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Abstract 

Data envelopment analysis (DEA) cross-efficiency evaluation has been widely 

applied for efficiency evaluation and ranking of decision-making units (DMUs). 

However, two issues still need to be addressed: non-uniqueness of optimal weights 

attached to the inputs and outputs and non-Pareto optimality of the evaluation results. 

This thesis proposes alternative methods to address these issues. 

We first point out that the cross-efficiency targets for the DMUs in the traditional 

secondary goal models are not always feasible. We then give a model which can always 

provide feasible cross-efficiency targets for all the DMUs. New benevolent and 

aggressive secondary goal models and a neutral model are proposed. A numerical 

example is further used to compare the proposed models with the previous ones. 

Then, we present a DEA cross-efficiency evaluation approach based on Pareto 

improvement. This approach contains two models and an algorithm. The models are 

used to estimate whether a given set of cross-efficiency scores is Pareto optimal and to 

improve the cross-efficiency scores if possible, respectively. The algorithm is used to 

generate a set of Pareto-optimal cross-efficiency scores for the DMUs. The proposed 

approach is finally applied for R&D project selection and compared with the traditional 

approaches. 

Additionally, we give a cross-bargaining game DEA cross-efficiency evaluation 

approach which addresses both the issues mentioned above. A cross-bargaining game 

model is proposed to simulate the bargaining between each pair of DMUs among the 

group to identify a unique set of weights to be used in each other’s cross-efficiency 

calculation. An algorithm is then developed to solve this model by solving a series of 

linear programs. The approach is finally illustrated by applying it to green supplier 

selection. 

Finally, we propose a DEA cross-efficiency evaluation approach based on 

satisfaction degree. We first introduce the concept of satisfaction degree of each DMU 

on the optimal weights selected by the other DMUs. Then, a max-min model is given 

to select the set of optimal weights for each DMU which maximizes all the DMUs’ 

satisfaction degrees. Two algorithms are given to solve the model and to ensure the 
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uniqueness of each DMU’s optimal weights, respectively. Finally, the proposed 

approach is used for a case study for technology selection. 

 

Keywords: Data envelopment analysis (DEA), Decision-making units, Cross-

efficiency evaluation. 
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Résumé 

L'évaluation croisée d'efficacité basée sur la data envelopment analysis (DEA) a 

été largement appliquée pour l'évaluation d'efficacité et le classement des unités de prise 

de décision (decision-making units, DMUs). A l’heure actuelle, cette méthode présente 

toujours deux défauts majeurs : la non-unicité des poids optimaux attachés aux entrées 

et aux sorties et la non Pareto-optimalité des résultats d’évaluation. Cette thèse propose 

des méthodes alternatives pour y remédier. 

Nous montrons d’abord que les efficacités croisées visées dans les modèles 

traditionnels avec objectifs secondaires ne sont pas toujours atteignables pour toutes les 

DMUs. Nous proposons ensuite un modèle capable de toujours fournir des objectifs 

d'efficacité croisée atteignables pour toutes les DMUs. Plusieurs nouveaux modèles 

avec objectifs secondaires bienveillants ou agressifs et un modèle neutre sont proposés. 

Un exemple numérique est utilisé pour comparer les modèles proposés à ceux qui 

existent dans la littérature. 

Nous présentons ensuite une approche d'évaluation croisée d'efficacité basée sur 

l'amélioration de Pareto. Cette approche est composée de deux modèles et d’un 

algorithme. Les modèles sont utilisés respectivement pour estimer si un ensemble 

donné de scores d’efficacité croisée est Pareto-optimal et pour améliorer l’efficacité 

croisée de cet ensemble si cela est possible. L'algorithme est utilisé pour générer un 

ensemble Pareto-optimal de scores d'efficacité croisée pour les DMUs. L'approche 

proposée est finalement appliquée pour la sélection de projets de R&D et comparée aux 

approches traditionnelles. 

En outre, nous proposons une approche d’évaluation croisée d’efficacité qui traite 

simultanément les deux problématiques mentionnées ci-dessus. Un modèle de jeu de 

négociation croisée est proposé pour simuler la négociation entre chaque couple de 

DMUs au sein du groupe afin d'identifier un ensemble unique de poids à utiliser pour 

le calcul de l'efficacité croisée entre eux. De plus, un algorithme est développé pour 

résoudre ce modèle via une suite de programmes linéaires. L'approche est finalement 

illustrée en l'appliquant à la sélection des fournisseurs verts. 

Enfin, nous proposons une évaluation croisée d'efficacité basée sur le degré de 

satisfaction. Nous introduisons d'abord la nation de degré de satisfaction de chaque 
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DMU sur les poids optimaux sélectionnés par les autres. Ensuite, un modèle max-min 

est fourni pour déterminer un ensemble des poids optimaux pour chaque DMU afin de 

maximiser tous les degrés de satisfaction des DMUs. Deux algorithmes sont ensuite 

développés pour résoudre le modèle et garantir l’unicité des poids optimaux de chaque 

DMU, respectivement. Enfin, l’approche proposée est appliquée sur une étude des cas 

pour la sélection de technologies. 

 

Mots clés: Analyse d'enveloppement des données (DEA), Unités de prise décision, 

Évaluation de l'efficacité croisée.
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Chapter 1 Introduction 

In this introduction, we present the motivation of this work, summarize our 

contributions, and outline the structure of this thesis. 

1.1 Motivation 

Data envelopment analysis (DEA), originally proposed by Charnes et al. (1978), is 

a non-parametric programming method for efficiency evaluation of a group of 

homogenous decision-making units (DMUs) in which multiple inputs are consumed to 

produce multiple outputs (Cook et al., 2009; Thanassoulis et al., 2011; Cook et al., 2013; 

Yang et al., 2014; Imanirad et al., 2015). The main idea of DEA is to generate a set of 

optimal weights for each DMU to maximize the ratio of its sum of weighted outputs to 

its sum of weighted inputs while keeping all the DMUs’ ratios at most 1. This maximum 

ratio is defined as the efficiency of the DMU under evaluation (Wang and Chin, 2010; 

Ghasemi et al., 2014). For its effectiveness in identifying the best-practice frontier and 

ranking the DMUs, DEA has been widely applied in benchmarking and efficiency 

evaluation of schools (Charnes et al., 1994), hospitals (Mitropoulos et al., 2014), bank 

branches (Wang et al., 2014; Paradi et al., 2011), and so on. 

However, traditional self-evaluated DEA models with total weight flexibility may 

evaluate many DMUs as DEA-efficient and cannot make any further distinction among 

them. Therefore, one of the main shortfalls of the traditional DEA models (CCR and 

BCC models) is their inability to discriminate among DMUs that are all deemed 

efficient (Wang and Chin, 2010). To improve the power of DEA in discriminating 

among efficient DMUs, Sexton et al. (1986) incorporated the concept of peer evaluation 

into DEA and proposed the cross-efficiency evaluation method. In cross-efficiency 

evaluation, each DMU defines its most favorable weights associated with the inputs 

and outputs for self-efficiency evaluation. Using these weights, it can also evaluate the 

efficiencies of the other DMUs, which gives rise to peer-evaluated efficiencies. For 

each DMU under evaluation, we can obtain a final efficiency by aggregating its self-

evaluated efficiency and its efficiencies peer-evaluated by the others. Cross-efficiency 

evaluation presents at least three main advantages. Firstly, it almost always ranks the 
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DMUs in a unique order (Doyle and Green, 1995). Secondly, it eliminates unrealistic 

weight schemes, such as zero weight or disproportionate weights, without incorporating 

weight restrictions (Anderson et al., 2002). Finally, it effectively distinguishes good 

performers from poor ones among the DMUs (Boussofiane et al., 1991). Due to these 

advantages, cross-efficiency evaluation has been extensively applied in performance 

evaluation of nursing homes (Sexton et al., 1986), preference ranking and project 

selection (Green et al., 1996), selection of flexible manufacturing systems (Shang and 

Sueyoshi, 1995), judging suitable computer- or numerically-controlled machines (Sun, 

2002), determining efficient operators and measuring labor assignment in cellular 

manufacturing systems (Ertay and Ruman, 2004), performance ranking of countries in 

the Olympic Games (Wu et al., 2009a), supplier selection in public procurement (Macro 

et al., 2012), portfolio selection in the Korean stock market (Lim et al., 2014), energy 

efficiency evaluation for airlines (Cui and Li, 2015), and so on. 

In spite of its advantages and wide applications, there are still some shortcomings 

in DEA cross-efficiency evaluation. One main deficiency is the non-uniqueness of 

optimal weights. Specifically, the optimal set of weights obtained for self-evaluation 

may not be unique, which may result in situations where the set of cross-efficiency 

scores for the DMUs cannot be uniquely identified since different optimal weights of 

any DMU lead to different peer-evaluated efficiencies for the others and therefore their 

final efficiency scores. To reduce the non-uniqueness of optimal weights, Doyle and 

Green (1994) proposed to use secondary goal models. That is to shrink the region to 

search for optimal weights, even guarantee the uniqueness, by selecting the weights 

that achieve some new goals under the condition that the self-evaluated efficiency of 

each DMU is guaranteed to be at the optimal level. Inspired by this idea, scholars have 

proposed many secondary goal models. The most representative secondary goal models 

are the benevolent and aggressive secondary goal models proposed by Doyle and Green 

(1994). These models have been widely applied and extended ever since (Liang et al. 

2008a; Wang and Chin, 2010a). However, in the benevolent and aggressive models and 

their extensions, the ideal efficiency points, used as targets for the DMUs, are not 

always achievable (or feasible). Additionally, to the best of our knowledge, no existing 

study theoretically guarantees the uniqueness of optimal weights in DEA cross-

efficiency evaluation although many proposed secondary goal models have the ability 

to limit the occurrences of non-uniqueness of optimal weights. 
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Most of existing studies on DEA cross-efficiency evaluation only focus on 

developing methods for reducing the non-uniqueness of optimal weights. Few of them 

have considered whether the DMUs will be satisfied with the evaluation result and 

accept it. Specifically, selecting different sets of optimal weights for DMUs lead to 

different sets of cross-efficiency scores. In addition to guaranteeing the uniqueness of 

the optimal set of cross-efficiency scores, we also need develop appropriate theories to 

make the evaluation result likely to be accepted by all the DMUs. For instance, a typical 

problem is that the generated average cross-efficiency scores for the DMUs are 

generally not Pareto optimal (Wu et al., 2011), which is to say at least one DMU can 

improve its cross-efficiency score without reducing those of the others. To some extent, 

this drawback makes the evaluation result unacceptable to the DMUs, especially for 

those whose cross-efficiency scores can be improved. 

The above discussions show that DEA cross-efficiency evaluation has wide 

applications. The two disadvantages both indicate that a lot of work is still needed to 

fill the gaps in DEA cross-efficiency evaluation. Therefore, it is meaningful to propose 

new cross-efficiency evaluation methods or models to surmount the deficiencies of 

existing DEA cross-efficiency evaluation methods. This is what has motivated this 

thesis. We focus on developing new DEA cross-efficiency evaluation methods to 

generate more acceptable cross-efficiency evaluation result. 

1.2 Research contributions 

This study has brought at least four contributions to DEA cross-efficiency 

evaluation. Firstly, it proposes a series of secondary goal models which consider both 

desirable and undesirable targets and always use reachable cross-efficiency targets for 

the DMUs. Secondly, a Pareto-improvement DEA cross-efficiency evaluation approach 

is proposed which can guarantee the Pareto-optimality of the cross-efficiency scores 

for the DMUs. Additionally, in some special cases, the approach generates an 

evaluation result that unifies the self-evaluation, peer-evaluation, and common-weight 

evaluation where the weights of inputs and outputs are not DMU-specific, which makes 

the evaluation result even more acceptable to all the DMUs. Thirdly, the Nash 

bargaining game theory is incorporated into DEA cross-efficiency evaluation and a 

cross-bargaining game DEA cross-efficiency evaluation approach is proposed. The 
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proposed approach can not only solve the non-uniqueness of optimal weights by 

providing the DMUs with a unique set of cross-efficiency scores but also provide a 

Pareto optimal evaluation result. Finally, the concept of satisfaction degree is 

incorporated into DEA cross-efficiency evaluation, and a cross-efficiency evaluation 

approach based on satisfaction degree is proposed. This approach has not only the 

ability to maximize all the DMUs’ satisfaction degrees but also guarantees the 

uniqueness of the optimal weights for each DMU. 

1.3 Structure of the Thesis 

The rest of this thesis is organized as follows. In Chapter 2, we illustrate some basic 

concepts of DEA and DEA cross-efficiency evaluation. Then, we review the literature 

about DEA ranking methods and DEA cross-efficiency evaluation. Then, we 

summarize the limits of existing works. Chapter 3 proposes some extended secondary 

goal models for weights selection in DEA cross-efficiency evaluation. Chapter 4 

presents a new DEA cross-efficiency evaluation approach based on Pareto 

improvement. In Chapter 5, we provide a cross-bargaining game DEA cross-efficiency 

evaluation approach and apply it for green supplier selection. Chapter 6 gives a new 

cross-efficiency evaluation approach based on satisfaction degree. This approach is 

then applied for technology selection. Finally, in Chapter 7, we conclude this thesis and 

discuss some further research directions.
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Chapter 2 Literature review 

2.1 A brief introduction of DEA and cross-efficiency evaluation 

In this Section, we give a brief introduction of basic concepts and models of DEA 

and DEA cross-efficiency evaluation. Then we illustrate the research problem with a 

numerical example. We first introduce the following notation which will be used 

throughout this thesis. 

!: number of DMUs 

#: number of inputs 

$: number of outputs 

%&': the ()* (( = 1,… ,#) input of DMU j	(2 = 1,… , !) 
34': the 5)*  (5 = 1,… , $) output of DMU j (2 = 1,… , !) 
6&7 : weight attached by DMU d	(8 = 1,… , !) to the ()* (( = 1,… ,#) input 

947: weight attached by DMU d	(8 = 1,… , !) to the 5)*  (5 = 1, … , $) output 

In this notation, 6&7 , ∀(, 8, and 947, ∀5, 8 are decision variables. The input and 

output data of the DMUs are known and assumed to be all positive. The inputs and 

outputs of DMU j form vectors ;' and <', respectively. Similarly, the weights attached 

to the inputs and the outputs of DMU d form vectors =7  and >7, respectively. In the 

remainder, we often use vectorial representation, especially, vectorial products. The 

vectorial product of two p-entry vectors ? and @, denoted as ? ∙ @, is defined as 

follows. 

 ? ∙ @ = ?B@ = @C? =DEFGF
H

FIJ
	 (2.1) 

2.1.1 Basics of DEA 

According to Charnes et al. (1978), a standard definition of data envelopment 

analysis (DEA) can be given as follows. 

Definition 2.1 Data envelopment analysis (DEA) is a non-parametric method for 

efficiency evaluation of a group of homogeneous decision-making units (DMUs) in 

which multiple inputs are consumed to produce multiple outputs. 
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From the definition, firstly, we know that DEA is a non-parametric method. It does 

not require any predetermined information on the production function of the production 

entities before evaluation. The evaluation results are directly derived from the input and 

output data. Secondly, the application of DEA needs the data of a group of DMUs. In 

addition, the DMUs are required to be homogeneous, i.e., input and output indicators 

of the DMUs should be the same for all DMUs. The efficiency evaluation result is 

obtained by comparing the production of each DMU with those of the others. Of course, 

the number of DMUs in the group are not necessarily very large. Finally, DEA is used 

to model the production process of multiple inputs and multiple outputs. Now, we give 

the illustration of some basic concepts of DEA. 

 

Decision-making units (DMUs) 

The structure of a DMU is illustrated in Figure 2.1. 

Figure 2.1 The structure of a DMU 

This figure shows that a DMU can be seen as a production entity containing some 

performance metrics. These performance metrics can be classified as the larger the 

better for outputs, and the smaller the better for the inputs. Then, each DMU can be 

seen as a production entity in which multiple inputs are used to produce multiple 

outputs. A DMU can be a not-for-profit organization as well as a for-profit organization. 

Examples of DMUs can be schools, hospitals, manufacturing systems, and so on. In 

these DMUs, the inputs can be capitals, labors, fixed cost, etc.; the outputs can be 

product yields, profits, etc. 
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When applying DEA for the evaluation of DMUs, we assume that three aspects 

are the same for all the DMUs: production environment, the input and output indicators, 

and production process. 

Based on the input and output data of a group of homogenous DMUs, we can 

construct the production possibility set (PPS). Here, we introduce the PPS as follows. 

Production possibility set (PPS) 

In DEA, the production possibility set can be defined as follows. 

Definition 2.2. K = {(;, <)|;	can	produce	<}  is defined as the production 

possibility set (PPS) constituted of all the DMUs’ production activities, where ; and 

< are input and output vectors, respectively. 

Before giving the detailed mathematical formulation of the production possibility 

set, we need to introduce the following axioms of PPS given in Charnes et al. (1978). 

Axiom 1. Feasibility: All the observed production activities of any DMU 2 
belong to PPS, i.e., X;', <'Y ∈ K. 

Axiom 2. Free disposability: (;, <) ∈ K , ;[ ≥ ; , and <[ ≤ <  imply that 

(;′, <′) ∈ K. 

Axiom 3. Convexity: The production possibility set is convex. 

Axiom 4. Cone-Convexity: (;, <) ∈ K and _ > 0 imply (_;, _<) ∈ K. 

Axiom 5. Minimum extrapolation: K is the intersection of all the productions 

K[ ∈ bcdce that satisfy the above Axioms 1-4. 

Based on the above Axioms 1-5, the production possibility set under constant-

returns to scale (CRS) can then be mathematically formulated as follows. 

K = {(;, <)| Df'%&'
g

'IJ
≤ %&, ∀( 

(2.2) 

 

Df'34'
g

'IJ
≥ 34 	, ∀5 

f' ≥ 0,∀2} 

In (2.2), f' denotes the intensity variable attached to DMU j. The PPS under the 

assumptions of increasing-, decreasing-, and variable-returns to scale (noted as IRS, 

DRS, and VRS, respectively) can be obtained by adding to (2.2) the constraints 
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∑ f'g'IJ ≥ 1, ∑ f'g'IJ ≤ 1, and ∑ f'g'IJ = 1, respectively. The following Figure 2.2 

gives the production possibility sets under different returns to scales with a simple 

numerical example with 3 single-input-single-output DMUs denoted as A, B, and C, 

respectively. 

 

Figure 2.2 The PPS under different returns to scale 

In Figure 2.2, the shaded parts show the production possibility sets. In the 

remainder of this study, we focus on the PPS under CRS, since cross-efficiency 

evaluation is usually based on the evaluation results generated by the Charnes-Cooper-

Rhodes (CCR) model, while the CCR model is built under the CRS assumption. 

Efficiency and Basic model 

Charnes et al. (1978) give a definition of efficiency, called Pareto-Koopmans 

efficiency, which is described as follows. 

Definition 2.3. (Pareto-Koopmans efficiency) A DMU (;, <) ∈ K is said to be fully 

efficient if there is no (;′, <′) ∈ K  such that %& > %&[  for some (  or 34 < 34[	for 

some 5. 

When DMU d is under evaluation, based on the PPS discussed above, the first 

DEA model, called CCR model, given by Charnes et al. (1978) can be shown in its 

input-oriented envelopment format as follows. 
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min 	 
$. m. 

n7  

Df'%&'
g

'IJ
≤ n7%&7 , ∀( 

Df'34'
g

'IJ
≥ 347 , ∀5 

f' ≥ 0,∀2 

(2.3) 

The objective of model (2.3) is to minimize n7 , i.e., the equi-proportionate 

contraction of the inputs of DMU d. Actually, that is to project DMU d on the Pareto-

efficient frontier to see how much its inputs can be reduced at maximum. The following 

Figure 2.3 shows a simple example with 6 two-input-one-output DMUs. The outputs 

of the DMUs are assumed to be the same. In the figure, we can see that when evaluating 

the efficiency of DMU E, we project it to E1 on the frontier. Then we have the efficiency 

of DMU E as onJ/on. 

 

Figure 2.3 Efficiency measurement and frontier under CRS assumption 

Let (n7∗ , r∗) be an optimal solution of model (2.3).	n7∗  is called the efficiency 

score (also called CCR efficiency) of DMU d. Then, we have the following definition 

of weak DEA-efficiency. 

Definition 2.3. (Weak DEA-efficiency) A DMU d is said to be weakly DEA-efficient 

if n7∗ = 1. 

It can be seen that in a weakly DEA-efficient DMU, it is impossible to reduce 
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(respectively increase) all its inputs (respectively outputs) simultaneously in the same 

proportion without decreasing (respectively increasing) its outputs (respectively inputs). 

The same conclusion for the output-oriented CCR in envelopment format can be 

obtained using the words between brackets. Note that if a DMU is Pareto-Koopmans 

efficient, it must be weakly DEA-efficient. However, a weakly DEA-efficient DMU is 

not necessarily Pareto-Koopmans efficient. To define a Pareto-Koopmans efficient 

DMU, the following model (2.4) is used. 

Max n7 − v wD$&c
d

&IJ
+D$4y

e

4IJ
z  

$. m. 	Df'%&'
g

'IJ
= n7%&7 − $&c, ∀( 

	Df'34'
g

'IJ
= 347 + $4y	, ∀5 

	f' ≥ 0,∀2 

$	&c, $4y ≥ 0, ∀(, 5 

(2.4) 

In model (2.4), v  is a small-enough positive value. $	&c, $4y, ∀(, 5  are slacks 

corresponding to the inputs and outputs, respectively. It can be seen that this model 

contains two goals. The primary goal is to minimize variable n7 to see how much the 

inputs can be simultaneously contracted at most. Then, the secondary goal is to 

minimize the sum of the slacks to see whether it is possible to reduce some inputs or 

increase some outputs. Model (2.4) has the ability to define Pareto-Koopmans efficient, 

also called strongly DEA-efficient, DMUs. 

Let (n7∗ , r∗, {c∗, {y∗		) be an optimal solution of model (2.4). We then have the 

following Definition 2.4. 

Definition 2.4. (Strong DEA-efficiency) A DMU is said to be strongly DEA-efficient 

if n7∗ = 1, $&c∗ = 0,	∀( and $4y∗ = 0,∀5. 

Strongly DEA-efficient DMUs are those that are Pareto-Koopmans efficient. 

These DMUs are located on the Pareto-efficient frontier. For instance, in Figure 2.3, 

DMUs A, B, C, and D are strongly DEA-efficient. They are located on the Pareto-

efficient frontier. 

The dual model of model (2.3) is shown as model (2.5), which is also called the 
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multiplicative-form output-oriented CCR model. 

n7∗= max> ∙ <7   

$. m. = ∙ ;7 = 1 

> ∙ <' −= ∙ ;' ≤ 0,∀2 
>,= ≥ 0 

(2.5) 

In model (2.5), the first constraint is used to avoid trivial solutions. The second 

group of constraints is to ensure that all cross-efficiencies, including DMU d’s self-

evaluated efficiency is no larger than 1. In this multiplicative form, the ratio of the total 

weighted output to the total weighted input is used to measure the efficiency of each 

DMU. In this thesis, we are mainly concerned with the multiplicative model, since we 

consider the peer-evaluation mechanism and cross-efficiency evaluation in which 

optimal weights of the DMUs are used for efficiency evaluation. 

2.1.2 DEA cross-efficiency evaluation and non-uniqueness of optimal weights 

From the analysis in the previous paragraphs, we know that the CCR model can 

only discriminate the DMUs into weakly DEA-efficient ones and inefficient ones. It 

cannot make any further discrimination among the weakly DEA-efficient DMUs, since 

they all get an efficiency score of 1. This will make it unsuitable in situations where a 

decision maker needs to choose the best one among all the DMUs. For instance, an 

investor needs to select the best project proposal from a group of candidates to make 

investment. 

To address this issue, Sexton et al. (1986) proposed to use DEA cross-efficiency 

evaluation. Let (>7∗ ,=7∗) be an optimal solution to model (2.5), which are actually the 

most favorable weights of DMU 8, attached to the outputs and the inputs, respectively. 

The cross efficiency, denoted as n7' , of any DMU j evaluated by the most-favorable 

weights of DMU d, can be calculated as follows. 

 n7' = >7∗ ∙ <'=7∗ ∙ ;' (2.7) 

Note that n7,7 = n7∗ . 

Then, the cross-efficiency score, denoted as n'|, of any DMU j can be calculated 
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as follows. 

 n'| = 1!Dn7'
g

7IJ
 (2.8) 

n'| is also called the original cross-efficiency score of DMU j. It is simply the 

average of the cross efficiencies evaluated by all the DMUs, including DMU j itself.  

However, as mentioned above, the optimal solution to model (2.5) may not be 

unique, which will lead to non-uniqueness of the result of DEA cross-efficiency 

evaluation. Specifically, different selections of optimal weights for the DMUs will 

generate different evaluation results. This is called non-uniqueness of optimal weights 

in DEA cross-efficiency evaluation. Mathematically, for each DMU d whose optimal 

weights from the CCR model are not unique, we need to choose a suitable set of weights 

for it in the following weight possibility set =}7 . 

 =}7 = {(>,=)| > ∙ <7 = n7∗  
= ∙ ;7 = 1 

> ∙ <' −= ∙ ;' ≤ 0,∀2 
>,= ≥ 0} 

(2.9) 

Now, we use a small example taken from Liang et al. (2008a) to illustrate the issue. 

The example contains 5 DMUs, each with 3 inputs and 2 outputs. The raw data of this 

numerical example is shown in the following Table 2.1. 

Table 2.1 Raw data of the numerical example 

DMUs 
Inputs  Outputs 

X1 X2 X3  Y1 Y2 

DMU1 7 7 7  4 4 

DMU2 5 9 7  7 7 

DMU3 4 6 5  5 7 

DMU4 5 9 8  6 2 

DMU5 6 8 5  3 6 

We evaluate the DMUs using the CCR model (2.5) and the arbitrary cross-

efficiency calculation (2.7). The results are listed in columns 2 and 3 in Table 2.2, 
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respectively. We also generate two sets of different cross-efficiency scores for the 

DMUs, which are listed in columns 4 and 5, respectively. These two sets of cross-

efficiency scores are generated by using the benevolent and aggressive cross-efficiency 

evaluation models (Doyle and Green, 1994) which we will give more details in Chapter 

3. 

From the cross-efficiency evaluation results listed in Table 2.2, firstly, we can see 

that the CCR model evaluates DMUs 2 and 3 as weakly DEA-efficient. It cannot make 

any further discrimination between these two DMUs. 

Then, we observe that different selections of optimal weights lead to different 

cross-efficiency evaluation results. This raises the problem that the decision makers do 

not know which set of efficiency scores they should refer to. This non-uniqueness of 

optimal weights is one of the main issues discussed in DEA cross-efficiency evaluation. 

Table 2.2 The results of the numerical example 

DMUs 
CCR 

efficiency 
Arbitrary Benevolent Aggressive 

DMU1 0.6857  0.4743  0.5616  0.4473  

DMU2 1.0000  0.8793  0.9295  0.8895  

DMU3 1.0000  0.9856  1.0000  0.9571  

DMU4 0.8571  0.5554  0.6671  0.5843  

DMU5 0.8571  0.5587  0.5871  0.5186  

Additionally, through comparison, we can see that the cross-efficiency scores of 

each DMU generated by the aggressive and arbitrary strategies are smaller than their 

counterparts obtained with the benevolent strategy. That is to say that the two former 

sets of cross-efficiency scores are dominated by the latter one. Actually, the DMUs 

should be willing to accept cross-efficiency evaluation results that provide them with 

higher cross-efficiency scores. However, using different weight selection strategies, we 

generate the results shown in columns 2 and 4 which may not gain the favor of the 

DMUs. Therefore, in addition to guaranteeing the uniqueness of the optimal set of 

cross-efficiency scores, we also need build suitable methods and theories to improve 

the acceptance of the evaluation result by the DMUs. 
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2.2 Research on DEA-based ranking methods 

As we mentioned above, the traditional DEA models (CCR and BCC models) have 

the shortcoming in discriminating among the weakly DEA-efficient DMUs. To 

overcome this problem, scholars have proposed some guidelines and extended DEA-

based methods. 

Selecting a suitable number of references: Cooper et al. (2007) suggested that the 

number of DMUs (references) should be no smaller than the maximum between # ∗ $ 

and 3 ∗ (# + $) if a good discrimination is deemed to be achieved in the evaluation 

results, where #  and $  are the numbers of inputs and outputs of the DMUs, 

respectively. 

The super-efficiency evaluation method: Andersen and Petersen (1993) proposed 

a super-efficiency evaluation model which can be used to further discriminate among 

strongly DEA-efficient DMUs. In this model, the DMU under evaluation will be 

removed from the reference set, which will result in situations where the strongly DEA-

efficient DMUs obtain efficiency scores larger than 1. So, the strongly DEA-efficient 

DMUs can be further discriminated. However, this method still has other shortcomings, 

such as, infeasibility and usefulness in discriminating the weakly (but not strongly) 

DEA-efficient DMUs. To address these issues, some extensions and discussions are 

provided. More details can be seen in Zhu (1996), Zhu (1999), Khodabakshi (2007), 

Jahanshahloo et al. (2011a), Chen et al. (2013), Du et al. (2015), Chu et al. (2016). 

DEA common-weight evaluation method: Cook et al. (1990) and Roll et al. (1991) 

proposed the DEA common-weight evaluation method. Unlike the traditional DEA 

method in which each DMU uses its own most favorable weights for efficiency 

evaluation, the DEA common-weight evaluation method uses a set of weights which is 

common to all the DMUs. The main problem facing this method is how to determine 

the set of common weights for efficiency evaluation. Further work on DEA common-

weight evaluation can be seen in Kao and Hung (2005), Zohrehbandian et al. (2010), 

Ramezani-Tarkhorani et al. (2014), Sun et al. (2013), and Wu et al. (2016a). 

Benchmark ranking method: The idea was given by Sueyoshi (1990), Lu & Lo 

(2009), Sinuany-Stern et al. (1994). It is used for discriminating the strongly DEA-

efficient DMUs. The main idea is to see how often the DMUs are regarded as 

benchmarks. The more often a DMU is regarded as a benchmark, the more approved it 



15 

is by the other DMUs; thus, the better ranking it gets. 

DEA cross-efficiency evaluation: Sexton et al. (1986) proposed to use cross-

efficiency evaluation to rank the DMUs. The main idea is to use a peer-evaluated 

mechanism to replace the self-evaluated mechanism. We will describe this method in 

detail in the next subsection. 

Besides the above-discussed methods, there are other DEA-based ranking 

methods such as the multi-criteria decision-making methodologies (Li & Reeves, 1999; 

Strassert and Prato, 2002; Wang and Jiang, 2012; Mousseau et al.2018; Bisdorff et al. 

2015), and the context-dependent DEA method (Seiford & Zhu, 2003; Chen et al., 

2005). 

2.3 DEA cross-efficiency evaluation 

In this section, we discuss in detail about the current research on DEA cross-

efficiency evaluation, from the following perspectives: the classic methods addressing 

the non-uniqueness of optimal weights, extended cross-efficiency evaluation models, 

research on cross-efficiency aggregation, and applications of DEA cross-efficiency 

evaluation. 

2.3.1 Secondary goal models 

As we mentioned in the introduction, Doyle and Green (1994) pointed out that the 

set of optimal weights generated by the CCR model for a DMU may not be unique, 

which in turn causes situations where different selections of optimal weights generate 

different cross-efficiency scores for the DMUs. This is called the non-uniqueness of 

optimal weights. Up to now, most of the studies on DEA cross-efficiency evaluation 

focus on solving this problem. To address this problem, Sexton et al. (1986) further 

proposed to use secondary goal models. Inspired by this idea, many secondary goal 

models have been proposed for optimal weights selection. 

Secondary goal models to address the issue of non-uniqueness of optimal weights 

are based on two principles. Firstly, each DMU selects a single set of optimal weights 

for both self-evaluation and peer-evaluation (one weight set for short). Secondly, the 

optimal set of weights selected by each DMU will maintain its self-evaluated efficiency 

at the CCR efficiency level (efficiency optimality for short). Under these two principles, 
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secondary goals are proposed to limit the non-uniqueness of optimal weights or to 

generate a unique set of optimal weights for each DMU. In the following, we divide the 

secondary goal models into several groups and discuss them respectively. 

The benevolent and aggressive models: Doyle and Green (1994) proposed two of 

the most famous secondary goal models. They are called benevolent and aggressive 

cross-efficiency evaluation models, respectively. The core idea of aggressive 

(respectively benevolent) model is to select a set of optimal weights by making the 

efficiencies of the other DMUs as small (respectively large) as possible under the two 

principles given above. Liang et al. (2008a) extended the benevolent and aggressive 

models proposed by Doyle and Green (1994). They use the efficiency score of 1 as the 

cross-efficiency target of the other DMUs when selecting the optimal weights for a 

specific DMU. They then proposed some alternative secondary goal models and gave 

specific application environments for each of them. Similar ideas also appeared in 

Wang and Chin (2010a) which presents other secondary goal models in which the cross-

efficiency target (efficiency score of 1) of each DMU in Liang et al. (2008) model is 

replaced by its CCR efficiency. The aggressive and benevolent models were further 

investigated by Wu et al. (2016b). They pointed out that cross-efficiency targets used 

in traditional benevolent and aggressive models are not always reachable for all DMUs. 

Accordingly, they proposed a model to identify reachable desirable and undesirable 

cross-efficiency targets for the DMUs. They then proposed new benevolent and 

aggressive models using the new identified cross-efficiency targets of the DMUs and 

considered the DMUs’ willingness to get close to the desirable cross-efficiency targets 

while avoiding the undesirable ones. Another work based on the benevolent and 

aggressive strategies is by Lim et al. (2012). When selecting optimal weights for a 

DMU, their benevolent model maximizes the minimum cross efficiency of the others, 

while the aggressive model tries to minimize the maximum cross efficiencies of the 

others. 

The neutral models: This kind of models only focus on the DMU under evaluation 

without caring about the impact on the cross efficiencies of the others. Wang and Chin 

(2010b) proposed a neutral model in which the efficiency of each output of the DMU 

is maximized while maintaining the whole DMU’s efficiency at the maximum (CCR) 

efficiency level. Wang et al. (2011a) presented some other neutral cross-efficiency 

evaluation models based on the ideal and anti-ideal DMUs. In their models, when 
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selecting optimal weights for a DMU, the secondary goals maximize its distance from 

the anti-ideal DMU, minimize the distance from the ideal one, and maximize the 

distance between the ideal DMU and the anti-ideal DMU. There are also studies that 

investigate the ranking ranges of the DMUs. For example, Alcaraz et al. (2013) 

proposed two models to identify the best and the worst ranking positions of each DMU, 

respectively. The DMUs are then ranked by analyzing the ranking ranges of the DMUs. 

A similar idea can also be seen in Yang et al. (2012). 

Weight-balanced models: Another problem raised in DEA cross-efficiency 

evaluation, because of the non-uniqueness of optimal weights and total weight 

flexibility in weights selection, is the use of unrealistic weights. For instance, the 

optimal weights selected for a DMU might contain a lot of zero weights. To address 

this problem, scholars proposed alternative secondary goal models in order to avoid the 

selection of zero optimal weights. Ramón et al. (2010) proposed the concept of 

similarity among the input and output weights of each DMU. Then, they proposed a 

model to identify the maximized minimum similarity among the DMUs’ optimal 

weights considering only the strongly DEA-efficient DMUs. A model is then given to 

reselect optimal weights for those DMUs that are not strongly DEA-efficient. The 

proposed approach avoids zero weights in DEA cross-efficiency evaluation. Ramón et 

al. (2011) proposed another approach for avoiding zero optimal weights while reducing 

the differences between the optimal weight sets of the DMUs as much as possible. A 

similar idea can also be seen in Wang and Jiang (2012). Wang et al. (2011b) and Wu et 

al. (2012a) proposed a weight-balanced model in which the authors avoided zero 

optimal weights by maximizing the minimum weighted input or output. However, 

unlike Ramón et al. (2010) and Ramón et al. (2011), Wang et al. (2011b) and Wu et al. 

(2012)’s methods cannot theoretically guarantee the absence of zero optimal weights. 

Nevertheless, their models have the ability to reduce zero optimal weights in practical 

applications. 

Other secondary goal models: Some other studies use alternative secondary goals. 

For instance, Wu et al. (2009b), Contreras (2012), Maddahi et al. (2014), and Liu et al. 

(2017) proposed secondary goal models by using the goal of optimizing the ranking 

position of the DMU under evaluation. Jahanshahloo et al. (2011b) presented a 

secondary goal model in which the symmetric technique is incorporated and the 

secondary goal is to select a set of symmetric weights for each DMU. More recently, 
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Wu et al. (2016c) proposed a new DEA cross-efficiency evaluation approach in which 

the secondary goal is to maximize the DMUs’ satisfaction degrees on the selected 

optimal weights. 

Of course, different secondary goal models have different application scenarios. 

We will discuss this later in Chapter 3 when presenting our models and comparing them 

with these traditional models. 

2.3.2 Extended cross-efficiency evaluation models 

The studies introduced above generally hold the two classic principles: one weight 

set and efficiency optimality. Some other studies partially relax these principles in order 

to generate cross-efficiency evaluation results with more special properties. For 

example, Liang et al. (2008a) proposed to incorporate game theory in DEA cross-

efficiency evaluation. The DMUs are seen as players in a non-cooperative game who 

are competing each other in the evaluation to obtain higher cross-efficiencies. They 

have the authority to use different evaluation criteria with respect to different players 

(DMUs). Therefore, their method allows each DMU to use different weight sets to 

calculate cross efficiencies for different DMUs. Additionally, they also allow each 

DMU to reduce its self-evaluated efficiency. Then, they proposed a DEA game cross-

efficiency evaluation model and developed a corresponding algorithm. Their method 

can finally generate a set of cross-efficiency scores that constitute a Nash equilibrium 

solution. The DEA game cross-efficiency evaluation approach was extended to a form 

of variable-returns to scale by Wu et al. (2009). Cook and Zhu (2014) proposed another 

method. They also break the one weight set principle. They proposed a units-invariant 

multiplicative DEA model. Their model can directly generate DMUs’ maximum cross-

efficiency scores, which means there is no need to select a unique set of optimal weights. 

Wu et al. (2016d) relaxed the efficiency optimality principle. They proposed a 

cross-efficiency evaluation method based on Pareto improvement. Their method can 

generate cross-efficiency scores that constitute a Pareto optimal solution. Additionally, 

in some special cases, their method unifies self-evaluation, peer-evaluation, and 

common-weight evaluation in DEA cross-efficiency evaluation, which makes the 

evaluation results easier to be accepted by all the DMUs. 
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2.3.3 Cross-efficiency aggregation 

In traditional cross-efficiency evaluation, each DMU’s cross-efficiency score is 

calculated by averaging its self-evaluated efficiency (CCR efficiency) and the peer-

evaluated efficiencies. However, as some scholars pointed out, calculating each cross-

efficiency score by simply averaging the efficiencies neglects the DMUs’ preferences 

on its CCR efficiency and peer-evaluated efficiencies. Additionally, the average cross-

efficiency scores generally cannot constitute a Pareto optimal solution (Wu et al. 2008). 

To address this issue, scholars proposed alternative cross-efficiency aggregation 

methods. 

Wu et al. (2008) considered the DMUs as players in a cooperative game. Then, 

they calculated the final cross-efficiency scores based on the nucleolus solution of the 

game. By also considering the DMUs as players in a cooperative game, Wu et al. (2009b) 

proposed to aggregate the cross efficiencies of the DMUs using the Shapley value of 

the game. Wu et al. (2011) and Wu et al. (2013) incorporated the TOPSIS technique to 

determine the final weights to aggregate cross efficiency scores for the DMUs. Wu et 

al. (2011) and Wu et al. (2012b) focused on the aggregation process of the cross-

efficiency matrix. They further used the Shannon entropy for cross-efficiency 

aggregation. Considering the decision maker’s optimism level to the best relative 

efficiencies, Wang and Chin (2011) proposed to use the ordered weighted averaging 

operator to determine the aggregation weights for cross-efficiency aggregation. José 

and Sirvent (2012) selects cross-efficiency aggregation weights considering the 

disequilibrium in optimal weight sets of the DMUs. The approach has the following 

ability: a cross efficiency is obtained with the more zero optimal weights, the lower 

aggregation weight is attached to it. Yang et al. (2013) proposed an evidential-reasoning 

approach for cross-efficiency aggregation: They provided a new procedure for 

aggregating the cross efficiencies of each DMU based on the distributed assessment 

framework and the evidence combination rule of Dempster–Shafer (D–S) evidence 

theory (Sentz and Ferson, 2002). 

2.3.4 Application of DEA cross-efficiency evaluation 

After the DEA cross-efficiency evaluation was proposed, it has been utilized in 

many applications. For instance, Green et al. (1996) proposed to use DEA cross-
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efficiency evaluation to R&D project selection. In this instance, the proposals are 

evaluated and ranked using the cross-efficiency scores. Then, they are selected 

according to the ranking position and under the constraint of total budget. Alternative 

studies of applying DEA for R&D project selection can be seen in Liang et al. (2008b), 

Wu et al. (2016d). Wu et al. (2009a) and Wu et al. (2009c) proposed to use DEA cross-

efficiency evaluation for performance evaluation and benchmarking of countries in 

Summer Olympics. They mainly extended DEA cross-efficiency evaluation by 

considering the ordered weights for the importance of different medals. Yu et al. (2010) 

proposed to use DEA cross-efficiency evaluation for analyzing the supply chain 

performance with different information-sharing scenarios. Falagario et al. (2012) 

proposed to use DEA cross-efficiency evaluation for top supplier selection in public 

procurement tenders. In this application, the suppliers with multiple performance 

metrics are evaluated by the DEA cross-efficiency evaluation method. Then, the best 

supplier is selected. Similar applications can be seen in the advanced manufacturing 

technology selection (Baker and Talluri, 1997; Wu et al., 2016b). More recently, Lim 

et al. (2014) used DEA cross-efficiency evaluation for portfolio selection. They pointed 

out that the DEA cross-efficiency evaluation method will generally select a portfolio in 

which the selected funds (DMUs) are relatively robust to the risk of change in weights. 

Apart from using DEA cross-efficiency evaluation for ranking and benchmarking the 

DMUs, there are also other applications. For instance, Du et al. (2014) extended DEA 

cross-efficiency evaluation for fixed cost allocation and resource allocation. 

2.4 Research gaps 

From the above analysis, we identify the following research gaps. 

Firstly, in the traditional benevolent and aggressive models, the efficiency targets 

(the CCR efficiencies or the ideal targets 1) is not always reachable for the DMUs. 

Additionally, the traditional benevolent and aggressive models only consider the 

desirable cross-efficiency targets as referenced efficiencies for all DMUs while 

neglecting the fact that the undesirable cross-efficiency targets are also important 

indicators that the DMUs need to consider (Baumeister et al., 2001; Wang and Chin, 

2011a; Dotoli et al., 2015). 

Secondly, although alternative secondary goal models have been proposed to 
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reduce the non-uniqueness of optimal weights in DEA cross-efficiency evaluation, 

there still lack studies theoretically guaranteeing the uniqueness of optimal weights or 

uniqueness of the final evaluation result. 

Additionally, there are no studies considering the DMUs’ acceptance, satisfaction 

degree, or preference on evaluation result. For instance, the final set of cross-efficiency 

scores is generally not Pareto optimal, which makes the evaluation unconvincing, 

especially for those DMUs whose efficiency scores can be improved. 
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Chapter 3 Extended secondary goal models for weight 

selection in DEA cross-efficiency evaluation * 

To reduce the non-uniqueness of optimal weights in DEA cross-efficiency evaluation, 

Doyle and Green (1994), Liang et al. (2008a), and Wang and Chin (2010a) proposed to 

use the benevolent and aggressive models. However, the ideal targets given for the 

DMUs in the traditional benevolent and aggressive models are not always reachable. 

Additionally, these traditional models only consider the desirable cross-efficiency 

targets (1 or the CCR efficiency) as reference efficiencies for all DMUs. However, as 

Baumeister et al. (2001), Wang and Chin (2011a), and Dotoli et al. (2015) rightly 

pointed out, undesirable targets are also important indicators that the DMUs need to 

consider. 

Aiming at addressing these issues, in this chapter, we first incorporate a target 

identification model to get reachable targets for all DMUs. Then, several secondary 

goal models are proposed for weights selection considering both desirable and 

undesirable cross-efficiency targets of the DMUs. Compared with the traditional 

secondary goal models, cross-efficiency targets are improved in the sense that all targets 

are always reachable for the DMUs. In addition, the proposed models consider the 

DMUs’ willingness to get close to their desirable cross-efficiency targets and to avoid 

their undesirable ones simultaneously while the traditional secondary goal models 

considered only the ideal targets. Finally, our models are compared with the traditional 

methods on a numerical example: efficiency evaluation of six nursing homes. 

The rest of this chapter is organized as follows. Section 3.1 briefly discusses the 

traditional benevolent and aggressive models. Section 3.2 describes the target 

identification model. Section 3.3 proposes new benevolent and aggressive models and 

a neutral model. Further, in Section 3.4, a numerical example and the application of 

R&D project selection are provided. Finally, Section 3.5 concludes this chapter. 

* This chapter is primarily referenced from: Jie Wu, Junfei Chu, Jiasen Sun, Qingyuan Zhu, and Liang Liang. 
(2016). Extended secondary goal models for weights selection in DEA cross-efficiency evaluation. Computers & 

Industrial Engineering, 93, 143-151. 
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3.1 The traditional benevolent and aggressive models 

To reduce the non-uniqueness of optimal weights in DEA cross-efficiency, Doyle 

and Green (1994) proposed to use secondary goal models. They further proposed the 

famous benevolent and aggressive DEA cross-efficiency evaluation models, which are 

shown in (3.1) and (3.2) for the selection of weights >  and =  for DMU 8 , 

respectively. 

max 	 > ∙ D <'
g

'IJ,'�7
 

 

$. m. = ∙ D <'
g

'IJ,'�7
= 1 

> ∙ <7 − n7∗ ×= ∙ ;7 = 0 

> ∙ <' −= ∙ ;' ≤ 0,∀2 
>,= ≥ 0 

(3.1) 

and 

min 	 > ∙ D <'
g

'IJ,'�7
 

 

$. m. mℎÇ	$E#Ç	E$	mℎÉ$Ç	(!	#É8ÇÑ	(3.1) (3.2) 

In models (3.1) and (3.2), n7∗ is the CCR efficiency of DMU d obtained by model 

(2.5). It can be seen from model (3.1) (model (3.2)) that when selecting weights for 

DMU d, the model strives to maximize (minimize) the cross efficiency of the 

aggregation of the other DMUs while maintaining DMU d’s efficiency at the optimal 

CCR efficiency level. This is why the model is called benevolent (aggressive) cross-

efficiency evaluation model. Based on the above models (3.1) and (3.2), Liang et al. 

(2008a) proposed a new pair of benevolent and aggressive models which are shown in 

models (3.3) and (3.4), respectively. 

#(! D$'
g

'IJ
 

 

$. m. = ∙ ;7 = 1 

> ∙ <7 = n7∗  

> ∙ <' −= ∙ ;' + $' = 0,∀2 
(3.3) 
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>,= ≥ 0 

$' ≥ 0,∀2 
and  

#E% D$'
g

'IJ
 

 

$. m. mℎÇ	$E#Ç	E$	mℎÉ$Ç	(!	#É8ÇÑ	(3.3) (3.4) 

In models (3.3) and (3.4), $' = = ∙ ;' −> ∙ <' , ∀2 denotes DMU j’s deviation 

from its ideal efficiency score 1. It can be seen that, the smaller $' is, the closer the 

efficiency of DMU j is to 1. In model (3.3) (model (3.4)), when DMU d selects a set of 

optimal weights, it keeps its efficiency at the CCR efficiency level. Then, it strives to 

make the sum of other DMUs’ deviations from their ideal efficiency 1 as small (large) 

as possible. 

However, Wang and Chin (2010a) observed that the ideal efficiency score 1 is not 

realizable for the DEA-inefficient DMUs. They further improved the models of Liang, 

et al. (2008a) by replacing the cross-efficiency target from the ideal point 1 to the CCR 

efficiency. The improved benevolent and aggressive models are shown in models (3.5) 

and (3.6), respectively. 

#(! D$'
g

'IJ
 

 

$. m. > ∙ <7 − n7∗ × ;7 = 0 

> ∙D<'
g

'IJ
+= ∙D;'
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'IJ
= ! 

> ∙ <' − n'∗ ×= ∙ ;' + $' = 0,∀2 

>,= ≥ 0 

$' ≥ 0,∀2 

(3.5) 

and 

#(! D$'
g

'IJ
 

 

$. m. mℎÇ	$E#Ç	E$	mℎÉ$Ç	(!	#É8ÇÑ	(3.5) (3.6) 

In models (3.5) and (3.6), $' = n'∗ ×= ∙ ;' −> ∙ <' , ∀2  defines DMU j’s 
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deviation from its target efficiency n'∗. Wang and Chin (2010a) also made another 

change in their models by adding a new constraint > ∙ ∑ <'g'IJ += ∙ ∑ ;'g'IJ = ! to 

avoid trivial solutions. They consider that this new constraint is fixed and does not vary 

from one DMU to another. 

As can be seen from the above discussions, the traditional benevolent and 

aggressive models suffer two main deficiencies. Firstly, the cross-efficiency targets (the 

ideal point 1 or the CCR efficiency) in their models are not always reachable for all 

DMUs (a fact that will be proved in Theorem 3.1 in Section 3.2). Secondly, the 

traditional models consider only the desirable targets (1 or CCR efficiency scores) as 

reference efficiencies for all the DMUs, which ignores the DMUs’ unwillingness to get 

close to their undesirable targets. 

3.2 A target identification model 

In the models of Liang, et al. (2008a) and Wang and Chin (2010a), the target 

efficiencies (the ideal point 1 and CCR efficiency) are not always reachable. In this 

section, we propose a target identification model to calculate the desirable and 

undesirable targets for each DMU. Compared with traditional target efficiencies, the 

generated desirable and undesirable targets are always reachable and realizable for the 

DMUs in the cross-efficiency evaluation. The proposed model is shown as (3.7). 

n7'dÜá/n7'd&g = max> ∙ <'	 /min> ∙ <'		  

$. m. = ∙ ;' = 1 

> ∙ <7 − n7∗ ×= ∙ ;7 = 0 

> ∙ <F −= ∙ ;F ≤ 0,∀_ 

>,= ≥ 0 

(3.7) 

Model (3.7) calculates the maximum and minimum cross efficiencies of DMU j 

corresponding to DMU d, which are denoted as n7'dÜá and n7'd&g, respectively. Here, 

we give the following Definitions 3.1 and 3.2 and Theorem 3.1. 

Definition 3.1. n7'dÜá  is defined as the desirable cross-efficiency target for DMU j 

relative to DMU d. 

Definition 3.2. n7'd&g is defined as the undesirable cross-efficiency target for DMU j 
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relative to DMU d. 

Theorem 3.1. For any DMU j, we have n'∗ ≥ n7'dÜá , ∀8. 

Proof. By definition, for any DMU 2, n'∗ can be obtained by solving model (3.7) with 

the second constraint removed and by maximizing the objective function. In other 

words, calculating n'∗ consists of solving a relaxed model of (3.7). As a consequence, 

n7'dÜá ≤ n'∗, ∀8. Q.E.D. 

From Theorem 3.1, we know that the ideal point 1 or CCR efficiency may not 

always be a reachable target for the DMUs if the weights selected must keep the 

efficiency of a corresponding DMU at its optimal level. Specifically, when n7'dÜá < n'∗ 
and the unreachable situation may appear. 

3.3 New weight selection models 

In this section, we propose some new benevolent and aggressive models and a 

neutral model based on the desirable and undesirable cross-efficiency targets discussed 

in the above section. 

3.2.1 New benevolent and aggressive models 

In the traditional secondary goal models, the weights are selected only with the 

consideration that the efficiencies of the DMUs are as close to their desirable targets as 

possible, ignoring the DMUs’ unwillingness to get close to their undesirable targets. 

What is more, as mentioned above, the desirable targets (1 or the CCR efficiency) in 

traditional models are not always realizable for the DMUs. In order to overcome these 

issues, we propose the following weights selection model (3.8) based on the desirable 

and undesirable cross-efficiency targets (n7'dÜáand n7'd&g). 

min 	 D($' −à')
g

'IJ
 

 

$. m. > ∙ <7 = n7∗  

= ∙ ;7 = 1 

> ∙ <' − n7'dÜá ×= ∙ ;' + $' = 0,∀2, 2 ≠ 8 

> ∙ <' − n7'd&g ×= ∙ ;' − à' = 0,∀2, 2 ≠ 8 

(3.8) 
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>,= ≥ 0 

$', à' ≥ 0,∀2 
In model (3.8), n7∗  is the CCR efficiency of DMU d. n7'dÜá  and n7'd&g  are 

respectively the desirable and undesirable cross-efficiency targets. $'  denotes the 

deviation of DMU j from its desirable cross-efficiency target and à' represents the 

distance of DMU j from its undesirable cross-efficiency target. Note that we omit the 

constraints > ∙ <' −= ∙ ;' ≤ 0,∀2 in model (3.8). This is because these constraints 

become redundant due to the existence of > ∙ <' − n7'dÜá ×= ∙ ;' + $' = 0, ∀2  and 

$' ≥ 0,∀2. As we can see from model (3.8), the first and second constraints ensure that 

when selecting weights for a particular DMU d, its efficiency is guaranteed to be at its 

CCR efficiency level. The third and fourth constraint groups in this model mean that 

the cross efficiency of each DMU j with respect to DMU d should be constrained 

between its desirable cross-efficiency target n7'dÜá  and undesirable cross-efficiency 

target n7'd&g. The objective function of the model shows that the model strives to make 

the other DMUs’ deviations from the desirable cross-efficiency targets as small as 

possible and the distances from the undesirable cross-efficiency targets as large as 

possible, when selecting weights for a given DMU d. As a result, model (3.8) makes 

the cross efficiencies of the DMUs close to their desirable cross-efficiency targets and 

away from their undesirable cross-efficiency targets. 

To reduce large differences between the cross efficiencies of the DMUs 

determined by the weights of DMU d, we minimize the maximum difference between 

deviations from desirable and undesirable cross-efficiency targets of the DMUs. The 

model is shown as the following model (3.9). 

min 	 ä  

$. m.	 > ∙ <7 = n7∗  

= ∙ ;7 = 1 

> ∙ <' − n7'dÜá ×= ∙ ;' + $' = 0,∀2, 2 ≠ 8 

> ∙ <' − n7'd&g ×= ∙ ;' − à' = 0,∀2, 2 ≠ 8 

$' −à' ≤ ä,∀2, 2 ≠ 8 

>,= ≥ 0 

$', à' ≥ 0,∀2 

(3.9) 
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Model (3.9) aims at minimizing the maximum difference between the deviation 

from desirable cross-efficiency target and the distance from the undesirable cross-

efficiency target among the DMUs. Actually, the original objective function of this 

model should be written as min max'�7,∀'($' −à'), but doing so would lead to a nonlinear 

program. To solve this problem, we let ä to represent max'�7,∀'($' −à') and use the 

constraints $' − à' ≤ ä,∀2, 2 ≠ 8  to transform the model into an equivalent linear 

program shown in model (3.9). Observing from the efficiency point of view, it is easy 

to see that model (3.9) intends to find out the set of weights that maximizes the 

minimum cross efficiency of the DMUs relative to DMU d. In doing so, the selected 

weights have the potential to reduce large differences between cross efficiencies of all 

the DMUs. Specifically, in order to show the best possible efficiency level of the worst 

performer, the cross efficiencies of other DMUs (better performers) may be decreased, 

thus resulting in situations where the differences between the DMUs’ cross efficiencies 

are smaller than when model (3.8) is used. 

In models (3.8) and (3.9), DMU d selects its weights to maximize the other DMUs’ 

cross efficiencies while keeping its own efficiency at its optimal level. Therefore, 

models (3.8) and (3.9) are benevolent. Model (3.8) can be transformed into an 

aggressive model by maximizing the objective function as in model (3.10). 

max 	 D($' −à')
g

'IJ
 

 

$. m.	 mℎÇ	$E#Ç	E$	mℎÉ$Ç	(!	#É8ÇÑ	(3.8) (3.10) 

The aggressive model corresponding to model (3.9) is shown as the following 

model (3.11). 

max 	 ä  

$. m. > ∙ <7 = n7∗  

= ∙ ;7 = 1 

> ∙ <' − n7'dÜá ×= ∙ ;' + $' = 0,∀2, 2 ≠ 8 

> ∙ <' − n7'd&g ×= ∙ ;' − à' = 0,∀2, 2 ≠ 8 
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(3.11) 



30 

3.2.2 A neutral model 

The above models consider the aggressive and benevolent strategies of the DMUs. 

But sometimes the DMU under evaluation does not care to maximize or minimize the 

cross efficiencies of the others. We define this situation as neutral strategy when each 

DMU optimizes its self-evaluated efficiency. Considering from the neutral point of 

view, we propose the following neutral secondary model (3.12). 

min 	 å  

$. m.	 > ∙ <7 = n7∗  

= ∙ ;7 = 1 

> ∙ <' − n7'dÜá ×= ∙ ;' + $' = 0,∀2, 2 ≠ 8 

> ∙ <' − n7'd&g ×= ∙ ;' − à' = 0,∀2, 2 ≠ 8 

$' −à' ≤ å,∀2, 2 ≠ 8 

$' −à' ≥ −å, ∀2, 2 ≠ 8 

>,= ≥ 0 

$', à' ≥ 0,∀2 

(3.12) 

In model (3.12), we minimize the maximum |$' −à'|, ∀2, i.e., we try to make the 

values of |$' −à'|, ∀2 as close to zero as possible. The optimal weights for DMU d 

by this model are chosen to make the efficiency of DMU j, ∀2
 
as close as possible to 

the midpoint between n7'dÜá  and n7'd&g  (which is exemplified in Theorem 3.2). 

Therefore, we regard it as a neutral secondary model. 

Theorem 3.2. Let n7'  be the cross efficiency for DMU j corresponding to DMU d 

obtained by model (3.12). If $' − à' = 0, then, we have n7' = çéèêëícçéèêìî
ï . 

Proof. In model (3.12), we have > ∙ <' − n7'dÜá ×= ∙ ;' + $' = 0, ∀2, 2 ≠ 8 and > ∙
<' − n7'd&g ×= ∙ ;' − à' = 0,∀2, 2 ≠ 8 . By adding these two equations, we have 

2× > ∙ <' − Xn7'dÜá + n7'd&gY ×= ∙ ;' + $' −à' = 0. Since $' −à' = 0, we can then 

get n7' = ñ∙óèò∙ôè = çéèêëícçéèêìî
ï . Q.E.D. 

From Theorem 3.2, we can see that model (3.12) is intended to make the other 

DMUs’ cross efficiencies as close as possible to the midpoint between n7'dÜá  and 
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n7'd&g. 

By using the proposed weights selection models, we can obtain a set of optimal 

weights, denoted as (>7∗ , =7∗), for each DMU d. Then, we can calculate the cross-

efficiency scores (n'|) for the DMUs as in equation (2.8). 

It should be noted that any of the proposed secondary goal models can be used for 

weights selection in cross-efficiency evaluation. None of these models is a clear winner 

or loser in any circumstances. The decision-makers can choose different models to fit 

different applications. Models (3.8) and (3.9) are applicable when the DMUs are 

cooperative. Model (3.8) aims at maximizing the efficiency of the whole system made 

of the DMUs. In addition, the efficiency of the DMU which uses model (3.8) to select 

its optimal weights will be kept at its maximum level (CCR efficiency). Nakabayashi 

and Tone (2006) suggested that such a model can be used to solve benefit-sharing 

problems. For example, all the departments in a university will cooperate with each 

other to maximize the efficiency of the university and make the university prestigious, 

thereby winning it more funding. At the same time, each department will maximize its 

own efficiency to share more of the funds. 

Model (3.9) seeks to maximize the minimum cross efficiency among all the DMUs, 

which will lead to a situation in which the variations between the DMUs’ cross 

efficiencies are smaller than those in the evaluation results of model (3.8). This model 

is applicable in the situation where a more cooperative atmosphere exists among the 

DMUs. Specifically, in such a cooperative atmosphere, some better performers are 

willing to sacrifice their own efficiencies to help the worst performer to achieve its best 

efficiency level. Such an example can be seen in Walker et al. (2008), in which a supply 

chain involves a set of sectors. In the supply chain, every sector is very important. The 

supply chain will suffer a disadvantageous competitive position if any sector of the 

chain performs badly, which will lead to the consequence of failure. Therefore, the 

worst performing sector in the supply chain should be given its best efficiency level in 

the evaluation so as to show a better performance of the whole chain. 

Models (3.10) and (3.11) are suitable for evaluation of DMUs which are 

competitive with each other. Similar to the case of models (3.8) and (3.9), if the 

relationships among the DMUs are rather competitive, model (3.11) is a more suitable 

model than model (3.10). Model (3.12) is proposed from a neutral point view and is 

suitable for situations where the DMUs do not care if they benefit or harm the others’ 
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cross efficiencies. 

3.4 A numerical example 

In this section, we provide a classical numerical example: the efficiency evaluation 

of six nursing homes, which was also used in Liang et al. (2008a) and Wang and Chin 

(2010a). The example serves to compare the proposed models with the traditional 

secondary models listed in Section 3. 

As shown in Table 3.1, each nursing home has two inputs (X1 and X2) and two 

outputs (Y1 and Y2) (Sexton et al., 1986). 

StHr (X1): staff hours per day, including nurses, physicians, etc. 

Supp (X2): supplies per day, measured in thousands of dollars. 

MCPD (Y1): total Medicare-plus Medicaid-reimbursed patient days. 

PPPD (Y2): total privately paid patient days. 

Table 3.1 Input and output data of nursing homes 

DMU 
Inputs  Outputs 

StHr(X1) Supp(X2)  MCPD(Y1) PPPD(Y2) 

A 1.50  0.20   1.40  0.35  

B 4.00  0.70   1.40  2.10  

C 3.20  1.20   4.20  1.05  

D 5.20  2.00   2.80  4.20  

E 3.50  1.20   1.90  2.50  

F 3.20  0.70   1.40  1.50  

We evaluate and rank the DMUs using the CCR model, the traditional benevolent 

and aggressive models (3.1-3.6), and our proposed models (3.8-3.12). The results are 

listed in Tables 3.2 and 3.3. Through comparing the results, several findings are 

identified. Firstly, the CCR model cannot further distinguish between the efficient 

DMUs, but every model proposed in this chapter can effectively discriminate among 

the DMUs and give a unique ranking position for each DMU. 

Secondly, for each DMU, the average cross-efficiencies obtained from models (3.8) 

and (3.9) are larger than those from model (3.12), and efficiencies from models (3.10) 
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and (3.11) are smaller than those obtained from model (3.12). These results show that 

the proposed benevolent (or aggressive) model has a good ability to maximize (or 

minimize) other DMUs’ cross efficiencies and the proposed neutral model (3.12) has 

the neutral characteristic that it does not care to minimize or maximize the cross-

efficiency scores of other DMUs.  

Thirdly, compared with model (3.8), model (3.10) and the traditional benevolent 

and aggressive models, the average cross-efficiencies of DMUs obtained by model (3.9) 

or (3.11) are closer in value. This finding reveals that models (3.9) and (3.11) could 

reduce large differences between the cross efficiencies of the DMUs. 

Fourthly, differences are found in the ranking orders between our benevolent and 

aggressive models. This suggests that they are sensitive to the evaluation strategies that 

the DMUs choose, illustrating the fact that different strategies result in different ranking 

orders.  

Table 3.2 Aggressive average cross-efficiency and their rankings 

DMU 

Doyle and 

Green's model 

Liang et al.'s 

model 

Wang and Chin's 

model 
Proposed models 

Model (3.4) Model (3.5) Model (3.6) Model (3.10) Model (3.11) 

1 0.7639 (1) 0.7639 (1) 0.7639 (1) 0.7639 (1) 0.8023 (2) 

2 0.7004 (3) 0.7004 (3) 0.7004 (3) 0.7004 (3) 0.7681 (4) 

3 0.6428 (5) 0.6428 (5) 0.6428 (5) 0.6428 (5) 0.6850 (5) 

4 0.7184 (2) 0.7184 (2) 0.7184 (2) 0.7184 (2) 0.8071 (1) 

5 0.6956 (4) 0.6956 (4) 0.6956 (4) 0.6956 (4) 0.7799 (3) 

6 0.6081 (6) 0.6081 (6) 0.6081 (6) 0.6081 (6) 0.6730 (6) 
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Table 3.3 Benevolent average cross-efficiency and their rankings 

DMU CCR efficiency Doyle and 

Green's model 

Liang et al.'s 

model 

Wang and Chin's 

model 

Proposed models Neutral 

model 

Arbitrary 

strategy 

Model (3.1) Model (3.2) Model (3.3) Model (3.8) Model (3.9) Model (3.12) Equation (2.8) 

1 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1) 0.9163 (4) 0.8763 (3) 0.8655 (1) 0.8330 (1) 

2 1.0000 (1) 0.9773 (3) 0.9547 (4) 0.9773 (3) 0.9773 (2) 0.8622 (4) 0.8217 (3) 0.7617 (3) 

3 1.0000 (1) 0.8580 (5) 0.8864 (5) 0.8580 (5) 0.7886 (6) 0.8122 (5) 0.7612 (5) 0.7072 (5) 

4 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1) 0.9425 (1) 0.8607 (2) 0.7747 (2) 

5 0.9775 (5) 0.9758 (4) 0.9742 (3) 0.9758 (4) 0.9714 (3) 0.9097 (2) 0.8361 (4) 0.7565 (4) 

6 0.8675 (6) 0.8570 (6) 0.8465 (6) 0.8570 (6) 0.8462 (5) 0.7692 (6) 0.7253 (6) 0.6687 (6) 
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Fifthly, the traditional benevolent models (3.1), (3.3), and (3.5) cannot give any 

further distinction between nursing homes 1 and 4 (their cross-efficiency scores are 

both equal to 1). On the other hand, our models (3.8) and (3.9) do give them different 

cross-efficiency scores and rank them in different positions. This result indicates that 

our benevolent models generally have stronger power in discriminating the DMUs.  

Sixthly, except for the results of model (3.10) (which are identical to those in Wang 

and Chin (2010)), the average cross-efficiencies and the ranking orders obtained from 

our models are different from those generated by the traditional models. This indicates 

the desirable and undesirable targets in the proposed models have influences on the 

results for all DMUs. Therefore, the decision-makers have more flexibility in choosing 

their preferable models according to their different decision preferences. 

Finally, the efficiency score of each DMU generated by model (3.9) is smaller than 

that generated by traditional benevolent model (model (3.1)), and the efficiency score 

of each DMU generated by model (3.11) is larger than that generated by aggressive 

model (model (3.2)). This indicates that the benevolent and aggressive powers of the 

proposed models are relatively weaker than the traditional models. Decision-makers 

could choose the proposed or traditional models based on their preference degree. 

As can be seen from the above discussions, the proposed models can effectively 

discriminate the DMUs and evaluate the DMUs using different strategies, allowing 

more choices based on the characteristics of the DMUs. 

3.5 Conclusions 

As an effective method for evaluating and ranking the DMUs, cross-efficiency 

evaluation has been applied in a wide variety of areas. However, the problem of the 

non-uniqueness of optimal weights reduces the usefulness of the cross-efficiency 

evaluation method. In order to solve this problem, we propose a series of new secondary 

goal models. Compared with the traditional secondary goal models, our models not 

only use the cross-efficiency targets that are always reachable for the DMUs but also 

consider both positive and negative aspects of these targets, that is, the DMUs’ 

simultaneous goals to get close to desirable targets and away from undesirable ones. A 

numerical example is used to illustrate the proposed models. The results show that our 

secondary goal models not only have strong power in discriminating among DMUs, 
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but also show strong applicability which provides more choices for the decision-makers. 

Therefore, the proposed secondary goal models in this chapter can be seen as 

improvements and extensions to the traditional secondary goal models, which makes 

them meaningful contributions to DEA cross-efficiency evaluation. 

This work can be extended in at least two directions. On the one hand, nonlinear 

combinations of the deviations in the objective function may generate some more 

appropriate weights for the DMUs. But before that can be done, a linearization method 

needs to be firstly proposed to guarantee the nonlinear programs can be solved. On the 

other hand, our models are not applicable when the input and/or output data are 

stochastic, as they are in some real-world applications. Some further extensions might 

consider this problem and propose suitable methods to address it based on stochastic 

DEA or fuzzy DEA methodologies. 
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Chapter 4 DEA cross-efficiency evaluation based on Pareto 

improvement * 

In the traditional cross-efficiency evaluation approaches, the generated cross-efficiency 

scores may not be Pareto optimal, which reduces the effectiveness of this method. To 

fix this issue, we propose in this Chapter a cross-efficiency evaluation approach based 

on Pareto improvement, which contains two models (Pareto optimality estimation 

model and cross-efficiency Pareto improvement model) and an algorithm. The Pareto 

optimality estimation model is used to estimate whether given cross-efficiency scores 

of DMUs constitute a Pareto-optimal solution. If they do not, the Pareto improvement 

model is then used to improve them into a Pareto optimal solution. In contrast to other 

cross-efficiency approaches, our approach always obtains cross efficiencies that 

constitute a Pareto-optimal solution under the predetermined weight selection 

principles. More importantly, under some conditions, the evaluation result generated by 

our approach unifies self-evaluation, peer-evaluation, and common-weight-evaluation 

in DEA cross-efficiency evaluation. Specifically, the self-evaluated efficiency and the 

peer-evaluated efficiency converge to the same common-weight-evaluated efficiency. 

This will make the evaluation results more likely to be accepted by all the DMUs. 

The rest of this chapter is organized as follows. Section 4.1 proposes the Pareto-

optimal cross-efficiency evaluation models which contain the Pareto optimality 

estimation model and the cross-efficiency Pareto improvement model. An algorithm 

and related discussions of common weights are presented in Section 4.2. In Section 4.3, 

we compare the proposed approach with the existing studies through three instances. 

Finally, conclusions and further research directions are given in Section 4.4. 

4.1 Pareto-optimal cross-efficiency evaluation models 

Although the alternative secondary goal models can reduce the number of possible 

optimal solutions (i.e. more likely to give a unique optimal solution), the results in 

* This chapter is primarily referenced from: Jie Wu, Junfei Chu, Jiasen Sun, Qingyuan Zhu, and Liang Liang. (2016). 
DEA cross-efficiency evaluation based on Pareto improvement. European Journal of Operational Research, 248(2), 
571-579. 
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general are not Pareto optimal, which may not be acceptable for all DMUs. In this 

section, to obtain Pareto-optimal cross efficiencies, we propose a Pareto optimality 

estimation model to estimate whether given cross-efficiency scores for the DMUs are 

susceptible to be improved. Then, a cross-efficiency Pareto improvement model is 

proposed to bring the cross-efficiency scores for the DMUs closer to Pareto optimality. 

4.1.1 A Pareto optimality estimation model 

When improving the DMUs’ cross-efficiency scores, each DMU needs to attach 

new weights to inputs and outputs. This improvement requires consideration of all the 

DMUs because the CCR optimality says that no DMU can improve its efficiency alone 

and in general all DMUs must be considered if the goal is Pareto optimality. 

For the sake of simplification, we often use !-entry vectors to represent sets of 

cross-efficiency scores of DMUs. We also talk of self-evaluated efficiency and peer-

evaluated efficiencies. To be more specific, "#,% = '(∙*+,( ∙-+ is called the self-evaluated 

efficiency of DMU . if / = ., and the peer-evaluated efficiency of DMU . by DMU /, otherwise. 

Here, we state the following two basic weight selection principles, both of which 

are implicitly required by the Pareto optimality in this chapter. 

Principle 4.1. Given cross-efficiency scores for the DMUs, when new weights are to 

be selected for a DMU to improve the cross-efficiency scores, these new weights must 

guarantee that the DMU’s new self-evaluated efficiency is no smaller than its current 

cross-efficiency score. 

Principle 4.2. Given cross-efficiency scores for the DMUs, when new weights are to 

be selected for a DMU to improve the cross-efficiency scores, these new weights must 

guarantee that the other DMUs’ peer-evaluated efficiencies using the new weights are 

no smaller than their current cross-efficiency scores. 

These two principles are required for all the DMUs because they all have the 

intention of setting lower bounds for their cross efficiencies. Sometimes, the DMUs 

may even require the lower bounds to be the CCR efficiencies. Similar principles have 

also appeared in the models of Liang, Wu, Cook, and Zhu (2008a), Wang and Chin 
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(2010a), and Du et al. (2014). To better illustrate our method, we give the following 

Definition 4.1. 

Definition 4.1. Given a vector "0 = {"#0 , ∀.} of cross-efficiency scores, "0 is said to 

be Pareto optimal, if it is impossible to find another vector "04 = {"#04, ∀.}  of cross-

efficiency scores such that "#04 ≥ "#0, for any DMU j (1 ≤ . ≤ !), with at least one 

inequality being strict. 

Based on Pareto-optimality theory, the DMUs may consider whether new weights 

can be selected to improve their cross-efficiency scores without decreasing any of them. 

For the DMUs, to see whether a given vector of cross-efficiency scores is Pareto-

optimal, we propose the following Pareto-optimality estimation model (4.1). As will be 

seen later, a non-zero optimal objective value indicates that the given set of cross-

efficiencies is Pareto-optimal and a zero optimal objective value is a reasonable (but 

not conclusive) evidence that it is not. 89! :	  <. >. ? ∙ @A = 1 B ∙ CA ≥ "A0  B ∙ C# −? ∙ @# ≤ 0,∀.	 B ∙ C# − "#0 ×? ∙ @# + <# = 0,∀., . ≠ I <# ≤ :, ∀., . ≠ I : ≥ 0 

(4.1) 

In model (4.1), "#0 (1 ≤ . ≤ !) is the given cross-efficiency score of DMU . to 

be evaluated. They form vector "0 . I  can be any arbitrary DMU. When DMU d 

selects its weights, it keeps its own efficiency no less than its given cross-efficiency 

score (i.e., it respects the weight selection principle 4.1) and, subject to that priority, it 

then strives to make the other DMUs’ cross efficiencies as large as possible. 

In the remainder, let (BA∗ , ?A∗, LA∗ , :A∗) denote an optimal solution to model (4.1) 

corresponding to an arbitrary DMU d, where LA∗  is the vector made of the optimal 

values of <#,	∀., . ≠ I. 

In the context of Pareto-optimality estimation model (4.1), the following theorems 

can be proven. 

Theorem 4.1. If :A∗ = 0, then we have :%∗ = 0 for any k such that 1 ≤ / ≤ !. 
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Proof. Let N = (?A∗ ∙ @%), ?% = ?A∗/N, B% = BA∗/N, L% = LA∗/N, and :% =	:A∗ . It 

is easy to verify that (B% , ?% , L%, :%) is a feasible solution to model (4.1) when solving 

the model for any DMU k. So, we get :%∗ ≤ :% = :A∗ = 0. Because it is known that :%∗ ≥ 0, we must have :%∗ = 0. Q.E.D. 

Theorem 4.2. If there is some DMU d such that :A∗ = 0, all DMUs have the potential 

to improve their cross-efficiency scores without reducing the cross-efficiency scores of 

any other. 

Proof. According to Theorem 4.1, if :A∗ = 0, we have :%∗ = 0,∀/. So, from the fifth 

constraint group of model (4.1), we can get <%#∗ ≤ 0, ∀/, .. From the fourth constraint 

group of model (4.1), we have "#0 ≤ '+∗∙*(,+∗∙-( , ∀/, . . Consequently, we have "#0 ≤
PQ∑ '+∗ ∙*(,+∗∙-(Q%SP ≜ "#04, ∀.. Therefore, the DMUs have the potential to improve their cross-

efficiency scores to accomplish Pareto improvement without reducing the cross-

efficiency score of any other. Q.E.D. 

It can be seen from Theorems 4.1 and 4.2 that model (4.1) can be used to estimate 

whether a given set of cross-efficiency scores are Pareto-optimal. If :A∗ > 0, then none 

of the given cross-efficiency scores for DMUs can be strictly improved without 

reducing at least one of the others under the predetermined two principles. The given 

vector is Pareto optimal. If :A∗ = 0, then the DMUs have the potential to improve their 

cross-efficiency scores by Pareto improvement, so these cross-efficiency scores may 

not be Pareto-optimal and need to be further checked. 

4.1.2 Cross-efficiency Pareto-improvement model 

By using the Pareto-optimality estimation model (4.1), we can determine whether 

the DMUs have the potential to make their own cross-efficiency scores better off 

without making any DMU’s cross-efficiency score worse off. To make Pareto 

improvement for the cross-efficiency scores which do not constitute a Pareto-optimal 

solution, we propose the following cross-efficiency Pareto-improvement model (4.2). 

8VW B ∙ CA   <. >. ? ∙ @A = 1 (4.2) 
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B ∙ C# −? ∙ @# ≤ 0,∀.	 B ∙ C# − "#0 ×? ∙ @# ≥ 0,∀. B,? ≥ 0 

We know that there is always a feasible solution to model (4.2), if :#∗ = 0,∀. in 

the solution to model (4.1). Furthermore, when cross-efficiency improvement is made 

for DMU d, it is intended to maximize the efficiency of DMU d while keeping all DMUs’ 

cross efficiencies no less than their current cross-efficiency scores. 

In the remainder, let (BA∗ , ?A∗) be an optimal solution of model (4.2) with respect 

to DMU d By solving model (4.2) for each DMU I, it gets new optimal input and 

output weights (BA∗ ,?A∗). These weights are used for both self-evaluation and peer-

evaluation. By averaging the self-evaluated and peer-evaluated efficiency scores for 

each DMU d we can obtain the corresponding Pareto-improved cross efficiency for the 

DMUs as defined in (4.3). 

Definition 4.2. For each DMU j, 

 "#XY = PQ∑ 'Z∗ ∙*(,Z∗∙-(QASP  (4.3) 

is defined as its Pareto-improved cross efficiency. 

4.2 Algorithm and common weights 

In this section, we first propose an algorithm to get the Pareto-optimal cross 

efficiencies for the DMUs. Then, we discuss the existence of common weights. 

4.2.1 Algorithm 

We propose an iterative procedure to get Pareto-optimal cross efficiencies for the 

DMUs. The basic idea of the algorithm is to start with solving the traditional CCR 

model to get the original cross-efficiency scores for the DMUs. Then, we solve model 

(4.1) for an arbitrary DMU d to see whether the DMUs have the potential to make Pareto 

improvements in their cross-efficiency scores. If the DMUs have the potential to 

improve their cross-efficiency scores, we solve model (4.2) to get Pareto-improved 

cross efficiency for each DMU by (4.3). After this, the Pareto-improved cross 

efficiencies will be evaluated again by model (4.1), and this process is repeated as many 



42 

times as needed. When the change in Pareto-improved cross efficiency from one 

iteration to the next one becomes very small for all DMUs, or the Pareto-improved 

cross efficiencies are revealed to be Pareto-optimal by model (4.1), the algorithm 

terminates, and we get a vector of Pareto optimal cross-efficiency scores. The details 

are shown as follows. 

Algorithm 4.1  

Begin  

Step 1: Solve the CCR model and obtain a vector of cross-efficiency scores defined 

by (2.8) for the DMUs. Let > = 1 and "#X[ = "#0,P = "#0 , ∀.. 
Step 2: Solve model (4.1) for an arbitrary DMU d. If :A∗ > 0 in the optimal 

solution, then stop. Otherwise, solve model (4.2) to select new optimal weights 

(BA\∗,?A\∗) for each DMU I, and let "#X[ = "#0,\]P = PQ∑ 'Z∗ ∙*(,Z∗∙-(QASP , ∀.. 
Step 3: If we have ^"#0,\ − "#0,\]P^ ≥ _ for some j, let >: = > + 1 and go Step 2. 

Otherwise stop. 

End  

Let (BA\∗, ?A\∗) be an optimal solution to model (4.2) when DMU d is considered 

in the tth iteration of the algorithm. Let "∗ be the vector of the CCR (self-evaluated) 

efficiencies. We claim that when the proposed algorithm stops, the obtained "X[ 

(denoted as the vector of the pareto optimal cross-efficiency scores "#X[) is a Pareto-

optimal vector of cross efficiency scores as defined in Definition 4.1. Concerning this 

algorithm, we present the following Theorems 4.3-4.7. 

Theorem 4.3. For any DMU j, "#0,\  are nondecreasing with >, and we have "#0 ≤"#0,\ ≤ "#∗ , where "#0  and "#∗  are the original cross-efficiency score and the CCR 

(self-evaluated) efficiency (generated by model (2.3)) of DMU j, respectively. 

Proof. From the constraints in model (4.2), for each DMU j, we have "#0,\ ≤ 'Za∗∙*(,Za∗∙-(. 

Therefore "#0,\ ≤ PQ∑ 'Za∗∙*(,Za∗∙-(QASP = "#0,\]P . It is easy to see that ( 'Za∗,Za∗∙-( , ,Za∗,Za∗∙-(	) is a 

feasible solution to the CCR model (2.5) corresponding DMU j. So, for any d, we have 
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'Za∗∙*(,Za∗∙-( = 'Za∗,Za∗∙-( ∙ C#/( ,Za∗,Za∗∙-(	 ∙ @#) ≤ "#∗ , which implies "#0,\]P = ∑ 'Za∗∙*(,Za∗∙-(QASP ≤ "#∗ . 

Thus, we get "#0 ≤ "#0,\ ≤ "#0,\]P ≤ "#∗ , ∀., > = 1,2,…. Q.E.D. 

Theorem 4.4. For any > , if "0,\  is not Pareto-optimal, there is some .  such that "#0,\]P > "#0,\. 
Proof. If "0,\ is not Pareto-optimal, according to Definition 4.1, there must be some 

DMUs I  and .  such that "#0,\ < 'Z∙*(,Z∙-( , where (BA , ?A) is a feasible solution to 

model (4.2). Then it is easy to see that ( 'Z,Z∙-( , ,Z,Z∙-()	is also a feasible solution to model 

(4.2) when DMU j is being improved. This means we have 
'Z∙*(,Z∙-( = 'Z,Z∙-( ∙ C#/( ,Z,Z∙-( ∙

@#) ≤ '(a∗∙	*(,(a∗∙-(. Therefore, we have "#0,\ < 'Z∙*(,Z∙-( ≤ '(a∗∙	*(,(a∗∙-(. By definition, we have "#0,\ ≤
'+a∗∙*(,+a∗∙-( , ∀/ ≠ ., so we get "#0,\ < PQ e'(a∗∙*(,(a∗∙-( +∑ '+a∗∙*(,+a∗∙-(Q%SP,%f# g = "#0,\]P. Q.E.D. 

Theorem 4.5. For any DMU d, the self-evaluated efficiency "AA\  is nonincreasing with > where "AA\  is defined as "AA\ = BA\∗ ∙ CA. We also have "A0,\ ≤ "AA\ ≤ "A∗ . 
Proof. As was identified in Theorem 4.3, for any "#0,\ ≤ "#0,\]P for any DMU .. This 

means that in model (4.2) for any DMU d, any solution which is feasible at iteration > + 1 is also feasible at iteration >. So, (BA\]P∗ ,?A\]P∗) is a feasible solution to model 

(4.2) corresponding to DMU d in the tth iteration of the algorithm. It is easy to see that 

for any t, (BA\∗ ,?A\∗) is also a feasible solution to the CCR model (2.5). Thus, we have "AA\]P = BA\]P∗ ∙ CA ≤ BA\∗ ∙ CA = "AA\ ≤ "A∗ . Also, it is easy to figure out that for any t 

and k, we have 
'+a∗∙*Z,+a∗∙-Z ≤ BA\∗ ∙ CA , which implies "A0,\ ≤ "A0,\]P = PQ∑ '+a∗∙*Z,+a∗∙-ZQ%SP ≤

BA\∗ ∙ CA = "AA\ . Therefore, based on the above inferences, we have "A0,\ ≤ "AA\ ≤ "A∗ . 

Q.E.D. 

Theorem 4.6. If the algorithm terminates at step 3 in the tth iteration of the algorithm, 

for any d, the Pareto-improved cross efficiency and the self-evaluated efficiency of 

DMU d converge to the same value, i.e. "A0,\ = "AA\ . 
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Proof. If the algorithm converges in this iteration; i.e., "A0,\ = "A0,\]P = "AX[, then we 

can show that "A0,\ = BA\∗ ∙ CA = "AA\ . This can be proved by absurdity. If "A0,\ <BA\∗ ∙ CA in model (4.2), then by adding "A0,\ ≤ B%∗ ∙ CA/(?%∗ ∙ @A), for any / ≠ I, we 

would have "A0,\ < PQ hBA\∗ ∙ CA + ∑ B%\∗ ∙ CA/(?%\∗ ∙ @A)Q%SP,%fA i = "A0,\]P , which 

would be in contradiction with the fact that "A0,\ = "A0,\]P. Therefore, we have "A0,\ =BA\∗ ∙ CA = "AA\ . Q.E.D. 

Theorem 4.7. The final Pareto-improved cross efficiencies for the DMUs constitute a 

Pareto-optimal solution. 

Proof. The algorithm terminates at either step 2 or step 3. If the algorithm stops at step 

2, no new weights can be selected by the algorithm to improve any of the DMUs’ cross-

efficiency scores without making at least one of the DMUs’ cross-efficiency score 

worse off. Thus, by the definition of Pareto-optimality, the final generated Pareto-

improved cross efficiency scores constitute a Pareto-optimal solution. If the algorithm 

converges at step 3, we have "A0,\ = "A0,\]P for all DMU d. But if the final generated 

Pareto-improved cross efficiencies were not Pareto optimal, we know from Theorem 

4.4 that "A0,\ < "A0,\]P for some DMU d. This would be contrary to the convergence 

condition that "A0,\ = "A0,\]Pfor all DMU d. Therefore, the final Pareto-improved cross 

efficiencies for the DMUs constitute a Pareto-optimal solution. Q.E.D. 

Theorem 4.3 shows that the Pareto-improved efficiency "#0,\ for each DMU j is 

non-decreasing and located between its original cross-efficiency score "#0 and CCR 

self-evaluated efficiency "#∗ during the process. Theorem 4.4 shows that the Pareto-

improved efficiency "#0,\  for each DMU j is increasing until it reaches the Pareto-

optimal cross efficiency. These theorems ensure that the algorithm terminates within a 

finite number of steps and that the cross-efficiency scores of the DMUs are improved 

as the algorithm proceeds. Theorem 4.5 shows that the self-evaluated efficiencies of the 

DMUs are non-increasing during the process. The self-evaluated efficiencies of the 

DMUs are not smaller than their peer-evaluated efficiencies (Pareto-improved cross 

efficiencies) in each iteration of the algorithm. Theorem 4.6 points out that the self-

evaluated efficiency and the peer-evaluated efficiency of each DMU will converge to 

the same efficiency score if the algorithm stops at step 3 (and Theorem 4.7 implies that 

this score is also the DMU’s Pareto-optimal cross-efficiency score). We can view the 

convergence of the algorithm as a kind of tradeoff, in which the self-evaluated 
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efficiency of each DMU is reduced to improve its peer-evaluated efficiency. This kind 

of tradeoff stops when the self-evaluated efficiency and peer-evaluated efficiency 

converge to the same value (see Figure 4.1). 

Theorem 4.7 shows that the final cross-efficiency scores for the DMUs constitute 

a Pareto-optimal solution. Additionally, if the algorithm stops at its step 3, the self-

evaluated efficiency and peer-evaluated efficiency of each DMU will converge to the 

same Pareto-optimal cross efficiency. This is of interest because the Pareto optimality 

of the results and the unification of self-evaluation with peer-evaluation for the DMUs 

will make the evaluation results more acceptable to the DMUs, i.e. the DMUs are more 

likely to believe in the fairness of the evaluation. 

4.2.2 Common weights 

In this part, we show that common weights appear for the DMUs if the proposed 

algorithm terminates at step 3. Firstly, we propose the following Theorem 4.8 and 

Corollary 4.1. 

Theorem 4.8. If the algorithm terminates at step 3 in the tth iteration of the algorithm, 

the peer-evaluated efficiencies of any DMU d by the other DMUs are all equal to its 

Pareto-optimal cross efficiency, i.e. for any d and k, we have "AX[ = "A0,\ = "%A0,\ = B%∗ ∙CA/?%∗ ∙ @A. 

Proof. This can be proved using reduction to absurdity. Since the algorithm converges 

at the tth iteration, for any d, we have "A0,\ = "A0,\]P = "AX[. For any k, we have "A0,\ ≤
'+∗ ∙*Z,+∗∙-Z from model (4.2). If "A0,\ < '+∗ ∙*Z,+∗∙-Z  for some DMU k, we would have "A0,\ <
"A0,\]P = PQ∑ '+∗ ∙*Z,+∗∙-ZQ%SP , which would be in contradiction with the fact that 	"A0,\ =
"A0,\]P. So, we have "AX[ = "A0,\ = "%A0,\	for any d, k. Q.E.D. 

From the proof of Theorem 4.8, the common optimal weight result follows easily. 

Corollary 4.1. If the algorithm terminates at step 3 of the algorithm, there must exist a 

pair of vectors of common weights (B,?), such that  "#X[ = '∙*(,∙-( , ∀. . 
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Theorem 4.8 and Corollary 4.1 show that all the DMUs use the same weights to 

peer-evaluated the others if the algorithm stops at step 3. The optimal weights of every 

DMU can be seen as a set of common weights which can generate Pareto-optimal cross 

efficiencies. But it should be noted here that the DMUs use different constraints 

(?A ∙ @A = 1) to avoid trivial solutions in model (4.2). This may lead to the situation 

that the set of optimal weights selected by model (4.2) for each DMU is a multiple of 

the set of common weights, i.e. (BA∗ ,?A∗) = j(B,?) for some j > 0. Fortunately, 

this does not affect the common-weight property of the optimal weights because the 

optimal weights in DEA reflect only the relative importance a DMU attaches to its 

corresponding inputs and outputs when evaluating efficiency (Charness & Cooper, 

1962). Therefore, we can give the common weights of the DMUs by standardizing the 

optimal weights of any DMU d as follows. 

 B = BA∗∑ klA∗mlSP +∑ noA∗poSP  (4.4) 

 

 ? = ?A∗∑ klA∗mlSP +∑ noA∗poSP  (4.5) 

4.2.3 A Numerical example 

To illustrate the Pareto-optimal cross-efficiency evaluation models and the 

proposed algorithm, we use a small numerical example from Liang et al. (2008a) 

involving five DMUs. Each DMU has three inputs and two outputs. The raw data of 

this numerical example can be found in Table 2.1, Chapter 2. 

We evaluate the DMUs by the CCR model, the original cross-efficiency scores, 

benevolent model (3.1), aggressive model (3.2), and the proposed algorithm. The 

results of the evaluations are listed in Table 4.1. Additionally, we standardize the 

optimal weights of all the DMUs by (4.4) and (4.5) when the algorithm terminates, with 

the results reported in Table 4.2. 

From the results, the cross-efficiency scores for the DMUs generated from 

equation (2.8) and models (3.1) and (3.2) are not Pareto optimal, for they can be further 

improved. To proceed, we use the proposed model to improve the cross-efficiency 

scores of all DMUs, and Figure 4.1 shows the process of efficiency improvement. 
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Table 4.1 The results of the numerical example 

DMUs 

CCR 

efficiency 

Pareto-optimal 

cross efficiency* 
Arbitrary Benevolent Aggressive 

Model (1) 
The proposed 

algorithm 

Equation 

(2.8) 
Model (3.1) Model (3.2) 

DMU1 0.6857  0.5715  0.4743  0.5616  0.4473  

DMU2 1.0000  1.0000  0.8793  0.9295  0.8895  

DMU3 1.0000  1.0000  0.9856  1.0000  0.9571  

DMU4 0.8571  0.7500  0.5554  0.6671  0.5843  

DMU5 0.8571  0.5999  0.5587  0.5871  0.5186  

Table 4.2 The common weights 

Inputs & Outputs Weights 

X1 0.00005  

X2 0.00016  

X3 0.49978  

Y1 0.50001  

Y2 0.00000  

As can be seen from Figure 4.1, the proposed algorithm obtains the Pareto-optimal 

cross efficiency scores for all DMUs after 8 iterations. Take DMU 1 as an example, its 

Pareto-improved cross efficiency increases and its self-evaluated efficiency decreases 

during the process. At the end of the algorithm, the cross-efficiency is identical to its 

self-evaluated efficiency (0.5715) which is defined as the Pareto-optimal cross 

efficiency for DMU 1. Additionally, a common set of weights is obtained for the Pareto-

optimal cross efficiencies of the DMUs when the algorithm terminates. 
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Figure 4.1 Calculation process of the proposed algorithm 

Note that in the optimal common weights of the DMUs, we find a zero-output 

weight. Although it is recognized that zero weights should be avoided in DEA common-

weight evaluation, this result is normal, since it is a group-decision result by all the 

DMUs, i.e., the zero weight is determined based on all the DMUs’ favor. The zero 

weights in such a group-decision mechanism only demonstrates that the selected 

indicator is not in favor for any of the DMUs and should be removed from the 

performance metrics. 

4.3 Application to R&D project selection and efficiency evaluation of 

nursing homes 

In this section, we illustrate our method by applying it to R&D project selection 

and efficiency evaluation of nursing homes. 

4.3.1 R&D project selection 

Thirty-seven R&D projects, each involving one input and five outputs, are used, 

which are documented in Table 4.3 (example from Oral et al. 1991). It should be noted 

here that the DMUs are in competition with each other because they all want to get the 

funding to support their projects (Liang et al., 2008a), so we need to get a set of cross-

efficiency scores that each DMU can admit as true and therefore accept. 

X1: Budgets 
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Y1: Indirect economic contribution 

Y2: Direct economic contribution 

Y3: Technical contribution 

Y4: Social contribution 

Y5: Scientific contribution 

The input budgets are in monetary units. The outputs are adjusted average scores 

obtained using Delphi Method. More details of the input and outputs can be seen in 

Oral et al. (1991). 

Table 4.4 shows the evaluation results of the proposed algorithm and the 

alternative traditional models. As can be seen from the results, each DMU’s cross-

efficiency score generated from equation (2.8) is larger than that from model (3.2) and 

smaller than that from model (3.1). This is in accordance with the arbitrary, benevolent, 

and aggressive characteristics of the traditional models. Additionally, compared with 

the results of the traditional models, the proposed algorithm generates higher cross-

efficiency scores for the DMUs. This is because of the Pareto optimality of the cross-

efficiency scores, for they cannot be further improved without reducing some other 

DMU’s cross-efficiency score. Also, when the algorithm stops, we get a common set of 

weights for Pareto-optimal cross-efficiencies for the DMUs, which is listed in Table 4.5. 

Table 4.3 The common weights 

Inputs & Outputs Weights 

X1 0.54804 

Y1 0.05945 

Y2 0.22369 

Y3 0.04892 

Y4 0.04988 

Y5 0.07003 
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Table 4.4 Input and output data of 37 R&D projects 

Project Input  Output 

X1  Y1 Y2 Y3 Y4 Y5 
1 84.2  67.53 70.82 62.64 44.91 46.28 

2 90  58.94 62.86 57.47 42.84 45.64 

3 50.2  22.27 9.68 6.73 10.99 5.92 

4 67.5  47.32 47.05 21.75 20.82 19.64 

5 75.4  48.96 48.48 34.9 32.73 26.21 

6 90  58.88 77.16 35.42 29.11 26.08 

7 87.4  50.1 58.2 36.12 32.46 18.9 

8 88.8  47.46 49.54 46.89 24.54 36.35 

9 95.9  55.26 61.09 38.93 47.71 29.47 

10 77.5  52.4 55.09 53.45 19.52 46.57 

11 76.5  55.13 55.54 55.13 23.36 46.31 

12 47.5  32.09 34.04 33.57 10.6 29.36 

13 58.5  27.49 39 34.51 21.25 25.74 

14 95  77.17 83.35 60.01 41.37 51.91 

15 83.8  72 68.32 25.84 36.64 25.84 

16 35.4  39.74 34.54 38.01 15.79 33.06 

17 32.1  38.5 28.65 51.18 59.59 48.82 

18 46.7  41.23 47.18 40.01 10.18 38.86 

19 78.6  53.02 51.34 42.48 17.42 46.3 

20 54.1  19.91 18.98 25.49 8.66 27.04 

21 74.4  50.96 53.56 55.47 30.23 54.72 

22 82.1  53.36 46.47 49.72 36.53 50.44 

23 75.6  61.6 66.59 64.54 39.1 51.12 

24 92.3  52.56 55.11 57.58 39.69 56.49 

25 68.5  31.22 29.84 33.08 13.27 36.75 

26 69.3  54.64 58.05 60.03 31.16 46.71 

27 57.1  50.4 53.58 53.06 26.68 48.85 

28 80  30.76 32.45 36.63 25.45 34.79 

29 72  48.97 54.97 51.52 23.02 45.75 

30 82.9  59.68 63.78 54.8 15.94 44.04 

31 44.6  48.28 55.58 53.3 7.61 36.74 

32 54.5  39.78 51.69 35.1 5.3 29.57 

33 52.7  24.93 29.72 28.72 8.38 23.45 

34 28  22.32 33.12 18.94 4.03 9.58 

35 36  48.83 53.41 40.82 10.45 33.72 

36 64.1  61.45 70.22 58.26 19.53 49.33 

37 66.4  57.78 72.1 43.83 16.14 31.32 
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Table 4.5 Evaluation results of the projects 

Project 

CCR 
efficiency 

Pareto-optimal 
cross efficiency* Arbitrary Benevolent Aggressive 

Model(2.5) The proposed 
algorithm 

Equation 
(2.8) Model (3.1) Model (3.2) 

1 0.6543  0.6155  0.6055  0.6127  0.6004  

2 0.5512  0.5212  0.5124  0.5181  0.5080  

3 0.3360  0.1738  0.1707  0.1724  0.1697  

4 0.5283  0.4546  0.4457  0.4540  0.4436  

5 0.5064  0.4581  0.4495  0.4562  0.4468  

6 0.6148  0.5225  0.5121  0.5231  0.5101  

7 0.5060  0.4323  0.4243  0.4324  0.4226  

8 0.4204  0.4103  0.4047  0.4087  0.4004  

9 0.5177  0.4433  0.4334  0.4410  0.4319  

10 0.5431  0.5247  0.5184  0.5226  0.5119  

11 0.5618  0.5440  0.5373  0.5416  0.5307  

12 0.5525  0.5282  0.5222  0.5261  0.5153  

13 0.5045  0.4650  0.4573  0.4632  0.4533  

14 0.6539  0.6121  0.6015  0.6098  0.5967  

15 0.6518  0.5327  0.5209  0.5315  0.5194  

16 0.8542  0.7758  0.7672  0.7713  0.7568  

17 1.0000  1.0000  0.9779  0.9785  0.9677  

18 0.7618  0.7108  0.7020  0.7085  0.6930  

19 0.5179  0.4835  0.4766  0.4806  0.4708  

20 0.3523  0.3036  0.3003  0.3003  0.2951  

21 0.6022  0.5656  0.5571  0.5608  0.5502  

22 0.5068  0.4746  0.4667  0.4694  0.4613  

23 0.6754  0.6576  0.6477  0.6541  0.6412  

24 0.5003  0.4785  0.4704  0.4737  0.4651  

25 0.4024  0.3565  0.3519  0.3530  0.3465  

26 0.6633  0.6318  0.6234  0.6287  0.6163  

27 0.7420  0.7135  0.7034  0.7089  0.6949  

28 0.3478  0.3327  0.3271  0.3291  0.3233  

29 0.5784  0.5596  0.5519  0.5568  0.5454  

30 0.5505  0.5365  0.5304  0.5359  0.5242  

31 0.9459  0.8535  0.8468  0.8549  0.8356  

32 0.6393  0.6020  0.5945  0.6029  0.5882  

33 0.4299  0.4015  0.3970  0.4005  0.3919  

34 0.7973  0.6865  0.6774  0.6911  0.6728  

35 1.0000  1.0000  0.9881  1.0000  0.9772  

36 0.7708  0.7583  0.7487  0.7569  0.7402  

37 0.7391  0.6789  0.6690  0.6805  0.6639  



52 

Table 4.6 Selection results of different methods 

Project Pareto-optimal 
cross efficiency 

Oral et 
al.(1991) 

Green et al. 
(1996) 

Our 
approach Budget 

35 1.0000 yes yes yes 36 

17 1.0000 yes yes yes 32.1 

31 0.8535 yes yes yes 44.6 

16 0.7758 yes yes yes 35.4 

36 0.7583 yes yes yes 64.1 

27 0.7135 yes yes yes 57.1 

18 0.7108 yes yes yes 46.7 

34 0.6865 yes yes yes 28 

37 0.6789 yes yes yes 66.4 

23 0.6576 yes yes yes 75.6 

26 0.6318 yes yes yes 69.3 

1 0.6155 yes yes yes 84.2 

14 0.6121 yes yes yes 95 

32 0.6020 
 

yes yes 54.5 

21 0.5656 yes yes yes 74.4 

29 0.5596 yes yes yes 72 

11 0.5440 
    

30 0.5365 
    

15 0.5327 
    

12 0.5282 
 

yes yes 47.5 

10 0.5247 
    

6 0.5225 
    

2 0.5212 
    

19 0.4835 
    

24 0.4785 
    

22 0.4746 
    

13 0.4650 
    

5 0.4581 yes 
  

75.4 

4 0.4546 
    

9 0.4433 
    

7 0.4323 
    

8 0.4103 
    

33 0.4015 
    

25 0.3565 
    

28 0.3327 
    

20 0.3036 
    

3 0.1738 
    

Budget sum 
 

956.3 982.9 982.9 1058.3 
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The R&D project selection results using the Pareto-optimal cross efficiencies are 

shown in Table 4.6. We also give the results generated by the method of Green, Doyle, 

and Cook (1996) and Oral et al. (1991). Based on the project selection rule in Green et 

al. (1996), the projects are chosen by decreasing values of the cross-efficiency scores 

of the DMUs subject to the requirement that the total budget of the projects cannot 

exceed 1,000. As can be seen from the results, our method selects the same 17 projects 

as Green et al.’s. The total budget for this selection is 982.9. Compared to the results 

obtained by Oral et al.’s method, our method selects project 32 (Pareto-optimal cross 

efficiency, 0.6020) and project 12 (0.5282) while their method selects project 5 (0.4581) 

instead. Therefore, within the residual budget, our method can achieve the goal of 

project selection with projects that have slightly higher cross-efficiency scores than the 

traditional method proposed by Oral et al. (1991). Furthermore, the total budget of our 

method is higher than Oral et al.’s method and one more project is given the chance to 

take part in the program. This indicates that more chances are provided and more 

resources are used for the candidates in our solution. Additionally, our approach finally 

evaluates the DMUs with a common set of weights. This will make the evaluation 

results and the R&D project selection results more likely to be accepted by all the 

DMUs. 

4.3.2 Efficiency evaluation of nursing homes 

As listed in Table 4.7, each nursing home has two inputs (X1 and X2) and two 

outputs (Y1 and Y2) (example from Sexton et al., 1986). 

StHr (X1): staff hours per day, including nurses, physicians, etc. 

Supp (X2): supplies per day, measured in thousands of dollars. 

MCPD (Y1): total Medicare-plus Medicaid-reimbursed patient days. 

PPPD (Y2): total privately paid patient days. 

Table 4.8 shows the evaluation results of the six nursing homes. Accompanied 

with it, we show the common weights for the Pareto-optimal cross efficiencies of the 

DMUs in Table 4.9. As can be seen from the results, the proposed algorithm has 

improved the original cross-efficiency scores and finally generated larger cross-

efficiency scores (in fact, Pareto-optimal cross efficiencies) for all the DMUs.  
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Table 4.7 Input and output of nursing homes 

DMU Inputs  Outputs 

StHr(X1) Supp(X2)  MCPD(Y1) PPPD(Y2) 

A 1.50  0.20   1.40  0.35  

B 4.00  0.70   1.40  2.10  

C 3.20  1.20   4.20  1.05  

D 5.20  2.00   2.80  4.20  

E 3.50  1.20   1.90  2.50  

F 3.20  0.70   1.40  1.50  

Table 4.8 Evaluation results of the six nursing homes 

DMUs 

CCR 

efficiency 

Pareto-optimal 

cross efficiency* 
Arbitrary Benevolent Aggressive 

Model 

(2.5) 

The proposed 

algorithm 

Equation 

(2.8) 
Model (3.1) Model (3.2) 

A 1.0000  1.0000  0.8330  1.0000  0.7639  

B 1.0000  0.9848  0.7617  0.9773  0.7004  

C 1.0000  0.8464  0.7072  0.8580  0.6428  

D 1.0000  1.0000  0.7747  1.0000  0.7184  

E 0.9775  0.9765  0.7565  0.9758  0.6956  

F 0.8675  0.8607  0.6687  0.8570  0.6081  

Table 4.9 The common weights 

Inputs & Outputs Weights 

X1 0.11177  

X2 0.48178  

Y1 0.11596  

Y2 0.29050  

Furthermore, apart from DMU C, all the other DMUs’ Pareto-optimal cross 

efficiencies are larger than those generated from the benevolent model (3.1). This 

shows that the efficiency-improving power of the benevolent model (3.1) is weaker 

than the proposed algorithm. Additionally, the DMUs finally use a common set of 

weights to make efficiency evaluation in our algorithm, which makes the evaluation 



55 

results more acceptable to all the DMUs. 

4.4 Conclusions 

Because of its good ability in evaluation and ranking of DMUs, DEA cross-

efficiency evaluation has been widely applied in various areas. However, not all the 

DMUs are ready to accept these cross-efficiency scores as their efficiency measurement; 

they may refuse to admit the scores’ validity, because the traditional cross-efficiency 

scores generally do not constitute Pareto-optimal solutions. To fix this issue, we first 

proposed a Pareto-optimality estimation model to estimate whether a given set of cross-

efficiency scores is Pareto-optimal under the predetermined weight selection principles. 

We then introduced a cross-efficiency Pareto improvement model to improve the cross-

efficiency scores of the DMUs to a Pareto-optimal solution. Finally, based on these two 

models, an algorithm was proposed to generate cross efficiencies which are proved to 

be Pareto optimal for the DMUs and cannot be further improved. 

Our method brings at least four advantages to cross-efficiency evaluation. Firstly, 

because of the Pareto optimality of the generated cross efficiencies, they will be more 

acceptable to all the DMUs. Secondly, the numerical examples show that the proposed 

algorithm has good power to improve the cross-efficiency scores of the DMUs. Thirdly, 

if the proposed algorithm stops at step 3, the proposed approach will generate Pareto-

optimal cross efficiencies that unify self-evaluation, peer-evaluation, and common-

weight evaluation. To be specific, the self-evaluated efficiency and peer-evaluated 

efficiency for each DMU converge to the same common-weight evaluated efficiency 

which is a Pareto-optimal cross efficiency. Finally, if the algorithm terminates at step 3, 

then a common set of weights can be determined which generates Pareto-optimal cross 

efficiencies, which will give an additional reason for all the DMUs to accept the 

evaluation results. 

We suggest two further research directions to build upon our result. Firstly, the 

Pareto-optimal cross efficiencies are generated while maintaining two basic principles 

4.1 and 4.2. We believe that better cross efficiencies might be found without the 

constraints of these principles. Secondly, the unification (under certain conditions) of 

self-evaluation, peer-evaluation, and common-weight-evaluation seen in this paper 

provides a new research path for cross-efficiency evaluation. 
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Chapter 5 Cross-bargaining game DEA cross-efficiency 

evaluation * 

This Chapter proposes a cross-bargaining game data envelopment analysis (DEA) cross 

efficiency evaluation approach to address the non-uniqueness of optimal weights and 

non-Pareto-optimality of the evaluation result in DEA cross-efficiency evaluation. A 

cross-bargaining game model is given to obtain optimal weights for calculating cross 

efficiencies for each pair of DMUs among the group. An algorithm is further provided 

to transform the proposed model into a series of linear programs. Compared with 

traditional cross-efficiency evaluation approaches, the proposed approach can not only 

guarantee the uniqueness of the optimal cross efficiency scores, but also ensures the 

Pareto-optimality of the evaluation result. Finally, the proposed approach is applied to 

green supplier selection and the results are compared with those from previous studies. 

The rest of this Chapter is organized as follows. Section 5.1 proposes the cross-

bargaining game model. An algorithm is given to solve the cross-bargaining game 

model in Section 5.2. An application to green supplier selection of the proposed 

approach is presented in Section 5.3. Finally, Section 5.4 concludes this Chapter. 

5.1 The cross-bargaining game model 

From the benevolent model (3.1), we observe that the optimal weights selection 

process of each DMU is like a bargaining process. The other DMUs are bargaining to 

maximize their aggregated efficiency while maintaining the efficiency of the specific 

DMU at the optimal level. In this chapter, we propose a new cross-efficiency evaluation 

model, called cross-bargaining model, in which each pair of DMUs among the group 

bargain with each other to determine a common set of weights for calculating their cross 

efficiencies. Each DMU needs to negotiate with the other ! − 1 DMUs respectively 

to determine ! − 1 set of weights for calculating the cross efficiencies for itself and 

these ! − 1  DMUs. In fact, in each negotiation, the two DMUs involved can be 

* This chapter is primarily referenced from: Junfei Chu, Jie Wu, Chengbin Chu. (2018). Cross-bargaining game DEA 
cross-efficiency evaluation: An application to R&D project selection. Under review at Computers and Industrial 
Engineering. 
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regarded as two players in a Nash bargaining game. Therefore, we can incorporate the 

Nash bargaining game for cross-bargaining of cross efficiencies between every pair of 

DMUs. Before introducing our model, we give a brief introduction of Nash bargaining 

game. 

Denote the two participants in the bargaining as q = {1, 2}, the payoff vector of 

the participants is an element of the payoff space defined as a two-dimensional 

Euclidean space. Denote L as the set of possible strategies, which is a subset of the 

payoff space, and r as the breakdown (or disagreement) point which is an element of 

the payoff space. Then, the bargaining problem can be formulated as a triple (q, L, r) 
containing the participants, the feasible set, and the breakdown point. Nash (1950, 1953) 

pointed out that a solution of the two-individual bargaining game should have the 

properties of Pareto efficiency, invariance with respect to affine transformation (IAT), 

independence of irrelevant alternatives (IIA), and symmetry. Nash (1950, 1953) 

proposed the following model which can be used to obtain the unique solution which 

satisfies all the above-mentioned properties when the feasible set L is convex and 

compact. 

 maxv∈x,vyz{(Nl − rl)|
lSP  (5.1) 

In (5.1), N  is the payoff vector of the participants, Nl  and rl  are the 9\} 

elements in vector N and r, respectively. 

In the remainder, (B%z, ?%z) denotes the optimal solution of the benevolent model 

(3.1) when solving it corresponding to DMU k. 

In our case, we regard two DMUs, which intend to determine the optimal weights 

for calculating cross efficiencies, as two players in a bargaining game, the cross 

efficiency as each DMU’s payoff, and the weights for calculating cross efficiencies as 

strategies. For any pair of DMUs d and k (/ ≠ I ), among the group, the cross-

bargaining game model is proposed as follows. 

8VW ~ B ∙ CA? ∙ @A − "A,%zo�Ä ~ B ∙ C%? ∙ @% − "%,Azo�Ä 
 



59 

<. >. B ∙ C#? ∙ @# ≤ 1,∀. 
B ∙ CA? ∙ @A ≥ "A,%zo�  

B ∙ C%? ∙ @% ≥ "%,Azo� 

B,? ≥ 0 

(5.2) 

In model (5.2), (B,?) is the set of weights attached to the inputs and outputs. "A,%zo� (resp. "%,Azo�) is the breakdown efficiency of DMU d (resp. DMU k) corresponding 

to DMU k (resp. DMU d). The breakdown efficiency of a DMU is defined as follows. 

Definition 5.1. In the two-DMU bargaining process, for any DMU d, its breakdown 

efficiency corresponding to a DMU k, / ≠ I, is defined as 

 "A,%zo� = B%zCA?%z@A (5.3) 

where B%z  and ?%z  are the weights selected by DMU k when it uses the benevolent 

strategy. 

Definition 5.1 defines the breakdown efficiency of a DMU corresponding to 

another as its cross efficiency generated by the latter’s optimal weights obtained by 

solving the benevolent model (3.1). This is to say that a DMU would rather accept the 

other DMU’s benevolent cross efficiency if its new cross efficiency given by this DMU 

is smaller. From model (5.2), we can see that, in the bargaining process, each DMU’s 

efficiency should be kept no smaller than the breakdown efficiency and then the two 

DMUs bargain with each other to maximize their respective efficiencies. 

With respect to model (5.2), we have the following lemmas. 

Lemma 5.1. There is always a solution to model (5.2). 

Proof. Accompanied with Definition 5.1, it is easy to verify that (BAz , ?Az) is a feasible 

solution to model (5.2). Q.E.D. 

Lemma 5.2. The feasible region of model (5.2) is compact and convex. 

Proof. The proof of this lemma is similar to the proof of lemma 1 in Du et al. (2011). 

We omit the proof here. Q.E.D. 
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Lemma 5.1 shows that there is always a feasible solution to model (5.2). Lemma 

5.2 demonstrates that model (5.2) is compact and convex, which indicates that model 

(5.2) always provides a unique Nash bargaining solution. With respect to the four 

properties of the Nash bargaining solution, the solution of model (5.2) has: (i) Pareto 

efficiency which means that for the pair of DMUs bargaining in model (5.2), no one 

can improve its cross efficiency corresponding to the other without decreasing the other 

DMD’s; (ii) IAT which indicates that if both the breakdown efficiencies and the 

feasible region of model (5.2) satisfy an affine transformation in the payoff space, the 

cross efficiencies of the two DMUs are also subjected to this affine transformation; (iii) 

IIA which reveals that the cross efficiencies generated by model (5.2) will not change 

when the feasible region of model (5.2) decreases while the bargaining solution still 

remains in; (iv) symmetry which demonstrates that if the feasible region and the 

breakdown efficiencies of the two DMUs are symmetric, then the cross efficiencies 

obtained by model (5.2) for the two participating DMUs are the same. 

In the remainder, let (B#,%∗ ,?#,%∗ ) be the optimal solution of model (5.2) for the 

pair of DMUs j and k and (B#∗, ?#∗) the optimal solution of the CCR model with 

respect to DMU j. We can define the cross-bargaining cross-efficiency score as follows. 

Definition 5.2. For each DMU j, 

 "#0z0oÅ = 1!Ç B#
∗ ∙ C#?#∗ ∙ @# + É B#,%∗ ∙ C#?#,%∗ ∙ C#

Q
%SP,%f# Ñ (5.4) 

is defined as its cross-bargaining cross-efficiency score. 

Similar to the traditional cross-efficiency evaluation approach, the cross-

bargaining cross-efficiency score of each DMU is obtained by averaging the self-

evaluated efficiency (CCR efficiency) and the peer-evaluated efficiencies (cross 

efficiencies). However, unlike the traditional cross-efficiency evaluation approach in 

which each DMU uses its most favorable weights for calculating the cross efficiencies 

of the other DMUs, our evaluation model obtains the cross efficiencies of a pair of 

DMUs corresponding to each other through bargaining between them. This indicates 

that each DMU may use different sets of weights for calculating the other DMUs’ cross 

efficiencies. In addition, the set of weights used for calculating the cross efficiencies 

between two DMUs are the same, i.e., they both use the optimal weights, obtained by 
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solving model (5.2) corresponding to them, to calculate the other DMU’s cross 

efficiencies. This kind of evaluation mode is on a certain level more acceptable to the 

DMUs, because each pair of DMUs have reached an agreement on the set of weights 

to be used for calculating each other’s cross efficiencies. With respect to model (5.2), 

we have the following theorems. 

Theorem 5.1. For each DMU j, its cross-bargaining cross-efficiency score "#0z0oÅ is 

unique. 

Proof. According to the Nash bargaining theorem, if the feasible set of model (5.2) is 

convex, there exists only one solution 
'(,+∗ ∙*(,(,+∗ ∙-(, when solving model (5.2) with any DMU 

k, that satisfies the properties of Nash solutions. Therefore, with respect to any DMU k, 

'(,+∗ ∙*(,(,+∗ ∙-( is unique. In addition, the CCR efficiency of each DMU is also unique according 

to model (1). Therefore, "#0z0oÅ defined in (5.4) is unique. Q.E.D. 

Theorem 5.2. The solution composed of "#0z0oÅ, 1 ≤ . ≤ !, is Pareto optimal. 

Proof. This theorem can be easily proved based on Pareto efficiency of the Nash 

solution of Nash bargaining games. We omit the proof here. Q.E.D. 

Theorem 5.1 indicates that our approach obtains a unique cross-bargaining cross-

efficiency score for each DMU, which makes it unnecessary to consider the non-

uniqueness of optimal weights as in the traditional cross-efficiency evaluation method. 

Theorem 5.2 reveals that the final cross-bargaining cross-efficiency scores obtained for 

the DMUs constitute a Pareto optimal solution. This means that no DMU can improve 

its cross-bargaining cross-efficiency score without reducing that of at least one of the 

others. The Pareto optimality of the evaluation results makes the evaluation results 

more satisfactory and acceptable to all the DMUs. 

5.2 An algorithm and a numerical example 

In this section, we first give an algorithm to solve the proposed model (5.2) by solving 

a series of linear programs. Then a numerical example is provided to illustrate the 

proposed approach. 
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5.3.1 An algorithm to solve model (5.2) 

Note that model (5.2) is a nonlinear program which is hard to be solved directly. 

We now propose an algorithm to transform it into a series of linear programs. With 

respect to the notation in model (5.2), let > = P,∙-Z, Ö = >B, Ω = >?, and j = á∙*+à∙-+ . 

Then, model (5.2) can be transformed into a series of linear programs parameterized by j ∈ ["%,Azo�, "%00o] defined in (5.5). ã(j) = 	 max	åj − "%,Azo�çÖ ∙ CA − j"A,%zo� + "%,Azo�"A,%zo�  <. >. Ö ∙ C# −Ω ∙ @# ≤ 0,∀. Ö ∙ CA ≥ "A,%zo�  Ω ∙ @A = 1 Ö ∙ C% − jΩ ∙ @% ≥ 0 Ö,Ω ≥ 0 

(5.5) 

Note that the constraint Ö ∙ C% − "%,Azo�Ω ∙ @% ≥ 0 is omitted, because it becomes 

redundant when Ö ∙ C% − jΩ ∙ @% = 0 and	j ∈ ["%,Azo�, "%00o]. To avoid infeasibility of 

for some values of j, constraint Ö ∙ C% − jΩ ∙ @% ≥ 0 is used instead of the equality 

constraint. 

The optimal objective value of (5.5) is a function of j. Therefore, solving model 

(5.2) is equivalent to finding out a value of j so that ã(j) is maximized. It should 

be noted here that it is possible that "%,Azo� = "%00o  for some DMU k. This is to say that 

DMU d gives DMU k a cross efficiency that is equal to its CCR efficiency. For such a 

pair of DMUs d and k, their cross efficiencies corresponding to each other are both at 

the most favorable CCR efficiency level. So, there is no need to solve model (5.2) for 

such a pair. Now, we give the following algorithm which can be used to find the optimal 

solution of model (5.2) based on model (5.5). 

Algorithm  

Begin  

Step 1: Let > = 0, j = "%,Azo� , _ = é+èèêëé+,Zíêìî , where q is a parameter of the algorithm. 

Solve model (5.5) with the current value of j and obtain the optimal objective value ã\(j)  and the optimal solution (ÖA,%4 , ΩA,%4 ) . Let ã∗ = ã\(j) , 	åÖA,%∗ , ΩA,%∗ ç =
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(ÖA,%4 , ΩA,%4 ). 
Step 2: Let ï = áZ,+∗ *+àZ,+∗ -+. If ï > j, let > = > + [ï − j]/_, j = "%,Azo� + >_. If ï = j, let 

> = > + 1, j = "%,Azo� + >_. 

Step 3: Solve model (5.5) to calculate ã\(j) and the optimal solution (ÖA,%4 , ΩA,%4 ). If ã\(j) > ã∗, let ã∗ = ã\(j) and åÖA,%∗ , ΩA,%∗ ç = (ÖA,%4 , ΩA,%4 ). 
Step 4: If > ≥ q, stop. The obtained åÖA,%∗ , ΩA,%∗ ç is the optimal solution of model 

(5.2). Otherwise, go step 2. 

End 

In this work, we set q = 10,000. It is easy to see from the algorithm that it will 

always find an optimal solution to model (5.2) with a proper small error (which depends 

on the parameter N in the algorithm), although we relax a constraint in the 

transformation. It can be seen that the algorithm needs to only solve linear programs to 

obtain the optimal weights of model (5.2). 

5.3.2 A numerical example 

Now, we give a small numerical example to illustrate the proposed model and 

algorithm. The numerical example (Liang et al. 2008b) contains five DMUs. Each 

DMU uses three inputs to produce two outputs. Please find the raw data of this 

numerical example in Table 2.1 in Chapter 2. 

We use the CCR model, the traditional cross-efficiency evaluation method, the 

benevolent and aggressive model, and the proposed cross-bargaining game model to 

evaluate the DMUs. The results are listed in the following Table 5.1. 

As it can be seen from the evaluation result, firstly, the CCR model cannot make 

a full discrimination among the DMUs. It evaluates both DMUs 2 and 3 as DEA 

efficient and cannot make any further discrimination among them. Secondly, all the 

cross-efficiency evaluation methods make full discrimination among the DMUs. They 

all rank the DMUs in a unique order. Thirdly, consistent with the different strategies of 

the models, the benevolent cross-efficiency score generated for each DMU is larger 

than its aggressive cross-efficiency score, and the arbitrary cross-efficiency score is 

between the aggressive and benevolent cross-efficiency scores for each DMU. Fourthly, 
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for each DMU, its cross-bargaining cross-efficiency score generated by our model is 

generally larger than the cross-efficiency scores generated by other models. This is 

because our new cross-bargaining cross-efficiency evaluation model allows each pair 

of DMUs to bargain with each other for the Pareto optimal cross efficiencies. 

Additionally, our approach ensures the uniqueness of the cross-bargaining cross-

efficiency scores, which makes the results more acceptable to all DMUs. 

Table 5.1 Results of the numerical example 

DMUs 

CCR 

efficiency 

Cross-bargaining 

game 
Arbitrary Benevolent Aggressive 

Model (2.5) Model (5.2) Equation (2.8) Model (3.1) Model (3.2) 

DMU1 0.6857  0.6104  0.5453  0.5616  0.4473  

DMU2 1.0000  0.9714  0.8629  0.9295  0.8895  

DMU3 1.0000  1.0000  1.0000  1.0000  0.9571  

DMU4 0.8571  0.8166  0.5767  0.6671  0.5843  

DMU5 0.8571  0.7479  0.5614  0.5871  0.5186  

To see how the proposed algorithm works, we take the calculating process of 

model (5.2) for DMUs 4 and 5 as an example and show the details in Figure 5.1. 

Figure 5.1 Calculating process of the algorithm 



65 

It can be seen from Figure 5.1 that the optimal objective value ã(j) of model 

(5.2) varies with the gradual increment of j from 0.5871 to 0.8571. The objective 

value achieves the peak when j = 0.6429. At this time, we obtain the optimal solution 

to model (5.2) corresponding to DMUs 4 and 5. 

5.3 Application to green supplier selection 

Recently, DEA has been applied for green supplier selection in supply chain 

management. The main idea is to regard the multiple management criteria and green 

criteria of the suppliers as inputs and outputs, respectively, and then evaluate and rank 

the suppliers using alternative DEA models to select the best suppliers. Some studies 

have also considered the situations with imprecise data and fuzzy data. Relative studies 

can be seen in Karsak and Dursun (2014), Dobos and Vörösmarty (2014), Azadeh and 

Zarrin(2016), Fallahpour et al. (2017), and Dobos and Vörösmarty (2018). In this 

chapter, we also apply the proposed cross-bargaining game cross-efficiency evaluation 

approach for green supplier selection and compare it with the previous studies. 

5.3.1 Case background and data 

The case is taken from Dobos and Vörösmarty (2018), where 18 suppliers need to 

be evaluated. Each supplier is measured by three management criteria and two green 

criteria. The management criteria and two green criteria are regarded as inputs and 

outputs, respectively. Additionally, Dobos and Vörösmarty (2018) also incorporated 

one more input, inventory-related cost (or EOQ-related cost), which is calculated 

according to the lot size. The input and output indicators of the suppliers are listed as 

follows. 

Inputs (Management criteria): 

X1: Lead time (hours); 

X2: Product quality (%); 

X3: Quoted price (monetary unit); 

X4 (ô): The inventory cost when the lot size is ô. 

Outputs (Green criteria): 

Y1: Reusability level (%); 

Y2: CO2 emissions (g/unit product). 
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As it is known in DEA calculations, the inputs and outputs are the smaller the 

better and the larger the better, respectively. While input X2 (product quality) is the 

larger the better and the undesirable output Y2 (CO2 emissions) is the smaller the better. 

To handle this, Dobos and Vörösmarty (2018) used data transformation method (using 

the inverse of the data corresponding to these indicator). Here, we use the same data 

transformation method for the convenience of comparing the results with their model’s. 

The data and descriptive statistical analysis results are listed in the following Table 5.2. 

Table 5.2 Raw data and descriptive statistical analysis of the suppliers 

Supplier Inputs Outputs 

1 X1 1./X2 X3 X4(50) X4(100) X4(150) X4(200) Y1 1./Y2 

1 48 0.0125  20 90 120 163  210 70 0.0333  

2 24 0.0143  30 155 190 252  320 50 0.1000  

3 72 0.0111  50 245 310 415  530 60 0.0667  

4 36 0.0118  10 65 70 88  110 40 0.0500  

5 60 0.0133  25 202.5 195 234  285 65 0.0286  

6 48 0.0105  40 220 260 340  430 90 0.0400  

7 72 0.0125  15 137.5 125 146  175 75 0.0667  

8 36 0.0118  35 267.5 265 323  395 85 0.0500  

9 24 0.0143  35 147.5 205 283  365 55 0.1000  

10 60 0.0133  40 180 240 327  420 45 0.1000  

11 84 0.0111  25 182.5 185 228  280 80 0.0400  

12 48 0.0154  15 137.5 125 146  175 50 0.0500  

13 72 0.0118  30 235 230 278  340 75 0.0667  

14 36 0.0143  45 252.5 295 384  485 85 0.0500  

15 24 0.0154  20 170 160 190  230 75 0.0667  

16 48 0.0143  50 265 320 422  535 80 0.1000  

17 24 0.0111  10 105 90 102  120 85 0.0667  

18 72 0.0118  25 182.5 185 228  280 75 0.0500  

Max 84 0.0154  50 267.5 320 422  535 90 0.1000  

Min 24 0.0105  10 65.00  70 88  110 40 0.0286  

Average 49.33  0.0128  28.89  180.00  198.33  252.59  315.83  68.89  0.0625  

Std.dev 19.69  0.0016  12.78  60.32  74.62  102.29  132.43  15.39  0.0236  
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5.3.2 Evaluation result and discussion 

To compare the proposed models with the previous models, we consider the 

situation where the lot size is 50 and evaluate the suppliers using the CCR model, the 

benevolent and aggressive cross-efficiency evaluation models and the proposed cross-

bargaining game model. The evaluation and ranking results are listed in Table 5.3. 

Table 5.3 Evaluation and ranking results of the suppliers 

Supplier 

"#∗ "#0z0oÅ Arbitrary Benevolent Aggressive 

Model (2.5) Model (5.2) Equation (2.8) Model (3.1) Model (3.2) 

1 0.9608 (8) 0.7650 (14) 0.5841 (15) 0.5928 (16) 0.5245 (16) 

2 1.0000 (1) 0.9230 (4) 0.7373 (5) 0.7721 (4) 0.7175 (3) 

3 0.8888 (13) 0.7986 (12) 0.6153 (14) 0.6816 (10) 0.5416 (14) 

4 1.0000 (1) 0.7895 (13) 0.6161 (13) 0.6077 (15) 0.5620 (12) 

5 0.6136 (17) 0.5487 (17) 0.4339 (18) 0.4497 (18) 0.3917 (18) 

6 1.0000(1)  0.8980 (5) 0.7053 (6) 0.7506 (6) 0.6323 (7) 

7 0.8569 (14) 0.8222 (9) 0.7387 (4) 0.7653 (5) 0.6656 (5) 

8 0.9010 (10) 0.8513 (7) 0.6753 (8) 0.7178 (9) 0.6198 (8) 

9 1.0000 (1) 0.9266 (2) 0.7612 (2) 0.7980 (3) 0.7357 (2) 

10 1.0000 (1) 0.8868 (6) 0.6660 (9) 0.7260 (8) 0.5897 (10) 

11 0.8917 (12) 0.8053 (10) 0.6317 (12) 0.6617 (13) 0.5577 (13) 

12 0.5596 (18) 0.5245 (18) 0.4636 (17) 0.4711 (17) 0.4300 (17) 

13 0.8988 (11) 0.8413 (8) 0.6902 (7) 0.7391 (7) 0.6089 (9) 

14 0.7628 (16) 0.7171 (16) 0.5787 (16) 0.6133 (14) 0.5363 (15) 

15 0.9311 (9) 0.8007 (11) 0.6591 (10) 0.6749 (11) 0.6439 (6) 

16 1.0000 (1) 0.9234 (3) 0.7389 (3) 0.8059 (2) 0.6763 (4) 

17 1.0000 (1) 1.0000 (1) 0.9888 (1) 1.0000 (1) 0.9468 (1) 

18 0.7993 (15) 0.7535 (15) 0.6354 (11) 0.6682 (12) 0.5634 (11) 

In Table 5.3, the numbers in brackets are the ranking positions of the suppliers. 

From the evaluation results, we can see that similar results can be obtained for 

comparisons of different methods as those obtained in the numerical example. All the 

cross-efficiency evaluation methods can fully discriminate all the suppliers and rank 

them in different positions. The cross-bargaining cross efficiency score of each supplier 

is the highest among all cross-efficiency scores generated by different models. This is 



68 

because of the new cross-efficiency evaluation model and the Pareto-optimality of the 

evaluation results in our method. 

However, some suppliers get different ranking positions with different methods. 

For example, supplier 2 is ranked the 4th based on the scores generated by our method, 

while it is ranked the 5th, 4th, and 3th with the arbitrary, benevolent, and aggressive 

strategies, respectively. To get further insights into the ranking results of different cross-

efficiency evaluation methods and to see whether these ranking results correlate with 

each other, we make Spearman’s rank correlation coefficient test among the ranking 

results of the different methods. The results of this test are shown in Table 5.4.  

Table 5.4 Correlation analysis results 

Methods Our method Arbitrary Benevolent Aggressive 

Our method 1.0000 0.9319  0.9340  0.8947  

Arbitrary  1.0000 0.9649  0.9670  

Benevolent   1.0000 0.9298  

Aggressive  
  1.0000 

According to the results listed in Table 5.4, we can see that the cross-efficiency 

ranking results of different methods are positively and highly correlated with each other. 

This indicates that all the cross-efficiency evaluation methods generate similar ranking 

results for the suppliers and they can all be used for evaluating and ranking them. 

However, it is known that the benevolent, aggressive, and arbitrary cross-efficiency 

evaluation strategies cannot guarantee the uniqueness of the evaluation result while our 

method provides a unique cross-bargaining cross-efficiency score for each supplier. In 

addition, the final cross-bargaining cross-efficiency scores generated by our approach 

constitute a Pareto-optimal solution, which makes our evaluation and ranking results 

more acceptable to all the suppliers. 

Finally, if we refer to the cross-efficiency evaluation results of the cross-efficiency 

methods, we can see that all the methods rank supplier 17 as the best. Therefore, 

according to these results, supplier 17 should be selected. 
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5.3.3 Green supplier selection considering lot size 

Dobos and Vörösmarty (2018) proposed to use the CCR efficiency to rank the 

suppliers to select the best. They further define the lot size as a parameter to see whether 

the selected suppliers would change or not. The suppliers always ranked at the first 

position with different lot sizes will be selected as the best supplier. Here, we also apply 

our method to do this and compare the selection results with Dobos and Vörösmarty’s. 

The evaluation and selection results of the CCR efficiencies and the cross-bargaining 

game cross-efficiency scores of the suppliers with different lot sizes are listed in Tables 

5.5 and 5.6, respectively. 

Table 5.5 Evaluation and selection result of Dobos and Vörösmarty (2018) 

Supplier 
Lot sizes (units) 

50 100 150 200 

1 0.9608  0.7243  0.7177  0.7152  

2 1.0000  1.0000  1.0000  1.0000  

3 0.8888  0.8875  0.8875  0.8875  

4 1.0000  0.9638  0.8628  0.8178  

5 0.6136  0.6130  0.6130  0.6130  

6 1.0000  1.0000  1.0000  1.0000  

7 0.8569  0.8578  0.8578  0.8578  

8 0.9010  0.9045  0.9045  0.9045  

9 1.0000  1.0000  1.0000  1.0000  

10 1.0000  1.0000  1.0000  1.0000  

11 0.8917  0.8923  0.8923  0.8923  

12 0.5596  0.5410  0.5379  0.5370  

13 0.8988  0.9019  0.9019  0.9019  

14 0.7628  0.7643  0.7643  0.7643  

15 0.9311  0.9311  0.9311  0.9311  

16 1.0000  1.0000  1.0000  1.0000  

17 1.0000  1.0000  1.0000  1.0000  

18 0.7993  0.8029  0.8029  0.8029  
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Table 5.6 Evaluation result of our approach 

Supplier 
Lot sizes (units) 

50 100 150 200 

1 0.7650  0.7676  0.6498  0.6483  

2 0.9230  0.9232  0.9231  0.9174  

3 0.7986  0.7976  0.7966  0.7903  

4 0.7895  0.7912  0.7090  0.7062  

5 0.5487  0.5477  0.5457  0.5472  

6 0.8980  0.8982  0.9001  0.9002  

7 0.8222  0.8014  0.8261  0.8260  

8 0.8513  0.8548  0.8573  0.8571  

9 0.9266  0.9274  0.9261  0.9257  

10 0.8868  0.8877  0.8963  0.8962  

11 0.8053  0.8162  0.8046  0.8085  

12 0.5245  0.5250  0.5128  0.5116  

13 0.8413  0.8435  0.8536  0.8539  

14 0.7171  0.7146  0.7183  0.7179  

15 0.8007  0.8037  0.8047  0.8044  

16 0.9234  0.9289  0.9342  0.9343  

17 1.0000  1.0000  1.0000  1.0000  

18 0.7535  0.7605  0.7583  0.7583  

From the evaluation results listed in Tables 5.5 and 5.6, we can see that when the 

lot size changes, the efficiencies generated for each supplier by each method does not 

vary very much. Dobos and Vörösmarty’s approach consistently rank suppliers 2, 6, 9, 

10, 16, and 17 as efficient and the first-ranked suppliers. Their approach cannot further 

select the best among these suppliers. While our approach always ranks supplier 17 as 

the best although the lot size changes values. Additionally, we can see that no matter 

how large the lot size is, our approach can always fully rank all the suppliers. Therefore, 

even if the decision makers need to select more than 1 supplier, they can always identify 

the corresponding suppliers with better performance at specific lot sizes. While Dobos 

and Vörösmarty’s approach cannot do this if fewer suppliers than considered as 

efficient need to be selected. 
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5.4 Conclusions 

Aiming at addressing the non-uniqueness and non-Pareto-optimality of evaluation 

results in DEA cross-efficiency evaluation, we proposed a cross-bargaining game DEA 

cross-efficiency evaluation approach. Firstly, we introduce a new cross-efficiency 

evaluation model in which each pair of DMUs determine a common set of weights for 

computing cross efficiencies corresponding to each other. Secondly, we incorporated 

the Nash bargaining game theory and proposed a cross-bargaining game model which 

can be used to determine the set of weights for calculating the cross-efficiency scores 

of the DMUs. In addition, an algorithm was presented to solve the cross-bargaining 

game model by solving a series of linear programs. Finally, the proposed approach was 

applied to green supplier selection. 

Our approach brings at least three advantages to DEA cross-efficiency evaluation. 

Firstly, in the new cross-efficiency evaluation model, each pair of DMUs can reach an 

agreement on the set of weights to be used for calculating each other’s cross efficiencies, 

which makes the evaluation results more acceptable to the DMUs. Secondly, our 

approach guarantees the uniqueness of the set of cross-bargaining cross-efficiency 

scores, which makes it unnecessary to consider the non-uniqueness of optimal weights 

problem as in the traditional DEA models. Finally, the set of cross-bargaining cross-

efficiency scores constitutes a Pareto-optimal solution, which once more increases the 

DMUs’ motivation to accept the evaluation results. 

Two further research directions can be drawn from this study. Firstly, the proposed 

approach assumes that the DMUs are cooperative with each other, and the model is 

presented from a cooperative game perspective. Further studies may consider 

competitions among the DMUs and propose cross-efficiency evaluation methods from 

non-cooperative game perspective. Secondly, our approach addresses the non-

uniqueness of the optimal weights by directly determining a unique set of cross-

efficiency scores, which provides a new perspective that can be further explored. 
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Chapter 6 DEA cross-efficiency evaluation based on 

satisfaction degree: an application to technology selection * 

Existing studies on DEA cross-efficiency evaluation mainly focus on the non-

uniqueness of optimal weights. Few studies have considered the DMUs willingness to 

accept the cross-efficiency evaluation results. To address this issue, in this Chapter, we 

introduce the concept of the satisfaction degree of a DMU toward a set of optimal 

weights for another DMU. Then, a new DEA cross-efficiency evaluation approach, 

which contains a max-min model and two algorithms, is proposed based on the 

satisfaction degrees of the DMUs. Our max-min model and algorithm 1 can obtain an 

optimal set of weights for each DMU that maximizes the least satisfaction degree 

among all the other DMUs. Further, our algorithm 2 can then be used to guarantee the 

uniqueness of the optimal weights for each DMU. Finally, our approach is applied to a 

real-world case study on technology selection. 

The rest of this Chapter is organized as follows. Section 6.1 defines the concept of 

satisfaction degree. The max-min weights selection model is given in Section 6.2. Two 

algorithms and a numerical example are given in Section 6.3. Further, a case study on 

technology selection is discussed in Section 6.4. Finally, Section 6.5 concludes this 

Chapter. 

6.1 The satisfaction degree 

In this section, we introduce the concept of satisfaction degree of a DMU toward 

(i.e. in relation to) a set of optimal weights selected by the other DMUs. For each DMU 

d, if its optimal weights selected by the CCR model is not unique, its possible optimal 

weights set can be defined as the following ?LA  as mentioned in Chapter 2. 

?LA = {(B,?)| ? ∙ @A = 1 B ∙ CA − "A∗ ×? ∙ @A = 0 
(6.1) 

* This chapter is primarily referenced from: Jie Wu, Junfei Chu, Qingyuan Zhu, Pengzhen Yin, and Liang Liang. 
(2018). DEA cross-efficiency evaluation based on satisfaction degree: an application to technology 
selection. International Journal of Production Research, 54(20), 5990-6007. 
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B ∙ C# −? ∙ @# ≤ 0,∀. B,? ≥ 0} 

Based on the possible optimal weight sets ?LA  of DMU d, we can calculate the 

maximum and minimum cross-efficiencies of any other DMU k, respectively denoted 

as "A%mõú  and "A%mlQ , corresponding to DMU d using the following model (6.2) and 

(6.3). 

"A%mõú =	 <. >.	  

maxB ∙ C% ? ∙ @% = 1 B ∙ CA − "A∗ ×? ∙ @A = 0 B ∙ C# −? ∙ @# ≤ 0,∀. B,? ≥ 0} 

(6.2) 

and "A%mlQ = minB ∙ C%  <. >. >ℎï	<V8ï	V<	>ℎ†<ï	9!	8†Iï°	(6.2) (6.3) 

In models (6.2) and (6.3), we change the constraint which is used to avoid the 

trivial solution from ? ∙ @A = 1  to ? ∙ @% = 1 . This will not affect the weights 

selection for the DMUs because the optimal weights in DEA reflect only the relative 

importance a DMU attaches to its inputs and outputs when making efficiency 

evaluation (Charnes and Cooper, 1962). Based on the calculation results of models (6.2) 

and (6.3), we can equivalently transform the possible optimal weights set ?LA  to the 

following (6.4). 

?LA\oõQp = {(B,?)| B ∙ CA − "A∗ ×? ∙ @A = 0 ? ∙ @A = 1 B ∙ C# −? ∙ @# ≤ 0,∀. B ∙ C# − "A#mõú ×? ∙ @# + <A# = 0,∀., . ≠ I B ∙ C# − "A#mlQ ×? ∙ @# − ¢A# = 0,∀., . ≠ I B,? ≥ 0 <A# , ¢A# ≥ 0,∀.} 

(6.4) 

Note that the constraint B ∙ C# −? ∙ @# ≤ 0,∀. can be omitted since it becomes 

redundant because of constraints B ∙ C# − "A#mõú ×? ∙ @# + <A# = 0,∀., . ≠ I and B ∙CA − "A∗ ×? ∙ @A = 0. We keep this redundant constraint here because in what follows 
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the transformation of ?LA\oõQp  will require it. It is easy to see that ?LA\oõQp  is 

equivalent to ?LA  because the cross-efficiencies of any DMU j generated by DMU 

d’s optimal weights will be between the "A#mlQ 	and "A#mõú. 

When DMU d tries to select a set of optimal weights from ?LA\oõQp , any other 

DMU j will prefer that its cross-efficiency corresponding to DMU d, generated by the 

newly selected set of optimal weights, be close to the maximum possible value "A#mõú. 

Based on this observation, we give a definition to characterize the degree to which 

DMU j is satisfied with the set of optimal weights selected by DMU d. 

Definition 6.1. The satisfaction degree of DMU j toward the set of optimal weights (B,?) ∈ ?LA\oõQp  is defined as 

 L£A# = B ∙ C# ? ∙ @#⁄ − "A#mlQ"A#mõú − "A#mlQ ,			∀.: "A#mõú ≠ "A#mlQ  (6.5) 

It can be seen from (6.5) that L£A# ∈ [0,1]. If the new set of optimal weights of 

DMU d generates for DMU j its maximum cross-efficiency "A#mõú, then	L£A# = 1. If 

the new set of optimal weights of DMU d generates for DMU j its minimum cross-

efficiency "A#mlQ, then	L£A# = 0. 

It should be noted here that it is possible that "A#mõú = "A#mlQ  for some DMU j 

corresponding to DMU d. This indicates that the cross-efficiency of DMU j 

corresponding to DMU d will be unchanged no matter which set of optimal weights is 

selected by DMU d. There is no need for DMU d to consider the cross-efficiencies of 

such DMUs when selecting a new set of optimal weights. In the remainder of this 

Chapter, let ΩA = •. ≠ I|"A#mõú ≠ "A#mlQ¶. 
6.2 The max-min weights selection model based on 

satisfaction degree 

In this section, we introduce a max-min model which is used for optimal weights 

selection for the DMUs. Firstly, we give the following Theorem 6.1. 

Theorem 6.1. For any (B,?) ∈ ?LA\oõQp , we have L£A# = '∙*( ,∙-(⁄ ëéZ(ß®©
éZ(ß™´ëéZ(ß®© = ¨Z(pZ(]¨Z(, 

∀. ∈ ΩA where ¢A# and <A# are the slacks defined in (6.4). 

Proof. From the first and second constraint groups in (6.4), we have that B ∙ C# −
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"A#mõú ×? ∙ @# + <A# = 0,∀., . ≠ I  and B ∙ C# − "A#mlQ ×? ∙ @# −¢A# = 0,∀., . ≠ I . 

Then, we can obtain through transformation that (a) "A#mõú = '∙*(]pZ(,∙-( 	 and (b) "A#mlQ =
'∙*(ë¨Z(,∙-( 	 . In Definition 6.1, we have (c) L£A# = '∙*( ,∙-(⁄ ëéZ(ß®©

éZ(ß™´ëéZ(ß®© , ∀. ∈ ΩA 	 . So, by 

substituting (a) and (b) into (c) we can get L£A# = ¨Z(pZ(]¨Z(. Q.E.D. 

From Theorem 6.1, we know that the satisfaction degree of DMU j toward DMU 

d’s optimal weights can be compactly presented as L£A# = ¨Z(pZ(]¨Z( , ∀. ∈ ΩA. 

In this chapter, we propose to select optimal weights for the DMUs in order to 

enhance all the DMUs’ satisfaction degree. Therefore, when a DMU selects a unique 

optimal set of weights, it tries to maximize the satisfaction degrees of all the other 

DMUs, although it is generally impossible for a DMU d to select a set of optimal 

weights that can make all the satisfaction degrees equal to 1. Also, we believe that the 

new set of optimal weights selected by each DMU d should not generate satisfaction 

degrees that have large differences from each other. This is because large differences 

among the satisfaction degrees of the DMUs will reduce their willingness in accepting 

the set of optimal weights for peer-evaluation, especially for those DMUs whose 

satisfaction degrees are relatively low. Therefore, we propose to use the following 

model (6.7) for optimal weights selection for each DMU d. 

 max(',,)min#∈àZ 	 ¢A#<A# + ¢A#  

<. >. B ∙ C# − "A#mõú ×? ∙ @# + <A# = 0, ∀. ∈ ΩI 

B ∙ C# − "A#mlQ ×? ∙ @# − ¢A# = 0, ∀. ∈ ΩI B ∙ CA − "A∗ ×? ∙ @A = 0 ? ∙ @A = 1 B ∙ C# −? ∙ @# ≤ 0,∀. B,? ≥ 0 <A# , ¢A# ≥ 0,∀. ∈ ΩA 

(6.7) 

In model (6.7), the first and second constraint groups guarantee that the cross-
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efficiency of each DMU . ∈ ΩA  is between its maximum and minimum cross-

efficiencies corresponding to DMU d. The third and fourth constraint groups ensure that 

the efficiency of the DMU d under evaluation must reach its CCR efficiency level. As 

can be seen from model (6.7), when DMU d determines its set of optimal weights, it 

maximizes the least satisfaction degree among all the other DMUs while keeping its 

own efficiency at its CCR efficiency level. Therefore, model (6.7) can be also regarded 

as a weights selection model that maximizes all the other DMUs’ satisfaction degrees 

when DMU d selects optimal weights (Li, et al., 2013). 

The min operation in the objective function of model (6.7) makes it complex. 

Therefore, we let L£ = min#∈àZ
¨Z(pZ(]¨Z( and transform it into the following model (6.8). 

max 	 L£   <. >. B ∙ C# − "A#mõú ×? ∙ @# + <A# = 0, ∀. ∈ ΩA 

B ∙ C# − "A#mlQ ×? ∙ @# − ¢A# = 0, ∀. ∈ ΩA B ∙ CA − "A∗ ×? ∙ @A = 0 ? ∙ @A = 1 B ∙ C# −? ∙ @# ≤ 0,∀. ¢A#<A# +¢A# ≥ L£, ∀. ∈ ΩI  

B,? ≥ 0 <A# , ¢A# ≥ 0,∀. ∈ ΩI 

(6.8) 

By solving model (6.8) for each DMU d, then we can generate for each DMU d an 

optimal set of weights that maximizes the minimum of the DMUs’ satisfaction degrees. 

6.3 The algorithms 

In this section, we present two algorithms. The first algorithm is used for solving 

model (6.8) linearly. The second one can be used for ensuring that the final optimal set 

of weights for each DMU d is unique. 

6.3.1 An algorithm to solve (6.8) linearly 

Model (6.8) is still a nonlinear program. We propose Algorithm 1 below to solve 
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it by solving a linear program. Firstly, we give the following model (6.9). 

min 	 ≠ 
 

<. >. B ∙ C# − "A#mõú ×? ∙ @# + <A# = 0, ∀. ∈ ΩA 

B ∙ C# − "A#mlQ ×? ∙ @# − ¢A# = 0, ∀. ∈ ΩA	 B ∙ CA − "A∗ ×? ∙ @A = 0 ? ∙ @A = 1 B ∙ C# −? ∙ @# ≤ 0,∀. ¢A# − L£ × å<A# + ¢A#ç + ÆA# = 0, ∀. ∈ ΩI ÆA# ≤ ≠,∀. ∈ ΩI B,? ≥ 0 <A# , ¢A# ≥ 0,∀. ∈ ΩI 

(6.9) 

Let L£A∗  denote the optimal objective value of model (6.8). From models (6.8) 

and (6.9), we can obtain the following theorems. Together these theorems let us use 

binary search to find a solution for model (6.8), where each step of the search involves 

solving model (6.9) once. 

Theorem 6.2. Let ≠A4  be the optimal objective value of model (6.9) for a value L£A4 ∈[0,1] for L£. 	L£A∗ ≥ L£A4  if and only if ≠A4 ≤ 0. 

Proof. Assume that the optimal solution of model (6.9) is (BA4 , ?A4 , <A#4 , ¢A#4 , ÆA#4 , ≠A4 , . ∈ ΩA) when solving it with L£ = L£A4 .  

 

We first prove that if ≠A4 ≤ 0, L£A∗ ≥ L£A4 . From the seventh constraint group of model 

(6.9), we have ÆA# ≤ 0,∀. ∈ ΩI. Then, from the sixth constraint group of model (6.9), 

we have 
¨Z(ØpZ(Ø ]¨Z(Ø ≥ L£A4 − ∞Z(ØpZ(Ø ]¨Z(Ø ,∀. ∈ ΩI . Since <A#4 +¢A#4 > 0 and ÆA#4 ≤ 0,∀. ∈

ΩI , we get 
¨Z(ØpZ(Ø ]¨Z(Ø ≥ L£A4 − ∞Z(ØpZ(Ø ]¨Z(Ø ≥ L£A4 ,∀. ∈ ΩI. Then, it is easy to verify that 

(BA4 , ?A4 , <A#4 , ¢A#4 , ÆA#4 , ≠A4 , ∀. ∈ ΩI) is also a feasible solution to model (6.8). Therefore, 

we have	L£A∗ ≥ L£A4 .  

 

We now prove that if L£A∗ ≥ L£A4  then ≠A4 ≤ 0. From the sixth constraint group of 
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model (6.8), we get 
¨Z(∗pZ(∗ ]¨Z(∗ ≥ L£A∗ ≥ L£A4 , ∀. ∈ ΩI . Therefore, we have −¢A#∗ +

L£A4 ∗ å<A#∗ + ¢A#∗ ç ≤ 0,∀. ∈ ΩI . Then we let ÆA#4 = −¢A#∗ + L£A4 ∗ å<A#∗ +¢A#∗ ç ≤0,∀. ∈ ΩI  and ≠A = max.∈ΩI ÆA#4 ≤ 0 . Then it is easy to verify that 

(BA∗ , ?A∗, <A#∗ , ¢A#∗ , ÆA#4 ,≠A , ∀. ∈ ΩI) is a feasible solution to model (6.9) when	L£ =L£A4 . We then must have ≠A4 ≤ ≠A ≤ 0. Q.E.D. 

Theorem 6.2 indicates that if we have ≠A4 ≤ 0, 	L£A∗ ≥ L£A4 , i.e., L£A4  is a lower 

bound on L£A∗ . Otherwise, L£A4  is an upper bound on L£A∗ . 

We then give algorithm 6.1 to solve model (6.9) based on theorem 6.2. We know 

the optimal satisfaction degree L£A∗  of each DMU d is in the range [0,1]. The basic 

idea of the algorithm is for each iteration of the algorithm to halve the width of the 

possible of values until we reach a sufficiently narrow range, i.e. a sufficiently accurate 

satisfaction degree. 

Algorithm 6.1. 

Begin 

Step 1: Let L£A± = 1, L£A≤ = −0.001, and L£A4 = x≥Z¥]x≥Zµ| . 

Step 2: Solve model (6.9) by setting L£A = L£A4 , and obtain the optimal 

solution (BA4 , ?A4 , <A#4 , ¢A#4 , ÆA#4 , ≠A4 , ∀. ∈ ΩI) . If ≠A4 ≤ 0 , let 	L£A≤ = L£A4 , 	L£A∗ =
L£A4  ,	L£A4 = x≥Z¥]x≥Zµ| , and (BA∗ ,?A∗, <A#∗ , ¢A#∗ , ∀. ∈ ΩI) = (BA4 ,?A4 , <A#4 , ¢A#4 , ∀. ∈ ΩI). 
Go step 3. If ≠A4 > 0, let L£A± = L£A4  and	L£A4 = x≥Z¥]x≥Zµ| . 

Step 3: If ^L£A± − L£A≤ ^ < _, stop and output (BA∗ ,?A∗, <A#∗ , ¢A#∗ , ∀. ∈ ΩI) as the 

optimal solution of model (6.8). If ^L£A± − L£A≤ ^ ≥ _, go step 2. 

End  

In algorithm 6.1, _ is a very small positive value; in this work we set it to 0.0001. 

Note that we assign values to the optimal solution of model (6.8) only if we get ≠A4 ≤0,	because it is the necessary and sufficient condition for (BA4 , ?A4 , <A#4 , ¢A#4 , ∀. ∈ ΩI) 
to be a feasible solution to model (6.8). Also note that we start the algorithm with L£A≤ = −0.001 and not with	L£A≤ = 0. This is because if the algorithm starts with 
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L£A≤ = −0.001 (actually with L£A≤  equaling any negative number like −0.001), we 

have ≠A4 ≤ 0 in at least one iteration of the algorithm, which helps to ensure that L£A∗  
and (L£A∗ , BA∗ ,?A∗, <A#∗ , ¢A#∗ , ∀. ∈ ΩI) are always assigned the optimal values before 

the algorithm stops. 

It is easy to confirm the convergence of our algorithm 6.1 because it is built based 

on the dichotomy method. Algorithm 6.1 only needs to solve some linear programs to 

get an optimal solution to model (6.8). Additionally, it should be noted here that 

algorithm 6.1 converges very fast. For example, if an error tolerance of 1/2P∂  is 

adopted, only 14 iterations are needed (i.e., 14 linear programs need to be solved) for 

each DMU. 

6.3.2 An algorithm to get unique optimal weights 

Although the proposed model (6.8) can be solved using algorithm 6.1, there are 

still chances that the optimal solution to model (6.8) is not unique. Therefore, in this 

part, we give an algorithm 6.2 to generate a unique set of optimal weights using model 

(6.8). 

Algorithm 6.2. 

Begin 

Step 1: Let > = 1, solve model (6.8) using algorithm 6.1 and get the optimal 

solution (L£AP∗, BAP∗ ,?AP∗, <A#P∗, ¢A#P∗ , ∀. ∈ ΩI). Calculate the satisfaction degree of the 

DMUs using L£A#P = ¨Z(∑∗pZ(∑∗]¨Z(∑∗ , ∀. ∈ ΩI. Then we divide the DMUs into the following 

two groups. 		∏P = {.|L£A#P = L£A∗ , ∀. ∈ ΩI} (6.10) 

and 		∏π = {.|L£A#P > L£A∗ , ∀. ∈ ΩI} (6.11) 

Denote the number of DMUs in ∏P  as !P . If we have !P = 8 + < − ∫ − 1 , 

where p is the number of DMUs in ∏±0 = {. ≠ I|"A#mõú = "A#mlQ}, then stop. 

Step 2: Let > = > + 1. Solve the following model (6.12) and get the optimal 

solution (L£A\∗, BA\∗,?A\∗ , <A#\∗ , ¢A#\∗ , ∀. ∈ ΩI). 
max 	 L£  
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<. >. B ∙ C# − "A#mõú ×? ∙ @# + <A# = 0, ∀. ∈ ΩA 

B ∙ C# − "A#mlQ ×? ∙ @# − ¢A# = 0, ∀. ∈ ΩA B ∙ CA − "A∗ ×? ∙ @A = 0 ? ∙ @A = 1 B ∙ C# −? ∙ @# ≤ 0,∀. ¢A#<A# +¢A# = L£AP∗, . ∈ ∏1 

... ¢A#<A# +¢A# = L£A\ëP∗, . ∈ ∏1 

¢A#<A# +¢A# ≥ L£, . ∈ ∏π 

B,? ≥ 0 <A# , ¢A# ≥ 0,∀. ∈ ΩI 

(6.12) 

Calculate the satisfaction degrees of the DMUs using 	L£A#P = ¨Z(∑∗pZ(∑∗]¨Z(∑∗ , . ∈ ∏π . 

Then, let  		∏ª: = {.|L£A#P = L£A∗ , ∏ ∈ ∏π} (6.13) 

and 		∏π: = {.|L£A#P > L£A∗ , ∏ ∈ ∏π} (6.14) 

Also, we denote the number of DMUs in ∏π  as !\. If ∑ !º = 8 + < − ∫ − 1\ºSP , 

stop. Otherwise, repeat step 2. 

End  

It is easy to see that model (6.12) can be solved similarly to model (6.8) using 

algorithm 6.1. When the algorithm stops, the generated	(L£AP∗ , BA\∗, ?A\∗, <A#\∗ , ¢A#\∗ , ∀. ∈ΩI) is the unique optimal solution to model (6.9) (the proof of uniqueness can be seen 

in the following Corollary 6.1), which means that (BA\∗,?A\∗) is the unique set of 

optimal weights determined for DMU d. 

Theorem 6.3. In algorithm 6.2, if !P = 8 + < − ∫ − 1 , then (BAP∗, ?AP∗)  is the 

unique set of optimal weights of DMU d. 
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Proof. For each DMU . ∈ ∏±0 , we have 
'Z∑∗∙*(,Z∑∗∙-( = "A# 	(V), where "A#  is the cross-

efficiency of DMU j corresponding to DMU I calculated with the traditional CCR 

model. We also have the equation in model (6.8) that ?A ∙ @A = 1	(r). From algorithm 

6.2, we know that L£A#P = ¨Z(∑∗pZ(∑∗]¨Z(∑∗ = ('Z∑∗*(,Z∑∗-( − "A#mlQ)/("A#mõú − "A#mlQ), . ∈ ∏P	(Ω). It is 
known that in (V), (r) and (Ω) form a system of ∫ + !P + 1 = 8 + <  equations 

containing 8 + < variables (BA\∗,?A\∗). Since the vectors å@#, C#ç, ∀. are mutually 

linearly independent, therefore (BA\∗,?A\∗) is the unique set of optimal weights for 

DMU I. From the first and second constraint group of model (6.8), we know that <A#P∗ 
and ¢A#P∗  can then be uniquely calculated as <A#P∗ = "A#mõú ×?A#P∗ ∙ @# − BAP∗ ∙ C#  and ¢A#P∗ = −"A#mlQ ×?A#P∗ ∙ @# +BAP∗ ∙ C#, ∀. ∈ ΩI. 

Therefore, (L£AP∗, BAP∗, ?AP∗, <A#P∗, ¢A#P∗ , ∀. ∈ ΩI)  is the unique set of optimal 

solution of model (6.8) and (BA\∗ ,?A\∗) is unique. Q.E.D. 

From the proof of Theorem 6.3, the following Corollary 6.1 holds. 

Corollary 6.1. In algorithm 6.2, if ∑ !º = 8 + < − ∫ − 1\ºSP , then (BA\∗, ?A\∗) is the 

unique set of optimal weights of DMU I. 

It should be noted that it is possible that !\ > 8 + < − ∫ − 1 − ∑ !º\ëPºSP  in the 

last iteration of the algorithm, although the possibility is very small. In this situation, 

we would have more than one group of 8 + < equations with the input and output 

weights as variables and the coefficient matrix mutually linearly independent. So, 

selecting different group of equations might result in different optimal weights for the 

DMU. In this case, we always select for the DMU the set of optimal weights which 

generates the highest minimum cross-efficiency among the DMUs whose cross 

efficiencies have not been identified yet. 

Therefore, our Algorithms 6.1 and 6.2 can be used to solve the proposed model 

(6.8) and generate for each DMU I a unique set of optimal weights. We denote the 

unique set of optimal weights generated for each DMU I as	(BA∗ , ?A∗). Then, for each 

DMU j, we define its satisfactory cross-efficiency corresponding to DMU I as the 

following (6.15). 
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"A#põ\lp = BA∗ ∙ C#?A∗ ∙ @# (6.15) 

Then, the satisfactory cross-efficiency score of a DMU j can be calculated as the 

following (6.16). 

"#põ\lp = 1!É BA∗ ∙ C#?A∗ ∙ @#
Q
ASP  (6.16) 

Note that the DEA cross-efficiency evaluation mechanism has good 

discriminatory power for the ranking of DMUs. Since our procedure is proposed under 

such an efficiency evaluation mechanism, we believe that in practical applications the 

satisfactory cross-efficiency scores generated by our procedure can usually give a 

complete ranking of all the DMUs. If in some special cases it unfortunately generates 

the same satisfactory cross-efficiency score for two or more DMUs, we think the 

maximized-minimum satisfaction degree generated by each DMU for the others can be 

used as secondary ranking indicator. Specifically, for any pair of DMUs with the same 

satisfactory cross-efficiency score, the DMU which provides the larger maximized-

minimum satisfaction degree for the others ranks first. This secondary criterion is 

reasonable because the larger the maximized-minimum satisfaction degree that a DMU 

provides for the others, the more its evaluation results satisfy the others, thus the more 

likely these DMUs are willing to accept it being ranked above others with the same 

satisfactory cross-efficiency score. 

6.3.3 A numerical example 

In this part, we provide a small numerical example (from Liang et al. 2008a) to 

compare the proposed model with the traditional benevolent and aggressive models to 

see their similarities and differences. The numerical example includes 5 DMUs, each 

DMU having 3 inputs and 2 outputs. The data of this numerical example are listed in 

Table 2.1 of Chapter 2. 

We evaluate the DMUs by the CCR model, the arbitrary strategy, benevolent 

cross-efficiency evaluation model (Doyle and Green, 1994), the aggressive cross-

efficiency evaluation model (Doyle and Green, 1994), and our approach. The 

efficiencies of the DMUs and their rankings are listed in the following Table 6.1. From 
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Table 6.1, several conclusions can be drawn. Firstly, the CCR model cannot fully 

discriminate the DMUs while all the cross-efficiency methods fully rank all the DMUs 

in different positions. Secondly, the ranking results of the proposed model is consistent 

with those of the traditional models. Thirdly, the benevolent property of our model can 

be seen because the cross-efficiency score of each DMU generated from our approach 

is larger than that generated from the arbitrary strategy and aggressive model (3.2). 

Finally, compared with the benevolent model (3.1), the benevolent power of the 

proposed model is slightly weaker, which provides the decision makers with more 

choices in efficiency evaluation. 

Next, we give the satisfaction degree matrices generated by the previous models, 

and our model (6.8), which can be seen in Table 6.2. The value in the dth row and jth 

column of the sub-tables represents DMU j’s satisfaction degree toward the optimal 

weights of DMU d selected by the corresponding models. Symbol “\” means that for 

such DMU j, its maximum and minimum cross-efficiencies corresponding to DMU d 

have the same value. 

As can be seen from Table 6.2, firstly, our approach generally obtains higher 

satisfaction degrees for the DMUs than those generated from the aggressive and 

arbitrary models. For example, DMU3’s satisfaction degree toward DMU2’s optimal 

weights generated by our approach is 1.0000. In contrast, DMU3’s satisfaction degree 

toward DMU2’s optimal weights generated by the aggressive model and the arbitrary 

model are 0.0000 and 0.9676 which are smaller than that generated by our approach.  

Table 6.1 Evaluation and ranking results 

DMUs 

CCR 
efficiency Arbitrary Benevolent Aggressive Our 

approach 

Model (2.5) Equation (2.8) Model (3.1) Model (3.2) Model (6.8) 

1 0.6857 (4) 0.4743 (5) 0.5616 (5) 0.4473 (5) 0.5529 (5) 

2 1.0000 (1) 0.8793 (2) 0.9295 (2) 0.8895 (2) 0.9143 (2) 

3 1.0000 (1) 0.9856 (1) 1.0000 (1) 0.9571 (1) 1.0000 (1) 

4 0.8571 (3) 0.5554 (3) 0.6671 (3) 0.5843 (3) 0.6453 (3) 

5 0.8571 (3) 0.5587 (4) 0.5871 (4) 0.5186 (4) 0.5829 (4) 
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Table 6.2 Satisfaction degree matrices

     

Our model  Aggressive model 

DMUs 1 2 3 4 5 DMUs 1 2 3 4 5 

1 \ \ \ \ \ 1 \ \ \ \ \ 

2 1.0000 \ 1.0000 0.6299 0.6299 2 0.0000 \ 0.0000 1.0000 0.0000 

3 0.5604 0.7710 \ 0.6171 0.5604 3 0.0000 0.4000 \ 0.0737 0.3333 

4 1.0000 \ 1.0000 \ 1.0000 4 0.0000 \ 0.0000 \ 0.0000 

5 \ \ \ \ \ 5 \ \ \ \ \   

Benevolent model Arbitrary model 

DMUs 1 2 3 4 5 DMUs 1 2 3 4 5 

1 \ \ \ \ \ 1 \ \ \ \ \ 

2 1.0000 \ 1.0000 0.3750 1.0000 2 0.2426 \ 0.9676 0.2717 0.4411 

3 0.6818 1.0000 \ 0.8421 0.4000 3 0.1237 0.2466 \ 0.0451 0.4938 

4 1.0000 \ 1.0000 \ 1.0000 4 0.3095 \ 0.3591 \ 0.3433 

5 \ \ \ \ \ 5 \ \ \ \ \ 

  

Secondly, our model and the benevolent model both generate weights that give the 

DMUs high satisfaction degrees. However, this result is not surprising because both 

models intend to maximize the other DMUs’ cross-efficiencies when selecting the 

optimal weights. But we can see that large differences exist among the satisfaction 

degrees of the DMUs in the results generated by the benevolent model. Take DMU2 as 

an example: the largest satisfaction degree it generates is 1.000 (for DMU1, DMU3, 

and DMU5) while the smallest satisfaction it generates is 0.3750 (for DMU4) which is 

much smaller than 1.000. Large differences among the satisfaction degrees of the 

DMUs will bring a sense of unfairness and make the evaluation unacceptable by the 

DMUs. Compared to the results generated by the benevolent model, the satisfaction 

degree differences among DMUs generated from our model are significantly smaller. 

Also taking DMU2 as an example: the highest satisfaction degree model (6.8) generates 

is also 1 (for DMU1, DMU3) while the lowest satisfaction it brings is 0.6229 (for 

DMU4 and DMU5).  
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Table 6.3 Optimal weight matrices

     

Our model (11) Aggressive model (5) 

DMUs X1 X2 X3 Y1 Y2 DMUs X1 X2 X3 Y1 Y2 

1 0.0000  0.4545  0.0000  0.5455  0.0000  1 0.0000  0.4545  0.0000  0.5455  0.0000  

2 0.1101  0.1101  0.2798  0.5000  0.0000  2 0.4677  0.0431  0.0499  0.3525  0.0869  

3 0.0000  0.0000  0.5198  0.3809  0.0992  3 0.3726  0.0901  0.1436  0.0031  0.3905  

4 0.2500  0.2500  0.0000  0.5000  0.0000  4 0.4689  0.0858  0.0000  0.4453  0.0000  

5 0.0000  0.0000  0.5833  0.0000  0.4167  5 0.0000  0.0000  0.5833  0.0000  0.4167  

  

Benevolent model (4) Arbitrary model (1) 

DMUs X1 X2 X3 Y1 Y2 DMUs X1 X2 X3 Y1 Y2 

1 0.0000  0.4545  0.0000  0.5455  0.0000  1 0.0000  0.4545  0.0000  0.5455  0.0000  

2 0.0000  0.0000  0.5000  0.5000  0.0000  2 0.4677  0.0431  0.0499  0.3525  0.0869  

3 0.0000  0.0000  0.5000  0.5000  0.0000  3 0.3726  0.0901  0.1436  0.0031  0.3905  

4 0.2500  0.2500  0.0000  0.5000  0.0000  4 0.4689  0.0858  0.0000  0.4453  0.0000  

5 0.0000  0.0000  0.5833  0.0000  0.4167  5 0.0000  0.0000  0.5833  0.0000  0.4167  

  

Additionally, it can be easily identified from the calculation process of Algorithm 

6.2 that the final satisfaction degrees of the DMUs generated by each DMU will 

constitute a Pareto-optimal solution. Such characteristics will make the evaluation 

results of our model more acceptable by all the DMUs. 

Finally, Table 6.3 shows the final DMU optimal weights matrices generated by 

different models. To make the optimal weights comparable with each other, we 

standardized them to ensure that we have ∑ noApoSP +∑ klAmlSP = 1. 

From Table 6.3, several conclusions can be seen. Firstly, the benevolent strategy 

generally obtains optimal weights that include more zero weights than the aggressive 

and arbitrary strategies. Secondly, although both the benevolent cross-efficiency model 

and our model use benevolent strategy, our model (6.8) generates fewer zero weights 

than the benevolent model. Finally, our approach guarantees the uniqueness of the 

optimal weights while the traditional models cannot. 
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6.4 Application to technology selection 

DEA was incorporated for an application of technology selection by Knouja 

(1995). He used the CCR model to identify the robot with the best performance. Baker 

and Talluri (1997) noted some deficiencies of the work of Knouja (1995), and they 

suggested using DEA cross-efficiency evaluation for technology selection. The model 

used in their research is the aggressive model proposed by Doyle and Green (1994). In 

addition, Karsak and Ahiska (2005) proposed a DEA common-weight method for 

technology selection. This research was further extended by Amin, Toloo, and Sohrabi 

(2006), and Karsak and Ahiska (2008). In this section, the method proposed in this 

chapter is applied to a real case study of server selection for a company which plans to 

incorporate an enterprise resource planning (ERP) system. 

6.4.1 Case background 

Many previous studies have suggested that information technology can enhance 

the performance of organizations by improving operational efficiency and innovation 

(Dewett and Jones, 2001; Kwak et al. 2012). The ERP system is one of the most 

preferred technologies because of its good ability to integrate material, financial, and 

information flows for decision support of the organizations (Yao and He, 2000; Wei et 

al., 2005). Chuangxian Industrial Co. Ltd. (CICL) is producing rubber bands in Anhui, 

China. Most of its products are sold in the Occident, Southeast Asia, and Middle East 

regions. Recently, it has planned to incorporate an ERP system to confront the highly 

dynamic markets and to enhance its competitive advantage. One important problem 

that CICL faced was to select a suitable server to support the ERP system. 

As in the above-mentioned methods for technology selection, here the servers are 

regarded as DMUs and the proposed method is used to evaluate all the candidates to 

select the best server for the company. One input and five outputs are selected for 

measuring the efficiencies of the servers. The detailed input and output variables of the 

DMUs are listed in Table 6.4. 
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Table 6.4 Variables of the servers

Type Variable Notation Unit 

Input Price X1 10,000 yuan 

Outputs CPU frequency Y1 GHz 

Maximum number of CPUs Y2 Piece 

Maximum memory capacity Y3 GB 

Maximum hard drive capacity  Y4 TB 

 After-sale service Y5 Year 

Table 6.5 Raw data and descriptive statistical analysis of the servers

DMUs X1 Y1 Y2 Y3 Y4 Y5 

1 5.29  2.00  2 768 21.6  3 

2 5.32  2.00  4 512 12.0  3 

3 5.60  2.20  4 1500 8.0  3 

4 5.94  2.20  4 1500 16.0  3 

5 8.01  2.10  4 512 20.0  3 

6 9.29  2.30  2 1024 6.4  3 

7 7.48  2.40  8 384 18.0  4 

8 8.80  2.00  4 3072 16.0  3 

9 7.10  1.87  8 1000 16.0  3 

10 6.50  2.30  4 1000 32.0  3 

11 7.89  2.00  4 512 20.0  4 

12 6.50  2.20  4 768 24.0  4 

13 5.99  2.00  4 512 16.0  3 

14 5.50  2.30  4 1000 32.0  3 

15 5.00  1.80  2 512 32.0  3 

Max 9.29 2.40  8 3072 32 4 

Min 5 1.80  2 384 6.4 3 

Average 6.68  2.11  4.13  971.73  19.33  3.20  

Std.dev 1.35  0.18  1.77  679.26  8.04  0.41  

CICL specifies two basic principles in the selection of the server. Firstly, the 

maximum number of CPUs in the server should be no smaller than two. Secondly, the 

budget should be no larger than 100,000 yuan. Based on these two principles 15 servers 

are identified as candidates from the market. The input and output data and the 

descriptive statistical analysis of the 15 candidates are listed in Table 6.5. 
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6.4.2 Evaluation and selection results 

It should be noted that the servers all want to be ranked the highest and to be 

selected. Therefore, it is essential to give the servers efficiency scores that seem 

reasonable to them all. We evaluate the servers using the CCR model, the arbitrary 

model, and our model proposed in this chapter. For comparison, we also give the 

evaluation results based on the technology selection methods of Baker and Talluri (1997) 

and Karsak and Ahiska (2005). The results are shown in Table 6.6. 

Table 6.6 Evaluation and ranking results of the servers

DMUs 
CCR 
efficiency 

Arbitrary 
Baker and 
Talluri (1997) 

Karsak and 
Ahiska (2005) 

Our approach 

1 0.9850(10) 0.7880(7) 0.7487(7) 0.9009(4) 0.8856(8) 

2 0.9975(8) 0.7736(8) 0.7262(8) 0.8852(5) 0.9059(6) 

3 1.0000(1) 0.8394(3) 0.7960(3) 0.9586(2) 0.9830(2) 

4 0.9898(9) 0.8316(4) 0.7933(4) 0.9046(3) 0.9424(3) 

5 0.6710(14) 0.5499(14) 0.5190(14) 0.6175(12) 0.6179(14) 

6 0.5934(15) 0.433(15) 0.4053(15) 0.5925(14) 0.5161(15) 

7 1.0000(1) 0.7690(9) 0.7243(9) 0.7504(10) 0.8970(7) 

8 1.0000(1) 0.6581(12) 0.6419(12) 0.5925(14) 0.7457(12) 

9 1.0000(1) 0.7387(10) 0.7049(10) 0.6345(11) 0.8413(10) 

10 0.8457(12) 0.7925(6) 0.7577(6) 0.8457(7) 0.8423(9) 

11 0.8245(13) 0.6220(13) 0.59024(13) 0.5974(13) 0.7397(13) 

12 1.0000(1) 0.8120(5) 0.7728(5) 0.8038(8) 0.9415(4) 

13 0.8862(11) 0.7068(11) 0.6661(11) 0.7864(9) 0.8121(11) 

14 1.0000(1) 0.9371(1) 0.8960(1) 1.0000(1) 0.9960(1) 

15 1.0000(1) 0.8432(2) 0.8082(2) 0.8509(6) 0.9108(5) 

From the evaluation results, several conclusions can be drawn. Firstly, the CCR 

model cannot effectively discriminate the DEA efficient DMUs. It selects seven servers 

as the best performer: servers 3, 7, 8, 9, 12, 14, and 15. Secondly, although the arbitrary 

method and Baker and Talluri’s method generate different cross-efficiency scores for 

the DMUs, the complete ranking results of these two methods are the same. Thirdly, 

the satisfactory cross-efficiency scores generated from our approach for the DMUs are 
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higher than those generated from the arbitrary and Baker and Talluri’s (1997) models. 

This is because our approach uses the benevolent strategy which aims at maximizing 

the other DMUs’ cross-efficiencies. Fourthly, large differences appear in the ranking 

results of the servers between the CCR model and the other models. For example, server 

7 ranks first in the CCR evaluation results, but it ranks 9th, 9th, 10th, and 7th in the 

evaluation results of the arbitrary model, Baker and Talluri’s model, Karsak and 

Ahiska’s model, and our approach, respectively. Fifthly, although Karsak and Ahiska’s 

method successfully identifies the best performer, it cannot rank all the DMUs into 

unique positions. Specifically, servers 6 and 8 both obtain an efficiency score of 0.5925 

and they cannot be further distinguished. Finally, except for the CCR model, all the 

other methods can effectively distinguish all the DEA efficient servers and rank them 

in different positions. In addition, they all identify server 14 as the best performer. 

Therefore, server 14 should be selected by the company. 

6.4.3 Further comparisons of the different methods 

Although the methods identify the same best performer, some other servers (for 

instance, server 7) do get different ranking positions with the different methods. To get 

further insights into the ranking results, we conduct Spearman’s rank correlation test 

among the ranking results of the different approaches. The results are listed in Table 

6.7. 

According to Anderson et al. (2013), positive correlation exists between the two 

rankings if the correlation coefficient of the two rankings is larger than the benchmark 

value (æp,ø ). For < = 12 and j = 0.05, the benchmark level æp,ø  is 0.497. Then, 

according to the Spearman’s rank correlation coefficients listed in Table 6.7, we obtain 

that all the rankings have positive correlations with each other. This means that ranking 

results generated by these methods are similar to each other, and they all can be used 

for ranking the servers and selecting the best one. However, it is known that the 

arbitrary model is used without considering the multiple optimal solution problem of 

the CCR model. Further, Baker and Talluri (1997) used the aggressive model to 

evaluate the servers and it is known that this method cannot guarantee the uniqueness 

of the optimal weights either. In addition, Karsak and Ahiska’s (2005) algorithm 

sometimes fails to detect the most efficient DMUs (Amin, Toloo, and Sohrabi 2006). 
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Because of these deficiencies, these other methods are sometimes not suitable for 

applications in technology selection. Our method can not only effectively discriminate 

all the servers and identify the best performer but also generate for each DMU its unique 

optimal set of weights which can maximize the satisfaction degrees of all the DMUs. 

Therefore, the evaluation and ranking results of our approach are more satisfactory to 

all the DMUs, which makes the technology selection results more convincing and 

acceptable. 

Table 6.7 Correlation analysis results

Methods Arbitrary 
Baker and Talluri 
(1997) 

Karsak and 
Ahiska (2005) 

Our approach 

Arbitrary 1.0000 1.0000 0.8888 0.9464 

Baker and Talluri 
(1997) 

 1.0000 0.8888 0.9464 

Karsak and 
Ahiska (2005) 

  1.0000 0.8888 

Our approach    1.0000 

6.5 Conclusions 

In this chapter, we propose a new DEA cross-efficiency evaluation approach. 

Firstly, we incorporated the concept of satisfaction degree of a DMU toward the optimal 

weights of another DMU. Then, a max-min model was proposed to select for each 

DMU a set of optimal weights based on the satisfaction degrees of all the other DMUs. 

To solve our max-min model linearly and to ensure the final optimal set of weights for 

each DMU is unique, we further proposed two algorithms. Finally, our approach was 

applied to an example of technology selection. 

Our approach brings at least three advantages to DEA cross-efficiency evaluation. 

Firstly, the concept of satisfaction degree is incorporated into DEA cross-efficiency 

evaluation, and the DMUs’ satisfaction degrees are maximized in weights selection, 

which makes the evaluation results more satisfactory and more acceptable to all the 

DMUs. Secondly, the numerical example shows that the discrimination power has been 

improved compared to some previous methods when our approach is used for 

evaluation. Thirdly, the set of final determined optimal weights for each DMU is 
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guaranteed to be unique. 

Three further research directions are suggested based on this chapter. Firstly, the 

proposed optimal weights selection model is a benevolent model, but it can be easily 

transformed into an aggressive model by inverting its objective function for specific 

application scenarios. Secondly, the proposed approach can also be extended for 

addressing the problem of determining common weights in research on DEA common-

weight evaluation. Thirdly, we suggest that it might be useful to set for each DMU a 

minimum acceptable value for its satisfaction degree, and to develop suitable weights 

selection strategies incorporating these restrictions.  
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Chapter 7 Conclusions and Perspectives 

In this Chapter, we conclude the work of this thesis, illustrate the application domains 

of the proposed methods, and give some directions for further study. 

7.1 Summary of the results and contributions 

As a well-established extension of data envelopment analysis (DEA), DEA cross-

efficiency evaluation has been widely applied in performance evaluation and ranking 

of the decision-making units (DMUs). However, the problems of non-uniqueness of 

optimal weights and non-Pareto optimality of the efficiency evaluation result have 

reduced the usefulness of this powerful method. In this thesis, we try to address these 

issues and apply the newly proposed approaches for applications like R&D project 

selection, technology selection, green supplier selection, etc. The main work and 

contributions can be concluded as the follows. 

First, we pointed out that the cross-efficiency targets for the DMUs in the 

traditional benevolent and aggressive models are not always reachable. We then gave a 

target-identification model which can provide the DMUs with efficiency targets that 

are always feasible. Then, alternative new secondary goal models were proposed 

considering both desirable and undesirable cross-efficiency targets of the DMUs. The 

contributions of this study lie in: (I) It discussed more appropriate cross-efficiency 

targets for the DMUs; (II) It provided alternative secondary goal models which consider 

the DMUs’ both willingness of getting close to the desirable cross-efficiency targets 

and away from the undesirable ones. 

Second, we proposed a DEA cross-efficiency evaluation approach based on Pareto 

improvement. Our approach contains two models and an algorithm. Firstly, we 

proposed a Pareto optimality estimation model to see whether a given set of cross-

efficiency scores is Pareto optimal. Then, a cross-efficiency Pareto-improvement model 

was given to make Pareto-optimal a set of initially non-Pareto-optimal cross-efficiency 

scores. Finally, an algorithm was proposed to provide a calculating process based on 

the two models and finally generate a set of Pareto-optimal cross-efficiency scores for 

the DMUs. The main contributions of this study lie in: (I) The proposed approach 
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always generates a set of cross-efficiency scores for DMUs that is Pareto optimal; (II) 

The result unifies self-evaluation, peer-evaluation, and common-weight evaluation in 

some special cases, which makes the evaluation result more acceptable to all the DMUs. 

Third, we proposed a cross-bargaining cross-efficiency evaluation approach which 

addresses both the non-uniqueness of optimal weights and non-Pareto-optimality of the 

evaluation results of classical methods. We introduced a new cross-efficiency 

evaluation mode, cross-bargaining mode, in which each pair of DMUs in the group 

bargain with each other to determine a set of common weights for calculating their 

corresponding cross efficiencies. The Nash bargaining game was incorporated to 

construct the model. Additionally, an algorithm was presented to ensure the cross-

bargaining game model can be solved by solving linear programs. The main 

contribution of this study lies in that the approach always provides a unique set of 

Pareto-optimal cross-efficiency scores for the DMUs. 

Finally, we proposed the concept of satisfaction degree of a DMU on one of the 

other DMUs optimal weights in DEA cross-efficiency evaluation. Then, a model was 

provided which can maximize all the DMUs satisfaction degrees on the efficiency 

evaluation result. Additionally, two algorithms are provided to solve the proposed 

model linearly and to guarantee the uniqueness of the efficiency evaluation result, 

respectively. The main contributions of this study lie in: (I) It considered the DMUs 

willingness of accepting the evaluation result and introduced a concept of satisfaction 

degree; (II) The proposed approach maximized all the DMUs satisfaction degrees and 

the uniqueness of the evaluation result can be guaranteed. 

 

7.2 Application domains of the proposed approaches 

We proposed several methods to address the non-uniqueness of optimal weights 

and the non-Pareto optimality of evaluation result in DEA cross-efficiency evaluation. 

The DEA cross-efficiency evaluation method uses a group-decision mechanism to 

make efficiency evaluation for the DMUs. It is necessary to consider to optimize the 

efficiency evaluation result so as to make it acceptable to all the DMUs. Therefore in 

spite of making improvements for the traditional benevolent and aggressive models, we 

have proposed several new DEA cross-efficiency evaluation methods to generate cross-
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efficiency evaluation results with properties like Pareto-optimality, Nash equilibrium, 

and maximization of the DMUs’ satisfaction degrees. These properties will enhance the 

stability of the evaluation results so as to make the evaluation result more acceptable to 

all the DMUs. 

It should be emphasized here again that none of the proposed methods is a clear 

winner or loser in any circumstances. They might have some commonalities while they 

can be distinguished and have different application scenarios. We have illustrated the 

detailed application scenarios of the proposed benevolent, aggressive and neutral 

models. Here, we further give some guidelines for the other three cross-efficiency 

evaluation methods proposed in this thesis. The three methods are all applicable when 

the DMUs are cooperative since they all have the intention of maximizing the other 

DMUs’ efficiency scores. According to the cooperative and competitive level, we 

classify all the methods and models into levels listed in Table 7.1. 

Table 7.1 Classification of different methods

Cooperative/Competitive 
level Methods 

4 Cross-bargaining game method 

3 Pareto improvement method 

2 Model (3.9), Satisfaction degree maximization 
method 

1 Model (3.8) 

0 Model (3.12) 

-1 Model (3.11) 

-2 Model (3.10) 

In Table 6.8, positive levels indicate the DMUs are cooperative, negative levels 

mean they are competitive, and level- “0” denotes that the DMUs are neither 

cooperative nor competitive. The higher (resp. lower) the level of the method, the more 

cooperative (resp. competitive) it is with respect to the positive (resp. negative) levels. 

The cross-bargaining game DEA cross-efficiency evaluation approach is classified 

as the most cooperative method because it allows each DMU to have close bargaining 
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with the other DMUs one by one. Each DMU not only has the willingness to sacrifice 

its self-evaluated efficiency (i.e., the self-evaluated efficiency of it can be smaller than 

its CCR efficiency) to improve the cross-efficiencies of the other DMUs but also it is 

to use different optimal weights to make cross-efficiency calculation for the other 

DMUs. That is to say, the DMUs have very close contacts with each other. They regard 

each DMU as an independent entity and negotiate with it separately for the cross-

efficiency evaluation result. Such a method can be used in the situation when the DMUs 

have very strong cooperative relationships, especially, in the situation when the DMUs 

have bargaining game relationship. For instance, the evaluation of green suppliers. On 

the one hand, the green suppliers would be willing to cooperate with each other to 

enhance the reputation of their sector to show as a whole they have very good 

operational and environmental efficiencies. On the other hand, the suppliers may also 

have direct contact with each other. For instance, they may trade their CO2 emission 

allowances among the group. This kind of contact would make the green suppliers have 

even stronger link and cooperation. The green suppliers may have the intention of 

bargaining with each of the other suppliers to determine the weights for cross-efficiency 

calculation so as to make more improvements on their cross-efficiency evaluation result. 

The DEA cross-efficiency evaluation method based on Pareto improvement is 

classified as level- “3” cooperative. This is because it allows each DMU to sacrifice its 

self-evaluated efficiency to make cross-efficiency improvement while it does not let 

each DMU use different weights to evaluate the DMUs like the cross-bargaining game 

DEA cross-efficiency evaluation approach. Also, this approach has the property to 

generate a stable Pareto-optimal evaluation result. Therefore, this approach should be 

used when a set of DMUs are centrally evaluated by a supervisor. The supervisor needs 

to provide an evaluation result that is stable and convincing among all the DMUs. For 

instance, R&D project selection and preference voting. 

The DEA cross-efficiency evaluation method based on satisfaction degree is 

classified as the same cooperative level as model (3.9). This is because this method 

generates the evaluation result that maximizes the minimum satisfaction degree of the 

DMUs which is similar to model (3.9)’s intention of maximizing the minimum cross 

efficiency among all the DMUs. While both in this method and model (3.9), each 

DMU’s self-evaluated efficiency is required to be maintained at the CCR efficiency 

level and is not allowed to be reduced. However, the method and model (3.9) still have 
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some differences. Model (3.9) focuses on the efficiency of the DMUs while the method 

emphasizes the DMUs’ satisfaction degrees on the evaluation result. The decision 

makers may choose one method from these two according to their practical focus point 

when evaluating the DMUs. For instance, when evaluating the sectors in a supply chain, 

if the evaluation is made externally to show the public the comprehensive strength of 

the supply chain, model (3.9) might be more suitable. Otherwise, if the evaluation is 

made internally (like to evaluate the sectors to allocate performance rewards among 

them), the method based on satisfaction degree might be more suitable since the 

evaluation should focus on making all the sectors satisfied. 

The application scenarios of the other benevolent, aggressive and neutral models 

listed in Table 6.8 have been clearly discussed in 3.2.2. 

7.3 Perspectives 

We believe this thesis has brought numerous advantages to DEA cross-efficiency 

evaluation, especially in addressing the non-uniqueness of optimal weights and the non-

Pareto-optimality of the evaluation results of existing approaches. However, there are 

still some limitations in DEA cross-efficiency evaluation which are worthy of further 

study. 

First, it can be seen that scholars have proposed many approaches to address the 

non-uniqueness of optimal weight problem in DEA cross-efficiency evaluation. 

However, there still lacks formal criteria to adjust whether a proposed cross-efficiency 

evaluation approach is good or not or when and in which situation a proposed approach 

might be suitable. Actually, we will obtain different efficiency evaluation results when 

we chose to use different approaches. The decision makers might be confused in 

selecting the approaches when applying them in different scenarios. In further studies, 

scholars may investigate the properties of the existing DEA cross-efficiency evaluation 

approaches and classify them into different groups to discuss their suitable application 

circumstances. 

Second, the Pareto optimality of the cross-efficiency scores in this thesis was 

discussed under two given weight selection principles. In the further studies, scholars 

may have a deeper exploration on the Pareto optimality in DEA cross-efficiency 

evaluation under less restrictive assumptions. For example, regardless of the introduced 
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principles, the DMUs might generate more generous Pareto-optimal cross-efficiency 

scores. Additionally, the unification of self-evaluation, peer-evaluation, and common-

weight evaluation might be always guaranteed if we discuss such a situation. 

Third, we introduced the concept of satisfaction degrees of DMUs on the 

efficiency evaluation results. Further researches should pay more attention on the 

DMUs’ acceptance on the efficiency evaluation result in DEA cross-efficiency 

evaluation. For instance, similar to but not identical to the concept of satisfaction degree, 

quantifying the level of satisfaction, affinity or preference of the DMUs for cross-

efficiency evaluation results can also be defined to measure the DMUs’ willingness in 

accepting these results. 

Finally, as we can see in DEA cross-efficiency evaluation, each DMU needs to 

solve at least two linear programs to obtain the final efficiency evaluation results. This 

indicates that the approaches will be time-consuming if the number of the DMUs is 

very large. Therefore, another research direction we note here is exploring the 

possibility to propose suitable algorithms to accelerate the calculating process of DEA 

cross-efficiency evaluation. 
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Projects  

[1] DEA Theories, Methods, and Applications for Efficiency Evaluation and 

Improvement Considering Non-Homogeneity Decision-making Units (Participate) 

2015-2018. Sponsored by Natural Science Foundation of China (NSFC) for RMB 

493,000. I am responsible for data collection, mathematical modelling, and 

analyzing sub research problem. 

[2] Study on the Utilization Efficiency and Cultivating Path of New Type of Logistics 

Talents (Participate) 2016-2017. Sponsored by Anhui Social Science Funding for 

RMB 5,000. I am responsible for data collection, evaluating the utilization 
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efficiency of the new type of logistics talents in the project.  

Awards  

[1] Graduate Scholarship, USTC                                       2013-2018 

[2] National Scholarship for Graduate Student, USTC, (Award Rate: 3%)            2015 

[3] Scholarship from State Scholarship Fund, CSC, (Award Rate: 1%)          2016-2018 

[4] National Scholarship for Graduate Student, USTC, (Award Rate: 3%)            2016 

[5] Chinese Academy of Sciences Zhu Liyuehua scholarship, (Award Rate: 1%)       2017  

[6] National Scholarship for Graduate Student, USTC, (Award Rate: 3%)           2017 

[7] Chinese Academy of Science Dean Award, USTC, (Award Rate: 1%)             2018 

Academic activities  

[1] May 23 to 26, 2016: Attend the 14th International Conference of Data Envelopment 

Analysis held in Jianghan University, Wuhan, China as a speaker. Title of the speech: 

“DEA cross-efficiency evaluation based on Pareto-improvement”. 

[2] June 26 to 29, 2017: Attend the 15th International Conference of Data Envelopment 

Analysis held in University of Economics, Prague in the Czech Republic, on June 26 to 

29, 2017 as a speaker. Title of the speech: “A New Common-Weight Multi-Criteria 

Decision-Making Approach for Technology Selection” 

[3] Reviewer for European Journal of Operations Research, Annals of Operations Research, 

Journal of the Operational Research Society, Journal of Cleaner Production, Ecological 

Indicators, Energy Efficiency, International Journal of Contemporary Hospitality 

Management, Management of Environmental Quality. 
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Titre: Méthodes d’amélioration pour l'évaluation de l'enveloppement des données évaluation de l'efficacité croisée 

Mots clés: Analyse d'enveloppement des données, Unités de prise décision, Évaluation de l'efficacité croisée. 

Résumé: L'évaluation croisée d'efficacité basée sur la data envelopment analysis (DEA) a été largement appliquée 
pour l'évaluation d'efficacité et le classement des unités de prise de décision (decision-making units, DMUs). A l’heure 
actuelle, cette méthode présente toujours deux défauts majeurs : la non-unicité des poids optimaux attachés aux entrées 
et aux sorties et la non Pareto-optimalité des résultats d’évaluation. Cette thèse propose des méthodes alternatives pour 
y remédier. Nous montrons d’abord que les efficacités croisées visées dans les modèles traditionnels avec objectifs 
secondaires ne sont pas toujours atteignables pour toutes les DMUs. Nous proposons ensuite un modèle capable de 
toujours fournir des objectifs d'efficacité croisée atteignables pour toutes les DMUs. Plusieurs nouveaux modèles avec 
objectifs secondaires bienveillants ou agressifs et un modèle neutre sont proposés. Un exemple numérique est utilisé 
pour comparer les modèles proposés à ceux qui existent dans la littérature. Nous présentons ensuite une approche 
d'évaluation croisée d'efficacité basée sur l'amélioration de Pareto. Cette approche est composée de deux modèles et 
d’un algorithme. Les modèles sont utilisés respectivement pour estimer si un ensemble donné de scores d’efficacité 
croisée est Pareto-optimal et pour améliorer l’efficacité croisée de cet ensemble si cela est possible. L'algorithme est 
utilisé pour générer un ensemble Pareto-optimal de scores d'efficacité croisée pour les DMUs. L'approche proposée 
est finalement appliquée pour la sélection de projets de R&D et comparée aux approches traditionnelles. En outre, 
nous proposons une approche d’évaluation croisée d’efficacité qui traite simultanément les deux problématiques 
mentionnées ci-dessus. Un modèle de jeu de négociation croisée est proposé pour simuler la négociation entre chaque 
couple de DMUs au sein du groupe afin d'identifier un ensemble unique de poids à utiliser pour le calcul de l'efficacité 
croisée entre eux. De plus, un algorithme est développé pour résoudre ce modèle via une suite de programmes linéaires. 
L'approche est finalement illustrée en l'appliquant à la sélection des fournisseurs verts. Enfin, nous proposons une 
évaluation croisée d'efficacité basée sur le degré de satisfaction. Nous introduisons d'abord la nation de degré de 
satisfaction de chaque DMU sur les poids optimaux sélectionnés par les autres. Ensuite, un modèle max-min est fourni 
pour déterminer un ensemble des poids optimaux pour chaque DMU afin de maximiser tous les degrés de satisfaction 
des DMUs. Deux algorithmes sont ensuite développés pour résoudre le modèle et garantir l’unicité des poids optimaux 
de chaque DMU, respectivement. Enfin, l’approche proposée est appliquée sur une étude des cas pour la sélection de 
technologies. 

 

Title: Improvement methods for data envelopment analysis (DEA) cross-efficiency evaluation 

Keywords: Data envelopment analysis, Decision-making units, Cross-efficiency evaluation. 

Abstract: Data envelopment analysis (DEA) cross-efficiency evaluation has been widely applied for efficiency 
evaluation and ranking of decision-making units (DMUs). However, two issues still need to be addressed: non-
uniqueness of optimal weights attached to the inputs and outputs and non-Pareto optimality of the evaluation 
results. This thesis proposes alternative methods to address these issues. We first point out that the cross-
efficiency targets for the DMUs in the traditional secondary goal models are not always feasible. We then give 
a model which can always provide feasible cross-efficiency targets for all the DMUs. New benevolent and 
aggressive secondary goal models and a neutral model are proposed. A numerical example is further used to 
compare the proposed models with the previous ones. Then, we present a DEA cross-efficiency evaluation 
approach based on Pareto improvement. This approach contains two models and an algorithm. The models are 
used to estimate whether a given set of cross-efficiency scores is Pareto optimal and to improve the cross-
efficiency scores if possible, respectively. The algorithm is used to generate a set of Pareto-optimal cross-
efficiency scores for the DMUs. The proposed approach is finally applied for R&D project selection and 
compared with the traditional approaches. Additionally, we give a cross-bargaining game DEA cross-efficiency 
evaluation approach which addresses both the issues mentioned above. A cross-bargaining game model is proposed 
to simulate the bargaining between each pair of DMUs among the group to identify a unique set of weights to be 
used in each other’s cross-efficiency calculation. An algorithm is then developed to solve this model by solving 
a series of linear programs. The approach is finally illustrated by applying it to green supplier selection. Finally, 
we propose a DEA cross-efficiency evaluation approach based on satisfaction degree. We first introduce the 
concept of satisfaction degree of each DMU on the optimal weights selected by the other DMUs. Then, a max-
min model is given to select the set of optimal weights for each DMU which maximizes all the DMUs’ 
satisfaction degrees. Two algorithms are given to solve the model and to ensure the uniqueness of each DMU’s 
optimal weights, respectively. Finally, the proposed approach is used for a case study for technology selection.  


