memories. The fact that such memories
are included in the industrial fabrication process of biggest microelec-
tronic foundries [289], is a positive signal towards optimization and
integration of such magnetic tunnel junctions that can be adapted
to play the role of the next generation of down-scaled spin-torque
oscillators.

Interconnection with other multi-functional spintronic devices that
can emulate synaptic weights in arrays of coupled spin-torque oscilla-
tors is also an important future challenge to overcome. Indeed, pioneer
spintronic devices based on magnetic domain wall propagation in
magnetic tunnel junctions are already proposed and demonstrated
to play the role of synapses [290]. This interconnection may allow to
implement a fully spintronic nano-scale system emulating physically
in hardware the two main components of neural networks which are
neurons and synapses.

Beyond the physical implementation of basic properties of neural net-
works at the nano-scale allowing for instance inference, one should also
consider to embed the powerful artificial neural network algorithms
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developed for deep learning which are crucial to achieve interesting
and complex tasks nowadays. As an example, a major issue is the
physical implementation of back-propagation algorithms in deep neu-
ral networks. In order to avoid additional complexity to the physical
hardware, interesting approaches leveraging the dynamics of physical
systems can be proposed [291]. Once again the nonlinear dynamics
of spin-torque oscillators can play a crucial role in these interesting
approaches.

These perspectives associated to this thesis should contribute to open
the path to energy efficient on-chip brain-inspired computing devices.
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A
A P P E N D I C E S

a.1 glossary

a.1.1 Fundamental physical constants

Symbols Names Values Units
e elementary charge 1.602× 10−19 C

h̄ reduced Planck constant 1.054× 10−34 J.s

µ0 magnetic constant 4π× 10−7 T.mA−1

γ gyromagnetic ratio (free electron) 1.761× 1011 rad.s−1.T−1

g Landé g-factor 2 -
µB Bohr magneton 9.274× 10−24 J.T−1

a.1.2 Material properties

Symbols Names Units
D(↑↓)(EF ) density of states at the Fermi level (spin dependent) m−3

r(↑↓) resistivity (spin dependent) Ω−1.m

j(↑↓) current density (spin dependent) A.m−2

J charge current density A.m−2

k(↑↓) wave vector amplitude (spin dependent) m−1

R(ap,p) resististance (in antiparallel or parallel configuration) Ω

G(ap,p) conductance (in antiparallel or parallel configuration) S

Pi spin polarization (of the ferromagnetic layer i) -
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a.1.3 Magnetic properties

Symbols Names Units
−→
Mi local magnetization of the ferromagnetic layer i A.m−1

−→p unit vector of local magnetization of the polarizer -
−→m unit vector of local magnetization of the free-layer -
−→
H eff effective magnetic field A.m−1

Ms saturation magnetization of A.m−1

Mpol
s saturation magnetization of the polarizer A.m−1

H⊥ fixed perpendicular applied magnetic field A.m−1

α Gilbert damping coefficient A.m−1

θ angle between −→m and −→p rad

A exchange constant A.m−1

Lex =
√

2A
µ0M2

s

exchange length m

a.1.4 Geometric parameters

Symbols Names Units
L free-layer thickness m

R radius of the free-layer m

(x, y) = (X
R
,
Y

R
) normalized Cartesian position coordinates -

s =
√
x2 + y2 normalized amplitude of the oscillator -

a.1.5 Parameters used in the dynamics of the magnetic vortex
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Symbols Names Units
(sc, θc) polar vortex core position m,rad
b vortex core radius m

P vortex polarity -
C vortex chirality -
θ0 free layer magnetization angle rad

D0 damping magnitude[159] kg.rad−1.s−1

ξ nonlinear damping coeficient[160, 287] -
G gyrovector magnitude kg.rad−1.s−1

aj efficiency of the Slonczewski torque kg.m2.A−1.s−2

bj efficiency of the field-like torque kg.m2.A−1.s−2

κms magnetostatic confinement[261] kg.s−2

κ
′
ms nonlinear magnetostatic confinement[261] kg.s−2

κOe Oersted field confinement[287] kg.m2.A−1.s−2

κ
′
Oe nonlinear Oersted field confinement[287] kg.m2.A−1.s−2

a.2 coefficients used for the two linear combina-
tions applied to vowel formants
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Coefficients Values Coefficients Values
A1 434.12796 A2 −2132.59467
B1 3876.66394 B2 3471.05641
C1 −2720.95643 C2 1761.05172
D1 23736.72522 D2 −14515.22882
E1 −8692.08149 E2 3704.32823
G1 1978.73518 G2 −117.44496
H1 4297.31026 H2 3038.31175
I1 −149.58903 I2 1409.6298
J1 −23.0464 J2 −80.14666
K1 6447.12594 K2 5676.35479
L1 5821.65047 L2 2441.92994
M1 −2904.5703 M2 −3344.9537
N1 3.27684× 108 N2 3.38139× 108

a.3 summary in french, résumé en français

a.3.1 Introduction et contexte

Ces dernières décennies, le domaine de l’intelligence artificiel a
montré un impressionnant progrès permettant d’accomplir des tâches
cognitives considérées initialement comme trop complexes pour être
effectuées par des ordinateurs (reconnaissance vocal ou d’images). Dé-
sormais, au-delà de l’exécution d’instructions précises, le calcul devient
de plus en plus synonyme de systèmes intelligents qui sont capables
d’apprendre à partir des données et qui peuvent adapter leurs réponses
en fonction de leurs environnements. Cette percée a été rendu possible
par le développement d’algorithmes innovants inspirées du cerveau
mené depuis les années 50. Les premières observations du cerveau en
neurosciences ont donné lieu au développement à une catégorie impor-
tante d’algorithmes, qui est celle des réseaux de neurones artificiels.
En dépit du manque de compréhension sur le fonctionnement complet
du cerveau, ces algorithmes ont pu surpasser les humains pour réaliser
plusieurs taches particulières. Un exemple frappant de la puissance de
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ces algorithmes inspirés du cerveau peut être illustré par les récentes
défaites des meilleurs champions au jeu de Go[16][17]. Même s’il s’agit
là d’un exploit majeur dans le domaine de l’intelligence artificielle,
cela ne doit pas masquer une lacune importante dans la faȨ̈œcon dont
ces succès ont été achevés. En effet, la consommation énergétique des
ordinateurs pour exécuter des algorithmes d’intelligence artificielle
est beaucoup plus grande que celle du cerveau. Cette consommation
devrait continuer à augmenter avec l’augmentation du nombre de
paramètres nécessaires pour réaliser des taches de plus en plus com-
plexes.
Une des raisons pour lesquelles ces algorithmes inspirés du cerveau
consomment plus d’énergie que le cerveau provient de la différences
d’architecture fondamentale qu’il y a entre le cerveau et les ordina-
teurs actuels. Sur ces derniers, la mémoire et l’unité de calcul sont
séparés spatialement, ce qui entraîne un transport de données im-
portant sous forme de va et vient entre ces unités causant une forte
consommation énergétique. A l’inverse, le cerveau est une architecture
massivement parallèle où les neurones et les synapses qui jouent le
rôle respectivement d’unité de calcul et de mémoire sont enchevêtrés
et sont très proches spatialement les uns des autres ce qui réduit le
transport de l’information. Pour cette raison, les ordinateurs conven-
tionnels ne sont pas optimisés pour l’exécution d’algorithmes inspirés
du cerveau. Ces observations motivent le développement d’approches
de calcul alternatives qui prennent inspiration de la biologie, appelées
approches de calcul bio-inspiré. Ces observations motivent également
le développement de systèmes physiques alternatifs qui vont pouvoir
combiner des fortes performances en terme de calcul pour réaliser des
taches cognitives et des faibles consommations en terme d’énergie.
Afin de développer des systèmes de calcul inspiré du cerveau, il est im-
portant de pouvoir émuler le comportement des neurones biologiques
[18][19][20]. Ces unités de calcul du cerveau peuvent être vu comme
des petits oscillateurs non-linéaire connectés les uns avec les autres via
des connexion réglable portés par les synapses. Différents modèles pour
faire du calcul avec des assemblées d’oscillateurs non-linéaires ont pu
voir le jour en Physique et en Neurosciences [22][21]. A titre d’exemple,
pour faire du calcul ces modèles exploitent différents phénomènes dy-
namiques telles que la synchronisation qui se produit dans le cerveau.
Dès lors que le nombre d’oscillateurs est élevés (de l’ordre de 1011 neu-
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rones et 1015 synapses dans le cerveau humain), ces modèles sont très
puissants pour des taches de reconnaissance de motifs. Implémenter
ces modèles physiquement en hardware nécessitent donc d’assembler
un très grand nombre d’oscillateurs non-linéaires. Pour éviter de con-
cevoir des circuit de grandes tailles, les dispositifs physiques qui vont
donc émuler individuellement les neurones et les synapses doivent
être suffisamment petits. Au vu du grand nombre de neurones et
de synapses dans le cerveau, ces dispositifs physiques doivent être
idéalement nanométriques. C’est pour cette raison que les dispositifs
nanométriques capables d’émuler les fonctionnalités des neurones et
des synapses sont nécessaires pour implémenter physiquement des sys-
tèmes de calcul inspiré du cerveau. En particulier, les nano-oscillateurs
sont très prometteurs pour émuler les neurones. En dépit de plusieurs
propositions pour faire du calcul inspiré du cerveau en utilisant les
nano-oscillateurs, il n’y a pas eu de démonstration physique de ce
type d’approche. Cela est dû aux fortes sensibilités au bruit et à la
difficulté de contrôler les propriétés des nano-oscillateurs à l’échelle
nanométriques. Néanmoins, en tirant parti des propriétés exception-
nelles des nano-oscillateurs magnétiques, récemment, une première
démonstration de calcul inspiré du cerveau a pu être établi et cela en
utilisant un seul nano-oscillateurs à transfert de spin [23]. Dans cette
approche, la dynamique transitoire de l’amplitude des oscillations a
été exploité pour reconnaitre des empreintes vocales prononcés par
différents locuteurs et cela avec des performances à l’état de l’art.
Cependant, pour réaliser des taches cognitives de plus en plus com-
plexes, il est nécessaire de démontrer une propriété importante des
réseaux de neurones qui est l’apprentissage. Cette étape consiste en
une procédure itérative au cours de laquelle un réseau de neurones
est entrainé avec une fraction des données d’entrées et où il ajuste ses
paramètres internes (ses connexions entre neurones) afin d’améliorer
ses performances de reconnaissance ou de classification. Une difficulté
majeure dans l’apprentissage des réseaux de nano-oscillateurs couplés
est qu’il faut ajuster le couplage entre eux. Cette thèse présente une
première démonstration expérimentale de calcul inspiré du cerveau
avec une assemblée physique de nano-oscillateurs couplés [24]. Cette
démonstration tire parti du phénomène de synchronisation des nano-
oscillateurs à transfert de spin pour réaliser une tache de reconnais-
sance de motifs illustré par la reconnaissance de voyelles. Grace aux
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larges accordabilités en fréquence des nano-oscillateurs à transfert de
spin, la capacité d’apprentissage des nano-oscillateurs couplés a été
également démontré pour la première fois [6].

a.3.2 Résultats

a.3.2.1 Chapitre 1

Le premier chapitre de cette thèse présente la principale motiva-
tion du calcul inspiré du cerveau et montre comment les oscillations
observées dans les neurones biologiques peuvent être utilisés pour
concevoir un modèle d’assemblée d’oscillateurs non-linéaire pour faire
du calcul. Les différents types de nano-oscillateurs prometteur pour
mener ce but y sont présentés.

a.3.2.2 Chapitre 2

Le second chapitre de cette thèse introduit les nano-oscillateurs à
transfert de spin. Les phénomènes physiques ainsi que les principes
qui mènent aux oscillations y sont décrit. Un accent particulier y est
porté à la dynamique non-linéaire et la capacité de synchronisation
des nano-oscillateurs à transfert de spin. Ces propriétés sont surlignées
dans l’objectif de faire du calcul inspiré du cerveau.

a.3.2.3 Chapitre 3

Le troisième chapitre introduit brièvement une catégorie particulière
de nano-oscillateurs à transfert de spin que sont les oscillateurs à base
de vortex magnétiques. La dynamique et la synchronisation de ces
oscillateurs sont présentés à la fois théoriquement et expérimentale-
ment. En particulier, j’y ai montré les propriétés de synchronisation à
un signal alternative extérieur des oscillateurs. Cette synchronisation
peut être modifié par l’intermédiaire du couplage électrique avec un
second oscillateur. Les principaux résultats de ce chapitre sont les
suivants :

- Démonstration expérimental du contrôle du couplage électrique
entre deux oscillateurs à transfert de spin via la modification des
fréquences individuelles respectives des oscillateurs.
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- Augmentation de la gamme de synchronisation à la source extérieur
par un facteur de 1.64 en présence d’un couplage électrique avec un
autre oscillateur.

- Contrôle de la synchronisation des nano-oscillateur à transfert de
spin couplés.

- Identification des mécanismes expliquant l’évolution de l’augmentation
de la gamme de synchronisation au signal extérieur en fonction de la
différence de fréquence entre les oscillateurs.

a.3.2.4 Chapitre 4

Ce chapitre présente les principaux résultats expérimentaux de cal-
cul inspiré du cerveau. Dans ce chapitre, j’ai montré qu’une assemblée
de quatre nano-oscillateurs à transfert de spin peuvent classifier des
voyelles prononcées par différents locuteurs. Cette démonstration a
été possible en exploitant les états de synchronisation aux signaux
extérieurs qui émergent sans le réseau d’oscillateur. En utilisant la
large accordabilité en fréquence des nano-oscillateur à transfert de
spin, nous avons également démontré expérimentalement la capacité
d’apprentissage des nano-oscillateurs couplés pour classifier. Les prin-
cipaux résultats de ce chapitre sont les suivants :

-Implémentation expérimental d’un réseau d’oscillateurs sur la base
d’un réseau de quatre nano-oscillateurs à transfert de spin connectés
les uns avec les autres via des connexions électriques micro-ondes.

-Démonstration expérimental de la reconnaissance de sept voyelles
prononcés par différents locuteurs avec un taux de reconnaissance
proche de l’état de l’art : 88%.

-Démonstration expérimental de la capacité d’apprentissage du réseau
de nano-oscillateurs couplés rendu possible à travers l’ajustement des
fréquences individuelles des nano-oscillateurs. Cette ajustement a pu
être réalisé grâce au contrôle individuel sur le courant dc appliqué
dans chaque nano-oscillateur.
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-Démonstration expérimental de reconnaissances de 12 voyelles pronon-
cés par différents locuteurs avec le réseau de nano-oscillateurs couplés
avec un taux de reconnaissance de l’ordre de 68.4%.

a.3.2.5 Chapitre 5

Ce chapitre présente les simulations de réseaux d’oscillateurs réalisé
dans l’objectif de comprendre l’origine des performances en taux re-
connaissance observées expérimentalement. A travers ces simulations
j’ai pu montrer de l’accordable en fréquences ainsi que l’existence
d’un couplage intermédiaire entre sont des propriétés cruciales pour
obtenir de forts taux de reconnaissances. Les principaux résultats de
ce chapitre sont les suivants :

-En utilisant l’approche de l’équation de Thiele, j’ai pu reproduire en
simulation les états de synchronisations observés expérimentalement
à différents étape du processus d’apprentissage.

-Le taux de reconnaissance des réseaux d’oscillateurs étudiés aug-
mente en fonction de l’accordabilité en fréquence des oscillateurs.

-Pour une valeur d’accordabilité donnée, le taux de reconnaissance
peut être amélioré en présence d’un couplage intermédiaire entre les
oscillateurs à transfert de spin.

-Pour de fortes valeurs de couplage, le taux de reconnaissance décroit.
Cette diminution est due à l’instabilité de la fréquence et des états de
synchronisations dans le temps.

a.3.2.6 Chapitre 6

Dans ce chapitre, afin de réaliser des taches cognitives plus diffi-
ciles nécessitant de large réseaux de neurones, nous avons démontré
numériquement qu’un réseau d’une centaine de nano-oscillateurs à
transfert de spin peut être conçu avec les contraintes standards de
nano-fabrication.

187



Les principaux résultats de ce chapitre sont les suivants :

-En choisissant analytiquement le courant dc appliqué ainsi que la
taille de la couche libre des nano-oscillateurs à transfert de spin, j’ai
pu concevoir une assemblée d’une centaine de nano-oscillateurs pour
lesquelles les fréquences individuelles sont régulièrement espacé et les
gammes de synchronisation sont similaires.

-Pour des variations de taille de couche libre données ainsi que pour
un maximum de courant dc appliqué, le nombre maximum de nano-
oscillateurs à transfert de spin a été déterminé pour lesquelles on
peut obtenir des fréquences régulièrement espacé et des gammes de
synchronisation similaires. Sous ces contraintes, d’après mes estima-
tions, des réseaux de plus de 300 nano-oscillateurs peuvent être conçus.

-Pour des couplages électriques intermédiaires correspondant aux condi-
tions expérimentales, les réseaux d’oscillateurs de grandes tailles (typ-
iquement de l’ordre de 100 nano-oscillateurs) présentent les mêmes car-
actéristiques en termes de synchronisation et séparation en fréquences
que celles pour lesquelles le réseau avait été conçu initialement en
l’absence de couplage.

a.3.2.7 Conclusion and perspectives

Ces résultats ouvrent de nouvelles voies au calcul bio-inspiré de
haute efficacité énergétique intégrable sur puce grâce à des disposi-
tifs nanométriques non-linéaires qui peuvent s’adapter et appren-
dre. En terme de perspectives de nouveaux défis sont posé, tel que
l’implémentation physique de réseaux d’oscillateurs de grande taille
ainsi que le réglage de leurs paramètres. Aussi, se pose le défi de
l’interconnexion des nano-oscillateur avec d’autre dispositifs spintron-
ique jouant le rôle de synapse ainsi que l’implémentation en hardware
de réseaux de neurones exploitant les algorithme d’apprentissage
profond.
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Titre : Calcul bio-inspiré basé sur la synchronisation de nano-oscillateurs magnétiques

Mots clés : Calcul bio-inspiré, Spintronique, Nano-oscillateurs magnétiques, Synchronisation.

Résumé : Les nano-oscillateurs à transfert de spin
sont des composants radiofréquences magnétiques
non-linéaires, nanométrique, de faible consommation
en énergie et accordables en fréquence. Ce sont
aussi potentiellement des candidats prometteurs pour
l’élaboration de larges réseaux d’oscillateurs couplés.
Ces derniers peuvent être utilisés dans les archi-
tectures neuromorphiques qui nécessitent des as-
semblées très denses d’unités de calcul complexes
imitant les neurones biologiques et comportant des
connexions ajustables entre elles. L’approche neu-
romorphique permet de pallier aux limitations des
ordinateurs actuels et de diminuer leur consomma-
tion en énergie. En effet pour résoudre des tâches
cognitives telles que la reconnaissance vocale, le
cerveau fonctionne bien plus efficacement en terme
d’énergie qu’un ordinateur classique. Au vu du grand
nombre de neurone dans le cerveau (100 milliards)
une puce neuro-inspirée requière des oscillateurs
de très petite taille tel que les nano-oscillateurs
à transfert de spin. Récemment, une première
démonstration de calcul neuromorphique avec un
unique nano-oscillateur magnétique a été établie. Ce-

pendant, pour aller au-delà, il faut démontrer le cal-
cul neuromorphique avec plusieurs nano-oscillateurs
et pouvoir réaliser l’apprentissage. Une difficulté ma-
jeure dans l’apprentissage des réseaux de nano-
oscillateurs est qu’il faut ajuster le couplage entre
eux. Dans cette thèse, en exploitant l’accordabi-
lité en fréquence des nano-oscillateurs magnétiques,
nous avons démontré expérimentalement l’appren-
tissage des nano-oscillateurs couplés pour classifier
des voyelles prononcées avec un taux de reconnais-
sance de 88%. Afin de réaliser cette tache de classi-
fication, nous nous sommes inspirés de la synchroni-
sation des taux d’activation des neurones biologiques
et nous avons exploité la synchronisation des nano-
oscillateurs magnétiques à des stimuli micro-ondes
extérieurs. Les taux de reconnaissances observés
sont dus aux fortes accordabilités et couplage in-
termédiaire des nano-oscillateurs utilisés. Enfin, afin
de réaliser des taches plus difficiles nécessitant de
larges réseaux de neurones, nous avons démontré
numériquement qu’un réseau d’une centaine de
nano-oscillateurs magnétiques peut être conçu avec
les contraintes standards de nano-fabrication.

Title : Bio-inspired computing leveraging the synchronization of magnetic nano-oscillators

Keywords : Bio-inspired computing, Spintronics, Spin-torque nano-oscillators, Synchronization.

Abstract : Spin-torque nano-oscillators are non-
linear, nano-scale, low power consumption, tunable
magnetic microwave oscillators which are promising
candidates for building large networks of coupled
oscillators. Those can be used as building blocks
for neuromorphic hardware which requires high den-
sity networks of neuron-like complex processing units
coupled by tunable connections. The neuromorphic
approach allows to overcome the limitation of nowa-
days computers and to reduce their energy consump-
tion. Indeed, in order to perform cognitive tasks as
voice recognition or image recognition, the brain is
much more efficient in terms of energy consumption.
Due to the large number of required neurons (100 bil-
lions), a neuromorphic chip requires very small os-
cillators such as spin-torque nano-oscillators to emu-
late neurons. Recently a first demonstration of neu-
romorphic computing with a single spin-torque nano-
oscillator was established, allowing spoken digit re-
cognition with state of the art performance. Howe-
ver, to realize more complex cognitive tasks, it is still
necessary to demonstrate a very important property
of a neural networks: learning an iterative process

through which a neural network can be trained using
an initial fraction of the inputs and then adjusting in-
ternal parameters to improve its recognition or clas-
sification performance. One difficulty is that training
networks of coupled nano-oscillators requires tuning
the coupling between them. Here, through the high
frequency tunability of spin-torque nano-oscillators,
we demonstrate experimentally the learning ability
of coupled nano-oscillators to classify spoken vo-
wels with a recognition rate of 88%. To realize this
classification task, we took inspiration from the syn-
chronization of rhythmic activity of biological neu-
rons and we leveraged the synchronization of spin-
torque nano-oscillators to external microwave stimuli.
The high experimental recognition rates stem from
the weak-coupling regime and the high tunability of
spin-torque nano-oscillators. Finally, in order to rea-
lize more difficult cognitive tasks requiring large neu-
ral networks, we show numerically that arrays of hun-
dreds of spin-torque nano-oscillators can be designed
with the constraints of standard nano-fabrication tech-
niques.
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