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sphériques
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Résumé : Les suspensions colloïdales se trou-
vent un peu partout autour de nous, dans
les matériaux de construction, en cosmétique,
dans l’alimentation, en biologie. Elles sont
composées de particules nanométriques ou mi-
crométriques dispersées dans un gaz, un liquide
ou un solide.
Cette thèse porte sur les suspensions colloïdales
dans des solutions ioniques, où les colloïdes por-
tent une charge électrique, par exemple des par-
ticules de silice dans une solution aqueuse de
chlorure de sodium, à un pH basique. Les col-
loïdes, ici approximés par des sphères, peuvent
varier significativement en taille, ce qui peut
avoir un effet important sur le comportement
de ces systèmes. Cette étude vise à améliorer
la compréhension de ces suspensions colloïdales
chargées par des modèles théoriques résolus par
des simulations numériques.
Un des défis de ces simulations est le grand

nombre de degrés de liberté. Pour chaque
(micro-)ion il y a des centaines de molécules
de solvant, et pour chaque colloïde des cen-
taines voire des milliers d’ions. Pour s’en sor-
tir, nous avons calculé les interactions effec-
tives à l’échelle colloïdale. Nous avons repris et
développé plusieurs approches, présentant cha-
cune un compromis en terme de temps de calcul
et précision.
La variation en taille des colloïdes peut intro-
duire des effets intéressants, observés expéri-
mentalement, notamment le fractionnement
des suspensions en plusieurs phases cristallines
quand on augmente la concentration en col-
loïdes. Des techniques de simulations Monte-
Carlo simples associées aux interactions inter-
colloïdes calculées précédemment ont permis
d’obtenir des résultats en bon accord avec
l’expérience.

Title: Interactions and Structures in Polydisperse Suspensions of Charged Spherical Colloids
Keywords: colloids, simulation, polydispersity, colloidal crystals

Abstract: Colloidal suspensions are found ev-
erywhere around us, in construction materials,
in cosmetics, in food, in biology. They are com-
posed of nanometric or micrometric particles
dispersed in a gas, a liquid or a solid.
This thesis is about colloidal suspensions in
aqueous salt solutions, where colloids bear an
electric charge, for example silica particles in
an aqueous solution of sodium chloride, at
high pH. The colloids, here approximated by
spheres, can vary significantly in size, which
can have an important effect on the behavior of
these systems. This study aims to improve the
understanding of these charged colloidal sus-
pensions by theoretical models solved by nu-
merical simulations.
One of the challenges of these simulations is

the huge number of degrees of freedom. For
each (micro-)ion there are hundreds of solvent
molecules, and for each colloid there are hun-
dreds if not thousands of ions. To deal with
this, we calculated the effective interactions at
the colloidal scale. We took and developed sev-
eral approaches, each showing a trade-off in
terms of computational time and accuracy.
The size variation of colloids may introduce in-
teresting effects, experimentally observed, no-
tably the fractionation of suspensions in several
crystalline phases when the colloidal concen-
tration is increased. Some simple Monte-Carlo
simulation techniques in combination with the
inter-colloid interactions computed previously
allowed us to obtain results in good agreement
with experiments.
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Chapter 1

General introduction

Colloids are common in our everyday life starting from our own body to construction

materials. Cosmetic cream and shampoo, milk and wine, toothpaste and shaving cream,

mustard and chocolate, soils and paper, foam and smoke are other good examples of col-

loidal systems, that are composed of colloidal particles dispersed in a dispersion medium.

Both the dispersed phase and dispersion medium can be either a gas, a liquid or a solid,

with the exception of a gas dispersed in a gas phase. A particle is qualified as a colloid

if it has at least one dimension between approximately 1 nm to 1000 nm[1]. To put this

in perspective, the diameter of a human hair (∼ 80 µm) is ten thousand to a hundred

times bigger than a colloidal particle. Colloids further present a large variety of shapes.

When they are solid, they can be spherical, cubic, rod-like, or plate-like, to cite a few

examples. Their smallness makes their specific surface area, expressed in square meter per

gram, extremely large. The surface, and more generally speaking the physical chemistry

properties of the interface thus play a key role in controlling the behaviour of colloidal

dispersions. As an example, sedimentation of colloids is greatly retarded due to the en-

hanced frictional resistance at the interface with the dispersion medium as compared to

the weight of the particle. When a colloid is suspended in a fluid, it experiences colli-

sions from the fluid molecules which result (at every instant in time) in a net force on

the particle. The direction of this net force is random, and as a result, if the particle

is sufficiently small it performs a random walk through the fluid, i.e. Brownian motion.

When more and more particles are added to the suspension, eventually they also start to

interact (either repel or attract) with each others. This gives rise to collective behaviour,

and ultimately leads to the formation of liquid-like states and solid-like ordered struc-
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tures, i.e. colloidal crystals, as well as gel and glassy states and liquid crystals. Many

industrial applications take advantage of these properties e.g. food, papers[2], drilling,

plastics[3], construction materials, softeners, photonic crystals and photovoltaic cells[4].

However, the understanding of those systems is still rather limited and the technological

developments remain principally empirical.

Electric charge at the surface of colloids and polydispersity are ubiquitous in the realm

of colloidal systems. The electric charge which controls the electrostatic interactions

among the colloids is often considered as fixed. More often, however, it arises from the

titration process where surface groups ionize, for example, the titration of silanol groups

-SiOH � -Si-O− + H+. It depends on the pH, the ionic strength and the salt nature

but also on the surface curvature and interparticle interactions. The latter is refered

to charge regulation but is often ignored in theoretical studies. Polydispersity is the

property of having many (thus poly) non-identical components in the dispersed phase

of a colloidal system. The variation from one component (e.g. a particle) to the next

could be one of many parameters, such as size, shape, charge, density etc. . . In theoretical

studies polydispersity is often ignored, as solving the single-sized or monodisperse problem

is often sufficiently complicated. However, as real experiments are always performed on at

least slightly polydisperse systems it is essential to rationalize the effects of this pervasive

phenomenon.

Since the 1940’s, the stability of colloidal dispersions in aqueous solution has been

rationalized with the help of the DLVO theory [5, 6], that combines a short range attractive

(van der Waals) potential with a long range electrostatic repulsion. Indeed, a strong

attraction can force particles to coagulate and lead to a phase separation, whereas a

dispersion under strong repulsion can remain stabilized for years [4]. Unfortunately, the

DLVO theory is valid only for a limited range of conditions. In particular, it is valid for

weakly coupled systems, i.e. where ion-ion correlations are not predominant. What is

more, the DLVO theory is restricted to high particle dilution and thus does not account

for the many-body interactions involved at finite colloid concentrations. The lack of a

generalized set of DLVO like effective potentials for charge and size polydisperse colloidal

systems, on one hand, and of extensive computer simulations on aqueous suspensions of

charged polydisperse particles, on the other hand, explains our poor understanding of

these complex systems and the motivations of this work.
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More specifically, it started with a discussion with Bernard Cabane on the structural

evolution of thin films of aqueous silica nanoparticle dispersions (Ludox HS40) during

drying[7]. The structure of the colloidal film was followed by small X-Ray scattering

(SAXS). The short-range order was initially observed to increase as the dispersion was

concentrated by evaporation before decreasing continuously upon further evaporation.

Upon slow compression by osmotic stress and long equilibration time, the aqueous sil-

ica dispersion showed the same qualitative behavior. In addition, scattering intensities

recorded by SAXS in the density region of maximum order, revealed multiple Bragg peaks

characteristic of colloidal crystals with a large superlattice, despite the broad size polydis-

persity of the colloids[8]. This collection of experimental results brought many questions,

fed many discussions and motivated the combination of an in depth experimental study[9]

with the present simulation investigation. The main questions were: 1) How the decrease

in the short range order in the dispersions at high densities can be explained? Is it the

result of aggregation due to short range attractive forces? 2) How the solid-crystalline

phases vary with the size/charge polydispersity of the colloids and what are they? 3) Is

it possible to predict them and how?

Here, simulation techniques are developed, tested and used to address these ques-

tions. The strategy followed is based on a hierarchical multiscale approach. First, various

numerical methods are developed for determining the effective pair potentials in charged

and polydisperse colloidal systems. Then, computer simulations, employing these effective

force fields, are further used to identify, at the microscopic scale, the different chemical

and physical processes when charge polydisperse colloids are immersed and concentrated

into an aqueous salt solution in an attempt to predict their macroscopic behavior.

The thesis is organized as follow. In the following sections, the theoretical background

and the simulation techniques are described. Chapter 2 (Paper II) deals with the deter-

mination of the effective pair potential between charged colloids at high particle volume

fractions in the low and high coupling regime. Then in Chapter 3 (Paper II), two nu-

merical methods are developed and deployed to calculate the effective pair potentials in

polydisperse suspensions of titratable colloids. Finally, Chapter 4 (Paper IV) prospects

the validity of the two previous methods and studies in details the structure and the phase

behavior of suspensions of polydisperse silica nanoparticles varying the ionic strength and

size distribution.
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1.1 Systems

This thesis examines inter-colloid interactions and the phase behavior of charged hard

sphere systems. Of particular interest, is the effect of size polydispersity on these systems.

Here we give an overview of the phases observed in repulsive systems of spherical colloids,

either due to hard-core or electrostatic interactions. We further describe some of the

experimental systems with which the present simulation work was compared to.

1.1.1 Fluid

A fluid is an ergodic disordered state whose structure depends on the colloid density. In the

very diluted regime, a dispersion of hard core (HS) or charged hard sphere (CS) behaves as

an ideal gas characterized by colloid pair distribution function, thereafter denoted as g(r),

insensitive to their separation r and equal to unity. In reality, a Coulomb or hard core

hole is present for a small range of r, compared to the mean colloid separation, but can be

neglected. The thermodynamic properties can then be easily calculated with a pen and

paper. As the colloid density is increased the colloidal particles start to repel with each

other and form a non ideal gas characterized by some short range oscillation in the g(r).

Upon further addition of colloids, the g(r) shows long range oscillations characteristic of

a liquid. The determination of the thermodynamic properties then requires the use of

simulations or advanced theories, e.g. Hypernetted Chain theory, that properly account

for the colloidal interactions (non ideality).

1.1.2 Colloid crystals and polydispersity

A colloidal crystal, analogous of mineral crystals, is an ergodic solid state whose colloidal

particles are arranged in a highly ordered structure forming a crystal lattice that repeats

in all directions of space. Colloidal crystals were first observed in nature with viruses

during the first half of the last century [10, 11], in iron oxide sols forming schilling layers

[12] and later in natural silicate opals[13, 14] formed by sedimentation of uniform silica

particles [15]. The discovery with viruses clearly pointed out the importance of the narrow

particle size distribution in forming crystals. The rapid development in the field of col-

loidal crystals started later (in the second half of the last century) with the emergence of

computer simulations[16, 17] and elaboration of simple and low-cost methods of preparing
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synthetic colloids with very narrow size distribution[18, 19]. It traces back to the long

time controversial discovery of the freezing transition in a purely entropic system made

of hard core particles: i.e. the ordering transition can be “entropy driven.” At that time

the generally accepted idea was that a spontaneous phase transition from the fluid to the

crystalline state can only take place if the freezing lowers the internal energy of the system

sufficiently to outweigh the loss in entropy: i.e. the ordering transition is “energy driven.”

However, counter-intuitively, the entropy increases because the free-volume per particle is

larger in the ordered than in the disordered phase. This transition in hard core systems

had been predicted by Kirkwood[20] in the early fifties based on an approximate theory

confirmed by Alder and Wainwright[16] and Wood and Jacobson[17] using numerical sim-

ulations and experimentally by Pusey and van Megen [18] using colloidal particles that

behave nearly as ideal hard core particles. Today, the entropy-driven freezing transition is

generally accepted for hard core systems and is even seen to apply to many other systems,

not to say to be the rule[21].

Table 1.1: A list of crystalline structures found in hard-sphere systems FCC: face-centered

cubic, BCC: body-centered cubic, RHCP: random hexagonal close-packing
System Structures ref

Monodisperse FCC [18]

Monodisperse RHCP [22]

Binary FCC [23, 24]

Binary FCC(large) [25]

Binary FCC + FCC [26]

Binary AB (NaCl) [27, 28]

Binary AB (CsCl,CrB,CuTi,IrV) [28]

Binary AB2 (AlB2) [29, 30, 31, 28]

Binary AB2 (HgBr2,AuTe2,Ag2S) [29, 30, 31, 28]

Binary AB2(MgZn2,MgCu2) [26, 32, 33]

Binary AB2(MgNi2) [26]

Binary AB6 [34, 28]

Binary AB13 [30, 35, 27, 31]

Polydisperse FCC (fractionated) [36]
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Table 1.2: A list of crystalline structures found in charged-sphere systems FCC: face-

centered cubic, BCC: body-centered cubic, RHCP: random hexagonal close-packing
System Structures ref

Monodisperse FCC [37, 38]

Monodisperse BCC [37, 38]

Binary BCC [39]

Binary AB (CsCl) [40, 41]

Binary AB2(MgZn2) [34, 26, 32, 42]

Binary AB2(MgCu2) [34, 32, 42]

Polydisperse AB2(MgZn2) + BCC (fractionated) [8]

The freezing and melting density of monodisperse HS was established in 1968 by

Hoover and Ree[43] and was found to predict accurately experiments[18]. The stable

solid phase has a face centered cubic (fcc) structure. The phase diagram of repulsive

point Yukawa particles as a model of CS was established in 1988 by Robins et al [44]. It

shows in addition to the stable fcc solid phase a stable body centered cubic solid phase

in the low ionic strength and density region triggered by the long range electrostatic

repulsions between the CS. Since then a long list of crystalline structures was predicted

and observed in binary mixtures of CS and HS. Tables 1.1 and 1.2 give an overview of

the crystal structures found in HS and CS systems, respectively.

Guided by the first findings on natural colloidal crystals and the analogy with atomic

and molecular crystals where all elements are identical, lots of efforts have been deployed

to approach as much as possible an ideal monodisperse colloidal dispersion. An other

motivation was also to test theories and numerical simulations which until recently com-

pletely ignored polydispersity. All of this have fueled the common idea/concept of the

so called terminal polydispersity (in size, shape or charge) beyond which the formation

of colloidal crystals is prevented, see e.g. [45]. Such an idea has been challenged in the

last two decades by simulations on ideal HS systems. Polydispersity is predicted to shift

the phase boundaries upward in a non trivial way and to even introduce novel phases by

fractionation above a critical value of 7-8%[46, 47, 48], if they are able to form. These pre-

dicted features of fractionated crystals and multiple-phase coexistence were only recently

observed by Cabane and co-authors[8] on aqueous dispersions of polydisperse CS, silica
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nanoparticles (≈ 10 nm), with very high polydispersity (≈ 14%). The observed phase

diagram was found, however, to be much richer than so far predicted, with the coexistence

between a fluid, a solid bcc and a solid MgZn2 Laves, see Table 1.2. In Chapter 4, the

phase behavior of this system is studied in details.

1.1.3 Glass

Glasses are non-ergodic disordered solid states characterized by a very slow particle dy-

namics and peculiar mechanical properties[49]. They appear in many classes of materials

ranging from silicates to metals and polymers but also in colloids. See e.g.[50] for a re-

cent review. The first clear evidence of a colloid glass was observed by Pusey and Van

Megen[18] in their experimental model of HS system which experimentally confirmed the

freezing transition suggested by simulations by Hoover and Ree[43]. It was found at

high HS densities well above the freezing transition[51]. In CS systems colloidal glasses

are also commonly found, but at much lower particle densities. It is fair to say that

glasses and the glass transition are not much understood and are thus a very active field

of research. Vitrification can, however, be viewed as a competing process of crystalliza-

tion. Various strategies can be applied to obtain and stabilize over a long period of time

colloidal glasses[49, 50]. One of the most natural ones is to take advantage of particle

polydispersity. Colloidal glasses are discussed further in Chapter 4.

1.2 Models

Ideally, one would like to model an aqueous dispersion of polydisperse colloids with all

its atomic details. Numerical calculation of such a model is at best very expensive and

at worst impossible to carry out. It is then necessary to use approximate models which

retain the essential physics and chemistry of these systems. The aim of this chapter is not

to give a full descriptions of all the existing models but rather to give a brief description

of those used in Chapters 2–4.

1.2.1 Primitive model

The primitive model (PM) is a standard model for charged colloidal dispersions. The

colloids and ions are treated explicitly, and the solvent molecules are implicit. The elec-
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trostatic interactions between colloids and ions are described by Coulomb pair potentials,

reading

uelij(r) = qiqj
4πεr , (1.1)

where i and j are particles (colloid or ion) of charge qi, r is the separation between i and

j, ε is the electrical permittivity of the solvent.

Particles interact also via short-range interactions. The simpler ones are hard sphere

(HS) interactions, whose potentials read

uHS
ij (r) =


+∞ if r ≤ Ri +Rj

0 otherwise
(1.2)

where Ri (resp. Rj) is the radius of the particle i (resp. j). A more realistic potential is

the paradigmatic attracto-repulsive Lennard-Jones (LJ) potential, which reads

uLJij (r) = 4εLJij

(σLJij
r

)12

−
(
σLJij
r

)6 , (1.3)

with σLJij = Ri+Rj and εLJij is an energy parameter (the minimum of the LJ potential). To

model repulsive soft sphere interactions, one may use the shifted and truncated Lennard-

Jones (SLJ) potential, which reads

uSLJ
ij (r) =


4εSLJij

[(
σSLJij

r

)12
−
(
σSLJij

r

)6
+ 1

4

]
if r ≤ Ri +Rj

0 if r > Ri +Rj

, (1.4)

where σSLJij = 2−1/6(Ri +Rj) and εSLJij is an energy parameter.

1.2.2 Coarse-Grained Model

Complex systems like colloidal dispersions in particular, have a large number of degrees of

freedom. Charged colloidal dispersions can have hundreds to hundreds of thousands of ions

per particle, and many more solvent molecules. These systems require huge computational

power even for relatively small ones. A possible solution consists in reducing the system in

less components by averaging out the degrees of freedom of the solvent and/or of the ions,

this is often named coarse-graining. In this regard the PM is already a coarse-grained

model because the solvent is treated implicitly.

At low electrostatic couplings and low density, the standard approach of Derjaguin,

Landau, Verwey and Overbeek, known as DLVO theory[5, 6], applies. The electrostatic
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interactions between spherical colloids are described by screened Coulomb potentials, or

Yukawa potentials, of the following form,

uY
ij(r) = QiQjfifj

4πεr exp(−κr), (1.5)

where Qi (resp. Qj) is the charge of the colloid i (resp. j), κ is the inverse screening

length or inverse Debye length. It reads

κ =
√

4πε
kBT

I, (1.6)

where I = ∑nI
α=1 q

2
αcα is the ionic force, with nI the number of ionic species, cα is the bulk

concentration of the ionic specie α, kB the Boltzmann constant, T the temperature. fi is

a form factor that depends on the composition of the colloid i. For homogeneous spheres

it reads

fi = expκRi

1 + κRi

. (1.7)

For “hollow” spheres (the solution can get inside the colloid), it reads

fi = sinh κRi

κRi

. (1.8)

At higher couplings or higher concentrations, this approximation breaks. One would

have to take into account 3-body, 4-body etc. . . interactions. It has been found that

Yukawa potentials with effective parameters (Q∗, κ∗), which notably depend on the col-

loidal density, can describe well charged dispersions. §1.5 describes some methods to

calculate these effective parameters.

However, at very high electrostatic couplings, ionic correlations have to be accounted

for, and therefore the Yukawa is no longer a good fit and a correct pair potential does not

have a simple form and must be computed numerically. §1.4.4 describes some methods

to work out these potentials.

1.3 Statistical thermodynamics

At a microscopic scale, a colloidal dispersion, and many other materials, can be described

by myriad atoms and molecules in motion at some level, or more deeply by the time evolu-

tion of a complex quantum state. At a macroscopic level these materials are described by

a limited set of properties (temperature, pressure, . . . ) usually accessible by experiments.
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Statistical thermodynamics makes a bridge between these two scales. A probability pi

is associated to a micro-state i, the set of probabilities associated with given macro-

scopic constraints defines an ensemble. Furthermore, two postulates are made, namely

the ergodic and equipartition principles. Below these principles are detailed followed by a

definition of the main thermodynamic ensembles and further notions of statistical ther-

modynamics.

1.3.1 Principles

Ergodic principle

The ergodic principle states that the time average of a macroscopic quantity is equal to

the statistical average of the same quantity. This means that, for a quantity A that has

values Ai for each micro-state i, we have

lim
T→+∞

1
T

∫ T

0
A(t)dt =

∑
i

piAi (1.9)

Equipartition principle

The equipartition principle states that all micro-states are equiprobable. It implies that

there is a number Ω such that

pi = 1
Ω (1.10)

for all micro-state i, where Ω is the number of possible micro-states.

The entropy S is defined as proportional to the Shannon expression of loss of infor-

mation,

S = −kB
∑
i

pi ln pi, (1.11)

where kB is the Boltzmann constant.

So, for an isolated system, the entropy reads

S = kB ln Ω. (1.12)

One can show that it is the maximum entropy for all probability distributions. So the

equipartition principle is the equivalent of the second principle of thermodynamics at the

microscopic level.
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1.3.2 Ensembles

Microcanonical ensemble

In the microcanonical ensemble the system is isolated and the energy E of a system is

set (often within a E ± δE interval) such as for a micro-state i Ei is defined within the

interval E − δE < Ei < E + δE. The equipartition principle (see §1.3.1) implies that the

entropy S takes the form

S = kB ln Ω(E), (1.13)

where Ω(E) is the number of micro-states that satisfy the constraint on E.

Canonical ensemble

In this ensemble the system can exchange energy with a larger system at temperature T .

The constraint is therefore that the mean energy (∑i piEi) is set. Maximizing entropy

yields the following form for the probability distribution:

pi ∝ exp−βEi . (1.14)

With the thermodynamic relation T = ∂E
∂S

, and the relation ∑i pi = 1, one can show that

pi =
exp(− Ei

kBT
)

Z
, (1.15)

where Z is defined as the partition function,

Z =
∑
i

exp
(
− Ei
kBT

)
. (1.16)

It follows that the free energy F can be expressed as a function of Z by

F = −kBT lnZ. (1.17)

Grand Canonical ensemble

When defined in the Grand Canonical ensemble, the system can exchange energy and

particles with a reservoir at a set temperature. Denoting Na
i the number of particles of

type a for a micro-state i, one can show that

pi =
exp

(
−Ei−

∑
a
Na
i µa

kBT

)
Ξ , (1.18)
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where µa is the chemical potential of the species a. The grand-canonical partition function

can be defined as

Ξ =
∑
i

exp
(
−Ei −

∑
aN

a
i µa

kBT

)
. (1.19)

The grand-canonical function J then follows

J = −kBT ln Ξ. (1.20)

Isobaric-Isothermal ensemble

The system can exchange energy and volume with a reservoir at a set temperature. De-

noting Vi the volume of a micro-state i, one can show that

pi =
exp

(
−Ei+PVi

kBT

)
Q

, (1.21)

where P is the pressure of the reservoir, and the isobaric-isothermal partition function is

Q =
∑
i

exp
(
−Ei + PVi

kBT

)
. (1.22)

The Gibbs energy G is then defined by the relation

G = −kBT lnQ. (1.23)

Ensemble averages and thermodynamic variable

Thermodynamic quantities can be computed from the ensemble function directly or from

ensemble averages. For example, in the canonical ensemble, for a quantity A of conjugate

B, we have

A = −∂F (B)
∂B

. (1.24)

If for a micro-state i we have Ai = ∂Ei
∂B

, then it is equal to the ensemble average

A =
∑
i exp [−βEi(B)Ai]∑
i exp [−βEi(B)] , (1.25)

where β = 1/kBT .

1.3.3 Dynamical quantities

The statistical average of a quantity A(t) is

〈A(t)〉 =
∑
i

piAi(t), (1.26)
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where Ai(t) is the value of A at time t for an initial micro-state i at t = 0.

Using the ergodic principle one can express this in terms of temporal averages at

different starting points:

〈A(t)〉 = lim
T→+∞

1
T

∫ T

0
A(t+ t′)dt′. (1.27)

1.3.4 Statistical thermodynamics of systems of classical parti-

cles

A system of general coordinates q is usually described by an Hamiltonian H function of q

and p, the latter being the associated momentum. From Eq. 1.16, and with assumptions

related to the classical limit, like kBT >> h2

mL2 , where h is the Plank constant, m a mass

(e.g. the mass of a particle) and L a dimension of the system (e.g. the length of the box

containing the system, the length of a molecule), one can show that the partition function

can be evaluated by the integral

Z =
∫
· · ·

∫ dnfpdnfq
Ihnf

exp
(
−H(p,q)

kBT

)
, (1.28)

where nf is the number of degrees of freedom of the system. I is a factor taking into

account the indiscernability of particles of a specie, reading

I =
ns∏
a=1

Na!, (1.29)

where ns is the number of species and Na the population of specie a.

When the system can be reduced to effectively point particles (e.g. spheres), the

Hamiltonian is often equal to the sum of a kinetic part and a potential energy part,

H(p,q) = K(p) + U(q), (1.30)

with

K(p) =
N∑
i=1

~p 2
i

2mi

, (1.31)

where mi is the mass of particle i. One can show that in this case the partition function

can be integrated in the momenta space, so that

Z =
ns∏
a=1

1
Na!Λ3Na

a

∫
· · ·

∫
dnfq exp

(
−U(q)
kBT

)
, (1.32)

where ns is the number of species, a denotes a particular specie, Na is the number of

particles of the specie a, and Λa is the De Broglie length defined as

Λa = h√
2πmakBT

. (1.33)
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1.4 Simulation techniques

A summary of the simulation techniques, namely Monte-Carlo (MC) and Molecular Dy-

namics (MD), used in this work to compute thermodynamic and structural quantities is

presented in this section. They are based on statistical mechanics. MD is a dynamic

simulation and calculated properties are time-averaged properties. MC is a stochastic

technique and works with ensemble average. It provides several advantages inherent to

this technique: i) the equilibrium is quickly reached, ii) it allows the use of a large num-

ber of ensembles and iii) it allows unphysical displacements of the particles. We end this

section with the specific simulation techniques used in this work with a special emphasis

on the coarse graining techniques.

1.4.1 Monte-Carlo Simulations

One would like to compute ensemble averages like Eq. 1.25. It is often not possible

analytically, and doing it naively requires the exploration of a huge configuration space.

As not all micro-states are equally probable, hopefully many portions of the space can

be neglected. A Monte-Carlo simulation generates a (pseudo-)random sequence of micro-

states with a probability pi for a micro-state i. Hence an ensemble average of a quantity

A can be computed as

〈A〉 =
∑
i

Ai, (1.34)

where the sum is on the sequence of micro-states.

It can also be viewed as a stochastic process, more precisely a Markov chain. A

Monte-Carlo move is done with the following procedure:

1. generate a new micro-state j from a micro-state i with a probability α(i→ j)

2. Accept or reject the move with a probability a(i→ j).

The transition probability is therefore Π(i→ j) = α(i→ j)a(i→ j). It must satisfy the

balance condition ∑
j 6=i

Π(j → i)pj =
∑
j 6=i

Π(i→ j)pi. (1.35)

An often used and more stringent constraint is the detailed balance, which reads

Π(j → i)pj = Π(i→ j)pi. (1.36)
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If the detailed balance is satisfied and if step 1 is symmetric (α(i → j) = α(j → i)), the

acceptance probability a(i→ j) follows the relation

a(j → i)pj = a(i→ j)pi. (1.37)

The very commonly used Metropolis rule defines the acceptance probability as [52]

a(i→ j) = min(1, pj
pi

). (1.38)

and respects detailed balance. It is particularly convenient for statistical ensembles be-

cause we can compute the ratio pj
pi

without knowing pi itself. For example in the canonical

ensemble, the Metropolis rule becomes

a(i→ j) = min (1, exp [−β(Ej − Ei)]) . (1.39)

Moves

Translation move For systems of particles the phase space of positions of N par-

ticles has to be explored. The simplest way to do that is to translate particles indi-

vidually. A particle at position (x, y, z) is selected at random and set to a position of

(x + ∆x, x + ∆y, x + ∆z), where ∆x, ∆y, and ∆z are three random numbers in the

interval [−∆r/2,+∆r/2]. ∆r is a defined translation amplitude. The new movement is

accepted or rejected with the Metropolis rule, see §1.4.1. ∆r can be adjusted so that the

average acceptance is equal to a goal value. In practice it is generally believed than a

value of less than 50 % yields optimum results (faster convergence)[52].

ji

j i

Figure 1.1: Swap move: two particles i and j picked at random swap their positions
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Swap move For systems composed of different types of particles, typically of concern

to this work, size and charge polydisperse particles, the swap move[53, 54] is found to be

a very efficient move to sample the phase space and to reach the equilibrium state faster.

Indeed, in Chapter 4 it allowed concentrated colloidal systems to explore configurations

unreachable in practice with only single particles displacements or MD simulations. It

consists in picking two particles at random and swapping their positions, see Figure 1.1.

The new configuration is accepted with the probability defined by the Metropolis rule,

that is,

aswap = min (1, exp (−β(U(~ri = ~rjo, ~rj = ~rio)− U(~ri = ~rio, ~rj = ~rjo)))) , (1.40)

where i and j are the particles to be swapped, ~rio and ~rjo are their respective positions

in the old configuration, and U is the potential energy defined above.

Volume moves To implement the isobaric-isothermal ensemble, or NPT , where in

addition to the number of particlesN and the temperature T , the pressure P is maintained

constant, one needs to allow the volume of the simulation box to fluctuate. This is done

by trying random contractions or expansions of the simulation box. Such a volume change

can be generated as follow,

Vnew = Vold + ∆V

~ri,new = ~ri,old ×
(
Vnew
Vold

)1/3
∀i = 1, .., N,

(1.41)

where Vold and Vnew are the old and new volume and ∆V is the volume difference gener-

ated randomly between −∆Vmax/2 and +∆Vmax/2. The species positions ri are rescaled

according to the new volume. The acceptance probability can be deduced from Eq. 1.38

and Eq. 1.21 and reads

aNPT = min
(

1,
(
Vnew
Vold

)N
exp (−β(Unew − Uold))

)
. (1.42)

Alternatively, one can prefer to change the logarithm of the volume, as in this case the

change in volume becomes proportional to the initial volume. In addition, the new volume

is always positive. The transformation becomes

ln Vnew = lnVold + ∆lnV, (1.43)
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where ∆lnV is a random number generated between −∆ lnVmax/2 and +∆ lnVmax/2.

The acceptance probability then reads

aNPT = min
(

1,
(
Vnew
Vold

)N+1
exp (−β(Unew − Uold))

)
. (1.44)

Particle insertion and deletion When simulating in the grand-canonical ensemble

(µV T ), the particles move in and out the simulation box according to their chemical

potential {µ}a=1,...,ns set by a connected reservoir. In practice this means that the numbers

of particles, {Na}a=1,...,ns , are allowed to fluctuate by trying random additions or deletions

in the simulation box. The acceptance probabilities for these moves can be deduced from

Eq. 1.38 and Eq. 1.18. For addition, the acceptance criteria for a particule a is

aµV T,add = min
(

1, V

(Na + 1)Λ3
a

exp (−β(Unew − Uold − µa))
)
, (1.45)

and for deletion it is

aµV T,del = min
(

1, NaΛ3
a

V
exp (−β(Unew − Uold + µa))

)
, (1.46)

where Λa is defined in Eq. 1.33. In charged systems, these moves must be handled with

care such as to maintain electroneutrality in the box. This is done by adding or deleting

several chemical species simultaneously whose total charge is zero. As an example, in a

system containing Na+ and Cl− ions, the insertion of a neutral NaCl salt pair has the

acceptance probability

aNaCl,add = min
(

1, V 2

(NNa + 1)Λ3
Na(NCl + 1)Λ3

Cl
exp (−β(Unew − Uold − µNaCl))

)
. (1.47)

1.4.2 Molecular Dynamics

The basics of Molecular Dynamics (MD) consists in integrating the equations of move-

ments of Newton,

(1.48)

~vi = d~ri
dt (1.49)

mi
d~vi
dt = ~Fi (1.50)

∀i = 1, . . . , N . ~Fi is the force acting on the particle i. For conservative systems, it is

equal to ∂U
∂~ri

, where U is the potential energy. A common way to solve these equations
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numerically is to discretize the trajectory into timesteps of duration ∆t. An algorithm to

compute velocities and positions is needed, for example the Velocity-Verlet algorithm

~ri(t+ ∆t) = ~ri(t) + ∆t~vi(t) + ∆t2
2mi

~Fi(t) (1.51)

~vi(t+ ∆t) = ~vi(t) + ∆t
2mi

(
~Fi(t) + ~Fi(t+ ∆t)

)
(1.52)

∀i = 1, . . . , N . This is for the microcanonical ensemble. For the canonical ensemble, one

has to introduce some sort of energy exchange with a thermostat at a given temperature T .

For example the velocity-rescaling thermostat[55], for which, as its name might indicate,

the velocity is rescaled periodically by a random factor in order to obtain a Boltzmann

distribution of velocities corresponding to the wanted temperature. In this work, we used

the well-optimized and well-tested Gromacs[56] software package.

1.4.3 Boundary Conditions and Long Range Interactions

Boundary conditions

Figure 1.2: Schematic 2D representation of periodic boundary conditions.
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Simulations of microscopic systems either by Monte Carlo or Molecular Dynamics

aim to extract and in the best case predict macroscopic observables and quantities of a

macroscopic sample. Typically in our work we compute thermodynamic properties. Yet,

the number of particles that can be handled with today’s best super-computers do not

exceed a few million, not to speak of the every-day computers. Clearly, this number is

still far from the thermodynamic limit. One thus relies on numerical artifices to mimic

the presence of an infinite bulk surrounding our N particle model system. In some special

cases, one can make use of hard or soft walls, like for example systems that can be reduced

to a cell model (see e.g. §1.5). More generally, it is achieved by employing periodic

boundary conditions. The simulation box is treated as a unit cell infinitely repeated

over space in a periodic lattice, see Figure 1.2. A particle thus now interact with all other

particles in the primary cell as well as all particles in all cell replicas. One should note that,

although very successful to suppress edge effects, the use of periodic boundary conditions

can still give rise to finite-size effects, in particular, spurious correlations induced by the

periodicity of the cell images.

Minimum image

When the range of interactions is smaller than the length of the simulation box the

minimum image convention is a convenient and efficient approximation to be used. In

this convention only the first images of the primary cell is accounted in the particle

interaction calculation. Typically, in the one component simulations in Chapter 2 and

Chapter 4 such a convention was used.

Ewald summation

In the case of long range interactions such as the electrostatic interactions, the first image

convention may not suffice and one may like to include all cell images. However, a

brute force calculation of the involved summations is shown to be poorly convergent.

The Ewald summation has been shown to circumvent this problem and is probably the

most commonly used boundary condition method. The basic principles is schematically

described in Figure 1.3. It rests on the idea that a system composed of point charges may

be considered as a sum of two terms that is a set of screened charged minus the smoothly

varying screening background. The screened charge clouds, with a Gaussian distribution,
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+=

True

Real

Reciprocal

Figure 1.3: Division of the charges for the Ewald summation. The charge density

(originally composed of point charges, left box) is divided into two charge densities. In

the upper box the point charges are screened by charge clouds, leading to a fast converging

sum in the real space. In the lower box, the compensating charge distribution, which yields

to a fast converging sum in the reciprocal space. By convention red charges are positive,

and green ones are negative.
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compensate the point charges, such that the generated electrostatic potential is now a

rapidly decaying function of the distance r and can thus be easily computed in the real

space. The second term is used to correct for the introduction of the screened charge cloud

to every particles. It turns out that the compensating charge distribution is a smooth

function but is also periodic and rapidly convergent when represented by Fourier series in

the reciprocal space. In short, the electrostatic potential energy can be written as a sum

of three terms: a sum in the real space, a sum in the reciprocal space and a constant term

(correction for self-interactions). One can show that the electrostatic potential energy U el

reads

U el = 1
2V

∑
k 6=0
|ρ(k)|4π

k2 exp
(
− k

2

4α

)
−
(
α

π

) N∑
i=1

q2
i + 1

2

N∑
i 6=j

qiqj erfc(
√
αrij)

rij
, (1.53)

where k is a wave vector, ρ(k) is the particle density in the reciprocal space, and α is

a adjustable parameter of the Gaussian function (that defines the screening cloud). The

coulomb-like potential in the real space sum is damped when α > 0, which allows to use

cutoff schemes like for short-range interactions. The computation can be improved by

more advanced techniques like Particle Mesh Ewald(PME) [52], where the computation

of the reciprocal space sum can be improved by approximating the charge distribution

with a mesh, enabling the use of Fast Fourier Transforms.

Fennell method

-Q

Figure 1.4: Illustration of the Fennell method to deal with the long range electrostatic

interactions. The method uses a truncated and shifted potential which takes a nil value

beyond a given cutoff radius, rc. A self-image charge Q is further employed to neutralize

each cutoff sphere. Q is placed on the cutoff sphere.
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An efficient alternative to the Ewald summation is the Fennell method[57] which is

particularly suitable for homogeneous systems such as a particle dispersion or a bulk

solution. The method is an extension of the work of Wolf et al[58]. Wolf et al observed

that the Coulomb interactions were rather short range in condensed phase systems and

that neutralization of the charge is crucial for potential stability. They thus devised

a pairwise and spherically truncated summation method that ensures charge neutrality

through placement on the cut-off sphere of a self-image charge, see Figure 1.4. The

Fennell method is not based on a shifted potential as the Wolf method but a shifted force.

Contrary to the shifted potential form which only ensures that the potential is smooth at

the cutoff radius, rc, this presents the advantage that both the potential and the forces

go to zero at rc. The Fennell electrostatic energy reads

UFennel =
∑
i 6=j

rij<rc

qiqj
4πε

(
1
rij

+ rij
r2
c

− 2
rc

)
. (1.54)

rc is generally set to half the box length for a better accuracy. This method may not

match the Ewald summation in terms of accuracy. However, it is much simpler. In §1.4.4,

a comparison of the inter-colloid force as obtained from using the Ewald summation and

the Fennell method for the long range electrostatic interactions is made.

Potential truncation

Let us now consider the case that we perform a simulation of a system with short range

interactions. One might think here of a LJ particle system but it can be extended to any

system where the interactions of the particle is dominated by its first neighbors. This

is the case in Chapters 2 and 4 where a colloidal dispersion is modeled with charged

hard spheres that interact only through a pair potential w∗(r). The simplest method to

truncate potentials is to ignore all the interaction beyond a given cutoff radius, rc. The

simulations are then performed with the pair potentials,

uij(r) =


w∗(r) when r ≤ rc

0 otherwise
(1.55)

The use of rc considerably reduces the computational time of the simulations. Al-

though the contribution of a single pair potential is very small, when r > rc, the number

of neglected pairs increases rapidly with r such as the total tail potential energy, Utail,
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becomes non negligible. An accurate potential energy and pressure can, however, be ob-

tained a posteriori with a tail correction term. The tail corrections assume a smooth and

mean density of the particles given by their radial distribution function, defined below in

Eq. 1.88. In the case of monodisperse suspension it reads[52] for Utail,

Utail = 1
2

∫ ∞
rc

dr4πr2ρg(r)w∗(r). (1.56)

and for the pressure correction term

Ptail = 1
2

∫ ∞
rc

dr4πr2ρ2g(r)r∂w
∗(r)
∂r

. (1.57)

The 1/2 term in front of Utail and Ptail is there to avoid double counting of particle

interactions. The extension of the correction terms involving a mixture of chemical species

(e.g. polydisperse systems) is straightforward.

Cell decomposition

r
cell

Figure 1.5: Decomposition of the box in cells of equal width. The gray area contains the

particles to look for when working out the energy of the marked particle.



24 1 General introduction

When inter-particle interactions can be truncated, see §1.4.3, and rc is smaller than a

quarter of the simulation box length L, an important speed up of the computation time

can be obtained with the use of the cell decomposition method[59]. Within this method,

the box is divided into cubic cells of length larger than or equal to the interaction cutoff,

see Fig 1.5. Each particle is affected to a cell and then only its interactions with the

particles belonging to the same cell and the first neighbor cells have to be computed. The

time scaling for the update of the cell list, which is O(N2) , can be made O(N) using a

double linked list. All in all, a linear scaling of the simulation time with the system size

can be obtained. This is illustrated in Figure 1.6 which compares the simulation time

per MC cycle (N translation attempts) versus N for a colloidal system typical of those

studied in Chapter 2 and Chapter 4.

100 1000 10000
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10000
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/c
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e 
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Figure 1.6: Duration of a MC simulation versus the number of particles N . Conditions:

monodisperse (R = 13.75 nm), pH = 9, I = 5 mM, φ = 0.1. Cutoff radius is 71.5 nm.

Implementations are: Cell Decomposition (black), Cutoff (Red), Minimum Image (Green),

1.4.4 Coarse-graining Interactions

In colloidal suspensions, coarse-graining consists in reducing the system to fewer compo-

nents by averaging out the degrees of freedom of the solvent and/or of the ions. Let (p,q)

be the (momenta, positions) of the species to be averaged out, nf the number of degrees
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of freedom for these species, and (P,Q) the (momenta, positions) of the species to be

kept. The coarse-grained model is described by an effective Hamiltonian Heff reading

Heff (P,Q) = −kBT ln
[∫
· · ·

∫ dnfpdnfq
Ihnf

exp
(
−H(P,Q,p,q)

kBT

)]
, (1.58)

where H is the original Hamiltonian of the system and I is defined in Eq. 1.29. Heff can

be approximated by effective pair potentials,

Heff ≈ K +
∑
i<j

w∗ij(rij), (1.59)

where K is the kinetic part, and w∗ij is the effective potential between particles i and j.

w∗ can be obtained from sampling the pair potential of mean force. For charged

colloid systems at finite particle volume fraction φ a convenient approach consists in

using a single colloid pair enclosed either in a cylindrical cell [60, 61] or in cubic box

with periodic boundary conditions (PBC) [62], such as the volume ratio of the colloid

pair to that of the cell (box) is equal to φ. However, due to boundary artifacts, colloid

images or hard cell walls, the range of φ is limited to the dilute or semi-dilute regime. In

Chapter 2 we propose and develop the idea that this limitation can be circumvented by

the combined use of an excess counterion concentration, to mimic a finite φ, in a large

enough simulation box with PBC and of a uniform charged background, to neutralize

the overall system. The potential of mean force was extracted from the calculation of

the inter colloid force (Ft) at fixed colloid positions D, followed by the integration of the

latter, w∗(D) = −
∫∞
D Ft(r)dr. Below the mean force calculation of a colloid pair with a

uniformed charged background is described.

When simulations in the full primitive model are affordable, reverse Monte Carlo

simulation methods can be employed to evaluate w∗. One of those, called the iterative

Boltzmann inverse (IBI), was used in Chapter 2 and the results compared to those ob-

tained with the charged background method. Following the force calculation, the IBI is

described in some details.

Forces between two particles

Let us consider the system pictured in Figure 1.7 which consists of two spherical and

charged colloids aligned on the x axis of a cubic box of length L with PBC filled with a salt

solution containing N I ions and Ne counterions in excess compensated by an homogeneous
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Midplane

Figure 1.7: Illustration of the calculation of the force over the midplane. Only interac-

tions between particles from different sides of the midplane are computed.

charged background (pink). The colloids and ions are further assumed to interact through

shifted and truncated Lennard-Jones (SLJ) potentials, see Eq. 1.4.

The mean force between the pair of colloids at a given background charge (or equiva-

lently volume fraction) can be evaluated at contact for fixed center-to-center separations

D. It can be expressed as,

Ft(D) =− ∂uel(D)
∂D

− ∂uSLJ(D)
∂D

−
〈

NI∑
i=1

∂uelic(r)
∂r

∣∣∣∣
r=ric

+
NI∑
i=1

∂uSLJic (r)
∂r

∣∣∣∣
r=ric

〉

−
〈

Ne∑
i=1

∂uelic(r)
∂r

∣∣∣∣
r=ric

+
Ne∑
i=1

∂uSLJic (r)
∂r

∣∣∣∣
r=ric

〉 (1.60)

where the two first terms are the direct Coulomb and LJ forces between the colloids.

The four last are the ensemble average of the electrostatic and LJ forces exerted on the

colloids by the small ions. It can be noted that the contact force exerted on the colloids

by the charged background is centro-symmetric and, thus, cancels out.

The mean force can also be computed across the mid-plane (x = 0) for a fixed center-

to-center separation D along the x-axis of the simulation box. By doing so, the total
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Figure 1.8: Background charge term of the inter-colloid force over the midplane,

F el
back(r, φ), as obtained at different center-to-center colloid separations for two colloids

placed in a cubic box with PBC filled with an excess of monovalent counterions such that

φ = 3.3%. The diameter of the colloids is 4 nm and their charge is −60e. The red line is

a fit to the computed values (black line with circles). See the text for more details.
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mean force can be divided in four terms as follow

Ft(D) = F el(D) + FLJ(D) + F id(D) + F el
back(D). (1.61)

The electrostatic, F el(D), and LJ, FLJ(D), terms are respectively calculated by summing

all the Coulomb and LJ forces between the species residing on different side of the mid-

plane. The third term, F id(r), is the ideal contribution which can be conveniently defined

as,

βF id(D) = [ρI(x = 0)− ρI(x = L/2)]L2, (1.62)

where ρI(x = 0) and ρI(x = L/2) are the ion densities at the midplane and at one

end of the simulation box. The fourth term, F el
back(D), stems from average electrostatic

force over the midplane of the charged background with the charged species and with

itself. We solved it numerically from the calculation of the contact force applied to the

colloids (insensitive to the background charge), whose computation is straightforward but

has poorer statistics compared to the midplane calculations. The difference between the

contact force and the sum of the other terms of the force over the midplane provides a

first estimate of F el
back. The latter is then collected as a function of colloid separation and

finally fitted by a straight line to give the final values. Figure 1.8 provides an example.

The electrostatic interactions were computed with the Fennell potential, introduced

above in §1.4.3. Calculations of the contact force, using the Particle Mesh Ewald (PME)

method implemented by Gromacs, were also made to check the accuracy of the Fennel

potential. The simulations were performed using the charge background method for a

system composed of charged spherical colloids of radius 2 nm and charge -60 e with

explicit monovalent counter-ions at a particle volume fraction of 6.7%. Figure 1.9 gives a

comparison of the inter-colloidal force computed with PME and the Fennell Hamiltonian.

It shows that within the statistical uncertainties the mean forces are virtually the same

for such systems.

Iterative Boltzmann inverse

Iterative Boltzmann inverse calculations[63, 64] (IBI) allows to compute an effective pair

potential (e.g. between colloids) with the radial distribution function (RDF) (see §1.6.1)

as input. Let us denote c the specie (e.g. colloids) we wish to compute the effective pair

potential w∗(r) and g(r) the RDF already calculated with the full primitive model (e.g.
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Figure 1.9: A comparison of the inter-colloidal force as obtained from the Fennell Hamil-

tonian (red crosses) and from Particle Mesh Ewald (black squares) using the background

charge method. The simulations were performed with two colloids placed in a cubic box

with PBC filled with an excess of monovalent counterions corresponding to φ = 6.7%.

The radius and charge of the colloids are set to 2 nm and -60 e, respectively.
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the primitive model with colloids and explicit ions). For a given pair potential w∗0(r)

one can work out the radial distribution function g0(r) in the one-component model with

only c. Likely g0(r) differs significantly from g(r) but a correction can be made as a first

approximation to form a new effective pair potential w∗1(r), reading

w∗1(r) = w∗0(r)− kBT ln g0(r)
g(r) (1.63)

This is related to the potential of mean force, equal to −kBT ln g(r), which is equal to

w∗(r) at infinite dilution. This suggests an iterative procedure, the iteration from w∗n+1(r)

w∗n(r) at step n reads

w∗n+1(r) = w∗n(r)− kBT ln gn(r)
g(r) . (1.64)

To be repeated until convergence. A natural choice for the first guess w∗0(r) is−kBT ln g(r).
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Figure 1.10: Comparison between the inter-colloidal effective pair potential obtained

from background charge simulations (thick lines) and interactive Boltzmann inverse sim-

ulations (thin lines with circles) for various particle volume fractions. The counterions

are monovalent. The IBI potentials are not displayed down to the hard–core diameter,

lacking good enough statistics for these small colloid separations.

Figure 1.10 compare the so obtained potentials with those computed from background

charge simulations for monovalent counterions. For all volume fractions and ion types (not

shown), the IBI potential is higher, showing that our method tends to overestimate the
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screening of the electrostatic repulsions but gives more reliable results as φ is increased,

i.e. the φ range for which it has been designed.

1.5 Mean-Fields Approaches

Alternative methods to the full primitive model simulations introduced in the previous

section to calculate the effective pair potential between the colloids can be based on solving

the cell model[65] and the Bjerrum model[66] at the mean field level of approximation. In

Chapter 3, the methods are generalized and applied to an aqueous dispersion of titratable

colloids with continuous size polydispersity. It should be stressed, however, that these

mean field approaches are not applicable to highly coupled systems, i.e. highly charged

particles and aqueous solutions with high salt concentration or multivalent counterions.

In this section we introduce briefly the Poisson-Boltzmann equation (PBE) as well as the

cell and the renormalized jellium model. The numerical method used to solve the PBE

for these two models is further described.

1.5.1 Poisson equation

In the primitive model, one can write the Poisson equation for the electrostatic field V(~r)

as

ε4V(~r) + ρe(~r) = 0, (1.65)

where 4 the Laplacian, ε is the dielectric permittivity of the solvent, and ρe(~r) is the

electrical charge density, that depends on the positions of the ions. The mean-field ap-

proximation applied here consists in replacing the electrostatic field that depends on the

instantaneous positions of the ions by its average value. A further approximation can be

made by neglecting the non-electrostatic interactions between ions, that is approximating

the system to an ideal gas plus an external potential. This leads to the Poisson-Boltzmann

equation.

1.5.2 Poisson-Boltzmann equation

The Poisson-Boltzmann Equation (PBE) reads[67]

ε4V(~r) +
nI∑
α=1

qαcα(~r) + ρe(~r) = 0, (1.66)
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where nI is the number of ion species, qα is the electrical charge of the ion α, cα(~r) =

cs,α exp
(
−qαV(~r)
kBT

)
is the concentration of the ion α, cs,α being the concentration of the salt

in the reservoir. ρe is a charge density (specified later according to the model), kB is the

Boltzmann constant, and T is the temperature. For convenience, we will use a reduced

form of this equation with less explicit parameters, by defining the dimensionless potential

ψ = eV
kBT

, where e is the elementary charge, zα = qα/e is the charge number for each ion

α, ξ = ρe/e, and λB = e2

4πkBTε is the Bjerrum length . One can show that

4 ψ(~r) + 4πλB
[
nI∑
α=1

zαcs,α exp (−zαψ(~r)) + ξ(~r)
]

= 0. (1.67)

1.5.3 Cell Model

In a colloidal dispersion, the closeness of colloids tend to push ions towards them. In a

monodisperse colloidal crystal, the periodicity implies that the volume can be divided into

identical electroneutral Wigner-Seitz cells[65], and, as an approximation, the thermody-

namics of the dispersion can be reduced to a cell. In this Cell Model(CM), one colloid in

enclosed in a cell. Typically one wants to use a spherical cell for a spherical colloid. In

this case, Eq. 1.67 can be simplified because of the radial symmetry, and ξ(~r) = 0. The

PBE becomes

∂2ψ(r)
∂r2 + 2

r

∂ψ(r)
∂r

+ 4πλB
[
nI∑
α=1

zαcs,α exp (−zαψ(r))
]

= 0 (1.68)

For a colloid of radius Rp and surface charge density σ and a cell or radius Rp, the

boundary conditions are

∂ψ

∂r

∣∣∣∣
r=Rp

= −4πλBσ (1.69)

∂ψ

∂r

∣∣∣∣
r=Rp

= 0 (1.70)

The volume fraction is

Φ =
(
Rp

Rc

)3
(1.71)

The osmotic pressure of the dispersion is obtained by noting that the ionic pressure at

the edge of the cell represents the ionic pressure in the dispersion by continuity. Hence

the osmotic pressure in this model is

Π = kBTρp + kBT
nI∑
α=1

cs,α (exp (−zαψ(Rc))− 1) , (1.72)

where ρp is the colloidal concentration.
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1.5.4 Renormalized Jellium Model

In the Renormalized Jellium Model(RJM)[66], the colloids surrounding one colloid are

represented by a background charge, that can be uniform and constant if the radial

distribution function g(r) = 1. For a spherical colloid the PBE becomes

∂2ψ(r)
∂r2 + 2

r

∂ψ(r)
∂r

+ 4πλB
[
nI∑
α=1

zαcs,α exp (−zαψ(r)) + ξback

]
= 0, (1.73)

where ξback is the reduced density of the background charge. For a colloid of radius R and

surface charge density σ and a cell or radius Rp, the boundary conditions are

∂ψ

∂r

∣∣∣∣
r=R

= −4πλBσ (1.74)

∂ψ

∂r

∣∣∣∣
r→∞

= 0 (1.75)

As a first try, one can set the background charge to Zpρp, where Zp is the charge of a

colloid. However, as colloids can be seen as surrounded by a cloud of counter-ions, a

better approach would be to set ρback to Z∗pρp, where Z∗p is the renormalized charge. The

latter is defined by the asymptotic expression of ψ(r) at infinity , ψa(r), which takes the

form

ψa(r) = ψD + λB
Z∗p

1 + κ∗Rp

exp(−κ∗r)
r

+ . . . , (1.76)

where κ∗ is the renormalized screening length and ψD is so that ξback = ∑nI
α zαcs,α exp(−zαψD).

Z∗p and κ∗ can be computed by fitting the tail of ψ(r) if one has solved Eq. 1.73 for a

given ξback. One has therefore to iterate values of ξback until Z∗p(ξback) = Zpρp/ξback. The

osmotic pressure is then given by

Π = kBTρp + kBT
nI∑
α=1

cs,α [exp (−zαψD)− 1] . (1.77)

1.5.5 Numerical resolution of the Poisson–Boltzmann Equation

Here we describe how the PBE in the CM and the RJM is solved. For a spherical particle

of radius R with a surface potential ψ0 placed in a spherical cell of radius Rp the PBE

and boundary conditions are

∂2ψ
∂r2 + 2

r
∂ψ
∂r

+ 4πλB [∑nI
α=1 zαcs,α exp(−zαψ(r)) + ξ(r)] = 0

ψ(R) = ψ0

∂ψ
∂r

∣∣∣
r=Rp

= 0.

(1.78)
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Note that for the RJM, one must choose a cell radius large enough such as ψ(r) ≈ ψD at

the edge of the cell. This system of equations is numerically solved using an “in house”

code based on Newton Gauss-Seidel iterations[68]. In brief, Eq. 1.78 is discretized into

N + 2 intervals of length h:

Lk(ψ) = 0 ∀k = 1, . . . , N , (1.79)

with ψ the vector (ψ0ψ1 . . . ψN+1) and

Lk(ψ) = ψk+1 + ψk−1 − 2ψk
h2 + ψk+1 − ψk−1

hrk
+ 4πλB

[
nI∑
α=1

zαcs,α exp(−zαψk) + ξ(rk)
]
,

(1.80)

for all k = 1, . . . , N . The boundary condition at the edge of the cell (rN+1 = Rp) is

ψN+1 = ψN (1.81)

The system of algebraic nonlinear equations defined by Eq. 1.79 is then solved iteratively.

A Newton step p+ 1 updates ψ at step p, ψ(p), to
ψ

(p+1)
k = ψ

(p)
k −

Fk(ψ(p))
∂Lk(ψ)
∂ψk

∣∣∣∣
ψ=ψ(p)

∀k = 1, . . . , N

ψ
(p+1)
N+1 = ψ

(p+1)
N ,

(1.82)

with
∂Lk(ψ)
∂ψk

= − 2
h2 − 4πλB

nI∑
α=1

z2
αcs,α exp(−zαψk). (1.83)

See Ref [68], Eq. 19.6.43. This is repeated until the condition

N∑
k=1

Lk(ψ)2 <= Nδ2 (1.84)

is met, where δ is a given tolerance. The step in Eq. 1.82 can be improved by replacing

ψ
(p)
k−1 by ψ(p+1)

k−1 , as far as the latter is already calculated for the previous index k− 1. The

term Lk(ψ(p)) in Eq 1.82 becomes

Lk(ψ(p)) = ψ
(p)
k+1 + ψ

(p+1)
k−1 − 2ψ(p)

k

h2 +ψ
(p)
k+1 − ψ

(p+1)
k−1

hrk
+4πλB

[
nI∑
α=1

zαcs,α exp(−zαψ(p)
k ) + ξ(rk)

]
.

(1.85)

The number of steps needed to reach convergence are significantly lower for this scheme

than for the previous one (Eq. 1.85). However, the previous algorithm is in theory more

amenable to a vectorized or parallelized implementation.
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1.6 Structure Analysis

The purpose of this section is to highlight some of the simulation techniques used to

analyse the structure of the simulated colloidal dispersions. They were mostly employed

in Chapter 4.

1.6.1 Radial distribution function

The two-point density function ρab(~r, ~r′) is the number per unit of volumes square of

particles pairs of types a and b at positions ~r and ~r′. It reads

ρab(~r, ~r′) =
〈∑
i∈A
l∈B
j 6=j

δ(~r − ~ri)δ(~r − ~rj)
〉
, (1.86)

where A and B are the sets of particles of respectively types a and b, and δ is the Dirac

distribution. When the system is homogeneous and isotropic this function only depends

on the separation r = ||~r − ~r′||. When the particles do not interact, or are decorrelated

(typically when r →∞), we have

ρab = ρa(ρb − δab/V ), (1.87)

where ρa (resp. ρb) is the volume density of particles of type a (resp. b), V is the volume

and δab = 1 if a = b, 0 otherwise. The radial distribution function is defined by

gab(r) = ρab(r)
ρa(ρb − δab/V ) . (1.88)

It is computed numerically by discretizing the function in interval of length ∆r, as

gab(r) = 2V
Na(Nb − δab)

〈
nab(r)

4πr2∆r

〉
, (1.89)

where nab(r) if the number of particles pairs of respective type a and b separated by a

distance between r − ∆r/2 and r + ∆r/2. Figure 1.11 shows a representation of this

computation.

1.6.2 Structure factor

SAXS (Small Angles X-ray Scattering) consists in illuminating a sample with X-rays, and

in measuring the corresponding scattered intensity as a function of the diffusion angle θ.

The latter is linked to scattered wave vector, of norm q, by the relation

q = 4π
λ

sin θ2 (1.90)
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Figure 1.11: Representation of the calculation of the radial distribution function. Particles

of type b between the sphere of radii r −∆r/2 and r + ∆r/2 are counted.
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For a monodisperse colloidal dispersion, the scattered intensity I(q) (subtracted of the

background intensity of the solvent) is directly proportional to the structure factor S(q),

I(q) ∝ |F(q)|2S(q), (1.91)

where P (q) = |F(q)|2 is the form factor of the particles. For spherical particles of radius

R, F can be expressed as

F(q) = 3sin(qR)− qR cos(qR)
(qR)3 . (1.92)

S(q), on the other hand, represents the mean spatial organization of the particles in

the dispersion. It is nothing else than a function in the reciprocal space of the pair radial

distribution function g(r),

S(q) = 1 + ρ
∫

4πr2 sin qr
qr

[g(r)− 1] dr. (1.93)

Typically, when q = 2π/4R, the oscillations of g(r) are in line with those of sin(qr).

It yields a peak in the S(q), generally the main peak. The intensity of this peak is a

measure of the local order between particles, its width is inversely related to the range

of correlations. In the limit of an ideal dispersion, typically at infinite dilution where

the particles does not interact, S(q) = 1 and the intensity is only a function of the form

factor,

I id(q) ∝ F(q)2. (1.94)

From a practical point of view, if the latter is known, the structure factor of a dispersion

at finite concentration is obtained by

S(q) = I(q)
I id(q) . (1.95)

For a polydisperse colloidal dispersion, from Eq.(1.95)) we only get an effective struc-

ture factor. One can show that it is equal to

Seff (q) =

∑
a,b
Fa(q)F∗b (q)vavb

√
ρaρbSab∑

a
Fa(q)F∗a (q)v2

aρa
, (1.96)

where a (resp. b) indexes the family of particles of radius Ra (resp. Rb), va is the volume

and ρa the volume density of the family a. F∗a (q) is the complex conjugate of Fa(q),

equal to F(q) (see Eq. 1.92) with R = Ra. The Sab are related to the radial distribution

function gab by

Sab(q) = δab +√ρaρb
∫

4πr2 sin(qr)
qr

[gab(r)− 1] dr, (1.97)
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with δab = 1 if a = b, otherwise δab = 0. In our simulations, the effective structure factors

are calculated from the radial distribution functions with Equations 1.96 and 1.97.

1.6.3 Local Bond-Order Parameters

In crystals, first neighbors are arranged in a manner specific to the structure, local bond-

order parameter are functions that depends on the relative orientations between a particle

and its neighbors and are able sort out particles according to the phase they belong to.

For a given natural number l, the complex local bond-order parameters qlm(i), with m an

integer in the range [−l,+l], the rotationally invariant local bond-order parameter ql(i),

and the correlation function of the local bond-order parameters cl(i) are defined by[69, 70]

qlm(i) = 1
Nb(i)

Nb(i)∑
j=1

Ylm(uij) (1.98)

ql(i) =

√√√√ 4π
2l + 1

l∑
m=−l

qlm(i)q∗lm(i) (1.99)

cl(i, j) =
l∑

m=−l
qlm(i)q∗lm(j), (1.100)

where i (resp j) denotes the number of the particle i (resp j), Nb(i) is the number of

neighbors around the particle i. The radius to find neighbors can be found by a rule of

thumb that sets it at 1.5 3
√
V/N , with N the total number of particles, or by using the first

minimum of the radial distribution function after the first peak. One should note that in

practice for a body-centered cubic lattice it includes the first and second neighbors.

We also used the neighbor-averaged order parameters,

q̄lm(i) = 1
Nb(i) + 1

Nb(i)∑
j=1

qlm(j)
 (1.101)

q̄l(i) =

√√√√ 4π
2l + 1

l∑
m=−l

q̄lm(i)q̄∗lm(i) (1.102)

(1.103)

more specifically q̄6 and q̄4.

Figures 1.12(a) and 1.12(b) the (q6, q4) (resp. (q̄6, q̄4)) maps obtained for CS particles

in various crystal phases and in a fluid phase. These maps are used to define the range of

q6 and q4 (resp. (q̄6 and q̄4)) values for which a particle can be considered to belong to a

given phase. Only the neighbor-averaged version of the order parameters allowed a clear

distinction of the phases. It was thus used in this work.
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(a) (b)

Figure 1.12: Bond order parameter maps of CS particles in various crystalline phases

and in the liquid phase. (a) q6q4 map (b) q̄6q̄4 map.
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Chapter 2

Effective pair potential between

charged nanoparticles at high

volume fractions

Simulations of charged colloidal dispersions are technically challenging. One possible

workaround consists in reducing the system to the colloids only, whose interactions are

described through an effective pair potential, w∗. Still, the determination of w∗ is difficult

mainly because it depends on the colloidal density, φ. Here we propose to calculate

w∗ from simulations of a pair of colloids placed in a cubic box with periodic boundary

conditions. The variation in φ is mimicked by an appropriate change in the concentration

of counterions neutralized by an homogeneous background charge. The method is tested

at the level of the primitive model. A good description of the structure of the colloidal

dispersion is obtained in the low and high coupling regimes, even at high φ (≈ 30%).

Furthermore, the method can easily be used in popular molecular simulation program

packages and extended to non-spherical objects.

2.1 Introduction

Colloidal interactions play a key role in the understanding and control of structural and

mechanical properties of colloidal materials[71, 72], as well as in the control of the stability,

kinetics of aggregation and phase behavior of colloidal dispersions[73, 74]. They are

of fundamental importance for numerous systems ranging from inorganic nanomaterials
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(e.g. cement, mesocrystals) to polymers and proteins. Accurate descriptions of colloidal

interactions can be used to quantitatively compute these properties or to design advanced

materials in silico. Model hard core systems are a good example and have motivated a

large number of theoretical and experimental works. In particular, computer simulations

of these model systems were shown to quantify with good precision and to rationalize

most of their properties. These include the glass transition, the phase diagram and the

rate of crystal nucleation of hard spheres[75, 76, 18, 77] or the phase transition of hard

discoids.[78, 79, 80]

Charged colloidal systems in the thermodynamic limit of infinite dilution, i.e., when

interparticle distances well exceed the range of interactions, is another good example,

although much more complicated. In this limiting case the Derjaguin-Landau-Verwey-

Overbeek (DLVO) theory[5, 6], the cornerstone of colloidal science, describes accurately

pair colloidal interactions, provided that the electrostatic coupling is not high and the

interparticle distance not too small. The theory has successfully been applied to many

systems, see, e.g., the recent work of Sinha et al.[74] At higher electrostatic coupling, ion-

ion correlations need to be accounted for and this is well captured by modern computer

simulations and theory[81, 82, 83].

When it comes to the concentrated regime, however, the picture is far less clear[84].

From the experimental point of view this is explained by the difficulty to characterize

the interactions in concentrated colloidal dispersions. This is well exemplified by a series

of experimental papers linked to controversial conclusions,[85, 86] suggesting long range

attraction between like-charged colloids in salt free conditions, in contradiction with the

expected DLVO like repulsion. It has since been shown that such «anomalous »long range

attraction, measured by video microscopy, was the result of disregarding known limitations

of optical microscopes[87, 88]. From the perspective of theories and simulations, the main

reasons lie in the importance of many-body interactions, as well as in the large asymmetry

in size, mass and time scale between the colloidal particles and solvent/solute molecules.

Several theoretical and simulation approaches have been proposed to tackle this chal-

lenging problem [89, 90, 65, 66, 62, 91, 60, 92, 93], among which one of the most promising

ideas, first introduced by Beresford-Smith[90] and by Alexander[65], consists in reducing

the colloidal system to a one component model (OCM), where the colloids and only the

colloids interact through an effective pair potential w∗(r). In other words, this amounts



2.1 Introduction 43

to implicitly account for the many-body interactions through an effective pair potential.

The consequence is a density dependence of w∗(r)[89] which, thus, needs to be determined

for each colloidal density of interest.

In the seminal work of Alexander[65], it was shown that accurate w∗(r) at particle

volume fraction φ can be calculated using a Wigner-Seitz cell model, of radius Rc, in

which a single spherical colloid is placed, of radius R, such that φ = (R/Rc)3. The model

can be solved using the Poisson-Boltzmann equation or Monte Carlo simulations. Also, a

one colloid renormalized jellium model was introduced by Trizac et al.[66], thought to be

more appropriate in the dilute regime. However, all these methods are restricted to low

electrostatic couplings (where ion-ion correlations are negligible) and to spherical colloids.

Furthermore, they are not appropriate to deal with the short range interactions at the

molecular level.

In order to avoid these restrictions, it was more recently proposed to use two colloids,

instead of one, in a closed cylindrical cell or in a cubic box with periodic conditions[60, 62],

and to determine w∗(r) from sampling the pair potential of mean force supplemented

with a Yukawa force at long range. The method was tested by comparing the radial

distribution functions of the colloids, gc(r), obtained from the OCM simulations using

the precalculated w∗(r) and from full primitive model (FPM) simulations of many-colloid

systems with explicit monovalent and divalent counterions. The method was shown to

give accurate density-dependent w∗(r) for isotropic and anisotropic colloids even when ion-

ion correlations are important[60, 61]. It was further successfully used at the molecular

level[94]. However, due to boundary artifacts, colloid images or hard cell walls, the range

of φ is limited to the dilute or semi-dilute regime.

In this chapter, we develop the idea that these artifacts can be eliminated by the

combined use of an excess counterion concentration, to mimic a finite colloid density, in

a large enough simulation cell, and of a uniform charged background, to neutralize the

overall system. It presents some analogies with the jellium approximation[66], but, as it

will be shown, is well appropriate for concentrated as well as for highly coupled systems.

We explain how this idea can be implemented in a Monte Carlo (MC) or Molecular

Dynamics (MD) simulation and give a simple recipe on how to relate the excess counterion

concentration (background charge density) with that of the colloids. We further show, by

comparing the gc(r) obtained from the OCM and FPM simulations, that this approach
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Figure 2.1: From the FPM simulations of a colloidal dispersion described at the level

of the primitive model (a), two colloids are "extracted" and placed in a bath composed

of counterions and of a homogeneous background charge (b), average forces between the

colloids are then calculated to produce the PMF used in the OCM simulations (c).

gives good results at low and high electrostatic coupling, with virtually no limitations in

φ.

2.2 Model and Simulations

For the sake of simplicity we chose the same model and reference systems as in [60], see also

Fig. 2.1. In brief, we restricted ourselves to the primitive model, where all the colloids

and micro-ions are treated explicitly but where the solvent is described as a dielectric

continuum with εr = 78.4. The reference systems are salt free colloidal dispersions at

various φ composed of monodisperse spherical particles of diameter σC = 40Å bearing a

charge Qc = −60e compensated either with monovalent, QI = 1e or divalent, QI = 2e,

counterions of diameter σI = 4Å. For efficiency reasons, the usual hard core interaction of

the primitive model was here replaced by a truncated and shifted Lennard-Jones potential,

uSLJij (r) =


εij

{
4
[(

σ∗
ij

r

)12
−
(
σ∗
ij

r

)6
]

+ 1
}

if r ≤ σij

0 if r > σij

(2.1)

where σ∗ij = 1
21/6σij, σij = 1

2(σi+σj) and εij = 100kBT . φ was varied from 0.84% to 26.8%,

see Table 2.1 , and the temperature was maintained constant at T = 298 K. The FPM

systems were simulated with MD (GROMACS version 4.5.4[95]). On the other hand, the

OCM simulations and calculations of w∗(r) were performed with an in–house MC software

in the NVT ensemble.

w∗(r) between two colloids was calculated in a cubic box with periodic boundary
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φ L (nm) ρback (105e.nm−3) Q∗c λ∗D (nm)

0.84% 40 [40] 0.3031 [0.1250] 18.66 [6.129] 4.759 [5.839]

1.7% 40 [40] 0.5563 [0.2188] 18.60 [5.493] 3.647 [4.669]

3.3% 40 [40] 1.000 [0.3875] 19.46 [5.121] 2.647 [3.150]

6.7% 40 [40] 1.956 [0.6813] 19.30 [3.036] 2.052 [4.248]

13.4% 33 [40] 4.050 [1.263] 16.26 [-] 1.784 [-]

26.8% 33 [40] 10.20 [2.5312] 31.25 [-] 0.7809 [-]

Table 2.1: Parameters of the background charge simulationsa

aThe columns give in the case of monovalent (unbracketed values) and of divalent

(bracketed [values]) counterions (1) the colloidal volume fraction, (2) the box length, (3)

the background charge density, (4) the fitted Yukawa effective colloidal charge and (5)

the fitted Yukawa effective Debye length, see text for more details.

conditions, filled with an excess of counterions and a neutralizing background charge, c.f.

Fig. 2.1. The length of the box, L, was chosen large enough such that the interactions of

the colloids with their images are negligible. The Ewald summation is the most common

way to introduce a background charge. For non-neutral systems, the Ewald algorithm

implicitly introduces a uniform background charge distribution that effectively neutralizes

the simulation box[96, 97]. Alternatively, an analytical expression for the field associated

with the background charge can be obtained for a closed spherical cell (Wigner-Seitz

cell model) and for a cubic box with the minimum image approximation [98]. Here, for

efficiency and simplicity reasons, we made use of the Fennell Hamiltonian [57], which

corrects for long-range electrostatic interactions and implicitly introduces a homogeneous

background charge,

βHcoul =
∑
i 6=j

rij<rcut

λBqiqj

(
1
rij

+ rij
rcut
− 2
rcut

)
(2.2)

where rij the distance between the charged species i and j, β = 1
kBT

with kB the Boltzmann

constant, qi = Qi/e and λB is the Bjerrum length. rcut is a cutoff radius above which

the interactions are not calculated. rcut was set to half the box length, as prescribed by

Fennell.

At this point, a closure relation which relates the excess counter-ion density (back-

ground charge density) to the colloid density (φ) is missing. A naive solution consists
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Figure 2.2: Representation of a simulation intended to determine the background charge at

a given φ. The transparent sphere represents a virtual volume, Va whose size is adjusted

to the desired particle volume fraction, φ. The value of background charge density is

obtained when Va is on average charge neutral.
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in equating the background charge density to the mean charge density of the colloids.

However, this would only work at low electrostatic coupling[99, 66] as a result of ion

condensation. An alternative is to use the closure proposed by Trizac et al. for the

renormalized jellium model[66], which is conceptually similar to the present approach.

Although appealing, the obtained results (not shown) were not optimal. Instead, we use

a simple numerical recipe based on an NVT MC simulation of a single colloid in a cubic

box with periodic boundary conditions. The recipe, see Fig.2.2, consists in finding for

an adequate volume, Va, around the colloidal particle, the background charge density for

which the average total charge brought by the small ions exactly compensates that of the

colloid, 〈
NI∑
i

rI∈Va

Qi

〉
= Qc. (2.3)

Va is chosen such as to match the desired particle volume fraction and its geometry to fit

that of the colloidal particle, here a sphere. Furthermore, the volume of the one-colloid

simulation box was taken as half of the two-colloid simulations, since the calculated value

for the background charge density, ρback, depends on the actual colloid density. We used

L = 31.748 nm for one-colloid simulations and L = 40 nm for two-colloid simulations for

most of the cases studied. The used L values and calculated ρback are listed in Table 2.1.

As expected, the background charge density increases with φ and is weaker in presence of

divalent counterions because of an enhanced screening effect.

The mean force between the colloids was calculated across the midplane (x =0) for

fixed colloid separation r along the x-axis, see Fig.2.1. The total mean force reads,

F (r, φ) = F el(r, φ) + FLJ(r, φ) + F id(r, φ) + F el
back(r, φ). (2.4)

The electrostatic term, F el, and Lennard Jones term, FLJ , are calculated by summing up

all Coulomb and LJ forces over the midplane. The third term is the ideal contribution,

which has a simple relation of the ion densities, ρI , at the midplane and at the box

edges, F id(r, φ) = kBT [ρI(x = 0)− ρI(x = ±L/2))]L2. The last term accounts for the

electrostatic interactions of the background charge with the charged species and with itself.

The latter was numerically solved, see §1.4.4 for more details. Following the previous work

of Thuresson et al.[60], the so obtained calculated forces were then extrapolated to infinity

by fitting a Yukawa force, βFY (r) = λB

(
Q∗
c

1+σC/2λ∗
D

)2
exp

(
−r
λ∗
D

)
/r (1/r + 1/λ∗d) , where Q∗c

and λ∗D are the effective colloid charge and Debye length, respectively. The fitted values
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Figure 2.3: Pair potential of mean force between colloids at various volume fractions from

background charge simulations, with monovalent (left) and divalent (left) counterions.

for those two parameters are also listed in Table 2.1. The pair potential of mean force,

w∗(r, φ), is then calculated from the integration of F (r, φ), w∗(r, φ) = −
∫ r
∞F (r′, φ) dr′.

2.3 Results

Fig. 2.3 shows the calculated w∗(r, φ) at various φ in presence either of monovalent or

divalent ions. In agreement with our previous work[60], a purely repulsive w∗(r, φ) is

found in the case of monovalent counterions while an attracto-repulsive potential is seen

in the case of divalent counterions. The attraction, of purely electrostatic origin, is the

consequence of the ion-ion correlations, see e.g.[81, 82, 83]. In both cases, w∗(r, φ) is found

to decrease as φ is increased. That is, a reduced repulsion, in presence of monovalent ions

and a drop in the repulsion barrier, in presence of divalent ions, concomitantly with a

drop in λ∗D, see Table 2.1. This is best explained by a larger ion concentration (#ρback)

which, in turn, leads to greater charge screening. Similarly, the correlation attraction is

also found to strengthen with φ (#ρback).

In Fig. 2.4 we compare gc(r) obtained from MD simulations of colloidal dispersions

described at the level of the primitive model with predictions from OCM simulations,

performed with MC, in the case of both mono and divalent counterions. For the OCM

simulations, we use the effective pair potentials calculated above (Fig. 2.3). The general

trend is very well reproduced for the entire range of φ studied. In particular, the liquid

like oscillations in presence of monovalent counterions and the aggregate formation in

the case of divalent counterions, characterized by a growing peak at r ≈ σC + σI and
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Figure 2.4: Comparison of the radial distribution functions of the colloids obtained in

OCM simulations (thick lines) with those obtained in FPM simulations (lines with circles)

in presence of monovalent (left) and divalent counterions (right).

the simultaneous appearance of a shoulder at r ≈ 2σC with increasing φ, are very well

described. The quantitative agreement between the FPM and the OCM is good and

tends to becomes better with increasing φ. The OCM with the calculated w∗(r, φ) tends

to underestimate the height of the first peak, in the case of monovalent counterions.

As we will show below, this small discrepancy can be explained by an overestimated

background charge density, which in turn leads to a slightly too strong screening of the

calculated electrostatic repulsions. Although less clear in the divalent counterion case,

the observed difference in gc(r) obtained from the FPM and OCM simulations has the

same origin. This is confirmed when one compares the effective pair potential obtained

from the proposed method and from interactive Boltzmann inverse calculations[63, 64] of

the FPM simulations, see §1.4.4.

In any case, to our knowledge, our method provides the best results, in a large range

of φ, for both low and high electrostatic coupling. This is obvious at high electrostatic

coupling, particularly in the concentrated regime. In the case of monovalent counterions,

we also tested Alexander prescriptions further developed by Trizac et al. [100], which

consist in extracting Q∗c and λ∗D from the cell model. We used MC simulations instead of

the Poisson-Boltzmann equation, but the idea remains the same. The resulting gc(r) are

plotted on Fig. 2.5. Although the agreement with FPM simulations is good at φ =0.84%, it

rapidly degrades when concentrating the dispersion, contrary to our approach. In general,

for salt free systems, the effective pair potential obtained with Alexander prescriptions
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Figure 2.5: Comparison of the radial distribution functions of the colloids with monovalent

counterions produced following Alexander’s prescriptions (thick lines) and with the FPM

(lines with circles).

largely overestimates the electrostatic repulsions.

Finally, we have seen that our simulation method, combined with the proposed nu-

merical closure which relates φ to ρback, although more than satisfactory, does not give a

perfect description of the colloidal dispersion structure. We can thus ask ourselves if this

is the result of the developed approximation method to account for many body interac-

tions, i.e., the use of ρback, or of the calculated ρback values. As an attempt to answer this

question, we provide in Fig. 2.6 a comparison of gc(r) obtained with FPM simulations

with that from OCM simulations, using ρback as a free parameter. The gc(r) are those

of a salt free system at φ = 6.7% with monovalent counterions. As can be seen, with

ρback = 1.219 10−5 e.nm−3 a perfect agreement is obtained, which gives a strong sup-

port to the second hypothesis and, consequently, to our simulation method to calculate

w∗(r, φ).

2.4 Conclusion

To conclude, we developed a simulation method based on an homogeneous background

charge density to estimate the density dependent effective pair potential between charged
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Figure 2.6: Radial distribution function of the colloids at 6.7% volume fraction as obtained

from the FPM (circles) and the fitted background charge model (thick line).

colloids. Combined with a simple prescription to relate ρback to φ, it allows one to predict

with a good accuracy the structure of colloidal dispersions in a large range of conditions

at much lower cost than brute force simulations. The proposed method is shown to work

in the diluted and concentrated regimes as well as at low and high electrostatic coupling.

What is more, it can be easily used in popular MD packages (see §1.4.4 for an example)

and is a priori applicable to molecular simulations as well as to any colloidal geometry

and shape. Finally, we show that our prescription to relate ρback to φ can be improved, as

preliminary simulation results strongly suggest that an optimum w∗(r, φ)=f(ρback) exists.

In any case, our approach should provide an easy route in assisting the efforts in the

design of new nanomaterials.
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Chapter 3

Jellium and Cell Model for

Titratable Colloids with Continuous

Size Distribution

A good understanding and determination of colloidal interactions is paramount to compre-

hend and model the thermodynamic and structural properties of colloidal suspensions. In

concentrated aqueous suspensions of colloids with a titratable surface charge, this deter-

mination is, however, complicated by the density dependence of the effective pair potential

due to both the many-body interactions and the charge regulation of the colloids. In ad-

dition, colloids generally present a size distribution which results in a virtually infinite

combination of colloid pairs. In this chapter we develop two methods and describe the

corresponding algorithms to solve this problem for arbitrary size distributions. An imple-

mentation in Nim is also provided. The methods, inspired by the seminal work of Torres

et al.[101], are based on a generalization of the cell and renormalized jellium models to

polydisperse suspensions of spherical colloids with a charge regulating boundary condi-

tion. The latter is described by the one-pK-Stern model. The predictions of the models

are confronted to the equations of state of various commercially available silica disper-

sions. The renormalized Yukawa parameters (effective charges and screening lengths) are

also calculated. The importance of size and charge polydispersity as well as the validity

of these two models are discussed in light of the results.



54 3 Jellium and Cell Model

3.1 Introduction

Size polydispersity, rather than being an exception, is a general rule in the realm of

colloidal systems. It has been shown to influence the micro structure of suspensions [102],

to considerably enrich the number of crystal phases observed [103, 104, 8, 33], to affect

nucleation[105, 106, 50], to induce the fractionation of particles during crystallization[107,

77, 47, 108, 8] and to allow particular behavior such as colloidal Brazil nut effect [109,

110], colloidal stratification [111, 112] and fluid-fluid demixing[113, 114, 115]. Moreover,

polydispersity has been shown to be an essential feature in the formation of colloidal

glasses[18, 116] and has allowed substantial achievements in the understanding of this

state, see e.g. Refs [53, 117, 118, 119].

Despite its ubiquity, polydispersity is still often neglected, with the exception of neutral

hard sphere systems, and the variety of phases, states and behaviors that it brings about

are imperfectly controlled and understood. The main reason for this is the fact that

computer simulations still lag well behind experimental observations, when appropriate

models exist at all. This is particularly true for charged colloidal suspensions, the system

of interest in this PhD work.

From a simulation point of view, representative and realistic models of charged poly-

disperse colloidal suspensions are indeed tractable neither at the primitive model level of

approximation, where the degrees of freedom of the solvent molecules are averaged out

through a dielectric continuum, nor at the level of the mean field approximation[120, 121,

92], where the many ions are further replaced by a mean electrostatic potential obtained

from solving the Poisson-Boltzmann equation. An amenable and attractive approach, first

introduced by Beresford-Smith [122], consists, instead, in whittling the colloidal system

down to the colloidal particles only, i.e. the one-component model, while the degrees of

freedom of the ions and solvent molecules are integrated out in effective pair potentials

between the colloids, w∗(r). The reduction of the many-body interactions into effective po-

tentials, however, makes w∗ density dependent [123] and, thus, necessarily re-determined

for each colloid density.

In the case of monodisperse spherical particles at low electrostatic coupling, Alexander

et al. [65] showed that w∗(r) retains a simple Yukawa form but with effective parameters,

namely an effective charge, Z∗, and screening length, 1/κ∗, instead of the bare charge, Z

and bulk screening length, 1/κ. The study further showed that Z∗ and κ∗ can be obtained
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from solving the Poisson-Boltzmann equation around one colloid placed in Wigner-Seitz

cell model (CM)[124]. In the same spirit, a one-colloid renormalized jellium model was

developed and shown to be successful in salt free systems [66]. At high electrostatic

coupling, two-colloids cell [60] and jellium models (see Chapter 2) solved in the full prim-

itive model were shown to provide accurate w∗(r) for arbitrary colloid shapes [61] and

concentrations. The two-colloid approach was further used at a molecular level [94] in a

3D-periodic simulation box.

In the case of charged colloid mixtures, Torres et al. [101] proposed a generalization

of the cell model. The great insight of Torres and co-workers was simply to impose

the same potential at the boundary of each cell, each family of colloidal particles being

represented by one colloidal particle centered in its own Wigner-Sietz cell, in such a way

as to ensure the continuity of electric potential and ion concentrations across the cell

boundaries. The greatest ideas also being the simplest, it was then followed to generalize

the jellium model [125, 126]. However, to our knowledge the generalized cell and jellium

models have only been tested in the salt free case [126]. Furthermore, they have so far

always been restricted to binary mixtures, i.e. have never been applied to polydisperse

charged colloidal suspensions with continuous size distribution.

Another difficulty arises from the nature of the surface charge and its dependence on

the density and size polydispersity of colloidal suspensions, namely the charge regulation

and the charge polydispersity. Both largely depend on the chemistry of the colloid surface

and of the electrolyte but also on the surface curvature and strength of the interactions and

are, thus, specific to each colloidal system. The aqueous surface chemistry and charging

behavior of colloidal particles has been the subject of many investigations essentially

concerning the thermodynamic limit of infinite (colloid) dilution, see e.g. Refs. [127,

128, 129, 130]. On the contrary, in studies of the structure of colloidal suspensions, the

charging behavior (of colloids) is most often simply ignored, the assumption being either a

constant surface charge density[131] or at best a constant electrical double layer potential

[132]. This can be explained in part by the complexity of characterization and, thus,

by the poor knowledge of the charging behavior of colloids in non diluted suspensions,

not to mention the charge polydispersity, as indicated by the very limited research work

available [133, 134, 135]. Very rarely have attempts been made to include a description of

surface chemistry [136, 137, 138]. Furthermore, those that do exist are, again, all limited
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to monodisperse systems.

Motivated by the recent experimental results obtained by Cabane et al.[8] on aque-

ous suspensions of titrating silica nanoparticles with large polydispersity, which show a

fractionation of particles in three coexisting phases (Laves/BCC/liquid phases) in the

semi-concentrated regime and high pH, we here develop two methods and describe the

corresponding algorithms to estimate the charging behavior and charge polydispersity of

titrating silica particles with a continuous size distribution. The methods are further used

to evaluate the sets of effective parameters (i.e. Z∗ and κ∗) to be used in a one-component

model. The methods, largely inspired by the seminal work of Torres et al.[101], are based

on a generalization of the cell and renormalized jellium models to polydisperse suspensions

of spherical colloids supplemented with a charge regulating boundary condition described

by a 1-pK-Stern model. Certain features are studied, in particular, the dependence of

the charge polydispersity as well as its scaling with the surface curvature on the size

polydispersity and density of the colloids. Finally, the validity of the proposed models is

discussed in terms of their ability to describe the equation of state of various commercially

available silica dispersions.

The chapter is organized as follows: in Sect. 3.2 we introduce the models used, that

is, in Sect. 3.2.1 and 3.2.2, the generalized cell model and jellium model for charged poly-

disperse colloidal suspensions and, in Sect. 3.2.3, the 1-pK Stern model to describe the

interface between the solid and the electrolyte solution in the presence of acidic surface

groups. In Sect. 3.2.4 the algorithm used to solve the cell and jellium models coupled

with the 1-pK Stern model is described. In Sect. 3.3.1 we present the 1-pK-Stern model

fit of the charging behavior of silica surfaces in the dilute regime together with the CM

and RJM predictions of the bare charge polydispersity of silica nanoparticles with various

polydispersities and densities, and in various pH conditions. The corresponding effec-

tive charge polydispersities and effective screening lengths are presented in Sect. 3.3.2.

Microion pressures for various polydispersities and distribution shapes is studied in Sect

3.3.3. Finally, experimental data are compared with the predictions of the cell and jellium

model in the same section, followed by conclusions in Sect. 3.4.
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3.2 Models

Let us consider a polydisperse colloidal suspension composed of np spherical colloidal

species of radii Rp bearing a charge Qp = Zpe with e the elementary charge and p =

1, . . . , np. They are immersed in a volume V filled with an aqueous salt solution of

dielectric constant ε in equilibrium with a reservoir at a temperature T and of inverse

screening length,

κ =

√√√√4πλB
ni∑
i=1

z2
i cs,i, (3.1)

where λB = e2

4πkBTε is the Bjerrum length and kB is the Boltzmann constant while zi and

cs,i are the number valence and bulk concentration of ionic species i, respectively. ni is

the total number of ion species. The composition of each colloidal species is defined by

its number fraction xp = Np/
∑
np Np.

Within the mean-field approximation of the primitive model, the electrostatic potential

at the surface of the colloids, at a set configuration of the latter, and in the electrolyte

solution is determined by solving the Poisson-Boltzmann equation, which for an arbitrary

system is given by[67]

ε4 V (~r) +
ni∑
i=1

zieci(~r) + ρe(~r) = 0, (3.2)

where ~r is the vector position in the solution, V is the electrostatic potential, 4 is the

Laplace operator, ci(~r) = cs,i exp
(
−zieV (~r)
kBT

)
and ρe is a charge density associated with the

colloids, specified later according to the model.

Within the approximation of the polydisperse cell model (PCM) and polydisperse

renormalized jellium model (PRJM) it is only necessary to solve Equation 3.2 with one

colloid with the appropriate boundary conditions and to repeat it for each colloid species.

Taking further advantage of the spherical symmetry, the electrostatic potential becomes

a mere function of the radial coordinate r and Eq. 3.2 reduces to

∂2ψ

∂r2 + 2
r

∂ψ

∂r
+ 4πλB

[
ni∑
i=1

zics,i exp(−ziψ(r)) + ξ(r)
]

= 0, (3.3)

where for convenience, we have introduced the dimensionless potential ψ = eV
kBT

and the

reduced charge density ξ = ρe/e. The surrounding colloids are effectively accounted for

through the boundary conditions and ξ which depends on the model used. They are

detailed below.
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3.2.1 Cell model

The cell model approximation was initially designed for colloidal crystals and emerged

from the realization that due to its periodicity the volume of a crystal can be divided into

electroneutral Wigner-Seitz cells surrounding each colloid, which on average have the same

volume and contain the same ion concentrations[65]. In other words, the thermodynamic

properties of the system can be reduced to one colloid enclosed in an appropriate cell. The

geometry of the cell is further assumed to have the same shape as the colloid. A spherical

cell of radius Rc centered on the colloid is a natural choice for a spherical colloid. Note

that the cell model approximation was also shown to be valid for non spherical colloids

and moderately concentrated fluid states[139, 140, 141].

Within this approximation, ξ = 0 and, thus, the PB equation, Eq. 3.3, within the

electrolyte solution takes the usual form

4 ψ(r) = κ2 sinhψ(r) with Rp < r < Rc. (3.4)

Note that here a 1-1 salt solution is considered. The Gauss law imposes that the electric

field be null everywhere on the boundary of the electroneutral cell,

∂ψ

∂r

∣∣∣∣
r=Rc

= 0. (3.5)

The missing boundary condition at the colloid surface is described below (Sect. 3.2.3).

For monodisperse dispersions the cell radius is commensurate with the particle volume

fraction φ,

φ =
(
R

Rc

)3
. (3.6)

Similarly, for polydisperse dispersions, the cell radii of the colloidal species, Rc,p, are

related to the overall particle volume fraction by

φ =
∑np
p=1 xpR

3
p∑np

p=1 xpR
3
c,p

. (3.7)

These unknown variables are determined by imposing the continuity of the electrical

potential and ion concentrations over the different cells[101]. That is to say,

ψ(Rc,1) = ψ(Rc,2) = · · · = ψ(Rc,np) = ψc. (3.8)

In the case of suspensions of colloids immersed in monovalent salt solutions, the effec-

tive pair potential between the colloids keeps the form of a screened Coulomb potential,

βu(rpq) = λBυpZ
∗
pυqZ

∗
q

exp(−κ∗r)
r

, (3.9)
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but with the renormalized charges and inverse screening length as leading parameters. In

the previous equation υp = exp(κ∗Rp)/(1 +κ∗Rp) ensures that the ionic cloud is excluded

from the core of the colloid. Following the elegant method of Trizac et al.[100] those

renormalized parameters can be obtained analytically from the calculated electrostatic

potential at the edge of the cell. That is,

κ∗ =

√√√√4πλB
ni∑
i=1

z2
i cs,i exp(−ziψc) (3.10)

and

Z∗p = γ0

κ∗λB

[
((κ∗)2Rc,pRp − 1) sinh κ∗(Rc,p −Rp)

+(κ∗)2 + κ∗(Rc,p −Rp) sinh κ∗(Rc,p −Rp)
]
, (3.11)

where

γ0 = −4πλB
(κ∗)2

ni∑
i=1

zics,i exp(−ziψc), (3.12)

from which the effective charge density for colloid p can be defined as

σ∗p =
Z∗p

4πR2
p

. (3.13)

The osmotic pressure of the colloidal dispersion can be approximated by the cell model

and is given by

P = kBT (ccoll + cions,in − cions,res), (3.14)

with ccoll the concentration of the colloids, cions,res the ion concentration of the reservoir,

and cions,in the ion concentration of the dispersion, i.e. the ion concentration at the edge

of the cell(s). The latter can be re-expressed as

P = kBT

{
φ

v̄p
+

ni∑
i=1

cs,i [exp(−ziψc)− 1]
}
, (3.15)

where v̄p = ∑np
p=1 xpvp. This approximation for the osmotic pressure neglects, however, the

contribution of the colloid-colloid correlations and is valid for low ionic strength and/or

relatively large particle volume fraction only. For a detailed discussion see Refs. [142,

143, 92, 144].

3.2.2 Renormalized jellium model

In contrast to the cell model, the jellium model[145] is based on the fact that, for diluted

suspensions, the colloid-colloid radial distribution function can be approximated to gpp =
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1. That is, the colloids can be seen as uniformly distributed throughout the suspension.

The small ions are, on the other hand, strongly correlated with the colloids. Once again,

the colloidal suspension can thus be reduced to a one-colloid subsystem immersed in

an infinite sea of salt solution supplemented by a uniform background charge, namely

ξ = ξback. Eq. 3.3 then becomes

∂2ψ

∂r2 + 2
r

∂ψ

∂r
+ 4πλB

[
ni∑
i=1

zics,i exp(−ziψ(r)) + ξback

]
= 0. (3.16)

The background charge represents nothing but the other colloids bearing a charge

Zback smeared out in space. In the case of a mono-disperse colloidal suspension of radius

R, the particle volume fraction is thus a simple function of ξback. That is

ξback = Zback
3φ

4πR3 . (3.17)

As noted by Trizac et al.[66] in most of the cases Zback is different from the bare charge of

the colloids which must be renormalized by fitting the electrostatic potential tail obtained

by means of Eq.3.16 with the known far field expression for ψ(r), see below.

In order to keep the system electroneutral a Donnan potential is set at infinite sepa-

ration from the colloid, i.e. ψ(∞) = ψD, given by

ξback = −
ni∑
i=1

zics,i exp(−ziψD). (3.18)

Furthermore, the condition of electroneutrality imposes,

∂ψ

∂r

∣∣∣∣
r→+∞

= 0. (3.19)

The generalization of the renormalized jellium model to polydisperse colloidal suspen-

sions is obtained simply by positing that the background charge is the charge density

caused by a uniform mixture of colloidal species p bearing a charge Zback,p, so that

ξback = φ

v̄p

np∑
p=1

xpZback,p, (3.20)

where v̄p = 4
3π
∑np
p=1 xpR

3
p, or, equivalently, that the overall colloidal volume fraction is

given by,

φ = v̄pξback∑np
p=1 xpZback,p

. (3.21)

In other words, the continuity of the electrostatic potential and ion concentrations is

ensured by imposing the same ξback for all colloidal species p.
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The Zback,p values are obtained by an iterative procedure which consists in equating

them to their respective effective charges, Z∗p , obtained from a fit of the tail of the far-field

electrostatic potential profile by the expression of the linearized potential, ψ̃p(r),

ψ̃p(r) = ψD + λB
Z∗p

1 + κ∗Rp

exp(−κ∗(r −Rp))
r

, (3.22)

where

κ∗ =

√√√√4πλB
ni∑
i=1

z2
i cs,i exp(−ziψD), (3.23)

which thus gives a new value of ξback and ψp(r), until convergence of Z∗p for all colloidal

species p,

Zback,p(Z∗p) = Z∗p ∀p ∈ {1, . . . , np}. (3.24)

Similarly to the cell model (Eq 3.15), the osmotic pressure of the colloidal dispersion

can be expressed as

P = kBT

{
φ

v̄p
+

ni∑
i=1

cs,i [exp(−ziψD)− 1]
}
. (3.25)

Again, this expression neglects the contribution of the colloid-colloid correlations to the

osmotic pressure.

3.2.3 Boundary conditions at the colloidal surface

So far, we have introduced the equation governing the electrostatic potential in the solu-

tion and the boundary conditions specific to the model used. In the following, we describe

the boundary conditions relative to the surface of the colloids.

General conditions

For a colloid dressed with a bare surface charge density σ a general boundary condition

can be expressed from the Gauss theorem

∂ψ

∂r

∣∣∣∣
r=Rp

= −4πλBσ, (3.26)

In the case of a titrating surface charge a more convenient condition can be obtained from

the electroneutrality condition and reads

σ = 1
R2
p

∫ Rc

Rp
drr2

ni∑
i=1

zics,i exp(−ziψ(r)) (3.27)
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for the cell model and

σ = 1
R2
p

∫ ∞
Rp

drr2
[
ni∑
i=1

zics,i exp(−ziψ(r))− ξback
]

(3.28)

for the renormalized jellium model. The above boundary conditions, although necessary

to solve the cell model and the renormalized jellium model do not prejudge (define) either

the nature of the colloidal charge or the response of the latter to colloid density or to a

change in the nature and concentration of the electrolyte solution.

Titrating surface charge

In the case of a chemically inert colloid surface two conditions can be defined, namely

the constant charge and constant potential conditions[127]. The first condition, however,

gives rise to a nonphysical result when two such charged surfaces are in contact: the

osmotic pressure becomes infinite! On the contrary, as two colloids approach, the sec-

ond condition implies that σ drops and eventually completely vanishes on contact. The

constant potential forms the lower bond of the charge regulation condition. It can also

be seen as a cheap and implicit manner to qualitatively account for the chemistry of the

interface, namely here the binding of the counter-ions.

In reality, the chemistry of the solid/solution interface is specific to the nature of

both the surface and the electrolyte. This chemistry can be specified/defined along the

chemical reaction equilibrium with associated Gibbs free energies. They are then coupled

with the physical interactions undergone by the reaction products and reactants to form

the generically-termed physical chemistry of interfaces. The chemical reactivity, in some

sense, gives a fourth dimension to, and thus considerably enlarges the domain of possible

states of colloidal systems.

Let us consider the situation in which the colloids bear titratable surface sites with

a surface density ds. The surface sites are either in a protonated state, M−OHqs+ with

charge q+
s and whereM stands for any atoms, or deprotonated state, M−Oqs− with charge

q−s , depending on the equilibrium pH of the reservoir. Their partition can be conveniently

quantified by the ionization fraction, α = NM−Oqs−/(NM−OHqs+ + NM−Oqs−). The bare

surface density is then obtained from σ = ds(αq−s + (1 − α)q+
s ). The change in charge

state of the surface sites with pH obeys the following chemical equilibrium

M−OHqs+ −−⇀↽−− M−Oqs− + H+, (3.29)
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and associated equilibrium constant, a function of the Gibbs free energy,

Ka = exp(−β∆G) =
a

M−Oq−
s
aH+

a
M−OHq+

s

, (3.30)

where the as represent the chemical activities. Using the surface concentration for the

definition of the standard composition[146], Γs = ds/NA where NA is the Avogadro num-

ber, the chemical activity of any chemical species at the colloid interface can be written

as

as = Γs exp(qsψs), (3.31)

The fraction of deprotonated sites is obtained by combining Eqs. 3.30-3.31 and reads

ln α

1− α = ln 10 (pH− pKa)− ψs
(
q−s − q+

s

)
. (3.32)

Finally, a Stern layer of thickness λStern is introduced around each colloids to account

for the hydrated size of the ions and the hydration layer of the colloids[147]. The surface

sites are considered to reside within this layer, that is, on the unhydrated surface of radius

Rp − λStern. Disregarding dielectric discontinuities, ψs can be deduced from the diffuse

layer electric potential ψd(Rp). It can be defined by the following expression

ψs = ψ(Rp) + 4πλBλStern
1 + λStern/Rp

σ, (3.33)

obtained from the definition of the capacitance [148] for a spherical particle. Eqs. 3.29,

3.32, 3.33 form the basis of the 1-pK Stern model. With the model specific boundary

condition (Eq. 3.5 for the cell model and Eq. 3.19 for the renormalized jellium model),

Eq. 3.3 can be solved for each particle size at any given pH. The detailed algorithms are

described in the next section.

3.2.4 Algorithm description

The Poisson-Boltzmann equation, thereafter referred to PBE, was numerically solved with

an “in house” code based on the Newton Gauss-Seidel method[68], see §1.5.5 for more

details. For a particle of radius Rp, and for a given pH, the potential profile ψ(r) is

calculated by the following algorithm:

1. Choose a first guess for the potential at r = Rp, ψd, within a range [ψmd , ψMd ] .

2. Solve the PBE with a given ψ(R) = ψd.
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3. Compute σ (Eq. 3.26-3.27) and pH(ψd) (Eq. 3.32).

4. If pH(ψd)− pH is small enough, stop the program and return the results.

5. Dichotomy step:

if sign[pH(ψd)− pH] = sign[pH(ψMd )− pH] , ψMd := ψd;

else ψm0 := ψd ; ψd := (ψmd + ψMd )/2;

Go to step 2.

If instead of the pH, one sets the bare charge as a constant parameter, pH and pH(ψd) in

step 5 have to be replaced by σ and σ(ψd), respectively.

The polydisperse cell model can be advantageously solved, not by imposing a particle

volume fraction, but, instead, by setting the same electrostatic potential ψc at the cell

edge for all colloidal families, i.e. the condition defined by Eq. 3.8. The particle volume

fraction is then calculated a posteriori. That is, for a given ψc the corresponding set

of cell radii {Rc,p}p=1,...,np is calculated iteratively by solving Eq. 3.3 in such a way as

the condition defined by Eq. 3.8 is respected and by imposing the boundary conditions

defined by Eqs. 3.5, 3.27, 3.32, and 3.33. φ is then calculated with Eq. 3.7. The proposed

algorithm is summarized below:

1. Choose a potential at the cell edge ψc.

2. For each colloidal species p choose a first guess Rc,p, within a range [Rm
c,p, RM

c,p] .

3. For each p solve the PBE for a given pH, see 3.2.4.

4. For each p extract ψp(R).

5. If |ψp(Rc,p)− ψc| is small enough, go to step 7.

6. Dichotomy step:

if sign[ψp(Rc,p)− ψc] = sign[ψMp (Rc,p)− ψc] , RM
c,p := Rc,p;

else Rm
c,p := Rc,p ; Rc,p := (Rm

c,p +RM
c,p)/2.

Go to step 3.

7. Calculate Z∗p=1,...,np , φ (Eq. 3.7), and P (Eq. 3.25)
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The polydisperse jellium model is simpler to solve since it eliminates the cell radius

and the corresponding adjustment. In fact, no iteration is required if it is solved from a

set value of the background charge. Alternatively, a given φ can be achieved by iteratively

adjusting the background charge. The proposed algorithm reads:

1. Choose a background charge potential ψD. (see Eq. 3.18).

2. For each colloid p compute the potential profile ψp(r) at a given pH (see 3.2.4) for

a given ψD.

3. Calculate Z∗p=1,...,np , then φ (Eq. 3.21), and P (Eq. 3.15).

4. Optionally, if a given φgoal is imposed, inverse Eq. 3.21 with φ = φgoal to obtain a

new ψD and go to step 2, unless |φ(ψD)− φgoal| is small enough.

The application to continuous size distribution of the PCM and PRJM takes advan-

tage of the continuous variation of the effective charge with its curvature and is simplified

with the proposed algorithm where the particle volume fraction is not an input param-

eter but calculated a posteriori. For relatively small adimensional curvatures the charge

scales linearly with 1/κRp, σ∗(Rp) = σ∗plane(1 +A(κRp)−1), while for large 1/κRp it scales

quadratically, σ∗(Rp) = σ∗plane(1 +A(κRp)−1 +B(κRp)−2), see the results section for more

details.

The source code for the PRJM and PCM, along with examples, is available at this

address: https://github.com/guibar64/polypbren.

3.2.5 Suspensions and model details

As specified earlier, we focus in this chapter on polydisperse suspensions of titratable

silica (SiO2) nano-particles with continuous size distribution. As silicon is one of the

major elements of the Earth’s crust, the chemistry and, of particular interest here, the

surface chemistry of SiO2 are quite well defined and documented. The surface of SiO2 is

covered with titratable silanol groups with a surface density ds. These titrate with pH

according to the following equilibrium reaction

Si−OH −−⇀↽−− Si−O− + H+. (3.34)

The corresponding equilibrium constant, pKa, as well as the thickness of the Stern layer,

λStern and ds were fitted against experimental titration data as obtained by Dove et al.

https://github.com/guibar64/polypbren
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[149], see Sect. 3.3.1. These parameters were then maintained constant for all other

calculations. A large number of calculations were made with size distributions corre-

sponding to commercially available silica suspensions, namely Ludox HS40 and TM50

suspensions, thereafter denominated HS40 and TM50, respectively. They are described

in detail elsewhere[150, 8, 151, 9]. In short, we used a gamma distribution for the HS40

and a normal distribution for the TM50. In particular, for HS40, an average radius of

8.14 nm and a polydispersity of 14 % and for TM50, 〈Rp〉 = 12.1 nm and a polydispersity

of 12 % were used. Calculations were also performed with various distribution shapes and

varying polydispersities as indicated in the text.

All the calculations were performed at a finite concentration (5 mM for most of them)

of a mono-monovalent salt, T = 300 K and λB = 0.7105 nm.

3.3 Results

Before comparing the generalized cell and renormalized jellium models, the charging pro-

cess of silica is presented and modeled to extract the ionization constant, the density of

titratable sites and the thickness of the Stern layer.

3.3.1 Charging process of silica

Figure 3.1 presents the titration curve of silica in NaCl salt solution at three different

concentrations, these data were obtained by Dove et al. [149]. The surface charge density

(in absolute values) increases with increasing pH due to the progressive dissociation of

the silanol groups. σ is also seen to increase with the salt concentration as a result of a

greater screening of the electrostatic repulsion between charged sites. The following set

of parameters, pKa = 7.7, dsite = 5.55 nm−2 and λStern = 0.107 nm, is found to provide

a good description of the charging process of silica. Note that these parameters were

obtained with Eq. 3.32 assuming a planar surface in the limit of infinite dilution. They

are kept constant in the rest of the chapter. The surface charge densities of a planar silica

surface for several pH values and conditions used throughout this study are given in Table

3.1.

σ titrates with pH but also regulates as the particle volume fraction increases. The

drop of σ with ψ is illustrated in Fig. 3.2 for the particle family of radius 5.5 nm in



3.3 Results 67

5 6 7 8 9
pH

0

0.2

0.4

0.6

0.8

1

su
rf

a
ce

 c
h

a
rg

e 
d

en
si

ty
 (

e.
n

m
-2

)

Fit 67 mM
Fit 200 mM
Fit 1000 mM
Exp 67 mM
Exp 200 mM

Exp 1000 mM

Figure 3.1: Comparison of experimental and simulated bare surface charge density versus

pH for silica in aqueous solution at different NaCl concentrations. The simulations are

represented by solid lines, the experimental data by points. The salt concentrations are

67 mM (black), 200 mM (red), 1000 mM (green). The experimental data are from Dove

et al.[149].

pH Surface charge (e.nm−2)

7 0.0816

8 0.18

9 0.365

9.5 0.508

10 0.695

10.5 0.932

Table 3.1: pH and bare surface charge density calculated for a planar silica surface in a

monovalent salt solution with cs = 5 mM, λB = 0.7105 nm, pKa = 7.7, dsite = 5.55 nm−2,

λStern = 0.107 nm.
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Figure 3.2: Calculated bare surface charge density for silica particles with Rp = 5.5 nm

when varying the particle volume fraction of a polydisperse HS40 suspension in monova-

lent salt solution at different pHs: 7 (black), 8 (red), 9 (green), and 10 (blue). The results

are presented both with the PCM (solid lines) and PRJM (dashed lines) approximations.

The salt concentration is set to 5 mM.
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an HS40 suspension (polydispersity 14%) dispersed in a monovalent salt solution. This

trend is similar in the PCM and PRJM and is explained by the co-ion exclusion which

effectively mimics the strong interactions of the colloidal particles with their neighbors.

The calculated σ, although close, tends to be larger within the PCM than the PRJM.

This discrepancy increases as the pH is depressed (<10% at pH 7, and <1% at pH 10).
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Figure 3.3: Bare surface charge σ versus dimensionless curvature (κR)−1 at pH 10 and

several volume fractions (see legend), for the PCM (a) and the PRJM (b). The surface

charge for a planar surface at infinite dilution (φ = 0) are displayed in both cases with a

purple dashed line.

A result of the charge titration is also the curvature dependence of the particle charg-

ing. In particular, Abbas and coworkers[152] showed that there is a considerable increase

in the surface charge density for particles smaller than 10 nm in diameter. The rise in

charge up with particle curvature can be understood as an enhanced screening of small

sized particles by counter-ions as compared to that of large particles. This is illustrated

in Fig. 3.3 as a function of the dimensionless curvature (κRp)−1 at pH=10 for various φ

of the HS40 silica particle dispersion. The calculations are performed both in the PCM

and PRJM approximations and are compared to the planar case at infinite dilution. In-

terestingly, the curvature dependence of σ is found to vary linearly with (κRp)−1. This

can be explained by the Taylor development of σ with respect to (κRp)−1 which in the

limit of κRp � 1 takes the form

σ = σplane(1 + A0(κRp)−1), (3.35)
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where σplane is the surface charge density of a planar surface and A0 gives the slope. Note

that here it also applies to relatively small (κRp)−1. It should be mentioned, however,

that in the pH region of large charge regulation, typically for pH values close to pKa [153],

the linear relationship only holds for κRp > 2, not shown. The slope of σ(1/κRp) is seen

to decrease slightly with the particle volume fraction as a result of increasing counter-ion

screening which tends to moderate, in relative terms, that due to curvature. Also, in the

domain of large φ, the σ of the small particles becomes lower than σplane in the reference

state (i.e. φ = 0), see e.g. Fig. 3.3-b. In the infinite dilution limit where a Grahame

relation for the nonlinear PBE in the spherical geometry has been recently obtained [154],

an analytical expression for A0 can be found. It reads

A0 =
1

cosh2(ψ0,plane/4) + CσplaneκλStern
2qs tanh(ψ0,plane/2)

1 + 1/(1−αplane)+Cσplane
2qs tanh(ψ0,plane/2)

. (3.36)

A detailed development is given in the Appendix below.

(a) (b)

Figure 3.4: Bare surface charge density, σ, for particle suspensions immersed in a 5 mM

1-1 salt solution at pH 9 for various particle sizes, size distributions and particle volume

fractions a) σ for particles of various Rp (4, 5, 6, 7, 8, 9, 10 and 11 nm) within HS40

suspensions in comparison with the corresponding monodisperse cases. The blue line

gives that of particles with Rp = 〈Rp〉. b) The same as in (a) but for particle suspensions

having a normal radii distribution with 〈Rp〉 = 20 nm at different polydispersities δ (5,

10, 20, 30, 40 and 50 %). σ of monodisperse particle suspensions (red lines with symbols)

are also given for comparison.

The influence of polydispersity on the bare surface charge density of different parti-
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cle families, i.e. with different Rp, is illustrated in Fig. 3.4 which compares the case of

polydisperse and monodisperse suspensions for various particle size distributions. Inter-

estingly, for particles with Rp equal to the mean value of the distribution, Rp = 〈Rp〉,

the polydispersity, when it is relatively small (<15%), has virtually no impact on σ. As

could be expected, this is the same for infinitely diluted suspensions whatever the particle

family or polydispersity, see Fig. 3.4-b. On the contrary, as Rp departs from 〈Rp〉, the σ

of mono- and poly-disperse suspensions can clearly be seen to differentiate and this differ-

entiation steps up with φ and the departure from 〈Rp〉. The polydispersity effect is more

pronounced for the small particles of the size distribution. In addition, polydispersity

yields them higher charges (compared to monodispersity) which monotonically increase

with it. The opposite is found for the large particles.

3.3.2 Renormalized parameters
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Figure 3.5: a) Relative effective inverse screening length κ∗/κ, and b) effective surface

charge density σ∗ versus volume fraction φ, for particles with Rp =5.5 nm of the HS40

dispersion, at the following pHs: 7 (black), 8 (red), 9 (green) and 10 (blue). The ionic

strength is set to 5 mM. The full lines give the results of the PCM while the dashed lines

those of the PRJM.

So far we have seen that the bare surface charge densities as obtained from the PCM

and PRJM approximations are very similar whatever the particle size distribution or

particle volume fraction. This is no longer true for the renormalized charge and screening
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length as shown in Fig. 3.5. These parameters are calculated for HS40 suspensions at

various φ.

σ∗ obtained within the PRJM is found to be lower than that within the PCM, what-

ever the φ and all the more so as pH increases, that is as the effective charge approaches

saturation. The same is observed for κ∗ but in the domain of large φ (φ & 0.15) while the

opposite is found, that is κ∗RJM > κ∗CM , in the dilute and semi-dilute regimes (φ . 0.15).

These results are consistent with those obtained by Trizac et al. with monodisperse sus-

pensions, see Refs [66, 143], but are here exacerbated by the polydispersity. In particular,

κ∗ values of both models are found not to converge in the limit of large φ, the domain of

counter-ion dominated systems (supposedly equivalent to the salt free case), but, instead,

to become increasingly divergent even at low pH values. Note that in the salt free case

(not shown), σ∗ is still distinctly lower in the RJM, but the κ∗ of both models are found

to be similar in the domain of low φ (< 0.2).
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Figure 3.6: Effective surface charge density of the planar surface σ∗plane and factor A

versus volume fraction φ. Those were worked out for the HS40 distribution, and for the

following pHs: 7 (black), 8 (red), 9 (green), and 10 (blue), using the PCM (full lines),

and the PRJM (dashed lines) .

In the same way as for the bare surface charge density, the effective surface charge

density can be accurately approximated by means of an affine function of (κ∗Rp)−1, that

is,

σ∗ = σ∗plane
(
1 + A(κ∗Rp)−1

)
, (3.37)

where σ∗plane is the effective surface charge density of the confined planar surface in the
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same conditions (pH and φ, i.e. same edge potential for the PCM and same background

charge for the PRJM) and A is a dimensionless coefficient which measures the impact of

the size of the particle. σ∗plane and A depend on the model, pH, particle size distribution

and volume fraction. Equivalently, Eq. 3.37 can be written in terms of effective charge,

that is Z∗/Rp = 4πσ∗plane/κ∗(κ∗Rp + A). In the case of no added salt, after noting that

σ∗ = γκ∗

πλB
, where γ is a coefficient which varies with σ and φ [141], it was found that

Z∗ scales linearly with the ratio Rp/λB. Such linear scaling was verified experimentally

for deionized colloidal suspensions in the infinite dilution limit, in the semi-dilute regime

and in the concentrated regime by measurements of electrophoretic mobility of isolated

colloids[155, 156], conductivity of colloidal liquids and elasticity of colloidal crystals[133],

respectively.

In the case of added salt (κRp � 1) and infinite dilution limit, where an analytical

expression of the electrostatic potential solution of the non linear Poisson Boltzmann

theory has been obtained [157, 158], an analytical approximation of the coefficient A for

non titrating colloids can be obtained and reads,

A = 1
2

(
5− γ4 + 3

γ2 + 1

)
, (3.38)

where γ =
√

1 + x2−x and x = κ
2πλBσ . The approximation is asymptotically exact in the

limit of large R, see the Appendix for a detailed development. Finally, since γ goes to 1

when σ →∞ one finds Asat = 3/2 at the saturation of the colloidal charge.

Fig. 3.6 shows the PCM and PRJM results of the coefficient A and the effective

surface charge density of the plane, σ∗plane, versus φ on HS40 at different pH and a set

ionic strength of 5 mM. Not surprisingly, σ∗plane follows the same trend as for σ∗5.5 nm,

c.f. Fig. 3.5(b). In particular, for pH values greater than the pKa (pH > 7.7) PRJM’s

σ∗plane systematically shows a non monotonous behavior with respect to φ with a minimum

around φ ≈ 0.1. Within the PCM, on the other hand, σ∗plane continuously rises with φ.

The difference in behavior in σ∗plane between the two models is reminiscent of that of σ∗plane
at saturation which follows the same qualitative trend, see e.g. Ref. [159]. Indeed, in

these conditions of pH, σplane is generally larger than σ∗plane,sat. For pH values lower than

the pKa and at relatively high φ the PCM’s σ∗plane also shows a drop due to the regulation

of the bare surface charge density which becomes much smaller than σ∗plane at saturation.

This qualitative difference is echoed in the coefficient A which shows a maximum value

in the PRJM and not in the PCM, see Fig. 3.6-b. Indeed, A varies between a maximum
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value Asat, at the saturation of the charge and a minimum value A0 when σ∗ = σ, c.f. Eq.

3.35. It naturally follows that σ∗(Rp) desaturates as φ further increases and approaches

the ideal planar limit where the effective charge is proportional to R2
p. In this respect, the

PCM’s A values decrease faster with φ than is the case in the PRJM. In addition, for non

titrating surfaces A0 = 0 (σ(Rp) = σplane) and, as we have seen above, Asat 1.5 at φ = 0

both for titrating and non titrating surfaces.

(a) (b)

Figure 3.7: Slopes of the linear variation of σ∗ with (κRp)−1 of a titrating, A, and a non-

titrating colloidal particle, Ant. That of the bare surface charge density, A0, is also given

as a reference. The slopes are given for both the PCM (a) and PRJM (b). Calculations

are performed for silica HS40 dispersions in equilibrium with a bulk solution containing

5mM of 1-1 salt and at pH 8. In the non titrating case, the particles are given a surface

charge density equal to that of the planar silica surface in the same conditions.

This points to the fact that for non titrating colloids, with a σ(Rp, φ) equal to that

of a titrating planar surface in the same conditions (σplane(φ, pH)), the corresponding

coefficient, Ant, is lower than A for charge regulating particles. In other words, A is a

function of A0 and Ant, see Figure 3.7. In the limit of small variations of σ, one can

further give an analytic approximation for the dependence of A on A0 and Ant which

reads,

A ≈ Ant + κ∗

κ
A0

σb
σ∗

dσ∗
dσb

. (3.39)

Close to the saturation of the effective charge as well as in the limit of small σp the last

expression reduces to A ≈ Ant + κ∗/κA0.
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Not shown here is how the ionic strength affects both σ∗plane and A. This is already

well documented in the literature in the case of monodisperse suspensions, see e.g. Refs.

[160, 161, 162]. Not surprisingly, the same qualitative behavior is found in polydisperse

suspensions. That is, A drops and σ∗ rises when ionic strength increases. It is also easy

to infer from Eqs. 8-22 and Fig. 3.4 that an increase in the polydispersity gives rise to a

shift in σ∗plane and A values to larger φ values.

In conclusion of this section, we have seen that the well-known linear scaling of the

effective charge with (κRp)−1 is also verified in the case of polydisperse and charge reg-

ulating colloids for all φ. In practice, this means that a complete force field for these

suspensions can be obtained at relatively low computational cost. Indeed, this amounts

to calculating A, σ∗plane and κ∗ with a few Rp values (in principle two are enough) at

set values of ψc (in the PCM) or Zback (in the PRJM), and post-calculating φ given the

particle size distribution (continuous or not).

3.3.3 Osmotic pressure

In this section the effect of the polydispersity on osmotic pressure is discussed. Finally,

the validity of the PRJM and PCM will be discussed in light of experimental equation of

states for various commercial silica dispersions as measured by L. Goehring, B. Cabane,

J. Li and P-C Kiatkirakajorn[150, 8, 151, 9].

Figure 3.8 gives the microion contribution to the total osmotic pressure, Pmicro as

obtained from the PCM with different polydisperse suspensions having a normal size

distribution of the same mean particle size 〈Rp〉 = 20 nm but of varying polydispersities.

Pmicro is found to decrease as δ increases. The drop in Pmicro is significant above 10% of

polydispersity. The PRJM exhibits the same qualitative behavior (not shown).

The shape of the particle radius distribution is further found to have only a minor effect

on Pmicro. This is all the more true as the particle size distributions are chosen so as to have

identical 〈R3
p〉 and 〈Rp〉. As shown in Figure 3.9-a for three different distribution shapes,

when these conditions are met the Pmicro thus obtained can hardly be distinguished.

This behavior is a direct consequence of the geometrical definition of the particle volume

fraction, see Eq. 3.6 combined with the very slow variation in the water layer thickness,

Rcell−Rp, with the particle radius. In the limit of large κRp, Rcell−Rp becomes constant.

Fig. 3.10 compares the experimental equations of state of the HS40 and TM50
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Figure 3.8: Simulated microion contribution to the osmotic pressure of titrating silica

particle dispersions as a function of the particle volume fraction for varying polydispersi-

ties. The calculations are performed within the PCM approximation. The silica particles

are suspended in a 5 mM 1-1 salt solution at pH 9. The particles present a normal size

distribution with 〈Rp〉 = 20 nm. The polydispersity is changed as indicated in the legend.

(a) (b)

Figure 3.9: (a) PCM calculations of the micro-ions osmotic pressure, Pmicro, for silica

dispersions with varying shapes of particle size distribution but with identical 〈Rp〉 (20

nm) and 〈R3
p〉 (21.773 nm3). The silica particles are suspended in a 5 mM 1-1 salt solution

at pH 9. Note that for the normal distribution δ = 31%. The distribution is changed as

indicated in the legend. (b) The triangular, normal and uniform size distributions used.
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(a) (b)

Figure 3.10: Experimental equation of state for the (a) HS40 and (b) TM50 silica

dispersions in comparison with the micro-ion pressure calculated by the polydisperse cell

model at various bulk concentrations of monovalent salt and pH 9. The experimental

data are from L. Goehring, B. Cabane, J. Li and P-C Kiatkirakajorn[150, 8, 151, 9].

silica dispersions[151] with the micro-ion pressure calculated with the polydisperse cell

model at various bulk concentrations of monovalent salt and pH 9. The osmotic pres-

sure is seen to increase when the ionic strength of the bulk and the mean particle radius

(〈Rp(HS40)〉 < 〈Rp(TM50)〉) decreases, in good agreement with the polydisperse cell

model. What is more, the PCM is found to give a good description of the osmotic pres-

sure of the silica dispersions only for the lowest bulk salt concentrations studied, up to

10 mM for the HS40 and to 5 mM for the TM50. This should not come as a surprise since

the PCM is known to neglect the colloid-colloid correlations (entropic and contact con-

tributions) to the osmotic pressure, as explained at length in refs[143, 163, 92, 164, 144].

In short, the PCM approximation is good as long as the colloid-colloid contribution to

the osmotic pressure is negligible compares to the microion contribution that is when the

mean separation between the colloids is a few times smaller than the interaction range.

A consequence, found here when one compares the HS40 and TM50 results, is that the

lower the mean particle size (that is the smaller the mean colloid separation), the larger

the validity range of the PCM.

Fig. 3.11 compares the experimental equations of state of the HS40 and TM50 silica

dispersions[151] with the micro-ion pressure calculated with the PRJM at various bulk

concentrations of monovalent salt and at pH 9. The PRJM is found to give a poor



78 3 Jellium and Cell Model

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
φ

0.1

1

10

100
P

 (
k
P

a
)

5 mM
10 mM
25 mM
50 mM

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
φ

0.1

1

10

100

P
 (

k
P

a
)

0.5 mM
5 mM
10 mM
25 mM
50 mM

(b)

Figure 3.11: Experimental equation of state for the (a) HS40 and (b) TM50 silica

dispersions in comparison with the micro-ion pressure calculated by the PRJM at various

bulk concentrations of monovalent salt and pH 9.

description of the experimental osmotic pressure. Generally, it is found that the osmotic

pressure is overestimated at low volume fractions and underestimated in the concentrated

regime.

3.4 Conclusion

In this chapter, we proposed a cell and a renormalized jellium model to study the ther-

modynamic properties and estimate the renormalized parameters to be used in a one-

component model, i.e. Z∗ and κ∗, for polydisperse suspensions of titratable spherical

colloids with a continuous size distribution. We further proposed a simple algorithm and

a Nim implementation to solve them. The models are largely inspired by the work of

Torres[101] on binary mixtures of colloids with constant charge. PCM and PRJM include

a charge regulation, instead of a constant charge boundary condition, modeled as a simple

1-pK-Stern model. The application of the models to continuous size distributions was

made simple and easy by the linear scaling of both the bare and effective charges with the

adimensional curvature of the particles, (κRp)−1. For very small (κRp)−1, σ and σ∗ scale

quadratically. We presented a detailed example of such an analysis in the case of aqueous

suspensions of silica nanoparticles of various size distributions. Besides being simple, the

1-pK model was found to give a very good description of the charging behavior for bare

silica surfaces experimentally observed in diluted conditions, in accordance with previous
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studies, see e.g. Ref. [165]. This allowed us to constrain the surface chemistry param-

eters of the PCM and PRJM, leaving us with two commonly characterized parameters,

that is the pH and the particle size distribution. Both models give the same qualitative

results. Yet, the cell model thus generalized is found to predict much more accurately the

equations of state of aqueous silica dispersions at finite salt concentrations. In general,

the bare surface charge density is found to drop as the density and the radius of the silica

particles increases, due to the charge regulation. In a polydisperse suspension, the parti-

cles of radius Rp < 〈Rp〉 are further found to bear a surface charge density significantly

greater than that of the same particles at the same density but in a monodisperse suspen-

sion (the opposite occurs when Rp > 〈Rp〉). This is all the more true as polydispersity

rises and Rp is small compared to 〈Rp〉 (Rp >> 〈Rp〉). In other words, the bare charge

polydispersity is found to increase with the size polydispersity. Not surprisingly, the same

trend is found for the effective charge polydispersity. It should be stressed, however, that

a polydispersity of effective charges is also present in the case of polydisperse particles

having the same bare surface charge density, although less pronounced. Despite these dif-

ferences a significant impact on the microion osmotic pressure is only seen in suspensions

of silica particles with very large polydispersities (> 15%). One may expect, however, to

observe more clear effects in the micro-structure of these suspensions, even for relatively

small polydispersities.
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Appendix

Analytical expression for A0

In this section a detailed development of the analytical expression for the slope, A0, of the

linear variation of the bare surface charge density of spherical colloids with (κR)−1 � 1

is given.
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Carvalho et al [154] showed that for colloids with a small dimensionless curvature,

ζ = (κR)−1 � 1, their bare surface charge density, σ, is related to the diffuse layer

potential, ψd = ψ(R), (see Eq. A14 in [154]) as follow

4πλBσbare
κres

= 2 sinh
(
ψd
2

)
+ 4ζ tanh

(
ψd
4

)
. (3.40)

At the planar limit (ζ = 0) the above equation reduces to

4πλBσplane
κ

= 2 sinh(ψd,plane2 ), (3.41)

where σplane and ψd,plane are the bare charge density and the diffuse potential of the plane.

A first-order Taylor development of Eq. 3.40 about ζ, with ζ � 1, gives

4πλBσplane
κ

(1 + A0ζ) = 2 sinh(ψd,plane2 )

+ ζ

4 tanh
(
ψd,plane

4

)
+ cosh

(
ψd,plane

2

)(
∂ψd
∂ζ

)
ζ=0

 , (3.42)

where A0 =
(
∂σplane
∂ζ

)
ζ=0

, which combined with Eq. 3.41 yields

4πλBσplane
κres

A0 = 4 tanh
(
ψd,plane

4

)
+ cosh

(
ψd,plane

2

)(
∂ψd
∂ζ

)
ζ=0

(3.43)

After some algebra, one further finds

4πλBσplane
κ

A0 = 4 tanh
(
ψd,plane

4

)

+ cosh
(
ψd,plane

2

)[
CκλSternσd,plane

qs
− 1
qs

(
1

1− αplane
+ Cσplane

)
A0

]
(3.44)

where C = 4πλBλStern is the capacitance of the Stern layer and αplane is the fraction of

deprotonated sites of the plane. Indeed,

∂ψd
∂ζ

=
(
∂F (σ, ζ)
∂ζ

)
σ

+
(
∂F (σ, ζ)
∂σ

)
ζ

(
∂σ

∂ζ

)

= CκλSternσ

qs
− 1
qs

( 1
1− α + Cσ

)
A,

(3.45)

where

F (σ, ζ) = 1
qs

[
ln(10)(pH− pKa)− ln

(
α

1− α

)
− C

1 + λStern/R

]
, (3.46)

c.f. Eq. 3.33.

From equation 3.44 the final expression of A0 can be found, it reads

A0 =
1

cosh2(ψd,plane/4) + CσplaneκλStern
2qs tanh(ψd,plane/2)

1 + 1/(1−αplane)+Cσplane
2qs tanh(ψd,plane/2)

. (3.47)
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Figure 3.12: Bare surface charge density σbare versus volume fraction, φ, of particles of

radius 8 nm in a monodisperse silica suspension at various pH calculated with the PCM

(full lines), and the PRJM (dashed lines).

Bare surface charge densities for monodisperse dispersions

Figure 3.12 gives the bare surface charge density of a monodisperse silica suspension (ra-

dius 8 nm) against volume fraction at several pH, calculated with the PCM and the PRJM.

As for polydisperse suspensions (see Fig. 3.2), σbare increases with pH and decreases with

volume fraction. Both models give close results.

Screening in HS40 silica suspensions

Fig. 3.13 compares, in the case of HS40 silica dispersions, the relative effective inverse

screening length κ∗/κ when accounting or not for the charge regulation or polydispersity.

In this case of relatively low polydispersity, the screening length and, thus, the pressure

is found to be unaffected by the charge regulation and only slightly by the polydispersity.
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Figure 3.13: Relative effective inverse screening length, κ∗/κ, of the HS40 silica suspen-

sion in comparison with that of a monodisperse silica suspension with R=〈RHS40〉 and a

non titrating colloidal suspension with the same particle distribution as the HS40. In the

latter, the charge density of all particles is set equal to that of a planar silica surface in the

same bulk conditions. The dispersions are in equilibrium with a bulk solution containing

5mM of 1-1 salt and at pH 9. HS40 with titration (black), HS40 without titration (red),

monodisperse 8nm with titration (green). The results are computed with the PCM (full

lines) and the PRJM (dashed lines).



Chapter 4

Structure and Thermodynamics of

Aqueous Suspensions of Polydisperse

Silica Nanoparticles: A Monte Carlo

Study

In this chapter, two multi-component models (colloid only models) are constructed, based

on the PCM and PRJM (see Chapter 3) and thereafter refered as MCM-CM and MCM-

RJM, respectively. Monte Carlo simulations of this models are performed in the NVT

and NPT ensembles which, combined to a swap move, efficiently equilibrate charged

polydisperse particle suspensions up to high volume fractions. The simulations results

are confrontated with experimentally determined phase diagram and equation of state

for two different aqueous suspensions of polydisperse silica nanoparticles (Ludox HS40

and Ludox TM50). The MCM-CM simulations are found to predict very satisfactorily

the phase compositions of the suspensions and their locations in the experimental phase

diagrams. This includes but is not limited to an MgZn2 Laves - bcc phase coexistence and

a re-entrant melting phenomenon. The MCM-CM simulations predict equally well the

equations of state for the two silica dispersions. The MCM-RJM simulations are found,

on the contrary, to be unable to reproduce the experimental data. In good agreement

with experimental observations, a glass forming liquid is predicted by the MCM-CM

simulations at rather modest volume fractions. Preliminary results suggest that it is a

good glass former with a rather homogeneous structure.
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4.1 Introduction

Development of analytical theories and simulations has allowed considerable progress in

the understanding of polydisperse hard sphere (HS) systems over the last two decades.

The equation of state[166] and the solid-liquid coexistence[23, 24, 167] in binary HS mix-

tures have been successively obtained using a swap move which attempts to exchang-

ing pairs of particles in combination with a Monte-Carlo thermodynamic integration

scheme[168]. The latter was further used to reveal the rich phase diagram of binary

hard sphere mixtures[29] of varying compositions, size ratios and densities of the binary

HS. The phase diagram thus obtained explains the formation of binary superlattice struc-

tures, namely AlB2 and AB13, observed in natural silicate opals[27], although certainly

not made of pure HS, and in synthetic suspensions of near ideal HS binary systems[31], re-

spectively. Using the same approach Dijkstra and co-workers[32, 34] more recently added

two new stable superlattice structures, MgCu2 and MgZn2 Laves, to the theoretical binary

HS phase diagram, a prediction which has only recently been confirmed experimentally

by Palberg and co-workers [33] in binary systems of HS approximants. Perhaps more

importantly, these associated theoretical and experimental works on HS systems (purely

entropic) clearly demonstrate the counter-intuitive idea, initiated by Onsager[169] in his

seminal work on the isotropic-nematic transition in a fluid of thin hard rods, that the or-

dering/crystallization is entropy driven[29, 170, 21, 104]. In other words, the macroscopi-

cally observed order is driven by an increase in microscopic disorder: upon crystallization

the HS particles gain in free volume and, thus, in degrees of freedom.

When departing from binary systems and approaching the continuous polydisperse

systems that best describe real colloidal suspensions, however, the parameter space in-

creases accordingly and, consequently, the successful thermodynamic integration approach

soon becomes impracticable. An attractive alternative is the isobaric semi-grand canoni-

cal (ISGC) ensemble developed by Kofke et al.[171, 172] which provides for the sampling

of many realizations of the polydisperse disorder together with a direct access to the coex-

istence pressure. Applying the ISGC ensemble in MC simulations, Kofke and Boldhuis[47]

showed that at equilibrium a fluid of arbitrary polydispersity can fractionate and allow

the precipitation of a crystal of small polydispersity, invalidating the notion of terminal

polydispersity asserted from experimental observations[45, 51, 117], beyond which a fluid

cannot form a crystal, and questioning the putative existence of an equilibrium glass phase
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at high polydispersities[173]. This was further confirmed by the theoretical work of Fasolo

and Sollich[174, 36] with the aid of a moment free energy method inspired by the work

of Bartlett[46, 173, 175]. They further showed that as density increases the polydisperse

system fractionates into a cascade of crystalline solids (of fcc structure), a prediction later

confirmed by MC simulations in the ISGC ensemble[176, 177].

In recent years, there has been an important progress in the understanding of the

nucleation processes of HS systems. Brute force Brownian dynamics[75] (BD), molecular

dynamics[117, 178], umbrella sampling[105, 179], forward flux sampling[178] have all been

used to calculate the nucleation rate of hard spheres and nucleation Gibbs free energy. The

results produced by the different methods are in very good agreement with each other[178]

and agree well with experimental data[180, 181, 182] at high supersaturation. Simulations,

however, underestimate experimental findings at low supersaturation by several orders

of magnitude, but this may be due in part to the softness of the interactions in the

experimental system[183, 75]. The predicted slowing down of the particle dynamics[117]

was further shown to explain the experimentally observed minimum in and strong elapse

of the induction time with increasing polydispersity and supersaturation[184, 185]. In

experiments, however, the nucleation rate density was observed to be much enhanced when

increasing polydispersity[184] despite a much longer induction time. This observation may

be partly explained by the synergetic effect induced by the gain in mobility of the particles

in the neighboring areas of forming nuclei[186, 187, 188].

Density[189] and structural fluctuations[75], with a lack of long range order, were

identified in MC and BD simulations, respectively, as acting as the first step (precur-

sors) of nucleation, and were later shown to occur simultaneously in the early stage of

nucleation[190]. The identified structural heterogeneity was further found to be closely

coupled to dynamical heterogeneity[191], even beyond the mode-coupling glass transition,

suggesting an intimate link between nucleation and vitrification[192, 193]. The dynamic

and structural correlation was confirmed experimentally[194, 195] and was further elabo-

rated as a potential proof for the thermodynamic nature of the glass transition[196, 197,

198]. The observed correlation could, however, equally well be remanent from a kineti-

cally hindered nucleation stuck in the prenucleation process[194, 195, 50]. Interestingly,

the recent simulation results of Coslovich et al. [199] on large polydisperse HS systems

show an appreciable increase in local geometric order only at large packing fractions where
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the system is eventually found to crystallize (AlB2 symmetry).

Further improvement in the understanding of the glass transition of polydisperse HS

systems and soft sphere systems was also achieved by rediscovering the simple but very

efficient MC swap move[166, 23] that dramatically accelerates the equilibrium sampling

of configuration space[54, 200, 201]. Application of such an MC algorithm has allowed the

thermalization of supercooled liquids of polydisperse HS beyond the random close packing

limit showing that the jamming transition cannot be the end point of the fluid branch[202]

and opening up a path to the study of the Gardner transition[203, 119] marked by the

rapid increase in spatial correlation lengths[198] and relaxation time scales. The sharp

and continuous drop in the configurational entropy observed by Kauzmann in several glass

forming liquids [204] was confirmed beyond the experimental glass transition[205].

On the other hand, particles with soft interactions, whether due to charged surfaces

or grafted polymers, present marked differences, despite generic similarities, with their

HS counterparts. In general, binary mixtures of soft particles show a much richer phase

diagram than those of HS, as inferred from both experiments[103, 206, 207, 208] and

simulations[209, 210, 211, 212]. The interaction softness has been found to facilitate

the thermalization of colloidal suspensions, due to the gain in free volume/mobility of

the colloids[213, 214]. As an example, the addition of small amounts of non-adsorbing

polymer, turning pure HS into attractive HS by depletion, can lead to a devitrification

of polydisperse HS suspensions[215, 216, 217]. Similarly, in computer simulations, sus-

pensions of soft particles with high polydispersities and Kob-Andersen Lennard Jones

mixture used as model glass-formers irremediably crystallize beyond the mode-coupling

glass transition[53, 218, 219, 220]. This renders difficult the disentanglement between

the different dynamic and thermodynamic scenarios of the glass transition[220], but fur-

ther confirms the non-validity of the notion of terminal polydispersity. Experimentally,

particles with very soft interactions, e.g. star polymers and microgels, are observed to

crystallize up to very high polydispersities[221, 222, 223]. At high densities, they become

good glass formers and their dynamics near the glass transition, characterized by the

large scale cooperative motion of particles and the disappearance of hopping dynamics,

is found to agree well with mean-field phenomenology as described by the mode coupling

theory[224, 225, 219, 226], at least much better than any other model glass formers. De-

spite these recent advances, our general understanding of neutral soft particle dispersions
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remains to a large extent qualitative due to a lack of systematic comparison between

simulations and experimental model systems and to the weaknesses of the effective pair

potential (w∗) used in the simulations, which for example, does not take into account its

dependence on the particle density[223] as due to many-body interactions.

The realization of this density dependence of w∗ has been a key achievement in the

understanding of nearly monodisperse suspensions of charged particles (CS). There, w∗

has been shown to be accurately captured by a hard core Yukawa (HCY) pair potential as

long as an effective charge and screening length calculated with an appropriate rescaling

procedure are used[65, 160, 100]. The static structure factor of the liquid-like ordered state

of CS suspensions is well reproduced by theories [227, 228, 229] and simulations. The phase

diagrams are known from computer simulations for HCY[230] and point Yukawa[44, 38,

231, 232] particles in both the constant charge and constant potential conditions[132]. In

general, they are found to agree closely with experimental phase diagrams[37, 233, 234].

CS are observed to crystallize very rapidly compared to HS[235, 236, 237, 238]. This

behavior agrees well with the umbrella sampling simulations of Auer[239] and is explained

by the reduction in the crystal/melt interfacial free energy with the increase in the range of

the electrostatic repulsion (potential softness). The electrostatic interactions are predicted

to favor a two-step nucleation process through a metastable, mainly bcc nucleus even in

the fcc stable region of the phase diagram[239, 240], in good agreement with experimental

observations[241]. Furthermore, the long predicted Wigner glass[44, 242, 243] was recently

observed with nearly monodisperse CS in salt free conditions at very low volume fractions

(< 0.01%)[244].

Due to their higher complexity, much less is known, however, about multimodal and

polydisperse suspensions of CS. Only a limited number of experimental and theoreti-

cal studies exist for model multimodal suspensions and even fewer for polydisperse CS

suspensions.

A complex multistep nucleation process to superlattice CS crystals in bidisperse CS

suspension has been observed[245] and remains for the moment out of reach of theo-

retical work. In contrast to umbrella sampling predictions made on polydisperse HS

systems[105], a decreased of the reduced interfacial free energy between the bcc crystal

and the coexisting equilibrium fluid was observed by Palberg et al. in CS suspensions with

increasing polydispersity[50]. This also remains unexplored by simulations. In general,
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binary mixtures of CS reveal a far better miscibility than HS.[118] Their phase diagram

has been studied mainly under low salt conditions and shows large regions of substitu-

tional bcc alloys. Eutectic, azeotropic[246, 39, 247] and spindle type phase diagrams are

also observed[248]. The characteristic size ratios of the different types of phase diagram

are, however, considerably lower than those predicted and observed for HS. Experimental

studies on highly polydisperse CS suspensions are very limited. Cabane et al. observed

the formation of a Laves phase in coexistence with a bcc and liquid phase[8] in highly

polydisperse suspensions of highly charged silica nanoparticles. The colloid crystals are

further observed to melt into a disordered solid upon compression[7]. Kiatkirakajorn stud-

ied the phase diagram of a slightly less polydisperse suspension of silica nanoparticles in

the ionic strength – volume fraction plane [9]. The typical bcc and fcc crystalline phases

of the monodisperse case are observed but in a reversed order. That is, as the colloid

density increases, first a fluid to fcc phase transition is observed, followed by an fcc to bcc

phase transition[9]. In addition, the fcc and bcc phases are often observed to coexist with

an hcp phase. Upon further compression, the colloidal crystals are also found to melt into

a disordered solid.

Different theories have been proposed to reproduce the liquid-like ordered state of

polydisperse CS suspensions with various levels of success[102, 249, 250]. Monte Carlo

(MC) simulations revealed a crystal to glass transition in systems of polydisperse charged

colloids interacting through an HCY pair potential[251, 252, 253, 254, 106]. Similarly,

both terminal polydispersity and re-entrant melting were found in HCY systems with

quenched size polydispersity using free energy calculations[255]. The phase diagrams of

binary mixtures of equally and oppositely charged colloids were calculated by simulations

and approximate theory[256, 34, 41, 257]. Finally, a lattice MC simulation in the Gibbs

ensemble was employed to rationalize the liquid/bcc/Laves phase coexistence[8, 258] in

highly polydisperse suspensions of CS observed by Cabane et al[8]. Despite this progress,

our understanding of the effects of polydispersity on the crystallization, phase diagram

and glass transition of polydisperse CS suspensions is limited. The main reason being

again, the lack of a well accepted method/tool which relates the charge polydispersity to

the size polydispersity and which thus provides an accurate description of the interaction

polydispersity[259, 250, 248]. Recently, several theoretical methods have been developed

to solve this issue[101, 125, 126]. None of them, however, have been tested on polydisperse
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systems.

In the present chapter, we study the reliability of two previously developed methods

(see Chapter 3) to compute the distribution of the HCY pair potentials and associated MC

simulations of the so defined multi-component model (MCM) simulations to predict the

phases observed in two different polydisperse suspensions of charged silica nanoparticles[8,

9]. The first method used to compute the distribution of the HCY pair potentials is based

on the polydisperse cell model initially proposed by Torres et al.[101], hereafter referred

as MCM-CM. The second is based on a generalization of the jellium model, hereafter

named MCM-RJM. They are both extended to account for the titration and regulation

of the particle surface charge. The MCM simulations are performed with an in-house

code in the canonical (NVT) and isothermal isobaric (NPT) ensembles using swap moves

and a well optimized cell decomposition. The simulations optimized in this way allow

us to thermalize polydisperse CS systems to very high densities (≈ 50%) and to reach a

proper equilibrium with up to 257 600 particles. In general, very good agreement with

the experiments is found including the transition to the glass forming liquid.

4.2 Methods

4.2.1 Model and Simulations

The polydisperse HS40 and TM50 silica nanoparticles are described by a MCM of the

colloids only. These latter are modeled by hard spheres bearing a uniform charge density.

Each colloid component is signified by a specific radius, R, and renormalized charge

number, Z∗. The colloids interact through a combination of a hard core and a Yukawa

potential. The pair potential between two colloids i and j separated by distance r then

reads

βu∗ij(r) =


+∞ if r ≤ Ri +Rj

λB
Z∗
i Z

∗
j

(1+κ∗Ri)(1+κ∗Rj)
exp(−κ∗r)

r
if r > Ri +Rj,

(4.1)

where β = 1
kBT

, with kB the Boltzmann constant, T the temperature set to 300 K and λB
is the Bjerrum length set to 0.7105 nm. κ∗ is the renormalized inverse screening length.

In practice, the bare charge of a titrating silica particle depends on its size as well as

the pH and ionic strength of the equilibrium solution but also on the magnitude of the

interactions felt. The silica dispersions thus display both a size and a charge polydispersity,
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the latter being dependent on the equilibrium conditions. In addition, the interactions

between the colloids can be described by the HCY potential, Eq. 4.1, provided the

charges and the inverse screening length are properly renormalized [65, 100]. In this case,

the density dependent renormalized charges and κ∗ are calculated within the framework of

the polydisperse Poisson-Boltzmann cell model (PCM) and the polydisperse renormalized

jellium model (PRJM). The two models further account for the charge regulation (pH,

density and ionic strength) of the silica particles via a one-pK-Stern model adjusted on

independent experimental data. The details of the models are described in the previous

chapter.

Figure 4.1: Size distributions used in the simulations for the HS40 and TM50 silica

nanoparticle dispersions. See text for more details.

The size distributions of the industrially produced HS40 and TM50 silica nanoparticle

dispersions were obtained from a fit of the form factor as obtained from SAXS measure-

ments in very diluted conditions, see Ref. [8, 9], and were set accordingly in the models.

A truncated Gamma distribution with a mean particle radius (R) of 8 nm and a poly-

dispersity of 14% was used for the HS40 dispersion. In the case of the TM50 dispersion,

a Gaussian function with R = 13.75 nm and a polydispersity of 10% was used, hereafter

referred as TM50-a. A model with a smaller polydispersity of 7% was also considered for

the TM50 dispersion, hereafter named TM50-b. Note that the polydispersity is conven-
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tionally defined as the standard deviation in units of R, (σR/R). The size distributions

were discretized into 20 families whose radii vary linearly between 5.5 nm ≤ R ≤ 10.5 nm,

10 nm≤ R ≤ 17.5 nm, 10.725 nm≤ R ≤ 16.725 nm for the HS40, TM50-a and TM50-b

models, respectively. The model size distributions are given in Figure 4.1.

The polydisperse colloidal models described above were solved employing MC simula-

tions in the canonical and isobaric ensembles with use of the Metropolis algorithm[260].

In addition to the usual translation move, swap moves between pairs of randomly se-

lected particles were also employed. The probability of swap moves was set to 0.3. All

the simulations were carried out in a cubic box with periodic boundary conditions and

the minimum image convention. The number of particles, N was always larger than

4000. Typically, the simulations were performed with N = 4025 particles and repeated

with N = 20025 to test for the system size convergence. For some of them N was also

increased to 32200 and 257600.

A spherical cutoff of radius rc was applied to the pair potential. rc was set according

to the interactions between the largest particles such that βu(rc) ≤ 0.1. A tail correction

was applied to the total calculated energy. Simulations were further accelerated with the

use of a cell decomposition[52].

Equilibration of the internal energy of the polydisperse dispersions in the solid states

often necessitated several million MC cycles (a cycle consists of N attempted MC moves).

Production runs lasted for 105 MC cycles.

4.2.2 Effective structure factor

Experimentally, the structure of a colloidal dispersion is generally assessed by small angle

scattering of X-rays (SAXS) or of neutrons (SANS) or by static light scattering (SLS). The

structure of the TM50 and HS40 silica dispersions of interest here was studied using SAXS

by Cabane, Goehring et al.[8, 9]. The measured SAXS intensity can be written as the

product of the form and structure factor, I(q) = P (q)S(q). P (q) is essentially a function

of the shape and size distribution of the particles while S(q) is a function of the spatial

distribution of the particles, i.e. the structure of the particle dispersion. P (q) is measured

in very diluted conditions where S(q) ≈ 1 which then facilitates the determination of S(q)

at any φ. It should be noted that the decomposition of I(q) into P (q) and S(q) is strictly

valid when no particle fraction occurs. Should this not be the case, only an effective S(q)
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can be extracted from I(q). Nonetheless, such measured Seff (q) can still be compared

with simulations. From a theoretical point of view[261], one can write Seff (q) as

Seff (q) =

nC∑
i,j=1

Fi(q)Fj(q)vivj
√
ρiρjSij(q)

nC∑
i=1

[Fi(q)vi]2ρi
. (4.2)

with nC the number of colloidal families, vi the volume of colloids of type i, Fi(q) =

3
[

sin qRi−qRi cos qRi
(qRi)3

]
, ρi the numeric density of colloids of type i, and

Sij = δij +√ρiρj
∫ ∞

0
dr4πr2 sin qr

qr
[gij(r)− 1], (4.3)

where gij(r) is the radial distribution function between colloids of types i and j, and δij
the Kronecker delta. gij(r) is defined as

gij(r) = V

4πr2Nij

dnij(r)
dr , (4.4)

where nij(r) is the average number of pairs (i, j) separated by a distance inferior to r, Nij

is the total number of pairs (i, j) and V is the total volume of the box.

4.2.3 Local bond-order parameters

In simulations, the structure of solids that may be formed and their distinction is most

easily assessed by the mean of local bond-order parameters which are a measure of the

structure of the neighbors of a particle. Their construction[69, 70] begins from the defi-

nition of a (2l+1) dimensional complex vector with the component,

qlm(i) = 1
Nb(i)

Nb(i)∑
j=1

Ylm(rij) (4.5)

where the the sum goes over all the Nb(i) neighbors of particle i. Generally, one uses only

the nearest neighbors in the calculation of qlm(i), the maximum separation between i and

its neighbors is defined by the first peak in the g(r). m is an integer that runs from −l

and +l, Ylm(rij) are spherical harmonics and rij is the position vector from particle i to

particle j. The rotationally invariant local bond-order parameters are then defined by,

ql(i) =

√√√√ 4π
2l + 1

l∑
m=−l

|qlm(i)|2 (4.6)

The typical q4-q6 map calculated by Monte Carlo simulations for the HCY particle

system in five different crystalline structures and in the fluid phase is given in Figure



4.2 Methods 93

(a) (b)

Figure 4.2: Bond order parameters maps from Monte Carlo simulations of HCY particles

in different crystalline phases (bcc, hcp, fcc, MgCu2 Laves and MgZn2 Laves) and in the

fluid phase. More details on the simulations are provided in the text.

4.2(a). The figure illustrates that the q4-q6 region of the fluid completely overlaps with

those of the crystalline phases. However, the two Laves phases considered here are char-

acterized by two q4-q6 regions well separated by distinct q6 values, a property that we will

use to identify them. The low and high q6 regions are the signature of the particles in the

octahedral and tetragonal sites of the Laves, respectively.

The mean local bond order parameters, q4 and q6 introduced by Lechner et al.[262]

will be used, instead, to distinguish the bcc, hcp and fcc phases as well as the bcc, hcp

and fcc crystalline phases from the fluid phase. The q4-q6 regions of these phases are

indeed well separated, see Figure 4.2(b). They are defined as

ql(i) =

√√√√ 4π
2l + 1

l∑
m=−l

|qlm(i)|2 (4.7)

with

qlm(i) = 1
N b(i)

Nb(i))∑
j=1

qlm(j)) (4.8)

where the sum from j = 0 to N b(i) runs over all neighbors of particle i plus the particle

i itself.

The AB2 phase, however, is still not well separated from the fluid phase. To do so,

the following algorithm was used:

1- Preselect all the particles A with q6 < qmax6 (A) and q6 > qmin6 (A)
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2- Preselect all the particles B with q6 > qmin6 (B) and q6 < qmax6 (B)

3- Keep only the preselected particles A with a number of neighboring particles B,

nvois, such that 10 < nvois < 13. Neighbors are defined as all particles B that are within

the radius rcut around a particle A.

4- Reject all particles B not neighbors of a particle A.

The following set of parameters was found to provide reliable results, qmax6 (A) = 0.27,

qmin6 (B) = 0.35 and qmax6 (B) = qmin6 (A) = 0.092. rcut was set equal to the minimum in

the mean g(r) just after the first peak.

4.3 Results

4.3.1 HS40 silica suspensions

(a) g(r) (b) Seff (q)

Figure 4.3: Radial distribution function (g(r), a) and effective structure factor (Seff (q),

b) at volume fractions 16% (black), 20.8% (red), 40% (green) as predicted from MC

simulations of the MCM-CM at pH 9. The MC simulations are performed with 4025

particles. The bulk electrolyte solution contains a 1-1 salt at a ionic strength of 5 mM.

In what follows, we present and discuss two representative quantities which charac-

terize the structure of the silica HS40 suspensions and which are easily accessible exper-

imentally. In Fig. 4.3(a) we show the density evolution of the pair distribution function

g(r), at constant pH (pH=9), as predicted from the MC simulations of the MCM-CM. As

expected, with the increase in the particle volume fraction, the particles get closer and
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the first peak of the g(r) shifts toward lower separation values. This monotonic shift in

g(r) is accompanied by a non-monotonic evolution of the peak height. The same trend

as in g(r) is observed in the effective structure factor, Fig. 4.3(b). With the increase

in the volume fraction, the position of the first peak, (Smaxeff (φ), qmax(φ)), shifts to larger

q values, i.e. smaller r. Simultaneously, Smaxeff (φ) exhibits a non-monotonic variation.

The g(r) and Seff (q) of the dispersion are characteristic of a liquid-like ordered state at

φ = 16%, whereas at φ = 20.8%, they are the signature of a crystal-like ordered state

with the appearance of distinct and narrow peaks in the S(q) and secondary oscillations

in the g(r). The crystal structure will be detailed later, but as an immediate remark

and as is illustrated below, we would like to stress here that the overall “quality” (peak

resolution and magnitude) of the g(r) and S(q) curves in the crystal-like ordered state is

very system size dependent.

Figure 4.4: Maximum of the effective structure factor (Smaxeff ) versus volume fraction φ

as predicted from MC simulations of the MCM-CM at pH 10 (black) and pH 9 (red) and

from the MCM-RJM at pH 10 (green) and pH 9 (blue). Simulations were performed with

4025 particles. The bulk electrolyte solution contained a 1-1 salt at an ionic strength of

5 mM.

The magnitude of Smaxeff , known to reflect the level of structuring in the material is

plotted in Figure 4.4 as a function of the volume fraction at pH values of 9 and 10.

Smaxeff values as predicted from simulations of the MCM in both the PCM and RJM
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approximations are reported for comparison. Whatever the model and pH the same

general behavior is noted. Smaxeff is seen to first increase progressively with φ, this increase

is followed by a discontinuity characterized by a very steep increase, at a position which

depends on the pH and model. Finally, upon further increase in φ, Smaxeff is found to

drop continuously. The discontinuity in Smaxeff strongly suggests a first order fluid to solid

transition while the following drop indicates a slow and continuous transition to a glass

forming liquid as can also be inferred from the broadening of the peaks in the Seff (q)

and the almost liquid-like character of the g(r) curve at φ = 40% seen in Fig. 4.3. These

results are in full agreement with the experimental observations on HS40 silica dispersions

at equilibrium[8] and under rapid drying[7] conditions. As expected, when increasing the

repulsive interactions between the silica particles, i.e. when increasing the pH from 9 to 10,

the fluid to solid transition is found to occur at lower φ. This also explains the quantitative

difference between the MCM-CM and the MCM-RJM. As we have previously shown, see

Chapter 3, the MCM-RJM results in weaker interparticle interactions and lower osmotic

pressures than its CM counterpart. The questions raised are thus (i) which of the two

models gives the best description of the experimental data? and (ii) are either of the two

MCMmodels used in the simple but pragmatic MC simulation method employed here able

to predict qualitatively and quantitatively the colloid crystals observed experimentally?

To answer these questions we now compare the experimental and simulated Smaxeff . Fig.

4.5 compares several experimental Seff (q) in the fluid and glass forming liquid regions

with those predicted by the simulations within the two MCM approximations. As can

be seen the MCM-CM provides a much better description of the Seff (q) than the MCM-

RJM. Although not perfect, very good agreement between the experimental and simulated

Seff (q) is obtained when the MCM-CM is used, especially given the model approximations

and the experimental uncertainties concerning particle size distribution, particle volume

fraction and the normalization procedure to extract the experimental Seff (q).

This becomes even clearer when one compares the measured Seff (q) close to the fluid

to solid transition, φ = 21%, with that predicted from the MCM-CM simulations of a large

system composed of more than 250 000 particles, see Figure 4.6(a). The predicted curve

obtained using the MCM-RJM is also shown for comparison. These results confirm that

the MCM-RJM fails to describe accurately the interparticle interactions of polydisperse

suspensions of charged colloids at a finite electrolyte concentration. It should be recalled
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Figure 4.5: Experimental (solid lines) and simulated (dashed lines) effective structure

factor Seff (q) at three particle volume fractions (from left to right): 8%, 16%, 29%. The

simulation predictions are obtained using the MCM derived from both the (a) PCM and

(b) PRJM approximations. Simulations are performed with 4025 particles in the same

equilibrium conditions as in the experiments, that is pH 9 and a bulk ionic strength of 5

mM. The simulation curves at pH 10 are also plotted for comparison (dotted lines).
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Figure 4.6: Effective structure factor Seff (q) of the HS40 silica dispersion at φ = 21% in

equilibrium with a bulk solution at pH 9 and a ionic strength of 5 mM. The curves are

shifted along the y-axis for clarity (a) Experimentally determined Seff , Exp, in comparison

with the predictions of the MCM simulations as obtained within the MCM-CM, and

MCM-RJM, approximations. (b) System size dependence of Seff as obtained from the

MCM simulations within the PCM approximation.
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here that the simulations are essentially parameter free and use only experimentally ac-

cessible variables as inputs, namely the measured pH, ionic strength and size distribution.

The simulations of the MCM-CM, on the other hand, provide an impressive description of

the effective structure factor of the HS40 silica dispersion. In particular, the simulations

successfully predict the coexistence of a bcc phase with a Laves AB2 phase. Indeed, the

characteristic (110) (200) (211) (220) (311) peak positions of the bcc crystal phase are

very well reproduced. In addition to the bcc peak, many sharp peaks can also be seen,

their positions again in very good agreement with the experimental Seff (q). Their posi-

tions and relative intensities have been identified as those of crystals of a Laves MgZn2

phase with a compact hexagonal (P63/mmc) symmetry, see Ref. [8]. Unfortunately, de-

spite the large number of colloids employed in the simulation (N > 250000), the system

size is still too small to reveal all the characteristic peaks of the Laves MgZn2 phase seen

in the SAXS Seff (q), in particular but not only, the triplet at low q values.

(a) (b)

Figure 4.7: Bond order parameters of the HS40 silica dispersion in comparison with that

of “ideal” crystalline bcc, MgZn2 Laves and MgCu2 Laves phases as well as of the fluid

phase. The simulation conditions are the same as in Fig. 4.9 except for the fluid phase

for which φ was set to 18%. (a) q4 (b) q6. The “ideal” AB2 phases were constructed from

the known crystallographic structures using a binary distribution of charged particles

with radii 7.3 and 9.3 nm for the small (B) and large (A) particles in the tetragonal and

octahedral sites, respectively. The “ideal” bcc phase was constructed in the same manner

but with monodisperse particles of radius 8 nm. The bond order parameters of these ideal

phases were obtained after their thermalization.
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Although Seff (q) or I(q) are natural quantities to compare with experiments, a much

more appropriate choice to recognize and identify the crystalline phases in a simulation is

the use of a combination of bond-order parameters based on spherical harmonics, see e.g.

Ref. [263]. The latter are calculated at the level of individual particles and are sensitive to

the relative positions of their first neighbors. They typically distinguish particles with a

liquid-like or a crystal-like order. A careful analysis further specifies the type of crystalline

phase. For these reasons, local bond order parameters have been extensively employed in

the literature to distinguish between the solid phases of the bcc, fcc and hcp crystal-like

order. The case of the Laves phases turns out to be more complicated, as their typical bond

order parameters are confounded with those of the fluid phase, see e.g. Figures 4.2 and

4.7. The typical distributions of the q6 and q4 bond order parameters of the Laves phases,

along with those of the fluid phase and bcc phase are shown in Fig. 4.7. The Laves q6

and q4 completely overlap with those of the liquid. Nevertheless, the AB2 q6 distribution

is bimodal. The first peak, on the left, results from the large particle in the octahedral

sites (A), while the second is due to the small particles in the tetragonal sites (B). The

particles belonging to the Laves phase can be suitably filtered out from the fluid phase by

taking advantage of this property along with the distinct and characteristic coordination

number of the particles within the octahedral and tetragonal sites, see Sect. 4.2 for more

details. In all cases, the trimodal q6 distribution of the HS40 silica dispersion at φ = 21%

confirms the coexistence of a bcc and AB2 phase.

Another difficulty, is the very close proximity of the hexagonal and cubic variant of

the Laves phases, that is the compact hexagonal (P63/mmc) MgZn2 and compact cubic

(Fd3m) MgCu2 structures, in terms of both structure and energy, which makes them hard

to distinguish. A consequence is the very subtle difference between the two Laves phases

in the q4 and q6 distributions, as seen in Fig. 4.7. This is also clearly illustrated in

Fig. 4.8(a) where the mean radial distribution functions between the large particles in

the octahedral sites of the pure and thermalized MgZn2 and MgCu2 Laves phases are

compared. That of the simulated HS40 silica suspension is also shown. Differences in the

g(r) between the two Laves phases appear only from the third neighbors and qualitative

change only from the fourth neighbors. The distributions of the bond order parameters for

the two Laves phases calculated with the third and fourth neighbors still show substantial

overlap, as illustrated in Figure 4.8(b) for q4. In any case, all these quantities confirm the
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(a) (b)

Figure 4.8: (a) Simulated radial distribution function between the particles in the octahe-

dral sites (large particles) of the “ideal” Laves MgCu2 (full red line) and MgZn2 (dashed

red line) phases in comparison with that of the HS40 silica dispersion (full black line).

All the simulations are performed with the MCM-CM with 4025 colloidal particles at

φ = 20.8% in equilibrium with a bulk solution at pH 9 and a ionic strength of 5 mM. The

“ideal” AB2 phases were constructed from the known crystallographic structures using a

binary distribution of charged particles with radii 7.3 and 9.3 nm for the small (B) and

large (A) particles in the tetragonal and octahedral sites, respectively. (b) q4 distribution

calculated with the third and fourth neighbors for the “ideal” Laves MgZn2 and MgCu2

phases in comparison with that of the Laves phase formed in the simulated HS40 silica

dispersion. The simulation conditions are the same as above.
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formation of a Laves phase of compact hexagonal structure (MgZn2) in the model HS40

silica dispersion, in good agreement with the experiments.

Figure 4.9: Snapshot of the simulated HS40 silica dispersion at φ = 21% in equilibrium

with a bulk solution at pH 9 and an ionic strength of 5 mM. The simulations were

performed with the MCM-CM. The number of colloidal particles is set at N = 257600.

The colors of the particles are set according to their crystalline order. That is, the

particles in the bcc crystal-like order are colored in red and the particles in the octahedral

and tetragonal sites of the MgZn2 phase are represented in green and purple, respectively.

For clarity, the liquid-like ordered particles are not represented. Note that these latter

are principally found at the interfaces between the crystallites.

The simulation snapshot at φ = 21% represented in Fig. 4.9 makes use of the particle

filtering tools described above. A large and almost spherical bcc crystal is found to coexist

with a polycrystalline MgZn2 phase. The simulation box is devoided of large pockets of

liquid-like ordered particles, the latter being found only in the interfacial regions between

the crystals. This constitutes one of the major differences with the experiments, as indi-
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cated in Fig. 4.5 by the oscillating background in the experimental Seff (q). However, the

Laves phase was observed in experiments to grow very slowly and could only be detected

after several days of equilibration. The experimental samples might not be in their final

equilibrium state.

Figure 4.10: Simulated relative fractions of particles in liquid-like (blue) or bcc (black)

or MgZn2 Laves (red) crystal-like order in the HS40 silica dispersion as a function of the

particle volume fraction. The simulations were performed in the MCM-CM approximation

at two different system sizes, N = 20125 (solid lines) and N = 4025 (dotted lines).

Figure 4.10 presents the evolution with the particle volume fraction of the phase

composition of the HS40 silica dispersion as predicted by the MCM-CM simulations for

two different system sizes (N = 4025 and N = 20 125). Interestingly, the fluid to solid

phase transition is found to depend only weakly on the system size, indicating that the

interface free energy between the Laves phase and the fluid is rather small. This may also

explain why the Laves phase is always found to form first in the course of the simulation.

On the other hand, the formation of the bcc phase is found to depend on both the

system size and the configuration of the polycrystalline state of the MgZn2 phase as

indicated by the rather large fluctuations in the bcc content of the simulated systems.

The simulation range of particle volume fractions of 0.20 < φ < 0.22 for the bcc-Laves

coexistence corresponds well to the experimental range of 0.21 < φ < 0.24[8]. Contrary
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to the simulation predictions, however, the formation of a bcc phase alone in coexistence

with a liquid phase was also observed in a small region of φ, 0.18 < φ < 0.21, preceding

that of the bcc-Laves phase coexistence[8]. This discrepancy could be due to a free energy

barrier between the solid bcc phase and fluid phase too large for the nucleation to occur

in the simulations or, as will be seen later, to the use of a slightly too large polydispersity.

Figure 4.11: Particle size distributions in the bcc and MgZn2 Laves phases as predicted

by the MCM-CM simulations in the same conditions as in Fig. 4.9. The MCM simulations

were performed at four different system sizes, N = 4025 (dotted lines), N = 20125 (dotted

dashed lines), N = 32200 (dashed lines) and N = 257600 (solid lines). The parent size

distribution (blue) and the mean particle size distributions as determined from the SAXS

analysis (vertical lines) of the HS40 silica dispersion at φ = 24% are also plotted for

comparison. For clarity the size distribution of particles with a liquid-like order is omitted.

The mean particle size (7.94 nm) of this latter is found to be marginally smaller than that

of the parent size distribution (8 nm).

The size distributions of particles belonging to the bcc and MgZn2 phases as predicted

by the MCM-CM simulations at φ = 21% are represented in Fig. 4.11, and are compared

with the mean particle sizes determined from SAXS analysis of the crystallized HS40 silica

dispersions at φ = 24%, see Ref. [8]. In the simulations, the particle size distribution of

the Laves phase is found to depend only weakly on the system size, i.e. N , contrary to
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what is observed in the bcc phase. As discussed earlier for Fig. 4.10, the proportion of

the bcc phase, as it is formed after the Laves phase, is found to be sensitive to the specific

configuration (size and position) of the MgZn2 crystallites when N / 30000. However,

the mean particle size of each phase, including the bcc phase, is insensitive to N for

N > 4000. In the simulation, the average radii of 7.29, 8.03, and 9.40 nm for particles

in the Laves tetragonal, bcc, and Laves octahedral sites, respectively, agree well with the

corresponding experimental values of 7.3, 8.3, and 9.1 nm.
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Figure 4.12: Equations of state of the HS40 silica dispersion equilibrated with a bulk

solution at pH 9 and an ionic strength of 5 mM as obtained from osmotic stress measure-

ments (experiments) and MCM-CM simulations. The osmotic pressure of the small ions

as calculated from the PCM is also given for comparison, see Chapter 3.

Finally, the predicted and experimentally determined equations of state of the HS40

silica dispersion are presented in Fig. 4.12. The simulated EOS is calculated by employing

the analytical correction term (volume term) derived by Boon et al.[164], which, when

added to the usual virial pressure of the MCM, PMCM , was shown to provide a very good

approximation of the EOS calculated at the level of the full primitive model. The EOS

defined as such reads,

ΠEOS = PMCM + kT
(κ∗)2

8πlB

(
1−

(
κ

κ∗

)2
)2

(4.9)

The first term is calculated in the course of the simulation following the virial theorem;
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the second term is analytically obtained from the effective inverse screening length of the

suspension, κ∗, as determined from the PCM from the known inverse screening length of

the bulk solution, κ, see Chapter 3. The EOS calculated by the PCM, which neglects the

colloid-colloid correlations and thus underestimates the experimental results, is also given

for comparison. Again, very good agreement is obtained, showing that the MCM-CM is

able to accurately predict not only the structure but also the thermodynamic properties

of HS40 silica dispersions.

4.3.2 TM50 silica suspensions

Figure 4.13 gives the predicted phase composition for the TM50-a silica particle disper-

sions equilibrated in a bulk solution at pH 9 and containing either 0.5 or 5 mM of 1-1

salt as obtained from the MCM-CM simulations. It is instructive here to compare these

results with those of the HS40 dispersions for the same ionic strength (5 mM); compare

Figures 4.13(b) and 4.10. We recall that the TM50-a dispersions have a larger R (13.75

nm), i.e. interactions at the same ψ are on average greater and of longer range, and a

much smaller polydispersity (10%) as compared to the HS40 dispersions (8 nm, 14%). As

expected, the smaller polydispersity of the TM50-a results in a shift of the freezing transi-

tion to a lower volume fraction. Quite unexpectedly however, the φ interval in which the

crystalline phases form is found to be much more limited, 0.18 / φ / 0.24 as compared

to 0.2 / φ / 0.4 for the HS40. In other words, a lower polydispersity does not necessar-

ily result in a better solidification! A more detailed inspection of the phase composition

given in Figure 4.13(b) provides some explanations for this trend. In particular, the lower

polydispersity of the TM50-a still allows for the formation of a Laves MgZn2 phase but in

a much lower proportion. At the same time, it favors the formation of a bcc phase on the

low end of the solid region. However, it is still too large to stabilize the bcc phase when

the volume fraction increases. Indeed, the bcc phase is rapidly found to be destabilized

at the expense of a liquid phase. In other terms, the level of polydispersity of the TM50-a

is favorable neither to the bcc phase (except in a small region of low φ values and ionic

strength), nor to the Laves phase and even less so to the fcc phase, see below. Upon

further increase in the volume fraction, the solid phases melt into a glass forming liquid.

Note that this continuous transition is as rapid as that of HS40 dispersions. A simulation

snapshot given in Figure 4.13(c) illustrates the very small proportion of the solid phases
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(a) (b)

(c)

Figure 4.13: Phase composition of the TM50-a dispersions at pH 9 as predicted from MC

simulations of the MCM-CM. The ionic strength is set to (a) 0.5 mM and (b) 5 mM.

The simulations are performed with both N = 4010 (dotted lines) and N = 20010 (full

symbols). (c) Simulation snapshot of an equilibrated TM50-a dispersion at φ = 21% in a

bulk solution containing 5 mM of 1-1 salt at pH 9. Particles in the bcc crystal-like order

and in the tetragonal sites of the MgZn2 phase are colored in red and green, respectively.

Particles in liquid-like order and in the Laves tetragonal sites are not shown for clarity.
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in the coexistence region of the Laves, bcc and fluid phases. The Laves MgZn2 phase is

only found in the form of small clusters, a finding which contrasts with the case of the

HS40 dispersions.

(a) (b)

Figure 4.14: (a) Phase diagram presented in the φ - ionic strength plane of the TM50-a

dispersion determined from MC simulations of the MCM-CM. The symbols refer to the

analysis of the phase composition as obtained from the MCM-CM simulations in the NVT

simulations. Lines give the approximate boundaries of the different phases estimated from

these simulation analysis. (b) Phase diagram of a monodisperse silica particle suspension

with R = RTM50 in the same equilibrium conditions as above. Symbols: calculated phase

coexistence from the point Yukawa phase diagram of Hamaguchi, Farouki, and Dubin[232].

Lines: guides to the eyes.

One other striking difference with the HS40 dispersions is the complete crystallization

of the dispersion in a bcc phase on the low end of the freezing transition which preempts

the formation of the Laves phase. This region is further found to enlarge and to shift to

lower values of φ with the increase in the magnitude of the colloidal interaction, that is

when the ionic strength of the equilibrium solution decreases, as shown in Figure 4.13(a).

When instead the ionic strength increases to over 5 mM, the region of the bcc phase

shrinks and is incorporated into that of the fluid phase. This is best seen in the ap-

proximate phase diagram plotted in Figure 4.14. Note that a determination of the exact

location of the phase boundaries and coexistence regions would have necessitated inten-

sive calculations of phase free energies which are beyond the scope of the present work.

However, the simulation tools to do so are yet to be defined and designed for systems such
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as ours whose interactions are density dependent, see Ref. [264] and discussion section

below. A comparison with the phase diagram of the monodisperse suspensions, Figure

4.14(b), with the same R in the same equilibrium conditions shows, as expected, that

polydispersity enhances the stability of the fluid phase, see e.g. the shift in the freezing

transition. Even more interestingly, polydispersity destabilizes almost completely the fcc

phase, that is the equilibrium phase in the monodisperse case. Qualitatively, the same

results have been obtained and discussed at some length by Botet et al.[258] using lattice

MC simulations in the Gibbs ensemble allowing these authors to study the equilibrium

distribution of HCY particles between two predefined and different crystal lattices. Their

simulations clearly show that when the size polydispersity is increased, the initially stable

fcc phase is progressively destabilized at the expense of the bcc phase. This is primarily

an entropic effect as the number of possible configurations in an fcc crystal lattice, i.e.

without particle overlaps, drops faster than in a bcc lattice and eventually becomes lower.

When the particles in the simulations are allowed to move freely and are not artificially

constrained to fixed lattice positions, the entropic effect becomes more pronounced. The

free volume being higher in the bcc phase than in the fcc phase, one consequence of the

lattice simulations is thus to overestimate the stability of the fcc phase with respect to

the bcc phase, see e.g. Ref. [8].

When the polydispersity is further decreased to 7% the formation of the Laves phase is

completely inhibited. This is shown in Figure 4.15(a), which gives the phase composition

of the TM50-b dispersions in the same equilibrium conditions as the HS40 dispersions

and TM50-a dispersions in Figure 4.13(b). Here, a fcc phase followed by a bcc phase,

both in coexistence with an HCP phase, are found at the freezing transition. As expected

again, the freezing transition is found at lower φ values as compared to the two preceding

dispersions and at larger values than in the monodisperse case. As with the monodis-

perse case, an fcc phase, although in coexistence with an hcp phase, is found among the

equilibrium crystalline phases at the start of the freezing transition. Further inside the

freezing transition, at φ = 19.5%, an fcc-bcc phase transition appears. Upon further

increase in the volume fraction, the crystalline phases eventually melt all together into a

glass forming liquid.

Two representative snapshots of the TM50-b dispersions, equilibrated with a solution

containing 5 mM of salt and at pH 9, illustrating the phase coexistence in the dominant
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(a)

(b) (c)

Figure 4.15: (a) Phase composition of the TM50-b dispersions at pH 9 as predicted from

MC simulations of the MCM-CM. The ionic strength is set to 5 mM. The simulations

are performed with N = 20010. (b-c) Simulation snapshots at (b) φ = 0.185 and (c)

φ = 0.205 of the TM50-b dispersion equilibrated with a bulk solution containing 5 mM of

a 1-1 salt at pH 9. The same color code as in (a) is used, that is black for the bcc phase,

red for the hcp phase, green for fcc phase and blue for the fluid phase.
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equilibrium domain of the fcc phase (φ = 18.5%) and just after the fcc-bcc phase transition

(φ = 20.5%) are shown in Figures 4.15(b) and 4.15(c). A stratified structure is observed

when the hcp and fcc crystalline phases coexist. On the other hand, an intermixed

structure between the hcp and bcc phase is found at higher volume fraction. This finding

suggests a spinodal decomposition of the dispersion, or at least that the interfacial free

energy between the two phases is very low.

Figure 4.16: Simulated particle size distributions in the fcc (green), hcp (red) and bcc

(black) crystalline phases in comparison with the parent size distribution (blue) for the

TM50-b silica dispersion at φ = 20.5% and in equilibrium with a bulk solution containing

5 mM of 1-1 salt at pH 9. The vertical lines give the mean particle size of each phases.

The MC simulations were performed with 20010 particles using the MCM-CM.

Figure 4.16 represents the particle population of the different phases at the hcp-fcc-bcc

phase coexistence. The bcc phase is more tolerant to variations in particle size than the fcc

phase, as can be seen from the somewhat larger polydispersity of its particle distribution.

At the same time, the bcc phase tends to incorporate on average smaller particles than

the fcc phase. On the contrary, the mean radius of the particles in the hcp phase is the

same as in the parent particle distribution. Particle segregation remains limited however.

Figure 4.17(a) shows the approximate phase diagram from MCM-CM simulations of

the TM50-b dispersions at pH 9 in the volume fraction - ionic strength representation.
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(a) (b)

Figure 4.17: Simulated (a) and experimental (b) phase diagrams of the TM50 silica dis-

persions equilibrated at pH 9 in volume fraction - ionic strength (or inverse Debye length)

representation. The simulation results are for the TM50-b. They are produced with MC

simulations in the NVT ensemble of the MCM-CM with N = 20010. The experimen-

tal phase diagram is from Kiatkirakajorn et al.[9]. It was obtained after two month of

equilibration from synchrotron based small x-ray scattering (SAXS) measurements. The

presence of an hcp or rhcp phase was also systematically observed in coexistence with the

other solid phases but not reported in the experimental phase diagram.
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When the ionic strength of the bulk solution is increased to more than 5 mM, the inversion

of the appearance of the fcc-bcc phases is preserved. The region of stability of the bcc

phase is, however, progressively reduced and shifted to higher φ values. On the contrary,

when the ionic strength is decreased to less than 5 mM, the solid region is dominated

by the bcc phase. A comparison of the phase diagrams of the TM50-b and TM50-a

dispersions shows that the solid – (glass forming liquid) transition occurs at lower φ as

the size polydispersity decreases. This is all the more true when the ionic strength is low.

The re-entrant melting is further found to be much sharper when the polydispersity of

the dispersion is smaller; compare Figures 4.15(a) and 4.10. Taken together, these results

confirm the greater tolerance of the Laves phase in regard to size distribution than the

bcc phase.

Figure 4.17(b) presents the experimental phase diagram of the TM50 silica dispersions

measured by Kiatkirakajorn et al.[9] in the same equilibrium conditions of pH and ionic

strengths. With the exception of the lowest salt concentration studied (0.5 mM), the ex-

perimental phase diagram is found to compare very satisfactorily with the simulated one.

In particular, the freezing and re-entrant melting transitions are in very good agreement.

In addition, the predicted destabilization of the fcc phase in favor of the bcc phase upon

increase in the volume fraction is confirmed. The discrepancy at low ionic strength may

be due to the experimental difficulty to keep a low ionic strength while maintaining a high

pH. It may also be due to the shielding of the effective pair potential [265, 234] which has

been shown to be significant at small ionic strengths.

Figure 4.18, finally, compares the simulation predictions with the measured equations

of state of the TM50 silica dispersions for varying ionic strengths and at a set pH of 9. As

can be seen, the predicted osmotic pressures from the MCM simulations (and calculated

using Eq. 4.9) are in very good agreement with their experimental counterparts. In

particular, the close agreement is maintained in the regime of high ionic strength where

the calculated osmotic pressures from the PCM alone is known and shown here, Figure

4.18, to underestimate experimental values, as it neglects the contribution of the colloid

correlations.
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Figure 4.18: Comparison of the experimental (symbols) and simulated (lines) equations

of state of the TM50 silica dispersion equilibrated in a bulk solution at pH 9 containing

various amounts of 1-1 salt. MCM-MC: Osmotic pressures calculated from Eq. 4.9 using

MC simulations of the MCM-CM. PCM: Osmotic pressure calculated from the polydis-

perse cell model, see Chapter 3. Symbols: experimental data.

4.3.3 Discussion and conclusion

The above results call for further discussion on a number of points. We first discuss

solid phase tolerance to particle size polydispersity, then turn to the re-entrant melting

transition and comment on the limitations of the model and simulation used and finally

offer some general conclusions.

One of the main interests of the present study is to question the generally accepted idea

that the smaller the size polydispersity, the better a colloidal dispersion may crystallize.

While the increased stability of the fluid phase and the corresponding shift of the freezing

transition to higher φ with increased size polydispersity is not put into question, our

results strongly suggest that this shift can be more than simply compensated by the

concomitant shift toward the higher φ of the re-entrant melting transition. In other

words, solid crystalline phases can form in a larger φ gap when polydispersity increases.

Obviously, this is not true in the limit of monodispersity where no re-entrant melting

transition is observed. At the same time in experiments, particle dispersions always

present some polydispersity. Interestingly, a larger region of crystalline phases is found in
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colloidal suspensions with rather large size polydispersity, typically here higher than 10%,

in which solid phases with superlattice structures made of small and large particles, here

Laves phases, are stable. The AB2 phase is further shown to persist at high pressures, up

to 100 kPa in the case of the HS40 silica particle suspensions, where the solid phases with

unimodal compositions found in the TM50 silica dispersions had long disappeared. On

the contrary, when the polydispersity is decreased, the AB2 phase formation is limited

and eventually completely inhibited. The bcc phase, instead, is found to stabilize. Due

to its lower packing volume density and lower tolerance to size polydispersity however, it

is marked by a rather sudden melting upon increase in the volume fraction. The much

higher tolerance to size polydispersity of the AB2 phase can be explained by the large

gain in mixing entropy associated with its bimodal particle composition as compared, for

example, to a fractionated system in two coexisting, but different, bcc phases composed

of the same sub-populations of particles (A and B) as the AB2 phase.

The concomitance in the position of the re-entrant melting transition between the sim-

ulations and the experiments seen in the TM50 silica nanoparticle dispersions is somewhat

surprising and calls for further investigation. This concomitance may suggest that the

glass forming liquid formed is thermodynamically stable or that its metastability state is

very stable. Whatever the response, its formation is favored by the interaction potential

asymmetry stemming from the pronounced charge polydispersity of the titrating silica

nanoparticles. In addition, the glass forming liquids found here present strong similarities

with those found in suspensions of highly soft particles, e.g microgels. Besides the fact

that they also form at rather moderate volume fractions from the melting of solid phases,

they are marked by the absence of a specific local geometry (e.g. an icosahedral structure)

and by a rather homogeneous structure. All these preliminary results suggest that the

glass forming liquid found in charged polydisperse silica particle suspensions is a good

glass former and may constitute an excellent experimental and theoretical model to study

the glassy state and to test the associated theories.

Despite the surprisingly good predictive capacity of the MCM-CM and associated MC

simulations, they can and should be improved still further. As we have seen, the model

seems to give a rather poor description of the silica suspensions at the lowest ionic strength.

An alternative might be the PRJM, also in the mean-field Poisson-Boltzmann approxima-

tion. Another alternative might be the corresponding models (CM and RJM) in the full
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primitive model. Although much more computer demanding, the associated simulations

can be automatized and the computing time should continue to decline significantly with

technological developments in processor and hardware. The charge polydispersity driven

by the charge regulation is in our opinion one of the keys of the success of the present

model. However, the charge regulation is accounted for at a very “mean-field” level. In-

deed, the charge on a particle should in principle not respond to the “mean” interactions

it undergoes (here the mean density and mean composition of the suspension) but to the

specific interactions to which it is exposed in each of its configurations with its neighbors.

We pragmatically used NVT and NPT MC simulations which combined with the very

efficient swap move, allow for the thermalization of polydisperse colloidal suspensions

up to very high φ. Although pragmatic and efficient, the MC simulations employed are

limited in two senses: (i) the exact phase boundaries and coexistence regions of the phase

diagram are not accessible; (ii) the fractionation, relaxation and density fluctuation of the

system may be limited due to finite size and interfacial effects[177]. In the specific case

of interest here, after noting that the fluid composition and the size polydispersity of the

different phases formed are rather insensitive to the volume fraction, an approximate phase

diagram could be obtained by thermodynamic integration combined with the corrected

equation of state, Eq. 4.9, derived by Boon et al.[164]. However, this method would be

inoperative in determining the truly thermodynamic phase behavior in the region of the

observed glass forming liquid. In principle, the semi-grand isobaric ensemble developed

by Wilding et al.[177] could solve these issues. This method is nonetheless complicated

by the density and composition dependence of the effective pair potentials. This is not

only a question of technical difficulties. Indeed, in the thermodynamic limit (infinite

phases), relevant when one is interested in computing/determining a phase diagram, each

phase has its own particle size distribution (composition) and density. The effective

pair potentials would thus need to be computed for each specific density and composition

visited during the course of the simulations, not to mention the required (by the ensemble)

distribution of chemical potentials that must be adjusted to the original particle size

distribution! Obviously, one can always disregard this problem, as has been done in the

present work, and it seems to be a good approximation. However, when large fractionation

is at work, typically at high φ, this approximation might break down and again lead to an

approximate or simply a false phase diagram. In any case, we hope that these results and
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discussions will motivate further experimental and theoretical investigations to contribute

to deciphering these open scientific issues.

To conclude, Monte Carlo simulations of two multi-component models were deployed

and confronted to the structures and equations of state measured for aqueous suspensions

of two different sets of polydisperse silica nanoparticles (Ludox HS40 and Ludox TM50)

in a large range of equilibrium conditions. The MCMs were developed in the framework

of the mean-field Poisson-Boltzmann equation approximation based on a generalization of

either the cell model or the renormalized jellium model to account for the polydispersity

and charge regulation of the colloids, see Chapter 3. The MC simulations of the MCMs

models were performed in the NVT and NPT ensembles which, combined to a swap

move, efficiently equilibrate charged polydisperse particle suspensions up to high volume

fractions. The MCM-CM simulations were found to predict very satisfactorily the phase

compositions and their locations in the experimental phase diagrams. This includes, but

is not limited to, the fractionation of the HS40 silica particle suspensions in a MgZn2 Laves

phase in coexistence with a bcc phase and the re-entrant melting transition in the TM50

silica particle suspensions. The MCM-CM simulations predict the equations of state for

the two silica dispersions equally well. The MCM-RJM simulations are found, on the

other hand, to be unable to reproduce the experimental data. In good agreement with

the experimental data, a glass forming liquid is predicted by the MCM-CM simulations at

rather modest φ. Preliminary results suggest that it is a good glass former with a rather

homogeneous structure, properties that will be studied in more detail in a forthcoming

study.
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My PhD studies delved into the impact of density, electrostatic coupling and polydisper-

sity on the colloidal interactions and the structural properties of charged colloidal disper-

sions. To address these questions, I developed and used simulation techniques based on

Monte Carlo simulations and mean field calculations. The successful strategy has been

to use a hierarchical multiscale approach which consists in calculating the effective pair

potential of interaction between the colloids at a low enough scale, to include the main

physics and chemistry of the system, and to inject them in a colloid-only simulation. Al-

though not a new strategy, the calculation of the w∗(r) turned out to be far from trivial

in the context of aqueous dispersions of polydisperse and titratable colloids or of con-

centrated and highly coupled systems. I developed and tested three methods at different

level of approximations.

In Chapter 2, I developed a first method based on the calculation of pair potential

of mean force between two colloids in a cubic box with periodic boundary conditions.

The method takes advantage of the fact that the main contribution of the many-body

interactions, occurring in concentrated dispersions of charged colloids, is due to the mean

increase in counterion concentration and corresponding depletion in co-ions. The variation

in colloid density is then simply mimicked by an appropriate change in the concentration

of counterions neutralized by an homogeneous background charge. The method was tested

at the level of the primitive model. A good description of the structure of the colloidal

dispersion was obtained in the low and high coupling regimes, even at high colloid densi-

ties. The method can easily be used in popular molecular simulation program packages,

extended to non-spherical and generalized to polydisperse systems. In the latter case,

however, the method can be very time consuming.

In that respect, the mean field version of the cell and renormalized jellium models,

CM and RJM, sounded more practicable at least for not too highly coupled systems,
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as developed in Chapter 3. Indeed, when this later condition is met, the effective pair

potential is known to be of the Yukawa form but with renormalized parameters which,

in the monodisperse case, can be easily extracted from the CM and RJM. Inspired by

the seminal work of Torres et al.[101] and taking advantage of the quadratic variation

of charge with the particle radius, I developed a code based on both the CM and RJM

methods that enables the calculation of w∗(r) for charged colloidal systems with contin-

uous size distribution. The two methods were further generalized to include the charge

regulation of titratable colloids using a 1-pK Stern model. When adjusted with indepen-

dent measurements, like e.g. surface charge titration by potentiometric measurement, a

virtue of such developed methods is to be parameter free. A comparison of the measured

and calculated equation of state on various commercially available silica dispersions gave

some first indications that the CM based method is more accurate than that based on

the RJM for systems with finite salt concentrations.

In Chapter 4, simulation results of the colloid-only multi-component model (MCM),

based on the polydisperse CM and RJM methods, are compared with the structures and

equations of state measured by our collaborators (Joaquim Li, Pree-Cha Kiatkirakajorn,

Lucas Goehring and Bernard Cabane) for aqueous suspensions of two different sets of

polydisperse silica nanoparticles (Ludox HS40 and Ludox TM50) in a large range of

equilibrium conditions. The simulations were performed with a MC technique in the NVT

and NPT ensembles which, combined with a swap move, efficiently equilibrates charged

polydisperse particle suspensions up to high volume fractions. The MCM-RJM is found

to be unable to reproduce the experimental data. On contrary, the MCM-CM is shown

to predict very well the equation of state of the two dispersions. In addition, the MCM-

CM simulations are found to predict very satisfactorily the phase compositions of the

silica suspensions and their locations in the experimental phase diagrams. This includes

but is not limited to an MgZn2 Laves - bcc phase coexistence and a re-entrant melting

phenomenon, in good agreement with the experimental data published elsewhere[8]. It

should be mentioned that repeated SAXS experiments on different samples of the same

dispersion (Ludox HS40) revealed also the presence of an AB13 phase[9], so far unpredicted

by our simulations. However, some questions remain on the uncertainty and accuracy of

the numerical method used to extract the size distribution of the recorded SAXS spectra.

The results obtained provide some answers to the questions raised in the introduc-



119

tion, see Chapter 1. 1) My simulation results give some clear evidence that short range

attractive forces and resulting aggregation of colloids are not the source of the contin-

uous amorphization of the charged polydisperse colloidal dispersions at high densities,

i.e. decrease in the short range order as the colloid density increases. In contrast, they

suggest the formation of a glass forming liquid favored by the large asymmetry in the

repulsive interactions stemming from the polydispersity. This is supported by the sur-

prising concomitance of the re-entrant melting transition between the simulations and the

experiments on the silica nanoparticle dispersions. These results call for further investi-

gations.

2) We have shown that the bcc solid phase is stabilized by polydispersity instead of

the more compact fcc solid phase, in good agreement with experiments. For relatively

small polydispersities, this gives rise to an inversion in the order of appearance of the

solid phases compared to the monodisperse case. That is, a fcc solid phase is found to

form first followed by a bcc solid phase as the colloid density is increased. For larger

polydispersities up to 14%, colloidal crystals with fcc structure disappear all together in

favor with those of bcc and MgZn2 structure. In future studies it would be interesting to

investigate larger polydispersities as well as the effect of the distribution shape.

3) The overall good agreement obtained between the simulated and experimental re-

sults on two different silica dispersions gives some confidence in the pragmatic simulation

strategy used and its predictive capacity as well as in the soundness of the models and

numerical methods developed. As discussed in the last chapter, the simulation approach

presents a certain number of limitations which I hope will motivate further developments.

More generally, I hope that this work will motivate further experimental and theoretical

investigations to contribute to deciphering these fascinating systems.
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