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Introduction

Machine Learning is a field of Artificial Intelligence aiming at acquiring new knowledge from

data. This new knowledge generally takes the form of a model, learned from a limited number

of observed examples, and able to generalize well to future queries. In other words the goal is

to learn how to automatically solve a problem from a finite set of observations. For example,

the objective in spam detection is to use the annotated mail box of a user to learn how to

separate solicited emails from unsolicited ones; in tracking the underlying problem is to follow

an object in a video; in face recognition the goal is to identify a person in a set of images. . . .

The large diversity of problems raised in machine learning has attracted a lot of attention in

the past and still deserves a lot of active research.

In this thesis we are mainly interested in Supervised Learning problems. The idea behind

this paradigm is that the examples are accompanied by a label. This label can be either a

value or a class and it corresponds to the solution of the problem for the given example. As

illustrative examples, let us consider the problems of house pricing and poisonous mushrooms

recognition. For the former the goal is to predict the price of a house, each example then

corresponds to a set of characteristics of a particular building while the label is its price. For

the latter we want to recognize from images poisonous mushrooms from edible ones, each

example is the picture of a mushroom while the label is its class, i.e. poisonous or not. From

these examples one can see the importance, in supervised learning, of generalization to new

data. Indeed, the labels for the training examples are already known, if the model cannot

find the correct labels for new examples then its interest becomes limited. Note that the

previous examples correspond to two widely studied problems in supervised learning, namely

regression and classification. The difference between the two is that the goal of the former is

to predict a continuous value while the objective of the latter is to guess the correct class.

Supervised learning is not the sole paradigm existing in machine learning. In fact it

can be opposed to Unsupervised Learning where examples are unlabelled. For example a

widely studied problem in this paradigm is called clustering. The underlying goal is to

obtain a meaningful partition of the space where the examples share common properties.

The performance of unsupervised learning algorithms is often difficult to assess as, contrary

to the supervised learning case, there is no labels to provide an obvious feedback on the model.

Drawing from these two paradigms, the idea behind Semi-Supervised Learning is to con-

sider two sets of examples where the first one is labelled while the second one is not. In this

11



12 Introduction

case the goal is often to use the labelled examples to help solve an unsupervised learning task

or to consider the unlabelled examples to aid in a supervised learning problem.

So far we have considered that the goal of a machine learning approach is to solve a single

task. Taking a different point of view the idea behind Transfer Learning is to transfer some

knowledge learned on a so-called source to a so-called target. Following this idea, in Domain

Adaptation the goal is to transfer the model learned on a source task to solve a different but

related target problem. For example, in the spam detection problem, the two tasks could be

to detect unsolicited emails from the mailboxes of two different users. The two users share the

same problem but their email distributions might differ, e.g. because they did not subscribe

to the same mailing lists. In this case the goal is to adapt the model learned from one of the

users to the other.

In this manuscript we will see that despite being mainly interested in supervised learning

problems, several of our contributions also share some ties with the other paradigms presented

here.

When presenting the supervised learning paradigm we stressed the fact that a model,

learned with a limited number of training examples, should generalize well to new examples.

One way to verify this property is to evaluate the learned model on a set of new test examples

independent from training examples and for which the solution to the problem is known.

However the number of test examples that can be obtained is often limited. It might make

this approach insufficient to ensure that the model generalizes well. Other approaches are

then necessary. To this extent note that a common assumption in machine learning is that the

task that we want to solve is completely defined by an unknown distribution from which the

training examples are drawn. Then, one possible solution is to use a cross-validation procedure

where the idea is to partition the learning sample into k parts. The model is learned on k− 1

parts and tested on the last one. This procedure is repeated k times, i.e. until each part

was used as a test set, and the accuracy is averaged over the different test samples. Anyway,

this procedure still requires a significant amount of examples to be valid. Another possibility

following the assumption evoked previously consists in theoretically studying the learning

algorithm in order to derive so-called generalization bounds. The idea behind these bounds is

to show that the true error of the model, i.e. its error on the unknown distribution, is bounded

by its empirical error, i.e. its error on the training sample, plus a term which decreases when

the size of the training set increases. Obtaining such bounds guarantees that models learned

by the concerned algorithm generalize reasonably well.

Many different approaches have been proposed to solve supervised learning problems.

Among these several rely on a notion of distance or similarity between the examples to learn

a model. A very representative example is the nearest neighbour classifier which is based

on the idea that two similar examples should share the same label. Another example is

the support vector machine algorithm. It proposes to classify examples depending on their

similarity to landmarks points called the support vectors. In these two examples the notion of
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similarity is of critical importance. However different tasks often call for different measures of

similarity. As an example recall the two examples used previously in this introduction, it does

not make sense to compare houses and mushrooms in the same way. Manually choosing an

appropriate measure of similarity can be tedious and difficult. However it might be possible

to automatically infer it from the data. This is the underlying idea behind Metric Learning

which is the field of interest of this thesis.

We identify several limits of the current approaches in metric learning. First some methods

propose to make use of side informations to help during the learning process. However there

is no theoretical understanding of the impact of such information on the learned metric.

Second the intrinsic properties of the learned metrics are often the same. Indeed metrics are

usually learned with the objective of bringing closer similar examples while pushing far away

dissimilar ones. In some cases it might be interesting to consider different kinds of constraints.

One example is to obtain a metric whose behaviour is not limited to the examples but is more

global in the sense that it is, for example, able to move masses of examples together. A third

limit to current approaches is that there is often no theoretical justifications on the proposed

approaches, i.e. there is no guarantees on the generalization ability of the learned metrics.

Contributions: Learning Metrics with Controlled Behaviour

In this thesis we propose several approaches to learn metrics whose behaviour is controlled.

First we propose to use side informations in the form of a reference metric to either strictly

or loosely guide the learned metric. Hence in our first contribution we propose to address the

problem of regressing the values of a reference metric only accessible through a limited training

set. In our second contribution we theoretically study how using a reference metric coming

from a related but different problem can help during the learning process. In particular we

derive several measures of goodness of the reference metric for the problem at hand. Second we

propose two approaches able to consider new kinds of constraints for metric learning. Hence

in our third contribution we consider that the training examples should not be moved with

respect to each other but rather with respect to some virtual points which lay in the output

space of the learned metric. By this way it is possible to carefully control the movement of

each example. In our fourth contribution we build upon our third contribution and on recent

advances in Optimal Transport to propose a new approach to learn a metric able to move

masses of examples across the space. As a last remark, note that throughout this thesis we

put particular emphasis on providing theoretically sound approaches.

Outline

In the first part of this thesis we propose some preliminary informations. In the first chapter

we introduce some concepts that are used throughout the manuscript while in the second

chapter we propose a review of the state of the art in metric learning.
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Chapter 1 The first chapter of this thesis is dedicated to the presentation of several notions

and tools used throughout it. The first part of the chapter presents the risk minimization

framework which is the basis of all our algorithmic contributions. The second part is dedicated

to the theoretical analysis of algorithms. More precisely we present two frameworks used to

derive generalization bounds. They correspond to the uniform stability and the Rademacher

complexity frameworks. The third part is interested in the notion of losses and regularization

terms. These elements are core in the formulation of a regularized risk minimization problem.

Through several examples we show that there exist a wide range of possibilities with different

properties. This second part is also interested in the formal definition of the notion of metric

as a general term to design a similarity, a dissimilarity or a distance. As for the losses

and regularization terms, several examples are presented. The last part of this first chapter

introduces other useful notions such as the nearest neighbour classifier, which we often use

with our leaned metrics, and the domain adaptation setting in which two of our contributions

are evaluated.

Chapter 2 The second chapter of this thesis corresponds to a review of metric learning.

Here we present the main approaches which have made the success of the field. We propose to

divide this review in four parts answering four basic questions about metric leaning problems.

In the first part we consider the problem of the kind of metrics which can be learned. Then in

the second part we answer the question of how, technically, these metrics can be learned. In

the third part of this chapter we review some approaches deriving theoretical guarantees for

metric learning. In the last part we present several works interested in making use of metric

learning for different kind of applications ranging from classification to clustering or domain

adaptation.

In the second part of this thesis we present our first two contributions which are interested

in using reference metrics to help during the metric learning process.

Chapter 3 In the third chapter of this thesis we present our first contribution. It corre-

sponds to a metric learning method able to approximate an existing metric. The first part

of this chapter is dedicated to the presentation of the main optimization problem considered.

It corresponds to a regression of the values of a metric. Furthermore we show that when the

reference metric is too complex it is possible to use local metric learning to obtain a better

approximation. In the second part we present a theoretical analysis of the approach both in

the global and the local settings. It shows that the metrics learned by our algorithm gener-

alize well. In the third and fourth parts we consider the problem of learning perceptual color

differences to show the interest of our approach in a real life application.

Chapter 4 The fourth chapter of this thesis is dedicated to our second contribution. As in

the third chapter it corresponds to a metric learning approach able to use some knowledge

given by an existing metric. The difference is that, this time, we do not want to approximate
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this metric but we want to use some information that it carries to help during the learning

process. This contribution is thus strongly related to the field of transfer learning/domain

adaptation. The chapter is divided in seven parts. In the first part we present the frame-

work of Metric Hypothesis Transfer Learning which corresponds to a minimization problem

equipped with a biased regularization term. In the second, third and fourth parts we propose

a theoretical analysis of metric hypothesis transfer learning using three different theoretical

frameworks. It allows us to derive different notions of goodness of the reference metric. In the

fifth part of the chapter we summarize the different bounds and in the sixth part we present

several loss functions and regularization terms which fall into our framework. In the last part

we show that this framework can be used in practice to obtain competitive results on several

widely used transfer learning problems.

In the last part of this thesis we introduce our last two contributions where we propose new

ways to control the behaviour of the learned metric.

Chapter 5 In the fifth chapter we present our third contribution. Here instead of using

standard similarity and dissimilarity constraints we propose to consider that the metric should

bring the examples closer to virtual points defined a priori. It allows us to learn a metric

with a regression and to reduce the number of constraints considered. In the first part of the

chapter we present our algorithm. In the second part we address the problem of selecting the

virtual points and defining the constraints. In the third part we propose a theoretical analysis

of the algorithm showing that learning a metric with our approach is founded but also that

it is possible to obtain some links with a standard metric learning method. In the last part

we validate our approach with several experiments.

Chapter 6 The sixth chapter introduces the last contribution of this thesis. It corresponds

to a new method able to learn a metric that moves masses of examples by approximating the

transformation corresponding to the solution of an Optimal Transport problem. In the first

part of this chapter we formally introduce the problem of optimal transport. In the second

part we present our formulation while in the third we propose an efficient way to optimize it.

In the fourth part we discuss some theoretical aspects showing that if standard assumptions

made in the optimal transport community are correct, then our approach is founded. In the

last part we empirically validate our approach on a domain adaptation and an image editing

problem.

Notations

In this thesis R and R+ respectively represent the sets of real and non negative real numbers.

A vector is denoted by a bold lower case letter. For example x ∈ Rd is a d-dimensional

real valued column vector. For i ∈ {1, . . . , d}, x(i) is its i-th feature. In a similar fashion,

matrices are denoted by a bold upper case letter. For examples M ∈ Rd×d′ is a real valued

matrix with d rows and d′ columns. We also denote by S the set of symmetric real valued
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matrices and by S+ the set of symmetric positive semi-definite matrices. Let i ∈ {1, . . . , d}
and j ∈ {1, . . . , d′}, M(i, j) corresponds to the value at row i and column j while M(i, ) and

M(, j) are respectively the row and column vectors of indices i and j. xT and MT stand for

the transpose of vector x and matrix M. 〈·, ·〉 represents the dot product between two vectors

while 〈·, ·〉F corresponds to the Frobenius product1 between two matrices.

We are interested in supervised learning. Hence throughout this thesis we consider that

we are working in a domain T corresponding to the space Z = X × Y equipped with a

probability distribution DT . In this case X ⊆ Rd is the example space while Y is the label

space, e.g. Y = {−1, 1} in a binary classification problem. We consider that we have access

to a set of n examples T = {zi = (xi, yi)}ni=1 with xi ∈ X and yi ∈ Y. The fact that the

examples of the set T are drawn i.i.d. from the distribution DT is denoted as T ∼ DT . In

matrix form we write T = (X,y) where X contains one example per row and y is a column

vector of the labels.

We denote by [·]+ the hinge loss function, i.e. [x]+ = max(0, x), EX∼DT [X] corresponds

to the expectation of the random variable X drawn from the distribution DT , Pr (E) denotes

the probability of an event E and DT (x) corresponds to the probability of drawing x from

distribution DT . We denote the composition of two functions as g◦f , i.e. (g◦f)(x) = g(f(x)).

All the notations are summarized in Table 1.

In the various mathematical proofs of this thesis we propose to explain the derivations

step by step by adding a justification surrounded by brackets and flushed on the right between

the concerned lines.

1〈A,B〉F = Tr
(
ATB

)
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Table 1: Notations.

Notation Description

R,R+ Sets of real and non negative real numbers

B,C Constants

x Scalar

x Vector

X Matrix

X(i, ),X(, j) Row i and column j of matrix X

X(i, j) Entry in row i and column j of matrix X

x(i) Entry i in vector x

y Label

X ,Y,H,M Input Space, Output Space, Hypothesis Space, Space of Metrics

S, S+ Sets of symmetric and symmetric positive semi-definite matrices

S, T Domains

S, T Sets

DS ,DT Distributions over the domains S and T respectively

f(·) Function

‖·‖ Norm

d·e b·c Ceil and floor functions

|·| Absolute value

[·]+ Hinge loss function

〈·, ·〉 Dot product between vectors

〈·, ·〉F Frobenius product between matrices

E [·] Expectation

Pr [·] Probability

l Loss function

LT True risk over the domain T
L̂T Empirical risk over the set T

A Algorithm

f ◦ g Composition of functions
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Chapter 1

Preliminaries

Abstract

In this chapter we present several notions used throughout this thesis. In particular

we formalize the risk minimization framework in which fall our algorithmic contributions.

From a theoretical standpoint we present two frameworks interested in deriving general-

ization guarantees for risk minimization. As we will see in the next chapter these two

frameworks have been successfully extended to the metric learning problem. We use them

to theoretically analyse our contributions demonstrating the ability of our algorithms to

learn metrics able to generalize well. From a more practical point of view we present

several loss functions and regularization terms which can be used in the risk minimiza-

tion framework and we introduce a formal definition of the notion of metric considered

in this thesis. Finally we present the nearest neighbour classifier and the domain adap-

tation setting which will be used to empirically demonstrate the interest of most of our

contributions.

1.1 Introduction

In this chapter we are interested in supervised learning problems. We consider that we have

access to a domain T which corresponds to the space Z = X×Y equipped with the probability

distribution DT . In this case X ⊆ Rd is the example space and Y is the label space. The

goal is to find the correct relation between the examples in X and the labels in Y. In other

words we are looking for an hypothesis h : X → Y coming from an hypothesis space H and

able to solve the problem of associating each example in X with the correct value in Y. A

key assumption in machine learning is that the distribution DT is unknown and that we only

have access to it through a finite size sample T = {zi = (xi, yi)}ni=1. This sample of size n

is assumed to be representative of the true distribution and is called the training set. One

of the key objective is then to use T to learn an hypothesis h which generalizes well to new

examples drawn from the distribution DT . To present this notion of generalization we start

by introducing two notions of risk of an hypothesis. Before that we address the problem of

assessing the performance of an hypothesis with respect to an example.

21
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One of the most intuitive way to assess the performance of a model for a given problem

is to measure its error. However the notion of error can vary from one problem to another.

To illustrate this let us consider an example z = (x, y) and the two problems of classification

and regression. In classification the label space Y is discrete and of limited size, e.g. in binary

classification Y = {−1, 1}. The goal is to correctly choose the class of an object. Hence an

error is the prediction of the wrong class, i.e. h(x) 6= y. In regression the label space Y is

continuous, i.e. Y = R. The goal is to return the correct value given an example. Hence an

error is the prediction of a value far from the ground truth, i.e. h(x)� y or h(x)� y. In this

thesis we consider that the error, or the risk, is defined with respect to a loss function able to

quantify it. More formally we consider that each problem is associated with a loss function

l : H × Z → R+ which, given an hypothesis h ∈ H and an example z = (x, y) ∼ DT is able

to return a positive real value in R+. This value is a numerical representation of the error

committed by the hypothesis on the example. It should be large if the error is significant

and small otherwise. Considering the same examples as before we can define intuitive loss

functions. On the one hand in classification we can consider the following loss, called the 0/1

loss and presented in Figure 1.2:

l (h, z) =

{
0 if h(x) = y,

1 otherwise.
(1.1)

On the other hand in regression we can consider the following loss function, called the absolute

loss and presented in Figure 1.3:

l (h, z) = |h(x)− y| . (1.2)

Note that we come back to this notion of loss function in Section 1.4 where we give a formal

definition and several examples. We can now define the notions of empirical and true risk in

the two following definitions.

Definition 1.1 (Empirical risk). Given a loss function l : H×Z → R+ and a set of examples

T , the empirical risk of an hypothesis h is defined as:

L̂T (h) =
1

n

∑
z∈T

l (h, z) .

It corresponds to the average error of the hypothesis on the training set.

Definition 1.2 (True risk). Given a loss function l : H × Z → R+ and a distribution DT ,

the true risk of an hypothesis h is defined as:

LT (h) = E
z∼DT

l (h, z) .

It corresponds to the expected error of the hypothesis on the whole distribution. The goal

of a supervised learning algorithm is to learn an hypothesis with the smallest possible true

risk. However this quantity is only theoretical and cannot be computed. Indeed in practice
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we do not have access to the distribution DT but only to the so called training set T which

is assumed to be a good empirical approximation of DT . Hence we say that an algorithm

generalizes well when the difference between the true risk and the empirical risk is small. In

Section 1.3 we will see that even if this difference cannot be computed it can sometimes be

upper bounded by a small value in a generalization bound.

We have seen that we have access to the empirical risk but not to the true risk. However

we argued that the ideal hypothesis should have the smallest possible true risk. Hence in

Section 1.2 we discuss the problem of empirically learning an hypothesis and we see that

directly minimizing the empirical risk might not always be a good idea. In Section 1.3 we

consider a theoretical standpoint and we address the problem of linking the empirical risk of

an hypothesis to its true risk. In Sections 1.4 and 1.5 we give some formal definitions and

examples of several notions that will be used throughout this thesis.

1.2 Learning by Risk Minimization

In this first section we address the problem of learning an hypothesis h when we only have

access to a training set T and not to the whole distribution DT . We first propose to tackle

the problem by simply minimizing the empirical risk. We will see that this Empirical Risk

Minimization approach presents some drawbacks. We then turn our attention to two other

frameworks, namely Structural Risk Minimization and Regularized Risk Minimization, which

have been specifically designed to alleviate these drawbacks.

1.2.1 Empirical Risk Minimization (ERM)

The idea of ERM is to select the best hypothesis h ∈ H minimizing the empirical risk over

the training set T . The objective is to solve the following optimization problem:

arg min
h∈H

L̂T (h). (1.3)

This approach allows us to learn an hypothesis with a small empirical error. However we

have no information about its true risk. What can happen is that the hypothesis is very good

on the training set but do not generalize well to unseen examples, i.e. it has a big true risk

despite its small empirical risk. This is not a desirable property as we recall that our goal is

to learn an hypothesis with a small true risk.

The problem described above is called over-fitting. It often arises when the considered

hypotheses are too complex for the problem at hand. Indeed they are more prone to noise

fitting than simpler ones. To overcome this we can follow Occam’s razor which says that

among a set of hypotheses able to explain a phenomenon, choosing the simplest one is better.

Hence the idea is to limit the complexity of the hypothesis class H. However we also have to

be careful to not limit the hypothesis class too much as it may lead to a situation where the

empirical risk blows up. This second issue is called under-fitting. To sum up, the best case
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Figure 1.1: Illustration of the bias-variance trade-off problem. On the left of the plot there is

a high risk of over-fitting while one the right there is a high risk of under-fitting.

scenario is to find the correct trade-off between a small empirical risk and a simple hypothesis.

This trade-off is called the bias-variance trade-off and is illustrated in Figure 1.1.

In ERM the candidates are chosen uniformly from the space H. It implies that all the

hypotheses are considered to have the same complexity. Hence, to avoid over-fitting, H must

be chosen very carefully. However this space is often defined beforehand and does not depend

on the data. It implies that one has to resort to a costly trial and error procedure to select

H in a correct way. It makes ERM hard to use in practice and opened the door for new

frameworks that we present below.

1.2.2 Structural Risk Minimization (SRM)

In ERM the bias-variance trade-off is hard to satisfy since hypotheses are chosen uniformly

from H. In SRM instead of considering a single hypothesis space H, we consider an infinite

number of hypothesis spaces of increasing complexity such that H1 ⊆ H2, · · · . The idea is

then to solve the following optimization problem:

arg min
h∈Hi,i∈N

L̂T (h) + pen(Hi) (1.4)

where pen(Hi) is a term penalizing the complexity of the hypothesis space Hi. In this case we

consider hypotheses by increasing complexity. We then select the one with the best trade-off
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between empirical risk and complexity. In other words, the goal is to minimize the empirical

risk while avoiding over-fitting by selecting the simplest hypothesis.

1.2.3 Regularized Risk Minimization (RRM)

RRM takes the idea of ordering the hypothesis in terms of their complexity one step further

and considers the complexity of each hypothesis individually. The idea is to consider a single,

large hypothesis space H and to solve the following optimization problem:

arg min
h∈H

L̂T (h) + λ ‖h‖ (1.5)

where ‖h‖ is a measure of the complexity of the hypothesis h. Furthermore λ is an hyper-

parameter which controls the trade-off between low error and low complexity. Choosing the

value of λ can be difficult in practice. However several heuristics have been proposed to

cope with this problem. We can for example cite the leave-one-out or the cross-validation

approaches.

Most of the algorithms presented in this thesis build upon the last framework presented

in this section. As such in Section 1.4 we give a formal definition of a loss function and a

regularization term. Furthermore we provide several examples which have been successfully

used in the literature. Note that using a slight abuse of language we will often say that

an optimization problem is an algorithm in itself since, in this thesis, we do not put much

emphasis on the problem of developing efficient solvers. Implicitly we refer to an algorithm

able to solve it. In the next section we propose to take a more theoretical point of view on

the problem of learning an hypothesis with small true risk.

1.3 Deriving Generalization Guarantees

In the previous section we have presented empirical solutions to learn an hypothesis with small

empirical risk and small true risk. In this section we consider a more theoretical point of view.

We will show that, under some conditions on the algorithm used to learn the hypothesis, it is

possible to derive what is called a generalization bound. The idea of these bounds is to show

that the true risk of an hypothesis is upper bounded by its empirical risk plus a small quantity

which usually depends on the complexity of the hypothesis and the number of examples in the

training set. Furthermore these bounds build upon the PAC-Learning framework (Valiant,

1984) and as such are probabilistic bounds which hold true almost everywhere. For δ > 0

they have the following form:

Pr
(
LT (h) ≤ L̂T (h) + ε(n,H, δ)

)
≥ 1− δ. (1.6)

It means that deriving a probabilistic generalization bound boils down to showing that the

probability that the true risk is upper bounded by the empirical risk plus a small quantity

ε(n,H, δ) is greater than 1 − δ. This is illustrated in Figure 1.1. The key point is then to
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obtain the value of ε(H, n, δ). It can be seen as a measure of the generalization ability of

the learned hypothesis. As stated before this quantity should be small and depends on three

elements:

• The number of examples n: as the number of examples increases the value of ε(H, n, δ)
should decrease. Furthermore a desirable property is to have lim

n→+∞
ε(H, n, δ) = 0. In-

deed when we have access to all the examples LT (h) = L̂T (h).

• The hypothesis class H: to be more precise ε(H, n, δ) depends on the complexity of the

hypothesis. As hinted by Occam’s razor, the value of ε(H, n, δ) should increase if the

hypothesis is more complex. Note that depending on the framework we either consider

the complexity of the learned hypothesis h or the overall complexity of the hypothesis

class H.

• The probability δ: these bounds are generally based on concentration inequalities such

as McDiarmid’s inequality (McDiarmid, 1989) or Bennett’s inequality (Bennett, 1962).

They are probabilistic bounds which hold true with probability 1 − δ. The value of

ε(H, n, δ) increases when δ decreases. Indeed, if we want the bound to hold everywhere

we have to take more particular cases into account which loosen the result.

Several frameworks have been proposed to derive generalization bounds. The main dif-

ferences between these different frameworks is the concentration inequality considered and

how they handle the complexity of the hypothesis class. In this thesis we consider two frame-

works to derive generalization bounds, namely the uniform stability framework (Bousquet

and Elisseeff, 2002b) and the Rademacher complexity framework (Bartlett and Mendelson,

2002). These two frameworks are presented below. Note that there is several other possible

approaches that we will not detail here as they are less relevant to this thesis. We can for

example cite the uniform convergence framework, the VC-dimension framework Vapnik and

Chervonenkis (1971); Vapnik (1982) or the algorithmic robustness framework (Xu and Man-

nor, 2010, 2012). Also see Boucheron et al. (2004) for a survey on concentration inequalities

and Langford (2005) for a general tutorial on prediction theory.

1.3.1 Uniform Stability

We first present the Uniform Stability framework introduced by Bousquet and Elisseeff

(2002b). This framework is applicable to any algorithm which is uniformly stable, i.e. which

respects the following definition:

Definition 1.3 (Uniform Stability (Bousquet and Elisseeff, 2002b, Definition 6)). Let T ∼ DT
be a training set of size n and z ∼ DT be any example. Let T i be the training set obtained

by replacing example i in T by z. Let A be an algorithm which returns hypothesis hT when

learning with the training set T and hT i when learning with the training set T i. An algorithm
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A has uniform stability β with respect to its loss function l if the following holds:

∀i ∈ {1, . . . , n} , sup
z′∼DT

∣∣l (hT , z′)− l (hT i , z′)∣∣ ≤ β

n
. (1.7)

The idea is to say that an algorithm is uniformly stable if under small changes in the

training set, the difference in the errors of the learned hypotheses is bounded. Furthermore

the term on the r.h.s. should decrease as the number of examples increases. Note that

this property should hold for all size n training sets and only the hypotheses effectively

learned by the algorithm are considered, i.e. if some hypotheses in H are never learned by

the algorithm under any training set then these hypotheses do not impact the result. As a

consequence this framework has the nice property to focus on hypotheses that will really be

learned by the considered algorithm. The value of β usually depends on the loss function and

the regularization term. In Chapters 3, 4 and 5 we use this framework and show that the

proposed algorithms are uniformly stable. Note that in their paper Bousquet and Elisseeff

(2002b) consider several definitions for the notion of stability. However they show that the

notion of uniform stability is the strongest one and that it implies all the others.

Using the McDiarmid’s inequality (Theorem A.1) it is possible to show that a β-uniformly

stable algorithm generalizes well:

Theorem 1.1 (Generalization bound (Bousquet and Elisseeff, 2002b, Theorem 12)). Let A
be an algorithm with uniform stability β with respect to a bounded loss function 0 ≤ l ≤ B,

for all z ∈ Z and all sets T . Then given a randomly drawn sample T and given that hT is

the solution given by A, for any n ≥ 1, and any δ ∈ (0, 1), the following bound holds with

probability at least 1− δ:

LT (hT ) ≤ L̂T (hT ) +
β

n
+ (2β +B)

√
ln(1

δ )

2n
. (1.8)

The bounds derived using this framework converge in O
(

1√
n

)
. Note that this rate is

standard for generalization bounds.

This framework has been shown to be applicable to a wide range of algorithms such as

Support Vector Machines or Regularized Least Square Regression (Bousquet and Elisseeff,

2002b). Due to the proof techniques used to derive the bound, the main limitation of this

framework lays in the kind of regularization terms that it can handle. For example Xu et al.

(2012) have shown that algorithms based on sparsity inducing regularization terms are not

stable.

1.3.2 Rademacher Complexity

We now switch our attention to the Rademacher Complexity framework introduced by Bartlett

and Mendelson (2002). This framework is based on the notion of Rademacher complexity

defined as follows:
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Definition 1.4 (Rademacher Complexity (Shalev-Shwartz and Ben-David, 2014b, Equa-

tion (26.4))). Let T ∼ DT and let F be a function space such that f : X → R. Let σ be a

vector of n Rademacher Variables, i.e. variables which can take a value of either 1 or −1

with probability 1
2 . The empirical Rademacher complexity is defined as follows:

R̂n(F) = E
σ

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

σif(xi)

∣∣∣∣∣
∣∣∣∣∣x1, · · · ,xn

]
. (1.9)

The Rademacher complexity is then defined as:

R(F) = E
T∼DT

R̂n(F) (1.10)

where the expectation is taken over size n sets.

The idea of empirical Rademacher complexity is to measure the capacity of the functions

in F at fitting random noise. This noise is generated by the Rademacher variables and all the

possibilities are considered through the expectation. Note that the supremum is considered

over all the possible functions in F . It implies that instead of considering only the hypotheses

learned by the algorithm as for the uniform stability framework, the Rademacher complexity

framework considers the complexity of the whole hypothesis class, i.e. some hypotheses

which are never learned by the considered algorithm might impact the bound. Furthermore

Rademacher complexity is defined in expectation with respect to all the training sets of size

n and is not specific to the training set T considered during the learning process.

Using the McDiarmid’s inequality (Theorem A.1) it is possible to derive a generalization

bound based on the Rademacher complexity.

Theorem 1.2 (Generalization bound (Shalev-Shwartz and Ben-David, 2014b, Theorem 26.5)).

Let A be an algorithm with Rademacher Complexity R(F) with respect to a bounded loss func-

tion 0 ≤ l ≤ B. Note that F = {f = l ◦ h} with h ∈ H. Then, for any n ≥ 1, any δ ∈ (0, 1)

and any h ∈ H, the following bound holds with probability at least 1− δ over the random draw

of the sample T :

LT (h) ≤ L̂T (h) + 2R(F) +B

√
2 ln(2

δ )

n
. (1.11)

On the one hand this bound holds for any hypothesis h ∈ H and for a wide range of

regularization terms including several sparsity inducing ones. On the other hand the uniform

stability based bound only holds for the hypothesis learned by the algorithm and for a limited

number of regularization terms. The price paid by the Rademacher complexity framework

to obtain such a behaviour is the convergence of the complexity related term. Indeed in

the uniform stability framework this term was decreasing in O
(

1
n

)
while in the Rademacher

complexity framework it can often be shown that R(F) ≤ O
(

1√
n

)
. Note that overall both

bounds converge in O
(

1√
n

)
due to the probabilistic term. We make use of the Rademacher

complexity framework in Chapter 4.
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In this section we presented two frameworks that can be used to derive generalization

bounds. In the next section we formally define several notions used throughout this thesis.

These include loss functions, regularization terms and metrics. These notions are accompanied

by several illustrating examples.

1.4 Loss Functions, Regularization Terms and Metrics

The performance of regularized risk minimization primarily depends on the chosen loss func-

tion and regularization term. In this section we present a formal definition of these notions

along with some examples. We also introduce the notion of metric as a way to compare

learning examples. This is often a key component of machine learning methods.

1.4.1 Loss Functions and Regularization Terms

Loss functions and regularization terms are fundamental building blocks of regularized risk

minimization algorithms. We start by presenting the formal definitions of what we consider

as a loss function and a regularization term. Note that both of these definitions exhibit the

property of Hypothesis Ordering. This is key to select the best hypothesis, i.e. an hypothesis

with low error (with respect to the loss function) and as simple as possible (with respect to

the regularization term). Hence given a training set, changing the loss or the regularization

can lead one to learn different hypotheses. After the formal definitions we present several

examples used by state of the art approaches.

Loss Function: Definition

Definition 1.5 (Loss function). Let T be a domain corresponding to the space Z equipped

with the probability distribution DT . Let H be an hypothesis space of candidates able to give

a solution to the problem associated with the domain T . A loss function is any function

l : H×Z → R+ such that:

1. ∀h ∈ H, ∀z ∈ Z, l (h, z) ≥ 0 (Non-negativity),

2. ∀h1, h2 ∈ H,∀z ∈ Z, l (h1, z) ≤ l (h2, z) implies that h1 gives a better prediction than h2

on example z (Hypothesis ordering).

A loss function can take its values in [0, u] rather than R+. It is then said to be upper

bounded or bounded.

Loss Function: Examples

Depending on the problem at hand different loss functions should be used. Here we pro-

pose to consider two different problems which have already been introduced before, namely

classification and regression.
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Figure 1.2: Graphical representation of commonly used loss functions for the classification

problem.

We first propose several examples of loss functions mainly used in classification. These

are depicted in Figure 1.2.

0/1 loss This loss is probably the most intuitive one as the idea is simply to count the

number of errors of the hypothesis. This loss returns 1 if the hypothesis makes an incorrect

prediction and 0 otherwise:

∀h ∈ H, ∀z ∈ Z, l (h, z) =

{
0 if h(x) = y,

1 otherwise.
(1.12)

The main drawback of this loss is that it is not convex and not differentiable everywhere. As

such an optimization problem based on it is hard to solve and thus this loss is not used in

practice. One solution is to use a surrogate loss. The idea is to upper-bound the 0/1 loss with

a convex function which is easier to include in an optimization problem. To present several

examples of surrogate loss functions we start by defining ε ∈ R as the degree of agreement

between the prediction h(x) and the ground truth y. The value of ε mainly depends on the

confidence of the prediction, see Figure 1.2.

Hinge loss It is defined as follows:

∀h ∈ H, ∀z ∈ Z, l (h, z) = [1− ε]+ = max {0, 1− ε} (1.13)

This loss has, for example, been successfully used in Cortes and Vapnik (1995).
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Figure 1.3: Graphical representation of commonly used loss functions for the regression prob-

lem.

Logistic loss It is defined as follows:

∀h ∈ H, ∀z ∈ Z, l (h, z) =
log(1 + exp(−ε))

log(2)
(1.14)

This loss has, for example, been successfully used in Friedman et al. (2000).

Exponential loss It is defined as follows:

∀h ∈ H, ∀z ∈ Z, l (h, z) = exp(−ε) (1.15)

This loss has, for example, been successfully used in Freund and Schapire (1997).

We also propose some loss functions which can be used in regression. These are depicted

in Figure 1.3. Note that in this case the degree of agreement ε between the prediction and

the ground truth is defined as the residual, i.e. ε = h(x)− y.

Square loss It is defined as follows:

∀h ∈ H,∀z ∈ Z, l (h, z) = ε2 (1.16)

This loss has, for example, been successfully used in Tibshirani (1996).
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Absolute loss It is defined as follows:

∀h ∈ H, ∀z ∈ Z, l (h, z) = |ε| (1.17)

A survey on the use of this loss can be found in Dielman (2005). Note that this loss is not

differentiable everywhere and as such can be harder to use in an optimization problem.

Huber loss It is parametrized by δ and defined as follows:

∀h ∈ H,∀z ∈ Z, l (h, z) =

{
1
2ε

2 if |ε| ≤ δ,
δ
(
|ε| − 1

2δ
)

otherwise.
(1.18)

This loss has been proposed by Huber (1964) and has been designed to be more robust to

outliers than the square loss while still being differentiable everywhere.

We now turn our attention to regularization terms.

Regularization Term: Definition

Definition 1.6 (Regularization term). Let H be an hypothesis space. A regularization term

is any function ‖·‖ : H → R+ such that:

1. ∀h ∈ H, ‖h‖ ≥ 0 (Non-negativity),

2. ∀h1, h2 ∈ H, ‖h1‖ ≤ ‖h2‖ implies that h1 is less complex than h2 (Hypothesis ordering).

A regularization term can take its values in [0, u] rather than R+. It is then said to

be upper bounded or bounded. As our notation suggests, most of the time we choose the

regularization term as a norm over the hypothesis space.

Definition 1.7 (Norm). Let X ⊆ Rd be a d-dimensional vector space. A norm is any function

‖·‖ : X → R+ such that:

1. ∀x ∈ X , ‖x‖ ≥ 0 (Non-negativity),

2. ∀x ∈ X , ‖x‖ = 0⇔ x = 0 where 0 is the zero vector (Separate points),

3. ∀x ∈ X ,∀a ∈ R, ‖ax‖ ≤ |a| ‖x‖ (Absolute homogeneity),

4. ∀x,x′ ∈ X , ‖x + x′‖ ≤ ‖x‖+ ‖x′‖ (Triangle inequality).

For the sake of simplicity we presented the definition of a norm with respect to a vector

space. However it can be easily extended to the notion of metric or hypothesis as long as

the different properties are respected. Furthermore a norm can take its values in [0, u] rather

than R+. It is then said to be upper bounded or bounded.
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Figure 1.4: Two dimensional representation of the `p norm for different values of p. Each ball

represents all the points with a norm of 1.

Regularization Term: Examples

As stated before regularization terms are often defined as norms. This is for example true

when we consider that the hypothesis space is a vector space (as in linear classification or

regression). Hence we now propose several examples of norms.

`p norms The `p norms are parametrised by a value p:

∀x ∈ Rd, ‖x‖p =

(
d∑
i=1

|xi|p
) 1

p

. (1.19)

For particular values of p we retrieve some well known norms depicted in Figure 1.4.

• `1 norm: If p = 1 it corresponds to the `1 norm. The `1 norm has been widely used

for its sparsity inducing properties (Tibshirani, 1996). However, it is not differentiable

everywhere and thus is harder to use in practice.

• `2 norm: If p = 2 it corresponds to the `2 norm. The `2 norm is strongly convex

and differentiable everywhere. As such it has been used in many practical applications

(Cortes and Vapnik, 1995). It tends to penalize large values.

• Max norm or `∞ norm: If p =∞ it corresponds to max norm or `∞ norm.

Note that for p < 1 this norm is not convex and thus is hard to use in an optimization

problem.

`p,q norm The `p,q norm is a generalization to matrices of the vectors `p norm. The idea is

to apply a `p norm on each row of the matrix and then to apply the `q norm on the vector

composed of the values obtained for each row:

‖M‖p,q =
∥∥∥(‖M(1, )‖p , · · · , ‖M(d, )‖p)

∥∥∥
q

(1.20)
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When p = q = 2 we retrieve the Frobenius norm which is a natural extension to the matrix

case of the `2 norm. Note that it is also possible to use this norm for vectors by separating

the different features into several groups. For example, the `2,1 norm has been used to induce

sparsity constraints on groups of features (Yuan and Lin, 2006).

Schatten p norms The Schatten p norms are norms obtained by applying the `p norms to

σ the vector of singular values of the matrix:

‖M‖p = ‖σ‖p . (1.21)

If p = 2 it corresponds to the Frobenius norm. If p =∞ its the spectral norm and if p = 1 it

corresponds to the nuclear or trace norm. The latter norm has been used for its capacity in

producing low rank matrices (Wang et al., 2016).

We have presented a formal definition of loss functions and regularization terms along

with several examples. We now turn our interest to the notion of metric.

1.4.2 Metrics

As mentioned before metrics are often a key component of machine learning algorithms as a

way to compare examples. Before switching to the formal definition of what we consider as a

metric we cite several well known algorithms which heavily rely on this notion:

• k-Nearest Neighbours (Cover and Hart, 1967): The idea behind this classification algo-

rithm is to consider that examples which are close to each other share the same label.

Hence to predict the label of a new example the algorithm considers its k nearest ex-

amples in the training set and chooses the majority label. Here the notion of metric is

critical as one has to compare any new examples to the training examples.

• Support Vector Machines (Cortes and Vapnik, 1995): The idea behind this classification

algorithm is to assume that there exist an high dimensional space in which the problem

is linearly separable. This space is induced by a kernel which is a kind of metric.

• k-Means (Lloyd, 1982): The goal of this clustering algorithm is to partition the space

into k regions whose members share a similar meaning. To achieve this, the idea is

to randomly select k centres and to associate each example to its closest centre. The

centres are then updated and the algorithm proceeds iteratively until convergence. The

notion of closeness is controlled by a metric.

In this thesis we consider as a metric any similarity or dissimilarity which respect Defi-

nition 1.8. It includes but is not limited to the notion of Distance, Definition 1.9, and the

notion of Kernel, Definition 1.10.
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Metrics: Definitions

We start by presenting the general notion of similarity and dissimilarity that we consider in

this thesis1.

Definition 1.8 ((Dis)Similarity). Let X ⊆ Rd be a d-dimensional vector space. A (dis)similarity

is any pairwise function k : X × X → R. We say that a (dis)similarity is symmetric if

∀x,x′ ∈ X , k(x,x′) = k(x′,x).

A similarity should return a large positive value when two examples are similar and a large

negative value otherwise. Conversely a dissimilarity should return a large negative value when

two examples are similar and a large negative value otherwise. A (dis)similarity is said to

be lower bounded, respectively upper bounded, if instead of taking its values in R it takes

its values in an interval [l,+∞[, respectively ]−∞, u], such that −∞ < l, u < +∞. When a

(dis)similarity is lower and upper bounded, with l ≤ u, we simply say that it is bounded.

A particular kind of lower bounded dissimilarity is a distance.

Definition 1.9 (Distance). Let X ⊆ Rd be a d-dimensional vector space. A distance is a

lower bounded dissimilarity function d : X × X → R+ such that:

1. ∀x,x′ ∈ X , d(x,x′) ≥ 0 (Non-negativity),

2. ∀x,x′ ∈ X , d(x,x′) = 0⇔ x = x′ (Identity of indiscernible),

3. ∀x,x′ ∈ X , d(x,x′) = d(x′,x) (Symmetry),

4. ∀x,x′,x′′ ∈ X , d(x,x′) ≤ d(x,x′′) + d(x′′,x′) (Triangle inequality).

As in the case of (dis)similarities, a distance can take its values in [0, u] and is then said

to be upper bounded or bounded. Note the similarities between the definition of a distance

and the definition of a norm. These two notions are closely related:

• Given a norm, the function x,x′ 7→ ‖x− x′‖ is a distance.

• Given a distance, if it further respects the two following properties:

1. ∀x,x′,x′′ ∈ X , d(x + x′′,x′ + x′′) = d(x,x′),

2. ∀x,x′ ∈ X , ∀a ∈ R, d(tx, tx′) = |t| d(x,x′)

then the function x 7→ d(x,0) is a norm.

The notion of kernel is a particular kind of similarity.

1Here we only consider metrics for feature vectors. However there also exist some metrics for structured

data but this is beyond the scope of this thesis. We refer the interested reader to Bellet et al. (2015).
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Definition 1.10 (Kernel). Let X ⊆ Rd be a d-dimensional vector space and K be an Hilbert

space. A symmetric similarity function k(·) is a kernel if there exists a function φ : X → K
such that:

∀x,x′ ∈ X , k
(
x,x′

)
=
〈
φ(x) , φ

(
x′
)〉

. (1.22)

Equivalently, k(·) is a kernel if it is positive semi-definite:

∀x1, · · · ,xn ∈ X ,∀c1, · · · , cn ∈ R,
n∑
i=1

n∑
j=1

cicjk(xi,xj) ≥ 0. (1.23)

Note that K can be very high dimensional or even infinite. In this case φ(·) is intractable.

However it is still possible to compute the value of the kernel through the expression of k(·).
This is called the kernel trick2. This trick has for example been successfully used in Cortes

and Vapnik (1995); Schölkopf et al. (1997).

Metrics: Examples

We give several examples of well-known metrics.

Minkowski distances The Minkowski distances is a family of distances induced by the `p

norms and as such parametrised by a value p:

d
(
x,x′

)
=

(
d∑
i=1

∣∣xi − x′i∣∣p
) 1

p

=
∥∥x− x′

∥∥
p

. (1.24)

For particular values of p we retrieve some well known distances.

• Manhattan distance: If p = 1 it corresponds to the Manhattan distance induced by

the `1 norm.

• Euclidean distance: If p = 2 it corresponds to the Euclidean distance induced by the

`2 norm.

• Chebyshev distance: If p =∞ it corresponds to the Chebyshev distance induced by

the `∞ norm or max norm.

Mahalanobis distances The Mahalanobis distances is a family of distances parametrised

by a matrix M such that:

d
(
x,x′

)
=
√

(x− x′)TM(x− x′). (1.25)

2Note that even if the feature map is tractable it is most of the times more interesting to compute the value

of the kernel through the expression of k(·).
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To obtain a proper distance, the matrix M has to be positive definite. If the matrix is pos-

itive semi-definite (PSD)3 then it is a pseudo distance, i.e. the constraint on the identity of

indiscernibles is relaxed and it is only required that ∀x ∈ X , d(x,x) = 0. Note that if M = I

the identity matrix, it corresponds to the Euclidean distance. In its original definition (Ma-

halanobis, 1936) the Mahalanobis distance was using the inverse variance-covariance matrix

of the examples, i.e. M = Σ−1. The intuition behind the Mahalanobis distance is to reweight

the features of the examples. As such using a Cholesky decomposition such that M = LTL,

one can see that the Mahalanobis distance corresponds to the Euclidean distance in a space

linearly dependent on X .

Bilinear similarities The bilinear similarities is a family of similarities parametrised by a

matrix M and which is strongly related to the dot product:

k
(
x,x′

)
=
〈
x,Mx′

〉
=
〈
MTx,x′

〉
(1.26)

If M = I it corresponds to the dot product in the original space. Similarly if M = 1
‖x‖2‖x′‖2

I

it corresponds to the cosine similarity. While in general there is no constraints on M, we can

choose it to be positive semi-definite and, using a Cholesky decomposition, one can see that

it corresponds to the dot product in a new space linearly dependent on X .

In Chapter 2 we propose a review of several metric learning methods whose goal is to

learn the parameters of M, either for the Mahalanobis distance or the Bilinear similarity.

Kernels Kernels are defined with respect to a function k(·) and sometimes it is possible to

explicitly compute the feature map φ(·):

• Linear kernel: It corresponds to the dot product in the original space

∀x,x′ ∈ X , k
(
x,x′

)
= xTx′ =

〈
x,x′

〉
. (1.27)

• Polynomial kernel: It is parametrized by its order p and a bias c

∀x,x′ ∈ X , k
(
x,x′

)
=
(
xTx′ + c

)p
. (1.28)

It is possible to compute the feature map explicitly. For example, for two dimensional

vectors and p = 2 each example is implicitly mapped to a 6 dimensional vector:

φ(x) =
(
x2

1 x2
2

√
2x1x2

√
2cx1

√
2cx2 c

)T
. (1.29)

Note that small values of p are often preferred for this kernel as it becomes numerically

unstable when p tends to infinity.

3To denote the fact that a matrix is positive semi-definite we interchangeably use the notation M � 0 or

M ∈ Sd×d+ where d is the dimension of the matrix.
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• Gaussian kernel: It is parametrized by its width σ and the feature map is infinite

dimensional and thus intractable.

∀x,x′ ∈ X , k
(
x,x′

)
= exp

(
−
‖x− x′‖22

2σ2

)
. (1.30)

When using the Gaussian kernel if one has access to a training set T of n examples a

standard heuristic is to set σ to the mean of all the euclidean distances between the

examples (Kar and Jain, 2011).

1.5 Other Notions

In this section we propose to consider other notions that will be used throughout the thesis

but do not fall in any of the previous sections. Hence we present the nearest neighbour

classifier and the domain adaptation setting. We use the former in our experiments as the

classifier making use of our metrics while we evaluate two of our contributions in the latter.

1.5.1 Nearest Neighbours Classifier

As mentioned in the introduction metric learning algorithms are often used as a preprocessing

step to improve the performance of another algorithm. In this thesis we propose to consider

the nearest neighbour classifier (Cover and Hart, 1967) as this subsequent approach. It is

probably one of the most intuitive method in classification. The idea stems from the saying

birds of a feather flock together, i.e. if two examples are close to each other they probably

share the same label. To formally present this approach we consider that we want to classify

z ∼ DT using the training set T and a measure of closeness between the examples under the

form of a distance d.

1 nearest neighbour (1-NN) The idea behind the 1-NN classifier is to predict the class

ŷ for z as ŷ = yi where zi is the closest example of z in T , i.e. the example zi satisfying:

zi = arg min
z′∈T

d
(
z, z′

)
. (1.31)

k nearest neighbours (k-NN) The idea behind the k-NN classifier is that instead of only

considering the closest example of z as for the 1-NN, one can select the k closest examples

and set ŷ as the majority class among these k nearest neighbours.

The nearest neighbours algorithm is illustrated in Figure 1.5. Note that here we considered

that the closeness between the examples is determined by a distance. However this algorithm

can be used with any metric and, in particular, learned ones.
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(a) 1-NN. (b) 3-NN.

Figure 1.5: The goal is to classify the black point. The 1-NN algorithm,Figure 1.5(a), selects

the closest example and classify the point as blue. The 3-NN classifier,Figure 1.5(b), chooses

the majority class among the 3 closest examples and classifies the point as red.

1.5.2 Domain Adaptation Setting

Throughout this chapter we considered a supervised learning setting. If most of our contri-

butions in this thesis fall into this first setting, we will also show that two of them are well

suited to solve domain adaptation problems (See Chapters 4 and 6). In this subsection we

propose to quickly introduce this setting.

Domain adaptation is a special case of transfer learning (Pan and Yang, 2010) where

the goal is to adapt a model learned on a source domain to a target domain. Formally

we consider that we have access to two domains, the source domain S defined as the space

Zs = X s×Ys equipped with the probability distribution DS and the target domain T defined

as the space Zt = X t×Yt equipped with the probability distribution DT . These two domains

are considered to be different but related. Hence the tasks associated with the two domains

are the same but there is a sort of shift between the two distributions. For the adaptation to be

possible we further assume that this shift is not prohibitively large. As an illustrative example

we consider the Office-Caltech dataset (Gong et al., 2012) which is used as a benchmark in

the domain adaptation community. The task consists in classifying the images of 10 kind of

objects. The shift comes from the fact that the pictures come from 4 different domains:

• Amazon: the objects are presented on a white background,

• DSLR: the pictures are taken in an office environment with a high-end camera,

• Webcam: the pictures are taken in an office environment with a low resolution webcam,

• Caltech: the pictures of the objects come from the Caltech256 dataset (Griffin et al.,

2007).

It defines 12 different tasks where the domain are paired and alternatively used as the source

and the target.
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In domain adaptation we consider that we have access to two training sets. The first one,

S, is labelled and comes from the source domain4 while the second one, T , comes from the

target domain. We then consider two different settings:

• unsupervised domain adaptation: there is no supervision in T ,

• semi-supervised domain adaptation: only a small amount of examples are labelled in T .

When solving a domain adaptation problem the goal is to estimate and overcome the shift

between the distributions (Ben-David et al., 2010). To this extent several different strategies

have been proposed in the literature. Among these we can cite for example the reweighting

approaches where the idea is to put more emphasis on the source examples which are mixed

with the target examples in the input space (See e.g. Mansour et al. (2009)). We can also

cite iterative approaches where the idea is to learn a classifier on the source domain, label

the target domain and replace some examples in the source domain by the newly labelled

target examples. This process is repeated several times until a convergence criterion is met

(See e.g. Bruzzone and Marconcini (2010)). As a last example another strategy consists in

learning a common representation space for the source and the target where the shift between

the two domains does not exist (See e.g. Gong et al. (2012); Hoffman et al. (2013)). This

last strategy is often the motivating idea behind the metric learning methods interested in

addressing the domain adaptation problem (See Section 2.5).

1.6 Conclusion

In this chapter we presented several fundamental notions used throughout this thesis. We

started by introducing the risk minimization framework which will be used, in its regularized

form, in all of our contributions. Then we addressed the problem of deriving generalization

bounds. We presented two frameworks respectively based on the uniform stability principle

and the notion of Rademacher complexity. Next we proposed a formal definition and some well

known examples of the notion of loss function and regularization term. We also clarified the

notion of metric as we consider it in this thesis. Lastly we introduced the nearest neighbour

algorithm and the domain adaptation setting which will be used to assess the performance of

several of our contributions.

In the next chapter we propose a non exhaustive review of the field of metric learning by

answering four fundamental questions on the problem.

4Sometimes we also consider that we have access to a second non labelled training set from the source

domain.



Chapter 2

Metric Learning

Abstract

In this chapter we propose a non exhaustive review of the field of metric learning. In

particular we present several methods which are relevant in the context of this thesis. It

notably corresponds to approaches that learn the same kind of metrics as we do, consider

a similar way to perform the learning step, derive the same kind of generalization bounds

or learn a metric to solve the same kind of task.

2.1 Introduction

As mentioned before the idea behind metric learning is to automatically learn, from the data,

a metric adapted to the task at hand. This chapter is a non exhaustive review of this field

as we put the focus on the most relevant methods for this thesis. We propose to explore the

different existing approaches by answering four basic questions on metric learning.

• What kind of metrics is it possible to learn? We will see that most of the methods

are interested in learning either a Mahalanobis distance or a bilinear similarity. The

most common approaches to include some non linearity in the process are to learn

multiple metrics across the space or to learn a linear metric in a kernel induced space.

• How are the metrics effectively learned? We will see that optimization problems

in batch learning setting are widely used in metric learning and that approaches mainly

varies in function of the kind of constraints used, the loss function considered and the

regularization term. Nevertheless several approaches also proposed to learn a metric in

an online fashion.

• Are there any theoretical guarantees on the learned metrics? We presented two

frameworks used to derive generalization bounds in Chapter 1. We will see that these

can be extended to the metric learning setting. Furthermore it is sometimes possible to

evaluate the impact of a metric on the subsequent algorithm.

41
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Metrics ?

Theory ?

Metric LearningTasks ? Learning ?

Classification or Clustering

Domain Adaptation

Others

Online Learning

Risk Minimization (Batch)

Others

Generalization Guarantees Impact on Subsequent Algorithm

Multiple MetricsBilinear Similarity

Mahalanobis Distance Others

Figure 2.1: Metric learning in four questions.

• In which tasks are the metrics used? We will see that many approaches are

interested in solving classification or semi-supervised clustering problems. However

some works also considered different tasks such as image retrieval, face recognition or

domain adaptation.

In Chapter 1 we were mainly focused on supervised learning problems. In this chapter,

and unless stated otherwise, we consider the setting consisting in learning a metric for a

classification problem. Formally we consider a domain T which corresponds to the space

Z = X ×Y equipped with the probability distribution DT . We further consider that X ⊆ Rd,
i.e. we are working with real valued vectors, and that we only have access to a training set

T = {zi = (xi, yi)}ni=1 of n training examples.

In Figure 2.1 we propose a diagram summarizing the outline of this review. In Section 2.2

we present several works whose goal is to learn a specific metric. Next in Section 2.3 we review

different learning procedures applicable to metric learning. In Section 2.4 we consider the

problem of deriving theoretical guarantees. Finally in Section 2.5 we focus on the applications

making use of the learned metrics before concluding in Section 2.6

2.2 Metrics

Several metrics have been considered in the field. We present a short description of the most

popular ones here.
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2.2.1 Mahalanobis Distance

In their pioneering work Xing et al. (2002) propose to learn the parameter matrix M of a

Mahalanobis distance. Popularized by Large Margin Nearest Neighbour (LMNN) (Weinberger

et al., 2005) and Information Theoretic Metric Learning (ITML) (Davis et al., 2007), it is

probably the most studied metric in the community. We presented it in Section 1.4 but we

recall it here for the sake of readability:

dM

(
x,x′

)
=
√

(x− x′)TM(x− x′) with x,x′ ∈ X ,M ∈ Sd×d+ . (2.1)

Note that to avoid the difficulties linked to the use of a square root, i.e. it is concave and

only defined on R+, a lot of approaches have focused on learning the quadratic version of dM,

denoted d2
M.

To obtain a proper distance the matrix M has to be positive semi-definite. This con-

straint can be hard to satisfy in practice as it often requires some costly projections on the

positive semi-definite cone1 (Jin et al., 2009). However this constraints also provides a nice

interpretation of the metric. Indeed using a Cholesky decomposition one can write M = LTL

with L ∈ Rd′×d. It implies that the Mahalanobis distance is the standard euclidean distance

in a new space linearly dependent on X :

dL

(
x,x′

)
=
√

(Lx− Lx′)T (Lx− Lx′) with x,x′ ∈ X ,L ∈ Rd
′×d. (2.2)

Following this idea and to avoid the positive semi-definite constraint on M some approaches

propose to directly learn the matrix L (Goldberger et al., 2004).

Another appealing property of the matrix M stemming from its positive semi-definiteness

is that it can be written as a combination of rank 1 matrices:

M =
k∑
i=1

uiu
T
i (2.3)

with the ui ∈ Rd are linearly independent vectors2 and k is the rank of M. Using this

property several approaches propose to learn either a weighted combination of given rank 1

matrices (Shi et al., 2014) or the matrices themselves (Shen et al., 2009, 2012).

Depending on the form of the matrix M the Mahalanobis distance can have some appealing

properties. For example if this matrix is diagonal the distance can be seen as a reweigthing

of the input features (Xing et al., 2002). Similarly when M is low rank (k < d) then in

the decomposition presented above the matrix L is rectangular with d′ < d. It implies that

the examples are projected in a lower dimensional space, i.e. it is equivalent to performing

some dimensionality reduction on the data. Following this idea some approaches have then

been interested in learning low rank matrices using some sparsity inducing norms such as the

1A projection onto the positive semi-definite cone requires an eigenvalue decomposition whose computational

cost is roughly in O
(
d3
)

making it intractable when d becomes large.
2These vectors can for example be the eigenvectors of the matrix times the square root of the corresponding

eigenvalue.
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trace norm (Ying et al., 2009), the capped trace norm (Huo et al., 2016) or a Fantope based

norm (Law et al., 2014).

2.2.2 Bilinear Similarity

Apart from the Mahalanobis distance, the second most popular metric is probably the bilinear

similarity which is also parametrized by a matrix M. For example Qamar et al. (2008) consider

the following similarity:

kM

(
x,x′

)
=

xTMx′

N(x,x′)
with x,x′ ∈ X ,M ∈ Rd×d (2.4)

where M can be either diagonal, symmetric or simply a square matrix and N(x,x′) is a

normalization parameter.

Following this idea Qamar and Gaussier (2009) propose to use a generalized cosine simi-

larity:

kM

(
x,x′

)
=

xTMx′
√

xTMx
√

x′TMx′
with x,x′ ∈ X ,M ∈ Sd×d+ . (2.5)

However the positive semi-definite constraint can be too restrictive in practice.

These two similarities can be seen as particular forms of the bilinear similarity presented

in Section 1.4 and recalled here for the sake of readability:

kM

(
x,x′

)
= xTMx′ with x,x′ ∈ X ,M ∈ Rd×d+ . (2.6)

This more general form has for example been used in Chechik et al. (2009, 2010); Kulis et al.

(2011); Bellet et al. (2012).

2.2.3 Multiple Metrics

The two metrics presented above are linearly dependent on the input space. However it

is sometimes not sufficient to capture the idiosyncrasies of the data. Hence learning a non

linear metric becomes necessary. One possible approach is then to learn multiple linear metrics

across the space. One basic strategy is local metric learning which consists in dividing the

input space in K clusters C1, . . . , CK and to learn one metric in each cluster. For example

one can obtain K Mahalanobis distances dM1 , . . . , dMK
. The distance can then be computed

between two examples x,x′ ∈ X as:

dM

(
x,x′

)
=

K∑
i=1

wx,x′(i)dMi

(
x,x′

)
(2.7)

where wx,x′(i) is the weight of the distance dMi in the combination when considering the two

examples x and x′. Hence the methods interested in learning multiple metrics mainly vary on

the way they cluster the input space, the metric learned and the way they choose the weights

of the metrics with respect to the examples.
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• In Multi-Metric Large Margin Nearest Neighbour (MM-LMNN) Weinberger and Saul

(2008) propose to either set one partition for each class or to use the k-means algorithm.

In each partition they propose to use LMNN (Weinberger et al., 2005) to learn a Ma-

halanobis distance. Finally the distance dM(x,x′) between two examples only depends

on the cluster in which x′ falls. It implies that the global distance is not symmetric if

x and x′ do not fall in the same cluster.

• Semerci and Alpaydın (2013) propose to learn a Mixture of LMNN (MoLMNN) by

alternatively learning the partition of the space and the transformation matrix of a

Mahalanobis distance. Furthermore they propose to use a soft partitioning of the space

where the transformation of one example depends on several local transformations.

• In Large Margin Local Metric Learning (LMLML) Bohné et al. (2014) propose to learn

one Mahalanobis distance for each of the K components of a Gaussian mixture model.

For two examples x and x′ the weight of each metric depends on the degree of mem-

bership of the two examples to each component.

• In Parametric Local Metric Learning (PLML) Wang et al. (2012) propose to select

anchor points defined as the means of clusters constructed by the k-means algorithm.

Then they express each example in the training set as a weighted combination of the

anchor points and they use these weights to learn one basis metric for each anchor point.

Note that the global metric is not symmetric.

• Instead of partitioning the input space Chang and Yeung (2004, 2007) propose to learn

one linear transformation for each example but to compute their effective transforma-

tions as a learned weighted combination of the transformations of their neighbours.

2.2.4 Other Non Linear Metrics

To include some non linearity in the model some approaches propose to consider intrinsically

non linear metrics. For example Kedem et al. (2012) proposed to build upon LMNN (Wein-

berger et al., 2005) to learn two new metrics. The first one, called χ2-LMNN, is well suited

for histogram data. The second one is called GB-LMNN and is based on Gradient Boosted

regression trees. As a last example of a method learning a non linear metric Xiong et al.

(2012a) propose the Random Forest Distance (RFD). This is a local metric learning method

based on random forests classifiers. The idea is to learn a classifier able to predict if two ex-

amples are similar or dissimilar, i.e. to predict 1 if two examples are similar and 0 otherwise.

Another possible approach to include some non linearity, used for example in Davis et al.

(2007), is to consider learning a linear metrics in a space non linearly dependent on the input

space using for example a kernel.

In this thesis we consider the problem of learning Mahalanobis distances in Chapters 4, 5

and 6. In Chapter 4 we also consider learning bilinear similarities while in Chapter 3 we

propose to learn multiple Mahalanobis distances.
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(a) Pair based constraints. (b) Triplet based constraints.

Figure 2.2: Illustration of the notion of margin for pair based constraints 2.2(a) and triplet

based constraints 2.2(b).

2.3 Learning Approaches

A classification problem becomes easier to solve when, in the data, the intra class variance is

low and the inter class variance is high. In other words it is desirable to have all the examples

of the same class close to each other and all the examples of different classes far from each

other. Building upon this idea most of the existing works in metric learning try to learn the

best metric such that the aforementioned constraints are respected.

2.3.1 Pair Based Constraints

Given a labelled training set T , a first approach consists in considering the examples by pairs

and defining similarity and dissimilarity constraints as follows:

• A set of pairs of similar examples: Psim = {(z, z′) s.t. z, z′ ∈ T, y = y′},

• A set of pairs of dissimilar examples: Pdis = {(z, z′) s.t. z, z′ ∈ T, y 6= y′}.

Alternatively we can consider a single set of pairs of examples:

• Ppair =
{

(z, z′, δyy′) s.t. z, z′ ∈ T, δyy′ = 1 if y = y′, δyy′ = −1 if y 6= y′
}

.

A good metric should be able to bring closer to each other all the similar examples while

pushing far away all the dissimilar ones. For example, using empirical risk minimization

(Section 1.2), learning a Mahalanobis distance could be done by solving one of the following

two optimization problems:

arg min
M∈Sd×d+

∑
(z,z′)∈Psim

1dM(x,x′)≥γyy′ +
∑

(z,z′)∈Pdis

1dM(x,x′)≤γyy′ + λ ‖M‖

arg min
M∈Sd×d+

∑
(z,z′,δyy′ )∈Ppair

1δyy′dM(x,x′)≥δyy′γyy′ + λ ‖M‖
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where the margin γyy′ is a measure of closeness between the examples and 1 is the indicator

function whose value is 1 if the condition is true and 0 otherwise3. The idea is that similar

examples should be at a distance lower than γyy′ while dissimilar examples should be at a

distance greater than γyy′ (See Figure 2.2(a)). Note that γyy′ depends on the examples and

can thus have a different value for each pair. In practice we often fix a value γsim when

y = y′ and a value γdis when y 6= y′. Many approaches in metric learning are based on a

similar idea, i.e. they try to obtain a metric that approximates these constraints. However

the optimization problem presented here is non convex and non differentiable and is thus hard

to optimize in practice. Most of the approaches then consider surrogate losses (Section 1.4)

which are easier to handle. They also make use of various regularization terms to enforce

different properties on the metrics.

• In their pioneering work (Xing et al., 2002) propose to learn a Mahalanobis distance dM

by bringing similar examples close to each other while keeping dissimilar examples rea-

sonably far away. They use a gradient descent based approach with iterative projections

on the constraints to solve the following optimization problem:

arg min
M∈Sd×d+

∑
(x,x′)∈Psim

d2
M

(
x,x′

)
(2.8)

s.t.
∑

(x,x′)∈Pdis

dM

(
x,x′

)
≥ 1. (2.9)

Here the margin between similar examples is implicitly set to 0 while the margin between

dissimilar examples is set to 1.

• Goldberger et al. (2004) proposed Neighbourhood Components Analysis (NCA). It is

a method based on a non convex optimization problem where the idea is to directly

learn the transformation matrix L of a Mahalanobis distance. To this extent they first

propose to define for each example in the training set T the probability that an example

xj is in the neighbourhood of an example xi as:

pij =
exp

(
−d2

L(xi,xj)
)∑

zk∈T
zk 6=zi

exp
(
−d2

L(xi,xk)
) . (2.10)

From this, assuming that pii = 0, they compute the probability that the example xi is

correctly classified as:

pi =
∑
zj∈T
yi=yj

pij . (2.11)

They then try to find the metric which maximizes the probability of correctly classifying

the examples:

arg max
L∈Rd′×d

∑
zi∈T

pi. (2.12)

3It is another way to write the 0/1 loss presented in Section 1.4.
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To solve this optimization problem, the authors propose to use a gradient based ap-

proach and precise that some care should be taken to avoid local maxima. In this work

the authors consider that all the examples of the same class should be similar while

all the examples of different classes should be dissimilar. There is no explicit notion of

margin.

• Globerson and Roweis (2005) proposed Maximally Collapsing Metric Learning (MCML)

where the idea is to learn a Mahalanobis distance able to collapse all the similar ex-

amples in a single point and to push the dissimilar examples infinitely far away. To

this extent the authors propose a convex optimization problem based on the Kullback-

Leibler divergence. As in NCA (Goldberger et al., 2004) they first propose to consider

for each example in the training set T the probability that an example xj is in the

neighbourhood of an example xi as:

pij =
exp

(
−d2

M(xi,xj)
)∑

zk∈T
zk 6=zi

exp
(
−d2

M(xi,xk)
) . (2.13)

They also define the ideal probability that they want to achieve between two examples

as:

p∗ij ∝

{
1 yi = yj

0 yi 6= yj .
(2.14)

Following this the authors propose to learn a metric minimizing the Kullback-Leibler

divergence between the empirical and the ideal probability distributions:

arg min
M∈Sd×d+

KL
(
pij
∣∣p∗ij ) . (2.15)

To solve this convex optimization problem the authors propose a gradient based ap-

proach with projections onto the constraints.

• Information-Theoretic Metric Learning (ITML) (Davis et al., 2007) is among the most

famous Mahalanobis distance learning approaches. It is based on the log det divergence

and the idea is to learn a metric which is close to a known prior metric MS using the

following optimization problem:

arg min
M∈Sd×d+

Tr
(
MM−1

S
)
− log det

(
MM−1

S
)
− n (2.16)

s.t. Tr
(
M(x− x′)(x− x′)T

)
≤ γsim (x,x′) ∈ Psim (2.17)

Tr
(
M(x− x′)(x− x′)T

)
≥ γdis (x,x′) ∈ Pdis. (2.18)

The log det divergence is a particular Bregman divergence with the nice property that

if the divergence is finite and the prior matrix is positive semi-definite then the learned

matrix is also guaranteed to be positive semi-definite. It implies that this optimization

problem does not require projections on the semi-definite cone.
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• Jin et al. (2009) propose to learn a Mahalanobis distance using the following optimiza-

tion problem:

arg min
M∈Sd×d+ ,Tr(M)≤η(d)

2

n(n− 1)

∑
zi,zj∈T
i<j

[
δyiyj

(
1− d2

M(xi,xj)
)]

+
+ λ

1

2
‖M‖2F (2.19)

where η(d) is shown to be sublinear in d, i.e. η(d) ∼ O (dp) with p < 1.

• Log-determinant regularized Distance Metric Learning (L-DML) (Zha et al., 2009) is

a Mahalanobis distance learning method which is able to make use of some auxiliary

knowledge in the form of given metrics. The idea is to use a variant of ITML (Davis

et al., 2007) to accommodate several prior metrics rather than a single one. Hence they

consider that they have access to a set of prior matrices M1, · · · ,Mk ∈ Sd×d+ and use

the following optimization problem:

arg min
MSd×d+ ,µ≥0

k∑
i=1

µiTr
(
M−1

i M
)
− log det(M)

+ λsim

∑
(z,z′)∈Psim

dM

(
x,x′

)
− λdis

∑
(z,z′)∈Pdis

dM

(
x,x′

)
+ λµ ‖µ‖22

s.t.

k∑
i=1

µi = 1

where the vector µ controls the impact of each prior matrix and the λ parameters

control the trade-off between the different terms.

2.3.2 Triplet Based Constraints

Sometimes pair based constraints are not sufficient to capture the relationships between the

constraints. Another common trend in metric learning is to consider triplet based constraints:

• Ptri = {(z, z′, z′′) s.t. z, z′, z′′ ∈ T, y = y′, y 6= y′′}.

Using empirical risk minimization (Section 1.2), learning a Mahalanobis distance could be

done by solving the following optimization problem:

arg min
M∈Sd×d+

∑
(z,z′,vz′′)∈Ptri

1dM(x,x′)≥dM(x,x′′)+γ + λ ‖M‖ (2.20)

where γ is the desired margin between the two distances and 1 is the indicator function.

In practice this margin is often set to 1 (Weinberger et al., 2005; Ying et al., 2009; Shi

et al., 2014). The underlying idea is that similar examples should be closer to each other

than dissimilar ones (See Figure 2.2(b)). Once again many approaches in metric learning are

based on a similar idea and make use of a variation of the previous optimization problem.
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• Large Margin Nearest Neighbours (LMNN) (Weinberger et al., 2005; Weinberger and

Saul, 2009) is a popular metric learning method based on triplets constraints whose goal

is to learn a Mahalanobis distance specifically tailored to improve k-nearest neighbours

classification. The idea is, for a given example x, to learn a metric which brings closer

the k nearest neighbours of a similar class (target examples) and tries to push farther

away all the examples of different classes which are closer to x than the target examples

(impostors). The authors propose to use the following convex optimization problem:

arg min
M∈Sd×d+

λ
∑

(x,x′)∈Psim

d2
M

(
x,x′

)
+ (1− λ)

∑
(x,x′,x′′)∈Ptri

[
1 + d2

M

(
x,x′

)
− d2

M

(
x,x′′

)]
+

(2.21)

where λ is a parameter controlling the balance between the term which brings closer

the target examples and the term which moves the impostors with respect to the target

examples. Satisfying the positive semi-definiteness of M is costly and general solvers do

not handle this optimization problem efficiently. Hence the authors propose a gradient

based specific solver which makes use of the possible decomposition M = LTL. Several

metric learning approaches are based on the same formulation albeit in different contexts

such as local metric learning (Weinberger and Saul, 2008; Semerci and Alpaydın, 2013)

or learning intrinsically non linear metrics (Kedem et al., 2012).

• Ying et al. (2009) propose to learn a low rank Mahalanobis distance. The idea is to use

the trace norm as a regularization term in the following optimization problem:

arg min
M∈Sd×d+

∑
(z,z′,z′′)∈Ptri

[
1 + d2

M

(
x,x′

)
− d2

M

(
x,x′′

)]
+

+ λTr (M)2 . (2.22)

As seen in Section 1.4 the trace norm corresponds to the sum of the eigenvalues of the

matrix. It implies that to obtain a small trace norm the eigenvalues should be minimized

and thus go to 0, i.e. the matrix becomes low rank.

• Sparse Compositional Metric Learning (SCML) (Shi et al., 2014) is a Mahalanobis

distance learning method based on the idea that any positive semi-definite matrix can

be decomposed as a set of rank 1 positive semi-definite matrices. To learn a metric

the authors consider that they have access to a set of rank 1 matrices, the bases B ={
bib

T
i s.t. bi ∈ Rd

}m
i=1

. This set can, for example, be obtained thanks to a Fisher

discriminant analysis. The goal is then to learn the vector w which combines the bases.

In the general case the authors propose to solve the following optimization problem:

arg min
w≥0

1

n

∑
(z,z′,z′′)∈Ptri

[
1 + d2

M

(
x,x′

)
− d2

M

(
x,x′′

)]
+

+ λ ‖w‖1 (2.23)

where M =
∑m

i=1 w(i)bib
T
i . The regularization term tends to promote sparse combi-

nation vectors in order to minimize the number of bases needed to compute the matrix.
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Note that instead of learning the d2 parameters of the matrix M, this method only re-

quires to learn the sparse vector w of size m. Hence it greatly reduces the computational

cost since m will, most of the time, be smaller than d2.

2.3.3 Quadruplet Based Constraints

Introduced by Law et al. (2013) in Quadruplet-wise Metric Learning (Qwise) the underlying

idea is that in some particular cases pair or triplet based constraints are not sufficient. As

a motivating example they propose the problem of smiling faces. They consider 4 examples

ordered as follows z′′ ≺ z ∼ z′ ≺ z′′′, i.e. z′′ is not smiling at all, z′′′ is smiling a lot and z and

z′ both smile a little. In this case pair or triplet based constraints cannot completely capture

the relations between the examples since they are not fully determined, e.g. it is unknown if

z is closer to z′′ or to z′′′. To solve this problem Law et al. (2013) propose to use quadruplet

based constraints of the form:

Pquad =
{

(z, z′, z′′, z′′′) s.t. z and z′ are more similar to each other than z′′ and z′′′
}

.

These constraints can also be extended to take into account a margin γ:

Pquad =
{

(z, z′, z′′, z′′′, γ) s.t. z and z′ are more similar than z′′ and z′′′ by a margin γ
}

.

Quadruplet based constraints can accommodate the motivating example by considering that

z and z′ should be closer to each other than z′′ and z′′′ should. These constraints have been

used in a several approaches.

• Law et al. (2014) introduce a Fantope regularization for Mahalanobis distance learning.

One of the limits of the trace norm regularization is the fact that it tends to reduce all

the eigenvalues of the matrix. However reducing the values of the highest eigenvalues

does not reduce the rank and might decrease the performance of the metric. Hence

Law et al. (2014) propose to consider a regularization of the form Tr (WM) where W

is in the convex hull of the set of rank k projection matrices, called a Fantope. This

matrix can be built by first computing the eigenvalue decomposition M = VTΣV with

Σ a diagonal matrix containing the eigenvalues and V containing the eigenvectors and

then by setting W = VTΣ′V where Σ′ is obtained from Σ by replacing the k smallest

eigenvalues by 1 and the others by 0. In other words, the idea is to consider that only

the k smallest eigenvalues should be minimized. Using this idea the authors propose to

solve the following optimization problem:

arg min
M∈Sd×d+

∑
(z,z′,z′′,z′′′,γ)∈Pquad

[
γ + d2

M

(
x,x′

)
− d2

M

(
x′′,x′′′

)]
+

+ λTr (WM) . (2.24)

Note that one of the difficulties when optimizing this kind of problem is that W depends

on the current value of M and as such it should be updated during the optimization

process. Hence the authors propose to consider a sub gradient descent approach and to

update W at each iteration.
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• Huo et al. (2016) propose a Capped Trace norm regularization term for Mahalanobis

metric learning. This regularization term can be written as 1
2

∑
i min(σ(i), C) where

σ is the vector of singular values of M and C is a constant threshold. The idea is to

limit the impact of the highest singular values in the optimization problem and thus to

promote the minimization of the smallest singular values. The authors propose to use

the following optimization problem:

arg min
M∈Sd×d+

∑
(z,z′,z′′,z′′′,γ)∈Pquad

[
γ + d2

M

(
x,x′

)
− d2

M

(
x′′,x′′′

)]
+

+
λ

2

∑
i

min(σi, C). (2.25)

In its original form the proposed optimization problem is not convex but the authors

tackle this issue by solving an equivalent convex optimization formulation. The Capped

Trace norm regularization is close in spirit to the Fantope regularization (Law et al.,

2014). However the authors show that it is less sensitive to hyper parameters.

2.3.4 Online Learning

In the previous subsections we considered a batch setting where all the examples are available

at the same time. However in some cases the examples arrive in a stream like fashion. Con-

trary to classification or regression where the examples can be considered independently from

each other, in metric learning most of the approaches work with pairs or triplet of examples.

Hence a natural assumption is that these pairs or triplets are given one after the other. The

goal is then to learn a metric which is able to change when more and more pairs or triplets are

available. Formally assume that we have a sequence of pairs (x1,x
′
1), . . . , (xt,x

′
t), (xt+1,x

′
t+1)

and that from the first t examples we were able to learn a Mahalanobis distance dMt . The

goal is to learn a distance dMt+1 such that:

dMt+1 = f
(
dMt , (xt+1,x

′
t+1)

)
(2.26)

where f is a function able to combine the current metric with the new pair to learn a new

metric.

• Pseudo-Metric Online Learning Algorithm (POLA) (Shalev-Shwartz et al., 2004) is

interested in learning a Mahalanobis distance and a parameter b corresponding to the

threshold between similar and dissimilar examples. It is assumed that pairs of examples

arrive one after the other. Given a new example (xt+1,x
′
t+1, δyt+1y′t+1

) they propose

to update the matrix Mt and the threshold bt successively solving the following two

optimization problems:

Mt+ 1
2
, bt+ 1

2
= arg min

M∈Rd×d,b∈R
‖Mt −M‖2F + (bt − b)2

s.t.
[
δyt+1y′t+1

(
d2

Mt

(
xt+1,x

′
t+1

)
− bt

)
+ 1
]

+
= 0,

Mt+1, bt+1 = arg min
M∈Sd×d+ ,b≥1

∥∥∥Mt+ 1
2
−M

∥∥∥2

F
+ (bt+ 1

2
− b)2.
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(2.27)

The first step consists in searching for the (matrix, threshold)-pair achieving a loss of 0

on the new pair of examples while staying as close as possible to the current solution.

The second step consists in projecting the new solution onto the set of admissible solu-

tions, i.e. positive semi-definite matrix and threshold greater than 1. Note that a kernel

version of this approach is also proposed allowing one to learn non-linear metrics in an

online fashion.

• LogDet Exact Gradient Optimization (LEGO) (Jain et al., 2009) is a Mahalanobis

distance learning approach. For a new pair of examples (xt+1,x
′
t+1, δyt+1y′t+1

) they

propose to use a formulation based on ITML (Davis et al., 2007) where they set the

prior matrix MS to the current matrix Mt at each iteration. Hence they obtain the

matrix Mt+1 by solving the following optimization problem:

Mt+1 = arg min
M∈Sd×d+

Tr
(
MM−1

t

)
− log det

(
MM−1

t

)
− d

+ λ
[
δyt+1y′t+1

(
dM

(
xt+1,x

′
t+1

)
− γyt+1y′t+1

)]
+

.

• Chechik et al. (2009, 2010) proposed Online Algorithm for Scalable Image Similarity

(OASIS) a bilinear similarity learning approach specifically designed to handle large

datasets of images. In this work the authors work with triplet based constraints and

given a new triplet (xt+1,x
′
t+1,x

′′
t+1) they propose to update the metric in the following

way:

Mt+1 = arg min
M∈Rd×d

1

2
‖M−Mt‖2F + λ

[
1− kMt

(
xt+1,x

′
t+1

)
+ kMt

(
xt+1,x

′′
t+1

)]
+

. (2.28)

The idea is to update the matrix for each new triplet while staying close to the matrix

obtained during the previous iteration. This trade-off is controlled by a parameter λ.

The initial matrix is selected as the identity matrix M0 = I. The matrix M can be

either unconstrained, symmetric or PSD depending on the problem. This method has

been shown to be computationally efficient thanks to the specifically developed solver.

2.3.5 Other Approaches

Other approaches than the one presented above have been considered to learn metrics. For

example, Shen et al. (2009, 2012) propose to use the theory of boosting to learn a Mahalanobis

distance. The main idea is to notice that any positive semi definite matrix can be decomposed

as a combination of rank 1 matrices which can be used and combined as weak learners. In

a subsequent work Bi et al. (2011) propose a substantial seep-up of the approach. Another

approach was proposed by Qamar et al. (2008) who learn a similarity by using a variant of

the voted perceptron algorithm (Freund and Schapire, 1999).
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In this thesis we are mainly interested in batch optimization problems based on regularized

risk minimization. In Chapters 3 and 4 we consider pair based constraints. In Chapters 5 and 6

we propose two approaches which are not based on standard metric learning constraints as

they are able to consider each example individually.

2.4 Theoretical Guarantees

Metric learning is most of the time used as a preprocessing step before other algorithms. As

such when considering theoretical guarantees for metric learning two questions may arise.

On the one hand studying the generalization ability of the metric is crucial to ensure that

distances computed between new examples will be correct. On the other hand considering the

impact of the metric on the subsequent algorithm is important as it is a way to theoretically

show the interest of learning it.

2.4.1 Generalization Bounds for Metric Learning

Generalization bounds for metric learning are harder to derive than in standard approaches.

Indeed one of the common assumptions when proving this kind of guarantees is that the ex-

amples are drawn i.i.d. from a probability distribution (See Section 1.3). However in metric

learning most of the time the loss functions are defined with respect to pairs or triplets of

examples as presented above. One of the issue is then that even if the examples are drawn

i.i.d. from DT there is no guarantee that this is also the case for the pairs or the triplets.

More precisely if the examples are drawn identically and independently from DT , one can only

assume that the pairs are independent but not that they are identically distributed. Never-

theless the two particular frameworks presented in Section 1.3 are based on the McDiarmid’s

inequality (McDiarmid, 1989) that only needs to assume that the examples are independent.

Using adapted definitions of uniform stability (Jin et al., 2009) and Rademacher complex-

ity (Cao et al., 2016) these two frameworks have been successfully extended to metric learning

with pair based constraints. Note that the robustness framework has also been considered for

metric learning (Bellet and Habrard, 2015) but we do not present it here.

Uniform stability for metric learning To extend the uniform stability framework to

metric learning, Jin et al. (2009) propose to adapt the definition of uniform stability as

follows.

Definition 2.1 (Uniform Stability for Metric Learning). Let T ∼ DT be a size n training set

and z ∼ DT be an example. Let T i be the training set obtained by replacing example i in T

by z. Let A be an algorithm which returns a metric hT when learning with the training set T

and hT i when learning with the training set T i. An algorithm A has uniform stability β with

respect to its loss function l (·) if the following holds:

∀i ∈ {1, . . . , n} , sup
z′,z′′∼DT

∣∣l (hT , z′, z′′)− l (hT i , z′, z′′)∣∣ ≤ β

n
. (2.29)
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Given this definition, they show that using the same proof technique that in Bousquet and

Elisseeff (2002b) it is possible to obtain a generalization bound for metric learning similar,

up to some constants, to the one presented in Theorem 1.1. As an example of a practical

use of the framework, Jin et al. (2009) show that their algorithm, presented in Section 2.3, is

uniformly stable and thus that the metric learned with their method generalizes well to new

pairs of examples.

Rademacher complexity for metric learning To extend the Rademacher complexity

framework, Cao et al. (2016) propose a new definition of the Rademacher complexity specif-

ically tailored for metric learning. It corresponds to the expected value over size n training

sets of the Rademacher averages of the dual norm (Definition A.4) of the regularization term.

Definition 2.2 (Rademacher Complexity for Metric Learning). Let T ′ ∼ DT be a set of size

n such that the pairs (z′i, z
′
bn2 c+i

) are i.i.d.. Let σ be a vector of n Rademacher Variables, i.e.

variables which can take a value of either 1 or −1 with probability 1
2 . Let ‖·‖ be a norm and

‖·‖∗ its dual norm4. The Rademacher average is respectively defined for Mahalanobis distance

learning and bilinear similarity learning:

R̂n(‖·‖) =
1⌊
n
2

⌋ E
σ

∥∥∥∥∥∥∥
bn2 c∑
i=1

σi(xi − xbn2 c+i)(xi − xbn2 c+i)
T

∥∥∥∥∥∥∥
∗

(2.30)

R̂n(‖·‖) =
1⌊
n
2

⌋ E
σ

∥∥∥∥∥∥∥
bn2 c∑
i=1

σixix
T
bn2 c+i

∥∥∥∥∥∥∥
∗

. (2.31)

The Rademacher complexity for Metric Learning is then defined as:

R(‖·‖) = E
T ′∼DT

R̂n(‖·‖) (2.32)

where the expectation is taken over size n training sets.

Note that even if the i.i.d. property of the pairs is relaxed when using the McDiarmid

concentration inequality, it is still needed when computing the Rademacher complexity. How-

ever, using properties of U-statistics (See e.g. Clémençon et al. (2008)), Cao et al. (2016) show

that this is not an issue in practice since it is possible, in expectation over all the possible

training sets of size n, to reduce a pair based approach to the case of i.i.d. random variable

blocks as required in this definition5. Using this new definition of Rademacher complexity for

metric learning Cao et al. (2016) derive a generalization bound which is close in spirit to the

one presented in Theorem 1.2.

4See A.4 for a formal definition.
5An example of this is given in Section 4.5 where we use the Rademacher complexity to derive a general-

ization bound for metric hypothesis transfer learning.
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2.4.2 Impact on a Subsequent Algorithm

As we have seen in Chapter 1, metrics are used in a wide range of applications and choosing

a good metric through metric learning or other means can be seen as a preprocessing step

for classic problems such as clustering or classification. Hence the question of the impact of

the metric on the algorithm which makes use of it may arise. Such problems have been for

example addressed by Balcan et al. (2008) who propose to define the goodness of a metric as

its capacity to determine the similarity between the examples and a set of so called reasonable

examples. They then show that this can be directly related to the performance of a linear

classifier making use of the metric. Building upon this framework, several works propose

to learn a good metric (Bellet et al., 2011, 2012) or even to jointly learn the metric and its

associated classifier (Nicolae et al., 2015). Using a different approach Guo and Ying (2014)

propose to learn a metric specifically designed to improve the performance of a linear SVM

(Vapnik, 1998). Building upon the Rademacher Complexity framework they show that the

true risk of the classifier is bounded by the empirical risk of the metric. Once again, the

problem of considering the impact of the learned metric on an algorithm making use of it is

beyond the scope of this thesis.

In this thesis we theoretically justify the approaches presented in Chapters 3, 4 and 5 by

deriving generalization bounds based either on the uniform stability or Rademacher complex-

ity frameworks.

2.5 Applications

If many approaches consider learning a metric for a clustering or classification task, some

methods are specifically designed to help solve other kind of tasks such as image retrieval or

domain adaptation. We provide a quick non exhaustive overview here.

Semi-supervised clustering The idea behind semi-supervised clustering (Xing et al.,

2002; Chang and Yeung, 2004) is that instead of having the labels of the examples as in

classification, we have only access to similarity and dissimilarity constraints.

Classification A lot of approaches have been interested in learning a metric for classifica-

tion (Semerci and Alpaydın, 2013; Davis et al., 2007; Nicolae et al., 2015). Similarly, Wein-

berger et al. (2005); Wang et al. (2012); Goldberger et al. (2004); Qamar et al. (2008) propose

to put a special emphasis on learning a metric specifically designed for a nearest neighbour

classifier (See Section 1.5). It results in methods where only a subset of the constraints are

considered as in LMNN (Weinberger et al., 2005) presented in Section 2.3. Other approaches

consider the problem of learning low rank matrices to simplify the subsequent classification

algorithm (Ying et al., 2009; Shi et al., 2014) or learning a metric inducing a sparse classi-

fier (Bellet et al., 2012).
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Image retrieval Metric learning has also been used to improve image retrieval algorithms

where the goal is, given a query image, to retrieve the most similar images in a given

set (Chechik et al., 2010; Law et al., 2014; Chang and Yeung, 2007; Huo et al., 2016). Sim-

ilarly the idea behind face recognition is to be able to recognize a query person in a set of

images (Jin et al., 2009; Bohné et al., 2014; Cao et al., 2013b; Zha et al., 2009).

Domain adaptation In domain adaptation we assume that we have access to two domains,

the source S and the target T , and that we want to adapt from the source to the target (See

Section 1.5). One way to perform domain adaptation is to bring the two domains closer to

each other, i.e. to align the source and target examples such that any classifier leaned on the

source can also be applied on the target. Several approaches in metric learning thus propose

to learn a metric to bring examples from the source closer to the examples from the target.

• Saenko et al. (2010) propose to use ITML (Davis et al., 2007) presented in Section 2.3

to learn a Mahalanobis distance which brings closer the two domains. They consider

a semi-supervised domain adaptation problem, i.e. some of the target examples are

labelled. To generate the constraints they propose to randomly select examples from

the source and the target and simply consider them as similar if they share the same

label and as dissimilar otherwise. Learning a Mahalanobis distance might sometimes not

be sufficient to overcome the shift between the two domains. Hence they also consider

the kernelized version of ITML in order to obtain a non linear metric.

• In Asymmetric Regularized Cross-domain transformation (ARC-t) Kulis et al. (2011)

propose to learn a bilinear similarity between the source and the target domain for a

semi-supervised domain adaptation task. The interest is that instead of modifying the

source and the target domain at the same time as in Saenko et al. (2010), they simply

move one domain closer to the other. They propose to use the following optimization

problem:

arg min
M∈Rd×d

∑
(zs,zt)∈Psim

[
γsim − kM

(
xs,xt

)]2
+

+
∑

(zs,zt)∈Pdis

[
kM

(
xs,xt

)
− γdis

]2
+

+
λ

2
‖M‖2F

where the two examples from the source and the target are similar if they share the same

label and are dissimilar otherwise. Also note that in this work the bilinear similarity

is considered to be oriented in the sense that the source example always multiply the

matrix M on the left while the target example always multiply M on the right. To

consider more complex transformations between the source and the target they propose

to kernelize their approach.

• Geng et al. (2011) proposed Domain Adaptation Metric Learning (DAML) a Maha-

lanobis distance learning approach for unsupervised domain adaptation. They propose

to learn a metric able to well separate similar and dissimilar examples in the source

domain while keeping the source and the target domain close to each other. Hence they
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define the set of similar examples Psim as all the pairs of source examples sharing the

same label. Similarly they define the set of dissimilar examples Pdis as all the pairs of

source examples with different labels. To keep the source and the target domain close

to each other they propose to use the Maximum Mean Discrepancy (MMD) (Borgwardt

et al., 2006) where the idea is that the respective means of the source and target sam-

ples should be close even after the projection. They propose to learn the transformation

matrix L which minimizes the following optimization problem:

arg min
L∈Rd′×d

∑
(zs,zs′)∈Psim

d2
L

(
xs,xs′

)
+

∥∥∥∥∥ 1

n

∑
zs∈S

Lzs − 1

m

∑
zt∈T

Lzt

∥∥∥∥∥
2

2

s.t.
∑

(zs,zs′)∈Pdis

dL

(
xs,xs′

)
≥ 1.

They also propose a kernelization of their approach based on a Kernel Principal Com-

ponent Analysis (KPCA) (Schölkopf et al., 1997) in order to learn a non linear metric.

Other tasks As a last remark note that metric learning has also been used to improve

the performance of a kernel (Weinberger and Tesauro, 2007) where the idea is to consider

distance based kernels and to optimize the corresponding metric or in a multi-task set-

ting (Parameswaran and Weinberger, 2010) where the idea is to learn one metric for each

task under the constraint that all these metrics share a common basis.

In this thesis we demonstrate the interest of our algorithms in a wide range of applications.

In Chapter 3 we propose to learn a metric for perceptual color differences and we show the

interest of this metric in a segmentation task. In Chapter 4 we consider the problem of

learning a metric with auxiliary knowledge and we apply our framework to a semi-supervised

domain adaptation task. In Chapter 5 we propose a new framework for machine learning

and we demonstrate its good performances for classification problems. Lastly in Chapter 6

the interest of the algorithm is demonstrated on two tasks, namely unsupervised domain

adaptation and seamless copy in images.

2.6 Conclusion

In this chapter we proposed a non exhaustive review of metric learning. We chose to consider

4 different questions and to study several approaches proposing different answers to these

problems. First we noticed that several kinds of metrics can be learned with metric learning

approaches. The most popular one is the Mahalanobis distance while the bilinear similarity

has also been widely studied. To include some non linearity several methods propose to learn

multiple metrics while others consider either learning a linear metric in a kernel induced space

or directly learning an intrinsically non linear metric. Second we presented many approaches

interested in learning a metric in a batch setting by using an optimization problem making use
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of pair, triplet or quadruplet based constraints. We also considered several methods addressing

the problem of learning a metric in an online fashion. Third we introduced two methods to

derive generalization guarantees in metric learning. These approaches are respectively based

on the uniform stability and the Rademacher complexity frameworks. We also recalled several

methods interested in the theoretical impact of a metric on the subsequent algorithm. Fourth

we considered different tasks that can be solved with the help of metric learning, namely

classification, clustering, image retrieval or domain adaptation.

This chapter concludes the first part of this thesis that was dedicated to the presentation

of several notions which will be used throughout our contributions. In the next part we

address the problem of controlling the behaviour of a metric such that it either follow or stay

close to a reference metric. In our first contribution we propose to learn a metric able to

approximate a reference distance from a limited number of examples.
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Metric Learning with a Reference

Metric
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Chapter 3

Metric Approximation Learning in

Perceptual Colour Learning

This chapter is based on the following publication

Michaël Perrot, Amaury Habrard, Damien Muselet, and Marc Sebban. Modeling perceptual color

differences by local metric learning. In European Conference on Computer Vision (ECCV-15), pages

96–111. Springer International Publishing, 2014b

Abstract

In this chapter we are interested in the problem of estimating an unknown reference

metric from a set of pairs of examples. A solution to this problem could be to use metric

learning to automatically approximate the values of the reference metric. However most

of the algorithms proposed in metric learning are more interested in correctly estimating

the relative closeness of the examples rather than the actual distance. In this chapter we

propose a new local metric learning algorithm to learn a Mahalanobis distance which cor-

rectly approximates a reference metric. Using the uniform stability framework we derive

generalization guarantees on the learned model showing that our method is theoretically

founded. Furthermore we evaluate our approach in a computer vision problem, namely

the computation of perceptual color differences. Having perceptual differences between

scene colors is key in many computer vision applications such as image segmentation or

visual salient region detection. Nevertheless, most of the times, we only have access to

the rendered image colors, without any means to go back to the true scene colors. There

are two main existing approaches to tackle this problem. On the one hand, one can com-

pute a complex perceptual distance between rendered image colors. However it makes

the distance dependent on the acquisition conditions and thus far from the scene color

differences. On the other hand one can estimate the scene colors from the rendered image

colors and then evaluate perceptual distances. However it implies the knowledge of the

acquisition conditions which is an unreasonable assumption for most of the applications.

Our approach allows us to learn a metric which is invariant to the acquisition conditions

63
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and computed only from rendered image colors. Our experimental evaluation shows its

great ability (i) to generalize to new colors and devices and (ii) to deal with segmentation

tasks.

3.1 Introduction

In recent years, metric learning has mainly been interested in learning metrics able to estimate

the relative similarities between examples. This can be attributed to the fact that using

similarity and dissimilarity constraints is usually the way to go when learning a metric (See

Section 2.3). It implies that automatically learned distances are able to return a small value

when comparing similar examples and a large value when comparing dissimilar examples.

In this context the exact value is often out of interest. For example when using a nearest

neighbour algorithm what really matters is the ordering of the examples rather than the exact

distance. However there are some cases where learning a distance able to return a specific

value could be of interest. This is for example the case when one wants to approximate an

existing distance to simplify its computation or when one has access to pairs of examples

alongside their distances but no way to compute the distance between new examples. To sum

up here we are more interested in regressing the values of a metric than in learning the best

metric for a subsequent algorithm as it is often the case in metric learning (See Section 2.5).

In this chapter we present a new algorithm to deal with the problem of learning a metric

able to approximate a reference distance. We propose to learn a Mahalanobis distance which

corresponds to a linear transformation of the input space (See Section 2.2). However there

is no guarantee that the metric we want to approximate can effectively be embedded in an

euclidean space. In other words a linear metric might not be sufficient. Following previous

works in local metric learning (Section 2.2) we propose to learn several metrics across the

input space. More precisely we consider a hard partitioning of the space (Weinberger and

Saul, 2008) and learn one metric for each cluster. To deal with the problem of examples

which do not fall in the same cluster we also learn a so called global metric. Moreover we

show that our approach is theoretically founded. Indeed we build upon the framework of

uniform stability to show that the global and each local metric generalize well. Furthermore,

combining these generalization bounds we derive a global bound which holds for the whole

model.

We evaluate our method on the computer vision problem of learning perceptual color dif-

ferences, i.e. differences between colors which are proportional to the color difference perceived

by human observers. A metric with such a property is highly desirable for most of computer

vision applications and especially for visual saliency detection (Achanta and Süsstrunk, 2010)

or image segmentation (Bitsakos et al., 2010). The main drawbacks of existing methods for

computing perceptual color differences is that they are either dependent on the acquisition

conditions or make unrealistic assumptions to be usable in a practical context. Using our

approach we propose to approximate a perceptual color difference. Furthermore, we create a
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new dataset specifically dedicated to the task. It allows us to go a step further by learning

a metric which is mostly invariant to acquisition conditions. This last point is empirically

demonstrated by showing the ability of the learned metric to generalize to new colors and to

new cameras, i.e. to new acquisition conditions. Furthermore we illustrate the good behaviour

of our distance in a standard segmentation task.

This chapter is organised as follows. First in Section 3.2 we present our local metric learn-

ing algorithm. Then in Section 3.3 we derive generalisation bounds which theoretically show

the good behaviour of our approach. Section 3.4 is dedicated to the problem of learning color

differences in computer vision and to our new dataset created to learn perceptual distances.

Finally in Section 3.5 we empirically evaluate our approach before concluding in Section 3.6.

3.2 Regressing the Values of a Reference Metric by Local Met-

ric Learning

In this section we present our metric learning framework whose objective is to approximate

a reference distance ∆ : X × X → Rd. It aims at optimizing K local metrics plus one global

metric. Let T be the domain equipped with the distribution DT over the space X × X ×R
where X ∈ Rd is a vector space and R ∈ R+ is the set of values the reference metric can take.

We consider that we have access to a training set of pairs and their distance:

T =
{

(xi,x
′
i,∆(xi,x

′
i))
}n
i=1

. (3.1)

For the sake of simplicity, when the examples are clear from the context we replace ∆(xi,x
′
i)

by ∆.

To learn a local metric we first divide the space of examples, i.e. X , in K local parts using

a clustering algorithm. From this, we deduce K+1 regions defining a partition C0, C1, . . . , CK

over the possible pairs of examples, i.e. over X × X . A pair (x,x′) belongs to a region Cj ,

1 ≤ j ≤ K if both x and x′ belong to the same cluster j, otherwise it is assigned to region C0.

In other words, each region Cj corresponds to pairs related to cluster j, while C0 contains

the remaining pairs whose points do not belong to the same cluster. It gives us a finite-size

training sample of nj pairs for each region:

Tj =
{

(xi,x
′
i,∆)

}nj
i=1

. (3.2)

To approximate ∆ we independently learn a Mahalanobis distance in every Cj , j =

0, 1, . . . ,K. We define a loss function l on any matrix M and any pair of examples as:

l
(
M, (x,x′,∆)

)
=
∣∣(x− x′)TM(x− x′)−∆2

∣∣ . (3.3)

Here we consider the non differentiable absolute loss rather than a more classic loss based

on the `2 norm. It makes the optimization problem harder to solve. However we will see in

Section 3.4 that in our application we are mainly interested in having a good metric for small
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input : A training set T of n pairs of examples; The number of clusters K ≥ 2

output: 1 global and K local Mahalanobis distances

begin

Run K-means to deduce, from T , K + 1 training subsets Tj = {(xi,x′i,∆)}nji=1,

j = 0, 1 . . . ,K.

for j = 0→ K do
Learn MTj by solving the convex optimization Problem (3.5) using Tj

end

end
Algorithm 1: Local metric learning

values of the reference distance. In this case the absolute loss is more adapted as it penalizes

more small approximation errors which are more likely to happen when dealing with small

distances. We denote the empirical error over the set Tj by:

L̂Tj (M) =
1

nj

∑
(x,x′,∆)∈Tj

l
(
M, (x,x′,∆)

)
. (3.4)

Finally we suggest to learn the matrix MTj minimizing L̂Tj via the following regularized

problem:

arg min
M�0

L̂Tj (M) + λj ‖M‖2F . (3.5)

where λj > 0 is a regularization parameter. It is worth noting that our optimization problem

takes the form of a simple regularized least absolute deviation formulation. The interest of

using the least absolute deviation, rather than a regularized least square, comes from the fact

that it enables accurate estimates of small ∆ values.

The pseudo-code of our metric learning algorithm is presented in Algorithm 1. Note

that to solve the convex Problem (3.5), we use a classic interior points approach. Moreover,

parameter λj can be tuned by cross-validation.

3.2.1 Discussion about Local versus Global Metric

Note that in our approach, the metrics learned in the K regions C1, . . . , CK are local metrics

while the one learned for region C0 is rather a global metric considering pairs that do not fall

in the same region. Beyond the fact that such a setting will allow us to derive generalization

guarantees on our algorithm, it constitutes a straightforward solution to deal with examples

at test time that would not be concerned by the same local metric in the input space. In this

case, we make use of the matrix MT0 associated to partition C0. Another possible solution

may consist in resorting to a Gaussian embedding of the local metrics. However, because

this solution would imply learning additional parameters, we suggest here to make use of this

simple and efficient (parameters-wise) strategy. In the segmentation experiments, we noticed
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that MT0 is used in only ∼20% of the cases. Finally, note that if K = 1, this boils down to

learning only one global metric over the whole training sample.

In the next section, we prove generalization guarantees for our approach.

3.3 Theoretical Analysis

We now provide a generalization bound justifying that the metrics learned with our approach

will generalize well. It is derived by considering (i) a multinomial distribution over the regions,

and (ii) per region generalization guarantees that are obtained with the uniform stability

framework presented in Section 1.3.

First of all we assume that the training sample T = ∪Kj=0Tj is drawn from an unknown

distribution DT over a domain T such that for any (x,x′,∆) ∼ DT , ∆ ≤ ∆max, with ∆max the

maximum distance value used in our context. We assume that given any two examples x and x′

we have ‖x− x′‖2 ≤ 1, i.e. the examples are normalized1. The K+1 regions C0, . . . , CK define

a partition of the support of DT where Pr(Cj) is the probability that a pair of examples falls

in region Cj . In Cj , let DT j be the marginal distribution and Dj = max(x,x′,∆)∼DT j ‖x− x′‖2
be the maximum distance between two examples.

Let MT = {MT0 ,MT1 , . . . ,MTK} be the K + 1 matrices learned by Algorithm 1. We

define the true error associated to MT by:

LT (MT ) =
K∑
j=0

LTj (MTj ) Pr(Cj) (3.6)

where

LTj (MTj ) = E
(x,x′,∆)∼DT j

l
(
MTj , (x,x

′,∆)
)

(3.7)

is the local true risk for region Cj . The empirical error over T of size n is defined as:

L̂T (MT ) =
1

n

K∑
j=0

njL̂Tj (MTj ) (3.8)

where L̂Tj (MTj ), Equation (3.4), is the empirical risk over Tj , i.e. for region Cj .

3.3.1 Generalization Bound per Region Cj

For any learned local matrix MTj , we provide a bound on its associated local true risk

LTj (MTj ) in function of the empirical risk L̂Tj (MTj ) over Tj . To this end we use the uniform

stability framework presented in Section 1.3. Note that this theoretical analysis is based on

the work of (Bousquet and Elisseeff, 2002b). Hence to show a generalization bound in each

1Note that in the case of color differences studied in Section 3.4, we work in the RGB cube and any patch

belongs to [0; 255]3. It is then easy to normalize each coordinate by 255
√

3 to meet the assumption.
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region Cj we use the McDiarmid’s inequality (Theorem A.1) on the estimation error, i.e. the

difference between the true risk and the empirical risk. Before that we need to show that our

algorithm to learn a metric in each region is uniformly stable which requires the loss to be

bounded and k-lipschitz (Definition A.1).

First of all, our loss function, Equation (3.3), is bounded and k-lipschitz as shown in the

two following lemmas.

Lemma 3.1 (Bounded loss function). For any 0 ≤ j ≤ K, let MTj be the metric learned for

region Cj with the training set Tj, we have that for any example (x,x′,∆) ∼ DT j:

0 ≤ l
(
MTj , (x,x

′,∆)
)
≤ Bj, (3.9)

with Bj = max

(
∆max√
λj
,∆2

max

)
.

Proof. The proof of this lemma can be found in Appendix B.1.

Lemma 3.2 (k-lipschitz continuity). Let MTj and M′
Tj

be two matrices for a region Cj and

(x,x′,∆) be an example. Our loss l
(
MTj , (x,x

′,∆)
)

is k-lipschitz continuous with k = D2
j .

Proof. The proof of this lemma can be found in Appendix B.2.

We can show that our approach is uniformly stable in the sense of Definition 1.3 for each

region Cj .

Lemma 3.3 (Uniform stability per region Cj). Given two training samples Tj and T ij of nj

examples where T ij is obtained by replacing example i from Tj by another example drawn in-

dependently from DT j. Let MTj and MT ij
be the respective optimal solutions of Problem (3.5)

when learning with Tj and T ij . In region Cj our problem is βj uniformly stable with βj =
2D4

j

λj
.

Proof. The proof of this lemma can be found in Appendix B.3.

Using Lemma 3.3 about the stability of our algorithm and McDiarmid’s inequality (The-

orem A.1) we can derive our generalization bound. Let RTj = LTj (MTj )− L̂Tj (MTj ) be the

estimation error for Problem (3.5) when learning with training set Tj . To apply McDiarmid’s

inequality we need to bound ETj∼DT j
[
RTj

]
and

∣∣∣RTj −RT ij ∣∣∣. This is done in the two following

lemmas.

Lemma 3.4 (Bound on ETj∼DT j
[
RTj

]
). For any βj uniformly stable learning method of

estimation error RTj = LTj (MTj )− L̂Tj (MTj ) for a training set Tj, we have:

E
Tj∼DT j

[
RTj

]
≤ βj
nj

. (3.10)

Proof. The proof of this lemma can be found in Appendix B.4.
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Lemma 3.5 (Bound on
∣∣∣RTj −RT ij ∣∣∣). For any βj uniformly stable learning method of es-

timation error RTj = LTj (MTj ) − L̂Tj (MTj ) for a training set Tj and any Bj bounded loss

function we have: ∣∣∣RTj −RT ij ∣∣∣ ≤ 2βj +Bj
nj

. (3.11)

Proof. The proof of this lemma can be found in Appendix B.5.

We can now show that Problem (3.5) generalize well for each region Cj .

Lemma 3.6 (Generalization bound per region Cj). For any matrix MTj learned with Prob-

lem (3.5) with the training set Tj in region Cj, we have with probability 1− δ:

∣∣∣LTj (MTj )− L̂Tj (MTj )
∣∣∣ ≤ 2D4

j

λjnj
+

(
4D4

j

λj
+Bj

)√
ln(2

δ )

2nj
. (3.12)

Proof. Using the McDiarmid inequality (Theorem A.1) on RTj = LTj (MTj )− L̂Tj (MTj ), the

estimation error, coupled with Lemma 3.5 for the ci values we have:

Pr

(∣∣∣∣RTj − E
Tj∼DT j

[
RTj

]∣∣∣∣ ≥ ε) ≤ 2 exp

− 2ε2∑nj
i=1

(
2βj+Bj
nj

)2


≤ 2 exp

(
− 2ε2

1
nj

(2βj +Bj)
2

)
.

Then, by setting:

δ = 2 exp

(
− 2ε2

1
nj

(2βj +Bj)
2

)

we obtain:

ε = (2βj +Bj)

√
ln
(

2
δ

)
2nj

and:

Pr

[∣∣∣∣RTj − E
Tj∼DT j

[
RTj

]∣∣∣∣ < ε

]
> 1− δ.

Then, with probability 1− δ:

RTj < E
Tj∼DT j

[
RTj

]
+ ε

⇔ LTj (MTj )− L̂Tj (MTj ) < E
Tj∼DT j

[
RTj

]
+ (2βj +Bj)

√
ln
(

2
δ

)
2nj
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(Lemma 3.4.)

⇔ LTj (MTj )− L̂Tj (MTj ) <
βj
nj

+ (2βj +Bj)

√
ln
(

2
δ

)
2nj

. (3.13)

Noting that Lemmas 3.5 and 3.4 also hold for R′Tj = L̂Tj (MTj )−LTj (MTj ) and using similar

arguments than above we obtain with probability 1− δ that:

L̂Tj (MTj )− LTj (MTj ) <
βj
nj

+ (2βj +Bj)

√
ln
(

2
δ

)
2nj

. (3.14)

From Equations (3.13) and (3.14) we deduce that with probability 1− δ we have:

∣∣∣LTj (MTj )− L̂Tj (MTj )
∣∣∣ < βj

nj
+ (2βj +Bj)

√
ln
(

2
δ

)
2nj

.

Replacing βj by its value gives the lemma.

This lemma shows that good generalization is achieved in each region with a convergence

rate in O
(

1√
n

)
. When the region is compact, the quantity Dj is rather small making the

bound tighter. However we will see in the next section that for the generalization of Algo-

rithm 1 there is a trade-off between Dj and the number of regions K.

3.3.2 Generalization Bound for Algorithm 1

The generalization bound of our algorithm is based on the fact that the different marginals

DT j can be interpreted as the parameters of a multinomial distribution. Then, we have that

(n0, n1, . . . , nK) is an i.i.d. multinomial random variable with parameters n =
∑K

j=0 nj and

(Pr(C0),Pr(C1), . . . ,Pr(CK)). Our result makes use of the Bretagnolle-Huber-Carol concen-

tration inequality for multinomial distributions (Van Der Vaart and Wellner, 1996) which is

recalled in Proposition A.1 for the sake of completeness (this result has also been used in

other contexts (Xu and Mannor, 2012)).

Theorem 3.1 (Generalization bound for Algorithm 1). Let C0, C1, . . . , CK be the regions

considered, then for any set of metrics MT = {MT0 , . . . ,MTK} learned by Algorithm 1 from

a data sample T of n triplets, we have with probability at least 1− δ that

LT (MT ) ≤ L̂T (MT ) +B

√
2(K + 1) ln 2 + 2 ln

(
2
δ

)
n

+
2(KD4 + 1)

λn
+

(
4(KD4 + 1)

λ
+ (K + 1)B

)√
ln(4(K+1)

δ )

2n
(3.15)

where B = max0≤j≤K Bj is a global bound on the loss function, D = max1≤j≤K Dj is the

maximum euclidean distance in a region except C0 and λ = min0≤j≤K λj is the minimum

regularization parameter among the K + 1 learning problems used in Algorithm 1.
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Proof. Let nj be the number of points of T that fall into the partition Cj . (n0, n1, . . . , nK) is

an i.i.d. multinomial random variable with parameters n and (Pr(C0),Pr(C1), . . . ,Pr(CK)).∣∣∣LT (MT )− L̂T (MT )
∣∣∣

=

∣∣∣∣∣∣
K∑
j=0

LTj (MTj ) Pr(Cj)− L̂T (MT )

∣∣∣∣∣∣
=

∣∣∣∣∣∣
K∑
j=0

LTj (MTj ) Pr(Cj)−
K∑
j=0

LTj (MTj )
nj
n

+
K∑
j=0

LTj (MTj )
nj
n
− L̂T (MT )

∣∣∣∣∣∣
(Triangle inequality.)

≤

∣∣∣∣∣∣
K∑
j=0

LTj (MTj ) Pr(Cj)−
K∑
j=0

LTj (MTj )
nj
n

∣∣∣∣∣∣+

∣∣∣∣∣∣
K∑
j=0

LTj (MTj )
nj
n
− L̂T (MT )

∣∣∣∣∣∣
(Triangle inequality.)

≤
K∑
j=0

LTj (MTj )
∣∣∣Pr(Cj)−

nj
n

∣∣∣+

∣∣∣∣∣∣
K∑
j=0

LTj (MTj )
nj
n
−

K∑
j=0

nj
n
L̂Tj (MTj )

∣∣∣∣∣∣
(Lemma 3.1 coupled with the definition of B.)

≤
K∑
j=0

B
∣∣∣Pr(Cj)−

nj
n

∣∣∣+

∣∣∣∣∣∣
K∑
j=0

nj
n

[
LTj (MTj )− L̂Tj (MTj )

]∣∣∣∣∣∣
(Proposition A.1 with probability 1− δ

2 .)

≤ B

√
2(K + 1) ln 2 + 2 ln

(
2
δ

)
n

+
K∑
j=0

nj
n

∣∣∣LTj (MTj )− L̂Tj (MTj )
∣∣∣

(Lemma 3.6 with probability 1− δ
2(K+1) in each region.)

≤ B

√
2(K + 1) ln 2 + 2 ln

(
2
δ

)
n

+

K∑
j=0

nj
n

 2D4
j

λjnj
+

(
4D4

j

λj
+Bj

)√
ln(4(K+1)

δ )

2nj


(Definition of B, D, λ, D0 = 1 and noting that

√
nj ≤

√
n.)

≤ B

√
2(K + 1) ln 2 + 2 ln

(
2
δ

)
n

+
2(KD4 + 1)

λn
+

(
4(KD4 + 1)

λ
+ (K + 1)B

)√
ln(4(K+1)

δ )

2n
.

Finally, the union bound (Theorem A.2) gives the theorem with probability 1− δ.

This result justifies that good generalization is achieved globally with a standard conver-

gence rate in O
(

1√
n

)
. We can remark that if the local regions C1, . . . , CK are rather small

(i.e. D is significantly smaller than 1), then the last part of the bound will not suffer too
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much on the number of regions. On the other hand, there is also a trade-off between the

number/size of regions considered and the number of instances falling in each region. It is

important to have enough examples to learn good models.

3.4 Learning Perceptual Color Differences

In computer vision, the evaluation of color differences is required for many applications.

For example, in image segmentation, the basic idea is to merge two neighbour pixels in the

same region if the difference between their colors is ”small” and to split them into different

regions otherwise (Bitsakos et al., 2010). Likewise, for visual salient region detection, the color

difference between one pixel and its neighbourhood is also the main used information (Achanta

and Süsstrunk, 2010), as well as for edge and corner detection (Van de Weijer et al., 2006,

2005). Similarly, in order to evaluate the quality of color images, (Xue et al., 2013) have

shown that the pixel-wise mean square difference between the original and distorted image

provides very good results. As a last example, the orientation of gradient which is the most

widely used feature for image description (SIFT (Lowe, 2004), HOG (Dalal and Triggs, 2005))

is evaluated as the ratio between vertical and horizontal differences.

Depending on the application requirement, the used color difference may have different

properties. For material edge detection, it has to be robust to local photometric variations

such as highlights or shadows (Van de Weijer et al., 2005). For gradient-based color de-

scriptors, it has to be robust to acquisition condition variations (Burghouts and Geusebroek,

2009; Van De Sande et al., 2010) or discriminative (Van de Weijer et al., 2006). For most

applications and especially for visual saliency detection (Achanta and Süsstrunk, 2010), im-

age segmentation (Bitsakos et al., 2010) or image quality assessment (Xue et al., 2013), the

color difference has to be above all perceptual, i.e. proportional to the color difference per-

ceived by human observers. As such a large amount of work has been done by color scientists

around perceptual color differences (Wyszecki and Stiles, 2000; Huang et al., 2012; Sharma

et al., 2005), where the required inputs of the proposed distances are either reflectance spec-

tra or the device-independent color components CIE XYZ (Wyszecki and Stiles, 2000). These

features are obtained with particular devices such as spectrophotometer or photoelectric col-

orimeter (Wyszecki and Stiles, 2000). It is known that neither the euclidean distance between

reflectance spectra nor the euclidean distance between XYZ vectors are perceptual, i.e. these

distances can be higher for two colors that look similar than for two colors that look different.

Consequently, some color spaces such as CIELAB or CIELUV have been designed to be more

perceptually uniform. In those spaces, specific color difference equations have been proposed

to further improve perceptual uniformity over the simple euclidean distance (Huang et al.,

2012). The ∆E00 (Sharma et al., 2005) distance is one nice example of such a distance. It

corresponds to the difference perceived by a human looking at the two considered colors under

standard viewing conditions recommended by the CIE (illuminant D65, illuminance of 1000

lx, etc.).
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However, it is worth noting that in most of the computer vision applications, the avail-

able information does not take the form of a reflectance spectra or some device-independent

components, as assumed above. Indeed, the classical acquisition devices are cameras that use

iterative complex transforms from the irradiance (amount of light) collected by each CCD sen-

sor cell to the pixel intensity of the output image (Kim et al., 2012b). These device-dependent

transforms are color filtering, white-balancing, gamma correction, demosaicing, compression,

etc. (Xiong et al., 2012b) which are designed to provide pleasant images and not to accurately

measure colors. Consequently, the available RGB components in color images do not allow us

to get back to the original spectra or XYZ components. To overcome this limitation, two main

strategies have been suggested in the literature: either by applying a default transformation

from RGB components to L∗a∗b∗ (CIELAB space) or L∗u∗v∗ (CIELUV space) assuming a

given configuration, or by learning a coordinate transform to actual L∗a∗b∗ components under

particular conditions.

Using default transformations A classic strategy consists in using a default transforma-

tion from the available RGB components to XYZ and then to L∗a∗b∗ or L∗u∗v∗ (Achanta and

Süsstrunk, 2010; Arbelaez et al., 2011; Bitsakos et al., 2010; Khan et al., 2013; Mojsilovic,

2005). This default transformation assumes an average gamma correction of 2.2 (Stokes et al.,

1996), color primaries close to ITU-R BT.709 (Union, 2000) and D65 illuminant (Daylight).

Finally, from the estimated L∗a∗b∗ or L∗u∗v∗ (denoted L̂∗a∗b∗ and L̂∗u∗v∗ respectively) of two

pixels, one can make use of the euclidean distance. In the case of L∗a∗b∗, one can use L̂∗a∗b∗

to estimate more complex and accurate distances such as ∆E00 via its estimate ∆̂E00 (Sharma

et al., 2005), that will be used in our experimental study as a baseline. This default approach

provides a perceptual distance between the colors in the rendered image (called image-wise

color distance) and not between the colors as they appear to a human observer looking at

the real scene (called scene-wise color distance). For some applications such as image quality

assessment, it is required to use the image-wise color distances since only the rendered image

colors need to be compared, whatever the scene colors. But for a lot of other applications

such as image segmentation or saliency detection, we claim that a scene-wise perceptual color

distance should be used. Indeed, in these cases, the aim is to be able to evaluate distances

as they would have been perceived by a human observing the scene and not after the camera

transformations. Note that some solutions exist (Kim et al., 2012a) to get back to scene colors

from RGB camera outputs, thus avoiding using a default transformation, but they require

calibrated acquisition conditions (known illumination, known sensor sensitivities, RAW data

available, . . . ).

Learning coordinate transforms to L∗a∗b∗ For applications requiring the distances be-

tween the colors in the scene, the acquisition conditions are calibrated first and then the

images are acquired under these particular conditions (Larráın et al., 2008; Leon et al., 2006).

Therefore, the camera position and the light color, intensity and positions are fixed and a set

of images of different color patches are acquired. Meanwhile, under the same exact condi-
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tions, a colorimeter measures the actual L∗a∗b∗ components (in the scene) for each of these

patches. Leon et al. (2006) learn then the best transform from camera RGB to actual L∗a∗b∗

components with a neural network. Larráın et al. (2008) first apply the default transform

presented before from camera RGB to L̂∗a∗b∗ and then learn a polynomial regression (until

quadratic term) from the L̂∗a∗b∗ to the true L∗a∗b∗. However, it is worth mentioning that in

both cases the learned transforms are accurate only under these acquisition conditions. Thus,

these approaches can not be applied on most of the computer vision applications where such

an information is unavailable.

Using the metric learning method presented in Section 3.2 we propose to estimate scene-

wise color distances from non calibrated rendered image colors. Furthermore, we go a step

further towards an invariant color distance. This invariance property means that, considering

one image representing two color patches, the distance is predicting how much difference

would have perceived a human observer looking at the two real patches under standard fixed

viewing conditions, such as the ones recommended by the CIE (Commission Internationale de

l’Eclairage) in the context of color difference assessment (Sharma et al., 2005). In other words,

whatever the acquisition device or the illuminant, an invariant scene-wise distance should

return stable values. To the best of our knowledge, no previous work has both underlined and

answered the problem of the approximations that are made during the estimation of perceptual

color differences in the very frequent case of non calibrated acquisitions. It implies that no

suitable dataset exists for the problem at hand. Hence we propose a new dataset specifically

designed to learn a perceptual distance which is invariant across acquisition conditions.

3.4.1 Creating the Dataset

Given two color patches, we want to design a perceptual distance not disturbed by the acqui-

sition conditions. So we propose to use pairs of patches for which we can measure the true

perceptual distance under standard viewing conditions and to image them under different

other conditions.

The choice of the patches is key in this work since all the distances will be learned from

these pairs. Consequently, the colors of the patches have to be well distributed in the RGB

cube in order to be able to well approximate the color distance between two new pairs that

have not been seen in the training set. Moreover, as we would like to learn a local perceptual

distance, we need pairs of patches whose colors are close from each other. According to Sharma

et al. (2005), ∆E00 seems to be a good candidate for that because it is designed to compare

similar colors. Finally, since hue, chroma and luminance differences impact the perceptual

color difference (Sharma et al., 2005), the patches have to be chosen so that all these three

variations are represented among the pairs.

Given these three requirements, we propose to use two different well-known sets of patches,

namely the Farnsworth-Munsell 100 hue test and the Munsell atlas (see Figure 3.1). The

Farnsworth-Munsell 100 hue test is one of the most famous color vision tests which consists
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Figure 3.1: Some images from our dataset showing (first row) the 84 Farnsworth-Munsell

patches and (second row) the 238 Munsell patches under different conditions.

in ordering 84 patches in the correct order and any misplacement can point to some sort of

color vision deficiency. Since these 84 patches are well distributed on the hue wheel, their

colors will cover a large area of the RGB cube when imaging them under an important range of

acquisition conditions. Furthermore, consecutive patches are known to have very small color

differences and then, learning perceptual distances from such pairs is a good purpose. This

set is constituting the main part of our dataset. However, the colors of these patches first,

are not highly saturated and second, they mostly exhibit hue variations and relatively small

luminance and chroma differences. In order to cope with these weaknesses, we add to this

dataset the 238 patches constituting the Munsell Student Color Set (Munsell, 1912). These

patches are characterized by more saturated colors and the pairs of similar patches mostly

exhibit luminance and chroma variations (since only the 5 principal and 5 intermediate hues

are provided in this student set).

To build the dataset, we first use a spectroradiometer (Minolta CS 1000) in order to

measure the spectra of each color patch of the Farnsworth set, the spectra of the Munsell

atlas patches being available online 2. Five measurements have been done in our light cabinet

and the final spectra are the average of each measurement. From these spectra, we evaluate

the L∗a∗b∗ coordinates of each patch under D65 illuminant. Then, we evaluate the distance

∆E00 between all the pairs of color patches (Sharma et al., 2005). Since we need patch

pairs whose colors are similar, following the CIE recommendations (CIE Standard DS 014-

6/E:2012), we select among the C2
84 + C2

238 available pairs only the 223 that are characterized

by a Euclidean distance in the CIELAB space (denoted ∆Eab) less than 5.

Note that the available ∆E00 have been evaluated in the standard viewing conditions

recommended by the CIE for color difference assessment and we would like to obtain these

reference distances whatever the acquisition conditions. Consequently, we propose to use 4

different cameras, namely Kodak DCS Pro 14n, Konica Minolta Dimage Z3, Nikon Coolpix

S6150 and Sony DCR-SR32 and a large variety of lights, viewpoints and backgrounds (since

background also perturbs the colors of the patches). For each camera, we acquire 50 images

2https://www.uef.fi/spectral/spectral-database
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of each Farnsworth pair and 15 of each Munsell pair (overall, 41, 800 imaged pairs). Finally,

after all these measurements and acquisitions, we have for each image of a pair, two image

rendered RGB vectors and one reference distance ∆E00.

In the next section, using this dataset, we evaluate the approach presented in Section 3.2.

3.5 Experiments

Evaluating the interest of a metric can be done in two ways:

• assessing the quality of the metric itself,

• measuring its impact once plugged in an application.

In the following, we evaluate the generalization ability of the learned metric on our dataset

and we measure its contribution in a color segmentation application but first we give a brief

overview of how we learn a metric on our dataset.

3.5.1 Learning the Metric

From our dataset of 41, 800 pairs and their reference distance ∆E00 we can draw training sets

T of varying size depending on our needs. Given T we learn a set of K + 1 local distances

MT = {MT0 ,MT1 , . . . ,MTK}. Note that the local metrics are relatively simple since they

correspond to 3×3 matrices. Furthermore, in all our experiments we consider a large amount

of the training pairs. It makes our algorithm rather insensible to the choice of λ. Therefore,

we chose to fix λ = 1.

The learned metric for a given training set T is denoted by ∆T . For two examples x,x′ it

is computed as follows:

∆T (x,x′) =

{
(x− x′)TMTj (x− x′) if x and x′ fall in the same cluster Cj , 1 ≤ j ≤ K,

(x− x′)TMT0(x− x′) otherwise.

(3.16)

3.5.2 Evaluation on our Dataset

To empirically evaluate the generalization ability of the metric, we conduct two experiments.

On the one hand we assess the behaviour of our approach when it is applied to new unseen

colors. On the other hand we consider the problem of patches coming from a new unseen

camera, i.e. of new acquisition conditions. All the results presented are averaged over 5 runs.

To estimate the performance of our metric we use two criteria that we want to make as

small as possible. These two criteria are computed over a test set T ′ = {(xi,x′i,∆E00)}n
′

i=1

independent from the training set T . The first criterion is the mean absolute difference

between the learned metric ∆T and the reference metric ∆E00:

mean =
1

n

∑
(x,x′,∆E00)∈T ′

|∆T −∆E00| . (3.17)
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Figure 3.2: 3.2(a) Generalization of the learned metrics to new colors; 3.2(b) Generalization

of the learned metrics to new cameras. For 3.2(a) and 3.2(b), we plotted the Mean and

STRESS values as a function of the number of clusters. The horizontal dashed line represents

the STRESS baseline of ∆̂E00. For the sake of readability we have not plotted the mean

baseline of ∆̂E00 at 1.70.

As a second criterion, we use the STRESS3 measure (Melgosa et al., 2008) which is widely

used by the computer vision community as a way to compare color differences. It is defined

as follows:

STRESS = 100

√√√√(∑(x,x′,∆E00)∈T ′(∆E00 − F∆T )2∑
(x,x′,∆E00)∈T ′ F

2∆2
T

)
with F =

∑
(x,x′,∆E00)∈T ′ ∆E

2
00∑

(x,x′,∆E00)∈T ′ ∆E00∆T
.

(3.18)

Roughly speaking the STRESS evaluates quadratic differences between the learned metric ∆T

and the reference ∆. We compare our approach to the state of the art where ∆T is replaced

by ∆̂E00 (Sharma et al., 2005) in both criteria, i.e. transforming from rendered image RGB

to L̂∗a∗b∗ and computing the ∆̂E00 distance.

3STandardized REsidual Sum of Squares.
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Generalization to Unseen Colors

In this experiment, we perform a 6-fold cross validation procedure over the set of patches.

Thus we obtain, on average, 27927 training pairs and 13873 testing pairs. The results are

shown on Figure 3.2(a) according to an increasing number of clusters (from 1 to 70). We can

see that using our learned metric ∆T instead of the state of the art estimate ∆̂E00 (Sharma

et al., 2005) enables significant improvements according to both criteria (the baselines are 1.70

for the mean and 48.05 for the STRESS). Note that from 50 clusters onward, the quality of the

learned metric declines slightly while remaining much better than ∆̂E00. Figure 3.2(a) shows

that K = 20 seems to be a good compromise between a high algorithmic complexity (the

higher K, the larger the number of learned metrics) and good performances of the models.

When K = 20, using a Student’s t test over the mean absolute differences and a Fisher test

over the STRESS, our method is significantly better than the state of the art with a p-value

< 1−10. Figure 3.2(a) also emphasizes the interest of learning several local metrics. Indeed,

optimizing 20 local metrics rather than only one is significantly better with a p-value smaller

than 0.001 for both criteria.

Generalization to Unseen Cameras

In this experiment, our model is learned according to a 4-fold cross validation procedure such

that each fold corresponds to the pairs coming from a given camera. Thus we learn the metric

on a set of 31350 pairs and test it on a set of 10450 pairs. This task is more complicated than

generalizing to unseen colors. Indeed when generalizing to unseen colours even if the metric

has never seen a given colour before it has been learned on similar examples. Contrarily the

acquisition conditions highly depend on the kind of camera used and can vastly differ from

one camera to another (Ilie and Welch, 2005). Given that we use a limited number of cameras

there is no guarantee that similar acquisition conditions have been seen before. The results

are presented in Figure 3.2(b). We can note that our approach always outperforms the state

of the art for the mean criterion (of baseline 1.70). Regarding the STRESS, we are on average

better when using between 5 to 60 clusters. Beyond 65 clusters, the performances decrease

significantly. This behaviour likely describes an overfitting phenomenon due to the fact that

a lot of local metrics have been learned that are more and more specialized for 3 out of 4 cam-

eras, and unable to generalize well to the fourth one. For this series of experiments, K = 20

is still a good value to deal with the trade-off between complexity and efficiency. Using a

Student’s t test over the mean absolute differences and a Fisher test over the STRESS, our

method is significantly better with p-values respectively < 1−10 and < 0.006. The interest

of learning several local metrics rather than only one is still confirmed. Applying statistical

comparison tests between K = 20 and K = 1 leads to small p-values < 0.001.

Thus for both series of experiments, K = 20 appears to be a good number of clusters and

allows significant improvements. Therefore, we suggest to take this value in the next section to

tackle a segmentation problem. Before that, let us finish this section by geometrically showing
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Figure 3.3: Interest of learning local metrics. We took 27 points uniformly distributed on the

RGB cube. Around each point we plotted an ellipsoid where the surface corresponds to the

RGB colors lying at a learned distance of 1. In this case we used the metric learned by our

algorithm using K = 20.

the interest of learning local metrics. Figure 3.3 shows ellipsoids uniformly distributed in the

RGB space whose surface corresponds to the RGB colors lying at the corresponding learned

local distance of 1 from the center of the ellipsoid. It is worth noting that the variability of

the shapes and orientations of the ellipsoids is high, meaning that each local metric could

capture local specificities of the color space. The experimental results presented in the next

section will prove this claim.

3.5.3 Application to Image Segmentation

In this experiment, we evaluate the performance of our approach in a color based image seg-

mentation application. We propose to use the approach proposed by Bitsakos et al. (2010)

that suggests a nice extension of the classic mean-shift algorithm (Fukunaga and Hostetler,

1975) by accounting for color information. Furthermore, the authors show that the more per-

ceptual the used distance, the better the results. Especially, by using the default transform

from the available camera RGB to the L̂∗u∗v∗ space, they significantly improve the segmenta-

tion results over the simple RGB coordinates. Our aim is not to propose a new segmentation

algorithm but to use the exact algorithm proposed by Bitsakos et al. (2010) working in the

RGB space and to replace in their code (publicly available) the distance between two colors

with our learned color distance ∆T . This way, we can compare the perceptual property of our

distance with this of the recommended default approach (euclidean distance in the L̂∗u∗v∗

space).

Therefore, we take exactly the same protocol as Bitsakos et al. (2010). We use the same

200 images taken from the well-known Berkeley dataset and the associated ground-truth that

is constituted by 1087 segmented images provided by humans. In order to assess the quality

of the segmentation, as recommended by Bitsakos et al. (2010), we use the average Boundary
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Figure 3.4: 3.4(a) Boundary Displacement Error (lower is better) versus the average segment

size. 3.4(b) Probabilistic Rand Index (higher is better) versus the average segment size.

Displacement Error (BDE) and the Probabilistic Rand Index (PRI). Note that the better the

quality of the segmentation, the lower the BDE and the higher the PRI. The segmentation

algorithm proposed in Bitsakos et al. (2010) has one main parameter which is the color

distance threshold under which two neighbour pixels (or sets of pixels) have to be merged in

the same segment. As in Bitsakos et al. (2010), we plot the evolution of the quality criteria

versus the average segment size (see Figures 3.4(a) and 3.4(b)). For comparison, we have run

the code from Bitsakos et al. (2010) for the parameters providing the best results in their

paper, namely ”CMS Luv/N.”, corresponding to their color mean-shift (CMS) applied in the

L̂∗u∗v∗ color space. The results of CMS applied in the RGB color space with the classical

euclidean distance are plotted as ”CMS RGB/N.” and those of CMS applied with our color

distance in the RGB color space are plotted as ”CMS Local Metric/N.”.

For both criteria, we can see that our learned color distance significantly improves the

quality of the results over the two other approaches, i.e. it provides a segmentation that is

closer to the one computed by humans. This is truer when the segment size is increasing

(right part of the plots). It is important to understand that increasing the average segment

size (moving to the right on the plots) is like merging neighbour segments in the images.

So by analysing the curves, we can see that for the classic approaches (”CMS Luv/N.” and

”CMS RGB/N.”), it seems that the segments that are merged together when moving to the

right on the plot are not the ones that would be merged by humans. That is why both criteria

are worst (BDE increases and PRI decreases) on the right for these methods. On the other

hand, it seems that our distance is more accurate when merging neighbour segments since

for high average segment sizes, our results are much better. This point can be observed in

Figure 3.5, where the segment size is high, i.e. when the number of clusters is low (50), the

segmentation provided by RGB or L̂∗u∗v∗ are far from the ground truth, unlike our approach

which provides nice results. To get the same perceptual result, both methods require about

500 clusters.
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Figure 3.5: Segmentation illustration. When the number of clusters is low (around 50), the

segmentation provided by RGB or L̂∗u∗v∗ are far from the ground truth, unlike our approach

which provides nice results. To get the same perceptual result, both methods require about

500 clusters.

We further illustrate the performance of our method in Figure 3.6. As explained before,

the number of segments in the resulting images is not a parameter of the algorithm, as a

consequence it is not easy to obtain images with the same number of segments for the three

algorithms (RGB, L∗u∗v∗ and Metric learning). Thus, given an image, by modifying the

color distance threshold, we tried to obtain the same segment numbers as the corresponding

ground truth for the three algorithms. However, the color mean-shift algorithm provides some

very small segments, specially for the RGB and L∗u∗v∗ color spaces. Consequently, for each

test, in Figure 3.6, we have mentioned between brackets, first, the number of segments, and

second, the number of segments whose size is more than 150 pixels. For a fair comparison, we

use this last number as reference for each image, i.e. this number is almost constant and close

to the ground truth for each row. It is worth mentioning that the ground truth segmentation

has always very few segments. Thus, starting from a large number of small segments, the

algorithm is grouping them by considering their color differences. Consequently, the used

color distance is crucial when we want to obtain small number of segments as provided by the

ground truth. We can see in Figure 3.6 that when working in the RGB or L∗u∗v∗ color spaces,

some segments that are perceptually different are merged while some other similar segments

are not. Most of the time, the color mean-shift is working well when using our distance.

3.6 Conclusion

In this chapter, we presented a new local metric learning approach able to approximate a

reference distance. Based on a hard clustering of the space, the main idea is to minimize

the absolute difference between the learned and the reference distances. Building upon the

uniform stability framework we proved that this method is theoretically founded. It is guar-

anteed to generalize well if a sufficient number of examples is used. We have applied our

framework to the problem of perceptual color differences where the idea is to have a metric

which is invariant to acquisition conditions but also which is proportional to the human per-

ception of color differences. To this end we proposed a new dataset specifically tailored for
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this problem. We have shown that with a sufficient number of clusters our approach allows us

to learn a metric which is substantially better than the state of the art distances. Similarly

we have demonstrated the interest of the learned metric in a segmentation application.

Even though Figure 3.3 shows ellipsoids that tend to be locally regular leading to a certain

spatial continuity, our model does not explicitly deal with this issue. Hence one of the main

drawback of the proposed approach is that the learned metric might not be smooth across

the space. To deal with this problem we could consider a soft clustering of the space (Semerci

and Alpaydın, 2013) where each example is associated to several local metrics depending on

its degree of membership to each cluster. It would reduce the risk of having discontinuities in

the values of the metric across the space, notably near the borders of the clusters. Another

approach, explored for example in Zantedeschi et al. (2016), would consist in learning a

smooth combination of the local metrics as an independent post processing step.

In our framework we only considered the Frobenius norm as a regularization term. One

interesting perspective would be to consider other regularization terms such as the mixed norm

or the nuclear norm. Indeed learning low rank matrices could reduce the computational cost of

the metrics, especially in case of a very high dimensional input spaces. One of the drawbacks

is that, as we have seen in Section 1.3, algorithms which make use of sparse regularization

terms are not stable. It implies that our theoretical analysis would not hold and that other

frameworks, such as the Rademacher complexity one, would have to be considered.

In this chapter we have studied the problem of learning an approximation of a reference

metric. We assumed to have only access to this reference through its values over a limited

number of examples. In the next chapter we consider to have fully access to the reference

metric, i.e. we have the parameter matrix of a Mahalanobis distance or a Bilinear Similarity,

and we want to use this reference to help learning another metric. More precisely we consider

a transfer learning problem where the reference metric is either given or learned on a source

domain, i.e. a source metric, and we want to learn a metric on a different but related domain,

i.e. a target metric.
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Figure 3.6: Illustration of segmentation provided by the color mean-shift algorithm applied in

the RGB components (third column), on L∗u∗v∗ components (fourth column) and by using

our learned distance directly in the RGB components (fifth column). First column represents

the original image and the second one the ground truth.
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Chapter 4

Metric Hypothesis Transfer

Learning

This chapter is based on the following publication

Michaël Perrot and Amaury Habrard. A theoretical analysis of metric hypothesis transfer learning. In

Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pages 1708–1717,

2015d

Abstract

We consider the problem of transferring some a priori knowledge in the context of

supervised metric learning approaches. More precisely we consider biased optimization

problems which make use of a source metric coming from a different but related problem

to help learning in the presence of few data. While this setting has been shown to be

empirically successful, no theoretical evidence exists to justify it. In this chapter we pro-

pose to close this gap by providing a theoretical analysis of this framework based on three

different approaches. First we propose an on-average-replace-two-stability model allowing

us to prove on average fast generalization rates when an auxiliary source metric is used to

bias the regularization term. Second we consider a notion of algorithmic stability adapted

to the regularized metric learning setting and we prove probabilistic generalization bounds

which show the interest of considering biased weighted regularized formulations. We also

provide a solution to estimate the associated weight that we evaluate in two experimen-

tal tasks (i) standard metric learning and (ii) transfer learning with few labelled target

data. Third we derive a generalization bound related to the Rademacher complexity of

the metric class taking into account the source metric considered by the algorithm. This

vanishing bound underlines the interest of using a good source metric by showing that,

when the source metric perfectly solves the problem, learning is no longer a necessity. To

justify the interest of the framework we also provide several examples of loss functions

and regularization terms which fall under one or more of our theoretical analyses.

85
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4.1 Introduction

Recently, there is a growing interest for methods able to take into account some background

knowledge when learning a metric (Parameswaran and Weinberger, 2010; Cao et al., 2013a;

Bohné et al., 2014). This is in particular the case for supervised regularized metric learning

approaches where the regularization term is biased with respect to an auxiliary metric given

under the form of a matrix. The main objective here is to make use of this a priori knowledge

in a setting where only few labelled data are available to help learning. For example, in

the context of learning a PSD matrix M plugged into a Mahalanobis-like distance, let I be

the identity matrix used as an auxiliary knowledge, ‖M− I‖ is a biased regularization often

considered. This regularization can be interpreted as follows: learn M while trying to stay

close to the Euclidean distance, or from another standpoint try to learn a matrix M which

performs better than I. Other standard matrices can be used such as Σ−1 the inverse of

the variance-covariance matrix (Mahalanobis, 1936). If we take the 0 matrix, we retrieve the

classic unbiased regularization setting.

Another useful setting comes when I is replaced by any auxiliary matrix MS learned from

another task. It then corresponds to a transfer learning approach (See Section 1.5) where

the biased regularization can be interpreted as transferring the knowledge brought by MS to

help learning M. This setting is appropriate when the distributions over training and testing

domains are different but related. Domain adaptation strategies (Ben-David et al., 2010)

propose to make use of the relationship between the training examples, called the source

domain, and the testing instances, called the target domain to infer a model. However, it is

sometimes not possible to have access to all the training examples, for example when some

new domains are acquired incrementally. In this context, transferring the information directly

from the model learned from the source domain without any other access to the source domain

is of crucial importance. We call this setting Metric Hypothesis Transfer Learning in reference

to the Hypothesis Transfer Learning model introduced in (Kuzborskij and Orabona, 2013) in

the context of classic supervised learning.

If metric hypothesis transfer learning has been shown to work well empirically, it has, to the

best of our knowledge, never been investigated from a theoretical standpoint. In this chapter,

we propose to bridge this gap by providing a theoretical analysis showing that supervised

regularized metric learning approaches using a biased regularization are well-founded. This

analysis is based on three different theoretical frameworks which allows us to underline the

different properties of biased regularization based algorithms and to derive three measures of

goodness of the source metric. The latter quantities are important in the sense that they give

a founded way of estimating the interest of a source metric for a particular problem.

• On average stability: The first theoretical framework that we consider is derived from a

notion of stability called on-average-replace-one-stability (Ben-David and Urner, 2013).

As in other stability frameworks the idea is to verify that small changes in the training

does not significantly change the output of the algorithm. The main difference is that
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this property is considered on average over all the size n training sets. This approach

allows us to derive a bound showing that on average the metric learned with a biased

regularization will be better than the source metric with a convergence rate in O
(

1
n

)
.

It also implies a first theoretical notion of goodness of the source metric.

• Uniform stability for metric learning: The second theoretical framework that we con-

sider has been proposed by Jin et al. (2009). It corresponds to the uniform stability

framework presented in Section 1.3 but adapted to the case of metric learning as shown

in Section 2.4. It allows us to derive a probabilistic generalization bound. The main

interest of this bound is that, in some cases, it involves an empirical quantity related to

the source metric. It implies a natural notion of goodness of the source metric which can

be optimized. We empirically confirm the interest of this measure in two experiments.

• Rademacher complexity for metric learning: The third theoretical framework that we

consider is a slight adaptation of the one proposed by Cao et al. (2016) (See Section 2.4).

The latter is in itself an adaptation to metric learning of the Rademacher complexity

framework presented in Section 1.3. It allows us to derive a vanishing bound with

respect to the source metric. It means that if the source metric is a perfect fit for the

problem at hand the bound shows that learning is no longer necessary. It also gives a

theoretical measure of goodness of the source metric.

This chapter is organized as follows. First we present the metric hypothesis transfer

learning setting considered here in Section 4.2. Then we present our theoretical analysis

based on three frameworks in Sections 4.3, 4.4 and 4.5. We summarize the different bounds

in Section 4.6. In Section 4.7 we propose several examples of loss functions and regularization

terms that can be used in our framework. Next, in Section 4.8, we empirically demonstrate the

interest of using a good source metric as defined in Section 4.4. We conclude in Section 4.9.

4.2 Metric Hypothesis Transfer Learning with Biased Regu-

larization

In this section we present the framework of metric hypothesis transfer learning considered in

this chapter.

First of all, let T be a domain equipped with a probability distribution DT defined over

X × Y, where X ⊆ Rd and Y is the label set. Our goal is to learn a metric (as considered

in Section 1.4) parametrized by a d × d matrix M. Let M be a metric class. Using a slight

abuse of notations we denote the fact that a metric is in M by M ∈ M. Here, M can

simply be the set of real matrices of dimension d × d or can be more restrictive and only

consider symmetric positive semi-definite matrices. To learn we consider that we have access

to T = {zi = (xi, yi)}ni=1 a set of n examples drawn i.i.d. from DT . We also assume that we

have access to some additional information under the form of an auxiliary d× d matrix MS .
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We call this additional information source metric or source hypothesis to denote the fact that,

in a transfer learning setting, this metric can come from a different but related source domain

S.

We consider all the algorithms learning M by solving the following optimization problem:

arg min
M∈M

L̂T (M) + λ ‖M−MS‖2 (4.1)

where ‖M−MS‖2 is a biased regularization term which ensures that there is a transfer of

informations between M and MS . In Section 4.7 we consider several regularization terms

allowing the transfer of different properties of the metric. λ is a trade-off parameter between

risk and regularization. The empirical risk of a metric M over a training set T is:

L̂T (M) =
1

n(n− 1)

∑
z∈T

∑
z′∈T
z 6=z′

l
(
M, z, z′

)
(4.2)

where l (M, z, z′) is a pairwise loss quantifying the error of the metric M when presented with

the examples z and z′. In Section 4.7 we present several loss functions which can be used in

metric hypothesis transfer learning. The true risk of M over the distribution DT is:

LT (M) = E
z,z′∼DT

l
(
M, z, z′

)
. (4.3)

In this chapter we consider a theoretical analysis of this framework of metric hypothesis

transfer learning using three different theoretical approaches. As mentioned before several loss

functions and regularization terms can be considered. However depending on the theoretical

framework considered some assumptions have to be made on these and may differ from one

approach to another. Similarly here we only considered a general framework able to handle any

metric parametrized by a matrix M but it might sometimes be necessary to further restrain

the range of metrics considered. For the sake of readability we postpone the definition of

these different constraints to the beginning of each section.

4.3 On Average Stability Analysis

To derive our first bound for metric hypothesis transfer learning we propose a new notion of

stability which is an adaptation to metric learning of the notion of on-average-replace-one-

stability (Shalev-Shwartz and Ben-David, 2014a) that we recall in Definition A.5 for the sake

of completeness.

Assumptions In this section we make the following assumptions. We only consider met-

rics as Mahalanobis distances parametrized by a matrix M positive semi definite. The loss

function has to be positive, convex in M (Definition A.6) and k-lipschitz (Definition A.1). As

a last constraint we consider that the regularization term is the Frobenius norm (Section 1.4).
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We now turn our attention to the derivation of the bound. First of all we introduce our

new notion of on-average-replace-two-stability. Indeed Definition A.5 allows one to perform

an on average analysis over the expected loss, however its formulation is not tailored to

metric learning approaches that work with pairs of examples. Thus we propose an adaptation

allowing us to derive sharp bounds for metric learning.

Definition 4.1 (On-average-replace-two-stability). Let n be the number of examples consid-

ered during the learning step. Let ε : N → R be monotonically decreasing with respect to

n and let U(1, n) be the uniform distribution over 1, . . . , n. A metric learning algorithm is

on-average-replace-two-stable with rate ε(n) if for any distribution DT :

E
T∼DT

i,j∼U(1,n)
z,z′∼DT

[
l
(
M

T i
j , zi, zj

)
− l (MT , zi, zj)

]
≤ ε(n) (4.4)

where MT , respectively M
T i
j , is the optimal solution when learning with the training set T ,

respectively T i
j
. T i

j
is obtained by replacing zi, the ith example of T , by z to get a training

set T i and then by replacing zj, the jth example of T i, by z′.

This property ensures that, given two examples, learning with or without them will not

imply a big change in the hypothesis prediction. Note that the property is required to be

true on average over all the possible training sets of size n. Furthermore note that when

this definition holds, it implies ET∼DT
[
LT (MT )− L̂T (MT )

]
≤ ε(n). Using this definition we

derive a bound on the expected true risk of our algorithm. Before that we show, in the next

theorem, that our algorithm is on-average-replace-two-stable.

Lemma 4.1 (On-average-replace-two-stability). Given n the number of training examples,

drawn i.i.d. from DT , considered and a k-lipschitz loss function, any algorithm solving Prob-

lem (4.1) is on-average-replace-two-stable with ε(n) = 8k2

λn .

Proof. The proof of this lemma can be found in Appendix C.1.

We can now bound the expected true risk of our algorithm.

Theorem 4.1 (On average bound). For any positive, convex, k-lipschitz loss and for MT

optimal solution of Problem (4.1) when learning with the training set T , we have:

E
T∼DT

[LT (MT )] ≤ LT (MS) +
8k2

λn
(4.5)

where the expected value is taken over size-n training sets.

Proof. Let T be any training set of size n, we have:

E
T∼DT

[LT (MT )] = E
T∼DT

[LT (MT )] + E
T

[
L̂T (MT )

]
− E

T

[
L̂T (MT )

]
= E

T∼DT

[
L̂T (MT )

]
+ E

T

[
LT (MT )− L̂T (MT )

]
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(ET∼DT
[
LT (MT )− L̂T (MT )

]
≤ 8k2

λn (Lemma 4.1).)

≤ E
T∼DT

[
L̂T (MT )

]
+

8k2

λn

(L̂T (MT ) ≤ L̂T (MT ) + λ ‖MT −MS‖2F ≤ L̂T (MS) + λ ‖MS −MS‖2F .)

≤ E
T∼DT

[
L̂T (MS)

]
+

8k2

λn
.

Noting that ET∼DT
[
L̂T (MS)

]
= LT (MS) gives the theorem.

This bound shows that with a sufficient but rather reasonable number of examples, i.e.

with a convergence rate in O(1/n), we will on average obtain a metric which is at least as

good as the source hypothesis. It underlines the interest of having a good source metric.

However this notion of goodness depends on the true risk of the source metric on the target

domain:

G1(MS)
.
= LT (MS).

This quantity can not be computed as it depends of the unknown distribution DT and thus

it cannot be used to explicitly choose a good metric. Furthermore the stability condition

considered here is in expectation over all the possible training sets. It implies that it will

probably not be possible to obtain an empirical measure of goodness in this particular setting.

In the next section we propose to address this problem and we consider the different but

related framework of uniform stability to derive a generalization bound where the goodness

of the source metric is empirical and thus can be estimated.

4.4 Uniform Stability Analysis

The second framework that we propose to use to analyse metric hypothesis transfer learning

is the uniform stability framework adapted to metric learning presented by Jin et al. (2009)

(Section 2.4). In this section we will show that this framework allows us to derive a probabilis-

tic generalization bound where, depending on the loss function, the goodness of the source

metric can be empirically estimated.

Assumptions We make the following assumptions. First we only consider metrics as Ma-

halanobis distances parametrized by a metric M positive semi definite. Second the loss

function has to be convex in M (Definition A.6), positive, k-lipschitz (Definition A.1) and

(σ,m)-admissible (Definition A.2). Third the regularization term is the Frobenius norm (Sec-

tion 1.4).

We can now present our generalization bound. We divide this section as follows. First

we present the bound for general losses. Then we consider a particular example where we

show that the goodness of the source metric can be empirically estimated and we deduce
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an approach to weight the importance of the source hypothesis in order to obtain a tighter

generalization bound.

4.4.1 Generalization Bound for General Loss Functions

We now derive our generalization bound for general loss functions based on the work of (Jin

et al., 2009). To this extent we use the McDiarmid’s inequality (Theorem A.1) on the esti-

mation error, i.e. the difference between the true risk and the empirical risk. Before that we

show that our algorithm is uniformly stable with respect to Definition 2.1 in the next lemma.

Lemma 4.2 (Uniform stability). Given a positive, convex, k-lipschitz loss and a training

sample T of n examples drawn i.i.d. from DT , an algorithm solving Problem (4.1) has a

uniform stability in β = 4k2

λ .

Proof. The proof of this lemma can be found in Appendix C.2.

Using Lemma 4.2 about the stability of our algorithm and McDiarmid’s inequality (The-

orem A.1) we can derive our generalization bound. Let RT = LT (MT ) − L̂T (MT ) be the

estimation error for Problem (4.1) when learning with training set T . To apply McDiarmid’s

inequality we need to bound ET∼DT [RT ] and |RT −RT i |. This is done in the two following

lemmas.

Lemma 4.3 (Bound on ET∼DT [RT ]). For any β uniformly stable learning method of esti-

mation error RT = LT (MT )− L̂T (MT ) and any training set T , we have:

E
T∼DT

[RT ] ≤ 2β

n
. (4.6)

Proof. The proof of this lemma can be found in Appendix C.3.

This lemma shows that the expected value of the estimation error over all the possible

training sets of size n is bounded. In the next lemma we show that the difference in estimation

error between two training sets which only vary by one example is also bounded.

Lemma 4.4 (Bound on |RT −RT i |). For any β uniformly stable learning method of estima-

tion error RT = LT (MT ) − L̂T (MT ), for any training set T and any (σ,m)-admissible loss

function we have:

|RT −RT i | ≤
2β + 4σ + 2m

n
. (4.7)

Proof. The proof of this lemma can be found in Appendix C.4.

Using the fact that our algorithm is uniformly stable, we can now derive generalization

guarantees as stated in the following theorem.
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Theorem 4.2 (Generalization bound). For any matrix MT learned with Problem (4.1) with

the training set T and any positive, convex, k-lipschitz and (σ,m)-admissible loss function,

we have with probability 1− δ:

LT (MT ) ≤ L̂T (MT ) +
2β

n
+ (2β + 4σ + 2m)

√
ln
(

2
δ

)
2n

. (4.8)

Proof. Using McDiarmid’s inequality (Theorem A.1) on the estimation error RT = LT (MT )−
L̂T (MT ) coupled with Lemma 4.4 for the estimation of the constants ci we have:

Pr

(∣∣∣∣RT − E
T∼DT

[RT ]

∣∣∣∣ ≥ ε) ≤ 2 exp

− 2ε2∑n
i=1

(
2β+4σ+2m

n

)2


≤ 2 exp

(
− 2ε2

1
n (2β + 4σ + 2m)2

)
.

Then, by setting:

δ = 2 exp

(
− 2ε2

1
n (2β + 4σ + 2m)2

)
we obtain:

ε = (2β + 4σ + 2m)

√
ln
(

2
δ

)
2n

and thus:

Pr

(∣∣∣∣RT − E
T∼DT

[RT ]

∣∣∣∣ < ε

)
> 1− δ.

Then, with probability 1− δ:

RT < E
T∼DT

[RT ] + ε (4.9)

⇔ LT (MT )− L̂T (MT ) < E
T∼DT

[RT ] + ε (4.10)

(Lemma 4.3.)

⇒ LT (MT )− L̂T (MT ) <
2β

n
+ (2β + 4σ + 2m)

√
ln
(

2
δ

)
2n

. (4.11)

This bound shows that with a convergence rate in O
(

1√
n

)
the true risk of our algorithm

is bounded above by its empirical risk. In the next section, we consider a particular example

of loss function where we show that the goodness of the source metric can be empirically

estimated. This extension allows us to introduce a natural weighting of the source metric in

order to improve the proposed bound.
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4.4.2 Refinement with Weighted Source Hypothesis

In this section we propose to study the problem of weighting the source metric to improve

the generalization bound. However in its current form the generalization bound does not

explicitly include any information about the source metric. In the following we notice that,

for a particular loss, the goodness of the source metric appears in the (σ,m)-admissibility of

this loss.

First of all we consider the loss presented in Example 4.1) instantiated with the hinge

function. For any metric M and any two labelled examples z, z′ ∼ DT we have:

l
(
M, z, z′

)
=
[
δyy′

(
(x− x′)TM(x− x′)− γyy′

)]
+

(4.12)

where δyy′ = 1 if y = y′ and −1 otherwise and γyy′ is the desired margin between the

examples. In Example 4.1, given that the hinge loss is 1-lipschitz, we show that this loss is

positive, convex, k-lipschitz with:

k = sup
z,z′∼DT

∥∥x− x′
∥∥2

2

and (σ,m)-admissible with:

σ = sup
z,z′∼DT

γyy′ ,

m = 2 sup
z,z′∼DT

∥∥x− x′
∥∥2

2

√ L̂T (MS)

λ
+ ‖MS‖F

 .

Using this we can now apply Theorem 4.2, to obtain a generalization bound which includes

a measure of the goodness of the source metric.

Theorem 4.3 (Generalization bound with Loss (4.12) ). For any matrix MT learned with

Problem (4.1) with the training set T and Loss (4.12), we have with probability 1− δ:

LT (MT ) ≤ L̂T (MT ) +
8D2

λn

+

8D2

λ
+ 4 sup

z,z′∼DT
γyy′ + 4D

√ L̂T (MS)

λ
+ ‖MS‖F

√ ln
(

2
δ

)
2n

.

where D = supz,z′∼DT ‖x− x′‖22.

Proof. This theorem comes from the application of Theorem 4.2 with specific values of k, σ

and m.

This theorem is a refinement of Theorem 4.2 in the case of a specific loss. Hence the

convergence rate is still in O
(

1√
n

)
and one of the most important difference is the presence

of the term:

G2(MS)
.
=

√ L̂T (MS)

λ
+ ‖MS‖F

 .
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This term can be seen as a measure of the goodness of the source metric. It mainly depends

on the quality of the source hypothesis MS . The product G2(MS)

√
ln( 2

δ )
2n which appears in

the bound implies that as the number of examples available for learning increases, the quality

of the source metric is of decreasing importance. A similar result has already been stated in

domain adaptation or transfer learning in Ben-David et al. (2010); Kuzborskij and Orabona

(2013) where they show that as the number of target examples increases, the necessity of

having source examples decreases.

Given a source hypothesis MS , it is possible to optimize it with respect to the bound

derived in Theorem 4.3. Indeed, note that G2(MS) corresponds to a trade-off between the

complexity of the source metric and its performance on the training set. The lower the value

of this term, the tighter the bound.

Following this, we propose a way to minimize the right hand side of the generalization

bound and more specifically G2(MS) by adding a weighting parameter 0 ≤ ωT ≤ 1 on the

source metric MS . This parameter is a simple way to control the trade-off between complexity

and performance of the source metric thanks to a reweighting. It can be assessed by means

of the following optimization problem:

ωT = arg min
0≤ω≤1

C(ωMS) (4.13)

Note that the bound derived in Theorem 4.3 holds whatever the value of MS . Thus replacing

it with ωTMS does not impact the theoretical study proposed in this section.

Interpretation of the value of ωT We can distinguish three main cases. First if the

source hypothesis performs poorly on the training set at hand we expect ωT to be as small as

possible to reduce the importance of MS . In a sense, we tend to go back to the classical case

were MS = 0. Second if the source hypothesis is complex and performs well, we expect ωT to

be rather small to reduce the complexity of the hypothesis while keeping a good performance

on the training set. Third if the source hypothesis is simple and performs well, we expect ωT

to be closer to one since MS is already a good choice. Note that we choose ωT ≤ 1 to limit

the potential increase in complexity of the learned matrix.

Learning ωT Problem (4.13) is highly non differentiable1 and non convex. However, it re-

mains simple in the sense that we have only one parameter to estimate and we used a classical

sub-gradient descent to solve it. Even if it is not convex, our empirical study (Section 4.8

shows no need to perform many restarts to output a good solution: we always found almost

the same solution. As a consequence, we applied only one optimization procedure in our

experiments. Note that ωT is influenced by both the values of the margin and the regulariza-

tion parameter and thus should be tuned accordingly each time. However, computing ωT by

solving Problem (4.13) is not too costly. The process can even be sped up by computing the

value of the source metric between the examples beforehand.

1To avoid this problem, we can use the classic relaxation with slack variables.
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In this section, using the uniform stability framework for metric learning we have shown

that our approach generalizes well with a convergence rate in O
(

1√
n

)
. Furthermore, given a

specific loss, we have shown that the use of a weighting parameter to control the importance

of the source metric is theoretically founded. Indeed it boils down to optimizing a notion of

goodness of the source metric for the problem at hand. However the right hand side of the

bound derived in Theorem 4.3 does not go to 0 when the source metric is a perfect fit for the

problem at hand, i.e. it is not a vanishing bound. It implies that even with the perfect source

hypothesis we might learn a metric which performs slightly worse than the source metric in

terms of generalization to new examples. In the next section we consider the Rademacher

complexity framework to derive a vanishing generalization bound when the source metric is

a perfect fit.

4.5 Rademacher Complexity Analysis

The third theoretical framework that we consider in this chapter is the Rademacher complexity

framework adapted to metric learning by Cao et al. (2016). More precisely we further adapt

this approach to take into account the source metric. It allows us to obtain a vanishing

generalization bound which implies that when the source metric is a perfect fit, learning is

no longer necessary.

Assumptions In this section instead of only considering the Mahalanobis distance we con-

sider all the metrics parametrized by a matrix M ∈ M, and denoted by the function kM,

such that given two vectors x and x′ the metric can be written as:

kM

(
x,x′

)
=
〈
g(x,x′),M

〉
(4.14)

where g is a function over a pair of examples and 〈·, ·〉 is the Frobenius product2. If this

definition seems restrictive, it is in fact fulfilled by the main metrics used in Metric Learning

(See Section 2.1) such as the squared Mahalanobis distance:

(x− x′)TM(x− x′) =
〈
(x− x′)(x− x′)T ,M

〉
, (4.15)

or the bilinear similarity:

xTMx′ =
〈
xx′

T
,M
〉

. (4.16)

The loss function has to be positive, convex (Definition A.6) and k-lipschitz with respect to

the metric (Definition 4.2) which is a slight adaptation of the k-lipschitzness presented in

Definition A.1. The regularization term has to be convex and must have a well defined dual

norm (Definition A.4).

We can now derive our generalization bound based on the Rademacher complexity frame-

work. First of all we present our notion of k-lipschitz continuity with respect to the metric.

2〈A,B〉 = Tr(ATB)
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Then we present the notion of Rademacher complexity considered here along with a refinement

of the metric classM considered. These definitions allow us to state our generalization bound

linked to the Rademacher complexity of the metric class. Next we bound this Rademacher

complexity showing that the bound depends on the source metric. We then discuss the im-

plications of the bound and we show that if the source metric MS is a good fit then the rate

of convergence is improved.

Definition 4.2 (k-lipschitz continuity with respect to the metric). A loss function l (M, z, z′)

is k-lipschitz continuous with respect to the metric if for any two matrices M,M′ ∈ M and

any two examples z, z′ there exists k ≥ 0 such that:∣∣l (M, z, z′
)
− l
(
M′, z, z′

)∣∣ ≤ k ∣∣kM

(
x,x′

)
− kM′

(
x,x′

)∣∣ (4.17)

This k-lipschitz continuity property ensures that given two metrics the difference in losses

is bounded by the difference between the metrics. If the loss is differentiable with respect

to the metric it can also be seen as a bound on the magnitude of the first derivative Srebro

et al. (2010a). Note that the k-lipschitz property is usually considered with respect to the

parameters of the metric rather than the metric as it is the case here. However our def-

inition lipschitzness implies the standard definition when metrics of the form presented in

Equation (4.14) are considered.

The Rademacher complexity used here is an adaptation of the definition given in Lei and

Ying (2015) to the case of metric hypothesis transfer learning. The idea is to take into account

the source metric.

Definition 4.3 (Rademacher Complexity). LetM be a metric class and
{
σi : i = 1, · · · ,

⌊
n
2

⌋}
be a sequence of independent Rademacher variables, that is, Pr(σi = +1) = Pr(σi = −1) = 1

2 .

Let {xi : i = 1, · · · , n} be an i.i.d. sequence of examples. Then the empirical Rademacher

complexity of M is defined as:

R̂n(M)
.
=

1⌊
n
2

⌋ E
σ

sup
M∈M

bn2 c∑
i=1

σikM−MS

(
xi,xbn2 c+i

)
(4.18)

and the Rademacher Complexity of M as:

Rn(M) = E
T∼DT

R̂n(M). (4.19)

Instead of considering the complexity of a metric class with respect to its ability to fit

random noise Lei and Ying (2015), this definition measures the complexity of the metric class

with respect to its ability to differ from the source metric.

We now define formally the refinement of the metric class considered in our analysis and

taking into account the source metric.

Definition 4.4 (Metric class and source metric). We define a metric class dependent on MS

as follows:

MS =

{
M ∈M : ‖M−MS‖ ≤

√
G3(MS)

λ

}
(4.20)
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where G3(MS) = supz,z′∼DT l (MS , z, z
′) and M is the metric class used in Problem (4.1).

We now prove that any metric MT learned by Problem (4.1) belongs to MS .

Lemma 4.5 (Metric class and optimal solution). Let MT be the optimal solution returned

by Problem (4.1) with training set T . We have MT ∈ MS where MS is defined as in

Definition 4.4.

Proof. By the convexity of the loss and the optimality of MT we have:

L̂T (MT ) + λ ‖MT −MS‖2 ≤ L̂T (MS)

(Positive loss.)

⇒ λ ‖MT −MS‖2 ≤ L̂T (MS)

⇒ ‖MT −MS‖ ≤

√
L̂T (MS)

λ

(L̂T (MS) ≤ supz,z′∼DT l (MS , z, z
′).)

⇒ ‖MT −MS‖ ≤
√
G3(MS)

λ

with G3(MS) = supz,z′∼DT l (MS , z, z
′). Noting that MT ∈M gives the lemma.

To prove our generalization bound based on the Rademacher complexity of the source

metric, we use the McDiarmid’s inequality (Theorem A.1) and follow a similar strategy as

in Cao et al. (2016). Let RT = supM∈MS

[
LT (M)− L̂T (M)

]
be the estimation error for

Problem (4.1) when learning with training set T . Note that this estimation error is different

from the one used in the previous sections. Indeed here we consider the worst error over the

whole metric class rather than the error of the learned hypothesis. To apply McDiarmid’s

inequality we need to bound ET∼DT [RT ] and |RT −RT i |. This is done in the two following

lemmas.

Lemma 4.6 (Bound on ET∼DT [RT ]). For any positive, convex and k-lipschitz (Defini-

tion 4.2) loss function and any algorithm with estimation error RT = sup
M∈MS

[
LT (M)− L̂T (M)

]
we have:

E
T∼DT

[RT ] ≤ 2kRn(MS).

Proof. The proof of this lemma can be found in Appendix C.5.

This lemma shows that the expected value of the estimation error over all the possible

training sets of size n is bounded. In the next lemma we show that the difference in estimation

error between two training sets which only vary by one example is also bounded.
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Lemma 4.7 (Bound on |RT −RT i |). For any positive, convex and k-lipschitz continuous

(Definition 4.2) loss function, any metric satisfying Equation (4.14) and any algorithm of

estimation error RT = supM∈MS

[
LT (M)− L̂T (M)

]
we have:

|RT −RT i | ≤
2G3(MS) + 2 supz,z′∼DT

[
k ‖g(x,x′)‖∗

√
G3(MS)

λ

]
n

where ‖·‖∗ is the dual norm of the regularization term (Definition A.4).

Proof. The proof of this lemma can be found in Appendix C.6.

We can now present our generalization bound.

Theorem 4.4 (Generalization bound). With probability 1 − δ, for any matrix MT learned

with Problem (4.1), for any positive, convex, and k-lipschitz continuous (Definition 4.2) loss

function and any metric satisfying Equation (4.14) we have:

LT (MT ) ≤ L̂T (MT ) + 2kRn(MS) +

(
2G3(MS) + 2 sup

z,z′∼DT

[
k ‖g(x,x′)‖∗

√
G3(MS)

λ

])√
ln 2

δ

2n
.

Proof. Coupling Lemma 4.7 with McDiarmid’s inequality (Theorem A.1) applied on the es-

timation error RT = supM∈MS

[
LT (M)− L̂T (M)

]
we have with probability 1− δ:

RT ≤ E
T∼DT

[RT ] +

(
2G3(MS) + 2 sup

z,z′∼DT

[
k ‖g(x,x′)‖∗

√
G3(MS)

λ

])√
ln 2

δ

2n

(Lemma 4.5.)

LT (MT )− L̂T (MT ) ≤ E
T∼DT

[RT ] +

(
2G3(MS) + 2 sup

z,z′∼DT

[
k ‖g(x,x′)‖∗

√
G3(MS)

λ

])√
ln 2

δ

2n

(Lemma 4.6.)

LT (MT )− L̂T (MT ) ≤ 2kRn(MS) +

(
2G3(MS) + 2 sup

z,z′∼DT

[
k ‖g(x,x′)‖∗

√
G3(MS)

λ

])√
ln 2

δ

2n
.

This generalization bound shows that the generalization ability of a metric learned with

Problem (4.1) depends on the Rademacher complexity of the source metric class and on

G3(MS), its worst possible error over the distribution. In the next subsection we show that

the Rademacher complexity of the source metric class also depends on G3(MS). This value

is thus a good candidate to measure the goodness of the source metric.

4.5.1 Rademacher Complexity and Source Metric

One of the critical quantities in the bound presented in Theorem 4.4 is the Rademacher

complexity of the source metric class MS which depends on the source metric MS . In the

next lemma we show that the Rademacher complexity of the source metric class depends on

G3(MS).
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Lemma 4.8 (Bounding the Rademacher complexity ofMS). LetMS be a metric class which

depends on a source metric MS as in Definition 4.4 then we have that:

Rn(MS) ≤
√
G3(MS)

λ
Rn(‖·‖∗)

with:

Rn(‖·‖∗) = E
T∼DT

1⌊
n
2

⌋ E
σ

∥∥∥∥∥∥∥
bn2 c∑
i=1

σig(xi,xbn2 c+i)

∥∥∥∥∥∥∥
∗

(4.21)

where ‖·‖∗ is the dual norm of the regularization term (Definition A.4).

Proof. We consider the empirical Rademacher complexity of the metric class MS :

R̂n(MS) =
1⌊
n
2

⌋ E
σ

sup
M∈MS

bn2 c∑
i=1

σikM−MS

(
xi,xbn2 c+i

)
(Equation (4.14).)

≤ 1⌊
n
2

⌋ E
σ

sup
M∈MS

bn2 c∑
i=1

σi

〈
g(xi,xbn2 c+i),M−MS

〉
(Trace linearity.)

≤ 1⌊
n
2

⌋ E
σ

sup
M∈MS

〈bn2 c∑
i=1

σig(xi,xbn2 c+i),M−MS

〉
(Cauchy-Schwarz’s inequality (Theorem A.3).)

≤ 1⌊
n
2

⌋ E
σ

sup
M∈MS

∥∥∥∥∥∥∥
bn2 c∑
i=1

σig(xi,xbn2 c+i)

∥∥∥∥∥∥∥
∗

‖M−MS‖

(M ∈MS (Lemma 4.4).)

≤
√
G3(MS)

λ

1⌊
n
2

⌋ E
σ

∥∥∥∥∥∥∥
bn2 c∑
i=1

σig(xi,xbn2 c+i)

∥∥∥∥∥∥∥
∗

Taking the expectation over all size n training sets on both sides of the last inequality gives:

Rn(MS) ≤
√
G3(MS)

λ
E

T∼DT

1⌊
n
2

⌋ E
σ

∥∥∥∥∥∥∥
bn2 c∑
i=1

σig(xi,xbn2 c+i)

∥∥∥∥∥∥∥
∗

.

Setting Rn(‖·‖∗) = E
T∼DT

1⌊
n
2

⌋ E
σ

∥∥∥∥∥∥∥
bn2 c∑
i=1

σig(xi,xbn2 c+i)

∥∥∥∥∥∥∥
∗

gives the lemma.
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Rademacher complexity and source metric MS . We have that MS ∈ MS and the

metric class is centred3 around MS with the radius being dependent on the worst case per-

formance of MS , i.e. G3(MS). It means that changing MS will impact the metric class and,

consequently, its Rademacher complexity. On the one hand if the source metric is good, i.e.

if G3(MS) is low, then the considered metrics cannot go too far away from the source and

thus the Rademacher complexity will be small. On the other hand if the source metric is bad,

i.e. if G3(MS) is high, then the considered metrics can go far away from the source and thus

the Rademacher complexity will be higher.

We have shown how the source metric impacts the Rademacher complexity of the metric

class and that G3(MS) is a measure of goodness of the source metric. We now study the

impact of the source metric on the rate of convergence of the bound presented in Theorem 4.4.

4.5.2 Goodness of MS

In this subsection we propose to study the bound presented in Theorem 4.4 with respect to

the source metric MS . We show that when this source metric is good then it has a positive

impact on the rate of convergence of the bound. In some case it might result in a faster rate

of convergence in O
(

1
n

)
. We also study the impact of the source metric on the number of

examples needed to obtain a true risk at most equal to the empirical risk plus ε.

First of all note that the key quantity related to the source metric in the bound is:

G3(MS)
.
= sup

z,z′∼DT
l(MS , z, z

′).

We will use this quantity to define the goodness of a source metric. If it is small, respectively

large, then the metric is good, respectively bad, for the problem at hand. This quantity

represents the worst case loss of the source metric over all the examples.

Source metric and ε convergence. We consider the case where we want LT (MT ) ≤
L̂T (MT ) + ε and we seek n the number of examples needed to obtain such an ε convergence.

Let m ≥ 1 such that G3(MS) ≤ 1
m and define α ∈ R such that Rn(‖·‖∗) ≤

α√
n

then the bound

in Theorem 4.4 gives:

ε =
1√
nm

2kα√
λ

+
2
√

ln 2
δ√

2

(
1 + sup

z,z′∼DT

2k ‖g(x,x′)‖∗√
λ

) (4.22)

which implies:

nm =
1

ε2

2kα√
λ

+
2
√

ln 2
δ√

2

(
1 + sup

z,z′∼DT

2k ‖g(x,x′)‖∗√
λ

)2

. (4.23)

3With respect to the norm considered.



4.5. Rademacher Complexity Analysis 101

The quantity in the out-most brackets is a constant with respect to n, m and ε. It shows that

a smaller ε can be obtained by increasing the number of examples or by using a better source

metric. We can then consider several cases:

• m ≥ n: In this case the source metric is a good fit since G3(MS) ≤ 1
n and the bound

exhibits a fast rate of convergence with ε ≤ O
(

1
n

)
. However this result is not fully

informative in the sense that the constraint imposed on the source metric can be stronger

than the bound, i.e. it might be better to directly use the source metric than to learn

a new metric.

• m→∞: In this case the source metric is a perfect fit, i.e. G3(MS) = 0 and by convexity

of the loss, the metric learned by Problem (4.1) is the source metric. It implies that the

empirical risk is equal to 0 and since ε→ 0 the right hand side of the bound also tends

to 0 which implies that the bound is vanishing and translates the fact that no learning

is necessary.

• m < n: In this case we have G3(MS) > 1
n the bound is not worse than classic general-

ization bounds for metric learning as it exhibits a convergence rate ε in O
(

1√
n

)
.

Note that here we chose to bound the goodness of the source metric by a quantity which

depends on the number of examples. It might be surprising in the sense that this measure

is a constant with respect to MS . However it reflects the fact that when one has access to a

sufficient number of examples, it is harder to obtain a meaningful source metric.

Comparison with similar bounds. Albeit not in the context of metric learning, the work

presented in Kuzborskij and Orabona (2014) presents a generalization bound which is close

to ours4. However, the condition obtained to derive a fast rate is different. In this work, they

propose to bound by O
(

1
n

)
the true risk of the source hypothesis rather than the worst case

loss. It might seem less restrictive as it considers the whole distribution and, thus, makes

it easier to have a good source hypothesis. However it is important to note that, besides

the fast rate, our condition allows us to guarantee that the empirical risk of the learned

metric will be small. Indeed our condition implies that the error of the source metric will be

low on the training set, then by convexity of the loss, the learned metric will have a better

performance than the source metric. Such an analysis is not possible if we link the goodness

of the source hypothesis to its true risk as it might happen that we have access to a training

set where the empirical risk of the source hypothesis is greater than its true risk. Note

also that their framework is more restrictive than ours since we allow to deal with possibly

non smooth lispschitz functions and relaxes the strong convexity. While their result uses

standard supervised learning losses, one question is to know if we can derive similar results

for metric learning with pairwise losses. We cannot provide a clear answer but this issue is

4To the best of our knowledge it is the only work with a fast rate in an Hypothesis Transfer Learning

setting.



102 Chapter 4. Metric Hypothesis Transfer Learning

Table 4.1: Summary of the different bounds.

Bound

On Average

Stability

(Section 4.3)

Uniform Stability

(Section 4.4)

Rademacher

Complexity

(Section 4.5)

Nature of the

bound
Exact Probabilistic (1− δ) Probabilistic (1− δ)

Impact of the

complexity of the

metric class

8k2

λn

8k2

λn 2kRn(MS) ≤ O
(

1√
n

)

Convergence rate O
(

1

n

)
O
(

1√
n

)
O
(

1√
n

)
Goodness Theoretical Empirical Theoretical

Gi(MS) LT (MS)
√
L̂T (MS)

λ
+ ‖MS‖F

sup
z,z′∼DT

l(MS , z, z
′)

not straightforward. Recall that if the examples are drawn i.i.d. from a distribution, pairs

of examples are not i.i.d. and as such the proof techniques have to be adapted to take this

problem into account. Their analysis is based on a generalization of Bennett’s concentration

inequality Bousquet (2002) which requires to have some informations about the variance of

the studied random variable. Its application to pairwise losses seems difficult and would

require a specific study. In our framework, we used the McDiarmid’s concentration inequality

which does not require any information about the variance of the studied random variable

but rather about the impact of a small change in the training set that is easier to consider in

a metric learning context.

In this section we have presented a vanishing generalization bound showing that a good

source metric is beneficial and can significantly increase the rate of convergence of the bound.

Furthermore when the metric is a perfect fit the bound shows that learning is not neces-

sary. In the next section we propose a comparison of the bounds and a discussion on their

implications.

4.6 Summary of the Bounds

In this section we propose a summary of the bounds derived in the previous sections. We

recall their main characteristics in Table 4.1.

Nature of the bound In the average stability case the bound obtained is an exact one

since its derivation does not rely on any concentration inequality. In the uniform stability

and Rademacher complexity cases the bounds are probabilistic since they come from the

application of the McDiarmid inequality (Theorem A.1).
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Impact of the complexity of the metric class In the Rademacher complexity case the

impact of the complexity of the metric class is in O
(

1√
n

)
while this impact is improved

to O
(

1√
n

)
for the two stability based bounds. It can be explained by the fact that the

Rademacher complexity bound measures the complexity of the metric class with respect to

all the possible metrics in the class, even the ones which might never be learned by the

algorithm. Hence it is a worst case result. On the other hand the stability based approaches

only consider the metrics which can be learned given a training set. Hence it is closer to an

exact result.

Convergence rate In the average stability case the goal is to bound the expected true

risk of the algorithm over all the possible training sets while in the uniform stability and

Rademacher complexity case the goal is to bound the true risk of a metric learned on any

particular training set, in other words these bounds should also hold in the worst case scenario.

It explains why the convergence rate is better in the average stability case.

Goodness of the source metric On the one hand in the average stability and the

Rademacher complexity cases the measure of goodness of the source metric is theoretical

and cannot be computed in practice making it unfit to derive an algorithm to choose a good

source metric. On the other hand in the uniform stability case, the quantity involving the

source metric is empirical. Following this we derived an algorithm to weight the importance

of the source metric with respect to its goodness.

Applicability of the bound The three bounds require different assumptions on the metric,

the loss function and the regularization. The Rademacher complexity bound is the least

constrained of the three approaches as it is applicable to several kind of regularization terms

and can be used with different kind of metrics. The two stability bounds are more constrained

as they only hold for a Mahalanobis distance learned with a Frobenius norm regularization

term.

In the next section we propose several examples of loss functions and regularization terms

which can be used in one or several of our frameworks.

4.7 Examples

In this section we present several examples of popular loss functions and regularization terms

in metric learning. We show that each example falls in one or more of the theoretical frame-

works presented here. It demonstrates the wide range of applicability of the metric hypothesis

transfer learning framework proposed here.

First of all note that in Sections 4.3 and 4.4 we only consider learning a Mahalanobis

distance and this distance respects the assumption made on the metric of Section 4.5 (Equa-
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tion (4.14)). Hence in this section we only consider metrics which satisfy this property.

Furthermore we always consider positive and convex losses. It implies a bound on the regu-

larization term presented in the next lemma.

Lemma 4.9 (Bounded regularization). Let MT be the optimal solution returned by Prob-

lem (4.1) with training set T and a positive and convex loss. We have:

‖MT −MS‖ ≤

√
L̂T (MS)

λ
.

Proof. The proof of this lemma can be found in Appendix C.7.

4.7.1 Examples of Loss Functions

Overall we successively considered the following properties for the loss function:

• Positive: On Average Stability Analysis, Uniform Stability Analysis, Rademacher Com-

plexity Analysis

• Convex (Definition A.6): On Average Stability Analysis, Uniform Stability Analysis,

Rademacher Complexity Analysis

• k-lipschitz continuous with respect to the metric (Definition 4.2): Rademacher Com-

plexity Analysis

• k-lipschitz continuous (Definition A.1): On Average Stability Analysis, Uniform Stabil-

ity Analysis

• (σ,m)-admissible (Definition A.2): Uniform Stability Analysis

First we propose to consider L-lipschitz functions for dissimilarity and similarity learning.

For each example we prove that all the previous properties hold.

Example 4.1 (Positive, convex, L-lipschitz functions for dissimilarity learning). Let f(a) be a

positive, convex, L-lipschitz function. Given a dissimilarity (Definition 1.8) kM parametrized

by M ∈M and any two examples z, z′ ∼ DT we define a loss as:

l
(
M, z, z′

)
= f

(
δyy′

[
kM

(
x,x′

)
− γyy′

])
(4.24)

where δyy′ = 1 if y = y′ and −1 otherwise and γyy′ is the desired margin between examples.

This loss is:

• Positive,

• Convex,

• k-lipschitz continuous with respect to the metric with k = L,
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• k-lipschitz continuous with k = L supz,z′∼DT ‖g(x,x′)‖∗,

• (σ,m)-admissible with

σ = supz,z′∼DT γyy′

m = 2L supz,z′∼DT ‖g(x,x′)‖∗
(√

L̂T (MS)
λ + ‖MS‖

)
.

Proof. The proof of this example can be found in Appendix C.8.

This loss has, for example, been successfully used in Jin et al. (2009). Similarly if f(a) =

[a]+ then it corresponds to the loss used in Section 4.45. As a last example if f(a) = |a| we

retrieve a loss function close to the one used in Chapter 36.

Example 4.2 (Positive, convex, L-lipschitz functions for similarity learning). Let f(a) be a

positive, convex, L-lipschitz function. Given a similarity (Definition 1.8) kM parametrized by

M ∈M and any two examples z, z′ ∼ DT we define a loss as:

l
(
M, z, z′

)
= f

(
1− δyy′

kM(x,x′)

γyy′

)
(4.25)

where δyy′ = 1 if y = y′ and −1 otherwise and γyy′ is the desired margin between examples.

This loss is:

• Positive,

• Convex,

• k-lipschitz continuous with respect to the metric with k = L
infz,z′∼DT |γyy′ |

,

• k-lipschitz continuous with k = L
infz,z′∼DT |γyy′ |

supz,z′∼DT ‖g(x,x′)‖∗,

• (σ,m)-admissible with

σ = 0

m = 2 L

infz,z′∼DT |γyy′ | supz,z′∼DT ‖g(x,x′)‖∗

(√
L̂T (MS)

λ + ‖MS‖
)

.

Proof. The proof of this example can be found in Appendix C.9.

This loss has, for example, been successfully used before with f(a) = [a]+ in Bellet et al.

(2012); Nicolae et al. (2015) albeit in a slightly different context.

We now turn our interest to H-smooth (Definition A.3), B-bounded functions as defined

in Srebro et al. (2010b). Note that the results are close in spirit to the one obtained for

L-lipschitz functions.

5The hinge loss is positive, convex and 1-lipschitz.
6The absolute value is positive, convex and 1-lipschitz.
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Example 4.3 (Positive, convex, H-smooth, B-bounded functions for dissimilarity learning).

Let f(a) be a positive, convex, H-smooth, B-bounded function. Given a dissimilarity (Defi-

nition 1.8) kM parametrized by M ∈ M and any two examples z, z′ ∼ DT we define a loss

as:

l
(
M, z, z′

)
= f

(
δyy′

[
kM

(
x,x′

)
− γyy′

])
(4.26)

where δyy′ = 1 if y = y′ and −1 otherwise and γyy′ is the desired margin between examples.

This loss is:

• Positive,

• Convex,

• k-lipschitz continuous with respect to the metric with k =
√

12HB,

• k-lipschitz continuous with k =
√

12HB supz,z′∼DT ‖g(x,x′)‖∗,

• (σ,m)-admissible with

{
σ = 0

m = B
.

Proof. The proof of this example can be found in Appendix C.10.

Example 4.4 (Positive, convex, H-smooth, B-bounded functions for similarity learning). Let

f(a) be a positive, convex, H-smooth, B-bounded function. Given a similarity (Definition 1.8)

kM parametrized by M ∈M and any two examples z, z′ ∼ DT we define a loss as:

l
(
M, z, z′

)
= f

(
1− δyy′

kM(x,x′)

γyy′

)
(4.27)

where δyy′ = 1 if y = y′ and −1 otherwise and γyy′ is the desired margin between examples.

This loss is:

• Positive,

• Convex,

• k-lipschitz continuous with respect to the metric with k =
√

12HB
infz,z′∼DT |γyy′ |

,

• k-lipschitz continuous with k =
√

12HB
infz,z′∼DT |γyy′ |

supz,z′∼DT ‖g(x,x′)‖∗,

• (σ,m)-admissible with

{
σ = 0

m = B
.

Proof. The proof of this example can be found in Appendix C.11.

Smooth losses have, for example, been successfully used with f(a) = (a)2 in Srebro et al.

(2010a); Kuzborskij and Orabona (2014) albeit in the different context of classification.

We have presented several loss functions which can be used in our framework. In the next

subsection we turn our attention toward several regularization terms.
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4.7.2 Examples of Regularizations

Due to several technical issues we have to use the Frobenius norm when considering the two

stability frameworks. However in the Rademacher complexity framework the only constraint

is that the dual norm of the regularization should be well defined, i.e. its Rademacher average

should be bounded above by a term which decreases in O
(

1√
n

)
. Cao et al. (2016) have shown

that this condition is fulfilled by several norms that we recall in Table 4.27. These norms

have been successfully used before as non biased regularization terms (Jin et al., 2009; Ying

et al., 2009; Bellet et al., 2012; Shen et al., 2012; Nicolae et al., 2015) but also as biased

regularization terms (Parameswaran and Weinberger, 2010; Cao et al., 2013a; Bohné et al.,

2014).

We now propose to discuss the impact of the regularization term on the transfer taking

place between the source metric MS and the learned metric MT . First of all note that this

differ with the kind of metric considered as the interpretation of the values of the matrix may

change. Here we consider that we are learning a Mahalanobis distance or a Bilinear similarity

where each entry of the matrix can be seen as a measure of the importance of the relation

between two features. Hence it gives us the following possible interpretations for the different

norms.

• Frobenius norm: The Frobenius norm will encourage small element-wise changes in the

values of the matrix MT with respect to the matrix MS . It implies that the relations

between the features will keep the same order of magnitude and only slightly change.

• `1-norm: The `1-norm is an element-wise sparsity inducing norm. It implies that from

the source metric to the learned metric only a limited number of entries in the matrix

will change. It means that some of the relations between features will be kept the same

while the other relations will be able to change more than with a Frobenius norm.

• `2,1-norm: The `2,1-norm is a column wise sparsity inducing norm. It implies that this

norm will encourage the learned metric MT to keep intact whole rows (and columns if

the matrix is symmetric) of MS . In other words, for some features, the relationships

between this feature and the others as encoded by the source metric will be kept in the

learned metric.

• Trace norm: The interest of using a trace norm is mainly to obtain low rank matrices.

In the case of biased regularization it translates into obtaining a low rank difference

between MT and MS . However it does not always imply that the rank difference

between the learned metric and the source metric will be small. It seems that, in a

biased regularization case, the trace norm is less interesting than the other norms.

7Note that Cao et al. (2016) also proved tighter results (with respect to the constants) than the one presented

here but this is beyond the scope of this analysis.



108 Chapter 4. Metric Hypothesis Transfer Learning

Table 4.2: Examples of regularization terms.

Norm ‖·‖ Dual Norm ‖·‖∗
Rademacher Average Rn(‖·‖∗)

(See Appendix C.12 for a proof)

‖·‖F ‖·‖F

Rn(‖·‖∗) ≤
2 supz,z′∼DT

‖g(x,x′)‖2F√
n

‖·‖1 ‖·‖∞
‖·‖2,1 ‖·‖2,∞
‖·‖Tr ‖·‖Spec

In this section we have presented several examples of loss functions and regularization

terms which can be used in our framework. In the next section we propose to empirically

study it in several experiments. On the one hand we propose to evaluate the interest of

optimizing the goodness of the metric as defined in Section 4.4. On the other hand we

demonstrate that using our approach in a semi-supervised domain adaptation task leads to

state of the art results.

4.8 Experiments

In Section 4.4, instantiating Problem (4.1) with the hinge loss (Example 4.1) and the Frobe-

nius norm, we have derived an empirical measure of the goodness of a metric. It leads to

the development of an optimization problem to learn the weight of the source metric (Equa-

tion (4.13)). In this section we consider two empirical studies depending on the choice of

the source metric. First, using some well-known distances as a source metric, we show that

our framework performs well on classic supervised metric learning tasks of the UCI database

and we empirically demonstrate the interest of learning the ω parameter. Second, we apply

our framework with weighted source metric in a semi-supervised Domain Adaptation task.

We show that, using only source information through a learned metric, our method is able

to compete with state of the art algorithms which have access to the examples of the source

dataset.

Setup In all our experiments we use limited training dataset, making it difficult to apply

any kind of cross-validation to set the parameters. Thus we propose to fix them as follows.

First the positive and negative margin are respectively set to the 5th and 95th percentile of

the training set possible distances computed with the source metric as proposed in Davis

et al. (2007). Next we set λ such that the two terms of Equation (4.13) are equals, i.e. we

balance the complexity and performance importance with respect to the source metric. The

ω parameter is then learned using Problem (4.13). In all the experiments we plug our metric

in a 1-nearest neighbour classifier to classify the examples of the test set. Furthermore, the

significance of the results is assessed with a paired samples t-test considering that an approach

is significantly better when the p-value is lower than 0.05.
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Table 4.3: Results of the experiments conducted on the UCI datasets. Each value corresponds

to the mean and standard deviation over 10 runs. For each dataset we highlight the best result

using a bold font. Approaches with the suffix -ω1 do not learn ω but fix it to 1.
Baselines Our approach

Dataset 1-NN ITML LMNN IDENTITY IDENTITY-ω1 MAHALANOBIS MAHALANOBIS-ω1

Breast 95.31 ± 1.11 95.40 ± 1.37 95.60 ± 0.92 96.06 ± 0.77 95.75 ± 0.87 95.71 ± 0.84 94.76 ± 1.38

Pima 67.92 ± 1.95 68.13 ± 1.86 67.90 ± 2.05 67.87 ± 1.57 67.54 ± 1.99 68.37 ± 2.00 66.31 ± 2.37

Scale 78.73 ± 1.69 87.31 ± 2.35 86.20 ± 2.83 80.98 ± 1.51 80.82 ± 1.27 81.35 ± 1.17 80.88 ± 1.43

Wine 93.40 ± 2.70 93.82 ± 2.63 93.47 ± 1.80 95.42 ± 1.71 95.07 ± 1.68 94.31 ± 2.01 80.56 ± 5.75

4.8.1 Classic Supervised Metric Learning

First we start by conducting experiments on several UCI datasets Lichman (2013), namely

breast, pima, scale and wine. We propose to consider three source metrics:

• Zero: No source hypothesis,

• Identity: Euclidean distance,

• Mahalanobis: Inverse of the variance-covariance matrix computed on the training set

(Mahalanobis, 1936).

For the last two source metric we propose two experiments, one where we set ω = 1 and

one where we learn ω using Problem (4.13). The goal of this experiment is to show the

interest of automatically setting ω. We consider a 1-nearest neighbour (1-NN) classifier using

the Euclidean Distance as the baseline and also report the results of two well known metric

learning algorithms, namely ITML (Davis et al., 2007) and LMNN (Weinberger et al., 2005).

The results averaged over 10 runs are reported in Table 4.3. For each run we randomly draw

a training set containing 20% of the data available for each class and we test the metric on

the remaining 80% of data.

These experiments highlight the interest of learning the ω parameter. When we consider

the performance of our approach with and without learning ω, we mainly notice the following

facts. First, learning ω always leads to an improvement on all the datasets and the final result

is better than the 1-NN classifier. Second, learning ω when considering the identity matrix

as the source metric seems to be of limited interest as the differences in accuracy are only

significant for the wine dataset. This can be justified by the fact that, in this case, it only

consists of a rescaling of the diagonal of the matrix and it does not change much the behaviour

of the distance. Finally, learning ω when considering the variance-covariance matrix as the

source metric leads to a significant improvement of the performance of the metric except on

the breast dataset. This is particularly true for the wine dataset with a gain of nearly 14% in

accuracy. It can be explained by the fact that, for this dataset, we are learning with less than

40 examples. Thus the original Mahalanobis distance does not carry as much information as

in the other datasets and is thus of a lower quality. Learning ω allows us to compensate this

drawback and to obtain results which are even better than ITML or LMNN.
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4.8.2 Metric Learning for Semi-Supervised Domain Adaptation

In this section we consider a semi-supervised domain adaptation task with the Office-Caltech

dataset. This dataset consists of four domains: Amazon (A), Caltech (C), DSLR (D) and

Webcam (W) for which 10 classes are considered. This leads to consider 12 different adap-

tation problems when we alternatively take each domain as the source or the target dataset.

The results are averaged over 20 runs. In each run the training set is composed of 8 labelled

source examples (20 if the source is Amazon) and 3 labelled target examples for each class.

The testing set corresponds to the remaining target examples. In these experiments we use

the same splits as the ones considered in Hoffman et al. (2013) since they are freely available

from the authors website and we follow their experimental setup. The data is normalized

thanks to the zscore and the dimensionality of the examples is reduced to 20 thanks to a

simple PCA. The results are presented in Table 4.48 where we compare the performance of

our method to 6 baselines:

• 1-NNS : a 1-NN using the source examples,

• 1-NNT : a 1-NN using the target examples,

• LMNNT : a 1-NN on the target examples using the metric learned by LMNN on the

source examples,

• ITMLT : a 1-NN on the target examples using the metric learned by ITML on the source

examples,

• MMDT: a domain adaptation method Hoffman et al. (2013),

• GFK: another DA approach Gong et al. (2012).

The last two methods need the source sample while in our case we only use a source metric

learned from the source instances. For our biased regularization framework we consider 3

possible metrics learned on the source examples, namely Mahalanobis, ITML and LMNN.

These source metrics are weighted by ωT which is learned using Problem (4.13).

These results show that metric hypothesis transfer learning can perform well in a semi-

supervised domain adaptation setting. Indeed, we perform better than directly plugging the

metrics learned by LMNN and ITML in a 1-NN classifier. Moreover, we obtain accuracies

which are competitive with state of the art approaches like MMDT or GFK while using less

information. If we compare our approach using LMNN as the source metric with MMDT,

we note that MMDT is significantly better than our approach on 4 out of 12 tasks while we

are significantly better on 3 and 5 end as a draw. Hence we can conclude that our method

presents a similar level of performance than MMDT. Similarly, if we compare our approach

using LMNN as the source metric with GFK, we obtain that GFK is significantly better than

8Note that we also report the mean accuracy over the 12 tasks. Even if we are conscious that the problems

are different, it gives a rough idea of the global performance of the compared approaches.
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Table 4.4: Metric Learning for Semi-Supervised Domain Adaptation. For the sake of read-

ability we design the considered domains by their initials. S → T stands for adaptation

from the source domain to the target domain. Each time we consider the mean and standard

deviation over 20 runs. For each task, the best result is highlighted with a bold font.
Baselines Our approach

Task 1-NNS 1-NNT LMNNT ITMLT MMDT GFK MAHALANOBIS ITML LMNN

A → C 35.95 ± 1.30 31.92 ± 3.24 32.42 ± 3.03 32.56 ± 4.17 39.76 ± 2.25 37.81 ± 1.85 32.65 ± 3.76 32.93 ± 4.60 34.66 ± 3.66

A → D 33.58 ± 4.37 53.31 ± 4.31 49.96 ± 3.53 44.33 ± 8.18 54.25 ± 4.32 51.54 ± 3.55 54.69 ± 3.96 51.54 ± 4.03 54.72 ± 5.00

A → W 33.68 ± 3.60 66.25 ± 3.87 62.62 ± 4.49 58.17 ± 10.63 64.91 ± 5.71 59.36 ± 4.30 67.11 ± 5.11 64.09 ± 5.20 67.62 ± 5.18

C → A 37.37 ± 2.95 47.28 ± 4.15 42.97 ± 3.76 45.16 ± 7.60 51.05 ± 3.38 46.36 ± 2.94 50.15 ± 4.87 49.89 ± 5.25 50.36 ± 4.67

C → D 31.89 ± 5.77 54.17 ± 4.76 46.02 ± 6.54 48.07 ± 8.98 52.80 ± 4.84 58.07 ± 3.90 56.77 ± 4.63 53.78 ± 7.23 57.44 ± 4.48

C → W 28.60 ± 6.13 65.06 ± 6.27 55.79 ± 5.09 59.21 ± 9.71 62.75 ± 5.19 63.26 ± 5.89 64.64 ± 6.44 64.00 ± 6.08 65.11 ± 5.25

D → A 33.59 ± 1.77 47.81 ± 3.56 40.57 ± 3.79 45.06 ± 6.78 50.39 ± 3.40 40.77 ± 2.55 49.48 ± 4.41 49.11 ± 4.09 49.67 ± 4.00

D → C 31.16 ± 1.19 32.22 ± 2.98 27.96 ± 3.03 29.93 ± 4.84 35.70 ± 3.25 30.64 ± 1.98 32.90 ± 3.14 32.99 ± 3.58 33.84 ± 2.99

D → W 76.92 ± 2.18 66.19 ± 4.60 65.36 ± 3.82 66.74 ± 7.16 74.43 ± 3.10 74.98 ± 2.89 65.57 ± 4.52 66.38 ± 6.04 69.72 ± 3.78

W → A 32.19 ± 3.04 48.25 ± 3.52 41.69 ± 3.71 45.11 ± 5.72 50.56 ± 3.66 43.26 ± 2.34 50.80 ± 3.63 50.16 ± 4.32 50.92 ± 4.00

W → C 27.67 ± 2.58 30.74 ± 3.92 28.60 ± 3.41 28.99 ± 4.31 34.86 ± 3.62 29.95 ± 3.05 31.54 ± 3.60 31.40 ± 4.29 32.64 ± 3.52

W → D 64.61 ± 4.30 54.84 ± 5.17 56.89 ± 5.06 57.76 ± 7.03 62.52 ± 4.40 71.93 ± 4.07 57.17 ± 6.50 56.85 ± 5.51 61.14 ± 5.78

Mean 38.93 ± 3.26 49.84 ± 4.20 45.90 ± 4.11 46.76 ± 7.09 52.83 ± 3.93 50.66 ± 3.28 51.12 ± 4.55 50.26 ± 5.02 52.32 ± 4.36

our approach on 3 tasks, we are significantly better on 7 and 2 lead to a draw. Hence, we can

conclude that our approach performs better than GFK.

If we compare the performances of both ITML and LMNN as metrics used directly in a

nearest neighbour classifier one can intuitively expect ITML to be a better source hypothesis

than LMNN since its results are better. However, in practice, using the metric learned by

LMNN as the source hypothesis yields better results. This suggests that using a learned

source model that tends to over-fit reasonably the learning source sample can be of potential

interest in a transfer learning context. Indeed LMNN does not use a regularization term in its

formulation is thus prone to over-fitting. Since the parameter ω penalizes the source metric

with respect to its complexity it may limit the impact of the source metric to what is needed

for the transfer. Nevertheless, this point deserves further investigation.

4.9 Conclusion

In this chapter we formalised and theoretically analysed the metric hypothesis transfer learn-

ing framework. This framework takes into account a source hypothesis information to help

learning by means of a biased regularization. This regularization can be interpreted into two

ways: (i) when the source metric is an a priori known metric such as the identity matrix, the

objective is to infer a new metric that performs better than the source metric, (ii) when the

source metric has been learned from another domain, the formulation allows one to transfer

the knowledge from the source metric to the new domain. This last interpretation refers to a

transfer learning setting where the learner does not have access to source examples and can

only make use of the source model in the presence of few labelled data.

In our theoretical analysis we considered three different frameworks. First the on average

stability framework allowed us to derive an exact bound showing that with a convergence rate

in O
(

1
n

)
the learned metric will, on average over all the size n training sets, be as good as the
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source metric. Second the uniform stability framework leads to a probabilistic generalization

bound where, given a specific loss, an empirical measure of the goodness of the source metric

can be obtained. From this we proposed an algorithm to optimally weight the source metric

in order to optimize the bound in a theoretically sound way. Third we used the Rademacher

complexity framework to address both problems of considering different regularization terms

and obtaining a vanishing bound, i.e. a bound which implies that learning is no longer

necessary when the source metric is the perfect fit.

To further demonstrate the interest of metric hypothesis transfer learning we proposed

several examples of loss functions and regularization terms which can be used with our the-

oretical analysis. We also discussed the impact of the different regularization terms on the

transfer of informations between the learned metric and the source metric. Lastly we pro-

posed an empirical evaluation of our source metric weighting method. On the one hand we

considered a classic metric learning task where we showed that weighting the source metric

to minimize the bound is indeed beneficial. On the other hand, in a semi-supervised domain

adaptation task we demonstrated the good behaviour of the metric hypothesis transfer learn-

ing framework. Indeed we obtained results comparable to state of the art approaches which

fully make use of the source examples while we only have access to the source metric.

As stated in Kuzborskij and Orabona (2014) in another context, our results stress the

importance of choosing a good source hypothesis. Perspectives of this work include further

empirical investigations on the interest of using metric hypothesis transfer learning. In par-

ticular empirically studying the impact of the regularization on the transferred informations

between the source and learned metric could be of interest. Here we considered the case

where we have a single source metric. One interesting perspective could be to consider more

complex strategies to learn ω and, for example, to study the multi-source case where several

source metrics are available at once. Note that one of the main limitations of this work is the

fact that we did not manage to obtain a vanishing bound highlighting an empirical goodness

criterion for the source metric. Indeed in Section 4.4 we obtained an empirical criterion but

the bound is not a vanishing one while in Section 4.5 we obtained a vanishing bound but the

associated goodness criterion is theoretical in the sense that it cannot be computed. Hence a

perspective could be to develop a vanishing bound with empirical goodness. It would imply

obtaining a theoretically sound way to choose the source metric. Furthermore it would prob-

ably give further insights on the trade-off between goodness of the source metric and number

of examples.

In the first part of this thesis we have been interested in learning in the presence of an

auxiliary metric serving as a reference during the learning process. On the one hand in

Chapter 3 we studied the case where this metric is only available through its values and we

want to learn a good approximation. On the other hand in Chapter 4 we considered that this

metric is accessible through its parameters matrix and that it can help us learning a better

metric for a given task. In other words in this first part we constrained the learned metric to

have a behaviour similar to the reference metric. Hence we implicitly, through the reference
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metric, controlled the behaviour of the learned metric. In the next part of this thesis we

propose to address the problem of explicitly controlling the behaviour of a metric. To this

end in Chapter 5 we propose a new metric learning framework based on virtual points. In

other words instead of learning a metric based on similarity constraints between examples we

propose to explicitly control the target position of the examples by bringing them closer to

these virtual points.
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Chapter 5

Regressive Virtual Metric Learning

This chapter is based on the following publication

Michaël Perrot and Amaury Habrard. Regressive virtual metric learning. In Advances in Neural

Information Processing Systems (NIPS-15), pages 1810–1818, 2015c

Abstract

In this chapter we are interested in supervised metric learning of Mahalanobis like

distances. Existing approaches mainly focus on learning a new distance using similarity

and dissimilarity constraints between examples. Here instead of bringing closer examples

of the same class and pushing far away examples of different classes we propose to move

the examples with respect to virtual points. Hence, each example is brought closer to an

a priori defined virtual point reducing the number of constraints to satisfy and explicitly

controlling the expected behaviour of the metric for each example. We show that our

problem admits a closed form solution which can be kernelized. We provide a theoretical

analysis proving the generalization ability of the metric learned with our approach and

establishing some links with other classic metric learning methods. Furthermore we pro-

pose an efficient solution to the difficult problem of selecting virtual points based in part

on recent works in optimal transport. Lastly, we evaluate our approach on several state

of the art datasets.

5.1 Introduction

Most of the existing approaches in metric learning use constraints of type must-link and

cannot-link between learning examples (See Section 2.3). For example, in a supervised clas-

sification task, the goal is to bring closer examples of the same class and to push far away

examples of different classes. The idea is that the learned metric should affect a high value

to dissimilar examples and a low value to similar examples. Then, this new distance can be

used in a classification algorithm like a nearest neighbour classifier. Note that in this case the

117
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(a) classic must-link cannot-link approach. (b) Our virtual point-based regression formulation.

Figure 5.1: Arrows denote the constraints used by each approach for one particular example

in a binary classification task. The classic metric learning approach in Figure 5.1(a) uses

O(n2) constraints bringing closer examples of the same class and pushing far away examples

of different classes. On the contrary, our approach presented in Figure 5.1(b) moves the

examples to the neighborhood of their corresponding virtual point, in black, using only O(n)

constraints.

set of constraints is quadratic in the number of examples which can be prohibitive when the

number of examples increases. One heuristic is then to select only a subset of the constraints

but selecting such a subset is not trivial.

In this chapter, we propose to consider a new kind of constraints where each example is

associated with an a priori defined virtual point. It allows us to consider the metric learning

problem as a simple regression where we try to minimize the differences between learning

examples and virtual points. Figure 5.1 illustrates the differences between our approach

and a classic metric learning approach. It can be noticed that our algorithm only uses a

linear number of constraints. However defining these constraints by hand can be tedious and

difficult. To overcome this problem, we present two approaches to automatically define them.

The first one is based on some recent advances in the field of optimal transport while the

second one uses a class-based representation space.

Moreover, thanks to its regression-based formulation, our approach can be easily kernelized

allowing us to deal efficiently with non linear transformations which is a nice advantage in

comparison to some metric learning methods. We also provide a theoretical analysis showing

the generalization ability of the metrics learned with our approach and establishing some

relationships with a classic metric learning formulation.

This chapter is organised as follows. In Section 5.2 we present our framework to learn a

metric when the virtual points are known. Then in Section 5.3 we address the problem of

selecting these virtual points. In Section 5.4 we theoretically analyse our approach by deriving

a generalization bound and by showing some links with a classic metric learning approach.

In Section 5.5 we empirically demonstrate the interest of our approach. We conclude in

Section 5.6.

5.2 Learning a Metric Using Virtual Points

The main idea behind our algorithm is to bring closer the learning examples to a set of virtual

points. Here we assume that we have access to a set of n learning pairs (x,v) where x is a
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learning example and v is a virtual point associated to x. We present both the linear and

kernelized formulations of our approach called Regressive Virtual Metric Learning (RVML).

It boils down to solve a regression in closed form, the main originality being the introduction

of virtual points.

Given a probability distribution DT defined over X × Y where X ⊆ Rd and Y is a finite

label set, let T = {(xi, yi)}ni=1 be a set of examples drawn i.i.d. from DT . Let fV : X ×Y → V,

where V ⊆ Rd′ is the space of virtual points, be the function which associates each example

to a virtual point. We consider the learning set V = {(xi,vi)}ni=1 where vi = fV(xi, yi). We

denote by DV the probability distribution defined on X × V obtained from the distribution

DT after applying fV , i.e. PrDV (x,v) = PrDT (x, y|v = fV(x, y)). Thus it is equivalent to

obtain the set of examples V = {(xi,vi)}ni=1 from T after applying fV and to draw V i.i.d.

from DV . For the sake of simplicity denote by X = (x1, . . . ,xn)T and V = (v1, . . . ,vn)T the

matrices containing respectively one example and its associated virtual point on each line.

We consider that the function fV is known. We come back to its definition in Section 5.3.

Our goal is to learn a Mahalanobis distance through its linear transformation interpretation

(Section 1.4). More precisely we want to learn the linear transformation matrix L such that

M = LLT . We consider the following optimisation problem:

arg min
L∈Rd×d′

L̂V (L) + λ ‖L‖2F (5.1)

where L̂V (L) is the empirical risk defined as follows:

L̂V (L) =
1

n

∑
(x,v)∈V

l (L, (x,v))

with l (L, (x,v)) =
∥∥xTL− vT

∥∥2

2
. Note that we can also write the empirical risk in matrix

form:

L̂V (L) =
1

n
‖XL−V‖2F . (5.2)

We also define the true risk of a matrix L as:

LV(L) = E
(x,v)∼DV

l (L, (x,v)) . (5.3)

The idea is to learn a new space of representation where each example is close to its

associated virtual point. Note that L is a d × d′ matrix and if d′ < d we also perform

dimensionality reduction.

Theorem 5.1 (Optimal solution of Problem (5.1)). The optimal solution of Problem (5.1)

can be found in closed form. Furthermore, we can derive two equivalent solutions:

LV =
(
XTX + λnI

)−1
XTV (5.4)

⇔ LV = XT
(
XXT + λnI

)−1
V. (5.5)
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Proof. The proof of this theorem can be found in Appendix D.1.

From Equation (5.4) we deduce the matrix MV :

MV = LV LTV =
(
XTX + λnI

)−1
XTVVTX

(
XTX + λnI

)−1
. (5.6)

Note that MV is PSD by construction:

xTMV x = xTLV LTV x =
∥∥LTV x

∥∥2

2
≥ 0.

So far, we have focused on the linear setting. We now present a kernelized version,

showing that it is possible to learn a metric in a very high dimensional space without an

explicit projection.

Let φ(x) be a projection function and k(x,x′) = φ(x)T φ(x′) be its associated kernel

(Section 1.4). For the sake of readability, let KX = ΦXΦT
X where ΦX = (φ(x1) , . . . , φ(xn))T .

We also define Vk the kernelized version of V . Given the solution matrix LV presented in

Equation (5.5), we have:

MV = XT
(
XXT + λnI

)−1
VVT

(
XXT + λnI

)−1
X.

Then, MVk the kernelized version of the matrix MV is defined such that:

MVk = ΦT
X (KX + λnI)−1 VVT (KX + λnI)−1 ΦX.

The squared Mahalanobis distance can be written as:

d2
M

(
x,x′

)
= xTMx + x′

T
Mx′ − 2xTMx′. (5.7)

Thus we can obtain:

d2
MVk

(
φ(x) , φ

(
x′
))

= φ(x)T MVkφ(x) + φ
(
x′
)T

MVkφ
(
x′
)
− 2φ(x)T MVkφ

(
x′
)

(5.8)

the kernelized version by considering that:

φ(x)T MVkφ(x) = φ(x)T ΦT
X (KX + λnI)−1 VVT (KX + λnI)−1 ΦXφ(x) (5.9)

= kTX,x (KX + λnI)−1 VVT (KX + λnI)−1 kX,x (5.10)

where kX,x = (k(x,x1) , . . . , k(x,xn))T is the similarity vector to the examples with respect

to k.

Note that it is also possible to obtain a kernelized version of LV :

LVk = ΦT
X (KX + λnI)−1 V.

This result is close to a previous one already derived in Cortes et al. (2005) in a structured

output setting. The main difference is the fact that we do not use a kernel on the output
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(the virtual points here). Hence, it is possible to compute the projection of an example x of

dimension d in a new space of dimension d′:

φ(x) LVk = φ(x)T ΦT
X (KX + λnI)−1 V

= kTX,x (KX + λnI)−1 V.

where kX,x = (k(x,x1) , . . . , k(x,xn))T is the similarity vector to the examples with respect

to k. Recall that we are interested in learning a distance between examples and not in the

prediction of the virtual points which only serve as a way to bring closer similar examples

and push far away dissimilar examples.

In this section we presented our linear and kernelized metric learning approaches when the

virtual points are given. If these points could be chosen by hand, we believe that an automatic

solution would be preferable. We propose to address this problem in the next section.

5.3 Choosing the Virtual Points

Previously, we assumed to have access to the function fV : X ×Y → V. In this subsection, we

present two methods for generating automatically the set of virtual points and the mapping

fV .

5.3.1 Using Optimal Transport on the Learning Set

In this first approach we propose to generate the virtual points associated to the examples of a

training set T as follows. First we use a variation of the landmark selection method proposed

in Kar and Jain (2011) to choose in T a set T ′ of n′ landmarks. Then we use a recent variation

of the optimal transport problem proposed by Courty et al. (2014b) to associate each example

zi ∈ T to the landmarks z′1, . . . , z
′
n′ ∈ T ′ with weights W(i, 1), . . . ,W(i, n′) such that:∑

j

W(i, j) = 1. (5.11)

The virtual points are then defined as a weighted combination of the landmarks. Let X′ be

the matrix form of T ′, for an example zi ∈ T we define fV as:

fV(xi, yi) = W(i, )X′. (5.12)

In the following we present our landmark selection method based on the work of Kar and

Jain (2011) and the variation of the optimal transport problem (Courty et al., 2014b) that

we consider.

Landmark Selection

To select the set T ′ we propose an adaptation of the selection method of Kar and Jain (2011)

allowing us to take into account some diversity among the landmarks. Our approach is a



122 Chapter 5. Regressive Virtual Metric Learning

fully automatic procedure and is summarized in Algorithm 2 and works as follows. First

we assume without loss of generality that the examples are centred in 0 and we select as

the first landmark the example z ∈ T furthest from 0. Each new landmark is selected as

the example z ∈ T with the largest minimum distance with the landmarks in T ′. To avoid

explicitly choosing the number of landmarks we propose to stop the selection process under

two conditions:

• the number of landmarks is greater than the number of classes,

• the maximum distance between an example and a landmark is lower than the mean of

pairwise distances between all the examples of T .

input : T = {(xi, yi)}ni=1 a set of examples; Y the label set.

output: T ′ a subset of T

begin

µ = mean of distances between all the examples of T

xmax = arg max
x∈T

‖x− 0‖2

T ′ = {xmax}
T = T \ T ′

ε = max
x∈T

min
x′∈T ′

∥∥x− x′
∥∥

2

while |T ′| < |Y|or ε > µ do

xmax = arg max
x∈T

∑
x′∈T ′

∥∥x− x′
∥∥

2

T ′ = T ′ ∪ {xmax}
T = T \ T ′

ε = max
x∈T

min
x′∈T ′

∥∥x− x′
∥∥

2

end

end

Algorithm 2: Selecting T ′ from a set of examples T .

Optimal Transport

Assume that you have an input distribution and an output distribution, the goal of optimal

transport (Villani, 2008) is to align the two distributions at a minimal cost. We come back

to this general problem in Section 6.2 and instead we consider a particular case of discrete

optimal transport where the idea is to transport the examples of an input set T toward the

examples of an output set T ′ at a minimal cost. Here we start by presenting the solution to

this problem proposed by Courty et al. (2014b) before explaining how we use it to associate

the training examples to the landmarks.

In the particular case of discrete optimal transport we assume that each example in T

has a mass of 1
n where n is the number of examples in T . Similarly each example in T ′ has
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a mass of 1
n′ . We also consider that we have a cost matrix C ∈ Rn×n

′
+ where each entry

C(i, j) represents the cost of moving example xi ∈ T toward example x′j ∈ T ′. For example

we can set C(i, j) =
∥∥∥xi − x′j

∥∥∥
2
. The goal is then to learn a weight matrix Γ ∈ Rn×n

′
+ which

minimizes the transport cost 〈Γ,C〉F between the two sets. Note that this matrix should take

into account the mass associated with each example, i.e. it has to respect the constraints:

∀xi ∈ T,Γ(i, )1n′ =
1

n
,

∀x′j ∈ T ′,Γ(, j)1n =
1

n′

(5.13)

where 1n′ and 1n are vectors of 1 of size n′ and n respectively. To learn the matrix Γ Courty

et al. (2014b) propose to use the following regularized optimization problem:

arg min
Γ∈Rn×n′+

〈Γ,C〉F −
1

λ
h(Γ) + η

∑
j

∑
c

‖Γ(yi = c, j)‖pq

s.t. ∀xi ∈ T,Γ(i, )1n′ =
1

n
,

∀x′j ∈ T ′,Γ(, j)1n =
1

n′
.

The two regularization terms have different objectives.

• − 1
λh(Γ) where h(Γ) = −

∑
i,j Γ(i, j) log(Γ(i, j)) is the entropy of gamma: this regular-

ization term has been proposed by Cuturi (2013b). It allows one to solve the trans-

portation problem more efficiently by using the Sinkhorn-Knopp algorithm (Knight,

2008). Furthermore by setting the value of the parameter λ it is possible to control the

sparsity of the matrix Γ. On the one hand if the matrix is sparse it implies that each

example from T will be associated to a small number of examples in T ′. On the other

hand if the matrix is full it implies that each example from T will be associated to each

example in T ′.

• η
∑

j

∑
c ‖Γ(yi = c, j)‖pq where Γ(yi = c, j) corresponds to the lines of the jth column

of Γ where the class of the input is c: this term has been proposed by Courty et al.

(2014b). Its goal is to prevent input examples of different classes to move toward the

same output examples by promoting group sparsity in the matrix Γ. This is done thanks

to the functions ‖·‖pq corresponding to a `q-norm to the power of p used here with q = 1

and p = 1
2 (See the `p,q-norm in Section 1.4).

Once the matrix Γ has been learned it is possible to compute the image x̂i of an input example

xi ∈ T as follows:

x̂i = n′Γ(i, )X′ (5.14)

where X′ is the matrix form of T ′ with one example per line. In this case multiplying Γ by n′

ensures that
∑

j Γ(i, j) = 1 and thus the image x̂i can be seen as a linear combination of the
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output examples. Note that the transport might imply non linear transformations of the input

space. Indeed there is no guarantee that there exists a matrix T such that ∀xi ∈ T, x̂i = Txi.

Here we propose to use this optimal transport approach to learn the matrix Γ between

the learning examples T and the landmarks T ′. We then obtain the weight matrix used to

compute the virtual points as W = n′Γ. Note that in this case our metric learning approach

can be seen as a an approximation of the result given by the optimal transport1.

5.3.2 Using a Class-based Representation Space

For this second approach, we propose to define virtual points as the unit vectors of a space

of dimension |Y|, i.e. the number of classes in the problem. Let ej ∈ R|Y| be such a unit

vector (1 ≤ j ≤ |Y|), i.e. a vector where all the attributes are 0 except for one attribute j

which is set to 1, to which we associate a class label from Y. In this case the ej vectors can

also be seen as the vertices of a standard (|Y|−1)-simplex. For any learning example (xi, yi),

we define fV(xi, yi) = e#yi where #yi = j if ej is mapped with the class yi. Thus, we have

exactly |Y| virtual points, each one corresponding to a unit vector and a class label.

We call this approach the class-based representation space method. If the number of

classes is smaller than the number of dimensions used to represent the learning examples,

then our method will also perform dimensionality reduction. Furthermore, our approach will

try to project all the examples of one class on the same axis while examples of other classes

will tend to be projected on different axes. The underlying intuition behind the new space

defined by LV is to make each attribute discriminant for one class. The interest of this

approach is illustrated in Figure 5.2.

In this section we proposed two methods to define the virtual points but other approaches

could be considered. For example Kusner et al. (2014) proposed a solution to compress

a dataset by considering only a small number of examples in order to speed up nearest

neighbours classification. Using this compressed dataset could be a way to define virtual

points which summarize well the behaviour of the examples in each class. In the next section

we show that our approach is theoretically founded.

5.4 Theoretical Analysis

In this section, we propose to theoretically show the interest of our approach by proving that

the learned metric generalizes well, Section 5.4.1, and that it is possible to link it to a more

classic metric learning formulation, Section 5.4.2.

5.4.1 Generalization Bound

In this section we show that a metric learned with Problem (5.1) generalizes well. To this

extent we use the uniform stability framework presented in Section 1.3. In the following we

1In Chapter 6 we elaborate upon this idea by jointly learning the metric and the optimal transport.
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assume that ‖x‖2 ≤ Bx and ‖v‖2 ≤ Bv. Before proving that our approach is uniformly

stable we start by presenting two lemmas showing that our loss is bounded and k-lipschitz

continuous (Definition A.1).

Lemma 5.1 (Bounded loss function). Let LV be the metric learned with Problem (5.1) with

training set V , we have that for any example (x,v) ∼ DV :

l (LV , (x,v)) ≤ B

with B = B2
v

(
1 + Bx√

λ

)2
.

Proof. The proof of this lemma can be found in Appendix D.2.

Lemma 5.2 (k-lipschitz continuity). Our loss is k-lipschitz with k = 2BvBx

(
1 + Bx√

λ

)
.

Proof. The proof of this lemma can be found in Appendix D.3.

We can now show that our algorithm is uniformly stable (Definition 1.3).

Lemma 5.3 (Uniform stability). Our algorithm has a uniform stability in β =
8B2

vB
2
x

λn

(
1 + Bx√

λ

)2

.

Proof. The proof of this lemma can be found in Appendix D.4.

We can now prove our generalization bound.

Theorem 5.2 (Generalization bound). Let ‖v‖2 ≤ Bv for any v ∈ V and ‖x‖2 ≤ Bx for

any x ∈ X . Let LV be the optimal solution of Problem (5.1). With probability 1− δ we have:

LV(LV ) ≤ L̂V (LV ) +
8B2

vB
2
x

λn

(
1 +

Bx√
λ

)2

+

((
16B2

x

λ
+ 1

)
B2

v

(
1 +

Bx√
λ

)2
)√

ln 1
δ

2n
.

Proof. This theorem is a direct application of Theorem 1.1 (Bousquet and Elisseeff, 2002b)

using the bound on the loss presented in Lemma 5.1 and the uniform stability of our algorithm

proven in Lemma 5.3.

We obtain a rate of convergence in O
(

1√
n

)
which is standard with this kind of bounds.

Kernelized case Recall that in the linear case we assumed that ‖x‖2 ≤ Bx. In the ker-

nelized case, we only have to bound ‖φ(x)‖2 where φ is the projection function associated to

the used kernel. A common assumption (Audiffren and Kadri, 2013) when studying kernels

is that ∃κ such that 0 < κ < ∞ and k(x,x) ≤ κ2. Hence, we have ‖φ(x)‖22 ≤ κ2. Thus

setting Bx = κ allows us to use the same proof than in the linear case leading us to the same

generalization bound (the only difference being the value of Bx).
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5.4.2 Link with a Classic Metric Learning Formulation

In this section we show that it is possible to bound the true risk of a classic metric learning

approach with the empirical risk of our formulation. Most of the classic metric learning

approaches make use of a notion of margin between similar and dissimilar examples. Hence,

similar examples have to be close to each other, i.e. at a distance smaller than a margin

γ1, and dissimilar examples have to be far from each other, i.e. at a distance greater than a

margin γ−1. Let (x, y) and (x′, y′) be two examples from X ×Y, using this notion of margin,

we consider the following loss (Jin et al., 2009):

l (L, (x, y), (x′, y′)) =
[
δyy′(d

2
(
LTx,LTx′

)
− γyy′)

]
+

(5.15)

where δyy′ = 1 if y = y′ and −1 otherwise, γyy′ = γ1 if y = y′ and γ−1 otherwise and d

is the standard euclidean distance. The latter is the desired margin between examples. As

introduced before, we consider that γyy′ takes a big value when the examples are dissimilar,

i.e. when δyy′ = −1, and a small value when the examples are similar, i.e. when δyy′ = 1.

In the following we set, up to some constants, the margin between similar examples as the

maximum distance between two virtual points associated to the same class and the margin

between dissimilar examples as the minimum distance between two virtual points associated

to different classes. Then we show that it is possible to bound, up to a constant factor, the

true risk associated with the previous loss by the empirical risk of our approach.

Theorem 5.3 (Link with a classic metric learning approach). Let DT be a distribution over

X ×Y. Let V ⊂ Rd′ be a finite set of virtual points and fV is defined as fV(x, y) = v, v ∈ V.

Let ‖v‖2 ≤ Bv for any v ∈ V and ‖x‖2 ≤ Bx for any x ∈ X . Let γ1 = 2 maxx,x′,y=y′ ‖v − v′‖22
and γ−1 = 1

2 minx,x′,y 6=y′ ‖v − v′‖22. Let LV be the optimal solution of Problem (5.1), we have

with probability 1− δ:

E
(x,y),(x′,y′)∼DT

[
δyy′(d

2
(
LTV x,LTV x′

)
− γyy′)

]
+

≤ 8

L̂V (LV ) +
8B2

vB
2
x

λn

(
1 +

Bx√
λ

)2

+

((
16B2

x

λ
+ 1

)
B2

v

(
1 +

Bx√
λ

)2
)√

ln 1
δ

2n
)

 .

Proof. First of all, let us consider two examples x and x′ and their associated virtual points

v and v′.

Using the fact that distances respect the triangle inequality, one can obtain:

d
(
LTV x,LTV x′

)
≤ d
(
LTV x,v

)
+ d
(
v,v′

)
+ d
(
v′,LTV x′

)
.

Then squaring both sides of the inequality gives:

d2
(
LTV x,LTV x′

)
≤ d2

(
LTV x,v

)
+ d2

(
v,v′

)
+ d2

(
v′,LTV x′

)
+ 2(d

(
LTV x,v

)
+ d
(
v′,LTV x′

)
)d
(
v,v′

)
+ 2d

(
LTV x,v

)
d
(
v′,LTV x′

)
.

Finally, using Legendre identity2 twice, we obtain:

d2
(
LTV x,LTV x′

)
≤ 4d2

(
LTV x,v

)
+ 2d2

(
v,v′

)
+ 4d2

(
v′,LTV x′

)
.

2Legendre identity is (a+ b)2 − (a− b)2 = 4ab from which we deduce a2 + b2 ≥ 2ab.
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Similarly, switching the role of d
(
LTV x,LTV x′

)
and d(v,v′) we have:

d2
(
v,v′

)
≤ 4d2

(
LTV x,v

)
+ 2d2

(
LTV x,LTV x′

)
+ 4d2

(
v′,LTV x′

)
⇔ −d2

(
LTV x,LTV x′

)
≤ 2d2

(
LTV x,v

)
+ 2d2

(
v′,LTV x′

)
− 1

2
d2
(
v,v′

)
⇔ −d2

(
LTV x,LTV x′

)
≤ 4d2

(
LTV x,v

)
+ 4d2

(
v′,LTV x′

)
− 1

2
d2
(
v,v′

)

Now, let us consider x and x′ two examples of the same class, i.e. δyy′ = 1, we have:[
δyy′(d

2
(
LTV x,LTV x′

)
− γyy′)

]
+

=
[
d2
(
LTV x,LTV x′

)
− γ1

]
+

≤
[
4d2
(
LTV x,v

)
+ 4d2

(
v′,LTV x′

)
+ 2d2

(
v,v′

)
− γ1

]
+

(γ1 ≥ 2d2(v,v′).)

≤ 4d2
(
LTV x,v

)
+ 4d2

(
v′,LTV x′

)
. (5.16)

Similarly, we consider x and x′ two examples of different classes, i.e. δyy′ = −1, and we

obtain:[
δyy′(d

2
(
LTV x,LTV x′

)
− γyy′)

]
+

=
[
−d2

(
LTV x,LTV x′

)
+ γ−1

]
+

≤
[
4d2
(
LTV x,v

)
+ 4d2

(
v′,LTV x′

)
− 1

2
d2
(
v,v′

)
+ γ−1

]
+

(γ−1 ≤ 1
2d

2(v,v′).)

≤ 4d2
(
LTV x,v

)
+ 4d2

(
v′,LTV x′

)
. (5.17)

Noting that we obtain the same inequality for similar and dissimilar examples and taking

the expectation on both sides gives:

E
(x,y),(x′,y′)∼DT

[
δyy′(d

2
(
LTV x,LTV x′

)
− γδyy′ )

]
+

(5.18)

≤ E
(x,y),(x′,y′)∼DT

4d2
(
LTV x,v

)
+ 4d2

(
v′,LTV x′

)
= E

(x,y),(x′,y′)∼DT
4d2
(
LTV x,v

)
+ E

(x,y),(x′,y′)∼DT
4d2
(
v′,LTV x′

)
= 8 E

(x,y)∼DT
d2
(
LTV x,v

)
= 8LV(LV ).

Applying Theorem 5.2 to the last inequality gives the theorem.

In Theorem 5.3, we can notice that the margins are related to the distances between

virtual points and correspond to the ideal margins, i.e. the margins that we would like to

achieve after the learning step. In practice, we can also define γ̂1 and γ̂−1 the observed margins

obtained after the learning step. All the similar examples are in a sphere centred in their



128 Chapter 5. Regressive Virtual Metric Learning

corresponding virtual point and of diameter γ̂1 = 2 max(x,v)∈V
∥∥xTLV − vT

∥∥
2
. Similarly, the

distance between spheres of dissimilar examples is γ̂−1 = minv,v′,v 6=v′ ‖v − v′‖2 − γ̂1. As a

consequence, even if we do not use cannot-link constraints, our algorithm is able to push

reasonably far away dissimilar examples by minimizing the diameter of the sphere around

similar examples.

In this section we have shown that the metrics learned by our algorithm generalize well

and that our method can be theoretically linked to a classic metric learning approach. In

the next section we empirically show the interest of our approach for several classification

problems.

5.5 Experiments

In this section we propose an empirical evaluation of our method. On the one hand in

Subsection 5.5.1 we compare it to several methods on a task of metric learning for classification

and we provide some graphics showing 2D projections of the space learned by RVML-Lin-

Class and RVML-RBF-Class on one dataset illustrating the capability of these approaches to

learn discriminative attributes. On the other hand in Subsection 5.5.2 we further study the

interest of explicitly choosing the virtual points using the methods presented in Section 5.3.

In all these experiments we consider 13 different datasets coming from either the UCI

Lichman (2013) repository or used in recent works in metric learning Kedem et al. (2012);

Shi et al. (2014); Bellet et al. (2012). For isolet, splice and svmguide1 we have access to

a standard training/test partition, for the other datasets we use a 70% training/30% test

partition, we perform the experiments on 10 different splits and we average the result. We

normalize the examples with respect to the training set by subtracting for each attribute its

mean and dividing by 3 times its standard deviation. We set our regularization parameter

λ with a 5-fold cross validation on the training set. After the metric learning step, we use

a 1-nearest neighbour classifier to assess the performance of the metric and we report the

accuracy obtained. Note that we also report the mean accuracy over the 13 tasks. Even if

we are conscious that the different datasets consider different classification problems, it gives

a rough idea of the global performance of the compared approaches.

5.5.1 Metric Learning for Classification

Here we consider the problem of learning a metric for a classification task. We consider two

sets of experiments. In the first set we consider our linear formulation used with the two

virtual points selection methods presented in this chapter, namely RVML-Lin-OT based on

optimal transport (Section 5.3.1) and RVML-Lin-Class using the class-based representation

space method (Section 5.3.2). We compare our two approaches to three baselines:

• 1-NN: A 1-nearest neighbour classifier without metric learning,
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• LMNN (Weinberger et al., 2005),

• SCML (Shi et al., 2014).

In a second set we consider the kernelized versions of RVML, namely RVML-RBF-OT and

RVML-RBF-Class, based respectively on optimal transport and class-based representation

space methods with a RBF kernel with the parameter σ fixed as the mean of all pairwise

training set euclidean distances (Kar and Jain, 2011). We compare them to non linear methods

using a KPCA with a RBF kernel3 as a pre-process. The number of dimensions is fixed as the

one of the original space for high dimensional datasets (more than 100 attributes), to 3 times

the original dimension when the dimension is smaller (between 5 and 100 attributes) and to

4 times the original dimension for the lowest dimensional datasets (less than 5 attributes).

We also consider some local metric learning methods. Hence we compare our approach with

4 non-linear baselines:

• 1-NN-KPCA: A 1-nearest neighbour classifier in the KPCA space without metric learn-

ing,

• LMNN-KPCA: LMNN in the KPCA-space,

• GB-LMNN: A non linear version of LMNN(Kedem et al., 2012),

• SCMLLOCAL: The local version of SCML(Shi et al., 2014).

For all the baselines (linear and non linear), we use the implementations available online

letting them handle hyper-parameters tuning.

The results for linear methods are presented in Table 5.1 while Table 5.2 gives the results

obtained with the non linear approaches. In each table, the best result on each line is high-

lighted with a bold font while the second to best result is underlined. A star indicates either

that the best baseline is significantly better than our best result or that our best result is

significantly better than the best baseline according to classic significance tests (the p-value

being fixed at 0.05).

We can make the following remarks. In the linear setting, our approaches are very com-

petitive with state of the art approaches and RVML-Lin-OT tends to be the best on average

even though SCML also performs very well on some datasets (the difference is not significant).

RVML-Lin-Class performs slightly less on average. Considering now the non linear methods,

our approaches improve their performance and are significantly better than the others on

average, RVML-RBF-Class has the best average behaviour in this setting. These experiments

show that our regressive formulation is very competitive and is even able to improve state of

the art performances in a non linear setting.

Considering the virtual points selection, we can observe that the OT formulation performs

better than the class-based representation space one in the linear case, while it is the opposite

3With the σ parameter fixed as previously to the mean of all pairwise training set euclidean distances.
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Table 5.1: Comparison of our approach with several baselines in the linear setting. The best

result is highlighted with a bold font while the second to best result is underlined. A star

indicates that the best result for the baseline is significantly better than our best result or

that our best result is significantly better than the best baseline result.

Baselines Our approach

Base 1-NN LMNN SCML RVML-Lin-OT RVML-Lin-Class

Amazon 41.51 ± 3.24 65.50 ± 2.28 71.68 ± 1.86 71.62 ± 1.34 73.09 ± 2.49

Breast 95.49 ± 0.79 95.49 ± 0.89 96.50 ± 0.64* 95.24 ± 1.21 95.34 ± 0.95

Caltech 18.04 ± 2.20 49.68 ± 2.76 52.84 ± 1.61 52.51 ± 2.41 55.41 ± 2.55*

DSLR 29.61 ± 4.38 76.08 ± 4.79 65.10 ± 9.00 74.71 ± 5.27 75.29 ± 5.08

Ionosphere 86.23 ± 1.95 88.02 ± 3.02 90.38 ± 2.55* 87.36 ± 3.12 82.74 ± 2.81

Isolet 88.97 95.83 89.61 91.40 94.61

Letters 94.74 ± 0.27 96.43 ± 0.28* 96.13 ± 0.20 90.25 ± 0.60 95.51 ± 0.26

Pima 69.91 ± 1.69 70.04 ± 2.20 69.22 ± 2.60 70.48 ± 3.19 69.57 ± 2.85

Scale 78.68 ± 2.66 78.20 ± 1.91 93.39 ± 1.70* 90.05 ± 2.13 87.94 ± 1.99

Splice 71.17 82.02 85.43 84.64 78.44

Svmguide1 95.12 95.03 87.38 94.83 85.25

Wine 96.18 ± 1.59 98.36 ± 1.03 96.91 ± 1.93 98.55 ± 1.67 98.18 ± 1.48

Webcam 42.90 ± 4.19 85.81 ± 3.75 90.43 ± 2.70 88.60 ± 3.63 88.60 ± 2.69

mean 69.89 82.81 83.46 83.86 83.07

Table 5.2: Comparison of our approach with several baselines in the non linear case. The

best result is highlighted with a bold font while the second to best result is underlined. A

star indicates that the best result for the baseline is significantly better than our best result

or that our best result is significantly better than the best baseline result.

Baselines Our approach

Base 1NN-KPCA LMNN-KPCA GBLMNN SCMLLOCAL RVML-RBF-OT RVML-RBF-Class

Amazon 20.27 ± 2.42 53.16 ± 3.73 65.53 ± 2.32 69.14 ± 1.74 73.51 ± 0.83 76.22 ± 2.09*

Breast 92.43 ± 2.19 95.39 ± 1.32 95.58 ± 0.87 96.31 ± 0.66 95.73 ± 0.97 95.78 ± 0.92

Caltech 20.82 ± 8.29 29.88 ± 10.89 49.91 ± 2.80 50.56 ± 1.62 54.39 ± 1.89 57.98 ± 2.22*

DSLR 64.90 ± 5.81 73.92 ± 7.57 76.08 ± 4.79 62.55 ± 6.94 70.39 ± 4.48 76.67 ± 4.57

Ionosphere 75.57 ± 2.79 85.66 ± 2.55 87.36 ± 3.02 90.94 ± 3.02 90.66 ± 3.10 93.11 ± 3.30*

Isolet 68.70 96.28 96.02 91.40 95.96 96.73

Letter 95.39 ± 0.27 97.17* ± 0.18 96.51 ± 0.25 96.63 ± 0.26 91.26 ± 0.50 96.09 ± 0.21

Pima 69.57 ± 2.64 69.48 ± 2.04 69.52 ± 2.27 68.40 ± 2.75 69.35 ± 2.95 70.74 ± 2.36

Scale 78.36 ± 0.88 88.10 ± 2.26 77.88 ± 2.43 93.86 ± 1.78 95.19 ± 1.46* 94.07 ± 2.02

Splice 66.99 88.97 82.21 87.13 88.51 88.32

Svmguide1 95.72 95.60 95.00 87.40 95.67 95.05

Wine 92.18 ± 1.23 95.82 ± 2.98 98.00 ± 1.34 96.55 ± 2.00 98.91 ± 1.53 98.00 ± 1.81

Webcam 73.55 ± 4.57 84.52 ± 3.83 85.81 ± 3.75 88.71 ± 2.83 88.71 ± 4.28 88.92 ± 2.91

mean 70.34 81.07 82.72 83.04 85.25 86.74
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in the non linear case. We think that this can be explained by the fact that the OT approach

generates more virtual points in a potentially non linear way which brings more expressiveness

for the linear case. On the other hand, in the non linear one, the relative small number of

virtual points used by the class-based method seems to induce a better regularization.

To illustrate the capability of RVML-Lin-Class and RVML-RBF-Class to learn discrimi-

native attributes we propose to select two dimensions out of the 26 of the space learned by

these approaches on the isolet dataset. We selected 3 pairs of axis and the images obtained

are presented in Figure 5.2. On the same line, we plot two images corresponding to the same

axis pair: on the left column for RVML-Lin-Class and on the right column for RVML-RBF-

Class. Note that for each axis, there is only one class for which the value of the attribute

tends to be 1, for all the other classes this feature tends to be 0. Furthermore, we can note

that the kernelized version of our metric outputs a more discriminative space: the examples

are brought closer to their corresponding virtual point than in the linear version.

5.5.2 Interest of Explicitly Choosing Virtual Points

In the previous subsection we have seen that our approach is very competitive. Here we

demonstrate the interest of explicitly choosing the virtual points.

Class based virtual points In Globerson and Roweis (2005) the authors propose to col-

lapse similar examples on a single point, an implicit virtual point, while pushing far away

dissimilar examples. This behaviour can, in fact, be achieved by any margin based metric

learning approach by setting the margin between similar examples to 0 and the margin be-

tween dissimilar examples to a high value. Thus to illustrate the interest of using explicit

virtual points, we propose to compare our approach to Information Theoretic Metric Learning,

ITML (Davis et al., 2007), when considering the aforementioned margins (ITML-Collapse).

For the sake of completeness we also consider ITML with tuned margins (ITML). The results

are presented in Table 5.3 and show that, on average, ITML-Collapse and ITML are less

accurate than RVML-Lin-Class hinting that considering explicit virtual points is better than

considering implicit ones but also that learning a metric where each axis is discriminative is

indeed beneficial for classification.

Optimal transport based virtual points To further assess the interest of using our OT

based formulation to select virtual points and associate them to examples, we propose to

compare it with a random based approach (Random). In this latter setting, we randomly

select a subset of examples for each class to act as virtual points and we randomly associate

each example of this class to these virtual points. The results in the linear case are presented

in Table 5.4 while the results in the non linear case are presented in Table 5.5. Overall,

randomly selecting the virtual points is less accurate than using the OT based formulation.

This is especially true in the linear case where the metric is less expressive than in the
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Figure 5.2: In the learned space from the isolet dataset, we randomly select 2 attributes three

times and plot the 2D projection on each pair. The first line corresponds to features 1 and

20, the second line to features 7 and 14 and the third line to features 2 and 23. The left

column corresponds to the space learned by RVML-Lin-Class (linear) and the right column

to the one learned by RVML-RBF-Class (non linear).
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Table 5.3: Comparison between a method with explicit virtual points (RVML-Lin-Class) and

a method with implicit virtual points (ITML-Collapse). The best result is highlighted with

a bold font.

Base RVML-Lin-Class ITML-Collapse ITML

Amazon 73.09 ± 2.49 57.97 ± 3.36 65.91 ± 2.64

Breast 95.34 ± 0.95 94.56 ± 1.41 95.49 ± 1.15

Caltech 55.41 ± 2.55 37.34 ± 2.01 47.31 ± 2.75

DSLR 75.29 ± 5.08 77.25 ± 4.15 77.25 ± 4.91

Ionosphere 82.74 ± 2.81 85.75 ± 6.23 88.11 ± 1.68

Isolet 94.61 74.53 92.88

Letters 95.51 ± 0.26 95.67 ± 0.30 95.00 ± 0.64

Pima 69.57 ± 2.85 71.08 ± 2.13 70.26 ± 1.38

Scale 87.94 ± 1.99 87.51 ± 4.39 87.67 ± 2.71

Splice 78.44 66.80 71.49

Svmguide1 85.25 94.62 95.00

Wine 98.18 ± 1.48 85.91 ± 3.74 96.91 ± 1.93

Webcam 88.60 ± 2.69 97.64 ± 2.43 86.56 ± 2.88

mean 83.07 78.97 82.30
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Table 5.4: Comparison of our OT based formulation to a random selection approach when

learning a linear metric. The best result is highlighted with a bold font.

OT based approach Random

Base RVML-Lin-OT 1 VP per class 2 VP per class 5 VP per class

Amazon 71.62 ± 1.34 74.23 ± 2.15 72.92 ± 2.31 70.31 ± 2.82

Breast 95.24 ± 1.21 95.34 ± 0.95 95.29 ± 1.32 94.90 ± 1.92

Caltech 52.51 ± 2.41 55.09 ± 2.38 53.63 ± 2.12 49.59 ± 1.69

DSLR 74.71 ± 5.27 70.59 ± 6.06 63.53 ± 5.08 52.16 ± 8.68

Ionosphere 87.36 ± 3.12 82.74 ± 2.81 88.40 ± 4.05 90.28 ± 3.33

Isolet 91.40 92.75 94.16 92.43

Letters 90.25 ± 0.60 89.90 ± 1.02 90.54 ± 1.24 91.13 ± 0.74

Pima 70.48 ± 3.19 69.57 ± 2.85 69.35 ± 2.44 69.26 ± 2.60

Scale 90.05 ± 2.13 88.10 ± 2.57 89.47 ± 2.99 89.21 ± 2.68

Splice 84.64 78.44 78.94 80.87

Svmguide1 94.83 85.25 86.90 94.70

Wine 98.55 ± 1.67 98.55 ± 1.43 97.64 ± 2.43 98.00 ± 1.34

Webcam 88.60 ± 3.63 88.92 ± 3.21 86.24 ± 2.95 81.18 ± 3.56

mean 83.86 82.27 82.08 81.08

kernelized case and thus requires more meaningful virtual points. Hence, selecting virtual

points and correctly associating them to the examples is key to obtain a good performance.

5.6 Conclusion

In this chapter we presented a new metric learning approach based on a regression and

aiming at bringing closer the learning examples to some a priori defined virtual points. The

number of constraints has the advantage of growing linearly with the size of the learning set

in opposition to the quadratic grow of standard must-link cannot-link approaches. Moreover,

our method can be solved in closed form and can be easily kernelized allowing us to deal

with non linear problems. Additionally, we proposed two methods to define the virtual

points: one making use of recent advances in the field of optimal transport and one based

on unit vectors of a class-based representation space allowing one to perform directly some

dimensionality reduction. Theoretically, we have shown that the metrics learned with our

approach generalize well and that we are able to link our empirical risk to the true risk of a

classic metric learning formulation. Finally, we empirically show that explicitly choosing the

virtual points is important and that our approach is competitive with the state of the art in

the linear case and outperforms some classic approaches in the non linear one.
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Table 5.5: Comparison of our OT based formulation to a random selection approach when

learning a non linear metric. The best result is highlighted with a bold font.

OT based approach Random

Base RVML-RBF-OT 1 VP per class 2 VP per class 5 VP per class

Amazon 73.51 ± 0.83 75.74 ± 2.35 72.68 ± 2.02 70.07 ± 2.86

Breast 95.73 ± 0.97 95.73 ± 1.07 95.83 ± 0.80 95.58 ± 1.38

Caltech 54.39 ± 1.89 58.33 ± 2.05 53.98 ± 3.18 50.35 ± 1.89

DSLR 70.39 ± 4.48 65.29 ± 7.51 58.24 ± 7.79 48.82 ± 8.03

Ionosphere 90.66 ± 3.10 90.57 ± 3.05 89.25 ± 3.73 90.38 ± 3.26

Isolet 95.96 96.99 96.54 95.25

Letters 91.26 ± 0.50 91.77 ± 0.43 91.87 ± 0.52 92.04 ± 0.62

Pima 69.35 ± 2.95 70.82 ± 4.60 71.26 ± 2.84 70.00 ± 2.56

Scale 95.19 ± 1.46 93.39 ± 2.19 91.96 ± 1.69 91.32 ± 1.95

Splice 88.51 88.37 88.46 87.22

Svmguide1 95.67 95.03 95.55 95.88

Wine 98.91 ± 1.53 97.82 ± 1.88 97.27 ± 1.96 97.82 ± 1.67

Webcam 88.71 ± 4.28 87.31 ± 2.99 83.01 ± 3.28 76.67 ± 4.78

mean 85.25 85.17 83.53 81.65
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We think that this work opens the door to design new metric learning formulations, in

particular the definition of the virtual points can bring a way to control some particular

properties of the metric (rank, locality, discriminative power, . . . ). As a consequence, this

aspect opens new issues which are in part related to landmark selection problems but also to

the ability to embed expressive semantic constraints to satisfy by means of the virtual points.

Other perspectives include the development of a specific solver, of online versions, the use of

low rank-inducing norms or the conception of new local metric learning methods. Another

direction would be to study similarity learning extensions to perform linear classification with

generalization guarantees on the classifier such as in Bellet et al. (2012); Balcan et al. (2008).

In this chapter we have addressed the problem of explicitly controlling the behaviour of

a metric by introducing the notion of virtual points. It allows us to design metrics with a

behaviour well tailored to the task at hand, for example classification. However choosing these

virtual points can be difficult and the methods proposed in Section 5.3 might not always be

satisfactory. In the next chapter we propose to build upon RVML and the optimal transport

based virtual points to design a new algorithm able to learn a transformation which brings

closer two distributions in a principled way.



Chapter 6

Mapping Estimation for Discrete

Optimal Transport

This chapter is based on the following publication

Michaël Perrot, Nicolas Courty, Rémi Flamary, and Amaury Habrard. Mapping estimation of discrete

optimal transport. In Advances in Neural Information Processing Systems (NIPS-16), 2016

Abstract

In this chapter we propose to address the problem of learning a transformation from

a Mahalanobis distance which follows some particular geometric transformations. Such

a metric could be very beneficial for domain adaptation problems where the goal is to

align the source and the target domains. Here we propose to consider geometric trans-

formations which come from the result of an optimal transport problem. Indeed it is

a reasonable procedure to align distributions and it has been shown to perform well in

domain adaptation. Most of the computational approaches of optimal transport use the

Kantorovich relaxation of the problem to learn a probabilistic coupling Γ between the

training examples but do not address the problem of learning the transport map fS→T
linked to the original Monge problem. Consequently, the fact that the coupling can only

be used to transform training examples and not for out of samples ones lowers the poten-

tial usage of such methods. In this chapter we propose to combine the most interesting

features of each method and we propose a new framework to estimate the transport map,

also called the mapping, of a coupling. This estimation takes the form of a matrix L

which corresponds to a new metric in the source domain. In this case we show that our

approach is similar to RVML, presented in Chapter 5, where we define the transformation

of the examples induced by the coupling as the virtual points for each example. However

instead of considering that this coupling is defined a priori, we jointly learn it along the

metric. It results in a jointly convex formulation which can be efficiently optimized and

has the beneficial effect of smoothing the result of optimal transport. Empirically, we

show the interest and the relevance of our method in two tasks, namely unsupervised

domain adaptation and image editing.

137
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6.1 Introduction

Many metric learning approaches have focused on learning a linear transformation in the

form of a Mahalanobis distance or a bilinear similarity (See Section 2.2). One can notice

that these methods do not try to control this transformation with respect to some particular

geometric transformations but rather try to bring closer similar examples and push far away

dissimilar ones. However considering other kind of transformations might be relevant for some

problems. This is for example the case in domain adaptation (See Section 1.5) where one has

to estimate and overcome the shift between a source and a target distribution. In this context,

a few works in metric learning have proposed to learn a metric in order to move closer source

and target instances (Saenko et al., 2010; Kulis et al., 2011). However these methods often

require some sort of supervision to associate the examples with each other and, as mentioned

before, remain limited by the kind of constraints considered.

Among approaches able to align distributions, an interesting solution is to consider optimal

transport based methods which have recently shown their interest in domain adaptation. The

idea is to learn a transformation of the source examples such that the source and the target are

aligned. This transformation takes the form of a coupling of minimal cost between source and

target where the cost function is for example the euclidean distance between the examples.

One of the main drawbacks of using this coupling in optimal transport is that it can only

be used to map source examples which have been seen during the training process and it

is not applicable to out-of-sample examples. Hence, despite showing good performances in

practice (Courty et al., 2014b) this approach cannot be used when new examples have to be

mapped from source to target domains.

In this chapter we propose to consider the best of both worlds by learning a transformation

whose behaviour is controlled by the transport map implied by the coupling Γ of a discrete

optimal transport problem. Our formulation is based on a jointly convex optimization problem

which admits two appealing interpretations. One the one hand it can be seen as learning

a linear mapping regularized by an optimal transport map1. On the other hand we can

also see the approach as the computation of the optimal transport map regularized with

respect to the definition of a mapping. Furthermore under some mild conditions on the

set of transformations considered we will show some ties between this approach and RVML

developed in Chapter 5. This formulation can be efficiently solved thanks to an alternating

block-coordinate descent and actually benefits the two models. On the one hand we obtain

smoother optimal transport maps which are compliant with a linear mapping usable as an

out-of-sample transformation. This learned transformation is able to take into account some

geometrical information captured by optimal transport. Another important aspect of our

contribution is that it is in fact not limited to linear mappings as it can be kernelized. In this

case it conveniently expresses non linear and out-of-sample transformations, thus enhancing

the faithfulness to the true optimal transport map. See Figure 6.1 for an illustration of our

1This optimal transport map is implied by the coupling Γ but cannot be computed.
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Figure 6.1: Illustration of our approach on the clown dataset when learning a linear trans-

formation (top) and a non linear transformation obtained by kernelization (bottom). In both

cases we considered the same original data, depicted in the first column, where the blue crosses

correspond to the source examples and the red crosses to the target examples. The second and

third column respectively show the couplings and the transformations jointly learned by our

approach. The fourth column demonstrates the generalization ability of the transformations

on new examples. Note that the couplings cannot be used on these examples that have not

been seen during the learning process.

method. We also provide a brief discussion on the theoretical challenges behind our approach

and we provide some empirical evidence of its interest in domain adaptation and in image

editing.

The remaining of this chapter is organized as follows. Section 6.2 is dedicated to a pre-

sentation of the problem of optimal transport. In Section 6.3 we present our approach to

jointly learn the coupling and the corresponding general transformation. Section 6.4 presents

the optimisation scheme used to solve our formulation. Here we consider several possible

transformations showing that our approach is close to RVML. In Section 6.5 we discuss some

theoretical aspects of this work. In Section 6.6 we show the good behaviour of our approach

in several experiments before concluding in Section 6.7.

6.2 Optimal Transport

In this section we present the problem of optimal transport. We start by recalling several

recent approaches which successfully make use of it before formalising the problem.

In recent years optimal transport (Villani, 2009) has received a lot of attention in the

machine learning community (e.g. (Canas and Rosasco, 2012; Cuturi, 2013a; Solomon et al.,
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2014; Frogner et al., 2015)). This gain of interest comes from several nice properties of optimal

transport when used as a divergence to compare discrete distributions. On the one hand

it provides a sound and theoretically grounded way of comparing multivariate probability

distributions without the need of estimating parametric versions. On the other hand by

considering the geometry of the underlying space through a cost metric, it can encode useful

informations about the nature of the problem. Optimal transport is usually expressed as

an optimal cost functional but it also enjoys a dual variational formulation (Villani, 2009,

Chapter 5).

Optimal transport has been proven to be useful in several settings. As a first example

it corresponds to the Wasserstein distance in the space of probability distributions. Using

this distance it is possible to compute means and barycentres (Cuturi and Doucet, 2014;

Benamou et al., 2015) or to perform a PCA in the space of probability measures (Seguy

and Cuturi, 2015). This distance has also been used in subspace identification problems for

analysing the differences between distributions (Mueller and Jaakkola, 2015), in graph based

semi-supervised learning to propagate histogram labels across nodes (Solomon et al., 2014) or

as a way to define a loss function for multi-label learning (Frogner et al., 2015). As a second

example optimal transport enjoys a variety of bounds for the convergence rate of empirical to

population measures which can be used to derive new probabilistic bounds for the performance

of unsupervised learning algorithms such as k-means (Canas and Rosasco, 2012). As a last

example optimal transport is a mean of interpolation between distributions (McCann, 1997)

that has been used in Bayesian inference (Reich, 2013), color transfer (Ferradans et al., 2014)

or domain adaptation (Courty et al., 2014a).

On the computational side, one of the major gain for optimal transport is the recent

development of regularized versions that lead to efficient algorithms Cuturi (2013a); Benamou

et al. (2015); Cuturi and Peyré (2016). Most of optimal transport formulations are based on

the computation of a (probabilistic) coupling matrix that can be seen as a bipartite graph

between the bins of the distributions. This coupling, also denoted transportation matrix

suffers from some drawbacks: it is always restricted to the data samples used to compute

this map. In other words when a new dataset (or sample) is available, one has to recompute

an optimal transport problem to deal with the new instances which can be prohibitive from

some applications in particular when the task is similar or related. From a machine learning

standpoint, this also means that we do not know how to have a good approximation of an

optimal transport map computed from a small sample that can be generalized to unseen data.

This is particularly critical when one considers large scale applications, or even medium-scales

such as image editing problems. In this chapter, we bridge this gap by learning an explicit

transformation that can be interpreted as a good approximation of the transport. As far

as we know, this is the first approach that addresses directly this problem of out-of-sample

mapping.
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6.2.1 Formalisation

In this subsection we propose a more formal presentation of the problem of optimal transport.

We present Monge’s and Kantorovich’s formulations which answer the problem of finding a

map of minimal cost. We also present the notion of Barycentric mapping which corresponds

to the transformation implied by the coupling of Kantorovich’s formulation. First of all let S
and T be the source and target domains respectively defined as the distribution DS on the

space X s and the distribution DT over the space X t. In this chapter we upper-script with s

any element associated with the source domain and with t any element associated with the

target domain.

Monge problem Let X s ∈ Rds and X t ∈ Rdt be two separable metric spaces such that

any probability measure on X s (or X t) is a Radon measure. By considering a cost function

c : X s × X t → [0,∞[, Monge’s formulation of the optimal transport problem is to find

a transform map fS→T : X s → X t (also known as a push-forward operator) between two

probability measures DS on X s and DT on X t realizing the infimum of the following function

inf

{∫
X s
c(xs, fS→T (xs)) dDS(xs), fS→T#DS = DT

}
. (6.1)

When reaching this infimum, the corresponding map fS→T is an optimal transport map. It

associates one point from X s to a single point in X t. Therefore, the existence of this map

is not always guaranteed, as when for example DS is a Dirac and DT is not. As such, the

existence of solutions for this problem can in general not be established when DS and DT
are supported on a different number of Diracs. Yet, in a machine learning context, data

samples usually form discrete distributions, but can be seen as observations of a regular,

continuous (with respect to the Lebesgue measure) underlying distribution, thus fulfilling

existence conditions (see (Villani, 2009, Chapter 9)). As such, assuming for the existence of

fS→T calls for a relaxation of the previous problem.

Kantorovich relaxation The Kantorovitch formulation of the optimal transportation Kan-

torovich (1942) is a convex relaxation of the Monge problem. Let us define Π as the set of

all probabilistic couplings ∈ P(X s × X t) the space of all joint distributions with marginals

DS and DT . The Kantorovitch problem seeks for a general coupling fX s×X t ∈ Π between X s

and X t solving the following problem:

arg min
fXs×X t∈Π

∫
X s×X t

c
(
xs,xt

)
dfX s×X t

(
xs,xt

)
(6.2)

The optimal coupling always exists (Villani, 2009, Theorem 4.1). This leads to a simple

writing of the optimal transport problem in the discrete case, i.e. whenever DS and DT are

only accessible through discrete samples S = {xsi}n
s

i=1 and T = {xti}n
t

i=1 (designed by Xs and

Xt in matrix form with one example on each line). The corresponding empirical distributions

can be written as D̂S =
∑ns

i=1 p
s
i δxsi and D̂T =

∑nt
i=1 p

t
iδxti where δx is the Dirac function at
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location x ∈ X . psi and pti are probability masses associated to the i-th sample and belong

to the probability simplex, i.e.
∑ns

i=1 p
s
i =

∑nt

i=1 p
t
i = 12. Let Π̂ be the set of probabilistic

couplings between the two empirical distributions defined as:

Π̂ =
{

Γ ∈ (R+)n
s×nt | Γ1nt = D̂S ,ΓT1ns = D̂T

}
(6.3)

where 1n is a n-dimensional vector of ones. Problem (6.2) becomes:

arg min
Γ∈Π̂

〈Γ,C〉F (6.4)

where 〈·, ·〉F is the Frobenius dot product3 and C ≥ 0 is the ns × nt cost matrix related to

the function c.

Barycentric mapping Once the probabilistic coupling Γ has been computed one needs

to perform the transformation of examples from X s to X t. This transformation can be

conveniently expressed with respect to the set of examples Xt as the following barycentric

mapping Reich (2013); Courty et al. (2014a); Ferradans et al. (2014):

x̂si = arg min
xs∈X s

nt∑
j=1

Γ(i, j)c
(
xs,xtj

)
. (6.5)

where x̂si is the image of example xsi with coupling Γ. When the cost function is the squared

euclidean distance4, this barycentre corresponds to a weighted average and the sample is

mapped into the convex hull of the target samples. For all source samples, this barycentric

mapping can therefore be expressed as:

X̂s = fΓ(Xs)
.
= diag(Γ1nt)

−1ΓXt. (6.6)

In the rest of the chapter we will focus on an uniform sampling5 hence X̂s = nsΓXt. The

main drawback of the mapping ((6.6)) is that it does not allow the projection of out-of-sample

examples which do not have been seen during the learning process of Γ. It means that to

transport a new example xs ∼ DS one has to compute the coupling matrix Γ again using this

new example. Also, while some authors consider specific regularization of Γ Cuturi (2013a);

Courty et al. (2014a) to control the nature of the coupling, inducing specific properties of the

transformation fS→T (i.e. regularity, divergence free, etc.) is hard to achieve.

In the next section we present a relaxation of the optimal transport problem, which

consists in jointly learning Γ and fS→T . We derive the corresponding optimization problem,

and show its usefulness in specific scenarios.

2If we consider that the examples are drawn i.i.d. we have pi = 1
n

for every example.
3〈A,B〉F = Tr(ATB)
4c(x,x′) = ‖x− x′‖22
5In other words the examples are drawn i.i.d. from DS and DT .
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6.3 General Framework

In this chapter we propose to solve the problem of optimal transport by jointly learning

the matrix Γ and the transformation function fS→T . First of all we denote H the space of

transformations. Let Xs and Xt be matrices where each line is an example drawn from DS
and DT . We propose the following optimisation problem:

arg min
fS→T ∈H

Γ∈Π̂

f(Γ, fS→T ) =
1

nsdt
∥∥fS→T (Xs)− nsΓXt

∥∥2

F +
λΓ

max(C)
〈Γ,C〉F +

λfS→T
dsdt

R(fS→T )

(6.7)

where fS→T (Xs) is a short-hand for the application of fS→T on each example in Xs, R is

a regularization term on fS→T and λΓ, λfS→T are hyper-parameters controlling the trade-off

between the different terms in the optimization problem. The constants in front of each term

normalize their values to be of the same order of magnitude. The first term in Problem (6.7)

depends on both fS→T and Γ and controls the closeness between the transformation induced

by fS→T and the barycentric interpolation obtained from Γ. The second term only depends

on Γ and corresponds to the standard optimal transport loss. The third term regularizes

fS→T to ensure a better generalization of the learned transformation.

In the next section we propose an efficient solution to optimize Problem (6.7) and we

discuss several possible choices for the set of transformations H, in particular we show a link

with RVML (Chapter 5).

6.4 Optimisation

A standard approach to solve Problem (6.7) is to use a block-coordinate descent (Tseng,

2001) where the idea is to alternatively optimize for fS→T and Γ. In the next theorem we

show that under some mild assumptions on the regularization term R and the function space

H this problem is jointly convex. In this case we are guaranteed to converge to the optimal

solution if the formulation is strictly convex with respect to fS→T and Γ respectively. While

this is not the case for Γ in our formulation, our algorithm works well in practice and a small

regularization term can be added if theoretical convergence is required6.

Theorem 6.1. Let H be a convex space and R be a convex regularization. Problem (6.7) is

jointly convex in fS→T and Γ.

Proof. First of all recall that a sum of jointly convex functions is jointly convex. Hence it is

sufficient to show that the three terms of Problem (6.7) are jointly convex. We note:

f1(Γ, fS→T ) =
1

nsdt
∥∥fS→T (Xs)− nsΓXt

∥∥2

F ,

6For example this regularization term could be the Frobenius norm.



144 Chapter 6. Mapping Estimation for Discrete Optimal Transport

f2(Γ) =
λΓ

max(C)
〈Γ,C〉F ,

f3(fS→T ) =
λfS→T
dsdt

R(fS→T ) .

Note that by construction f2 and f3 are jointly convex in Γ and fS→T . We will show that

f1 is also jointly convex. Let g(Γ, fS→T ) =
∥∥fS→T (Xs)− nsΓXt

∥∥
F , we want to show that:

g
(
tΓ + (t− 1)Γ′, tfS→T + (1− t)f ′S→T

)
≤ tg(Γ, fS→T ) + (1− t)g

(
Γ′, f ′S→T

)
.

We have:∥∥(tfS→T + (1− t)f ′S→T )(Xs)− ns(tΓ + (t− 1)Γ′)Xt
∥∥
F

(Triangle inequality and definition of H.)

≤
∥∥tfS→T (Xs)− tnsΓXt

∥∥
F +

∥∥(1− t)f ′S→T (Xs)− (1− t)nsΓ′Xt
∥∥
F

(t ∈ [0, 1].)

≤ t
∥∥fS→T (Xs)− nsΓXt

∥∥
F + (1− t)

∥∥f ′S→T (Xs)− nsΓ′Xt
∥∥
F

Furthermore noting that g is convex and positive we have:[
g
(
tΓ + (t− 1)Γ′, tfS→T + (1− t)f ′S→T

)]2
(∀x ∈ R+, x→ x2 is non decreasing.)

≤
[
tg(Γ, fS→T ) + (1− t)g

(
Γ′, f ′S→T

)]2
(∀x ∈ R, x→ x2 is convex.)

≤ t [g(Γ, fS→T )]2 + (1− t)
[
g
(
Γ′, f ′S→T

)]2
.

Noting that f1(Γ, fS→T ) = 1
nsdt g(Γ, fS→T )2 concludes the proof.

As discussed above we propose to solve Problem (6.7) using a block-coordinates approach.

As such we derive an efficient way to solve the problem for Γ when fS→T is fixed and for

fS→T when Γ is fixed.

Solving for Γ with fS→T fixed In this case Problem (6.7) becomes:

arg min
Γ∈Π̂

f(Γ, fS→T ) =
1

nsdt
∥∥fS→T (Xs)− nsΓXt

∥∥2

F +
λΓ

max(C)
〈Γ,C〉F +

λfS→T
dsdt

R(fS→T )

(6.8)

where fS→T is the current transformation. To solve such an optimization problem a common

approach is to use the Frank-Wolfe algorithm Ferradans et al. (2014); Frank and Wolfe (1956).

It is a procedure for solving any convex constrained optimization problems with a convex

and continuously differentiable objective function over a compact convex subset of any vector

space. This algorithm can find an ε approximation of the optimal solution in O(1/ε) iterations

Jaggi (2013). The approach is detailed in Algorithm 3.
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input : The current values of Γ and fS→T .

output: The new value of Γ.

begin

Initialize k = 0 and Γ0 = Γ

repeat

Solve Γk+ 1
2

= arg min
Γ

k+1
2
∈Π̂

〈
Γk+ 1

2
,∇f(Γk, fS→T )

〉
F

with

∇f(Γ, fS→T ) =
λΓ

max(C)
C− 2

dt
fS→T (Xs) XtT +

2

dt
nsΓXtXtT .

Find the optimal step αk satisfying the Armijo rule that minimizes

f
(

(1− α)Γk + αΓk+ 1
2
, fS→T

)
.

Update Γk+1 = (1− αk)Γk + αkΓk+ 1
2

and k = k + 1.

until convergence

end

Algorithm 3: Updating Γ with the Frank-Wolfe algorithm.

Solving for fS→T with Γ fixed In this case Problem (6.7) becomes:

arg min
fS→T ∈H

f(Γ, fS→T ) =
1

nsdt
∥∥fS→T (Xs)− nsΓXt

∥∥2

F +
λΓ

max(C)
〈Γ,C〉F +

λfS→T
dsdt

R(fS→T )

(6.9)

where Γ is the current mapping between the examples. The solution to this optimization

problem depends on H and R. This is discussed in detail in the next subsection.

6.4.1 Choosing H

In the previous subsection we presented our method when considering a general set of functions

H. We now turn our attention toward several possibilities for the choice of H. On the one

hand we propose to define H as a set of linear transformations from X s to X t. On the other

hand using the kernel trick, we propose to consider non-linear transformations. Furthermore

in both cases we consider the biased and non biased settings. In this case our approach boils

down to learn a transformation matrix L. It can then be seen as using RVML (Chapter 5)

where the virtual points are defined thanks to the barycentric mapping associated to the

current coupling.

Linear transformations A first way to define H is to consider linear transformations

induced by a ds × dt real matrix L:

H =
{
fS→T : ∃L ∈ Rd

s×dt s.t. ∀xs ∈ X s, fS→T (xs) = xsTL
}

. (6.10)

Furthermore, we define R(fS→T ) = ‖L− I‖2F where I is the identity matrix. We choose to

bias L toward I in order to ensure that the examples are not moved too far away from their
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initial position. In this case we can rewrite optimization problem (6.7) as:

arg min
L∈Rds×dt ,Γ∈Π̂

1

nsdt
∥∥XsL− nsΓXt

∥∥2

F +
λΓ

max(C)
〈Γ,C〉F +

λL

dsdt
‖L− I‖2F . (6.11)

According to Algorithm 4 a part of our procedure requires to solve optimization problem (6.11)

when Γ is fixed. One solution is to use the following closed form for L:

L =

(
1

nsdt
XsTXs +

λL

dsdt
I

)−1( 1

nsds
XsTnsΓXt +

λL

dsdt
I

)
(6.12)

where (·)−1 is the matrix inverse (Moore-Penrose pseudo-inverse when the matrix is singular).

In the previous definition of H, we considered non biased linear transformations. However it

is sometimes desirable to add a bias to the transformation.

Biased linear transformations In the biased linear case H becomes:

H =

{
fS→T : ∃L ∈ Rd

s×dt ,∃b ∈ Rd
t

s.t. ∀xs ∈ X s, fS→T (xs) = xsTL + bT =
(
xsT 1

)( L

bT

)}
.

(6.13)

In this case, Problem (6.7) becomes:

arg min L

bT

∈Rds+1×dt ,Γ∈Π̂

1

nsdt

∥∥∥∥∥(Xs 1
)( L

bT

)
− nsΓXt

∥∥∥∥∥
2

F

+
λΓ

max(C)
〈Γ,C〉F +

λL

dsdt
‖L− I‖2F .

(6.14)

As in the non biased case, it is possible to find a closed form solution for

(
L

bT

)
when Γ is

fixed:(
L

bT

)
=

(
1

nsdt

(
Xs

1T

)(
Xs 1

)
+

λL

dsdt

(
I 0

0T 0

))−1(
1

nsdt

(
Xs

1T

)
nsΓXt +

λL

dsdt

(
I

0T

))
(6.15)

Non-linear transformations In some cases a linear transformation is not sufficient to

approximate the optimal transport. Hence, we propose to consider non-linear transformations.

To do this, let φ be a non-linear function associated to a kernel function k : X s × X s → R
such that k(xs,xs′) = 〈φ(xs), φ(xs′)〉H. We can then define H for a given set of examples Xs

as:

H =
{
fS→T : ∃L ∈ Rn

s×dt s.t. ∀xs ∈ X s, fS→T (xs) = kXs

(
xsT

)
L
}

(6.16)
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where kXs

(
xsT

)
is a short-hand for the vector

(
k(xs,xs1) k(x,xs2) · · · k(xs,xsns)

)
where

xs1, · · · ,xsns are the rows of Xs. In this case optimization problem (6.7) becomes:

arg min
L∈Rns×dt ,Γ∈Π̂

1

nsdt
∥∥kXs(Xs) L− nsΓXt

∥∥2

F +
λΓ

max(C)
〈Γ,C〉F +

λL

nsdt
‖kXs(·) L‖2F . (6.17)

where kXs(·) is a short-hand for the vector
(
k(·,xs1) · · · k(·,xsns)

)
=
(
φ(xs1) · · · φ(xsns)

)
.

As in the linear case there is a closed form solution for L when Γ is fixed:

L =

(
1

nsdt
kXs(Xs) +

λL

nsdt
I

)−1 1

nsdt
nsΓXt. (6.18)

As in the linear case it might be interesting to use a bias.

Biased non-linear transformations In the biased non-linear case H becomes:

H =

{
fS→T : ∃L ∈ Rn

s×dt ,∃b ∈ Rd
t

s.t. ∀xs ∈ X s, fS→T (xs) =
(
kXs

(
xsT

)
1
)( L

bT

)}
(6.19)

Optimization problem (6.7) can be rewritten as:

arg min L

bT

∈Rns+1×dt ,Γ∈Π̂

1

nsdt

∥∥∥∥∥(kXs(Xs) 1
)( L

bT

)
− nsΓXt

∥∥∥∥∥
2

F

+
λΓ

max(C)
〈Γ,C〉F +

λL

nsdt
‖kXs(·) L‖2F .

(6.20)

As in the non biased case, it is possible to find a closed form solution for

(
L

bT

)
when Γ is

fixed:(
L

bT

)
=

(
1

nsdt

(
KXsXs

1T

)(
KXsXs 1

)
+

λL

dsdt

(
KXsXs 0

0T 0

))−1
1

nsdt

(
KXsXs

1T

)
nsΓXt

(6.21)

where KXsXs = kXs(Xs).

A summary of our approach can be found in Algorithm 4.

6.5 Discussion on Theoretical Aspects

In this section we propose to discuss some theoretical considerations about our framework

and more precisely on the quality of the learned transformation denoted by fL to show its

dependence on the matrix L. To assess this quality we consider the Frobenius norm between

fL and the true transport map, denoted fX s→X t , that we would obtain if we could solve the



148 Chapter 6. Mapping Estimation for Discrete Optimal Transport

input : Xs,Xt source and target examples and λΓ, λL hyper parameters.

output: L,Γ.

begin

Initialize k = 0, Γ0 ∈ Π̂ and L0 = I

repeat

Learn Γk+1 with fixed Lk using a Frank-Wolfe approach (Algorithm 3).

Learn Lk+1 using Equations (6.12), (6.15), (6.18) or (6.21) with fixed Γk+1.

Set k = k + 1.

until convergence

end

Algorithm 4: Joint Learning of L and Γ.

Monge problem. Let fΓ be the empirical barycentric mapping using the probabilistic coupling

Γ learned between Xs and Xt. Similarly let fX s×X t be the theoretical barycentric mapping

associated with the probabilistic coupling learned on DS ,DT the whole distributions and

which corresponds to the solution of Kantorovich’s problem. Using a slight abuse of notations

we denote by fΓ(xs) and fX s×X t(x
s) the projection of xs ∈ Xs by these barycentric mappings.

We have the following simple theorem on the quality of the learned transformation.

Theorem 6.2 (Bound on the quality of the learned transformation). With high probability

we have:

E
xs∼DS

‖fL(xs)− fX s→X t(xs)‖2F ≤ 4
∑

xs∈Xs

‖fL(xs)− fΓ(xs)‖2F +O
(

1
√
ns

)
+ 4

∑
xs∈Xs

‖fΓ(xs)− fX s×X t(xs)‖2F

+ 2 E
xs∼DS

‖fX s×X t(xs)− fX s→X t(xs)‖2F (6.22)

Proof.

E
xs∼DS

‖fL(xs)− fX s→X t(xs)‖2F

(Triangle inequality.)

≤ E
xs∼DS

(
‖fL(xs)− fX s×X t(xs)‖F + ‖fX s×X t(xs)− fX s→X t(xs)‖F

)2
((a+ b)2 ≤ 2a2 + 2b2.)

≤ 2 E
xs∼DS

‖fL(xs)− fX s×X t(xs)‖2F + 2 E
xs∼DS

‖fX s×X t(xs)− fX s→X t(xs)‖2F

Furthermore considering that H is as proposed in Section 6.4 and using Theorem 5.2 in

Chapter 5 we have with high probability that:

E
xs∼DS

‖fL(xs)− fX s→X t(xs)‖2F ≤ 2
∑

xs∈Xs

‖fL(xs)− fX s×X t(xs)‖2F +O
(

1
√
ns

)
+ 2 E

xs∼DS
‖fX s×X t(xs)− fX s→X t(xs)‖2F .
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(Triangle inequality.)

≤ 2
∑

xs∈Xs

(
‖fL(xs)− fΓ(xs)‖F + ‖fΓ(xs)− fX s×X t(xs)‖F

)2
+O

(
1
√
ns

)
+ 2 E

xs∼DS
‖fX s×X t(xs)− fX s→X t(xs)‖2F .

((a+ b)2 ≤ 2a2 + 2b2.)

≤ 4
∑

xs∈Xs

‖fL(xs)− fΓ(xs)‖2F +O
(

1
√
ns

)
+ 4

∑
xs∈Xs

‖fΓ(xs)− fX s×X t(xs)‖2F

+ 2 E
xs∼DS

‖fX s×X t(xs)− fX s→X t(xs)‖2F (6.23)

From Inequality (6.22) we deduce that there are three key quantities related to the quality

of the learned transformation fL:

•
∑

xs∈Xs ‖fL(xs)− fΓ(xs)‖2F + O
(

1√
ns

)
: This first quantity is the difference between

the transformation and the empirical barycentric mapping with respect to the Frobenius

norm. It is the one that we minimize in Problem (6.7) and should be as small as possible

to obtain a better approximation fL. Furthermore, by definition, the coupling used to

compute the empirical barycentric mapping of this term also appears in Problem (6.7).

•
∑

xs∈Xs ‖fΓ(xs)− fX s×X t(xs)‖2F : This second quantity is the difference between the

learned barycentric mapping and the theoretical one which could be obtained by learning

on the whole distribution. We expect this quantity to decrease uniformly with respect

to the number of examples as it corresponds to a measure of how well a mapping learned

on a limited set reflects the true mapping.

• Exs∼DS ‖fX s×X t(xs)− fX s→X t(xs)‖
2
F : This third quantity is the difference between the

theoretical barycentric mapping and the true transformation. We expect this quantity

to be small as it characterizes that a barycentric mapping using a coupling learned on

the whole distributions is a good approximation of the true transport map.

Note that we only expect the second and third term to be small but we do not prove it.

Indeed these quantities are difficult to bound because of a lack of theoretical results related

to these in the literature. Nevertheless we think that this discussion opens the door for new

theoretical perspectives to use OT in a Machine Learning setting but these are beyond the

scope of this thesis.

6.6 Experiments

In this section we propose to experimentally validate our approach on two tasks. The first

one is an unsupervised domain adaptation one while the second one deals with the problem
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of seamless copy in images.

6.6.1 Application in Unsupervised Domain Adaptation

In this first experiment we show the interest of our approach in an unsupervised domain

adaptation task.

Datasets We consider two domain adaptation datasets namely the Moons dataset Bruzzone

and Marconcini (2010) and the Office-Caltech dataset Gong et al. (2012). The Moons dataset

is a binary classification task which consists of 2 domains. The source domain corresponds to

two intertwined moons, each one representing one class. The target domain is built by rotating

the source domain. The rotation angle ranges from 10 to 90 degrees leading to 9 different

adaptation tasks of increasing difficulty. In this dataset the examples are of dimension 2

and we consider 300 source examples and 300 target examples for training and 1000 target

examples for testing. The Office-Caltech dataset is a 10 class image classification task which

consists of 4 domains. These domains are amazom (A), dslr (D), webcam (W) and Caltech10

(C) and corresponds to images coming from different sources. Following this, there are 12

adaptation tasks where each domain is in turn considered as the source or the target (denoted

source→ target in the results). During the training process we consider all the examples from

the source domain and half of the examples from the target domain, the other half being used

as the test set. To represent the images we use deep learning features of size 4096 named

decaf6 Donahue et al. (2014). Note that we also used this dataset in Chapter 4 but with the

original SIFT features (Gong et al., 2012).

Methods We consider 6 different baselines. The first one is a simple 1-Nearest-Neighbour

(1-NN) using the original source examples only. The second and third ones are two widely

used domain adaptation approaches, namely Geodesic Flow Kernel (GFK) Gong et al. (2012)

and Subspace Alignment (SA) Fernando et al. (2013). The fourth to sixth baselines are OT

based approaches: The classic OT method (OT), OT with an entropy based regularization

(OTE) Cuturi (2013a) and OT with a `1,2 regularization (L1L2) Courty et al. (2014a). We

present the results of our approach with the linear (OTLin) and kernel (OTKer) versions of

the transformation. We also consider their biased counterparts (*B). For all the baselines the

idea is to apply the learned transformation on the source and then to use a 1-NN classifier

on the labelled source examples to classify the target examples.

Experimental setup We consider the following experimental setup for all the methods

and datasets. All the results presented in this section are averaged over 10 trials. For each

trial we consider three sets of examples, a labelled source training set denoted Xs,ys, an

unlabelled target training set denoted Xttrain
and a labelled target testing set Xttest

,yt
test

.

The model is learned on Xs,ys and Xttrain
and evaluated on Xttest

,yt
test

with a 1-NN learned

on Xs,ys. All the hyper-parameters are tuned according to a grid search from the source and
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target training instances from a reverse validation procedure close to Bruzzone and Marconcini

(2010); Zhong et al. (2010) and presented in Algorithm 5. We use this approach to affect a

score to all the possible instantiations of hyper parameters and we then select the best among

these. As a score we compute an average accuracy of a two fold method. The idea is to split

the source training set in two halves. From one half we learn a model f that is used to label

the target training set. These new labels are then used to label the second half of the source

training set to obtain a first accuracy. The role of the two halves are then reversed to obtain a

second accuracy. The model f is learned with an algorithm Aλ using some hyper parameters

λ and is able to bring closer the source and the target examples. For example, with our linear

mapping learned from our regularized OT formulation, we have f
(
Xt
)

= Xt and f(Xs) =

fL(Xs) = XsL. For the hyper parameters of the compared methods we use the following

ranges: For GFK and SA we choose the dimension of the subspace as d ∈ {3, 6, . . . , 30}, for

L1L2 and OTE we set the parameter for entropy regularization in {10−6, 10−5, . . . , 105}, for

L1L2 we choose the class related parameter η ∈ {10−5, 10−4, · · · , 102}, for all our methods

we choose λL, λΓ ∈ {10−3, 10−2, . . . , 100}.
In this algorithm f is any model able to bring closer the source and the target. For

example, with our linear mapping learned from our regularized OT formulation, we have

f
(
Xt
)

= Xt and f(Xs) = fL(Xs) = XsL.

input : (Xs,ys) source examples and their labels, Xt target examples, Aλ a learning

procedure using hyper-parameters λ.

output: Average accuracy of Aλ.

begin

Split (Xs,ys) in two halves (Xs1,ys1) and (Xs2,ys2).

Learn f1 = Aλ(Xs1,ys1,Xt) and set yt
1

the pseudo-labels of f1(Xt) obtained from a 1NN

learned on (f1
(
Xs1

)
,ys1).

Set s1 the accuracy of a 1NN learned on (f1(Xt) ,yt
1
) and evaluated on (f1

(
Xs2

)
,ys2) .

Learn f2 = Aλ(Xs2,ys2,Xt) and set yt
2

the pseudo-labels of f2(Xt) obtained from a 1NN

learned on (f2
(
Xs2

)
,ys2).

Set s2 the accuracy of a 1NN learned on (f2(Xt) ,yt
2
) and evaluated on (f2

(
Xs1

)
,ys1) .

return s1+s2

2 .

end

Algorithm 5: Circular validation.

The results on the Moons dataset are presented in Table 6.1 and those for Office-Caltech

are given in Table 6.2. A first important remark is that for both datasets the results obtained

by using the barycentric mapping with fΓ and the results obtained by directly using the

transformation fL are almost the same. It shows that our method allows us to learn a

function fL that is a good approximation of fΓ and that fΓ is well adapted to the class of

transformations H. In terms of accuracy, our approach tends to give the best results in most

of the cases which shows that we are effectively able to move closer the distributions in a

relevant way. For the Moons datasets, the last four approaches (including ours) based on OT
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Table 6.1: Accuracy on the Moons dataset. The best result for each angle is highlighted with

a bold font.

Angle 1-NN GFK SA OT L1L2 OTE
OTLin OTLinB OTKer OTKerB

fL fΓ fL fΓ fL fΓ fL fΓ

10 99.99 99.86 99.99 97.88 99.56 99.95 100. 100. 100. 100. 100. 100. 100. 100.

20 93.08 95.75 93.08 94.96 98.74 100. 100. 99.96 100. 99.97 100. 100. 100. 100.

30 83.98 92.55 83.98 90.62 98.36 100. 99.82 99.9 99.78 99.86 99.99 100. 99.99 100.

40 77.07 90.85 74.41 83.73 95.8 99.98 98.32 98.65 98.1 98.46 99.65 99.73 99.63 99.74

50 61.73 90.22 73.13 77.75 87.69 87.29 97.8 97.56 97.48 97.5 99.12 99.23 99.11 99.14

60 41.21 79.37 72.35 71.0 88.3 86.35 96.42 97.22 95.84 97.04 96.59 96.8 96.62 96.81

70 23.08 61.05 72.27 64.48 89.03 77.46 88.04 94.66 88.21 94.32 80.77 81.54 82.45 83.06

80 20.72 36.16 72.31 57.34 73.6 58.79 76.91 81.01 76.58 80.74 73.96 74.13 73.94 74.24

90 19.4 43.08 34.16 50.97 58.1 51.31 67.88 67.96 67.13 68.06 56.32 55.77 57.57 55.42

Table 6.2: Accuracy on the Office-Caltech dataset. The best result for each task is highlighted

with a bold font.

Task 1-NN GFK SA OT L1L2 OTE
OTLin OTLinB OTKer OTKerB

fL fΓ fL fΓ fL fΓ fL fΓ

D →W 89.47 93.31 95.56 76.95 95.7 95.7 97.28 97.28 97.28 97.28 98.41 98.48 98.48 98.48

D → A 62.52 77.23 88.5 70.83 74.9 74.85 85.73 85.73 85.75 85.75 89.92 89.9 89.54 89.54

D → C 51.81 69.73 78.99 68.09 67.85 68.03 77.15 77.15 77.43 77.43 69.1 69.17 69.27 69.31

W → D 99.25 99.75 99.63 74.13 94.38 94.38 99.38 99.38 99.75 99.75 97.25 97.25 96.88 96.88

W → A 62.5 72.38 79.25 67.6 71.33 71.35 81.46 81.46 81.38 81.38 78.5 78.35 78.52 78.81

W → C 59.5 63.74 55.02 63.1 67.78 67.78 75.87 75.87 75.41 75.41 72.71 72.7 65.12 63.26

A→ D 65.25 75.88 83.75 64.63 70.13 70.5 80.63 80.63 80.38 80.5 65.63 65.5 71.88 71.5

A→W 56.75 68.01 74.57 66.82 67.15 67.28 74.64 74.64 74.37 74.37 66.36 64.77 70. 68.87

A→ C 70.09 75.71 79.2 70.43 74.06 74.31 81.81 81.81 81.6 81.63 84.38 84.43 84.49 84.47

C → D 75.88 79.5 85. 66. 69.75 70.25 87.13 87.13 87.25 87.25 70.13 70. 78.63 78.63

C →W 65.17 70.66 74.44 59.21 63.77 63.77 78.28 78.28 78.48 78.48 80. 80.4 73.51 73.38

C → A 85.79 87.13 89.33 75.25 76.63 76.67 89.94 89.94 89.71 89.71 82.38 82.15 83.56 83.48

Mean 70.33 77.75 81.94 68.59 74.45 74.57 84.11 84.11 84.07 84.08 79.56 79.43 79.99 79.72

obtain similar results until 40 degrees while other DA methods fail to obtain good results at

20 degrees. Beyond 50 degrees, our approach tends to obtain significantly better results (more

than 10 points of accuracy) and is more stable when the difficulty of the problem increases.

For Office-Caltech, our results are significantly better than other approaches which clearly

illustrates the potential of our method for difficult DA tasks. As a conclusion, forcing the OT

to learn a smoother map fL allows the approach to get a better robustness.

6.6.2 Seamless Copy in Images with Gradient Adaptation

We propose here a direct application of our mapping estimation in the context of image edit-

ing. While several papers using optimal transport are focusing on color adaptation Ferradans

et al. (2014); Solomon et al. (2015), we explore here a new variant in the domain of image

editing: the seamless editing or cloning in images. In this context, one may desire to import

a region from a given source image to a target image. As a direct copy of the region leads

to inaccurate results in the final image nearby the boundaries of the copied selection, a very

popular method, proposed by Pérez and co-workers Pérez et al. (2003), allows to seamlessly
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blend the target image and the selection. This technique, coined as Poisson Image Editing,

operates in the gradient domain of the image. Hence, the gradients of the selection oper-

ate as a guidance field for an image reconstruction based on membrane interpolation with

appropriate boundary conditions extracted from the target image.

Let f be an unknown scalar function (usually a component of the color space of the image)

defined on a given region of the image Ω. Let f t be the target image defined everywhere apart

from the interior of Ω. The Poisson editing method operates by solving for f as the following

variational optimization problem with Dirichlet boundary conditions:

min
f

∫ ∫
Ω
|∇f − v|2 with f |∂Ω = f t|∂Ω. (6.24)

Here, v is the guidance field, which is usually given as the gradient from the source image fs

over the domain Ω, i.e. v = ∇f s|Ω. One can show that the unique solution to this problem

is the solution of the following Poisson equation Pérez et al. (2003):

∆f = div v over Ω, with f |∂Ω = f t|∂Ω. (6.25)

Using appropriate first order discretization of the Laplacian operator, solving for this problem

amounts to solve a big sparse linear system, which can be performed efficiently with multigrid

solvers.

Though appealing, this technique is prone to errors due to local contrast change or false

colors resulting from the integration. While some solutions combining both gradient and color

domains exist Deng et al. (2012), this editing technique usually requires the source and target

images to have similar colors and contrast. Here, we propose to enhance the generality of this

technique by forcing the gradient distribution from the source image to follow the gradient

distribution in the target image. As a result, the seamless cloning not only blends smoothly

the copied region in the target domain, but also constraints the color dynamics to that of

the target image. Hence, a part of the style of the target image is preserved. We start by

learning a transfer function fL : R6 → R6 with our method, where 6 denotes the vertical

and horizontal components of gradient per color. Following our method which aligns the

distribution of gradients in the source image to the target one, we then solve for the following

system:

∆f = div fL(v) over Ω, with f |∂Ω = f t|∂Ω. (6.26)

When dealing with images, the number of source and target gradients are largely exceeding

tens of thousands and it is mandatory to consider methods that scale appropriately. As

such, our technique can readily learn the transfer function fL over a limited set of gradients

and generalizes appropriately to unseen gradients. Several illustrations of this method are

proposed in a context of face swapping in Figure 6.2. As one can observe, the original

method of Poisson image editing Pérez et al. (2003) (3rd column) tends to preserve the color

dynamic of the original image and fails in copying the style of the target image. Our method

was tested with a linear and kernel version of fL, that was learned with only 500 gradients
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sampled randomly from both sources (λL = 10−2, λL = 103 for respectively the linear and

kernel versions, and λΓ = 10−7 for both cases). As a general qualitative comment, one can

observe that the kernel version of fL is better at preserving the dynamics of the gradient, while

the linear version tends to flatten the colors. In this low-dimensional space, this illustrates

the need of a non-linear transform. We also illustrate one case of failure of our approach in

Figure 6.3 where it is not possible to produce the same vast swaths of colors as in the target

image since our method does not modify the spatial arrangement of the gradient. Regarding

the computational time, the gradient adaptation is of the same order of magnitude as the

Poisson equation solving, and each example are computed in less than 30s on a standard

personal laptop.

6.7 Conclusion

In this chapter we proposed a solution to learn a transformation from a Mahalanobis distance

whose behaviour is controlled by the geometric transformation induced by a transport map.

We considered a jointly convex approach to learn both the coupling Γ and the transformation

fL. From an optimal transport point of view this transformation can be seen as an approx-

imation of the transport map given by Γ and allows us to project out-of-samples examples

not seen during the learning process. Furthermore, jointly learning the coupling and the

transformation allows us to regularize the transport by enforcing a certain smoothness on the

transport map. We presented some theoretical considerations on the generalization ability

of the learned transformation fL. Hence we discussed that under the assumption that the

barycentric mapping generalizes well and is a good estimate of the true transformation, then

fL learned with our method should be a good approximation of the true transformation. We

have shown that our approach is efficient in practice on two different tasks, namely domain

adaptation and image editing. On the one hand, in the domain adaptation task, we obtained

better results than standard optimal transport based approaches. Furthermore the results

obtained by the coupling Γ and the transformation fL are almost identical validating the

approach. On the other hand, in a Computer Vision task, we have shown that the transfor-

mation fL can be efficiently used on out-of-samples examples leading to visually smoother

and better results than the standard approaches.

The framework presented in this chapter opens the door to several perspectives. First,

from a theoretical standpoint the bound proposed raises some questions on the generalization

ability of the barycentric mapping and on the estimation of the quality of the true barycentric

mapping with respect to the target transformation. On a more practical side, note that in

recent years regularized optimal transport has encountered a growing interest and several

methods have been proposed to control the behaviour of the transport. As long as these

regularization terms are convex, one could imagine use them in our framework. Another

perspective could be to use our framework in a mini-batch setting where instead of learning

from the whole dataset we can estimate a single function fS→T from several couplings Γ
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Figure 6.2: Illustrations of seamless copies with gradient adaptation. Each row is composed

of the source image, the corresponding selection zone Ω described as a binary mask, and the

target image. We compare here the linear (4th column) and kernel (5th column) versions of

the map fL with the original method of Pérez et al. (2003) (3rd column).
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Figure 6.3: Illustration of failure of style adaptation.

optimized on different splits of the examples. We also believe that our framework could allow

the use of the notion of optimal transport in deep architectures as, contrary to the coupling

Γ, the function fL can be used on out-of-samples examples. As a last perspective we think

that our framework could be used to learn some metrics in some other contexts such as

unsupervised learning.



Conclusion and Perspectives

In this thesis we addressed the problem of learning a metric with a controlled behaviour. We

considered two kinds of control on the learned metric. On the one hand we addressed the

problem of learning with respect to a reference metric available either under the form of a

given distance between a limited number of pairs or directly through its model. On the other

hand we considered the problem of learning the underlying transformation of a Mahalanobis

distance either able to precisely move the examples toward a set destination or controlled

by a geometric transformation. Our contributions have taken the form of algorithmic and

theoretical solutions.

Summary of the Contributions

Most of metric learning algorithm are interested in learning metrics able to bring closer

similar examples and to push far away dissimilar ones. However, in some cases, one might

be interested in predicting an exact value between two examples. This is for example the

case when one has access to a limited number pairs for which the value of a reference metric

is known. In our first contribution we addressed the problem of learning an approximation

of this reference metric. We proposed a local metric learning algorithm and we theoretically

analysed it showing that with a sufficient number of examples the learned model generalizes

well. Furthermore we evaluated our approach on the computer vision problem of perceptual

color differences. To this end we created a new dataset specifically designed for the problem

at hand. Our empirical results showed the good behaviour of our approach and its ability to

correctly approximate a reference metric. The dataset and the perceptually uniform distance

that we learned are freely distributed (Perrot et al., 2014a).

Several approaches in metric learning empirically demonstrated the interest of using side

information in the form of a source metric without theoretically proving that it was indeed

beneficial. In the second contribution we proposed to bridge this gap. Hence we formalised

the metric hypothesis transfer learning framework where the idea is to take into account

a source metric in a biased regularization term. We proposed a theoretical analysis of this

framework and, considering several theoretical approaches, we derived three different measures

of goodness for the source metric. These measures are ways to evaluate the interest of a

source metric for the problem at hand. Two of these measures are theoretical and thus

are hard to use in practice. The third one, however, is empirical which means that it can

157
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be computed and used to select the best source metric among a set of candidates. As an

illustration it allowed us to propose an algorithm to weight the importance of the source

metric. We demonstrated the wide range of applicability of the metric hypothesis transfer

learning framework by proving that several loss functions and regularization terms fall into

our theoretical analysis. Furthermore we empirically evaluated it on metric learning and

semi-supervised domain adaptation tasks.

Most of metric learning approaches use similarity and dissimilarity constraints to learn a

metric but do not explicitly control the behaviour of the underlying transformation. In our

third contribution we addressed this problem by proposing a new approach where the desired

destination of the examples is explicitly chosen through so-called virtual points. It allowed us

to carefully control the learned metric and thus to design more problem specific models. For

example for classification we proposed class based virtual points where the metric is learned

such that each axis is discriminative for a particular class. We showed that our approach

can easily be kernelized making it able to learn very expressive metrics. We also proposed

a theoretical study demonstrating that our approach can be tied to a classic metric learning

method. Lastly we empirically demonstrated its good performance on several well known

datasets.

In our fourth contribution we addressed a problem similar to the third one. However

instead of explicitly controlling the behaviour of each example individually we proposed to

force a metric to follow a particular geometric transformation. Hence we considered trans-

formations implied by the coupling learned by a discrete optimal transport problem which is

particularly relevant for domain adaptation tasks. We proposed a solution to jointly learn

this coupling and an associated metric through its underlying transformation. We derived an

efficient optimization scheme and we showed that this approach could be further interpreted

as a modification of our third contribution where the transformation and the virtual points

are jointly learned. We empirically demonstrated the good behaviour of our approach on

unsupervised domain adaptation and seamless copy tasks.

Perspectives

We have already presented specific perspectives for each of our contributions. In this part,

we rather try to discuss more general future works that can represent some new research

directions from the work presented in this thesis.

From an algorithmic standpoint our contributions are mainly based on batch optimization

problems. A first perspective would be to extend the concepts presented here to the online

learning setting. Following this idea it could be interesting to develop some mechanisms able

to detect a potential drift in the distribution of the examples and to automatically change

the behaviour of the metric accordingly. Such an approach could for example be used when

learning a metric to solve a problem of tracking of objects in videos where the variations in

the scene might call for different behaviours. Another perspective would be to consider active

learning to improve the control over the metric. For example when learning a transformation
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it could be interesting to obtain some feedback from the user to verify that the examples

are moving in the correct direction. A motivating example could be the problem of domain

adaptation, where active learning has already proven to be useful (Berlind and Urner, 2015),

where obtaining some carefully selected feedbacks could ensure that the metric is correctly

estimating the shift between the distributions.

On a more theoretical standpoint we can notice that in this thesis we were mainly inter-

ested in the generalization ability of the learned metric and not in its impact on the subsequent

application. Following the latter idea Balcan et al. (2008) have demonstrated that the er-

ror of a linear classifier is tied to a measure of goodness of the similarity used to learn it.

This goodness is related to the capacity of a metric at bringing closer similar examples and

pushing far away dissimilar ones. However when learning a metric with controlled behaviour

this measure might not be adapted. For example when learning a metric with respect to a

reference metric (Chapters 3 and 4) one would probably be more interested in considering a

measure telling if the learned metric is better than the reference one. Similarly when learning

a transformation for a domain adaptation task (Chapter 4 and 6) one would probably put its

focus on the ability of the metric at aligning the source and target distributions. It implies

that a measure of the goodness of the metric is task dependent. An interesting perspective

would be to consider some theoretical frameworks able to take into account a measure of

goodness related to the task at hand and to prove that a good metric is indeed beneficial.

Another theoretical perspective would be to derive generalization bounds with a fast

rate of convergence in the presence of additional informations. In Chapter 4 we proposed

a first solution to this problem using the Rademacher complexity framework along with the

additional information that is the goodness of a source metric. However this solution is not

satisfying in the sense that the constraint on the source metric was somehow stronger than

the result obtained on the learned metric. Nevertheless this is still encouraging in the sense

that it shows that under strong assumptions it is possible to obtain a fast rate of convergence.

Thus, if one manages to obtain weaker assumptions (See e.g. Srebro et al. (2010c)) it might

be possible to obtain more meaningful results.



160 Conclusion and Perspectives



List of Publications

Publications in International Conferences
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Michaël Perrot and Amaury Habrard. Apprentissage de mtriques par rgression. In Conférence fran-
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Appendix A

Theorems, Lemmas and Definitions

We present here several Theorems, Lemmas and Definitions used throughout the thesis but

not presented in the main text for the sake of readability.

A.1 Properties of Loss Functions

Definition A.1 (k-lipschitz continuity). A loss function l (h, z) is k-lipschitz with respect to

its first argument if, for any hypotheses h, g ∈ H and any example z, there exists k ≥ 0 such

that:

|l (h, z)− l (g, z)| ≤ k ‖h− g‖ . (A.1)

The k-lipschitz property ensures that the loss deviation does not exceed the deviation

between two hypotheses h and g with respect to a positive constant k.

Definition A.2 ((σ,m)-admissibility). A loss function for metric learning l (M, z, z′) is

(σ,m)-admissible, with respect to M, if it is convex with respect to its first argument and

if for any two pairs of examples z, z′ and z′′, z′′′, we have:∣∣l (M, z, z′
)
− l
(
M, z′′, z′′′

)∣∣ ≤ σ ∣∣δyy′ − δy′′y′′′∣∣+m (A.2)

where δyy′ = 1 if y = y′ and −1 otherwise, i.e.
∣∣δyy′ − δy′′y′′′∣∣ ∈ {0, 2}.

This property bounds the difference between the losses of two pairs of examples by a value

only related to the labels plus a constant independent from the matrix M.

Definition A.3 (H-smooth loss (Srebro et al., 2010c)). A function f : R→ R is H-smooth

if it is twice differentiable and its first derivative is H-lipschitz continuous (Definition A.1).

Lemma A.1 (Srebro et al. (2010b, Lemma B.1)). For any H-smooth non-negative function

f : R→ R and t, r ∈ R we have that:

(f(t)− f(r))2 ≤ 6H (f(t) + f(r)) (t− r)2. (A.3)
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A.2 Properties of Norms

Definition A.4 (Dual norm). Let ‖·‖ be a norm over a normed space M. The dual norm

‖·‖∗ is defined as: ∥∥M′∥∥
∗ = max

M

〈
M′,M

〉
: ‖M‖ ≤ 1. (A.4)

A.3 Properties of Algorithms

Definition A.5 (On-average-replace-one-stability (Shalev-Shwartz and Ben-David, 2014a)).

Let n be the number of examples considered during the learning step. Let ε : N → R be

monotonically decreasing with respect to n and let U(1, n) be the uniform distribution over

1, . . . , n. An algorithm is on-average-replace-two-stable with rate ε(n) if for any distribution

DT :

E
T∼DT
i∼U(1,n)
z∼DT

[l (hT i , zi)− l (hT , zi)] ≤ ε(n) (A.5)

where hT , respectively hT i, is the optimal solution when learning with the training set T ,

respectively T i. T i is obtained by replacing zi, the ith example of T , by z.

A.4 Concentration Inequalities

Theorem A.1 (McDiarmid’s inequality (McDiarmid, 1989)). Let X1, ..., Xn be n independent

random variables taking values in X and let Z = f(X1, ..., Xn). If for each 1 ≤ i ≤ n, there

exists a constant ci such that

sup
x1,...,xn,x′i∈X

∣∣f(x1, . . . ,xi, . . . ,xn)− f
(
x1, . . . ,x

′
i, . . . ,xn

)∣∣ ≤ ci,∀1 ≤ i ≤ n, (A.6)

then for any ε > 0,

Pr (|Z − E [Z]| ≥ ε) ≤ 2 exp

(
−2ε2∑n
i=1 c

2
i

)
. (A.7)

Proposition A.1 (Van Der Vaart and Wellner (1996)). Let (n0, n1, . . . , nK) an i.i.d. multi-

nomial random variable with parameters n =
∑K

j=0 nj and (P (C0), P (C1), . . . , P (CK)). By

the Breteganolle-Huber-Carol inequality we have:

Pr

 K∑
j=0

∣∣∣nj
n
− Pr(Cj)

∣∣∣ ≥ ε
 ≤ 2K exp

(
−nε2

2

)
, (A.8)

hence with probability at least 1− δ,

K∑
j=0

∣∣∣nj
n
− Pr(Cj)

∣∣∣ ≤
√

2K ln(2) + 2 ln(1
δ )

n
. (A.9)
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A.5 Other Theorems

Theorem A.2 (Union bound). Given a countable set of events E1, E2, E3, . . .:

Pr

(⋃
i

Ei

)
≤
∑
i

Pr (Ei) . (A.10)

Theorem A.3 (Cauchy-Schwarz inequality). Let X be a vector space equipped with an inner

product 〈·, ·〉 defining a norm ‖·‖. Let x,x′ ∈ X , then:〈
x,x′

〉2 ≤ 〈x,x〉2
〈
x′,x′

〉2
(A.11)

⇔
∣∣〈x,x′〉∣∣ ≤ ‖x‖ ∥∥x′∥∥ . (A.12)

Definition A.6 (Convexity). A function f is convex if for all w, u, and α ∈ [0, 1] we have:

f(αw + (1− α)u) ≤ αf(w) + (1− α)f(u) . (A.13)

Definition A.7 (c-strong convexity). A function f is c-strongly convex if for all w, u, and

α ∈ [0, 1] we have:

f(αw + (1− α)u) ≤ αf(w) + (1− α)f(u)− c

2
α(1− α) ‖w − u‖22 . (A.14)

Theorem A.4 (Jensen’s inequality). For any convex function f of a random variable X we

have:

f

(
E
X

[X]

)
≤ E

X
[f(X)] . (A.15)
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Appendix B

Proofs of Chapter 3

B.1 Proof of Lemma 3.1

Lemma (Bounded loss function). For any 0 ≤ j ≤ K, let MTj be the metric learned for

region Cj with the training set Tj, we have that for any example (x,x′,∆) ∼ DT j:

0 ≤ l
(
MTj , (x,x

′,∆)
)
≤ Bj, (B.1)

with Bj = max

(
∆max√
λj
,∆2

max

)
.

Proof. First of all note that the absolute value is always positive which gives the first inequal-

ity. Furthermore MTj is an optimal solution of Problem (3.5). Hence we have:

L̂Tj (MTj ) + λj
∥∥MTj

∥∥2

F ≤ L̂Tj (0) + λj ‖0‖2F

⇔ 1

nj

∑
(x,x′,∆)∈Tj

l
(
MTj , (x,x

′,∆)
)

+ λj
∥∥MTj

∥∥2

F ≤
1

nj

∑
(x,x′,∆)∈Tj

l
(
0, (x,x′,∆)

)
+ λj ‖0‖2F

(Positive loss function and ‖0‖F = 0.)

⇒ λj
∥∥MTj

∥∥2

F ≤
1

nj

∑
(x,x′,∆)∈Tj

l
(
0, (x,x′,∆)

)
(l (0, (x,x′,∆)) ≤ ∆2

max.)

⇒ λj
∥∥MTj

∥∥2

F ≤ ∆2
max

⇒
∥∥MTj

∥∥
F ≤

∆max√
λj

. (B.2)

We can now prove the second inequality of the lemma:

l
(
MTj , (x,x

′,∆)
)

=
∣∣(x− x′)TMTj (x− x′)−∆2

∣∣
(Difference between two positive values.)

≤ max
(
(x− x′)TMTj (x− x′),∆2

)
(Cauchy-Shwartz inequality (Theorem A.3).)
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≤ max
(∥∥x− x′

∥∥2

2

∥∥MTj

∥∥
F ,∆

2
)

(Equation (B.2), ‖x− x′‖2 ≤ 1 and ∆ ≤ ∆max.)

≤ max

(
∆max√
λj
,∆2

max

)
(B.3)

Setting Bj = max

(
∆max√
λj
,∆2

max

)
gives the lemma.

B.2 Proof of Lemma 3.2

Lemma (k-lipschitz continuity). Let MTj and M′
Tj

be two matrices for a region Cj and

(x,x′,∆) be an example. Our loss l
(
MTj , (x,x

′,∆)
)

is k-lipschitz continuous with k = D2
j .

Proof.∣∣∣l (MTj , (x,x
′,∆)

)
− l
(
M′

Tj , (x,x
′,∆)

)∣∣∣
=
∣∣∣∣∣(x− x′)TMTj (x− x′)−∆2

∣∣− ∣∣∣(x− x′)TM′
Tj (x− x′)−∆2

∣∣∣∣∣∣
(Triangle inequality.)

≤
∣∣∣(x− x′)TMTj (x− x′)− (x− x′)TM′

Tj (x− x′)
∣∣∣

=
∣∣∣(x− x′)T (MTj −M′

Tj )(x− x′)
∣∣∣

(Cauchy-Shwartz inequality (Theorem A.3).)

≤
∥∥x− x′

∥∥2

2

∥∥∥MTj −M′
Tj

∥∥∥
F

(Dj = max(x,x′,∆)∼DT j ‖x− x′‖2.)

≤ D2
j

∥∥∥MTj −M′
Tj

∥∥∥
F

Setting k = D2
j gives the lemma.

B.3 Proof of Lemma 3.3

To prove Lemma 3.3 we need the following technical lemma.

Lemma B.1. Let FTj (M) = L̂Tj (M) + λj ‖M‖2F and FT ij
(M) = L̂T ij

(M) + λj ‖M‖2F be the

functions minimized in Problem (3.5) where Tj and T ij are two training samples of nj exam-

ples. T ij is obtained by replacing example i from Tj by another example drawn independently

from DT j. Let MTj and MT ij
be their respective minimizers, and λj be the regularization

parameter used in our algorithm. Let ∆MTj
= MTj −MT ij

, then, we have, for any t ∈ [0, 1],

∥∥MTj

∥∥2

F −
∥∥∥MTj − t∆MTj

∥∥∥2

F
+
∥∥∥MT ij

∥∥∥2

F
−
∥∥∥MT ij

+ t∆MTj

∥∥∥2

F
≤ 2kt

λjnj

∥∥∥∆MTj

∥∥∥
F

. (B.4)
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Proof. L̂T ij
is a convex function, thus, for any t ∈ [0, 1], we can write:

L̂T ij
(MTj − t∆MTj

)− L̂T ij (MTj ) ≤ t
(
L̂T ij

(MT ij
)− L̂T ij (MTj )

)
, (B.5)

L̂T ij
(MT ij

+ t∆MTj
)− L̂T ij (MT ij

) ≤ t
(
L̂T ij

(MTj )− L̂T ij (MT ij
)
)

. (B.6)

By summing Inequalities (B.5) and (B.6) we obtain

L̂T ij
(MTj − t∆MTj

)− L̂T ij (MTj ) + L̂T ij
(MT ij

+ t∆MTj
)− L̂T ij (MT ij

) ≤ 0. (B.7)

Since MTj and MT ij
are minimizers of FTj and FT ij

, we can write:

FTj
(
MTj

)
− FTj

(
MTj − t∆MTj

)
≤ 0, (B.8)

FT ij

(
MT ij

)
− FT ij

(
MT ij

+ t∆MTj

)
≤ 0. (B.9)

By summing Inequalities (B.8) and (B.9), we obtain:

L̂Tj (MTj )− L̂Tj (MTj − t∆MTj
) + λj

∥∥MTj

∥∥2

F − λj
∥∥∥MTj − t∆MTj

∥∥∥2

F

+ L̂T ij
(MT ij

)− L̂T ij (MT ij
+ t∆MTj

) + λj

∥∥∥MT ij

∥∥∥2

F
− λj

∥∥∥MT ij
+ t∆MTj

∥∥∥2

F
≤ 0.

(B.10)

We can now sum Inequalities (B.7) and (B.10) to obtain:

L̂Tj (MTj )− L̂T ij (MTj )− L̂Tj (MTj − t∆MTj
) + L̂T ij

(MTj − t∆MTj
)

+ λj
∥∥MTj

∥∥2

F − λj
∥∥∥MTj − t∆MTj

∥∥∥2

F
+ λj

∥∥∥MT ij

∥∥∥2

F
− λj

∥∥∥MT ij
+ t∆MTj

∥∥∥2

F
≤ 0.

(B.11)

From Inequality (B.11), we can write:

λj
∥∥MTj

∥∥2

F − λj
∥∥∥MTj − t∆MTj

∥∥∥2

F
+ λj

∥∥∥MT ij

∥∥∥2

F
− λj

∥∥∥MT ij
+ t∆MTj

∥∥∥2

F
≤ C (B.12)

with

C = L̂T ij
(MTj )− L̂Tj (MTj ) + L̂Tj (MTj − t∆MTj

)− L̂T ij (MTj − t∆MTj
).

We are now looking for a bound on C:

C ≤
∣∣∣L̂Tj (MTj − t∆MTj

)− L̂Tj (MTj ) + L̂T ij
(MTj )− L̂T ij (MTj − t∆MTj

)
∣∣∣

=
1

nj

∣∣∣∣∣∣
∑

(x,x′,∆)∈Tj

l
(
MTj − t∆MTj

, (x,x′,∆)
)
− l
(
MTj , (x,x

′,∆)
)

+
∑

(xi,xi′,∆)∈T ij

l
(
MTj , (x

i,xi
′
,∆)

)
− l
(
MTj − t∆MTj

, (xi,xi
′
,∆)

)∣∣∣∣∣∣∣
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(Tj and T ij only differ by one pair.)

=
1

nj

∣∣∣l (MTj − t∆MTj
, (xi,x

′
i,∆)

)
− l
(
MTj , (xi,x

′
i,∆)

)
+ l

(
MTj , (x

i
i,x

i
i
′
,∆)

)
− l
(
MTj − t∆MTj

, (xii,x
i
i
′
,∆)

)∣∣∣
(Triangle inequality.)

≤ 1

nj

∣∣∣l (MTj − t∆MTj
, (xi,x

′
i,∆)

)
− l
(
MTj , (xi,x

′
i,∆)

)∣∣∣
+

1

nj

∣∣∣l (MTj , (x
i
i,x

i
i
′
,∆)

)
− l
(
MTj − t∆MTj

, (xii,x
i
i
′
,∆)

)∣∣∣
(k-lipschitz continuity (Lemma 3.2).)

≤ 1

nj
k
∥∥∥MTj − t∆MTj

−MTj

∥∥∥
F

+
1

nj
k
∥∥∥MTj −MTj − t∆MTj

∥∥∥
F

=
1

nj
k
∥∥∥t∆MTj

∥∥∥
F

+
1

nj
k
∥∥∥−t∆MTj

∥∥∥
F

(Definition of ‖·‖F .)

=
2kt

nj

∥∥∥∆MTj

∥∥∥
F

.

Combining this bound on C with Equation (B.12) and dividing both sides by λj gives the

lemma.

We are now ready to prove Lemma 3.3.

Lemma (Uniform stability per region Cj). Given two training samples Tj and T ij of nj

examples where T ij is obtained by replacing example i from Tj by another example drawn in-

dependently from DT j. Let MTj and MT ij
be the respective optimal solutions of Problem (3.5)

when learning with Tj and T ij . In region Cj our problem is βj uniformly stable with βj =
2D4

j

λj
.

Proof. By setting t = 1
2 in Lemma B.1, one can obtain for the left hand side:

∥∥MTj

∥∥2

F −
∥∥∥∥MTj −

1

2
∆MTj

∥∥∥∥2

F
+
∥∥∥MT ij

∥∥∥2

F
−
∥∥∥∥MT ij

+
1

2
∆MTj

∥∥∥∥2

F
=

1

2

∥∥∥∆MTj

∥∥∥2

F

and thus

1

2

∥∥∥∆MTj

∥∥∥2

F
≤

2k 1
2

λjnj

∥∥∥∆MTj

∥∥∥
F

, (B.13)

which implies ∥∥∥∆MTj

∥∥∥
F
≤ 2k

λjnj
. (B.14)

Since our loss is k-lipschitz (Lemma 3.2) we have:∣∣∣l (MTj , (x,x
′,∆)

)
− l
(
MT ij

, (x,x′,∆)
)∣∣∣ ≤ k ∥∥∥∆MTj

∥∥∥
F

(B.15)
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≤ 2k2

λjnj
. (B.16)

In particular, since k = D2
j ,

sup
(x,x′,∆)∼DT j

∣∣∣l (MTj , (x,x
′,∆)

)
− l
(
MT ij

, (x,x′,∆)
)∣∣∣ ≤ 2D4

j

λjnj
. (B.17)

The last inequality matches the definition of uniform stability, Definition 1.3. Thus setting

βj =
2D4

j

λj
gives the lemma.

B.4 Proof of Lemma 3.4

Lemma (Bound on ETj∼DT j
[
RTj

]
). For any βj uniformly stable learning method of estima-

tion error RTj = LTj (MTj )− L̂Tj (MTj ) for a training set Tj, we have:

E
Tj∼DT j

[
RTj

]
≤ βj
nj

. (B.18)

Proof. First of all note that:

E
Tj∼DT j

[
L̂Tj (MTj )

]
=

1

nj

∑
(xi,x′i,∆)∈Tj

E
Tj∼DT j

[
l
(
MTj , (xi,x

′
i,∆)

)]
=

1

nj

∑
(xi,x′i,∆)∈Tj

E
Tj ,(x,x′,∆)∼DT j

[
l
(
MT ij

, (x,x′,∆)
)]

= E
Tj ,(x,x′,∆)∼DT j

[
l
(
MT ij

, (x,x′,∆)
)]

The second to last equality comes from the fact that the pairs are drawn independently from

DT j and thus changing one example with another does not change the expectation. From

this equality we deduce:

E
Tj∼DT j

[
RTj

]
= E

Tj∼DT j

[
LTj (MTj )− L̂Tj (MTj )

]
= E

Tj ,(x,x′,∆)∼DT j

[
l
(
MTj , (x,x

′,∆)
)
− l
(
MT ij

, (x,x′,∆)
)]

≤ E
Tj ,(x,x′,∆)∼DT j

∣∣∣l (MTj , (x,x
′,∆)

)
− l
(
MT ij

, (x,x′,∆)
)∣∣∣

(Uniform stability (Lemma 3.3).)

≤ βj
n
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B.5 Proof of Lemma 3.5

Lemma (Bound on
∣∣∣RTj −RT ij ∣∣∣). For any βj uniformly stable learning method of estimation

error RTj = LTj (MTj )− L̂Tj (MTj ) for a training set Tj and any Bj bounded loss function we

have: ∣∣∣RTj −RT ij ∣∣∣ ≤ 2βj +Bj
nj

. (B.19)

Proof.∣∣∣RTj −RT ij ∣∣∣ =
∣∣∣LTj (MTj )− L̂Tj (MTj )−

(
LTj (MT ij

)− L̂T ij (MT ij
)
)∣∣∣

=
∣∣∣LTj (MTj )− L̂Tj (MTj )− LTj (MT ij

) + L̂T ij
(MT ij

)− L̂Tj (MT ij
) + L̂Tj (MT ij

)
∣∣∣

(Triangle inequality.)

≤
∣∣∣LTj (MTj )− LTj (MT ij

)
∣∣∣+
∣∣∣L̂Tj (MT ij

)− L̂Tj (MTj )
∣∣∣+
∣∣∣L̂T ij (MT ij

)− L̂Tj (MT ij
)
∣∣∣

(Definition of LTj and triangle inequality.)

≤ E
(x,x′,∆)∼DT j

[∣∣∣l (MTj , (x,x
′,∆)

)
− l
(
MT ij

, (x,x′,∆)
)∣∣∣]

+
∣∣∣L̂Tj (MT ij

)− L̂Tj (MTj )
∣∣∣+
∣∣∣L̂T ij (MT ij

)− L̂Tj (MT ij
)
∣∣∣

(Uniform stability (Lemma 3.3).)

≤ βj
nj

+
∣∣∣L̂Tj (MT ij

)− L̂Tj (MTj )
∣∣∣+
∣∣∣L̂T ij (MT ij

)− L̂Tj (MT ij
)
∣∣∣

(Definition of L̂Tj and triangle inequality.)

≤ βj
nj

+
1

nj

∑
(x,x′,∆)∈Tj

∣∣∣l (MT ij
, (x,x′,∆)

)
− l
(
MTj , (x,x

′,∆)
)∣∣∣

+
∣∣∣L̂T ij (MT ij

)− L̂Tj (MT ij
)
∣∣∣

(Uniform stability (Lemma 3.3).)

≤ 2βj
nj

+
∣∣∣L̂T ij (MT ij

)− L̂Tj (MT ij
)
∣∣∣

(Tj and T ij only differ by one pair.)

=
2βj
nj

+
1

nj

∣∣∣l (MT ij
, (xii,x

i
i
′
,∆)

)
− l
(
MT ij

, (xi,x
′
i,∆)

)∣∣∣
(Bounded loss function (Lemma 3.1).)

≤ 2βj
nj

+
Bj
nj



Appendix C

Proofs of Chapter 4

C.1 Proof of Lemma 4.1

Before proving the lemma we show that the biased Frobenius norm is strongly convex (Defi-

nition A.7).

Lemma C.1 (Strong convexity of the biased Frobenius norm). The biased Frobenius norm

is 2-strongly convex.

Proof.∥∥α(M) + (1− α)(M′)−MS
∥∥2

F

=
∥∥α(M−MS) + (1− α)(M′ −MS)

∥∥2

F

(2-strong convexity of the non biased Frobenius norm.)

≤ α ‖M−MS‖2F + (1− α)
∥∥M′ −MS

∥∥2

F −
2

2
α(1− α)

∥∥M−MS −M′ + MS
∥∥2

F

= α ‖M−MS‖2F + (1− α)
∥∥M′ −MS

∥∥2

F −
2

2
α(1− α)

∥∥M−M′∥∥2

F

We can now prove Lemma 4.1.

Lemma (On-average-replace-two-stability). Given n the number of training examples, drawn

i.i.d. from DT , considered and a k-lipschitz loss function, any algorithm solving Problem (4.1)

is on-average-replace-two-stable with ε(n) = 8k2

λn .

Proof. Let MT , respectively M
T i
j , be the optimal solution when learning with the training set

T , respectively T i
j
. Let zk, z

i
k, z

ij

k respectively be the kth examples of training sets T, T i, T i
j
.

We have:

L̂T (M
T ij ) + λ

∥∥M
T ij −MS

∥∥2
F − (L̂T (MT ) + λ ‖MT −MS‖2F )

=
1

n(n− 1)

∑
z∈T

∑
z′∈T
z6=z′

l
(
M

T ij −MT , z, z
′)− l (MT , z, z

′)

173
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(Adding and removing the same quantity.)

= L̂T i(M
T ij ) + λ

∥∥M
T ij −MS

∥∥2
F − (L̂T i(MT ) + λ ‖MT −MS‖2F )

−
∑

zi
′∈T i

zii 6=zi
′

l
(
M

T ij , z
i
i, z

i′
)
− l
(
MT , z

i
i, z

i′
)

n(n− 1)
−
∑

zi∈T i

zi 6=zii
′

l
(
M

T ij , z
i, zii

′
)
− l
(
MT , z

i, zii
′
)

n(n− 1)

+
∑
z′∈T
zi 6=z′

l
(
M

T ij , zi, z
′)− l (MT , zi, z

′)

n(n− 1)
+
∑
z∈T
z6=z′i

l
(
M

T ij , z, z
′
i

)
− l (MT , z, z

′
i)

n(n− 1)

(Adding and removing the same quantity.)

= L̂
T ij (M

T ij ) + λ
∥∥M

T ij −MS
∥∥2
F − (L̂

T ij (MT ) + λ ‖MT −MS‖2F )

−
∑

zi
′∈T i

zii 6=zi
′

l
(
M

T ij , z
i
i, z

i′
)
− l
(
MT , z

i
i, z

i′
)

n(n− 1)
−
∑

zi∈T i

zi 6=zii
′

l
(
M

T ij , z
i, zii

′
)
− l
(
MT , z

i, zii
′
)

n(n− 1)

+
∑
z′∈T
zi 6=z′

l
(
M

T ij , zi, z
′)− l (MT , zi, z

′)

n(n− 1)
+
∑
z∈T
z6=z′i

l
(
M

T ij , z, z
′
i

)
− l (MT , z, z

′
i)

n(n− 1)

−
∑

zi
j ′
∈T ij

zi
j

j 6=zi
j ′

l
(
M

T ij , z
ij

j , z
ij
′)
− l
(
MT , z

ij

j , z
ij
′)

n(n− 1)
−

∑
zi

j
∈T ij

zi
j
6=zi

j

j

′

l
(
M

T ij , z
ij , zi

j

j

′)
− l
(
MT , z

ij , zi
j

j

′)
n(n− 1)

+
∑

zi
′∈T i

zij 6=zi
′

l
(
M

T ij , z
i
j , z

i′
)
− l
(
MT , z

i
j , z

i′
)

n(n− 1)
+
∑

zi∈T i

zi 6=zij
′

l
(
M

T ij , z
i, zij

′
)
− l
(
MT , z

i, zij
′
)

n(n− 1)

(Triangle inequality and k-lipschitz continuity.)

≤ L̂
T ij (M

T ij ) + λ
∥∥M

T ij −MS
∥∥2
F − (L̂

T ij (MT ) + λ ‖MT −MS‖2F )

+
8k
∥∥M

T ij −M
∥∥
F

n

(Convex loss and optimality of M
T ij when learning with T i

j

.)

≤
8k
∥∥M

T ij −M
∥∥
F

n

Furthermore, from the 2-strong convexity of the biased Frobenius norm used as a regulariza-

tion term (Lemma C.1) we deduce that Problem (4.1) is 2λ-strongly convex (Definition A.7).

Given MT the optimal solution of Problem (4.1) when learning with T , we have:

L̂T (M
T i
j ) + λ

∥∥M
T i
j −MS

∥∥2

F − (L̂T (MT ) + λ ‖MT −MS‖2F ) ≥ 2λ

2

∥∥M
T i
j −MT

∥∥2

F .

Combining the two inequalities we obtain:

λ
∥∥M

T i
j −MT

∥∥2

F ≤
8k
∥∥M

T i
j −MT

∥∥
F

n

⇒
∥∥M

T i
j −MT

∥∥
F ≤

8k

λn

⇒
∣∣l (M

T i
j , z, z′

)
− l
(
MT , z, z

′)∣∣ ≤ k ∥∥M
T i
j −MT

∥∥
F ≤

8k2

λn
.
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(C.1)

The last inequality is obtained thanks to the k-lipschitzness of the loss. Taking the expectation

on both sides gives the lemma.

C.2 Proof of Lemma 4.2

Lemma (Uniform stability). Given a positive, convex, k-lipschitz loss and a training sample

T of n examples drawn i.i.d. from DT , an algorithm solving Problem (4.1) has a uniform

stability in β = 4k2

λ .

Proof. Let ∆M = MT −MT i where MT is the optimal solution when learning with set T

and MT i is the optimal solution when learning with set T i. The empirical risk is convex by

sum of convex functions, thus

L̂T i(MT − t∆M)− L̂T i(MT ) ≤ t(L̂T i(MT i)− L̂T i(MT ))

L̂T i(MT i + t∆M)− L̂T i(MT i) ≤ t(L̂T i(MT )− L̂T i(MT i))

Summing up the two inequalities gives:

L̂T i(MT − t∆M)− L̂T i(MT ) + L̂T i(MT i + t∆M)− L̂T i(MT i) ≤ 0. (C.2)

Problem (4.1) is convex by sum of convex functions, thus:

L̂T (MT ) + λ ‖MT −MS‖2F − L̂T (MT − t∆M)− λ ‖MT − t∆M −MS‖2F
+ L̂T i(MT i) + λ ‖MT i −MS‖2F − L̂T i(MT i + t∆M)− λ ‖MT i + t∆M −MS‖2F ≤ 0.

(C.3)

Summing Inequalities (C.2) and (C.3) gives:

L̂T (MT )− L̂T i(MT ) + L̂T i(MT − t∆M)− L̂T (MT − t∆M)

+ λ ‖MT −MS‖2F − λ ‖MT − t∆M −MS‖2F
+ λ ‖MT i −MS‖2F − λ ‖MT i + t∆M −MS‖2F ≤ 0. (C.4)

From Inequality (C.4) we have:

λ ‖MT −MS‖2F − λ ‖MT − t∆M −MS‖2F
+ λ ‖MT i −MS‖2F − λ ‖MT i + t∆M −MS‖2F ≤ C. (C.5)

where C = L̂T i(MT )− L̂T (MT ) + L̂T (MT − t∆M)− L̂T i(MT − t∆M). We are now looking

for a bound on C:

C ≤
∣∣∣L̂T (MT − t∆M)− L̂T (MT ) + L̂T i(MT )− L̂T i(MT − t∆M)

∣∣∣
=

1

n(n− 1)

∣∣∣∣∣∣∣∣
∑
z∈T

∑
z′∈T
z6=z′

l (MT − t∆M, z, z′)− l (MT , z, z
′)
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+
∑

zi∈T i

∑
zi′∈T i

zi 6=zi′

l
(
MT , z

i, zi
′
)
− l
(
MT − t∆M, zi, zi

′
)∣∣∣∣∣∣∣∣∣

(T and T i only differ by one example.)

=
1

n(n− 1)

∣∣∣∣∣∣∣∣
∑
z′∈T
zi 6=z′

l (MT − t∆M, zi, z
′)− l (MT , zi, z

′) +
∑
z∈T
z6=z′i

l (MT − t∆M, z, z′i)− l (MT , z, z
′
i)

+
∑

zi′∈T i

zi
i 6=zi′

l
(
MT , z

i
i, z

i′
)
− l
(
MT − t∆M, zii, z

i′
)

+
∑

zi∈T i

zi 6=zi
i
′

l
(
MT , z

i, zii
′
)
− l
(
MT − t∆M, zi, zii

′
)∣∣∣∣∣∣∣∣∣

(Triangle inequality.)

=
1

n(n− 1)

∑
z′∈T
zi 6=z′

|l (MT − t∆M, zi, z
′)− l (MT , zi, z

′)|

+
1

n(n− 1)

∑
z∈T
z6=z′i

|l (MT − t∆M, z, z′i)− l (MT , z, z
′
i)|

+
1

n(n− 1)

∑
zi′∈T i

zi
i 6=zi′

∣∣∣l (MT , z
i
i, z

i′
)
− l
(
MT − t∆M, zii, z

i′
)∣∣∣

+
1

n(n− 1)

∑
zi∈T i

zi 6=zi
i
′

∣∣∣l (MT , z
i, zii

′
)
− l
(
MT − t∆M, zi, zii

′
)∣∣∣

(k-lipschitz continuous loss.)

≤ 4(n− 1)

n(n− 1)
k ‖MT −MT + t∆M‖F

(Definition of ‖·‖F .)

≤ 4kt

n
‖∆M‖F

Furthermore, setting t = 1
2 in the left hand side of Inequality (C.5), we have:

λ ‖MT −MS‖2F − λ
∥∥∥∥MT −

1

2
∆M −MS

∥∥∥∥2

F

+ λ ‖MT i −MS‖2F − λ
∥∥∥∥MT i +

1

2
∆M −MS

∥∥∥∥2

F
=
λ

2
‖∆M‖2F .

Following this we have:

λ

2
‖∆M‖2F ≤

4k

2n
‖∆M‖F

⇔ ‖∆M‖F ≤
4k

λn
. (C.6)
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Using the k-lipschitz continuity of the loss, we have:

sup
z,z′∼DT

∣∣l (MT , z, z
′)− l (MT i , z, z

′)∣∣ ≤ k ‖∆M‖F ≤
4k2

λn
.

Setting β = 4k2

λ concludes the proof.

C.3 Proof of Lemma 4.3

Lemma (Bound on ET∼DT [RT ]). For any β uniformly stable learning method of estimation

error RT = LT (MT )− L̂T (MT ) for a training set T , we have:

E
T∼DT

[RT ] ≤ 2β

n
.

Proof. First of all note that:

E
T∼DT

[
L̂T (MT )

]
=

1

n(n− 1)

∑
zi∈T

∑
zj∈T
zi 6=zj

E
T∼DT

[l (MT , zi, zj)]

=
1

n(n− 1)

∑
zi∈T

∑
zj∈T
zi 6=zj

E
T,z,z′∼DT

[
l
(
M

T i
j , z, z′

)]
= E

T,z,z′∼DT

[
l
(
M

T i
j , z, z′

)]
The second to last equality comes from the fact that the examples are drawn independently

from DT and thus changing one example with another twice does not change the expectation.

From this equality we deduce:

E
T∼DT

[RT ] = E
T∼DT

[
LT (MT )− L̂T (MT )

]
= E

T,z,z′∼DT

[
l
(
MT , z, z

′)− l (M
T i
j , z, z′

)]
= E

T,z,z′∼DT

[
l
(
MT , z, z

′)− l (MT i , z, z
′)+ l

(
MT i , z, z

′)− l (M
T i
j , z, z′

)]
(Triangle inequality.)

≤ E
T,z,z′∼DT

∣∣l (MT , z, z
′)− l (MT i , z, z

′)∣∣+ E
T,z,z′∼DT

∣∣l (MT i , z, z
′)− l (M

T i
j , z, z′

)∣∣
(Uniform stability (Lemma 4.2).)

≤ 2β

n

C.4 Proof of Lemma 4.4

Lemma (Bound on |RT −RT i |). For any β uniformly stable learning method of estimation

error RT = LT (MT )− L̂T (MT ) for a training set T and any (σ,m)-admissible loss function
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we have:

|RT −RT i | ≤
2β + 4σ + 2m

n
. (C.7)

Proof.

|RT −RT i | =
∣∣∣LT (MT )− L̂T (MT )− (LT (MT i)− L̂T i(MT i))

∣∣∣
=
∣∣∣LT (MT )− LT (MT i) + L̂T i(MT i)− L̂T i(MT ) + L̂T i(MT )− L̂T (MT )

∣∣∣
(Triangle inequality.)

≤ |LT (MT )− LT (MT i)|+
∣∣∣L̂T i(MT i)− L̂T i(MT )

∣∣∣+
∣∣∣L̂T i(MT )− L̂T (MT )

∣∣∣
(Uniform stability (Lemma 4.2).)

≤ 2β

n
+
∣∣∣L̂T i(MT )− L̂T (MT )

∣∣∣
=

2β

n
+

1

n(n− 1)

∣∣∣∣∣∣∣∣∣
∑

zi∈T i

∑
zi
′∈T i

zi 6=zi
′

l
(
MT , z

i, zi
′
)
−
∑
z∈T

∑
z′∈T
z 6=z′

l
(
MT , z, z

′)
∣∣∣∣∣∣∣∣∣

(T and T i only differ by one example, ∀j 6= i, zj = zij and z′j = zij
′
.)

=
2β

n
+

1

n(n− 1)

∣∣∣∣∣∣∣∣∣
∑

z′∈T i
zii 6=z′

l
(
MT , z

i
i, z
′)− ∑

z′∈T
zi 6=z′

l
(
MT , zi, z

′)

+
∑
z∈T i
z 6=zii

′

l
(
MT , z, z

i
i
′
)
−
∑
z∈T
z 6=z′i

l
(
MT , z, z

′
i

)
∣∣∣∣∣∣∣∣∣

(Triangle inequality.)

≤ 2β

n
+

1

n(n− 1)

∑
z′∈T,T i

zi 6=z′,zii 6=z′

∣∣l (MT , z
i
i, z
′)− l (MT , zi, z

′)∣∣
+

1

n(n− 1)

∑
z∈T,T i

z 6=z′i,z 6=zii
′

∣∣∣l (MT , z, z
i
i
′
)
− l
(
MT , z, z

′
i

)∣∣∣
((σ,m)-admissible loss (Definition A.2).)

≤ 2β

n
+

2(n− 1)

n(n− 1)

(
σ sup

z,z′,z′′,z′′′∼DT

∣∣yy′ − y′′y′′′∣∣+m

)

=
2β

n
+

2
(
σ supz,z′,z′′,z′′′∼DT |yy

′ − y′′y′′′|+m
)

n

Noting that by definition supz,z′,z′′,z′′′∼DT |yy
′ − y′′y′′′| ≤ 2 gives the lemma.
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C.5 Proof of Lemma 4.6

Lemma (Bound on ET∼DT [RT ]). For any positive, convex and k-lipschitz (Definition 4.2)

loss function and any algorithm with estimation error RT = sup
M∈MS

[
LT (M)− L̂T (M)

]
we

have:

E
T∼DT

[RT ] ≤ 2kRn(MS).

Proof. Using standard properties on Rademacher variables Bartlett and Mendelson (2002);

Shalev-Shwartz and Ben-David (2014a) and U-statistics Cao et al. (2016) we have that:

E
T∼DT

sup
M∈MS

[
LT (M)− L̂T (M)

]
= E

T∼DT
sup

M∈MS

LT (M)− 1

n(n− 1)

n∑
i=1

n∑
j=1,j 6=i

l (M, zi, zj)


(U-Statistics, Lemma 7 in Cao et al. (2016).)

≤ E
T∼DT

sup
M∈MS

LT (M)− 1⌊
n
2

⌋ bn2 c∑
i=1

l
(
M, zi, zbn2 c+i

)
≤ E

T∼DT
sup

M∈MS

 E
T ′∼DT

L̂T ′(M)− 1⌊
n
2

⌋ bn2 c∑
i=1

l
(
M, zi, zbn2 c+i

)
≤ E

T,T ′∼DT
sup

M∈MS

L̂T ′(M)− 1⌊
n
2

⌋ bn2 c∑
i=1

l
(
M, zi, zbn2 c+i

)
(U-Statistics, Lemma 7 in Cao et al. (2016).)

≤ E
T,T ′∼DT

sup
M∈MS

 1⌊
n
2

⌋ bn2 c∑
i=1

l
(
M, z′i, z

′
bn2 c+i

)
− l
(
M, zi, zbn2 c+i

)
(Equation (26.9) in Shalev-Shwartz and Ben-David (2014a).)

≤ 1⌊
n
2

⌋ E
T,T ′∼DT

σ

sup
M∈MS

bn2 c∑
i=1

σi

(
l
(
M, z′i, z

′
bn2 c+i

)
− l
(
M, zi, zbn2 c+i

))
(End of the proof of Lemma 26.2 in Shalev-Shwartz and Ben-David (2014a).)

≤ 2⌊
n
2

⌋ E
T∼DT ,σ

sup
M∈MS

b
n
2 c∑
i=1

σil
(
M, zi, zbn2 c+i

)
(k-lipschitzness and Lemma 26.9 in Shalev-Shwartz and Ben-David (2014a).)
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≤ 2⌊
n
2

⌋ E
T∼DT ,σ

sup
M∈MS

b
n
2 c∑
i=1

σikkM

(
xi,xbn2 c+i

) (C.8)

Note that ∀b ∈ Rn,Eσ
∑n

i=1 σibi = 0. It implies that ∀a ∈ A ⊆ Rn we have:

E
σ

sup
a∈A

n∑
i=1

σiai = E
σ

n∑
i=1

σibi + E
σ

sup
a∈A

n∑
i=1

σiai

(b does not depend on A.)

= E
σ

sup
a∈A

n∑
i=1

σi(ai + bi). (C.9)

Applying (C.9) to (C.8) with bi = −kMS
(
xi,xbn2 c+i

)
gives:

E
T∼DT

sup
M∈MS

[
LT (M)− L̂T (M)

]
≤ 2⌊

n
2

⌋ E
T∼DT ,σ

sup
M∈MS

b
n
2 c∑
i=1

σik kM−MS

(
xi,xbn2 c+i

)
(Definition 4.3.)

≤ 2kRn(MS).

C.6 Proof of Lemma 4.7

Lemma (Bound on |RT −RT i |). For any positive, convex and k-lipschitz continuous (Defini-

tion 4.2) loss function, any metric satisfying Equation (4.14) and any algorithm of estimation

error RT = supM∈MS

[
LT (M)− L̂T (M)

]
we have:

|RT −RT i | ≤
2G3(MS) + 2 supz,z′∼DT

[
k ‖g(x,x′)‖∗

√
G3(MS)

λ

]
n

where ‖·‖∗ is the dual norm of the regularization term (Definition A.4).

Proof. First of all note that from Definition 4.2 and Equation (4.14) we have that for any two

examples z, z′ ∼ DT :∣∣l (M, z, z′
)
− l
(
MS , z, z

′)∣∣ ≤ k ∣∣〈g(x,x′),M−MS
〉∣∣

(Cauchy-Schwartz’s inequality (Theorem A.3).)

⇒ l
(
M, z, z′

)
≤ l
(
MS , z, z

′)+ k
∥∥g(x,x′)

∥∥
∗ ‖M−MS‖

(M ∈MS .)

⇒ l
(
M, z, z′

)
≤ l
(
MS , z, z

′)+ k
∥∥g(x,x′)

∥∥
∗

√
G3(MS)

λ
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(Taking the supremum over z, z′ ∼ DT .)

⇒ l
(
M, z, z′

)
≤ G3(MS) + sup

z,z′∼DT

[
k
∥∥g(x,x′)

∥∥
∗

√
G3(MS)

λ

]
(C.10)

where ‖·‖∗ represents the dual norm of the regularization term (Definition A.4) andG3(MS) =

supz,z′∼DT l (MS , z, z
′).

|RT −RT i | =

∣∣∣∣∣ sup
M∈MS

[
LT (M)− L̂T (M)

]
− sup

M∈MS

[
LT (M)− L̂T i(M)

]∣∣∣∣∣
≤ sup

M∈MS

∣∣∣L̂T (M)− L̂T i(M)
∣∣∣

=
1

n(n− 1)
sup

M∈MS

∣∣∣∣∣∣∣∣∣
∑
z∈T

∑
z′∈T
z 6=z′

l
(
M, z, z′

)
−
∑

zi∈T i

∑
zi
′∈T i

zi 6=zi
′

l
(
M, zi, zi

′
)∣∣∣∣∣∣∣∣∣

(T and T i only differ by one example, ∀j 6= i, zj = zij and z′j = zij
′
.)

=
1

n(n− 1)
sup

M∈MS

∣∣∣∣∣∣∣∣∣
∑
z′∈T
zi 6=z′

l
(
M, zi, z

′)− ∑
z′∈T i
zii 6=z′

l
(
M, zii, z

′)

+
∑
z∈T
z 6=z′i

l
(
M, z, z′i

)
−
∑
z∈T i
z 6=zii

′

l
(
M, z, zii

′
)∣∣∣∣∣∣∣∣∣

(Triangle inequality.)

≤ 1

n(n− 1)
sup

M∈MS

 ∑
z′∈T,T i

zi 6=z′,zii 6=z′

∣∣l (M, zii, z
′)− l (M, zi, z

′)∣∣

+
∑

z∈T,T i
z 6=z′i,z 6=zii

′

∣∣∣l (M, z, zii
′
)
− l
(
M, z, z′i

)∣∣∣


(Positive loss and Inequality (C.10))

≤
2G3(MS) + 2 supz,z′∼DT

[
k ‖g(x,x′)‖∗

√
G3(MS)

λ

]
n

.
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C.7 Proof of Lemma 4.9

Lemma (Bounded regularization). Let MT be the optimal solution returned by Problem (4.1)

with training set T and a positive and convex loss. We have:

‖MT −MS‖ ≤

√
L̂T (MS)

λ
.

Proof. By the convexity of the loss and the optimality of MT we have:

L̂T (MT ) + λ ‖MT −MS‖2 ≤ L̂T (MS)

(Positive loss.)

⇒ λ ‖MT −MS‖2 ≤ L̂T (MS)

⇒ ‖MT −MS‖ ≤

√
L̂T (MS)

λ
.

C.8 Proof of Example 4.1

Example (Positive, convex, L-lipschitz functions for dissimilarity learning). Let f(a) be a

positive, convex, L-lipschitz function. Given a dissimilarity (Definition 1.8) kM parametrized

by M ∈M and any two examples z, z′ ∼ DT we define a loss as:

l
(
M, z, z′

)
= f

(
δyy′

[
kM

(
x,x′

)
− γyy′

])
(C.11)

where δyy′ = 1 if y = y′ and −1 otherwise and γyy′ is the desired margin between examples.

This loss is:

• Positive,

• Convex,

• k-lipschitz continuous with respect to the metric with k = L,

• k-lipschitz continuous with k = L supz,z′∼DT ‖g(x,x′)‖∗,

• (σ,m)-admissible with

σ = supz,z′∼DT γyy′

m = 2L supz,z′∼DT ‖g(x,x′)‖∗
(√

L̂T (MS)
λ + ‖MS‖

)
.

Proof. First the loss is positive and convex by construction.

Then we prove that the loss function is k-lipschitz. Given two metrics kM and kM′ we

have:∣∣l (M, z, z′
)
− l
(
M′, z, z′

)∣∣ ≤ ∣∣f(δyy′ [kM

(
x,x′

)
− γyy′ ]

)
− f

(
δyy′ [kM′

(
x,x′

)
− γyy′ ]

)∣∣
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(f is L-lipschitz.)

≤ L
∣∣δyy′ [kM

(
x,x′

)
− γyy′ ]− δyy′ [kM′

(
x,x′

)
− γyy′ ]

∣∣
(δyy′ ∈ {−1, 1}.)

≤ L
∣∣kM

(
x,x′

)
− kM′

(
x,x′

)∣∣ (C.12)

(Equation (4.14) and Cauchy-Schwartz’s inequality (Theorem A.3).)

≤ L sup
z,z′∼DT

∥∥g(x,x′)
∥∥
∗
∥∥M−M′∥∥ (C.13)

Inequalities (C.12) and (C.13) respectively prove the lipschitzness with respect to the metric

and the matrix.

Lastly we show that the loss is (σ,m)-admissible. Given four examples z, z′, z′′, z′′′ ∼ DT
and MT the learned metric when learning with T we have:∣∣l (MT , z, z

′)− l (MT , z
′′, z′′′

)∣∣
≤
∣∣f(δyy′ [kMT

(
x,x′

)
− γyy′ ]

)
− f

(
δy′′y′′′ [kMT

(
x′′,x′′′

)
− γy′′y′′′ ]

)∣∣
(f is L-lipschitz.)

≤ L
∣∣δyy′ [kMT

(
x,x′

)
− γyy′ ]− δy′′y′′′ [kMT

(
x′′,x′′′

)
− γy′′y′′′ ]

∣∣
(Triangle inequality.)

≤ L
∣∣δyy′kMT

(
x,x′

)
− δy′′y′′′kMT

(
x′′,x′′′

)∣∣+
∣∣δyy′γyy′ − δy′′y′′′γy′′y′′′∣∣

(δyy′ , δy′′y′′′ ∈ {−1, 1}.)
≤ 2L sup

z,z′∼DT

∣∣kMT

(
x,x′

)∣∣+
∣∣δyy′ − δy′′y′′′∣∣ sup

z,z′∼DT
γyy′

(Equation (4.14) and Cauchy-Schwartz’s inequality (Theorem A.3).)

≤ 2L sup
z,z′∼DT

∥∥g(x,x′)
∥∥
∗ ‖MT ‖+

∣∣δyy′ − δy′′y′′′∣∣ sup
z,z′∼DT

γyy′

(Triangle inequality.)

≤ 2L sup
z,z′∼DT

∥∥g(x,x′)
∥∥
∗ (‖MT −MS‖+ ‖MS‖) +

∣∣δyy′ − δy′′y′′′∣∣ sup
z,z′∼DT

γyy′

(Bounded regularization (Lemma 4.9).)

≤ 2L sup
z,z′∼DT

∥∥g(x,x′)
∥∥
∗

√ L̂T (MS)

λ
+ ‖MS‖

+
∣∣δyy′ − δy′′y′′′∣∣ sup

z,z′∼DT
γyy′

Setting σ = supz,z′∼DT γyy′ and m = 2L supz,z′∼DT ‖g(x,x′)‖∗
(√

L̂T (MS)
λ + ‖MS‖

)
gives

the example.

C.9 Proof of Example 4.2

Example (Positive, convex, L-lipschitz functions for similarity learning). Let f(a) be a pos-

itive, convex, L-lipschitz function. Given a similarity (Definition 1.8) kM parametrized by
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M ∈M and any two examples z, z′ ∼ DT we define a loss as:

l
(
M, z, z′

)
= f

(
1− δyy′

kM(x,x′)

γyy′

)
(C.14)

where δyy′ = 1 if y = y′ and −1 otherwise and γyy′ is the desired margin between examples.

This loss is:

• Positive,

• Convex,

• k-lipschitz continuous with respect to the metric with k = L
infz,z′∼DT |γyy′ |

,

• k-lipschitz continuous with k = L
infz,z′∼DT |γyy′ |

supz,z′∼DT ‖g(x,x′)‖∗,

• (σ,m)-admissible with

σ = 0

m = 2 L

infz,z′∼DT |γyy′ | supz,z′∼DT ‖g(x,x′)‖∗

(√
L̂T (MS)

λ + ‖MS‖
)

.

Proof. First the loss is positive and convex by construction.

Then we prove that the loss function is k-lipschitz. Given two metrics kM and kM′ we

have: ∣∣l (M, z, z′
)
− l
(
M′, z, z′

)∣∣ ≤ ∣∣∣∣f(1− δyy′
kM(x,x′)

γyy′

)
− f

(
1− δyy′

kM′(x,x
′)

γyy′

)∣∣∣∣
(f is L-lipschitz.)

≤ L
∣∣∣∣1− δyy′ kM(x,x′)

γyy′
−
(

1− δyy′
kM′(x,x

′)

γyy′

)∣∣∣∣
(δyy′ ∈ {−1, 1}.)

≤ L

infz,z′∼DT
∣∣γyy′∣∣ ∣∣kM

(
x,x′

)
− kM′

(
x,x′

)∣∣ (C.15)

(Equation (4.14) and Cauchy-Schwartz’s inequality (Theorem A.3).)

≤ L

infz,z′∼DT
∣∣γyy′∣∣ sup

z,z′∼DT

∥∥g(x,x′)
∥∥
∗
∥∥M−M′∥∥ (C.16)

Inequalities (C.15) and (C.16) respectively prove the lipschitzness with respect to the metric

and the matrix.

Lastly we show that the loss is (σ,m)-admissible. Given four examples z, z′, z′′, z′′′ ∼ DT
and MT the learned metric when learning with T we have:∣∣l (MT , z, z

′)− l (MT , z
′′, z′′′

)∣∣ ≤ ∣∣∣∣f(1− δyy′
kMT

(x,x′)

γyy′

)
− f

(
1− δy′′y′′′

kMT
(x′′,x′′′)

γy′′y′′′

)∣∣∣∣
(f is L-lipschitz.)

≤ L
∣∣∣∣δyy′ kMT

(x,x′)

γyy′
− δy′′y′′′

kMT
(x′′,x′′′)

γy′′y′′′

∣∣∣∣
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(δyy′ , δy′′y′′′ ∈ {−1, 1}.)

≤ 2
L

infz,z′∼DT
∣∣γyy′∣∣ sup

z,z′∼DT

∣∣kMT

(
x,x′

)∣∣
(Equation (4.14) and Cauchy-Schwartz’s inequality (Theorem A.3).)

≤ 2
L

infz,z′∼DT
∣∣γyy′∣∣ sup

z,z′∼DT

∥∥g(x,x′)
∥∥
∗ ‖MT ‖

(Triangle inequality.)

≤ 2
L

infz,z′∼DT
∣∣γyy′∣∣ sup

z,z′∼DT

∥∥g(x,x′)
∥∥
∗ (‖MT −MS‖+ ‖MS‖)

(Bounded regularization (Lemma 4.9).)

≤ 2
L

infz,z′∼DT
∣∣γyy′∣∣ sup

z,z′∼DT

∥∥g(x,x′)
∥∥
∗

√ L̂T (MS)

λ
+ ‖MS‖

 .

Setting σ = 0 and m = 2 L
infz,z′∼DT |γyy′ |

supz,z′∼DT ‖g(x,x′)‖∗
(√

L̂T (MS)
λ + ‖MS‖

)
gives the

example.

C.10 Proof of Example 4.3

Example (Positive, convex, H-smooth, B-bounded functions for dissimilarity learning). Let

f(a) be a positive, convex, H-smooth, B-bounded function. Given a dissimilarity (Defini-

tion 1.8) kM parametrized by M ∈ M and any two examples z, z′ ∼ DT we define a loss

as:

l
(
M, z, z′

)
= f

(
δyy′

[
kM

(
x,x′

)
− γyy′

])
(C.17)

where δyy′ = 1 if y = y′ and −1 otherwise and γyy′ is the desired margin between examples.

This loss is:

• Positive,

• Convex,

• k-lipschitz continuous with respect to the metric with k =
√

12HB,

• k-lipschitz continuous with k =
√

12HB supz,z′∼DT ‖g(x,x′)‖∗,

• (σ,m)-admissible with

{
σ = 0

m = B
.

Proof. First the loss is positive and convex by construction.

Then we prove that the loss function is k-lipschitz. Given two metrics kM and kM′ we

have:∣∣l (M, z, z′
)
− l
(
M′, z, z′

)∣∣ ≤ ∣∣f(δyy′ [kM

(
x,x′

)
− γyy′ ]

)
− f

(
δyy′ [kM′

(
x,x′

)
− γyy′ ]

)∣∣
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(Lemma A.1 with f which is H-smooth and B bounded.)

≤
√

12HB
∣∣δyy′ [γyy′ − kM

(
x,x′

)
]− δyy′ [γyy′ − kM′

(
x,x′

)
]
∣∣

(δyy′ ∈ {−1, 1}.)
≤
√

12HB
∣∣kM

(
x,x′

)
− kM′

(
x,x′

)∣∣ (C.18)

(Equation (4.14) and Cauchy-Schwartz’s inequality (Theorem A.3).)

≤
√

12HB sup
z,z′∼DT

∥∥g(x,x′)
∥∥
∗
∥∥M−M′∥∥ (C.19)

Inequalities (C.18) and (C.19) respectively prove the lipschitzness with respect to the metric

and the matrix.

Lastly we show that the loss is (σ,m)-admissible. Given four examples z, z′, z′′, z′′′ ∼ DT ,

MT the learned metric when learning with T and the fact that the loss function is positive

and B-bounded we have: ∣∣l (MT , z, z
′)− l (MT , z

′′, z′′′
)∣∣ ≤ B.

Setting σ = 0 and m = B gives the example.

C.11 Proof of Example 4.4

Example (Positive, convex, H-smooth, B-bounded functions for similarity learning). Let

f(a) be a positive, convex, H-smooth, B-bounded function. Given a similarity (Definition 1.8)

kM parametrized by M ∈M and any two examples z, z′ ∼ DT we define a loss as:

l
(
M, z, z′

)
= f

(
1− δyy′

kM(x,x′)

γyy′

)
(C.20)

where δyy′ = 1 if y = y′ and −1 otherwise and γyy′ is the desired margin between examples.

This loss is:

• Positive,

• Convex,

• k-lipschitz continuous with respect to the metric with k =
√

12HB
infz,z′∼DT |γyy′ |

,

• k-lipschitz continuous with k =
√

12HB
infz,z′∼DT |γyy′ |

supz,z′∼DT ‖g(x,x′)‖∗,

• (σ,m)-admissible with

{
σ = 0

m = B
.

Proof. First the loss is positive and convex by construction.

Then we prove that the loss function is k-lipschitz. Given two metrics kM and kM′ we

have: ∣∣l (M, z, z′
)
− l
(
M′, z, z′

)∣∣ ≤ ∣∣∣∣f(1− δyy′
kM(x,x′)

γyy′

)
− f

(
1− δyy′

kM′(x,x
′)

γyy′

)∣∣∣∣
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(Lemma A.1 with f which is H-smooth and B bounded.)

≤
√

12HB

∣∣∣∣1− δyy′ kM(x,x′)

γyy′
−
(

1− δyy′
kM′(x,x

′)

γyy′

)∣∣∣∣
(δyy′ ∈ {−1, 1}.)

≤
√

12HB

infz,z′∼DT
∣∣γyy′∣∣ ∣∣kM

(
x,x′

)
− kM′

(
x,x′

)∣∣ (C.21)

(Equation (4.14) and Cauchy-Schwartz’s inequality (Theorem A.3).)

≤
√

12HB

infz,z′∼DT
∣∣γyy′∣∣ sup

z,z′∼DT

∥∥g(x,x′)
∥∥
∗
∥∥M−M′∥∥ (C.22)

Inequalities (C.21) and (C.22) respectively prove the lipschitzness with respect to the metric

and the matrix.

Lastly we show that the loss is (σ,m)-admissible. Given four examples z, z′, z′′, z′′′ ∼ DT ,

MT the learned metric when learning with T and the fact that the loss function is positive

and B-bounded we have: ∣∣l (MT , z, z
′)− l (MT , z

′′, z′′′
)∣∣ ≤ B

Setting σ = 0 and m = B gives the example.

C.12 Proofs of Table 4.2

Example (Bound on the Rademacher Average). The dual norms of ‖·‖F , ‖·‖1, ‖·‖2,1 and

‖·‖Tr are respectively ‖·‖F , ‖·‖∞, ‖·‖2,∞ and ‖·‖Spec whose Rademacher Average is bounded:

Rn(‖·‖∗) ≤
2 supz,z′∼DT ‖g(x,x′)‖2F√

n
. (C.23)

Proof. The results presented here have already been proven in (Cao et al., 2016) in a slightly

less general setting where g(x,x′) = (x−x′)(x−x′)T . We recall the proof below for the sake

of completeness.

For the Frobenius norm, from the definition of Rademacher Averages we have:

Rn(‖·‖F ) = E
T∼DT

1⌊
n
2

⌋ E
σ

∥∥∥∥∥∥∥
bn2 c∑
i=1

σig(xi,xbn2 c+i)

∥∥∥∥∥∥∥
F

(Jensen’s inequality (Theorem A.4).)

≤ E
T∼DT

1⌊
n
2

⌋
√√√√√√E

σ

∥∥∥∥∥∥∥
bn2 c∑
i=1

σig(xi,xbn2 c+i)

∥∥∥∥∥∥∥
2

F

(Definition of ‖·‖F .)
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≤ E
T∼DT

1⌊
n
2

⌋
√√√√√√E

σ

∑
j,k

b
n
2 c∑
i=1

σig(xi,xbn2 c+i)


2

j,k

(Standard properties on Rademacher Variables.)

≤ E
T∼DT

1⌊
n
2

⌋
√√√√√E

σ

bn2 c∑
i=1

∑
j,k

(
σig(xi,xbn2 c+i)

)2

j,k

(Definition of ‖·‖F .)

≤ E
T∼DT

1⌊
n
2

⌋
√√√√√bn2 c∑

i=1

∥∥∥g(xi,xbn2 c+i)
∥∥∥2

F

≤ E
T∼DT

1⌊
n
2

⌋√⌊n
2

⌋
sup

z,z′∼DT
‖g(x,x′)‖2F

≤
2 supz,z′∼DT ‖g(x,x′)‖F√

n
.

Noting that the `∞ norm, the `2,∞ norm and the spectral norm are always smaller than the

Frobenius norm and that the Rademacher Average is increasing when the value of the norm

is increasing gives the example.



Appendix D

Proofs of Chapter 5

D.1 Proof of Theorem 5.1

Theorem (Optimal solution of Problem (5.1)). The optimal solution of Problem (5.1) can

be found in closed form. Furthermore, we can derive two equivalent solutions:

LV =
(
XTX + λnI

)−1
XTV (5.4)

⇔ LV = XT
(
XXT + λnI

)−1
V. (5.5)

Proof. Problem (5.1) is a classic regularized regression problem admitting a closed form so-

lution Cortes et al. (2007). We recall the derivation here for the sake of completeness. Let

FV (L) = L̂V (L) + λ ‖L‖2F be the function optimised in Problem (5.1). First we consider its

derivative with respect to L:

∂FV (L)

∂L
= 2

(
1

n
XTX + λI

)
L− 2

n
XTV.

Then we set this derivative to zero to obtain:

LV =
(
XTX + λnI

)−1
XTV.

Finally Equation (5.5) comes from using Taylor expansions as proposed in Cortes et al.

(2007).

D.2 Proof of Lemma 5.1

Before proving Lemma 5.1 we need the following technical lemma showing that the Frobenius

norm of the optimal solution of Problem (5.1) is bounded.

Lemma D.1 (Bounded Frobenius norm). Let LV be an optimal solution of Problem (5.1),

we have:

‖LV ‖F ≤
Bv√
λ

.
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Proof. Since L is an optimal solution of Problem (5.1) and by convexity of the loss we have:

L̂V (LV ) + λ ‖LV ‖2F ≤ L̂V (0) + λ ‖0‖2F

⇔ 1

n

∑
(x,v)∈V

l (LV , (x,v)) + λ ‖LV ‖2F ≤
1

n

∑
(x,v)∈V

l (0, (x,v)) + λ ‖0‖2F

(Positive loss.)

⇒ λ ‖LV ‖2F ≤
1

n

∑
(x,v)∈V

‖v‖22

(‖v‖2 ≤ Bv.)

⇒ λ ‖LV ‖2F ≤ B
2
v

⇒ ‖LV ‖F ≤
Bv√
λ

.

Lemma (Bounded loss function). Let LV be the metric learned with Problem (5.1) with

training set V , we have that for any example (x,v) ∼ DV :

l (LV , (x,v)) ≤ B

with B = B2
v

(
1 + Bx√

λ

)2
.

Proof.

l (L, (x,v)) =
∥∥xTL− vT

∥∥2

2

(Triangle inequality and standard norm properties.)

≤
(∥∥xT∥∥

2
‖L‖F +

∥∥vT∥∥
2

)2
(‖v‖2 ≤ Bv, ‖x‖2 ≤ Bx and Lemma D.1.)

≤
(
Bx

Bv√
λ

+Bv

)2

≤ B2
v

(
1 +

Bx√
λ

)2

.

Setting B = B2
v

(
1 + Bx√

λ

)2
gives the lemma.

D.3 Proof of Lemma 5.2

Lemma (k-lipschitz continuity). Our loss is k-lipschitz with k = 2BvBx

(
1 + Bx√

λ

)
.

Proof.∣∣∣∥∥xTL− vT
∥∥2

2
−
∥∥xTL′ − vT

∥∥2

2

∣∣∣
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=
∣∣∥∥xTL− vT

∥∥
2
−
∥∥xTL′ − vT

∥∥
2

∣∣ ∣∣∥∥xTL− vT
∥∥

2
+
∥∥xTL′ − vT

∥∥
2

∣∣
(Triangle inequality.)

≤
∥∥xTL− vT − xTL′ + vT

∥∥
2

∣∣∥∥xTL− vT
∥∥

2
+
∥∥xTL′ − vT

∥∥
2

∣∣
(Bounded loss (Lemma 5.1).)

≤
∥∥L− L′

∥∥
F 2BvBx

(
1 +

Bx√
λ

)
.

Setting k = 2BvBx

(
1 + Bx√

λ

)
gives the lemma.

D.4 Proof of Lemma 5.3

To prove Lemma 5.3 we need the following technical lemma.

Lemma D.2. Let FV (L) = L̂V (L) + λ ‖L‖2F and F iV (L) = L̂V (L) + λ ‖L‖2F be the functions

minimized in Problem (5.1) where V and V i are two training samples of n examples. V i is

obtained by replacing example i from V by another example drawn independently from DV .

Let LV and LV i be their respective minimizers, and λ be the regularization parameter used in

our algorithm. Let ∆L = LV − LV i, then, we have, for any t ∈ [0, 1],

‖LV ‖2F − ‖LV − t∆L‖2F + ‖LV i‖
2
F − ‖LV i + t∆L‖2F ≤

4tBvBx

λn

(
1 +

Bx√
λ

)
‖∆L‖F . (D.1)

Proof. This proof is similar to the proof of Lemma 20 in Bousquet and Elisseeff (2002a) which

we recall here for the sake of completeness. First, note that L̂V is a convex function, thus,

for any t ∈ [0, 1], we have:

L̂V i(LV − t∆L)− L̂V i(LV ) ≤ t(L̂V i(LV i)− L̂V i(LV )) (D.2)

L̂V i(LV i + t∆L)− L̂V i(LV i) ≤ t(L̂V i(LV )− L̂V i(LV i)) (D.3)

Summing Inequalities (D.2) and (D.3) gives:

L̂V i(LV − t∆L)− L̂V i(LV ) + L̂V i(LV i + t∆L)− L̂V i(LV i) ≤ 0 (D.4)

LV and LV i respectively minimize FV and FV i(L), we have:

FV (LV )− FV (LV − t∆L) ≤ 0 (D.5)

FV i(LV i)− FV i(LV i + t∆L) ≤ 0 (D.6)

Summing Inequalities (D.4), (D.5) and (D.6) gives:

L̂V i(LV − t∆L)− L̂V i(LV ) + L̂V (LV )− L̂V (LV − t∆L)

+ λ ‖LV ‖2F − λ ‖LV − t∆L‖2F + λ ‖LV i‖
2
F − λ ‖LV i + t∆L‖2F ≤ 0. (D.7)

From Equation (D.7), we can write:

λ ‖LV ‖2F − λ ‖LV − t∆L‖2F + λ ‖LV i‖
2
F − λ ‖LV i + t∆L‖2F ≤ C (D.8)
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with

C = L̂V i(LV )− L̂V i(LV − t∆L) + L̂V (LV − t∆L)− L̂V (LV ).

Using Lemma 5.2 we can bound C:

C ≤
∣∣∣L̂V i(LV )− L̂V i(LV − t∆L) + L̂V (LV − t∆L)− L̂V (LV )

∣∣∣
=

∣∣∣∣∣∣ 1n
∑

(x,v)∈V

l (LV − t∆L, (x,v))− 1

n

∑
(xi,vi)∈V i

l
(
LV − t∆L, (x

i,vi)
)

+
1

n

∑
(xi,vi)∈V i

l
(
LV , (x

i,vi)
)
− 1

n

∑
(x,v)∈V

l (LV , (x,v))

∣∣∣∣∣∣
(V and V i only differ by one example.)

=
1

n

∣∣l (LV − t∆L, (xi,vi))− l
(
LV − t∆L, (x

i
i,v

i
i)
)

+ l
(
LV , (x

i
i,v

i
i)
)
− l (LV , (xi,vi))

∣∣
(Triangle inequality.)

≤ 1

n
|l (LV − t∆L, (xi,vi))− l (LV , (xi,vi))|+

1

n

∣∣l (LV , (xii,vii))− l (LV − t∆L, (x
i
i,v

i
i)
)∣∣

(Loss k-lipschitz (Lemma 5.2).)

≤ 4tBvBx

n

(
1 +

Bx√
λ

)
‖∆L‖F .

We can now prove the lemma.

Lemma (Uniform stability). Our algorithm has a uniform stability in β =
8B2

vB
2
x

λn

(
1 + Bx√

λ

)2

.

Proof. By setting t = 1
2 in Lemma D.2, one can obtain for the left hand side:

‖LV ‖2F −
∥∥∥∥LV − 1

2
∆L

∥∥∥∥2

F
+ ‖LV i‖

2
F −

∥∥∥∥LV i +
1

2
∆L

∥∥∥∥2

F
=

1

2
‖∆L‖2F

and thus:

1

2
‖∆L‖2F ≤

2BvBx

λn

(
1 +

Bx√
λ

)
‖∆L‖F

⇒ ‖∆L‖F ≤
4BvBx

λn

(
1 +

Bx√
λ

)
From Lemma 5.2 we have:

|l (LV , (x,v))− l (LV i , (x,v))| ≤ 2BvBx

(
1 +

Bx√
λ

)
‖∆L‖F

≤ 8B2
vB

2
x

λn

(
1 +

Bx√
λ

)2

Setting β = 8B2
vB

2
x

λn

(
1 + Bx√

λ

)2
gives the lemma.
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5.4 Analyse Théorique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.5 Expériences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

6 Estimation de la Transformation pour le Transport Optimal Discret 137

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.2 Transport Optimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.3 Cadre de Travail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.4 Optimisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
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E.1 Introduction

L’Apprentissage Automatique est un domaine de l’Intelligence Artificielle dont le but est

d’acquérir de nouvelles connaissances à partir de données. Ces nouvelles connaissances pren-

nent généralement la forme d’un modèle, appris à partir d’un nombre limité d’exemples ob-

servés et capable de bien généraliser à de futures requêtes. En d’autres termes, le but est

d’apprendre comment résoudre un problème de façon automatique à partir d’un nombre fini

d’observations. Par exemple, l’objectif de la détection de spams est d’utiliser la boite mail

annotée d’un utilisateur pour apprendre comment séparer les emails désirés des autres; en

suivi d’objets le problème est de suivre un élément donné dans une vidéo; en reconnaissance

de visages le but est d’identifier une personne dans un ensemble d’images. . . . La diversité des

problèmes posés en apprentissage automatique a attiré beaucoup d’attention dans le passé et

mérite que l’on continue à s’y intéresser activement.

Dans cette thèse nous sommes principalement intéressés par les problèmes d’Apprentissage

Supervisé. L’idée derrière ce paradigme est que les exemples sont accompagnés d’une étiquette.

Celle-ci peut être une valeur ou une classe et correspond à la solution du problème pour

l’exemple associé. Pour illustrer cela, nous considérons le problème de prédiction du prix des

habitations et celui de la reconnaissance de champignons empoisonnés. Dans le premier cas,

le but est de prédire le prix d’une maison, chaque exemple correspond alors à un ensemble

de caractéristiques du bâtiment tandis que l’étiquette correspond à son prix. Dans le second

cas, le but est de reconnaitre, à partir d’images, les champignons mangeables de ceux qui sont

empoisonnés. Chaque exemple est alors la photo d’un champignon tandis que l’étiquette cor-

respond à sa classe, i.e. empoissonné ou pas. De ces exemples, nous remarquons l’importance,

en apprentissage supervisé, de la généralisation aux nouvelles données. En effet, les étiquettes

des exemples d’apprentissage étant données, l’intérêt d’un modèle qui n’est pas capable de
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prédire la bonne étiquette pour un nouvel exemple est limité. Notons que les deux exem-

ples précédents correspondent à des problèmes largement étudiés en apprentissage supervisé :

la régression et la classification. La différence entre les deux est que le but du premier est

de prédire une valeur continue tandis que l’objectif du second est de déterminer une classe

discrète.

L’apprentissage supervisé n’est pas le seul paradigme existant en apprentissage automa-

tique. Il peut, en fait, être opposé à celui de l’apprentissage non supervisé où les exemples

ne sont pas associés à des étiquettes. Par exemple un problème largement étudié est celui du

partitionnement de données où l’objectif est d’obtenir une séparation sensée de l’espace, c’est

à dire de regrouper les exemples qui partagent des propriétés communes. La performance

des algorithmes d’apprentissage non supervisé est difficile à évaluer en pratique. En effet,

contrairement à l’apprentissage supervisé, il n’y a pas d’étiquettes donnant un retour évident

sur le modèle appris.

S’inspirant de ces deux paradigmes, l’idée derrière l’Apprentissage Semi-Supervisé est de

considérer deux ensembles d’apprentissage, le premier est étiqueté tandis que le second ne l’est

pas. Dans ce cas, le but est souvent d’utiliser les exemples étiquetés pour aider à résoudre

une tâche d’apprentissage non supervisé ou d’utiliser les exemples non étiquetés pour aider à

résoudre une tâche d’apprentissage supervisé.

Jusque là nous avons considéré que le but des différentes approches d’apprentissage au-

tomatique est de résoudre une tâche unique. Prenant un point de vue différent, l’idée derrière

l’Apprentissage par Transfert est de transférer la connaissance apprise sur un problème source

à un problème cible. De façon similaire, l’idée derrière l’Adaptation de Domaine est de

transférer le modèle appris sur une tâche source pour résoudre un problème cible qui est

différent mais relié. Par exemple, dans le problème de la détection de spams, les deux tâches

peuvent être de détecter les mails non désirés dans les bôıtes de deux utilisateurs différents.

Ces deux utilisateurs rencontrent le même problème mais la distribution de leurs mails diffère,

e.g. ils ne sont pas abonnés aux mêmes listes de diffusion. Dans ce cas le but est d’adapter

le modèle appris pour un des utilisateurs à l’autre.

Dans ce manuscrit nous verrons que même si nous nous intéressons principalement à

des problèmes d’apprentissage supervisé, plusieurs de nos contributions sont aussi liées aux

différents paradigmes présentés ici.

Lors de la présentation du paradigme de l’apprentissage supervisé nous avons insisté sur

le fait qu’un modèle, appris en utilisant un nombre limité d’exemples d’apprentissage, de-

vrait pouvoir généraliser à de nouveaux exemples. Une façon de vérifier cette propriété est

d’évaluer le modèle appris sur un nouvel ensemble d’exemples de test indépendants des ex-

emples d’apprentissage et pour lesquels la solution au problème est connue. Cependant, le

nombre d’exemples qui peuvent être obtenus est souvent limité. Cela implique que cette ap-

proche ne suffit bien souvent pas à assurer que le modèle généralise bien. D’autres méthodes

sont alors nécessaires. Pour cela, notons d’abord qu’une supposition commune en apprentis-

sage automatique est que la tâche que nous cherchons à résoudre est complètement définie
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par une distribution inconnue à partir de laquelle les exemples d’apprentissage sont tirés. Par

suite, une solution possible est d’utiliser une procédure de validation croisée où l’idée est de

séparer l’ensemble d’apprentissage en k parties. Le modèle est alors appris sur k − 1 parties

et testé sur la dernière. Cette procédure est alors répétée k fois, i.e. jusqu’à ce que chaque

partie est été utilisée comme partie de test, et la précision est obtenue comme moyenne des

différentes répétitions. Cette procédure requiert aussi un nombre significatif d’exemples pour

être pertinente. Une autre possibilité qui suit de la supposition évoquée précédemment con-

siste à procéder à une analyse théorique de l’algorithme d’apprentissage et de dériver des

bornes appelées bornes en généralisation. L’idée de ces bornes est de montrer que l’erreur

réelle du modèle appris, i.e. son erreur sur la distribution inconnue, est bornée par son er-

reur empirique, i.e. son erreur sur l’ensemble d’apprentissage, à laquelle s’ajoute un terme

qui décroit avec l’augmentation de la taille de l’ensemble d’apprentissage. L’obtention de

telles bornes est une garantie que les modèles appris par l’algorithme concerné généralisent

raisonnablement bien.

De nombreuses approches ont été proposées pour résoudre les problèmes posés par l’appren-

tissage supervisé. Parmi celles-ci plusieurs dépendent fortement d’une notion de distance ou

de similarité entre les exemples pour apprendre un modèle. Un exemple très représentatif

est le classificateur des plus proches voisins qui est basé sur l’idée que deux exemples simi-

laires devraient partager la même étiquette. Un autre exemple est l’algorithme des machines

à vecteurs de support qui propose de classer les exemples en fonction de leur similarité à

des points spécifiques nommés vecteurs de support. Dans ces deux exemples la notion de

similarité utilisée est d’une importance critique. Cependant des tâches différentes requièrent

souvent des mesures de similarité différentes. Par exemple, considérant les exemples évoqués

précédemment dans cette introduction, il semble mal venu de comparer les habitations et les

champignons de la même façon. Manuellement choisir une mesure de similarité appropriée

peut être fastidieux et difficile. Cependant il devrait être possible de l’inférer de façon automa-

tique à partir des données. C’est l’idée derrière l’Apprentissage de Métriques qui correspond

au problème auquel nous allons nous intéresser dans cette thèse.

Nous identifions plusieurs limites des approches actuelles en apprentissage de métriques.

Tout d’abord plusieurs méthodes proposent d’utiliser des informations supplémentaires pour

aider durant le processus d’apprentissage. Cependant il n’y a pas de compréhension théorique

de l’impact de ces informations sur la métrique apprise. Ensuite les propriétés intrinsèques

des métriques apprises sont souvent les mêmes. En effet celles-ci sont généralement apprises

avec l’idée de rapprocher les exemples similaires et d’éloigner les exemples dissimilaires. Dans

certains cas il pourrait être intéressant de considérer d’autres types de contraintes. Un exemple

est l’obtention d’une métrique dont le comportement n’est pas limité aux exemples mais est

plus global dans le sens où elle est, par exemple, capable de bouger des blocs d’exemples

en tant que tels. Enfin, une troisième limite des approches actuelles est qu’elles ne sont,

bien souvent, pas justifiées théoriquement, i.e. aucune garantie n’est proposée concernant la
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capacité à généraliser des métriques apprises.

Contributions: Apprendre des Métriques avec un Comportement Contrôlé

Dans cette thèse nous proposons plusieurs approches pour apprendre des métriques dont le

comportement est contrôlé. Dans une première partie nous proposons d’utiliser une informa-

tion supplémentaire qui prend la forme d’une métrique de référence ou métrique source pour

guider de façon stricte ou plus relâchée la métrique apprise. Ainsi, dans notre première con-

tribution, nous nous intéressons au problème de la régression des valeurs d’une métrique de

référence uniquement accessible à travers un ensemble d’apprentissage de taille limité. Dans

notre seconde contribution nous étudions de façon théorique comment utiliser une métrique de

référence venant d’un problème lié mais différent peut aider lors du processus d’apprentissage.

En particulier nous dérivons plusieurs mesures de l’apport de la métrique source pour le

problème considéré. Dans une seconde partie nous proposons deux approches capables de

considérer de nouvelles formes de contraintes pour l’apprentissage de métriques. Ainsi, dans

notre troisième contribution, nous considérons que les exemples d’apprentissage ne devraient

pas bouger les uns par rapport aux autres mais plutôt par rapport à des points virtuels qui

se trouvent déjà dans l’espace induit par la métrique apprise. Cette méthode nous permet

de contrôler de manière précise le mouvement de chaque exemple. Dans notre quatrième

contribution nous étendons notre troisième contribution et considérons de récentes avancées

dans le domaine du Transport Optimal pour proposer une nouvelle approche pour appren-

dre une métrique capable de bouger des blocs d’exemples dans l’espace. Enfin, remarquons

que dans cette thèse nous proposons, autant que possible, des approches qui sont justifiées

théoriquement.

Plan général

Dans la première partie de cette thèse nous présentons plusieurs éléments préliminaires. Dans

le premier chapitre nous introduisons des concepts qui seront utilisés tout au long de ce

manuscrit tandis que dans le second chapitre nous proposons une revue de l’état de l’art en

apprentissage de métriques.

Chapitre 1 Le premier chapitre de cette thèse est dédié à la présentation de plusieurs no-

tions et outils utilisés dans celle-ci. La première partie de ce chapitre présente le cadre de

travail de la minimisation du risque sur lequel sont basées toutes nos contributions algorith-

miques. La seconde partie est dédiée à l’analyse théorique des algorithmes. Plus précisément

nous présentons deux cadres théoriques utilisés pour dériver des bornes en généralisation et

basés respectivement sur la stabilité uniforme et la complexité de Rademacher. La troisième

partie s’intéresse à la notion de fonction de perte et de terme de régularisation qui sont des

éléments clés de l’apprentissage par minimisation du risque. Au travers de plusieurs exemples

nous montrons qu’il existe de nombreux choix avec des propriétés différentes. Cette troisième

partie s’intéresse aussi à la présentation d’une définition formelle de la notion de métrique
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comme terme général pour désigner une similarité, une dissimilarité ou une distance. De la

même façon que pour les fonctions de perte et les termes de régularisation plusieurs exemples

sont présentés. La dernière partie de ce premier chapitre introduit plusieurs autres notions

utiles telles que le classificateur des plus proches voisins, que nous utiliserons souvent avec les

métriques que nous apprenons, et le problème de l’adaptation de domaine que nous utilisons

pour évaluer deux de nos contributions.

Chapitre 2 Le second chapitre de cette thèse correspond à une revue de l’état de l’art en

apprentissage de métriques. Dans celle-ci nous présentons les approches principales qui ont

fait le succès de ce domaine. Nous proposons de diviser cette revue en quatre parties qui

correspondent aux réponses à quatre questions basiques sur les problèmes de l’apprentissage

de métriques. Dans la première partie nous considérons les différentes sortes de métriques

pouvant être apprises. Ensuite, dans la seconde partie, nous répondons à la question de

savoir comment ces métriques peuvent être apprises en pratique. Dans la troisième partie

de ce chapitre nous présentons plusieurs approches qui s’intéressent aux questions théoriques

liées à l’apprentissage de métriques. Enfin, dans la dernière partie, nous présentons plusieurs

travaux qui s’intéressent à l’utilisation de l’apprentissage de métriques dans des applications

qui vont de la classification au partitionnement en passant par l’adaptation de domaine.

Dans la seconde partie de cette thèse nous présentons nos deux premières contributions.

Elles s’intéressent à l’utilisation d’une métrique de référence comme aide lors du processus

d’apprentissage.

Chapitre 3 Dans le troisième chapitre de cette thèse nous présentons notre première

contribution. Elle correspond à une méthode d’apprentissage capable d’approximer une

métrique existante. La première partie de ce chapitre est dédiée à la présentation du problème

d’optimisation qui correspond à une régression des valeurs d’une métrique. De plus nous

montrons que quand la métrique de référence est trop complexe, il est possible d’utiliser une

approche locale pour obtenir une meilleure approximation. Dans la deuxième partie nous

analysons théoriquement notre approche dans le cas global mais aussi dans le cas local. Cela

montre que les métriques apprises par notre approche généralisent bien. Dans les troisième et

quatrième parties de ce chapitre nous considérons le problème de l’apprentissage de distances

couleur perceptuelles pour montrer l’intérêt de notre approche dans une application réelle.

Chapitre 4 Le quatrième chapitre de cette thèse est dédié à notre seconde contribution.

Comme dans le troisième chapitre il s’agit d’une approche d’apprentissage de métriques capa-

ble de prendre en compte la connaissance donnée par une métrique de référence. La principale

différence est que, dans ce chapitre, le but n’est pas d’approximer cette métrique mais plutôt

de l’utiliser pour aider au cours du processus d’apprentissage. Cette contribution est ainsi

fortement liée aux domaines de l’apprentissage par transfert et de l’adaptation de domaine.

Ce chapitre est divisé en sept parties. Dans la première nous présentons le cadre de travail
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de l’apprentissage de métriques par transfert d’hypothèses qui correspond à un problème de

minimisation avec terme de régularisation biaisé. Dans les deuxième, troisième et quatrième

parties nous proposons une analyse théorique du cadre de travail proposé en utilisant trois ap-

proches théoriques différentes. Cela nous permet de dériver plusieurs mesures de l’apport de

la métrique de référence. Dans la cinquième partie de ce chapitre nous résumons les différentes

bornes et dans la sixième partie nous présentons plusieurs fonctions de perte et termes de

régularisation pouvant être utilisés dans notre cadre de travail. Dans la dernière partie nous

montrons que ce cadre peut être utilisé en pratique pour obtenir des résultats compétitifs sur

plusieurs tâches d’apprentissage par transfert.

Dans la dernière partie de cette thèse nous introduisons nos deux dernières contributions

où nous proposons de nouvelles façons de contrôler le comportement des métriques apprises.

Chapitre 5 Dans ce cinquième chapitre nous présentons notre troisième contribution. Dans

celle-ci, plutôt que d’utiliser les contraintes classiques de similarités et dissimilarités nous pro-

posons de considérer que la métrique devrait rapprocher les exemples d’apprentissage de points

virtuels définis à priori. Cela nous permet d’apprendre une métrique à l’aide d’une régression

et de réduire le nombre de contraintes considérées. Dans la première partie de ce chapitre

nous présentons notre algorithme. Dans la seconde nous adressons le problème de sélectionner

les points virtuels et de définir les contraintes. Dans la troisième partie nous proposons une

analyse théorique de l’algorithme proposé et nous montrons, d’une part, qu’apprendre une

métrique avec notre approche est fondé et, d’autre part, qu’il est possible de dériver des liens

avec une approche plus classique d’apprentissage de métriques. Dans la dernière partie nous

validons empiriquement l’intérêt de notre approche.

Chapitre 6 Le sixième chapitre de cette thèse introduit la dernière contribution de celle-

ci. Il s’agit d’une nouvelle méthode capable d’apprendre une métrique pouvant bouger des

blocs d’exemples en approximant la transformation correspondant à la solution d’un problème

de transport optimal. Dans la première partie de ce chapitre nous introduisons de manière

formelle le problème du transport optimal. Dans la deuxième partie nous présentons notre for-

mulation tandis que dans la troisième nous proposons une approche efficace pour l’optimiser.

Dans la quatrième partie de ce chapitre nous proposons une discussion théorique qui montre

que si les suppositions classiques faites dans le domaine du transport optimal sont correctes

alors notre approche est fondée. Dans la dernière partie nous proposons une validation em-

pirique de notre méthode sur des problèmes d’adaptation de domaine et d’édition d’images.

E.2 Résumé du Chapitre 1

Dans ce chapitre nous présentons plusieurs notions essentielles à la bonne compréhension

de cette thèse. En particulier nous formalisons le cadre de travail de l’apprentissage par
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minimisation empirique du risque sur lequel sont basées nos différentes contributions algo-

rithmiques. De la même façon nous présentons deux cadres théoriques qui permettent de

dériver des bornes en généralisation pour la minimisation du risque. Comme nous le verrons

dans le second chapitre ces deux cadres théoriques ont été étendus avec succès au problème

de l’apprentissage de métriques. Dans ce manuscrit nous les utiliserons pour démontrer que

nos algorithmes sont capables d’apprendre des métriques qui généralisent bien. D’un point

de vue plus pratique nous présentons plusieurs fonctions de perte et termes de régularisation

pouvant être utilisés dans le cadre de la minimisation du risque. Nous proposons aussi une

définition formelle de la notion de métrique considérée dans cette thèse. Pour finir nous

présentons l’algorithme de classification des plus proches voisins et le problème de l’adaptation

de domaine qui seront utilisés pour empiriquement démontrer l’intérêt de la plupart de nos

contributions.

E.3 Résumé du Chapitre 2

Dans ce chapitre nous proposons une revue, non exhaustive, de l’état de l’art en apprentissage

de métriques. Ainsi nous nous intéressons tout particulièrement aux méthodes proches de nos

contributions. Cela correspond à des approches qui apprennent le même genre de métriques,

considèrent des façons similaires d’effectuer l’étape d’apprentissage, dérivent le même genre

de bornes en généralisation ou apprennent une métrique pour résoudre les mêmes tâches.

E.4 Résumé du Chapitre 3

Dans ce chapitre nous nous intéressons au problème de l’estimation d’une métrique de référence

inconnue à partir d’un ensemble de paires d’exemples. Une solution à ce problème est d’utiliser

l’apprentissage de métriques pour approximer de façon automatique les valeurs de cette

métrique de référence. Cependant, la plupart des algorithmes d’apprentissage de métriques

s’intéressent à l’estimation de la proximité relative des exemples d’apprentissage plutôt qu’à

la distance effective qui les sépare. Dans ce chapitre nous proposons un nouvel algorithme

d’apprentissage de métriques locales nous permettant, à l’aide d’une distance de Mahalanobis,

d’approximer de façon précise une métrique de référence. En utilisant le cadre théorique de

la stabilité uniforme nous dérivons des bornes en généralisation sur le modèle appris qui mon-

trent que notre méthode est fondée théoriquement. De plus nous évaluons notre approche

sur un problème de vision par ordinateur consistant à calculer des différences de couleurs qui

soient perceptuellement uniformes. Avoir des distances qui reflètent la perception humaine

des couleurs de la scène est essentiel dans les applications de vision par ordinateur comme

la segmentation d’images ou la détection d’objets saillants. Cependant, dans la plupart des

cas, il est uniquement possible d’avoir accès aux couleurs de l’image sans aucun moyen de

revenir aux couleurs de la scène. Il existe deux approches principales permettant de résoudre

ce problème. D’un côté, il est possible de calculer directement une distance perceptuelle entre
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les couleurs de l’image considérée. Cependant cette distance est coûteuse à calculer et dépend

des conditions d’acquisition ce qui implique qu’elle est bien souvent loin des différences entre

couleurs de la scène. D’un autre côté, il est possible d’estimer les couleurs de la scène à partir

de celles de l’image puis de calculer une distance perceptuellement uniforme. Cependant, cela

implique une connaissance sur les conditions d’acquisition qui n’est pas raisonnable pour la

plupart des applications. Notre approche nous permet d’apprendre une métrique qui est à

la fois invariante aux conditions d’acquisition et calculable à partir des couleurs des images.

Nous évaluons l’intérêt de cette dernière en montrant sa capacité à (i) généraliser à de nou-

velles couleurs et de nouveaux appareils photographiques et (ii) aider dans un problème de

segmentation.

E.5 Résumé du Chapitre 4

Nous considérons le problème du transfert de connaissances à priori dans le contexte de

l’apprentissage supervisé de métriques. De façon plus précise nous considérons des problèmes

à régularisation biaisée qui utilisent un métrique de référence, une métrique source, venant

d’un problème différent mais relié et pouvant potentiellement aider lors de l’apprentissage

d’une métrique avec peu de données. Si ce cadre a déjà été appliqué avec succès de manière

empirique, il n’existe pas de cadre théorique justifiant une telle approche. Dans ce chapitre,

nous proposons de résoudre ce problème en proposant une analyse théorique basée sur trois

approches différentes. Tout d’abord nous présentons une nouvelle définition de la stabilité,

on-average-replace-two-stability, qui nous permet de montrer des bornes en généralisation en

moyenne avec un taux de convergence rapide lorsqu’une métrique source auxiliaire est utilisée

pour biaiser le terme de régularisation. Ensuite nous considérons une notion de stabilité algo-

rithmique adaptée au cadre de l’apprentissage de métriques régularisé et nous prouvons une

borne en généralisation probabiliste montrant l’intérêt d’utiliser un terme de régularisation bi-

aisé avec pondération de la métrique source. Nous proposons une solution algorithmique à ce

problème de pondération que nous évaluons (i) dans un problème d’apprentissage de métriques

classique et (ii) dans un problème d’apprentissage par transfert avec peu de données cibles.

Enfin nous dérivons une borne en généralisation basée sur la complexité de Rademacher de

la classe de métriques considérée en prenant notamment en compte la métrique de référence.

Cette borne souligne l’intérêt d’utiliser une bonne métrique source en montrant que, lorsque

celle-ci est une solution idéale au problème, l’apprentissage n’est plus nécessaire. Pour justi-

fier l’intérêt de ce cadre de travail nous proposons plusieurs exemples de fonctions de perte

et de termes de régularisation qui peuvent être utilisés dans le cadre d’une ou plusieurs des

approches théoriques considérées.
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E.6 Résumé du Chapitre 5

Dans ce chapitre nous nous intéressons à l’apprentissage supervisé de distances de type Ma-

halanobis. Les approches existantes cherchent principalement à apprendre un nouvel espace

de représentation en fonction de contraintes prenant en compte des informations de similarité

et de dissimilarité entre les exemples. Ici, au lieu de rapprocher où d’éloigner les exemples

selon ce type de contraintes, nous proposons d’introduire le concept de points virtuels nous

servant de supports pour le déplacement des exemples d’apprentissage. Ainsi, les exemples

d’apprentissage sont rapprochés d’un point virtuel qui leur a été affecté à priori permettant

alors de réduire le nombre de contraintes à satisfaire et de contrôler de façon explicite le

comportement de la métrique pour chaque exemple. Nous montrons que l’approche proposée

peut être résolue en forme close et qu’il est alors possible de travailler dans l’espace induit

par un noyau. Nous proposons deux analyses théoriques, la première prouvant la capacité de

généralisation des métriques apprises avec notre méthode et la seconde établissant des liens

avec une approche d’apprentissage de métriques classique. De plus nous proposons deux solu-

tions efficaces au difficile problème de la sélection des points virtuels, l’une d’elle étant basée

sur de récentes avancées dans le domaine du transport optimal. Pour finir, nous évaluons

notre approche sur plusieurs jeux de données classiques en apprentissage de métriques.

E.7 Résumé du Chapitre 6

Dans ce chapitre nous proposons d’adresser le problème de l’apprentissage d’une transforma-

tion, induisant une distance de Mahalanobis, qui approxime une transformation géométrique

particulière. Une telle métrique pourrait être très bénéfique dans le contexte de l’adaptation

de domaine où le but est d’aligner les domaines sources et cibles. Ici nous proposons de con-

sidérer des transformations géométriques induites par la résolution d’un problème de transport

optimal. En effet, il s’agit d’une procédure raisonnable pour aligner des distributions et sa

capacité à résoudre des problèmes d’adaptation de domaine a déjà été démontrée. La plu-

part des approches en transport optimal utilisent la formulation donnée par Kantorovich et

apprennent un couplage probabiliste Γ entre les différents exemples d’apprentissage. Cepen-

dant elles n’abordent pas le problème de l’apprentissage de la transformation fS→T liée au

problème de Monge. En conséquence le couplage appris ne peut-être utilisé que sur les ex-

emples d’apprentissage et pas sur de nouveaux exemples ce qui réduit l’intérêt potentiel de

telles approches. Dans ce chapitre nous proposons de combiner l’apprentissage de métriques

et le transport optimal dans un nouveau cadre de travail nous permettant d’apprendre con-

jointement le couplage et une approximation de la transformation correspondante. Cette

approximation prend la forme d’une matrice L correspondant à une nouvelle métrique dans

le domaine source. Dans ce cas nous montrons que notre approche est liée à RVML, présenté

dans le Chapitre 5, où les points virtuels associés à chaque exemple sont définis comme le

résultat du couplage induit par le transport. Cependant, plutôt que de considérer que le

couplage est défini a priori, nous proposons de l’apprendre en même temps que la métrique.
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Ainsi, nous obtenons une formulation jointe et convexe pouvant être optimisée de façon effi-

cace et ayant le bénéfice de lisser le résultat du transport optimal. En pratique nous montrons

l’intérêt de notre méthode pour deux tâches, l’une en adaptation de domaine et l’autre en

édition d’images.

E.8 Conclusion

Dans cette thèse nous avons adressé le problème de l’apprentissage de métriques à comporte-

ment contrôlé. Nous avons considéré deux types de contrôle sur la métrique apprise. D’une

part, nous avons considéré le problème de l’apprentissage par rapport à une métrique de

référence donnée soit sous la forme d’une distance pour un nombre limité de paires d’exemples

soit directement sous la forme d’un modèle. D’autre part, nous avons considéré le problème

de l’apprentissage de la transformation induite par une distance de Mahalanobis soit pour

contrôler de façon précise le mouvement de chaque exemple soit pour approximer une transfor-

mation géométrique. Nos différentes contributions sont à la fois algorithmiques et théoriques.

Résumé des Contributions

La plupart des algorithmes d’apprentissage de métriques s’intéressent à l’obtention de métriques

capables de rapprocher les exemples similaires tout en éloignant les exemples dissimilaires.

Cependant, il peut parfois être intéressant de prédire une valeur précise entre deux exem-

ples. C’est par exemple le cas lorsque l’on a accès à un nombre limité de paires d’exemples

pour lesquelles la valeur d’une métrique de référence est connue. Dans notre première con-

tribution nous avons adressé le problème de l’approximation de cette métrique de référence.

Nous avons proposé une approche d’apprentissage de métriques locales que nous avons analysé

théoriquement pour montrer que si le modèle a été appris avec un nombre suffisant d’exemples,

il généralise bien. De plus nous avons évalué notre approche sur le problème de vision par or-

dinateur qu’est l’estimation de distances couleur perceptuelles. Pour cela nous avons créé un

nouveau jeu de données spécialement dédié à cette tâche. Nos résultats empiriques ont montré

le bon comportement de notre approche ainsi que sa capacité à approximer la métrique de

référence. Le nouveau jeu de données ainsi que la distance perceptuellement uniforme apprise

sont distribués gratuitement (Perrot et al., 2014a).

Plusieurs approches d’apprentissage de métriques montrent de façon empirique l’intérêt

d’utiliser une information supplémentaire, sous forme d’une métrique source, mais ne prouvent

pas ces bénéfices de façon théorique. Dans notre deuxième contribution nous avons proposé

de résoudre ce problème. Ainsi, nous avons formalisé le cadre de travail de l’apprentissage de

métriques par transfert d’hypothèse où l’idée est de prendre en compte une métrique source

dans un terme de régularisation biaisé. Nous avons proposé une analyse théorique de ce cadre

nous permettant de dériver trois mesures différentes de l’apport d’une métrique source. Ces

mesures représentent différents moyens d’évaluer l’intérêt de la métrique de référence pour

le problème considéré. Deux de ces mesures sont théoriques et donc difficiles à utiliser en
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pratique. La troisième, cependant, est empirique ce qui signifie qu’elle peut être utilisée

pour sélectionner la meilleur métrique source dans un ensemble. Pour illustrer cela nous

avons proposé un algorithme de pondération de l’importance de la métrique source. Nous

avons de plus démontré l’intérêt de notre cadre de travail en montrant que de nombreuses

fonctions de perte et termes de régularisations pouvaient être utilisés. Enfin nous l’avons

empiriquement évalué sur un problème d’apprentissage de métriques classique mais aussi sur

une tâche d’adaptation de domaine semi-supervisé.

La plupart des approches d’apprentissage de métriques utilisent des contraintes de simi-

larité et dissimilarité pour apprendre une métrique mais ne contrôlent pas de façon explicite

le comportement de la transformation induite. Dans notre troisième contribution nous avons

adressé ce problème en proposant une nouvelle approche où la destination des exemples, après

projection par la transformation, est choisie de manière explicite à l’aide de points virtuels.

Cela nous a permis de contrôler de manière précise la métrique apprise et donc d’apprendre

des modèles plus adaptés à la tâche considérée. Par exemple, pour un problème de classifi-

cation, nous avons proposé des points virtuels basés sur les différentes classes de telle façon

que chaque axe de l’espace de projection de la métrique apprise soit discriminant pour une

classe particulière. Nous avons montré que notre approche peut facilement apprendre à par-

tir de l’espace induit par un noyau et donc apprendre des métriques très expressives. Nous

avons aussi proposé une étude théorique montrant des liens entre notre méthode et une ap-

proche classique d’apprentissage de métriques. Enfin, nous avons démontré empiriquement

ses bonnes performances sur plusieurs jeux de données classiques.

Dans notre quatrième contribution nous avons abordé un problème similaire à celui de

notre troisième contribution. Cependant, au lieu de contrôler de façon explicite le comporte-

ment de chaque exemple individuellement, nous avons proposé de forcer la métrique à suivre

une transformation géométrique particulière. Ainsi, nous avons considéré des transformations

induites par le couplage appris par un problème de transport optimal discret, ce qui est d’un

intérêt tout particulier pour des tâches d’adaptation de domaine. Nous avons proposé une

solution pour apprendre de façon jointe ce couplage et la transformation induite par une

métrique. Nous avons dérivé une méthode d’optimisation efficace et nous avons montré que

cette approche pouvait être reliée à notre troisième contribution où les points virtuels et la

transformation sont appris de façon jointe. Nous avons empiriquement démontré le bon com-

portement de notre approche pour un problème d’adaptation de domaine non supervisé ainsi

que pour une tâche d’édition d’images.

Perspectives

Nous avons déjà présenté des perspectives spécifiques pour chacune de nos contributions. Dans

cette partie, nous proposons plutôt de considérer des travaux futurs généraux qui peuvent

représenter de nouvelles directions de recherche découlant des éléments présentés dans cette

thèse.

D’un point de vue algorithmique nos contributions sont principalement basées sur des
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problèmes d’optimisation directs. Une première perspective serait d’étendre les concepts

présentés dans ce manuscrit au contexte de l’apprentissage en ligne. Ainsi, il pourrait être

intéressant de développer des mécanismes capables de détecter de potentiels changements

dans la distribution des exemples et d’alors changer automatiquement le comportement de la

métrique considérée. Une telle approche pourrait, par exemple, être utilisée dans un contexte

de suivi d’objets dans des vidéos où les variations dans la scène peuvent potentiellement

appeler à des comportements différents de la métrique. Une autre perspective serait de

considérer l’apprentissage actif pour améliorer le contrôle de la métrique. Par exemple, lorsque

l’on apprend une transformation, il pourrait être intéressant d’obtenir un retour de l’utilisateur

pour vérifier que les exemples sont correctement déplacés. Un domaine d’application pourrait

être celui de l’adaptation de domaine, où l’apprentissage actif à déjà fait ses preuves (Berlind

and Urner, 2015), où obtenir des retours sur des exemples bien choisis pourrait assurer que

la métrique estime de façon correcte les différences entre les distributions.

D’un point de vue plus théorique notons que dans cette thèse nous nous sommes princi-

palement intéressés à la capacité de généralisation des métriques apprises et pas à leur impact

sur l’application dans laquelle elles sont utilisées. Partant de cette dernière idée, Balcan et al.

(2008) ont montré que l’erreur d’un classificateur linéaire était liée à une mesure de l’apport

de la similarité utilisée pour l’apprendre. Cette mesure de l’apport d’une métrique est reliée

à sa capacité à rapprocher les exemples similaires et à éloigner les exemples dissimilaires.

Cependant, lors de l’apprentissage d’une métrique à comportement contrôlé cette mesure ne

sera pas forcément adaptée. Par exemple, lors de l’apprentissage d’une métrique à l’aide

d’une métrique de référence ( Chapitres 3 et 4 ) il serait probablement plus intéressant de

considérer une mesure prenant en compte cette information supplémentaire. De la même

façon, lors de l’apprentissage d’une transformation pour une tâche d’adaptation de domaine

( Chapitres 4 et 6 ) il serait probablement plus intéressant de se focaliser sur la capacité de

la métrique à aligner la source et la cible. Cela implique que la mesure de l’apport de la

métrique dépend de la tâche considérée. Une perspective intéressante pourrait être de con-

sidérer des cadres théoriques capables de prendre en compte une notion d’apport reliée à la

tâche considérée et de montrer qu’une bonne métrique est en effet bénéfique.

Une autre perspective théorique est la dérivation de bornes à convergence rapides en

présence d’informations supplémentaires. Dans le Chapitre 4 nous avons proposé une première

solution à ce problème en utilisant la complexité de Rademacher et l’information supplémentaire

qu’est la mesure de l’apport de la métrique source dérivée. Cependant, cette solution n’est

pas satisfaisante dans le sens où la contrainte imposée sur la métrique source était plus forte

que le résultat obtenu sur la métrique apprise. Dans tous les cas, cela reste un résultat encour-

ageant puisqu’il montre qu’en utilisant des suppositions fortes il est possible d’obtenir un taux

de convergence rapide. Ainsi, s’il est possible d’obtenir des suppositions plus faibles ( Voir

e.g. Srebro et al. (2010c) ) il pourrait être possible de dériver des résultats plus significatifs.
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Brown. A new in-camera imaging model for color computer vision and its application.

IEEE Trans. Pattern Anal. Mach. Intell., 34(12):2289–2302, 2012a. 73

Seon Joo Kim, Hai Ting Lin, Zheng Lu, Sabine Süsstrunk, Stephen Lin, and Michael S
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Maria-Irina Nicolae, Éric Gaussier, Amaury Habrard, and Marc Sebban. Joint semi-

supervised similarity learning for linear classification. In Joint European Conference on

Machine Learning and Knowledge Discovery in Databases, pages 594–609. Springer, 2015.

56, 105, 107

S. J. Pan and Q. Yang. A survey on transfer learning. IEEE Trans. Knowl. Data Eng., 22

(10), 2010. 39

Shibin Parameswaran and Kilian Q Weinberger. Large margin multi-task metric learning. In

Advances in neural information processing systems, pages 1867–1875, 2010. 58, 86, 107
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Abstract Many Machine Learning algorithms make use of a notion of distance or similarity between examples to

solve various problems such as classification, clustering or domain adaptation. Depending on the tasks considered these

metrics should have different properties but manually choosing an adapted comparison function can be tedious and

difficult. A natural trend is then to automatically tailor such metrics to the task at hand. This is known as Metric

Learning and the goal is mainly to find the best parameters of a metric under some specific constraints. Standard

approaches in this field usually focus on learning Mahalanobis distances or Bilinear similarities and one of the main

limitations is that the control over the behaviour of the learned metrics is often limited. Furthermore if some theoretical

works exist to justify the generalization ability of the learned models, most of the approaches do not come with such

guarantees. In this thesis we propose new algorithms to learn metrics with a controlled behaviour and we put a

particular emphasis on the theoretical properties of these algorithms. We propose four distinct contributions which can

be separated in two parts, namely (i) controlling the metric with respect to a reference metric and (ii) controlling the

underlying transformation corresponding to the learned metric. Our first contribution is a local metric learning method

where the goal is to regress a distance proportional to the human perception of colors. Our approach is backed up by

theoretical guarantees on the generalization ability of the learned metrics. In our second contribution we are interested

in theoretically studying the interest of using a reference metric in a biased regularization term to help during the

learning process. We propose to use three different theoretical frameworks allowing us to derive three different measures

of goodness for the reference metric. These measures give us some insights on the impact of the reference metric on the

learned one. In our third contribution we propose a metric learning algorithm where the underlying transformation is

controlled. The idea is that instead of using similarity and dissimilarity constraints we associate each learning example

to a so-called virtual point belonging to the output space associated with the learned metric. We theoretically show

that metrics learned in this way generalize well but also that our approach is linked to a classic metric learning method

based on pairs constraints. In our fourth contribution we also try to control the underlying transformation of a learned

metric. However instead of considering a point-wise control we consider a global one by forcing the transformation to

follow the geometrical transformation associated to an optimal transport problem. From a theoretical standpoint we

propose a discussion on the link between the transformation associated with the learned metric and the transformation

associated with the optimal transport problem. On a more practical side we show the interest of our approach for

domain adaptation but also for a task of seamless copy in images.

Résumé De nombreux algorithmes en Apprentissage Automatique utilisent une notion de distance ou de similarité

entre les exemples pour résoudre divers problèmes tels que la classification, le partitionnement ou l’adaptation de

domaine. En fonction des tâches considérées ces métriques devraient avoir des propriétés différentes mais les choisir

manuellement peut-être fastidieux et difficile. Une solution naturelle est alors d’adapter automatiquement ces métriques

à la tâche considérée. Il s’agit alors d’un problème connu sous le nom d’Apprentissage de Métriques et où le but est

principalement de trouver les meilleurs paramètres d’une métrique respectant des contraintes spécifiques. Les approches

classiques dans ce domaine se focalisent habituellement sur l’apprentissage de distances de Mahalanobis ou de similarités

Bilinéaires et l’une des principales limitations est le fait que le contrôle du comportement de ces métriques est souvent

limité. De plus, si des travaux théoriques existent pour justifier de la capacité de généralisation des modèles appris, la

plupart des approches ne présentent pas de telles garanties. Dans cette thèse nous proposons de nouveaux algorithmes

pour apprendre des métriques à comportement contrôlé et nous mettons l’accent sur les propriétés théoriques de ceux-ci.

Nous proposons quatre contributions distinctes qui peuvent être séparées en deux parties: (i) contrôler la métrique

apprise en utilisant une métrique de référence et (ii) contrôler la transformation induite par la métrique apprise. Notre

première contribution est une approche locale d’apprentissage de métriques où le but est de régresser une distance

proportionnelle à la perception humaine des couleurs. Notre approche est justifiée théoriquement par des garanties en

généralisation sur les métriques apprises. Dans notre deuxième contribution nous nous sommes intéressés à l’analyse

théorique de l’intérêt d’utiliser une métrique de référence dans un terme de régularisation biaisé pour aider lors du

processus d’apprentissage. Nous proposons d’utiliser trois cadres théoriques différents qui nous permettent de dériver

trois mesures différentes de l’apport de la métrique de référence. Ces mesures nous donnent un aperçu de l’impact de la

métrique de référence sur celle apprise. Dans notre troisième contribution nous proposons un algorithme d’apprentissage

de métriques où la transformation induite est contrôlée. L’idée est que, plutôt que d’utiliser des contraintes de similarité

et de dissimilarité, chaque exemple est associé à un point virtuel qui appartient déjà à l’espace induit par la métrique

apprise. D’un point de vue théorique nous montrons que les métriques apprises de cette façon généralisent bien mais

aussi que notre approche est liée à une méthode plus classique d’apprentissage de métriques basée sur des contraintes de

paires. Dans notre quatrième contribution nous essayons aussi de contrôler la transformation induite par une métrique

apprise. Cependant, plutôt que considérer un contrôle individuel pour chaque exemple, nous proposons une approche

plus globale en forçant la transformation à suivre une transformation géométrique associée à un problème de transport

optimal. D’un point de vue théorique nous proposons une discussion sur le lien entre la transformation associée à la

métrique apprise et la transformation associée au problème de transport optimal. D’un point de vue plus pratique nous

montrons l’intérêt de notre approche pour l’adaptation de domaine mais aussi pour l’édition d’images.
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