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Abstract

Fifth generation networks are being defined and their different components are begin-

ning to emerge: new radio access technology, fixed and mobile network convergence and

virtualization. The success of these networks requires unified end-to-end management.

The effectiveness of the management system can be enhanced by autonomous or SON

functions, based on policies. A policy can be a set of rules for activating SON function-

alities, activating resources, or choosing data routing.

End-to-end (E2E) control and management of the network have a particular importance

for network performance. Having this in mind, we segment the work of the thesis in

two parts: the radio access network (RAN) with a focus on Massive MIMO (M-MIMO)

technology and the E2E connection from a point of view of the transport layer.

In the first part, we consider hierarchical beamforming in wireless networks. For a given

population of flows, we propose computationally efficient algorithms for fair rate alloca-

tion including proportional fairness and max-min fairness. We next propose closed-form

formulas for flow level performance, for both elastic (with either proportional fairness

and max-min fairness) and streaming traffic. We further assess the performance of traf-

fic, and validate the results using numerical experiments. Since the proposed solutions

have low complexity compared to conventional beamforming, our work suggests that

hierarchical beamforming is a promising candidate for the implementation of beamform-

ing in future cellular networks.

In the second part, we identify an application of SON namely the control of the starva-

tion probability of video streaming service. The buffer receives data from a server with

an E2E connection following the TCP protocol. We propose a model that describes

the behavior of a buffer content and we compare the analytical formulas obtained with

simulations. Finally, we propose a SON function that by adjusting the application video

rate, achieves a target starvation probability.
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Résumé

Les réseaux de cinquième génération sont en cours de définition et leurs différentes com-

posantes commencent à émerger : nouvelles technologies d’accès radio et virtualisation

des réseaux fixes et mobiles. Le succès de ces réseaux nécessitera une gestion de bout

en bout unifiée pour la gestion des ressources physiques et virtuelles programmables,

de nombreux services, dynamiques, fiables et contextuels, tout en étant économe en

énergie et à un coût mâıtrisé. L’efficacité du système de gestion peut être améliorée par

l’introduction de fonctionnalités autonomes ou SON. Les fonctions SON sont conçues

pour configurer, optimiser et réparer de manière autonome le réseau afin de simplifier

sa gestion et améliorer ses performances et sa rentabilité. Par exemple dans le réseau

LTE l’auto-optimisation permet, entre autres, d’optimiser les paramètres de mobilité et

de réduire les interférences grâce à une meilleure allocation des ressources. L’utilisation

de fonctions de contrôle autonomes et auto-organisées agissant sur différents segments

du réseau vise à optimiser la qualité de service globale.

Dans la première partie du manuscrit, nous avons contribué au MIMO Massif (M-

MIMO), l’un des principaux piliers du RAN 5G. Le M-MIMO donne la possibilité

d’obtenir des faisceaux focalisés sur l’utilisateur avec un bon rapport de signal sur

interférence plus bruit (SINR). Nous proposons de modéliser le M-MIMO avec une

table de codage hiérarchique des faisceaux et de mettre en œuvre l’ordonnancement

multi-utilisateurs MIMO (MU-MIMO). À cette fin, nous avons développé des modèles

analytiques basés sur des systèmes de file d’attente et des techniques d’optimisation.

Les modèles analytiques ont été comparés aux résultats de simulation. Tenant compte

à la fois de la couche physique et de la nature dynamique du trafic, les algorithmes

d’ordonnancement et les performances au niveau du flot d’un M-MIMO constituent un

problème difficile et important qui n’a pas reçu beaucoup d’attention dans la littérature.

La structure hiérarchique permet de dériver un algorithme d’ordonnancement efficace

pour optimiser la fonction utilité α - équité, cela garantit une allocation de ressources

équitable relativement facile à mettre en œuvre avec la table de codage hiérarchique des

faisceaux, alors que ce n’est pas le cas pour tous les systèmes MIMO. Nous considérons

ensuite la dynamique au niveau des flots qui arrivent et partent dynamiquement. Pour

le trafic élastique avec allocation d’équité proportionnelle, nous obtenons une formula-

tion exacte (sans approximation) du débit du flot et prouvons que la performance du

système est insensible (c’est-à-dire qu’elle ne dépend que de la taille du flot et du taux

d’arrivée des flots). Pour le trafic inélastique, nous montrons qu’ils existent des algo-

rithmes pour calculer la probabilité de blocage dans un temps presque linéaire. Nous

validons les résultats analytiques par des simulations.

La seconde partie de la thèse vise à développer une fonction de réseau auto-organisant

(SON) qui améliore la qualité d’expérience (QoE) des connexions en bout-en-bout. Nous
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considérons un service de type vidéo streaming et développons une fonctionnalité SON

qui adapte la QoE de bout-en-bout entre le serveur vidéo et l’utilisateur. Le protocole

de transport considéré est le TCP (Transmission Control Protocol).

L’objectif de cette partie du manuscrit est de comprendre l’impact des protocoles TCP

sur la QoE des clients et d’exploiter ces résultats pour comprendre comment contrôler

les ressources. La QoE est représentée par la probabilité de famine qui est le pour-

centage que la lecture d’une video streaming se bloque. La raison du blocage est du

à la mémoire-tampon (buffer), d’un smartphone par exemple, qui se vide. Une fois le

problème ciblé, nous développons un modèle mathématique qui décrit le comportement

d’une mémoire-tampon lors d’une diffusion vidéo avec un débit de lecture vidéo fixé au

préalable et un débit TCP simulé avec des modèles bien connu dans la littérature. Ce

dernier est simulé avec une loi exponentielle qui représente le délai entre deux pertes de

paquets consécutives. On utilise le modèle brownien drifté qui nous permet de calculer

de manière exacte la probabilité que la mémoire-tampon soit vide. Grâce à ces résultats,

nous proposons un mécanisme de contrôle avec un SON qui donne le débit de lecture

vidéo. Le but étant d’atteindre la probabilité de famine fixée arbitrairement. Tous les

résultats obtenus sont validés par simulation.

Ce manuscrit est organisé en cinq chapitres. Le premier est l’introduction, le deuxième

donne le contexte mathématique nécessaire pour comprendre les deux chapitres suivants

qui correspondent aux travaux sur la première et deuxième partie de la thèse et le dernier

chapitre qui résume et donne des perspectives sur les résultats obtenus. Le deuxième

chapitre comporte trois sections. La première section présente les processus de Markov,

certaines de leurs propriétés et un cas particulier d’un processus de Markov, utilisé dans

le troisième chapitre, la deuxième section parle des processus de naissance et de mort

et le troisième définit le modèle brownien drifté. La troisième chapitre explique tous les

résultats obtenus en rapport à un algorithme d’ordonnancement multi-utilisateurs pour

M-MIMO qu’on proposera et l’évaluation de sa performance. Le quatrième chapitre

explique les résultats obtenus pour le contrôle de la QoE d’une connexion E2E. Nous

expliquons le modèle mathématique pris en considération pour décrire l’évolution de la

mémoire-tampon, nous montrons qu’on peut obtenir une formulation exacte de la prob-

abilité de famine et en fin de chapitre nous proposons une fonction auto-organisante qui

ajuste la vitesse de lecture d’une connexion vidéo streaming. Avant la fin du manuscrit,

nous donnons une conclusion avec des perspectives sur la suite de travaux à mener sur

les sujets abordés, suivie par l’annexe.
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Introduction

Fifth generation networks are being defined, and their various components are begin-

ning to emerge: new radio access technologies, fixed and mobile network convergence

and programmability (Software Defined). Networking - SDN, Network Function Vir-

tualization - NFV, cloud platforms etc.). The success of these networks will require

unified, end-to-end management for managing programmable physical and virtual re-

sources, many diverse, dynamic, reliable and context-aware services, while being energy

efficient and a controlled cost. The effectiveness of the management system can be en-

hanced by autonomous functionalities or SON [[59] - [17]]. SON functions are designed

to autonomously configure, optimize, and repair the network to simplify network man-

agement, improve performance, and profitability. In the LTE network, for example,

self-optimization makes it possible, among other things, to optimize mobility parame-

ters and to reduce interference by better allocation of resources. Several SON for the

RAN are developped as the ICIC using a utility-based approach [55], [15] and energy

savings [50] and reinforcement learning [21]; and the load balancing [16], [58]. Recently

we have works for develop SON for Backhaul, the part of network between the RAN

and the CORE, in this work we have an exemple [7]. Several SON for RAN are already

deployed by operators as Orange, and could be empowered by a cognitive management

system. In the works [19] and [18] they use multi-armed bandit to find the optimal

policy for decide to activate or not the automatics mechanisms.

This thesis is part of a research program on the management of networks and services,

also covering the future 5th generation networks that is an evolution of traditional 4G-

LTE networks and the addition of a new radio access technologies, globally standardized

by the 3rd Generation Partnership Project (3GPP) [22], [1]. Among the challenges of

the program are the evolutions and solutions for end-to-end quality of experience (QoE)

management, including the use of of autonomic, self-organizing control functions acting

on different segments of the network to optimize overall quality of service (QoS) and

QoE. The management of the end-to-end connection by means of self-organizing func-

tions is the main problem identified for the thesis.
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14 Introduction

In the first part, we have contributed to Massive MIMO (M-MIMO) that is one of

the main pillars of 5G RAN [32], [36]. The benefits are the ability to obtain highly

focused beams, giving rise to high signal interference with noise ratio (SINR) and rates.

Beamforming in M-MIMO will be used in Frequency Division Duplex (FDD) (codebook

based beamforming) and in Time Division Duplex (TDD) (MRT, ZF,) for control and

data transmissions. The objectives are to model M-MIMO with hierarchical beamform-

ing, implement Multi-User MIMO (MU-MIMO) scheduling and make a performance

evaluation, works are already made in this way as [56]. To this end we have developed

analytical models based on queueing systems, and optimization techniques. The ana-

lytical models have been compared to simulation results. Scheduling algorithms and

flow-level performance of massive Multiple Input Multiple Output (MIMO) taking into

account both the physical layer and the dynamic nature of the traffic is a challenging

and important problem that has received close to no attention in the literature [30].

Furthermore, the design of efficient Multi-User (MU)-MIMO scheduling algorithms for

massive MIMO systems having a hierarchical structure is relatively untouched. We

first derive an efficient scheduling algorithm to compute the α-fair allocation, in time

O(|V | + K) where |V | is the number of beams and K the number of flows. This en-

sures that fair rate sharing is relatively easy to implement for hierarchical beamforming,

while this is not the case for all MIMO systems. We then consider flow-level dynamics

where flows arrive and depart dynamically. For elastic traffic with Proportional Fair

allocation, we derive the expected flow throughput in closed form and prove that the

system performance is insensitive (i.e. it depends only on the expected flow size and the

arrival rate). For streaming traffic, we show that there exist algorithms to compute the

blocking probability in almost linear time O (|V | ln |V |) so that the system is tractable.

We conclude with some illustrative numerical experiments.

The second part of the thesis aims at developing Self-Organizing Network (SON) func-

tion that optimizes Quality of Experience (QoE) of E2E video streaming connection.

There are several indicators of QoE and we consider the starvation of a video streaming

represented by a buffer that is emptying during the play-out. The analysis of buffer

starvation is considered in several works such as [67], [68].

We have three protocols for sending packets in an E2E connection. We focus on Trans-

mission Control Protocol (TCP) as the transport protocol. The goal of this part of the

manuscript is to understand the impact of TCP protocols on the QoE of clients (cf [20]

or [12]) and exploit these results for understanding how to control the resources. The

QoE is represented with the starvation probability namely that the video streaming

stops during its play-out. After having visualized the problem we develop a mathe-

matical model that describes the behavior of a buffer during a video streaming with a

particular bitrate and a TCP throughput depending on the characteristics of the traf-

fic. Several works are used markovian queues as model [65], [69] and [66], particularly
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they calculate starvation probability with an application-layer approach [38] and [71].

The traffic is simulated with an exponential law that represents the delay between two

consecutive packets dropped. The model chosen is the drifted Brownian model, with

this model we are able to compute in closed form the probability that the buffer will

be empty and, thank this result, we propose a control mechanism as SON, for example,

that give the bitrate at the beginning of the E2E connection for obtaining the star-

vation probability fixed arbitrarily above. All the results obtained are validated with

simulations.

This manuscript is organized in five chapters. Following the introduction in Chap-

ter 1, Chapter 2 briefly summarizes the mathematical tools used in the manuscript.

The main contributions of the thesis are described in two parts correspond to Chapters

3 and 4. Chapter 5 provides concluding remarks and perspectives for future work.

The second chapter has three sections. The first section presents the Markov processes,

some of their properties and a particular case of a Markov process, used in the third

Chapter. The second Section recalls birth and death processes, and the third Section

defines the Brownian drifted model.

The third Chapter explains all the results obtained in relation to a multi-user schedul-

ing algorithm for hierarchical implementation of M-MIMO that are proposed and the

evaluation of its performance.

The fourth Chapter explains the results obtained for controlling the QoE of an E2E

connection of a video streaming service. We develop and explain the mathematical

models for the buffer and starvation probability, and use these results to develop a self-

organizing function that adjusts the rate in which the video server will send the video

content.

Chapter 5 provides concluding remarks and perspectives for future investigations. Fur-

ther details on models and numerical setup used in the manuscript are included in the

Appendix.

1.1 List of publications

Journal paper

❼ J. Floquet, R. Combes, Z. Altman, ”Hierarchical beamforming: Resource alloca-

tion, fairness and flow level performance”, Performance Evaluation, 2018

Conference paper

❼ J. Floquet, R. Combes, Z. Altman, ”Hierarchical beamforming: Resource alloca-
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Theoretical foundations

2.1 Some properties of Markov processes

This Chapter provides mathematical background and results used thoughout the manuscript.

All the results are presented without proofs. The reader with a strong mathematical

knowledge can skip this chapter.

2.1.1 Continuous-time Markov chain

A random process X(t), t ∈ R+, taking its values in some countable set Ω, is a

continuous-time Markov chain if it verifies the following:

P(X(t+ τ) = y|X(t) = x;X(t1) = x1, ..., X(tl) = xl) = P(X(t+ τ) = y|X(t) = x)

for any t, τ ∈ R+, any states x, y ∈ Ω, any set of t1, ..., tl ∈ R+ with t1, ..., tl < t, and

any set of l states x1, ..., xl ∈ Ω.

We denote by µ(x → y) the transition rates with homogeneous time of the Markov

process:

µ(x→ y) = d
dtP(X(t+ dt) = y|X(t) = x)

More details in [54], Section 9.10.

2.1.2 Birth and death process

The birth-death process is a Markov process on Ω = N whose transitions increase or

decrease the state variable by one. For any x ∈ N∗, we denote by λ(x) = µ(x→ x+ 1)

the birth rate and q(x) = µ(x→ x− 1) the death rate.

More details in [60], Section 5.17.

17
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2.1.3 Stationary distribution

The probability measure π on Ω is a stationary distribution of a Markov process with

continuous time if :

π(x)
∑

y∈Ω

g(x→ y) = 0,∀x ∈ Ω

With g the infinitesimal generator defined as g(x→ y) = µ(x→ y) for x 6= y and

g(x→ x) = −∑y∈Ω µ(x→ y). More details in [54], Paragraph 9.10.4.

2.1.4 Reversibility

For a Markov chain with stationary probability π the ”detailed balance equations” are:

∀x, y ∈ Ω, π(x)µ(x→ y) = π(y)µ(y → y)

A Markov chain is reversible if and only if it is in a stationary state and checks the

”detailed balance equation”. In other terms you have the same probabilty to reach y

from x and to reach x from y. More details in [60], Section 4.4.

2.1.5 Stability

Conceptually the stability of a chain is defined by the fact that the number of people

waiting to enter the system is a number that even if it takes very large values over time,

it will return to take smaller values and will not tend to infinity. The condition for

stability of a continuous-time Markov chain is to verify the positive recurrence of the

chain. A chain is positive recurrent when all the states are positives recurrents. A state

is positive recurrent if

E(Tx|X(0) = x) <∞

with Tx = inf{t > 0|X(t) = x} the time of the first return to x ∈ Ω. More details in

[60], Section 4.6.

2.1.6 Ergodic theorem

The theorem says that if X(t) with t ∈ R+ is irreductible and positive recurrent with a

stationary distribution π, then for any bounded function f .

lim
T→∞

1

T

∫ T

0
f(X(t))dt = E(f(X)) a.s.

where X is a random variable with distribution π. More details in [60], Section 4.6.
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2.2 Queuing systems

2.2.1 Traffic model

For the simulation of traffic through a queueing system we model the arrival rate of

customers in the queue and the departure rate of customers. The arrival rate is λ that

represents the average number of arrivals in the queue per time unit. The departure

rate of customers from a busy server is µ.

To represent the traffic intensity in the server we define the load ρ as the ratio of

the arrival rate to the total service rate of the queue, that is:

ρ =
λ

µ

This is a quantity without dimension.

The system works at load ρ < 1 and this condition satisfies the stability of the system.

More details in [60], Section 1.3.

2.2.2 M/M/1 queue

M/M/1 queue models one server with an arrival rate of customers and a service rate of

the server. Customers arrive according to a Poisson process of intensity λ and are served

during an aleatory time simulated by the exponential distribution with parameter µ.

The server can accept an infinite number of customers.

The number of customers in the queue forms a birth-death process, with birth rate

λ and death rate of µ.

The stationary mesure of the Markov process is derived from the equation :

∀x ∈ N, π(x) = (1− ρ)ρx

The mean number of customers in the queue is given by:

E(X) =
∑

x

xπ(x) =
ρ

1− ρ

More details in [60], Section 1.4.

2.2.3 Little formula

If a queue is stable and the arrival rate is equal to λ, we have the following relationship:

E(X) = λδ

with δ the mean time of a customer in the queue. This represents the Little formula

and this relationship holds for any stable queueing system.
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From the Little formula, we deduce the mean delay, including the queueing and

service time, for an M/M/1:

δ =
1

µ− λ

More details in [60], Section 6.6.

2.2.4 Insensitivity

The queuing system is insensitive when it depends only on the average of the distribution

of the service time. That is, if we replace exponential service times of average 1
µ with

constant service times equal to 1
µ , the distribution of the number of customers does not

change. More details in [60], Section 6.8.

2.2.5 PASTA property

PASTA for Poisson Arrivals See Time Averages is a property of Poisson processes. The

distribution of customers seen by an arrival to a queueing system is, stochastically, the

same as the limiting distribution of customers at that system. More details in [60],

Section 6.7.

2.2.6 M/M/1 queue with priority

This section is inspired by [2] Chapter 4.5 , we talk about a M/M/1 system with traffic

units arriving in the queue having k classes of priority indexed by i (1 < i < k), where

1 denotes the class with the highest priority and k the lowest. In this kind of system

we have several “priority discipline” that decide how to select the next unit and serves

it. We shall talk about the discipline serving units with the highest priority. It must

specify the rules for making the decision whether to continue or discontinue the service

of the unit being serviced.

The decision to continue the service of the unit currently in service may or may not

depend on the state of the system. Since the decision to select the next unit for service

depends only upon the priority class, a unit of the i-th class if present is always taken

for service prior to the unit of the j-th class (i < j) . However, if a unit of the jth class

is in service and a unit of the i-th class (i < j) arrives, different alternatives may be

followed leading to the disciplines: Preemptive and Head-of-the-line.

The first is when the service of the j-th class unit is immediately interrupted and the

server starts serving the ith-class unit. The second is that the service of the j-th class

unit is continued to completion, this is also called non-preemptive or postponable.
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Preemptive-resume priority

This section is inspired by [2], Section 4.5.1, consider an M/M/1 queue with k types

of customers. The type i customers arrive according to a Poisson stream with rate λi,

i = 1, ..., k. The service time and residual service of a type i customer is denoted by Bi
and Ri, respectively. The type 1 customers have the highest priority, type 2 customers

the second highest priority and so on. For the preemptive-resume priority rule inter-

ruptions are allowed and after the interruption the service time of the lower priority

customer resumes at the point where it was interrupted.

Consider a type i customer, thus there do not exist lower priority customers due to the

preemption rule. So we must assume that λi+1 = ... = λk = 0. The mean waiting time

of a type i customer is denoted by E(Wi) and define ρi = λiE(Bi).

E(Wi) =

∑i
j=1 ρjE(Rj)

(1− (ρ1 + ...+ ρi))(1− (ρ1 + ...+ ρi−1))
, i = 1, ...k

2.3 Diffusion modelling

2.3.1 Brownian drift

Suppose that µ ∈ R and σ ∈]0,∞[. Brownian motion with drift parameter µ and scale

parameter σ is a random process (Xt)t∈[0,∞[ with state space R that are continuous

on [0,∞[ with X0 = 0. It has stationary increments, for s, t ∈ [0,∞[ with s < t the

distribution of Xt − Xs is the same as the distribution of Xt−s. It has independent

increments, for t1, t2, ..., tn ∈ [0,∞[ with t1 < t2 < ... < tn, the random variables

Xt1 , Xt2 − Xt1 , ..., Xtn − Xtn−1 are independent. Xt has the normal distribution with

mean µt and variance σ2t for t ∈ [0,∞[.

The relation between a Brownian motion with drift and standard Brownian motion is

described by

Xt = µt+ σWt (2.1)

for t ∈ [0,∞[, where (Wt)t∈[0,∞[ is a standard Brownian motion. More details in [40],

Chapter 1.

2.3.2 Girsanov theorem

We have Wt = (W 1
t , ...,W

d
t ) the d-dimensional Brownian motion and f = (f1, ..., fd)

the mesurable process such that fj ∈ L2([0, T ]×Ω, λ⊗P) ∀ 0 < T <∞ and j = 1, ..., d.

The λ represents the Lebesgue measure.

Theorem 1. If qt = exp(
d
∑

j=1

∫ t

0
fj(s)dW

j
s −

1

2

∫ t

0
|f(s)|2ds) is integrable with E(qt) = 1,
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then for evey T > 0 the process

Bt := Wt −
∫ t

0
f(s)ds, t ≤ T,

is a d-dimensional Brownian motion under the new probability measure Q = QT

dQ := qTdP

Proof in [49], Section 17.3.

2.3.3 Hitting time for Brownian motion with drift

This section shows how to compute the probability of hitting time for drift Brownian

motion. We have the following theorem:

Theorem 2. The probability that drift Brownian motion attains the value α > 0, noted

P(Hα ≤ T ), defined by

Hα = inf{t ≥ 0 : ct+Wt = α}

is

P(Hα ≤ T ) =
1√
π

∫

z≥ α−cT√
2T

exp(−z2)dz +
e2αc

√
π

∫

z≥ α+CT√
2T

exp(−z2)

Proof. We define Xt as a Brownian motion with positive drift c > 0 and X0 = 0:

Xt = ct+Wt

We compute the distribution of the hitting time. For α = 0 the hitting time density is

trivial because the process starts with X0 = 0. For α 6= 0 we notice that :

{Hα ≤ t} = {sup
s≤t

Xs ≥ α}

We need the formula for the joint distribution of (Yt, sups≤t Ys) , with (Yt)t≥0 be a

Brownian motion on a probability space (Ω, A,Q) with Q = exp−cYT − c2

2
T P. The proof

of the following joint distribution formula is in [49], Exercise 6.8.

Q

[

Yt ∈ dx, sup
s≤t

Ys ∈ dy
]

=
2(2y − x)√

2πt3
exp

(

−(2y − x)2

2t

)

1[−∞,y](x) dx dy. (2.2)
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Thanks to Girsanov theorem and joint distribution we obtain :

P(Hα ≤ T ) = P(sup
s≤T

Xs ≥ α)

=

∫

Iα,∞(sup
s≤T

Xs ≥ α)dP

=

∫

Iα,∞(sup
s≤T

Xs ≥ α) expcWt+ c2

2
T dQ

By Girsanov theorem, (Xt)t≥T is a Brownian motion with respect to Q and moreover

the joint distribution gives

P(Hα ≤ T ) = e− c2

2
T
∫

y≥α

∫

x≤y
ecx

2(2y − x)√
2πT 3

e− (2y−x)2

2T dxdy

=
1√
2πT

exp

(

−c
2

2
T

)

(∫

x≥α
ecxI1(x) dx+

∫

x≤α
e−cxI2(x) dx

)

where

I1(x) :=

∫

y≥x

2(2y − x)

T
exp

(

−(2y − x)2

2T

)

dy = exp

(

− x
2

2T

)

I2(x) :=

∫

y≥α

2(2y − x)

T
exp

(

−(2y − x)2

2T

)

dy = exp

(

−(2α− x)2

2T

)

.

Hence,

P(Hα ≤ T ) =
1√
π

∫

z≥ α−cT√
2T

exp(−z2)dz +
e2αc

√
π

∫

z≥ α+CT√
2T

exp(−z2)

More details for the proof following the link [52].
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Design and performance analysis

of hierarchical beamforming

3.1 Massive MIMO model

Massive MIMO technology is considered as one of the main pillars of 5G RAN, providing

means to considerably increase spectral and energy efficiency [43]. In the coming years,

large scale antenna systems having hundreds of radiating elements are expected to be

deployed (Figure 3.1).

Large scale antenna systems with highly focused beams raise the problem of control

channels that, unless being precoded (beamformed), will not match coverage of data

channels. In Release 10 of 3rd Generation Partnership Project (3GPP), the concept

of precoded Channel State Information Reference Signal (CSI-RS) has been introduced

[10]. Release 13 has introduced the Full Dimension (FD)-MIMO with 3D beamforming

supported by 2D antenna arrays, with typically dual-polarized 8 × 8 antenna arrays

[28]. With the introduction of massive MIMO in 5G networks, the concept of beam

switching or beam sweeping has been proposed. The beams from a given grid of beams

are transmitted (in the downlink) or received (in the uplink) in a time interval and in

a predetermined way. Beam sweeping can be used in both TDD and FDD for control

channels. The attachement of a UE to a beam is performed by means of control channels,

namely the UE reports to the base station which is the best received beam. Data is

transmitted using the best beam reported by the mobile user in FDD. It is noted that

the grid of beams can be useful in TDD when a poor channel or Signal to Interference

plus Noise Ratio (SINR) condition occurs.

In prior art solution, beams coverage is generally not uniform across the cells. UEs

located at the border of a beam coverage may be penalized with respect to UE located

at beam centers. This is due to the beam roll-off, which is unavoidable in the system

design. Additionally, there is a significant overlap between beams and UE at beams

edge receive interference from the adjacent beams. These two effects are at the source

25
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Figure 3.1: Massive MIMO representation

of a SINR degradation, mostly affecting UE at beam edges. The aim of this Chapter

is to circumvent this problem while offering optimal cell throughput thanks to spatial

reuse.

The purpose of this Chapter is to develop a scheduling algorithm that utilizes the

hierarchical beamforming and to analyse the performance of such a scheduler. The

concept of beamforming using a codebook is first explained. Following, the proposed

model based on flows is presented. We continue explaining how obtain α-fair allocation

with scheduler. We present how to obtain the flow-level performance of such a system

in closes form.

A flow represents the transmission of data between the base station and a UE using

the scheduled beam from the hierarchical codebook. It is noted that as long as the UE

velocity is not too high, beamforming schemes perform well.

3.1.1 Antenna modelling

We use the model proposed by A.Tall and Z.Altman [57], which investigates the design

of the array of antenna elements for generating focused beams.

In appendix A you find more details about how to compute the gain function of a

beam. The following picture schematizes the antenna of a Massive MIMO.

3.1.2 Beamforming with a Codebook

The idea of a dynamic adaptation of the beam to each user often referred to in the

literature as beamforming, is to be able to reconfigure the antenna parameters online

so that the beam used to serve a particular user is adjusted to get the maximum signal

strength. The antenna gains brought by such technology increase with the number of

antenna elements of the antenna array, but so does also the feedback overhead needed to

adjust the antenna parameters. In order to reduce this overhead, a codebook of antenna

beams can be used in which each beam corresponds to a specific configuration of the

antenna which defines the beam characteristics, e.g. in terms of direction and beam

width. The user feedback can then be used to select the best beam in the codebook. It
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Figure 3.2: Antenna model [57]

is noted that a large codebook will increase the amount of required signaling.

3.1.3 Grid of Beams

Beamforming (BF) is a key advantage of M-MIMO. It boosts the coverage and rate of

data channels. Thanks to the new concept of Grid of Beams (GoB), control channels

as well can benefit from M-MIMO BF. A GoB is a set of pre-defined narrow beams.

Thanks to a beam sweeping mechanism, all beams can be scanned and each UE can

select its best beam. However, GoB generates an overhead of control channels and cre-

ates small areas between beams with degraded performance. Several new solutions to

improve the GoB concept can be envisaged: Beam skipping, Oversampling, Hierarchical

Beamforming.

Beam skipping which consists in avoiding to simultaneously activate overlapping beams.

The Oversampling which consists of adding overlapping beams on purpose. The Hier-

archical beamforming (HBF) consists of a beam planning based codebook according to

cell coverage.

Beam Skipping

To reduce overlapping between adjacent beams and the associated inter-beam interfer-

ence, the concept of beam skipping is introduced: Once a particular UE is scheduled

on its best beam, a certain number of configurable beams that are adjacent to the

chosen beam are skipped. Subsequent UEs may only be picked from the non-skipped

beams, and they are chosen based on the appropriate scheduling metric. It reduces the
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interference between beams.

Oversampling

The improvement of cell edge throughput can be achieved by improving the SINR (as

with the beam skipping approach). Alternatively, one can improve the received power

of UEs that have poor beamforming gain because they are in between adjacent beams

using oversampling. Reduce the CSI-RS overhead associated to oversampling, one can

combine it with a hierarchical structure. By choosing larger beams, the areas in between

beams with performance is reduced and it consequently improves cell edge throughput.

Hierarchical codebook design based on beam planning approach

Recently, the concept of the hierarchical or multilevel codebook of beams (or codebook

based beamforming) has been proposed. The term multi-resolution has been used as well

and refers to the same concept. One of the motivations behind the idea of hierarchical

codebooks is to reduce the signaling overhead of common channels while maximizing

the beamforming gain.

Several contributions on hierarchical beamforming are briefly described presently.

The first example is a millimeter wave backhaul serving urban pico-cells [26]. In this

work, a hierarchical codebook of beams is used to efficiently align a pair of receive-

transmit beams. Hierarchical beamforming has also been studied for the Radio Access

Networks (RAN). In [3] the authors develop a hierarchical codebook for the training

beamforming vectors for millimeter wave cellular systems. The sparse nature of the

microwave channel is exploited in order to develop a hybrid analog/digital low com-

plexity precoding algorithm. [63] introduces a generalized detection probability metric

for comparing the efficiency of codebooks. An optimization procedure that optimizes

this metric by flattening the beam patterns is proposed. The hierarchical codebook of

beams can be designed to fit the coverage needs of a cell allowing to further reduce

the number of beams in the codebook, as described in [57]. Furthermore, it is shown

that the geometry and propagation parameters of the cell should be taken into account

when designing the structure of the codebook. For example, in typical dense urban

cells, a 3D hierarchical codebook can be used while in the sub-urban environment, a

2D horizontal hierarchical codebook of beams is more appropriate. More references

on hierarchical beamforming can be found in [41] which also describes how to design

the hierarchical codebook using the Discrete Fourier Transform (DFT) matrix. The

hierarchical codebook of beams can be designed to fit cell coverage requirements, and

its structure is different according to the type of environment, e.g. sub-urban vs dense

urban cells. A remaining challenge is to self-configured the codebook using basic geo-

metrical parameters of the cell, during the thesis we worked on this subject. If certain

conditions on the hierarchical codebook structure are satisfied, we will show in chapter

6 of this manuscript that low complexity and efficient MU-MIMO scheduling algorithm
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can be derived.

Advantages have been identified to this approach: HBF reduces the overhead of beam-

formed CSI-RS control channels.

3.2 Multi-User MIMO Scheduling for hierarchi-

cal codebook

3.2.1 Mathematical modelization of hierarchical codebook

We consider a cell which is a region in the plane G ⊂ R2. We consider a set V of

fixed beams which can be used for transmitting data to flows. To each beam v ∈ V =

{1, . . . , |V |} we associate Gv ⊂ G which is the region covered by beam v, namely one

can send data to a flow located in Gv using beam v. We assume that there exists a

directed graph G = (V,E) where the set of vertices V is the set of beams. The graph G

is assumed to be a directed tree. For ease of presentation, we assume that the nodes V

are sorted by increasing depth, so that 1 is the root of G, and (v, v′) ∈ E implies that

v < v′. We call the set of beams, the covered regions and the corresponding graph a

codebook. For beam v ∈ V and x ∈ G, we denote by gv(x) the signal power received

by a flow located at x using beam v. It is noted that in practice, if x /∈ Gv, the value of

gv(x) is negligible, but the received signal power is not strictly zero.

Definition 1. A codebook is hierarchical if it verifies the following three properties:

(i) If (v, v′) ∈ E then Gv′ ⊂ Gv
(ii) If (v, v′) ∈ E and (v, v′′) ∈ E then Gv′ ∩ Gv′′ = ∅.

(iii) If (v, v′) ∈ E and x ∈ Gv′, then gv′(x) ≥ gv(x).

An example of a hierarchical codebook with |V | = 10 beams is presented in Fig-

ure 3.3. Both the covered regions and the graph G are depicted. As seen from the

three above properties and the figure, the regions covered by beams form a hierarchical

partition of space. Namely, the children of a beam v cover regions covered by v (prop-

erty (i)), and the regions covered by distinct children do not overlap (property (ii)).

Furthermore if one goes down in the tree, beams become more focused since they cover

smaller regions, and the received signal power increases (property (iii)). We also see

that hierarchical codebooks are an improvement over a grid-of-beams approach (where

one only uses beams of maximal depth): the beams with the highest depth are small,

very focused and do not interfere with each other (i.e. the interference is negligible),

however any location not covered by those beams is covered by beams of lower depth.

Beams of high depth allow for large data rates and beams of low depth ensure cov-

erage to all flows in the cell. Therefore, while the grid-of-beams approach inevitably
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Figure 3.3: Hierarchical codebook example

creates coverage degradation in between beams, hierarchical codebooks are immune to

this problem. For the rest of the chapter we assume that the hierarchical beamforming

provides a full coverage of the cell.

3.2.2 Notations

We say that two beams v and v′ do not interfere if and only if the regions they cover

do not overlap, that is Gv ∩ Gv′ = ∅. We use the following notations:

❼ A(v) the set of ancestors of v, and Ā(v) = A(v) ∪ {v}.

❼ D(v) the set of descendants of v, and D̄(v) = D(v) ∪ {v}.

❼ d(v) the degree of v ∈ V i.e. the number of its children

❼ d(G) = maxv∈V d(v) the maximal degree of the graph G.
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❼ h(G) the height of G which is the largest distance between the root and any

vertice v ∈ V .

The definition of the main graph-theoretic notions for trees are recalled in the Appendix.

We recall a standard fact about trees, which is that the number of edges equals the

number of nodes minus one, |E| = |V | − 1. Unless stated otherwise, we denote vectors

by bold letters (e.g. x), scalars by non-bold letters (e.g. x), and xk denotes the k-th

component of x. Deterministic quantities are denoted by lower-case letters (e.g. x)

and random quantities are denoted by upper case letters (e.g. X). For instance X is a

random vector, and Xk is the k-th component of X. Finally sets are denoted by upper

case calligraphic letters (e.g. X ). For k an integer, we denote by [k] the set {1, . . . , k}.
We denote by ln the natural logarithm.

3.3 Algorithms for fair rate allocation

In this section we consider a fixed set K of flows, where x(k) ∈ G, denotes the location of

flow k ∈ K. We study fair rate allocation strategies. We first determine how flows should

be associated to beams, and which sets of beams may be activated simultaneously. We

then formulate fair rate allocation as a convex optimization problem and provide a

problem-specific efficient algorithm to solve this problem.

3.3.1 Flow association

We assume that each flow k ∈ K is associated to a beam vk ∈ V which maximizes the

signal strength, so that

vk ∈ arg max
v∈V

gv(x(k)).

Since the codebook is hierarchical, by property (iii), one should associate k to the beam

of largest depth which covers location x(k). It is also noted that, from the hierarchy

of the codebook, beam allocation to a flow given its location can be performed using

a simple and efficient algorithm (Algorithm 1) described below. This algorithm runs

Algorithm 1: Beam association algorithm

Data: Tree G sorted by decreasing height, point x, regions Gv for v ∈ V
v ← 1;
while ∃v′ : (v, v′) ∈ E, x ∈ Gv′ do

v ← v′;

Result: Flow at x associated to beam v

in at most O(d(G)h(G)) iterations. For instance, if G is a regular tree its height is

h(G) = O(ln |V |), so that the running time is O(d(G) ln |V |). This is an advantage of
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hierarchical codebooks over the grid-of-beams approach, where flow association usually

requires scanning through all the beams, which requires O(|V |) time. Hence hierarchy

allows a considerable improvement from linear to logarithmic complexity. This is critical

for real-world implementation of large codebooks, especially since flow association must

be updated periodically due to arrival, departure and mobility of flows.

When flow k is served by beam vk, it may receive data at data rate:

rk = W log2

(

1 +
gvk

(xk)

N2
0

)

,

where W is the bandwidth and N2
0 is the thermal noise power. We denote by K(v) =

{k ∈ K : vk = v} the set of flows associated with beam v, and nv = |K(v)| the number

of flows associated with beam v.

While we do not take into account several cells in this model, we assume that, in

a more realistic setting, if all neighboring cells use hierarchical beamforming as well,

the resulting inter-cell interference should be negligible since when beamforming with

narrow beams is used, two flows would see interference only if they are both physically

close to each other and receive data at the same time. Indeed this situation should only

happen infrequently.

3.3.2 Beam activation strategies

We now consider that the association of beams to flows vk, k ∈ K is fixed, in other words

the flows are static. We determine which sets of beams can be activated simultaneously.

To avoid interference, two beams v and v′ may be activated at the same time if and

only if they do not interfere. By definition of the codebook this is true if and only if

v is not a descendant or an ancestor of v′. We say that a subset of V is an admissible

activation strategy if all beams in this subset may be activated simultaneously without

interfering with each other. We identify subsets of V with vectors of {0, 1}|V |. Denote

by z ∈ {0, 1}|V | a subset of beams where zv = 1 if v is activated and zv = 0 otherwise.

The set of admissible activation strategies is therefore:

Z =
{

z ∈ {0, 1}|V | : zvzv′ = 0,∀v′ ∈ A(v), v ∈ V
}

.

Figure 3.4 depicts the possible activation strategies when G is a binary tree of height

2. We denote the activated (resp. non-activated) beams by colored (resp. empty)

vertices. It is noted that we solely depict the maximal activation strategies (i.e. for

which activating a new beam would render the strategy non admissible). Furthermore,

we assume that one can perform time-sharing between the possible activation strategies,

since in practice time is slotted and for each time slot one chooses an admissible set

of beams to activate. Hence the vector of admissible proportions of time each beam is

activated γ must verify:

γ = (γv)v∈V ∈ conv(Z).
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Figure 3.4: Set of admissible activations for a binary tree of height 2.

where conv denotes the convex hull, and γv ∈ [0, 1] is the proportion of time beam v is

activated.

3.3.3 Flow activation strategies

When beam v ∈ V is activated, at most one flow may be served by this beam at a time,

and time sharing between flows associated to a given beam applies as well. Denote by

δk ∈ [0, 1] the proportion of time flow k is served by beam vk divided by the proportion

of time vk is activated. The admissible set for δ = (δv)v∈V is hence:

∆ =







δ ∈ [0, 1]K :
∑

k∈K(v)

δk = 1, v ∈ V






.

3.3.4 Fair rate allocations

We now determine fair rate allocation strategies, which involves finding the optimal

values of γ and δ to maximize a utility function of the flows data rates. From the

above, given γ and δ, the effective data rate of flow k ∈ K is given by rkγvk
δk. We

are interested in the family of α-fair allocations (see [39]), which leads to the following

optimization problem:

Maximize
δ,γ

∑

v∈V

∑

k∈K(v)

fα(rkγvδk)

subject to γ ∈ conv(Z) and δ ∈ ∆,

where

fα(r) =

{

r1−α

1−α if α 6= 1

ln(r) otherwise.
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It is noted that this formulation includes Proportional Fairness (PF) (α = 1), Maximum

Throughput (MT) (α = 0) and Max-Min Fairness (MMF) (α→∞) as particular cases.

Since this optimization problem is convex, one may find the optimal solution using an

iterative method such as gradient descent or Newton method, but we will show that, for

any value of α, an optimal solution may be computed by an efficient, problem specific,

algorithm.

3.3.5 Explicit expression for the convex hull

Before deriving the optimal rate allocation, we state Proposition 1, an auxiliary result

which allows to express the convex hull conv(Z) in closed form. The interpretation of

Proposition 1 is that γv can be written as the product κv
∏

v′∈A(v)(1 − κv′), where κv
is the proportion of time v is activated divided by the proportion of time none of its

ancestors are activated. We recall that v may be activated only if all of its ancestors

are not activated.

Proposition 1. We have that:

conv(Z) =







γ : γv = κv
∏

v′∈A(v)

(1− κv′),κ ∈ [0, 1]|V |







=







γ ∈ [0, 1]|V | :
∑

v′∈Ā(v)

γv′ ≤ 1, v ∈ V






.

The proof is relatively straightforward. We have for every v ∈ V :

κv =
γv

1−
∑

v′∈A(v)

γv′

κv ≥ 0 because γv ≥ 0 and
∑

v′∈A(v)

γv′ ≤ 1

κv ≤ 1 because
∑

v′∈Ā(v)

γv′ ≤ 1

We have

(

κv =
γv

1−∑v′∈A(v) γv′

)

⇒


γv = κv
∏

v′∈A(v)

(1− κv′)





3.3.6 Efficient algorithms for fair rate allocation

We now derive the optimal rate allocation in closed form, and provide an efficient

algorithm to compute it in practice.
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Theorem 3. Define the vectors φ,θ and κ⋆ as follows. Vector φ is given by:

φv =











(

∑

k∈K(v) r
1
α

−1

k

)α

if α 6= 1

|K(v)| otherwise.

Next define θ and κ through the following recursion. Let

θv =

{

φv

1−α if v is a leaf

(κ⋆v)
1−α φv

1−α + (1− κ⋆v)1−α∑

v′:(v,v′)∈E θv′ otherwise.

κ⋆v =






1 +





1− α
φv

∑

v′:(v,v′)∈E

θv′





1
α







−1

.

Then (δ⋆,γ⋆) the unique α-fair allocation is given by:

δ⋆k =















r
1
α −1

k
∑

k′∈K(vk)
r

1
α −1

k′

, if α 6= 1

1
|K(vk)| , otherwise.

γ⋆v = κ⋆v
∏

v′∈A(v)

(1− κ⋆v′).

The proof of Theorem 3 is presented in 3.9.1. From Theorem 3 we deduce Algo-

rithm 2, an efficient dynamic programming algorithm to calculate the α-fair allocation

given the flow rates rk, k ∈ K and the allocations vk, k ∈ K. This algorithm runs in

linear time O(|V |+ |K|) and is hence efficient, since its input has size O(|V |+ |K|).

3.3.7 Examples

We now illustrate the outcome of the α-fair allocation for the important sub-cases of

α ∈ {0, 1}. It is noted that the Max-Min Fair allocation (i.e. α→∞) does not seem to

yield a simple formula for arbitrary trees.

Proportional Fairness (α = 1) The PF allocation is given by:

δ⋆k =
1

nvk

, k ∈ K

κ⋆v =
nv

∑

v′∈D̄(v) nv′
, v ∈ V

So that:

γ⋆v =
nv

∑

v′∈D̄(v) nv′

∏

v′′∈A(v)

∑

v′∈D(v′′) nv′
∑

v′∈D̄(v′′) nv′
.
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Algorithm 2: α-fair allocation

Data: Tree G sorted by decreasing height, flow rates rk, k ∈ K, flow
association vk, k ∈ K, parameter α

/* Compute the aggregated data rates */

for v ∈ V do
φv ← 0;

for k ∈ K do

φvk
← (φ

1
α
vk + r

1
α

−1

k )α;

for k ∈ K do

δ⋆k ←
r

1
α −1

k

φ
1
α
v

;

/* Dynamic Programming: ascending phase */

for v = |V |, |V | − 1, . . . , 1 do
τv ← 0;
for v′ : (v, v′) ∈ E do

τv ← τv + θv′ ;

κ⋆v ←
[

1 +
(

1−α
φv

τv
)

1
α

]−1

; θv ← (κ⋆v)
1−α φv

1−α
+ (1− κ⋆v)

1−α τv;

/* Dynamic Programming: descending phase */

γ⋆1 ← κ⋆1;h1 ← 1− κ⋆1;
for v = 2, . . . , |V | do

v′ ← father of v;
γ⋆v ← κ⋆vhv′ ;
hv ← hv′(1− κ⋆v);

Result: α-fair allocation δ⋆, γ⋆
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While the proportion of time each beam is activated does not depend on the flow rates

rk, k ∈ K, the dependence in the number of flows served by each beam n = (nv)v∈V is

not completely obvious.

Maximal Throughput (α = 0) For simplicity, assume that all flows allocated to

the same beam have the same data rate so that rk = rk′ if vk = vk′ . Then we obtain:

δ⋆k =
1

nvk

, k ∈ K

γ⋆v =
∏

v′∈D(v)

1{nv′ = 0} , v ∈ V.

Hence a beam is activated all the time if all of its descendants are empty, and never

activated otherwise. In short, Max Throughput gives absolute priority to beams with

higher depth.

Figure 3.5 illustrates the proportion of time each beam is activated by the α-fair

allocation on two simple examples. For simplicity we consider G to be a binary tree of

height 2 and we assume that the data rate of each flow is unity, so that rk = 1, k ∈ K.
We can see that lower values of α tend to prioritize the leaves over the root, while higher

values of α allocate more ressources to the root. Indeed, in the extreme case of α = 0,

the root is active if and only if all other nodes are empty. Also, as seen on Example 1,

the Proportional Fair allocation does not treat the root and the leaves equally if all of

them have the same number of flows. This is due to the fact that activating the root

prevents all other nodes from being activated.

3.3.8 Practical implementation

At first sight, an algorithm which simply returns γ⋆ ∈ conv(Z) does not seem to be

usable directly, since as said before, in practice time is slotted, and at each time slot one

must select an admissible beam configuration from Z, so that the average proportion of

time v (over a large number of time slots) is activated equals γ⋆v . In fact one may do so

directly using a simple randomized algorithm. Given κ⋆ calculated by our algorithm,

at each time slot, draw Y = (Yv)v∈V independent Bernoulli random variables where

E(Y) = κ⋆. Then define Z = (Zv)v∈V ∈ {0, 1}|V | as:

Zv = Yv
∏

v′∈A(v)

(1− Yv′), v ∈ V

and activate beam v if and only if Zv = 1. One may readily check that Z ∈ Z since

ZvZv′ = 0 whenever v is an ancestor or a descendant of v′, and furthermore:

E(Zv) = κ⋆v
∏

v′∈A(v)

(1− κ⋆v′) = γ⋆v , v ∈ V.

Hence E(Z) = γ⋆, and repeating the above procedure for each time slot provides a

practical implementation of the α-fair allocation, and, as a bonus, involves calculating

γ⋆ only once.
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Figure 3.5: Fair rate allocation



39

3.4 Flow Level Performance for Elastic Traffic

We now study the flow-level performance of hierarchical beamforming for elastic traffic.

Flows arrive at random time instants, download a file of exponentially distributed size

and depart upon download completion. For each configuration of flows n ∈ N|V |, a given

rate allocation scheme chooses a rate allocation δ⋆(n),γ⋆(n), from which the throughput

of each flow present in the system can be deduced. As done usually when studying

the flow-level performance of wireless networks, we assume that the rate allocation

mechanism adapts instantaneously upon arrival and departure of flows (separation of

time scales), so that the throughput of any given flow at any given time is equal to the

throughput given by the rate allocation scheme. Our aim is to calculate the throughput

experienced by a typical flow.

3.4.1 Model

We assume that flows arrive in each region Gv according to a Poisson process with rate

λv. Each flow represents an amount of data whose size is exponentially distributed with

expectation 1. To simplify the analysis, we assume that any flow associated with beam

v has data rate rv (this can be relaxed in cases of interest, as shown below). We denote

by N(t) = (Nv(t))v∈V the state of the system at time t, which is a random variable,

where Nv(t) denotes the number of active flows present in Gv at time t. Define the load

for each beam:

ρv =
λv
rv

It is noted that N(t) is a continuous-time Markov process. We say that the system is

stable if and only if N(t) is positive recurrent. When the system is stable, Little law

guarantees that the expected amount of time a typical flow is served by beam v equals
E(Nv(t))

λv
. We then define the flow throughput ([11]):

ψv =
λv

E(Nv(t))
,

which represents the expected throughput experienced by a typical flow served by beam

v.

3.4.2 Transition rates

The transition rates of N(t) depend on the rate allocation mechanism. In state N(t),

the proportion of time beam v is activated equals γ⋆v(N(t)), so that the throughput of

any flow served by beam v equals

rvγ
⋆
v(N(t))δv(N(t)) =

rvγ
⋆
v(N(t))

Nv(t)
.
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Denote by:

µ(n→ n′) =
d

dt
P(N(t+ dt) = n′|N(t) = n)

the transition rate of the Markov process N(t) between states n and n′. Denote by

ev = (0, . . . , 0, 1, 0, . . . , 0) the v th-canonical base vector of R|V |. The only possible

transitions from n are n → n + ev and n → n − ev, v ∈ V , which correspond to an

arrival and a departure of a flow served by beam v respectively. The transition rates

are:

µ(n→ n + ev) = λv,

µ(n→ n− ev) = rvγ
⋆
v(n)1{nv ≥ 1}.

3.4.3 Stability region

The stability of the system depends on the rate allocation mechanism which maps the

system state N(t) into the corresponding rate allocation δ(N(t)),γ(N(t)). We may

derive the stability region from our earlier analysis of fair scheduling.

Proposition 2. There exists a rate allocation scheme ensuring stability if and only if
∑

v′∈Ā(v) ρv′ < 1 for all v ∈ V .

Proof. There exists a rate allocation scheme ensuring stability if and only if ρ lies in the

interior of conv(Z). Furthermore, from Proposition 1

conv(Z) =







γ ∈ [0, 1]|V | :
∑

v′∈Ā(v)

γv′ ≤ 1, v ∈ V






which concludes the proof. �

3.5 Flow level performance under proportional

fairness

3.5.1 PF allocation

We now compute the stationary distribution of N(t) for Proportional Fair rate allocation

which is the α-fair rate allocation scheme described in the previous section with α = 1.

We recall that the PF allocation is given by:

γ⋆v(n) =
nv

∑

v′∈D̄(v) nv′

∏

v′′∈A(c)

∑

c′∈D(v′′) nv′
∑

v′∈D̄(v′′) nv′

δ⋆v(n) =
1

nv
.
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Stationary Distribution and Flow Throughput Both the stationary distribu-

tion and the flow throughput are given by Theorem 4. The proof of Theorem 4 is based

on the fact that N(t) is reversible, so that its stationary distribution is known up to a

normalization constant, and then calculating this constant by recursion. It should be

noted that, in general, the PF allocation does not lead to reversible systems. It is also

noted that the result holds not only for exponential flow size distributions, but in fact

holds for all flow sizes distributions i.e. the system is insensitive.

Theorem 4. Consider PF rate allocation. Then N(t) is a reversible Markov process

with stationary distribution:

π(n) =
1

c(ρ)

∏

v∈V

ρnv
v

(

∑

v′∈D̄(v) nv′

nv

)

with:

c(ρ) =
∏

v∈V

1−∑v′∈A(v) ρv′

1−∑v′∈Ā(v) ρv′
.

The expected number of customers in stationary state is:

E[Nv(t)] = ρv
∑

v′∈D̄(v)

1− d(v′)

1−∑v′′∈Ā(v′) ρv′′

and the flow throughput is:

ψv = rv





∑

v′∈D̄(v)

1− d(v′)

1−∑v′′∈Ā(v′) ρv′′





−1

Furthermore, the above holds for all flow time distributions, i.e. the system is insensi-

tive.

3.5.2 Proof of Theorem 4

To prove that N(t) is both reversible and has stationary distribution π, it is sufficient

to check that the detailed balance condition holds:

π(n)µ(n→ n + ev) = π(n + ev)µ(n + ev → n)

For all n ∈ N|V | and v ∈ V . Detailed balance holds by inspection since:

µ(n→ n + ev)

µ(n + ev → n)
=

ρv
γ⋆v(n + ev)

=
π(n + ev)

π(n)
.

Hence N(t) has stationary distribution π and the value of c(ρ) can be found by nor-

malization since
∑

n∈N|V | π(n) = 1:

c(ρ) =
∑

n∈N|V |

∏

v∈V

ρnv
v

(

∑

v′∈D̄(v) nv′

nv

)

.
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We proceed by recursion, and for v ∈ V , we define cv(ρ) the value of c(ρ) when ρv′ = 0

for all v′ 6∈ D̄v, i.e. cv(ρ) is the value of the above sum only considering n ∈ N with

nv′ = 0 unless v′ 6∈ D̄v. Another interpretation is that cv(ρ) is the value of c(ρ) when

considering the subgraph made of v and its descendants. Finally it is also noted that

c(ρ) = c1(ρ) since 1 is the root. We use the following fact for binomial coefficients:

Fact 1. For z, β ∈ C, we have 1
(1−z)β+1 =

∑

k≥0

(k+β
k

)

zk.

Summing over n1 ∈ N the above expression we obtain the following relation:

c(ρ) = c1(ρ) =
1

1− ρ1

∏

v:(1,v)∈E

cv
(

ρ

1− ρ1

)

.

More generally we have the following recursive relation:

cv(ρ) =
1

1− ρv
∏

v′:(v,v′)∈E

cv
′
(

ρ

1− ρv

)

.

Iterating the relation above starting at v = 1 we obtain the announced result:

c(ρ) =
∏

v∈V

1−∑v′∈A(v) ρv′

1−∑v′∈Ā(v) ρv′
.

The expected number of customers is calculated using the following trick. Recall the

definition of c(ρ):

c(ρ) =
∑

n∈N|V |

∏

v′∈V

ρ
nv′
v′

(

∑

v′′∈D̄(v′) nv′′

nv′

)

Taking logarithms and differentiating with respect to ρv:

ρv
∂ ln c(ρ)

∂ρv
=

1

c(ρ)

∑

n∈N|V |

nv
∏

v′∈V

ρ
nv′
v′

(

∑

v′′∈D̄(v′) nv′′

nv′

)

=
∑

n∈N|V |

nvπ(n) = E(Nv(t)).

Plugging the previous expression of c(ρ) gives:

E(Nv(t)) = ρv
∂ ln c(ρ)

∂ρv

= ρv
∂

∂ρv

∑

v′∈V

ln

(

1−∑v′′∈A(v′) ρv′′

1−∑v′′∈Ā(v′) ρv′′

)

= ρv
∑

v′∈D̄(v)

1− d(v′)

1−∑v′′∈Ā(v′) ρv′′
.

as announced.
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3.6 Flow level performance under maximal through-

put

We now study the flow-level performance for the Maximal Throughput rate allocation

which is the α-fair rate allocation scheme with α = 0. As we can see, while in this

case N(t) is not reversible (nor insensitive), it has a hiearchical structure which can be

exploited in order to provide tractable expressions for performance.

Transition Rates We first calculate the transition rates. From the hierarchical

nature of the codebook, we have that rv′ > rv if v′ ∈ D(v) (see Definition 1). As stated

in the previous section, in state n ∈ N|V |, the proportion of time beam v is activated

equals:

γ⋆v(n) =
∏

v′∈D(v)

1{nv′ = 0}.

namely, beam v is activated all the time if all of its descendants are empty, and never

activated otherwise.

3.6.1 Performance for line graphs

We first consider the case of line graphs, where we have E = {(1, 2), (2, 3), . . . , (|V | −
1, |V |)}. From definition 1, beam v is activated at time t if and only if all of its

descendants are empty, namely nv′(t) = 0 v′ = v+1, . . . , |V |. From this observation, we

can reduce the system to a M/M/1 queue with preemptive-resume priority as follows.

Indeed, consider a single server with |V | classes of users, where class v represents users

served by beam v. In this system, at time t, users of class v are served at rate rv if

nv′(t) = 0, v′ = v+ 1, . . . , |V | and at rate 0 otherwise. This new system is equivalent to

the original system, which yields Theorem 5. The proof is provided in appendix 3.9.2.

Theorem 5. Consider MT allocation and G a line graph. Then N(t) is positive recur-

rent (stable) if and only if
∑

v∈V ρv < 1. Furthermore, if
∑

v∈V ρv < 1 we have for all

v ∈ V :

E(Nv(t)) =
ρv
(

1 +
∑

v′≥v ρv′
(

rv

rv′ − 1
))

(

1−∑v′≥v ρv′
)

(1−∑v′>v ρv′)

and the flow throughput is :

ψv =
rv(1−

∑

v′≥v ρv′)(1−∑v′>v ρv′)

1 +
∑

v′≥v ρv′( rv

rv′ − 1)

3.6.2 Performance for generic graphs

We now consider the case where G is a generic tree. In that case as well we compute

the flow throughput and the analysis is much more involved than for the previous case.
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Under the MT allocation, a beam is activated if and only if all of its descendants are

empty. However the state of a beam does not depend on the state of its ancestors.

Therefore, the evolution of Nv(t) depends on Nv′(t) if and only if v′ ∈ D̄(v). In

order to study the distribution of the state of v, i.e. Nv(t), it is natural to study the

process (Nv(t))v′∈D̄(v) which describes its state and that of its descendants. We define

the busy period of this process which plays a crucial role in our analysis. We define

ℓv =
∑

v′∈D(v) λv′ the total arrival rate in the descendants of v.

Definition 2. For v ∈ V define the Markov processes

Nv(t) = (Nv′(t))v′∈D̄(v) ∈ N|D̄(v)|,

Mv(t) = (Nv′(t))v′∈D(v) ∈ N|D(v)|,

where Nv(t) describes the state of v and its descendants, and Mv(t) describes the state of

the descendants of v. Define the random variable Bv which is the busy period of process

Mv(t). We recall that the busy period is Bv = T2 − T1 in a system where Mv(0) = 0,

and T1 > 0 is the first random instant after 0 such that Mv(T1) 6= 0, and T2 > T1 is

the first random instant after T1 such that Mv(T2) = 0.

In Theorem 6, we show that the expected number of customers in stationary state

can be computed as a function of the two first moments of the busy period.

Theorem 6. Under MT rate allocation, the expected number of flows in beam v satisfies,

for all v ∈ V :

E(Nv(t)) =
λvℓv

2 E(B2
v) + ρv (1 + E(Bv)ℓv)

2

(1− ρv(1 + E(Bv)ℓv))(1 + E(Bv)ℓv)

Furthermore, E(Bv) can be computed recursively using the following relations:

E(Bv) =
1

ℓv

(

1
∏

v′:(v,v′)∈E P(Nv′(t) = 0)
− 1

)

.

and:

P(Nv(t) = 0) + ρv =
∏

v′:(v,v′)∈E

P(Nv(t) = 0),∀v ∈ V.

3.6.3 Proof of Theorem 6

Expected number of customers. We say that a customer is waiting if it has never

received service, and it is in service if it has received service but has not left the system

yet. We compute the expected time spent in service, denoted by E(Mv). When a flow

first receives service by beam v, by definition, no flows from classes v′ ∈ D(v) must be

present in the system. Once she has started to receive service, there are two possible

outcomes: either no flows from classes v′ ∈ D(v) arrive before her service completion
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(this occurs with probability rv

rv+ℓv
), otherwise she must wait for the duration of a

busy period of Mv(t) and we are back in the initial situation, since the exponential

distribution is memoryless (this occurs with probability ℓv
rv+ℓv

). The expected time

before either of these events happens is 1
rv+ℓv

. Therefore the expected service time

verifies:

E(Mv) =
rv

rv + ℓv

1

rv
+

ℓv
rv + ℓv

(E(Bv) + E(Mv))

so that:

E(Mv) =
1

rv
(1 + E(Bv)ℓv)

We now calculate the expected time spent waiting denoted by E(Wv). Assume that a

flow arrives at time 0. From the PASTA property, Nv(0) is distributed as the stationary

distribution. Denote by T−
v the first instant at which Mv(T−

v ) = 0. Denote by T−
v +T+

v

the first instant at which all customers present at time 0 have been served. Therefore

the waiting time may be decomposed as:

E(Wv) = E(T−
v ) + E(T+

v ).

First one notices that T−
v is expressed as a function of the residual busy period of the

process Mv(t) and is given by:

E(T−
v ) =

1

2

E(B2
v)

E(Bv) + E(Av)
=

1

2

E(B2
v)

E(Bv) + ℓ−1
v
.

where Av is the time that the process Mv(t) spends in state 0. Indeed Av is exponen-

tially distributed with mean 1
ℓv
.

From Little law, E(Nv(0)) = λv(E(Wv) + E(Mv)). No flow of beam v may receive

service before T−
v , therefore T+

v is the amount of time necessary to serve Nv(0) flows

and is given by:

E(T+
v ) = E(Nv(0))E(Mv) = λvE(Mv)(E(Wv) + E(Mv)).

using the previous relation. Substituting we obtain:

E(Wv) = E(T−
v ) + E(T+

v ) = E(T−
v ) + λvE(Mv)(E(Wv) + E(Mv)),

which yields:

E(Wv) =
E(T−

v ) + λvE(Mv)
2

1− λvE(Mv)

Therefore the total expected time spent by a typical flow is given by:

E(Wv) + E(Mv) =
E(T−

v ) + E(Mv)

1− λvE(Mv)



46 Flow level performance under maximal throughput

Substituting the value of E(Mv) we get

E(Wv) + E(Mv) =

1
2

E(B2
v)

E(Bv)+ℓ−1
v

+ 1
rv

(1 + E(Bv)ℓv)

1− ρv(1 + E(Bv)ℓv)

=
ℓv
2 E(B2

v) + 1
rv

(1 + E(Bv)ℓv)
2

(1− ρv(1 + E(Bv)ℓv))(1 + E(Bv)ℓv)
.

Using Little law E(Nv(t)) = λv(E(Wv) + E(Mv)) yields the announced result.

Expected duration of the busy periods. Consider the Markov process Mv(t).

The expected duration this process spends in state 0 is 1
ℓv
, and the duration between

two visits to state 0 equals E(Bv). Therefore, the probability that Mv(t) is in state 0

satisfies:

P(Mv(t) = 0) =
1
ℓv

1
ℓv

+ E(Bv)
,

so that the expected busy period is:

E(Bv) =
1

ℓv

(

1

P(Mv(t) = 0)
− 1

)

.

Furthermore, using the fact that, if v′ and v′′ are distinct children of v, processes Nv′
(t)

and Nv′′
(t) are independent we get:

P(Mv(t) = 0) = P(Nv′
(t) = 0,∀v′ : (v, v′) ∈ E)

=
∏

v′:(v,v′)∈E

P(Nv′
(t) = 0).

Substituting yields the second claim:

E(Bv) =
1

ℓv

(

1
∏

v′:(v,v′)∈E P(Nv′(t) = 0)
− 1

)

.

Void probabilities To complete the proof, we must compute the void probabilities

P(Nv(t) = 0) for v ∈ V . We have:

P(Mv(t) = 0) = P(Mv(t) = 0, Nv(t) 6= 0) + P(Mv(t) = 0, Nv(t) = 0)

As explained before, P(Mv(t) = 0) =
∏

v′:(v,v′)∈E P(Nv′
(t) = 0) from independence, and

by definition P(Mv(t) = 0, Nv(t) = 0) = P(Nv(t) = 0). Finally, beam v serves its users

if and only if P(Mv(t) = 0, Nv(t) 6= 0), so that, by conservation of work we must have

λv = rvP(Mv(t) = 0, Nv(t) 6= 0). Substituting yields the announced relation:
∏

v′:(v,v′)∈E

P(Nv′
(t) = 0) = ρv + P(N(t)v = 0)

and from this relation, the value of P(Nv(t) = 0) may be computed by backwards

induction for all v ∈ V which concludes our proof.



47

3.6.4 Busy periods: exponential approximation

As shown by Theorem 6, the only missing piece in order to compute E(Nv(t)) is the

value of the second moment of the cycle times E(B2
v). In general, computing the second

moment of the busy period does not seem completely straightforward. We propose to

approximate the busy period by an exponential, so that E(B2
v)

2 ≈ E(Bv)
2. The flow

throughput is given by corollary 1. The rationale for this approximation is as follows:

if ρ ≪ 1, then the busy period is simply the service time of the first customer which

enters the system, and this time indeed has exponential distribution. As shown in our

numerical experiments, this approximation yields tractable formulas which are rather

accurate.

Corollary 1. Assume that the busy period can be approximated by an exponential.

Then, under MT rate allocation, the number expected number of flows in beam v satisfies,

for all v ∈ V :

E(Nv(t)) =
λvℓvE(Bv)

2 + ρv (1 + E(Bv)ℓv)
2

(1− ρv(1 + E(Bv)ℓv))(1 + E(Bv)ℓv)

3.7 Flow Level Performance for Streaming Traf-

fic

3.7.1 Model

We now consider streaming traffic where flows require a fixed amount of resources

throughout their stay in the system. Namely the available resources are spit into an

integer number ξ ≥ 1 of circuits, where a circuit represents the smallest unit of resource

that can be allocated to a flow. Each flow served by beam v ∈ V requires a number of

circuits sv ∈ {1, . . . , ξ}, and to ensure that that all flows are allocated enough resources

admission control is used. When a new flow arrives, one checks whether or not one

can guarantee that all active flows can be allocated enough circuits. If the answer is

yes, the flow is admitted, otherwise she is blocked. Flows arrive in beam v according

to a Poisson process with rate λv and remain there during an exponentially distributed

time with mean 1
rv
. Define the load ρv = λv

rv
. In fact the system is insensitive, so that

considering exponential service times is sufficient. The state of the system at time t is

N(t) ∈ N ⊂ N|V | where Nv(t) represents the number of flows served by beam v and N
is the set of states in which all active flows can be allocated enough circuits. The only

possible transitions of N(t) correspond to the arrival and departure of a flow, and the

transition rates are for all n ∈ N :

µ(n→ n + ev) = λv1{n + ev ∈ N},
µ(n→ n− ev) = rv1{nv ≥ 1}.
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3.7.2 Admission control

Let us now characterize the set of admissible states allowed by admission control i.e.

states in which all flows can be allocated enough circuits by some policy. Consider

the system in state n ∈ N|V |, and assume that there exists a rate allocation policy

γ⋆(n) ∈ conv(Z) which ensures that all flows are allocated enough circuits. Flows

served by beam v require sv circuits so that the proportion of time v is activated should

satisfy γ⋆v(n) = nv
sv

ξ for all v. Furthermore, since any feasible rate allocation policy

must satisfy γ(n) ∈ conv(Z). Clearly, both of those conditions can be satisfied if and

only if:
∑

v′∈Ā(v)

nv′
sv′

ξ
≤ 1, v ∈ V.

The set of admissible states N is therefore:

N =







n ∈ N|V | :
∑

v′∈Ā(v)

nv′sv′ ≤ ξ , v ∈ V






.

Furthermore, if the system is in state n ∈ N , and a flow associated with beam v arrives,

it is admitted if and only if his entering the system leads to an admissible state, and

blocked otherwise. Define the set of blocking states for beam v:

N (v) = {n ∈ N|V | : n ∈ N ,n + ev 6∈ N}.

It is noted that a flow associated with beam v will be blocked if and only if it arrives

in a blocking state for beam v, that is n ∈ N (v).

3.7.3 Stationary distribution and blocking probability

We may now derive the stationary distribution of the system in closed form, as well

as the blocking probability for each beam, which constitutes the performance figure of

the system. The stationary distribution is known in closed form up to a normalization

constant, so that the main difficulty is to compute a sum over the state space N .

Clearly, brute force summation is not feasible as |N | grows exponentially with |V |. We

show that there exists a low complexity algorithm (stated as Algorithm 3) to compute

the stationary distribution as well as blocking probabilities. The result is stated as

Theorem 7 and proven in subsection 3.7.4.

It is noted that Algorithm 3 computes the blocking probabilities in timeO(ξ|V |h(G)).

In most cases of interest, for instance if G is a regular tree, h(G) = O(ln |V |), so that the

running time of Algorithm 3 is O(ξ|V | ln |V |) which is linear in the number of circuits

ξ and almost linear in the number of beams |V |. Since its input has size O(|V |), we
deduce that the dependency of the running time of this algorithm on |V | is optimal up

to a logarithmic factor ln |V |. This algorithm is reminiscent of the Kaufman-Roberts
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algorithm [29, 48] used to compute blocking probabilities in multi-rate Erlang systems,

and leverages the hierchical structure of the codebook by computing the blocking prob-

abilities recursively.

Theorem 7. (i) Under the above assumptions, N(t) is a reversible Markov process with

stationary distribution π:

π(n) =
1

c(ρ)

∏

v∈V

ρnv
v

nv!
, n ∈ N ,

where c(ρ) is the normalization constant defined as:

c(ρ) =
∑

n∈N

∏

v∈V

ρnb
v

nb!
.

(ii) The blocking probability of class v is:

pv(ρ) = P(N(t) ∈ N (v)) =

∑

n∈N (v)

∏

v′∈V
ρ

n
v′

v′
nv′ !

∑

n∈N

∏

v′∈V
ρ

n
v′

v′
nv′ !

.

(iii) Algorithm 3 outputs of value of the blocking probability vector p(ρ) using time

O(ξ|V |h(G)) and memory O(|V |ξ).

3.7.4 Proof of Theorem 7

Stationary Distribution. By inspection, one may readily check that π verifies the

detailed balance conditions:

π(n + ev)

π(n)
=
µ(n→ n + ev)

µ(n + ev → n)
=
λv
rv

= ρv.

so that N(t) is indeed reversible with stationary distribution π.

Normalization Constant It now remains to compute the normalization constat

c(ρ). Furthermore, for s = 0, 1, . . . , ξ, and v ∈ V define N (s, v) the set of admissible

sets when there are s circuits, and where beams which do not descend from v are empty:

M(s, v) =
{

n ∈ N|V | :
∑

v′′∈Ā(v′)

nv′′sv′′ ≤ s,∀v′ ∈ V

and nv′ = 0,∀v′ 6∈ D̄(v)
}

.

and we define the corresponding partial sums:

cv(s) =
∑

n∈M(s,v)

∏

v′∈D̄(v)

ρ
nv′
v

nv′ !
.
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Algorithm 3: Computation of blocking probabilities

Data: Tree G sorted by decreasing height, loads ρ, circuit requirements
s, number of circuits ξ

for v = 1, . . . , |V | and s = 1, . . . , ξ do cv(s)← 0;
/* Phase 1: Compute the normalization constant */

for v = |V |, . . . , 1 and s = 1, . . . , ξ do

for ℓ = 0, . . . , ⌊s/sv⌋ do
t← 1;
for v′ : (v, v′) ∈ E do t← tcv′(s− ℓsv);

cv(s)← cv(s) + ρℓ
v

ℓ!
t;

for v′ = |V |, . . . , 1 do qv,v′(s)← cv′(s);

/* Phase 2: compute blocking probabilities */

for v = 1, . . . , |V | and s = 1, . . . , ξ do
v′ ← v;
if s > sv do qv,v′(s)← cv(s− sv);
while v′ 6= 1 do

v′ ← father of v′;
qv,v′(s)← 0;
for ℓ = 0, . . . , ⌊s/sv′⌋ do

t← 1;
for v′′ : (v′, v′′) ∈ E do t← tqv,v′′(s− ℓsv′);

qv,v′(s)← qv,v′(s) +
ρℓ

v′
ℓ!

t;

pv ← 1− qv,1(ξ)

c1(ξ)
;

Result: Blocking probabilities p
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It is noted that M(ξ, 1) = N , so that c = c1(ξ). The idea of the proposed algorithm

is to compute the value of cv(s) for v ∈ V and s = 0, . . . , ξ by starting at the leaves

and then using backward induction. Consider the subtree rooted at v and v′ such that

(v, v′) ∈ E. If there are s circuits and beam v is serving nv users, svnv circuits need

to be allocated to beam v, so that the number of circuits available to all the beams in

the subtree rooted at v′ is s− svnv. Therefore, n ∈M(s, v) if and only if it admits the

following decompostion:

n = nve
v +

∑

v′:(v,v′)∈E

mv′
with mv′ ∈M(v′, s− svnv),

This fact gives rise to the following recursion, by summing over nv in the definition of

cv(s):

cv(s) =

⌊ s
sv

⌋
∑

nv=0

ρnv
v

nv!

∏

v′:(v,v′)∈E

cv′(s− nvsv).

The above relation readily gives an algorithm to compute cv(s), for all v ∈ V and s ≤ ξ
which consistutes the first part of our algorithm.

Blocking Probabilities As said before, the blocking probability pv is the proba-

bility for a flow to arrive at a time where the system is in a blocking state n ∈ N (v),

so that the blocking rate for class v is:

pv = P(N(t) ∈ N (v)) =

∑

n∈N (v)

∏

v′∈V
ρ

n
v′

v′
nv′ !

∑

n∈N

∏

v′∈V
ρ

n
v′

v′
nv′ !

.

We compute the blocking rate using a similar approach as that used above for the

normalization constant. We have that n ∈ N \ N (v) if and only if n + ev ∈ N , which,

by definition of N translates to:

∑

v′∈Ā(v′′)

nv′sv′ ≤ ξ − sv1{v ∈ Ā(v′′)} , ∀v′′ ∈ V.

In order to compute a sum over N (v) recursively, similarly to the case of computing

the normalization constant, define Q(s, v, v′) the set of allowed states in a system where

there are s circuits, where a user arriving at beam v does not cause blocking, and where

all the beams which are not descendants of v′ are empty:

Q(s, v, v′) =
{

n ∈ N|V | :
∑

v′′∈Ā(v′′′)

nv′′sv′′ ≤ s− sv1{v ∈ Ā(v′′′)},

∀v′′′ ∈ V and nv′′ = 0,∀v′′ 6∈ D̄(v′)
}

.



52 Numerical experiments

and we define the partial sums:

qv,v′(s) =
∑

n∈Q(s,v,v′)

∏

v′′∈D̄(v′)

ρ
nv′′
v′′

nv′′ !
.

It is noted that sinceM(ξ, v, 1) = N \N (v), we have:

qv,1(ξ) =
∑

n∈N \N (v)

∏

v′∈V

ρ
nv′
v′

nv′ !
,

and

pv = 1− qv,1(ξ)

c(ρ)
.

so that computing the value of qv,v′(s) for all v, v′ ∈ V and s ≤ ξ yields the blocking

probabilities. It is also noted that if v′ and v are not descendants or ancestors of each

other, the arrival of a user at beam v does not affect the number of circuits available to

the subtree rooted at v′, so that we simply have qv,v′(s) = cv′(s), which we already have

computed in the first phase of the algorithm. It is also noted that qv,v(s) = cv(s− sv).
Now, similarly to the previous paragraph, qv,v′(s) obeys the following recursion:

qv,v′(s) =











































⌊ s
s

v′ ⌋
∑

nv′ =0

ρ
nv′
v′

nv′ !

∏

v′′:(v′,v′′)∈E

qv,v′′(s− nv′sv′)

if v′ ∈ A(v)

cv(s− sv) if v′ = v

cv′(s) otherwise

Complexity It is noted that the required memory for this algorithm to run is

O(ξ|V |) since, as soon as pv has been computed at the end of the loop of Phase 2, one

can simply remove the values of qv,v′(s) from the memory. It is also noted that the time

to compute cv(s) for s ≤ ξ and v ∈ V is O(ξ|E|), and, since G is a tree, |E| = |V | − 1.

So the time required for Phase 1 is O(ξ|V |). For Phase 2, for a given value of v, pv is

computed by inspecting all the ancestors of v, in time O(ξ|Ā(v)|) = O(ξh(G)). Hence

the time required for Phase 2 is O(ξ|V |h(G)). As announced, the algorithm requires

time O(ξ|V |h(G)) and memory O(ξ|V |) to compute the blocking probabilities.

3.8 Numerical experiments

Finally we present some numerical experiments to illustrate the flow-level performance

of hierarchical beamforming for both elastic and streaming traffic. The simulations pre-

sented below have been performed using a Matlab simulator. The considered parameters

are gived in C.
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3.8.1 Setup

In order to obtain a realistic setting and take into account the geometry of a cell in

a physical network, instead of selecting arbitrary values of G, λ, ρ and r, we create a

codebook using a similar techniques as in [57], where the main goal is to pack as many

beams as possible on each level of the tree, while ensuring that they remain separated

with negligible interference.

As for the cell geometry, we consider an hexagonal cell, with an antenna height of

30 meters in a strong Line of Sight environment. We use the standard Nakagami prop-

agation model [14], and parameters as done in [57]. The main simulation parameters

used for the two scenarios are summarized in Table C.1 in the appendix. The output

of this process is a graph G, as well as the corresponding arrival rate λ, loads ρ and

data rates r. We obtain G a tree with |V | = 10 beams, and the set of edges is given

by E = {(1, 2), (1, 3), (1, 4), (2, 7), (2, 9), (3, 5), (3, 6), (4, 8), (4, 10)}. It is noted that G is

similar to the graph depicted in figure 3.3. The expected flow size is 8 Mbits, the arrival

rates are taken proportional to λ = [0.16, 0.09, 0.12, 0.09, 0.10, 0.10, 0.10, 0.10, 0.09, 0.09].

The value of λ used here is obtained by assuming that λv is proportional to the

size of the zone covered by v. The service rate rv is given by the harmonic mean

of the data rate over the region covered by v. The loads are proportional to ρ =

[0.11, 0.20, 0.31, 0.20, 0.59, 0.59, 0.61, 0.61, 0.18, 0.18]. In order to avoid scaling prob-

lems, in all curves we present the normalized flow throughput ψv

rv
. It is noted that,

when the load is very low (respectively very high), the normalized flow throughput

should be close to 1 (respectively 0).

3.8.2 Elastic traffic

The flow throughput under PF allocation using the tree described above is depicted

in Figure 3.6. Under PF allocation, the flow throughput as a function of the arrival

rate is roughly linear for beams of high depth, while it is convex for beams of low

depth. The smaller the depth, the higher the curvature. We deduce that PF tends

to slightly favor beams with higher depth, and this difference is especially sensible at

moderate loads. We can also see in Figure 3.6 that the flow throughput of all beams

is strictly positive if ρ lies in the stability region. The flow throughput under MT

allocation using the tree described above is depicted in Figure 3.7. In order to assess

the accuracy of the approximate formula provided in subsection 3.6.4 we show both

the approximate analytical expressions as well as the correct value estimated using

simulations. In figure 3.7 ”sim” denotes the values of the flow throughput estimated

by simulation, and ”ana” denotes the approximation given in subsection 3.6.4. It is

noticed that the proposed approximation is rather accurate. On the other hand, under

MT allocation, the system is not stable across the whole stability region, and beams of

smaller depth get overloaded (so that the flow throughput becomes 0) when the arrival

rate is sufficiently large. This is due to the fact that MT gives absolute priority to
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Figure 3.6: Elastic traffic, normalized flow throughput for PF allocation
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Figure 3.7: Elastic traffic, normalized flow throughput for MT allocation, approx-
imation vs simulations.

beams with high depth. This does not mean that MT is bad per-se: when flows are

static as considered in our model, MT is not throughput optimal, and tends to create

overload in beams with small depth. However, in the case where flows are allowed to

move during their transmission, MT would essentially have an opportunistic behaviour
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and serve flows only when they can be served by a beam of high depth, at a high data

rate. This should dramatically increase the throughput (at the expense of delay, of

course). We do not analyze this case here, but it seems rather natural that MT would

have such a behaviour.

3.8.3 Streaming Traffic

We now turn to streaming traffic. We use the same values for the loads ρ and the arrival

rates λ as in the previous case (up to a scalar multiplicative constant). On figure 3.8

we plot the blocking probabilities of the various beams p(ρ) with different depth as a

function of the system load. As in all Erlang-like models, the blocking rate is almost

equal to 0 for low loads, then rapidly increases once the load reaches a certain threshold.

Furthermore, we can see that the system tends to penalize beams with low depth, in

particular the root. It would be interesting to design admission control policies which

correct that problem, although it does not seem straightforward.
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Figure 3.8: Streaming traffic, blocking probability

3.9 Proof

3.9.1 Proof of Theorem 3

Stage 1 First consider γ ∈ conv(Z) and maximize the objective function with respect

to δ ∈ ∆. The objective function is separable, so that we obtain |V | independent
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problems:

Maximize
∑

k∈K(v)

fα(rkγvδk) subject to
∑

k∈K(v)

δk = 1

From the Karush-Kuhn-Tucker conditions, there exists ℓv such that the optimal value

of δ satisfies: (γvrk)
1−αδ−α

k = ℓv for all k ∈ K(v). Using
∑

k∈K(v) δk = 1 we get:

δ⋆k =
r

1
α

−1

k
∑

k′∈K(v) r
1
α

−1

k′

It is noted that δ⋆ is the optimal solution of the original problem since it does not

depend on γ. Now set δ = δ⋆ and it is noted that

∑

k∈K(v)

f(rkγvδ
⋆
k) = φvfα(γv) with φv =

(

∑

k∈K(v)

r
1
α

−1

k

)α
.

Stage 2 The original problem reduces to a simpler one:

Maximize
∑

v∈V

φvfα(γv) subject to γ ∈ conv(Z).

Using Proposition 1, we have that:

conv(Z) =







γ : γv = κv
∏

v′∈A(v)

(1− κv′),κ ∈ [0, 1]|V |







allowing another simplification:

Maximize
∑

v∈V

φvfα
(

κv
∏

v′∈A(c)

(1− κv′)
)

subject to κ ∈ [0, 1]|V |.

Define θv the optimal value of this optimization problem when only considering v and

its descendants, i.e. the value of:

Maximize
∑

v′∈D̄(v)

φv′fα
(

κv′
∏

v′′∈A(v′)

(1− κv′′)
)

subject to κ ∈ [0, 1]|V |.

Now maximizing with respect to κv:

θv = max
κv∈[0,1]

[

φv
κ1−α
v

1− α + (1− κv)1−α
∑

v′:(v,v′)∈E

θv′
]

.
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Solving the maximization over κv gives:

κ⋆v =






1 +





1− α
φv

∑

v′:(v,v′)∈E

θv′





1
α







−1

.

and substituting in the definition of θv we get:

θv = (κ⋆v)
1−α φv

1− α + (1− κ⋆v)1−α
∑

v′:(v,v′)∈E

θv′ .

When v is a leaf, we have θv = φv

1−α , and the previous relation allows to calculate the

value of θv and κ⋆v for all v ∈ V . Finally, the solution is given by the relation:

γ⋆v = κ⋆v
∏

v′∈A(v)

(1− κ⋆v′)

which concludes the proof.

3.9.2 Proof of Theorem 5

As mentionned above, the system is equivalent to a single M/M/1 queue with FIFO

service order and priorities with preemptive resume, where customers of class v ∈ V

represent the users served by beam V . Namely, customers of class v receive service if

and only if no customers of class v + 1, . . . , |V | are present in the system. The result

is similar to [2], and we present a proof for completeness. Users of class |V | have the

highest priority and are not influenced by other classes so that N|V |(t) follows an M/M/1

process and we have:

E(N|V |(t)) =
ρ|V |

1− ρ|V |
.

Now consider a class v < |V |. We denote by E(Wv) the mean amount of time a customer

of class v spends in the system, including when receiving service. The waiting time of

a customer served by v can be divided in epochs of length X1, X2, ... as follows. The

duration X1 of first epoch equals the amount of work associated with all the customers

with the same or higher priority present in the queue upon his arrival, including himself.

The length X2 of the second epoch equals the amount of higher priority work arriving

during the first epoch (of durationX1). The length of the third epoch equals the amount

of higher priority work arriving during the second epoch (of duration X2), etc. This

allows to express the waiting time as a sum:

E(Wv) =
∑

k∈N

E(Xk)
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From the PASTA property, the amount of work with equal or higher priority upon

arrival of a customer of class v (including himself) is:

E(X1) =
1

rv
+
∑

v′≥v

E(Nv′(t))

rv′

The expected amount of work with higher priority arriving during a duration Xk is

given by recursion:

E(Xk+1) = E(Xk)





∑

v′>v

ρv′



 = E(X1)





∑

v′>v

ρv′





k−1

.

so that, summing:

E(Wv) =
E(X1)

1−∑v′>v ρv′

Replacing E(X1) by its expression:

E(Wv) =
1

1−∑v′>v ρv′





1

rv
+
∑

v′≥v

E(Nv′(t))

rv′





From Little law, λvE(Wv) = E(Nv(t)) so that:

E(Nv(t))

λv
=

1

1−∑v′>v ρv′





1

rv
+
∑

v′≥v

E(Nv′(t))

rv′



 ,

which yields the relation:

E(Nv(t)) =
ρv + λv

∑

v′>v
E(Nv′ (t))

rv′

1−∑v′≥v ρv′
.

One may readily check by recursion that:

E(Nv(t)) =
ρv
(

1 +
∑

v′≥v ρv′
(

rv

rv′ − 1
))

(

1−∑v′≥v ρv′
)

(1−∑v′>v ρv′)

which is the announced result.

3.10 Conclusion

We have considered hierarchical beamforming in wireless networks, which is an at-

tractive alternative to other beamforming techniques due to the existence of efficient

algorithms for flow association and multi-flow scheduling. We have provided compu-

tationally efficient algorithms for fair rate allocation including proportional fairness,

maximum throughput and max-min fairness, in order to perform resource allocation in

real time. We next have proposed closed-form formulas for flow level performance, for

both elastic (flow throughput) and streaming traffic (blocking rates) [23].
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Model of starvation for

connection E2E

This chapter aims at developing Self-Organizing Network (SON) function that opti-

mizes Quality of Experience (QoE) of E2E video streaming connection. For the QoE,

we consider the starvation of video streaming represented by a buffer size below a pre-

determined threshold. In 2016 video accounted for 60% of the global data traffic in

cellular networks[61]. Inspite of the fast deployment of 4G networks, the support of

high bit rate streaming services such as 4K Ultra HD or 360➦ live videos remains a

major challenge for network operators.

Three types of transport protocols are used today in communication networks. The first

one is User Datagram Protocol (UDP), is a minimal message-oriented transport layer

protocol. UDP provides no guarantees to the upper layer protocol for message delivery

and the UDP layer retains no state of UDP messages once sent. The second protocol is

Transmission Control Protocol (TCP), and unlike UDP, it provides an acknowledgment

to ensure the transmission and it uses algorithms for congestion avoidance, some of

which will be studied in this Chapter. Recently Google has developed a new type of

transport protocol, the Quick UDP Internet Connections (QUIC) [31]. It is a UDP pro-

tocol designed to provide security protection, one of QUIC main goal is to move control

of the congestion avoidance algorithms into the application space at both endpoints.

For the rest of the thesis the TCP is assumed as the transport protocol. The goal of this

part of the manuscript is to understand the impact of TCP protocols on the QoE of end

users and exploit this knowledge to devise a SON algorithm to control E2E QoE. To

this end we first explain in Section 4.1 how video streaming works as well as the related

QoE indicator for this service. Section 4.2 introduces several TCP protocols such as

CUBIC (actually employed with LINUX system), VEGAS (used in Compound-TCP

protocol employed in Windows system) and AIMD (a family of TCP protocols that are

the first to be used). Section 4.3 develops the throughput models for the above TCP

protocols. A buffer model for the E2E connection using a drifted Brownian model is

59
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proposed in Section 4.4. Section 4.5 develops a closed form expression for the starva-

tion probability for the video service, and is validated numerically in Section 4.6. The

latter Section also introduces the SON function that controls the the starvation proba-

bility by adjusting the video quality. Concluding remarks are summarized in Section 4.7.

4.1 Motivation and related work

The growing portion of video streaming in the internet traffic has motivated researchers

to model QoE of end users consuming this type of service on the one hand, and to

develop techniques to dynamically control QoE on the other hand.

Several works address the modeling and prediciton of E2E QoE of video streaming

services. [70] proposes an analytical framework to compute a closed-form starvation

probability on the basis of ordinary differential equations (ODEs). To this end, view

records from one of the largest streaming providers in China were collected. [34] applies

supervised machine learning technique to predict video starvation using as input: chan-

nel conditions and number of active users. The prediction of starvation can be used by

service providers to adapt the video bitrate. In [45] the authors use a Markov chain

based analysis to compute the user probability of starvation. [38] analyzes starvation

probabilities with a discrete-time Markov chain and show that the adaptation of the

video quality (rate) can significantly reduce the starvation probability.

Recently, Google has introduced the QUIC protocol which encrypts the video streaming

packets. This evolution hinders the capability of network operator to control QoS in

the network. As a result, a number of contributions have proposed traffic profiling (see

for example [61]), which is a non-intrusive solution that observes packet flows at the

transmit queue of base stations, edge-routers, or gateways. By analyzing IP flows in

real time, the presented scheme identifies different phases of an HAS session and esti-

mates important application-layer parameters, such as play-back buffer state and video

encoding rate. In [8] the authors present an optimal solution that adapts the video rate

to the current and predicted channel state as well. Optimal formulation is based on

Markov Decision Process. The solution is tested in a live network with real content and

utilizes channel traces from vehicular users. In [37] the context of a UE is related to its

coverage condition, e.g. indoor or outdoor, inside or outside a tunnel etc. The purpose

of this SON function is to optimize HAS resource allocation by detecting significant

context change, such as a mobile entering a building or a car entering a tunnel. In

[62] the channel prediction is used to improve communication performance. This paper

describes a new approach for allocating resources to video streaming traffic using long

term channel prediction while accounting for quality of service. The linearity of the

proposed model allows to formulate a Linear Programming problem that optimizes the

trade-off between the allocated resources and the stalling time of the media stream. In
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[25] the authors propose a QoE Manager that can deliver superior QoE for each session

by loosening the radio efficiency targets to maximize the customer experience.

The ultimate objective of this Chapter is to develop a low complexity SON function for

controlling the starvation probability of video streaming traffic over a TCP protocol.

The motivation of this approach is to benefit from the access the operator can have to

the transport layer parameters. It is noted that other contributions in the literature

are based on application layer parameters only. To this end, we develop closed form

formula for the starvation probability based on the drifted Brownian model, as well on

expressions for statistical parameters of different TCP schemes.

4.1.1 Video Streaming

A video stream is a data flow sent, after compression, from a service provider (for

example Dailymotion) to the end user. The main concept behind streaming video is

that the user does not have to wait to download the entire file or the streaming data to

play it but instead, the media content is sent in a continuous stream of packets and is

played as it arrived at the client terminal. Generally video streaming uses adaptative

mechanism such as Dynamic and Adaptive Streaming over HTTP (DASH). The video

content is stored in the web server in chunks, each of which is available with different

qualities. According to the UE state, it requests a video chunk with the adequate

quality. Figure 4.1 schematizes the video stream connection between a server and a

user. Further details can be found in [44].

Figure 4.1: Figure representing the video stream connection between server to
user (Source: Huawei France Research Center, presentation on AI Challenges in
5G, 2017)
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4.1.2 QoE for video user

The QoE is defined here as the measure of the overall acceptability of an application or

a service, which is perceived subjectively by the end user. Several indicators describe

QoE of video streaming services such as video freeze, video rate, the variability and

start-up delay.

The Video freeze happens during the video playback, if the video hangs, it is said to be

in video freeze state. In the literature, this phenomenon is known as video starvation

or stalling. More details are found in [35].

In this Chapter we focus on the modelling of video starvation and how a SON algorithm

can prevent and control this phenomenon considering TCP parameters. Figure 4.2

shows an example of evolution of a buffer content. In blue the buffering phase, in

orange the steady-state phase when the play-out starts and in green the depletion due

to the fact that the play-out continue to read packets but the buffer does not receive

data.

Figure 4.2: Figure representing the evolution of buffer content

4.2 Algorithms

TCP has been the dominat transport protocol in the Internet. There exist several types

of TCP protocols and in this Section we describe the principle ones [42], with a focus

on two TCP protocols.

We start with the Additive Increase and Multiplicative Decrease (AIMD), which is a

family of TCP protocols (such as Reno or Tahoe). These protocols are share a common

feature, namely for each round trip time (RTT) they linearly increase the number of
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packets sent, until a packet loss occurs.. In this case, the protocol divides by a ratio-

nal coefficient between 0 and 1 the number of packets sent. We continue with CUBIC

which is a recent TCP protocol used in Unix systems. It is similar to AIMD but the

additive increase is not linear but is rather the result of a cubic function that has good

mathematical properties for reducing the congestion. Finally we present VEGAS which

is a delay based window. The protocols notation are described in appendix D

4.2.1 AIMD

AIMD (Additive Increase and Multiplicative Decrease) is a feedback control algorithm

[33], [53] for allocating bandwidth or transmission rate to the different jobs in a E2E

connection. In this algorithm, AIMD increases the bandwidth of each job (the number

of packets sent) linearly at a rate α > 0 (typically α = 1) until it detects that one of

the capacity bottlenecks through which a transmission passes through is reached, at

which point, the algorithm cuts the connection bandwidth by a multiplicative factor of

0 < β < 1 (typically β = 1
2).

Algorithm 4: AIMD protocol
Data: S = 65535; W = 1
while Data to download do

if Z = 0 and Z = 3 then
S = W ∗ β

if Z = 1 and W ≤ S (SS) then
W = W + 1

else if Z = 1 and W > S (CA) then

W = W +
α

W

else if Z = 3 (FRc) then
W = W ∗ β

else if Z = 0 (FRt) then
W = 1

4.2.2 CUBIC

CUBIC is the mostly used TCP protocol for Unix systems. It has been developped in

[24] where the authors enhance BIC TCP [64] to give the new CUBIC protocol. The

difference with AIMD protocol is in the window growth function that is a cubic function

instead of a linear function.

We introduce cubic(t) = α(t − Ti − 3

√

βWmax

α )3 + Wmax, τ describing the elapsed time

from the last packet loss, the constant α denoting the window growth factor and the

constant β representing the multiplicative decrease factor.
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Algorithm 5: CUBIC protocol
Data: W = 1; Wmax = 100
while Data to download do

if Z = 0 or Z = 3 then
Wmax = βW

if Z = 1 and W < Wmax(1− β) + 3 β∗τ
(2−β)RTT then

W = Wmax(1− β) + 3
β ∗ τ

(2− β)RTT

else if Z = 1 then

W = W +
cubic(t+RTT )−W

W

else
W = (1− β) ∗W

4.2.3 VEGAS

VEGAS is a new TCP protocol, namely a delay-based window [13] as briefly explained

below. Until the mid-1990s, all of TCP’s set timeouts and measured round-trip delays

were based upon only the last transmitted packet in the transmit buffer. University

of Arizona researchers Larry Peterson and Lawrence Brakmo introduced TCP Vegas,

named after the largest Nevada city, in which timeouts were set and round-trip delays

were measured for every packet in the transmit buffer. In addition, TCP Vegas uses

additive increases in the congestion window. This variant was not widely deployed out-

side Peterson’s laboratory. In a comparison study of various TCP congestion control

algorithms, TCP Vegas appeared to be the smoothest followed by TCP CUBIC [27].

RTTmin is the smallest round trip time seen since the connection has started. RTT is

the current. Typically α = 2, 2 ≤ β ≤ 4 and γ = 1.

4.3 TCP throughput

We present the mathematical models used for simulating the TCP throughput. We

recall that TCP is a reliable window-based flow control protocol where the window is

increased until a packet loss is detected. Once the lost packets are recovered, the source

resumes its window increase. As a performance measure, we consider the throughput of a

long time TCP connection having an infinite amount of data to send. The mathematical

analysis of TCP requires two steps. First, we need to construct a model for the window

size evolution. Most of the existing models ignore the Slow Start phase and make the

assumption that the source stays always in Congestion Avoidance mode. The phase of
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Algorithm 6: VEGAS protocol

Data: W = 1
while Data to download do

if Z = 0 (FRt) then
W = 1

if Z = 3 (FRc) then

W =
W

2
if Z = 1 and W

RTTmin
− W

RTT
< γ

RTTmin
(SS) then

W = W + 1

else if Z = 1 and W
RTTmin

− W
RTT

< α
RTTmin

(CA) then

W = W +
1

W

else if Z = 1 and W (n)
RTTmin

− W (n)
RTT

> β
RTTmin

(CA) then

W = W − 1

W

recovery, FRt, is assumed to be negligible and the source resumes its increase directly

after the reduction. Second TCP analysis requires a characterization of the time between

congestion events. In the remaining sections we suppose that the traffic is in a stationary

state and the time between two losses follows an exponential distribution, so that (Ti)i,

the i-th time where a loss occurs, forms a Poisson process with rate λ.

Moreover we show how to get the first, second and correlation moments in closed form for

different TCP protocols. This allows to reduce the complexity of E2E SON mechanism,

as will be explained later in the sequal.

4.3.1 Altman model

We use the Altman model described in [4] that is the generalization of square-root model

[6]. This model describes the throughput behavior of AIMD protocol in this way:

XTi+1 = α(XTi
+ β(Ti+1 − Ti))

where Xt is the data rate at time t, (Ti)i are the successive instants at which a loss

occurs, α ∈ (0, 1) and β ∈ R are the two parameters of the AIMD algorithm. It is noted

that Xt is linear by parts between two loss instants, so that:

Xt = XTi
+ β(t− Ti), for t ∈ [Ti, Ti+1).
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First moment

In [4] the first moment of Xt is described by the following theorem:

Theorem 8. The first moment of Xt:

E(Xt) =
β

λ(1− α)

The proof proposed is not adapted for our work and we use a different approach for

the proof:

Proof. Recall that a loss occurs in the interval [t, t+ dt] with probability λdt, and that

the occurrence of a loss is independent of Xt. Therefore:

E(Xt+dt) = (1− λdt)E(Xt + βdt) + λdtE(αXt)

Since E(Xt+dt) = E(Xt) we get:

E(Xt) = E(Xt) + dt(λE(Xt)(α− 1) + β) + o(dt)

Solving for E(Xt) we get the result announced.

Second moment

For the second moment of Xt we obtain an simpler formula than in [4]. In the next

section we will see why we need this representation.

Theorem 9. The second moment of Xt is:

E(X2
t ) =

2βE(Xt)

λ(1− α2)
=

2β2

λ2(1− α)(1− α2)

Proof. From the same reasoning as in theorem (8):

E(X2
t+dt) = (1− λdt)E((Xt + βdt)2) + λdtE(α2X2

t )

= (1− λdt)(E(X2
t ) + 2βE(Xt)dt+ β2(dt)2) + λdtα2E(X2

t )

= E(X2
t ) + dt(λ(α2 − 1)E(X2

t ) + 2βE(Xt)) + o(dt).

Now using the fact that E(X2
t+dt) = E(X2

t ):

0 = λ(α2 − 1)E(X2
t ) + 2βE(Xt),

which leads to the announced result.
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Correlation moment

The correlation moment is described by the following theorem:

Theorem 10. The correlation moment E[XtXt′ ] when Xt is stationary is:

E[X0Xt] = E(X0)2 + (E(X2
0 )− E(X0)2)e−t(1−α)λ

Proof. Since Xt is stationary, we have that E(XtXt′) = E(X0Xt′−t). Define γ(t) =

E(X0Xt) the autocorrelation of Xt. We now calculate γ. We have:

E(X0Xt+dt) = (1− λdt)E(X0(Xt + βdt)) + λdtE(αX0Xt)

= E(X0Xt) + dt(E(X0)β + (α− 1)λE(X0Xt)) + o(dt)

By definition of γ:

γ(t+ dt) = γ(t) + dt(E(X0)β + (α− 1)λγ(t)) + o(dt),

so that γ obeys the differential equation:

d

dt
γ(t) + (1− α)λγ(t) = E(X0)β. (4.1)

Solving (4.1) we get:

γ(t) =
E(X0)β

(1− α)λ
+

(

γ(0)− E(X0)β

(1− α)λ

)

e−t(1−α)λ

Using the fact that γ(0) = E(X2
0 ), and E(X0) = β

(1−α)λ we get:

γ(t) = E(X0)2 + (E(X2
0 )− E(X0)2)e−t(1−α)λ

One can obtain the following result that will be useful for the end of the Chapter:

Corollary 2. Thanks to theorem (10) we obtain for Xt stationary:

∫ t

0

∫ t

0
E (XsXs′) dsds′ = t2E(X0)2 + 2(E(X2

0 )− E(X0)2)

(

t

(1− α)λ
+

1− e−t(1−α)λ

(1− α)2λ2

)

.
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Proof.

∫ t

0

∫ t

0
E (XsXs′) dsds′ = 2

∫ t

0

∫ t

0
E (XsXs′) 1{s ≤ s′}ds′ds

= 2

∫ t

0

(∫ t

s
E (XsXs′) ds′

)

ds

= 2

∫ t

0

(∫ t

s
γ(s′ − s)ds′

)

ds

= 2

∫ t

0

(∫ t−s

0
γ(s′)ds′

)

ds.

where we used the fact that, since (Xt)t is stationary,

E (XtXt′) = E (Xt′−tX0) = γ(t′ − t).

We have:

∫ t

0

(∫ t−s

0
e−s′(1−α)λds′

)

ds =
1

(1− α)λ

∫ t

0
(1− e−(t−s)(1−α)λ)ds

=
t

(1− α)λ
− 1− e−t(1−α)λ

(1− α)2λ2

By adding the different results we have the desired result.

4.3.2 CUBIC model

This Section develops a closed form approximation for the average throughput of the

CUBIC protocol. Several works have reported analytical approximation for the average

CUBIC throughput as in [9],[46] and [47]. Our contribution in this Section is to propose

a closed form expression for the first and second moment of CUBIC TCP, the latter

being an original contribution. We consider (Ti)i are the successive instants at which

a loss occurs and Ti+1 − Ti ≃ Exp(λ) the exponential probability with parameter λ,

with T−
i the left limit of the throughput in XTi

. We consider XTi
a point process and

suppose that the throughput reached the stationary state. For time t ∈ [Ti, Ti+1] we

have :

Xt = XT−
i

+ α



(t− Ti)−
3

√

XT−
i
β

α





3

We note that it is hard to obtain a closed form formula for the average throughput and

other indicators.
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First moment

Theorem 11. The first moment of TCP CUBIC, using µ =
E(XTi

)β

α , throughput Xt is:

E[Xt] =
1

t

∫ t

0
E[Xu]du =

E[
∫ t

0 Xudu]

t
=

E[
∫ Ti+1

Ti
Xudu]

E[Ti+1 − Ti]
= E(XTi

)+α(
6

λ3
− 6

λ2
µ1/3+

3

λ
µ2/3−µ)

Proof. We have for time Ti+1:

XT−
i+1

= XT−
i

+ α



(Ti+1 − Ti)−
3

√

XT−
i
β

α





3

and

XTi+1 = (1− β)XT−
i+1

= XTi
+ α(1− β)

(

(Ti+1 − Ti)− 3

√

XTi
β

(1− β)α

)3

Thanks to the stationary assumption and the stability of CUBIC protocol we can write

E[XTi+1 ] = E[XTi
] and use the approximation E[XTi

] ≃ XTi
and E[XT−

i
] ≃ XT−

i
. To

obtain the first moment we introduce Z = Exp(1) that give E[Z] = E[(Ti+1 − Ti)λ]:

E





(

(Ti+1 − Ti)− 3

√

XTi
β

(1− β)α

)3


 = 0⇔ E





(

Z

λ
− 3

√

E[XTi
]β

(1− β)α

)3


 = 0

⇔ E

[

(

Z

λ
− x

)3
]

= 0

⇔ E
[

(Z − λx)3
]

= 0

⇔ E
[

(Z − z)3
]

= 0

⇔ z3 − 3z2 + 6z − 6 = 0

⇔ z =
3
√

1 +
√

2 +
3
√

1−
√

2

with x = 3

√

E[XTi
]β

(1−β)α and λx = z. Thanks to the Cardan method we have a real solution

for the cubic function:

E[XTi
] =

(1− β)αx3

β
=

(1− β)α( zλ)3

β

In order to compute E[Xt] we use the steady-state assumption to admit that w =

E(XTi
) ∀i ∈ N. Now we model the CUBIC throughput in stationary state by an aprox-

imation. We call cubic+ the algorithm described by the relation :
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Xt = w + α



(t− Ti)− 3

√

wβ

α





3

We use the notation µ = wβ
α and thanks to the property of point processes [5] we obtain

the result.

Second moment

We consider time s′ > s, Ti(s) being the latest time in which packet loss occured before

time s and Z = s − Ti(s) = Exp(λ). For the second moment we obtain (knowing that

E[(Z − µ 1
3 )3] = 0):

Theorem 12. The second moment of CUBIC throughput Xt is:

E[X2
s ] = µ4!(1 +

3

λ
+

1

λ2
) + µ

4
3 (12 + 2λ2 + 16λ)− µ 5

3 (4λ3 + 2λ4) + µ2λ4)

Proof.

E[X2
s ] = E[(w + α((s− Ti(s))− µ

1
3 )3)2]

= w2 + 2wαE[(Z − µ 1
3 )3] + α2E[(Z − µ 1

3 )6]

= w2 + α2E[(Z − µ 1
3 )6]

= w2 − α2( 6!

λ6
− µ 1

3 2
5!

λ4
(2− 1

λ
) + µ

2
3

4!

λ2
(6 +

8

λ
+

1

λ2
)

− µ4!(1 +
3

λ
+

1

λ2
) + µ

4
3 (12 + 2λ2 + 16λ)− µ 5

3 (4λ3 + 2λ4) + µ2λ4)

Thanks to the previous results we have an approximation of the first and second moment

of a throughput of a CUBIC connection. These results are obtained using the CUBIC

model proposed above. We show that the approximation is accurate. A future work

will be to find a closed formula that describes the correlation moment. Such a result

could be used to calculate the starvation probability of an E2E connection that uses a

TCP CUBIC protocol.

4.3.3 VEGAS model

The paper [51] has developed a simple and accurate model to estimate the throughput of

a Vegas flow as a function of packet loss rate, average round trip time, minimum observed

round trip time, and protocol parameters α, β. The model provides two closed-form
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analytic throughput estimates, respectively for the cases that the network conditions

do and do not permit to the TCP VEGAS flow to acquire its target backlog in the

connection path. A simple constraint on packet loss rate was developed to determine

which of the two expressions should be used. Obtaining the first and second moment

for TCP VEGAS in closed form is not straightforward. The next Section explains in

details how we obtain a closed formula to calculate the starvation probability.

4.4 Diffusion model

We introduce the diffusion model that describes the buffer evolution and provides a

closed formula for starvation probability. This model is interesting because it can be

applied to all kinds of TCP protocols. This model needs first, second and correlation

moments, which explains the motivation for the above developments of closed form ex-

pressions.

4.4.1 Buffer model

Buffer model corresponds to incoming packet minus packets read during the duration

of a video. Using the notation for buffer content Bt, we can write :

Bt = B0 +

∫ t

0
Xsds− rt

where the TCP throughput is represented by the process Xs, t is the duration of a

video and r the constant bitrate video. We presently focus on modelling the incoming

packets, we use the drifted Brownian model :

∫ t

0
Xsds ≈ mt+ σWt (4.2)

Figure 4.3 presents the time variation of the TCP throughput Xs and the incoming

packets
∫ t

0 Xsds. One can see that Xs varies on a much faster time scale than
∫ t

0 Xsds.

The evolution of incoming packets, (blue curve) in the buffer follows a tendency (the drift

m in the model) but the TCP throughput (green curve) evolves with high fluctuations.

This phenomenon is represented by the Brownian motion Wt in the model.

We represent the buffer content as a drifted Brownian model, with a drift of m− r, so
that:

Bt ≈ B0 + (m− r)t+ σWt (4.3)

where (Wt)t is a standard Brownian motion, r the bitrate video and m and σ are the

drift and standard deviation of the diffusion approximation.
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Figure 4.3: Time evolution of the TCP throughput (upper Figure in green) and
the incoming packets (lower Figure in blue)

We assume that Xt is in a stationary state and we consider the starvation probability

in this model. For the diffusion approximation to be useful, we now compute the

parameters m and σ.

Theorem 13. To compute m and σ the parameters of the diffusion approximation are

given by:

m = E(Xt)

and

σ2 = lim
t→∞

1

t

(∫ t

0

∫ t

0
E (XsXs′) dsds′ − t2E(X0)2

)

.

Proof. Taking the first moment of (4.2) we get:

∫ t

0
E (Xs) ds = mt

so that:

E(Xt) = m

since Xt is in stationary regime. Taking the second moment we get:

E

(

(∫ t

0
Xsds

)2
)

= t2E(X0)2 + σ2t
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The above holds for all t, so we get:

σ2 =
1

t

(

E

(

(∫ t

0
Xsds

)2
)

− t2E(X0)2

)

.

We note that the buffer model can be applied to different TCP protocols. This is due

to the fact that you can approximate m and σ2 if you do not have the closed form of

them.

4.5 Starvation control

Using the expression for the starvation probability, we propose a SON function that

controls the QoE and steering it to a predefined value by adjusting the video bitrate. It

computes a starvation probability in a closed form. This SON function needs as input,

transport layer parameters and the initial buffer content of the user. The main goal of

the proposed solution is to design a low complexity control mechanism.

4.5.1 Hitting time density of a Brownian drift

In order to obtain the bitrate of a video playout using a TCP connection we need a

analytical formula for the probability that (Bt)t≤T , described in (4.3), reaches starvation

before an arbitraty time T . Before we derive r, we present the closed formula for the

probability mentionned above, denoted by P(H0 ≤ T ) :

H0 = inf{t ≥ 0 : Bt = 0}
= inf{t ≥ 0 : B0 + (m− r)t+ σWt = 0}
= inf{t ≥ 0 : (m− r)t+ σWt = −B0}

= inf{t ≥ 0 :
(m− r)

σ
t+Wt = −B0

σ
}

= inf{t ≥ 0 : ct+Wt = δ}

Where inf is the function that gives the minimum of a set and c = (m−r)
σ and δ = −B0

σ .

Now we must find the density of the hitting time H, denoted by f , for a Brownian

motion with drift c, Xt = ct+Wt, and X0 = 0.

For δ = 0 the hitting time density is trivial because the process start with X0 = 0. For

δ 6= 0 we have the following result :

f(t) =
|δ|√
2πt3

e− (δ−ct)2

2t
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Thank to the Girsanov theorem (2.3.2) and the joint distribution of (Xt, sups≤tXs) we

obtain :

P(H0 ≤ T ) =
1√
π

∫

z≥ δ−cT√
2T

exp(−z2)dz +
e2δc

√
π

∫

z≥ δ+cT√
2T

exp(−z2)dz (4.4)

4.4 is a consequence of the results presented in Section 2.3.3, Theorem 2.

4.5.2 SON for automatic bitrate video

We propose an E2E SON that gives the video bitrate represented by r in (4.3). This

SON calculates via using a classical binary seach algorithm the optimal r that satisfies:

P(H0 ≤ T ) = ǫ (4.5)

where ǫ is a fixed arbitrary limit, which represents the starvation probability accepted

by an operator for the E2E connection with video streaming play-out. We can see in

(4.4) that P(H0 ≤ T ) depends on r, m, σ, B0 and T . r is found by the SON; m

and σ are parameters depending on the TCP traffic which are estimated by the SON

function using standard statistical techniques. B0 is the quantity of data downloaded

by the buffer during the buffering phase before the play-out of the video; finally T is

the duration in seconds of the video. Figure 4.4 represents the functional architecture

of the SON function controlling the starvation probability.

Figure 4.4: Architecture proposed for the SON function that controls the starva-
tion probability
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4.6 Numerical experiments

This Section assesses the different analytical approximations by comparing them to sim-

ulation results.

4.6.1 TCP average throughput

Figure 4.5 compares the analytical and simulated results for the average throughput

of a TCP AIMD connection. One can see a very good agreement between the two ap-

proaches. Figure 4.6 shows that the analytical approximation of the average throughput

coincide with the simulation with a TCP CUBIC connection. Figure 4.7 shows ana-

lytical approximation of σ2 coincides with the simulated results using a TCP AIMD

connection.

Figure 4.5: AIMD average throughput as a function of arrival rate for the analyt-
ical approximation (in red) and simulated results (in green)
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Figure 4.6: CUBIC average throughput as a function of arrival rate for the ana-
lytical approximation (in red) and simulated results (in green)

Figure 4.7: σ2 as a function of arrival rate for the analytical approximation (in
red) and simulated results (in green)
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4.6.2 Starvation probability

Figure 4.8 compares the analytical approximation and the simulated results for the

starvation probability. One can see that the analytical approximation is close to the

simulated results.

The simulated results are obtained by simulating several times an E2E connection. We

calculate the number of simulations in which at least one starvation event occurs divided

by the total numner of simulations. The starvation probability is obtained using the

ratio of the two numbers.

Figure 4.8: Starvation probability: Diffusion approximation vs simulation.

4.6.3 Adaptive bitrate video straming

In this Subsection, we want to show how one can exploit the starvation closed form

formula to control the starvation probability by adapting the video bit rate. The video

bitrate is fixed with the goal to reach a starvation probability equal to a desired target

value ǫ. The bisectrix blue line in Figure 4.9 represents the otimal control, namely

the simulated starvation probability is equal to the target probability. The red line

corresponds to the starvation probability simulated with a video bitrate obtained solving

( 4.5).
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Figure 4.9: HAS control: starvation probability vs starvation target

It is noted that the results in Figure 4.9 assume that the SON function adapts the

rate once, namely in the beginning of the video transmission. However, the rate can

be adjusted several times during the video, e.g. after the reception of each chunk. It is

recalled that a chunk duration can be of the order seconds (e.g. 10 seconds in [8]).

4.7 Conclusion

This Chapter has presented contributions on modeling and control of E2E connection

of video streaming service. We have proposed a drifted Brownian model describing the

behavior of buffer content receiving packets through a TCP connection. Using this re-

sult, we have provided a closed form expression for the starvation probability which is

the key QoE indicator for the video streaming service. We have compared the analytical

result for the starvation probability with numerical simulations and have shown a good

agreement between the two approaches. Using the previous results, we have proposed

a SON function that controls the starvation probability by adapting the video quality

requested from the video server.
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Conclusion and perspectives

5.1 Conclusion

This thesis aimes at contributing to E2E performance and QoS optimization. This

challenge has been tackled in two parts. In the first we have studied the design, model-

ing and performance evaluation of Massive MIMO with hierarchical beamforming. We

have developed a scheduling algorithm with α-fair allocation having a closed form and

a very low computational complexity. Flow-level dynamics where users arrive and de-

part dynamically have been taken into account using queuing models. Next we have

proposed closed-form formulas for flow level performance, for both elastic (with either

proportional fairness and max-min fairness) and streaming traffic. We have assessed

the performance of hierarchical beamforming using numerical experiments.

In the second part, we have developped a SON function to control E2E connections for

video streaming traffic. The key QoE for video streaming is the starvation probability.

The SON function aims at minimizing the starvation probability of the play-out buffer.

Using analytical model for TCP connection on the one hand, and Brownian drifted

model for the buffer content evolution on the other hand, we have derived a closed

formula that relates the TCP parameters, the buffer state and the video quality to the

starvation probability. We have then validated the closed form formula with numerical

simulations. Finally we have developped a SON function that selects the video quality

from the video server to reach a desired starvation target. The SON can be activated

several times during the transmission with the purpose to adapt when the traffic con-

dition changes during the E2E connection.

We find a model that represents the behavior of a buffer of a smartphone that visualizes

a video streaming play-out. Thank to the Brownian drifted model we can know, con-

sidering the TCP parameters of the E2E connection, how to dynamically set a bitrate

video that permits to reach an arbitrary probability of starvation during the transmis-

sion. These results are the first that show how to exploit parameters from the transport

layer to control QoE at the application layer.

79
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5.2 Perspectives

The PhD work opens the door to several perspectives. From the hierarchical beamform-

ing perspective, the automatic design of the beams at the different levels comprising

the codebook remains a challenging task. More particularly, how can one design the

beams using a small set of geometrical parameter of the cells, i.e. antenna height, the

cell width and length.

A second challenge is the automatic adaptation of the shape of the cell covered by the

codebook of beams. Such a SON function can be applied to a massive MIMO with

hierarchical codebook, but also to a standard Massive MIMO system. Interestingly,

such a SON function recalls the automatic cell planning used in previous radio access

generations without MIMO.

The E2E QoE/QoS control perspective, further improvements can be obtained by com-

bining several SON functions along the E2E connection. One example can be a SON

function that identifies context change of a UE (e.g. from outdoor to indoor or a car

getting into a tunnel), and informs the scheduler to start an aggressive buffering to

delay as much as possible starvation. An orchestrator is then needed to activate the

different SON functions in-order to achieve a global optimal operation.
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filing for mobile video streaming. ICC, 2017.
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Appendix A

Gain function

Considering a NxxNz (sub) antenna array of vertical dipoles. For sake of clarity and

completeness of the chapter, we include the model [57] in the sequel. To simplify the

model, the reflector is approximate as an infinite Perfect Electrical Conductor (PEC).

The Nx and Nz elements in each row and column are equally spaced with distances dx

and dz respectively (see the following figure).

They use the spherical coordinates θ and φ to determine the angle (θe,φe) that repre-

sents the direction of a beam to obtain a maximum gain. Knowing these notations, the

antenna gain of a beam in a direction (θ,φ) is written as

G(θ, φ, θe, φe) = G0f(θ, φ, θe, φe)

where f is a normalized gain function and G0 the maximum gain in the (θe, φe) direc-

tion. (θe,φe) corresponds to the direction of a beam where it reaches the peak antenna

gain. A separable excitation in the x and z directions is assumed, resulting in the fol-

lowing separable form of f :

f(θ, φ, θe, φe) = |AFx(θ, φ, θe, φe)AFy(θ, φ)AFz(θ, θe)|2Gd(θ)

AFx(θ, φ, θe, φe) and AFz(θ, θe) are the array factors in the x and z directions and are

given by

AFx(θ, φ, θe, φe) =
1

∑Nx
m=1

Nx
∑

m=1

wmam

and

AFz(θ, θe) =
1

∑Nz
n=1

Nz
∑

n=1

vnbn
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88 Gain function

The weights wm and vn for the radiating elements in the m-th row and n-th columns

define a Gaussian tapering function used to control the sidelobe level of the gain pattern

wm = exp
(− (

Lm − Lm

2

σx
)2)

vn = exp(−(
Ln − Ln

2

σz

2

)

where Lm and Ln are the array size in the x and z directions respectively with Lm =

(Nx− 1)dx and Ln = (Nz − 1)dz. The values for σs, s ∈ {x, z}, are defined by fixing the

ratio between the extreme and center dipole amplitudes respectively to a given value of

αs:

σ2
s = −(

Ls
2

)
1

log(αs)
; s ∈ {x, z}

am and bn are complex amplitude contributions of the radiating element located at

(m− 1)dx and (n− 1)dz, respectively:

am = exp
(− 2jπ

(m− 1)dx
λ

(sin θ sinφ− sin θe sinφe)
)

bn = exp
(− 2jπ

(n− 1)dz
λ

(cos θ − cos θe)
)

The impact of the PEC can be modeled by replacing it with the images of the radiating

elements it creates. The term AFy(θ, φ) takes into account the images and is written as

AFy(θ, φ) = sin(
π

2
sin θ cosφ)

The normalized gain pattern of the dipoles,Gd(θ), is approximated as Gd(θ) = sin3 θ.

The term G0 is obtained from the power conservation equation:

G0 =
4π

∫

π
2

− π
2

∫ π
0 f(θ, φ) sin θdθdφ

A beam is defined by the (rectangular) sub-array size, and the couple (θe, φe) defines

its direction.



Appendix B

Definitions for trees

Given a directed tree G = (V,E) we use the following terminology.

❼ Parent: v is a parent of v′ iff (v, v′) ∈ E,

❼ Child: v is a child of v′ iff (v′, v) ∈ E,

❼ Root: v is the root iff it has no parent.

❼ Leaf: v is a leaf if it has no children.

❼ Path: a path from v to v′ of length ℓ is a set of vertices (v0, v1), . . . ,(vℓ−1, vℓ) in

E such that v0 = v and vℓ = v′.

❼ Depth: the depth of v is the length of the path from the root to v.

❼ Descendant: v′ is a descendant of v if there exists a path from v to v′

❼ Ancestor: v′ is an ancestor of v if there exists a path from v′ to v

❼ Height of the tree: h(G) is the maximal depth of a leaf.

❼ Degree of the tree: d(G) is the maximal number of children of a node.

❼ Regular tree: a tree is d-regular if all nodes have degree 0 (for leaves) or d (for

non-leaves).
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Appendix C

Numericals parameters

The following table present the parameters used for the simulation of traffic served by

a BS Massive MIMO.

Table C.1: Network and Traffic characteristics

Network parameters

Number of sectors with hierarchical beamforming 1

Macro Cell layout hexagonal trisector

Antenna height 30 m

Bandwidth 20MHz

Channel characteristics

Thermal noise -174 dBm/Hz

Path loss (d in km) 128.1 + 37.6 log10(d) dB

Traffic characteristics

Service type FTP

Average file size 8 Mbits
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Appendix D

TCP Notation

All the protocols notation :

❼ W : discrete function representing the sliding window used by TCP

❼ S : discrete function threshold for indicating a change of algorithm from a slow

start (SS) to congestion avoidance (CA)

❼ Z(t) : ternary value representing 0 if at time t a packet is time-out (To), 3 if

(3)-ACK else 1.

❼ RTT : Round Trip Time

❼ FRt : (Fast retransmit) re-sending of dropped or duplicate ACK and change the

regime in (SS)

❼ FRc : (Fast recovery) re-sending of dropped or duplicate ACK, wait for an ACK

for all the packets of the precedent window size and continue with the regime in

(CA)
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MIMO) et la connexion E2E du point de vue de la
couche transport.
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de faisceaux focalisés avec un structure hiérarchique
dans les réseaux sans fil. Pour un ensemble de flots
donnée, nous proposons des algorithmes efficaces en
terme de complexité pour une allocation avec α-équité.
Nous proposons ensuite des formules exactes pour la
performance au niveau du flot, à la fois pour le trafic

élastique (avec une équité proportionnelle et équité
max-min) et le trafic en continu. Nous validons les
résultats analytiques par des simulations.
La seconde partie de la thèse vise à développer une
fonction de réseau auto-organisant (SON) qui améliore
la qualité d’expérience (QoE) des connexions en bout-
en-bout. Nous considérons un service de type vidéo
streaming et développons une fonctionnalité SON qui
adapte la QoE de bout-en-bout entre le serveur vidéo
et l’utilisateur. La mémoire-tampon reçoit les données
d’un serveur avec une connexion E2E en suivant le pro-
tocole TCP. Nous proposons un modèle qui décrit ce
comportement et nous comparons les formules ana-
lytiques obtenues avec les simulations. Enfin, nous
proposons un SON qui donne la qualité vidéo de sorte
que la probabilité de famine soit égale à une valeur
cible fixée au préalable.
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Abstract: Fifth generation networks are being de-
fined and their different components are beginning to
emerge: new technologies for access to radio, fixed and
mobile convergence of networks and virtualization.
End-to-end (E2E) control and management of the net-
work have a particular importance for network per-
formance. Having this in mind, we segment the work
of the thesis in two parts: the radio access network
(RAN) with a focus on Massive MIMO (M-MIMO)
technology and the E2E connection from a point of
view of the transport layer.
In the first part, we consider hierarchical beamforming
in wireless networks. For a given population of flows,
we propose computationally efficient algorithms for
fair rate allocation. We next propose closed-form for-
mulas for flow level performance, for both elastic (with

either proportional fairness and max-min fairness) and
streaming traffic. We further assess the performance
of hierarchical beamforming using numerical experi-
ments.
In the second part, we identify an application of SON
namely the control of the starvation probability of
video streaming service. The buffer receives data
from a server with an E2E connection following the
TCP protocol. We propose a model that describes
the behavior of a buffer content and we compare the
analytical formulas obtained with simulations. Fi-
nally, we propose a SON function that by adjusting
the application video rate, achieves a target starvation
probability.
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