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From Deterioration Modeling to Remaining Useful Life Control:
a comprehensive framework for post-prognosis decision-making applied to

friction drive systems

Abstract � Remaining Useful Lifetime (RUL) can be simply de�ned as a prediction of the re-

maining time that a system is able to perform its intended function, from the current time to the �nal

failure. In general, the purpose for predicting the RUL is to in�uence decision-making for the system.

This thesis deals with the development of a comprehensive framework for controlling the RUL of a sys-

tem, as a strategy to use the post-prognostic information and act dynamically over the decision-making

during operation. Prediction of RUL mostly depends on the state of deterioration of the system com-

ponents and their assumed future operating conditions. RUL prediction is an uncertain process and its

control is not a trivial task. Model uncertainties as well as system disturbances have been considered

into the proposed framework. Friction drive systems are used for illustrating the usefulness of the

aforementioned framework. For this kind of system, the friction is the source of mechanical motion and

simultaneously the source of deterioration. This double characteristic is a motivation for controlling

automatically the deterioration of the system by keeping a trade-o�, between motion requirements and

desired RUL values. Firstly, a new control-oriented dynamical model of the deterioration is proposed.

The amount of deterioration has been considered as a function of the dissipated energy at the contact

surfaces, during the mechanical power transmission. An approach for estimating the current deteriora-

tion condition of a friction drive system is proposed. The approach is based on an Extended Kalman

Filter (EKF), which uses an augmented model including the mechanical dynamical system and the

deterioration dynamics. At every time instant, the EKF also provides intervals which surely includes

the actual deterioration value with a given probability. A new architecture for controlling the RUL

is proposed and includes: a) a deterioration condition monitoring system (for instance the proposed

EKF), b) a system operating condition estimator, c) a RUL controller system, and d) a RUL-actuating-

principle. The operating condition estimator is based on the assumption that it is possible to quantify

certain characteristics of the motion requirements, for instance the duty cycle of motor torques. The

RUL controller uses a cost function that weights the motion requirements and the desired RUL values

to modify a varying-parameter �lter, used here as the RUL-actuating-principle. This RUL-actuating-

principle is based on a modi�cation of the demanded torques, coming from a possible motion controller

system. Results show that the RULcan be controlled according to the proposed theoretical framework.

Keywords: Automatic control, Deterioration - Mathematical modeling� Diagnostics, Service life

(Engineering), Prognostics Reliability, Fault tolerance (Engineering), Friction gearing.

GIPSA-Lab, 11 Rue des Mathématiques, Grenoble Campus, F-38402 Saint Martin d'Heres





De la Modélisation de la Détérioration au Contrôle de la Durée de Vie
Utile Résiduelle : proposition d'un cadre pour la prise de décision post-pronostic

appliquée aux systèmes de transmission par friction

Résumé � La durée de vie utile résiduelle (RUL) peut être simplement dé�nie comme une prédic-

tion du temps restant pendant lequel un système est capable d'exécuter sa fonction prévue ; elle est

mesurée à partir de l'instant présent jusqu'à la défaillance �nale. En général, le but de la prévision

de la RUL est d'in�uencer la prise de décision pour le système. Dans cette thèse, on a présenté un

cadre pour le contrôle de la RUL d'un système, en tant que stratégie pour utiliser les informations

post-pronostiques et agir dynamiquement sur la prise de décision pendant le fonctionnement. Cette

durée prévue dépend principalement de l'état de détérioration des composants du système et de leurs

conditions de fonctionnement futures prévues. Ainsi, la prédiction de la RUL est un processus incertain

et son contrôle n'est pas une tâche triviale. Les incertitudes du modèle ainsi que les perturbations du

système ont été prises en compte dans le cadre proposé. Les systèmes d'entraînement par friction sont

utilisés pour illustrer l'utilité du cadre susmentionnée. Pour ce type de système, le frottement est à la

fois source du mouvement et source de la détérioration. Ce double caractéristique de frottement est

une motivation pour contrôler automatiquement la détérioration du système en gardant un compro-

mis entre les exigences de mouvement et les valeurs RUL souhaitées. Dans cette thèse, un nouveau

modèle dynamique de la détérioration orienté au contrôle est proposé. Le degré de détérioration est

considéré en fonction de l'énergie dissipée, à la surface de contact, pendant la transmission mécanique

de puissance. Une approche est proposée pour estimer l'état actuel de la détérioration d'un système

d'entraînement par friction. L'approche est basée sur un Filtre de Kalman Etendu (EKF en anglais)

qui utilise un modèle augmenté incluant le système mécanique dynamique et la dynamique de détério-

ration. L'EKF fournit également des intervalles qui incluent sûrement la valeur de détérioration réelle

avec une valeur de probabilité. Une nouvelle architecture de commande de la RUL est proposée, elle

comprend : a) un système de surveillance de l'état de détérioration (par exemple l'EKF proposé), b)

un estimateur de l'état de fonctionnement du système, c) un système de contrôle de la RUL et d) un

principe actionneur de la RUL. L'estimateur des conditions de fonctionnement est basé sur l'hypothèse

qu'il est possible de quanti�er certaines caractéristiques des exigences de mouvement, par exemple le

rapport cyclique des couples moteur. Le contrôleur RUL utilise une fonction de coût qui pondère les

exigences de mouvement et les valeurs RUL souhaitées pour modi�er un �ltre à paramètres variables,

utilisé ici comme principe actionneur RUL. Le principe actionneur RUL est basé sur une modi�cation

des couples exigés, provenant d'un éventuel système de contrôle de mouvement. Les résultats montrent

qu'il est possible de contrôler la RUL, selon le cadre théorique proposé.

Mots clés: Commande automatique, Détérioration - Modèles mathématiques, Diagnostic, Durée de

vie (ingénierie), Pronostic, Fiabilité, Tolérance aux fautes (ingénierie), Entraînement par frottement.

GIPSA-Lab, 11 Rue des Mathématiques, Grenoble Campus, F-38402 Saint Martin d'Heres
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IV.4 Prediction output error ẽk for ω1 and ω2. . . . . . . . . . . . . . . . . . . . . . 68

IV.5 Estimation of α̂. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

IV.6 Estimation of m̂. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

IV.7 Distribution of α̂ and m̂ for multiple simulations of the EKF. . . . . . . . . . . 71

IV.8 Predicted deterioration
¯̂
D for prognostic of RUL. . . . . . . . . . . . . . . . . . 72

IV.9 Probability density function for a normal distribution �tting. . . . . . . . . . . 72

IV.10 Prognosis of RUL with an endogenous change in the system. . . . . . . . . . . 78

IV.11 Prognosis of RUL with an exogenous change in the system. . . . . . . . . . . . 79

IV.12 Estimated deterioration for random input I(t) . . . . . . . . . . . . . . . . . . 79



xvi List of Figures

IV.13 Predicted deterioration trajectory at the very beginning and in future time, for

random inputs I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

IV.14 Deterioration obtained with di�erent maximal electrical currents for a prede-

�ned sequence of u(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

IV.15 Pseudo-random activation sequence of signal u = I(t). . . . . . . . . . . . . . . 81

IV.16 Deterioration obtained with multiple random simulations . . . . . . . . . . . . 81

V.1 Illustration of the obtained RUL for two di�erent sequences of the motor torque. 86

V.2 Architecture for an optimal control of the RUL. . . . . . . . . . . . . . . . . . 87

V.3 Examples of applied motor torque Tm compared to the desired one T ref . . . . 88

V.4 Obtained motion satisfaction S as a function of the parameter θ2. . . . . . . . 90

V.5 Predicted RUL as function of the parameter θ2, the estimated contact quality

coe�cient α̂, and the operating conditions d̂. . . . . . . . . . . . . . . . . . . . 91

V.6 Predicted RUL along the useful lifetime: 1) by using the mean value of the

estimated α (solid line), 2) by using extreme values of the estimated α (dot-

ted line). Both compared to the obtained RUL (dashed line). The symbol ∗
represents the desired RUL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

V.7 System behavior under the e�ect of the RUL controller. . . . . . . . . . . . . . 94

V.8 The desired torque T ref and the applied motor torque Tm . . . . . . . . . . . . 94

V.9 Estimated contact quality coe�cient α̂ in presence of operating conditions

changes and for three di�erent cases. . . . . . . . . . . . . . . . . . . . . . . . . 95

A.1 Test Rig for Study of Surfaces Wear . . . . . . . . . . . . . . . . . . . . . . . . 104



List of Tables

III.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

III.2 Terms of power equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

III.3 Used values for the mechanical parameters . . . . . . . . . . . . . . . . . . . . . 43

IV.1 Possible model for the dynamics of m . . . . . . . . . . . . . . . . . . . . . . . . 66

IV.2 Comparison between EKF estimates and �tting of simulated data . . . . . . . . 70

V.1 Nomenclature and used values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



Chapter I

Main Introduction

Contents
I.1 About this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

I.2 General problem and motivations . . . . . . . . . . . . . . . . . . . . . . 2

I.2.1 The Remaining Useful Life . . . . . . . . . . . . . . . . . . . . . . . . . . 2

I.2.2 Motivation: Towards Post-Prognosis Decision-Making . . . . . . . . . . . 3

I.2.3 Application Case: Friction-based Mechanisms . . . . . . . . . . . . . . . . 4

I.3 Organization of the document . . . . . . . . . . . . . . . . . . . . . . . . 6

I.4 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

I.1 About this thesis

This thesis was:

• developed between March 2015 and June 2018, within the SLR1 and SAIGA2 research

teams, at the Control Systems Department of the laboratory GIPSA-Lab3, which is a

joint research unit of the CNRS4, Grenoble-Inp5, and the Université Grenoble Alpes

(UGA)6.

• developed in the specialty of Automatic Control and Production Systems7 of the doctoral

school EEATS8, which is part of the College of doctoral schools of the UGA.

• partially supported by the Colombian government through the: � COLCIENCIAS9 schol-

arship for developing international doctoral studies�.

• also partially supported by the French CNRS PEPS 2017 in the context of the IM-

PROVED project.
1Systèmes Linéaires et Robustesse (Linear Systems and Robustness)
2Signal et Automatique pour la surveillance, le diagnostic et la biomécanique (Signal and Automatics for

Monitoring, Diagnosis, and Biomechanics)
3Grenoble Images Parole Signal Automatique (Grenoble Images Speech Signal and Control Laboratory),

France.
4Centre National de la Recherche Scienti�que (National Center for Scienti�c Research), France.
5Institut Polytechnique de Grenoble (Grenoble Institute of Technology), France.
6Université Grenoble Alpes (UGA), France.
7Automatique-Productique (AP)
8Ecole Doctorale Electronique, Electrotechnique, Automatique et Traitement du Signal
9Departamento Administrativo de Ciencia, Tecnología e Innovación, (Administrative Department of Science,

Technology and Innovation), Colombia.

http://www.gipsa-lab.grenoble-inp.fr/en/slr/home-slr.php
http://www.gipsa-lab.grenoble-inp.fr/en/saiga/home-saiga.php
http://www.gipsa-lab.grenoble-inp.fr/en/saiga/home-saiga.php
www.gipsa-lab.fr
www.cnrs.fr
www.grenoble-inp.fr
www.univ-grenoble-alpes.fr
www.edeeats.grenoble-inp.fr
www.colciencias.gov.co
www.colciencias.gov.co


2 Chapter I. Main Introduction

I.2 General problem and motivations

I.2.1 The Remaining Useful Life

The Remaining Useful Life (RUL) of an asset or a system is de�ned as the time left from

the current time to the end of its useful life [Si 2011]. The meaning of this �useful life� and

its management vary according to the studied �eld, and they can generally be de�ned by the

designer, engineers and users of the asset. For illustrating the general concept of RUL, in Figure

I.1 the evolution of the deterioration of a given system is shown. There, the evolution of the

deterioration is assumed as known. In that case, the RUL is the time between the current time,

which corresponds to the condition A, and the time in which a maximum acceptable condition

of deterioration B is reached. The latter can correspond to the time of failure (i.e. for 100% of

the deterioration) or to a prede�ned threshold in a lower value. Consequently, one can de�ne

a �useful life� from the beginning of the lifetime until the failure or until the time of condition

B. In general, a proper RUL prediction in A is useful to perform maintenance activities from

A to B saving resources and improving the processes.
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Figure I.1 � Remaining Useful Lifetime, its concept and its use.

Since prognostics deals with predicting the future behavior of engineering systems, there

are several sources of uncertainty which in�uence such prediction. A suitable prediction of the

RUL is the one that includes accuracy and precision, following the same criteria to evaluate a

measure. However, unlike a physical magnitude, which can be quanti�ed with an uncertainty

level in the present time, the RUL prediction must include additional assumptions about

the future operating conditions as illustrated in Figure I.1. Prognosis of RUL projects the

diagnosis of current system condition (here, the deterioration in A) in the time by using a

model. Of course, in the absence of �future measurements�, it necessarily entails propagated

uncertainty [Tang 2009].

Even if a given mechanical system model is widely known, there are several sources of

uncertainties that a�ect the RUL prediction. In fact, it is not even meaningful to make

such predictions without computing the uncertainty associated with their RUL. Here, one

can identify uncertainties which can be consider as endogenous to the system, for instance,

the initial condition of its deterioration and its dynamical behavior; others can be considered
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exogenous to the system, as measurement noise and process disturbances; and others can

be considered as uncertainties on the future of the system, for instance, the changes in the

operating conditions. Therefore, accurately predicting the RUL is still (and will remain) an

open problem. Several statistical and probabilistic approaches have been developed for years

to tackle the problem; a proper review on statistical data driven approaches can be seen

in [Si 2011]. Also in [Jardine 2006], model based approaches, which are based on a model

representing the physics of the degradation process built with speci�c experiments, and data

based approaches, which use monitored data in order to construct the model, can be identi�ed.

I.2.2 Motivation: Towards Post-Prognosis Decision-Making

One of the main aspects to take into account for performing reliable predictions of the RUL is

the knowledge of the current state of health of the asset or the system. Wear and degradation

of components, among others causes, a�ect directly the lifetime of assets, and consequently

their usability and/or productivity. This is why, wear or degradation indicators are intended to

be obtained from sensor signals of the systems to start suitable predictions of the RUL. Thus,

management of the health state of a component needs an acceptable and e�cient diagnosis of

the current state of deterioration, nevertheless this is often di�cult due to the stochastic nature

of deterioration phenomena. Existent solutions demand high computational costs and some-

times historical information, which increase the di�culty to implement condition monitoring

in real time with high accuracy [Ahmad 2012,Lee 2014].

On the other hand, resources consumption (for instance energy consumption) is another

critical variable that needs to be managed with respect to the deterioration behavior. Here,

RUL prognostics has an important role in the management of energy resources, for instance,

in autonomous devices. Nowadays manufacturers or end users have a greater incentive to

manage the complete life cycle of an asset, for optimizing the production process and its

energy consumption, using proactive strategies [Muller 2008, Exner 2017]. Thus, an optimal

management between health state of components and use of energy resources is required, and

a �RUL-aware� operation of system is needed.

For some systems, for example in the friction-based ones, the failure is imminent because

of deterioration of materials in contact, and the main goal is trying to optimize the use of

functioning resources until the failure. In other words, planned actions which tend to initiate

changes of behavior of the component, rather than reacting to failures are needed. This kind

of maintenance strategies are in the proactive level.

In this context, Prognostics and Health Management (PHM) has become a �eld of engi-

neering activities dedicated to develop methods that permits the reliability of a system to be

evaluated in its actual life-cycle conditions [Vichare 2006, Lee 2014, Rakowsky 2015]. In the

framework of PHM modern approaches, the proactive actions are focused either on system-level

or on component-level. Then, combination of experienced-based, data-driven and model-based

approaches [Byington 2003], seems to be an appropriate way for improving the e�ciency of

management proactive actions according to [Muller 2008]. In this context, common goals for

the proactive actions are: a) the reduction of the probability of unexpected component failures

in a reliable way, and/or b) the feasible on-line implementation (for instance, for embedded

systems).
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PHM methods are intended to use the prognosis stage results, namely the predicted

RUL, for a�ecting in some useful sense the decision-making, for in�uencing system opera-

tion [Rakowsky 2015]. In other words, information about reliability properties should be

implemented in a closed-loop way. To achieve that, either to lower work load and/or wear by

adapting the operating conditions (derating actions), or selecting appropriate optimal system

con�gurations (recon�guration actions) of components are required according to [Meyer 2014];

[Rakowsky 2015] adds also maintenance optimisation and system control actions. Systems

which posses these capabilities are called Reliability-Adaptive Systems (RAS) [Rakowsky 2006].

In other words a �reliability control� could allow to manage the deterioration of components like

in the self-optimizing mechatronic systems, which are, according to [Gausemeier 2014], a class

of intelligent technical systems able to autonomously adapt their behavior if user requirements

or operating conditions change.

The motion control actions are seen as a source of stress deteriorating the actuator,

see, for instance, [Langeron 2017], [Rakowsky 2006] and [Meyer 2014]. In [Grosso 2012]

and [Pereira 2010], the authors assume a deterministic relationship between the degradation

and the motion control input. In this sense, component-level proactive strategies continue

being explored (See, for example [Nguyen 2014]). Physics-based models can explain the phe-

nomena of deterioration in a deterministic way, which can be useful for managing the useful

lifetime of a component in a control loop. This closed-loop management, could help in getting

systems type RAS with feasible implementation. This could be especially useful in embedded

systems due the computational restrictions.

Consequently, the development of a global approach for performing control actions, taking

the prognosis information, namely the prediction of RUL, is one of the main motivations of

this thesis. The design of a new control-oriented method of deterioration-estimation to im-

plement post-prognosis decision-making in the proactive level is needed. In this dissertation,

the estimation is considered as a process itself of reconstructing the states of the system from

observed information. In automation we consider an observation as an internal information of

a system obtained from external (directly available) measurements [Besançon 2007].

I.2.3 Application Case: Friction-based Mechanisms

Friction-based systems are the application used in this thesis to illustrate the developed

methodology. Friction-based mechanisms are ubiquitous in mechanical systems. Clutch, fric-

tional belt-pulley system, disc-breaks, tire-road contact and friction-drive motor, among oth-

ers, are examples of this kind of mechanisms that use direct friction, instead of a chain and

sprockets, to transfer power to a load. Figure I.2 shows some real friction-based mechanisms.

However, one of the problems of these mechanisms is that this �useful friction� phenomena

causes at the same time the wear of the surfaces in contact. This wear causes, in turn, de-

terioration and eventually faults or the �nal failure of the actuator. Thus, deterioration of

this kind of actuators, notably their contact surfaces, is unavoidable, and therefore optimal

control actions are needed to manage the actuators during their useful lifetime. Moreover,

these control actions must provide a trade-o� between e�ciency and maintenance.

This thesis takes a look at the study of the deterioration of the contact of a friction drive
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a) b) c)

d) e)

Figure I.2 � Examples of Friction-based mechanisms: a) clutch, b) frictional belt-pulley, c)

disc-breaks, d) tire-road contact, e) friction-drive motor 10

composed by two rotational devices: a driver device which provides the power, and a driven

device which acts as a load. In practice, the surfaces of the driver and the driven device are

worn away with time, which in turn causes the deterioration of the contact quality. Thus, it is

useful to estimate, with an enough degree of con�dence, the current condition of the contact

(diagnosis), which in turn helps in making suitable predictions about its future condition

(prognosis). This could be eventually used to control the current state of health of the friction

drive.

Moreover, in a general way, the study of the friction drive allows to appreciate possible

uses of the modeling of the deterioration in various mechanical issues, such as Prognostics and

Health Management, the characterization of materials, fault detection, and fault estimation

among others.

Summarizing, let us de�ne the following general postulates for this thesis:

P1 Deterioration modeling and estimation of electromechanical devices represents a key issue

for their condition-based, predictive and proactive maintenance.

P2 A suitable control-oriented RUL-prediction method must be linked with a proper on-

line deterioration estimation method, thereby allowing the development of more feasible

proactive maintenance strategies.

P3 A proper control-oriented modeling of current state of deterioration (and in turn, a proper

predictor of RUL) must include deterministic and stochastic assumptions on the current

and future operating conditions, which are intended to increase the reliability of the

system.

10Sources of Figures I.2: a) clutch www.valeo.com, b) frictional belt-pulley www.skf.com/us, c) disc-breaks

ebcbrakes.com, d) tire-road contact www.michelinman.com/US, e) friction-drive motor gboost.bike/.

https://www.valeo.com/en/trust-the-transmission-systems-specialist/
http://www.skf.com/us/products/maintenance-products/alignment-tools/belt-alignment-tools/belt-alignment-tool-tkba-40/index.html
https://ebcbrakes.com/
https://www.michelinman.com/US/en/register.html
http://gboost.bike/
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P4 Controlling dynamically the RUL of a component could be achieved by modifying, in a

suitable way, the motion control laws.

According to the general postulates P1 to P4, the General Objective of this thesis is de�ned

as follows:

GO To develop an approach for controlling dynamically the RUL of a system whose deterio-

ration is a�ected for their command inputs.

and the Speci�c Objectives as follows:

SO1 To develop a control-oriented model for deterioration

SO2 To develop a method to for estimating the deterioration during operation.

SO3 To integrate the deterioration model into its RUL prediction.

SO4 To propose an architecture for using the prognosis information for a post-prognosis dy-

namical making-decisions.

These objectives are developed around friction-drive systems to illustrate the developed

theory. In that sense, another postulate is:

P5 In friction-based mechanisms, the friction is, simultaneously the cause of the deteriora-

tion and the useful (and in turn unavoidable) mechanical phenomenon. Thus, proactive

control actions are needed to manage the friction-based applications during their useful

lifetime. This control must respect a trade-o� between desired operation and mainte-

nance.

I.3 Organization of the document

This thesis is organized in �ve chapters, namely:

Chapter II [From Background and State of the Art to Problem Statement ] starts with brief

introduction of the fundamentals of RUL prediction. An overview of control concepts

that are applied in this thesis or under consideration for future works are presented. A

brief look at friction drive applications, the application used to illustrate the developed

approaches in this thesis, is also included. Chapter II �nishes with the introduction of a

general problem statement.

Chapter III [Deterioration Modeling of a Friction Drive System] deals with the development

of an analytical dissipated-energy-based model for the deterioration estimation of an

actuator with a monotonically increasing deterioration. This control-oriented model in-

tegrates the deterioration as one of the states of the system, thus it allows: a) to link

the deterioration evolution to the inputs and operating modes of the system, b) to as-

sess the behavior of deterioration in critical de�ned stages of motion, and c) to predict

analytically an interval of useful lifetime before the total-failure-time of actuator, tak-

ing into account stochastic perturbations. A special case of a friction drive system: a
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roller-on-tire system, is used to illustrate the model. Section III.2 presents the design

and analysis of the deterioration modeling of the considered friction drive system, and

provides the general de�nitions for the studied system. In a �rst step, the physics of the

system, and in particular the link between deterioration dynamics and energy transfer at

the friction surfaces, is modeled in a deterministic way in Section III.3 and a useful state

space representation is presented. Then, considering either random system parameters

or random system inputs and usage, a complete stochastic model for the system deterio-

ration is proposed and illustrated by means of a case study in Section III.4. The contact

quality coe�cient proposed in Chapter III allows the modeling of the actuator as a (poly-

topic) Linear Parameter Varying model. Robustly Positive Invariant Sets are explored

to characterizes the nominal and the admissible degraded behavior of the system.

Chapter IV [Deterioration Estimation for RUL Prognosis] presents a method for condition

monitoring and prognosis of Remaining Useful Lifetime (RUL). The method is based on

the estimation of mainly two deterioration-parameters: contact quality coe�cient and

the quality-deterioration ratio. Toward this end, we start with the deterioration model

presented in Chapter III, considering the deterioration model for a friction drive system,

as a numerical application example. The relation between condition monitoring and the

prognosis process is introduced in Section IV.2. An augmented non-linear model and a

condition monitoring method based on an Extended Kalman Filter (EKF) are proposed

in Section IV.3 for simultaneously: a) estimating the mechanical system states from a

deterministic model based on mechanical motion equations; b) estimating the current

state of deterioration and/or the contact quality coe�cient from a dynamical model of

deterioration, and c) estimating the quality-deterioration ratio, which in turn can be

used to monitor changes in the conditions of the surfaces. A complementary stage of

the method to prognosticate the RUL from the deterioration estimation is also proposed

in Section IV.4. Since the model uses a few number of unknown parameters describing

the macroscopic deterioration phenomena, the state estimation process can be performed

with low computational cost. In Section IV.5 simulated examples for RUL prognosis with

respect to endogenous an exogenous changes are used to illustrate the potential use of the

method. In Section IV.6 an evaluation of the RUL prognosis is explored and discussed.

This chapter shows that it is feasible to obtain an estimation of an interval of possible

RUL, with a certain con�dence percentage based on the presented deterioration model.

Chapter V [Proposed Architecture for Controlling the RUL], deals with the study of a sys-

tem, to which control of the RUL can be applied in a manner that yields signi�cant

bene�ts from an engineering and operational viewpoint. This chapter presents a global

framework for controlling the RUL of systems, for which their deterioration is assumed

to be in�uenced by the command inputs. The control actions have short-term objectives

that have to be modi�ed to be compatible with the required/desired RUL. The control

problem is de�ned in Section V.3. In Section V.4 the architecture is formally de�ned.

Here, a RUL actuating principle is proposed in order to control the RUL. The proposed

RUL actuating principle is based on a parametric varying �lter which modi�es the mo-

tion control realization based on the available information about the expected RUL. The

total RUL control architecture also includes an operating condition estimator, a system
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state estimator, and a RUL predictor. The RUL controller determines the parameters

of the actuating �lter by solving an on-line optimization problem. The RUL controller

has to solve the RUL control problem by considering a trade-o� between desired mo-

tion control actions and desired RUL. In Section V.5 a numerical example, applied to

friction drive applications is used to illustrate the use of the proposed global architecture.

Chapter VI: [Conclusions and Perspectives] aims to summarize the main theoretical contri-

butions of the thesis according to the de�ned general and speci�c objectives. At the

same time, perspectives on suggested new methods and future work are presented; some

of them includes the areas of fault detection, diagnosis, fault tolerant control, and in-

strumentation for analysis of contact materials.

I.4 Main contributions

Summary

• In this thesis a new model for friction drive systems which includes a dynamical model

of the deterioration is proposed. The deterioration has been related as the dissipated

energy, at the contact surface, during the mechanical power transmission.

• In this thesis an approach to estimate the current deterioration condition of the friction

drive system is proposed. The approach is based on an Extended Kalman Filter (EKF)

which uses an augmented model including the mechanical dynamical system and the

deterioration dynamics. At every time instant, the EKF also provides intervals which

includes the current deterioration value with a given probability.

• A new architecture for controlling the RUL has been proposed. This architecture includes

a deterioration condition monitoring system (for instance the proposed EKF), a system

operating condition estimator, a RUL controller system and a RUL actuation principle.

The latter based on a modi�cation of the demanded torques (coming from a possible

motion controller system).

Collaboration

During the development of this thesis, there was the opportunity to establish an academic

collaboration that was aimed at the development of one of the raised perspectives. As a result

of this academic link, the author of this thesis supervised the student Danilo Burbano for eight

months, for the development of his �nal research work of the Electronic Engineering program

(BACH + 5) of the Universidad de Nariño11, Colombia.

Mr. Burbano worked mainly at the Universidad de Nariño and visited GIPSA-Lab for a

short internship (France), �nanced by the project �Robótica UDENAR�.

11Universidad de Nariño is located in Pasto, Colombia. The Electronic Engineering program is part of its

Faculty of Engineering.

http://www.udenar.edu.co/
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II.1 Introduction

The purpose of this chapter is to provide the basis for a de�nition of the general problem

addressed in the thesis. Chapter II provides key concepts for the de�nition of the problem

and supports the motivations for the development of the thesis. This chapter begins with an

overview of the PHM area, and take a look to the link between diagnosis and prognosis, the

deterioration and the Remaining Useful Lifetime (RUL), the decision-making, the proactive

actions and the uncertainty. An overview on friction drive systems is presented. This kind of

systems are used to illustrate the developed concepts in this thesis.
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This is followed by a state of the art used for de�ning general postulates and the objectives

of the thesis. The state of the art includes key concepts such as estimation of deterioration, Re-

maining Useful Lifetime (RUL) prediction, and Proactive Diagnostics and Prognostics. Finally,

the general problem statement is presented in a structured way.

II.2 Background

II.2.1 Prognostics and Health Management (PHM)

This thesis can be located theoretically in the area of Prognostics and Health Management

(PHM) of systems. A proper de�nition of PHM is given [Zio 2013] as: �a �eld of research and

application which aims at making use of past, present, and future information on the environ-

mental, operational, and usage conditions of an equipment in order to detect its degradation,

diagnose its faults, and predict and proactively manage its failures�. In this de�nition, some

concepts have been highlighted because they are needed for making a conceptual relation and

in turn, for de�ning the general objective of the thesis and the general problem statement in

this chapter. Figure II.1 illustrates the conceptual relations for introducing the PHM.

Preventive
Time-based

Predictive
Condition-based

Reduction 
of probability of

failures

Proactive

Focused on

Focused on

Decision-making
for Management 

Diagnosis + Prognosis

Past

Present

Future

Information

Information

Assumptions

Figure II.1 � Prognostics and Health Management: Towards a proactive decision-making for a

management strategy.

In [Zeng 2005], potential historical bene�ts of PHM are presented, various diagnostics

and prognostics methods are classi�ed and analyzed; de�nition, quantitative assessment and

veri�cation methodologies on uncertainty are discussed; and �nally, key issues of implemen-

tation, status and perspectives on PHM are discussed. A categorization and a summary of

the prognostic types can be read in [Coble 2008, Ramasso 2014, Rakowsky 2015]. In addi-

tion, [Javed 2017] contributes to state of the art and taxonomy of prognostics approaches and

their actual application perspectives. Complementary perspectives, methods and history can

be seen in [Vichare 2006,Pecht 2008].

II.2.2 Diagnosis and Prognosis Stages

Diagnostics and Prognostics, are the �elds of engineering and science that deals with diagnosis

and prognosis approaches. Diagnosis is an assessment stage (or assessment process) about the

current and past health state of a system, based on observed symptoms, and prognosis is an

assessment stage (or assessment process) of the future health state [Mathur 2001,Muller 2008].
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Diagnosis is the process of performing activities such as: identi�cation of the external or

internal cause(s) of a problem, the isolation of a faulty component, a failure mode, or a failure

condition. These activities can be present or not, depending on the application or the de�ned

level of activity. Prognosis can be seen as a subsequent stage to diagnosis [Mathur 2001].

In this way the two main general elementes of PHM are de�ned by [Javed 2017] as: 1.

Prognostics refers to prediction/extrapolation/forecasting of process behavior, based on current

health state assessment and future operating conditions, and 2. Health management is a

decision process to intelligently perform decision-making activities on the basis of diagnosis

and prognosis stages.

For PHM, sharing a certain vocabulary with the �eld of medicine is not fortuitous; see

[Mathur 2001] and [Lee 2014] for a complementary look at this perspective. Hence, an analogy

can be useful to put into context this thesis. In this thesis, we study the health condition

monitoring of a system to perform suitable diagnosis. Complementary, we focus the study in

the development of a proactive management technique, which can be seen as a �treatment� of

the system. As in medicine, this treatment is conceived as a post-prognosis set of actions (here

called as activity) intended to a�ect decision-making, for improving the real state of health of a

system, thereby getting a prede�ned relation between duration and quality of �remaining-life�

II.2.3 The Prediction of RUL: De�nition and usefulness

Prediction of Remaining Useful Lifetime (RUL), also kwown as RUL prognosis, is a widely

studied topic in PHM of resources for automation and mechanics [Cremona 2016]. It can be

de�ned as an estimation of the time left from the current time until the failure time (or a

threshold of a maximum acceptable condition); this prediction is usually given in terms of

probability. The Remaining Useful Life (RUL) of an asset or a system is de�ned as the time

left from the current time to the end of its useful life [Si 2011]. The meaning of this �useful

life� and its management vary according to the studied �eld, and they can generally be de�ned

by the designer, engineers and users of the asset.

For illustrating the general concept of RUL, in Figure II.2 the evolution of the deterioration

of a given system is shown. There, the evolution of the deterioration is assumed as known. In

that case, the RUL is the time between the current time t, which corresponds to the condition

A, and the time in which a maximum acceptable condition of deterioration B is reached. The

latter can correspond to the time of failure tf (i.e. for 100% of the deterioration) or to a

prede�ned threshold in a lower value. Consequently, one can de�ne a �useful life� from the

beginning of the lifetime until the failure or until the time of condition B. In general, a proper

RUL prediction in A is useful to perform maintenance activities from A to B saving resources

and improving the processes.

The RUL is de�ned as a conditional random variable in [Jardine 2006]:

RUL = tf − t | tf > t; Z(t) (II.1)

where tf is a random variable representing the time of failure which is intended to be char-

acterized, t is the current time, and Z(t) is the past condition pro�le (including environment

data) and/or existing knowledge on the future use of the system up to t. In this thesis we

characterize the random variable tf from the modeling of deterioration.
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Figure II.2 � Remaining Useful Lifetime.

From now on, in this thesis we use the term prediction of RUL to emphasize the sense of a

�future� estimation value, in the meaning of RUL. The RUL prediction is not only necessary to

verify if the mission goal of a system can be accomplished (for instance reducing the probability

of failures), but is also important to aid in on-line decision-making activities such as fault

mitigation, mission re-planning, maintenance, etc. [Sankararaman 2013].

II.2.4 Deterioration

The deterioration the process or fact of becoming worse [Cambridge Dictionary 2018] in a given

condition. Deterioration of an asset can be caused by input operating conditions andor envi-

ronmental conditions a�ecting a system. In this thesis, the state of deterioration is considered

a health indicator of the system.

There is not an universal estimator of deterioration. In mechanics, many of the sensing

methods to asses the deterioration are capacitive sensing, eddy current, infrared, optical/laser,

micro/millimeter wave, acoustic emission and fatigue cycle measurement, piezoelectric sensing,

among others. These mechanisms either give an image (estimate from observation) of the

current deterioration or in most cases are used to detect an acceptable deterioration threshold

[Vichare 2006,Nandi 2005].

As depicted in Figure II.2, developing a method to estimate the deterioration is needed to

de�ne the RUL in a given context. For instance, when the current deterioration measures of

a system/equipment show that it has already exceeded or reached the predetermined failure

threshold, there might no longer be enough time to plan for a proper maintenance activity.
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Therefore, for this thesis two premises are de�ned to develop the estimator of deterioration:

1) evaluate a sensing mechanism that allows the estimation of the deterioration as simply

as possible (in the form of a �virtual sensor�), and 2) consider that detecting a threshold is

not enough; hence, a proper on-line-oriented estimation of deterioration must be performed.

Consequently, a more �continuous� strategy is needed [Vichare 2006]. Precisely, these premises

are addressed in rotatory machinery in [Lee 2014]. There, it is considered that a detected

incipient change in the state of health should be monitored (from a small one as it progresses

to a larger one), until it warrants some post-prognosis action. By employing such a system,

the health of a machine, component or system can be known at �any� time instant, and the

eventual occurrence of a failure can be predicted and prevented, or proactively controlled in

the best of cases. It is worth mentioning that in maintenance this could be useful to enabling

the achievement of near-zero downtime performance.

The deterioration measure does not have to be a directly measured parameter. It could be

a function of several measured variables that provide a quantitative measure (an estimation) of

deterioration. In this case the degradation parameter is not a directly measurable parameter

but a function of several measurable parameters [Coble 2008].

Note also that the �on-line� and �o�-line� terms can be also applied in a similar sense to

the Condition Monitoring (CM) [Ahmad 2012]; on-line CM is performed when the equipment

is in operating state, whereas o�-line CM is performed when the equipment is not in operating

state.

II.2.5 Decision-making

According to the de�nition of PHM in [Zio 2013] cited in II.2.1, the goal of PHM is proactively

managing the system. For obtaining such a behavior, the proactive actions must a�ect the

decision-making stage as depicted in Figure II.1. Figure II.3 illustrates the �ow of information

from the data acquisition for monitoring the deterioration, towards the decision-making.

Diagnosis Prognosis
Of future Deterioration

Deterioration

Hypothesis on future
Operating 
conditions

Predicted 
RULin A

Towards decision-makingFrom data acquisition

Figure II.3 � From data acquisition for monitoring the deterioration, towards decision-making

In prognostics, feature extraction and a knowledge base of faults are needed as in diag-

nostics; in addition, in prognostics other steps are required such as deterioration modeling

including assumptions on future, performance assessment and prediction [Lee 2014]. A proper

combination between deterioration modeling and performance assessment can be used to de-
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scribe the state of health of a system. Thus, this thesis deals with the developing of a suitable

deterioration modeling for allowing an on-line estimation of the state of health of the system,

and for enabling an on-line prediction of its RUL.

Here we can use some concepts inspired on maintenance. Condition-Based Maintenance

(CBM) decision-making can be classi�ed into two methods: current-condition-evaluation-based

(CCEB) and future-condition-prediction-based (FCPB) [Ahmad 2012]. CCEB focus on two

main issues: i) dealing with the deterioration modeling process to evaluate current equipment

conditions, and ii) integrating the deterioration modeling process and decision-making. Dete-

rioration modeling towards predicting the future of equipment conditions is one of the most

popular issues discussed in FCPB application, many of them for mechanical applications (e.g.

rotary equipment) [Xie 2004,Ahmad 2012].

II.2.6 The Proactive sense of PHM actions

As outlined in Figure II.1, a proactive strategy is considered as the one that utilizes preventive

and predictive activities for reducing the probability of failure of a given system, thereby

increasing its reliability [Swanson 2001]. The �proactive sense� of the actions are nowadays

widely-used in industry framework, mainly linked to maintenance [Muller 2008,Exner 2017].

Preventive actions are used to decrease probability of equipment breakdowns and extension

of equipment useful life, but need to interrupt the process at scheduled intervals. In contrast,

predictive actions are initiated in response to a speci�c measured or observed equipment condi-

tion 1 ; i.e. equipment is taken out of service only when direct evidence exists that deterioration

has taken place. Therefore, preventive and predictive actions use di�erent criterion for deter-

mining the need for speci�c maintenance activities, and are intended to reduce the probability

of equipment breakdowns. Nevertheless, a more suitable meaning of the term �proactive� is

creating, controlling, or taking action by causing a situation rather than just responding to

it after it has happened [Cambridge Dictionary 2018,Oxford Living Dictionaries 2018]. The

developing of this proactive sense is a motivation for this thesis.

In this sense, proactive actions should focus on management-oriented decision-making. This

management is post-prognosis because it goes beyond prevention and prediction, as it involves

not only trying to avoid failures, but also a complete management of the life-cycle of a system

or a resource as much as possible. It should be noted that in the maintenance framework for

industrial or higher levels, advanced techniques that go beyond the predictive level as Total

Productive Maintenance (TPM), are highlighted to have signi�cant positive relationships with

the measures of performance [Swanson 2001]. In these levels, there are a need of more and

more intelligent computer-based strategies to manage the system, a need to optimize preventive

actions, and a need to carry out the actions in a more �continuous� manner [Waeyenbergh 2002],

particularly in applications as embedded systems.

1 In automation we consider an observation as an internal information of a system obtained from external

(directly available) measurements [Besançon 2007].Estimation is the process itself of reconstructing the states

of the system from observed information.`
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Figure II.4 � Using prognosis information for decision-Making. Types of actions to perform

decision-making.

II.2.7 Post-prognosis Activities

Even if prognosis it is a key enabling step for the maintenance performance improvement on

systems and structures, the issue of post-prognosis maintenance decision-making (i.e., how to

use prognosis results to eventually make maintenance decisions) remains open [Huynh 2018].

PHM methods are intended to use the prognosis stage results, namely the predicted

RUL, for a�ecting in some useful sense the decision-making, for in�uencing system opera-

tion [Rakowsky 2015]. In other words, information about reliability properties should be im-

plemented in a closed-loop way. The latter can be grouped into three phases: 1) observe (data

adquisition and data processing), 2) analyze (condition monitoring, diagnosis, prognosis), and

3) act [Javed 2017].

To achieve such closed-loop actions, either to lower work load and/or wear by adapt-

ing the operating conditions (derating actions), or selecting appropriate optimal system con-

�gurations (recon�guration actions) of components are required according to [Meyer 2014];

[Rakowsky 2015] adds also maintenance optimization and system control actions. In general

de concept of activity implies the process in which the actions are performed.

Post-prognosis activities can be classi�ed in a general way in: maintenance, recon�guration

and operation [Berenguer 2018] and every class of these activities has been and is widely studied

in PHM. Figure II.4 illustrates the di�erent activities and their relation with the system. These

activities are subject to requirements and constraints such as: probability of failure before the

maintenance, level of maximal deterioration, mission completion, limited resources and set-up.

II.2.8 Reliability-Adaptive Systems (RAS)

For the case of control actions, systems which posses the capability to adapt their realibil-

ity behavior, including the control system, are called Reliability-Adaptive Systems (RAS)

[Rakowsky 2006]. In other words a �reliability control� could allow to manage the deterio-

ration of components like in the self-optimizing mechatronic systems, which are, according
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to [Gausemeier 2014], a class of intelligent technical systems able to autonomously adapt their

behavior if user requirements or operating conditions change.

Maintenance, recon�guration and operation have similar purposes but we can cite di�er-

ences in their process. Maintenance is de�ned as a set of activities serving the purpose of

retaining the production units in, or restoring them to, the state considered necessary for

ful�llment of their function [Gits 1984]. Recon�guration is considered as a set of reactive ac-

tivities, mainly used in fault tolerant approaches that seeks to change an initial con�guration

to ful�ll the goal of the system or to avoid damage of the system after a failure; see fo in-

stance [Chen 2015]. Operation activities are intended to manage the nominal behavior even

under the emergence of new conditions in a �more continuous� manner; some of these activities

include the management of: mission assignment, level of production, load sharing, performance

level, system derating, damage tolerant operation.

A common characteristic between maintenance, recon�guration and operation activities is

the need of performing the activities in a more automatic way as far as possible. In the sense

of this thesis, we are focused on the developing of a control approach, for which it is intended

to provide comprehensive framework for post-prognosis decision-making. Nevertheless, the

conceptual relation with maintenance and recon�guration is also developed in some parts of

the document.

Thus, this thesis includes the relation between modeling, monitoring, diagnosis, progno-

sis, and control of RUL. The goal is making a contribution for a developing more intelligent

management techniques during the useful life of a system.

The prognostic approaches can be classi�ed into three main categories: experience-based

approaches, data-driven approaches and model-based approaches [Jardine 2006]. Usually, the

prediciton of the RUL of an asset or a system has a complicated relationship with available

observable �health� information. Most of sources of uncertainty are either not de�ned or not

modeled. Moreover, prognostics is always associated with unavoidable inaccuracy. That makes

that most of modeling developments rely on available past observed data and/or statistical

models, and most research works about RUL focus on preventive maintenance applications

[Si 2011]. This kind of estimation often requires to shuto� the systems; for which the term

�o�-line� in automation �eld for simulation, measurement and observation; see for instance,

this sense in [Davis 1998,Bastin 2013].

Nowadays manufacturers are becoming increasingly motivated to manage the complete life-

cycle of a system and to optimize the production process and its energy consumption using

proactive maintenance strategies and �RUL-aware� operation of their system2. Thus, models

which rely on current health information, to enhance the feasibility of more intelligent manage-

ment of the lifetime of the systems, are more and more interesting in literature. For instance,

the optimization of service and minimization of risks/life cycle costs demands continuous mon-

itoring of degrading behavior, and accurate prediction of lifetime at which the equipment will

be unable to perform required function [Javed 2017]. For this, on-line prediction of RUL based

on current health information of the system could be needed. Consequently, the design of new

prognostic models of deterioration (as an indicator of the current state of health of a system),

which ease the on-line implementation, is mostly necessary to implement decision-making on

2This kind of philosophy is also analyzed in industry from more general points of view in the framework of

sustainability and management, see for instance [Jørgensen 2008].
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a proactive level. This could be particularly useful, for instance, for embedded systems. Such

need motivates the development of this thesis.

II.2.9 The Uncertainty in PHM

Thus, a suitable treatment for a system takes into account its current inputs, state of health

and environmental conditions, and assumptions on the future of them. In automation, and

in engineering related �elds, we accept that the estimation of this current information has

an uncertainty level, which is intended to be �rstly quanti�ed and then reduced as much as

possible.

Since prognostics deals with predicting the future behavior of engineering systems, there

are several sources of uncertainty which in�uence such prediction. A suitable prediction of the

RUL is the one that includes accuracy and precision, following the same criteria to evaluate a

measure. However, unlike a physical magnitude, which can be quanti�ed with an uncertainty

level in the present time, the RUL prediction must include additional assumptions about the

future operating conditions as illustrated in Figure II.2. Prognosis of RUL projects in time

the diagnosis of current system condition. At the same time, this uncertainty on the present

propagates into the future as in a �chain reaction�, and of course, this uncertainty on the future

depends also on assumptions with their own uncertainty level. Of course, in the absence of

future measurements, it necessarily entails propagated uncertainty [Tang 2009, Javed 2017].

As a result, in prognosis one obtain predictions with higher uncertainty levels with respect to

the present. However, these predictions are intended to be used to properly �close the loop�

for a�ecting the current state of health and in turn the RUL. Hence, we de�ne a �rst research

question as follows:

How to perform post-prognosis decision-making on a system from a suitable modeling of the

current state of health taking into account di�erent kind of uncertainties? .

Figure II.5 illustrate the link between the main studied concepts in this thesis, to perform

such a closed-loop decision-making process.

There are several sources of uncertainties that a�ect the the RUL prediction. In fact, it is

not even meaningful to make such predictions without computing the uncertainty associated

with their RUL [Sankararaman 2013]. Here, one can identify uncertainties which can be con-

sider as endogenous to the system, for instance, the initial condition of its deterioration and

its dynamical behavior; others can be considered exogenous to the system, as measurement

noise and process disturbances; and others can be considered as uncertainties on the future

of the system, for instance, the changes in the operation conditions. Therefore, accurately

predicting the RUL is still (and will remain) an open problem. Several statistical and prob-

abilistic approaches have been developed for years to tackle the problem; a proper review on

statistical data driven approaches can be seen in [Si 2011]. Also in [Jardine 2006], model based

approaches, which are based on a model representing the physics of the degradation process

built with speci�c experiments, and data based aprroaches, which use monitored data in order

to construct the model, can be identi�ed.
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Figure II.5 � A post-prognosis set of actions for the system. The proactive actions include
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a external inputs.

II.2.10 Application for Illustrating the Developed Approaches

This thesis presents a comprehensive framework for post-prognosis decision-making applied to

systems whose deterioration is in�uenced by the command inputs. The developed concepts

are illustrated, by using the application of friction drive systems. Thus, we mainly focus on

the actuator level for illustration purposes; nevertheless, other systems are envisaged to be

studied in perspective. This actuator-focused approaches also motivates, for instance, the

work of [Nguyen 2014]. Of course, the study of a single unit system helps also in establishing

the extent of the problem.

Some examples of friction-based systems are, among others, clutch, frictional belt-pulley

system, disc-breaks, tire-road contact, and friction-drive-motor. This type of mechanism uses

direct friction between the contact surfaces (usually made of rough materials), instead of a

chain and sprockets, to transfer energy to a load.

Nowadays, the term friction drive is commonly used to call the basic mechanism and also

to particular friction-based actuator including a motor. In this thesis, from now on, we adopt

the following general de�nition of friction drive as a mechanism:

De�nition II.1

A friction drive is a transmission mechanism used to transfer mechanical power by means

of direct friction between two mating devices: from a driver device to a driven device.

In this thesis we focus on the friction drive following to two main points of view: one

theoretical and the other practical.

From the theoretical point of view, we can consider friction drive as a basic mechanism

that facilitates the study of the friction-deterioration link that is present in various friction-

based systems. For example, consider a frictional brake system, which is designed to stop the

movement instead of generating it; however, the de�nition of friction drive also includes the
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brake mechanism, as the latter also involves power transfer by friction between two devices.

Consider also the tire-road contact in a car, where there exist the aforementioned transfer of

power from the motor to the complete body of the car by means of friction.

Note that for a friction drive, the friction is simultaneously the useful phenomenon, which

causes the mechanical motion, and the cause of deterioration of the contact surfaces. This

behavior implicitly leads to the problem of management of the useful life of the surfaces in

contact. The failure of these surfaces is unavoidable, and in most cases it is intended to �use

them well� until the moment of failure. Since surfaces are generally replacement parts, it is

assumed that the improvement of a on-line-oriented use strategy is favored over, for example,

the in�uence of their replacement on maintenance (as also discussed in PHM). Therefore, in

this thesis we focus on improving the estimation of deterioration as an indicator of the state

of health of the mechanism.

From the practical point of view, friction drive is an interesting mechanism for electric

vehicles, given its low-cost, wide variety, ease of implementation or installation, and popular

uses in machinery. In this case, the vision of the friction drive as an actuator device (with the

driver and the driven devices mounted in an arrangement) is commonly used and remains in

continuous development. Since the �rst patents, friction drives mechanisms are intended to be

used in automotive and machinery applications. For instance the patent [Grau 1910] which

describes a friction drive to change the speed and direction of a car; or the patent [Jacques 1920]

where a friction drive is used for transmitting without shocks a uniform movement of rotation

to large �y-wheels which have to rotate very slowly (for instance two rotations in an hour).

Constraints of output power and the need of a housing lubrication motivated inventions of

planetary friction drives such as [Hewko 1966] and [Hewko 1971]. The latter present additional

advantage for keeping noise and vibration to a minimum. For years, friction drives were after

dedicated to small-power machinery but nowadays they are also used for new applications; see

for instance, a modern electric oil pump application in [Ai 2005], and popular uses of direct

friction drives in electric bicycles3. In general, modern friction drives are considered to have

consistent smooth and quiet performance over a wide range of operating conditions, avoiding

phenomena as backlash which is common in gears and sprockets4.

For the friction-drive applications, an on-line-oriented Condition Monitoring approach

could be useful to get closed-loop proactive post-prognosis actions (for con�guring post-prognosis

activities). From modeling to the control of the RUL, this thesis is focused on managing the

reliability of a system during their lifetime (on-line approach). Reliability describes the abil-

ity of a system or component to function under stated conditions for a speci�ed period of

time [Geraci 1991]. Hence, this thesis can be seen also as a �Reliability-centered� use of the

systems, because there are some failures which cannot be prevented by overhaul or preventive

replacement action [Tsang 1995] and one of the best ways to manage the system is trying to

control its reliability during the useful lifetime operation. This is particularly true for friction

drive systems as seen in the premises de�ned for the deterioration modeling adopted in this

thesis in Section II.2.4.

3See also here, for instance, interesting applications in electric bicycles.
4For instance, observe a CVT transmission which uses rotating balls, instead of a layer of rough material,

for transferring the power; therefore a CVT can be considered as kind of a friction drive.

https://www.electricbike.com/friction-drive/
http://www.fallbrooktech.com/nuvinci-technology
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II.3 State of the art

II.3.1 Deterioration Modeling Process.

Most of the CBM studies are focused on the deterioration modeling process. Although it is an

important process in the CBM, follow-up action toward maintenance decision-making is just

as important. In this sense [Mathur 2001] and [Ahmad 2012] recommend make an especial

emphasis in the use of post-prognostic information for decision-making. As a solution, the

following articles have considered this issue by integrating equipment deterioration modeling

with maintenance decision-making:

For instance, [Percy 1998] explores how to improve the performance and the �exibility to

model deterioration of a given system and/or improvement over time, thereby improving the

accuracy of decisions. This work is focused on complex systems when data have been collected

on failure times and PM interventions along with down times and man-hours expended on each.

In [Mathur 2001] the impact of diagnostic and prognostic goals on modeling and reasoning

system requirements are explored; in particular, the role of failure-dependency modeling in the

overall decision. The work is developed with the purpose of developing a common software

framework that can be applied to a large class of systems; however it is focused on the role of

failure-dependency and uses dependency modeling which is not in the framework of this thesis.

In [Lu 2007] a condition-based maintenance approach that links the concepts of modeling,

monitoring, and predicting the deterioration of a system is presented. The approach can be

applied on-line to maximize the pro�t of a system. To achieve this, the approach predict

recursively the deterioration condition in the future for decision-making. This work is focused

on improving maintenance in a general and wide range of systems. Industrial application

of CBM decision-making is carried out by [Jardine 1999] for optimizing CBM decisions for

equipment. There, the issue of minimizing total cost (or another appropriate goal such as

pro�t maximization or availability maximization) can be systematically addressed.

A predictive-maintenance structure for a gradually deteriorating single-unit system (contin-

uous time/continuous state) is presented in [Grall 2002]. The proposed decision model enables

optimal inspection and replacement decision in order to balance the cost engaged by failure

and unavailability on an in�nite horizon. Using the proposed maintenance structure, a well-

adapted strategy can automatically be selected for the maintenance decision-maker depending

on the characteristics of the wear process and on the di�erent unit costs. In a more general way,

the proposed maintenance structure shows its adaptability to di�erent possible characteristics

of the maintained single-unit system.

II.3.2 Control-oriented RUL Prediction Methods

However, [Ahmad 2012] explain the need of additional research on CBM decision-making, par-

ticularly on how CBM can be e�ectively applied and implemented based on current industrial

needs. The cited works in Section II.3.1 show the potential usefulness of intelligent strategies.

In this thesis we are particularly interested in the control theory, mainly linked to the opti-

mization, for the improvement of the decision-making activities during work. Of course, we

adopt this premise in the context of friction drive systems.

According to [Amari 2006], several independent studies across various industries reveal that
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only 15% to 20% of equipment failures are age-related. The other 80% to 85% of equipment

failures are based on the e�ects of random events that happen in the machine or system. This

leads to the fact that any method used to model the deterioration and in turn its useful life

must also take into account the uncertainties of the model in a dynamic way, according to the

on-line approach proposed in this thesis.

Thus the question is:

How a method for estimating the deterioration current-state, can be used to enhance the

existing methods of RUL prediction? Below, some works related to the present thesis are

discussed under the framework of the proactive approach that has been de�ned.

II.3.3 Proactive Diagnostics and Prognostics

So far, we have argued the need to model the deterioration of the treated systems in an

appropriate way, to enable an appropriate prognosis of their RUL and a consequent decision

making. We have seen that this process should be as continuous as possible and that in any

case, whatever the chosen model of deterioration, it should systematically take into account

the uncertainties in the process of evaluating the current state of health. In this way, as it was

shown in Figure II.5, decisions could be made to manage the deterioration of a system from the

current state of health of the system, to close the loop, acting on new decisions that ensure a

desired performance of the system, and simultaneously, restrictions linked to its deterioration.

We organize the related work in the following topics:

T1. Prognosis in decision-making

In [Huynh 2018] the relation of the precision, and not only on e.g. a �mean value" of the

prognosis with the predictive maintenance, is studied. They are focused on studying how

to use prognosis precision results to eventually make maintenance decisions, and propose a

parametric predictive maintenance decision framework that can take into account properly the

system remaining life in maintenance decisions. There, the proposed framework is developed

for a single-unit stochastically deteriorating system as we do in the present thesis. Results

on increase of performance and the robustness of the new framework, con�rm the bene�t of

basing maintenance decisions explicitly on the precision of the system health prognosis.

In this thesis, the relation of the precision on the estimation of the current state of deteri-

oration is also studied. This analysis is intended to be done with respect the RUL prediction

method by using a control-based model of the system. Since in Condition Based Maintenance

(CBM), maintenance decisions are based on the on-line gathered system health prognosis infor-

mation, rather than on the current diagnostic information [Ahmad 2012,Swanson 2001]. Thus,

this thesis can be seen also as a future-condition-prediction-based (FCPB) decision-making

contribution.

Recently, in [Rozas 2018], a prognosis decision-Making methodology for calculating the

best route for an Electric Vehicle (EV) is presented. This is an example of how post prognosis

actions can be performed trying to choose the best route. In this thesis we are interested in

developing a control approach for a given kind of system by trying to modify the conditions of

use, namely in systems whose deterioration is a�ected for their operating inputs.
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T2. Focus on the actuator

A RUL estimation approach for deteriorating feedback control systems under random operating

conditions, is presented also in [Nguyen 2014]. This work is focused also on evaluating the

impact of prognosis result on the maintenance process. An integrated model is proposed

which jointly describes the states of the controlled process and the actuators deterioration.

The system state regarding the available information is estimated on-line by Particle Filtering

method. Then, the RUL of the system is estimated by Monte Carlo simulation. This approach

is interesting because, it shows the impact of the RUL estimation in a closed-loop control

system, and because it mainly takes into account the actuator as the component that degrades

through time.

In [Skima 2014] a hybrid PHM method based on physical and data-driven models and

applied to a microgripper is presented. The method is applied to assess the health state

of Microelectromechanical systems (MEMS) and estimate its RUL. Since, the model of the

application has been developed and validated, following an structured approach, it seems a

suitable candidate for application of a closed-loop control of RUL.

Also in [Javed 2015] a contribution is presented for feature extraction/selection deteriora-

tion in cutting tools and bearing, based on vibration data for prognostics. In this case, the

feature extraction for prognosis is data-driven. The authors suggest as future perspectives,

the integration of a dynamic failure thresholds assignment. This approach seems to be also a

suitable candidate for application of closed-loop control of RUL.

In [Langeron 2017], a framework to model the deterioration of control systems is presented

focusing on the actuator. The main idea is that the way an actuator is controlled is the root

cause of its degradation. The control input related to the controller setting plays a central role

in the actuator degradation process. The degradation is assumed observable and measurable

with a dedicated monitoring equipment. Complementary, this thesis go further dealing with

the development of a system that allows the condition monitoring for a given kind of systems.

T3. Model of uncertainties

In [Si 2014] the authors describe an approach for estimating the RUL taking into account

three sources of variability in deterioration modeling: 1) temporal variability, 2) unit-to-unit

variability, and 3) measurement variability. In that work, a relatively general deterioration

model based on a Wiener process is presented. By constructing a state space model, the pos-

terior distributions of the underlying deterioration state and random e�ect parameter, which

are correlated, are estimated by employing the Kalman �ltering technique. Further, the an-

alytical forms of not only the probability distribution but also the mean and variance of the

estimated RUL are derived, and can be on-line updated with the arrivals of new deterioration

observations. This work is interesting because it provides a general theoretical framework for

supporting the found results in this thesis, in particular, for the analysis of the distribution

and the mean values of the estimations face to the prediction of RUL.

In [Tang 2009] the authors analyzes the source of uncertainties in typical Integrated Vehicle

Health Management (IVHM) systems. E�ective approaches for handling diagnostic uncertainty

and the aggregation of component level uncertainty to system level are also addressed. The

authors argue that managing and reducing prognostic uncertainty is of signi�cant importance
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to the success of PHM applications. A systematic analysis of the sources of uncertainty can

help to reveal both reducible and irreducible uncertainties in the prognosis process and how

signi�cantly each uncertain factor a�ects the prognostic result.

T4. Control of Remaining Useful Lifetime

As it has been shown in this dissertation, the concept of management of systems by using post-

prognosis actions for performing closed-loop decision-making has been widely envisaged and

used in automation. In this context, maintenance, recon�guration and operation actions are

common goals for systems; nevertheless, sometimes the conceptual link between the developed

approaches in these kind of actions is not comprehensive and it does not allow easily to share,

adapt and or explore solutions. Moreover, most of work on PHM is mainly focused until

prognosis stage. As a solution focused on friction drive systems, this thesis is located under the

framework of the operation activities. For them, the on-line oriented modeling, monitoring,

diagnosis, prognosis and post-prognosis actions are privileged. In that sense, as a general

assumption for this thesis, the control theory is potentially interesting for the management of

the systems under study.

A contribution for comprehension of the general concept of closed-loop actions applied to

a single-unit system is developed in [Meyer 2014]. Self-optimizing mechatronic systems are

a class of intelligent technical systems that are able to autonomously adapt their behavior

if user requirements or operating conditions change [Gausemeier 2014,Kaul 2017]. A system

must be able to sustain the intended dynamic operation, changes in operating conditions,

non-desired conditions as faults and failures, Reliable control can be achieved using dedicated

methods to make the system fault tolerant. However, the approach of fault tolerant, reliable or

robust control do not allow control of the reliability of the whole system including the control

system itself [Meyer 2014] as intended in terms of useful lifetime. To achieve that, a reliability

control is required, which could be de�ned as the behavior adaptation to lower work load or

wear on critical components for sustaining a prede�ned reliability (or by analogy, a prede�ned

RUL). Systems that possess this capability are called Reliability-Adaptive Systems (RAS)

by [Rakowsky 2006]. Consequently, this behavior adaptation implies the control of the RUL.

A Reliability-Adaptive System is de�ned by the ful�llment of two characteristic requirements.

First, quantitative reliability properties of a system are estimated during operation (it implies

an on-line method), i.e. after a system has been put into service, but before an item under

consideration fails, and second, achieved results in�uence system operation.

In [Gokdere 2005] an approach for RUL control of an electromechanical single-unit actuator

is presented. Nevertheless the work relies only on extending its useful lifetime. Moreover, even

though the concept of control is used, the approach is based on heuristics which complicate

the inclusion of the uncertainties in the modeling and in turn the analysis of performance. The

application of that work is the framework of RUL of motor bearing, which makes it interesting

to clarify some concepts in this dissertation.

In [Garcia 2006] a maintenance approach of a windturbine gearbox was based on equipment

conditions. The process of maintenance decision-making was controlled through the case-based

and rule-based approaches. However, this approach and the related ones, do not take into

account a formalized strategy of control which includes explicitly objectives of RUL.
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Another complementary work is presented in [Meyer 2013] for Controlling the RUL using

self-optimization for a single-unit system. Nevertheless, this interesting work is limited in its

e�ectiveness since it did not take the inherent non-linearities and deviations between multiob-

jective optimization model and real system into account. In this thesis we propose to take into

account such aspects �rstly from the modeling of the deterioration.

In the same way, in [Meyer 2014] the concept of closed-loop control system for the reliability

of intelligent mechatronic systems is presented. Thuis is a remarkable alternative from the point

of view of preventive and corrective maintenance. In that work, a simple relation between

energy and degradation is supposed. In this thesis we propose go further with the analysis of

the uncertainties from modeling to control.

The PhD thesis [Langeron 2015] illustrates a stochastic modeling for working safety of

controlled systems. A stochastic modeling framework is proposed combining the use of the

system and various modes of deterioration. RUL is then used as a recon�guration tool of the

LQR (Linear Quadratic Regulator) control law. Complementary, in this thesis we propose the

use of control techniques for obtaining, for instance, a prede�ned the RUL.

T5. Potential applications

The work in [Bevan 2013] focuses on the development of a damage model to predict the

deterioration rates of the wheel tread damage in terms of wear and rolling contact fatigue

(RCF). In that work, the used damage models have been validated using observation data.

The developed model uses a description of a �eet's service diagram to determine a simulation

environment(accounting for the distribution of curvature, cant de�ciency, tractionbraking, etc.)

that represents the duty cycle of the vehicle. Vehicle dynamic simulations are then conducted to

predict the wheel-rail contact forces on each wheel in the vehicle for each of the combination of

operating conditions in the simulation environment. That work is also related with this thesis

in terms of the used relation between energy and wear material as cause of deterioration.

Nevertheless, we propose to go further in development of strategies that could be applied, for

instance in perspective, for controlling the causes of wear dynamically.

In [Salazar 2016] a general framework for taking into account system and components

reliability in a Model Predictive Control (MPC) algorithm is presented. The e�ectiveness and

bene�ts of the proposed control framework are presented through a Drinking Water Network

(DWN) simulation. One of the used premises in that work is that component health monitoring

should be considered in a controlled system. In other words, reliability theory should be part

in the studied control problem. Complementary, in this thesis we are particularly interested

in applying control techniques to improve, in perspective, the reliability of a given kind of

systems.

II.4 Introducing the problem statement

In this section, the Problem statement is presented in a structured way, taking into account

the following postulates in its de�nition:

P1 Deterioration modeling and estimation on electromechanical devices represents a key

issue for their condition-based, predictive and proactive maintenance.
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Figure II.6 � Assumption II.2: the system deterioration is a consequence of the motion control

actions

P2 A suitable control-oriented RUL-prediction method must be linked with a proper on-

line deterioration estimation method, thereby allowing the development of more feasible

proactive maintenance strategies.

P3 A proper control-oriented modeling of current state of deterioration (and in turn, a proper

predictor of RUL) must include deterministic and stochastic assumptions on the current

and future operating conditions, which are intended to increase the reliability of the

system.

P4 Controlling dynamically the RUL of a component could be achieved by modifying, in a

suitable way, the motion control laws.

Thus, let us assume:

Assumption II.1 : There exist a method which gives a metric of the current state of

deterioration taking into account various sources of uncertainties.

and

Assumption II.2 : There exist a control-oriented dynamical model which links the motion

control laws of friction drive and the current state of deterioration, i.e. the system deterioration

is a consequence of the motion control actions, as depicted in Figure II.6.

and

Assumption II.3 : Estimation of RUL is possible at every time instant from the estimation

of the current state of deterioration and assumptions on the future of the system.

and

Assumption II.4 : Controlling the RUL of a component could be achieved by modifying,

in a suitable way, the motion control laws, as depicted in Figure II.7.

Let us de�ne also:

De�nition II.2

At a given time t, the desired RUL, denoted RULref , is the desired remaining period of

time before the friction drive system can no longer perform its intended function. Where

this function, is measured or observed by using a prede�ned metric.

and



28 Chapter II. From Background and State of the Art to Problem Statement
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Figure II.7 � Assumption II.4: Controlling the RUL of a component could be achieved by

modifying, in a suitable way, the motion control laws.

De�nition II.3

At a given time t, the predicted RUL, denoted ˆRUL, is the predicted remaining period

of time before the friction drive system can no longer perform its intended function. The

predicted RUL is a random variable, which can be characterized by e.g. a probability

distribution or a con�dence metrics.

Given a mechanical friction drive system de�ned in II.1 and the general de�nitions II.2 and

II.3, if assumptions II.1, II.2, II.3 and II.4 hold, then the general problem statement for this

thesis is de�ned as:

Problem II.1

Find, at every time-instant, the manipulable input of the system which guarantees that the

predicted RUL follows the desired one.

II.5 Conclusion

Taking postulates P1 to P4, the general objective of this thesis is:

GO To develop an approach for controlling dynamically the Remaining Useful Lifetime (RUL)

of systems whose deterioration is in�uenced by the command inputs.

and the Speci�c Objectives as follows:

SO1 To develop a control-oriented model for deterioration.

Chapter III deals with this objective.

SO2 To develop a method to for estimating the deterioration during operation.

Chapter IV deals with this objective.

SO3 To integrate the deterioration model into its RUL prediction.

Chapter IV deals with this objective.
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SO4 To propose an architecture for using the prognosis information for dynamical post-prognosis

making-decisions.

ChapterV deals with this objective.

These objectives are developed around friction-drive systems to illustrate the developed

theory. In that sense, an additional postulate for taking into account is:

P5 In friction-based mechanisms, the friction is, simultaneously the cause of the deteriora-

tion and the useful (and in turn unavoidable) mechanical phenomenon. Thus, proactive

control actions are needed to manage the friction-based applications during their useful

lifetime. This control must respect a trade-o� between desired operation and mainte-

nance.
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III.1 Introduction

The aim of this chapter is to illustrate the development of a mathematical model for a system

whose deterioration is a�ected by the command input. As established in Chapter II, one of

the motivations for this thesis is the study of management techniques of the deterioration and

in turn the RUL. Thus, the model of deterioration must be control-oriented.

For this purpose, it is used a basic friction drive system, which is a type of transmission

consisting of a driver device which transfers the power by friction to a driven device. The

basic model of friction drive transmission relies on the assumption of equal tangential speeds

of wheel and motor surfaces. However, in this chapter we start assuming that the di�erence

between speeds can not be always neglected, because in fact this is linked with the production

of the contact force and the e�ciency of the mechanical transmission [Popov 2010]. Moreover,

the contact force is associated with a transfer of energy that also deteriorates the contact
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surfaces. Therefore, the energy transfer is simultaneously, the useful phenomenon (production

of motion) and the source of deterioration; a double e�ect that must be properly modeled.

In this chapter, we develop an analytical physics-based model for the deterioration of the

actuator, and we consider a special case of a friction drive system: a roller-on-tire system.

The developed model integrates the deterioration as one of the states of the system, thus it

allows: a) to link the deterioration evolution to the inputs and operating modes of the system,

b) to assess the behavior of deterioration in critical stages, such as sharp motion and smooth

motion, and c) to predict analytically an interval of useful lifetime before the total-failure-time

of actuator, taking into account stochastic perturbations.

The remainder of this chapter is organized as follows. Section III.2 presents the design

and analysis of the deterioration model of the considered friction drive system, and shows the

general de�nition of the particular friction drive. In a �rst step, the physics of the system,

and in particular the link between deterioration dynamics and energy transfer at the friction

surfaces, is modeled in a deterministic way in Section III.3. A useful state space representation

is presented, which contains the deterioration as one of the states. Then, considering either

random system parameters or random system inputs and usage, a complete stochastic model

for the system deterioration is proposed and illustrated by means of a case study in Section

III.4. The contact quality coe�cient proposed in this chapter allows to model the actuator as

a (polytopic) Linear Parameter Varying model.

III.2 Friction drive system modelling

Figure III.1 presents the basic principles of the mechanical devices considered in this work: a

power transmitted from the source to the load, PL, is higher than the power which actually

causes the motion, P ∗L. This phenomenon is modeled under the general hypothesis that the

loss of e�ciency in the conversion from energy to motion can be an estimable image of the

deterioration of contact.

 
Mechanical device 

Power source 
 

 

Contact 
surfaces 

 
Mechanical device 

Power Load 
 

 

 
PL P ∗L

Figure III.1 � Losses of power in contact

III.2.1 System description

Let us assume a friction drive composed by a driven device and a driver device, as depicted in

�gure III.2, for which it is assumed that: a) both contact surfaces wear monotonically, and b)

the contact joint reaches eventually a threshold above which the system is considered a failed

system. Symbols of the equations and units are shown in Table V.1 1.

1Note that in this thesis we are assuming non-squeezable surfaces. For this reason r1 and r2 are assumed as

constant. As explained in Section III.2.2, the focus of the further modeling is the macroscopic phenomena.
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Figure III.2 � Basic roller-on-tire motor system

III.2.2 Analytical physics-based modeling of the friction drive

The following mechanical analysis is based on the Dahl model and LuGre model of friction,

which are widely studied in the literature of mechanics. A good overview about those models

can be read in [Ge�en 2009] and [Armstrong-Helouvry 1996]. These models represent the

friction force with three main components: i) the Stribeck friction e�ect taking place at low

velocities, for which the friction force has an inverse relation with respect to the speed; ii) the

Coulomb friction, for which the force remains as constant with respect to the speed at the

beginning of motion; and iii) the viscous friction, for which the friction force is proportional to

the speed.

The contact force Fc(t) can be characterized by using dynamic friction models, see for

instance [Canudas-de Wit 2003] and [Martinez 2004]. Due to the fact that this thesis work

is focused on the analysis for long periods of time, only macroscopic friction phenomena will

be kept for modeling a simpler contact model. In the present chapter, Stribeck friction e�ect

and Coulomb friction are considered negligible; that is, only the viscous friction is taken into

account.

Here Fc is assumed as a frictional force, tangential to both the driver and the driven devices,

which is produced by the driver device and causes a rotational torque over the driven device.

A similar approximation of the law of friction by a continuous function of velocity is analysed

in [Popov 2010]. Consequently, the friction force component depicted in Equation (III.1),

depends on the di�erence ∆v between the tangential speeds of the driver and driven device,

v1 and v2 respectively,

Fc = α(v1 − v2) = α(r1ω1 − r2ω2) = α∆v (III.1)

where α � 0 is the proportionality coe�cient, which in this chapter is called contact quality

coe�cient and considered as an uncertain parameter.

In some sense, this α stands for a measure about the quality of contact between both

rolling devices at every time of the motion. Then, we assume that the condition of this

contact-quality depends on the deterioration of the joint and varies with time because of the

frictional phenomena.
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Table III.1 � Notation

Symbol Units Physical meaning

v1 [m/s] Tangential speed of the driver device

v2 [m/s] Tangential speed of the driven device

ω1 [rad/s] Angular speed of the driver device

ω2 [rad/s] Angular speed of the driven device

ω̇1 [rad/s2] Angular acceleration of the driver device

ω̇2 [rad/s2] Angular acceleration of the driven device

r1 [m] External radius of the driver device1

r2 [m] External radius of the driven device1

b1 [N m/(rad/s)] Viscous damping coe�cient of the driver device

b2 [N m/(rad/s)] Viscous damping coe�cient of the driven device

J1 [Kg m2] Moment of inertia of the driver device

J2 [Kg m2] Moment of inertia of the driven device

Tm [N m] Torque of the driver device

TL [N m] Load torque seen by the motor

T ∗L [N m] Source torque observed by the driven device

Km [V s/rad] Motor back electromotive force constant

I [A] Electrical current of the motor

α [N s/m] Contact quality coe�cient

In this thesis α is treated as a time-varying parameter. This is represented as:

α = f(Deterioration, t) � 0 (III.2)

The parameter α (de�ned as positive with� 0) corresponds to the viscous friction coe�cient

in the classic context of friction components modeling; this parameter is usually considered

to be constant. Nevertheless, we assume that treating α as a time-varying parameter allows

further conclusions on the study of the deterioration during the lifetime of the system. The

parameter α can be used to characterize the quality of the contact (e.g. the inter-surface

adhesion and the surface roughness) between both rotational devices. In addition, in this

work, we consider that this parameter will monotonically decrease in time for modeling the

deterioration of the friction drive.

The torque produced by the driver device and transferred to the load TL(t) and the torque

observed by the driven device T ∗L(t) depend on Fc(t) according to equations (III.3) and (III.4).

TL = Fcr1 (III.3)

T ∗L = Fcr2 (III.4)

The system dynamics using Newton's laws of motion can be written as follows:

J1ω̇1 = Tm − TL − b1ω1 (III.5)

ω̇1 =
1

J1
(Tm − r1α(r1ω1 − r2ω2)− b1ω1) (III.6)
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Table III.2 � Terms of power equations

Term Physical meaning Symbol

J1ω̇1ω1 Total power in the driver device PTM
Tmω1 Power produced for the driver device Pmotor
TLω1 Power transferred to the load PL
b1ω

2
1 Power caused by the viscous damping b1 Pb1

J2ω̇2ω2 Total power for the driven device PTW
T ∗Lω2 Power caused by contact P ∗L

observed by the driven device

b2ω
2
2 Power caused by viscous damping b2 Pb2

and

J2ω̇2 = T ∗L − b2ω2 (III.7)

ω̇2 =
1

J2
(r2α(r1ω1 − r2ω2)− b2ω2) (III.8)

where, Tm(t) is the input torque, and b1ω1 and b2ω2 are torques caused by the viscous damping

of the driver device and the driven device, respectively.

TL(t) is a torque seen from the driver side, that re�ects the load e�ect of the driven device.

For this reason, TL(t) is assumed as a load in (III.5). In addition, T ∗L(t) is the torque observed

from the driven side. For this reason, T ∗L(t) is assumed as a source in (III.7). Both torques can

be written in terms of the contact force Fc(t) as follows
2:

Remark III.1

For the case of an electro-mechanical friction drive, Tm(t) can be produced for instance by

a dc motor. In that case, Tm(t) = Km I(t), where I(t) is the electrical motor current and

Km the motor back-electromotive force constant.

Equations (III.6) and (III.8) can be rewritten in terms of power multiplying them by ω1

and ω2 respectively as follows:

J1ω̇1ω1 = Tmω1 − TLω1 − b1ω2
1 (III.9)

J2ω̇2ω2 = T ∗Lω2 − b2ω2
2 (III.10)

where terms in equations (III.9) and (III.10) are shown in Table III.2:

Let Pc the contact power. Taking into account Equations (III.9) and (III.10), Pc can be

expressed as follows:

Pc = PL − P ∗L = TLω1 − T ∗Lω2

Pc = Fc(r1ω1 − r2ω2) = Fc∆v

(III.11)

Using Equation (III.1) this takes the form:

Pc = α(r1ω1 − r2ω2)
2 = α∆2

v (III.12)

2Note that in this Thesis, in some parts, dependence on time "(t)" is not written for simplicity.
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III.2.3 Modeling the friction drive as an Uncertain Linear System

Let us represent the friction drive dynamics as an uncertain linear system in the state space

representation:

ẋ = A(α)x+Bu (III.13)

y = Cx (III.14)

where x := [ω1(t) ω2(t)]
> is the system state, u = Tm(t) (in this case the electrical current)

is the input, α is the uncertain parameter, or the scheduling parameter in the case of a linear

parameter varying model interpretation, i.e. α is assumed either measured, estimated or known.

In addition:

A(α) =

[(
−αr21 − b1

)
/J1 αr1r2/J1

αr2r1/J2
(
−αr22 − b2

)
/J2

]
, (III.15)

B =

[
1/J1

0

]
(III.16)

C =

[
1 0

0 1

]
(III.17)

where C means that both: angular speed of the driver device and angular speed of the driven

device are measured, i.e. y = [ω1(t) ω2(t)]
>.

III.3 Dynamical model of deterioration

III.3.1 Dissipated-Energy-based model

The parameter α characterizes the quality of the contact (e.g. the inter-surface adhesion

and the surface roughness) between both rotational devices. Hence, one can consider that the

parameter α decreases monotonically over time, while the deterioration of the contact increases

monotonically over time (As de�ned in assumptions of Section III.2.1). In this thesis the main

assumption on this deterioration is that:

Assumption III.1 : Deterioration can be quanti�ed and calculated from the estimation of

the dissipated energy in the joint (the contact between external surfaces of the driver device

and the driven device).

Hence, a deterioration index D is de�ned:

De�nition III.1

The deterioration index D is de�ned as a measure of the loss in the actuator ability to

transfer mechanical power to the load device.

The energy dissipated in the contact Ec between the surfaces in the friction drive system

can be obtained from (III.12).

Ec =

∫ t

t0

Pcdt =

∫ t

t0

α∆2
vdt (III.18)
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where t0 stands for the time instant in which the systems starts the motion, and t the current

time instant.

Note, that Ec depends on the speed between the surfaces, which seems logical as more

sliding between surfaces, implies more energy dissipated.

The resulting dissipated energy could be considered as an image of the heat and the mate-

rial worn at the contact level during traction. This assumption is very similar to the Archard's

equation that is commonly used in railway industry for wear prediction (see for instance [Be-

van 2013] and [Cremona 2016]). Similar conclusion were found by [Meyer 2014] in the automatic

control framework.

Since energy dissipation leads to entropy generation in materials, it has been shown and

experimentally demonstrated that the use of the total entropy generated in any degradation

process is measurable and can ultimately be used to represent the time of failure of components

[Imanian 2016].

Thus, deterioration index D can be considered as proportional to the dissipated energy in

the contact:

Remark III.2

The deterioration index D could be also directly linked to the worn material in the joint

as:

D(t) := cEc = c

∫ t

t0

Pcdt = c

∫ t

t0

α∆2
vdt (III.19)

where c is a proportionality factor that relates deteriorated material because of friction

with the energy dissipated. For simplicity, c = 1 is used from now on.

which follows:

D(t) :=

∫ t

t0

Pc(t) dt =

∫ t

t0

α(r1ω1 − r2ω2)
2 dt (III.20)

From Remark III.2, the estimated coe�cient α̂ can be linked as an indicator of the loss of

material, i.e. the material that allows the contact (or the existence of mechanical transmission),

or the modi�cation of the surface properties at the contact level. At the same time, α̂ establishes

a relation between material of contact and energy of contact.

Equation (III.20) shows that the dynamics of the system and the contact surfaces deterio-

ration are linked through α. From Equation (III.20), and since α = f(D), a nonlinear variation

of the deterioration with respect to time can be obtained:

Ḋ = α∆2
v (III.21)

From Section III.2.1, let us rewrite the general assumptions in this chapter as: a) the

evolution of α depends on the monotonically evolution of the deterioration D i.e. the higher

D, the lower α, and b) the friction drive system reaches a value D = Dmax, for which it is

considered as a failed system, at a given failure time tf .

By assumption, the contact quality coe�cient α(t) monotonically decreases as D(t) in-

creases, following a �rst order linear variation of α with respect to D as depicted in Figure

III.3, with initial value α(0):

α(t) = −mD(t) + α(0) (III.22)
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Figure III.3 � Contact quality coe�cient α as a function of D for m within a given interval

m ≤ m ≤ m.

where α(0) is considered as an unknown parameter, but belonging to a known interval in

such a way that 0 ≤ α(0) ≤ α(0) ≤ α(0), where in turn α(0) and α(0) stands for the lower

and the upper bound of the interval, respectively.

Let us call m (the slope of the assumed linear variation), the quality-deterioration ratio,

which is:

m = − ∂α
∂D

(III.23)

where m is considered as an unknown parameter, but belonging to a known interval m ≤ m ≤
m, where m := inf{m} and m := sup{m}.

The shaded area in Fig. III.3 illustrates the domain of possible trajectories of the parameter

α with respect to D, which con�gures an uncertainty interval on the knowledge of m. As an

example, the bold line corresponds to a particular case where m is considered to be constant

during the whole lifetime of the system.

From equations (III.21) and (III.22), we obtain:

Ḋ = (−mD + α(0))(r1ω1 − r2ω2)
2 (III.24)

Equation (III.24) can be rewritten as follows:

Ḋ = −m ∆2
v D + α(0) ∆2

v (III.25)

We can compute the maximum value of the deterioration with respect to time Dmax as:

Dmax := lim
t→+∞

D(t) (III.26)

This can be calculated by using Equation (III.25) with Ḋ = 0, thus:

0 = −mDmax + α(0) (III.27)

Dmax = α(0)/m (III.28)

In a complementary way, we de�ne the normalized deterioration as:

D̄ := D(t)/Dmax = (m/α(0))D(t) (III.29)
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where 0 ≤ D̄(t) ≤ 1.

From Equation (III.22), we get the special form:

D(t, α) = (α(0)− α)/m (III.30)

Also from (III.22), (III.28), and (III.29), for a given initial condition α(0) and under the

assumption of a constant m, D̄(t) can be computed at every time-instant as function of α(t),

as follows:

D̄(t) = 1− α(t)

α(0)
(III.31)

Since ∆v = v1 − v2 = r1ω1 − r2ω2 and using (III.6) and (III.8):

∆̇v = (r1/J1)(KmI − αr1∆v −B1ω1)− (r2/J2)(αr2∆v −B2ω2) (III.32)

Remark III.3

Equation (III.32) shows that it is possible to estimate the value of α from the measured

speeds (recall that measuring the speeds is considered feasible in this kind of mechanisms),

and assuming the other parameters of the systems as constant.

From Remark III.3, let us denote with α̂ the estimated value of α, and D̂ the estimated

value of D. Therefore, from Equation (III.30), the estimate of the deterioration index D is

given by:

D̂ =
α(0)− α̂(t)

m
(III.33)

Consequently, from (III.31) and considering m as constant, it is obtained the normalized

estimation of deterioration ˆ̄D:

ˆ̄D =
D̂

Dmax
=
α(0)− α̂(t)

α(0)
= 1− α̂(t)

α(0)
(III.34)

Remark III.4

Remark that the deterioration D̄(t) tends to 1 as the quality coe�cient α(t) tends to 0. This

normalized deterioration has the advantage that it depends only on α(t) and α(0), under

the assumption of a constant m. The normalized deterioration can be obtained at every

time-instant, by using III.34, the estimation of α̂(t), and the estimation or assumption

of α(0). In turn, if m is not constant, then Equation III.29 can be used. A suitable

state-observer can be designed for this goal. Chapter IV establishes the main aspects for

designing this observer.

Now, from (III.22) one can compute the time-derivative of the parameter α (for m not

necessarily constant), as follows:

α̇(t) = −mḊ − ṁD (III.35)

Let us assume that ṁ (the time-derivative of m), is small enough in such a way that the

second term can be neglected. Hence:

α̇(t) = −m ∆2
v α(t) (III.36)
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Equation (III.36) can be rewritten to show explicitly the dependence of α̇ on the state

vector x of the system representation (III.13)-(III.14). In this case, x contains the angular

speeds of the driver device and the driven device, respectively as follows:

α̇(t) = −m p(x) α(t) (III.37)

where:

De�nition III.2

p(x) = (r1ω1− r2ω2)
2 and is de�ned here as the sliding factor, which depends on the state

vector x and in turn, on the input u(t) (the only input of the system). In other words,

p(x) depends on the input operating conditions.

Remark III.5

The equation (III.37) summarizes that one can calculate the time-derivative of α(t) by

using: i) the current value of α(t), therefore to �nd a suitable method to estimate α(t)

which in turn is linked to D(t) is necessary; ii) the input operating conditions re�ected

in p(x), where p(x) could be controlled by the input u = I(t) if the uncertain system

(III.13)-(III.14) is controllable; and iii) the parameter m, which can be linked with the

inner characteristics of the contact surfaces, e.g. the material of the surfaces.

From, Equations (III.21) and (III.37), we can write the dynamics Ḋ with respect to α̇ and

vice versa respectively3:

Ḋ = −(1/m)α̇ (III.38)

which according the Equation (III.37), can be rewritten as:

Ḋ = α p(x) (III.39)

and:

α̇ = −mḊ = −mα∆2
v (III.40)

Equation (III.40) can be rewritten taking into account the Equation (III.20):

α = −m
∫ t

t0

Pcdt+ α(0) (III.41)

Therefore:

α = −mEc + α(0) (III.42)

Summarizing, assuming a monotonically increase of deterioration, the proposed model

shows that the friction drive system reaches a maximum value of deterioration Dmax at a

failure time tf , above which a failed transmission is considered, which depends on the ini-

tial value of the contact quality coe�cient α(0) and the quality-deterioration ratio m, which

represents the variation of α(0) with respect to deterioration D. Moreover, the normalized

estimation of deterioration ˆ̄D can be obtained from α(0) and its estimation α̂ assuming a

constant m.

3Ḋ can be obtained deriving Equation (III.30) with respect to time.
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III.3.2 State-space model for the friction drive system

The studied friction drive is an uncertain nonlinear system which depends on time-varying

unknown-but-bounded uncertain parameters. Taking into account an augmented state vector

xa as:

xa =

ω1

ω2

D

 , (III.43)

the input u = Tm and the output ya, the representation of the augmented system can be

expressed as:

ẋa = f(xa) +B u (III.44)

ya = Cxa (III.45)

where f(xa) corresponds to:

f(xa) =


− 1

J1

(
b1 + αr21

)
ω1 +

1

J1
αr1r2ω2

1

J2
αr2r1ω1 −

1

J2

(
b2 + αr22

)
ω2

α(r1ω1 − r2ω2)
2

 (III.46)

and Ba, the input matrix, and Ca the output matrix are respectively:

Ba =


1

J1
0

0

 ; Ca =

1 0 0

0 1 0

0 0 1

 (III.47)

and where D is considered as a state that could be estimated, from following Remark III.3

and Equation III.33. Remark that in this case the non-linearity of the system is due to the

introduction of the state D.

III.3.3 Estimating the dynamic e�ciency of the friction drive

The dynamic e�ciency of the friction drive is a measure of the current power provided by

the motor (Power transfered to the load PL), and the e�ective power recovered by the driven

device (Power caused by contact observed by the driven device P ∗L) at the contact level.

From Equations (III.9) and (III.10), and the terms of power shown in Table III.2, we de�ne

the dynamic e�ciency of the transmission ηc(t) as:

ηc =
P ∗L
PL

=
PL − Pc
PL

(III.48)

ηc = 1− Pc
PL

which is equivalent to:

ηc =
Fcr2ω2

Fcr1ω1
=
r2
r1

ω2

ω1
=
v2
v1

(III.49)
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III.3.4 Introducing randomness in the model

Randomness in the model can be introduced in two complementary modes: a) internal, to

model the uncertainty on the parameters m and α(0) (which are used to relate α with D) for

a given system, and the system-to-system variability, and b) external, to model the variability

of the input operating conditions and the usage system.

a) Uncertain/random parameters

In Equation (III.22) α(0) ≥ 0 andm ≥ 0 are considered as unknown parameters, but belonging

to a given interval with a given probability, taking into account real applications. For instance,

a Normal distribution can be introduced to represent these uncertainties:

α(0) ∼ N (α(0)m, σ
2
α(0)), α(0)m > 0 (III.50)

m ∼ N (mm, σ
2
m), mm > 0 (III.51)

where mm and σm are the mean value and the standard deviation of the slope m respectively,

α(0)m and σα(0) are the mean value and the standard deviation of α(0) respectively.

As depicted in the shaded area in Figure III.3 and according to Equations (III.22), (III.50)

and (III.51), the behavior of α with respect to D constitutes a bi-dimensional space of variation

with a probability linked to the uncertainty of α(0) and m. The solid line inside the shaded

area is an example of a probable behavior of α with respect to D, with constant m.

b) Varying input operating conditions and usage

The developed model is single input u(t). In this case, the variability of the operating conditions

and the usage system can be represented, for instance, with a varying input u, following a

known probability distribution. The input u(t) could contain diverse sources of information

about the operating conditions of the system, for instance: the shape in the time of the usage,

the frequency, the amplitude, among others.

Consider an input u as a rectangular waveform. The times th in which u is in high, and tl
in which u is in low can vary randomly. Thus an exponential distribution, for instance, can be

introduced to represent them, as follows:

tl ∼ Exp(1/µtl), 0 < µtl (III.52)

th ∼ Exp(1/µth), 0 < µtl < µth (III.53)

where µtl and µth are the mean values of tl and th respectively.

The Section III.4 illustrates a �rst analysis on the system by means of a case study, showing

both contexts: on the one hand, a deterministic operational mode, and on the other side,

the stochastic operational modes: i.e. with the internal and external modes of randomness

introduction.

III.4 Case study analysis

The friction drive analyzed is a roller-on-tire system, for which the driver device is a DC motor

and the driven device a bicycle wheel. The used mechanical parameters for simulations in
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Table III.3 � Used values for the mechanical parameters

Parameter Value Unit

b1 6.36x10−3 [N m/(rad/s)]

b2 1.76x10−3 [N m/(rad/s)]

J1 3.47x10−4 [Kg m2]

J2 0.2 [Kg m2]

r1 0.0315 m

r2 0.35 m

Km 0.0477465 [V s/rad]

order to validate the usefulness of the model are in Table III.3. 4 Since this case is about an

electromechanical friction drive system, from Remark III.1, we consider that the input system

can be represented as u(t) = Tm(t) = KmI(t) 5.

III.4.1 Deterministic operational mode

• Sharp stage of motion

A sharp stage of motion occurs when ∆v is considerable and the system is not considered yet

as a failed system (before the failure time tf ). These sharp stages could happen at the start of

motion and in the stops. A sharp stage is simulated with the injection of an input step signal

I with amplitude IA = 20A. Thus, in this study case the unique sharp state occurs at the

start (step input).

Figure III.4 shows the behavior of the power in the system. Here, PL the transferred

power to the load, and P ∗L, the power seen by the driven device have a high value only at the

beginning, and such as it was assumed PL > P ∗L. The di�erence between PL and P ∗L re�ects

the loss in contact, primarily at the beginning of motion, i.e. a sharp stage.

Remark that PL and P ∗L reach a peak in the sharp stage, and after they drop; while Pmotor,

the electrical power of the motor, and Pb1, the power that appears as a result of the viscous

damping parameter b1, reach high and near values. P ∗L and Pb2 are much lower than the other

analyzed powers because they depend on ω2 which is lower than ω1. In this numerical example,

there is a considerable in�uence of the viscous damping parameter b1 in the consumption of

energy, i.e. the motor must provide a considerable power to drive its own viscous damping

parameter b1.

Figure III.5 shows the behavior of the di�erence of power PL − P ∗L for given values of α

with respect to time. Experimentally, a maximum peak of this di�erence was found, i.e. the

minimum e�ciency ηc when α is equal to 5.25. It means that the increasing of α tends to

give lower losses but it do not necessarily produces the highest peak of losses. These dynamic

changes re�ect the importance to estimate and possibly to control the value of α.

4To build a more realistic scenario, the contributions of [Huang 2003] and [Rodriguez 2014] were analyzed.

In the �rst article, workbench has a built-in bike wheel to model viscous and dry friction at the wheel bearing.

The second contribution is a master-thesis developed in GIPSA-Lab (CNRS-France, Grenoble-INP, University

Grenoble Alpes), which analyses the implementation of a real friction drive in an electrical bicycle.
5Where I(t) is the electrical motor current and Km the motor back-electromotive force constant.
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Figure III.4 � Behavior of power in roller-on-tire system
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Figure III.5 � Loss between PL and P ∗L for given values of α
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Figure III.6 � Deterioration for given values of α for the sharp stage of motion. The higher the

∆v, the higher the D.

Figure III.6 shows the behavior of the instantaneous D for the same given values of α as in

Figure III.5. It is evident that D is continuously increasing. The highest consumption of con-

tact energy (which could be linked with the materials of contact according to the assumptions)

happens in the �rst seconds for every value of α, i.e. the sharp stage of motion (when also ∆v

is higher). After the �rst seconds of the step, the value of D reaches a value that depends on

the value of α: the lower the α, the higher the D.

• Smooth stage of motion

For the same scenario, with an input step signal I, the stage after the start (steady state) is

considered here a smooth stage of motion, as ∆v is lower. If the conditions of motion remains

unvarying, the system deteriorates until getting D̄max (the total failure). Figure III.7 shows

the behavior of states v1, v2 (in this case we prefer to show the tangential speed instead of the

angular speeds for convenience) and D̄, with the input step signal I with amplitude IA = 20A,
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and used values m=0.01 and α(0)=10.

In this numerical example, the friction drive system reaches the Dmax value at tf =300 h

(hours)6 of use for the given scenario.

Remark III.6

Assuming the knowledge ofm (constant) and α(0), and that the operating input conditions

do not change during the lifetime, at the current time t one can predict the failure time tf
carrying out the simulation of the system from t until the failure, with:

RUL = tf − t (III.54)

this is equivalent to predict the RUL at the time instant t in a deterministic way.
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Figure III.7 � Step response of Deterioration D, tangential speed of motor v1 and tangential

speed of wheel v2. It shows the failure of system at 300h.
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6In this thesis, for practicality, in some cases time is expressed in �hours�
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Figure III.9 � Normalized deterioration with respect to time, for two di�erent constant electrical

currents (IA = 19A and IA = 20A), α(0) = 10 and m = 0.01.

• On the e�ciency of the friction drive system

Finally, the e�ciency ηc of the mechanical power transmission is evaluated in the sharp stage

and in the failure stage as depicted in Figure III.8. Notice that in the sharp stage the variation

of ηc is sharp also. On the other hand, ηc begins to vary before the total failure and it has

a slow variation compared to the start, but which remains abrupt with respect to the total

lifetime.

From Equation (III.49), the instantaneous e�ciency of the actuator, denoted ηc(t), can

be estimated at every time-instant by using the measured angular speeds ω1(t) and ω2(t) (or

equivalently, v1 and v2) and it does not depend on the contact quality coe�cient α(t).

Figure III.9 illustrates the behavior of D̄(t) with two di�erent step input u(t), with ampli-

tude (electrical current in this case) equal to (IA = 19A and IA = 20A). That means that in

this scenario, there exist a unique start and the system is working until the failure.

Figure III.10 illustrates the obtained e�ciency ηc(t) during a total useful lifetime of the

system with a step input IA = 20A. For these scenarios, the e�ciency ηc(t) is admissible during

all the lifetime, taking a value close to 1 after the start, and only decreases in the moment

of the failure tf (total deterioration), around t = 300h for IA = 20A, and around t = 340h

for IA = 19A. This is consistent with [Imanian 2016]: Cumulative damage may not degrade

performance; however, the item fails when the cumulative damage exceeds endurance limit of

a unit.

For the same scenario, the obtained sliding p(x) is illustrated in �gure III.11. Notice that

this function is almost constant during the total useful lifetime of the actuator, taking a value

close to 0, and only increases at the begging of motion and the failure time tf . The p(x)

does not depend on the contact quality coe�cient α. Consequently, neither p(x) nor ηc(t) are

proper indicators of the state of the deterioration of the actuator.
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Figure III.10 � E�ciency of the actuator in the study case ηc = (r2ω2)/(r1ω1) for constant

input I = 20A.
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Figure III.12 � Normalized deterioration D̄, tangential speed of motor v1 and tangential speed

of wheel v2 for a rectangular waveform input with th = 10000s and tl = 10s. It shows the

failure of system at 96.7h.

Remark III.7

The calculation at a given time of the e�ciency ηc(t) and p(x) are independent of the

contact quality coe�cient α(t), which depends on the input u(t) = I. This means that, at

this given time, the calculation of the ηc(t) could be indistinguishable for two input cases

(for instance IA = 19A and IA = 20A). For this reason, neither the e�ciency ηc(t) nor the

sliding factor p(x) of the actuator are suitable indicators of the state of the deterioration

of the actuator, and in turn they do not allow to suitably predict the RUL.

• Varying behavior of input

A rectangular waveform signal is introduced to represent several cycles of use. In this case th
and tl are the times in which the signal is in high and low respectively.

Figure III.12 shows the states v1, v2 and D with a �xed input of th = 10000s and tl = 10s

from the start until the failure. As a result, v1 continues responding to the input signal, but

not v2. As shown, the roller-on-tire system reaches the Dmax near to 96.7h. It means that

with multiple cycles of activation, Dmax is reached earlier (this is equivalent to multiple sharp

stages).

Assuming here that one know the input operating conditions (the rectangular waveform

signal), and that they remain the same during all the lifetime. Note that from Remark III.6,

for a varying behavior it is also possible to predict the RUL at t0.

Figure III.13 shows the behavior of α for the same scenario. As expected, the value of α

begins with α(0) and decreases monotonically until 0 (the failure time tf ).
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Figure III.13 � Contact-quality coe�cient α for a rectangular waveform input with th = 10000s

and tl = 10s.

III.4.2 Stochastic operational mode

• Internal mode of randomness

Now we can introduce randomness in the model, for instance, according the assumptions

modeled by (III.50) and (III.51), i.e. assuming uncertain/random parameters following a given

distribution.

Figure III.14 shows D̄ for 100 simulations. Here a rectangular waveform input u is intro-

duced to the system, where th and tl are constant and equal to th = 10000s and tl = 10s, and

with amplitude IA = 20A. The parameters m and α(0) are used randomly using the Normal

distribution with mean values of mm = 0.01 and α(0)m = 10 respectively, and with standard

deviations of σm = 0.001 (i.e. the 10% of mm) and σα(0) = 1 (i.e. the 10% of α(0)m) respec-

tively. The di�erent behaviors are compared to a scenario with �xed values of th = 10000s

and tl = 10s and the �xed central values mm = 0.01 and α(0)m = 10 (bold line).

Note that despite the randomness of m and α(0), the trajectories of D̄ follow a central

tendency. In turn, the obtained failures times follow a central tendency around the failure

time reached with the simulation with �xed values.

From Remark III.6, this simulation allows inferring that: a) if it is possible to know, the

values of th and tl, and m and α(0) with an uncertainty level from the start of motion, and b)

assuming that conditions of the input remain the same during all the lifetime, then it could be

possible to predict the failure time at the start of motion carrying out several simulations.

• External mode of randomness

Now let us also introduce external randomness in the model, for instance, according the as-

sumptions modeled by (III.52) and (III.53) i.e. assuming varying operating conditions.

Figure III.15 shows D̄ for 100 simulations. Here th and tl are chosen randomly using the

exponential distribution with mean values of µth = 10000s and µtl = 10s respectively and

�xed parameters α(0) = 10 and m = 0.01. The di�erent behaviors are compared to a scenario

with �xed values of th = 10000s and tl = 10s, and �xed parameters α(0) = 10 and m = 0.01

(bold line). Note that this special external mode of randomness is similar to real operating

conditions, for which the th and tl are unknown
7. Results show that despite the randomness

7In this kind of situations, it could be useful, for instance, to estimate the failure time with an acceptable

level of uncertainty even if th and tl are uncertain
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Figure III.14 � Internal mode of randomness. Deterioration D, for 100 random performances.

m and α(0) are used randomly using a normal distribution. Bold line: simulation of perfor-

mance for the �xed central values mm = 0.01 and α(0)m = 10.

of th and tl (here modeled with an exponential distribution), the obtained failure times (when

D̄ = 1) follow what seems a normal distribution.

Again, from Remark III.6, and similarly to the internal mode of randomness, from this

simulation one can infer that it could be possible to have a good prediction of the failure time

tf at the start of motion (i.e. equivalent to predict the RUL), assuming that the internal

parameters m and α(0) remain the same during all the lifetime.

III.4.3 Invariant sets for detecting deterioration

In this Subsection, we analyze the use of robustly positive invariant (RPI) sets to characterize

the nominal and the admissible degraded behavior of the system. These invariant sets can be

computed using the approachproposed in [Martinez 2015].

Starting from the uncertain system (III.13), consider the discrete-time linear model of the

actuator:

x+ = Ad(α)x+Bd u (III.55)

with Ad(α) := (In×n + tsA(α)) and Bd = tsB, where ts stands by the sampling-time, In×n an

identity matrix of consistent dimensions, and x+ ∈ Rn is the successor state and u ∈ Rm, the
electrical current, is a priori considered as an unknown input (a bounded disturbance).

Because α a�ects the matrix Ad(α) in an a�ne way, the model (III.55) can be rewritten

in a polytopic form as follows:

x+ = [λAd(α) + (1− λ)Ad(α)]x+Bd u (III.56)

where 0 ≤ λ ≤ 1. That is, the model (III.55) can be written as a convex combination of the

extreme dynamics which are described by minimal and maximal possible values of α, denoted

here as α and α, respectively.

The problem now is to compute the minimal robustly positive invariant-set (mRPI set)

for system (III.56), in order to characterize all possible trajectories of the angular speeds (the
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Figure III.15 � External mode of randomness. D̄, for 100 random trials. th and tl are chosen

randomly using an exponential distribution with mean values of µth = 10000s and µtl = 10s

respectively. Bold line: simulation of performance for �xed values of th = 10000s and tl = 10s.

state x), at any time and for any sequence of bounded electrical currents I(t). Here we can use

the method proposed in [Martinez 2015] for polytopic systems, which can be seen as a generic

model to describe a certain class of LPV systems, uncertain systems, switched linear systems

and any system that can be written as a convex combination of a �nite number of subsystems.

The subsystems, which describe the polytopic system, are assumed to be stable in presence

of bounded disturbances and, in addition, to share a common Lyapunov function. Polyhedral

RPI sets for linear systems (assuming constant α) could be also computed using methods such

as those proposed in [Rakovic 2005], [Kofman 2007], [Seron 2008] and [Martínez 2009].

Figure III.16 depicts the obtained RPI sets for the maximal values of the contact quality

coe�cient α (i.e. α = α(0)), the white set S0. In addition, Figure III.16 illustrates the ob-

tained RPI set for all �acceptable" values of α (i.e. α ≤ α(t) ≤ α), the set S1. As expected,

the latter set S1 includes the set S0. Those sets and the state trajectory, here the tangential

speed v(t) := [v1(t) v2(t)]
T , can be used for robustly detecting a failure and/or an undesired

deterioration of the contact quality.

Remark III.8

RPI sets can be used for starting on-line decision-making activities such as fault mitigation,

mission re-planning, maintenance, etc. However, the RPI sets do not provide enough

information for estimating the Remaining Useful Life (RUL) of the actuator.

III.5 Conclusions

In this chapter we have presented a novel dynamical model of deterioration for a friction drive

system based on the dissipated energy at the contact level. Thus deterioration includes cumu-

lated past information. A novel index of deterioration (called the contact quality coe�cient) is

presented and allows to model the mechanical actuator as a Linear Parameter Varying (LPV)
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Figure III.16 � Robustly positive invariant sets for bounded electrical current (0 ≤ I(t) ≤ 20A)

and admissible values of α such that (α ≤ α(t) ≤ α). A tangential speed v(t) out of these sets

means that the actuator deterioration is not more admissible.

model where the contact-quality coe�cient is used as a scheduling parameter. The model

includes also a quality-deterioration ratio parameter, and a deterioration index linked to the

di�erence of the tangential speeds measured in the friction drive. Thus, the more the di�er-

ence, as happens in sharp motion stages, the more the deterioration. In smooth motion stages,

as happens in steady state, the estimation of deterioration depends mainly on the initial esti-

mations (or assumptions) of the contact-quality coe�cient and the quality-deterioration ratio.

Simulations of a case study, show that the model represents properly and dynamically the

deterioration depending on the inputs of the system. The proposed model allows also analyti-

cally to predict an interval of useful lifetime of the friction drive system before the total-failure-

time of actuator, including stochastic internal and external perturbations. Simulations allow

inferring that, characterization of the input operating conditions, the contact-quality coe�cient

and the quality-deterioration ratio with a given probabilistic model, makes possible to carry

out suitable prediction of the failure time at the start of motion (i.e. equivalent to predict the

RUL at this time). For this, prediction assumptions about the future operating conditions are

needed. Despite the unknown (but bounded) input conditions and/or internal parameters, the

deterioration behavior follows a central tendency with respect to the variation range of this

input and/or internal parameters; the precision of the prediction of the failure time depends

on the size of the input and the system parameters, and also on the level of the uncertainties.

Additional conclusions can be found in the published article [Rodriguez Obando 2016a].

Here, it is shown that monitoring the e�ciency is not a suitable (not enough) way for

estimating the deterioration. In a complementary way, Robustly Positive Invariant sets can

be used to characterize the nominal behavior of the actuator and the maximal admissible

deterioration behavior. This aspect can be used for starting decision-making activities related

with actuator maintenance and/or control recon�guration/re-planing. However, these invariant
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sets are not enough for predicting the remaining useful lifetime. Additional conclusions can be

found in the published article [Rodriguez Obando 2016b].

In terms of application, contact-quality coe�cient and quality-deterioration ratio param-

eters, could be linked with the inner characteristics of the contact surfaces, e.g. the material

of the surfaces. That means that they could be used as indicator of possible abrupt and/or

progressive faults in the material as studied in the published article [Rodriguez Obando 2017a].

This chapter can be seen as a �rst step towards the development of a comprehensive

Reliability Adaptive System (RAS). The next chapters discuss how to use the information

and the features of the model to estimate on-line the deterioration and the model parameters,

and in turn, how to synthesize a control law for the RUL of the system.
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IV.1 Introduction

This chapter focuses on the study of the deterioration of the contact of a friction drive composed

by two rotational devices: a driver device which provides the power, and a driven device which

acts as a load. For this, we start with the deterioration model presented in Chapter III which

is based on the computation of an image of the dissipated energy at the contact level.

This deterioration model illustrated in Chapter III describes the time derivative of a de-

terioration index D depending on the current contact quality coe�cient α, the input of the
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system, and the current operating conditions obtained from sensors linked to the mechanics of

the system. Thus, we assume reliable estimates of the states of the dynamical system based

on the availability of a mathematical model and su�ciently accurate measurements.

In practice, the surfaces of the driver and the driven device are worn away with time, which

in turn causes the deterioration of the contact quality. In this Chapter such a deterioration

is again assumed as the loss in the quality of the contact at the joint level, for transferring

the power from the driver device to the driven device. Here, the deterioration reaches even-

tually a threshold above which the system is considered a failed system. Thus, estimating

with an enough degree of con�dence the current condition of the contact (diagnosis) could be

useful, which in turn enables also carrying out suitable predictions about its future condition

(prognosis).

A logical assumption is that a proper knowledge of the current state of deterioration of a

system can be used to prognosticate its future condition and in turn its RUL. Nevertheless, due

to the stochastic nature of the deterioration phenomena, there exist several sources of uncer-

tainty which in�uence the estimates, and therefore, it is rarely feasible to obtain a prediction

of the RUL of the system with a suitable precision. In fact, it is not even meaningful to make

such prediction without computing the uncertainty associated with RUL [Sankararaman 2013].

The objective of the condition monitoring is taking minimum necessary measurements from

a machine to extract a diagnostic, so that a condition can be rapidly inferred, giving a clear

indication of failure modes [Tavner 2008]. Thus, a general assumption for this Chapter is

that control-oriented deterioration estimation on friction drive systems is feasible because in

several friction-based motion applications, angular position, speed and/or acceleration mea-

surements are often available, and in addition, because mechanical models of rotational devices

can be considered as widely-known models with few parameters [Nandi 2005]. Existent data-

based and data-driven approaches are not in the scope of this thesis, but the reader can

infer some conclusions on those kind of approaches during the illustration of this model-based

deterioration-estimation approach.

In this chapter, the relation between condition monitoring and the prognosis process is

introduced in IV.2. An augmented non-linear model and a condition monitoring method based

on an Extended Kalman Filter (EKF) are proposed in Section IV.3 for simultaneously: i) esti-

mating the mechanical system states from a deterministic model based on mechanical motion

equations; ii) estimating the current state of deterioration and/or the contact quality coe�cient

from a dynamical model of deterioration, and iii) estimating the quality-deterioration ratio,

which in turn can be used for monitoring changes in the conditions of the surfaces. A com-

plementary stage of the method to prognosticate the RUL from the deterioration estimation

is also proposed in Section IV.4. Since the model uses a few number of unknown parameters

describing the macroscopic deterioration phenomena, the state estimation process can be per-

formed with low computational cost. In Section IV.5 simulated examples for RUL prognosis

with respect to endogenous an exogenous changes are used to illustrate the potential use of

the method. In Section IV.6 a preliminary work related to the use of Probabilistic certi�cation

approach, as proposed in [Alamir 2015], is explored and discussed. This chapter shows that it

is possible to obtain an estimation of an interval of possible RUL, with a certain con�dence

percentage based on the presented deterioration model.
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IV.2 On condition monitoring and prognosis for a friction drive

Consider the basic representation of the friction drive shown in Figure III.2 and the used

modeling notation shown in Table V.1. This friction drive system consists of the driver device

and the driven device. As depicted in Figure III.2, both devices are assumed to be a�ected by

the contact force Fc that is produced by the driver device and causes a torque which drives

the driven device. It is assumed also that this force depends on the tangential speeds of both

devices, denoted as v1 and v2, respectively. Therefore, the main assumption in the model is

that Fc(t) is proportional to the relative tangential speed at the contact level v1(t) − v2(t),
where v1(t) = r1ω1(t) and v2(t) = r2ω2(t).

For the case of an electro-mechanical friction drive, Tm(t) can be produced for instance by

a dc motor. In this Chapter, let us consider also, as illustrated in the case study in Section

(III.4), that the driver device is a dc motor for which Tm(t) = Km I(t), where I(t) is the

electrical motor current and Km the motor back-electromotive force constant.

In the previous Chapter III, this system is modeled as an Uncertain Linear System. Let

us recall the friction drive dynamics state space representation (III.13)-(III.14). Let us recall

also the calculation of the dissipated power at the contact level:

Pc(t) = α (r1ω1 − r2ω2)
2 = α p(x) (IV.1)

where p(x) = (r1ω1−r2ω2)
2, called in this thesis the sliding factor, is a function that represents

that, in this model, Pc(t) depends on the mechanical states x = [ω1(t), ω2(t)]. Due to ω1(t)

and ω2(t) are considered here as measured states, function p(x) contains measured information

about the input operating conditions.

Let us recall also Equation (III.39), the equation that shows the link between the rate of

variation of D, the contact-quality coe�cient α, and the sliding factor p(x).

Ḋ = α p(x)

According to (III.36) (rewritten as (III.37)), the estimation of α(t) and the parameters α(0)

andm, is unavoidable for estimation of the current condition of the deterioration indexD of the

friction drive, as well as for the prediction of the future D. On the one hand, the deterioration-

based condition monitoring of the friction drive, could be done from the knowledge of α(t),

α(0) and m. At the same time, an acceptable knowledge about the current condition of the

friction drive is necessary to make prognostics about the future condition, for instance for the

Remaining Useful Lifetime (RUL) prediction. The latter point requires also some knowledge

about future operating conditions and eventual changes on m which could be modeled as

uncertain conditions with some probabilistic assumptions.

In this thesis, we illustrate how the estimation of the varying parameters α and m are

useful for RUL prediction from the estimation of the current condition of the deterioration D.

A non-linear observer is presented for this goal in Section IV.3.
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IV.3 Estimation of current condition of the friction drive

IV.3.1 Analysis of the observability of the system

Using Equations (III.13)-(III.14) and (III.36), and assuming no signi�cant variations on m,

consider the augmented system:

ẋ = A(α) x+B u (IV.2)

α̇ = −m p(x) α (IV.3)

ṁ = 0 (IV.4)

with the system output: y = [ω1(t) ω2(t)]
>.

Let us de�ne now the state vector of the augmented system x := [ω1(t) ω2(t) α(t) m]>. A

nonlinear state space representation of the model is:

ẋ = f(x) + B u (IV.5)

y = Cx = [y1(x), y2(x)]> (IV.6)

where u = I(t) is the system input, and:

C =

[
1 0 0 0

0 1 0 0

]
, B = [(Km/J1) 0 0 0]> (IV.7)

For the particular case of the friction drive, the output equation y means that y1(x) = ω1(t)

and y2(x) = ω2(t) are assumed available from the sensors (in this case, angular speed sensors)

at every time instant.

If the nonlinear system (IV.5)-(IV.6) is observable, then it is possible to design an observer,

for instance an Extended Kalman Filter (EKF), for estimating the states x, by considering the

knowledge of the input u and y.The EKF is an standard technique used in a number of nonlinear

estimation and machine learning applications; see for instance [Shi 2002,Bolognani 2003].

The observability (locally weak observability) property for the nonlinear system (IV.5)-

(IV.6), can be checked if the observability rank condition is satis�ed, i.e. if the dimension

of the observation space of the system is equal to the dimension of x; see the mathematical

theorem in [Hermann 1977] and its application in the framework of nonlinear observers in

[Besançon 2007]. In that sense, following a similar procedure to [Torres 2011] and [Delgado-

Aguinaga 2016] to analyze the observability of a nonlinear system, for this case the next steps

are proposed:

1. Let us evaluate the case of operation with constant input u(t) = u0, for which the state

equation can be re-written as: ẋ = Fu0(x).

2. Let us consider the vector Φ(x) as a vector that represents a �nite linear combinations

of linearly independent functions of y, namely:

Φ(x) = [y1(x) LFu0y1(x) L2
Fu0

y1(x) y2(x)]> (IV.8)

where LFu0y(x) denotes the Lie derivatives of the function y along Fu0 .
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3. Let us �nd the observation space of the system (IV.5)-(IV.6), denoted as Hx, in the sense

of [Besançon 2007], which corresponds to the jacobian matrix of Φ(x).

4. Let us �nd the dimension of Hx. In this case, this dimension is equal to R4×1, which

corresponds to the dimension of x. Thus, the system (IV.5)-(IV.6) is locally weakly

observable.

5. Let us �nd and analyze the determinant ∆Hx of Hx, which gives in this case:

∆Hx = −(α (r21 ω1 − r1 r2 ω2)
2 (r1 ω1 − r2 ω2)

2)/J2
1

∆Hx = −(α (r21 ω1 − r1 r2 ω2)
2 p(x))/J2

1 (IV.9)

Unlike linear systems, the observability features of nonlinear systems are input-dependent,

[Hermann 1977], [Besançon 2007], [Busawon 1998], it is necessary analyze how u(t) a�ects

∆Hx, and in turn the observability characteristics of the system (IV.5)-(IV.6). In that sense,

notice that in (IV.9) ∆Hx vanishes whenever the sliding factor p(x) tends to 0, or in other

words, when the tangential speeds between the devices, r1 ω1 and r2 ω2, tend to be close to

each other. The latter condition corresponds for instance, to the response in steady state to a

constant input u0.

If the system (IV.2)-(IV.4) has mostly a relative tangential speed that tends to 0 or if this

is small enough to be confused with the measurement noise given by the sensors, then the

system tends to be unobservable. Consequently, the estimation of x requires an input u = I(t)

suitably time-varying to increase the variation of y, and in turn for increasing the observability

of x (i.e. mainly α and m) of the nonlinear system (IV.2)-(IV.4). The latter follows the notion

of persistent input in the sense of [Besançon 2007]. Consequently, in this case, it is necessary

to increase the deterioration of the contact surfaces to better estimate the current D.

As an alternative way to analyze the observability of the system, considering the fact

that parameter α a�ects the matrix A(α) in an a�ne way in (IV.2), and the availability of

measurements y, the estimation of the state α is possible with an enough degree of variation

of the input. In terms of the observability of m, notice that this parameter also appears into

the dynamical equation characterizing the evolution of α in (IV.3). There, the variation of the

parameter α depends on the parameter m in an a�ne way. Thus, m can be also estimated

using previous estimations of α and its time-derivative. Therefore, the estimation ofm requires

persistence of the excitation on α in the sense of [Besançon 2007].

IV.3.2 Synthesis of an Extended Kalman Filter

From the system (IV.5)-(IV.6), consider the state transition equation and the system output

equation in continuous time respectively:

ẋ = f(x) + Bu+ w (IV.10)

y = Cx + v (IV.11)

where w and v are assumed to be a Gaussian process noise (a�ecting the model) and a

measurement noise (a�ecting the measured external information) respectively, with zero mean

and covariance matrices Q and R respectively.
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In order to synthesize an Extended Kalman �lter, the following covariance matrices are

selected:

Q = diag(
[
0 0 σ2α σ2m

]
); R = diag(

[
σ21 σ22

]
) (IV.12)

where σ2m stands for the disturbance variance a�ecting the behavior of the state m. The values

σ21 and σ22 represent the sensor noise variances in the speed sensors measuring ω1 and ω2,

respectively.

The used matrix Q takes into account the fact that in the model (IV.2)-(IV.4) the state

m can be a�ected by neglected and/or unmodelled dynamics. This is, it is assumed that the

model error is only associated to the misknowledge on the behavior of α and m. The used

matrix R represents the assumption that both speed sensors are a�ected by the same level of

measurement noise, i.e. σ1 = σ2. It is assumed also that σ21 and σ22 are relatively smaller than

possible state disturbances and/or model errors.

The estimation process is performed as follows:

Assuming the availability of discrete-time measurements at every time-instant, with a sam-

ple time ts, the a priori prediction (represented with the su�x in the subindex �|k− 1�) of the

state estimate in discrete time can be calculated by using the continuous-time state transition

model (IV.10), as follows:

x̂k|k−1 = f(x̂k−1|k−1) + B uk−1 (IV.13)

and the estimated output:

ŷk|k−1 = Cx̂k|k−1 (IV.14)

The prediction of the a priori error covariance matrix P ∈ R4 is calculated at every time

instant as:

P k|k−1 = Fk−1P k−1|k−1F
>
k−1 +Q (IV.15)

where Fk−1 is the Jacobian of the function f(x) in discrete time. That is,

Fk−1 = exp (F ts) (IV.16)

with

F =
∂f(x)

∂x

∣∣∣∣
x̂k|k−1

(IV.17)

the Jacobian of the function f(x) in continuous time, calculated as:

∂f(x)

∂x
=


F11 F12 F13 0

F21 F22 F23 0

F31 F32 F33 F34

0 0 0 0

 (IV.18)

where F11 = −(αr21 + B1)/J1, F12 = (αr1r2)/J1, F13 = (r1r2ω2 − r21ω1)/J1, F21 =

(αr1r2)/J2, F22 = −(αr22 + B2)/J2, F23 = (r1r2ω1 − r22ω2)/J2, F31 = −2αmr1(r1ω1 − r2ω2),

F32 = 2αmr2(r1ω1 − r2ω2), F33 = −m(r1ω1 − r2ω2)
2, and F34 = −α(r1ω1 − r2ω2)

2.

The innovation covariance, denoted S ∈ R2, is:

Sk = CP k|k−1C
> +R (IV.19)
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and the Kalman Gain:

Kk = P k|k−1C
>S−1k (IV.20)

Considering the prediction error:

ẽk = yk −Cx̂k|k−1 (IV.21)

the updating of the state estimate is calculated as:

x̂k|k = x̂k|k−1 + Kkẽk (IV.22)

Finally, the a posteriori covariance matrix (represented with the su�x in the subindex �|k�)
can be updated with:

P k|k = (I−KkC)P k|k−1 (IV.23)

where I is an identity matrix.

Then, the estimation process starts again, by considering all the updated and estimated

state vectors and covariance matrices. The estimation process requires the initialization of the

estimated state at instant k = 0, and an initial a priori covariance matrix P 0|0.

IV.3.3 Checking the consistence of the innovations

In practice, one can not measure the performance of the observer with respect to the state

error measures, since there is no knowledge of the true values of the states. Hence, one can

check if the observer is performing correctly in terms of the innovation covariance S. At the

same time, this check is used for tuning the EKF, i.e. in this Chapter the usual trial-and-error

method is replaced with a straightforward matrices choice, as suggested in similar approaches

like [Bolognani 2003] and [Mohan M 2015].

It is known that if the observer is working correctly then ẽk is zero mean and white noise

with a covariance Sk. Thus, one can verify that the observer is consistent by applying the

following two tests: 1) check that the innovations are consistent with their covariance, and 2)

check that the innovations are unbiased and white noise.

Test 1 can be performed by using the following bounds on the innovation signal:

ēk = diag
(
S

1/2
k|k

)
c (IV.24)

where c > 0 can be chosen to guarantee that the innovations will be bounded by the above

values with a given probability.

If Test 1 is not veri�ed, then it is possible that there exist an under-estimate or an over-

estimate of the variances of the disturbances. Thus, the chosen matrix Q must be reformulated

or adapted. Note that this adaptation process of Q could be done by using approaches as the

adaptive EKF as in [Jetto 1999,Han 2009,Gonzalez Silva 2018]. This focus is suggested in the

perspectives of the thesis. Of course, if Test 2 is not veri�ed, then it re�ects that the model is

not coherent, and it can be considered as un suitable.
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IV.3.4 Stochastic bounds for the state estimation

In this framework the estimates of the parameters α and m are intended to estimate the

current state (for condition monitoring tasks) and the future states (for prognostic and RUL

estimation) of D, thus it is necessary to evaluate the uncertainty of the parameter estimation.

Here it is proposed doing this as follows:

Let us de�ne the estimation error as x̃k|k := xk−x̂k|k. Considering that the expected value

of x̃k|k ∈ Rn is equal to zero, its covariance equal to P k|k and c > 0 any real number, one can

use the multidimensional Chebyshev's inequality as described in [Stellato 2017], as follows:

Pr
(
x̃Tk|kP

−1
k|kx̃k|k > c2

)
≤ n

c2
(IV.25)

for computing a stochastic ellipsoidal set and then compute bounds of the state estimation

error.

Inequality (IV.25) can be used when there is no knowledge of the probability distribution

of the estimation error x̃k|k. Otherwise, it is possible to use a more accurate description, for

instance in the case where the estimation error presents a normal distribution (that corresponds

to the case studied in this Section), it is possible to bound the estimation error (with a given

probability), as follows:

Pr
(
x̃Tk|kP

−1
k|kx̃k|k ≤ c2

)
= erf

(
c√
2

)
(IV.26)

where erf(·) corresponds to the Gauss error function.

Even if there is a probability that some trajectories of the estimation error x̃k|k go out this

set, one can use this set to establish an interval of possible values of the state xk with a given

probability.

Using geometrical properties of the ellipsoids, bounds on the estimation error x̃k|k, denoted

xk, can be obtained as follows:

xk = diag
(
P

1/2
k|k

)
c (IV.27)

These bounds along with the estimated value of the system state x̂k|k will be used as ini-

tial conditions for predicting the RUL. In particular, for the elements corresponding to the

estimation of the parameters α and m it is obtained:

x̂k|k(3)− xk(3) ≤ αk ≤ x̂k|k(3) + xk(3) (IV.28)

x̂k|k(4)− xk(4) ≤ mk ≤ x̂k|k(4) + xk(4) (IV.29)

with a probability greater than 1−(n/c2), for an unknown probability distribution, or equal to

erf(c/
√

2) for normal probability distributions. Here n = 4 because x ∈ R4. That means that

with c = 3 one can expect that the real value is within the interval given by the estimates with

a probability higher than 55.5% (for unknown distribution) or 99.7% (for normal distribution).

Remark IV.1

D can be included as state in the augmented system (IV.2)-(IV.4). In this case the new

state vector state is xD := [ω1(t) ω2(t) α(t) m D]>. Inclusion of state D has as advantage

the possibility of obtaining their uncertainty values directly from EKF , such as described

in (IV.28) and (IV.29).
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System

EKF RUL
Prognostic

Monitoring

Observer

Operating conditions

Hypothesis

u = I(t) y = [ω1(t) ω2(t)]
>

α̂k ± ᾱk
m̂k ± m̄k

α̂k
m̂k ˆRUL

±ᾱk

±m̄k

α̂k ± ᾱk
α̂(0)

P
¯̂
D(t)

¯̂
Dpes,mean,opt

Figure IV.1 � Condition monitoring and RUL prognosis architecture.

The augmented system suggested in Remark (IV.1) is used in one scienti�c article that is

in the process of writing by this time.

IV.4 Integration of the observer into the prognostic of Remain-
ing Useful Lifetime

Let us call, the current time tc and the failure time instant tf . The proposed observer in

Section IV.3 provides an estimate of the current state of α and m. Given those estimates, we

can address two actions: (i) monitoring the current condition of the deterioration D, and (ii)

prognosticate at tc the RUL of the actuator, i.e. the time left from tc until tf .

Figure IV.1 depicts the proposed condition monitoring and the RUL prognosis architecture.

Here two main informations are proposed to be obtained from the EKF estimator, namely: the

estimates α̂ and m̂, and their uncertainties ᾱ := xk(3) and m̄ := xk(4); these two latter given

by (IV.28) and (IV.29) respectively. The architecture also shows that for the prognostic of the

future condition of D for calculating the RUL, it is necessary to de�ne hypothesis about the

operating conditions and the assumptions about their future.

De�nition IV.1

In this thesis the operating conditions are a set of characteristics that de�ne the input u(t)

and the parameters α and m.

IV.4.1 Current condition D and prognostic of the RUL

In this Chapter the proposed algorithm for estimation of the current condition D and the

algorithm tor prognosticate the RUL are linked. Figure IV.2 outlines the operation of the used

algorithm in the time domain for the RUL prognostic.

At a given time tc (RUL estimation instant), an estimation of the normalized deterioration,

denoted ¯̂
D(t), can be performed by using the dynamical model (IV.5)-(IV.6) and (III.31). The

objective here is to simulate the system from to until the end of the useful lifetime or failure

time denoted as tf .
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¯̂
D
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Time

¯̂
Dpes(t)
¯̂
Dmean(t)
¯̂
Dopt(t)

tc ˆRUL tf

Figure IV.2 � Prognostic of the RUL at time tc, by considering the current estimation uncer-

tainties of α̂ and m̂, which result in an uncertainty in the calculation of the initial condition

for prognostic of
¯̂
D. The resultant prognostic consist of three trajectories of deterioration: a

mean trajectory and two bounds.

From tc, the future D behavior is simulated by using the Equation (III.39): Ḋ = α p(x).

The model is initialized with x̂k|k and with D̂k|k at the time tc. At this stage, we use

the estimated values α̂ and m̂ with their available con�dence intervals at the time tc, the

calculation results in an uncertainty in the estimation of D̂(t) which means that at a given

time one can obtain three values D̂(t) from (III.33), namely:

D̂opt(t) = (α(0) + (α̂(t)− ᾱ))/(m̂(t) + m̄) (IV.30)

D̂pes(t) = (α(0)− (α̂(t) + ᾱ))/(m̂(t)− m̄) (IV.31)

D̂mean(t) = (α(0)− α̂(t))/m̂(t) (IV.32)

where D̂opt and D̂pes are the optimistic value and the pessimistic value of D̂ respectively. If ᾱ

and m̄ are not used as in (IV.32), D̂ results in an intermediate value D̂mean within the interval

de�ned with D̂opt and D̂pes.

In a complementary way, one can obtain a priori the Dmax value at tc by using (III.28).

Thus, one can obtain three critical values of Dmax, namely: the mean, the optimistic and the

pessimistic values, with respect to the initial conditions for prognostic. The latter are de�ned

with Dmean
max = α̂/m̂, Dopt

max = (α̂+ ᾱ)/(m̂− m̄) and Dpes
max = (α̂− ᾱ)/(m̂+ m̄) respectively. If

c = 3 is used in (IV.27), then it implies the following bounds: ᾱ = 3 ·σα and m̄ = 3 ·σm, where
σ2α and σ2m correspond to the estimated variances of α and m respectively, obtained from the

EKF.

From (III.29) we obtain the normalized values:

¯̂
Dopt(t) = D̂opt(t)/Dopt

max (IV.33)

¯̂
Dpes(t) = D̂pes(t)/Dpes

max (IV.34)

¯̂
Dmean(t) = D̂mean(t)/Dmean

max (IV.35)
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Figure IV.3 � Time diagram of a prognostic of the RUL at time tc. At a given time tc, a

prognosis is performed, assuming future operation conditions. This prognostic can be updated

as time goes on.

The simulated trial must be stopped once the normalized deterioration reaches the maxi-

mum value, i.e. when ¯̂
D(t)=1. Here we obtain the �nal time tf at a threshold before the failure,

taking the 99% of the respective
¯̂
D. The estimated ˆRUL is calculated as ˆRUL = tf − tc.

The uncertainties on the estimation of Dmax de�ned by (IV.30)- (IV.32), produce two

extreme values of ˆRUL, the pessimistic estimation ˆRUL
pes

, the optimistic estimation ˆRUL
opt

,

and an intermediate value ˆRUL
mean

within the interval de�ned by the extremes. That means

that at tc we can estimate the RUL with its corresponding uncertainty.

The simulation for the prognostic has to include additionally the assumptions about the

future operating conditions on the current u(t), from the estimation instant tc until the failure

time tf . Figure IV.3 illustrates the time diagram for a prognostic in a given time tc, for which

the input operating conditions, the mechanical measures, andm are considered unvarying from

tc. In spite of they seem to be very strong conditions, this prognostic can be updated as the

time goes on, when it is considered necessary.

If one consider that the time spent in the simulation is small enough, then it can be consid-

ered negligible in terms of prognostic. Hence, this prognostic can be �quickly� updated. Notice

that for implementation issues, this simulation time plays an important roll for determining

the minimum time to update the prognostic.
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IV.4.2 Tuning of the EKF observer

The �rst step for analyzing the estimator performance is to tune the EKF estimator of the

RUL. As a general design rule, if the quality of those estimations are technically de�ned as

acceptable, then the estimation of the current condition of the contact is validated. This tuning

must be consistent with the procedure presented in Section IV.3.

• Setting of operating conditions

In this case, the observer must be tested in simulated scenarios with known and prede�ned

operating conditions (See De�nition IV.1) from the activation of the actuator until the failure

time tf , to validate in simulation the quality of the obtained estimates α̂ and m̂.

For the tuning process the used input u(t) is a rectangular waveform with a prede�ned

amplitude I, time-on th, and time-o� tl. Here we use I = 20A, th = 0.42h (25min), and

time-o� tl = 60s 1. The changes in u(t) stand for exogenous changes a�ecting D and in turn

RUL. The used mechanical parameters of the model (IV.2)-(IV.4) (shown in Table III.3) are

considered constant, moreover α(0) = 10 and m = 0.01 are used. The EKF is initialized in

α̂0|k−1 = 9.8 and m̂0|k−1 = 0.011. The used time step in this tuning process is ts = 60s. (The

su�x in the subindex �|k − 1� represents the a priori used value)

For tuning, we focus our interest on the parameter m, since if it changes, then it can also

represent changes in the time-derivative of the quality of the contact α in (IV.3). These changes

are not produced by the operating conditions, and in turn not modeled by the function p(x).

Hence, a logical assumption is that the system is highly sensitive to possibles changes on m.

In the augmented system (IV.2)-(IV.4) the variations of the parameter m are assumed to

be equal to 0. Nevertheless, from a more realistic point of view, there may be changes on the

real value of m during work, here called endogenous changes.

Table IV.1 summarizes three di�erent assumptions on the possible real dynamics of m in

operation, namely: (i) the parameter m is always constant, (ii) the parameter m is piece-wise

constant, and an abrupt change in the value of m can appear at the instant k = t∗ (a Dirac

delta function models this aspect), and (iii) the parameter m can su�er a progressive change

with a rate of change equal to ε (a possible random but a priori bounded parameter).

Table IV.1 � Possible model for the dynamics of m

Assumption m Meaning

i ṁ = 0 No change, m is constant

ii ṁ = δ(t∗) Abrupt change of m at k = t∗

iii ṁ = ε Incipient or progressive change

1Note that time-on th, and time-o� tl can be set to carry out simulations such as accelerated deterioration

process, which are common to test the quality of materials or systems
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• Setting of matrices Q, R and P 0|0

In terms of tuning of matrices Q, R and P 0|0, we consider the worst case, as the one given by

an abrupt change in the parameter m.

Assuming a known variance of the measurement noises v, the matrix R is selected as in

(IV.12) with σ21 = 1× 10−8 and σ22 = 1× 10−10.

Concerning the matrix Q in (IV.12), the chosen value for σ2m is obtained by assuming pos-

sible abrupt variations on values of m. This variations can be modeled as impulse disturbances

(a discrete-time Dirac delta, δ(t∗)), which a�ects the dynamics of the state m, and that make

that it takes values in the interval (a, b)=(0.009, 0.011). If it is assumed, for instance, that

these disturbances are random variables with a uniform probability distribution for all k > 0,

i.e. m ∼ U(a, b), then their variance can be calculated as:

σ2m = var(U(a, b)) =
1

12
(a− b)2 (IV.36)

which provides σ2m = 3.3333 × 10−7. Here we use σ2α = 1 × 10−4 for giving to this tuning

parameter a weight smaller in 3 orders of magnitude than the σ2m value.

The used value to initialize the covariance matrix is P 0|0 = diag([1 1 σ2α×103 σ2m×103)].

The third and fourth values of variance are the corresponding ones to α and m respectively.

This kind of tuning is done taking into account [Mohan M 2015] to provide proper estimates and

coherent uncertainties values. The �rst two values, which correspond to ω1 and ω2 respectively,

are set arbitrarily at 1.

Additionally, in this numerical example, a moving average �lter with window of 30 steps is

used to obtain the �nal value of m̂. That means that the �nal estimate of m at a given time tk
is the average of the 29 previous values and the current value of m̂. This allows the reduction

of the e�ect of noise during the estimation of this state.

IV.4.3 Evaluation of the observer performance

In this section, we focus on the evaluation of the observer also on the estimation of the param-

eter m for the assumptions i, ii and iii according to section IV.4.2.

• Analysis of the variance of the innovations

Figure IV.4 shows the prediction error ẽk, for both measured signals ω1 and ω2. The dashed

lines represent a con�dence interval of ± 3σẽ which is computed using (IV.24). As it is shown,

the errors ẽk are zero mean and most of the time they remain inside the con�dence interval.

Some values are observed just before the failure time tf . Due to the assumption that the

sensors are a�ected by Gaussian noise, we conclude that the estimation error belongs to the

chosen con�dence interval with a probability of 99%. Consequently, the test of consistence of

the innovations described in IV.3.3 is veri�ed.

Another interesting observation is that the variance of the prediction output error is in-

creasing for ω2 near to the end of the lifetime of the system, which seems logical for low values

of contact quality coe�cient α, for which the system should not work as well as new.
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Figure IV.4 � Prediction output error ẽk for ω1 and ω2.

• Analysis of the EKF estimates

Figure IV.5.a shows the estimate α̂ (dashed line) compared to the real value α (continuous

line). Figure IV.5.b shows the estimation error of α̂ with the value ±ᾱ with c = 3 (dotted

lines). This �gure shows that: i) the error is zero-mean, ii) the uncertainty de�ned by ±ᾱ
tends to decrease over time, and iii) the uncertainty bounds are in this case around the 0.3% of

the maximum value of α(0) = 10; thus, the estimation α̂ is considered highly accurate. Figure

IV.5.c shows an enlargement of the �rst 10 steps of observation; there, the estimated value

converge in the �rst 6 steps (i.e. 360s=6min) from the initial value set in α̂0|k−1 = 9.8, showing

a quick convergence time of the observer. For this scenario, the system fails at tf = 21h.

Figure IV.6.a shows the estimate m̂ (dashed line) compared to the real value m (continuous

line). Figure IV.6.a shows the estimation error of m̂ with the value ±m̄ with c = 3 (gray dotted

lines). This �gure shows that: i) the error is zero-mean, ii) the uncertainty de�ned by ±m̄
tends to decrease over time, and iii) the uncertainty bounds are in this case around the 53%

over the nominal value of m = 0.01, thus the estimation m̂ is considered appropriate but seems

to be too conservative. The estimated value converge in the �rst 60 steps, showing a quick

convergence time of the observer with respect the to the useful lifetime units, but slower than

the convergence time of α̂. In this case, the estimation of m shows the need of a particular

consideration for its use.

• Why and how to use the EKF estimates?

According the consideration for obtaining (IV.26) it is necessary to test the characteristics

of the distribution of the EKF estimates. For nonlinear observers, there is no an a priori

hypothesis of a normal distribution of the estimates (as for linear systems). For instance,

for nonlinear systems, the a posteriori distribution is generally nonsymmetric and potentially
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ᾱ

Figure IV.5 � Estimation of α̂. a) α̂ is a proper estimate of the real α during the lifetime.

The failure time is around the 21h, b) the estimation error of α is zero-mean and Gaussian, c)

enlargement of the 10 �rst steps of observation.

multimodal [Haseltine 2005].

Thus in this example, 300 Monte Carlo simulations were performed with the same tuning

and initial conditions, in order to evaluate the distribution of the estimates for an arbitrary

scenario. Measures x̂k|k are taken arbitrarily at tk = 1h (tk = 3600s).

Figure IV.7 shows that the distribution of the obtained data for α̂ and m̂ at the tk = 1h

�ts correctly with a Normal distribution, which is con�rmed with an obtained Kurtosis value

of 3.00 [Bai 2005].

Table IV.2 shows a comparison between EKF estimates and the values obtained after the

�tting of simulated data. It is shown that the standard deviation of the α̂ data, denoted σα̂, is

always smaller with one order of magnitude (10−1) than the standard deviation obtained from

the matrix P of the EKF, i.e. the obtained value xk(3)/c with c = 1, from (IV.27). In the

case of m̂, the standard deviation of the data, denoted σm̂, is always smaller than the standard

deviation given for the EKF, i.e xk(4)/c with c = 1, with almost two order of magnitude (10−2)

(for instance, in this case it was found that σm−EKF /σm−fit = 87.2). Note that the bigger
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Figure IV.6 � Estimation of m̂: a) m̂ is a proper estimate of the real m during the lifetime,

and b) the estimation error of m is zero mean and Gaussian.

uncertainty of the EKF for m is due to the assumption on matrix Q in (IV.12). This kind of

direct tuning �nally leads to some estimates, which usually may be close, and uncertainties

which generally are away from the correct values [Mohan M 2015].

Results shows that the accuracy and the precision of the estimates are proper for this basic

scenario of tuning. However, the evaluation of the algorithm in that sense, is linked to the

inputs of the system. This evaluation is performed for one unit, for which the precision of

the estimates is dependent on the variance of the input (due to the hypothesis of random

Gaussian noise a�ecting them). However, the inclusion of new scenarios, for instance, multiple

randomness introduction for a unit system and/or a �eet of systems, should be more deeply

evaluated in terms of performance. See, for instance, [Saxena 2014,Rozas 2018].

Table IV.2 � Comparison between EKF estimates and �tting of simulated data

With EKF Value

at tk = 120s with �tting

α̂ 9.763 9.763

σ2α̂ 1.23x10−4 9.55x10−7

σα̂ 1.11x10−2 9.77x10−4

m̂ 0.010 0.010

σ2m̂ 3.13x10−4 4.12x10−8

σm̂ 1.77x10−2 2.03x10−4
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Figure IV.7 � Distribution of α̂ and m̂ for 300 simulations of the EKF.

Consequently, for making the prognostics at tk = tc one can trust in the values of the

variances given by the matrix P of the EKF at this time. In that sense, that allows us to use

the condition (IV.26), and to take (IV.28) and (IV.29) to obtain the uncertainty level of the

estimations from xk, with the corresponding consideration on the values of the variances. For

instance, in this case we take the �nal value ᾱ = ᾱEKF (we prefer to be conservative with α)

and m̄ = m̄EKF /80, as a correction factor with remains conservative but closer to the standard

deviation found after the �tting.

IV.4.4 Prognostic of Remaining Useful Lifetime

At any time tk, the pair (α̂, m̂) can be used to calculate the corresponding
¯̂
D|(α̂,m̂) from that

time, i.e. tc = tk, until tf . In reality, all the state vector x̂k|k is needed, but (α̂, m̂) are the

states which de�ne the maximum values Dmean
max , D

opt
max, D

pes
max for calculating (IV.33)-(IV.35).

The assumed future operating conditions for the simulations are the same as for the tuning

process, namely: a) the input signal u(t) is a rectangular waveform with a prede�ned amplitude

I = 20A, time-on th = 0.42h (25min), and time-o� tl = 60s, b) a constant parameter m for all

tk such that tc < tk < tf , and c) the used mechanical parameters of the model (IV.2)-(IV.4)

(shown in Table III.3) are considered constant.

Let us take the values x̂ (ω̂1, ω̂2, α̂, m̂) given by the EKF at tk = 1h. Figure IV.8 shows

the calculated trajectories of the deterioration ¯̂
D using (IV.33)-(IV.35). The bold line corre-

sponds to the obtained trajectory
¯̂
Dmean and the dashed lines correspond to the trajectories

of deterioration
¯̂
Dpes, and

¯̂
Dopt.

In addition, we use the estimated data x̂ of the 300 Monte Carlo simulations to initialize

and calculate their corresponding
¯̂
D. Figure IV.8 also shows the 300 resultant trajectories of

¯̂
D (the gray lines). The 100% of these trajectories are within the bounds given a priori by the

observer. This happens since we use the conservative ᾱ and m̄ given by the matrix P of the

EKF for calculating the bounds optimistic and pessimistic.

Figure IV.9 shows that the obtained data of the estimated RUL with the 300 simulations,

�tted with a normal distribution. It was found: a) a mean value ˆRUL
mean
fit = 20.67h and a

standard deviation σ ˆRUL = 0.42h, b) the calculation ˆRUL
mean
fit ≈ ˆRUL

mean
, and c) all the
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ˆRUL ∈ [ ˆRUL
pes
, ˆRUL

opt
]. That means we could know the uncertainty a priori of the RUL

estimation linked with the precision of the EKF at any time instant at tc making the prognostic

and assuming that the operating conditions do not change.

Notice that, if the operating conditions change, for instance a change on m is detected

between tc and tf , the prognostic can be quickly updated. For instance, in this experiment the

calculation of these trajectory-bounds and the mean-trajectory only takes around 0.33s each

one. Thus, the window time of estimation is around 1s, which is much smaller than the order

of values of magnitude of the RUL, and therefore negligible.

IV.5 Numerical examples

In this section we exemplify the usefulness of the proposed architecture to prognostic the

RUL. The objective is to evaluate the behavior of the deterioration trajectory and in turn,

the prognostic of the RUL, with respect to the injection of a varying input u(t) and two type

of changes during the useful lifetime. In a general way we assume that the used mechanical

parameters of the model (IV.2)-(IV.4) (shown in Table III.3) are considered constant.
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IV.5.1 Case 1. RUL prognosis with endogenous changes of the system

Let us call endogenous the changes produced in the parameters that are not caused by the

input of the system. In this case we focus the analysis on the changes on m.

Let us assume about u(t): a) input signal is a rectangular waveform with a prede�ned

amplitude I = 20A, time-on th = 0.42h (25min), and time-o� tl = 60s, b) a constant parameter

m for all tk such that tc < tk < tf .

Figure IV.10 shows the prognostic of
¯̂
D with an endogenous change in the system. The solid

line represents the real deterioration trajectory. At tc = 0.5h the �rst prognostic is performed

taking the current values obtained from the EKF: α̂ and m̂ with their uncertainties ᾱ and m̄

respectively. This prognostic is represented by the gray lines. In this example, the prognostic

is performed assuming that the future operating conditions of u(t) remain without changes for

all tk such that tc < tk < tf .

At tk = 7h a change on m (augmentation of 10% on the nominal value) is introduced arti-

�cially. At this point, an updated prognostic is carried out, and from there the real trajectory

changes. The bold-blue lines show the updated prognostic; the intermediate trajectory of this

ends closer to the real failure than the previous prognostic.

Figure IV.10 shows also, that the uncertainty of the prognosticated ˆRUL depends on the

level of uncertainty of x̂k|k, which in turn is linked to the precision of the EKF.

Moreover, the knowledge of the deterioration level at the updating time tud allows an

estimation of the RUL with less uncertainty. The latter, due to the on-line knowledge of the

new conditions, mainly the new estimated value α̂ and m̂. In this numerical example (Case 1),

this updating is inside the bounds calculated before the change, which means that this arti�cial

change could be considered as �acceptable" in this case. Of course, if the new estimation goes

out of given prede�ned constraints, it could be used for instance in fault detection applications.

Figure IV.10 shows an updated prognostic of the RUL every 0.5h until the failure time

tf . For simplicity, here we focus the simulation only on the analysis of the e�ect of the

uncertainty of α̂ on the RUL estimation, assuming a perfect estimation m̂. Figure IV.10 shows

at every prognostic-time instant three main points: the two bounds of the prognosticated

RUL ( ˆRUL
pes
, ˆRUL

opt
), and the intermediate value of ˆRUL

mean
which corresponds to the

mean valueaccording to Sec. IV.4.4. The red line (bold line) represents the trajectory of RUL

assuming only the second value of m during all the lifetime of the system. Of course, the latter

assumption is only possible due to fact that in the framework of simulation there exist a full

knowledge of the reality. As it can be seen, the prognostic ˆRUL begin assuming the �rst value

of m (before the change) and therefore the corresponding values of the ˆRUL are not near to

the red line. Once the change on m is detected the prognostics respond to the new condition,

that means that from that time the new prognostics are closer to the red-line and they have

lower uncertainties as the time passes until the failure time.

IV.5.2 Case 2. RUL prognosis with exogenous changes of the system

Let us call exogenous to the changes produced in the input u of the system. Now, let us assume

that u(t) is unknown, with rectangular waveform, for which its time-on th and time-o� tl follow
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a Normal distribution, namely:

th ∼N (thµ, σ
2
th

) (IV.37)

tl ∼N (tlµ, σ
2
tl

) (IV.38)

where thµ and tlµ stand for the mean values of th and tl respectively, and σth and σtl stand

for the standard deviations of the distributions of th and tl respectively. Here thµ = 1500s,

tlµ = 60s, and σth = σtl = 10% are used. An amplitude for the rectangular waveform I = 20A

is also used.

Figure IV.11 shows the prognostic of
¯̂
D with an exogenous change in the system at tc = 7h.

At this time a change on the real input is introduced arti�cially, as a change in the probability

law of the input with σth = σtl = 30%. The solid red line represents the real deterioration

trajectory. It can be seen that from tc = 7h the real trajectory changes (more varying).

At tc = 0.5h a �rst prognostic is performed taking the current values obtained from the

EKF: α̂ and m̂ with their uncertainties ᾱ and m̄ respectively. This prognostic is represented

by the gray lines. In this example, the prognostic is performed assuming that the operating

conditions of u(t) remain as described in (IV.37)-(IV.38) for all tk such that tc < tk < tf . For

simplicity, and assuming the most probable values, we assume σth = σtl = 0%.

At tc = 7h (the current time of the change), an updated prognostic is carried out. The bold-

blue lines shows the updated prognostic. In this scenario, the real trajectory of deterioration

ends within the bounds given by the prognostic, nevertheless the real failure time is closer to the

optimistic trajectory and not to the intermediate trajectory. That means that the prognostic

at tc = 7h is not accurate enough due to the lack of knowledge of the current values of th and

tl at this time (the estimator does not have the information about σth nor σtl ), and moreover

no assumption about the future σth nor σtl was taken. Nevertheless, note that the following

prognostics can be quickly performed as the time pass until the failure, as a result these new

prognostics are more accurate as the time passes.

Figure IV.11 also shows an updated prognostic of the RUL every 0.5h until the failure.

The Figure IV.11 shows at every prognostic-time instant the aforementioned three main points
ˆRUL

pes
, ˆRUL

opt
, and ˆRUL

mean
. In a similar analysis that for the scenario of the endogenous

change, the red line represents the trajectory of ˆRUL assuming the true failure time. As it

can be seen, the new prognostics are close to the red-line and they have lower uncertainties

as the time passes until the failure time. In this case, there is not an evident change in the

RUL trajectory around tc = 7h; this is due to the lack of knowledge of the new σth and σtl .

This experiment shows that the prognostic of the RUL for a kind of variation of the input as

described in (IV.37)-(IV.38) does not need an estimation of the σth nor σtl to give acceptable

estimations ˆRUL. Of course if there exist some hypothesis about the future values σth and/or

σtl , they can be included in the operating conditions for prognostic.

IV.6 RUL prediction evaluation

Given a family of constraints (deterioration produced by bounded inputs) scenario-based ap-

proach presented here, the Probabilistic certi�cation approach, as proposed in [Alamir 2015],

suggests to simulate N possible trajectories of the deterioration and compute the number of
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times the constraints were violated. The obtained statistical probability is associated with a

con�dence parameter, since it is the probability that the success statement is wrong. As stated

in [Alamo 2009], we have to compute a su�ciently large number of random trials to guarantee

a certain con�dence. This section is dedicated to analyze two cases of uncertainties (uncertain

input and uncertain parameter cases). It is shown that it is possible to obtain an estimation

of an interval of possible RUL, with a certain con�dence percentage based on the presented

deterioration model. The task associated to this prediction can be started by a condition based

on the invariant sets characterizing the admissible deterioration.

In the sequel, we assume the availability of the estimations of α andm at every time instant.

This means that, using Equation (III.29), the state of deterioration D̄ can be evaluated as well.

However, it is not simple to evaluate or estimate online, in a reliable way, the Remaining Useful

Life (RUL) of the actuator. Thus, the question is, given a deterioration at a particular time-

instant, how to estimate the RUL, before reaching the total outage of the actuator? The latter

question will be explored in section IV.6.1. There an approach that allows to numerically

predict an interval of the RUL before reaching the total failure of the actuator is presented.

IV.6.1 The RUL estimation problem

The problem is, for a given prede�ned scenario and/or protocol (�xed duty cycles, minimal and

maximal electrical motor current, etc.), at every time instant, estimate the RUL of the actuator

with a certain precision. It is clear that the estimated RUL has to belong to an interval (a set)

which consider the uncertainties of the model and the uncertainties on the realization of the

motor current (the exogenous disturbances).

Due to the fact that mechanical equations of motions are widely known, the probabilistic

certi�cation approach, can be useful to estimate the interval values of the RUL under certain

assumptions about the source of uncertainties.

There are two kind of uncertainties that have to be treated here. Uncertainties on the

parameters of the model (for instance, the estimation error of the parameter m in (IV.2)) and

uncertainties on the topology of the exogenous signals (for instance, the electrical current I(t)

which does not depend on the system state x in the described scenario).

IV.6.2 Uncertain input case

Figures IV.12 and IV.13 illustrate the behavior of the normalized deterioration D̄(t) for a

constant electrical current I(t) = I. One case considers bounded possible electrical currents

(19A ≤ I ≤ 21A), the continuous lines, and the second case considers random possible electrical

currents, the dotted-lines. In Figure IV.12 an initial condition of the normalized deterioration

D̄ = 0 is considered. The estimated RUL exactly belongs to the time interval {272.71, 333.88}
hours, for the bounded possible current case. However considering a more realistic scenario (a

random possible current case), the number of actuator population which do not respect this

interval is di�erent to zero. In this example, there is a probability that 5% of the population

will deteriorate faster than expected in the bounded current case (i.e. earlier than 272.71

Hours). This estimation was obtained by using N = 233 simulations, with normally distributed

pseudorandom values of electrical currents I(t), with mean 20A and a standard deviation of

0.5A. As suggested in [Alamo 2009] and [Alamir 2015]), the number of simulations N has been
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computed as follows

N ≥ (1/ε) ∗ (1 + ln(1/δ) + (2 ln(1/δ))1/2) (IV.39)

which guarantee a Con�dence parameter δ = 0.001 (i.e. 99.9% of the reliability of the estima-

tion procedure). Here, ε represents the percentage of actuator population which violate the

condition (e.g. 5% of the population will deteriorate faster than expected).

For an initial condition of the normalized deterioration D̄ = 0.4 as depicted in �gure

IV.13, the estimated RUL, computed at the instant 200 hours, belongs to the time interval

{297.03, 319.10} hours. In addition, we obtain the same probability of 5% of the population

will deteriorate faster than expected in the bounded case, with the same con�dence parameter

δ = 0.001.

It is clear that the precision of the estimation of the RUL basically depends on the precision

of the estimated α(t) and the estimatedm. Of course, the precision also depends on the quality

of the proposed model structure and the assumptions relating the probability distribution of

the electrical current I(t).

Figure IV.14 illustrates the behavior of the deterioration D̄ for two di�erent maximal

amplitudes of the electrical current, but the same activation sequence, as depicted in �gure

IV.15. Activation sequence is equal to 1 when it is applied the maximal current, and equal to

0 when system is stopped. An interesting observation is that the prediction of the RUL is still

quite simple and keeps a certain �invariance" property, providing an interval of possible values

of RUL according to the interval of possible maximal electrical currents.

IV.6.3 Uncertain parameter case

Figure IV.16 illustrates the behavior of the deterioration D̄ for 233 random simulations of

di�erent values of the parameter m (the dashed lines). This parameter is assumed to be

constant and veri�es 0.0095 ≤ m ≤ 0.0105. The current sequence is the same, depicted in

�gure IV.15. An interesting observation here, is that the behavior of the deterioration is

harder to estimate. In particular, the extreme value of m = 0.0105, does not provides the

faster deterioration index D̄ (the continuous line in Figure IV.16). This aspect clearly justify

the use of probabilistic certi�cation as a less conservative way to compute a reliable RUL.

IV.7 Conclusions

In this Chapter a non-linear state-observer is presented for estimation of the current state

of deterioration in a friction drive system. A method for tuning the observer is proposed in

the framework of RUL estimation. A properly tuned estimator allows us to know the current

state of deterioration of the contact surfaces with high accuracy, and in turn gives useful

information on the precision of the estimation at every time instant. The estimator was tested

in simulation by taking into account known input operating conditions. It was found that the

stochastic simulations allows to evaluate the precision of the estimates, and in turn, to take

into account this performance for using the estimates in prognostic tasks.

The estimates of the contact quality coe�cient and quality-deterioration ratio are highly

dependent on the precision of the speed sensors and on the variation of the input operating

conditions: the more variation of the input, the more ease to observe the parameters. The
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estimation of the deterioration state enables making quick prognostics of the RUL with a

con�dence level linked to the precision of the estimations. Moreover the prognostic can be

quickly updated after the detection of changes in the operating conditions. The results show

the potential impact of the model and the approach in maintenance and condition monitoring

tasks. A test rig is suitable to validate the model in a real application. A preliminary work

using the Probabilistic certi�cation approach has been presented and could be, combined with

invariant sets, object of analysis in perspective.

Complementary conclusions can be found in the published article [Rodriguez Obando 2017b].

Next Chapter concerns the use of the proposed condition monitoring and the RUL estima-

tion for designing a Reliability Adaptive System, i.e. a closed-loop controlled system.
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Figure IV.10 � Prognosis of RUL with an endogenous change in the system. a) A change on

m (augmentation of 10% on the nominal m) at tc = 7h. b) Real deterioration trajectory D̄,

�rst prognostic at t = 0.5h (shaded lines), and updated prognostic just after the change at

t = 7h (continuous lines); the updated prognostic is close to the real failure due to the on-line

knowledge given by the EKF. c) Prognostic of ˆRUL per 0.5h. Just after the change on m a

change in the ˆRUL trajectory is observed.
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Figure IV.11 � Prognosis of RUL with an exogenous change in the system. a) Real deterioration

trajectory D̄ with change in input (an augmentation of 20% over the nominal σth and σtl from

tc = 7h), �rst prognostic at t = 0.5h (shaded lines) and updated prognostic just after the

change at tc = 7h (continuous lines); the updated prognostic is within the uncertainty interval.

b) Prognostic of RUL per 0.5h with the exogenous change in the system.
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Figure IV.12 � Estimated deterioration for random input I(t), with mean 20A and a stan-

dard deviation of 0.5A. Here, 5% of the population age in more or less time than predicted

(deterministic) bounded current case (i.e. 19A ≤ I(t) ≤ 21A).
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Figure IV.13 � Predicted deterioration trajectory at the very beginning and in future time

(At t = 200 hours an initial condition D̄ = 0.4), for random inputs I, with mean 20A and a

standard deviation of 0.5A. Knowledge of the deterioration at this time allows a more accurate

estimation of the remaining lifetime before outage of the actuator.
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Figure IV.14 � Deterioration obtained with di�erent maximal electrical currents for a prede�ned

sequence of u(t).
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Figure IV.15 � Pseudo-random activation sequence of signal u = I(t).
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Figure IV.16 � Deterioration obtained with 233 random simulations for 0.0095 ≤ m ≤ 0.0105.

The (black line) concerns the curve with the maximal value of m.
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V.1 Introduction

Several motion applications are based on friction. Friction rollers, railway wheels, and friction

drive electrical bicycles are examples of this kind of actuators. The power delivered by the

motor is transformed into mechanical power on the driven side through the contact forces. In

practice, the contact surfaces of the motor device and the driven device deteriorate and their

deterioration reaches eventually a threshold above which the system is considered as a failed

system. The deterioration can be considered as a loss of the ability of the actuator to transfer

power to the driven device.

The Remaining Useful Lifetime (RUL) is de�ned as the time left before a component or

system no longer perform its intended function. This time mostly depends on the state of

deterioration of the components and the operating conditions. As described in Chapter IV,

accurately predicting the RUL is still an open problem [Si 2011]. This prediction is generally

a�ected by exogenous and endogenous uncertainties. Even if a given mechanical system model

is well-known, there are several sources of uncertainties that a�ect the precision of the RUL

prediction. For instance, the initial condition of the deterioration and its dynamical behavior,
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the future operating conditions, the measurement noise and process disturbances are generally

considered into the literature.

The motion control actions are seen as a source of stress deteriorating the actuator,

see for instance [Langeron 2017], [Rakowsky 2006] and [Meyer 2014]. In [Grosso 2012] and

[Pereira 2010], the authors assume a deterministic relationship between the degradation and

the motion control input. Therefore, controlling the RUL of a component could be achieved

by modifying, in a suitable way, the motion control laws.

This chapter presents an approach to control the remaining useful lifetime (RUL) of a

friction drive system. The control problem is de�ned in Section V.3. In Section V.4 the

architecture is de�ned formally. The approach is based on the assumption that the system

deterioration is a consequence of the motion control actions. These control actions have short-

term objectives that have to be modi�ed to be compatible with the required/desired RUL.

Here, a RUL actuating principle is proposed in order to control the RUL. The proposed RUL

actuating principle is based on a parametric varying �lter which modi�es the motion control

realization based on the available information about the expected RUL. The total RUL control

architecture also includes an operating condition estimator, a system state estimator, and a

RUL predictor. The RUL controller determines the parameters of the actuating �lter by solving

an on-line optimization problem. The RUL controller has to solve the RUL control problem

by considering a trade-o� between desired motion control actions and desired RUL. In Section

V.5 a numerical example is used to illustrate the use of the proposed global architecture.

V.2 System description

Consider the following dynamical friction drive system model, as presented in Chapter III:

J1ω̇1 = Tm − Fcr1 − b1ω1 (V.1)

J2ω̇2 = Fcr2 − b2ω2 − Tload (V.2)

Fc = α(r1ω1 − r2ω2) (V.3)

where ω1 and ω2 are the angular speeds of the motor and driven device, respectively. Tm is the

motor torque and Tload the driven load. The symbols J1, J2, r1, r2, b1 and b2 are known constant

mechanical parameters of the system. Fc stands for the contact forces allowing the transmission

of mechanical power from the motor to the driven device. That force is approximated by a

linear function of the relative tangential speed (r1ω1 − r2ω2) and an uncertain parameter α,

called here the contact quality coe�cient.

As proposed in Chapter III, the deterioration rate of the contact quality coe�cient can be

modeled as a function of the dissipated energy at the contact surface level. This deterioration

can be calculated from information of mechanical states and the knowledge of the contact-

quality coe�cient. This is summarized in Equation (III.39), which can be rewritten as:

Ḋ = α(r1ω1 − r2ω2)
2 (V.4)

where D represents a value of deterioration. This dissipated energy can be considered as

an image of the heat and the material worn at the contact surface level during traction. In
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addition, we assume, that the contact quality coe�cient α changes according to the following

dynamics:

α̇ = −mα(r1ω1 − r2ω2)
2 (V.5)

which means that, for m > 0, the deterioration D increases when α decreases. There is

uncertainty on m, and this parameter can also vary with time. From (V.5), notice that the

contact quality coe�cient decreases if values of (r1ω1 − r2ω2)
2 increase. The rate of the

decreasing of α also depends on the current state of α and the uncertain parameter m. Remark

also that the trajectory of the states for system (V.1)-(V.3), i.e. ω1, ω2, D and/or α can be

modi�ed by using the input Tm.

V.3 Problem statement

In this chapter, it is assumed that a system state estimator (e.g. a state observer) is available,

following the notions given in Chapter IV. See also for instance [Rodriguez Obando 2017b]

where an Extended Kalman Filter has been proposed for simultaneously estimating the current

values of α and m by assuming that ω1 and ω2 are measured.

In addition, it is assumed that the current operating conditions are known and assumed to

remain unchanged on the predicting horizon to predict the RUL. The latter can be achieved by

a RUL predictor, as it is also proposed in [Rodriguez Obando 2017b]. The following de�nitions

are necessary for establishing the RUL control problem:

De�nition V.1

At a given time t, the desired RUL, denoted RULref , is the desired remaining period

of time before the friction drive system can no longer perform its intended function (i.e.

transmitting mechanical power from the motor to the driven device).

De�nition V.2

At a given time t, the predicted RUL, denoted ˆRUL, is the predicted remaining period

of time before the friction drive system can no longer perform its intended function. The

predicted RUL is a random variable, which can be characterized by e.g. a probability

distribution or a con�dence metrics.

Now, the problem of controlling the RUL can be formulated as follows:

Problem V.1

Given a mechanical friction drive system (V.1)-(V.5), �nd, at every time-instant, the motor

torque Tm (the only manipulable input of the system), which guarantees that the predicted

RUL follows the desired one.

Due to the fact that the mechanical friction drive system has to follow possible short-time

motion demands, the Problem 1 has to be reformulated in order to include these motion

requirements. In the sequel we use the following additional de�nitions:

De�nition V.3

The desired torque, denoted T ref , is an exogenous motion demand which could be provided
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Tm = T ref

Tm= �ltered T ref
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Figure V.1 � Illustration of the obtained RUL for two di�erent sequences of the motor torque.

The obtained RUL increases in cases where the motor torque is a �ltered (or smoothed) signal

of T ref .

by a motion control system or a reference generator.

De�nition V.4

The demanded motion satisfaction, denoted Sref , is a value between 0 and 1 which quan-

ti�es the ability to deliver a motor torque Tm from a given reference torque T ref . Thus,

Sref = 1 means that it is desired to obtain Tm = T ref . A value of Sref close to zero means

that the applied torque Tm could be very di�erent to T ref .

Figure V.1 depicts two possible scenarios of deterioration. The �rst case concerns the case

where Tm = T ref and the second case when Tm is a �ltered signal of T ref . This example

clearly shows that �ltering the input command to the motor (and removing the sharp edges

in the command) decreases the deterioration rate, and increases the system lifetime. This

phenomenon will be used to control the system RUL by modifying appropriately the motor

command input.

Hence, by assuming the existence of a parameter varying �lter, denoted H(θ), with θ a vec-

tor containing the �lter parameters, which generates Tm from T ref , the problem now becomes

as follows:

Problem V.2

Given a friction drive system (V.1)-(V.5), �nd, at every time-instant, the parameters of

the �lter H(θ), such that the obtained motor torque Tm guarantees that the predicted RUL

follows the desired one and respects as much as possible the demanded torque T ref .

This problem can be solved as an on-line optimization problem that has to consider a

trade-o� between desired demanded motion satisfaction and desired RUL. The RUL control

architecture will be presented in the next Section.
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Figure V.2 � Architecture for an optimal control of the RUL.

V.4 Proposed RUL control architecture

The proposed RUL control architecture of a friction drive system, is depicted in Figure V.2.

The main novelty of the proposed RUL control architecture concerns a parametric varying

�lter (called here the actuating principle). This parametric varying �lter is intended to modify

the motion control realization in order to actuate on the values of the predicted RUL. The

RUL control architecture also includes an operating condition estimator, a system state esti-

mator, and a RUL predictor. The RUL controller determines the scheduling parameters of the

actuating �lter by solving an on-line optimization problem. Every component of the control

architecture is described in more details in the next subsections.

V.4.1 The RUL actuating principle

Considering the fact that the deterioration of the system is in�uenced by the shape of the

signal Tm (the motor torque), the desired torque T ref can be �ltered by a �lter H(θ) in order

to modify, in real-time, the shape of the applied motor torque, i.e.

Tm = H(θ) T ref (V.6)

where θ represents a time-varying parameter vector generated by the RUL controller. Since the

signal T ref has to verify short-time motion requirements, the choice of the �lter H(θ) allow us

to constraint the original signal T ref for generating a constrained signal Tm for satisfying long-

term requirements. This solution is adopted here, since it can be seen as a particular realization

of a Model Predictive Controller. The proposed architecture admits other versions of Model

Predictive Controllers for constraining the motor torque and include other possible short-time

state and/or control constraints. Here, two aspects are considered for constraining the signal

Tm, the amplitude of the signal and its time-derivatives. Both these aspects are considered

as sources of deterioration. High amplitudes and high time-derivatives of Tm produce more

deterioration and then decrease the predicted RUL.

Figure V.3 sketches out possible applied motor torques with respect to the desired one

T ref (t).
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T (t) T ref

Tm

ton toff t

Figure V.3 � Examples of applied motor torque Tm compared to the desired one T ref .

V.4.2 The RUL predictor

Figure V.2 shows the place of the RUL predictor into the control architecture. Here, it is

supposed that the RUL predictor uses a dynamical model of the mechanical system together

with a dynamical model of the deterioration (or an image of the deterioration). Since the

quality of contact coe�cient α is an image of the deterioration, its value and its associated

uncertainty are estimated by a state estimator and used into the RUL predictor. In addition,

the RUL predictor uses the information about the current operating conditions and performs

the prediction based on the assumption that such operating conditions remain unchanged along

the future time. In this chapter, it is assumed that the operating conditions are easily obtained

from the desired torques T ref , and therefore the value of the vector θ (the output of the RUL

controller) will also be part of the necessary information for performing the prediction. Other

solutions could just use the applied torque (the signal Tm) and any available image of the

deterioration for performing the RUL prediction.

Figure V.2 illustrates the case where the signal θ, α̂ and d̂ are used. Here, d̂ corresponds to

a metrics which characterizes the desired torques; d̂ could also include any other information

about the past, current or future operating conditions. Hence, the RUL prediction will be a

function of these inputs. That is, at every time instant, it follows that

ˆRUL := ˆRUL(α̂, d̂, θ) (V.7)

Figure V.5 illustrates an example of the behavior of the predicted RUL for di�erent values of

α̂, d̂ and θ.

Remark V.1

The vector θ is the only tunable variable which allows the modi�cation of the predicted

RUL. This aspect is exploited by the RUL controller which decides, during operation, the

values of the vector θ to assure the �tracking" of a desired RUL. This is explained in the

following subsection.

V.4.3 The RUL controller

The RUL controller is intended to solve the control problem stated in Section V.3. This

controller has to continuously decide the values of the vector θ (the parameters of the �lter
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H(θ) in (V.6)), as a function of the predicted RUL and minimizing a given cost function J ,

for instance:

J := J
(
RULref , ˆRUL(θ), Sref , S(θ)

)
(V.8)

where RULref represents the desired RUL and Sref the demanded motion satisfaction. The

symbols ˆRUL(θ) and S(θ) represent the predicted RUL as a function of θ and the obtained

motion satisfaction, respectively. In this chapter, it is assumed that the cost function (V.8)

includes also scalar values which allows considering a trade-o� between the obtained predicted

RUL and the obtained motion satisfaction S(θ).

Figure V.2 shows the place of the RUL controller into the proposed control architecture.

The RUL controller can provide a decision variable θ by solving, at every time-instant, the

following optimization problem:

minimize
θ

J
(
RULref , ˆRUL(θ), Sref , S(θ)

)
subject to fi(x, u) ≤ 0, i = 1, . . . ,m.

(V.9)

where the functions fi(x, u) allow the inclusion of other constraints on the system states

x and/or on the system controls u. Notice that the optimization problem could be solved in

real-time or by using an a priori calculated look-up table.

According to the PHM framework, Condition Monitoring (CM) scheme, can be carried

out �continuously� (See. for instance [Bérenguer 2003]) or �discretely� (See. for instance

[Huynh 2011]). By continuous CM, a machine is continuously monitored, and a warning alarm

is triggered whenever something wrong is detected. Note that, such a continuous CM approach

can be costly, and eventually cannot be implemented in practical engineering applications

[Jardine 2006]. Thus, the policy for evaluating the cost function (V.8) can be decided to be

done, for instance, event-based.

V.5 Numerical example

In this section the behavior of the proposed control architecture is illustrated by using the

friction drive system (III.13)-(III.14) with the values presented in Table III.3.

V.5.1 Chosen scenario

For simplicity, the following scenario has been chosen:

• The desired torque T ref is a rectangular waveform with duty-cycle equal to 50%.

• The signal T ref is active during a period of time ton, as it depicted in Figure V.3.

• The period of time ton is assumed to be known but it can change along the time, modifying

the predicted RUL.

• The operating conditions estimator provides the exact value of ton in seconds. That is,

d̂ = ton. This values is assumed to be bounded as follows: 0 < ton ≤ 50.
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Figure V.4 � Obtained motion satisfaction S as a function of the parameter θ2.

• A state estimator provides the values of the estimated contact quality coe�cient, i.e.

α̂ by using available measurements and/or signals. Here, the state estimator uses the

applied motor torque Tm and the measurements y (rotational speeds of the motor and

driven device).

V.5.2 Chosen parametric varying �lter

In this example it is used a �rst order �lter:

H(θ, s) =
θ1

1 + θ2 s
(V.10)

where s depicts the complex variable in Laplace representation, and θ is a parameter vector

θ = [θ1 θ2]
T . Notice that the parameter θ1 modi�es the gain of the transfer function (V.10), in

the meantime θ2 mostly modi�es the time-response of the applied torque with respect to the

desired one.

Taking (V.6) and (V.10) it can be obtained the following dynamical equation which de-

scribes the time-derivatives of the applied motor torque Tm:

Ṫm(t) = − 1

θ2
Tm(t) +

θ1
θ2
T ref (t) (V.11)

It is assumed that the amplitude of the signal Tm(t) and its time-derivative with respect

to time are bounded. In this example the RUL controller will modify the values of θ2 and it

will maintain θ1 = 1, for simplicity.

According to the de�nition V.4, the demanded motion satisfaction Sref quanti�es how

much the form of the curve Tm is near to the demanded T ref . In this example, it will be a

value between 0 and 1. Here the obtained motion satisfaction will be quanti�ed by using the

following function:

S(θ) = 1− e−1/θ2 (V.12)

which decreases as long as the parameter θ2 increases as illustrated in Figure V.4. On the

other hand, Figure V.5 depicts the predicted RUL for di�erent values of the parameter θ2, as a

function of the current values of the estimated contact quality coe�cient α̂ and the operating

conditions d̂. The used RUL predictor will be described in the next subsection.
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Figure V.5 � Predicted RUL as function of the parameter θ2, the estimated contact quality

coe�cient α̂, and the operating conditions d̂.

Table V.1 � Nomenclature and used values

Symb. Value Units Physical meaning

ω1 [rad/s] Angular speed of the motor

ω2 [rad/s] Angular speed of the driven device

r1 0.0315 [m] External radius of the motor

r2 0.35 [m] External radius of the driven device

b1 6.36x10−3 [Kg m2/s] Viscous friction coe�cient

b2 1.76x10−3 [Kg m2/s] Viscous friction coe�cient

J1 3.47x10−4 [Kg m2] Moment of inertia of the motor

J2 0.2 [Kg m2] Moment of inertia of the driven device

α(0) 10 [N s/m] Contact quality coe�cient

m 0.01 - Parameter of the dynamics of α

V.5.3 Used RUL predictor

In this example, a model-based RUL predictor as proposed in [Rodriguez Obando 2017b] has

been used. The friction drive system (1)-(5) together with the �lter dynamics (V.11) can be

rewritten in state space form as the following augmented dynamical system:

ẋ = F(x) +Bw (V.13)

with an augmented state de�ned as x := [ω1 ω2 α Tm]T , the exogenous input w := T ref , and

the matrix B := [0 0 0 1/θ2]
T . The symbol F(x) represents the non-linear functions of the

augmented state dynamics.

At every time-instant t = t0, the RUL prediction can be performed by simulating the

system (V.13) with initial conditions (i.e. at time equal to t0) belonging to a set of values.

Some of these values are measured (e.g. ω1, ω2, and Tm). However the state α, related to the

deterioration, is estimated and the true value belongs to a given interval or set (i.e. it could

be a stochastic set provided by the state estimator). Here, the con�dence intervals provided

by an Extended Kalman Filter, as proposed in [Rodriguez Obando 2017b], have been used.
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Figure V.6 � Predicted RUL along the useful lifetime: 1) by using the mean value of the

estimated α (solid line), 2) by using extreme values of the estimated α (dotted line). Both

compared to the obtained RUL (dashed line). The symbol ∗ represents the desired RUL.

The prediction can be stopped once the maximal deterioration has been achieved, that

is for α(tf ) = 0 (equivalently D(tf ) = sup{D}). Thus, the predicted RUL is computed as
ˆRUL = tf − t0. Figure V.6 depicts the obtained ˆRUL with respect to the time. This �gure

also illustrates the changes on the predicted RUL in cases where the operating conditions

changes. Here a changes on the variable d̂ appears at t = 3h.

V.5.4 Implemented RUL controller

We propose to use an optimal controller to solve the Problem V.2, which minimizes a cost

function including a double objective (i.e. satisfy a trade-o� between a desired RUL and a

desired torque). The problem can be reformulated as a single-objective optimization problem

by using a suitable scalarization. That is,

Problem V.3

Given α̂ and d̂ at a time t0, �nd the value of θ2 which minimizes the cost function:

J(θ2) =

(
RULref − ˆRUL(θ2)

RULref

)2

+ ρ
(
Sref − S(θ2)

)2
(V.14)

subject to:

0 ≤ θ2 ≤ θ̄2 (V.15)

where ρ > 0 is a real value which allows considering a trade-o� between satisfying desired RUL

and/or satisfying the desired torque.

Here we assume also that the desired RULref will be bigger than the estimated RUL to

maintain the positivity of this cost function. In this case the cost function given in Equation
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V.14 could be also treated as:

J(θ2) =

(
RULref − ˆRUL(θ2)

RULref

)
+ ρ

(
Sref − S(θ2)

)
(V.16)

In this example it was chosen θ̄2 = 6 and ρ = 0.5. The chosen weighting scalar ρ suggests

that we put more focus on the respect of the desired RUL rather than on the respect of the

desired torque.

Figure V.7 illustrates the behavior of the proposed controller. In this scenario we use

RULref = 8.5h, Sref = 1 and introduce a change at t = 3h on the operating conditions

characterizing T ref . Namely, T ref is characterized by d = 40s, and after t = 3h the operating

conditions change by d = 30s. Notice that the RUL controller decides to modify the value of

the �lter parameter θ2. This value increases in order to reduce the rate of the deterioration

due to the changes on the operating conditions d̂.

The RUL predictor updates the value of the operating conditions and it gets closer to the

true description of the RUL (dashed line in Figure V.7). Notice that at time t = 3h there is

a considerable transient. This is due to the fact that the RUL predictor uses the new value

of the operating conditions d̂ but the RUL controller has not yet updated the new value of θ.

This situation is depicted in the magni�ed view of the time scale in Figure V.8.

For comparison, Figure V.9 shows the obtained trajectories of α̂ for three cases:

Case 1, the RUL of the system is non-controlled (solid line), an important decrease of the

contact quality coe�cient α is observed (which implies a very fast deterioration), reaching the

failure at 1.18h.

Case 2, the RUL controller provides the optimal parameter θ2 at the beginning of the

lifetime and used it during the whole lifetime assuming no changes in the operating conditions

d̂. In this case the system reaches a failure time at 7.08h which is still far of the desired RUL.

Case 3, the RUL predictor uses the current value d and α̂ to update the RUL prediction

and then the RUL controller �nds a new optimal parameter θ2 in order to adapt the behavior

of the system. In this case the system reaches a failure time of 8.06h which is closer to the

desired RUL which have been chosen as RULref = 8.5h.

V.6 Conclusions

In this chapter, a novel Remaining Useful Lifetime (RUL) control architecture is presented. The

control law is based on the on-line available prediction of the RUL (which includes a dynamical

model of the mechanical system and its deterioration). The RUL controller can be implemented

as an optimal controller which decides, in real-time, the parameters of a �lter (called here the

RUL actuating principle) in order to modify the predicted RUL. The parameter varying �lter

is intended for smoothing the desired torque (associated to a desired motion requirement) in

order to increase or decrease the predicted RUL. An example of an optimal controller which

deals with two opposite criteria, respect of the desired torque and respect of the desired RUL,

has been presented. In this work we have illustrated the role and the importance of the RUL

prediction for generating suitable control actions.

Some of the conclusions of this chapter for a particular scenario were published in the

article [Rodriguez Obando 2018].
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Figure V.7 � System behavior under the e�ect of the RUL controller.
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Figure V.8 � The desired torque T ref (dashed line) and the applied motor torque Tm (solid

line) - magni�ed view. For comparison, the dotted line corresponds to the applied torque

without updating the value of the parameter θ2.
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Figure V.9 � Estimated contact quality coe�cient α̂ in presence of operating conditions changes

and for three di�erent cases: 1) without RUL control (thin line), 2) with a RUL control without

updating the RUL prediction (dotted line), and 3) with a RUL control which adapts the control

actions according to the current RUL prediction (bold line).
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VI.1 General conclusions

This thesis deals with various issues from deterioration modeling to control of Remaining Useful

Life (RUL). A comprehensive framework for post-prognosis decision-making applied to friction

drive systems is proposed and illustrated. It is shown that, it is possible to control the RUL for

a system taking into account a proper modeling, which includes systematically deterministic

and stochastic assumptions on the inputs of the system and the current and future operating

conditions. A global control architecture is proposed and illustrated. The architecture includes

the systematic treatment of the uncertainties from modeling, estimation of current deterioration

state, and prognosis of RUL. At the same time, the architecture describes how to use on line

the prognosis information for closed-loop post-prognosis making-decision.

In Chapter II it is shown that the on-line management of the RUL can be stated as a

control problem. The problem statement uses concepts of modeling, condition monitoring,

diagnosis, prognosis and decision making. A state of the art on this issues is presented to

provide context for the thesis. If the RUL is treated as any physical magnitude, for which a

knowledge based on various types of uncertainty is assumed, and there is a systematic closed-

loop oriented treatment of the prognosis information, then a control technique can be applied

to convert a system under study into a Reliability Adaptive System (RAS), for which even the

reliability of the control system can be included.

From Chapter III, after the analysis of the case study, it is concluded that the model of

the system represents properly and dynamically the deterioration depending on the inputs of

the system. The use of the model also allows to predict an interval of useful lifetime of the

friction drive system before the total-failure-time, including stochastic internal and external

perturbations.

This model includes a parameter linked with the deterioration (for instance the quality of

a given fundamental mechanical property) and the ratio of the �rst with respect to the dete-

rioration. This two parameters represent suitably the behavior of a system that deteriorates
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monotonically. For the application case of the friction drive systems, it is needed for predic-

tion: characterization of the input operating conditions, the contact quality coe�cient and the

quality-deterioration ratio, and assumptions about the future operating conditions, with mod-

els that include deterministic and probabilistic assumptions. The treatment of the involved

information is feasible during work, which is interesting and useful for embedded systems.

In continuity with the preceding chapter, Chapter IV proposes an approach to estimate

the current deterioration condition of the friction drive system. The approach is based on an

Extended Kalman Filter (EKF) which uses an augmented model including the mechanical dy-

namical system and the deterioration dynamics. At every time instant, the EKF also provides

intervals which includes the current deterioration value with a given probability. In this sense,

the obtained values of the deterioration (and also the mechanical states and estimated varying

parameters) include various sources of uncertainty, among others, parameter, structural, algo-

rithmic and experimental sources. The estimation of the deterioration state enables making

quick prognostics of the RUL with an uncertainty level, which is linked to the precision of the

estimations. This quick action enables the using of the estimator during work for performing

more �continuous� post-prognosis actions.

The EKF is an standard technique used in a number of nonlinear estimation and machine

learning applications, see for instance [Shi 2002,Bolognani 2003] in the framework of condition

monitoring. In this thesis, such an estimator is used as an interesting example for using the

developed model of deterioration in the framework of the developed RAS. However, for years

several improvements to EKF have been developed, which deals with theoretical and implemen-

tation issues [Wan 2000,Haseltine 2005,Zhao 2017]. For instance, for nonlinear systems, the a

posteriori distribution is generally nonsymmetric and potentially multimodal. [Haseltine 2005].

The performance of the EKF can be tested on this issue and more analytical or experimental

tests could be useful for making improvements of the developed estimation approach in this

thesis. For instance, these tests could allow to characterize the probability distribution of the

estimations. Of course, as shown in this thesis, such new methods should be developed taking

into account the stages from the modeling to a �nal global architecture for controlling the

RUL.

In Chapter V a Remaining Useful Lifetime (RUL) control architecture is presented. The

control law is based on the on-line available prediction of the RUL, which includes a dynamical

model of the mechanical system and its deterioration. The RUL controller can be implemented

as an optimal controller which decides on-line, the parameters of a RUL actuating principle in

order to modify the predicted RUL. The RUL actuating principle is intended for modifying the

desired motion requirement in order to increase or decrease the predicted RUL. An example of

an optimal controller is presented, which deals with two opposite criteria, namely the desired

torque and the desired RUL, and showed a proper performance under the prede�ned scenario

conditions.

As a result, a Reliability Adaptive System (RAS) is obtained and illustrated by means

of a friction drive numerical example. For this system, behavior adaptation is achieved for

managing the resource (in this case, the mating surfaces) for sustaining a prede�ned RUL. The

RUL actuating principle allows the inclusion of a possible previous controller of short-term

actions.
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VI.2 Perspectives

From the results of the presented dissertation, the following mid- or long-term perspectives

could be developed:

VI.2.1 On modeling

From Chapter III, one can consider that the deterioration model can be tested in multiple

closed-loop scenarios, with the advantage of probing and simulating control techniques on

reliability �eld for a basic mechanical system. These techniques could be particularly useful in

research and development of RAS systems. Indeed, since such a model would link the control

and the reliability of a system, it opens the door to develop control techniques which allows

the device to autonomously adapt its behavior if user requirements or operating conditions

change. This adaptation is commonly needed in embedded applications, thus, additional tests

on related prede�ned scenarios are envisaged under this framework. These tests can be studied

by using the deterministic and stochastic operational modes, as suggested for the analysis of

the case study.

Concerning, RPI sets it is shown that, even though they are not enough for predicting the

RUL in the scenario-based approach, they can be used to characterize the nominal behavior of

the studied actuator and the maximal admissible deterioration behavior. This aspect can be

used for starting decision-making activities related with actuator maintenance, for instance a

�eet of this kind of actuators, and/or control recon�guration/re-planing.

For a long-term perspective, adaptation of estimation to other systems, di�erent from

friction drive systems, is planned. The studied systems were analyzed under the assumption of

monotonically decreasing state of health, nevertheless batteries or human body are systems that

do not satisfy this requirement. In these cases the model of deterioration and the estimation

methods could be adapted for controlling, for instance, the energy consumption during the

useful life for the case of batteries.

For the case of the human body, in [Rosero 2018] discrete-time linear parameter-varying

model for gas exchange dynamics during cycling is presented. This kind of modeling is useful

for estimation of the state of fatigue during cycling. Under the assumption that state of fatigue

is decreasing in a prede�ned horizon, the modeling presented in this thesis could be adapted

for modeling such state of fatigue. Thus, the concept of �nal time (threshold) for develop

an exercise within the given horizon could be studied as an analogous concept of RUL. This,

in turn, could be useful for developing control techniques for the system human-machine in

cycling.

VI.2.2 On estimation

From Chapter IV, the results showed the potential impact of the model and the estimation

approach for studying theoretical approaches and real applications, for instance in maintenance

and condition monitoring tasks.

Besides in perspective, di�erent observers could be developed in order to improve the dete-

rioration estimation. For instance [Jetto 1999,Han 2009,Gonzalez Silva 2018] where Adaptive
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Extended Kalman Filter approach is systematically tuned to obtain more proper estimations

and uncertainty intervals.

Machine learning is an opened door for developing identi�cation and estimation problems.

Actual machine learning tools can be analyzed in perspective, for instance, for using past

information accompanied by the analytical model. This could be help to get RAS from actual

advances in prognostic which have been already validated.

The proposed control architecture is envisaged to be studied into a stochastic context by

considering more endogenous and exogenous sources of uncertainties into the RUL prediction

and into the RUL control. For this, the stage of evaluation of performance of prognostic

should be analyzed before and during the process of development of these future estimation

scenarios and approaches based in this thesis. The actual PHM literature includes several

works evaluation of performance of prognostic algorithms. In [Saxena 2014] it is presented a

comprehensive view of various aspects that dictate what performance evaluation must be as

far as prognostics is concerned. Also in [Rozas 2018], it is presented a comprehensive literature

review of publications using datasets, moreover it provides guidelines and references for usage

of these datasets in a manner that allows clear and consistent comparison between di�erent

approaches.

In this thesis the correctness as an attribute of prediction performance [Saxena 2014] is

mentioned, in particular regarding to the precision and the accuracy of the estimations for

a unit system, for the illustration scenarios. The evaluation of the developed algorithm in

that sense, is linked basically to the perturbations in the inputs of the system. However, the

inclusion of new scenarios, for instance, multiple randomness introduction for a unit system

and/or a �eet of systems, should be more deeply evaluated in terms of performance.

VI.2.3 On control of RUL

Chapter V, illustrated the role and the importance of the RUL prediction for generating suitable

control actions. As a future work, the proposed control architecture will be revisited in a

stochastic context by considering more endogenous and exogenous sources of uncertainties in

the RUL prediction and in the RUL control.

As for estimation, the performance of the whole strategy of control should be evaluated

in terms of performance with a framework of suitable metrics. Additional work, not only

scenario-dependent, could result useful for developing the RAS. Classical control evaluation of

the performance, such a stability, time response, etc. are needed. Complementarly, as control

in RAS involves prognosis stage, the methods cited in [Saxena 2014,Rozas 2018] could be used

in terms of evaluation of the performance of the global strategy for RUL control. A further

theoretical framework on this �elds is suggested to be done for future worK.

In this case randomized methods as proposed in [Alamo 2009,Alamo 2015] seem to have

potential impact to improve the control strategies. In Chapter IV, for instance, a preliminary

work using the Probabilistic Certi�cation approach has been presented and could be, combined

with invariant sets, the object of a future work. Since the studied system is subject to several

sources of uncertainty sources, Probabilistic Certi�cation Approach can be explored to evaluate

di�erent combination of �treatment� for the system taking into account prede�ned sets of

uncertainties in a more structured way. For instance, in [Alamir 2015] Certi�cation Approach



VI.2. Perspectives 101

is used for combined therapy of cancer. The certi�cation is viewed as the ability to guarantee

with a prede�ned high probability the success of the therapy over a �nite horizon, in spite

of the unavoidable high uncertainties a�ecting a dynamic model; in this case, that is used to

compute the optimal scheduling of drugs injection. Thus, recalling the analogy developed in

Chapter II with the �eld of medicine, a friction drive system can be seen as a proper candidate

to test Probabilistic Certi�cation Approach to evaluate, for instance, the success of a de�ned

control strategy.

From the theoretical point of view, Model Predictive Control (MPC) approaches can be in-

cluded into the global architecture for controlling the RUL. This focus can be used to formalize

an MPC general framework applied to RAS.

VI.2.3.1 Applications

In practice, the development of the deterioration model implies a virtual sensor of deterioration

which could be validated. Thus, in Chapter IV one of the examples (endogenous changes) shows

the potential use of the model for the detection of incipient or abrupt changes in the contact,

which could be useful for fault detection and Fault Tolerant Control (FTC) applications.

Future work concern, among others, the application of the proposed condition monitoring

and the RUL estimation for a real problem. Hence, a test rig could be useful for validating the

model in such real applications. The development of the deterioration estimation is envisaged

under the framework of the collaborative work described in the Annexe. There, a platform for

studying the wear of two-mating surfaces is described. Nowadays, this test rig is in the process

of development. The inclusion of additional temperature and vibration sensors is envisaged in

the framework of this test rig, for performing redundancy tests and a general validation of the

model.
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Annexe

A.1 Test rig for studying surfaces wear

During the development of this thesis, there was an opportunity to establish an academic

collaboration aimed at the development of one of the raised perspectives. As a result of this

academic link, the author of this thesis supervised the student Danilo Burbano for eight months,

for the development of his �nal research work of the Electronic Engineering program (BACH

+ 5) of the Universidad de Nariño1, Colombia.

Mr. Burbano worked mainly at the Universidad de Nariño had a short internship in the

GIPSA-LAb (France), �nanced by the project �Robótica UDENAR� of the same institution.

A.1.1 Abstract

The phenomenon of electromechanical wear of components subject to friction is studied in the

literature for its direct relationship with, among others, automation, tribology and material

science. This type of wear contains a notorious stochastic nature and therefore its on-line

estimation is not a simple task. A novel recently proposed theoretical approach for deterioration

estimation seems an interesting way to tackle the problem. This model could be tested on

a basic rolling-on-tire test rig, suitable for obtaining experimental data. This friction-drive

system consists of an actuating device (motor) that drives a load device (wheel), which in turn

contains angular speed sensors for each device and an electronic activation system. The research

work is aimed at the development of such a test rig and for assessing the deterioration model,

in the framework of educational purpose. The developed experimental set-up is composed

of the electromechanical module, the power electronics, and the data acquisition system. The

proposed methodology includes the development and experimentation stages to verify the wear

behavior of the contact surfaces, particularly through data acquisition and identi�cation of

basic parameters. At the moment, the test platform is in the development process, particularly

in the stage of tuning and data veri�cation.

A.1.2 Summarized description of the test rig

It is intended to develop the test rig consisting of the modules:

M1 electromechanical assembly, which includes the driver device (a motor-based roller), and

the driven device (a wheel), and the mechanical structure.

1Universidad de Nariño is located in Pasto, Colombia. The Electronic Engineering program is part of its

Faculty of Engineering.

http://www.udenar.edu.co/
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(a) Modules (b) Contact between motor roller and tire

Figure A.1 � Test Rig for Study of Surfaces Wear

M2 the power electronics, which contains the power supply and the drivers for the handling

of the actuator and the sensors.

M3 the data acquisition and control system, which allows to obtain the data from the in-

stalled sensors and must guarantee a proper handling of the activation signals. The

instrumentation work is intended to guarantee the identi�cation of the basic mechanical

and wear parameters of the test rig in order to obtain technical conclusions. Analysis

on the feasibility of the system and the veri�cation of the previously mentioned dynamic

wear model are envisaged for short-term.

A.1.3 Advances

The following is a brief description of the progress made in the development of the test rig,

which is close to be �nalized:

• The work on electromechanical assembly, power electronics and the data acquisition and

control system have been completed. Figure A.1(a) shows the current experimental set-

up. Figure A.1(b) shows a more detailed view of the roller and the joint.

• A graphical interface was developed for the data acquisition and control system. The

graphical interface is developed in Matlab and allows to see on-line the acquired data

and to carry out a basic control of the actuator. The test rig is connected to a computer

with operating system Windows 10, with processor Intel Core i7, RAM memory 16Gb.

More technical details will be provided in the research report of Mr. Burbano.

• Speed sensors data have been collected for several use scenarios which could include,

among others, soft use and accelerated process.

• The �ne-tuning of the system is in the process of development.

• The analysis of the data for parameter identi�cation is in the process of development.

• The �nal report of the research and its defense work is envisaged for December 2018.
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