. " L 4
Université P
de Lille LR
£ TECNOLOGIES INVENTEURS DU MONDE NUMERIQUE Hauts-de-France

Inferring Models from Cloud APIs

and Reasoning over Them:
A Tooled and Formal Approach

PHD THESIS

to obtain the title of

PhD of Science

Specialty : COMPUTER SCIENCE

Defended on Friday, December 21, 2018 by

Stéphanie CHALLITA

prepared at Inria Lille-Nord Europe, SPIRALS Team

Thesis committee:

Supervisor: Philippe MERLE - Inria (Lille)

Reviewers: Benoit COMBEMALE - University of Toulouse & Inria (Rennes)
Christian PEREZ - Inria (Lyon)

Ezaminer: Héléne COULLON - IMT Atlantique (Nantes)

Chazir: Laetitia JOURDAN - University of Lille

Invited: Faiez ZALILA - Inria (Lille)

“Everything you can imagine is real.”

—Pablo Picasso

To my parents for their constant support and endless sacrifices.
To Benjamin for his unlimited patience and love.

Acknowledgments

PhD is the biggest achievement but also the most challenging experience in my life,
so far. Therefore, I would like to express my utmost gratitude to the people who
helped me during this journey.

Foremost, I am truly grateful to my supervisor, Philippe Merle for many
reasons. Thank you for taking my application for this thesis into consideration
three years ago and for believing that I am a perfect fit for the job since our very
first interview. Thank you for your guidance, which taught me the ropes of research,
and for plenty of brilliant ideas, which were an inspiration for me. Thank you for
helping me hone my skills and pushing me forward to be the best version of myself.
I was determined to succeed to be worthy of the trust you placed in me. Our
relationship made of taste for research, professionalism and kindness meant a lot to
me. I highly admire your passion for your work, and I sincerely believe that you
are an excellent researcher and a genuine person. And as I told you once before, I
could not have imagined having a better mentor during my PhD. Thank you from
the depths of my heart!

Next, I would like to thank the members of my thesis committee for de-
voting their time to read the manuscript and for their constructive feedback.
Benoit Combemale and Christian Perez, thank you for accepting to review
my manuscript. I would also like to thank Héléne Coullon for accepting to be
part of my committee and Laetitia Jourdan for accepting to chair it.

Further gratitude is due to the members of the Spirals team at Inria research
center, who I met since October 2015. Actually, during the last three years, I had
the chance to be part of Spirals and it was a pleasure meeting many wonderful
people there. Everyone was friendly and open for discussions, which made my stay
extremely pleasant. I sincerely thank the team leader, Lionel Seinturier, for his
effective direction, for providing a very motivating environment for preparing PhDs
and for empowering my ambitions and helping me achieving them. I acknowledge
your support and the support of Laurence Duchien when I came to you with my
proposition to apply for the L’Oréal-UNESCO For Women In Science award. Also,
thanks to Laurence for being a role model for many young female researchers like me
and for your sincere advises for my career. I will always remember them. I would
like to thank Walter Rudametkin, not only for your insightful comments, but
also for your everyday friendship, for giving me access to your precious media server
and for going out and drinking beers together. Besides, thank you and Marcia for
receiving me in “Chez Rudametkin” and for those unforgettable tacos. I confirm that
the 5 star on Google is well-deserved! ;) I salute Clément Quinton for his ambition
and love of life. I enjoyed swimming with you on Fridays. Thank you as well for
sharing with me your experience of becoming an associate professor. My warm
wishes to you and your beautiful family. Thanks to Simon Bliudze with whom I
shared the office for the last year. Thanks for working late so often, it helped me
keeping focused and feeling well-surrounded. :) Also, thanks for giving me valuable
feedback and propositions regarding my work, at each time I asked you. I hope we
will work together sometime soon since many ideas emerged from these inspiring
discussions. I would also like to thank my two former office mates, Christophe
Gourdin and Gustavo Sousa. Thanks to Christophe for teaching me some “Chti”

vi

language and for technical support when I started the implementation work in the
OCClware project. Here’s to the prosperity of your startup! Thanks to Gustavo
for the tips and recommendations when I first arrived to Lille and for the enriching
conversations in the initial stage of my PhD. You were the first friend I made in
the team and in Lille in general. Big thanks to Faiez Zalila for attending and
efficiently participating to the weekly meeting with Philippe and me and for being
the technical leader in the OCClware project. I acknowledge your assistance with
the modeling techniques, which allowed me to go further with my contributions. I
would like to mention Yahya Al-Dhuraibi who started his PhD at the same time
as me and under the supervision of Philippe too. I shared good moments with you
when we attended the conference in Madeira and I admire your kindness, modesty
and generosity. 1 wish you all the best for your future, you deserve it! Thanks to
Maxime Colmant for helping me preparing my courses when I started teaching
at the University of Lille.

I thank the OCClware French project and the “Hauts-de-France” regional council
for providing scholarships and appropriate facilities to pursue my doctoral studies.
I also thank L’Oréal foundation for awarding me and providing research grants.

Thanks to my friends in Lille, Tonie and Jad. Tonie, I am so happy that I
met you. I've always had fun with you and I really enjoyed our little tradition of
Saturday lunch, although I missed some Saturdays because I needed to work. Jad,
it was great news for me when I knew that you will be preparing a PhD also at
the University of Lille, after we graduated together from the Antonine University.
Thanks for the “Reeflex” evenings, for bringing me souvenirs when you visited a new
city and for the catch up over coffee when you were at Inria. Who knows, maybe
we will be colleagues again one more time!

Thanks to my cousin Yara and to my friends in Lebanon, Alain, Alfred, Chan-
tal and Rami for always being there through WhatsApp, for your sense of humor
and for the amazing outings at each time I visited Lebanon. You boosted my energy
to reach this end.

I spare a moved thought for my guardian angel, my grandmother Farida who
raised me during my early childhood and who left years ago. I wish that you were
here with me and I hope that you are proud of me.

Big thanks to my dear parents, Joseph and Rita, who gave me the best of
education and trusted my plan when I decided to move to France. Even from far
away, I always felt your support. Dad, you taught me to aim high and I would not
be who I am today without you. Mum, you are a perfect example of devotion and
strength, I learn from you a lot and on daily basis.

Last but not least, I want to thank with great affection, my handsome fiancé,
Benjamin Danglot, for being my backbone and my everyday bundle of happiness
for the last two years. You suffered with me the side effects of preparing a thesis.
Thank you for everything you do to help my dreams come true and for loving me
unconditionally. I feel so lucky to have you by my side “habibi”.

Stéphanie Challita
Villeneuve d’Ascq, France
October 12, 2018

vii

Abstract

In recent years, multi-cloud computing which aims to combine different offerings or
migrate applications between different cloud providers, has become a major trend.
Multi-clouds improve the performance and costs of cloud applications, and ensure
their resiliency in case of outages. But with the advent of cloud computing, differ-
ent cloud providers with heterogeneous cloud services (compute, storage, network,
applications, etc.) and Application Programming Interfaces (APIs) have emerged.
This heterogeneity complicates the implementation of an interoperable multi-cloud
system. Several multi-cloud interoperability solutions have been developed to ad-
dress this challenge. Among these solutions, Model-Driven Engineering (MDE) has
proven to be quite advantageous and is the mostly adopted methodology to rise in
abstraction and mask the heterogeneity of the cloud. However, most of the existing
MDE solutions for the cloud remain focused on only designing the cloud without
automating the deployment and management aspects, and do not cover all cloud
services. Moreover, MDE solutions are not always representative of the cloud APIs
and lack of formalization.

To address these shortcomings, I present in this thesis an approach based on
Open Cloud Computing Interface (OCCI) standard, MDE and formal methods.
OCCI is the only community-based and open recommendation standard that de-
scribes every kind of cloud resources. MDE is used to design, validate, generate
and supervise cloud resources. Formal methods are used to effectively reason on the
structure and behaviour of the encoded cloud resources, by using a model checker
verifying their properties. This research takes place in the context of the OCCIWARE
project, which provides OCCIWARE STUDIO, the first model-driven tool chain for
OCCI. It is coupled with OCCIWARE RUNTIME, the first generic runtime for OCCI
artifacts targeting all the cloud service models (IaaS, PaaS, and SaaS).

In this dissertation, I provide two major contributions implemented on top of the
OCCIWARE approach. First, I propose an approach based on reverse-engineering
to extract knowledge from the ambiguous textual documentation of cloud APIs
and to enhance its representation using MDE techniques. This approach is applied
to Google Cloud Platform (GCP), where I provide GCP MODEL, a precise model-
driven specification for GCP. GCP MODEL is automatically inferred from GCP tex-
tual documentation, conforms to the OCCIWARE METAMODEL and is implemented
within OCCIWARE STUDIO. It allows one to perform qualitative and quantitative
analysis of the GCP documentation. Second, I propose in particular the FCLOUDS
framework to achieve semantic interoperability in multi-clouds, i.e., to identify the
common concepts between cloud APIs and to reason over them. The FCLOUDS lan-
guage is a formalization of OCCI concepts and operational semantics in Alloy formal
specification language. To demonstrate the effectiveness of the FCLOUDS language,
I formally specify thirteen case studies and verify their properties. Then, thanks to
formal transformation rules and equivalence properties, I draw a precise alignment
between my case studies, which promotes semantic interoperability in multi-clouds.

Keywords: Cloud Computing, Multi-Clouds, Open Cloud Computing Inter-
face (OCCI), Model-Driven Engineering (MDE), Reverse-Engineering, Google
Cloud Platform (GCP), Formal Methods, Formal Verification, Alloy, Interop-
erability

viii

Résumé

Ces derniéres années, I'informatique multi-nuages, qui vise & combiner différentes
offres ou & migrer des applications entre différents fournisseurs de services en nuage,
est devenue une tendance majeure. Les multi-nuages améliorent les performances
et les cotits des applications hébergées dans les nuages et garantissent leur résilience
en cas de panne. Mais avec 'avénement de I'informatique en nuage, différents four-
nisseurs offrant des services en nuage (calcul, stockage, réseau, applications, etc.) et
des interfaces de programmation d’applications (APIs) hétérogénes sont apparus.
Cette hétérogénéité complique la mise en oeuvre d’un systéme de multi-nuages
interopérable. Plusieurs solutions pour l'interopérabilité de multi-nuages ont été
développées pour relever ce défi. Parmi ces solutions, I'Ingénierie Dirigée par les
Modeles (IDM) s’est révélée trés avantageuse et constitue la méthodologie la plus
largement adoptée pour monter en abstraction et masquer I’hétérogénéité du nuage.
Cependant, la plupart des solutions IDM existantes pour le 'informatique en nuage
restent concentrées sur la conception des nuages sans automatiser les aspects de
déploiement et de gestion, et ne couvrent pas tous les services en nuage. De plus, les
solutions IDM ne sont pas toujours représentatives des APIs de nuages et manquent
de formalisation.

Pour remédier a ces limitations, je présente dans cette thése une approche basée
sur le standard Open Cloud Computing Interface (OCCI), les approches IDM et
les méthodes formelles. OCCI est le seul standard ouvert qui décrit tout type de
ressources de nuages. L’IDM est utilisée pour concevoir, valider, générer et super-
viser des ressources de nuage. Les méthodes formelles sont utilisées pour raisonner
efficacement sur la structure et le comportement des ressources de nuage encodées, a
I’aide d’un vérificateur de modéle analysant leurs propriétés. Cette recherche a lieu
dans le contexte du projet OCCIWARE, qui fournit OCCIWARE STUDIO, la pre-
miére chaine d’outils pilotée par les modéles pour OCCI. OCCIWARE STUDIO est
associé & OCCIWARE RUNTIME, le premier environnement d’exécution générique
pour les artefacts OCCI ciblant tous les modéles de service de nuages (IaaS, PaaS
et SaaS).

Dans cette thése, je fournis en particulier deux contributions majeures qui sont
mises en oeuvre en se basant sur ’approche OCCIWARE. Premiérement, je propose
une approche basée sur la rétro-ingénierie pour extraire des connaissances des docu-
mentations textuelles ambigués des APIs de nuages et améliorer leur représentation
a l'aide des techniques IDM. Cette approche est appliquée & Google Cloud Plat-
form (GCP), ou je propose GCP MODEL, une spécification précise et basée sur les
modéles pour GCP. GCP MODEL est automatiquement déduit de la documentation
textuelle de GCP, est conforme & OCCIWARE METAMODEL et est implémenté dans
OCCIWARE STUDIO. Il permet d’effectuer des analyses qualitatives et quantita-
tives de la documentation de GCP. Deuxiémement, je propose le cadre FCLOUDS
pour assurer une interopérabilité sémantique entre plusieurs nuages, ¢.e., pour iden-
tifier les concepts communs entre les APIs de nuages et raisonner dessus. Le lan-
gage FCLOUDS est une formalisation des concepts et de la sémantique opérationnelle
d’OCCI en employant le langage de spécification formel Alloy. Pour démontrer
lefficacité du langage FCLOUDS, je spécifie formellement treize APIs et en vérifie les
propriétés. Ensuite, grace aux régles de transformation formelles et aux propriétés

ix

d’équivalence, je peux tracer un alignement précis entre mes études de cas, ce qui
favorise 'interopérabilité sémantique dans un systéme de multi-nuages.

Mots-clés: Nuage informatique, Multi-nuages, Open Cloud Computing In-
terface (OCCI), Ingénierie dirigée par les modéles (IDM), Rétro-ingénierie,
Google Cloud Platform (GCP), Méthodes formelles, Vérification formelle, Al-
loy, Interopérabilité

Contents

List of Figures xiii
List of Tables xvi
I Preface 1
1 Introduction 3
1.1 Thesis Context 6
1.2 Problem Statement 6
1.3 Research Questions, 9
1.4 Thesis Goals 10
1.5 Thesis Vision 11
1.6 Proposed Solution 12
1.7 Dissertation Roadmap L. 14
1.8 Publications 16
1.8.1 International Conferences 16

1.8.2 Imternational Journal 17

1.9 Awards. 17

IT State of the Art 19
2 Model-Driven Approaches for the Cloud 21
2.1 Multi-Cloud Ecosystem 22
2.1.1 Provider Space 24

2.1.2 Programming Space 26

2.1.3 Modeling Space 26

2.2 Taxonomy of Model-Driven Approaches for the Cloud 27
221 Usages . - . . v v e 28

222 Concepts 29

2.2.3 Characteristics 29

2.3 Model-Driven Approaches for the Cloud 31
2.4 Discussion Lo 40
2.5 Summary ... 43

xii

Contents

IIT Background 47

3 Modeling, Verifying, Generating and Managing Cloud Resources

with OCCIWARE 49
3.1 DMotivations 51
3.2 Background on OCCI 53
3.3 OCCIWARE Approach 55
3.3.1 Managing Everything as a Service with OCCIWARE 55
3.3.2 Generating Cloud Domain-Specific Modeling Studios with
OCCIWARE o oot e e e s 59
3.4 OCCIWARE Metamodel 61
3.5 OCCIWARE STUDIO v ittt e e 71
3.6 OCCIWARE RUNTIME 75
3.7 Evaluation of OCCIWARE Studio 77
3.7.1 Implementation of a Catalog of Standard OGF's OCCI Ex-
tensions L. 77
3.7.2 Five OCClware Use Cases 85
3.7.3 Synthesis on the OCCIWARE Approach 89
3.8 Summary 92
IV Contributions 93

4 Inferring Precise Models from Cloud APIs Textual Documenta-

tions 95
4.1 Inferring Precise Cloud Models 97
4.1.1 Approach Overview 98
4.1.2 Related Work 100
4.2 GCP Use Case: Motivation & Drawbacks 101
4.3 GCP MODEL Extraction Approach 107
4.3.1 GCP Snapshot 108
432 GCP Crawler 108
433 GCP Model 108
434 GCP Refinement 112
4.3.5 Challenges. 115
4.4 Evaluation of GCP MODEL 116
4.4.1 Qualitative Evaluation 116
4.4.2 Quantitative Evaluation 119
4.5 Summary ... 120

Contents xiii

5 Specifying Heterogeneous Cloud Resources and Reasoning over

them with FCLOUDS 121
5.1 Exploring the Semantic Space, 123
5.1.1 Formal methods and their benefits 123
5.1.2 Related Work 124
5.2 The rcLOUDS Framework 125
5.2.1 Usage Scenarioo 125
5.2.2 Overall Architecture 126
5.3 The FCLOUDS Language 128
5.3.1 Notations 128
5.3.2 Specifying FCLOUDS Static Semantics. 129
5.3.3 Specifying FCLOUDS Operational Semantics 135
5.3.4 Identifying & Validating FCLOUDS Properties 139
5.4 Evaluation of FCLOUDS 143
5.4.1 Catalog of Cloud Formal Specifications 144
5.4.2 Implementation of FCLOUDS Formal Specifications 147
5.4.3 Verification of FCLOUDS Properties 148
5.4.4 Definition & Validation of Domain-Specific Properties 148
5.4.5 Transformation Rules for Semantic Interoperability in Multi-
clouds 149
5.5 Summary 149
V Conclusion 151
6 Conclusions and Perspectives 153
6.1 Background Summary L0000 153
6.2 Contributions Summary L L Lo 154
6.3 Perspectives 156
6.3.1 Short-term Perspectives 156
6.3.2 Long-term Perspectives 157
6.4 Final Conclusion 159

Bibliography 161

1.1
1.2
1.3
1.4

2.1
2.2

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20

4.1
4.2
4.3
4.4
4.5
4.6

List of Figures

My Thesis in Comics - Part 1. 7
Thesis Vision. o 11
My Thesis in Comics - Part 2. 13
Thesis Outline. 14
Multi-Cloud Ecosystem. 23
Taxonomy Criteria. 27
OCCI Specifications. 54
UML Class Diagram of the OCCI Core Model (from [Nyrén 2016b]). 54
OCCIWARE STUDIO and OCCIWARE RUNTIME. 56

Model-Driven Managing Everything as a Service with OCCIWARE. . 58
Generating Cloud Domain-Specific Modeling Studios with OCCIWARE. 61

Ecore diagram of OCCIWARE METAMODEL. 62
OCCIWARE STUDIO Features. 71
Projection of OCCI to EMF. 72
OCCIWARE RUNTIME Architecture. 76
OCCI Infrastructure Extension Model. 78
An Infrastructure Configuration Model. 80
An OCCI Configuration Model. 81
OCCI CRTP Extension Model. 83
OCCI Platform Extension Model. 83
OCCI SLA Extension Model. 84
OCCI Monitoring Extension Model. 85
OMCRI Designer. 86
Docker Designer. 88
LAMP Designer. 89
OCCIWARE STUDIO Product Line. 92
My Model Extraction Approach Overview. 99
Different Documentation Formats. 102
Imprecise String Types. oo 103
Informal Enumeration Types., 104
Error in Describing the “Kind” Attribute. 104

“Optional/Required” Attribute Constraint. 105

xXvi

List of Figures

4.7

4.8

4.9

4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17

5.1
5.2
5.3
5.4
9.5
5.6

6.1

“Immutable Attribute” Constraint. 105
“Default Value” Constraint. 105
Hidden Link between Instance and Network. 106
GCP Model Extraction Approach Overview. 107
Metamodeling Stack for GCP Model. 109
The Algorithm of the Model Extraction Approach. 110
A Subset of OCCIWARE METAMODEL. 110
Syntactic Parse Tree for Identifying a Hidden Link in a Sentence. . . 113
A Subset of GCP Extension Diagram. 114
Recursive Parsing Example. 0oL 116
Two Clusters of Development Teams. 117
Semantic Space. 123
FCLOUDS Usage Scenario. v .. 125
FCLOUDS Framework Overview. 126
Formalization Process. 127
Alloy Generator. 147
Acceleo Template. 147

Formal Real-World Bridge. 159

2.1
2.2
2.3
24

3.1
3.2

4.1
4.2
4.3

5.1
5.2
5.3

List of Tables

Heterogeneity of Cloud Providers. 24
MDAC Usages. o v o v i it 41
MDAC Concepts. o o 42
CML Characteristics. 44
The Mapping Process of OCCI Concepts into EMF Concepts. . . . 74
OCCIWARE Use Cases o v v v ittt 90
Redundant Attributes and Actions among Kinds. 117
GCP Products. 119
Summary of the GCP Model Dataset. 120
FCLOUDS Static Semantics. 135
Properties of the FCLOUDS Language. 140
Summary of the FCLOUDS Framework Dataset. 145

Part 1

Preface

The first part of this manuscript introduces the scope, motivation and goals of this thesis.

CHAPTER 1

Introduction

Contents

1.1 Thesis Contextt ii i, 6
1.2 Problem Statement0.0. .. 6
1.3 Research Questions 9
1.4 ThesisGoals oo, 10
1.5 Thesis Vision it i i iii .. 11
1.6 Proposed Solution 0000 12
1.7 Dissertation Roadmap 14
1.8 Publications. o o oo oo e e 16

1.8.1 International Conferences 16

1.8.2 International Journal 17
1.9 Awardst v vt e e e e e e e e e e e e e e e e e e 17

CLOUD computing, which is gaining the attention of both academia and industry
for the last decade, was not born from scratch but is a normal evolution of
many domains such as distributed computing, grid computing and service-oriented
computing. Many computing researchers and practitioners have attempted to define

cloud computing in various ways. I give below the most commonly used definitions:

o “A Cloud is a type of parallel and distributed system consisting of a collection
of inter-connected and virtualized computers that are dynamically provisioned
and presented as one or more unified computing resource(s) based on service-
level agreements established through negotiation between the service provider

and consumers.” [Buyya 2009).

o “Cloud computing refers to both the applications delivered as services over the
Internet and the hardware and systems software in the data centers that provide
those services.” [Armbrust 2010].

4 Chapter 1. Introduction

o “Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications and services) that can be rapidly provi-
sioned and released with minimal management effort or service provider inter-
action.” [Mell 2011].

To summarize, cloud computing enables computing resources, software, or data
to be delivered as a service and on-demand through the Internet, so these resources
have become cheaper, more powerful and more available than ever before.

More precisely, cloud computing is a model composed of three deployment mod-

els, three service models and three delivery models.

Deployment models. Cloud environments can have different access types,
that are called deployment models. The latter can be private, public or hybrid.
Private cloud environments are owned by a single organization and they can be
built by relying on technologies like OpenStack [opeal, whereas public cloud envi-
ronments are owned by a third-party cloud provider such as Amazon Web Services
(AWS) and Google Cloud Platform (GCP). Usually, a cloud developer requires using
private clouds for testing a cloud application, then migrating to public clouds so the
application can be publicly accessed by cloud users. And sometimes, the cloud de-
veloper requires using a hybrid cloud, i.e., that comprises public and private cloud
environments. It allows the cloud developer to make his/her application publicly
accessed by hosting its Web server on a public cloud, and to privately store sensitive

data by keeping his/her application database in a private cloud.

Service models. Cloud providers offer functionalities as services at different
layers of the cloud stack, i.e., service models: Infrastructure-as-a-Service (laaS),

Platform-as-a-Service (PaaS) and Software-as-a-Service (SaasS).

e JaaS: where the capability provided to the IaaS user is to provision virtual
machines and to configure the infrastructure concerns: processing, storage,

networking, and other computing resources.

e PaaS: where the capability provided to the PaaS user is to deploy an appli-
cation and it is limited to the database(s), application server(s), compilation

tools, libraries, etc.

e SaaS: where the capability provided to the SaaS user is to manage applications
running on a cloud Infrastructure and/or Platform, and accessible through a

web browser. A SaaS should rely on the principle of multi-tenancy, where

multiple independent instances of one or multiple applications operate in a

shared environment.

Delivery models. Cloud resources can be provisioned from either a single
cloud or multiple clouds. This is known as the delivery model. In this section,
I describe each of the existing delivery models and I highlight the advantages of a

multi-cloud delivery model, which interests us in this dissertation.

e Single cloud: where cloud applications are limited to be deployed on a single
cloud among others, i.e., to benefit from services of only one cloud provider

at a time.

However, several cloud outages have taken place in the past [Ko 2013|, which
prove that the sentence “do not place all your eggs in one basket” is equally ap-
plicable to the cloud ecosystem. Therefore, some cloud application may require to
exploit services from multiple cloud environments, at the infrastructure, platform,
and software layers. In this case, the cloud developer should perfectly manage to
deal with dependencies and to ensure separation of concerns. As Petcu explained
in [Petcu 2013], there are two basic delivery models in multiple cloud systems: Fed-
erated Clouds and Multi-Clouds. Petcu has drawn a clear positioning of multi-clouds

versus other cloud models. I summarize it as follows:

e Federated clouds: where the cloud providers are in agreement with each others
to enhance the service offered to their consumers, e.g., Furopean Grid Infras-
tructure Federated Clouds (EGI FC) which is a federation of private clouds.

o Multi-clouds: where the application provisions multiple cloud varying services,
without a prior agreement with and between the cloud providers, but with a
third party building a unique entry point for multiple clouds. This strategy
has been adopted in the cloud computing industry since a while in order to
improve disaster recovery and geo-presence, to use unique cloud services from
different providers as they are needed, and to ensure unlimited scalability of

cloud applications, as explained in [Petcu 2013].

The remainder of this introductory chapter is organized as follows. Section 1.1
presents the context of this thesis. In Section 1.2, I identify the problems that
motivate this research. Section 1.3 introduces the research questions that this dis-
sertation aims to answer. Next, in Section 1.4, I present the main goals of this thesis.
Section 1.5 presents the vision of my research. Section 1.6 introduces my proposed
solution. In Section 1.7, I summarize the structure of this dissertation. Finally, in

Section 1.8, I detail the publications derived from my research.

6 Chapter 1. Introduction

1.1 Thesis Context

This thesis is supported by both the OCClware [occc| research and development
project funded by the French Programme d’Investissements d’Avenir (PIA), and
the Hauts-de-France Regional Council. The OCClware project promotes the OCCI
standard to address the lack of unified cloud computing standard and facilitate the
development of services. Therefore, the works carried on in this thesis are built on
the OCCI standard by using the OCClware approach.

This thesis is produced in the Spirals team. Spirals is a joint project-team
between Inria Lille-Nord Europe research center and the University of Lille. Spi-
rals currently consists of eight permanent members and about twenty-five non-
permanent members. The research areas of Spirals are distributed systems and
software engineering. The research areas of this thesis are particularly multi-cloud

computing, Model Driven Engineering (MDE) and formal methods.

1.2 Problem Statement

Due to the emergence of numerous cloud providers and their heterogeneity, pro-
visioning cloud services is not a straightforward task. I state the main problem

addressed by this dissertation as follows:

The cloud shows several favorable features like elasticity and pay-as-you-go. In
order to take advantage of these features, the cloud computing market counts
today variety of cloud providers like Amazon, Google, Microsoft, etc. Cloud
providers offer varying infrastructure, platform or software services. Even at
the same service layer, cloud providers use heterogeneous terms, concepts, and
features, which usually are not aligned with those of competing providers. These
semantic differences are critical in cloud computing as they make migrating an
application across providers a very complicated and costly task. In addition,
cloud providers give access to their resources through heterogeneous Cloud Re-
source Management (CRM)-Application Programming Interface (API)s. The
management of a potentially large number of cloud services with heterogeneous
CRM-APIs is a challenge, because of incompatibility between the different APIs.
Worse still, the semantics of these CRM-APIs is informally described in English
prose in their documentation available at the provider's website. Therefore, it is
usually impossible to understand the behaviour of a cloud when the developer

requests a virtual machine for example. For the above concerns, the dependency

1.2. Problem Statement

to a single cloud provider is promoted, the multi-cloud environment is prevented

and the migration from one cloud to another becomes a very complicated task.

A language to rule them alll oueray

These are remote services, this can include email hosting... I
which are not hosted on your computer, T
but at a particular provider... < ——

N =

o

However, even if Cloud providers offer
the same services sometimes...

.their protocols and
characteristics are
different...

..if we want to use multiple
Cloud systems simultaneously, making them
communicate becomes problematic!

..and as caution requires
not putting all your eggs

in'the same basket...

You talk for
goodness' sake!

Figure 1.1: My Thesis in Comics - Part 1.

8 Chapter 1. Introduction

The comic strip in Figure 1.1 illustrates the problem above, i.e., the heterogene-
ity in a multi-cloud context that leads to a lack of interoperability across providers.

I credit the work for designing the amazing comics of my thesis to Olivier Audy.
More specifically, cloud stakeholders face the following challenges.

Heterogeneous service models. Cloud providers offer different services that
belong to the Infrastructure (IaaS), Platform (PaaS) or Software (SaaS) layers. We
use the abbreviation Everything as a Service (XaaS) to refer to all categories. These
categories consist in the “Service Model”. Service models contain highly heteroge-
neous cloud resources, which make difficult the overall management of a computer

system from infrastructure to application resources.

Heterogeneous CRM-APIs. Cloud services are often exposed as Web ser-
vices, which follow the industry standards such as Web Services Description Lan-
guage (WSDL)!, Simple Object Access Protocol (SOAP)? and Universal Description,
Discovery and Integration (UDDI)3 [Paraiso 2012]. They frequently rely on REp-
resentational State Transfer (REST)ful [Fielding 2000] APIs that provide program-
matic access to the resources offered by a cloud provider through Create, Retrieve,
Update and Delete (CRUD) operations. For example, the Amazon cloud services
are accessible via a SOAP API, whereas other clouds are based on a REST API,

which leads to an incompatibility between these two different APIs.

Semantic differences. The semantics refers to the description of a cloud ser-
vice by its provider. These descriptions are heterogeneous because a cloud provider
employs concepts, which usually do not directly map to those of a competing
provider. In fact, even if cloud providers offer the same service, the latter may
have different names, characteristics and functionalities. For instance, GCP refers
to its compute service as “instance”, whereas DigitalOcean calls it “droplet”. These
semantic differences are critical in cloud computing as they make migrating an ap-

plication across providers a very complicated and costly task.

Lack of verification. Cloud solutions provide services, libraries or model-

driven tools to provision cloud resources. However, once provisioned, the deploy-

WSDL is an Extensible Markup Language (XML)-based language that is used for describing
the functionality offered by a Web service.

2S0AP is a protocol specification for exchanging structured information in the implementation
of Web Services in computer networks.

3UDDI is a platform-independent, XML-based registry by which businesses worldwide can list
themselves on the Internet, and a mechanism to register and locate Web service applications.

1.3. Research Questions 9

ment of the applications can face several problems such as misconfiguration of links
between resources, lack of resources on the hosts in which the applications are de-
ployed, human errors, etc. The only way to be sure that the cloud configurations
will run or fail is to deploy them on the target executing environment. Moreover,
there is no way to verify that deployed configurations are conform with those de-
sired. The lack of verification tool becomes quickly painful and expensive when the

deployment task is repeated several times.

Lack of formalization. The semantics of cloud APIs is informally described
in their documentation available at provider websites within English prose. It is
then difficult to understand the behaviour of a cloud when the developer requests a
virtual machine for example. Moreover, the cloud solutions are numerous and also
lack of precise documentation, which complicate their understanding and compar-
ison. This lack of formalization hinders the understanding of the cloud APIs and
solutions, thus complicates the provisioning process and also misleads the alignment

and comparison between cloud offerings.

Vendor lock-in. It is recognized as one of the greatest challenges to cloud
adoption where cloud clients are locked-in to a specific cloud provider due to the
heterogeneity. Therefore, vendor lock-in is a serious result of all the problems
that I discussed above. This problem hinders the complete exploitation of the
full capabilities of cloud computing since it prevents two main intended aspects:
portability and interoperability, which are closely related terms and may often be
confused. Cloud interoperability is the integration between several cloud offerings,
whereas portability is the ability to move applications between different cloud
providers. Cohen clarifies in [Cohen 2009] the similarities and the differences among

these terms in an attempt to exemplify and differentiate them.

The work presented in this thesis aims to alleviate the challenges presented

above.

1.3 Research Questions

More specifically, this thesis aims to answer the following three research questions

(RQs):

e RQH#1: Is it possible to have a solution that allows to represent all kinds
of cloud resources despite their heterogeneity, and a complete framework for

managing them?

10 Chapter 1. Introduction

— How to design the cloud developer needs at a high-level of abstraction?

— How to verify the cloud structural and behavioral properties before any

concrete deployments?

— How to deploy and manage cloud configurations?

o RQ#2: Is it possible to automatically extract precise models from cloud APlIs

and to synchronize them with the cloud evolution?

— How to provide an accurate description for a cloud API?
— How to correct the existing drawbacks in a cloud API documentation?

— How to analyze a cloud API documentation?

o RQ#3: Is it possible to reason on cloud APIs and identify their similarities

and differences?

— How to better understand cloud solutions?
— How to make sure that a cloud solution reflects the desired behaviour?

— How to ensure an accurate migration from a cloud solution to an-
other?

These research questions are explored in next sections.

1.4 Thesis Goals

The objective of this thesis topic was to propose the first formal framework to rig-
orously handle cloud resources. This framework allows to model, analyze, design,
deploy, manage every kind of cloud resources, and to reason over them. This frame-
work is based on the Open Cloud Computing Interface (OCCI) [Edmonds 2012, occal
of the Open Grid Forum (OGF) recommendation. The tooling of this framework
relies on MDE techniques, particularly the Eclipse Modeling Framework (EMF) and
the Models@run.time approach. The formalization of this framework relies on for-
mal specification languages such as the Alloy [Jackson 2012| language developed by
Professor Daniel Jackson from the Massachusetts Institute of Technology (MIT). To
achieve this objective, I decompose it into the following goals.

Regarding RQ#1, this thesis aims to provide mechanisms to interact with het-
erogeneous cloud environments. These mechanisms allow one to model, analyze,
design, deploy and manage every kind of cloud resources.

Regarding RQ#2, this thesis aims to propose mechanisms to automatically build
a cloud model from the corresponding cloud API. These mechanisms rely on reverse-

engineering techniques. They consist in extracting knowledge from a cloud API

1.5. Thesis Vision 11

documentation in order to infer the concepts to be defined in the cloud model so it
correctly reflects the real cloud API. Also, these mechanisms allow to automatically

update the cloud model in case changes occurred to the cloud API.

Regarding RQ#3, this thesis intends to provide mechanisms to draw a precise
alignment between cloud APIs. For such purpose, I exploit formal languages to
rigorously and precisely encode cloud concepts and operations and to reason over
them.

1.5 Thesis Vision

We discussed earlier in this chapter that cloud computing encompasses heteroge-
neous cloud providers. As illustrated in Figure 1.2, this thesis takes advantage of
model-based and formal approaches in order to rise in abstraction from the hetero-
geneous real-world and promote multi-cloud computing. The approaches presented
in this thesis are represented in blue. The OCCIWARE model-driven approach is
discussed in the background part of this thesis, and the FCLOUDS formal approach
is discussed in the contributions part of this thesis. More precisely, this thesis aims
at inferring models from multi-clouds using the OCCIWARE platform, and then

formally reasoning on these models using the FCLOUDS framework.

Formal Approach
for the Cloud

Fclouds
Reason
Model-Driven Approach
for the Cloud
OCClware
Infer

VO D

AWS GCP OcCcl

Figure 1.2: Thesis Vision.

12 Chapter 1. Introduction

1.6 Proposed Solution

In this section, I provide an overview of the contributions described in this disser-
tation. As stated before, the goal of my thesis is to provide approaches, languages,
tools for inferring and enhancing the knowledge of cloud APIs, precisely represent-
ing this knowledge and efficiently reasoning over it. The main contributions of our

work are summarized as follows:

Precise models for cloud APIs. My first contribution is to enhance the
knowledge representation in cloud APIs by automatically inferring a precise model
from the cloud textual documentation. My approach is applied on a major cloud
provider, GCP. To address the drawbacks of GCP textual documentation, I propose
a precise model that describes GCP API. It consists in a precise specification that
describes without ambiguity the knowledge and activities in GCP to avoid confu-
sion and misunderstandings. This model-driven specification, called GCP MODEL,
is automatically inferred from the textual documentation of GCP. GCP MODEL
conforms to the OCCIWARE METAMODEL and is implemented within the open
source model-driven Eclipse-based OCCIWARE tool chain. Thanks to our GCP
MODEL, I offer corrections to the drawbacks I identified in GCP textual documen-
tation. Also, I analyze GCP by drawing conclusions regarding their documentation

and quantifying their services.

The FcLOUDS framework. [provide as second contribution FCLOUDS, the
first formal framework for semantic interoperability between cloud APIs. By se-
mantic interoperability I mean to identify the similarities and differences between
cloud APIs concepts and to mathematically reason over them. FCLOUDS contains
a catalog of cloud APIs that are precisely described. It will help the cloud cus-
tomer to understand the behaviour of the cloud API but also how to migrate from
one API to another, thus to promote semantic interoperability. To implement the
formal language that will encode all the APIs of our FCLOUDS framework, I advo-
cate the use of formal methods, i.e., techniques based on mathematical notations.
They will allow us to rigorously encode cloud concepts and behaviour, validate cloud
properties and finally define formal transformation rules between cloud concepts. I
adopt the concepts of the OCCI common standard to define the formal language
of the FCLOUDS framework. I choose to formalize OCCI with Alloy [Jackson 2012],
a lightweight promising formal specification language designed by Daniel Jackson
from the MIT.

1.6. Proposed Solution 13

There is an open source standard for
Cloud systems interoperability, ocCr*...
but it is also described in English,
in addition to being verbose...

These systems do not meet
common standards: each one is
described in English,
in an informal way...

got a poem
for you.

And this is exactly
where | intervene....

— | Z
N\
— *00C! : Open Cloud Computing Interface
— =

..thus OCCl is precisely described by
a mathematical syntax: no more
misunderstandings

between Cloud systems!

' In the context of OCClware project \
and thanks to Alloy language and analyzer,
| aim to rationalize OCCl with pregision...

In addition, Alloy contains a module,
allowing to create
models to represent a particular service.

The language is therefore universal
and without ambiguity.
Impossible to be deceived!

It's a sort of
universal
gateway!

Tailor-made
for the various
Cloud services!

Stéphanie Challita
PhD student, project-team Spirals
https://team.inria.fr/spirals/

Figure 1.3: My Thesis in Comics - Part 2.

The comic strip in Figure 1.3 vulgarizes this contribution based on OCCI and

Alloy formal language and its analyzer for precisely describing cloud APIs. It mainly

14 Chapter 1. Introduction

highlights how the formalization of OCCI in Alloy allows a standardization of the
the various cloud services. Consequently, this formalization helps the developer to

avoid the misunderstandings that result from the English documentations.

1.7 Dissertation Roadmap

r a
1. Introduction C] Preface
~ J C] State of the Art
2. Model-Driven C] Background
Approaches for the Cloud
L) C] Contributions
D Conclusion
e N
3. OCClware
\ y,
e N
4. Inferring Models 5. Reasoning on
from Cloud APIs Cloud APIs
; Y,
!
e B
6. Conclusions and
Perspectives
\ y,

Figure 1.4: Thesis Outline.

This dissertation is divided in five parts and six chapters, as shown in Figure 1.4.
While this introductory chapter is part of the first part, the second one encloses the
State of the Art. In the third part, I present OCCIWARE, which is the model-driven
environment on which I rely to implement my works. The fourth part presents the
two contributions of this dissertation. Finally, the last part includes the conclusions
and perspectives of this dissertation. Below, I present an overview of the chapters

that compose the different parts.

1.7. Dissertation Roadmap 15

Part II: State of the Art

Chapter 2: Model-Driven Approaches for the Cloud In this chapter,
I present the approaches that are used in order to ensure multi-clouds, namely
standards, services, libraries and models. I focus on model-based cloud solutions
and I propose a taxonomy to provide a better understanding of the concerns in
which our work takes place. I list and describe the most relevant related works in
terms of our taxonomy criteria. Since our work presents a solution for multi-clouds,

the idea of this chapter is to explore the existing solutions and their limitations.

Part III: Background

Chapter 3: Modeling, Verifying, Generating and Managing Cloud
Resources with OCCIWARE. In this chapter, I present OCCIWARE, the project
that supports this thesis and the paltform that I used to implement my contributions.
OCCIWARE proposes to textually and graphically encode cloud APIs and cloud
configurations via OCCIWARE STUDIO. The latter is a model-driven environment
for OCCI standard, based on an Ecore metamodel. Then, OCCIWARE STUDIO is
linked with OCCIWARE RUNTIME, an execution environment for OCCI artifacts.
Therefore, from a designed and verified OCCI configuration, we can generate a
deployment script via the CURL Generator tool. Later, these configurations can be

managed at runtime via generated connectors deployed on OCCIWARE RUNTIME.

Part IV: Contributions

Chapter 4: Inferring Precise Models from Cloud APIs Textual Doc-
umentations. In this chapter, I present my approach for retrieving information
from cloud APIs, improving their representation and discovering new knowledge
from them. This approach is experimented by studying the textual documentation
of GCP, one of the leaders in the cloud market. Then, I build a precise model for
GCP, called the GCP MODEL. Thanks to this model, I study GCP API and provide

corrections to the six drawbacks of its current informal documentation.

Chapter 5: Specifying Heterogeneous Cloud Resources and Reasoning
over them with FCcLOUDS. In this chapter, I present my approach for formally
specifying cloud APIs, called the FCLOUDS framework. Based on Alloy formal lan-
guage and the OCCI standard, I define a formal language for cloud computing that
relies on first-order logic paradigm combined with relational algebra. Then, I show

how having formal specifications of cloud solutions allow to check their behaviour,

16 Chapter 1. Introduction

detect their inconsistencies, and remove their ambiguity to understand their simi-

larities and promote their interoperability.

Part V: Conclusion

Chapter 6: Conclusions and Perspectives. In this chapter, I conclude the
work presented in this dissertation. I discuss some limitations that motivate new

ideas and future directions as short-term and long-term perspectives.

1.8 Publications

The contributions derived from this thesis have been published in international
peer-review conferences. In this section, I detail all the publications resulted from
my research for the last three years. These publications are ordered by year of

publication.

1.8.1 International Conferences

e Stéphanie Challita, Faiez Zalila, and Philippe Merle. “Specifying Semantic
Interoperability between Heterogeneous Cloud Resources with the FCLOUDS
Formal Language.” 11th IEEE International Conference on Cloud Computing
(CLOUD), San Francisco, California, USA, 2018, p. 367-374 [Challita 2018b]
(CORE rank B, acceptance rate: 20%).

e Stéphanie Challita, Faiez Zalila, Christophe Gourdin, and Philippe Merle.
“A Precise Model for Google Cloud Platform.” 6th IEEE International Con-
ference on Cloud Engineering (IC2E), Orlando, Florida, USA, 2018, p. 177-
183 [Challita 2018a] (acceptance rate: 19%).

e Fabian Korte, Stéphanie Challita, Faiez Zalila, Philippe Merle, and Jens
Grabowski. “Model-Driven Configuration Management of Cloud Applica-
tions with OCCL” 8th International Conference on Cloud Computing and
Services Science (CLOSER), Funchal, Madeira, Portugal, 2018, p. 100-
111 [Korte 2018] (acceptance rate: 22%).

e Faijez Zalila, Stéphanie Challita, and Philippe Merle. “A Model-Driven Tool
Chain for OCCIL.” 25th International Conference on Cooperative Information
Systems (CooplS), Rhodes, Greece, 2017, p. 389-409 |Zalila 2017a] (CORE
rank A, acceptance rate: 20%).

1.9. Awards 17

e Stéphanie Challita, Fawaz Paraiso, and Philippe Merle. “Towards Formal-
based Semantic Interoperability in Multi-Clouds: The FCLOUDS Framework.”
10th IEEE International Conference on Cloud Computing (CLOUD), Hon-
olulu, Hawaii, USA, 2017, p. 710-713 [Challita 2017b| (CORE rang B, accep-
tance rate: 18%).

e Stéphanie Challita, Fawaz Paraiso, and Philippe Merle. “A Study of Virtual
Machine Placement Optimization in Data Centers.” Tth International Confer-
ence on Cloud Computing and Services Science (CLOSER), Porto, Portugal,
2017, p. 343-350 [Challita 2017a| (acceptance rate: 22.5%).

e Fawaz Paraiso, Stéphanie Challita, Yahya Al-Dhuraibi, and Philippe Merle.
“Model-driven Management of Docker Containers.” 9th IEEE International
Conference on Cloud Computing (CLOUD), San Francisco, California, USA,
2016, p. 718-725 |[Paraiso 2016] (CORE rank B, acceptance rate: 15%).

1.8.2 International Journal

In addition, one journal article is under submission:

e Faiez Zalila, Stéphanie Challita, and Philippe Merle. “Model-Driven Cloud
Resource Management with OCClware.” Future Generation Computer Sys-

tems (FGCS), 2018 |Zalila 2018] (Impact factor 4.639).

1.9 Awards

During this thesis, I was selected as an ambassador of the French fellowship
L’OREAL-UNESCO FOR WOMEN IN SCIENCE 2018. Among 900 ap-
plications, 20 female PhD candidates and 10 female postdocs were granted this
award.

Also, I received two student travel grants from:

e IEEE CLOUD 2017 conference that took place in Honolulu, Hawaii, USA,

and,

e FormaliSE 2018 conference (co-located with International Conferences on

Software Engineering (ICSE)) that took place in Gothenburg, Sweden.

Part 11

State of the Art

In this part, I review approaches related to cloud computing and I classify the existing

models for the cloud.

CHAPTER 2
Model-Driven Approaches for the
Cloud

Contents
2.1 Multi-Cloud Ecosystem 22
2.1.1 Provider Space 24
2.1.2 Programming Space 26
2.1.3 Modeling Space oo 26
2.2 Taxonomy of Model-Driven Approaches for the Cloud . .. 27
221 Usages« o i e 28
2.2.2 Concepts 29
2.2.3 Characteristicso 29
2.3 Model-Driven Approaches for the Cloud 31
2.4 Discussion oo e e e e e e e e e 40
2.5 SUMMATY . ¢ ¢ v v v vttt e e e e e e e e e e e e e e e e e e 43

TODAY, the plethora of cloud providers and their heterogeneity hinder their in-
teroperability. Therefore, many solutions have emerged to add abstraction be-
tween the cloud providers and provide mechanisms to automate the provisioning of
services from multi-clouds. Among these solutions, MDE has received a significant
attention in the development of software for cloud computing. MDE is a software
development methodology that allows software developers to design the software
concerns at a high level of abstraction, hide different implementation details, reduce
complexity, ease reuse, and thus improve software quality. Since 2010, several MDE
approaches for the cloud have emerged. However, each one targeted a particular
problem and resolved it within an ad-hoc manner. In fact, some years after the
emergence of the cloud computing, several works [Bruneliere 2010, Baryannis 2013]
were interested to the synergy between the cloud and MDE. However, no work gave a
consensus on the set of models, languages, model transformations and software pro-
cesses for the model-driven development of the cloud applications. In this chapter,
I present the first detailed study about the use of MDE for the cloud.

22 Chapter 2. Model-Driven Approaches for the Cloud

This chapter is structured as follows. Section 2.1 recalls the concept of “Cloud-
ware engineering” and classifies the existing Cloudware engineering solutions into
three categories that I call spaces. Section 2.2 describes a taxonomy for explain-
ing Model-Driven Approaches for the Cloud (MDAC). Therefore, I list the different
identified usages for MDAC, during the different phases of building an application
for/in the cloud. Afterwards, I discuss what an eventual MDAC can contain as con-
cepts to reply to the different usages needs. Then, I discuss how these concepts can
be encoded and what are the different possible approaches to do that. Section 2.3
details twenty-two existing MDAC. Then, I discuss these solutions according to my
taxonomy criteria. Section 2.4 identifies some limitations in the existing approaches.

Finally, Section 2.5 concludes the chapter.

2.1 Multi-Cloud Ecosystem

The emergence of the virtualization and the cloud computing has fostered the de-
ployment of the software on the cloud. This specific kind of software is called
Cloudware. The Cloudware engineering requires us to update the classical software
engineering approaches to be adapted to the cloud computing specificities such as
elasticity and portability. To promote interoperability between clouds, i.e., to en-
able multi-clouds, the Cloudware engineering market counts numerous solutions at
different levels of abstraction, traditionally called service layers. From my point of
view, these solutions can be classified into three spaces, as shown in Figure 2.1. 1
identify the Provider Space that offers solutions for the cloud provider, the Program-
ming Space that offers solutions for the cloud developer and the Modeling Space for
the cloud architect. Multi-cloud solutions, whether they belong the Provider Space,
Programming Space or Modeling Space, follow sometimes the current emerging cloud

standards.

Standards. Cloud standards result from collective agreements and aim at pro-
viding some concepts, characteristics and implementations to be commonly used by

cloud providers. Among cloud standards, I identify:

e Cloud Application Management for Platforms (CAMP) [Carlson 2012, cam)]:
the Organization for the Advancement of Structured Information Standards
(OASIS)'s CAMP standard targets the deployment of cloud applications on

top of PaaS resources.

e Cloud Data Management Interface (CDMI) [cdm]: defines a RESTful inter-
face that allows cloud applications and users to retrieve and perform opera-

tions on the data from the cloud.

2.1. Multi-Cloud Ecosystem 23

Modeling Model-Driven Approaches EECIouEd E !
SPAC ELiiii] f orth"a'clomjarchltect
Multi-cloud |
: Libraries :
Programming: [AWS | [Dpigitalocean| = | GCP occl | . i Cloud Ez
Space SDK SDK] SDK SDK Edeveloper

Standards

Provider :

Space AWS igitalOcean|
: P AP

i Cloud
i provider

Figure 2.1: Multi-Cloud Ecosystem.

e Cloud Infrastructure Management Interface (CIMI) [Davis 2012|: the Dis-
tributed Management Task Force (DMTF)'s CIMI standard defines a RESTful

API for managing IaaS resources only.

e OCCI [Edmonds 2012, occal: the OGF's OCCI proposes a generic resource-
oriented model for describing and managing any kind of cloud resources, in-

cluding IaaS, PaaS, and SaaS.

e Open Virtualization Format (OVF) |ovi]: the DMTF's OVF standard defines

a packaging format for portable virtual machine images.

e Topology and Orchestration Specification for Cloud Applications
(TOSCA) [Binz 2012]: the OASIS's TOSCA defines a model to de-
scribe and package cloud application artifacts and to deploy them on IaaS

and PaaS resources.

24 Chapter 2. Model-Driven Approaches for the Cloud

Discussion

Using standards for cloud computing is quite advantageous because they result
of a collective agreement and they extract the key actions and characteristics
of cloud providers. Also, being a standard means that several implementations
have been successfully built using this standard. However, standards are usually
specific for a particular cloud service model. Moreover, leading cloud providers
have unfortunately no interest in adopting a standard API like the one offered
by OCCI to ease interoperability with other clouds. Each of the cloud providers
would rather have proprietary, closed source implementations with custom
APIs. However, OCCI has proven its utility in several contexts. For example,
the EGI FC |egi| is based on OCCI to ensure interoperability among twenty
cloud providers and over three hundred data centers. Furthermore, OCCI at-
tracts several cloud brokers such as CompatibleOne [Yangui 2014| that aims at
ensuring seamless access to the heterogeneous resources of cloud providers. For
these reasons among others, I propose in this thesis an OCCI-based approach

for interoperability in a multi-cloud context.

In the following, I present the Cloudware spaces and highlight the problem at

each space of the cloud ecosystem.

2.1.1 Provider Space

The cloud market counts today a plethora of cloud providers that, as shown in
Table 2.1, are heterogeneous in terms of their deployment model, service model and

management interface. This heterogeneity leads to vendor lock-in.

Table 2.1: Heterogeneity of Cloud Providers.
Cloud Provider Deployment Model Service Model CRM-API

AWS [aws| Public IaaS & PaaS REST & SOAP
DigitalOcean [dig] Public TaaS REST
EGI FC [egi] Private TaaS REST
FlexiScale [fle] Public IaaS SOAP
GCP |[gcp] Public laaS & PaaS REST
Microsoft Azure [azu] Hybrid TaaS REST
Heroku [her] Public PaaS REST

SalesForce [sal] Public SaaS REST & SOAP
VMware [vmw]| Hybrid IaaS REST

Services. To address the providers' heterogeneity problem, the solution in this
space would be a service that offers a unique interface to handle the heterogeneity

of different APIs. A service is expected to intermediate the relationship between

2.1. Multi-Cloud Ecosystem 25

the cloud providers and users to simplify the process of combining multiple cloud
services. In this subsection, I survey different cloud services, whether they are

commercial or open source.

e Aecolus [aeo]: is an open source European research project aiming at automat-

ing the deployment and reconfiguration of machine pools in the clouds.

e Aneka [Vecchiola 2009]: is a PaaS, that is commercialized by Manjra-
soft [man], for building .NET applications and deploying them on either public

or private clouds.

e CompatibleOne [Yangui 2014]: is an open source PaaS to automate appli-
cation deployment on multiple providers. It is based on CDMI and OCCI

standards.

e Kaavo |kaa|: is a commercial management interface for configuring and man-

aging applications on the supported cloud providers and platforms.

e mOSAIC [mos, Sandru 2012[: is a European project that offers an open source
API for the development and deployment of applications that use multiple

clouds.

e Optimis [Ferrer 2012|: is also a European project that offers an open source
PaaS that allows cloud service provisioning and the management of the life-

cycle of the services.

e RightScale [rig]: is a commercial service for deploying and managing applica-

tions across clouds.

e Scalr [scab]: similar to RightScale, Scalr provides deployment of virtual ma-

chines in various clouds and includes automated triggers to scale up and down.

e STRATOS [Pawluk 2012]: offers single sign-on and monitors resource con-
sumption and the fulfillment of service level agreements and offers autoscaling

mechanisms.

Discussion

A cloud service only masks the heterogeneity problem and does not semanti-
cally resolve it. Cloud users would not have a way to understand how their
applications and sensitive data are dealt with inside a cloud, thus hampering

trust to cloud services. Also, an important limitation in using cloud brokering

26 Chapter 2. Model-Driven Approaches for the Cloud

services is the user reliance on the broker to be continuously up to date with

new cloud technologies, options and offerings.

2.1.2 Programming Space

In order to allow developers to provision cloud services, each cloud offers one or
several language-specific Software Development Kit (SDK)s to hide technical details
of APIs. However, these SDKs are heterogeneous. Therefore, many multi-cloud
libraries have emerged to allow developers to add abstraction between the cloud
SDKs and enable multi-clouds. In this subsection, I survey different multi-cloud
libraries providing a uniform way to access multiple services and resources, as well

as facilitating the provisioning of services and resources from multiple clouds.

e Fog [fog]: is a Ruby library that provides an interface, making clouds easier

to work with and to switch between providers.

e Gophercloud [gop]: is a Go library that allows cloud developers to connect to

their applications on OpenStack clouds.

e jclouds [jcl]: is a Java library that introduces abstractions aiming the porta-

bility of applications and supports more than thirty cloud providers.

e libcloud [lib]: is a Python library that controls Virtual Machine (VM)s from

different cloud providers.

e SimpleCloud [sim]: is a PHP library for accessing storage, queue and database

services in the cloud.

Discussion

The multi-cloud libraries are tightly coupled to their programming languages
like Ruby, Go, Java, Python and PHP, so the language compiler is able to
check the correctness of the developer code but does not know how to perform
a verification related to the cloud computing field. The developer needs to ignore

implementation details and focus on general properties and characteristics. This

will help him/her to avoid premature commitment to implementation choices.

2.1.3 Modeling Space

Meanwhile, there is a need for cloud architects to design their applications for multi-
clouds regardless of the implementation details. For this, model-based solutions are
becoming increasingly popular in cloud computing as they provide domain-specific

modeling languages and frameworks that enable architects to describe/select /adapt

2.2. Taxonomy of Model-Driven Approaches for the Cloud 27

multi-cloud environments. This strategy is summarized as “Model once, generate
anywhere”. I identify some of the notable model-based solutions for multi-clouds.
Unlike programming libraries, they work at a high level of abstraction by focusing
on cloud concerns rather than implementation details. I believe that model-driven
engineering brings many benefits for multi-clouds |[Bruneliere 2010]. Therefore, I
focus in the rest of this chapter on detailing the model-driven Cloudware stack and

discussing model-based approaches.

2.2 Taxonomy of Model-Driven Approaches for the
Cloud

In order to understand MDAC and as shown in Figure 2.2, I propose a taxonomy
that presents the classification of MDAC literature in terms of three main aspects I
identified:

o MDAC usages categorized by the phase of using the approach: design time,
deployment time, and production time (Subsection 2.2.1),

o MDAC concepts used to satisfy the corresponding MDAC usages. These con-
cepts may belong to IaaS or PaaS domains, or they reflect transverse cloud

concerns like SLA, elasticity, etc. (Subsection 2.2.2), and,

e MDAC characteristics that represent the characteristics of the language used
to implement the MDAC, i.e., the paradigm, the syntax and the semantics
(Subsection 2.2.3).

Model-Driven
Approaches for
the Cloud

Figure 2.2: Taxonomy Criteria.

28 Chapter 2. Model-Driven Approaches for the Cloud

2.2.1 Usages

Usually, the process of developing an application for/in the cloud is characterized by
three main phases: design, deployment and production (i.e., the runtime). For each
one, I have identified a set of recurrent usages that can occur during the lifecycle
of a cloud application. They are the models which represent, at a high level of

abstraction, concrete concerns of cloud management interfaces.

2.2.1.1 Design Time

This stage regroups the fundamental activities that enact MDAC. It consists for
example in migrating a legacy system to the cloud, expressing the client needs by
designing and verifying the cloud application requirements, designing the expected
cloud environment to focus on cloud concerns rather than the implementation de-
tails, selecting the optimum cloud provider that suits the application requirements,
refining generic models so they become adapted to represent concrete cloud offer-
ings, exporting cloud models as specifications, documentations, and design artifacts

to ease the usage of the cloud systems, etc.

2.2.1.2 Deployment Time

Once the cloud architecture model is designed, MDAC should be capable to generate
the code artifacts in any form for the deployment stage. For example, if the model
defined is related to Docker technology [Merkel 2014], MDAC should generate the
artifacts corresponding to the model in a form of docker-compose file that can be
managed by Docker swarm, or YAML configuration files that can be managed by Ku-
bernetes or OpenShift. In addition, MDAC should be able to generate deployment
scripts that can be used by a third-part deployment tools. For example MDAC will
be able to generate Ansible playbooks (roles, tasks, host vars, etc.) |ans|, Puppet
manifests (resources, classes, modules) [pup|, and Chef cookbooks (recipes, tem-

plates, etc.) [che].

2.2.1.3 Production Time

During this phase, MDAC allow the user to have a model representation, i.e., an
abstraction of its cloud running system. Then, MDAC will provide a link between
the designed architecture and the deployed cloud artifacts on the executing environ-
ment. When modifications occur in an existing architecture, MDAC should update
the executing environment. Conversely, when changes occur in the executing envi-
ronment, they should be reflected in the existing architecture. Finally, MDAC will

monitor in a real time all the resources deployed in the executing environments and

2.2. Taxonomy of Model-Driven Approaches for the Cloud 29

will report the status in many forms including updating widgets in the designed
architecture, or visualizing the monitored facts in a specialized graphs or exporting
them as CSV, excel, etc.

2.2.2 Concepts

To implement an MDAC, the designers need to define a set of concepts that represent
a specific cloud domain such as infrastructure or platform or related to transverse
cloud concerns such as elasticity, Service Level Agreement (SLA) and simulation.
Each domain or concern includes a set of specific concepts. For example, VM,
container and network integrate the infrastructure domain, whereas server, appli-
cation and database integrate the platform domain. Each domain-specific concept
defines a set of attributes, actions, and constraints. An attribute represents a spe-
cific property of this type. An action defines a business specific behavior that can
be triggered by a type instance (named also resource). A constraint associated to
a type represents a business condition that must be respected by each conforming

resource.

2.2.3 Characteristics

MDAC are defined through the use of a metamodel that formalizes the different
concepts of the cloud domain. This metamodel defines the modeling language, i.e.,
the Cloud Modeling Language (CML), which is the bridge between cloud developers
and the cloud artifacts. Similar to other languages, a CML is defined in terms of
its paradigm, syntar and semantics, which are the three pillars of CML character-
istics [Kleppe 2008|. The syntax of a CML may be further divided into an abstract

syntax and a concrete syntax.

2.2.3.1 Paradigm

The paradigm is the manner of thinking when using a language. For example, object-
oriented languages involve objects as a paradigm. As for a cloud Domain-Specific
Modeling Language (DSML), its paradigm may rely on the application components,
cloud services, cloud resources, or Feature Model (FM)s. On one hand, the paradigm
of components is application-oriented since it is used to describe the architecture
of the application. The components are thus the entities of an application that the
developer needs to deploy on the cloud. On the other hand, services, resources and
FMs are cloud-oriented paradigms, i.e., used to describe the cloud offerings. By
services, I discuss slightly coupled, shared entities, already deployed in the cloud.

A cloud platform provides services, such as computing and storage, and provides

30 Chapter 2. Model-Driven Approaches for the Cloud

management interfaces for these services. Since they are shared by several users
simultaneously, services do not keep any state, i.e., stateless. Beside services, re-
sources, such as VMs and containers, are accessible via Uniform Resource Identifier
(URI)s through REST or SOAP APIs. Basically, resources are not shared but, they
are available on demand by each user. Being able to describe everything you want
in data centers, i.e., compute, storage, network, applications, but even lights for ex-
ample, one can say that the use of resources is generic and not specific to the field of
cloud computing. This makes the tour de force of this paradigm. As for FMs, they
were introduced in 1990 by Kang et al. [Kang 1990], as part of the Feature Oriented
Domain Analysis (FODA). They are used to denote Software Product Line (SPL)s.

In cloud computing, FMs are used to represent variability of cloud providers.

2.2.3.2 Abstract syntax

The abstract syntax represents the concepts available in a language and how they
are related. For CMLs, the abstract syntax is described by defining a metamodel,
which is itself a model that defines the concepts of the domain and how they in-
terrelate. Metamodeling techniques have been standardized by the Object Manage-
ment Group (OMG) Meta-Object Facility (MOF) [MOF 2006] and there are sev-
eral tools, like the EMF [EMFa|, Enterprise Architect [EA|, Rational Rose [Rat],
ATOM? [HuRkmann 2001] etc. that provide metamodeling capabilities. Regarding
the abstract syntax, I identify Unified Modeling Language (UML) profiles, Ecore
and XML schema.

With UML profiles, we talk about Internal Domain specific language (DSL)s
which are limited to the basic language. Although they may draw the libraries and
other facilities, they suffer from the lack of abstraction and the paucity of available
operations. As for Ecore and XML schema, they are external DSLs, which weakness

is the need to create their own tools.

2.2.3.3 Concrete syntax

The concrete syntax describes a specific representation of the language used to
display models to end users. It can be either a textual syntax or a graphical rep-
resentation, i.e., displayed with a tree-like or a diagram notation. On one hand,
the textual syntax is usually defined using a combination of regular expressions
and Backus-Naur Form (BNF). On the other hand, the graphical syntax uses a
diagram technique with named symbols that represent concepts and lines that con-
nect the symbols and represent relationships. Several tools have been proposed to
implement (i) textual concrete syntaxes for DSLs like Xtext [xte 2016] and EMF-

2.3. Model-Driven Approaches for the Cloud 31

Text [emfb], and (%) graphical concrete syntaxes like Graphical Modeling Framework
(GMF) [gmf]|, Sirius [sir] and Graphiti [gra].

2.2.3.4 Semantics

The semantics defines well-formedness criteria and gives the meaning of abstract
syntax and, indirectly, of concrete syntax. It can be classified into two main cate-
gories: static (or structural) semantics and behavioral (or dynamic) semantics. The
former defines restrictions on the structure of the designed model, while the latter
defines the behavior of the model elements in terms of states, events and interac-
tions. The semantics of CMLs can be explicitly specified using natural language,
Object Constraint Language (OCL) constraints and ontologies. However, sometimes
the semantic content is not explicitly specified. In this case, domain-specific models
are only transformed into artifacts of the implementation or directly executed by a
model interpreter that has the potential of facilitating the processing of models at
runtime in order to adapt a running application [Sousa 2012|, [Fowler 2010]. In this

case, the semantics is nothing but the abstraction of the model interpreter.

2.3 Model-Driven Approaches for the Cloud

Many MDAC were recently proposed in order to enable abstraction from different
implementation languages and platforms. This way, the focus is shifted from the
solution space towards the problem space, and from the low-level implementation
details towards the higher-level domain specific concepts. The numerous existing
MDAC might be overlapping in some aspects and very different in others. Devel-
opers require to have means to compare the existing approaches and to select the
most appropriate one that fits their needs. Additionally, the lacks of the existing
approaches need to be highlighted in order to carry on future work in this field.
Consequently, the need for investigating MDAC becomes quite urgent. Across the
literature on MDAC surveys, the authors in [Bergmayr 2018] recently presented the
most complete state-of-the-art of cloud modeling languages, so far. They surveyed
nineteen approaches, that appeared before 2015, in terms of their purposes, charac-
teristics, capabilities and tooling. In my survey, I study twenty-two existing MDAC
in terms of the three criteria elaborated in Section 2.2, i.e., usages, concepts and

characteristics.

Blueprinting [Nguyen 2012] provides a language that describes cloud services
that are combined from a variety of cloud providers, in order to select the best

configuration and easily deploy application components in cloud federations while

32 Chapter 2. Model-Driven Approaches for the Cloud

crossing SaaS, PaaS and TaaS layers. The current version of Blueprinting is focused
on designing blueprints, which are the abstract description of applications assembled
in terms of components. As for cloud offerings, they are represented and consid-
ered as services, and templates are used to specify the service features. Blueprints
are encoded in XML and represented graphically in terms of a Virtual Architec-
ture Topology (VAT). The Blueprinting approach aims to include a detailed and
automatized deployment plan that abstracts the technical details of the interaction
with a cloud, and reconfiguration actions defined in terms of policies within the
WS-Policy or the SLAng languages. To my knowledge, these functionalities are not

implemented so far.

Brooklyn [bro] is a framework developed by the Apache consortium for model-
ing and managing applications through autonomic deployment blueprints textually
expressed in YAML in terms of components, and which semantics complies with the
CAMP standard. Brooklyn also exposes many of the CAMP REST API endpoints
and uses sensors and actuators to provide support for runtime management allowing
for dynamically monitoring the application when needed. It introduces vocabulary
to describe PaaS capacities and requirements of the application (e.g., databases,
containers), and allows the user to define and enforce his/her own reconfiguration

policies.

Cloud Application Modeling and FEzxecution Language
(CAMEL) |Kirkham 2014] enables developers to provision IaaS and PaaS,
and to deploy application components in multi-clouds. It takes into account
several aspects of the application, namely provisioning and deployment topology,
provisioning and deployment requirements, service-level objectives, metrics, scal-
ability rules, providers, execution contexts, etc. Therefore, CAMEL considers
three types of models: (i) a Configuration Model for selecting the suitable cloud
services, (ii) a Deployment Model for hosting the application and (%ii) an Execution
Model for managing the deployed application. CAMEL exists as an Eclipse
plugin, and does not include a graphical interface, but only a textual editor
for designing models. CAMEL integrates and extends existing DSLs, such as
CloudML [Brandtzaeg 2012, Ferry 2013], SALOON [Quinton 2013], the Scalability
Rules Languages (SRL), and the organization part of CERIF [Asserson 2002]. I
believe that CAMEL could be a source of inspiration for the future efforts in

modeling the cloud.

2.3. Model-Driven Approaches for the Cloud 33

Cloud Application Modeling Language (CAML) [Bergmayr 2014] allows
cloud architects to represent multi-cloud applications in UML and to select concrete
cloud offerings captured by dedicated UML profiles in order to deploy the application
components. As an example, Google App Engine (GAE) profile was applied to refine
the deployment model of their Petstore reference application, towards concrete cloud
offerings provided by the GAE. In this approach, cloud providers that operate at
both infrastructure level and platform level are designed. CAML is a UML internal
language, presented as a graphical notation, and based on a library, profiles and
templates. However, the CAML approach does not include a model interpreter to

enact the deployment of multi-cloud applications.

Cloud Adoption Toolkit [Khajeh-Hosseini 2012] is a collection of five tools
that provide decision support for the migration of computing services to a cloud
environment. It considers a number of factors that may contribute to the impact
caused by the migration of an application to the cloud, i.e., cost, energy consump-
tion, stakeholder impact, social and political factors among others. However, their
proposal is focused only on the cost model, which includes a number of infrastruc-
ture configuration elements, i.e., operating system, server specifications (e.g., CPU
clock rate, RAM), storage size, applications, and data already deployed on the VM,
among others. The Cost Modeling tool utilizes UML deployment diagrams (i.e.,
graphical notation), to model an intended architecture for running legacy software
in a cloud environment. Later on, price information that enables automated cost es-
timation for a specific cloud environment is added to the deployment model. These
authors work under the assumption that, in most cases, the application deployment
is performed on virtual machines. The Cost Modeling tool can model the pricing
schemes of multiple cloud providers such as AWS, Microsoft Azure, FlexiScale, etc.
However, once the users have created the model, they can select a single cloud

provider they wish to use for each of their virtual machines.

Cloud DSL [Silva 2014] is a language that describes infrastructure services from
different types of clouds. Then, Cloud DSL maps and adapts entities of the cloud
models they propose to platform-specific cloud APIs. Cloud DSL is based on an
Ecore metamodel and provides a graphical editor and a textual notation. Cloud
DSL has been integrated with TOSCA [Binz 2012|. Using Cloud DSL with TOSCA

reduces the workload of creating cloud descriptions in a TOSCA specification.

CloudGenius [Menzel 2012] is a framework mainly used for the selection of

appropriate cloud infrastructure services among several ones stored manually and

34 Chapter 2. Model-Driven Approaches for the Cloud

described textually. The Ecore metamodel, on which CloudGenius relies, allows a
multi-criteria decision approach from a set of requirements. The latter are based
on numerical functional requirements (network latency, technical parameters such
as CPU, RAM and storage size, popularity, etc.) and non-numerical functional
requirements (operating system, virtual machine format, licence, etc.). Yet, this
approach neglects to consider non-functional concerns like the cost, the availability,
the response time, etc. A tool prototype named CumulusGenius, used as a Java
library, allows the user to programmatically define the requirements that are given
as input to CloudGenius selection framework. Then, whenever a solution is found,

virtual machines can be executed on top of Amazon EC2 only.

CloudMIG [Frey 2011] is a framework that facilitates the migration of existing
software systems to laaS and PaaS-based cloud environments, which are Amazon
EC2 and Google App Engine, respectively. In this approach, cloud environments
are modeled as instances of a Cloud Environment Model (CEM) which is an Ecore-
based metamodel and for each cloud environment, all possible configurations are
modeled. A configuration contains in particular a set of elements and constraints
on them. CloudMIG takes as input the legacy software system, and extracts the
architectural and utilization models based on the Architecture-Driven Moderniza-
tion (ADM) principles. From this model, a single compatible cloud environment
model candidate is selected. Then, CloudMIG relies on its own constraint valida-
tors CloudMIG Xpress [Clo]| to check the conformance of the legacy software (the
extracted models) with the candidate CEM in terms of constraint violations. The
CloudMIG framework is then extended to improve the search of well-suited IaaS

environments using search-based genetic optimization.

CloudML [Brandtzaeg 2012, Ferry 2013, Ferry 2018] is a cloud modeling
language that allows both cloud providers and developers to describe cloud ser-
vices and application components, respectively. Then, it helps to provision cloud
resources by a semi-automatic matching between the defined application require-
ments and the cloud offerings. CloudML is exploited both at design time to de-
scribe the application provisioning of cloud resources after performing the nec-
essary orchestration, and at runtime to manage the deployed applications. In
fact, the model at design time is automatically handled by the Cloud Modeling
Framework (CloudMF), which returns a runtime model of the provisioning re-
sources, according to the Models@run.time approach [Blair 2009]. CloudML only
provides a JSON and an XML textual syntax to specify deployment and man-

agement concerns in laaS and/or PaaS clouds. CloudML is first introduced in

2.3. Model-Driven Approaches for the Cloud 35

the REMICS project [Sadovykh 2011] as a UML model and developed later by
three projects that differ in their objective, i.e., ARTIST [Bergmayr 2013|, MODA-
Clouds [Ardagna 2012|, and PaaSage [paa, Jeffery 2017]. On one hand, REMICS
and ARTIST mainly support the migration of legacy software towards a cloud-
based environment. In this sense, they adopt UML models since they are reverse-
engineered and tailored to target cloud systems. In order to extract some semantics,
they map the UML models to OpenTOSCA [Binz 2013]. The Cloud target Selec-
tion (CTS) [Kopaneli 2015] provides a multi-criteria decision making process for the
selection of the cloud target. It combines different types of criteria by using the con-
cepts of CloudML@QARTIST. On the other hand, MODAC]louds and PaaSage aim
at supporting engineers in building and deploying multi-cloud applications. There-
fore, they propose Ecore-based models that include dynamic variability to deal with
multiple cloud environments and especially runtime changes. Note that CloudML
in PaaSage is the first member of the family of DSLs that form CAMEL.

Farokhi [Farokhi 2014] proposes a framework that assists SaaS providers to
select suitable IaaS, which best satisfy their requirements while handling SLA issues.
The framework includes three main phases: (1) SLA Construction, (2) Service
Selection, and (8) SLA Monitoring and Violation Detection. The Service Selection
Engine takes a textual input, an XML file precisely, that describes the SaaS provider
requirements. Then, it finds the adequate IaaS providers' services. A breached SLA
on runtime will question the selection of the cloud provider and will probably lead

to some reconfiguration.

Frey et al. [Frey 2013] focus on selecting near-optimal cloud deployment ar-
chitectures and defining runtime reconfiguration rules. The main purpose of this
approach is to support the migration of software components and their deploy-
ment on IaaS environments. To do so, the authors define Cloud Deployment Option
(CDO)s which are UML profiles with graphical syntax and constraints written in
English prose. Then, they propose CDOXplorer, a genetic algorithm that takes
the CDOs as input and analyzes the configuration space of a given cloud provider.
Later on, CDOXplorer finds the best configuration based on the average response
times and SLA violations. CDOXplorer is implemented in the scope of an open
source tool CloudMIG Xpress, that utilizes models which can almost be automati-
cally extracted. The authors in [Frey 2013| assume that the application deployment
is always performed on virtual machines. They don’t take the principle of containers

into account.

36 Chapter 2. Model-Driven Approaches for the Cloud

Garcia-Galan et al. [Garcia-Galan 2016] aim to solve the problem of selecting
the most suitable configuration among the configuration space offered by a given
provider. Their focus is on IaaS. They propose a model that is based on FMs, and
apply the automated analysis of FMs as a reasoning technique over the model. Their
model can be graphically represented using a tree-like notation, in which features
are organized hierarchically. However, their approach did not consider defining a
metamodel based on FMs, for the configuration of cloud services. The information to
create the FM is automatically extracted from the provider website using an ad-hoc
web crawler. This proposal is only applicable to one cloud provider, which is Amazon
EC2. However, these authors plan to include different providers in the future. Their
model includes cloud configuration elements such as instance type, which determines
the configuration of a machine, operating system, storage capability, geographic
location, billing information, and customer usage data. Finally, their proposal allows
defining constraints on the features and attributes of the model. These constraints
are written in English prose. They implemented their proposal and compared their
implementation against two commercial tools, Amazon TCO and CloudScreener,
and they concluded that their proposal is more expressive and accurate in terms
of providing a wider range of configuration options and choosing the most suitable

configuration.

Gherardi et al. [Gherardi 2014] claim to present the first paper that combines
robotics, cloud computing, and SPLs. It is interested in configuring and deploying
complex Robot as a Service (RaaS) only on top of Rapyuta [Mohanarajah 2015|,
an open source robotic PaaS. Decisions regarding what components of Rapyuta to
employ and how to compose them (the connections) are taken by exploiting three
models via a Resolution Engine. The first two models are a reference architecture
which is an Ecore metamodel reflecting the requirements of the application, and
an extended FM, i.e., a FM that enriches the features in a model with attributes
in order to improve the semantics. The third model is the glue between the first
two models and specifies how the variability can be resolved. Feature Selector tool
for creating a selection of features reflecting the requirements of their application.
Graphical editors are used to design the models, that are described within a textual

syntax too.

Holmes [Holmes 2014] proposes three textual languages based on an Ecore
metamodel for expressing and capturing laaS concepts, then provisioning a cus-
tomized stack of cloud services, via model transformations. From the DSL programs

and the supplied Puppet [pup| modules, the entire cloud service stack is automat-

2.3. Model-Driven Approaches for the Cloud 37

ically built, without further user interaction. Later on, in order to reconfigure the
deployment and achieve the new requirements of the system, reverse-engineering is
used to capture the differences between models. Therefore, for dealing with differen-
tial changes of TaaS models, Holmes [Holmes 2015| proposes a model-based round-
trip engineering approach that combines the power of model-driven generation with
runtime reflection, i.e., this approach does not only incorporate models from de-
sign time but also Models@run.time. This approach allows to compare and migrate
infrastructure services between two clouds. They consider a migration from Open-
Stack 2012.1 to OpenStack 2013.2. For orchestration, they employ Nova API [nov]|,

which is OpenStack native.

MOvwve to Clouds for Composite Applications (MOCCA) [Leymann 2011]
is a method for moving legacy applications to the cloud. It introduces an Ecore
metamodel for specifying the applications that are modeled in terms of compo-
nents. The model semantics is described with natural language and can also be
deduced by the behavior of the deployment optimizer in use. The authors also pro-
pose Cafe [Mietzner 2009], a prototypical tool supporting the MOCCA method and
offering graphical and textual modeling of the application architecture and topol-
ogy. The MOCCA method allows for provisioning infrastructure resources that are
described in OVF files which perform the required adaptation for the components
deployment. Cafe assumes that an OVF file represents only one component. In case
an OVF file contains the virtual image of more than one component (i.e., more than
one virtual system), this file must be split into separate OVF files manually. Thus,
Cafe does not support the notion of multiple clouds. However, the authors of this
method state that a future extension of Cafe will support OVF files with virtual

images of multiple components.

MULTICLAPP [Guillén 2013] is a framework for modeling components of
multi-cloud applications which are not dependent of any specific cloud provider.
This framework is based on a UML profile, with a graphical editor to model com-
ponents that are expected to be deployed on PaaS cloud environments by applying
cloud provider independent stereotypes to them. These stereotypes enable the ap-
plication developers to select the cloud provider offerings that are best for deploying
the application components. Applications that are fully modeled are processed by
a deployment engine, which generates each of the cloud artifacts identified in the
deployment plan. Each artifact is adapted in order to comply with the specifications
of its assigned platform. Once they are generated, the artifacts can be deployed in

their cloud platforms.

38 Chapter 2. Model-Driven Approaches for the Cloud

OpenTOSCA [opeb] is an ecosystem developed by the University of Stuttgart
that aims to provide modeling tool support and runtime support for the TOSCA
standard [Binz 2012|. Several implementations of OpenTOSCA were developed.
For example, (i) Winery [Kopp 2013] provides an open source Eclipse-based graphi-
cal modeling tool for TOSCA topologies/structures/architectures, i.e., the software
components that constitute the application, the physical or virtual nodes on which
the components will be deployed, and the relationships between components and
nodes, and (#) OpenTOSCA runtime |Binz 2013| provides an open source con-
tainer for deploying TOSCA-based applications defined in a Cloud Service ARchive
(CSAR) packaging format. The OpenTOSCA runtime is hence responsible for trans-
lating a TOSCA topology into actions to be performed in clouds. These actions are
sent to the clouds through their respective APIs. Despite TOSCA language man-
ages to cover the infrastructure and platform service stack, it is only defined as a
textual XML document or YAML document so it is complicated to have an overview
of the supported cloud entities. Furthermore, TOSCA does not employ the typical
cloud vocabulary, such as services and resources. Instead, it defines a set of abstract
elements, such as nodes and relationships to respectively designate cloud services
and how they interact. Therefore, designing a TOSCA topology requires the effort
of a human developer, which is a time consuming and an error-prone activity. The
application deployment to the target cloud and its management are provided by or-
chestration plans written within different workflow languages,e.g., BPMN or BPEL.
However, in case some module of the application is migrated to a different target
provider, the topology and the orchestration plan should be modified which makes

the management of a TOSCA-compliant deployment a complex task.

RESERVOIR-ML [Chapman 2012] offers a language for the description of re-
quirements that providers must fulfill when the developers deploy a multi-component
application on federated [aaS clouds. Among these requirements, it takes into ac-
count non-functional requirements such as quality of service. The RESERVOIR-ML
language encodes the OVF standard within XML and its semantics is described
within OCL constraints. Beside describing the requirements, the main focus of this
approach is also to perform reconfiguration tasks and address the scaling require-
ments of the application components, i.e., to ensure elasticity and provision laaS
resources on demand. To do so, the RESERVOIR-ML project has also developed
UCL-MDA tools, a graphical framework implemented as a plugin for the Eclipse In-
tegrated Development Environment (IDE) for the manipulation of the XML models
and the OCL constraints.

2.3. Model-Driven Approaches for the Cloud 39

SALOON [Quinton 2013] is a graphical framework for cloud environments se-
lection and configuration purpose. SALOON is an EMF-based framework that relies
on extended FMs to represent clouds variability, as well as on ontology concepts to
model the various semantics of cloud systems. It mainly comprises functional ele-
ments such as the language used to develop the cloud-based application, the number
of application servers, the RAM, the CPU, etc. This proposal also allows to trans-
late the ontology concepts into a Constraint Satisfaction Problem (CSP) in order
to select the adequate cloud environment. In order to extract the information to
create the models for each cloud provider, the authors suggest the use of reverse
engineering on the web configurator of each cloud provider as a solution. They
implemented their proposal and tested the performance of their implementation.
They concluded that their proposal was well suited to handle large configuration
spaces, with a number of features and constraints that would make it overwhelming
for a human user to perform the selection by hand. Despite that the authors state
that SALOON supports the discovery and selection multiple providers, in practice
it does not. In the contrary, it deals with one provider at a time. SALOON targets

ten cloud environments (IaaS and PaaS).

soCloud [Paraiso 2014] is an approach that aims at developing multi-cloud ap-
plications by defining a PaaS platform based on FraSCAti, a Service Component
Architecture platform. soCloud defines its concepts within an XML schema. It pro-
vides a textual syntax and its semantics is written in English Prose in the context
of the SCA specification that is implemented in FraSCAti. soCloud targets fifteen
cloud environments (IaaS and PaaS), where it allows deploying and reconfiguring

application components after achieving the necessary orchestration.

Sousa et al. [Sousa 2017]| aim to generate reconfiguration plans that satisfy the
requirements of a multi-cloud computing system. To do so, the authors propose an
Ecore metamodel to model FMs and capture the variability of cloud configurations.
The multi-cloud constraints that arise during the cloud reconfiguration are defined
by Linear Temporal Logic (LTL) formulas to express temporal properties. The
authors applied their approach only to Heroku cloud PaaS and they manually built
their FM by going through the Heroku documentation.

StratusML [Hamdaga 2015] is a layered modeling language and a modeling
framework for cloud applications. StratusML provides a user-friendly interface that
allows the cloud developers to specify their application components, configure them,

estimate cost under diverse cloud services, select a cloud provider, use templates to

40 Chapter 2. Model-Driven Approaches for the Cloud

transform and adapt the model into platform specific artifacts, and manage the ap-
plication behaviour at runtime through a set of rules. It is built as an extension of
Microsoft Visual Studio 2012, i.e., the Microsoft DSL toolkit is used to design the
StratusML graphical editor and to define the validation constraints. The latter are
required to ensure that the specified model satisfies the application requirements and
provides the information required to generate the target platform specific artifacts.
The validation constraints can be classified into hard constraints, i.e., that the user
can never violate, and soft constraints, i.e., that are allowed to be violated, but still
create warnings and errors to guide the user to the correct decisions. In order to
capture the application deployment configuration, the StratusML metamodel inte-
grates five different models to address five different, but interleaved functional and
non-functional cloud concerns. It includes the service model, performance model,
adaptation model, availability model, and provider model. StratusML uses lay-
ers to view the different cloud application concerns, facilitating visual modeling of
adaptation rules, and using template-based transformation to deal with platforms
heterogeneity. StratusML has established a connector only with the Windows Azure
[aaS.

2.4 Discussion

Conclusion 1. Primary focus on design time aspects

As depicted in Table 2.2, most of the MDAC only provide the possibility to set the
resources (CPU, memory, disk, network, etc.) limits at design time. However, they
lack of resources management at runtime. The management is necessary because
in the cloud environment, the resources consumption fluctuates according to the
workload. In order to provision the appropriate resources, if the workload grows
or shrinks, the resources should be reconfigured, i.e., increased or decreased as re-
quired at runtime. Thus, a major challenge is how to synchronize the predefined
architecture of resources with the resources provisioned in the execution environ-
ment. When modifications occur in an existing architecture, the update should be
done in the executing environment. Conversely, when changes like the increase of
the disk storage or the addition of a virtual machine occur in the executing environ-
ment, they should affect the existing architecture. It is thus required that an MDAC
reduces the gap between design and runtime activities and provides the same model
for both of them.

We tackle this problem in Chapter 3 by providing a complete tool chain to han-

dle cloud resources during their whole lifecycle, from the design till the management.

2.4. Discussion 41

Table 2.2: MDAC Usages.

MDAC Design Time Deployment Time Production Time
Blueprinting
Brooklyn
CAMEL
CAML
Cloud Adoption Toolkit
Cloud DSL
CloudGenius
CloudMIG
CloudML
Farokhi
Frey et al.
Garcia-Galan et al.
Gherardi et al.
Holmes
MOCCA
MULTICLAPP
OpenTOSCA
RESERVOIR-ML
SALOON
soCloud
Sousa et al.
StratusML

v
v v

AN N N N N N N N N N N N N NN NENEN
SNENENEN
SNENEN

RN N N R NEN
\

Conclusion 2. Primary focus on laaS

As depicted in Table 2.3, the largest amount of researchers attention has been
focused on IaaS clouds. An efficient MDAC should allow to handle infrastructure,
platform and software resources. There is a strong separation between these three
types of resources since each of them is managed by a particular resource manager.
These managers do not know how to cooperate. Thus it is extremely difficult to
implement policies for the management of multi-level resources. However, in order to
manage the elasticity of a system for example, the cloud developer needs to manage
simultaneously resources at IaaS, PaaS and SaaS levels. Therefore, there is a need
for a single MDAC that includes concepts and mechanisms that support both TaaS
and PaaS clouds, enabling their management.

We also tackle this problem in Chapter 3. In fact, our proposed tool chain for
the cloud computing complies to OCCI, the only generic and extensible standard
that handles every kind of cloud resources, i.e., laaS, PaaS, SaaS and even RaaS

and Container as a Service (CaaS).

42 Chapter 2. Model-Driven Approaches for the Cloud

Table 2.3: MDAC Concepts.

MDAC Service Model
Blueprinting XaaS
Brooklyn PaaS
CAMEL XaaS
CAML TaaS & PaaS
Cloud Adoption Toolkit TaaS
Cloud DSL TaaS
CloudGenius TaaS
CloudMIG TaaS & PaaS
CloudML TaaS & PaaS
Farokhi TaaS & SaaS
Frey et al. TaaS
Garcia-Galan et al. TaaS
Gherardi et al. RaaS
Holmes TaaS
MOCCA TaaS
MULTICLAPP PaaS
OpenTOSCA [aaS & PaaS
RESERVOIR-ML TaaS
SALOON TaaS & PaaS
soCloud TaaS & PaaS
Sousa et al. PaaS
StratusML TaaS

Conclusion 3. Fuzziness of the CML concepts

Most of the MDAC are built from scratch; the designer of the CML goes through the
provider or the application documentation, and then manually defines the concepts
that he/she considers important to be included to the provider or the application
metamodel. This methodology results in the fuzziness of the CML which might be
unrepresentative of the concrete cloud environment. Also, the MDAC I reviewed
in this chapter describe a part of the cloud domain that was relevant only at the
moment of the definition of the modeling language. However, the designers of each
MDAUC require changing their modeling language, i.e., the CML, at each time they
want to support more cloud concepts. As for the user, he/she is unable to add the
missing concepts that he/she needs.

I tackle this problem in Chapter 4 where I propose the first advanced approach
for automatically inferring a cloud model that properly represents the cloud
concepts and operations. This model can be updated to follow up with the cloud
APT and since it conforms to the generic OCCIWARE METAMODEL, this model can
be extended to support new concepts. It also helps analyzing the cloud API and

enhances its specification so the developer can correctly use its services.

2.5. Summary 43

Conclusion 4. Little attention paid to the semantics

We observe in Table 2.4 that the semantics of the CMLs is, in most cases, either
informal, namely written in English prose or within OCL constraints, or implicit
in the model interpreter behaviour. None of these ways of defining the semantics
is sufficiently precise. Natural language might be confusing due to its built-in am-
biguity; although words with multiple meanings give English a linguistic richness,
they also create ambiguity. OCL is semi-formal, i.e., its syntax is well-defined but
its semantics is only partially formalized, with many aspects being just described
in natural language in the standard document specifications. Also, OCL is efficient
for only specifying the static semantics of the CMLs. Dynamic semantics remains
defined within natural language. Finally, the model interpreter is the engine that
is fed the deployment, configuration, adaptation models in order to execute them.
Deriving the semantics of these models from the behaviour of the model interpreter
might be erroneous. It is crucial then to propose CMLs with well-formed seman-
tics, i.e., defined within formal methods which are mathematical techniques that
allow the cloud stakeholders to reason and describe without ambiguity the structure
metamodel and the behavior of its concepts.

I tackle this problem in Chapter 5 where I propose the first formal framework
for precisely specifying cloud APIs and reasoning over them. Consequently, the
developer can verify the correctness of his/her cloud models and their required

behaviour.

2.5 Summary

The wide number of available cloud providers, their high heterogeneity and seman-
tic differences make it complicated to exploit multi-cloud assets. In this chapter,
I provided a classification of Cloudware engineering solutions. I showed that the
solutions at the provider and the programming spaces are also heterogeneous and
their provided features are often incompatible. This diversity hinders the proper ex-
ploitation of the full potential of cloud computing, since it prevents interoperability
and promotes vendor lock-in, as well as it increases the complexity of development
and administration of multi-cloud systems.

To deal with this heterogeneity, I introduced the solutions at the modeling space
and explained the major role that models play in the software development for the
cloud computing. I discussed the idea of “Modeling the cloud computing” by leverag-
ing MDE to easily build cloud-native applications. I discussed the usages, concepts
and characteristics of MDAC. Finally, I reviewed the most relevant approaches in

the research area that is closely related to this thesis, i.e., model-driven engineering

44 Chapter 2. Model-Driven Approaches for the Cloud
Table 2.4: CML Characteristics.
MDAC Pargdigm Algfsg{g)((:t Co;gtrae;e Semantics
Blueprinting (icents schema Craphical i
atura
Brooklyn Components dYAML t Textual language)
ocumen & CAMI\IT’ speciﬁcatlon
; t
CAMEL (?(fél‘gg%sél‘%s Ecore Textual ¢ Elar?ghlzr;é%v
xecutionWare
Services & UML : tural
- gilzﬂ‘ Coerl;l\gg(ralsents rﬁ/{ ie Graphical I%r?gﬁ%e
ti ; : t
OuToolkOi‘P o Ser.vmes profile Graphical lar?ggg%e
Cloud DSL Cscsrgggiser%s Ecore Graphical M%%)Sm Ato
Natural
CloudGenius Services Ecore Textual laSn e o
election
ramewor
) atural
anguage
CloudMIG Components Ecore Textual CloudMIG Xpress
(Deployment
Optimizer)
: Natural
CloudML d%%%"ﬁg%sef%s Ecore Textual 1acnlgau§%/g[P&
ou
- ices & XML ice Selecti
Farolhi gggg%%nts schema Textual erVIICEI%gfngC o
Naté%ﬂol%?guage &
Yees & UML . press
Frey et al. Csoelggg%sents profile Graphical (Deployment
Optimizer)
Natural
. ., language
Gar(’éléi—a?alan Feature Models - Graphical Automfalged Analysis
: of Feature
) Models (AAFM)
Gherardi et al. Feature Model Ecore gr%g}l(ltlﬁgll Resglglilflleon
ices & Natural
Holmes Cvices s Beore Textual Datural
) 1 Natural
MOCCA Components Ecore gr%g}tltlﬁgll Da enp gggrfent
Optimizer
& UML 1 atural
i . anguage
MULTICLAPP C%I%%g%sents profile Graphical DeE oyment
ngine
. XML . Natural
OpenTOSCA ervices & schema or Graphical language
P Cgomponents dc}{%%gnt & Textual TOSCAN si)eci{ication
Components XML : atura.
RESERVOIR-ML ¢/ Regources sehoma Graphical éa&gnuﬁggula
An Ontology
SALOON lﬁgg‘gg Ecore Graphical & f{%?gtlgtlim
constraint solver
Cloud d@ervices & XML Textual 1 Natura
soClou bmponents sehema extua %?ilsla Xti
Sousa et al. li/(f%ggig Ecore Textual Crggrsr%?gir r?tls
StratusML GOV Miggot Graphical fongiinge

for cloud computing. Among the prolific research in this area, there is a lack of

solutions which:

2.5. Summary 45

support design, deployment and management usages,

allow handling XaaS systems,

define the appropriate cloud concepts with possibility of extension if needed,

and,

define a precise semantics of these concepts.

Based on this study, I describe in the next parts of this dissertation the OC-
CIWARE background and the two contributions of this thesis respectively. I mainly
propose to leverage MDE and formal methods to help cloud stakeholders taking

better advantage of cloud services.

Part 111

Background

In the end of Part II, I discussed the need of precisely describing but also efficiently
managing every kind of cloud resources. To accomplish this purpose, I detail in this part
our OCCIWARE approach.

CHAPTER 3

Modeling, Verifying, Generating
and Managing Cloud Resources
with OCCIWARE

This chapter corresponds to our article “Model-Driven Cloud Resource
Management with OCClware” [Zalila 2018] submitted to the Future
Generation Computer Systems (FGCS) journal, which extends our paper “A
Model-Driven Tool Chain for OCCI” [Zalila 2017a] published in the 25th

International Conference on Cooperative Information Systems (CooplS).

Contents
3.1 Motivations e 51
3.2 Backgroundon OCCI 53
3.3 OCCIWARE Approach, 55
3.3.1 Managing Everything as a Service with OCCIWARE 55
3.3.2 Generating Cloud Domain-Specific Modeling Studios with
OCCIWARE o oot e e e 59
3.4 OCCIWARE Metamodel 61
3.5 OCCIWARE STUDIO « « + v v v v v v v vt e vt e e e v e e 71
3.6 OCCIWARE RUNTIMEt v v v v v vt v v v vnnnnn 75
3.7 Evaluation of OCCIWARE Studio 77
3.7.1 Implementation of a Catalog of Standard OGF's OCCI Exten-
SIONS . . v v o e e e e e e 77
3.7.2 Five OCClware Use Cases 85
3.7.3 Synthesis on the OCCIWARE Approach 89
3.8 Summaryo e e e e e e e e e e e e e e e e e e 92

SEVERAL cloud computing standards have been proposed to resolve the hetero-

geneity of cloud providers and promote multi-clouds, as discussed in Chapter 2.

Chapter 3. Modeling, Verifying, Generating and Managing Cloud
50 Resources with OCCIWARE

However, the main drawback of these standards is their specificity for a particular
cloud service model, i.e., IaaS or PaaS.

OCCI has been proposed as the first and only open standard for managing any
cloud resources [Edmonds 2012]. OCCI provides a general purpose model for cloud
computing resources and a RESTful API for efficiently accessing and managing any
kind of these cloud resources. This will ease interoperability between clouds, as
providers will be specified by the same resource-oriented model called the OCCI
Core Model |Nyrén 2016b], that can be expanded through extensions and accessed
by a common REST [Fielding 2000] API.

Currently, only runtime frameworks such as rOCCI [roc|, erocci [ero],
pySSF [pys|, pyOCNI [pyo], and OCCl4Java [occb| are available, while OCCI de-
signers/developers/users need software engineering tools to design, edit, validate,
generate, implement, deploy, execute, manage, and supervise new kinds of OCCI
resources, and the configurations of these resources. In addition, the existing run-
time implementations are targeting a specific cloud service model (mainly IaaS).
Thus, OCCI lacks a unified modeling framework to design its different artifacts,
and verify them during the initial steps of the design process before their effective
deployment. Added to that, OCCI stakeholders need a generic runtime implementa-
tion coupled with the expected modeling framework in order to seamlessly execute
the different developed and/or generated artifacts. Finally, as OCCI is proposed as
an open generic standard to manage XaaS, OCCI stakeholders need to obtain, for
each domain, a specific modeling framework.

To overcome the issues presented above, I present in this chapter our OCCIWARE

approach, which can be summarized as:

e Model-Driven Managing Everything as a Service with OCCIWARE.
OCCIWARE is a model-driven vision to manage XaaS. It allows one to model
any type of resources. It provides OCCI users with facilities for designing,
editing, validating, generating, implementing, deploying, executing, managing,

and supervising XaaS with OCCI.

e Generating Cloud Domain-Specific Modeling Frameworks with OC-
CIwWARE. OCCIWARE is a factory of cloud domain-specific modeling frame-
works. Each generated Cloud Domain-Specific Modeling Studio (CDSMS) is
dedicated for a particular cloud domain. Each CDSMS can be used to design
configurations conforms to its related domain and hides the generic concepts
of OCCI.

This work has been done in the context of the OCClware research and devel-

3.1. Motivations 51

opment project! funded by the French PIA. The contribution of the academic and
industrial partners has certainly promoted the progress of this project. A special
gratitude is due to Faiez Zalila and Christophe Gourdin who implemented the
OCCIWARE approach.

This chapter is structured as follows. Section 3.1 explains the motivations behind
OCCIWARE. Section 3.2 gives a background on the OCCI standard. Section 3.3
presents an overview of the OCCIWARE approach. It details the different processes
to use the OCCIWARE approach. Section 3.4 presents the OCCIWARE METAMODEL
by detailing its static semantics defined in Ecore and OCL. Section 3.5 provides an
overview of OCCIWARE STUDIO and its different implemented features. Section 3.6
presents OCCIWARE RUNTIME and details its architecture. Section 3.7 validates
OCCIWARE by presenting the different OCCI extensions defined by the standard
and implemented using OCCIWARE. We follow up with the evaluation of OC-
CIWARE by discussing different five use cases implemented with the OCCIWARE

approach. Finally, Section 3.8 concludes with future work and perspectives.

3.1 Motivations

Currently, cloud architects and developers have a lot of hope for the multi-cloud
computing paradigm as an alternative to avoid the vendor lock-in syndrome, to
improve resiliency during outages, to provide geo-presence, to boost performance
and to lower costs. However, semantic differences between cloud provider offerings,
as well as their heterogeneous CRM-APIs make migrating from a particular provider
to another a very complex and costly process. We assume for example that a cloud
developer would like to build a multi-cloud system spread over two clouds, AWS
and GCP. AWS are accessible via a SOAP-based API, whereas GCP is based on
a REST API, which leads to an incompatibility between these two different APIs.
To use them, cloud consumers should be inline with the concepts and operations of
each API, which is quite frustrating. The cloud developer would like a single API
for both clouds to seamlessly access their resources.

For this, OCCI is an open standard that defines a generic extensible model for
any cloud resources and a RESTful API for efficiently accessing and managing cloud
resources. This will facilitate interoperability between clouds, as cloud provider's
offerings will be specified by the same resource model, and accessed by a common
REST API. However, cloud developers cannot currently take advantage of this stan-
dard. Although there are several implementations of OCCI, there is no tool that

allows them to design and verify their configurations, neither to generate and deploy

1www.occiware.org

www.occiware.org

Chapter 3. Modeling, Verifying, Generating and Managing Cloud
52 Resources with OCCIWARE

corresponding artifacts. This leads to several challenges:

1. Cloud architects, who are supposed to design the expected multi-cloud plat-
form, are facing on one side to heterogeneity at different levels such as CRM-
APIs heterogeneity (REST APIs vs SOAP APIs), service models heterogeneity
(TaaS, PaaS, SaaS, etc.), deployment model heterogeneity (public, private and
hybrid), and service providers heterogeneity. On the other side, cloud develop-
ers, who create and deploy running cloud systems, are focused on implemen-
tation details rather than cloud concerns, with the risk of misunderstandings
for the concepts and the behavior that rely under cloud APIs. They need a

customized cloud framework dedicated to each cloud domain.

2. The only way to be sure that the designed configurations will run correctly is
to deploy them in the clouds. In this context, when errors occur, a correction is
made and the deployment task can be repeated several times before it becomes

operational. This is quite painful and expensive.

3. Cloud developers need to provide various forms of documentation of their
cloud configurations, as well as deployment artifacts. However, these tasks are
complex and usually made in an ad-hoc manner with the effort of a human

developer, which is error-prone and amplifies both development and time costs.

4. The CRM-APIs heterogeneity represents a banner to seamlessly execute the

deployment artifacts.

5. At the design level, the configuration represents a predefined architecture.
However, the execution environment hosts a deployed system. A main chal-
lenge to the cloud developers is to provide a synchronization between the
design level and the execution environment. When modifications occur in the
predefined architecture, the update should be done in the executing environ-
ment. Conversely, when the deployed system changes, it should affect the

predefined architecture.

Recently, we are witnessing several works that take advantage of MDE for the
cloud [Bruneliere 2010, Bergmayr 2018|. Therefore, to address the identified chal-
lenges, we believe that there is a need for a tooled model-driven approach
for OCCI in order to:

1. Enable both cloud architects and developers to efficiently design their needs
at a high-level of abstraction. This will be done by defining a metamodel,
as a DSML, accompanied with graphical and textual concrete syntaxes. The

expected DSML should be extensible in order to target different cloud domains.

3.2.

Background on OCCI 53

. Allow cloud architects to define structural and behavioral properties and ver-

ify them before any concrete deployments so they can a priori check the cor-

rectness of their cloud systems.

. Automatically generate and export (i) textual documentations to assist

cloud architects and developers to understand the concepts and the behavior
of cloud-oriented APIs, (ii) specific designers dedicated to each cloud domain
to assist cloud developers in the design of their configurations, (i) formal
specifications in order to formally analyze the different artifacts, and (iv)
HTTP scripts that deploy, provision, modify or de-provision cloud re-

sources.

. Execute the generated scripts into a generic OCCI runtime implementation

that must be able to host the developed connectors to concrete cloud resources.

. Discover a configuration model by mapping a running cloud system into

the expected modeling framework, manage this running cloud system via
the configuration model (for example, execute an action on the configuration
model implies its execution on the running cloud system), and bring back
the updates of the running system into the corresponding configuration model.
These processes can be ensured via a connector between the cloud system and

the modeling framework.

3.2 Background on OCCI

OCCI is an open cloud standard [Edmonds 2012] specified by the OGF. OCCI de-
fines a RESTful Protocol and API for all kinds of management tasks on any kind

of cloud resources, including IaaS, PaaS and SaaS. In order to be modular and ex-

tensible, OCCI is delivered as a set of specification documents divided into the four

following categories as illustrated in Figure 3.1:

Chapter 3. Modeling, Verifying, Generating and Managing Cloud

54 Resources with OCCIWARE
r-———~™>"F"~FF~~>"~>"~>"~>"~®>~®>"~>""~>""~>""~>"*"""*"~""~*>""~>""~"~>">¥">">”">”" "@”"@”"” ” =¥ =" =~ "/~ "~ “~"“~"“~"=~"“=~°=/°7 1
| |
: CRTP Infrastructure Platform L{_I OCClI :
: <extend> <extend> <extend> <extend> Extensions :
| |
| |

OCCl

|
<render> Core Model

occl |
JSON Renderings
|

i
il Attty
<use> |
OCCl |
Protocols |
|
__ Jd
Figure 3.1: OCCI Specifications.
Category Attribute
scheme: URI name: String
term: String N = ATTFDUTES type: String [0..1]

*

title: String [0..1] mutable: Boolean [0..1]

required: Boolean [0..1]

default: String [0..1]
\ description: String [0..1]

Action
Kind Mixin
0.1 actions L actions by
*
* .
\applles
0..1 * *
parent i mixins depends
Entity
id: URI . enttes
Resource 1 target Link
‘l source nKs

Figure 3.2: UML Class Diagram of the OCCI Core Model (from [Nyrén 2016b]).

OCCI Core Model. It defines the OCCI Core specification [Nyrén 2016b]
proposed as a general purpose RESTful-oriented model. It is shown in Figure 3.2
and represented as a simple resource-oriented model composed of eight concepts:
Resource represents any cloud computing resource, e.g., a virtual machine, a net-

work, an application container, an application. Link is a relation between two

3.3. OCCIWARE Approach 55

Resource instances, e.g., a computer connected to a network, an application hosted
by a container. Entity is the abstract base class of all resources and links.
Kind is the notion of class/type within OCCI, e.g.