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Résumé
Le but de ce travail est d’étudier et de développer des voies pour améliorer l’efficacité des cel-

lules solaires à base de Kesterite. La première partie de ce manuscrit traite du développement

d’un procédé de base : le mécanisme de formation de l’absorbeur est étudié en fonction des

conditions de croissance du composé Cu2ZnSnS4 (CZTS à base de soufre pur) et Cu2ZnSnSe4

(CZTSe à base de sélénium pur). Un procédé séquentiel en deux étapes a été utilisé pour

synthétiser l’absorbeur en Kesterite. Différentes optimisations du procédé sont réalisées pour

améliorer la microstructure et les performances des dispositifs. Dans le cas du dispositif à base

de CZTSe, le meilleur rendement de conversion photovoltaïque obtenu est de 7.6% en utilisant

un profil de température en deux étapes et un suscepteur fermé. Pour les cellules solaires

à base de CZTS, la meilleure performance obtenue est de 5.9% grâce à l’optimisation de la

température et de la pression partielle ensoufre : Les performances des dispositifs augmentent

avec la pression partielle en soufre.

L’incorporation de Na (Sodium) et de Sb (Antimoine) dans les absorbeurs Kesterite en pur

soufre a été testée comme la première stratégie pour améliorer les performances des dis-

positifs à base de CZTS. L’incorporation de Sb n‘entraîne pas d’amélioration en termes de

propriétés des matériaux ou des dispositifs, tandis que le co-dopage avec Na et Sb a montré

une morphologie améliorée des absorbeurs. D’autre part, la contamination intentionnelle

avec du Na s’est avérée bénéfique pour les cellules solaires, particulièrement pour la tension

en circuit ouvert. Par conséquent, l’efficacité des dispositifs avec une teneur en Na optimisée

est doublée (> 4,5%) par rapport à celle des échantillons de référence sans Na.

La seconde étude pour améliorer les performances des cellules solaires à base de Kesterite

concerne l’introduction de gradients de chalcogènes (S/Se) dans l’épaisseur de l’absorbeur. Le

but est d’obtenir des gradients de bande interdite afin d’augmenter la longueur de collection

des porteurs et de diminuer les phénomènes de recombinaison. Dans ce but, deux procé-

dés sont développés pour réaliser des gradients simples (en face avant ou en face arrière de

l’absorbeur). Ces procédés consistent en des recuits successifs (sulfurisation/sélénisation)

d’empilements de précurseurs. Pour obtenir un gradient en face avant, un recuit de sulfurisa-

tion à différentes températures et durées est appliqué après un recuit de sélénisation standard.

iii



Une température plus importante entraîne un gradient plus marqué. Pour obtenir un gradient

en face arrière, un recuit de sulfurisation à différentes températures avant un recuit de séléni-

sation standard a été utilisé. A faible température de sulfurisation, des absorbeurs avec une

bonne morphologie ont été obtenus mais sans gradient de composition en chalcogène tandis

que l’utilisation de températures de sulfurisation plus importantes ont entraîné l’apparition

de gradients de composition mais ont détérioré la morphologie des absorbeurs. Ainsi, les

voies et limites pour réaliser des absorbeurs de Kesterite à gradient de bande interdite sont

proposées.
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1.1 Global warming and energy crisis

The term ’Global warming’ refers to the rise in the average temperature of earth’s climate

system that has been observed in a century scale. While comparing the average global temper-

ature anomaly between 1901-2016 and the most recent period of 1986-2016 (figure 1.1 on the

left), an increase of up to ∼0.7°C can be observed. Furthermore, this anomaly of temperature

is not confined to one region of earth, but rather is a global phenomenon that can be wit-

nessed anywhere of the globe (figure 1.1(right)). Despite all the misconceptions and political

movement rejecting the global warming phenomenon, there is no denying that it is indeed

happening.
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Chapter 1. Introduction

Figure 1.1: (left) Global annual average temperature has increased by more than 1.2°F (0.7°C) for the
period 1986–2016 relative to 1901–1960. Red bars show temperatures that were above the 1901–1960
average, and blue bars indicate temperatures below the average. (right) Surface temperature change
(in °F) for the period 1986–2016 relative to 1901–1960. Gray indicates missing data [1].

Certain gases (greenhouse gas) in the atmosphere, because of their infrared absorption prop-

erties, prevent the heat from escaping. Carbon dioxide (CO2) is one such gases. Burning fossil

fuel for energy harvesting is the main culprit for CO2 emission in the atmosphere [1]. Global

warming is the consequence of the human activity of burning fossil fuel and it will impact in

the following ways-

• It will cause an increase of the sea level because of the melting of ice glaciers. Between

1880 and now, the total sea level increased by approximately 225 mm and it is currently

increasing at a rate of roughly 3.2 mm each year [2].

• The average precipitation will increase, according to the projection made by NASA for

year 2000 to 2100 [2].

• The frost-free season will be increasingly longer, an anomaly that will affect the ecosys-

tem and bring many flora and fauna to extinction [2].

• Natural disasters such as droughts, heat waves, hurricanes, etc. will occur more often.

The Paris climate agreement COP21, signed by 196 countries, was a pledge to work toward the

common goal of reducing the greenhouse gas emission by 40% [3] within 2030. This endeavor

makes it imperative to find sources of energy (renewable energy/green energy) that will both

meet our present and future needs and helps us to cut down the green house gas emission

drastically. Thus, in the said agreement, most participating countries agreed that at least 27%

of their energy mix should consist of renewable energy. But, up until 2015 more than ∼85% of

the global primary energy supply was from fossil fuel(oil/gas/coal) (figure 1.2). Consequently,

to meet the goal of 27% share of renewable energy and to reduce greenhouse gases, more
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renewable energy sources are needed. Amongst all the renewable sources of energy, solar

and wind energy have the lowest LCOE(levelized cost of electricity)/KWh. Thanks to the

technological advancement and the mass production of solar energy technology, LCOE of

solar energy has been consistently reduced. It has been recently pointed out that, the cost of

producing solar energy is lower when compared to that of fossil fuels; and that cost is predicted

to drop even more (figure 1.3).

Nonetheless, to make the solar technology more acceptable, it is essential that its cost be

brought down further. Thus, continuous research in alternative technologies like kesterite

solar cells are needed to provide clean and sustainable energy at low costs in the future.

1.2 Photovoltaic (PV) technology

1.2.1 Solar radiation

The surface temperature of the Sun is 5800K. The spectrum of electromagnetic radiation emit-

ted by the sun is therefore roughly equivalent to that of a black body at the same temperature.

The irradiance of this radiation reaching the Earth’s atmosphere (Total Solar Irradiance, TSI) is

1366 W/m2.

Figure 1.2: Global total primary supply of energy by different sources from 1990 to 2015 (Excluding
electricity and heat trade) [4].
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Figure 1.3: Learning-curve based predictions of the LCOE of renewable energy technologies and
conventional power plants in Germany by 2035. [5].

However, upon crossing the atmosphere, a part of the spectrum is absorbed by the various

gases (O3, H2O and CO2 in particular) or particles present. As a result, the solar energy available

on Earth’s surface is reduced, as a function of the traveling distance of radiation through the

atmosphere. This distance is called air mass and can be expressed as:

AM = 1

cosθ
(1.1)

Here, θ is the angle from the vertical or zenith angle. To standardize the measurement methods,

a spectrum has been defined as an international reference. The AM 1.5G (Global) spectrum,

corresponding to an air mass of 1.5 and an angle of 48.2°. Global, here, means that the

spectrum takes both direct and diffuse radiation into account. The extraterrestrial (AM0) and

reference spectra with air mass (AM1.5G) are compared in Figure 1.4.

As a result, the total usable irradiance on Earth’s surface is reduced to about 1000 W.m-2, in the

form of radiation with wavelengths from 280 nm to approximately 2500 nm.
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Figure 1.4: AM0 (extraterrestrial) and AM1.5G (terrestrial reference) solar radiation spectra (from
NREL).

1.2.2 Photovoltaic effect

Photovoltaic energy is based on the semiconductor material properties. Semiconductors

are capable of absorbing photons whose energy Ephoton = hγ (h is Planck’s constant and γ is

the frequency of light) is greater than the bandgap (Eg) of that material. When the energy of

the photon is absorbed by the semiconductor, the energy of an electron in the valence band

istransferred into the conduction band. Its absence in the valence band is modeled by a hole,

positive charge carrier. The absorption of the photon thus generates an electron-hole pair.

If the energy of the photon is higher than the band gap of the material, the excess energy is

released by the electron in the form of phonon (thermalization). A semiconductor material

alone, however, cannot generate electrical current. Using a semiconductor only, an electron-

hole pairs can not be collected and they all recombine after a time period τ (life time of the

carriers).

To generate a current, a p-n junction is used instead of a simple semiconductor. The electric

field formed by this junction separates electrons and holes, that are collected in the respective
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electrode. Generally, in a solar cell only one of the two components of the junction (p or

n) is used as a light-absorbing material. Photovoltaic cells are therefore designed with one

absorbent layer much thicker than the other layer forming the junction. The basic structure of

a photovoltaic solar cell is shown in Figure 1.5. In order to harvest photons efficiently while

minimizing shadow, the front contact is made with a metal grid. The rear contact, conversely,

occupies the entire back of the cell. Depending on the technology used, other layers are added

to this basic structure.

Figure 1.5: Basic structure of a PV solar cell with a p-type absorber connected with a load.

1.2.3 Thin film technology

The first generation of solar cells used crystalline silicon (Si) (monocrystalline or polycrys-

talline) as the absorbent material. Si has the advantage of being very abundant in the earth’s

crust. Besides, the physics and technology of semiconductor using Si are extremely well de-

veloped thanks to its use in microelectronics. The global market for photovoltaic is currently

dominated by cells of this type (more than 80% of shares [6]). One of the main limitation with

this technology is that it requires the use of a very pure Si with a thickness of approximately

200 µm, due to the indirect bandgap of Si. In order to reduce material usage and create new

applicability, a second generation of solar cell has emerged, based on thin film materials. The

principle of thin film cells is to use an absorber material with a high absorption coefficient

compared to the crystalline Si. For this purpose, materials with direct bandgap are gener-

ally used. This creates a possibility to use much thinner absorbent materials, around 2µm

thick (100x less than Crystalline Si), thus reducing the amount of raw material required. The

main materials used as thin film absorbers are amorphous Si (a-Si), microcrystalline Si, CdTe,
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Cu(In1-xGax)Se2 (CIGS), perovskite and Cu2ZnSn(S,Se)4 (CZTSSe). Excellent performances

have also been demonstrated with thin layers of GaAs. Table 1.1 summarizes the record yields

achieved based on single junction c-Si and thin film materials.

Table 1.1: Record efficiency achieved by different c-Si and thin film technology as photovoltaic cell and
module [7].

Type Absorber Cell efficiency (%) (appox.)Area (cm2) Module efficiency (%) (appox.)Area (cm2)
mono c-Si Si 26.7±0.5 79 24.4±0.5 13177
poly c-Si Si 22.3±0.4 4 19.9±0.4 15143

TF CIGS 22.9±0.5 1 15.7±0.5 9703
TF CdTe 21±0.4 1 18.6±0.5 7039
TF a-Si 11.9±0.3 1 9.1±0.5 14300
TF GaAS 28.8±0.9 1 25.1±0.8 867
TF perovskite 20.9±0.7 1 11.7±0.4 703

While crystalline silicon technology is most mature and dominant technology, thin film tech-

nology, as of 2012, represented a market share (all technologies combined) of approximately

15%, with a decrease to 5% in 2017 [6]. Their complexity of implementation and the lack of

knowledge about the materials used (in comparison with the Si) suggest that these technolo-

gies need to be the subject of research for a while longer in order to be more developed. In

spite of this economic scenario, thin film technology can be beneficial for to several reasons:

• Due to the high absorption coefficient of thin film material, a thin layer of 1-2 µm is

sufficient for absorbing 99% of solar radiations. Thus, it could be used as absorber for

multifunction solar cells.

• Energy payback time of thin-film technology is lower compared to c-Si technology [6].

• Due to low thickness of the absorber it allows to have flexible solar cell and module.

• It can be the perfect candidate for building integrated photovoltaic (BIPV) application,

as it allows many customization of the module (size, shape, color, transparency etc).

• Lastly, the practical upper limit of efficiency for thin film technology is higher compared

to the c-Si technology, due to the direct bandgap nature [8]. Thus, it is possible to

achieve efficiency higher than c-Si technology.

Some applications of thin film photovoltaic are shown in figure 1.6.
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Figure 1.6: Illustration of the application possibilities offered by thin film PV: (a) Topaz solar power
plant, consisting of CdTe devices from First Solar, (b) lightweight and flexible CIGS modules from
Global Solar, (c) semitransparent CIGS module from Nexcis and (d) solar tile roof from SRS Energy
using amorphous silicon technology.

1.2.4 CZTSSe technology

CZTSSe(Cu2ZnSn(SxSe1-x)4) based absorbers have become more popular than other thin film

absorbers in the last couple of years for multiple reasons:

• First, thin film technologies such as CIGS or CdTe uses scarce (In, Ga, Te etc) and toxic

materials (Cd) [9, 10]. Although, the efficiency of these technologies can be compara-

ble with c-Si technology, these drawbacks are believed to be problematic for gigawatt

scale production [11]. Kesterite absorber, on the other hand,uses only earth abundant

materials such as (Cu, Zn, Sn and S) [9, 10].

• The absorption coefficient of this material is >104 cm-1, which is sufficient to absorb

99% of usable sunlight using 1-2 µm thick material [12].

• Tunable bandgap of this material from 1.0 eV (pure Se CZTSe) to 1.5 eV (pure S CZTS),

makes it a perfect candidate for bandgap tuning to achieve high efficiency. Theoretically,

the highest efficiency can be achieved within this bandgap range (figure 1.7).
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Figure 1.7: Theoretical maximum efficiency for a single-junction solar cell depending on the absorber
bandgap [13].

Despite all the advantages of kesterite material, the highest power conversion efficiency (PCE)

reached so far is 12.6% [14]. To be considered as economically sound as PV technology, CZTSSe

absorbers need to achieve an even higher PCE. Therefore, this study is focused on finding

ways to improve this absorber material and reach higher PCE.
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This chapter will present the operating principle of CZTSSe solar cells. It also summarizes the

main topics needed to understand the work described in the subsequent chapters.

2.1 CZTSSe solar cell

In its most common configuration, a CZTSSe solar cell is formed by a stack of several thin-film

materials deposited successively on a substrate. The structural design of CZTSSe solar cell is

mainly inspired by those of CIGS-based technology. The substrate is generally a soda-lime

glass (SLG) with the standard structure shown in figure 2.1.
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Figure 2.1: Standard structure of CZTSSe solar cell.

The first layer deposited on the substrate is the back contact electrode. Its main role is to

collect the charges generated in the cell. This layer is composed of molybdenum (Mo) and

its thickness is approximately 500 nm to 700 nm. The layer directly above the back contact is

composed of absorber material, the CZTSSe. It is a p-type semiconductor that forms the first

part of the p-n heterojunction. A majority of photons are absorbed in this layer to form the

electron-hole pairs. The thickness of this layer is about 1.0µm to 2µm. The p-n heterojunction

with CZTSSe is formed by adding a layer called "buffer layer". Currently, the best yields are

obtained by using buffer layers of cadmium sulphide (CdS). It is the most commonly used

material for buffer layers. The typical thickness of a CdS buffer layer is about 60 nm. The most

common method of CdS deposition for CIGS/CZTSSe solar cell, is chemical bath deposition

(CBD) [15]. After that, the buffer layer is covered with a layer called window Layer. This layer

consists of 50 nm deposition of zinc oxide (ZnO) and 350 nm deposition of Al doped ZnO as

transparent conductive oxide (TCO). The ZnO layer is resistive and serves to limit short-circuit

formation in areas with imperfect overlaps of the CZTSSe by the buffer layer [16]. The TCO

allows the window layer to act partially as the front contact of the photovoltaic cell while being

transparent to solar energy for the thin film covered by it. The final layer (front contact) is

made by adding a stacked grid that will collect the electrons generated by the device. This

grid is composed of a layer of Nickel and a layer of aluminium (Al). Ni serves as a barrier and

prevents oxidation of Al related to the underlying presence of TCO. The grids are generally

deposited by evaporation using a deposition mask.
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2.2 CZTSSe material properties

2.2.1 Crystal structure

The most common semiconductor used for photovoltaic applications is from the IV column

of the periodic table. This element has 4 valence electrons and crystallizes in the diamond

crystalline structure (mesh). The formation of I2-II-IV-VI4 compounds like CZTSSe can be

achieved from a II–VI semiconductor by sequential replacement of cations in which the octet

rule is respected and the total charge remains neutral (see Figure 2.2).

Figure 2.2: Formation of CZTSSe (I2-II-IV-VI4) compounds by sequential replacement of cations.

The CZTSSe crystal structure follows the same crystal structure as CdTe (zincblende). Schematic

of CZTSSe crystal structure and cation substitution phenomena is shown in figure 2.3 [17].

Additionally, CZTSSe can be crystallized as kesterite (space group I4̄) or stannite (space group

I4̄2m). Kesterite and stannite structures differ by the cations stacking sequences on the axis

c [18, 19]. Figure 2.3 shows a stack of the type ( ...-[CuSn]-[CuZn]-[CuSn]-[CuZn]-... ) for

the kesterite structure, while the stack for the stannite structure is of the type ( ...-[ZnSn]-

[Cu2]-[ZnSn]-[Cu2]-). Both structures are very likely to be found in a material because their

formation energy differs very little (about 3 meV per atom). But, the kesterite structure has the

lowest formation energy and would be the most stable one [20].
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2.2. CZTSSe material properties

Figure 2.3: Elemental cells of CdTe (zincblende), CIGS (chalcopyrite) and CZTSSe (kesterite and
stannite) structure, showing the development of each structure by the cationic substitution of the
previous structure.

Finally, it is also possible to encounter disordered kesterite crystal structure. CZTSSe is

composed of the alternation of two cationic planes along the c axis of the mesh (see figure

2.4): - The Cu and Sn planes located at z=0 and z=1/2. - The planes of Cu and Zn located

at z=1/4 and z=3/4. Each of these planes are separated by anion planes. The CuZn and

ZnCu anti-sites have low enthalpies of formation due to the similar size of the cations. It

follows that a kesterite structure exists in which Cu and Zn sites are occupied in a random

way by atoms of Cu/Zn [21]. This disordered structure is highlighted by Schorr et al. [19]

using neutron diffraction measurements. The degree of disordered state in the absorber

depends on the metal ratio (especially [Cu]/[Zn+Sn]) and the heating or cooling profile used

during the synthesis [22]. A transition from partially ordered to disordered kesterite occurs at

260°C for CZTS (pure sulfur-based kesterite) [23] and 200°C for CZTSe (Pure selenium-based

kesterite) [24] compounds. Completely disordered kesterite shows lower bandgap compared

to more ordered kesterite. But, it is still under debate if this is the main reason behind the

lower efficiency of CZTSSe solar cell.
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Figure 2.4: Crystalline structure of disordered kesterite phase, adapted from [25].

2.2.2 Secondary phases

The study of the composition of CZTSSe can be presented using the composition value of

the cationic elements: copper, tin and zinc and anionic elements: sulfur and selenium. The

composition of CZTSSe is usually represented in a ternary diagram. It is a section of the

quaternary diagram in three dimensions with fixed anion compositions and only variable

cation compositions. A ternary diagram of CZTS is shown in Figure 2.5(a). Each side of the

triangle indicates the atomic percentage of one of the three cations of CZTS. At each point

on the diagram, summation of cations values are unity. The area in the center is noted by

an asterisk represents the area of existence of CZTS phase. Experimentally, achieving a pure

CZTSSe absorber is highly challenging, due to a narrow zone of existence. A thermodynamic

calculation by Scragg et al [26], explains the decomposition of the kesterite phase at elevated

temperature, resulting in the formation of secondary phases. Beside this relatively narrow

zone, six zones are observable in which minor crystalline phases are formed alongside with

CZTS. These zones are identified in figure 2.5(a), as Zn-rich, Cu-poor, Sn-poor etc. These
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labels will be used throughout this study to define a compositional position of an absorber

material.

(a) Ternary phase diagram defining the compositional

labels used throughout this report.

(b) Ternary phase diagram showing the possible sec-

ondary phases at 400°C for defined compositional posi-

tions

Figure 2.5: Ternary diagram to define the compositional position of CZTS absorber and the possible
secondary phases arise from the position, adapted from Scragg et al, [27].

Figure 2.5 (b) present a ternary diagram of pure CZTS at different compositional position,

adapted from Scragg et al, [27]. In all the region except the small region of CZTS (indicated

by an asterisk), up to two additional secondary phases are present along with the CZTS

absorber. Similar secondary phases for CZTSe or CZTSSe compound is also possible for

similar compositional position. The optimal cation composition for highly efficient CZTSSe

solar cells was experimentally determined as Cu-poor and Zn-rich ([Cu]/[Zn+Sn]=0.8 and

[Zn]/[Sn]=1.2) [28]. One of the reasons for achieving best efficiency in this region is due to the

probability of inducing ZnS(e) secondary phase, which is less detrimental in nature compared

to other secondary phases. The possible secondary phases during fabrication of CZTSSe

absorber and their effects are listed in table 2.1.
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Table 2.1: List of secondary phases and their impact on solar cell performance adapted from [29, 30]

Compound Bandgap Electrical properties Impact on solar cell performance

Zn(S,Se) 2.7-3.7 eV Insulator Due to the higher bandgap compared to absorber material, it does not

affect the PCE in case of presence in lower amount. In case of presence in

higher amount, it reduces the active area and increases the series resistance

of the device.

Cu2(S,Se) 1.2 eV Metal like (p-type) In case of pure S based absorber, Cu2S shows lower bandgap than the

absorber, which is detrimental for the device by limiting the open circuit

voltage. Furthermore, due to the metal like electrical properties, it can also

shorten the layers of the device.

Sn(S,Se)2 1.0-2.5 eV Semiconductor (n-type) Due to the n-type nature of this material, it forms diodes, that is detrimental

for carrier collection.

Cu2Sn(S,Se)3 0.8-1.35 eV Semiconductor p-type Due to the lower bandgap compared to the absorber material, it limits the

open circuit voltage of the finished solar device.

2.2.3 Defects

In addition to the secondary phases, a variety of other defects can be observed in CZTSSe

absorber, such as vacancies, antisite, interstitials and complexes [31]. These defects and defect

complexes form shallow donor level, shallow acceptor levels, mid gap states and deep trap

states within the bandgap of the absorber. Those can work as a recombination center inducing

reduced PCE. In figure 2.6 possible intrinsic defects and low energy intrinsic defects and defect

complexes of CZTSe absorber are shown. The enthalpy of defect formation can be calculated

by density function theory, depending on the atomic chemical potential of the cation present

in the crystals. The top of figure 2.6 shows these enthalpies for 7 different chemical potentials

(A to G) and corresponds to the limits of the single phase domain, adapted from Chen et

al, [31]. The p-doped CuZn antisite is identified to be the most likely point defect for any

growth condition of the material from this analysis. But Han et al, [32] showed that the hole

concentration is controlled by VCu due to the shallower acceptor level (50 meV) compared to

CuZn (100 meV) (see lower part of figure 2.6). These intrinsic defects can also act as a defect

complex together. The top of figure 2.6 shows the formation energy of different defect clusters.

Here, (CuZn+ZnCu) has the lowest formation energy and can be the main defect complex

in CZTSSe absorber. In addition Dimitrievska et al. showed the effect of Cu-substitutional

defects, namely [VCu+ZnCu] is mainly on VOC [33]. It is possible to modify the value of VOC by

modifying the amount of [VCu+ZnCu] defects. Cu poor condition during synthesis induce the

ordering of Cu/Zn (001) planes by increasing the [VCu+ZnCu] cluster, which in turn widen the

band-gap and increase the VOC of final device [34].
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Figure 2.6: Upper panel: The formation energy of low-energy defects in Cu2ZnSnSe4 as a function of
the chemical potential of the cations. The Fermi energy is assumed to be at the top of the valence band
(strong p-type conditions), and all donor defects are fully ionized. Lower panel: The ionization levels of
intrinsic defects in the bandgap of Cu2ZnSnSe4. The red bars show the acceptor levels and the blue
bars show the donor levels, with the initial and final charge states labeled in parentheses.This figure is
adapted from [31].

2.2.3.1 Effect of defects

The main reason for having lower efficiency in CZTSSe is the VOC deficit. Highest VOC obtained

by kesterite technology is 60% lower than the maximum achievable VOC for the particular

bandgap, lower than the VOC for CIGS or CdTe technologies (see figure 2.7). Generally, the

main cause for VOC deficit is the recombination of the photogenerated charge carrier in the

bulk of the material and at the surface. Bourdais et al. [25], concluded that deep defects

and electrically active grain boundaries are the prominent candidates for causing high non-
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radiative recombination and as a result high VOC deficits. Short minority carrier lifetime

(originated from band gap fluctuation) and presence of band tails are also identified as the

main culprits for the VOC deficit [35].

Figure 2.7: VOC as function of bandgap for different technologies. Kesterite technology shows less than
60% of the maximum VOC, which is lower compared to other technologies. [25].

2.2.4 Bandgap

The chalcogen (S/Se) concentration into CZTSSe compound gives the opportunity of band

gap tuning to adapt the material for a given application. Calculations of the electronic band

alignment of Cu2ZnSn(SxSe1-x)4 compound by density function theory shows a direct bandgap

increasing nearly linear manner from 1.0 eV (pure CZTSe) to 1.5 eV (pure CZTS) [17, 36],

according to the equation below.

Eg (x) = (1−x)EgC Z T Se +xEgC Z T S −bx(1−x) (2.1)

Here b is the bowing parameter and it is found to be approximately 0.1 eV [36]. From equation
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2.1, it is possible to calculate the bandgap from the value of x (x=[S]/[S+Se]).

Figure 2.8: Bandgap variation of Cu2ZnSn(SxSe1-x)4 compound as a function of the composition (x). In
the inset the type I band alignment between CZTS and CZTSe [37].

The alignment between CZTS and CZTSe is of type I, where EC offset (CBO-0.35 eV) is larger

than EV offset (VBO-0.15 eV) [36], shown in figure 2.8. It confirms the importance of x variation

on EC instead EV.

2.3 Possible solution for improved PCE

Theoretically the efficiency of CZTSSe solar cell can be as high as that of CIGS solar cells. But,

experimentally it is not the case due to a VOC deficit. CIGS solar cell underwent many processes

to achieve high efficiency and amongst them inclusion of alkali (Na, K) and bandgap grading

are the two major processes. As CZTSSe devices share similar opto-electrical properties as

CIGS, possible solution towards overcoming the VOC deficit and increasing the efficiency of

CZTSSe technology could be [25, 38]:

• Alloying or doping of CZTSSe with other elements to avoid detrimental defects;

• Tuning of anion composition/band gap engineering;

For this study we will exploit these two possibilities to find the pathway for improved PCE of

CZTSSe solar cell.
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2.3.1 Inclusion/doping of different elements

Different elements were exploited in the search for improving the CZTSSe device performance

until now. Giraldo et al. [39] reported the beneficial effect of introducing tiny (10 nm) amount of

Ge by improving the grain growth, long wavelength light collection and VOC without changing

the bandgap of the material. Substitution of Cu by Ag also showed improved grain growth,

higher VOC and reduced intrinsic defect concentration [40]. Several other studies could be

also found, showing substitution of Cu with Li, Zn with Cd or Mn etc that showed beneficial

effects [38].

The beneficial effect of sodium (Na) "contamination" on CIGS was discovered by Hedström

and co-workers in 1993 [41]. Since then, numerous works have been done (still going on)

on the electrical and structural impact of alkali on CIGS and CZTSSe material. Additionally,

use of thin Antimony (Sb) layer during CIGS absorber synthesis was found to promote grain

growth and improves PCE [42], only in the presence of Na. Na and Sb doping was found

to have some positive effects on opto-electrical and microstructural properties of CZTSSe

technology [43–45]. However, few works have been done to study the effect of Na and co-

doping of Na and Sb on CZTSSe.

2.3.2 Bandgap grading

The bandgap tuning ability of CZTSSe absorber has already been discussed earlier. Using this

principle, it is possible to have variable bandgap throughout the absorber by having different

anion composition. Recently, bandgap grading was the subject of numerous studies in the

field of CZTSSe. Four types of bandgap grading may be used in CZTSSe (see figure 2.9). In the

first case- no gradient is present (a) therefore electron transport is not particularly influenced

by the band structure. In the case of a front grading (b), the bandgap on the back contact side

(Eg) is smaller than the bandgap on the front contact side(Eg1). A front grading increases the

open circuit voltage of a solar cell while keeping the short circuit current unchanged compared

to no grading. Additionally, a front gradient with a notch within the space charge region (SCR)

similar to figure 2.9 (b) shows higher PCE than a linear gradient from front to back [46]. In the

case of a back grading (c), the gap on the back contact side (Eg2) is larger than the gap on the

front contact side (Eg). The induced potential difference thus facilitates electron transport

to the SCR. In addition,the recombinations can be also reduced because of the presence of a

larger gap at the rear contact. More information on bandgap grading can be found in [46, 47].

The fourth gap profile is called the double gradient (d). With this configuration, it will utilize

the benefit of both front grading and back grading. As a result it will give improved VOC and
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JSC. Hence, applying bandgap gradient can be a way to increase the PCE of CZTSSe solar cell

without improving the material quality. Even though, the potentiality of bandgap grading has

been known for long, it has still not been possible to realize experimentally.

Figure 2.9: Main types of bandgap gradient of Cu2ZnSn(SxSe1-x)4 compound: (a) no grading, (b) front
grading with notch inside SCR, (c) back grading and (d) double grading with notch inside SCR.

2.4 Context and structure of the thesis

The aim of this thesis is to examine ways to overcome the most important challenges of CZTSSe

solar cell. These are VOC deficit, defects and realization of bandgap grading. Accordingly, the

structure of this work will the thefollowing:

• Synthesis of pure CZTS and CZTSe absorber with near state of art PCE as a platform for

further experiment and analysis (chapter 4);

• Process development and effects of Na and Sb inclusion on CZTS absorber to exploit

the possibility of improved PCE (chapter 5);

• Realization and reaction mechanism of bandgap grading using elemental metal precur-

sor (chapter 6);
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3.1. Device preparation

3.1 Device preparation

The preparation method of the layers of a CZTS(e) solar cell is described in the following

subsections.

3.1.1 Substrate

Soda-lime glass (SLG) is generally used as a substrate for fabricating CZTS(e) solar cells. SLG

contains significant amounts of alkali elements, such as Na2O (∼12% by mass) and little

amount of K2O(∼1-2% by mass). For all the experiments in this study, SLG of 5×5 cm2 and 1

mm of thickness is used as the substrate. All the substrates have been cleaned by automatic

ultrasonic bath with detergent prior to rinsing with de-ionized water using Pluritank USC120

MK4 from Novatec.

3.1.2 Back contact

The material used as back contact during this study is Molybdenum (Mo). This material is

deposited by magnetron sputtering in direct current (DC). An Alliance Concept equipment

(ProCIGS) is used for the deposition, designed for in-line sequential development of CIGS

device. For this thesis, only the chamber dedicated to the Mo deposition is used. In this

chamber, a cryogenic pump reaches an ultimate vacuum of 1.33×10-4 Pa. The substrates

are placed via an airlock on a rectilinear motion tray, which travels back and forth under a

12.7×38.1 cm2 rectangular target (Plansee, 3N purity), with a speed of 1 cm.s-1.

Two different recipes of back contact (BC) have been used for fabricating kesterite-based solar

cell during this study. For the first recipe, the Ar pressure is set at 0.4 Pa, the power density is

set at 2.1 W/cm2 and the target-substrate distance is set at 6 cm. With a deposition time of 15

min, the deposits have a thickness of approximately 520 nm and a layer resistance of 0.35Ω/�.

This recipe will be called single layer Mo recipe or standard recipe throughout this study. For

the second recipe, A tri-layered Mo is deposited: a first 500 nm layer is sputtered at 0.4 Pa and

2 W/cm2 to ensure electrical conductivity, a 200 nm low density layer is then deposited at 1 Pa

and 0.5 W/cm2 to limit the MoSe2 formation while a 20 nm sacrificial layer is sputtered at 0.1

Pa and 2 W/cm2 to improve the CZTSe/Mo electrical contact. This recipe will be called three

layer Mo recipe in the following chapters. During both recipes no intentional heating is used.
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3.1.3 Absorber

The absorber layer is made using kesterite material (Cu2ZnSnSe4, Cu2ZnSnS4, Cu2ZnSn(SXSe1-X)4.

A two step process or sequential process is used to synthesize this absorber layer: the first

step is the deposition of precursor using DC magnetron based sputtering and the second

step is the annealing of the precursor under Se or S, to synthesize CZTS(e). The choice of

sputtering based processing is justified as it demonstrates high PCE during different works

(see table 4.1) and it is compatible with industrial production. The sputtering deposition

technique compared with other techniques also has the advantages of uniformity, stability

and speed [48].

Both steps of sequential processes are described briefly below.

3.1.3.1 Precursor deposition by DC sputtering

DC sputtering consists of a plasma in a vacuum chamber generating from a neutral gas Ar

(Argon) by applying a direct voltage between two electrodes. Ar atoms are ionized (Ar+) by

the discharge and accelerated towards the cathode, and the electrons towards the anode. The

material to be deposited is present in the form of a sputtering target inside the chamber as

a cathode. The Ar+ are accelerated towards the target and separate atoms from the target.

These separated atoms then settle on the surface of the substrate under the target, allowing

the material to deposit. The principle of this process is shown in Figure 3.1.

Figure 3.1: Schematic of DC sputtering deposition procedure using plasma of Argon.

Precursor deposition by sputtering is carried out in a Perkin Elmer frame (retrofit Plassys)

(figure 3.2). The secondary vacuum of the chamber (approximately 2.7×10-6 Pa) is obtained

with a cryogenic pump. Ar’s pressure in the enclosure during the deposition (of the order
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of a few Pa) is controlled by the opening of the rolling valve, as well as the argon flow rate

(via a gas flow controller). Substrates are positioned on substrate holders (PS), which are

placed on a turntable. Two PS can be used simultaneously. Both have a surface of 15x15

cm2 and can therefore accommodate 9 substrates of 5x5 cm2. However, to avoid problems of

inhomogeneity, only 2 substrates are inserted in the center of the PS for each deposition. The

tray turns at a frequency of 4 round per minute. Three circular target of Copper (Cu), Zinc (Zn)

and Tin (Sn) with 8 inches of diameter and 3N purity are used in the chamber.

Figure 3.2: Schematic of the equipment (Perkin-Elmer) used for DC sputtering deposition of precursors
(Cu/Zn/Sn).

Two different stack orders are used in this study: for the first stack order Zn (160 nm±10)/Sn

(245 nm±20)/Cu (190 nm±10) are deposited on Mo coated SLG and for the second stack order

Cu (5 nm±2)/Sn (245 nm±20)/Cu (190 nm±10)/Zn (160 nm±10) are deposited. The thickness

of the precursor is used to tune the stoichiometry of the cation in the compound, and the

value of thickness given here is related to the optimized thickness for achieving Cu-poor and

Zn-rich stoichiometry. Power density of 1.33W.cm-2 for Cu and Zn, and 1.14W.cm-2 for Sn is

used during sputtering deposition. Ar gas flow and pressure of 30 sccm and 0.2 Pa are used

respectively for all the depositions. The deposition rate of material mainly depends on the

applied power by the DC generator. The Ar pressure also has effects on several properties of

the deposited layer.

3.1.3.2 Annealing reactor

Two types of annealing reactor are used during this study. A semi-open and a closed annealing

reactor for selenization and sulfurization process respectively.
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Selenization reactor

We used a semi-open reactor for selenization process: this type of reactor interacts with the

outside on a much higher rate compared to a closed reactor. A tubular furnace is used as

the selenization reactor and annealing occurred under Ar atmosphere with static Ar pressure

(see figure 3.3 (a)). It is made of a quartz tube where the pressure inside can be changed by

adjusting the Argon inlet and the pump. The precursor is placed on a graphite susceptor that is

connected with a thermocouple in order to measure and control the temperature profile. The

Selenium is provided in the form of pellets (two pellets - average weight of each pellet is 45±5

mg), placed in close proximity of the precursor stack to assure proper selenization. A quartz

bell jar is placed on top of the susceptor to keep the Se vapor during annealing (figure 3.3 (b)).

Out diffusion of selenium from graphite stand to the tubular furnace can still be observed

during annealing. This setup of graphite stand will be called semi-open susceptor in later

sections.

Figure 3.3: Tubular furnace used for the selenization process(a) the semi-open susceptor consists of a
graphite sample holder and a quartz bell jar on top (b) and the closed susceptor consists of a graphite
holder that can be closed using graphite screws (c).

Another type of susceptor used consists of a closable graphite box, that can be closed by four

graphite screws (figure 3.3 (c)). In this case, the out-diffusion of Se is substantially reduced

during the annealing procedure. This setup will be called closed susceptor in the later sections.

A 2.5×2.5 cm2 precursor sample is used for annealing in both cases.

Sulfurization reactor

A two zone tubular furnace has been used for the sulfurization process. One zone is dedicated

for sulfur evaporation and another zone is used for the annealing of precursor stacks (see

figure 3.4). The distance between both zone is 40 cm. Internal volume of the furnace is 3240

cm3, which is capable of working under 1×10-3 mbar pressure and Ar flow. An Ar flow of 2

L/min is used during the annealing process to diffuse evaporated sulfur from sulfur zone to the

sample. Excess amount of sulfur is kept in the sulfur zone to ensure continuous sulfur supply
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during annealing. The temperature of both zones is controlled by two different thermocouples.

A resistive coil is used for the heating of both sides.

Figure 3.4: Schematic of the sulfurization reactor.

3.1.4 Deposition of Buffer Layer

Cadmium sulfide (CdS) is used as a buffer layer in this study. The CdS layer is deposited in a

chemical bath on the chemistry bench (figure 3.5). The solution used for CdS chemical bath

contains Cadmium acetate (Cd(CH3COO)2) (1mM), thiourea (SC(NH2)2) (5.1mM), ammonium

acetate (NH4CH3COO) (20mM) and ammonia (NH4OH) (0.3mM), which are mixed together

in a double-walled beaker and stirred at 600 rpm.

Figure 3.5: Equipment used for chemical bath deposition of CdS buffer layer.
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The beaker containing the solution is heated up to 80°C, then the sample is introduced into

the solution. A CdS layer of about 60 nm forms on the sample in 15 min, accompanied by

a yellowing of the solution. The sample is then rinsed with deionized water and dried with

nitrogen.

3.1.5 Deposition of (ZnO+ZnO:Al) window layer

Unintentionally doped ZnO (ZnO-i, 50 nm) and ZnO:Al (350 nm) are sputtered using an MRC

603 equipment by radio-frequency (RF) magnetron sputtering. RF sputtering is used to deposit

insulating materials. The principle is the same as for DC sputtering but this time the voltage

between the target and the specimen holder is alternated at high frequency (13.56 MHz). This

allows the plasma electrons (more mobile than ions) to neutralize the positive charges that

accumulate on the target during sputtering, which will enable the plasma to sputter the target.

A limit vacuum of 5×10-4 mTorr is achieved by a cryogenic pump. ZnO-i is deposited with

a ZnO target of 4N purity and 12.1 × 37.8 cm2 dimension. During deposition, the RF power

density is 1.2 W.cm-2 and the pressure is set at 5.5 mTorr by introducing Ar with a flow of 17.5

sccm and 1% diluted O2.

ZnO:Al is deposited from a ZnO target containing 2% Al2O3 by weight, 4N purity and the same

dimensions as the pure ZnO target. During deposition, the RF power density is 1.9 W.cm-2

and the pressure is set at 3.5 mTorr by introducing Ar with a flow rate of 21 sccm, along with

0.5% diluted O2. For both layers, the target-substrate distance is 1 cm and the scrolling speed

of the substrate holder is 7 cm/min. The sample is not intentionally heated. The TCO layer

resistance is between 25 and 35Ω/�. A carrier density of 3×1020 cm-3 and a typical mobility

between 15 and 16 cm2/(V-s) are measured by Hall effect for a thickness of 350 nm. The optical

transmittance of the 350 nm ZnO:Al layer on a 1.1 mm borosilicate glass substrate is 82% at

550 nm wavelength.

3.1.6 Front Contact

To collect the charges while limiting the shading of the cells, metal grids composed of 50 nm Ni

(in contact with ZnO:Al) and 500 nm Al are deposited through a mechanical mask by e-beam

evaporation in a Balzers BAK1052 frame. The grids cover about 10% of the cell surface. Lastly,

the 0.5×0.5 cm2 cells are mechanically scribed from the structure to the Mo-CZTS(e) interface.

To form backside contact, a part of the structure is also etched at the edge of the sample to

free a Mo surface on which a soldering iron In pad is placed. A total of either six or nine cells
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of 0.5×0.5 cm2 are made on the same sample. No anti-reflecting coating has been used during

this study.

3.1.7 Equipment used for doping study

3.1.7.1 Barrier

Silicon nitride (SiNX) is used as a diffusion barrier between Mo and the substrate to stop mate-

rial diffusion from the glass. This layer is deposited on the glass by plasma assisted chemical

vapor deposition (PECVD) in a STS 310PC reactor. This technique consists of generating a

plasma to the precursor gases introduced into the reactor. Free radicals formed by dissociation

of molecules in plasma react with each other to grow the layer on the substrate. Ammonia

(NH3) and silane (SiH4) diluted at 2% in argon are introduced into the reactor with respective

flows of 20 sccm and 1000 sccm to deposit SiNX. The pressure in the reactor during deposition

is 1.1 Torr. The plasma is generated by applying an RF electrical voltage (13.56 MHz) between

the reactor top wall and the substrate holder with a power of 50 W. During deposition, the

substrate is at 300°C to promote dense layer growth [49]. A 300 nm thick layer is deposited

in 20 min. The X-ray diffractogram (not shown here) of this layer do not show any peaks,

indicating that the deposited material is amorphous.

3.1.7.2 Evaporation deposition

The NaF and Sb depositions are carried out by evaporation technique in a homemade evapo-

ration chamber composed of a Bloc Edwards vacuum chamber, an Annealsys RTP furnace and

Riber evaporation sources (figure 3.6). Evaporation is achieved under a secondary vacuum

(ultimate vacuum of approximately 6.7×10-5 Pa, obtained with a pump turbo-molecular). No

intentional heating of the sample is used during the deposition. To measure the temperature

of the substrate, a thermocouple is placed in direct contact with it. The sources made of PBN

cylindrical crucibles are filled with elements (99.999% purity). Each of the sources is equipped

with a shutter allowing to precisely control the evaporation. Typical temperatures (measured

by a thermocouple in contact with the crucible) are respectively 730°C for NaF and 160°C for

Sb.
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Deposition 
chamber

Temperature 
control unit

Figure 3.6: Evaporation equipment used for NaF and Sb deposition.

3.2 Material characterization techniques

3.2.1 Scanning electron microscopy (SEM)

The microstructures of the thin film are analyzed by Scanning Electron Microscopy (SEM)

with a Zeiss LEO 1530 microscope, equipped with a Field Effect Gun (FEG). When the sample

surface is bombarded by the electron beam, successive collisions cause the emission of

secondary electrons. These electrons are detected to access the topography of the sample.

An advanced description of cell characterization techniques by electron microscopy is given

in [50]. The samples are observed from above or from the cross-section during the analysis.

The first mode is used to see the pinholes and grain sizes while the second mode is used to see

the grain size, layer roughness and voids between each layer. To see the surface, no previous

metal coating is used as kesterite is a semiconductor material. To observe the cross-section of

the sample, however, platinum coating (∼5 nm) is used prior to the observation. This coating

reduces the charging effects (occurs due to the insulating nature of SLG) from the substrate.

For all the SEM images taken during this study, an excitation voltage of 5 keV is useds. An

example of the SEM image of surface (top-view) and the cross-section of a CZTSSe absorber is

shown in figure 3.7.
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(a) Top-view showing the grains of the absrober (b) Cross-section view showing different layers of the

sample

Figure 3.7: SEM surface (top-view)(a) and cross-section(b) image of an annealed CZTSSe absorber
synthesized on Mo coated SLG.

3.2.2 Energy dispersive X-ray spectroscopy (EDX)

Energy dispersive X-ray spectrometry (EDX) measurements are performed using the same

equipment as SEM measurement (Zeiss LEO 1530). It is an analytical technique used for the

elemental analysis of all the elements present in the sample. In the scanning electron micro-

scope a flow of primary electrons is focused onto the sample surface, resulting in a number

of different particles or waves being emitted (secondary electrons, back-scattered electrons,

X-rays, photons, Auger electrons etc.) from the sample. The secondary and backscattered

electrons are used for SEM while the X-rays give characteristic chemical information of the

emitting atoms. The depth of this analysis during EDX can be calculated by Castaing’s formula

as equation 3.1.

Zm = 0.033(E 1.7
0 −E 1.7

C )
A

ρZ
(3.1)

Here, Zm is the x-ray generation depth (µm), E0 is acceleration voltage (kV), EC is the minimum

emission voltage KeV, A is the the atomic mass of the compound, ρ is the density of the

compound (kg/m3) and Z is the atomic number.

Different important points are taken into account during the analysis. First, each element has

a certain minimum acceleration voltage to be excited for the measurement. All the anions and

cations can be detected using 5 kV acceleration voltage, except Tin (Sn). Sn requires minimum
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10 kV acceleration voltage to be detected. Thus, for elemental mapping of the sample surface,

at least 10 keV acceleration voltage is used.

Second, for detecting anions on sample containing S, care needed to be taken as S and Mo

have same signal and can not be distinguished using EDX. At 20 keV, the calculated depth of

the measurement is ∼1.2 µm to 1.3 µm depending on the density of the material. In order to

detect only S without reaching up to Mo, 20 keV excitation voltage is used (as the thickness of

absorber varies from ∼1.4 µm to 1.5 µm).

Third, for detecting cations, a 30 keV excitation voltage is used. The x-ray generation depth

using this excitation voltage is between 2.3 µm to 2.5 µm, higher than the absorber thickness.

This can ensure a better integrated measurement of cations in the sample. The amount of

cations are indicated as an atomic percentage of cations considering [Cu+Zn+Sn]=100% during

this study.

Finally, the analysis is done on the surface of 100 µm× 100 µm, to reduce the non homogeneity

effect forming in different places of a sample. In addition, one reference sample is used to

determine the percentage of error, by measuring same sample in five different points (selected

randomly). The error percentage is found out to be ±0.5%.

3.2.3 X-ray florescence spectrometry (XRF)

X-ray fluorescence spectrometry (X-Ray Fluorescence, XRF) is used to quantify the chemical

composition of CZTS(e) absorber and also to estimate the thickness of the Mo and CZTSe

layers. The measurement consists of exciting the core electrons of the atoms with an X-ray

beam and analyzing the X-ray spectrum re-emitted by fluorescence. This spectrum is linked

to the de-excitation of atoms by radiative electronic transitions and is therefore characteristic

of atoms present in the layer. The equipment used is an energy dispersive X-ray fluorescence

spectrometer (XDV-SDD, Fischer model). An acceleration voltage of 50 kV and a current of 1

mA are applied to emit X-rays from an anti cathode of W (line Kα, λ = 0.021 nm). A counting

time of 30 s is used and the measurement is calibrated with a reference sample. The probe

surface during measurement was 3 mm2.
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3.2.4 X-Ray diffraction (XRD)

3.2.4.1 General principle and uses

This technique is based on the diffraction of an X-ray beam by the crystallographic structure

of the material. An incident X-ray beam is diffracted in a specific direction depending on the

incident angle. By detecting the angle of the diffracted beam, while knowing the angle of the

incident beam, it is possible to study the crystalline properties of the materials. The presence

of CZTS(e) can be detected along with the presence of secondary phases.

To analyze the orientation of the planes parallel to the sample surface, the measurements

are performed in mode θ-2θ in a D8 Advance Bruker AXS. This mode consists of tilting the

detector by 2θ and the sample by θ with respect to the incident beam. An XRD diffractogram

of a CZTS absorber grown on Mo (figure 3.8) shows the Bragg peaks corresponding to CZTS

phases and Mo.

Figure 3.8: An XRD diffractogram of CZTS absorber on Molybdenum [51, 52].
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3.2.4.2 Analysis using XRD data

First of all, The XRD diffractograms of all the samples are analyzed by fitting the peak(112),

(220/204) and Mo via pseudo-voigt function according to equation 3.2, which is a linear

combination between a Gaussian and Lorentzian function.

y = y0 + A[mu
2

π

w

4(x −xc )2 +w2 + (1−mu)

p
4ln2p
πw

e( − 4ln2

w2 )(x −xc )2] (3.2)

Here, y0 is an offset, xc is a peak center, A is the area under the peak, w=FWHM, mu is the

shape factor (the ratio indicating the percentage of Gaussian profile detected for the peak of

interest).

Secondly, The Scherrer’s equation is used to calculate the mean crystallite size D as,

D = 0.9λ

βmat cosθ
(3.3)

Here, λ is the wavelength of X-ray used (1.5406A°), βmat is the width of the peak in radians (in

this case peak (112)) at half of its intensity (FWHM) and θ is the bragg angle (2θ position of the

peak (112)/2).

Before the crystallite size extraction from the width of the peak, instrumental contribution

needs to be subtracted using the following equation,

βmat =
√
β2

exper i ment al −β2
i nstr ument al (3.4)

Here, βexper i ment al and βi nstr ument al correspond to the FWHM of the same peak position

from experimental sample and from the instrumental data sheet respectively.

Finally, The anion composition can be calculated using Vegard’s law from the position of the

peak of CZTSSe. This is an empirical heuristic stating that the lattice parameter of a solid

solution of two constituents is approximately equal to a rule of mixtures of the two constituents

lattice parameters at the same temperature [53]. Using this rule, the anion composition of
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CZTSSe can be calculated using following equation-

ACu2 Z nSn(Sx Se1−x )4 = xBCu2 Z nSnS4 + (1−x)CCu2 Z nSnSe4 (3.5)

Here, ACu2ZnSn(SxSe1-x)4 is the position of any selected peak (for this study peak (112) is used)

from a CZTSSe sample, BCu2ZnSnS4 is the position of same peak for CZTS (∼28.44° [52]),

ACu2ZnSnSe4 is the position of same peak for CZTSe (∼27.16° [54]) and x is the anion com-

position.

3.2.4.3 Limitations

Minor phases such as ZnS(e) or Cu2SnS(e)3 are difficult to identify using XRD as the diffraction

peaks overlap with the peaks of CZTS(e) [51, 52, 55] (see figure 3.8). Nonetheless, there are a

few peaks with low intensity for the tetragonal kesterite phase with lower symmetry, which

allow one to clearly identify the kesterite phase. These are for instance the peaks at 17.4°, 22.1°,

28.3°, 35.2°, and 36.1° corresponding respectively to diffraction planes (101), (110), (103), (202),

and (121), respectively for CZTSe [56].

3.2.4.4 Grazing incident X-ray diffraction (GIXRD)

Grazing incidence XRD (GIXRD) uses small and fixed incident angles for the incoming X-ray

beam for the XRD analysis as a function of the sample depth. The principle is based on

controlling the incident angle of X-ray to limit the XRD measurement up to a certain depth.

X-ray beam is applied on the sample with a fixed angle higher than the critical angle of material

to get integrated XRD pattern until a certain depth of the material. The penetration depth of

X-ray mainly depends on the incident angle and material properties.

The penetration depth for different incident angles can be calculated using the method

described by Dimitrievska et al, [57]. Using this calculation method, penetration depth of

a sample is calculated for different incident angles and shown in figure 3.9 as an example.

Thus, certain incident angles gives information of the integrated signal up to the depth of

penetration. Measurements are performed with a Rigaku SmartLab diffractometer mounted

on a Copper rotating anode (λKα1 = 1.54056 Å, λKα1 = 1.54443 Å) and equipped with a Göbel

mirror and a 0.114° vertical Soller collimator.
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Figure 3.9: Illustration of an X-ray penetration depth for incident angle of 0.5°, 1° and 5° during GIXRD.
To assist the depth perspective, it is drawn on the SEM cross-section image of the sample.

3.2.5 Raman spectroscopy (RS)

Raman spectroscopy is a non-destructive methods of characterizing the molecular compo-

sition and external structure of a material. It exploits the physical phenomenon whereby

a medium slightly changes the frequency of the light flowing through it, by emitting or ab-

sorbing phonons. This frequency offset, called the Raman effect, corresponds to an energy

exchange between the light beam and the medium. Raman spectroscopy consists of sending

monochromatic light (usually from a laser in visible, near infra-red or near ultra-violet range)

onto the sample and analyzing the scattered light. The analysis of the shift of spectral lines

due to the Raman effect can give information on the molecular structure, inter-molecular

interaction and chemical composition of the sample.

During this study, a in-Via confocal Raman microscope from Renishaw is used. Backscattering

configuration is used with a green laser (532 nm excitation wavelength) and a red laser (632

nm excitation wavelength). Raman analysis is used mainly to determine the presence of minor

phases along with that of kesterite material. The Raman analysis of a CZTS absorber is shown

as an example in figure 3.10 indicating all the possible minor phases along with CZTS peaks.
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Figure 3.10: Raman peaks of CZTS and peak position of different secondary phases observed with
532nm excitation wavelength [51, 52, 58].

Different issues are taken into account during this characterization: first, Raman analysis is a

local analysis that gives information only from the place excited by the laser (typical diameter

of laser spot size used during this experiment is 800 nm- 2µm). As a result, the characterization

results can be different depending on the sample inhomogeneity.

Second, depending on the laser wavelength, the measurement can show information from

different depths of the absorber according to the penetration depth of laser (penetration depth

increase with increasing laser wavelength for a given material). This phenomenon is shown in

figure 3.11.

Finally, the minor phase of ZnS(e) or Cu2SnS(e)3 is much sensitive while using UV or red laser

respectively. But, using a green laser it can not be detected properly, due to the unfavorable

pre-resonant condition at this wavelength [51, 52, 58].
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Figure 3.11: Scheme of the Raman analysis depth for the laser wavelengths of 488, 514 and 1035 nm,
adapted from [54].

3.2.6 Time of flight- secondary ion mass spectroscopy (ToF-SIMS)

ToF-SIMS (Time of flight-Secondary Ion Mass Spectrometry) analysis is used to characterize

the presence and distribution of the elements in CZTS(e). This characterization makes it

possible to obtain the concentration profiles of different elements as a function of depth. In

addition, it has a high sensitivity (in the ppm range), that is particularly useful for the study of

impurities.

In ToF-SIMS analysis, a solid surface is bombarded by primary ions (usually Cs+) of some KeV

energy that emitted ions (secondary ion) of different elements. Mass separation and detection

of the emitted ions are performed using the difference in time-of-flight (time-of-flight is

proportional to the square root of the weight). ION-TOF ToF-SIMS equipment is used in both

negative and positive mode for this characterization. 2 kV Cs+ ion sputtering and 2 KV (O2)

ion sputtering are used as primary ion for negative and positive mode respectively. 300µm ×
300µm area of the surface is sputtered for this experiment on each sample. For analysis, the

primary beam of LMIG Bi3+ used with 25 keV, cycle time 80µs, and a raster size of 87.5µm2.

This kind of dual mode is useful to identify variable materials with preferred ionization condi-

tion for better ionization efficiency or higher count rates. The ionization efficiency becomes

an an important factor when experimental sample have trace amount (near the detection limit

of SIMS analysis) of impurities (e.g. Sb have better ionization efficiency in negative secondary

ion mode, therefore negative secondary ion mode will be better for Sb detection). Preferential
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ionization conditions with respect to the ionization efficiency for different elements are shown

in figure 3.12.

Figure 3.12: Periodic table for preferred ionization efficiency of different elements [59].

3.2.7 Glow discharge spectroscopy (GDS)

Glow Discharge Optical Emission Spectrometry (GDOES) is used to measure the concentration

of elements in the CZTS(e) layer throughout the thickness of the absorber. GDOES combines

an erosion phenomenon of the layer by sputtering using an Ar plasma, with an optical analysis

to identify the particles present in the plasma. The atoms from the sample are excited by

interactions with the particles present in the plasma. When they de-energize, atoms emit

photons of characteristic wavelengths which are analyzed to know the composition of the

layer. During the etching process, the composition of the plasma changes according to the

composition of the layer. Thus, The temporal evolution of the light emitted by the plasma

makes it possible to obtain information on the composition profile of the layer. GDOES is

sensitive to the presence of light elements such as Na along with the heavy elements, even

in very low concentrations (detection limit in the order of 1 to 10 ppm). Compared to other

techniques such as SIMS, GDOES has the advantage of fast measurements. The measurement

time is related to the erosion rate of the layer and is about 1 µm/min for CZTS(e). The depth

resolution is in the order of 1 to 10 nm; however, the lateral resolution is several mm and is

related to the diameter of the eroded zone.

GD-Profiler 2 (HORIBA Jobin Yvon) is used to evaluate the elemental depth profile with the

glow discharge plasma source (13.56M H z radio frequency power).
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3.3 Device characterization techniques

3.3.1 Current density-voltage measurement

3.3.1.1 Under illumination

The reference method for measuring the performance of a solar cell is the J-V measurement

under standard temperature (25°C) and illumination condition (AM 1.5 G and 1000 W/m2).

These measurements were made on a Spectranova bench equipped with a CTA-XS 101 solar

simulator, calibrated with a reference monocrystalline Si solar cell, whose properties have

been certified by the Fraunhofer ISE Institute. In addition, a correction is applied to account

for the difference between the actual irradiance, measured by a photo diode, and the standard

irradiance of 1000 W/m2. The J-V characteristic is measured with 4 point probe system.

The principle of J-V measurement under illumination consists of measuring the current

supplied by the cell as a function of the voltage applied to its terminals, by submitting this one

to an illumination simulating solar radiation. The current generated by the cell is proportional

to its surface. In order to work with independent values of the cell surface S, the quantity used

is the current density J = I/S, expressed in A.cm-2. Figure 3.14 shows a J-V curve measured from

a CZTSe cell on SLG glass. In the simplest approximation, a solar cell can be represented by a

diode (p-n junction) in parallel with a current source (photogenerated current) (see figure 3.13).

The curve obtained is the sum of the contributions corresponding to these two components,

for each voltage value. The J-V measurement under illumination makes it possible to extract

many parameters: the VOC or open circuit voltage (voltage at 0 current density), JSC or short

circuit current density (current density at 0 voltage), FF and efficiency of a solar cell (see figure

3.14). The power density P = J×V of the cell can be also calculated for each voltage applied.

Figure 3.13: Electrical model of an ideal photovoltaic cell representing p-n junction.
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Figure 3.14: J-V and P-V curve of a CZTSe-based solar cell measured under AM 1.5G illumination.

Power shows a single maximum (Maximum Power Point, MPP), PMPP, for a given curve where

JMPP < JSC and VMPP < VOC. This difference is partly due to the loss mechanisms present

within the device. The relationship between PMPP, JSC and VOC is called Fill Factor (FF) and is

therefore:

F F = JMPP VMPP

JSC VOC
(3.6)

The efficiency of a solar cell is the ratio between the maximum power that it can deliver

(PMPP) and the power of incident solar radiation (Pin). The parameters extracted from a J-V

measurement make it possible to determine the yield of a cell, equal to :

η= PMPP

Pi n
= JSC VOC F F

Pi n
(3.7)

The fill factor depends on the different loss mechanisms in the cell. In addition to recombina-

tions, losses are also due to parasitic resistance phenomena. Figure 3.15 shows the electrical
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circuit equivalent to a solar cell with these parasitic effects. The expression of the current

under illumination becomes in this case:

J = Jph − J0[exp(
qV −q JRS

nK T
)−1]− V −RS J

RSh
(3.8)

First, the different interfaces and layers of the device (notably the contact and window layer)

have a resistance. The sum of these contributions is electrically manifested by a resistance in

series (RS). The RS influences the slope of the curve J-V around the VOC. In the case of good

quality CZTS(e) cells, RS is generally on the order of few tenths ofΩ.cm2. An increase inΩ.cm2

can have significant effects on the fill factor.

Shunt resistance (RSh) is the second parasitic effect taken into account in this model. It can

be caused by faults in the cover of the rear contact by the CZTS(e) (short circuit CdS-Mo), by

the secondary phases and more generally because of the problems related to the adhesion of

certain layers. In contrast to series resistance, it must therefore be as high as possible. When

RSh is on the order of kΩ.cm2 and above, its effect on the fill factor is limited. However, if the

order of magnitude lower than kΩ.cm2, the effect of short circuits can influence the cell’s

performance.

Figure 3.15: Electrical model of an ideal photovoltaic cell representing p-n junction with parasitic
resistance RS and RSh.

3.3.1.2 In the dark

The J-V measurements under dark makes it possible to extract the parameters of the diode

(the saturation current J0 and the ideality factor n), as well as the resistance values RS and RSh.

Figure 3.16 shows a J-V curve measured under dark on a CZTSe cell. The principle is to apply

different voltages on the solar cell under dark (acts as a diode) and to measure the current
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responses. The simplest method of parameter extraction is to perform an interpolation for

each area of the curve made from current-voltage data. The parallel resistance (RSh) can thus

be extracted by performing a linear regression of the curve around 0V. The series resistance

(RS) is obtained with linear regression at high voltage values. Finally, the parameters of diode

(J0 and n) are obtained by interpolation of the exponential part (linear in scale) of the curve

using Shockley’s law. The dark J-V measurements were performed with a Keithley 2601A source

meter using 4 point probe configuration at 25°C.

Figure 3.16: J-V curve of a CZTSe-based solar cell measured in dark. The vertical black dotted lines
indicate the domains dominated by the different components: Shunt resistance (RSh), diode ideality
factor (n) and series resistance (RS).

3.3.2 External quantum efficiency (EQE) measurement

The external quantum efficiency (EQE) of the solar cell is a measure of the ratio between

the number of charges collected in the device and the number of incident photons (i.e. the

efficiency of conversion of photons into electrical current by the solar cell). It is represented as

a function of the light wavelength.
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Figure 3.17: External quantum efficiency of a CZTSe cell with a gap of 1.02 eV. The different colored
areas represent the different optical and electronic losses in the device. The dotted vertical line
corresponds to the gap of the CZTSe, determined by the maximum of d(EQE)/dE.

Figure 3.17 shows the EQE curve of a CZTSe cell with a gap of 1.02 eV. The corresponding

curves represent the different optical and electronic loss mechanisms.

EQE measurements are performed on a ’Spequest’ bench. During a measurement, the cell

is illuminated over a circular area with 2 mm in diameter by the radiation of a tungsten

filament lamp chopped by a mechanical chopper and filtered by a monochromator. The

current delivered by the cell is measured via two points (one in contact with the rear contact

and the other with the metal grid) for wavelengths between 350 and 1300 nm with a 10 nm

step. A synchronous signal amplifier is used to increase the signal-to-noise ratio of the current

measurement, modulated at the light chopping frequency. The EQE of the illuminated area is

calculated from the measured current and the current delivered by an illuminated calibration

diode under the same conditions with known spectral response. The measurements are taken

at 25°C and at zero voltage. According to Merdes et al [60], the bandgap of the absorber can be

determined from the maximum of its EQE derivative with respect to the photon energy.
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3.3.3 Capacitance-voltage measurement

The capacitance-voltage measurements (C-V), or admittance measurements allows to de-

termine the density of free carriers in the kesterite absorber, as well as the depletion region

width [61]. The capacitance is a physical quantity that represents the ability to store electrical

charges. The capacitance is defined by:

C = Q

V
(3.9)

where Q is a charge and V is a potential. The principle is to measure the capacitance of

the diode at different values of applied voltage, which has the effect of varying the width of

depletion region W.

To interpret a C-V measurement, it is necessary to model the photovoltaic cell. As a first

approximation, the Shockley hypothesis is used to describe the p-n junction. It consists of the

assumption that, there are no free carrier in the space charge region/depletion region. The

depletion region is supposed to contain only positive charges. In this way, the p-n junction

can be assimilated to a flat capacitor, the depletion region representing the dielectric medium.

As a first approximation, the cell capacity is given by [62]:

C = 1
Wa
εa

+ Wb
εb

+ Ww
εw

(3.10)

Where ε is the dielectric constant (ε = εr ε0 with εr as the relative dielectric constant and ε0

as the permittivity of vacuum), and W is the width of the depletion region, that varies with

the applied voltage. a, b and w mean "absorber" for the CZTS(e), "buffer" for the CdS buffer

layer, and "window" for the window layer respectively. The thickness of the buffer layer is

very low, compared to absorber layer. The assumption Wb«Wa can be made. In addition, the

window layer being heavily doped, it is assumed that Ww is negligible respect to Wa. In this

case, the depletion region extends exclusively into the CZTS(e) and therefore Wa is the only

contribution to C. The situation is equivalent to having an n+-p hetero-junction. In this case,
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the expression of the capacitance can be simplified by applying ε=εa and W=Wa:

C = ε

W
(3.11)

and W can be described as [46]:

W =
√

2ε

qN
(VD −V ) (3.12)

Here, q is the elementary charge, N is the acceptor concentration levels in the CZTS(e) (assum-

ing that they are all ionized), VD is the diffusion potential of the junction and V is the voltage

applied to the device. Now, capacitance can be expressed as a function of acceptor density by

combining the equations 3.11 and 3.12:

1

C 2 = 2

εqN
(VD −V ) (3.13)

Equation 3.13 shows that the graphical representation of 1/C2V is a line of slope inversely

proportional to N. The value for 1/C2=0 gives the diffusion voltage VD of the p-n junction. C-V

measurement can be used under these conditions to determine N and VD. In the case where

the N concentration is not uniform in the active layer, the 1/C2 is not a straight line. In this

case, N(W) can be determined for each value of W. Thus, equation 3.13 can be differentiated

as:

d(C−2)

dV
= 2

qεN (W )
(3.14)

Thus, the acceptor defect density profile is obtained by representing N as a function of W

where N is calculated from the derivative of 1/C2 and W is obtained from the value of the

capacity W=ε/C.

This measurement method is used to determine the doping profile of CZTS(e) cells. The C-V
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measurements were performed in the dark at ambient temperature, with an Agilent HP E4980A

Precision LCR Meter. The frequency used during C-V measurement is 110kHz with a voltage

oscillation of 50mV.

3.3.4 e-ARC (optical simulation)

The e-ARC1 is a simulation software developed by AIST in Japan. It can be used to calculate

reflection, absorption and recombination losses for thin film photovoltaic by using EQE

analysis. The carrier losses induced by absorber interface and bulk region can be roughly

estimated.

First, the model of the CZTS solar cell is constructed with various layers according to the real

device scenario (see figure 3.18).

Figure 3.18: Schematic of the thin film layers used for the EQE construction modeling.

To construct the optical modeling, the optical constants (n and k parameter as a function

of wavelength) of all the layers (ZnO:Al, ZnO, CdS, CZTS MoS2 and Mo) are defined for the

calculation of absorption and reflection in each layer (see figure 3.19). The optical constants of

ZnO:Al and ZnO are taken from an ellipsometry measurements using the same experimental

material deposited on SLG. On the other hand, the optical constants of CdS, Mo and MoS2 are

taken from the literature [63, 64]. The optical constants of CZTS absorber are taken from the

work of Li et al, [65], where the author used a 797±28 nm thick absorber. Lastly, the reflectance

of each sample is measured separately and used as reflectance data for the simulation.

Having all the optical constants for each layer along with the reflectance spectra of the com-

plete device, the information on the photon absorption for each layer can be determined. In

1https://unit.aist.go.jp/rcpv/cie/index.html
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the e-ARC software, the EQE spectrum is simply calculated by equation 3.15.

EQE(λ) = Aabsor ber (λ)H(λ) (3.15)

Here, Aabsor ber (λ) is the photon absorption of the CZTS absorber layer as a function of wave-

length and H(λ) is the carrier collection efficiency as a function of wavelength. In this model,

H(λ) is calculated by the following equation 3.16.

H(λ) = 1−exp[−α(λ)LC ] (3.16)

Here, α(λ) denotes the absorption coefficient of the absorber layer and LC denotes the carrier

collection length. Therefore, we can estimate the carrier collection length of a solar cell by

fitting the EQE spectrum with the calculated one. Also, from this model short-circuit current

density of absorber layer can be calculated according to equation 3.17, which can provide

information on the amount of current loss (absorption or recombination) induced by each

layer of the CZTS solar cell device.

JSC = eλ

2π~c

∫
EQE(λ)F (λ)dλ (3.17)

Where, e, ~ and c are the charge of the electron, the Planck constant and the speed of light

respectively. F (λ) indicates the solar irradiance under AM 1.5G.
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(a) n and k parameter of ZnO:Al (experimental) (b) n and k parameter of ZnO (experimental)

(c) n and k parameter of CdS [63] (d) n and k parameter of CZTS [65]

(e) n and k parameter of MoS2 [64] (f ) n and k parameter of Mo [63]

Figure 3.19: Representation of optical parameter used as input for the simulation.

During the fitting, only the thickness of each layer (except thickness Mo) and the carrier

collection length are adjusted to have a proper fitting of EQE spectra. The reason for not

having Mo layer thickness as a parameter is that, the optical confinement effect induced by

the back side reflection and the resulting multiple light reflection is neglected by this model.

The fitting agreement can be evaluated by minimizing the mean-square error (MSE) generated
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by the software according to equation 3.18.

MSE = 1

N

N∑
i=1

(EQEex,i −EQEcal ,i )2 (3.18)

where EQEex,i , EQEcal ,i and N are experimental EQE, calculated EQE and a total number of

data points respectively.

The flow chart of the fitting procedure is shown in Figure 3.20. The best fitting is achieved by

selecting the proper parameter respecting the lowest MSE possible and the limitations applied

(see table 3.1).

Selection of experimental spectra of 
solar light, EQE and R

Modeling of solar cell structure

Selection of optical constants

Setting of layer thickness, carrier 
collection length (LC)

Fitting

Calculation of MSE

Determination of LC , JSC and other 
losses 

d1 d2 d3 d4 d5

Figure 3.20: Flow-chart of the fitting procedure of the e-ARC simulation process.
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Device layer Limit of thickness (nm) Source of optical constants

ZnO:Al 400±50 Experimental

ZnO 60±20 Experimental

CdS 60±20 Hara et al, [63]

CZTS Experimental (SEM) Li et al, [65]

MoS2 100±30 Yim et al, [64]

Mo N/A Hara et al, [63]

Table 3.1: The list of device layers showing the thickness limitations and the optical constants used
during simulation.

The sensitivity analysis of each changeable parameter is done and shown in the appendix.

51



4 Development of CZTSe and CZTS

absorber

Contents

4.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.1 CZTSe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.2 CZTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 CZTSe synthesis process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.1 Selenization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.2.2 Optimization of the micro-structure . . . . . . . . . . . . . . . . . . . . . 57

4.2.3 Electrical properties of CZTSe . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.4 Formation mechanism of CZTSe . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 CZTS synthesis process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Sulfurization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.2 Effect of annealing temperature . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.3 Effect of sulfur vapor pressure . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3.4 Device properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3.5 Formation mechanism of CZTS . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

The baseline process of synthesizing pure Se based kesterite absorber (Cu2ZnSnSe4 (CZTSe))

and pure sulfur based Kesterite absorber (Cu2ZnSnS4 (CZTS)) will be discussed in this chapter.

Additionally, the systematic optimization of the annealing procedure along with the material

and optoelectrical properties will be discussed. A set of ex-situ characterizations will be also

analyzed to determine the reaction mechanism of CZTS and CZTSe absorber synthesis.
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4.1 State of the art

4.1.1 CZTSe

The potentiality of kesterite as a suitable absorber for photovoltaic devices was first demon-

strated as early as 1988 [66]. However, pure Se based CZTSe synthesized by sputtering based

precursor did not spark interest until 2009. Since then, the PCE of pure CZTSe grew quite fast

and the most recent PCE record of CZTSe solar cell device is 11.6% by co-evaporation [67].

Figure 4.1 illustrates the highest PCE of CZTSe absorbers achieved by different methods over

the years. Although the best efficiency of 11.6% was achieved by co-evaporation [67], the

sputtering based process recently reached PCE of 11.4% [68]. Using a thin Ge layer during

sputtering based synthesis of CZTSe enhanced this result with a PCE of 11.8% PCE [39], which

is the highest one for CZTSe.

Figure 4.1: The PCE evolution of CZTSe devices using a sputtering technique along with the highest
efficiency achieved by other methods.

Additional information on the PCE evolution of CZTSe solar cell devices is shown in table 4.1.
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Table 4.1: Details on synthesis process and optoelectronic properties of the work shown in figure 4.1.

Precursor

deposition

Precursor stack

order

Selenium usage

mode
Annealing type

Voc

[mV]

Jsc

[mA/cm-2]

FF

[%]

PCE

[%]
Year

Sputtering Multi-layer Se pellet One step 359 20.7 43.0 3.2 2009 [69]

Sputtering Mo/Cu10Sn90/Zn/Cu H2Se One step 408 38.9 61.4 9.7 2013 [70]

Sputtering Mo/Cu/Sn/Cu/Zn Se pellet+Sn Two step 392 32.4 62.1 8.2 2015 [71]

Sputtering Mo/Cu10Sn90/Zn/Cu H2Se One step 395 39.7 66.2 10.4 2015 [72]

Sputtering Mo/Zn/Cu/Sn/Cu Se vapor Two step 419 38.5 64.8 10.4 2016 [73]

Co-sputtering N/A Se cap+Se pellet One step 440 34.0 63.0 9.4 2017 [74]

Sputtering Mo/Zn/CuSn/Zn No information Single step 443 38.1 68.0 11.4 2018 [68]

Sputtering Mo/Cu/Sn/Cu/Zn/Ge Se pellet+Sn Two step 463 38.3 66.3 11.8 2018 [39]

Electro-deposition Mo/Cu/Sn/Zn Se pellet+Sn Two step 440 31.3 60.0 8.2 2016 [75]

Co-evaporation N/A No information Two step 423 40.6 67.3 11.6 2015 [67]

Solution processed N/A Se pellet One step 408 33.4 58.8 8.0 2015 [76]

4.1.2 CZTS

The research on kesterite first started with CZTS. The first known working solar cell was made

by Katagiri et al. in 1997 [77], and achieved an efficiency of 0.66% by sequential process.

Further improvements were made during the following years and the record PCE of 11% was

achieved recently by a CZTS solar cell device using a co-sputtering process [78]. CZTS absorber

is drawing a lot of attention recently as a research topic for two main reasons: First, sulfur is

a much more abundant material compared to selenium and second, CZTS absorbers have

large band-gap (> 1.5 eV [79]), which can be used in tandem solar devices with lower band-gap

material [80]. Similar to the PCE evolution of CZTSe, CZTS also achieved high PCE using

sputtering based precursors (figure 4.2).

Table 4.2 adds complementary information on the work showed in figure 4.2. Here, the best

efficiencies are achieved using a compound precursor. Also, most of the highest PCEs are

achieved by using H2S as a sulfur source. However, closed reactors are used for most of the

best efficiency devices, in order to use H2S safely. This procedure can be complicated to apply

to industrial production. Therefore using an open reactor along with elemental S for CZTS

fabrication can be beneficial for transferring the process to industry. However, few works were

done using an open reactor with elemental S to synthesize CZTS based absorber [81].
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Figure 4.2: Evolution of CZTS solar cell devices in terms of PCE using sputtering technique along with
the highest efficiency achieved by different method.

Table 4.2: Details on synthesis process and device properties of the work shown in figure 4.2.

Precursor

deposition

Precursor stack

order

Sulfur usage

mode
Annealing type

Voc

[mV]

Jsc

[mA/cm-2]

FF

[%]

PCE

[%]
Year

Evaporation Mo/Cu/Sn/Zn H2S One step 400 6.0 27.7 0.7 1997 [77]

Sputtering Mo/ZnS/SnS/Cu H2S One step 662 15.7 55.0 5.7 2007 [82]

Co-sputtering N/A H2S One step 610 17.9 62.0 6.8 2008 [83]

Sputtering No information H2S No information 708 21.6 60.1 9.2 2013 [48]

Sputtering Mo/ZnS/Sn/Cu/ZnS H2S One step 700 20.6 62.5 9.1 2013 [84]

Sputtering Mo/CZTS/Cu/Sn/ZnS H2S Two step 700 21.3 63.0 9.4 2016 [85]

Sputtering Mo/ZnS/SnS/Cu Elelental S One step 632 19.3 61.6 7.5 2016 [86]

Sputtering Mo/ZnS/SnS2/Cu H2S Two step 625 21.1 65.1 8.6 2016 [87]

Co-sputtering N/A elemental S One step 783 14.1 63.2 7.1 2017 [88]

Co-sputtering Not applicable S One step 731 21.7 69.3 11.0 2017 [78]

PLD No information H2S One step 700 10.0 59.0 4.1 2012 [89]

Solution processed No information H2S One step 517 18.9 52.8 5.1 2012 [90]

Electrodeposition CuZn/CuSn elemental S Two step 567 22.0 58.1 7.3 2015 [91]

4.2 CZTSe synthesis process

4.2.1 Selenization

To synthesize CZTSe absorber, metallic precursors (Cu, Zn and Sn) are deposited on a SLG

substrate and transferred to a selenization reactor for annealing. At the beginning of the study,
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the temperature profile used during annealing is a single step (570°C for 30 minutes with

60°C/minute ramp under 850 mbar of Ar pressure), followed by a natural cooling. Figure 4.3(a)

is showing this single step temperature profile.

Later, a double step annealing profile is used to optimize the annealing (see figure 4.3(b)).

The double step annealing procedure consists of: a first step under low pressure (1 mbar) at

320°C for 20 minutes with a 1°C/s ramp and a second step under nearly atmospheric pressure

(850 mbar) at 520°C and 1°C/s ramp. In figure 4.3(b), at 305°C the temperature ramp is slowed

down, to reduce the mismatch between the temperature programmed and the temperature

achieved at the end of the ramp. Natural cooling is used at the end of annealing.

(a) Single step temperature profile (b) Double step temperature profile

Figure 4.3: Temperature profiles used for selenization.

The following sections describe the optimization of CZTSe absorber and the reaction mecha-

nism for the optimized process.

4.2.2 Optimization of the micro-structure

The objective of this section is to describe the synthesis process to achieve a CZTSe sample

with big grains and a pinhole free surface with reduced roughness. At the beginning of the

process development, the effect of the cation composition on the micro-structural properties

of the final absorber is analyzed. Later, an optimized cation composition is selected to further

optimize the microstructure using different selenization conditions.
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4.2.2.1 Influence of cation composition

The samples are prepared with different compositions to asses the effect of stoichiometry on

microstructural and material properties using a semi-open susceptor and one step annealing

profile (figure 4.3(a)). The cation compositions of all these samples are shown on the ternary

diagram (figure 4.4). Amongst them five samples are selected for further analysis and the

cation compositions of those five sample are shown by big circles on the ternary diagram.

SEM cross-section image of these selected samples is shown in figure 4.4. Here, Cu-rich

sample shows comparatively big grains, as observed in [92]. On the other hand, Cu-poor

sample also showed big grains but smoother surface than Cu-rich growth. These big grains

during Cu-poor growth are the result of Cu-Se phase forming relatively early in the selenization

process, thus facilitate the grain growth.

Zn-poor/Sn-rich sample shows improved average grain size, a similar effect was observed

by Malerba et al. [79]. In contrast, Zn-rich/Sn-poor growth showed smaller grain size, which

can be attributed to the lack of Sn content. Finally, near stoichiometric absorber showed a

moderate grain size with much smooth morphology compared to the Zn-rich/Sn-poor sample.
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Figure 4.4: Effects of the cation composition on the micro-structural properties of a CZTSe based ab-
sorber : The ternary diagram in the middle shows the cation composition of different CZTSe absorbers.
The big circles with different colors indicate the cation compositions of the sample related to the SEM
cross-section images shown around the ternary diagram.

The XRD analysis on these five samples shows different secondary phases, depending on

the composition (see figure 4.5). First of all, the near stoichiometric ([Cu]/[Zn+Sn]=0.98,

[Zn]/[Sn]=1.03) sample does not show any obvious secondary phases that can be detected

by XRD. Secondly, the Cu-rich ([Cu]/[Zn+Sn]=1.2, [Zn]/[Sn]=1.03) absorber shows peaks of

Cu-Se (Cu2Se) secondary phase at 26.2° ,44.8° and 53.1° with weak intensity (shown in the top-

right corner of figure 4.5). It has been pointed out by Redinger et al. [55] that during Cu-rich

growth of CZTSe by co-evaporation, Cu-Se secondary phase remains on the surface which can

be detected accurately using grazing incident XRD. Therefore, for the experimental Cu-rich

absorber, due to the smaller presence of Cu-Se secondary phase in the bulk, the detection

is weak using XRD. The Zn-rich/Sn-poor ([Cu]/[Zn+Sn]=1.01, [Zn]/[Sn]=1.52) sample also

showed similar Cu-Se secondary phase, a consequence of Cu being present in excess compared

to Sn (Cu/Sn=2.6). Therefore, the value of Cu in respect to Sn (Cu/Sn ratio) is important to

understand the situation of the absorber stoichiometry.

Moreover, the Zn-poor/Sn-rich ([Cu]/[Zn+Sn]=1.03, [Zn]/[Sn]=0.6) sample shows a Sn-Se

secondary phase, as well as the Cu-poor ([Cu]/[Zn+Sn]=0.67, [Zn]/[Sn]=1.04) sample due
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to the presence of excess Sn. The main XRD peaks related to Sn-Se secondary phase are at

14.43°(SnSe2) and 31.15°(SnSe) [93], and can be seen for the Zn-poor/Sn-rich and the Cu-poor

samples in figure 4.5. Here, the Cu-poor sample only showed a SnSe secondary phase, while

the Zn-poor/Sn-rich sample showed both SnSe and SnSe2 secondary phases. In case of a Sn

excess, SnSe2 is formed first and then decomposed into SnSe at high temperature [93]. Thus, if

the amount of Sn is high enough, both phases can be detected.

Finally, the FWHM of CZTSe peak (112) is also shown for all samples (see bottom right corner

of figure 4.5). Here, the Cu-rich sample has the lowest FWHM, indicating improved crystalline

quality, while the Zn-rich/Sn-poor sample has the highest FWHM.

This preliminary study on stoichiometry leads to some criteria for the current work. Cu-

rich sample showed pinholes detrimental for device performance due to a high degree of

roughness. The presence of Cu-Se phase is also detrimental for the final device [92, 94].

Therefore, the Cu-rich condition will not be considered as a viable condition for improved

micro-structure growth of CZTSe absorber. The Zn-rich/Sn poor sample showed the highest

FWHM and the worst micro-structural properties, while the Zn-poor/Sn-rich sample showed

better micro-structural properties along with Sn-Se secondary phases, which is detrimental

for device properties [95]. Thus, Cu-poor and slightly Zn-rich composition is considered

optimum towards improving micro-structural properties, with no or minimum Cu or Sn-

based secondary phases. This choice is consistent with previously published results [96],

showing that Cu-poor and Zn-rich samples give the best efficiencies.
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Figure 4.5: XRD diffractogram of a sample synthesized with different cation compositions. The top
right corner is showing the enlarged view of the XRD diffractogram (43° to 59°). The bottom right corner
is showing the FWHM of the peak (112).

Finally, a sample is fabricated maintaining the Cu-poor and Zn-rich cation composition,

which will be called Sample A. For all the analyses in this work, the same cation composition

of precursor as sample A has been used for synthesis of other CZTSe absorber. An XRD of

sample A (figure 4.6) shows all the peaks of CZTSe with no peaks of Sn-Se or Cu-Se secondary

phases. Also, the SEM surface and cross-section images show a grain size smaller than 500

nm and an irregular surface (see figure 4.6). Macro inhomogeneities, detrimental for the final

device properties [74], are observed on the surface of the sample (not shown here). These

macro inhomogeneity can be related to the fact that one pellet of 50mg Se is used on one side

of the sample. Thus, the side near the pellet came in contact first with the Se vapor during

annealing. To further improve the microstructural properties of the absorber, an optimization

of the selenization condition is performed, as described in following section.
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Figure 4.6: XRD diffractogram of sample A, along with the surface and cross-section SEM image in the
inset.

4.2.2.2 Influence of selenization condition

After optimizing the stoichiometry, we tried to optimize the selenization condition. These op-

timizations include- ways of introducing Se, temperature profile, susceptor and back contact.

A complete list of all these optimizations is shown in table 4.3.

Table 4.3: List of different samples associated with different experiments for building the baseline
process of a CZTSe based solar cell. Here, the cation ratio of the samples are measured by XRF from the
synthesized absorber.

Sample

name
Mo structure Stack order Selenium type

Graphite susceptor

type
Annealing type [Cu]/[Zn+Sn] [Zn]/[Sn]

A Single layer Mo/Zn/Sn/Cu 50mg Se pellet Semi-open Single step 0.78 1.23

B Single layer Mo/Zn/Sn/Cu Se cap+50 mg Se pellet Semi-open Single step 0.75 1.21

C Single layer Mo/Zn/Sn/Cu Se cap+50mg Se pellet Semi-open Double step 0.74 1.18

D Single layer Mo/Cu/Sn/Cu/Zn Se cap+50 mg Se pellet Semi-open Double step 0.73 1.17

E Single layer Mo/Cu/Sn/Cu/Zn Se cap+50 mg Se pellet Closed Double step 0.75 1.12

F Three layer Mo/Cu/Sn/Cu/Zn Se cap+50 mg Se pellet Closed Double step 0.74 1.08

F(etch) Three layer Mo/Cu/Sn/Cu/Zn Se cap+50 mg Se pellet Closed Double step 0.75 1.07

After each optimization, we carefully observed the material properties of the absorber using

SEM and XRD followed by accessing the PV properties to choose the best possible annealing

condition in terms of- grain size, pin-hole free surface, homogeneity, MoSe2 growth and PCE
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(which is one of the consequence of the improved microstructural properties).

To reduce the effect of macro inhomogeneities, a 300nm Se capping layer has been deposited

by evaporation on top of the precursor prior to annealing (see table 4.3) to create sample B. The

absorber synthesized this way showed better macro homogeneity. However, an observation

using SEM (figure 4.7 (a) and (d)), shows an irregular grain size (Variable grain size with

bigger than 1 µ max.) and a rough surface with pinholes. Moreover, a significant amount

of void and MoSe2 formation near the back contact can be observed (figure 4.7 (d)). Thus,

longer annealing at higher temperature has two adverse effects on the absorber: First, high

temperature and pressure (for this experiment 850 mbar Ar pressure was used) for a long

time during annealing can promote the formation of a thicker MoSe2 layer [97]. Second, Se

used during the reaction will diffuse away more at higher temperature and longer annealing

duration. At the end of annealing the Se vapor pressure becomes low, resulting in Sn loss and

void formation via decomposition of the absorber [26].

In other words, to have better crystallization higher temperature annealing is needed [98],

which also has adverse effect on the absorber. This suggests relatively shorter duration, high

temperature annealing. Therefore, a two-step annealing process (shown in 4.3(b)) has been

adopted for sample C, from the work of Neuschitzer et al. [71]. During the two-step annealing,

the first step consists of 320°C (for 20 min), to induce alloying and formation of a CZTSe phase,

and the second step consists of 520°C(for 5 min), to induce crystallization. A better crystallinity

and reduced MoSe2 can be seen from the cross-section SEM image of sample C in figure 4.7

(e). The pinholes and roughness are still present on the absorber surface (see figure 4.7 (b)).

The Sn loss,however, compared to sample A has decreased, demonstrating the feasibility of

a two-step annealing procedure. It also indicates that less Sn loss might be related to better

morphology.

All the high-efficient sputtering based procedures have different precursor stack order, the

one common feature being that Sn was never used as the top layer because of its volatility

at high temperature [99]. Consequently, to decrease further Sn loss a different stack order is

adopted: Mo/Cu/Sn/Cu/Zn similar to Neuschitzer et al. [71] for sample D. This stacking order

was preferred for the following reasons [100]:

1. The first Cu layer improves the morphology of Sn layer, which can reduce the roughness

of the final absorber;

2. Sn as a second layer can reduce the Sn loss during the annealing process;

3. Cu as a middle layer between Sn and Zn would increase the alloying between Sn by
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forming bronze and Zn by forming brass;

4. Finally, Zn as a top layer could promote the Zn-Se secondary phases (due to using Zn-

rich precursor) on the surface, which can be removed by an additional etching process

after absorber synthesis.

The SEM cross-section of sample D shows a reduced roughness and a better morphology

(see figure 4.7 (f)). A significant amount of pinhole reduction can be observed from the SEM

surface image (4.7 (c)) compared to the previous samples. However, the voids near the Mo

back contact similar to sample C and some of the pinholes are still present on the surface

of sample D. It should also be noted that the cation ratio of the absorber in table 4.3, shows

almost no difference between sample C and D.

(a) Sample B (surface) (b) Sample C (surface) (c) Sample D (surface)

(d) sample B (cross-section) (e) Sample C (cross-section) (f ) Sample D (cross-section)

Figure 4.7: SEM image of samples using semi-open susceptor and different configurations (sample
B- Selenium capping evaporated on precursor before annealing, sample C- Double step annealing
procedure, sample D- different stack order of precursor).

Therefore, in an attempt to further improve the morphology of the absorber, a different

susceptor is used, which is described in section 3.1.3.2 as a closed susceptor. Here, a limited

amount of Se is used for each experiment and a significant amount of Se could escape by

diffusion from the semi-open susceptor, therefore, a relatively closed susceptor is thought to be

a way to decrease the out-diffusion of Se. Thus, Sample E is prepared using a closed susceptor,

while keeping the other parameter identical to the previous sample. Annealing inside a closed

susceptor shows a pin-hole free surface morphology (figure 4.8 (a,b)). However, this sample

shows much thicker MoSe2 (around 670nm) (figure 4.8 (c,d)), which can be detrimental to

63



Chapter 4. Development of CZTSe and CZTS absorber

the electrical properties of the final device [26]. Nonetheless, the Sn loss is further reduced

compared to the previous sample.

(a) Sample E (surface) (b) Sample E (enlarged view of sur-

face)

(c) sample E (cross-section) (d) Sample E (enlarged view of Mo

back contact)

Figure 4.8: SEM image of the sample synthesized using closed susceptor.

To reduce the formation of MoSe2, a three-layer Mo back contact is used for sample F. Where

the first layer is designed to ensure electrical conductivity, the second layer with low density

to limit the formation of MoSe2 and the third as a sacrificial layer. This three-layer Mo is

described in section 3.1.2. The SEM surface and cross-section image of sample F (figure 4.9)

show a significant improvement in the morphology. This absorber exhibits 1-2 µm big grains

and less MoSe2 compared to sample E.

(a) Sample F (surface) (b) sample F (cross-section)

Figure 4.9: SEM image of the sample using three-layer Mo deposition as back contact during annealing.
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A comparative GDOES depth profiling between sample D (synthesized by semi-open suscep-

tor) and sample F (synthesized by closed susceptor) is shown in figure 4.10. At a first glance,

all the cation profiles (Cu, Zn and Sn) show less variation throughout the absorber in the case

of sample F compared to sample D. Furthermore, Zn shows an increase near the Mo back

contact in the case of semi-open susceptor (sample D), while Zn shows a slight increase at the

front surface for the closed susceptor. This is an indicator of the position of potential Zn-Se

secondary phase in each case.

(a) CZTSe synthesized in semi-open susceptor (b) CZTSe synthesized in closed susceptor

Figure 4.10: GDOES depth profiling of absorber synthesized in a semi-open susceptor (sample D) and
closed susceptor (sample F), showing the material distribution along the depth of the absorber.

4.2.2.3 Summary

The evolution and effect of the different synthesis processes have been discussed in terms of

morphology and material properties. From the above discussion, some conclusions can be

made:

1. A Cu-poor and Zn-rich cation composition is most favorable in terms of microstructural

properties and formation of unwanted secondary phases;

2. The stack order is important for the absorber synthesis using elemental metal precursor,

as Sn is a volatile metal and need to be placed at the bottom of the stacks.

3. It is highly important to ensure sufficient Se vapor pressure during annealing to reduce

Sn loss and void formation in the CZTSe/Mo interface;
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4.2.3 Electrical properties of CZTSe

The absorbers discussed in the previous section have been completed as solar cells by de-

positing the rest of the layers (Mo/CZTSe/CdS/ZnO:Al/Front grid) as described in chapter

3.

The light J-V parameters of all the samples are shown in figure 4.11. Here, the J-V parameter

showed improvement with improved morphology. More specifically, there are two points

where the PCE has almost doubled: one is during the use of two-step process instead of a

one-step process and another is with the use of a closed susceptor and improved back contact.

Secondary phases such as ZnSe and SnSe at the absorber/buffer layer interface have been

identified (in literature [95, 101]) to be one of the main reason for performance limitation.

Their removal, therefore, is crucial for the final device performance. For this reason, HCl

etching is used on a sample, prepared using the same recipe as for sample F, to remove the

ZnSe secondary phase as shown by Fairbrother et al [102]. Using selective etching of Zn-Se,

sample G shows an improved 7.6% efficiency.
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(a) Open circuit voltage (b) Short circuit current

(c) Fill factor (d) Efficiency

Figure 4.11: Light J-V parameters of all the samples prepared with different methods described in table
4.3 under 1.5G illumination condition.

The dark J-V parameters of all the samples are shown in figure 4.12. An evolution in the

improvement can be seen from this characterization, very similar to those already observed

with the light J-V parameter. Here, sample A and B are suffering from low shunt resistance

and high series resistance, induced by bad crystallization resulting in pinholes and a thick

MoSe2 formation. However, the highest series resistance was obtained with sample E, due to

the highest thickness of its MoSe2 layer. In the case of sample F, series resistance decreases

significantly by using three-layer Mo back contact as a result of the reduced MoSe2 thickness.

An additional decrease in RS and a significant increase in RSh are obtained with the HCl etching

process, where the final absorber (sample F(etch)) shows a higher decrease in series resistance
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compared to the non etched sample (sample F).

Figure 4.12: Dark J-V parameters (RS and RSh) of all the samples prepared with different methods
described in table 4.3.

The optoelectronic properties (dark and light J-V, EQE and C-V) of the best CZTSe device

from this work are illustrated in figure 4.13. The parameters extracted from dark and light

J-V are shown in table 4.4, which indicates VOC of 410 mV and a maximum PCE of 7.6%.

The EQE in figure 4.13 (b) indicates a band-gap of 1.02 eV, deducted from the maximum of

the derivative of the EQE spectrum. The maximum EQE is found to be around 80%, which

indicates that room for optimization is still present, particularly by reducing reflection using

an anti-reflection coating such as MgF2 (not tested in this thesis). The apparent carrier

concentration is 5.4E15 cm-3, with a depletion region width (W) of 324 nm (at 0 V bias),

calculated from room temperature C-V measurement.
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(a) Light qnd dark J-V curve of the best sample (sample

F(etch))

(b) EQE response of best sample (sample F(etch)) (c) Apparent carrier concentration vs SCR width of best

sample (sample F(etch))

Figure 4.13: Optoelectronic properties of the best CZTSe sample in this work. Light J-V (measured
under AM 1.5G illumination) (solid line) and dark J-V (dashed line)(a) EQE reveals a band-gap of 1.02
eV derived from maximum of the derivative of EQE spectra (b) and apparent carrier concentration
derived from room temperature C-V measurement(c).

Table 4.4: All electrical parameters of best CZTSe sample synthesized during this work.

Light J-V Dark J-V C-V EQE

VOC JSC FF Efficiency RS RSh NC-V W JSC(EQE) Eg VOC deficit

(mV) (mA.cm-2) (%) (%) (ohm.cm2) (ohm.cm2) (cm-3) (nm) (mA.cm-2) (eV) (mV)

410 31.0 60 7.6 0.4 802 5.4E15 324 31.8 1.02 610

In conclusion, the highest efficiency of 7.5% is achieved by CZTSe based solar device from

this work. A record PCE of 9.4% [103] has been achieved using additional etching and post-

deposition annealing process along with the procedure described above. As this is out of the
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scope of this thesis, it will not be further discussed.

4.2.4 Formation mechanism of CZTSe

An ex-situ characterization process has been performed on the selenization process to under-

stand the formation mechanism of CZTSe. Figure 4.14 shows the temperature profile and the

different temperatures where the process is stopped for the ex-situ experiments (blue points),

coveringthe full temperature and time range for the selenization procedure.

Figure 4.14: Temperature profile with the different points where the annealing was stopped for ex-situ
characterization to determine the formation mechanism of CZTSe absorber.

In order to investigate the formation mechanism, an XRD analysis has been performed on all

the samples at different temperatures points (see figure 4.15). At 250°C, formation of bronzes

(Cu-Sn alloy), brasses (Cu-Zn alloy) and ZnSe is detected. It was already mentioned earlier

that the main peaks of CZTSe, ZnSe and Cu2SnSe3 coincide at room temperature. While it

impedes the discrimination between ZnSe and Cu2SnSe3 secondary phases, the absence of

peaks at lower 2θ for the tetragonal kesterite phase exclude the presence of the CZTSe phase.

At 250°C, the peak at 27.2° and 45.2° are attributed to the ZnSe phase, since the formation

temperature for CTSe is higher than 250°C [104, 105]. During the plateau of 320°C, relatively

weak CZTSe peaks at 17.4° and 36.1° can be detected, thus showing that CZTSe is formed at

this temperature along with other secondary phases such as Cu-Se.

Sn-Se secondary phase can only be seen at 520°C from the XRD, but after a 5 minutes plateau,

it can no longer be detected. Finally, Cu-Se, Zn-Se and Sn-Se phases completely reacts at

the 520°C plateau and form a more stable CZTS phase. Carolin et al, [105] reached a similar
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conclusion, stating that CZTSe start to form above 280°C and co-exist with other secondary

phases. Also, to maximize the formation of CZTSe compared to those binary or ternary phases,

temperature higher than 450°C is needed.

Figure 4.15: XRD diffractograms of samples at different annealing points of selenization as described
in figure 4.14.

This conclusion is further confirmed by the Raman spectra of these samples (figure 4.16).

Using green laser excitation for Raman spectra makes it difficult to detect ZnSe and Cu2SnSe3

secondary phases [56]. Therefore, it is difficult to make a conclusion about the formation of

ZnSe and CTSe. Nonetheless, the FWHM of CZTSe A mode peak is decreasing with increasing

temperature, which indicates that the crystallization of the CZTSe phase improves at higher

temperature. Also, Cu-Se secondary phase can not be detected at 320°C and 20 minutes

plateau, although the XRD showed the presence of Cu-Se secondary phase at this stage of the

process.
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Figure 4.16: Raman spectra of different points during annealing described in figure 4.14, using 532 nm
laser wavelength.

To investigate this point, SEM surface image of the sample at 320°C and after a 20 minutes

plateau is shown in figure 4.17. The big grains on the surface of 320°C sample are identified as

Cu-Se secondary phase by the EDX line scan (see figure 4.18). But, after a 20 min wait period

at the same temperature, these big grains can not be seen on SEM image. This is the reason

why the Cu-Se secondary phase for this sample was not detected by Raman spectroscopy, as

this characterization is limited to the surface of the sample.

Figure 4.17: SEM surface of a sample annealed at 320°C before (left) and after (right) 20 minutes
plateau.
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Figure 4.18: EDX line-scan performed on a sample annealed at 320°C before the 20 minutes plateau.
Big grains on the surface can be clearly detected as Cu-Se secondary phase from the line scan.

SEM image of the sample surface annealed at 520°C is shown in figure 4.19. Two different

zones with distinct crystal shape can be identified and are indicated as zone 1 and zone 2. By

comparing the atomic concentration measured by EDX of both zones, Sn-Se secondary phase

can be identified in zone 2. This also confirms the presence of the Sn-Se secondary phase at

520°C.

Figure 4.19: EDX analysis performed on the sample annealed at 520°C without wait time: Sn-Se
secondary phase formation can be identified in zone 2 by comparing the cation composition achieved
from zone 1.

Lastly, an EDX line-scan is performed on a finished absorber (see figure 4.20) and proved the

presence of Zn-Se secondary phase near the surface. The Zn-Se secondary phase has a higher
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bandgap than CZTSe and shows a bright contrast compared to CZTSe grains during SEM. This

might be a way to effectively detect this phase by SEM imaging.

Figure 4.20: EDX line-scan on a finished CZTSe absorber.

In summary, the reaction path for the CZTSe synthesis shows the formation of a binary

compound first prior to the formation of CZTSe compounds. However, Cu-Sn-Se phase was

not identified due to lack of proper characterization.

Nonetheless, according to Hernandez-Martinez et al [56], the reaction pathway towards CZTSe

using metallic precursor happens through binary compounds under low chalcogen pressure.

As this is the case for our CZTSe synthesis, it can be concluded that the reaction pathway is

following from the binary compounds to kesterite compound route.

4.3 CZTS synthesis process

4.3.1 Sulfurization

CZTS absorber is fabricated by annealing the metallic precursor in a sulfurization reactor.

The experimental sulfurization reactor is a two zone open reactor, that was described in

section 3.1.3.2. During annealing, the sample zone used the ramp of 10°C/min, while the

sulfur zone used the ramp of 20°C/min, followed by Natural cooling. However, the cooling

rate of the sulfurization reactor is much slower compared to the selenization reactor. No
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pressure controller is used during the annealing process, therefore pressure inside the chamber

changed with the temperature evolution. Nonetheless, between two different runs of same

recipe, the change of pressure are similar. A typical scenario of temperature in both zones and

chamber pressure evolution as a function of time during the annealing are shown in figure

4.21. The amount of evaporated sulfur and sulfur vapor pressure during different sulfur zone

temperatures is shown in table 4.5.

Temperature Amount of evaporated S (mg) S vapor pressure (mbar)

170°C 221±33 9E-3

200°C 565±47 3E-2

230°C 976±69 1E-1

Table 4.5: Amount of evaporated sulfur and sulfur vapor pressure at different sulfur zone temperature

Figure 4.21: Pressure and temperature profile as a function of time during a typical sulfurization
process.

Process optimization is performed by optimizing the temperature on both zone of the reactor.

For this purpose, annealing temperature in the sample zone is varied from 520°C to 580°C,

while keeping the sulfur zone temperature constant (200°C) for different samples. Later,

the temperature of the sulfur zone is varied from 170°C to 230°C, while keeping the sample

zone temperature constant for different runs. The experimental plan along with the cation

composition of the associated absorber is shown in table 4.6.
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Table 4.6: List of different samples associated with different experiments for building baseline process
of a CZTS based solar cell. Here, the cation ratio of the sample is measured by EDX from the synthesized
absorber.

Experiment name Sample name Sample side temp. Sulfur side temp. [Cu]/[Zn+Sn] [Zn]/[Sn] [Cu]/[Sn] [Zn]/[Cu+Sn]

A

CTZS520°C 520°C 200°C 0.72 1.15 1.55 0.45

CTZS550°C 550°C 200°C 0.74 1.21 1.62 0.46

CTZS580°C 580°C 200°C 0.75 1.28 1.72 0.47

B

S170°C 550°C 170°C 0.74 1.24 1.67 0.47

S200°C 550°C 200°C 0.74 1.21 1.62 0.46

S230°C 550°C 230°C 0.68 1.18 1.47 0.47

4.3.2 Effect of annealing temperature

To optimize the annealing temperature of the sulfurization process, three samples have been

synthesized using three different temperatures (520°C, 550°C, 580°C) for sample zone. This set

of experiments will be called experiment A in later sections.

Experiment A shows that the amount of Sn in the absorber decreases with increasing tempera-

ture (table 4.6). It has been attributed to an increased Sn loss during annealing with increased

temperature. Indeed, it is well known that decomposition of CZTS can occur during thermal

processing especially when low pressure and high temperature are used resulting in loss of S

and SnS [99]. This decomposition mainly formulates by the relatively facile change of Sn(IV)

to Sn(II) in a chalcogen environment, which is an underlying characteristic of Sn chemistry.

The SEM surface and cross-section images of these three samples are shown in figure 4.22.

From this, several observations can be made:

1. Grain size and crystallization are improved with higher temperature;

2. More voids are present at the Mo/CZTS interface with increased temperature;

3. Pin-holes can be observed from the surface SEM of the sample synthesized with high

temperature (580 °C).

Increasing annealing temperature leads to the formation of voids in the back absorber re-

gion due to the reaction between CZTS and Mo. This reaction forms MoS2 along with other

secondary phases, while evaporation of Sn-S based secondary phase occurs due to the afore-

mentioned reason. This explanation is also supported by different works [26, 101].
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Figure 4.22: SEM representation of experiment A: surface (top left) and cross-section (bottom left)
of sample CTZS520°C sulfurized under 520°C; surface (top middle) and cross-section (bottom middle)
of sample CTZS550°C sulfurized under 550°C; surface (top right) and cross-section (bottom right) of
sample CTZS580°C sulfurized under 580°C.

The XRD pattern of the three samples from experiment A are shown in figure 4.23. A SnS2

based secondary phase can be detected for the sample prepared at 520°C but cannot be seen at

higher temperatures. The presence of a SnS2 secondary phase at this temperature only suggest

that 520°C is not sufficient for CZTS absober synthesis. Moreover, the FWHM of peak(112) as a

function of temperature (the top left corner of figure 4.23) shows a decrease of FWHM with

increased temperature, which indicates better crystallinity during high-temperature process.

4.3.3 Effect of sulfur vapor pressure

Three samples are prepared with three different sulfur zone temperatures (170°C, 200°C

and 230°C), which will provide higher amount of sulfur vapor pressure at higher annealing

temperature (table 4.5). These experiments will be called experiment B, later in this section.

The first effect of the S zone temperature can be seen from table 4.6. Here, Sn content increases

with increased sulfur zone temperature, meaning that Sn loss can be reduced with increased

sulfur vapor pressure. This result is consistent with the results of Scragg et al, [99].

No noticeable difference can be observed from SEM image of these three samples, except the

lower amount of void formation for higher temperature (230°C) (not shown here).
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Figure 4.23: XRD representation of samples from experiment A: CZTS absorber prepared under three
different temperatures to observe the effect of temperature on the material properties. In the inset, the
FWHM of peak (112) is given as a function of temperature.

The XRD of these samples showed highly crystallized CZTS peaks with no peaks associated

with Sn-S or Cu-S phase (see figure 4.24 (a)). No noticeable difference can be seen from the

XRD of these samples.

In addition, the Raman spectra of all the samples associated with experiment B are shown

in figure 4.24 (b). The sample synthesized with sulfur side temperature at 170°C shows a

broadening of the 339 cm-1 peak, as well as a large decrease in peak intensity at around 288

cm-1. Both effects have been attributed to a higher Cu/Zn disorder according to Scragg et

al, [23], although, one must consider the effect of cation composition of the samples, which

is directly related to the Cu/Zn-ordering as well. It can also affect the peak intensity and

broadening of Raman spectrum [33]. For this experiment the sample annealed under the

highest amount of sulfur pressure showed the lowest amount of Cu content, because of less Sn

loss. Indeed, Cu poor condition during synthesis induces the ordering of Cu/Zn (001) planes

by increasing the [VCu+ZnCu] cluster [34].
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(a) XRD of samples from experiment B (b) Raman spectra of samples from experiment B

Figure 4.24: XRD and Raman spectra of samples from experiment B: XRD from different samples did
not show any noticeable difference, but Raman spectrum showed lower intensity and peak broadening
for lower sulfur vapor pressure.

4.3.4 Device properties

The PV properties of the samples associated with experiment A and B measured under 1.5G

illumination are shown in figure 4.25. The sample zone temperature of 550°C shows best PCE

amongst all the samples from experiment A. Poor crystallization and Sn-S secondary phase is

one of the reason for the lower PCE in the case of the CZTS520°C sample, due to the detrimental

effect of the SnS2 phase. Higher Sn loss and void formation near the back of the absorber is

one of the reason for poor performance of the CZTS580°C sample, as has been confirmed by

similar conclusions made in the literature [26, 95].

During experiment B, sample S230°C showed the best performance in terms of VOC, JSC, FF and

efficiency. Conversely, sample S170°C did not work properly as a solar device.

The material and opto-electrical properties of sample S170°C, showed properties that can be

related to the poor device properties, although it might not be the only reason. Recently, Kim et

al. [106] pointed out that sulfur vacancy (VS) can facilitate non-radiative recombination, while

lower sulfur pressure might increase the chance of having higher sulfur vacancy. However,

a synchrotron-based experiment was performed to detect sulfur vacancy from these three

samples but did not work properly.
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(a) Open circuit voltage (b) Short circuit current

(c) Fill factor (d) Efficiency

Figure 4.25: Light J-V parameters of the samples from experiment A and experiment B under 1.5G
illumination condition.

The opto-electronic properties (dark J-V, illuminated J-V, EQE and C-V) of best CZTSe device

from this work are illustrated in figure 4.26. The EQE in figure 4.26 (a) indicates a band-gap

of 1.63 eV, deducted from the maximum of d(EQE)/d(E) as a function of wavelength and a

maximum EQE of 85%. The apparent carrier concentration is 9.4E16 cm-3, with SCR width of

161 nm (at bias of 0V), measured by room temperature C-V.
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(a) J-V measurement under 1.5G illumination and

in dark

(b) EQE showing the band gap of 1.58 eV deduced from

EQE edge

(c) Charge carrier concentration profiles vs depletion

width

Figure 4.26: J-V measurement under 1.5G illumination and in dark(a), EQE spectrum (b) and charge
carrier concentration profiles as a function of the depletion width derived from C–V measurements
(110 kHz, 300 K, dark)(c) of the best CZTS based solar cell.

Table 4.7: All the opto-electrical parameters of the best CZTS-based solar cells.

Light J-V Dark J-V C-V EQE

VOC JSC FF Efficiency RS RSh NC-V W JSC(EQE) Eg VOC deficit

(mV) (mA.cm-2) (%) (%) (ohm.cm2) (ohm.cm2) (cm-3) (nm) (mA.cm-2) (eV) (mV)

776 13.5 56 5.9 10.5 5600 1.1E+17 161 15.85 1.63 854

In summary, the best PCE achieved from this process is 6%, which is one of the highest

efficiency, considering the use of elemental metal precursor using sputtering process. The

optimized temperature for the sample zone was found to be 550°C and the sulfur zone was

230°C. Although, this efficiency could be improved by higher sulfur side temperature (higher

sulfur vapor pressure), the setup of this reactor could not process higher sulfur vapor pressure
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higher during the process. An experiment with a temperature higher than 230°C in sulfur

side resulted in the condensation of sulfur in the extractor, thus prohibiting the argon flow

completely.

4.3.5 Formation mechanism of CZTS

To study the reaction mechanism during sulfurization, samples are annealed at different

temperatures (200°C - 550°C) followed by a natural cooling for ex-situ analysis (see figure 4.27).

Figure 4.27: Temperature profile with the different points where the annealing was stopped for ex-situ
characterization to determine the formation mechanism of CZTS absorber.

The presence of bronzes (Cu-Sn alloy) and brasses (Cu-Zn alloy) along with the presence

of elemental metal (Cu and Sn) can be detected at the beginning of the reaction (from the

precursor till 400°C), from XRD measurement (see figure 4.28). But, Zn cannot be detected,

due to its possible presence as an amorphous form and/or present as an oxide. No indication

of Cu-S or Sn-S phase is observed until 400°C. Later, the Sn-S secondary phase remains until

the process temperature of 550°C, while CZTS phase starts to appear from 500°C. Therefore,

the 30 minutes plateau of 550°C is necessary for a complete reaction from all the binary phases

to highly crystallized CZTS compound.
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Figure 4.28: XRD diffractogram of samples annealed with different temperatures to analyze the forma-
tion mechanism of the CZTS absorber.

Figure 4.29 shows the Raman spectra of the same samples. Cu-S secondary phase can be

detected until 400°C and disappears at a higher temperature. Although, a CZTS phase can be

seen at 500°C, improved crystallization is achieved at 550°C, as can be detected by narrower

main A mode CZTS peak at 288 cm-1 and 339 cm-1. Furthermore, the Cu-S phase can be

detected at 200°C, a contradiction with the XRD result. The reason could be that only a small
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amount of Cu-S phase is formed at low temperature (below 400°C) mainly on the surface and

cannot be detected by the XRD.

Figure 4.29: Raman spectra of the samples annealed with different temperatures to analyze the forma-
tion mechanism of the CZTS absorber.

Figure 4.30 is showing the SEM surface and cross-section (in the inset) of each sample corre-

sponding to the above discussion. At 400°C, a very pronounced bilayer can be observed with

big and highly crystallized grains on the top layer and small grains at the bottom. At 500°C,

those highly crystallized grains can not be seen anymore. Also, the morphology seems more

amorphous, while at 550°C it is more crystallized.
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Figure 4.30: SEM image of surface and cross-section in the inset of the samples prepared with different
temperatures to determine the CZTS formation mechanism.

To identify the nature of big grains present at 400°C, an EDX color mapping has been done on

the sample(see figure 4.31). Thus, the highly crystallized growth at 400°C can be identified as a

Cu-S secondary phase.
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Figure 4.31: EDX mapping of the sample annealed up to 400°C under sulfur atmosphere, which clearly
indicates the formation of a Cu-S secondary phase at this temperature.

Furthermore, the EDX color mapping on the sample annealed at 500°C shows the presence of

CZTS phase, along with Zn-S secondary phase on the surface (see figure 4.32).

Figure 4.32: EDX mapping of the sample annealed up to 500°C under sulfur atmosphere, which clearly
indicates the formation of a Zn-Se secondary phase at this temperature.

Lastly, from the EDX, the atomic percentage of anion and cation are deducted for this ex-situ

samples. S to metal ratio is shown in figure 4.33 as a function of temperature. Most of the

sulfur needed for the reaction is seen to be already present at 400°C (as ideally the ratio should

be 1). That is the reason why the sample grown at 400°C has a similar average thickness as the
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complete absorber.

Figure 4.33: Sulfur to metal ratio as a function of the temperature deducted from the EDX measurement
showing sulfur incorporation during annealing process.

In summary, this section describes the synthesis of the CZTS absorber using a two zone

open reactor. The reaction temperature of both zones have been optimized to achieve the

best performance of the CZTS based solar cell. The importance of sulfur pressure during the

sulfurization was discussed experimentally. It has been shown that higher sulfur pressure

during annealing improves material and optoelectrical properties. The reaction mechanism

of sulfurization process has also been analyzed. It was demonstrated that the formation of

CZTS using this method occurs from the reaction between the binary phases, similar to the

reaction mechanism of a CZTSe absorber.

4.4 Conclusion

The procedure to synthesize CZTS and CZTSe based absorber has been established with nearly

state of art efficiency. Best efficiency of 7.6% for 5.9% has been achieved for CZTSe and CZTS

based solar cell respectively. The experimental work of this study showed that chalcogen

vapor pressure has a significant role in terms of the microstructural and electrical properties

of the CZTSe/CZTS absorber, where higher Se/S pressure is beneficial for the complete device.

Similar conclusion also showed the importance of chalcogen vapor pressure to increase the
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device performance of the complete device [26, 88].The reaction mechanism from metallic

precursor towards kesterite absorber is analyzed using ex-situ characterization. Although the

characterization used during this study was not sufficient to detect the ternary phases (CTSe),

combining both experimental results and literature review, it can be stated that the kesterite

absorber has been grown from the reaction between the binaries.
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incorporation on CZTS absorber
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Compared to CZTSe absorbers, CZTS absorbers exhibit a smaller grain size, which could

be one of the reasons for their lower efficiency. In case of CIGS technology, alkali and Sb

incorporation into the absorber layer leads to better crystallinity with bigger grains [107, 108].

Absorber doping with alkali and crystallization control with Sb (antimony) enhances the

performance of CIGS-based solar cells thanks to the defect passivation and surfactant ability

of these dopants [42, 109].

Therefore, investigating on alkali (Na) and Sb incorporation might be an effective procedure

towards enhancing the performance of CZTS-based solar cell. It is worth noting that SLG

substrate already contains alkali elements (Na, K), which diffuse naturally in the absorber

during the high temperature (550° C) synthesis process. However, relying solely on SLG for

alkali impedes the controllability, as different SLG substrates may have varying amounts of
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alkali content. Incorporating Na from a controllable source will, therefore, be key for an

accurate control and reproducibility of the absorber synthesis process.

As of today, few works have focused on clearly defining the effects of alkali and antimony on

pure sulfur-based CZTS absorber. Thus, the current chapter will address the best suitable

strategies for the doping, as well as its effect on the electrical, micro-structural and material

properties of CZTS-based absorbers and solar cells. Moreover, this study will discuss the

effect of Na on the possible decoupling of optoelectronic properties to structural properties.

Additionally, we expect that findings from this study will also prove beneficial for absorber

synthesis on alkali-free substrates, by defining the best route to apply external doping (Na, Sb)

in the synthesis process.

5.1 State of the art

5.1.1 Effects of Na and Sb incorporation

The beneficial effect of sodium "contamination" on CIGS was discovered by Hedström and

co-workers in 1993 [41]. Since then, numerous works have been done (and are still going on)

on the electrical and structural impact of impurities on CIGS and CZTSSe materials. Doping

with alkali (Na, K) [110, 111] and antimony [108, 112] were investigated for CIGS solar cell,

which recently led to an improved efficiency for CIGS-based thin-film solar cell.

The effect of Na for CIGS are commonly related to an increase in p-type conductivity via higher

net hole concentration [113],enhanced grain growth, texturing with preferential orientation

[114] and a direct impact on band-gap grading by lower inter-diffusion between In and Ga

[111]. These characteristics results in an increased opto-electrical performance [109] and an

improved crystallinity [114]. The enhanced electrical performance is mainly related to an

increased VOC and FF [109]. Although the precise role of Na towards the higher performance

of the absorber has not been understood, defect passivation in the grain boundaries (GB) is

considered to be one of the main reasons. [109].

The use of thin Sb layer during CIGS absorber synthesis was found to promote grain growth,

which leads to enhanced EQE value for longer wavelength and improved power conversion

efficiency (PCE) [42]. Moreover, Sb doping in CIGS material showed enhanced grain growth

and increased VOC only in the presence of Na [115].

Due to the similar properties of CIGS and CZTS(e), there has been an increased amount of

interest towards exploring the potential of contamination (alkali or Sb) on kesterite absorber

to improve its electrical and microstructural properties. Few works have been done to fully

understand the effect of Na and Sb on Kesterite absorber. The reported effects are similar to

90



5.1. State of the art

the ones observed for CIGS material. Doping by sodium has a positive effect on grain growth

and texturization of kesterite based absorber [43–45]. An increase in device efficiency values,

mainly increase in VOC, FF and in some cases JSC [116–120] is observed. An increase in the hole

density and mobility, shallower acceptor level and reduction of certain deep trap center were

linked to this improvement in electrical performance [119,121,122]. Although, there have been

contradictory results on the effect of sodium on JSC of kesterite absorber, a reduction in JSC

was also observed due to the decrease of space charge region [119]. A decrement in minority

carrier lifetime was also noted [119], but the opposite was also observed when comparing an

Na containing CZTSSe absorber to an one without Na [123, 124]. Furthermore, the passivation

of GB by Na resulting in lower non-radiative GB recombination, it was considered one of the

reason for an improvement of performances similar to the CIGS one [123, 125]. Similarly,

hybrid-functional calculation showed the defect passivation nature of Na, by working as

substitutional defects in the copper sub-lattice [126]. Moreover, it was pointed out by Haass et

al., that the beneficial effect of Na doping was co-related with the Zn/Sn ratio in the absorber,

as the higher the Zn/Sn ratio, the lower the effect of Na [127].

Using Sb has a similar effect on electronic properties of kesterite absorber as using sodium.

According to Tiwari et al, co-doping of Na and Sb together provide better crystallization by

lowering the energy requirement for the process and reducing the disorder between Cu and Sn

site [128]. Solution-processed CZTSSe solar cell synthesized with SbCl3, show improved PCE

as a result of improved grain size and passivation of non-radiative recombination center in the

band gap. But, too high an amount of SbCl3 is detrimental for the device [129]. Furthermore,

it has been shown by 1st principle calculation that SbSn defects have low formation energy

under Cu-poor condition and low Sb concentration. This SbSn antisite defect produces 1.1 eV

deep level defects, which is detrimental for photovoltaic performances. On the other hand, Sb

concentration beyond a critical point forms an isolated half-filled intermediate band at 0.5

eV above the valence band maximum which will increase the photo-current and as a result

photovoltaic properties [130].

Some of the most recent works on Na and Sb incorporations are arranged in table 5.1. It clearly

shows that sodium has a beneficial effect on electronic properties of kesterite based solar cell

irrespective of synthesis method. Although, almost all the experiments shown in table 5.1

used SLG without barrier as a reference to compare with the sample with additionally added

sodium, which might not give the clear picture on the effect of sodium doping. Na naturally

out diffuses from SLG glass during the high-temperature synthesis process, which is the source

of sodium doping for typical kesterite (CZTSSe) or chalcopyrite (CIGS) synthesis process [131].

The optimum sodium for the fabrication of CIGS-based material is often considered being

equal to the amount of Na diffused from the glass, which is between 0.05 and 0.5 at(%) [132].
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But, Na diffusion from SLG is not controllable, which leads to the non-reproducibility of the

process. Therefore, it is much beneficial to add sodium externally for better controllability

and reproducibility of the process.

Table 5.1: Selection of works on the effect of sodium and antimony on Kesterite-based solar cell

Kesterite

material

Synthesis

method

Doping

method
VOC JSC FF PCE RS RSh

(mV) (mA.cm-2) (%) (%) (Ohm.cm2) (Ohm.cm2)

CZTS [116] Co-sputtering+S
Reference 589 10.48 49.71 3.07 2.9 3073

SS foil/Ti-10nm NaF(PAS) 638 13.38 48.01 4.1 3.93 3146

CZTS [117] Co-evaporation
Reference 584 13.2 61.2 4.71

SLG-40 nm NaF(PAS) 603 13 66.8 5.23

CZTS [128] Spin-coating+S

Reference 550 16.3 47.1 4.2 4.9 930

Reference 563 15.3 58.8 5.1 1.5 1320

SLG+Sb(Oac3)+NaCl 610 14.9 63 5.7 1.3 1630

CZTSe [118] Co-evaporation
Reference 315 35 58 6.4 147

SLG+5nm NaF(PDT) 335 39 61 7.8 141

CZTSe [119] Co-evaporation

Reference 274 35.9 51.8 1.94 0.74

SLG (ref.) 322 31.2 58.8 5.92 0.28

SLG+15 nm-NaF(PAS) 331 33.8 60.3 6.75 0.27

CZTSSe [120] Spin coating+Se
Reference 418 27.5 57 6.6

SLG+NaCl 450 30.77 59 8.3

CZTSSe [129] Spin coating+Se
Reference 439.1 28.1 47.2 5.8 2.8

SLG+SbCl3 463.9 29.3 58.2 7.9 1.7

All the works listed in table 5.1, show that the addition of sodium leads to an improved of VOC

and FF. Moreover, for some works JSC was also increased. There is no clear explanation on

why JSC was higher with sodium addition, even though the depletion region width gets smaller

compared to the absorber without sodium doping because of higher net carrier concentration.

This issue will be also addressed in this chapter.

5.1.2 Na and Sb incorporation method from literature

There are several ways to incorporate Na in the absorber during sequential process (sputtering

based). Na naturally out diffuses from glass during annealing, which is shown in figure 5.1 (a).

Moreover, three strategies can be adopted for external diffusion of alkali by sequential process.

Compound of Na can be applied as source of Na before absorber synthesis (Pre-absorber

synthesis (PAS)), which is shown in figure 5.1(b). Similar compound of Na can be applied after

absorber synthesis prior to second annealing to assist Na diffusion in the absorber, commonly

known as post deposition treatment (PDT) (see figure 5.1(c)). Lastly, Na doped Mo back

contact can be used as the source of Na during absorber synthesis, shown in figure 5.1(d).
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Figure 5.1: Schematic illustration of different methods for Na incorporation into absorber during
sequential process. (a) Na is diffusing from the substrate (usually soda-lime glass) into absorber during
growth. (b) A Na-diffusion barrier blocks transport of Na from the substrate, Na is supplied by a thin
Na-containing precursor layer deposited prior to absorber growth (Pre-absorber synthesis (PAS)). (c)
Na is diffused into as-grown absorbers using post-deposition treatment (Post-deposition treatment
(PDT)). (d) Sodium is diffusing from sodium doped molybdenum during the absorber growth

Different processes of Na incorporation have been investigated until now, focusing mainly on

selenium or sulfo-selenium based absorbers. For CIGS-based technology PDT, showed the

best result in terms of electrical properties [107]. But, in the case of kesterite based technology,

some work were done showing lower effectiveness of PDT [133, 134] compared to the process

where Na was present during the synthesis (PAS). Although, by adopting process (d), com-

plexity can arise from different back contact structure (different sheet resistance, temperature

dependent diffusion of Na).

Moreover, solution-based processes have been found to be more efficient towards incor-

poration of alkali in kesterite absorber [120]. Nonetheless, as sequentially process (sputter

deposition of precursor) can be easily industrialized, establishing successful Na incorporation

strategy for CZTS-based absorber is of pure interest. However, to date no work has been done

on CZTS-based absorber towards defining the best Na incorporation strategy. Therefore, later

in this chapter, the best strategy for Na incorporation in CZTS absorber will be discussed.

Sb incorporation has been tested on CIGS technology by different methods, such as adding

Sb-based compound (Sb2S3) [112] as a solute for solution processed method or by evaporat-

ing Sb directly on Mo prior to the co-evaporation synthesis of the absorber [108, 115]. But,

only solution based process was investigated in case of kesterite absorber, where Sb(Oac3)

and SbCl3 were used as a solute for Sb [128, 129]. Therefore, this study will be the first of a

kind, which will bring some insight on Sb doping of CZTS material by sequentially processed

(sputtering-based) absorber.
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5.2 Na and Sb incorporation strategy

First of all, a SiNX barrier is used between SLG and Mo to stop diffusion of Na and any other

impurity from SLG, to study the effect of Na much more precisely. One CZTS sample is

synthesized with SiNX barrier and without any intentional doping to be used as a reference

sample, which will be called ’undoped’ in the following sections.

Na incorporation in CZTS has been tested using two strategies, that are applying Na before

and applying Na after the synthesis of CZTS (similar to figure 5.1(b) and (c) respectively).

Samples from both strategies will be addressed by PAS(NaXX) (PAS stands for pre-absorber

synthesis and XX stands for the thickness of NaF used in nm) and PDT(NaXX) respectively in

this chapter.

Sb incorporation has only been tested before absorber synthesis since the main expected

result concerns the absorber crystallization. Sb can be deposited either on top of Mo or on top

of the precursor. In the first case, delimitation occurs during the annealing process. Thus, Sb

has been deposited only on top of precursor. As we want to study the effect of Sb, as well as

the effect of Na and Sb co-doping on CZTS, two routes are used for this study. First route is

the incorporation of Sb in CZTS without Na, which will be called PAS(SbYY) (YY stand for the

thickness of Sb used in nm)(see figure 5.2(a)). And the second route is the incorporation of Sb

in CZTS absorber with Na, which will be called PAS(NaXX+SbYY) (see figure 5.2(b)).

Figure 5.2: Schematic illustration of Sb incorporation into absorber during a sequential process. (a)
Sb is supplied by a thin Sb-containing precursor layer deposited prior to absorber growth (PAS(Sb)
(Pre-absorber synthesis)) and (b) Na and Sb are supplied by a thin Na and Sb-containing precursor
layer deposited prior to absorber growth (PAS(Na+Sb)).

94



5.3. Experimental results on Na and Sb incorporation

Table 5.2: List of the samples and amount of dopant used for each samples.

Sample
Sb NaF

Strategy Deposition position Thickness (nm) Strategy Deposition position Thickness (nm)

Undoped N/A N/A 0 N/A N/A 0

PAS(Na10) N/A N/A 0 PAS before precursor 10

PAS(Na20) N/A N/A 0 PAS before precursor 20

PAS(Na40) N/A N/A 0 PAS before precursor 40

PDT(Na10) N/A N/A 0 PDT after absorber 10

PDT(Na20) N/A N/A 0 PDT after absorber 20

PDT(Na40) N/A N/A 0 PDT after absorber 40

PAS(Sb5) PAS after precursor 5 N/A N/A 0

PAS(Sb10) PAS after precursor 10 N/A N/A 0

PAS(Sb20) PAS after precursor 20 N/A N/A 0

PAS(Na10+Sb10) PAS after precursor 10 PAS before precursor 10

PAS(Na40+Sb20) PAS after precursor 20 PAS before precursor 40

For Na and Sb incorporation, 99.99% pure NaF and 99.998% pure elemental Sb have been

deposited by evaporation. Sodium fluoride (NaF) of different thicknesses has been deposited

by thermal evaporation using 730° C and 2nm/min deposition rate. Sb is deposited by thermal

evaporation using 160° C and 2.5 nm/min deposition rate. All the samples are sulfurized

using the standard procedure explained in section 4 (200° C are used in sulfur zone for this

experiment). For Na incorporation after synthesis, NaF is applied on undoped CZTS absorber

prior to a second annealing for 15 min and 350° C under Ar assisted sulfur flow.

5.3 Experimental results on Na and Sb incorporation

The first part of this section deals with the effectiveness of Na and Sb incorporation and their

distribution in the absorber. The effect of structural and optoelectrical properties will then be

discussed.

5.3.1 ToF-SIMS analysis

Compositional depth profiles are performed on different samples by TOF-SIMS depth profiling

to acquire the distribution of elements. The presence and distribution of Na and Sb throughout

the experimental samples can be determined by this analysis due to its very low detection

limits and excellent depth resolution.

Details on experimental procedure can be found in section 3.2.6. Complete solar devices (after

finishing opto-electronic analysis) are used for this experiment after removing TCO and CdS
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layer using 10% (v/v) HCl(Hydrochloric Acid). Therefore, the stacking order of all the samples

used for SIMS analysis is CZTS/Mo(Molybdenum)/SiNX/SLG.

5.3.1.1 Evaluation of Na and Sb depth profile

TOF-SIMS profiling of the undoped sample is performed in positive secondary ion mode

(figure 5.3(a)) and negative secondary ion mode (figure 5.3(b)). The approximate sputtering

depth for all the samples are calculated as follows. First, for the simplicity of the analysis, the

thickness of the layers for all the sample is assumed to be the same(e.g.CZTS(1500 nm)/Mo(600

nm)/SiNX(300 nm)/SLG). Second, for positive secondary ion mode, the signature of Mo back

contact is used to provide depth perspective through the film. Thus, the crossover between

the Mo and Cu(Copper) profile is determined to be CZTS/Mo interface and the crossover

between the Si(Silicon) and Mo profile is determined to be Mo/SiNX interface. Furthermore,

the interface between SiNX barrier and SLG is determined by an increment of Na profile. Since

SiNX is used as a barrier for Na, it will contain a lower amount of Na compared to SLG. Third,

for negative ion secondary mode, initial decrease of S(Sulfur) profile is used to indicate the po-

sition of CZTS/Mo interface. Mo/SiNX and SiNX/SLG interfaces are determined by O(Oxygen)

profile. Since the barrier layer contains lower amount of O than Mo and SLG, that can be seen

as a decrement between Mo and SLG glass interface (see figure 5.3(b)).

Figure 5.3(a) shows that Cu and S are distributed homogeneously throughout the absorber,

while Zn has a slight increase in the middle of the absorber and Sn has a slight increase in the

CZTS/Mo interface. These could give us a hint about the presence and position of Zn and

Sn-based secondary phase in the absorber. It is worth to note that Na in the surface and the

bulk can still be detected in the undoped sample due to the high sensitivity of Na during the

positive secondary mode. However, the role of SiNx as the Na diffusion barrier confirmed by

comparing this with a Na doped sample (see figure 5.5 (a)). Si showed a sharp rise in Mo/SiNX

interface followed by a steady decrease, which is expected due to the difference in atomic(%)

of Si in SiNX and SiO2. In negative secondary ion mode, S profile exhibits too high intensity

counts to use for analysis. Therefore, S profile from positive secondary ion mode will be used

to compare S profile of different samples. An increased amount of O can be seen in the back

of CZTS absorber and inside Mo with a decrease in SiNX and increase again in SLG (as SLG

contains a high amount of oxygen). Interestingly, F(Fluorine) profile can be detected success-

fully using negative secondary ion mode, where it increased sharply near SiNX/SLG interface.

This is still not clear for the F to be found on the surface of SLG, but it might be related to

the surface de-alkalization treatment done by the manufacturer using HF (hydrofluoric acid)

to increase the transmittance and corrosion resistance [135, 136]. Furthermore, detection of
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Sb is near the detection limit of SIMS analysis, which indicates that no Sb was found in the

undoped sample.

(a) SIMS analysis of the undoped sample done by positive secondary ion mode

using O+
2 ion sputtering.

(b) SIMS analysis of the undoped sample done by negative secondary ion mode

using C s+ ion sputtering.

Figure 5.3: SIMS analysis of the undoped sample.

Five samples (undoped(ref.), PAS(Na10), PDT(Na40), PAS(Sb10) and PAS(Na10+Sb10)) will

be considered from each kind of experiment for the analysis using TOF-SIMS. To have a

closer inspection on the elements distribution of CZTS compound throughout the depth,
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enlarged profiles of Cu, Zn, Sn and S are shown in figure 5.4. At first glance, the Cu, Zn, Sn

and S profiles appear similar. However, upon closer inspection (see figure 5.4(b)) it can be

seen that increased amount of Zn is present in the bulk of the undoped sample compared

to front or back interface of the absorber, while increased amount of Zn is found near the

back interface for other samples. Since all the samples are nominally Cu-poor and Zn-rich, it

is not surprising to observe segregated ZnS. Also, the presence of Na and Sb in the absorber

may have influenced the location of the precipitated ZnS. This phenomenon is in agreement

with the literature [125]. A closer look at Sn profile of all the sample shows a slight increase in

Sn intensity near the Mo interface, indicating that possible secondary phases of Sn might be

present at the back side of the absorber. However, no corresponding peaks are detected by

XRD associated with Sn secondary phase, which leads to the conclusion that the amount of

this secondary phase is lower than 2% [137].

(a) SIMS Cu-profile (b) SIMS Zu-profile

(c) SIMS Sn-profile (d) SIMS S-profile.

Figure 5.4: Enlarged view of Cu, Zn, Sn and S for different doping procedures.
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The distribution of Na, Sb and F for all the samples is shown in figure 5.5. All the Na incorpo-

rated samples show higher intensity counts of Na compared to the undoped sample (see figure

5.5(a)), which confirms the role of SiNx as barrier. In the case of the PAS(Na10) sample, higher

Na counts are found near the surface and rear of the absorber, in accordance with the literature,

explaining that Na segregates at the kesterite surface and grain boundaries [131, 138, 139]. In

the case of the PDT(Na40) sample, a more homogeneous distribution of Na is found. The PDT

sample showed smaller grains with higher density of grain boundaries and since Na tends to

accumulate in the grain boundaries (see figure 5.5), Na distribution appears to be more flat.

This is also consistent with the literature [132, 140]. In the case of the PAS(Na10+Sb10) sample,

the Na profile is similar to that of the PAS(Na10) sample with higher intensity. Na profile is

found to be higher inside Mo back contact for the sample synthesized with Na(PAS(Na10)

and PAS(Na10+Sb10)), while the opposite has been observed for undoped and PDT sample.

It proves that Na diffused inside Mo during synthesis process at 550° C for PAS(Na10) and

PAS(Na10+Sb10) sample, while second annealing at 350° C is not enough for Na to diffuse

inside Mo back contact in the case of PDT(Na40) sample.

F distribution profiles show similar characteristics as Na distribution (see figure 5.5(b)). The

lower intensity of F can be seen in the undoped sample compared to the sample treated

with NaF. On the other hand, PAS(Na10) sample and PAS(Na10+Sb10) sample have a higher

amount of F near CZTS/Mo interface and in Mo, while PDT(Na40) sample has relatively less

variation. Although many works have been done regarding Na incorporation via NaF, no work

emphasized the distribution of F throughout the CZTS absorber. This study demonstrates that

F is present in the completed solar cell (as these samples are the same samples used as solar

devices). Also, the position of F is found to be near the Mo interface and inside the Mo back

contact.

Sb distribution for different samples is shown in figure 5.5(d). In all the cases, Sb is detected

near the detection limit of SIMS profiling. Here, the undoped sample shows the absence of Sb,

while PAS(Sb10) and PAS(Na10+Sb10) shows some trace amount of Sb. Interestingly, when

Sb is used without Na, it can only be seen near the CZTS/Mo interface, while Sb is detected

mainly on the front and rear of the absorber for PAS(Na10+Sb10) sample.
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(a) SIMS Na profile.

(b) SIMS F profile.

(c) SIMS Sb profile.

Figure 5.5: SIMS signal of the dopant for different doping procedures.
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Integration of Na and F profiles have been done by separating the profile in three parts

(surface (0 nm-100 nm), bulk (100 nm-1500 nm) and Mo (1500 nm-2100 nm), in order to have

a relatively quantitative view on the distribution of those elements in CZTS (see figure 5.6).

Mo profiles from SIMS analysis for these samples are also given in figure 5.6(c) as a reference,

to validate this analysis, as the relative intensity of Mo signal for all these samples is similar.

The PDT(Na40) sample has a lower amount of Na compared to the PAS(Na10) and PAS(Na10+Sb10)

samples, although a higher amount of NaF is used for this sample. Some NaF from the surface

of CZTS absorber might be re-evaporated during second annealing or did not diffuse inside

the absorber and got removed during CdS process. As a result it shows low amount of Na in

the absorber, similar to the literature [141]. Also, Na on the surface is relatively higher for

PAS(Na10) sample, compared to PDT(40) sample, while the amount of Na in the bulk is similar.

On the other hand, the amount of Na is higher in both the surface and bulk for PAS(Na10+Sb10)

sample compared to the PAS(Na10) one, although a similar amount of NaF was used in both

cases. Therefore, in comparison Na in one absorber is enhanced in the presence of Sb. Lastly,

a similar integration is done on fluorine profile shown in figure 5.6(b), which agrees with the

previous discussion that higher fluorine is found inside Mo when NaF is present during the

synthesis. But, it is still unclear if F has any effect on material properties of CZTS absorber,

even though most of F seems to reside in Mo. Ab-initio calculation could provide information

on whether F intercalates in the lattice and makes additional defects in the absorber.
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(a) Comparison of the Na distribution in different re-

gions of the samples.

(b) Comparison of the F distribution in different regions

of the samples.

(c) Mo signal from SIMS analysis as a reference for the

samples.

Figure 5.6: Comparison of Na and F distribution in different regions of the samples based on integrated
raw SIMS data for different doping procedures (a, b) and Mo SIMS profile for these sample (c).

In summary, the effects of Na and Sb incorporation on the material properties of CZTS-based

absorber are investigated using ToF-SIMS profiling:

1. The presence of Na and Sb is identified compared to the undoped sample, which proves

the effectiveness of doping strategy.

2. The Position of the Zn based secondary phase shows dependency on the presence of Na

in the absorber. Higher amount of Zn are found in the bulk of the absorber in the case

of the undoped sample, while the Na doped sample showed higher Zn at the interface

of the absorber.

3. Na applied before absorber synthesis showed higher amount of Na inclusion in the

absorber compared to PDT one.

4. F has been detected in the absorber using NaF as the source of Na. Further, Ab-initio
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calculation could provide information on whether F intercalates in the lattice and make

additional defects in the absorber.

5.3.2 Effect on material properties

5.3.2.1 Effect on macro structural properties

Optical microscope images of absorber surface after different external doping strategies are

shown in Figure 5.7. The pictures are arranged according to the different absorbers prepared

with NaF and/or Sb using PAS method.

The first observation is that the PAS(Na40) sample shows some dark spots on the surface,

which peels off during the CdS deposition process required to make a complete device. Based

on this observations, we concluded that 40 nm of NaF is the highest usable amount for PAS(Na)

method (otherwise, further degradation would occur in the finished device). Similarly, Sb also

experiences some peeling off while using 20 nm of Sb. Hence, we limit our Sb usage to 20 nm

during this experiment. Moreover, the incorporation of both Na and Sb (PAS(Na40+Sb20))

shows the same peeling off defect. Thus we will only consider PAS(Na10+Sb10) sample for

material and electrical characterization in the following discussions. Secondly, the surface of

the undoped sample shows some inhomogeneity, while PAS(Na10) and PAS(Na40) samples

appear to exhibit reduced inhomogeneity, only due to differences in contrast. But, using both

Na and Sb together for PAS(Na10+Sb10), the absorber surface appears to be truly homoge-

neous judging by the surface color. Lastly, the PDT(Na) sample (not shown in the figure) did

not show any macroscopic degrading like the PAS(Na) sample, even with 40 nm NaF usage.
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Figure 5.7: Optical microscopic image of absorber surface for various doping treatments via optical
microscope. Red circle indicates the spots that peeled off during CdS deposition.

Figure 5.8 details a peel-off spot from the PAS(Na40) sample with an optical zoom on the

dark spot(5.8(a)) along with top and cross-section SEM images of the same spot (figure 5.8(b)

and (c) respectively). It is then identified that this region is forming a bubble between Mo

and absorber. Indeed, this bubble formation between Mo and the absorber is the reason

behind the peeling off happening during CdS deposition process whenever a higher amount

of NaF(more than 40 nm) or Sb(more than 20 nm) is used.
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Figure 5.8: Formation of bubble on the PAS(Na40) sample via optical microscope (a), SEM top view of
a bubble (b), SEM cross-section of a bubble (c).

5.3.2.2 Effect on micro-structural properties

The surface SEM images of the different samples are shown in figure 5.9. The morphology of

PDT(Na10) (figure 5.9(a)) is similar to that of PDT(Na10) (figure 5.9(c)). For the PDT(Na10)

sample, some white dot-like particle can be seen on the grains of the absorber, where similar

particle is identified as the residue of alkali (Na, K) fluoride after PDT by Khatri et al, [142].

In addition to these particle on the surface, both the undoped and PDT(Na10) samples show

a non-homogeneous distribution of grains, where some show sharp and angular grain in

micros size and other show more spherical grains with sizes below 300 nm. Both undoped

and the PDT(Na10) samples are synthesized without Na, which is the reason for having

similar morphologies. The second annealing (350° C for 15 minutes) with NaF, applied to the

PDT(Na10) sample has no apparent effect on the morphology of the absorber, in agreement

with the literature [111,143]. In contrast, Na used during the synthesis process has a noticeable

effect on the morphology of the absorber, as can be seen in figure 5.9. The PAS(Na10) sample

exhibits sharper and more faceted grains than the undoped sample.

Absorber synthesized with Sb and without Na (in figure 5.9(d)) shows a similar morphology as

the undoped sample. Thus, no effect of Sb on crystallization is observed. Interestingly, using
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Na and Sb together during CZTS fabrication has a significant effect on the morphology( 5.9(e)).

The SEM image of the surface for the PAS(Na10+Sb10) sample reveals grains bigger than 1

µm. It can be concluded that Sb facilitates grain growth only in the presence of Na during

synthesis, as has already been observed with CIGS technology [115].

(a) Undoped (b) PAS(Na10) (c) PDT(Na10)

(d) PAS(Sb10) (e) PAS(Na10+Sb10)

Figure 5.9: SEM surface images of CZTS absorber with different doping methods. SEM surface of
undoped (a), PDT(Na10) (c) and PAS(Sb10) (d) shows similar morphology, where PAS(Na10) (b) shows
more faceted grains and PAS(Na10+Sb10) (e) shows increased grain growth

These observations are further confirmed by the SEM cross-section images in figure 5.10. Here,

non-homogeneous grain distribution ranging from 200 nm to 500 nm in the undoped sample

is visible. When Na is present during absorber synthesis in the PAS(Na10) sample (5.10(b)),

the grain size increased partially up to 800 nm. But, using higher amount of Na during this

strategy leads to opposite results: smaller grain size and lower adhesion between CZTS and Mo

(figure 5.10(c)). A similar effect with higher Na resulting in smaller grain size is also observed

with CIGS absorbers by D. Rudmann [132]. Conversely, no apparent change of grain size

is observed in the case of the PDT sample, whatever the amount of Na used. No apparent

change is observed in the morphology of PAS(Sb10)(figure 5.10(f)), while a degradation of the
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morphology observed with higher Sb amount (PAS(Sb20) (figure 5.10(g)).

Finally, incorporation of Na in conjunction with Sb (figure 5.10(h)) shows noticeable grain

size change compared to the undoped sample, confirming what had been observed with the

surface SEM images. The grain size of this sample is bigger than 1 µm, the same thickness as

that of the absorber itself.

In summary, the effects of Na and Sb incorporation on the morphology of CZTS-based ab-

sorber are:

1. The inclusion of Na before synthesis leads to sharp grains with facet and slight increase

of grain size compared to the undoped sample. On the contrary, an ’overdose’ of Na

degrades the grain size.

2. The inclusion of Na after synthesis does not increase the grain size even with a higher

amount of Na used in the process. Thus, no change of morphology is observed.

3. The inclusion of Sb has no apparent effect on the absorber except having slightly round

shaped grains, while ‘overdose’ of Sb degrades the morphology of the absorber.

4. The inclusion of Sb in the presence of Na increased the grain size to more than 1 µm,

which is the highest grain size achieved during this study for CZTS-based absorber. The

co-doping of Na and Sb must have trigger the effectiveness of Sb as surfactant. Also, this

can be relatde to the similar distribution profile of Na and Sb observed during SIMS

analysis on this sample. (figure 5.5).
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(a) Undoped (b) PAS(Na10) (c) PAS(Na40)

(d) PDT(Na10) (e) PDT(Na40)

(f ) PAS(Sb10) (g) PAS(Sb20)

(h) PAS(Na10+Sb10)

Figure 5.10: SEM cross-section images of CZTS absorber with different doping methods.
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5.3.2.3 XRD analysis

The room temperature XRD of the CZTS absorber with the highest amount of Na and/or

Sb used is shown in figure 5.11. XRD pattern from each experiment exhibit major peaks

corresponding to the CZTS crystal structure. No noticeable peaks of secondary phases can be

observed from figure 5.11. The diffraction peaks from (112), (220,204) and (312) planes are

clearly observed at 28.44°, 47.33° and 56.09, which indicates the presence of a kesterite phase.

Figure 5.11: X-ray diffraction patterns of CZTS layers grown with various Na and Sb incorporation
strategies.

Effect on texturization: The enlarged XRD diffractogram of all the samples are shown in figure

5.12, focusing the (112) and (220,204) peaks. The (112) and (220,204) reflection intensities

have been determined by integrating the area below those peaks. The ratios of the intensity is

shown in the inset of each respective XRD pattern.

The PAS(Na) samples show preferential (112) orientation by having higher I112/I220,204 value

compared to undoped one (see figure 5.12 (a)), although, this value is decreasing with increas-

ing amount of Na used. On the other hand, the PDT(Na) samples shows less pronounced

preferential orientation (figure 5.12(b)) no and noticeable change using higher amount of

Na is observed. For the PAS(Sb) samples (112) texturization is not favored compared to the

undoped sample (figure 5.12(c)). But, samples with Na and Sb doping shows higher (112)
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texturization, where I112/I220,204 ratio is higher than the ratio of the undoped sample and

similar to the PAS(Na10) one. Likewise, Rudmann et al,. show similar properties of Na in the

case of CIGS-based absorbers [132, 143].

From this analysis, it can be inferred that the texture of the CZTS compound is influenced by

the presence of Na during synthesis (PAS(Na)), rather than added after synthesis (PDT(Na)).

Furthermore, Sb incorporation did not show any preferential texturization.

(a) XRD diffractogram of all the PAS(Na) samples

and undoped sample as a reference.

(b) XRD diffractogram of all the PDT(Na) samples

and undoped sample as a reference.

(c) XRD diffractogram of all the samples with Sb

and undoped sample as a reference

Figure 5.12: XRD diffractogram of CZTS absorbers grown with various amount of Na and Sb under
different experimental conditions. In the inset, the ratio of the intensity of peak (112) and peak (220) is
indicated to demonstrate the preferred orientation due to Na and Sb incorporation.

Effect on crystallite size: XRD diffractograms are also used to calculate the average crystallite

size of each sample from (112) peak by Scherrer’s equation [144]. The detailed procedure for

extracting crystallite size using Scherrer’s equation is explained in section 3.2.4. The mean

crystallite sizes of all the samples are shown in figure 5.13(b). Here, Na incorporation during

the synthesis clearly increases the crystallite size compared to the undoped sample from

70 nm to 130 nm as confirmed by Prabhakar et al [145]. On the other hand, Na added after
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the synthesis has a small effect on the crystallite size, which is coherent with the grain size

observed by SEM. Furthermore, the addition of Sb increases the crystallite size, while the grain

size seen from SEM is unchanged compared to the reference sample. Therefore, the relation

between mean crystallite size and morphology is not properly understood.

Figure 5.13: Crystallite size deducted from XRD diffractograms of Na and Sb incorporated samples.

5.3.2.4 Raman analysis

The formation of a CZTS phase is further confirmed by Raman scattering (532 nm laser

wavelength used) in figure 5.14, where all the spectra shows significant peaks associated with

A mode symmetry of CZTS at 288 cm-1 and 338 cm-1 [58]. No obvious peaks associated with

secondary phases can be detected from these spectra, which indicates good formation of

CZTS compounds. From figure 5.14(a), it can be seen that the intensity and the width of both

A mode peaks improved with Na doping for PAS(Na40) and PDT(Na40) sample compared to

the undoped sample. In the case of the peak at 338 cm-1, the FWHM of the undoped sample

was found to be 7.2 cm-1, while the FWHM of PAS(Na40) and PDT(Na40) was found to be 5

cm-1 and 4.6 cm-1 respectively. Narrower FWHM compared to the undoped sample indicates

better crystallinity in the presence of Na.

On the contrary, Sb doping (PAS(Sb20)) showed similar Raman spectra as the undoped sample.

Here, the FWHM of the PAS(Sb20) sample is found to be 7.1 cm-1 for the peak at 338 cm-1,

which is similar to the undoped one. Na and Sb incorporation (PAS(Na10+Sb10)) showed

similar Raman scattering as the Na doped sample, with similar values of FWHM for the peak

at 338 cm-1.

Hence, Na incorporation results in better crystallinity for CZTS compound seen by Raman
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scattering. These effects can be also clearly seen in figure 5.14(b), which is an enlarged image

of A mode symmetry peak of CZTS at 338 cm-1.

(a) Raman spectra of the Na and Sb incorporated sam-

ples.

(b) Zoom of the A1 mode peaks.

Figure 5.14: Effect of Na and Sb on CZTS absorber observed by Raman spectroscopy.

5.3.3 Effects of Na and Sb on device properties

In this section, several issues have been pointed out by the result obtained from light J-V, dark

J-V, capacitance-voltage measurement and EQE.

5.3.3.1 Light J-V Measurements

The electrical parameter (VOC, JSC, FF and PCE) of complete solar cells using all the experi-

mental samples under AM 1.5G light illumination is shown in figure 5.15. For each sample, 6

to 9 solar cells are measured and the maximum, minimum, mean (dots connected by green

line for representation of trend), median (horizontal line in the box) and interquartile range

(colored box showing from 75th percentile to 25th percentile) is shown as a box plot.

First of all, the undoped sample showed low efficiency (<2%) with limited VOC (∼ 530 mV),

JSC (∼ 7 mA/cm2) and FF (∼ 42%). A significant improvement in efficiency is brought by the

introduction of Na, particularly because of a VOC gain of about 100 mV- 150 mV. Second, the

PAS(Na) strategy shows better device properties compared to PDT(Na). PCE decrement can

be observed while using higher amount (40 nm) of NaF using PAS(Na) strategy, mainly due

to the reduction in FF and JSC. But, higher amount of NaF shows better efficiency using the

PDT(Na) strategy. Third, Sb incorporation seems to have no or negative effect in terms of

PCE compared to the undoped sample. But, the PAS(Na10+Sb10) sample showed similar

increase in PCE as PAS(Na10) sample, irrespective of the grain size increament in the case
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of PAS(Na10+Sb10). Since Sb shows no improvement in device properties alone, the PCE

improvement of PAS(Na10+Sb10) compared to undoped sample is, therefore from Na only.

Thus, later in this chapter, Sb doped samples will not be considered and some additional

characterization can be found in appendix.

(a) Open circuit voltage (b) Short circuit current

(c) Fill factor (d) Efficiency

Figure 5.15: PV parameter of all the samples doped with different thicknesses of NaF using PAS(Na)
and PDT(Na) methods and different thicknesses of Na and Sb using PAS(Sb) and PAS(Na+Sb) methods.

5.3.3.2 Dark J-V measurements:

Series resistance (RS) and shunt resistance (RSh) data are extracted from dark J-V curve of Na

doped samples and shown in figure 5.16.
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(a) Series(RS) and shunt resistance(RSh) of the

PAS(Na) samples.

(b) Series(RS) and shunt resistance(RSh) of the

PDT(Na) samples.

Figure 5.16: Electrical parameter (series resistance, shunt resistance) of samples doped with Na.

In figure 5.16(a), in the case of the PAS(Na) strategy, increasing the amount of Na shows a

decrease in both RS and RSh, compared to the undoped sample. The general tendency of

doping is known to reduce the series resistance [46], which explains this tendency. And the

reason for RSh decrement is related to the bubble formation in the absorber. An alternative

current path is created through peeled off (due to bubble formation) part of the absorber,

which reduces the RSh. In the case of the PDT(Na) strategy(figure 5.16(b)), increasing amount

of Na shows little decrease in RS (overall high RS) and increase in RSh, compared to undoped

sample. RS and RSh value of PV device mainly affects the FF, which can explain the FF variation

shown in figure 5.15. But, it can not explain the increase of PCE, as the main contribution is

from the increase in VOC.

5.3.3.3 C-V measurements:

In figure 5.17, the evolution of average VOC is presented as a function of apparent carrier

concentration NC-V. Here, the colored circles are representing the average value of respective

samples, error bars are representing the standard deviation and arrow is representing the

increment of Na used for each procedure.
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Figure 5.17: The evolution of VOC as a function of NC-V. The arrow is indicating the increasing amount
of Na used in each case.

First of all, Na incorporation increased the apparent carrier concentration of CZTS device

in an order of magnitude compared to the undoped sample (see figure 5.17(a)).A tendency

of increased VOC can be observed by the increase of NC-V. Second, NC-V of PAS(Na) samples

are higher compared to the PDT(Na) samples. Thus, the PAS(Na) method appeared to be

much effective for Na incorporation compared to the PDT(Na) method. Third, a decrement

of VOC is observed for PAS(Na) samples, while higher amount of Na used, even though the

NC-V increased. This can be related to the poor microstructural properties explained earlier.

Generally Na incorporation leads to higher hole concentration in the bulk of the kesterite

absorber [122], which explains the increase in NC-V. Also, the composition of bulk material is

also reported to affect the hole concentration in the bulk [146]. Therefore, to know the effect of

external doping, we made sure that the reference sample and the sample with external doping

have similar cation composition. The average cation values found from EDX measurement is

of Cu/Zn+Sn=0.73(±0.03), Zn/Sn=1.11(±0.04) and Cu/Sn=1.56(±0.06).

The VOC increment due to the increase in NC-V can be explained by the following equation
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[147],

∆VOC = kT

q
ln(

NC−V

N0
) (5.1)

Here, k is the Boltzmann constant, T is the temperature during the experiment (300K), q is the

charge of the electron, NC-V is the net carrier concentration of the doped sample and N0 is

the net carrier concentration of the undoped sample. However, this equation alone can not

explain the 100-150 mV of VOC increase. Therefore, some other effect might be associated with

this increment of VOC along with the increased net carrier concentration.

Another possible reason for the increased VOC could be the increase of diffusion length (LD).

The relation between JPh and VOC was found from Green et al,. [148],

VOC = kT

q
ln(

JPh

J0
) (5.2)

Here, J0 is saturation current, which can be described by,

J0 =
qDn2

i

LD N
(5.3)

Where ni stands for the intrinsic carrier concentration and N stands for the majority carrier

concentration. By using equation 5.2 and 5.3, considering ni, N and D is constant for the

samples, one can deduce,

VOCα lnLD (5.4)

Thus, the increase of VOC and JSC can be partially explained by diffusion length. This point

will be further discussed in a later section.

5.3.3.4 EQE measurements

Figure 5.18, shows the EQE spectra of Na incorporated samples. First, incorporation of Na

(any strategy) shows improves EQE for all wavelength due to reduced interface recombination

and increased carrier collection length [149]. The EQE of PAS(Na) showed the highest EQE
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response in the case of the PAS(Na10) sample and gradually decrease with the increased

amount of Na used. Although the EQE response of PDT(Na40) sample is higher compared to

PAS(Na10) sample, due to the higher series resistance of PDT(Na40) sample, the JSC of this

sample is found to be lower [46].

4 0 0 6 0 0 8 0 0 1 0 0 0- 1 0
0

1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

W a v e l e n g t h  ( n m )

 U n d o p e d
 P A S ( N a 1 0 )
 P A S ( N a 2 0 )
 P A S ( N a 4 0 )

EQ
E(%

)
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(b) EQE spectra of PDT(Na) samples

Figure 5.18: EQE spectra of samples with different amount of Na doping.

Finally, it is clear that for PAS(Na) strategy, 10nm NaF showed the best device properties and it

started to decreased with increased amount of NaF used (use of 20 nm NaF). Therefore, a value

between 10nm and 20nm (in this case 15 nm is used) of NaF is used to prepare another sample.

PDT(Na) strategy got saturated in terms of device properties using 40nm of NaF, therefore no

further sample is prepared. The light and dark J-V curve of PAS(Na15) sample are shown in

figure 5.19. Also, the detailed electrical parameters of the PAS(Na15) and PDT(Na40) sample

are shown along with undoped sample in table 5.3(for the cell with the best efficiency).

Indeed, further improvement is achieved using 15 nm NaF for PAS(Na) strategy. Highest

VOC of 678 mV is achieved with voltage deficit of 802 mV. Increased JSC, FF and efficiency is

achieved due to decrease of RS and increase of RSh and NC-V. Although, the difference of VOC

between PAS(Na15) and PAS(Na40) is 94 mV, the net carrier concentration only accounts for 8

mV. Therefore, the minority carrier lifetime must be increased for PAS(Na15) sample, which

showed higher VOC and JSC.
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Figure 5.19: light J-V (solid line) and dark J-V (dashed line) curve of the optimized PAS(Na) method
using 15 nm NaF along with the PDT(Na40) sample and undoped sample (circles are showing the
crossover point for each method)

Table 5.3: All electrical parameters of PAS(Na15) and PDT(Na40) sample compared to undoped sample

Light IV Dark IV C-V EQE

Sample VOC JSC FF Efficiency RS RSh NC-V W ∆ VOC JSC(EQE) Eg VOC deficit

mV mA.cm-2 % % ohm.cm2 ohm.cm2 cm-3 nm mV mA.cm-2 eV mV

Undoped 470 9.7 46 2.1 18 3101 1.85E+16 304 10.3 1.52 1050

PAS(Na15) 678 13.3 50 4.5 9.1 3320 1.13E+17 157 47 15.5 1.48 802

PDT(Na40) 584 11 50 3.2 14.4 5294 8.31E+16 218 39 13.2 1.52 936

5.4 Simulation using e-ARC

e-ARC1 is a simulation software that can be used to estimate physical parameters of the solar

cells (carrier collection length, recombination losses etc) using EQE analysis. Details on the

simulation process is explained in section 3.3.4. From carrier collection length, we could have

an estimation of carrier diffusion length according to following equation 5.5.

LC = LD +W (5.5)

1https://unit.aist.go.jp/rcpv/cie
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Here, LC , LD and W denote the carrier collection length, carrier diffusion length and width of

the depletion region. Width of the depletion region (W) can be extracted from C-V measure-

ments.

First, the experimental and simulated EQE (calculated using e-ARC) of undoped sample

are shown in figure 5.20, along with the absorption in different layers of solar cell. For this

fitting, carrier collection length of 165 nm is found to be optimum. Figure 5.20 shows a fitting

mismatch at short wavelength (500 nm-600 nm), where the calculated EQE is higher than

experimental EQE. The current loss in (Jloss) each layer is listed in table 5.4 and 5.4, along with

the optimum thickness found for each layer.

Figure 5.20: Fitting representation of experimental EQE from undoped sample with simulated EQE.

One of the main reason evoked for limited EQE at all wavelengths in thin film solar cell

is surface recombination at the heterojunction interface [149]. It can explain the mismatch

between experimental and simulated value. To into account this front interface recombination,

another layer with same optical properties as absorber (CZTS) is introduced in the calculation.

This layer is be called dead layer, which will not allow carrier extraction in the interface and as a

result calculated EQE will be lower for short wavelength side. Although, this way of considering
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Table 5.4: List of current losses (Jabsorption) and the optimized thickness of the layers of solar cell using
undoped sample.

Layer Thickness (nm) Jabsorption (mA/cm2)
ZnO:Al 400 3.8

ZnO 50 0.2
CdS 86 3.6

CZTS 1500 25.0
Mo 4.3

MoS2 50 2.4

Table 5.5: Absorption in CZTS (JCZTS) along with the loss by reflection (JReflection), recombination
(JRecombination) and JEQE derived from undoped sample.

JCZTS JReflection Jrecombination JEQE

(mA/cm2)
25.0 4.0 13.3 11.8

interface recombination is purely mathematical, the thickness of the dead layer accounts for

the recombination velocity at the front interface.

The schematic of this new layer, which is placed between CdS and CZTS layer, is illustrated in

figure 5.21.

Figure 5.21: Schematic of thin film layers used for the EQE calculation with a dead layer to consider as
front interface recombination.

Finally, after optimizing carrier collection length and dead layer thickness, the error (MSE)

value decreased, indicating higher degree of matching between experimental and simulated

EQE. The EQE spectra and associated data are shown in figure 5.22 and table 5.6 and 5.7.

Using dead layer, we can have a quantitative comparison on interface recombination by

the thickness or the current density loss of this layer from sample to sample, where higher

thickness will indicate high interface recombination.
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Table 5.6: List of current losses (Jabsorption) and the optimized thickness of the layers of solar cell using
undoped sample considering dead layer.

Layer Thickness (nm) Jabsorption (mA/cm2)
ZnO:Al 400 3.8

ZnO 50 0.2
CdS 50 2.4

Dead layer 31 4.6
CZTS 1500 25.0

Mo 4.5
MoS2 50 2.5

Table 5.7: Absorption in CZTS (JCZTS) along with the loss by reflection (JReflection), interface recombi-
nation from dead layer (JInterface), bulk recombination (JBulk) and JEQE derived from undoped sample
considering dead layer.

JCZTS JReflection JInterface JBulk JEQE

(mA/cm2)
21.3 4.0 4.6 9.4 12.0

Figure 5.22: Fitting representation of experimental EQE from undoped sample with simulated EQE
considering a dead layer(front interface recombination)

With this fitting, the carrier collection length for undoped sample determined to be 285 nm,
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which is less then the depletion region width of 300 nm estimated from C-V measurement.

That means the value of LD is negative. However, due to the uncertainty of both W estimated

by C-V and LC by EQE, it can be assume that LD for undoped sample is close to 0. There is a

slight mismatch for longer wavelength in the fitting (see figure 5.22), which might be due to the

fact that, optical parameter used for CZTS absorber is taken from a source which used 789 nm

thick CZTS material [65], where experimental sample consist of about 1500 nm thick absorber.

Nonetheless, this fitting is fairly good to make a comparison between different devices with

same layer construction.

A similar simulation has been done on PAS(Na15) sample, which is shown in figure 5.23

and table 5.8 and 5.9. A carrier collection length of 425 nm is found, which is significantly

higher than the collection length of undoped one. Furthermore, dead layer thickness is

found to be 4 nm, which is lower than the dead layer thickness of undoped sample (31 nm).

Therefore, compared to the undoped sample, the PAS(Na15) sample has a reduced front

surface recombination loss (reduced from 4.6 mA/cm2 to 0.7 mA/cm2). as well as a reduced

bulk recombination loss (from 13.3 mA/cm2 to 5.4 mA/cm2)

Figure 5.23: Fitting representation of experimental EQE from PAS(Na15) sample with simulated EQE
considering a dead layer(front interface recombination), along with the contribution from all the layer
and reflection.
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Table 5.8: List of current losses (Jabsorption) and the optimized thickness of the layers of solar cell using
PAS(Na15) sample.

Layer Thickness (nm) Jabsorption (mA/cm2)
ZnO:Al 350 2.7

ZnO 50 0.2
CdS 59 2.9

Dead layer 4 0.7
CZTS 1500 23.3

Mo 6
MoS2 50 3.7

Table 5.9: Absorption in CZTS (JCZTS) along with the loss by reflection (JReflection), interface recombina-
tion from dead layer (JInterface), bulk recombination (JBulk) and JEQE derived from PAS(Na15) sample.

JCZTS JReflection JInterface JBulk JEQE

(mA/cm2)
23.3 3.9 0.7 5.6 17.7

Using similar procedure, all the sample for this study are analyzed to obtain carrier collection

length and the result is discussed in following section.

5.4.1 Effect of Na incorporation on Carrier Diffusion Length

From the simulation described in section 3.3.4, carrier collection length of all Na incorporated

samples are calculated. As the depletion region width (W) of all the samples are estimated

from capacitance-voltage measurement, equation 5.5 can be applied to deduce the value of

minority carrier diffusion length (LD).The LD and W of all Na incorporated samples are shown

in figure 5.24. For PAS(Na) samples, while the W is decreasing due to increased NC-V, the

LD first increased until PAS(NaF15) and than decreased again. On the other hand, PDT(Na)

sample showed lower LD, due to the lack of Na incorporation described before. Also, from

this figure, we can see that, for Na incorporated samples, carrier collection lengths are more

dependent on LD, than on W. It explains that JSC still increases even with reduced W.

VOC of all samples as a function of the carrier diffusion length (LD) and interface recombination

loss (JInterface) are shown in figure 5.25. A clear correlation can be seen between LD and JInterface

with VOC. A reduced interface recombination and increased carrier diffusion length can be

observed as a result of Na doping. A similar conclusion was made by Gershon et al, [125]

showing the effect of Na as suppressor of non-radiative recombination. Thus, it can explain

the increase of VOC as well addition to the contribution of net carrier concentration.
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Figure 5.24: Estimated collection length, diffusion length and depletion region width of all samples.
Here, arrow is indicating the increasing amount of Na.

(a) Carrier diffusion length vs VOC. (b) Estimated interface recombination loss (JInterface) vs

VOC.

Figure 5.25: VOC as a function of carrier collection length and interface recombination loss (JInterface

for samples with different Na incorporation strategy.

5.5 Conclusion

This study reveals the effects of intentional Na and Sb contamination/incorporation on CZTS-

based absorber. Different strategies are applied for Na and Sb incorporation process. Na

showed beneficial effect on the morphology of the CZTS absorber, mainly inducing faceted

big grains, although overdose of Na degrades the morphology. The application of Na during
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synthesis is found to be the most effective way of doping, in terms of CZTS absorber morphol-

ogy and device performance. On the other hand, Sb doping does not show any morphological

or electrical improvement on CZTS absorber, without the presence of Na. When Na is present

in the absorber Sb incorporation results in improved crystallization.

Finally, Na incorporation enhanced the PCE of solar cell by improving not only VOC and FF

but also JSC. But the most significant improvement came from the increase in VOC. Increase in

carrier concentration and reduction in recombination (interface and bulk) are the reasons for

this improvement.
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The objective of this chapter is to examine the fabrication process of a front graded and back

graded CZTSSe absorber. A detailed characterization towards the realization of bandgap

grading will be also analyzed and discussed.

6.1 State of the Art

The best efficiency for selenium-based kesterite absorber is 11.6% [67] (with a bandgap of ∼1

eV) and 11% [78] for sulfur-based kesterite absorber (with a bandgap of ∼1.5 eV). A higher

bandgap gives a higher VOC at the expense of JSC, while a lower bandgap does the opposite. The

bandgap tuning ability is induced by the change in the ratio of sulfur and selenium. Therefore,

the bandgap of kesterite absorber can be tuned for best VOC in terms of best possible JSC.

Indeed, the best certified efficiency achieved experimentally by kesterite based absorber is

12.6% [14], with a bandgap of 1.13 eV due to the presence of both sulfur and selenium. But,

this efficiency is still lower than that of CIGS technology. The high-efficiency CIGS technology
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applies In-Ga gradient throughout the thickness of the absorber. This produces a bandgap

graded absorber, resulting in reduced recombination and improved performances [47, 150].

Similarly, the bandgap grading for kesterite absorbers appeared to be an interesting topic of

research concerning efficiency improvement of this technology.

The change of bandgap by changing the chalcogen ratio is nearly linear and the main change

can be seen in the conduction band [36]. A higher to lower sulfur content from absorber-buffer

interface towards the bulk of the absorber (front grading) will give improved VOC. And a lower

to higher sulfur content from the bulk of the absorber towards Mo/absorber interface (back

grading) will increase JSC and FF due to improved carrier collection. Several simulations

associated with bandgap grading of kesterite-based absorber already proved its beneficial

effect by improving the performance [151, 152]. They reported, however, that the device

performance was very sensitive to the grading placement within the absorber, as well as to the

type and the degree of the grading.

Experimentally, it has been proven that having different S/Se vapor pressure during the

annealing of elemental precursors is sufficient to tune the bandgap of a kesterite absorber,

but using this process, the S/Se ratio was constant throughout the absorber [153]. On the

other hand, using a compound precursor shows higher sulfur content at the back and lower

at the front of the absorber [154]. Nonetheless, realizing and controlling a variable S/Se ratio

throughout the absorber is complicated due to the fact that diffusion of Se in kesterite is rapid

with an activation energy of 0.5±0.1 eV [155], which is one of the main challenge towards

realizing S/Se grading. Experimentally, at 500°C, half of the sulfur was replaced by Se during a

sulfo-selenization process in 10 seconds [156].

Different synthesis strategies have been tested in the literature to control the anion composi-

tion throughout the depth of the absorber. A front grading was realized recently, by surface

sulfurization of a sputter-deposited CZTSe absorber and the device properties were analyzed in

depth without emphasizing on the reaction mechanism of the process [157]. Yang et al, [158]

synthesized a CZTSSe sample with front grading using a different mixture of SeS2/Se and

achieved a PCE of 12.3%. This is one of the highest efficiency achieved by bandgap grading,

but it is still lower than the highest efficiency achieved by a CZTSSe-based absorber without

any gradient. In another case, the CZTSe nano-particle annealed under S and Se environment,

showed replacement of the Se by S at a temperature lower than 500°C, due to the differences

of vapor pressure at a this temperature. A defect layer was also created on the surface of such

a sample during this process, due to the expansion of the volume [159].
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Ross et al, [160] selenized a pre-sulfurized absorber to achieve back grading. This experiment

did not show a continuous distribution of Se throughout the absorber, but rather larger

CZTS grains restraining the nucleation and the growth of selenide grains at low-temperature

selenization. However, it showed that selenization for a longer time resulted in grain growth of

selenide grains at the expense of sulfur grains. In addition, the relation of Na with Se diffusion

in CZTS sample was pointed out showing that sodium selenide facilitates the Se incorporation

in the absorber. On the other hand, Kato et al, [161] showed a successful application of back

grading obtaining 11% PCE for submodule, although lack of sufficient experimental details

and analysis made this result hard to replicate.

All the above-mentioned works mostly used compound precursor for realizing bandgap

grading. However, it has been pointed out that CZTS inhibits the diffusion of Se compared to

elemental metal [156]. Using elemental precursor for bandgap grading is therefore interesting

to gain some valuable insights. Bandgap grading also requires knowledge on the effect of anion

composition in terms of structural and microstructural properties of the absorber, for better

controllability of the reaction. According to Dimitrievska et al [57], a sulfur-rich absorber

shows a decrease of domain size from the surface to the rear of the film, whereas selenium-

rich absorber shows a homogeneous domain size with lower values of strains compared to

sulfur-rich one.

In this chapter, the fabrication process of a CZTSSe absorber with front and back bandgap

grading using elemental metal precursor will be presented. Also different characterization

processes will be performed i order to better understand the reaction mechanism associated

with bandgap grading.

6.2 Front Grading

6.2.1 Experimental Procedure

This section aims at producing a CZTSSe absorber and solar cell with a wider bandgap close

to the front surface (CdS/CZTS interface). The strategy is to create a [S]/[S+Se] grading

from the surface of the absorber towards the bulk by sulfurizing a CZTSe absorber- starting

from an absorber synthesized with the standard procedure explained in chapter 4. Different

sulfurization conditions (temperature, duration) have been tested to control the position and

the range of the gradient composition.

The schematic of the annealing procedure is shown in figure 6.1. First, a standard selenization
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is done on all the samples (figure 6.1(a)). Later, these samples are annealed under sulfur

environment at different temperatures (200°C-550°C) for 10 minutes and two more samples

are prepared at a 550°C annealing temperature but for the duration of 1 minute and 30 minutes

respectively (figure 6.1(b)). The name of each sample is given according to the selenization

and sulfurization profile used for the annealing. For instance, in SeStd.S550(1 min), SeStd. stands

for standard selenization and S550(1 min) stands for sulfurization at 550°C for 1 min prior to

natural cooling.

Figure 6.1: Temperature profile of the precursor selenization to synthesize the CZTSe absorber(a)
and temperature profile showing different temperatures points used for sulfurization of the CZTSe
absorber(b) to achieve front grading.

The name of each sample and annealing details are also shown in table 6.1 along with the

anion and cation composition of the material. These compositions will be discussed briefly in

section 6.2.2.

Table 6.1: The composition ratio of anion and cation measured by EDX along with the annealing
conditions of each sample.

Sample name Selenization Sulfurization temp.(°C) Sulfurization duration (min) Cu(at%) Zn(at%) Sn(at%) [S]/[S+Se]

Cu2ZnSnSe4 Standard N/A N/A 41.5±0.5 31.8±0.5 26.7±0.5 0

SeStd.S200 Standard 200 10 41.6±0.5 31.8±0.5 26.4±0.5 0.05±0.02

SeStd.S300 Standard 300 10 41.7±0.5 31.9±0.5 26.4±0.5 0.07±0.02

SeStd.S400 Standard 400 10 41.7±0.5 32.1±0.5 26.1±0.5 0.09±0.02

SeStd.S500 Standard 500 10 41.7±0.5 32.1±0.5 26.2±0.5 0.16±0.02

SeStd.S550(1 min) Standard 550 1 41.7±0.5 32.1±0.5 26.1±0.5 0.18±0.02

SeStd.S550(10 min) Standard 550 10 42.2±0.5 32.4±0.5 25.4±0.5 0.25±0.02

SeStd.S550(30 min) Standard 550 30 43.6±0.5 32.8±0.5 23.6±0.5 0.95±0.02
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6.2.2 Results and discussions

6.2.2.1 Effects on morphology

(a) Surface and cross-section(inset) of the

SeStd.S200 sample

(b) Surface and cross-section(inset) of SeStd.S300

sample

(c) Surface and cross-section(inset) of SeStd.S400

sample

(d) Surface and cross-section(inset) of SeStd.S500

sample

(e) Surface and cross-section(inset) of the

SeStd.S550 sample

Figure 6.2: SEM image of samples sulfurized under different temperatures for 10 minutes after standard
selenization process explained in Table 6.1. In the cross-section, all the different layers of the sample
are identified.
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The morphology of the resulting CZTSSe films examined by SEM, are depicted in figure 6.2

(as a function of different sulfurization temperatures under fixed duration(10 minutes)) and

figure 6.3 (as a function of different sulfurization time at fixed temperature(550°C)). Both the

images of the surface and the cross-section (inset with yellow border) are shown for each

sample.

(a) Surface and cross-section(inset) of

SeStd.S550(1min) sample

(b) Surface and cross-section(inset) of the

SeStd.S550 sample

(c) Surface and cross-section(inset) of

SeStd.S550(30min) sample

Figure 6.3: SEM image of the samples sulfurized under 550°C for different durations after a standard
selenization process. In the cross-section all the different layers of the sample are identified.

Several observations can be made from the image 6.2 and 6.3,

1. SeStd.S200 shows compact grains and an almost similar morphology to the standard

CZTSe sample showed in chapter 4 and it started to change with higher sulfurization

temperature;

2. For all the other samples, bimodal grain distribution can be observed, where larger

grains are located near the surface and smaller grains are situated near the back contact;

3. Increasing the sulfurization temperature increases the void at the back (CZTS/Mo inter-
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face) of the absorber, as can be seen from the cross-section images;

4. Furthermore, increasing sulfurization temperature shows more faceted grains and a

peculiar brighter layer on the surface can be seen from the surface of the absorber;

5. Sulfurization for 30 minutes shows decreased thickness of the absorber observed from

the cross-section of sample SeStd.S550(30min). Also, pinholes are visible from the surface

of the sample.

6.2.2.2 Effects on material properties

The effects of this sulfo-selenization process are investigated using EDX, XRD and Raman for

bulk material properties, and GIXRD, GDOES for material properties as a function of depth.

EDX is used to measure the cation and anion composition following the procedure explained

in 3.2.2 (see table 6.1). The cation composition of a pure CZTSe sample synthesized with

the precursor from the same run is also shown as reference for comparison. No noticeable

effect of sulfurization can be seen for any of the sample except SStd.Se550(30 min). Here, the

SStd.Se550(30 min) sample shows higher Cu and Zn atomic concentration and lower Sn con-

centration compared to the reference sample, although all the samples were made with the

same precursor configuration. Thus, Sn loss must have occurred during high temperature

sulfurization process. Sugimoto et al., also found a similar effect of sulfurization temperature

while using CZTSe nano-particles as precursor [159]. Also SStd.Se550(30 min) sample showed

reduced thickness (figure 6.3) which proves the material loss during sulfurization.

The anion composition is also shown as the ratio of anions([S]/[S+Se]) in table 6.1, where 0

corresponds to pure Se based sample and 1 corresponds to pure sulfur based sample. Sulfur

can be identified starting from sulfurization temperature of 200°C with an anion ratio of

0.05 and the amount of sulfur increased with the increase of temperature. Likewise, longer

sulfurization duration increases the anion ratio, such as 30 minutes of annealing almost

completely replaces the Se by S.

XRD analysis of these samples is shown in figure 6.4. The XRD pattern of all the samples are

presented in figure 6.4(a). The analysis has been done by fitting the peak(112), (220/204) and

Mo via pseudo-voigt function according to the equation 3.2. An example of the fitting is shown

in figure 6.4(b).
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6.2. Front Grading

(a) XRD diffractogram of the samples prepared for front grading

(b) Fitting of SeStd.S550(10 min), as an example of

the fitting used for the analysis.

(c) Ratio of area under peak (112) and peak

(220/204).

(d) FWHM of peak (112) as a function of all the

sample.

(e) Anion composition deducted from the XRD

peak (112) position (pink line) and EDX measure-

ment(green line).

Figure 6.4: XRD analysis of the samples used for front grading.
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Different data (area, height, position and FWHM) are extracted from the fitting of the peak for

analysis. The ratio of area under peak (112) and peak (220/204) as a function of the different

samples are shown in figure 6.4(c). Additionally, FWHM of peak (112) as a function of different

samples is shown in figure 6.4(d). Lastly, figure 6.4(e) shows the anion composition calculated

using Vegard’s law (explained in section 3.2.4) from the position of the XRD peak (112) (pink

line) along with the anion composition extracted from EDX (Green line) as a function of

different samples. The following comments can be made from analyzing the XRD data:

1. Figure 6.4(a) shows the diffraction peaks (112 and 220/204) of kesterite as well as the

diffraction peaks of Mo. Mo peak is used for peak position correction of all the samples

by comparing with the reference sample. The XRD diffractograms of pure CZTSe and

CZTS are also shown as a reference for comparison. Shifting of peaks (112, 220/204) can

be seen compared to the CZTSe reference. It is shifted from the CZTSe peak position

to the CZTS one, with increased temperature and duration. This shows the successful

incorporation of S in the CZTSe absorber. Also, SeStd.S550(30 min) shows peak position

similar to that of CZTS, indicating complete replacement of Se by S;

2. Figure 6.4(c) shows the ratio of area under peak (112) and peak (220/204) as a function

of different samples. Although, all the samples exhibit preferential (112) texturization,

the degree of 112 texturization increases with increasing amount of S inclusion. This

can be related to the SEM image shown in figure 6.2 and 6.3, showing higher degree of

faceted grains with increased temperature and duration;

3. Figure 6.4(d) shows the FWHM of peak (112) as a function of samples. The FWHM

is increased with increased amount of S incorporation in the presence of Se and it is

decreased again as all the Se is replaced by S. As FWHM is inversely proportional to

the domain size of the material according to Scherrer equation [46], the global domain

size of CZTSSe absorber decreases with increasing amount of S inclusion. A similar

conclusion was also made by Dimitrievska et al, [57];

4. Finally, the anion composition calculated from peak position of each sample is shown in

figure 6.4(e) along with the anion composition achieved from EDX analysis. The anion

composition calculated using both method indicates the increase of S content with

increased temperature and duration;

The Raman spectra using green laser (532 nm) of these samples are shown in figure 6.5(a). All

the peaks appearing in the spectra agree with the Raman peaks characteristics of CZTSSe thin

films, as was previously reported [58, 98, 122]. Here, with increasing ([S]/[S+Se]) ratio, Raman

peaks in the high frequency region corresponding to S vibration are gradually increasing

134



6.2. Front Grading

in intensity. Fitting A1 mode peak at around 196 cm-1 reveals some facts towards realizing

front grading. The peak position and FWHM of A1 mode peak are shown as a function of

temperature in figure 6.5(b). The peak position is shifting towards higher frequency indicating

higher S content according to Grossberg at el, [58]. Furthermore, FWHM of A1 mode peak

is also increasing with increased temperature. This broadening is related to the convolution

of Se and S/Se vibration around 200 cm-1 and might be phonon confinement effects due to

the poorer crystal quality, discussed briefly by Dimitrievska et al, [162]. It is also possible to

estimate the anion composition by calculating AreaCZTS/(AreaCZTS+AreaCZTSe. Here, AreaCZTS

corresponds to area of Raman spectra in the region of 270 cm-1 and 380 cm-1, mainly related

to vibration from S atom and AreaCZTSe corresponds to area of Raman spectra in the region of

150 cm-1 and 260 cm-1, mainly related to vibration from Se atom described by Dimitrievska et

al, [162].

From the anion composition ratio deducted from Raman spectra and XRD analysis (6.5(c)), it

can be detected that the anion ratio of pure CZTSe is little higher than 0 from Raman analysis,

which is due to the fact that the Area(270 cm-1-380 cm-1) overlaps with the second order peaks of

the CZTSe, located around 360 cm-1. Since all the samples have similar second order peak, it

should not affect the calculation of anion composition. Comparing the anion composition

deducted from XRD and Raman, it can be said that the overall anion composition calculated

using Raman spectra is higher than that of XRD. The reason for this higher overall anion

composition from Raman analysis may be due to the fact that Raman analysis has been

performed using a green laser, which have a limited penetration depth. Therefore, the spectra

from this analysis is mainly from the upper part of the bulk, while XRD shows the integral of

total bulk. This can indicate the presence of front grading in these samples, by having higher S

on the surface.
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(a) Raman spectra using green laser (532 nm) of all the CZTSSe ab-

sorber towards realizing front grading using different temperatures

and durations.

(b) Peak position along with FWHM of A1 mode

(CZTSe) peak of all the samples prepared for this

experiment is showing as a function of tempera-

ture.

(c) Chalcogen composition ratio (x=S/S+Se) de-

ducted from the XRD peak (112) position (pink

line) and Raman measurement(green line) as

function of temperature.

Figure 6.5: Raman analysis of the samples used for front grading.

GIXRD has been performed for microstructural analysis, where incident angle of X-ray is fixed

to obtain XRD data from a certain thickness of the sample. More details on the principle of this

process can be found in 3.2.4. Different incident angle from 0.2° to 5° are used as incident angle

during this analysis. Two particular samples, SeStd.S500 and SeStd.S550(10 min) are selected for

this experiment, due to the presence of highest amount of sulfur to selenium ratio. The GIXRD

performed with similar incident angle on a pure CZTSe sample to calibrate the measurement

as a function of incident angle is also included.
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The GIXRD analysis of the SeStd.S500 sample is shown in figure 6.6. The diffractograms using

different incident angle starting from 0.2° to 1° are shown in figure 6.6(a).

(a) GIXRD representation of the SeStd.S500 sample.

(b) Enlarged peak (112) representation of fig-

ure 6.6 (a).

(c) Anion composition as a function of grazing inci-

dent angle calculated from the peak(112) position of

the SeStd.S500 sample.

Figure 6.6: XRD analysis of the SeStd.S550 sample used for front grading.

While XRD shows global crystalline phase of the bulk, GIXRD is highly sensitive for detecting

crystalline phases of the absorber surface. It can therefore be said that no noticeable Sn or Cu

based secondary phases are induced by this synthesis method since no peak corresponding to

Sn or Cu based secondary phases could be detected using either XRD or GIXRD. An enlarged

image of figure 6.6(a) emphasizing peak (112) is shown in figure 6.6(b). A slight shift of peak

137



Chapter 6. Bandgap grading

can be observed from 0.2° to 1° incident angle. To get a clearer picture on this peak shifting,

the anion ratio is calculated using Vegard’s law shown in figure 6.6(c), along with the depth

from the surface. The depth from surface of GIXRD experiment is calculated from the X-ray

penetration depth for each incident angle and anion ratio, as described in 3.2.4. From figure

6.6(c), we can see that a small gradient is present in the front of the absorber, where the anion

ratio varies from around 0.07 to 0.01 for incident angle 0.2° to 1°.

Similar characterization is also done on the sample SeStd.S550(10 min) shown in figure 6.7. From

figure 6.7(a), a bimodal behavior can be observed showing peaks for CZTSSe (as it was detected

by XRD and Raman analysis) at around 27.5°, 45.5° and 53.9°, while peaks could also be

detected at around 28.5°, 47.4° and 56.2°. Further argument can be made from figure 6.7(b),

where the peak around 27.5° shifted with increased incident angle while the peak around 28.5

is constant. This indicates that the first peak is related to graded CZTSSe, while the other

could be ZnS/CZTS/CTS. Ross et al, [160] described this peak as CZTS, while Sugimoto et

al, [159] proved it was ZnS using TEM-EDS. Furthermore, the peak related to sulfur-based

phase shows higher intensity compared to CZTSSe at 0.2° incident angle, which starts to

decrease with increased incident angle and was not observed during XRD.This means that this

pure sulfur-based phase is limited to the near surface of the absorber. The anion composition

calculated from the CZTSSe peak position achieved from GIXRD is shown as a function of

the incident angle and depth from the surface in figure 6.7(c). This shows a higher degree

of grading compared to the SeStd.S500 sample. Furthermore, the anion composition shows

lower S content at higher incident angle compared to the measurement from XRD, due to the

presence of higher sulfur at the back as well.

To summarize, using GIXRD, the presence of front grading using this synthesis process was

demonstrated. The degree of grading is also increased with increased temperature, which can

be used to control the front grading for best optimization. Furthermore, a pure sulfur-based

phase was observed on the surface of SeStd.S550(10 min) using GIXRD.

GDOES analysis is performed on these samples to further analyze this achieved gradient and

to understand the characteristics of this sulfur based peak. The sulfur and selenium profile of

SeStd.S400, SeStd.S500 and SeStd.S550 sample along with CTZSe sample as reference are shown

in figure 6.8. In this figure, the dashed line represents the Se distribution and the solid line

represents the S distribution. Several statements can be made from figure 6.8.
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(a) GIXRD representation of the SeStd.S550 sample.

(b) Enlarged peak (112) representation of fig-

ure 6.6 (a).

(c) Anion composition as a function of grazing inci-

dent angle calculated from the peak(112) position of

the SeStd.S550 sample.

Figure 6.7: XRD analysis of the SeStd.S550 samples used for front grading.

First of all, clear indication of sulfo-selenium grading can be observed from 0-500 nm by

having higher to lower amount of sulfur from the surface towards the bulk, and vice versa for

the selenium. Therefore, we could say that the front grading was successfully implemented

using this method. Secondly, the degree of grading increased with increasing sulfurization

temperature. Third, at the surface of the SeStd.S500 and the SeStd.S550 sample, an absence of

Se can be observed, which gives the indication of a S only based phase limited to the surface

(within 10-20 nm). Fourth, comparing S and Se profiles of SeStd.S550 sample, the grading is
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present until 200 nm from the surface and after the grading, both profile showed a flat line.

For SeStd.S500, the gradient is until 150 nm. It can therefore be concluded that, it is possible to

control the cross-over point of grading from the surface. Finally, when comparing the profile

of S and Se of all the sulfo-selenized samples with the CZTSe sample, a slight decrease of Se

content at the back of the absorber and an increase of overall S throughout the absorber can

be observed. This leads to the conclusion that, although these samples showed front grading,

some S is still diffusing at the back of the absorber.

Figure 6.8: S and Se distribution throughout the depth of the samples prepared for front grading
measured by GDOES, where dashed line corresponds to Se profile and solid line corresponds to sulfur
profile. The enlarged distribution of S and Se near the surface are shown in the image below.

Figure 6.9 shows the Cu and Mo profile(a), Zn profile(b) and Sn profile (c) for all the samples

analyzed in figure 6.8. From the profile of Cu, Zn and Sn, there is a sudden decrease in Cu and

Sn profile at the surface. The Zn profile, on the contrary, showed opposite characteristics. This

indicates that the sulfur rich phase on surface seen from GIXRD and S/Se GDOES profiles is

ZnS, rather than CZTS or CTS.
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(a) Cu and Mo (dashed lines) distribution

throughout the depth of the samples prepared

for front grading by GDOES.

(b) Zn distribution throughout the depth of the

samples prepared for front grading by GDOES.

(c) Sn distribution throughout the depth of the

samples prepared for front grading by GDOES.

Figure 6.9: Cation distribution throughout the depth of the samples prepared for front grading by
GDOES.

6.2.2.3 Device properties

Complete photovoltaic devices are fabricated using sample SeStd.S500 with and without a

additional HCl etching similar to Fairbrother et al, [102]. The etching is done using 10%(v/v)

HCl at 75°C temperature for 10 minutes to remove the ZnS phase detected at the surface.

Figure 6.10(a) shows the light and dark J-V curves with and without HCl etching.

While, the sample without etching shows poor electrical properties, an increase in all the

electrical properties can be observed after the HCl etching procedure. Furthermore, figure

6.10(b) shows the EQE of these samples. The bandgap of 1.07 eV is derived from the 1st
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derivative of EQE spectra of the etched sample (see figure 6.10(b) green dashed line). These

bandgap is slightly higher than the bandgap of pure CZTSe(1.02 eV) used during this study.

This also indicates the inclusion of sulfur in the absorber using this process. However, the

increase in bandgap could arise from Cu/Zn ordering due to the second annealing [25]. The

427 mV VOC of the SeStd.S500 sample is higher than the 410 mV VOC obtained from the reference

CZTSe sample. The JSC and FF decreased substantially, therefore the efficiency of the final

device was found to be lower compared to the reference CZTSe sample.

(a) Light (solid line) and dark(dashed line) J-V curve (b) EQE response

Figure 6.10: Optoelectronic properties of the SeStd.S500 sample before and after HCl etching. Light
J-V (measured under AM 1.5G illumination) (solid line) and dark J-V (dashed line) (a) EQE reveals a
bandgap of 1.07 eV derived from 1st derivative of EQE spectra (b)

Table 6.2: Electrical parameter of the SeStd.S500 sample after HCl etching.

Light J-V Dark J-V EQE

VOC JSC FF Efficiency RS RSh Eg VOC deficit

(mV) (mA.cm-2) (%) (%) (ohm.cm2) (ohm.cm2) (eV) (mV)

427 16.8 47 3.4 1.81 748 1.07 643

In summary, front grading is successfully implemented using pure metallic precursor and

subsequent sulfo-selenization process. Different material characterizations were performed

to realize the anion composition in the bulk of the absorber globally and as a function of

depth. The presence of front grading is proved using GIXRD and GDOES depth profiling.

Temperature higher than 400°C was found to be effective to have a noticeable sulfur inclusion

in the absorber. Additionally, increasing the temperature increased the amount of sulfur

inclusion in the absorber resulting in a higher degree of front grading. A layer of ZnS forms
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on the surface during the sulfurization of the CZTSe absorber, which can be removed using

HCl etching. The device property, however, did not show improvement compared to best

CZTSe absorber from this work. Further optimization of temperature and etching procedure

may result in better device properties, and further studies are therefore required towards

optimizing this procedure to have the beneficial effect of front grading.

6.3 Back Grading

6.3.1 Experimental Procedure

One possible way to implement back grading for kesterite absorber is to introduce Se on

an already sulfurized kesterite absorber. In this section, the effects and limitations of this

strategy will be discussed briefly with the help of different characterization procedures. Three

samples were prepared by doing the sulfurization of the metallic precursor under different

temperatures (400°C, 500°C and 550°C shown in figure 6.11(a)) for 10 minute, before the

standard selenization process (shown in figure 6.11(b)). The sulfurization temperature range

upward from 400°C was selected because most of sulfur incorporation with the precursor

happened at 400°C, as explained in chapter 4.

Figure 6.11: Temperature profile for sulfurization of metallic precursor under different temperatures
pointed by different color(a) and temperature profile of pure selenization used for selenizing, previously
sulfurized sample(b) to achieve back grading.

The name of each sample were given according to the sulfurization and selenization profile

used for the annealing. For example in S400SeStd., S400 stands for sulfurization at 400°C for 10

min prior to natural cooling and SeStd. stands for standard selenization which is done after

sulfurization. Details for each sample are also in table 6.3, along with the anion and cation
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composition of the finished absorber. These compositions will be discussed briefly in section

6.3.2.

Table 6.3: The composition ratio of anion and cation measured by EDX along with the annealing
condition of each sample.

Sample name Sulfurization temp.(°C) Sulfurization duration (min) Selenization Cu(at%) Zn(at%) Sn(at%) [S]/[S+Se]
Cu2ZnSnSe4 N/A N/A Standard 41.5±0.5 31.8±0.5 26.7±0.5 0

S400SeStd. 400 10 Standard 42.0±0.5 32.4±0.5 25.6±0.5 0.20±0.02
S500SeStd. 500 10 Standard 42.5±0.5 32.7±0.5 24.8±0.5 0.25±0.02
S550SeStd. 550 10 Standard 43.7±0.5 33.3±0.5 23.0±0.5 0.37±0.02

6.3.2 Result and discussion

6.3.2.1 Effects on morphology

The morphology of the resulting CZTSSe films examined by SEM, are shown in figure 6.12. For

each sample, both the SEM image of the surface and cross-section (inset with yellow border)

are given. S400SeStd. shows irregular grains and pinholes on surface and voids at the rear side of

the absorber. Further degradation of morphology can be observed with increased sulfurization

temperature. Using a 550°C sulfurization temperature for sample S550 SeStd. results in grains

lower than 500 nm with higher degree of pinholes and surface irregularity.

6.3.2.2 Effects on material properties

Cation and anion compositions measured by EDX following the procedure explained in 3.2.2

are shown in table 6.3. The cation composition of pure CZTSe sample synthesized with the

precursor from same run is also given in table 6.3, as reference for comparison. From this

figure, it can be noted that increasing sulfurization temperature resulted in higher Cu and Zn

atomic concentration and lower Sn concentration compared to reference sample, although

all the samples used the same precursor configuration. Therefore, samples are losing Sn

during the first annealing or more precisely during the sulfurization step, where the loss is

proportional to the annealing temperature. Furthermore, the anion composition is given as

the ratio of anion([S]/[S+Se]). Here, the sample made with a lower temperature sulfurization

step showed lower S concentration while the maximum S content obtained for S550SeStd. is

0.37.
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(a) Surface and cross-section(inset) of S400SeStd.

sample

(b) Surface and cross-section(inset) of S500SeStd.

sample

(c) Surface and cross-section(inset) of the

S550SeStd. sample

Figure 6.12: SEM images of samples sulfurized under different temperatures prior to standard seleniza-
tion process.

XRD pattern analysis is shown in figure 6.13, with figure 6.13(a) showing the XRD pattern

indicating peak (112) and (220/204). From the data extracted from the fitting, the ratio of

area under peak (112) and peak (220/204) is shown in figure 6.13(b) and FWHM of peak (112)

is shown in figure 6.13(d) as a function of the different samples. Additionally, figure 6.13(c)

shows the anion composition (pink line), which is calculated using Vegard’s law from the

position of peak (112) along with anion composition extracted from EDX (Green line) as

function of different samples. From figure 6.13(a), a SnS secondary phase [26] can be detected

from sample S400SeStd. and S500SeStd., but it is not observed anymore for sample S550SeStd..

Also, main kesterite peaks (112, 220/204) shifting can be seen from CZTSe reference towards

higher diffraction angle with increased temperature. Therefore, it points out at the successful

inclusion of S in CZTSe absorber. Figure 6.13(b) shows the ratio of area under peak (112) and

peak (220/204) as a function of different samples to investigate the preferential texturization

of the sample due to this particular sulfo-selenization process.
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(a) X-ray defraction of all the samples prepared for rear grading

(b) Ratio of area under peak (112) and peak

(220/204) of all the samples.

(c) Chalcogen composition ratio (x=S/S+Se) de-

ducted from the XRD peak (112) position and EDX

measurement.

(d) FWHM of peak (112) as a function of all the

samples.

Figure 6.13: XRD analysis of samples used for rear grading.
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Although, all the samples showed preferential (112) texturization, the degree of 112 texturiza-

tion did not show any trend with increasing S content or temperature. Figure 6.13(d) highlights

the FWHM of peak (112) as a function of different samples, exhibiting that the FWHM is in-

creased with increased amount of S incorporation, similar to the front grading experiment.

Finally, the anion composition calculated from peak position of each sample is shown in figure

6.13(e) along with the anion composition achieved from EDX analysis.

GIXRD characterization was performed on samples S400SeStd. and S550SeStd. to have an overview

of the anion composition as a function of depth. A similar procedure of data treatment is

used for these sample as described for front grading. Figure 6.14 shows the GIXRD analysis

of S400SeStd. sample. In 6.14(a), the diffractogram is showing different incident angle starting

from 0.2° to 5°. No Sn or Cu based secondary phases can be detected from figure 6.14(a),

although the XRD showed SnS secondary phase formation for this sample. Therefore, we can

say that the SnS secondary phase must be at the rear side of the absorber. An enlarged image of

figure 6.14(a), emphasizing peak (112) is shown in figure 6.14(b). No noticeable peak shift can

be observed for this sample. To have a clearer understanding, the anion ratio is calculated from

peak (112) using Vegard’s law shown in figure 6.14(c), along with the depth from the surface.

From figure 6.14(c), we can see that, instead of having a graded anion composition from the

bulk towards the back, it has a constant mixture of S and Se throughout the absorber. The

anion composition value from the XRD is nearly similar to the anion composition value found

for different incident angle, which also suggests a constant anion composition throughout the

absorber.
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(a) GIXRD pattern of S400SeStd. sample.

(b) Enlarged peak (112) representation of fig-

ure 6.14 (a).

(c) Anion composition as a function of grazing inci-

dent angle calculated from the peak(112) position of

S400SeStd. sample.

Figure 6.14: GIXRD analysis of S400SeStd. sample used for rear grading.
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(a) GIXRD pattern of the S550SeStd. sample.

(b) Enlarged peak (112) representation of fig-

ure 6.15 (a).

(c) Anion composition as a function of grazing inci-

dent angle calculated from the peak(112) position of

the S550SeStd. sample.

Figure 6.15: GIXRD analysis of the S550SeStd. sample used for rear grading.

Similar characterization was also done on sample S550 SeStd. (figure 6.15). Figure 6.15(a) shows

the XRD pattern for different incident angles. Peak shifting of all the peaks as a function on

incident angle can be noticed from the figure. To have a clear view, the enlarged image of

peak (112) is shown in figure 6.15(b), which also confirms the peak shifting and presence of

higher sulfur at the back of the absorber. The anion composition calculated from the CZTSSe

peak position achieved from GIXRD is shown as a function of incident angle and depth form

surface in figure 6.15(c). This shows a back grading, where more sulfur could be found at the
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back of the absorber.

In summary, using GIXRD the presence of back grading is shown, where only the sample

synthesized with higher sulfurization temperature (550°C) shows back grading and sample

with lower sulfurization temperature (400°C) shows a constant S to Se ratio throughout the

absorber.

GDOES analysis is performed on these samples to further validate the result obtained from

GIXRD. The sulfur and selenium profile of the S400SeStd. and S550SeStd. samples along with

CTZSe sample as reference are shown in figure 6.16. Here dotted line represents the Se

distribution and solid line represents the S distribution. Several statements can be made from

figure 6.16. First of all the overall intensity of Se for CZTSSe samples are lower than CZTSe

sample proving the inclusion of S in the absorber. Also, Se profile of S400SeStd. is showing a

flat distribution while Se profile of S550SeStd. is showing higher to lower selenium distribution

from surface to the back of the absorber. Therefore, the back grading can be also realized from

sample S550SeStd..

Figure 6.16: S and Se (dot line) distribution throughout the depth of the samples prepared for rear
grading by GDOES.

To understand the reason of S and Se homogeneous mixing for S400SeStd., a sample is prepared

to analyze the intermediate step of reaction mechanism. For this purpose, the sample was

prepared by sulfurizing at 400°C followed by a selenization step with a 320°C temperature

plateau only. EDX mapping of this sample is shown in figure 6.17. First of all, 400°C sulfuriza-
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tion temperature shows secondary phase of Cu, Zn and Sn as shown in chapter 4. Selenization

of this sample replaced the S mainly from Cu secondary phase as this is thermodynamically

more feasible, according to figure 6.17. Later, the intermixing of Cu-Se, Zn-S and Sn-S reacts

together to form CZTSSe at a higher temperature plateau, using Cu-Se as the main fluxing

agent for the grain growth. This can be the reason for having homogeneous anion composition

throughout the absorber for this sample.

Figure 6.17: EDX mapping (using 10 keV excitation voltage) of sample sulfurized at 400°C followed by a
selenization with 320°C plateau only, showing distribution of Cu, Zn, Sn, S and Se distribution from
surface.

To summarize, sample sulfurized at lower temperature (400°C) did not show any back grading,

instead a homogeneous distribution of S and Se can be observed throughout the depth,

whereas, sample sulfurized at higher temperature (550°C) showed back grading but at a price

of deteriorating morphology, resulting in a non working device.

6.4 General discussion and conclusion

In this chapter, the fabrication process of CZTSSe absorber with front and back grading was

explained. In the first case, a standard selenization process followed by a sulfurization process

at different temperatures and duration was performed. This process is summarized by the

schematic, shown in figure 6.18.

Here, a high temperature sulfurization has been done on a CZTSe sample. Front grading was
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Figure 6.18: Schematic illustration of sulfo-selenization process to achieve front grading. A satndard
CZTSe absorber (in left) is sulfurized at high temperature to achive front graded CZTSSe absorber (in
right). Also, a highly sulfur rich surface can be observed on CZTSSe sample.

demonstrated using this process, which is confirmed by GIXRD and GDOES analysis. However,

bimodal grains with smaller grain size and higher amount of void was observed on the finished

CZTSSe samples, compared to the starting CZTSe sample. Furthermore, this process also

induces a S based compound limited to the surface of CZTSSe absorber, which is concluded as

ZnS secondary phase by GDOES analysis. Solar cell fabricated using SeStd.S500 sample showed

highest PCE of 3.4% after a HCl etching while sample without etching showed 0.7%.

For back grading, samples prepared with sulfurization at different temperatures were selenized

using a standard recipe. Two different effects were observed during this analysis, shown in

figure 6.19.

Low sulfurization temperature used during this process was found to be ineffective towards

realizing a back grading : At a 400°C sulfurization temperature, mainly binary phases are

formed. When selenization is done on the sample with binary compounds, the S in CuS

replaced by Se and become CuSe. Later, this CuSe phase works as fluxing agent and increases

the grain size, as well as equalize the S/Se ratio throughout the absorber (figure 6.19). On

the other hand, higher sulfurization temperature showes back grading to some extent at the

expense of microstructural properties. The lack of CuSe phase of this sample during annealing

must be the reason for not having an enhanced grain growth.

From this work many insights on bandgap grading are revealed. Successful bandgap grading

at the front side is demonstrated along with the working solar cell. However, back side grading

did not work properly. Therefore, further work is required to apply the findings of this work

and overcome the difficulties encountered during this study.
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6.4. General discussion and conclusion

(a) Illustration of the back grading process using low temperature sulfurization prior to standard
selenization. Sulfurization of the precursor (a) at 400°C shows a CuS binary phase, which is
completely replaced by Se during the first low temperature step of selenization.

(b) Illustration of the back grading process using high temperature sulfurization prior to standard
selenization. During high temperature Se is replacing sulfur.

Figure 6.19: Schematic illustration of sulfo-selenization process to achieve back grading.
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7 Conclusion and Perspective

This thesis had one main ambition : Achieve improved performance for kesterite absorbers.

With this endeavour in mind, we explored and analyzed the best ways to reach this goal. First

and foremost, it was crucial to establish and explain the relationships between the synthe-

sis conditions of kesterite based absorbers (CZTS, CZTSe), its physical properties and the

performance of photovoltaic devices. The very first step was to understand the formation

mechanism of the material in relation to the growth conditions. Both CZTS and CZTSe are

synthesized by a two-step annealing process, where precursor deposition by DC sputtering is

followed by a second step of annealing. A careful study of the different annealing conditions

was key to apprehend in depth the reaction mechanism that lead to the final kesterite-based

absorber. A strong emphasis was put on the material characterization at each step of the

synthesis. The results clearly demonstrate that our selenization process - two-step annealing

along with the improved Mo back contact and HCl etching - was beneficial to achieve a PCE of

7.6%. A highest PCE of 5.9% was achieved as well using an open reactor for sulfurization. Exper-

imental work also highlighted the importance of chalcogen vapor pressure on microstructural

and electrical properties of CZTSe/CZTS absorber, higher chalcogen vapor pressure being

beneficial for the complete device.

Some attention was, subsequently devoted to other ways of enhancing performances, which

led to explore the possible benefits from incorporation of Na and Sb in CZTS. Experiments were

carried out by applying Na and Sb, during and after the synthesis of CZTS in order to choose

the best strategy in terms of material and electrical properties. Results demonstrate that, as

with CIGS technologies, sodium is beneficial for CZTS to achieve an increase of the open circuit

voltage, fill factor and short circuit current. Additional favorable effects on the morphology of

the CZTS absorber - such as faceted big grains - arise from Na incorporation ; but conversely
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7.1. Perspectives

Na ’overdose’ degrades the morphology. Na being present during the synthesis process has

been determined to be the best strategy to achieve higher PCE (double PCE compared to

sample without Na). 15 nm of NaF was observed to be the optimum amount for obtaining

best resulting devices, an excessive amount of Na resulting in the degradation of the absorber.

EQE analysis and simulation were performed on samples with intentional Na contamination

and indication of surface passivation properties induced by Na were identified. Contrary to

Na, Sb incorporation did not show any improvement in terms of electrical properties despite

the big grains it allows.

Finally, we sought to improve efficiency even further with bandgap engineering, a powerful

tool which may increase the performances of CZTSSe based solar cells without changing

the absorber material quality. A focus was placed on bandgap engineering based on the

control of [S]/([S]+[Se]) ratio in the absorber, which revealed many interesting insights : Front

side grading was realized and the defect layer at the surface of the absorber induced by this

process was removed successfully using HCl etching. A resulting solar cell, produced with this

absorber showed 3.5% efficiency. Two pathways which hint at the limitations of the front side

grading were explored. One is the use of binary compounds as the intermediate precursor

resulting in a constant bandgap due to the formation of Cu-Se from Cu-S at the beginning

of the reaction. The second is the poor crystallinity while using ternary compound as the

intermediate precursor, due to the lack of surfactant as Cu based binaries at this stage.

7.1 Perspectives

Kesterite being a complex material, it requires a high degree of understanding. This work

sought to give some lights on different aspects. Several other research topics may be identified

that would speed up the development of kesterite and push it to same level as other thin-film

technologies such as CIGS and CdTe. To achieve this, theoretical studies on the understanding

of defects will be but one step; a higher degree of understanding of the processes, correlation

of device characteristics with processing conditions and knowledge on secondary phases will

be required.

This work highlighted the importance of chalcogen vapor pressure during annealing. The low

process controllability is the biggest research challenge as it makes the analysis complicated.

Thus, a new process using H2S/H2Se as chalcogen source may prove beneficial by providing

higher degree of controllability.

Na was found to be beneficial to increase the device properties; A deeper study on other alkali,
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Chapter 7. Conclusion and Perspective

or any other relevant elements could help with defects passivation. Work on replacement

of cations would ba able to address the order-disorder issue, such as- Sn can be replaced by

Ge or Cu can be replaced by Ag etc. But care need to be taken as these inclusion of different

elements might face criticism because of the potential use of toxic/scarce material.

Graded bandgap holds interesting promises of improvements for kesterite absorber, but these

are still out of reach due to the lack of process control and knowledge. A new design of

furnace that can utilize both sulfur and selenium simultaneously during annealing procedure

might be a good way to reliably achieve graded kesterite. A deep study of the front and

back interfaces will also be indispensable to get the most benefits from a graded absorber.

Furthermore, suitable nano-characterization process should be developed to identify the

atomic distribution of S and Se and apply the knowledge back to the process.

Kesterite solar cell was destined to replace other thin-film technologies. This technology

has yet to reach its climax. Its performance are still not up to par with its predecessors

but it certainly hasn’t reached its full potential. There is little doubt that, with the constant

improvements brought forth by the many research groups (most of whom achieved more than

10% efficiency), it will soon catch up with the other mature thin-film technologies.
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Appendix

.1 Sensitivity analysis of e-ARC

This sensitivity analysis is done by changing one parameter during simulation, while keep-

ing all the other parameter constant. First of all, ZnO:Al layer thickness can affect all the

wavelength that is effective for absorber, but the amount of change is relatively low (17%

average change in MSE value is observed for 100% change of thickness). On the other hand,

thickness of Zn layer has effects only on the wavelength less than 400 nm, but the amount of

change is relatively higher than ZnO:Al (22% average change in MSE value is observed for 100%

change of thickness). Secondly, CdS thickness have huge impact on the calculated EQE for the

wavelength of 300nm-600nm (87% average change in MSE value is observed for 100% change

of thickness). Therefore, CdS thickness should be optimized carefully to have the best fitting

of experimental data. Thirdly, the MoS2 thickness has low (7% average change in MSE value

is observed for 100% change of thickness) effect on calculated EQE, which is mainly on the

wavelength greater than 800nm. Finally, the carrier collection length has the highest impact

(93% average change in MSE is observed for 100% change of thickness) on the calculation of

EQE by this modeling.
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Appendix . Appendix

(a) Al doped ZnO thickness sensitivity (b) ZnO thickness sensitivity

(c) CdS thickness sensitivity (d) MoS2 thickness sensitivity

(e) Carrier collection length sensitivity

Figure 1: Effect of different parameter as a representation of sensitivity analysis in simulation.

.2 Dark J-V and C-V measurements of Sb-doped CZTS device

Figure 2 is showing the RS and RSh deducted from dark J-V measurement and net carrier

concentration (NC-V) and depletion region width (W) deducted from capacitance-voltage

measurement for all Sb-incorporated sample.

The RS of Sb-doped sample increased noticeably compared to undoped sample, which can

be the reason to have decreased JSC for PAS(Sb5) sample. Although RS value decreased with
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.2. Dark J-V and C-V measurements of Sb-doped CZTS device
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(a) Series(RS) and shunt resistance(RSh) of
PAS(Sb) samples compared to undoped samples.
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Figure 2: Electrical parameter (series resistance, shunt resistance, net carrier concentration and
depletion region width extracted from dark IV curve and C-V measurement) of sample doped with Sb.

increased amount of Sb due to slightly higher net carrier concentration, but the JSC remain

similar to undoped sample. Furthermore, PAS(Na10+Sb10) sample showed lower RSh com-

pared to PAS(Na10) sample (figure 5.17), which can be the reason for PAS(Na10+Sb10) sample

having 40mV (mean.) lower VOC. Interestingly, the RSh of PAS(Na10+Sb10) sample is somewhat

closer to the RSh of PAS(Na20) sample. From the result of SIMS, we learned that the amount of

Na for PAS(Na10+Sb10) sample is higher than PAS(Na10) sample. Therefore, this higher Na

content can be responsible for lower RSh in case of PAS(Na10+Sb10) sample.
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Abstract

The goal of this work is to study and to develop the routes toward efficiency improvement

of Kesterite-based solar cells. First, a baseline process has been developed leading to a

maximum power conversion efficiency of 7.6% and 5.9% for CZTSe and CZTS-based solar cells,

respectively. Second, the incorporation of Na and Sb in the CZTS absorber has been tested as

a first strategy to enhance the performance of CZTS devices. Results show that Na improves

efficiency by passivating the surface and reduce recombination on the surface and at the bulk.

Power conversion efficiency with optimized Na content is doubled compared to the reference

sample without Na, but has no effect on device performances. Sb improved the morphology

of the absorber in the presence of Na. It has been expected to increase efficiency, which is not

the case. Third, the efficiency of Kesterite solar cells was studied with the introduction of S/Se

gradient as a function of its depth in the absorber. No enhance of efficiency was reach by S/Se

grading as was not possible to obtain simultaneously a good grain morphology and a smooth

S/Se gradient along the absorber depth.

Resumé

Le but de ce travail est d’étudier et de développer des voies pour améliorer l’efficacité des

cellules solaires à base de Kesterite. Tout d’abord, un processus de référence a été mis au

point pour obtenir un rendement de conversion d’énergie maximal de 7.6% et 5.9% pour les

cellules solaires CZTSe et CZTS respectivement. Dans un deuxième temps, l’incorporation

de Na et de Sb dans l’absorbeur CZTS a été testée comme première stratégie pour améliorer

les performances des dispositifs CZTS. Les résultats montrent que le Na améliore l’efficacité

en passivant la surface et en réduisant les recombinaisons de surface et dans le volume de

l’absorbeur. L’efficacité de conversion photovoltaïque avec une teneur en Na optimisée est

doublée par rapport à l’échantillon de référence sans Na. Le Sb a amélioré la morphologie de

l’absorbeur en présence de Na mais sans impact sur les performances des dispositifs. Enfin,

l’introduction de gradient d’énergie de bande interdite créé par un gradient de composition

S/Se en fonction de la profondeur dans l’absorbeur a été testée pour améliorer d’avantage

le rendement des cellules solaires. Les caractérisations matériaux ont montré l’obtention

de gradient proche de la surface de l’absorbeur mais ne se traduisant pas par un gain en

performance. En effet, la fabrication de gradient S/Se vers l’interface arrière et dans une

moindre mesure proche de la surface se fait au détriment de la cristallisation du matériau

masquant le bénéfice du gradient d’énergie.
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