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General Introduction

In 1937, when cooling down liquid helium, Kapitza [START_REF] Kapitza | Viscosity of Liquid Helium below the 𝜆-Point[END_REF], Allen and Misener [START_REF] Allen | Flow of Liquid Helium II[END_REF] observed that its viscosity suddenly dropped to almost zero (later proven to be exactly zero), which suggested a new state of matter described a "superfluid". London, one year later, established the link with the "Bose-Einstein condensation" phenomenon proposed by Einstein in 1924 [START_REF] Einstein | Quantentheorie des einatomigen idealen Gases[END_REF][START_REF] Einstein | Quantentheorie des einatomigen idealen Gases. Zweite Abhandlung[END_REF][START_REF] London | On the Bose-Einstein Condensation[END_REF], which was up to there rather considered as a pathologic limit of the Bose statistics. Quantum mechanics predicts that particles are also waves, which extend over a typical size 𝜆 dB = ℎ/ √ 2𝜋𝑀 𝑘 B 𝑇 , where 𝑀 is the mass of the particles and 𝑇 the temperature. Bose-Einstein condensation occurs when at low enough temperature the spatial extent of the particles grows up to reaching the interparticle distance: what was once an ensemble of individual particles then begins to behave as a giant matter wave whose flow properties are again extremely different. In this way, superfluidity provided for the first time a manifestation of quantum effects at a macroscopic scale -and even reached later astrophysical scales [START_REF] Kibble | Topology of cosmic domains and strings[END_REF][START_REF] Palfreyman | Alteration of the magnetosphere of the Vela pulsar during a glitch[END_REF].

Although initially described as "the ability of a fluid to flow without friction" superfluidity is somehow defined by the ensemble of its properties [START_REF] Leggett | Superfluidity[END_REF]. Among these properties, one can cite the existence of a critical speed above which the "frictionless flow" is not true anymore [START_REF] Allum | The breakdown of superfluidity in liquid 4 He: an experimental test of Landau's theory[END_REF], or the possibility for the current to flow virtually indefinitely when the flow velocity lies below the critical speed [START_REF] Hall | The angular acceleration of liquid helium II[END_REF][START_REF] Whitmore | Observation of Quantized Circulation in Superfluid Helium[END_REF]. Possibly even more astonishing are the rotation properties of these systems. In a superfluid, the particles behave like a giant wave, characterized by an amplitude and a phase whose gradient gives the fluid velocity. This implies that a superfluid is irrotational, and setting it into rotation requires quantized vortices to enter the system, introducing singularities in the fluid where the density vanishes in order to allow it to rotate [START_REF] Feynman | Chapter II Application of Quantum Mechanics to Liquid Helium[END_REF][START_REF] Vinen | The detection of single quanta of circulation in liquid helium II[END_REF][START_REF] Hess | Measurements of Angular Momentum in Superfluid Helium[END_REF][START_REF] Yarmchuk | Observation of Stationary Vortex Arrays in Rotating Superfluid Helium[END_REF].

Many remarkable experiments have been performed with superfluid helium. The advent of gaseous Bose-Einstein condensates provided later a new system allowing to study superfluidity in the dilute regime. These systems are to superfluid helium what gases are to liquids: while in superfluid helium the atomic density is large and the interactions strong, in dilute superfluids the density is low and the interactions much weaker. This lower density allows to describe the system very accurately through simple mean-field theories. In addition, these systems are usually well isolated and come with a extremely broad palette of manipulation tools and possibilities to shape the potential landscape of the systems. In this way, these "quantum gases" open a path to a better understanding of phenomena in a variety of domains which extend, in fact, way beyond the sole superfluidity.

However, as the atomic density is much smaller in dilute gases than in liquids, the tem-perature required in order for the atoms to "overlap" is also considerably smaller: while the critical temperature to achieve superfluidity in helium is around 2 K, the temperature necessary to reach quantum degeneracy in cold atom clouds ranges typically between 100 nK and 1 ➭K. This was made possible by the development of laser cooling techniques. Starting from the eighties, the techniques allowing to manipulate matter using light beams and magnetic field displayed an amazingly fast development, from laser cooling of ions [START_REF] Wineland | Radiation-Pressure Cooling of Bound Resonant Absorbers[END_REF][START_REF] Neuhauser | Optical-Sideband Cooling of Visible Atom Cloud Confined in Parabolic Well[END_REF] and neutral atoms [START_REF] Chu | Threedimensional viscous confinement and cooling of atoms by resonance radiation pressure[END_REF] to atom traps [START_REF] Chu | Experimental observation of optically trapped atoms[END_REF][START_REF] Migdall | First Observation of Magnetically Trapped Neutral Atoms[END_REF][START_REF] Raab | Trapping of neutral sodium atoms with radiation pressure[END_REF], finally enabling evaporative cooling of the atoms down to the obtention of a Bose-Einstein Condensate (BEC), 70 years after its prediction [START_REF] Anderson | Observation of Bose-Einstein condensation in a dilute atomic vapor[END_REF][START_REF] Davis | Bose-Einstein condensation in a gas of sodium atoms[END_REF]. These developments led to two Nobel prizes in 1997 [START_REF] Cohen-Tannoudji | Nobel Lecture: Manipulating atoms with photons[END_REF][START_REF] Chu | Nobel Lecture: The manipulation of neutral particles[END_REF][START_REF] Phillips | Nobel Lecture: Laser cooling and trapping of neutral atoms[END_REF] and 2001 [START_REF] Cornell | Nobel Lecture: Bose-Einstein condensation in a dilute gas, the first 70 years and some recent experiments[END_REF][START_REF] Ketterle | When atoms behave as waves: Bose-Einstein condensation and the atom laser[END_REF].

Since the experimental achievement of the first dilute BECs, the field of ultracold atoms completely exploded, the control onto the systems getting finer and finer, allowing for example to load ultracold atoms into "eggbox-like" potentials formed by optical lattices [START_REF] Greiner | Quantum Phase Transition from a Superfluid to a Mott Insulator in a Gas of Ultracold Atoms[END_REF] and then image and manipulate them at the single-atom level [START_REF] Bakr | A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice[END_REF][START_REF] Sherson | Single-atom-resolved fluorescence imaging of an atomic Mott insulator[END_REF][START_REF] Endres | Atom-by-atom assembly of defect-free one-dimensional cold atom arrays[END_REF]; to achieve new exotic quantum sytems like quantum droplets [START_REF] Kadau | Observing the Rosensweig instability of a quantum ferrofluid[END_REF][START_REF] Schmitt | Selfbound droplets of a dilute magnetic quantum liquid[END_REF][START_REF] Cabrera | Quantum liquid droplets in a mixture of Bose-Einstein condensates[END_REF], synthetic magnetic fields [START_REF] Lin | Synthetic magnetic fields for ultracold neutral atoms[END_REF][START_REF] Dalibard | Colloquium : Artificial gauge potentials for neutral atoms[END_REF][START_REF] Stuhl | Visualizing edge states with an atomic Bose gas in the quantum Hall regime[END_REF] or supersolids [START_REF] Landig | Quantum phases from competing short-and long-range interactions in an optical lattice[END_REF][START_REF] Léonard | Supersolid formation in a quantum gas breaking a continuous translational symmetry[END_REF]; to perform measurements with an unprecedented precision, allowing to test fundamental concepts of physics [START_REF] Bloom | An optical lattice clock with accuracy and stability at the 10 -18 level[END_REF][START_REF] Chou | Optical Clocks and Relativity[END_REF][START_REF] Van Zoest | Bose-Einstein Condensation in Microgravity[END_REF]; or to apply the concepts of quantum optics to atoms instead of photons [START_REF] Schellekens | Hanbury Brown Twiss Effect for Ultracold Quantum Gases[END_REF][START_REF] Lopes | Atomic Hong-Ou-Mandel experiment[END_REF][START_REF] Islam | Measuring entanglement entropy in a quantum many-body system[END_REF]. The study of superfluidity in such systems also displayed extremely fast progress, and for example the existence of a critical velocity [START_REF] Raman | Evidence for a Critical Velocity in a Bose-Einstein Condensed Gas[END_REF] and collective modes [START_REF] Mewes | Collective excitations of a Bose-Einstein condensate in a magnetic trap[END_REF][START_REF] Jin | Collective Excitations of a Bose-Einstein Condensate in a Dilute Gas[END_REF][START_REF] Maragò | Observation of the Scissors Mode and Evidence for Superfluidity of a Trapped Bose-Einstein Condensed Gas[END_REF] were demonstrated only a few years after the first dilute BECs. On the side of rotating superfluids, the observation of the first vortices [START_REF] Matthews | Vortices in a Bose-Einstein Condensate[END_REF][START_REF] Madison | Vortex formation in a stirred Bose-Einstein condensate[END_REF], of large vortex lattices [START_REF] Abo-Shaeer | Observation of Vortex Lattices in Bose-Einstein Condensates[END_REF] and of the existence of a Lowest Landau Level [START_REF] Schweikhard | Rapidly rotating Bose-Einstein condensates in and near the lowest Landau level[END_REF] -demonstrating in this way a remarkable analogy with the Quantum Hall Effect [START_REF] Cooper | Quantum Phases of Vortices in Rotating Bose-Einstein Condensates[END_REF] -were achieved one after the other in less than five years; phase-engineering allowed to observe and study vortices carrying multiple charge [START_REF] Shin | Dynamical Instability of a Doubly Quantized Vortex in a Bose-Einstein Condensate[END_REF], and ring-shaped traps to study superfluid flow within wave guides [START_REF] Ryu | Observation of Persistent Flow of a Bose-Einstein Condensate in a Toroidal Trap[END_REF][START_REF] Moulder | Quantized supercurrent decay in an annular Bose-Einstein condensate[END_REF][START_REF] Eckel | Hysteresis in a quantized superfluid 'atomtronic' circuit[END_REF].

Among the tools that come with quantum gases, there is also the possibility to generate very strong confinements and access in this way regimes of lower dimensionality [START_REF]Quantum Gases in Low Dimensions[END_REF]. In these regimes, the thermal and quantum fluctuations play an important role, encouraging the presence of phase disorder in the systems. In two dimensions, for example, this leads to a new phase transition between a superfluid state and a normal phase called the Berezinskii-Kosterlitz-Thouless (BKT) transition [START_REF] Berezinskii | Destruction of long-range order in one-dimensional and 2-dimensional systems having a continuous symmetry group, 2 -quantum systems[END_REF][START_REF] Kosterlitz | Ordering, metastability and phase transitions in two-dimensional systems[END_REF] whose interplay with possible condensation of the gas is highly subtle [START_REF] Hadzibabic | Two-dimensional Bose fluids: An atomic physics perspective[END_REF][START_REF] Fletcher | Connecting Berezinskii-Kosterlitz-Thouless and BEC Phase Transitions by Tuning Interactions in a Trapped Gas[END_REF]; in 1D there is a wide variety of possible phases depending on the number of atoms and their relative interations [START_REF] Petrov | Regimes of quantum degeneracy in trapped 1D gases[END_REF], among which the most surprising is probably the Tonks regime, in which bosons behave like fermions [START_REF] Kinoshita | Observation of a one-dimensional Tonks-Girardeau gas[END_REF]. Exploring the superfluid properties in these regimes presents therefore a significant interest [START_REF] Desbuquois | Superfluid behaviour of a two-dimensional Bose gas[END_REF][START_REF] Rossi | Probing superfluidity in a quasi two-dimensional Bose gas through its local dynamics[END_REF][START_REF] Ville | Sound propagation in a uniform superfluid twodimensional Bose gas[END_REF].

While vortices provide a way to allow rotation in superfluids by creating regions where the fluid density cancels, it is not the only method. A natural geometry for studying superfluid flow is the ring geometry: persistent currents can be stabilized along the waveguide formed by the potential. Such systems allowed for example to study the quantization of such a flow [START_REF] Moulder | Quantized supercurrent decay in an annular Bose-Einstein condensate[END_REF] and its hysteretic behavior [START_REF] Eckel | Hysteresis in a quantized superfluid 'atomtronic' circuit[END_REF], or the appearance of a flow after a sudden quench below the critical temperature due to the "Kibble-Zurek" effect [START_REF] Zurek | Cosmological experiments in superfluid helium?[END_REF][START_REF] Corman | Quench-Induced Supercurrents in an Annular Bose Gas[END_REF]. It also suggests the possibility to achieve an atomic analogue to the SQUIDs 5 [START_REF] Ryu | Experimental Realization of Josephson Junctions for an Atom SQUID[END_REF][START_REF] Amico | Focus on atomtronics-enabled quantum technologies[END_REF], which raises a significant interest.

Another strategy allowing to have a hole in the gas around which the superfluid will rotate relies on the centrifugal force. A gas rotating faster than the frequency of its trap will be expelled from the center of the trap; the addition of nonharmonic confinement to prevent the atoms from escaping then gives rise to a "dynamical" ring potential whose shape is tailored [START_REF] London | On the Bose-Einstein Condensation[END_REF]. Superconducting QUantum Interference Devices -it is a magnetometer made of a ring-shaped supraconductor with two parallel Josephson junctions.

by the rotation itself. Such a geometry, when reaching large rotation rates, should enable to generate a so-called giant vortex configuration, in which all the atoms are flowing along a 1D ring, all the vortices of the cloud having migrated within the central hole [START_REF] Kasamatsu | Giant hole and circular superflow in a fast rotating Bose-Einstein condensate[END_REF][START_REF] Kavoulakis | Rapidly rotating Bose-Einstein condensates in anharmonic potentials[END_REF][START_REF] Fetter | Rapid rotation of a Bose-Einstein condensate in a harmonic plus quartic trap[END_REF]. A first attempt to reach this regime, more than 10 years ago, was unsuccessful [START_REF] Bretin | Fast rotation of a Bose-Einstein condensate[END_REF]; despite the absence of recent experimental work on this topic it continues to attract theoretical interest [START_REF] Terças | Rossby waves in rapidly rotating Bose-Einstein condensates[END_REF][START_REF] Correggi | Giant vortex phase transition in rapidly rotating trapped Bose-Einstein condensates[END_REF][START_REF] Jieli Qin | Stable giant vortex annuli in microwave-coupled atomic condensates[END_REF].

The work presented in this document aims at studying the rotational properties of superfluidity in the two aformentioned cases of annular geometry, as well as their connection to the lower dimensional regimes. It is divided into three parts: after a common general part, the second part deals with the realization of a ring-shaped trap, suitable for studying persistent currents and superfluid flow, with a technique that could possibly allow to enter the 2D or even 1D regimes. The third part deals with the regime of fast-rotating superfluids: by rotating a gas fast enough in a non-harmonic trap, we are able to generate an effective Mexican hat potential and generate a "dynamical" ring-shaped gas, which incidentally happens to be quasi-2D. The overall structure of this thesis will be the following:

• The first part aims at presenting the tools needed to properly understand the details associated to the production, manipulation and observation of our systems. Chapter 1 will describe the general properties and behavior of trapped quantum gases. The second chapter will then detail from a theoretical point of view the central technique of our experiments: the realization of RF-dressed adiabatic potentials. Chapter 3 will finally present the general experimental details of our setup, from the production of the BEC to the imaging procedures.

• The second part is dedicated to the work realized on the topic of superfluid flow in ringshaped gases. The fourth chapter will present the theoretical details about superfluid flow in annular traps and about the way we realize such a trap. Chapter 5 will then describe the experimental obtention of a BEC in the ring trap, and chapter 6 will be dedicated to the preparation and detection of a superfluid flow in this annular BEC.

• Finally, the third part of my thesis will present the work on the topic of fast-rotating superfluids and the obtention of an annular gas whose shape is due to its own rotation.

The 7 th chapter will detail the theory that lies behind rotating superfluid and the interest towards fast rotation. Chapter 8 will then present the experimental achievements on this topic, from the obtention of a "dynamical ring" to the possible observation of thermal melting of vortex lattices.

The first part contains all the details that are common to the following two parts. Parts two and three have both their own detailed introduction as well as a chapter dedicated to the theoretical details useful to understand them, and can therefore be read independently from each other.

Part I

Preliminaries

Chapter 1

Bose-Einstein condensation, superfluidity and rotation

This chapter aims at presenting the basic concepts and theoretical tools needed to describe Bose-Einstein condensates (BECs). Starting from the principle of Bose condensation, I will first describe the physics of a BEC at rest. I will then extend it to its out-of-equilibrium behavior and show how it leads to the concept of superfluidity as well as the consequences on the rotation of the gas. This will lead me to introduce the two central ideas on which parts 2 and 3 of this document are based. Finally, I will conclude this chapter by describing the case of two-dimensional gases and the Berezinskii-Kosterlitz-Thouless transition. 

Principle of BEC

Let us begin by considering a gas of 𝑁 bosons, supposed for now non-interacting, at thermal equilibrium at temperature 𝑇 . Described in grand-canonical ensemble and denoting 𝜇 the chemical potential of the system, the average number of bosonic particles in a given state 𝑗 with energy 𝐸 𝑗 reads:

𝑁 𝑗 = 1 𝑒 (𝐸 j -𝜇)/𝑘 B 𝑇 -1 .

(1.1)

𝑁 𝑗 must obviously be positive, which sets the condition 𝜇 < min(𝐸 𝑗 ). Denoting 𝐸 0 the energy of the ground state (supposed nondegenerate) and defining the origin of energies to have 𝐸 0 = 0, this condition becomes:

𝜇 < 𝐸 0 = 0. (1.2)
In addition to that, counting the total number of atoms in excited states 𝑁 exc leads to the expression:

𝑁 exc = ∑︁ 𝑗>0 𝑍 𝑒 𝐸 j /𝑘 B 𝑇 -𝑍 , (1.3) 
where 𝑍 = exp(𝜇/𝑘 B 𝑇 ) is called the fugacity. The condition (1.2) leads to 𝑍 < 1, and thus sets an upper bound on the population of the excited states:

𝑁 exc < 𝑁 (𝑚𝑎𝑥) exc (𝑇 ) = ∑︁ 𝑗>0 1 𝑒 𝐸 j /𝑘 B 𝑇 -1 .

(1.4)

In other words, if 𝑁 > 𝑁 (𝑚𝑎𝑥) exc (𝑇 ), all the additional particles must be in the ground state, which can eventually attain macroscopic population. This corresponds to the phenomenon called Bose-Einstein condensation (BEC).

Depending on the geometry and dimensionality, the sum 𝑁 (𝑚𝑎𝑥) exc (𝑇 ) may or note converge, indicating whether this quantum 1 degeneracy of the ground state can be achieved.

Bose-Einstein condensation in harmonic traps

A significant part of the work described here was achieved in harmonic traps, and I will therefore specifically describe this case.

Let us consider that the atoms are now confined in an harmonic trap with frequencies 𝜔 𝑥 , 𝜔 𝑦 , 𝜔 𝑧 . The energies of the single particle states then write: 𝐸 𝑛x,𝑛y,𝑛z = (𝑛 𝑥 + 1 2 ) 𝜔 𝑥 + (𝑛 𝑦 + 1 2 ) 𝜔 𝑦 + (𝑛 𝑧 + 1 2 ) 𝜔 𝑧 .

(

The sum (1.4) then becomes a triple sum over (𝑛 𝑥 , 𝑛 𝑦 , 𝑛 𝑧 ). Turning this sum into an integral 2 using density of states allows one to calculate the maximal population of the excited states [START_REF] Dalfovo | Theory of Bose-Einstein condensation in trapped gases[END_REF]:

𝑁 (𝑚𝑎𝑥) exc (𝑇 ) = 𝜁(3) (︂ 𝑘 B 𝑇 𝜔 ho )︂ 3 , (1.6) 
where 𝜔 ho = (𝜔 𝑥 𝜔 𝑦 𝜔 𝑧 ) 1/3 is the geometric average of the trapping frequencies and 𝜁(𝑛) is the Riemann 𝜁 function.

When dealing with ultracold atoms experiments, we usually prefer to think in terms of transition temperature. Such a temperature can be estimated by supposing that 𝑁 = 𝑁 (𝑚𝑎𝑥) exc (𝑇 𝑐 ) at the transition (i.e. the population in the ground state is still negligible, and the total number of particles just reaches the maximum allowed in the excited states). Equation (1.6) can then be rewritten:

𝑘 B 𝑇 𝑐 = 𝜔 ho (︂ 𝑁 𝜁 (3) 
)︂ 1/3 = 0.94 𝜔 ho 𝑁 1/3 .

(1.7)

Below this temperature, quantum degeneracy is achieved, and the fraction of atoms in the ground state can be deduced from:

𝑁 0 𝑁 = 1 - (︂ 𝑇 𝑇 𝑐 )︂ 3 .
(1.8)

1. As opposition to thermal degeneracy, which would correspond to the temperature being so low that excited states cannot be thermally populated.

2. This is relevant if the energies in the system are much larger than the level spacings, especially kBT ≫ ω ho , and if the number of atoms in the system is large.

Condensate wavefunction and correlation function

Let us now try to describe the atomic state in such a system; we will write Ψ(r) the field operator creating a particle at position r. One can decompose the state of the system in the basis of the single-particle states 𝜙 𝑖 , with creation operators â𝑖 : Ψ(r) = ∑︁ 𝑖 𝜙 𝑖 (r)â 𝑖 .

(1.9)

The number of particles in the single-particle ground state 𝜙 0 can then be written as 𝑁 0 = ⟨â † 0 â0 ⟩. If the system is condensed, the population of the ground state is macroscopic: supposing that the total number of particles in the system is large, one has therefore 𝑁 0 ≫ 1.

It is then relevant to treat the field classically and ignore the noncommutativity between â0 and â † 0 , writing â0 ≈ √ 𝑁 0 [START_REF] Pitaevskii | Bose-Einstein condensation[END_REF]. The field operator can then be rewritten as:

Ψ(r) = √︀ 𝑁 0 𝜙 0 + ∑︁ 𝑖̸ =0
𝜙 𝑖 (r) â𝑖 , (1.10) and for 𝑇 ≪ 𝑇 𝑐 , as most atoms are in the ground state the atomic state is approximately √ 𝑁 0 𝜙 0 (r) (and 𝜙 0 then depends, of course, on the considered system). The field operator is then replaced by a c-number.

Writing the field operator is also useful to provide a more general definition of Bose-Einstein condensation. The first order correlation function can be written as the one-body density matrix:

𝑔 1 (r, r ′ ) = ⟨ Ψ † (r) Ψ(r) ′ ⟩.

(1.11)

In the case of a uniform gas, Penrose and Onsager showed that the population of the ground state is given by lim |r-r ′ |→∞ 𝑔 1 (r, r ′ ) = 𝑁 0 /𝑉 , with 𝑉 the volume of the gas [START_REF] Penrose | Bose-Einstein Condensation and Liquid Helium[END_REF]. The Bose-Einstein condensation is therefore equivalent to the the existence of a non-zero limit of the first order correlation at large distances. This criterion provides, in fact, a more general definition of the condensation that can be generalized to any system, from the limit |rr ′ | → ∞:

• If 𝑔 1 (r, r ′ ) tends towards a non-zero limit, the system is condensed. One can also speak of "off-diagonal long-range order", as it involves the non-diagonal terms of the density matrix.

• If 𝑔 1 (r, r ′ ) goes down to zero, the gas is non-condensed.

In fact, intermediate cases can also happen: especially, for finite-size systems, the correlation function can tend towards zero on a distance that is larger than the size of the system, leading to the so-called quasicondensation where the system is coherent while strictly speaking condensation does not occur (as can happen in the 2D case, see section 1.3). More generally, in the non-condensed case, the distance over which the correlation function goes to zero can be used to define a "correlation length" which describes the size over which the system is coherent, which can sometimes be non-negligible compared to the size of the system.

Interacting Bose-Einstein Condensate

Let us come back to our harmonic trap. In the previous section, we deduced that in the absence of interactions for 𝑇 ≪ 𝑇 𝑐 the atomic state could be described by the c-number √ 𝑁 𝜙 0 (r), 𝜙 0 (r) being for harmonic traps the wavefunction of the ground state of the harmonic oscillator.

However, this picture happens to be completely wrong in the vast majority of experimentally obtained cases (fig. 1.1). This is due to the presence of interactions between atoms, which significantly modifies the condensate's behavior even in the weakly interacting case. In the case of repulsive interactions (which will be the case during this whole document), it is indeed favorable for the atoms to populate different (single-particle) states in order to reduce the density: the real ground state in which condensation will occur is therefore modified by the interactions between atoms. We can however suppose that the approach described in section 1.1.1 still holds, and describe the field classically: Ψ(r) = 𝜓(r) (with

∫︀

|𝜓| 2 = 𝑁 ). This approximation supposes that the populated states contain many atoms each, so that we can neglect the noncommutativity of the single-particle annihilation and creation operators. The susbsequent question is then: what is the equation that governs 𝜓(r)? The Thomas-Fermi profile (solid line) shows a good agreement with the data. The presence of repulsive interactions significantly broadens the cloud, reducing the local density.

Figure from [START_REF] Dalfovo | Theory of Bose-Einstein condensation in trapped gases[END_REF], data from [START_REF] Vestergaard Hau | Near-resonant spatial images of confined Bose-Einstein condensates in a 4-Dee magnetic bottle[END_REF].

Let us describe the interactions first. For ultracold temperatures and dilute gases, interactions are essentially low-energy binary collisions ("s-wave" collisions), for which the exact shape of interaction potential does not matter: all the interaction can be summarized by a single parameter, the scattering length 𝑎 [START_REF] Pitaevskii | Bose-Einstein condensation[END_REF]. The effective interaction potential between two particles can therefore be described by a Dirac potential with only one amplitude parameter [START_REF] Dalfovo | Theory of Bose-Einstein condensation in trapped gases[END_REF]:

𝑉 int (r -r ′ ) = 𝑔 int 𝛿(r -r ′ ), (1.12) 
where 𝑔 int is the coupling constant, which reads:

𝑔 int = 4𝜋 2 𝑎 𝑀 , (1.13) 
M being the atomic mass.

For such interactions, applying the Heisenberg equation to Ψ(r) and then replacing, again, Ψ(r) by 𝜓(r) leads to [START_REF] Dalfovo | Theory of Bose-Einstein condensation in trapped gases[END_REF]:

(︂ - 2 ∇ 2 2𝑀 + 𝑉 ext (r) + 𝑔 int |𝜓(r, 𝑡)| 2
)︂ 𝜓(r, 𝑡) = 𝑖 𝜕 𝜓 𝜕 𝑡 (r, 𝑡). 

(︂ - 2 ∇ 2 2𝑀 + 𝑉 ext (r) + 𝑔 int |𝜓(r)| 2
)︂ 𝜓(r) = 𝜇𝜓(r).

(

For a large number of particles with repulsive interactions (i.e. 𝑔 int > 0, or 𝑎 > 0), the kinetic term usually becomes very low and can be neglected -this is called the Thomas-Fermi approximation. For a harmonic trap, the density variations happen on a typical size 𝑑 ho = √︀ /𝑀 𝜔 ho , called the harmonic oscillator length, which also gives the typical size of the cloud: comparing the kinetic term and the interaction term in the previous equation, we find that this approximation will be relevant for 𝑁 𝑎 ≫ 𝑑 ho . The previous equation can then be rewritten as:

𝑛(r) = |𝜓(r)| 2 = 𝜇 -𝑉 ext (r) 𝑔 int .
(1.16)

We see that the density distribution "mimics" the potential landscape, filling the trap up to the chemical potential 𝜇 = 𝑔 int 𝑛 max (see figure 1.2). For a harmonic trap, it leads to the following density distribution:

𝑛(r) = 𝑛(0) (︂ 1 - 𝑥 2 𝑅 2 𝑥 - 𝑦 2 𝑅 2 𝑦 - 𝑧 2 𝑅 2 𝑧 )︂ , (1.17) 
where the right hand side is positive, and 0 everywhere else. The 𝑅 𝑗 , called Thomas-Fermi radii, are defined for the axes of the harmonic trap as: 𝑅 2 𝑗 = 2𝜇/𝑀 𝜔 2 𝑗 , and give the total extent of the cloud along the directions of the trap. This profile is the one describing the density distribution of figure 1.1.

In this regime, the chemical potential of a 3D cloud trapped in a harmonic potential thus writes [START_REF] Dalfovo | Theory of Bose-Einstein condensation in trapped gases[END_REF]:

𝜇 3𝐷 = 1 2 𝑀 𝜔 2 ho 𝑅 2 ho = 𝜔 ho 2 (︂ 15𝑁 𝑎 𝑎 ho )︂ 2/5 . (1.18)
Finally, one may note that equation (1.17) leads to a discontinuity of the derivative of the density where density cancels, and thus to an infinitely high kinetic energy on the edges of the cloud. In fact, the Thomas-Fermi approximation does not hold in regions where the density which is the speed of sound in the gas 𝑐. One may note that for non-interacting gases (𝑔 = 0), the critical velocity vanishes: repulsive interactions are necessary to achieve superfluidity. This approach is however limited as it considers only the excitations that are described by the Bogoliubov approach; especially, the possibility to nucleate vortices in the fluid can significantly lower the real critical velocity [START_REF] Feynman | Chapter II Application of Quantum Mechanics to Liquid Helium[END_REF]. In the non-uniform case, computing properly all the possible excitations to which an impurity can couple is quite troublesome and there is often no model allowing to compute 𝑣 𝑐 precisely. 

𝑖 (︂ 𝜓 * 𝜕 𝜕 𝑡 𝜓 + 𝜓 𝜕 𝜕 𝑡 𝜓 * )︂ = 2 2𝑀 (︀ 𝜓 * ∇ 2 𝜓 -𝜓∇ 2 𝜓 * )︀ , (1.26) 
which also writes:

𝜕 𝜕 𝑡 |𝜓| 2 = 2𝑀 𝑖 ∇ • (𝜓 * ∇𝜓 -𝜓∇𝜓 * ).
(

Since |𝜓(r, 𝑡)| 2 = 𝑛(r, 𝑡), this equation can thus be written under the form of the continuity equation for a classical compressible fluid:

𝜕 𝑛 𝜕 𝑡 + ∇ • (𝑛v) = 0, (1.28) 
where the velocity 𝑣 of the fluid is defined as:

v = 2𝑀 𝑖|𝜓| 2 (𝜓 * ∇𝜓 -𝜓∇𝜓 * ) .
(1.29)

Writing the wavefunction as amplitude and phase 5 :

𝜓(r, 𝑡) = √︀ 𝑛(r, 𝑡) exp(𝑖𝑆(r, 𝑡)) (1.30)
thus leads to the expression of the local velocity of the superfluid:

v(r, 𝑡) = 𝑀 ∇𝑆(r, 𝑡).
(1.31)

Multiplying equation (1.14) by 𝜓 * , adding its complex conjugate and injecting (1.30) leads to the equation:

1 2 𝑀 v 2 - 2 2𝑀 √ 𝑛 ∇ 2 ( √ 𝑛) + 𝑔 int 𝑛 + 𝑉 ext + 𝑀 𝜕 𝜕 𝑡 (︂ 𝑆 𝑀 )︂ = 0, (1.32) 
5. A more rigorous writing of the phase is ϕ(r, t) = µt + S(r, t), but the phase µt is uniform over the whole cloud and is thus not implied in its superfluid dynamics. However, it can be useful to keep in mind that S(r, t) is the deviation from the phase of the stationary state.

or, equivalently, to the Euler equation for a quantum fluid [START_REF] Walraven | Quantum Gases[END_REF]:

∇ (︂ 1 2 𝑀 v 2 - 2 2𝑀 √ 𝑛 ∇ 2 ( √ 𝑛) + 𝑔 int 𝑛 + 𝑉 ext )︂ + 𝑀 𝜕 v 𝜕 𝑡 = 0. (1.33)
This equation is equivalent to the classical Euler equation, describing the evolution of an inviscid flow (as expected for a superfluid), with the addition of a term involving explicitly , corresponding to a "quantum pressure". The combination of equations (1.28) and (1.33) is in fact equivalent to the Gross-Pitaevskii equation, simply separating it into amplitude and phase. These hydrodynamic equations are the ones that allow, for example, to compute the collective modes in the case of a trapped gas [START_REF] Stringari | Collective excitations of a trapped Bose-condensed gas[END_REF].

Rotating superfluids

Equation (1.31) is crucially important, as it directly links the superfluid velocity to the phase.

It also shows that the superfluid flow is irrotational: ∇ × v = 0, which leads to important consequences when trying to describe to rotation of a superfluid.

One has to note that an irrotational flow doesn't necessarily imply the absence of rotation of the fluid: it means that locally, the fluid doesn't rotate, but the ensemble motion of a condensate can still allow rotation and non-zero angular momentum (an example will be discussed in chapter 7). However, this configuration usually allows the cloud to carry only a small angular momentum: a large angular momentum would require large anisotropies and large ensemble motion, which is usually unstable and decays to form quantized vortices [START_REF] Madison | Stationary states of a rotating Bose-Einstein condensate: Routes to vortex nucleation[END_REF][START_REF] Hodby | Vortex Nucleation in Bose-Einstein Condensates in an Oblate, Purely Magnetic Potential[END_REF].

It is these vortices which "hold" the rotation of a superfluid.

Quantized vortices

A very important relation when dealing with rotating superfluids can be obtained by calculating the circulation of the superfluid velocity along a closed loop: since this velocity is given by (1.31), it corresponds to calculating the phase difference between a point and itself. The wavefunction having to be single-valued this difference then has to be an integer multiple of

2𝜋.

The circulation then has to be quantized, as noted by Onsager and Feynman [START_REF] Feynman | Chapter II Application of Quantum Mechanics to Liquid Helium[END_REF][START_REF] Onsager | Statistical hydrodynamics[END_REF]:

∮︁ 𝒞 v(r, 𝑡) • dl = 𝑀 ∆ 𝒞 𝑆 = ℓ × 2𝜋 𝑀 , ℓ ∈ Z.
(1.34)

However, due to Stokes' theorem and the irrotationality of the superfluid velocity, this circulation is necessarely equal to zero if the velocity can be continuously defined on the surface enclosed by the contour. A non-zero circulation thus requires the atomic density to vanish somewhere on this surface to allow the presence of a phase singularity, that is, a vortex.

A quantized vortex can be seen simply as a node in the condensate wave function, around which the phase rotates by a multiple of 2𝜋 (see figure 1.5): in this way, the superfluid flow can rotate around it while keeping its irrotational character. Note that the two-dimensional and three-dimensional cases differ here: in 2D, the vortex is a point around which the fluid rotates, while in 3D the vortices are lines, which allows for example vibrations of vortices or vortex rings.

While in principle any multiple of 2𝜋 is possible, a configuration with |ℓ| < 1 is in practice unstable: a vortex with a phase winding larger than 2𝜋 spontaneously breaks into several vortices with 2𝜋 phase winding each [START_REF] Shin | Dynamical Instability of a Doubly Quantized Vortex in a Bose-Einstein Condensate[END_REF][START_REF] Castin | Bose-Einstein condensates with vortices in rotating traps[END_REF], which repel each other.

The quasi-2D regime in a vertically harmonic trap

First, how do we enter the 2D regime? The first criterion is that the gas should have all dynamics frozen in the vertical direction: the particles all have to be in the same vertical state. This is achieved when both the gas temperature and the chemical potential have to be too low for the first excited vertical state to be populated. For a vertical harmonic confinement, this condition corresponds to 𝑘 B 𝑇, 𝜇 < 𝜔 𝑧 . Note that this is very different from Bose-Einstein condensation: this time, we have a thermal degeneracy of the ground state (but only in the vertical direction).

The second criterion deals with interactions: if the vertical size of the gas is smaller than the scattering length, the collisions have to be treated in 2D; if the gas is harmonically trapped with all atoms in the vertical ground state, this corresponds to 𝑑 𝑧 < 𝑎 (𝑑 𝑧 being the vertical oscillator length). The gas can then be considered as truly 2D.

While the first criterion can be fulfilled with available experimental techniques, the second one is considerably more difficult to verify (and in our experiments, 𝑑 𝑧 is typically 50 to 100 times larger than 𝑎). If only the first criterion is satisfied, the gas is said quasi-2D : the vertical motion of the particles is frozen, but the collisions are still described by 3D physics. In this case, one can show that the interactions between atoms can still be described using a Dirac potential, but with a modified coupling constant:

𝑔 2𝐷 = 𝑔 int √ 2𝜋𝑑 𝑧 = 2 𝑀 g, (1.35) 
where g is a dimensionless coupling constant, expressed as:

g = √ 8𝜋 𝑎 𝑑 𝑧 .
(1.36)

In the case of a condensed gas (whose validity will be described in the next section), the Gross-Pitaevskii equation will then stay valid (both in its time-dependent and stationnary versions), simply replacing 𝑔 int by 𝑔 2𝐷 and replacing the 3D wavefunction 𝜓 by its value averaged along 𝑧 (and replacing the space density 𝑛 by a surface density 𝜌). Note that in the experiments described in this document, g is typically of the order of 0.1.

(Quasi) condensation in 2D

Let us now discuss the possibility of condensation in 2D. For a uniform (quasi-)2D gas, the sum (1.4) does not converge, meaning that no condensation can occur. However, Berezinskii [START_REF] Berezinskii | Destruction of long-range order in one-dimensional and 2-dimensional systems having a continuous symmetry group, 2 -quantum systems[END_REF] and Kosterlitz and Thouless [START_REF] Kosterlitz | Ordering, metastability and phase transitions in two-dimensional systems[END_REF] predicted that an interacting 2D gas should undergo a phase transition towards a superfluid state, now called the BKT transition, at a critical phase-space density 𝒟 = 𝜌𝜆 2 dB that was later computed to be equal to [START_REF] Prokof'ev | Critical Point of a Weakly Interacting Two-Dimensional Bose Gas[END_REF]:

𝒟 𝑐 = ln(380/g).
(1.37)

Remarkably, at the transition the superfluid phase-space density 𝒟 𝑠 presents a universal jump from 0 to 4, see section 1.3.3. This transition does not allow a long-range order to appear in the gas and the correlation function 𝑔 1 still goes down to zero at long distance, but while this decay is exponential for large temperatures, it is only algebraic for 𝒟 > 𝒟 𝑐 , allowing a more extended phase coherence that is sufficient for superfluidity; in the case of finite-size systems this coherence can even extend on the whole system size. Such a gas is called a quasicondensate, that is a condensate with a nonuniform, fluctuating phase [START_REF] Petrov | Low-dimensional trapped gases[END_REF].

The BKT mechanism

The mechanism allowing the appearance of superfluidity in a 2D gas is particularly elegant.

It deals with the presence of vortices within the gas: since a vortex causes a winding in the phase of the wavefunction, the proliferation of free vortices in the gas would destroy the phase order, and prevent the occurence of superfluid behavior. In 2D, the thermal fluctuations can cause the nucleation of vortex-antivortex pairs, that is, pairs of vortices with opposite charge.

If the vortex and antivortex stay close to each other, they will cause a local perturbation, but their respective effects will cancel far away from the pair. Therefore, the existence of a quasi long-range order will depend on whether the vortex-antivortex pairs can unbind or not.

Using thermodynamic considerations, Kosterlitz and Thouless [START_REF] Kosterlitz | Ordering, metastability and phase transitions in two-dimensional systems[END_REF] showed that the average elongation of the pair ⟨(r 𝑣r 𝑎 ) 2 ⟩ expresses from the phase-space density of the superfluid 𝒟 𝑠 as:

⟨(r 𝑣 -r 𝑎 ) 2 ⟩ = 𝜉 2 𝒟 𝑠 -2 𝒟 𝑠 -4 . (1.41)
This expression is defined only for 𝒟 𝑠 > 4: for lower phase-space density, the vortex-antivortex pair can unbing freely, while for a phase-space density larger than 4 the distance between them will be of the order of a few 𝜉 (see figure 1.6). The appearance of superfluidity in the gas therefore requires the phase-space density 𝒟 𝑠 of the superfluid to be larger than 4; the condition (1.37) in fact corresponds to the phase-space density 𝒟 of the whole gas required to reach 𝒟 𝑠 = 4. It also leads to a so-called "universal jump " of the superfluid density from 𝒟 𝑠 = 0 to 𝒟 𝑠 = 4 at the transition.

It is also interesting to quantify the order in the system by computing the effect of phase and density fluctuations. One can show that for 𝒟 ≪ 1, the density fluctuations are strongly suppressed [START_REF] Prokof'ev | Critical Point of a Weakly Interacting Two-Dimensional Bose Gas[END_REF]. Concerning the phase fluctuations, while the short-wavelength phase fluctuations are prohibited in the superfluid regime, the long-wavelength phase fluctuations still have an impact, and lead to a decay of the correlation function 𝑔 1 at long distance [START_REF] Hadzibabic | Two-dimensional Bose fluids: An atomic physics perspective[END_REF]:

𝑔 1 (r, 0) ≈ 𝜌 (︂ 𝜆 𝑑𝐵 𝑟
)︂ 1/𝒟s .

(1.42) However, while 𝑔 1 decays exponentially in the thermal regime, it is here always larger than 𝜌(𝜆/𝑟) -1/4 and can easily have a significant value at the edges of the gas.

Chapter 2

Trapping atoms with RF-dressed potentials

The central tool in our experiment is the use of radiofrequency-dressed (RF-dressed) adiabatic potentials to trap and manipulate atomic clouds [START_REF] Zobay | Two-dimensional atom trapping in field-induced adiabatic potentials[END_REF][START_REF] Colombe | Ultracold atoms confined in rf-induced two-dimensional trapping potentials[END_REF]. RF-dressed traps give access to highly versatile and precisely tunable traps, that enable interesting trapping geometries. Still, it isn't as common as techniques like optical dipole trapping and the underlying mechanism is quite subtle. This chapter is intended to give the theoretical bases required for a good understanding of the work presented in this thesis, as well as the "RF-dressing for dummies" document I would have liked to find when starting to deal with these traps. It will, for a significant part, be inspired of the review of Hélène Perrin and Barry Garraway [START_REF] Perrin | Chapter Four -Trapping Atoms With Radio Frequency Adiabatic Potentials[END_REF], towards which people looking for a complete description should go.

RF-induced adiabatic potentials were first proposed in 2001 by O. Zobay and B.M.

Garraway [START_REF] Zobay | Two-dimensional atom trapping in field-induced adiabatic potentials[END_REF]. The idea was to couple different Zeeman substates in an inhomogeneous static magnetic field to create avoided crossings and trap atoms on isomagnetic surfaces, and it was initially intended to generate two-dimensional (2D) atom traps. The first experimental realization of such a trap was achieved at LPL in 2003 [START_REF] Colombe | Ultracold atoms confined in rf-induced two-dimensional trapping potentials[END_REF][START_REF] Colombe | Loading a dressed Zeeman trap with cold atoms[END_REF], but the 2D character was achieved later, in 2013 [START_REF] Merloti | A two-dimensional quantum gas in a magnetic trap[END_REF], and has been used for example to study the collective modes of 2D superfluids [START_REF] Rossi | Probing superfluidity in a quasi two-dimensional Bose gas through its local dynamics[END_REF][START_REF] Merloti | Breakdown of scale invariance in a quasi-two-dimensional Bose gas due to the presence of the third dimension[END_REF][START_REF] Dubessy | Imaging the collective excitations of an ultracold gas using statistical correlations[END_REF]. In addition to low-dimensional trapping, this method also showed useful to generate exotic trap geometries, for example double well potentials [START_REF] Schumm | Matter wave interferometry in a double well on an atom chip[END_REF].

Combining it with optical potentials enables even more geometries to be achieved, for example ring potentials [START_REF] Morizot | Ring trap for ultracold atoms[END_REF][START_REF] Heathcote | A ring trap for ultracold atoms in an RF-dressed state[END_REF] or lattice potentials [START_REF] Lundblad | Atoms in a Radio-Frequency-Dressed Optical Lattice[END_REF]. Finally, the fast control available with such traps allows one to modulate the control parameters and produce time-averaged potentials [START_REF] Lesanovsky | Time-Averaged Adiabatic Potentials: Versatile Matter-Wave Guides and Atom Traps[END_REF][START_REF] Sherlock | Timeaveraged adiabatic ring potential for ultracold atoms[END_REF]. Among the current projects under development involving RF-dressed potentials, one can cite the realization of a Sagnac interferometer using a ring-shaped TAAP potential [START_REF] Navez | Matter-wave interferometers using TAAP rings[END_REF] or the project of realizing a bubble trap in space, in the absence of gravity [112].

A more detailed review of the last developments in the field can be found in [START_REF] Barry | Recent developments in trapping and manipulation of atoms with adiabatic potentials[END_REF].

Introduction to RF dressing

Let us now enter the core of the problem. I will first try to explain the physical principle on which RF-dressed traps rely. The problem can be expressed quite simply:

Trapping atoms with RF-dressed potentials "How can we trap atoms at an arbitrary position using an inhomogeneous static magnetic field and an oscillating magnetic field?"

Trapping an atom in an inhomogeneous magnetic field

To begin with, we can try to answer a simplified version of the question: how can we trap atoms in an inhomogeneous static magnetic field?

Let us consider an atom in a state with total angular momentum 𝐹 evolving in a static magnetic field B 0 (r) = 𝐵 0 (r)e 𝑧 . In the following, I will call "spin" the total angular momentum, sum of nuclear spin, electronic spin and orbital angular momentum.

The angular momentum operator of the atom will be denoted F. The field defines a quantization axis, and we can find a basis to diagonalize both F2 and the projection of F along e 𝑧 , denoted F𝑧 . For the sake of simplicity, I will for now use a two level system, i.e. 𝐹 = 1/2. The eigenstates of the system will then be written |±⟩ 𝑧 , with eigenvalues:

F𝑧 |±⟩ 𝑧 = ± 1 2 |±⟩ 𝑧 , F2 |±⟩ 𝑧 = 2 𝐹 (𝐹 + 1)|±⟩ 𝑧 .
(2.1)

These two eigenstates correpond to the spin being oriented in the same (or opposite) direction as the magnetic field. The hamiltonian of the system writes:

Ĥ = 𝑔 𝐹 𝜇 B B 0 • F = 𝑔 𝐹 𝜇 B 𝐵 0 F𝑧 , (2.2) 
with 𝜇 B the Bohr magneton and 𝑔 𝐹 the Landé factor of the atomic state. The energy of the eigenstates is then 𝐸 ± = ±𝑔 𝐹 𝜇 B 𝐵 0 /2: if the field is inhomogeneous, supposing 𝑔 𝐹 > 0, the |+⟩ 𝑧 state will be attracted towards regions where the field has a lower modulus ("low-field seeker"), and the |-⟩ 𝑧 state towards high magnetic fields (high-field seeker). If 𝑔 𝐹 < 0 it is simply the opposite situation.

This already allows us to trap an atom: depending on its state and on the sign of 𝑔 𝐹 one has to realize a maximum or minimum of the magnetic field. However, Wing's theorem forbids the existence if a maximum in the modulus of a static magnetic field [START_REF] Cohen-Tannoudji | Atomes ultra-froids -Piégeage non dissipatif et refroidissement évaporatif[END_REF]: it is thus necessary to trap atoms in a low-field seeking state.

Things become a little more complex if the field orientation is not uniform (which corresponds to realistic cases, where it is needed to trap atoms along all directions). The atom will be trapped provided it stays in the local state that is attracted towards the field minimum, i.e. if it adiabatically follows the field orientation. It is thus necessary to take care when trapping low-field seeker atoms: if the minimum of the magnetic field is too weak, the atoms may not follow the field orientation, which results in atoms escaping the trap, called Majorana losses [START_REF] Majorana | Atomi orientati in campo magnetico variabile[END_REF].

One can also show that the spin will precess around the axis of the static field, with frequency: 𝜔 0 (r) = |𝑔 𝐹 |𝜇 B |B 0 (r)|/ , called the Larmor frequency. The eigenenergies 𝐸 ± of the states can then be simply written 𝐸 ± = ± 𝜔 0 (r)/2.

Trapping an atom anywhere in an inhomogeneous magnetic field

It is somehow possible to explain the most basic principle of RF-dressed potentials classically, by reformulating a little bit our question: how is it possible to stabilize a magnet at an arbitrary position in an inhomogeneous magnetic field?

the isomagnetic region defined by:

𝐵 0 (r) = 𝜔 rf 𝜇 B |𝑔 𝐹 | .
(2.3) with F𝑥 , F𝑦 the projections of F along e 𝑥 , e 𝑦 . In the basis rotating at 𝜔 rf around e 𝑧 :

| ±(𝑡)⟩ 𝑧 = exp [︂ -𝑖𝜔 rf 𝑡 F𝑧 ]︂ |±⟩ 𝑧 = 𝑒 ∓𝑖𝜔 rf 𝑡/2 |±⟩ 𝑧 , (2.4) 
the total hamiltonian of the system writes:

Ĥ = 2 [︂ -𝛿(r) Ω 1 Ω 1 𝛿(r) ]︂ (2.5) 
where 𝛿(r) = 𝜔 rf -𝜔 0 (r) is the detuning between the oscillating field and the local Larmor frequency. However, the complete description of the evolution of an atom in a space-dependent potential can easily become complex since the position and momentum operators R, P do not commute. For simplicity, we will keep a semi-classical description, and consider that:

• 𝛿 and Ω 1 depend exclusively on space.

• r = ⟨ R⟩ and ∆R = 0: the atoms are point-like, and their time evolution then depends only of their position.

• the atomic motion happens at a constant velocity: r(𝑡) = v𝑡.

We will thus consider that what happens to the atoms can be described as a sweep of the parameters 𝛿 and Ω 1 :

𝛿(r(𝑡)) = 𝛿(v𝑡) ↔ 𝛿(𝑡) (2.6 
)

Ω 1 (r(𝑡)) = Ω 1 (v𝑡) ↔ Ω 1 (𝑡).
(2.7)

The considered hamiltonian will then be (2.5), but this time considering time-dependent Ω 1 and 𝛿:

Ĥ = 2 [︂ -𝛿(𝑡) Ω 1 (𝑡) Ω 1 (𝑡) 𝛿(𝑡)
]︂ .

(2.8)

At an instant 𝑡, Ĥ can be diagonalized with a unitary operator Û † :

Ĥ𝐴 = 2 [︂ -Ω(𝑡) 0 0 Ω(𝑡) ]︂ = Û † (𝑡) Ĥ Û (𝑡).
(2.9)

The instantaneous eigenenergies are then:

𝐸 ± (𝑡) = ± 2 Ω(𝑡) = ± 2 √︁ 𝛿 2 (𝑡) + Ω 2 1 (𝑡).
(2.10)

Writing 𝜓(𝑡) and 𝜓 𝐴 (𝑡) the atomic state in the respective bases where Ĥ and Ĥ𝐴 are diagonal, with 𝜓(𝑡) = Û (𝑡)𝜓 𝐴 (𝑡), the Schrödinger equation:

𝑖 𝜕 𝜕 𝑡 𝜓(𝑡) = Ĥ(𝑡)𝜓(𝑡) (2.11)
becomes for 𝜓 𝐴 (𝑡):

𝑖 𝜕 𝜕 𝑡 𝜓 𝐴 (𝑡) = Ĥ𝐴 (𝑡)𝜓 𝐴 (𝑡) -𝑖 Û † 𝜕 𝜕 𝑡 Û 𝜓 𝐴 (𝑡).
(2.12)

We see, then, that the atom will "follow" the eigenstates of Ĥ𝐴 (𝑡) if the last part of equation (2.12) stays small. For the hamiltonian (2.8), this correction term has the form [START_REF] Perrin | Chapter Four -Trapping Atoms With Radio Frequency Adiabatic Potentials[END_REF]:

2 [︂ 0 𝛾(𝑡) 𝛾 * (𝑡) 0 ]︂ . (2.13)
𝛾(𝑡) is the correction corresponds to non-adiabatic coupling between the eigenstates of Ĥ𝐴 , with 𝛾(𝑡) given by:

𝛾(𝑡) = -𝑖 δ(𝑡)Ω 1 (𝑡) -𝛿(𝑡) Ω1 (𝑡)
Ω 2 (𝑡) .

(

Following the eigenstates of Ĥ𝐴 then supposes the condition [117] |𝛾(𝑡)| ≪ Ω(𝑡).

(2.15)

Let us then go back to the description of an atom evolving in an inhomogeneous static magnetic field and an oscillating field. If we suppose that the oscillating field has a homogeneous amplitude such that Ω1 = 0, this condition then rewrites:

| δ| ≪ Ω 2 , (2.16) 
which is called the adiabaticity condition.

In these conditions, the Landau-Zener model [START_REF] Landau | Zur Theorie der Energieübertragung -II[END_REF][START_REF] Zener | Non-adiabatic crossing of energy levels[END_REF] expresses the probability of nonadiabatic transition when crossing the resonance: 

𝑃 = exp (︂ -𝜋 Ω 2 1 | δ| )︂ . ( 2 

Formalism of RF-dressed traps

Up to now, I explained the principles on which RF-dressed adiabatic potentials rely, but we now need a more detailed treatment, that would allow us to fully describe a trap for ultracold atoms based on this method. In particular, we need to be able to describe the case of more than 2 spin states (which is always the case when working with bosons 1 ), and to be able to take into account the local polarization of the oscillating field (the previous treatment corresponds to circular polarization). This description is detailed in sections III and IV of [START_REF] Perrin | Chapter Four -Trapping Atoms With Radio Frequency Adiabatic Potentials[END_REF], that I will present here in a simplified version.

Classical field treatment of magnetic resonance

Like previously, we want to describe the behavior of an atom placed in the combination of a static magnetic field B 0 = 𝐵 0 e 𝑧 and an arbitrary classical magnetic field oscillating at RF frequency B 1 (𝑡) = 𝐵 𝑥 cos (𝜔 rf 𝑡)e 𝑥 + 𝐵 𝑦 cos (𝜔 rf 𝑡)e 𝑦 + 𝐵 𝑧 cos (𝜔 rf 𝑡)e 𝑧 . Using a quantization axis e 𝑧 , there is a basis where F2 and 𝐹 𝑧 are diagonal. We will consider all atoms to be in the same 𝐹 state, and the spin eigenstates will then be written |𝑚⟩ 𝑧 , with 𝐹 𝑧 |𝑚⟩ 𝑧 = 𝑚 |𝑚⟩ 𝑧 and 𝑚 ∈ {-𝐹, -𝐹 + 1, ..., 𝐹 -1, 𝐹 }.

The magnetic interaction between the static field and the atomic spin reads:

Ĥ0 = 𝑔 𝐹 𝜇 B B 0 • F (2.18)
and we can write the Larmor frequency as:

𝜔 0 = |𝑔 𝐹 |𝜇 B 𝐵 0 / .
(2.19)

For an arbitrary polarization, it is more practical to describe the RF field using complex notation, as B 1 (𝑡) = ℬ 1 𝑒 -𝑖𝜔 rf 𝑡 + 𝑐.𝑐., with ℬ 1 the complex field amplitude:

ℬ 1 = 𝐵 𝑥 2 𝑒 -𝑖𝜑y e 𝑥 + 𝐵 𝑦 2 𝑒 -𝑖𝜑y e 𝑦 + 𝐵 𝑧 2 𝑒 -𝑖𝜑z e 𝑧 , (2.20) 
or, writing 𝜖 the complex polarization of the field (|𝜖| = 1):

ℬ 1 = ℬ 1 𝜖.
(2.21)

We choose to describe the RF field in the spherical basis (e + , e -, e 𝑧 ), with

e + = - 1 √ 2 (e 𝑥 + 𝑖e 𝑦 ), e -= 1 √ 2 (e 𝑥 -𝑖e 𝑦 ).
(2.22)

The component along e 𝑧 of the RF field is aligned with the static field, and provided 𝐵 𝑧 ≪ 𝐵 0 , its effect is negligible [START_REF] Pegg | Semi-classical theory of the Hanle effect with transverse static and oscillating magnetic fields[END_REF][START_REF] Pegg | Misalignment effects in magnetic resonance[END_REF] 2 . We will thus only consider orthogonal components, and write the RF amplitude as

ℬ 1 = 𝐵 + e + + 𝐵 -e - (2.23) 
with 𝐵 ± = e * ± • 𝜖ℬ 1 . In the spherical basis, we can write

F • e ± = ∓ 1 √ 2 F±
, with F± the raising and lowering operators defined as F± = F𝑥 ± 𝑖 F𝑦 .

1. F=0 is not relevant, being insensitive to magnetic fields. 2. Bz comparable to B0 leads to a modification of the Landé factor when calculating the RF coupling to Bx and By.

Using these definitions, the coupling between the RF and the atomic spin can be written as:

V1 = 𝑔 𝐹 𝜇 B ℬ 1 • F 𝑒 -𝑖𝜔 rf 𝑡 + ℎ.𝑐.
(2.24)

= 𝑔 𝐹 𝜇 B [︂ - 1 √ 2 𝐵 + F+ + 1 √ 2 𝐵 -F- ]︂ 𝑒 -𝑖𝜔 rf 𝑡 + ℎ.𝑐.
(2.25)

And defining the (complex) coupling amplitudes as:

Ω ± = ∓ √ 2 |𝑔 𝐹 |𝜇 B 𝐵 ± , (2.26) 
it can be expressed more nicely as:

V1 = 𝑠 [︂ Ω + 2 F+ + Ω - 2 F- ]︂ 𝑒 -𝑖𝜔 rf 𝑡 + ℎ.𝑐.
(2.27)

Here, we introduced 𝑠 = 𝑔 𝐹 /|𝑔 𝐹 | the sign of the Landé factor. We can then, finally, write the total hamiltonian Ĥ = Ĥ0 + V1 :

Ĥ = 𝑠𝜔 0 F𝑧 + 𝑠 [︂ Ω + 2 𝑒 -𝑖𝜔 rf 𝑡 F+ + Ω * + 2 𝑒 𝑖𝜔 rf 𝑡 F-+ Ω - 2 𝑒 -𝑖𝜔 rf 𝑡 F-+ Ω * - 2 𝑒 𝑖𝜔 rf 𝑡 F+ ]︂ .
(2.28)

The first term corresponds to precession of the spin around e 𝑧 , and the four next terms correspond to transitions between the different |𝑚⟩ 𝑧 substates.

Like for section 2.1.3, we will now look at what happens in the basis rotating at frequency 𝑠𝜔 rf around e 𝑧 , with rotated states |𝜓⟩ rot = exp(-𝑖𝑠𝜔 rf 𝑡 F𝑧 )|𝜓⟩. In this basis, denoting 𝛿 = 𝜔 rf -𝜔 0 , the hamiltonian now reads:

Ĥrot = -𝑠𝛿 F𝑧 + 𝑠 [︂ Ω + 2 𝑒 𝑖(𝑠-1)𝜔 rf 𝑡 F+ + Ω * + 2 𝑒 -𝑖(𝑠-1)𝜔 rf 𝑡 F- ]︂ + 𝑠 [︂ Ω - 2 𝑒 -𝑖(𝑠+1)𝜔 rf 𝑡 F-+ Ω * - 2 𝑒 𝑖(𝑠+1)𝜔 rf 𝑡 F+ ]︂ . (2.29)
Depending on the sign of 𝑠, the first two terms or the last two terms will be static, whereas the two other terms will evolve at very high frequency ±2𝜔 rf . We can then suppose that the two non-resonant terms, evolving much faster than the rest of the system, will average to 0, and consider only the two static terms, in what is called the Rotating Wave Approximation (RWA). This approximation is valid in the limit where |𝛿|, Ω ± ≪ 𝜔 rf .

We will then denote

Ω 1 = Ω 𝑠 ; in both cases Ω 1 = - √ 2𝑔 𝐹 𝜇 B 𝐵 𝑠 / .
Writing Ω 1 = |Ω 1 |𝑒 𝑖𝜑 and transforming into the states rotated by 𝑠𝜔 rf 𝑡 + 𝜑 instead of just 𝑠𝜔 rf 𝑡, the effective hamiltonian then becomes:

Ĥeff = -𝑠𝛿 F𝑧 + 𝑠 |Ω 1 | 2 ( F+ + F-) (2.30) = 𝑠(-𝛿 F𝑧 + |Ω 1 | F𝑥 ).
(2.31)

Then we can finally rewrite:

Ĥeff = Ω F𝜃 , (2.32) 
where we defined:

Ω = √︁ 𝛿 2 + Ω 2 1 , (2.33) 
F𝜃 = cos(𝜃) F𝑧 + sin(𝜃) F𝑥 ,

(2.34)

𝜃 = arccos (︂ -𝛿 Ω )︂ + 𝑠 -1 2 𝜋.
(2.35)

F𝜃 is the projection of F along a new axis in the 𝑥 -𝑦 plane: e 𝜃 = cos(𝜃)e 𝑧 + sin(𝜃)e 𝑥 . In other words, everything happens as if the atom was evolving in a static magnetic field oriented along e 𝜃 . We can define a new set of eigenstates in the rotating basis: (2.36) and the eigenenergies of the corresponding states are:

|𝑚⟩ 𝜃 = 𝑒 -𝑖𝜃 Fy/ |𝑚⟩ 𝑧 ,
𝐸 𝑚 = 𝑚 Ω.
(2. [START_REF] Dalibard | Colloquium : Artificial gauge potentials for neutral atoms[END_REF] We thus see that the dressing corresponds to creating a minimum of an effective magnetic field to trap the atoms.

Close to the resonance, we can now write the adiabaticity criterion simply as:

| θ| ≪ Ω.
(2.38)

If this criterion is fulfilled, the spin adiabatically follows the orientation of the effective local magnetic field e 𝜃 . Going from one side of the resonance to the other one, this corresponds to a complete flip of the spin, with a continuous rotation of the spin orientation.

Adiabatic potentials for RF-dressed atoms

The previous description corresponds to a uniform magnetic field and is thus unsufficient to describe a trap. We also need to take into account the spatial dependence of all parameters: static field amplitude and orientation, RF polarization and amplitude. The basic principle, however, still holds: provided the atoms adiabatically follow the local states |𝑚⟩ 𝜃(r) , they will feel an effective potential landscape whose value is:

𝑉 𝑚 (r) = 𝑚 Ω(r) = 𝑚 √︁ 𝛿 2 (r) + Ω 2 1 (r).
(2.39)

For practical reasons, the extreme adiabatic state |𝑚 = 𝐹 ⟩ 𝜃 will always be used for trapping: for 𝐹 ≤ 1 it is the only state that is trapped, and for 𝐹 > 1 having all atoms in the maximally polarized state avoids spin-changing collisions, which would result in atom losses [START_REF] Moerdijk | Collisions of dressed groundstate atoms[END_REF]. In the following, all occurences of 𝑚 will then be replaced by 𝐹 .

General principles

The expression (2.39) already allows us to get a good insight on what happens for this kind of potential:

• The 𝛿(r) dependence, which is generally the strongest, indicates that the atoms will be trapped in the place where 𝛿(r) = 0, i.e. where the RF is resonant with the Larmor frequency. For a given RF frequency, this corresponds to an isomagnetic surface. The strength of the confinement depends on the local magnetic gradient (which is, by definition, orthogonal to the surface). Writing 𝛼 = |∇𝜔 0 | this gradient (in units of frequency), we can deduce the trapping frequency [START_REF] Perrin | Chapter Four -Trapping Atoms With Radio Frequency Adiabatic Potentials[END_REF]:

𝜔 transverse = 𝛼 √︂ 𝐹 𝑀 Ω 1 (2.40)
where 𝑀 is the atomic mass. This confinement can easily be quite strong in practice, between several hundred Hz and a few kHz, and can be used to reach low-dimensional regimes. The atoms evolve on an isomagnetic surface, in general bubble-shaped.

• On the other hand, on resonance the Ω 1 (r) dependency will also structure the shape of the potential close to resonance. The variations in Rabi coupling being usually much smoother than the variations in the Larmor frequency, it in fact structures the fine shape of the potential, modifying the local confinement on the isomagnetic surface (cf eq. (2.40)) and attracting the atoms to the regions with lower coupling: the potential restricted to the resonant surface writes 𝐹 Ω 1 (r). This can become a problem for staying within adiabaticity conditions, but the presence of gravity can often be used to prevent atoms from reaching the regions where Ω would be too low to ensure adiabaticity. On the other hand, tailoring the local coupling can be used to modify the trap, for example to create a double well [START_REF] Schumm | Matter wave interferometry in a double well on an atom chip[END_REF], to excite specific collective modes [START_REF] Rossi | Probing superfluidity in a quasi two-dimensional Bose gas through its local dynamics[END_REF] or to induce rotation in the trapped cloud (cf chapters 6 and 8).

A few more useful expressions

To go beyond these general principles, we need to be able to compute exactly the value of the potential (2.39) in a given experimental configuration. The whole question is thus: what are the expressions of 𝛿(r) and Ω 1 (r)? Let us write, as previously, the static field and RF field:

B 0 = 𝐵 0 (r)u(r), (2.41) 
B 1 (r, 𝑡) = 𝐵 1 (r)𝜖(r)𝑒 -𝑖𝜔 rf 𝑡 + 𝑐.𝑐.
(2.42)

where u(r) = B 0 (r)/|B 0 (r)| is the unitary vector giving the local orientation of the magnetic field. 𝛿(r) can be very simply expressed as

𝛿(r) = 𝜔 rf -|𝑔 𝐹 |𝜇 B 𝐵 0 (r)/ .
(2.43)

The expression of Ω 1 (r) is more subtle. We have seen that it depends on the local component of B 1 (r, 𝑡) along the local spherical polarization 𝜎 𝑠 . This component can be expressed, using the local spherical basis (e + (r), e -(r), u(r)) defined by the local magnetic field orientation, as ℬ 1 (r)e * 𝑠 (r) • 𝜖(r). The local coupling is then

Ω 1 (r) = - √ 2 𝑔 𝐹 𝜇 B ℬ 1 (r) e * 𝑠 (r) • 𝜖(r) (2.44) = -Ω rf e * 𝑠 (r) • 𝜖(r), (2.45) 
with Ω rf = √ 2|𝑔 𝐹 𝜇 B ℬ 1 |/ . Ω rf is the maximal coupling one can expect to achieve for a given RF field amplitude ℬ 1 (it can be attained only with a circularly polarized RF field). Using the properties of the spherical basis, Ω 1 (r) can also be expressed as [START_REF] Perrin | Chapter Four -Trapping Atoms With Radio Frequency Adiabatic Potentials[END_REF]:

|Ω 1 (r)| = Ω rf 2 |𝜖 × u + 𝑖𝑠u × (𝜖 × u)| (2.46) = Ω rf 2 √︀ 1 -|𝜖 • u| 2 + |𝜖 × u| 2 + 2𝑖𝑠u • (𝜖 × 𝜖 * ).
(2.47)

In the particular case of a RF field that is circularly polarized 𝜎 𝑠 around the 𝑧 axis, it can be simplified:

|Ω 1 (r)| = Ω rf 2 [1 + 𝑢 𝑧 (r)], (2.48) 
with 𝑢 𝑧 (r) = u • e 𝑧 .

In the other interesting case of a field that is linearly polarized along 𝑧 axis, it reads:

|Ω 1 (r)| = Ω rf √︂ 1 -𝑢 𝑧 (r) 2 2 .
(2.49)

With this, we should now be able to describe any trap based on RF dressing.

The dressed quadrupole trap

Now that the principles have been properly introduced, I will make one step further towards experimental application and describe in detail the trap we use in our experiment, the dressed quadrupole trap.

The quadrupole field is the simplest way to obtain a magnetic trap, obtained with a pair of coils in anti-Helmholtz configuration. The obtained magnetic field is linear, and reads:

B 0 (r) = 𝑏 ′ (𝑥e 𝑥 + 𝑦e 𝑦 -2𝑧e 𝑧 ).

(2.50)

The corresponding local Larmor frequency is then:

𝜔 0 (r) = 𝛼 √︀ 𝑥 2 + 𝑦 2 + 4𝑧 2 , (2.51) 
with 𝛼 the value of the horizontal magnetic gradient 𝑏 ′ in frequency units:

𝛼 = |𝑔 𝐹 |𝜇 B 𝑏 ′ / .
(2.52)

For a given value of the RF frequency 𝜔 rf , the atoms are trapped on the isomagnetic surface defined by 𝜔 0 (r) = 𝜔 rf , which corresponds to an ellipsoid (fig. 2.2):

𝑥 2 + 𝑦 2 + 4𝑧 2 = 𝑟 2 𝑏 .
(2.53)

𝑟 𝑏 is then the radius at the equator of this "bubble trap", and its value is:

𝑟 𝑏 = 𝜔 rf 𝛼 .
(2.54)

Adding gravity, supposed to be aligned with the axis of the quadrupole trap e 𝑧 , and neglecting for now the details of polarization (i.e. considering uniform coupling Ω 1 ), we can guess that the atoms will then fall to the bottom of this bubble due to gravity, giving a Due to gravity, the potential minimum is shifted slightly below the resonant ellipsoid, and is located at (𝑥 = 0, 𝑦 = 0, 𝑧 = -𝑅), with 𝑅 being equal to [START_REF] Merloti | A two-dimensional quantum gas in a magnetic trap[END_REF]:

𝑅 = 𝑟 𝑏 2 (︃ 1 + 1 √︀ 4𝛽 2 -1 Ω 0 𝜔 rf )︃ .
(2.63)

Around the potential minimum at the bottom of the bubble, it is then possible to make a second order development of the potential and get the oscillation frequencies:

𝜔 ⊥ = √︂ 𝑔 4𝑅 [︂ 1 - 𝐹 Ω 0 2𝑀 𝑔𝑅 √︂ 1 - 1 4𝛽 2 ]︂ 1/2 , (2.64 
)

𝜔 𝑧 = 2𝛼 √︂ 𝐹 𝑀 Ω 0 (︂ 1 - 1 4𝛽 2 )︂ 3/4
.

(2.65)

These frequencies are similar to (2.55), (2.56), but with factors taking into account the fact that the potential minimum is shifted due to gravity (the "pendulum" is now slightly longer).

The value of 𝜔 ⊥ is also slightly reduced due to the attraction to the zero of coupling at the top of the bubble. This trap is isotropic in the 𝑥 -𝑦 plane.

For convenience, one can define the dimensionless quantity:

𝛾 = 𝐹 Ω 0 𝑀 𝑔𝑅 √︂ 1 - 1 4𝛽 2 , (2.66)
which describes the typical ratio between the coupling gradient and gravity (the factor (1 -1/4𝛽 2 ) 1/2 present here is quite inelegant, but putting it here simplifies a lot subsequent formulas). In most experimental cases 𝛽 ≫ 1 and inequality (2.61) simply corresponds to 𝛾 < 2. With this definition, 𝜔 ⊥ can simply be rewritten as:

𝜔 ⊥ = √︂ 𝑔 4𝑅 [︁ 1 - 𝛾 2 ]︁ 1/2 .
(2.67)

Linear polarization

The other simple interesting case corresponds to the simplest one that can be obtained experimentally, the linear polarization:

𝜖 = e 𝑥 .

(2.68)

From (2.49), we can again deduce the local coupling:

|Ω 1 (r)| = Ω 0 √︃ 1 - 𝑥 2 ℓ 𝑏 (𝑟, 𝑧) 2 , (2.69)
where Ω 0 is the maximum Rabi coupling. This time, |Ω 1 | = Ω 0 in the 𝑦 -𝑧 plane, and Ω 1 = 0 on the two extreme points at the equator: 𝑥 = ±𝑟 𝑏 , 𝑦 = 𝑧 = 0, where the local static field is aligned with the RF field.

The position of the potential minimum is identical to (2.63) and this time, the trapping frequencies are [START_REF] Merloti | A two-dimensional quantum gas in a magnetic trap[END_REF]:

𝜔 𝑥 = √︂ 𝑔 4𝑅 [︂ 1 - 𝐹 Ω 0 𝑀 𝑔𝑅 √︂ 1 - 1 4𝛽 2 ]︂ 1/2 = √︂ 𝑔 4𝑅 [1 -𝛾] 1/2 , (2.70) 𝜔 𝑦 = √︂ 𝑔 4𝑅 , (2.71 
)

𝜔 𝑧 = 2𝛼 √︂ 𝐹 𝑀 Ω 0 (︂ 1 - 1 4𝛽 2 )︂ 3/4 .
(2.72)

Again, the frequencies are slightly modified due to gravity. The coupling being homogeneous in the whole 𝑦 -𝑧 plane, 𝜔 𝑦 is this time simply equal to the pendulum frequency, while the correction to 𝜔 𝑥 due to the attraction of the holes is twice stronger than in the circular polarization case, the holes now being at half height of the bubble. This configuration gives an anisotropic trap in the 𝑥 -𝑦 plane.

Again, gravity must be strong enough to prevent the atoms from reaching the two points with zero coupling; this condition can be deduced from (2.70) as 𝛾 < 1. Compared to the circular polarization case, the minimum of coupling is this time at the equator and the constraint on Ω 0 is then twice stronger.

Elliptical polarization and control of the fine shape of the bubble

Using expression (2.47) allows us to compute the exact potential shape for any polarization of the RF wave. Before giving exact results, it is still possible to describe the general behavior or the trap:

• There are two holes somewhere on the bubble, where the coupling cancels. For a 𝜎 𝑠 polarization with respect to the 𝑧 axis, the two holes merge at the top of the bubble, for a 𝜎 -𝑠 they merge at the bottom of the bubble (which makes this configuration impossible to use for trapping atoms). For an elliptical horizontal polarization, the holes are placed somewhere in between, in the same vertical plane cutting the bubble in two halves.

• Keeping atoms trapped will, again, suppose the condition:

𝐹 Ω 0 < 𝑀 𝑔ℎ hole , (2.73) 
with ℎ hole the height of the lowest hole with respect to the bottom of the bubble and Ω 0 = |Ω 1 (𝑥 = 0, 𝑦 = 0, 𝑧 = -𝑅)| the coupling at the bottom of the bubble, where atoms should be located if gravity wins.

• Supposing that the atoms stay at the bottom of the bubble, the potential minimum will stay at the same position (2.63), and the oscillation frequencies will be the same as previously: trapping on resonance corrected due to gravity vertically, pendulum frequency √︀ 𝑔/4𝑅 corrected from the attraction of the holes radially. For a non-circular polarization, the trap will be anisotropic and its axes will be the same as those of the polarization ellipse.

Let us give another useful result: supposing that the polarization plane is orthogonal to the quadrupole axis (i.e. in the horizontal plane), we can write any polarization as:

𝜖 = cos(Θ)e 𝑥 + 𝑒 𝑖Φ sin(Θ)e 𝑦 .
(2.74)

The coordinates of the holes are then

⎧ ⎪ ⎨ ⎪ ⎩ 𝑥 = 𝑟 𝑏 sin(t) cos(𝜑) 𝑦 = 𝑟 𝑏 cos(t) sin(𝜑) 𝑧 = 𝑟 b 2 cos(t)
.

(2.75)

For an arbitrary polarization in the horizontal plane written as (2.74), the local Rabi coupling reads from (2.47) [124]

Ω 2 = Ω 2 rf 2 (︂ 1 - 𝑟 2 + (𝑥 2 -𝑦 2 ) cos(2Θ) + 2𝑥𝑦 sin(2Θ) cos(Φ) 2ℓ 2 𝑏 - 2𝑧 ℓ 𝑏 sin(2Θ) sin(Φ) )︂ . (2.78)
The central term describes the anisotropy in the 𝑥 -𝑦 plane; it is convenient to recast it in the frame oriented along the polarization axes: 𝑥 ′ = cos(𝜑)𝑥 + sin(𝜑)𝑦 and 𝑦 ′ = sin(𝜑)𝑥 -cos(𝜑)𝑦, with 𝜑 defined in (2.76):

Ω 2 = Ω 2 rf 2 (︃ 1 - 𝑟 2 -2 √︀ 𝜂(1 -𝜂)(𝑥 ′2 -𝑦 ′2 ) 2ℓ 2 𝑏 - 2𝑧 ℓ 𝑏 (2𝜂 -1) )︃ (2.79)
where 𝜂 is defined by:

𝜂 = 1 + sin(2Θ) sin(Φ) 2 .
(2.80)

𝜂 defines the anisotropy of the coupling in the 𝑥-𝑦 plane, but also the coupling at the bottom of the bubble:

Ω 0 = √ 𝜂Ω rf (2.81) 
𝜂 takes values between 0 and 1, being equal to 1 (or 0) for a circular polarization and 1/2 for a linear polarization.

The trapping frequencies then expresses from a second order development:

𝜔 𝑥 ′ = √︂ 𝑔 4𝑅 [︂ 1 - 𝛾 2 (︂ 1 - √︂ 1 𝜂 -1 )︂]︂ 1/2 ,
(2.82)

𝜔 𝑦 ′ = √︂ 𝑔 4𝑅 [︂ 1 - 𝛾 2 (︂ 1 + √︂ 1 𝜂 -1 )︂]︂ 1/2 ,
(2.83)

𝜔 𝑧 = 2𝛼 √︂ 𝐹 𝑀 Ω 0 (︂ 1 - 1 4𝛽 2 )︂ 3/4 , (2.84) 
and we find the results expected in the previous section for 𝜂 = 1 or 𝜂 = 1/2. The anisotropy of the trap can then be expressed as:

𝜀 = |𝜔 2 𝑦 ′ -𝜔 2 𝑥 ′ | 𝜔 2 𝑦 ′ + 𝜔 2 𝑥 ′ = 𝛾 √︁ 1 𝜂 -1 2 -𝛾 .
(2.85)

One has to take care here that 𝛾 implicitely depends on 𝜂, as it depends on the Rabi coupling at the bottom of the bubble Ω 0 , which depends itself on 𝜂 following equation (2.81).

To help interpreting these results, it is possible to relate 𝜂 to the position of the holes on the bubble:

𝜂 = 1 2 (1 + cos(t)) 2 1 + cos 2 (t) ⇒ √︂ 1 𝜂 -1 = 1 -cos(t) 1 + cos(t) , (2.86) 
allowing to rewrite 𝜔 𝑥 ′ , 𝜔 𝑦 ′ :

𝜔 𝑥 ′ = √︂ 𝑔 4𝑅 [︂ 1 - 𝛾 1 + cos(t) ]︂ 1/2 ,
(2.87)

𝜔 𝑦 ′ = √︂ 𝑔 4𝑅 [︂ 1 - 𝛾 cos(t) 1 + cos(t) ]︂ 1/2 .
(2.88)

Along the semi-major axis of the polarization, 𝜔 𝑥 ′ is the pendulum frequency reduced by the attraction of the holes: the correction term involves the ratio between the energy of the hole attraction 𝐹 Ω 0 (difference in coupling energy between the bottom and the hole) and the gravitational energy necessary to reach the hole 𝑀 𝑔𝑅 [1 + cos(t)]. On the other hand, for 𝜔 𝑦 ′ the factor cos(t) shows that the correction can decrease or increase the pendulum frequency. We also see that the condition for the existence of the trapping frequencies is 𝛾 < 1 + cos(t), as expected.

Finally, for a given anisotropy (i.e. given 𝜂), within this parametrization it is possible to give the values of (Θ, Φ) corresponding to an arbitrary orientation of the trap 𝜑 (allowing us for example to dynamically rotate the trap) [125]:

Θ(𝜂, 𝜑) = 1 2 arccos (︁ 2 √︀ 𝜂(1 -𝜂) cos(2𝜑) )︁ , (2.89) 
Φ(𝜂, 𝜑) = arccos (︂ 2 √︀ 𝜂(1 -𝜂) sin(2𝜑) sin(2Θ(𝜂, 𝜑)) )︂ (2.90) = arccos (︃ 2 √︀ 𝜂(1 -𝜂) sin(2𝜑) √︀ 1 -4𝜂(1 -𝜂) cos 2 (2𝜑)
)︃ .

(2.91)

Chapter 3

Experimental setup: from the rubidium oven to the bubble trap.

All the experiments described here take as a starting point the RF-dressed "bubble" trap whose theoretical description has been given in detail in the previous chapter. In this chapter, I will first outline the experimental scheme that leads to the formation of an ultracold atomic gas in such a trap, and I will then describe more in detail the device that allows for controlling precisely our bubble trap -a DDS ("Direct Digital Synthesizer "), which has been modified during my PhD. Finally, I will describe the imaging setup that has been used to take experimental pictures.

The construction of our experimental setup has begun more than ten years ago now, and three PhD theses have already been written on it [START_REF] Merloti | Condensat de Bose-Einstein dans un piège habillé: modes collectifs d'un superfluide en dimension deux[END_REF][START_REF] De | Gaz de Bose en dimension deux : modes collectifs, superfluidité et piège annulaire[END_REF][START_REF] Liennard | Construction d'un montage de condensation de Bose-Einstein de rubidium et étude théorique d'un superfluide en rotation dans un anneau[END_REF]; a reader wishing to have all details on the experiment should go towards these.

3.1

The experimental setup

Overall system

The experiment is built around three chambers placed under vacuum. The first one is a 2D

MOT used as a source of pre-cooled atoms. It sends atoms to a second chamber made of steel, in which a 3D MOT is formed. These two steps happen continuously when the experiment is in standby. When an experimental sequence is launched, the atoms from the 3D MOT are transfered to a magnetic trap whose coils are placed on a mechanical translation. These coils are then displaced to bring the atoms in a third, final chamber -a glass cell, in which the cooling of atoms down to degeneracy and the subsequent experiments will happen (fig. 3.1).

The whole experiment is controlled by a script in which all successive experimental steps are described, which is then interpreted by a C++ program. Details can be found in [START_REF] Morizot | Pièges radiofréquence très anisotropes pour un condensat de Bose-Einstein[END_REF].

We use 4 computers: one controls the experimental setup through analog and digital output cards from National Instruments 1 , two computers control the imaging cameras and display the corresponding pictures, and one is used to analyze the pictures and generate the scripts used to control the DDS (cf 3.3).

Magnetic transport

The first step of the sequence aims at transfering the atoms from the MOT to a quadrupole trap that can be mechanically displaced to the science cell (the coils of this quadrupole trap are the ones that are used to generate the MOT, but the trapping configuration is not the same). We start by ramping up the current in these coils to compress the MOT and increase the atomic density while increasing the detuning of the MOT beams to reduce the repulsion between atoms coming from multiple scattering events. The current in the coils is then turned off and the detuning is increased again to cool down the atoms during an optical molasses phase. At the end of this phase, the repump beam is shut down so that all atoms get depumped to the state | 5 𝑆 1/2 , 𝐹 = 1⟩, which is the state with which we work in all the experiment. Finally, all beams are shut down and the current is ramped up again to generate a quadrupole magnetic trap in which atoms are loaded. We trap the atoms that are in the |𝐹 = 1, 𝑚 = -1⟩ state; atoms in 𝑚 = 0 and 𝑚 = +1 are lost.

The coils are then physically displaced over a distance of around 30 cm up to the position of the final quadrupole coils, bringing the atoms into the science cell. The current in the magnetic transport coils is then ramped down and the current in the final quadrupole coils is ramped up to transfer the atoms in this new magnetic trap, and the transport coils are sent back to their initial position. After transfer, we have around 10 8 atoms trapped, with a temperature of 150 ➭K.

The final steps of the experiment happen in this science cell, a glass cell manufactured by Starna with inner (outer) dimensions 10 × 10 (12.5 × 12.5) mm, under ultra-high vacuum (10 -11 mbar).

J • mol -1 • K -1
The final quadrupole trap is realized by two conical coils placed above and below the cell, which generate a horizontal gradient

𝑏 ′ 0 =1.98 G • cm -1 • A -1 .
The power supply we use 2 can deliver up to 110 A and 15 V, with a rise/fall time of a few milliseconds; switches allow fast shutting down of the current in the coils (around 150 ➭s [START_REF] Liennard | Construction d'un montage de condensation de Bose-Einstein de rubidium et étude théorique d'un superfluide en rotation dans un anneau[END_REF], useful especially for time-offlight imaging). The coil wire is hollow and water circulates inside to dissipate the heat in the coils.

3.2.3

The plugged quadrupole trap Bose-Einstein condensation of rubidium requires, like for most atoms, evaporative cooling to increase the phase-space density. Using an RF knife in a magnetic trap is usually an efficient way to perform this step: shining an RF field at a given frequency on the atoms couples the different Zeeman substates and atoms get expelled from the trap if they reach resonance with the RF, enabling to eliminate atoms whose energy is too high. Such RF evaporation allows one to reduce the atomic cloud's temperature and increase the density at the center of a trap. However, in the case of a quadrupole trap, the magnetic field vanishes at the center of the trap and the atoms that arrive there get lost due to Majorana losses (cf. 2.1.1): the increase of density at the center of the trap leads to strong atom losses. This problem has been solved using various methods, for example using time averaging (TOP traps) to trap the atoms in a minimum of the average magnetic field while the real zero of the magnetic field stays far away from the atoms [START_REF] Petrich | Stable, Tightly Confining Magnetic Trap for Evaporative Cooling of Neutral Atoms[END_REF] or using hybrid optical-magnetic traps [START_REF] Davis | Bose-Einstein condensation in a gas of sodium atoms[END_REF][START_REF] Naik | Optically Plugged Quadrupole Trap for Bose-Einstein Condensates[END_REF][START_REF] Lin | Rapid production of 87 𝑅𝑏 Bose-Einstein condensates in a combined magnetic and optical potential[END_REF] where the atoms are maintained away from the place where the magnetic field vanishes by dipole beams.

Delta elektronika 15-100

In our experiment, we use this second approach, using a "plug" beam to expel atoms from the center of the trap [START_REF] Merloti | Condensat de Bose-Einstein dans un piège habillé: modes collectifs d'un superfluide en dimension deux[END_REF][START_REF] Dubessy | Rubidium-87 Bose-Einstein condensate in an optically plugged quadrupole trap[END_REF]. A 10 W, 532 nm blue-detuned beam is focused on the center of the quadrupole. It is oriented along the 𝑦 axis of the experiment (cf fig. 3.1), and even though it covers the center of the trap it is slightly off-centered. This creates a unique effective potential minimum slightly away from the center, where a condensate can be trapped without suffering too much from losses.

Once this laser is on, we perform a ramp of the RF knife frequency to achieve evaporative cooling. A first evaporation ramp, going from 50 MHz to 4 MHz in 13.6 s, is performed at high magnetic field gradient: 𝑏 ′ = 216 G • cm -1 horizontally, corresponding to 110 A in the quadrupole coils; then the magnetic field gradient is reduced to 𝑏 ′ = 55 G • cm -1 to further reduce Majorana losses (the optical plug gets more efficient to expel atoms from the center).

A final evaporation is then realized in 5 s, going from 2 MHz to 300 kHz, and we achieve Bose-Einstein condensation. This method allows to achieve a quasi-pure BEC with around 2 × 10 5 atoms, however it is more favorable for the following experiments to stop evaporation before this stage, at 350 kHz, to keep more atoms, about 5 × 10 5 .

The dressed trap

Hardware presentation

On the sides of the science cell, two RF antennas generate RF fields along the 𝑥 and 𝑦 directions, allowing to generate an RF field with any polarization in the horizontal plane as described in section 2.3 (fig. 3.3). During my thesis, a third antenna has been placed below the cell to generate RF fields along the vertical axis; details will be given in chapter 5. A good stability of the RF phase is mandatory for achieving large lifetimes in RF-dressed traps [START_REF] Morizot | Influence of the Radio-Frequency source properties on RF-based atom traps[END_REF]:

this is obtained by using digital frequency synthetizers (DDS). We control the voltage and relative phase of each antenna; the obtained RF coupling is calibrated directly with the atoms by using RF spectroscopy so that we directly control the effective coupling felt by the trapped atoms. More details about the DDS and control of the RF are given in section 3.3.

Transfer procedure

Once the atoms are condensed, we transfer them from the plugged trap to the dressed quadrupole trap described in chapter 2. For that, we need to "dress" the atomic state adiabatically, so that the atoms stay in the effectively trapped state (which corresponds, once the atoms are trapped on the resonance, to a mixture of all three Zeeman substates).

In a first step, the amplitude of the RF field is ramped up far below resonance, to fullfill the adiabaticity condition (2.38) (we need to start with a large Ω, which can be achieved only through large 𝛿 since Ω 1 = 0 at the beginning of the ramp). In the plugged trap, the atoms are located at a place that is resonant for RF frequency around 250 kHz; the RF field amplitude is ramped up from 0 to typically 50 kHz in 5 ms at a frequency of 175 kHz: the resonant surface is then within the plug beam and inaccessible to the atoms. Moreover, the second harmonic of the RF frequency, at 2×175 = 350 kHz, is beyond the resonance frequency (and corresponds to the final value of the evaporation ramp) so that the cloud is unaffected by possible harmonics that would be generated by the RF synthesizer.

The RF frequency is then ramped up with a constant amplitude 3 from its initial frequency,

• The radial trapping frequencies at the bottom of the bubble (typically 20 to 50 Hz) are also controlled by the current and frequency (which modify the pendulum frequency), and slightly modified by the RF amplitude and polarization.

• The control of the RF polarization also allows us to tune the trap's horizontal anisotropy [START_REF] Merloti | A two-dimensional quantum gas in a magnetic trap[END_REF] (defined as 𝜀 = |𝜔 2 𝑦 -𝜔 2 𝑥 |/(𝜔 2 𝑦 + 𝜔 2 𝑥 ); typically 0 to 0.5) and orientation [START_REF] Rossi | Probing superfluidity in a quasi two-dimensional Bose gas through its local dynamics[END_REF].

• The vertical frequency depends strongly on the magnetic gradient and can thus be tuned easily by changing the current in the quadrupole coils. It also depends on the square root of the Rabi coupling. It can reach high values (typically 0.5 to 2 kHz), allowing to reach the quasi-2D regime [START_REF] Merloti | A two-dimensional quantum gas in a magnetic trap[END_REF].

• Finally, the temperature of the trapped gas can be adjusted by using an additional RF field ("RF knife") slightly detuned compared to the RF dressing frequency [START_REF] Perrin | Chapter Four -Trapping Atoms With Radio Frequency Adiabatic Potentials[END_REF].

Even though I cited the RF amplitude as allowing to adjust the trap parameters, it has to be changed with caution since it determines the Landau-Zener loss rate in the trap [START_REF] Burrows | Nonadiabatic losses from radio-frequency-dressed cold-atom traps: Beyond the Landau-Zener model[END_REF];

even small changes can lead to prohibitive reduction of the atomic lifetime (which can, for low gradient and sufficiently high Rabi coupling, reach three minutes).

The RF knife

It can be useful to detail a little more the use of the RF knife, as its use in a dressed trap can be quite subtle. The overall idea is to apply a second, weak RF field to the trap with frequency 𝜔 knife , which leads to "double dressing" [START_REF] Barry | Recent developments in trapping and manipulation of atoms with adiabatic potentials[END_REF][START_REF] Garrido Alzar | Evaporative cooling in a radio-frequency trap[END_REF]. It leads not only to an additional dressing on the surface resonant with the knife frequency, but also to multi-photon resonances, especially at 2𝜔 rf -𝜔 knife . In practice, we use a knife frequency slightly higher than 𝜔 rf : 𝜔 knife = 𝜔 rf + 𝛿𝜔 knife , with 𝛿𝜔 knife > 0. This leads to two additional resonances at a distance ±𝛿𝜔 knife from the "main" dressing (see figure 3.4). Supposing that the Rabi coupling at the two secondary resonances is weak, this sets a depth for the trap:

𝑈 max = 𝐹 (𝜔 knife -𝜔 rf -Ω 1 (r)). (3.1) 
This scheme therefore allows to perform RF evaporation ramps in the trap, or to set a maximal temperature to prevent heating. However, even if the Rabi coupling at the knife resonance is small, it is not necessarily homogeneous on the whole trap: in particular, the antenna generating the RF knife field is placed on the side of the trap, and the knife is therefore linearly polarized. This can lead to small anisotropic trap deformations; in particular, when the atoms are placed at the equator of the bubble (in the ring-shaped trap, see part II), the coupling vanishes at two points (see section 2.3.2), and the evaporation will not be uniform in the trap.

The new DDS

During my PhD, we decided to change the DDS used to control the dressing RF field until then [START_REF] Merloti | Condensat de Bose-Einstein dans un piège habillé: modes collectifs d'un superfluide en dimension deux[END_REF]. This decision came from two joined needs:

• The stability of the internal clock of the microcontroller in this DDS wasn't very good, leading to jitter in the timings of the dressing sequences. This was preventing us from using the DDS to generate complex patterns; especially our new DDS allows us to rotate the atoms with the trap itself (cf 6.1.3 and 8.2.1).

we close the switches a few seconds before turning on the RF, during the evaporation ramp, while the atoms are still hot and not too much sensitive.

Control of the DDS

The DDS is controlled by the computer through two connections. The first one, a USB connection, allows us to transfer instructions from the computer to the microcontroller. However, it is slow and unable to give precise control during experimental sequences. It is therefore supported by a digital TTL command controlled by one of the digital outputs of the computer:

the instructions are loaded into the MCU through USB, then triggered by the TTL.

The MCU has two modes of operation:

• "Ramp" mode: we specify the desired output states at specific times and the corresponding time steps, and the MCU computes the whole ramp from these points. This is used, for example, to generate the dressing ramps used to transfer the atoms from the plugged quadrupole trap to the bubble trap.

• "Pattern" mode: this mode allows to perform more complex tasks. A file containing all the successive states the output has to take and the corresponding time steps is loaded into the MCU, which will then read and apply them. This allows to perform arbitrary RF patterns (within the limits of the microcontroller internal memory -around 25 kB), it is used for example to rotate the bubble.

In both cases, we use MATLAB programs to compute and write the scripts that will be send to the DDS during experimental sequences. In one sequence, we can use up to 4 ramps and 4

patterns; however the MCU memory can only keep one of each in memory. Using several ramps or several patterns requires to load them during the sequence, using USB communication. This can take up to several hundreds of milliseconds (depending on the amount of information to transfer) with a jitter in the communication duration of a few milliseconds: it has to happen during non-critical parts of the experimental sequence (e.g. waiting times).

Calibration of the DDS

The command of the DDS is digital: the control of the RF amplitude is done by choosing a value between 0 and 1024 (the DDS has a 10-bit amplitude resolution), which leads to a certain power level at the output of the DDS; the signal is then amplified and sent to antennas with a certain impedance (which depends on the RF frequency -this dependence can modify the relative phase between the antennas). We therefore need a calibration to be able to translate the desired effect on the atoms into the instruction we have to give to the microcontroller. By comparing this picture with the picture of the probe taken in the absence of the atoms (center), one can reconstruct the atomic density and generate a picture of the atoms (right). The quality of the final picture is extremely sensitive to the good alignment of the probe beam between both primary pictures: for that reason, we use a fringe reduction algoritm to compute the probe "ideal" picture [START_REF] Ockeloen | Detection of small atom numbers through image processing[END_REF].

Spectroscopy in the dressed trap

We have the possibility to make a picture of the atoms in the trap (in situ pictures) or after a time-of-flight expansion (TOF): the trap is turned off, and the atoms fall and expand freely during a certain duration before the picture gets taken. In the first case, we measure the space distrubution; in the second, we can measure the momentum distribution (if the TOF is long enough to allow neglecting the initial size of the cloud). Both provide complementary diagnostic tools; we can note that the in situ imaging of the cloud requires to use a high intensity probe: the consequences will be detailed in the next section. However, the measured distribution is integrated along the imaging axis: we thus have two imaging systems that allow us to image the atoms from above (integrated along 𝑧) and from the side (integrated along 𝑥) -these axes are presented on figure 3.3.

High intensity absorption imaging

The description of the interaction of the probe with the atoms can be quite complex if we take into account all possible atomic levels, but quite simple if we consider only a two-level atom, through the Bloch equations. We image the atoms using a resonant laser on the 𝐹 = 2 → 𝐹 = 3 transition, and considering that these are the only levels that get populated significantly the two-level system seems a relevant approach. Let us note 𝜔 at the pulsation of the transition, 𝜆 at the corresponding wavelength, and Γ its width; the absorption cross section and saturation intensity read respectively:

𝜎 0 = 3𝜆 2 at 2𝜋 ; 𝐼 sat = 𝜔 3 at Γ 12𝜋𝑐 2 . (3.2)
Supposing that the probe propagates along the 𝑧 axis, the absorption of the probe beam while it crosses through the cloud will behave as:

d𝐼 d𝑧 = -𝑛(r)𝜎(𝐼)𝐼, (3.3) 
where 𝐼 is the probe intensity and 𝜎(𝐼) the real cross-section, which depends on the probe intensity. In practice, we measure the atomic density integrated along the beam propagation axis: 𝑛(𝑥, 𝑦) = ∫︀ 𝑛(r)𝑑𝑧. In the case of non-saturating imaging (𝐼 ≪ 𝐼 sat ), we find the usual Beer-Lambert absorption law, and 𝑛(𝑥, 𝑦) can be deduced from the intensity of the probe after absorption by the atoms 𝐼 𝑓 and the initial intensity 𝐼 𝑖 following:

𝜎 0 𝑛(𝑥, 𝑦) = -ln [︂ 𝐼 𝑓 (𝑥, 𝑦) 𝐼 𝑖 (𝑥, 𝑦)
]︂ . in order to saturate the atomic transitions. In this latter case, the cross section of the atoms writes:

𝜎(𝐼) = 𝜎 0 𝛼 * + 𝐼/𝐼 𝑠𝑎𝑡 , (3.5) 
where 𝛼 * is a dimensionless correction parameter that is used to take into account the deviation from the ideal two-level system due for example to the polarization of the imaging beam or the presence of other levels. It corresponds to considering an effective absorption intensity 𝛼 * 𝐼 sat instead of its ideal value [START_REF] Reinaudi | Strong saturation absorption imaging of dense clouds of ultracold atoms[END_REF]. In this case, the optical density reads:

𝜎 0 𝑛(𝑥, 𝑦) = -𝛼 * ln [︂ 𝐼 𝑓 (𝑥, 𝑦) 𝐼 𝑖 (𝑥, 𝑦) ]︂ + 𝐼 𝑖 (𝑥, 𝑦) -𝐼 𝑓 (𝑥, 𝑦) 𝐼 sat (3.6) ≡ -𝛼 * 𝑑 log + 𝑑 diff . (3.7)
The first term corresponds to the low-intensity limit (i.e. the Beer-Lambert law); the second term to the high-intensity limit: if the atomic transition is completely saturated, each atom absorbs photons at a rate Γ/2, regardless of the beam intensity, and the atomic density is thus directly proportional to the number of "missing photons".

The parameter 𝛼 * is obtained experimentally, by calibrating the imaging system. A first method to calibrate this parameter has been developed by G. Reinaudi [START_REF] Reinaudi | Strong saturation absorption imaging of dense clouds of ultracold atoms[END_REF], and later extended by L. Chomaz [START_REF] Chomaz | Coherence and superfluidity of Bose gases in reduced dimensions: from harmonic traps to uniform fluids[END_REF]. In this latter approach, the parameter 𝛼 * is allowed to depend on the optical density of the cloud, to correct for possible collective effects. We used this method in our experiment, and observed a weak linear dependence of 𝛼 * with the optical density: 𝛼 * (𝑜𝑑) = 𝛼 0 + 𝛼 𝑠 𝑜𝑑, with 𝛼 0 = 1.89 and 𝛼 𝑠 = 0.39 (the details about this calibration can be found in [START_REF] De | Gaz de Bose en dimension deux : modes collectifs, superfluidité et piège annulaire[END_REF]). In this case, the atomic density can finally be computed through the relation:

𝜎 0 𝑛 = 𝛼 0 𝑑 log + 𝑑 diff 1 -𝛼 𝑠 𝑑 log . (3.8)
Finally, one can note that specific care about the probe pulse intensity and duration has to be taken when working with high intensity probe beams: indeed, when the atoms exchange many photons, they can get accelerated and get out of resonance, or get depumped in 𝐹 = 1, and a too long probe pulse leads to a systematic underestimation of the atom number, as the number of atoms able to scatter photons decreases with time. The details about the choice of the probe parameters can be found in appendix B. One has also to take care that high intensity absorption imaging can amplify parasit fringes in the image with respect to its low-intensity counterpart. Indeed, while a modulation of the probe intensity imprinted on the beam after it interacts with the atoms will be washed out in the logarithmic term of the optical density, it will stay in the differential term. A weak interference effect on the camera, for example, can be highly detrimental for very high intensity pictures while images taken with a lower probe intensity will be less affected.

3.4.2

Experimental setup

Imaging along the horizontal axis

To perform our horizontal images, we use a collimated probe beam with a 2.7 mm waist. After the atoms, it passes through a single telescope with a total magnification 𝐺 = 2.17, and then goes onto a iXon 885D EMCCD camera, from Andor. It has a 1004 × 1002 pixel matrix, with a 8 mm pixel size. A quarter waveplate ensures that the imaging beam is circularly polarized, and a magnetic field aligned with the imaging axis is turned on during the probe pulse to polarize the atoms. A 532 nm polarizing beamsplitter is placed after the cell to deflect the plug beam that is also aligned along this axis and avoids to focus the 10 W beam onto the camera (while letting the 780 nm light through), and an interferential filter prevents any green light to reach the camera. Since the experiments are done with the atoms in the 𝐹 = 1 state, a repumper beam is used to bring the atoms back to 𝐹 = 2 before sending the probe pulse (it is locked on resonance with the 𝐹 = 1 → 𝐹 = 2 transition, see figure 3.2). We use this setup to image the clouds after a long time-of-flight (typically 15 to 25 ms), for example to measure the atomic temperature and optimize the cooling of the atomic cloud.

Imaging along the vertical axis

The vertical imaging setup is made of a pair of telescopes providing a magnification around 8. We use a Luca-R EMCCD from Andor, with a 1004×1002 pixel matrix and a 8 mm pixel size. The resolution of the system is 4 ➭m, allowing us to perform precise profile measurements of in-trap clouds. The whole imaging setup (camera + telescopes) is mounted on a three-axis micrometric translation; this allows, in particular, to adjust the vertical focus plane. The depth of focus of the system is approximately 70 ➭m, comparable or smaller than the vertical radius of the bubble trap: for example, imaging a cloud at the bottom of the bubble or imaging a ring-shaped gas at the equator of the bubble (see part II) requires to shift the position of the system; this also allows us to image atomic clouds from above after a time-of-flight expansion.

Similarly to the horizontal imaging, we use a collimated probe beam with a 0.7 mm waist, circularly polarized using a quarter waveplate, and we use a vertically aligned magnetic field to polarize the atoms during the imaging process. Even with our high-intensity aborption procedure, the density of the cloud can be too large for a correct imaging. To avoid this problem, we use a second repumper beam that is far detuned from the 𝐹 = 1 → 𝐹 = 2 transition (typically 250 MHz away, for a linewidth around 6 MHz), that allows us to repump only a fraction of the cloud. In this way, we can image a cloud with the same profile, with only a multiplicative factor on the atom number (which can be measured by comparing with the horizontal imaging). Using a far-detuned repumper is necessary to achieve a uniform repumping: indeed, the photons of a repumper on resonance would be directly absorbed by the first encountered atoms, and rempump in this way only the front side of the cloud and not its back.

Stern-Gerlach procedure

Shutting down the trap to perform a time-of-flight expansion can require some caution when working with RF-dressed atoms. Indeed, when the atoms are in a dressed trap, their state is a mixture of the different Zeeman substates (see 2.2.1). When the RF is switched off, the atomic state will get projected along the eigenstates of the local bare magnetic field, leading to the separation of the atomic cloud into three clouds in the 𝑚 = -1, 0, 1 Zeeman substates. Therefore, any stray field gradient present while the trap is switched (for example due to residual eddy currents) will accelerate the 𝑚 = 1 and the 𝑚 = -1 clouds along opposite directions. After a long time-of-flight -we usually use 𝑑𝑡 TOF = 23 ms, even a small acceleration during the switch-off can lead to a small separation of these three clouds, with a separation that can be comparable to the cloud's size. When working with high currents in the quadrupole trap, we usually see that at the end of the time-of-flight there are three clouds that overlap (see figure 3.8). To avoid this effect, one can keep on purpose the magnetic gradient on while the RF is switched off: the 𝑚 = 1 and 𝑚 = -1 clouds will then be strongly accelerated, and after TOF the three clouds completely separate: we can then image precisely the 𝑚 = 0 cloud, that has been left unaffected by the gradient.

Introduction

Superfluidity implies rotational properties that are very different from those of a conventional fluid, as described in chapter 1, and a superfluid with a ring geometry is an interesting system as it can bear rotation without necessiting singularities (i.e. vortices) to be present in the bulk of the fluid; the Feynman-Onsager criterion (1.34) here remarquably implies that the circulation of the flow along the ring is quantized. The ring geometry also allows to fully exploit the inviscid character of the superfluid flow, since a superfluid can flow within a ring trap in principle indefinitely (in practice, for experimentally accessible dilute superfluids 10 the lifetime of the flow will be limited by the lifetime of the trapped atoms).

Proposals for realizing ring geometries for ultracold atoms came soon after the experimental achievement of Bose-Einstein condensation. We can distinguish two kinds of proposals: one aims at realizing atom interferometry based on the Sagnac effect, and relies on large size traps (ring radius of typically hundreds of micrometers) [START_REF] Navez | Matter-wave interferometers using TAAP rings[END_REF][START_REF] Gupta | Bose-Einstein Condensation in a Circular Waveguide[END_REF][START_REF] Arnold | Large magnetic storage ring for Bose-Einstein condensates[END_REF]. The ring is then thought as an "atomic waveguide" in which small atomic wavepackets will evolve: a large radius allows to maximize the interferometric sensitivity but having a continuous superfluid gas in the whole trap is then challenging. The second approach aims at studying superfluidity in the presence of rotation as described previously, with traps small enough to allow reaching condensation in the whole system [START_REF] Ryu | Observation of Persistent Flow of a Bose-Einstein Condensate in a Toroidal Trap[END_REF][START_REF] Moulder | Quantized supercurrent decay in an annular Bose-Einstein condensate[END_REF][START_REF] Eckel | Hysteresis in a quantized superfluid 'atomtronic' circuit[END_REF].

In this second approach, the first ring-shaped BEC and the first observation of a persistent flow were achieved in the W.D. Phillips group in 2007 [START_REF] Ryu | Observation of Persistent Flow of a Bose-Einstein Condensate in a Toroidal Trap[END_REF]; a few years later the same group (now led by G.K. Campbell), as well as the Hadzibabic group, studied the flow quantization [START_REF] Moulder | Quantized supercurrent decay in an annular Bose-Einstein condensate[END_REF][START_REF] Murray | Probing the circulation of ring-shaped Bose-Einstein condensates[END_REF]; they also studied intensively the effect of a weak barrier present in the ring [START_REF] Wright | Driving Phase Slips in a Superfluid Atom Circuit with a Rotating Weak Link[END_REF][START_REF] Wright | Threshold for creating excitations in a stirred superfluid ring[END_REF][START_REF] Eckel | Interferometric Measurement of the Current-Phase Relationship of a Superfluid Weak Link[END_REF][START_REF] Kumar | Temperatureinduced decay of persistent currents in a superfluid ultracold gas[END_REF] and demonstrated the hysteretic behavior of the superfluid flow [START_REF] Eckel | Hysteresis in a quantized superfluid 'atomtronic' circuit[END_REF]. More generally, there is now a field of research aiming at realizing "atomtronic" circuits, studying atomic transport properties in a way analogous to the transport of electrons in electronic circuits, in which ring-shaped traps completely find their place, for example trying to realize atomic equivalent of SQUIDs 11 [START_REF] Ryu | Experimental Realization of Josephson Junctions for an Atom SQUID[END_REF][START_REF] Amico | Focus on atomtronics-enabled quantum technologies[END_REF][START_REF] Jendrzejewski | Resistive Flow in a Weakly Interacting Bose-Einstein Condensate[END_REF].

Finally, we can also mention that the ring geometry was used to perform quantum simulation, trying to simulate for example astrophysical systems: the Dalibard group studied in this way the Kibble-Zurek effect [START_REF] Corman | Quench-Induced Supercurrents in an Annular Bose Gas[END_REF][START_REF] Aidelsburger | Relaxation Dynamics in the Merging of 𝑁 Independent Condensates[END_REF] as originally proposed by W. Zurek [START_REF] Zurek | Cosmological experiments in superfluid helium?[END_REF], and the Campbell group recently studied the supersonic expansion of a quantum system [START_REF] Eckel | A Rapidly Expanding Bose-Einstein Condensate: An Expanding Universe in the Lab[END_REF] in analogy with the universe expansion. [START_REF] Hall | The angular acceleration of liquid helium II[END_REF]. as opposed to dense superfluids, i.e. superfluid helium. The dilute character corresponds to A significant part of my work was dedicated to the experimental realization of a ring trap suitable for studying superfluidity in an annular geometry, and this is what I will present in this second part. This part is divided into three chapters: chapter 4 will present the theory of superfluid flow in ring traps and the interest of such a geometry, and then present the method we to use to make the ring trap. Chapter 5 will detail the realization of the trap. An initial version of it had been built by the previous PhD student who worked on the experiment, Camilla de Rossi [START_REF] De | Gaz de Bose en dimension deux : modes collectifs, superfluidité et piège annulaire[END_REF], and my contribution consisted in the improvement of this setup. Finally, chapter 6 will present the production and dectection of a superfluid flow in the annular gas.

Chapter 4

A ring trap for ultracold atoms: how and why

This chapter aims at laying down the theoretical background that will be useful for understanding this part of my thesis. It will be divided into two sections: in a first section, I will present the general theory of ring-shaped superfluids and superfluid flow. The second section will then detail the principle and characteristics of the method we use to obtain a ring-shaped BEC. 1 in a ring trap with radius 𝑟 0 , considering only a 1D case (i.e. a "wire" ring), as described in [START_REF] Dalibard | Cohérence et superfluidité dans les gaz atomiques. Course "Atomes et rayonnement[END_REF]: the position of the atom is defined only by its azimuthal angle 𝜑 and the atomic state will then be written as 𝜓(𝜑). As the ring is closed on itself, 𝜓 is periodic with period 2𝜋: 𝜓(𝜑 + 2𝜋) = 𝜓(𝜑).

Superfluidity in ring traps

Considering a constant potential along the ring, the hamiltonian only contains kinetic energy and writes:

Ĥ = - 2 ∇ 2 2𝑀 = - 2 2𝑀 𝑟 2 0 d 2 d𝜑 2 ; (4.1)
its eigenstates and eigenenergies are then: 

𝜓 ℓ (𝜑) = 1 √ 2𝜋𝑟 0 𝑒 𝑖ℓ𝜑 , 𝐸 ℓ = 2 2𝑀 𝑟 2 0 ℓ 2 .
v(𝜑) = 𝑀 ∇(ℓ𝜑) = 𝑀 𝑟 0 ℓe 𝜑 , (4.3) 
and the angular velocity for state ℓ is therefore:

Ω ℓ = ℓ × 𝑀 𝑟 2 0 (4.4) = ℓ × Ω 𝑞 . (4.5) 
We see that the rotation frequency is quantized, with rotational quantum Ω 𝑞 = /𝑀 𝑟 2 0 . Having the whole cloud rotating at Ω ℓ corresponds to an angular momentum ℓ per atom.

Due to this quantization, we can guess that if the gas undergoes forced rotation at a frequency 𝑛Ω 𝑞 , the corresponding ground state will be the ℓ = 𝑛 state. But then, what happens if the excitation happens somewhere between two quanta?

For a potential rotating at an angular speed Ω rot , it is useful to see what happens in the rotating frame. This can be computed by adding to the hamiltonian the term:

-Ω rot 𝐿 𝑧 = 𝑖 Ω rot d d𝜑 , (4.6) 
and we can then write it as:

Ĥ = 2 2𝑀 𝑟 2 0 (︂ 𝑖 d d𝜑 + Ω rot Ω 𝑞 )︂ 2 - 1 2 𝑀 Ω 2 rot 𝑟 2 0 . (4.7) 
The eigenstates of this new hamiltonian are the same as in the non-rotating state (given by (4.2)), but their energies now write:

𝐸 ℓ (Ω rot ) = 2 2𝑀 𝑟 2 0 (︂ ℓ - Ω rot Ω 𝑞 )︂ 2 - 1 2 𝑀 Ω 2 rot 𝑟 2 0 (4.8) = 2 2𝑀 𝑟 2 0 (︂ ℓ 2 -2ℓ Ω rot Ω 𝑞 )︂ = Ω 𝑞 2 (︂ ℓ 2 -2ℓ Ω rot Ω 𝑞 )︂ . (4.9) 
These energies are shown on figure 4.1 (left). We see that the state with the lowest energy changes every Ω 𝑞 : for a potential rotating between -Ω 𝑞 /2 and Ω 𝑞 /2, the ground state will be ℓ = 0, which is the state corresponding to the absence of rotation; for a rotation between Ω 𝑞 /2 and 3Ω 𝑞 /2, it will be ℓ = 1, rotating at Ω 𝑞 , etc. In other words, the ground state is the state 𝑛 for which 𝑛Ω 𝑞 is the closest to Ω. Interestingly, it means that starting from a ring at rest, an excitation with angular velocity |Ω rot | < Ω 𝑞 /2 will leave the atomic state into the non-rotating state, reminiscent of the critical velocity of a superfluid.

The last term in equation (4.7) corresponds to the centrifugal energy. It is uniform on the whole cloud and therefore doesn't depend on the state ℓ; we can thus remove it by an appropriate change in the energy reference. The energy of state ℓ then simply becomes:

𝐸 ℓ (Ω rot ) = Ω 𝑞 2 (︂ ℓ - Ω rot Ω 𝑞 )︂ 2 .
(4.10)

We then see that the relevant energy spectrum, plotted on figure 4.1 (right), is in fact periodic with respect to Ω rot , with periodicity Ω 𝑞 : 𝐸 ℓ+𝑛 (Ω rot + 𝑛Ω 𝑞 ) = 𝐸 ℓ (Ω rot ).

We see here that the vertical axis is simply "modulated" by the error function, and the electric field cancels as expected in the 𝑧 = 0 plane. The corresponding intensity profile is shown on figure 4.6.

Outside the focal plane, the electric field can be written as [START_REF] Rath | Production and investigation of quasi-two-dimensional Bose gases[END_REF]:

𝐸(r) = 𝐴 𝑥 (𝑥) 2𝑖 √ 𝜋𝑤 𝑧 ∫︁ ∞ 0 sin (︂ 2𝑢 𝑧 𝑤 𝑧 )︂ 𝑒 𝑖 u 2 y z R 𝑒 -𝑢 2 𝑑𝑢, (4.15) 
where 𝑧 𝑅 is the vertical Rayleigh length, equal to 𝜋𝑤 2 𝑧 /𝜆. Here, we exploited the independence of 𝑥 and 𝑧 axes: 𝐴 𝑥 (𝑥) is the field amplitude along the 𝑥 direction. In our case, at the vertical focus point the beam is horizontally collimated 3 , and 𝐴 𝑥 simply writes:

𝐴 𝑥 (𝑥) = √︂ 2𝑃 LS 𝜋𝑤 𝑥 𝑒 -x 2 w 2
x .

(4.16)

The corresponding energy landscape for the atoms then simply writes: 𝑈 sheet (r) = 𝜂 𝐿 |𝐸(r)| 2 , where 𝜂 𝐿 gives the potential shift due to the presence of the dipole beam and depends on the detuning of the beam compared to the 𝐷 1 and 𝐷 2 lines 4 ; in our case it is equal to 𝜂 𝐿 = ℎ × 1.22 × 10 9 Hz • W -1 • ➭m 2 (computed taking into account non-RWA terms [START_REF] Grimm | Optical dipole traps for neutral atoms[END_REF]).

4.2.2

Overall ring characteristics

Oscillation frequencies

Let us now describe the final ring potential. From previous section, we can deduce the vertical trapping frequency: close to 𝑧 = 0, equation (4.14) can be approximated to:

𝐸(0, 0, 𝑧 ≪ 𝑤 𝑧 ) ≈ √︂ 2𝑃 LS 𝜋𝑤 𝑥 𝑤 𝑧 2𝑧 √ 𝜋𝑤 𝑧 .
(4.17)

The resulting trapping frequency in between the two sheets is then:

𝜔 𝑧,0 = 4 𝜋 √︃ 𝜂 𝐿 𝑃 LS 𝑀 𝑤 3 𝑧 𝑤 𝑥 , (4.18) 
and if we slightly go off-center, the local vertical confinement varies as:

𝜔 𝑧 (𝑥, 𝑦) = 𝜔 𝑧,0 × exp (︂ - 𝑥 2 𝑤 2 𝑥 )︂ × [︂ 1 + 𝑦 2 𝑧 2 𝑅 ]︂ -3/4 . (4.19)
From a first-order development, we can then deduce a relation between 𝑤 𝑥 and 𝑧 𝑅 that minimizes the anisotropy of the trap close to the center: 𝑧 𝑅 = √ 3/2𝑤 𝑥 . From equation (4.14), we can also deduce that maximizing the vertical confinement at a distance 𝑟 0 in the 𝑥 direction (for a given laser power) is achieved by choosing 𝑤 𝑥 = 2𝑟 0 .

The radial frequency in the ring is defined by the confinement on the isomagnetic surface, as described in (2.40). Having an azimuthally uniform confinement in the ring -to avoid breaking rotational symmetry -supposes a circular RF polarization (cf 2.3.1), and the radial frequency, if the atoms are at the equator of the bubble, reads 5 :

𝜔 𝑟,0 = 𝛼 √︂ 2 𝑀 Ω 0 . (4.20)
If the atoms are not at the equator, it becomes:

𝜔 𝑟 (𝑧) = 𝜔 𝑟,0 √︂ 1 + 2𝑧 𝑟 𝑏 . (4.21)
Finally, the critical temperature for condensation in the ring trap reads [124]:

𝑘 B 𝑇 𝑐 = (︂ 𝑁 3 𝜔 𝑧 𝜔 𝑟 𝜁(5/2) √ 2𝜋𝑀 𝑟 0 )︂ 2/5 , (4.22) 
where 𝜁 is the Riemann zeta function. Note that this expression can also be recast under the form:

𝑛 1 𝜆 dB = 𝜁(5/2) (︂ 𝑘 B 𝑇 𝜔 )︂ 2 , (4.23) 
with 𝑛 1 = 𝑁/2𝜋𝑟 0 being the one-dimensional density and 𝜔 = √ 𝜔 𝑟 𝜔 𝑧 the geometrical average of the oscillation frequencies. It evidences the fact that the gas is harmonically trapped along two dimensions and uniform along the third one.

Chemical potential and lower dimensions

In a ring with radius 𝑟 0 and trapping frequencies 𝜔 𝑟 , 𝜔 𝑧 and azimuthally uniform confinement, the chemical potential for a 3D gas in the Thomas-Fermi regime reads [START_REF] Morizot | Ring trap for ultracold atoms[END_REF]:

𝜇 3D = 𝜔 √︂ 2𝑁 𝑎 𝜋𝑟 0 . (4.24) 
If the chemical potential and the temperature are both lower than 𝜔 𝑧 , (almost) all atoms are in the vertical ground state and we enter the two-dimensional regime. The chemical potential is then modified and is equal to:

𝜇 2D = 𝜔 (︂ 𝜔 𝑟 𝜔 𝑧 )︂ 1/6 (︂ 3𝑁 𝑎 4 √ 𝜋𝑟 0 )︂ 2/3 . (4.25) 
Our vertical trapping scheme allows reaching high trapping frequencies (𝜔 𝑧 ≈ 2𝜋 × 3 kHz), and we can reasonnably expect to reach the quasi-2D regime with it. We can also, with only a few modifications, increase the radial trapping frequency around 1.5 kHz, which would allow to envision reaching 𝜇 2𝐷 ≤ 𝜔 𝑟 (see 5.4). In this last case, the atoms are almost all in the transverse ground state, entering the quasi-1D regime. The chemical potential then finally becomes:

𝜇 1D = 𝜔 𝑁 𝑎 𝜋𝑟 0 . (4.26) 
5. I remind here that Ω0 is the Rabi frequency at the bottom of the bubble, and the coupling at the equator is Ω0/2.

Chapter 5

Experimental realization of the ring trap

The construction of the ring trap setup started with the previous PhD student who worked on the experiment, Camilla de Rossi [START_REF] De | Gaz de Bose en dimension deux : modes collectifs, superfluidité et piège annulaire[END_REF]. The team succeeded in building the light sheet setup and realized ring-shaped traps; however the obtained annular gases were inhomogeneous or even disconnected when cold enough to be condensed, and could not be used for the studies we wanted to perform. The time spent trying to improve this initial setup led to a good understanding of some of the required tunings, but also to realize that the initial setup did not have the stability and the fine tuning possibilities required to achieve a "good enough" ring, and in the end most of the setup has been reconstructed.

The requirements our ring-shaped gas has to fulfill are the following:

• Ultracold temperature (∼ 100 nK), low enough to reach quantum degeneracy.

• A good regularity: we need the trap to be as smooth as possible to have rotational invariance; in other words we want the potential roughness to be much smaller than the chemical potential in the ring trap.

• A lifetime long enough to perform experiments within the ring trap (several seconds).

This chapter will give the experimental details about the ring setup implementation. It will be divided into three parts: in a first section I will start discussing the double light sheet setup, how we align the optical elements and how we load the resulting potential. The second section will be dedicated to a discussion about the required RF control, which happens to be much more critical than expected. The third section will present the work that was achieved on characterizing the finally obtained trap.

5.1

The double light sheet

Experimental system

Shaping the light sheet beam

The light sheet beam is shaped from a 532 nm, 5 W laser beam generated by a Coherent Verdi V5 monomode laser. The output beam is collimated, with a 1 mm waist. The beam is shaped of the lenses angles, and to synchronously rotate the lenses together (which is a precious possibility, since the relative angle of the cylindrical lenses is very critical -see section 5.1.4).

This whole system will thereafter be called "the cage". It is placed on the main optical table, whereas the rest of the system is placed on a smaller breadboard placed at the height of the science cell; a periscope is placed right after the cage to lift the beam. The phase plate is located on this breadboard; it is mounted on a vertical translation stage Turning on and off the light sheet

The control of the light sheet intensity is achieved by using a quartz acousto-optical modulator 4 (AOM): the 0 th order is sent to a beam blocker and the 1 st order goes to the experiment.

The choice of a quartz AOM comes from the high power (5 W) that goes through: quartz AOMs are not very sensitive to high power (we haven't been able to see any thermal effect), whereas the previous AOM of the setup, with a TeO 2 crystal, had prohibitive thermal effects (large thermal lens effect and fluctuations of the beam position while switching from 0 th to 1 st order). This AOM works at fixed frequency and its angular separation is small (0.6 ∘ ); the separation between both diffraction orders is done in the middle of the cage, almost 1 m away from the AOM. We also considered using a Pockels cell followed by a polarizing beamsplitter instead of an AOM, but we had problems of ringing when switching off the signal.

Installation of the light sheet

The light sheet setup is made of many elements, each of them having many degrees of freedom and needing careful setting and alignment. I will here describe the overall procedure and observables we used to install the system onto the experiment.

Aligning the (almost) naked beam on the atoms

The first step of alignment aims at ensuring that the beam reaches the atomic cloud (whose size is of the order of a few micrometers). This step is achieved with the "naked" beam, without the phase plate and without the cage. Before dismantling the previous light sheet setup (in which we were already able to load the atoms), we recorded its beam path using diaphragms; this allowed us to set back the beam at a position not too far away to the previous one. The spherical lens L 4 is then set in place.

The rough alignment is done using a thermal cloud as a probe: the naked beam is pointed onto an atomic cloud in the quadrupole trap for which we didn't evaporate until the end (in the absence of the plug beam). The cloud is then released from the trap in the presence of the beam: the repulsive effect of the laser can significantly modify the expansion of the thermal cloud, leading to "holes" in the profile after time of flight (see figure 5.2). The position of the beam with respect to the atoms can then be deduced from this profile; since the cloud is hot 2. M-461-7-M from Newport, with a SM-13 vernier micrometer.

3. Mount LM1XY/M from Thorlabs; it was mostly chosen for its compacity. 4. I-M110-2C10B6-3-GH26 from Gooch & Housego, with a A35110-S-1/50-P4K7U driver.

vertical confinement are maximized; we thus try to maximize the vertical expansion of the cloud (i.e. its size after time-of-flight, measured on horizontal images) when released from the trap. Applying a static bias field along the 𝑥 axis of the experiment allows to laterally displace the cloud in the light sheet and helps realizing the alignment (allowing to know in which direction to displace the sheet). Finally, the focus of L 4 can also be improved by performing measurements on the trapped atoms, maximizing the vertical oscillation frequency measured in the double light sheet potential; this measurement is detailed in section 5.3.3.

5.1.3

Loading procedure

Basic principle

The loading scheme is, in its most basic principle, quite simple: we need to align the light sheet with the bottom of the bubble, so that the atoms get caught between the two intensity maxima of the sheet beam while it is turned on. In practice, it is simple to displace the bubble trap: a pair of vertical coils in Helmholtz configuration located above and below the cell generate a vertical bias magnetic field, which shifts the bubble trap vertically. However, the current in the coils cannot change sign: the bubble can be shifted only along one direction with respect to its position at zero bias. Details about its calibration are given in appendix A. On the contrary, displacing the light sheet vertically is quite difficult.

The simplest way to load the atoms into the light sheet and obtain an annular gas is then to first raise the bubble to a height 𝑧 shift while the laser is still off to align the bottom of the bubble with the position of the dipole trap minimum, turn on the sheet (we use a sine ramp), and then lower the bubble so that the atoms get displaced towards the equator of the bubble (see fig. 5.7). We do not necessarily have to bring them up to the equator; the height ∆𝑧 from which the bubble is displaced in the second step allows to control the radius of the obtained ring.

We could also imagine instead lowering the bubble twice during this procedure 6 , but this would lead to important currents in the bias coils in the final situation: ideally, we would like the magnetic bias field to be very small in the final configuration in order to minimize the position noise due to possible current noise in the power supply. For the same reason, the light sheet is aligned slightly above the center of the quadrupole trap 7 , see figure 5.7 leftmost picture.

To check the good respective alignment of the cloud and the double light sheet after lifting the bubble, we turn off the magnetic confinement and shine briefly (0.1 ms pulse) the light sheet; the cloud then evolves during the usual time-of-flight procedure. The cloud doesn't have time to move during the light pulse, but it gets accelerated: its position and shape after the TOF then indicates what was its relative position with respect to the sheet (fig. 5.8). If the alignment is correct, the cloud's center of mass should not be displaced compared to its position in the absence of the light pulse, but it is broadened. On figure 5.8 we see that there are, in fact, three positions corresponding to an absence of average displacement; they can however easily be discriminated: two of them correspond to a maximum of light intensity at the position of the atoms while only one (the good one) corresponds to a minimum of 6. By having the bottom of the bubble above the light sheet before applying the vertical bias.

7. In principle, having the light sheet aligned right on the center of the would be better. However, the shift can be done only along one direction (to lift the bubble), which means that if the zero of the quadrupole is above the sheet the atoms will never be able to reach the equator. Since the light sheet position is subject to small drifts, we take a small safety margin to avoid having to displace the sheet. possible to generate any polarization in the 3D space, even if the antennas are not perfectly orthogonal with each other. We can then use it to correct the effects due to misalignments of the two main dressing antennas, similarly to [START_REF] Sherlock | Timeaveraged adiabatic ring potential for ultracold atoms[END_REF].

Mathematical interlude

Let us consider an arbitrary polarized dressing RF field, with complex polarization 𝜖 = cos Θ cos Θ 𝑧 e 𝑥 + sin Θ cos Θ 𝑧 𝑒 𝑖Φ e 𝑦 + sin Θ 𝑧 𝑒 𝑖Φz e 𝑧 . We want to compute the local coupling in the ring trap, that is, at the equator of the bubble. Defining the position with its azimuthal angle 𝜑, the quadrupole field orientation writes: u = cos 𝜑 e 𝑥 + sin 𝜑 e 𝑦 . From equation (2.47), the local coupling can be written as:

Ω 2 1 (𝜑) = Ω 2 rf 4 [︂ 3 -cos(2Θ 𝑧 ) 2 -𝐴 1 cos(𝜑 + Φ 1 ) -𝐴 2 cos(2𝜑 + Φ 2 ) ]︂ , (5.4) 
where 𝐴 1 , Φ 1 , 𝐴 2 , Φ 2 are equal to:

𝐴 1 = 2 sin(2Θ 𝑧 ) √︁ sin 2 Θ sin 2 (Φ -Φ 𝑧 ) + cos 2 Θ sin 2 Φ 𝑧 , (5.5 
)

Φ 1 = -arctan [︂ cos Θ sin Φ 𝑧 sin Θ sin(Φ -Φ 𝑧 ) ]︂ , (5.6 
)

𝐴 2 = cos 2 Θ 𝑧 √︁ cos 2 (2Θ) + sin 2 (2Θ) cos 2 Φ, (5.7) 
Φ 2 = -arctan [cos Φ tan(2Θ)] .

(5.8)

Even though these formulas are not very appealing, one can find here the two phenomena that are observed:

• A modulation with period 𝜋, corresponding to the "double-moon" asymmetry. It depends very weakly of the tilt Θ 𝑧 of the antennas with respect to the vertical axis, and appears if the polarization is elliptical.

• A modulation with period 2𝜋, corresponding to the observed "lateral tilt", that depends strongly on Θ 𝑧 .

It can then be interesting to look at the limit described previously: a polarization that is circular, but slightly inclinated compared to the quadrupole axis due to a tilt of the antennas, that is: Θ = 𝜋/4, Φ = 𝜋/2, Θ 𝑧 ≪ 1. In this case, the local coupling simplifies to:

Ω 1 (𝜑) = Ω rf 2 √︃ 1 - 4 √ 2 Θ 𝑧 cos(𝜑 -Φ 𝑧 ) (5.9) ≈ Ω rf 2 (1 - √ 2Θ 𝑧 cos(𝜑 -Φ 𝑧 )), (5.10) 
and we find a modulation of the Rabi coupling with an amplitude Ω rf Θ 𝑧 whose orientation corresponds to the orientation of the 𝑧 component of the polarization. Since we work with Ω 1 = 2𝜋 × 100 kHz, even a very small angle Θ 𝑧 can lead to a modulation whose amplitude will be on the order of a few kilohertz.

Choice of the antenna

The third antenna is necessarily very different from the two principal dressing antennas: the presence of the quadrupole coils prevents us to place it just next to the cell and close to the atoms like they are; it has to be placed above or below the coils.

To choose the antenna, we started by computing the expected coupling that a given antenna could create on the atoms (we tried at first to use old antennas that were already available). However, all antennas we tried had an effect on the atoms much smaller than expected, that we interpret as probably coming from a screening effect from the quadrupole coils. In the end, the protocol for choosing the third antenna turned out to be "try an antenna configuration and see whether it is satisfying". The criterion used to validate the antenna is the possibility to balance the atomic density in a ring (cf next section) realized with a high Rabi coupling (> 50 kHz at the equator) for a dressing at low frequency (0.3 MHz) and to balance a ring at low coupling (25 kHz) and high frequency (1.2 MHz) -with the antenna geometries we have the possibility to install on the experiment, we systematically have a loss in admittance for increasing frequency. We finally use an antenna with 4 loops of copper wire, with dimensions 11 × 6.5 cm, placed below the quadrupole coils. Its admittance 10 is 𝑌 = 128 mS when operated at 0.3 MHz and 𝑌 = 32 mS at 1.2 MHz.

Effect and tuning of the third antenna

Testing the third antenna on the "bare" dressed trap is difficult, because it has no effect at the bottom of the resonant ellipsoid (since the polarization of the RF it produces is aligned with the static field at this position). In particular, we cannot generate a dressed trap with this antenna alone and thus cannot calibrate it like we usually do; we haven't found a way to calibrate the antenna yet. We instead use the third antenna as a correction parameter and look for its effect on the ring itself, at the equator of the bubble. The antenna is simply turned on within a given configuration of phase and amplitude, together with both other antennas (tuned so that the trap at the bottom is as circular as possible). We load a ring with the usual protocol, and we see how the addition of the third RF field modifies the obtained ring configuration.

The addition of the third antenna allows us to modify the potential landscape and displace the atoms within the ring. The phase of the antenna controls the direction in which the atoms are attracted (compared to the situation in its absence), and the amplitude changes how much the atoms are displaced in this direction, see figure 5.14.

The tuning of the parameters of the antennas -three amplitudes and two relative phases -is eventually achieved by optimizing the density homogeneity of the ring. A 𝜋 periodic asymmetry, as seen on figure 5.12 or the first ring of figure 5.14, is corrected by adjusting the relative phase and amplitude of the two main antennas; a 2𝜋 periodic asymmetry, as seen on figure 5.13, by adjusting the phase and amplitude of the third antenna. Applying a knife to reduce the chemical potential allows to be more sensitive to potential irregularities (if the cloud is condensed, which we are able to do -cf section 5.3.2) and achieve more precise tuning of the antennas.

We also realized a spectroscopic measurement of the coupling in the ring in the presence of the third antenna (figure 5.15); we saw as expected a strong reduction of the resonance width, confirming the "correction" of the coupling inhomogeneities by this new RF field. [START_REF] Hall | The angular acceleration of liquid helium II[END_REF]. measured with a vector network analyzer.

mogeneities in the ring and would be seen directly on the ring profile at rest. Measurements of the radial frequency with a thermal cloud in the ring, without lowering the knife after the rinc compression ramp, lead to similar results. We intend in a near future to try measuring the radial frequency by exciting the parametric resonance of the ring (an oscillation of the ring radius at 2𝜔 𝑟 should lead to large heating of the gas, even for small amplitude) to see if the results are identical.

Lifetime and heating rate

While working on the optimization of the ring, we realized that the lifetime and the heating rates in our trap were highly unsatisfactory, respectively less than 1 s and up to several microkelvin per second. This led to significant work in order to understand the phenomena leading to losses and heating in the ring.

Characterization of the noise and expected heating

To understand better the heating rate, we tried to separate the two parts contributing to the trap to see where the heating and losses come from:

• We observed the behavior of the "dressed part" of the trap by preparing dressed traps at the bottom of the bubble, with twice less current and Rabi coupling compared to the ring, to mimic the local magnetic gradient and coupling of the ring. In this trap, we observed very large lifetimes (∼ 100 s) and a heating rate around 10 nK • s -1 .

• We tried to isolate the behavior of the double sheet by measuring heating rates in the double sheet plus quadrupole trap (cf section 5.3.3). We measured initially a heating rate ranging between typically 10 and 100 nK • s -1 depending on the laser power, that we were able to completely suppress by a careful mechanical isolation of the experiment (building a better isolation box around the experiment and displacing some fans, see below). The lifetime in this trap after working on heating prevention is around 5 to 10 s for maximal laser power, but it is probably unrelated to the lifetime in the ring trap as the radial confinement is extremly different.

To understand things better, we measured the noise spectrum of the trapping laser: both its power and beam-pointing fluctuations can cause heating of the trapped cloud, and the beam-pointing fluctuations can also lead to radial frequency and position fluctuations (see next section). The power noise can be easily measured using a photodiode; the beam-pointing noise is measured using a quadrant photodiode on which we image the focal point of the beam.

The measured values did not explain the high heating rate we observe in the light sheet and the ring: the heating rates that we deduce from these measurements are extremely low -the main source of noise seems to be the the position noise of the light sheet, leading to 2.2 nK • s -1 at maximal light sheet power. However, we identified two fans that were placed on RF amplifiers to cool them down as a significant source of beam pointing noise 11 (see figure 5.24). We also tried to track other noise sources in the room by looking for modifications in the light sheet position noise power spectrum after turning off different devices but saw nothing significant.

11. Placing the RF amplifiers as close as possible to the experiment to avoid long cables and reduce leakage of RF photons is a good idea, but if they need fans to be cooled, they should not be placed on the optical table to avoid vibrations! trapping frequency [START_REF] Savard | Laser-noise-induced heating in faroff resonance optical traps[END_REF]. Writing 𝜖(𝑡) the relative fluctuations of 𝜈 2 𝑧 : 𝜈 2 𝑧 (𝑡) = 𝜈 2 𝑧 (1+𝜖(𝑡)), this heating rate reads:

Γ 𝐼 = 𝜋 2 𝜈 2 𝑧 𝑆 𝜖 (2𝜈 𝑧 ), (5.13) 
where 𝑆 𝜖 is the power spectral density of the stiffness relative noise (in Hz -1 ), defined as:

𝑆 𝜖 (𝜈) = 4
∫︁ +∞ 0 𝑑𝜏 cos(2𝜋𝜈𝜏 )⟨𝜖(𝑡)𝜖(𝑡 + 𝜏 )⟩;

( 5.14) in the case of light intensity, 𝑆 𝜖 is equal to the relative intensity noise of the beam:

𝑆 𝜖 (𝜈) = 4 ⟨𝐼⟩ 2 ∫︁ +∞ 0 𝑑𝜏 cos(2𝜋𝜈𝜏 )⟨𝐼(𝑡)𝐼(𝑡 + 𝜏 )⟩.
(5.15) Using a photodiode, we measured the relative intensity noise PSD, which is equal to -125 dB • Hz -1 in the 1 kHz-10 kHz range (see figure 5.24). If the light sheet is turned on at maximal power, leading to 𝜈 𝑧 = 2.7 kHz, the corresponding time constant is around 4 × 10 4 s: the effect of power noise should therefore be extremely weak.

• Position fluctuations of the light sheet ("position noise") also generate heating. This heating is linear and depends on the noise at the trap frequency [START_REF] Savard | Laser-noise-induced heating in faroff resonance optical traps[END_REF]. The increase in energy reads:

⟨ Ė⟩ = 1 4 𝑀 𝜔 4 𝑧 𝑆 𝑧 (𝜈 𝑧 ), (5.16) 
where 𝑆 𝑧 is the position noise power spectral density, in m 2 • Hz -1 ; its measurement can be seen on figure 5.24. For a vertical trapping frequency of 2.7 kHz, this noise is approximately -110 dB • ➭m 2 • Hz -1 , leading to an increase in energy of 𝑘 B ×2.2 nK • s -1 .

For a vertical trapping frequency of 1.2 kHz, corresponding to 20% of the maximal laser power, there is a peak on the noise PSD, which is approximately equal to -90 dB; the corresponding expected heating rate is 8 nK • s -1 .

To the heating coming from the light sheet, we can add three "secondary" heating sources that specifically come from the way we achieve our ring:

• The position fluctuations of the light sheet cause fluctuations of the radial trapping frequency, as it changes the local Rabi coupling. From the same reasoning as [START_REF] Savard | Laser-noise-induced heating in faroff resonance optical traps[END_REF], we can guess that it will generate parametric heating sensitive to the position noise at twice the radial frequency, with a heating rate:

Γ 𝑧 = 𝜋 2 𝜈 2 𝑟 (︂ 1 𝜈 2 𝑟 𝜕 (𝜈 2 𝑟 ) 𝜕 𝑧 )︂ 2
𝑆 𝑧 (2𝜈 𝑟 ).

(5.17)

• The same position fluctuations also cause a variation of the ring radius, and thus generate a radial position noise. Again, reasoning like [START_REF] Savard | Laser-noise-induced heating in faroff resonance optical traps[END_REF] suggests a linear heating depending on the sheet position noise at the radial frequency:

⟨ Ė⟩ 𝑧 = 1 4 𝑀 𝜔 4 𝑟 (︂ 𝜕 𝑟 0 𝜕 𝑧 )︂ 2 𝑆 𝑧 (𝜈 𝑟 ).
(5.18)

If the ring is at the equator, the derivative of 𝑟 0 is zero and this heating source then cancels. If the ring is above or below the light sheet (𝑧 ̸ = 0), we have to take into account the evolution of both the ring radius and the radial frequency with 𝑧. We have

𝑟 0 = √︁ 𝑟 2
𝑏 -4𝑧 2 , and its derivative with respect to 𝑧 is then equal to -4𝑧/𝑟 0 . The value of 𝜔 𝑟 (𝑧) is given by expression (4.21), and equation (5.18) becomes:

⟨ Ė⟩ 𝑧 = 4𝑀 𝜔 4 𝑟 (𝑧) 𝑧 2 𝑟 2 0 𝑆 𝑧 (𝜈 𝑟 (𝑧)), (5.19) 
or equivalently:

⟨ Ė⟩ 𝑧 = 4𝑀 𝜔 4 𝑟,0 𝑧 2 𝑟 2 𝑏 1 -2𝑧 𝑟 b 1 + 2𝑧 𝑟 b 𝑆 𝑧 (𝜈 𝑟 (𝑧)) ≃ 𝑧≪𝑟 b 4𝑀 𝜔 4 𝑟,0 𝑧 2 𝑟 2 𝑏 𝑆 𝑧 (𝜈 𝑟 ), (5.20) 
where 𝜔 𝑟,0 = 𝜔 𝑟 (0) is the radial trapping frequency at the equator. Equation (5.17) also becomes:

Γ 𝑧 = 𝜔 2 𝑟 (𝑧) 4𝑟 2 𝑏 1 (︁ 1 + 2𝑧 𝑟 b )︁ 2 𝑆 𝑧 (2𝜈 𝑟 (𝑧)) = 𝜔 2 𝑟,0 4𝑟 2 𝑏 1 1 + 2𝑧 𝑟 b 𝑆 𝑧 (2𝜈 𝑟 (𝑧)).
(5.21)

For our measured values, the corresponding heating rate and lifetime are respectively lower than 0.1 nK • s -1 and on the order of 1 × 10 6 s, and these effects can therefore be completely neglected.

• The power fluctuations of the double light sheet will also lead to a position noise, as the vertical position of the atoms depends on the light sheet power due to the gravitational sag. The vertical position of the atoms in the double sheet compared to its center reads 𝛿𝑧 = -𝑔/𝜔 2 𝑧 . Following the same reasoning as previously, one can expect a linear heating:

⟨ Ė⟩ 𝑧 = 1 4
𝑀 𝑔 2 𝑆 𝜖 (𝜈 𝑟 (𝑧)).

(

5.22)

The corresponding heating rate is on the order of 10 -4 nK • s -1 and is therefore completely negligible. One could also think that if the atoms are not at the equator, the noise on the vertical position will also lead to radial position noise as well as fluctuations of the radial trapping frequency, but since the vertical position fluctuations are extremely weak these noise sources can probably be safely ignored.

Finally, the effect of fluctuations of the dressed trap part can be computed, using again the same principle:

• The frequency noise of the RF source will cause a fluctuation of the ring radius, and a position noise depending on the relative frequency noise of the RF source 𝑆 𝜈 rf ,rel at the radial frequency:

⟨ Ė⟩ 𝛿𝜈 rf = 1 4 𝑀 𝜔 4 𝑟 (𝑧) 𝑟 4 𝑏 𝑟 2 0 𝑆 𝜈 rf ,rel (𝜈 𝑟 ), (5.23) 
⟨ Ė⟩ 𝛿𝜈 rf = 1 4 𝑀 𝜔 4 𝑟,0 𝑟 2 𝑏 1 + 2𝑧 𝑟 b 1 -2𝑧 𝑟 b 𝑆 𝜈 rf ,rel (𝜈 𝑟 (𝑧)) ≃ 𝑧≪𝑟 b 1 4 𝑀 𝜔 4 𝑟,0 𝑟 2 𝑏 𝑆 𝜈 rf ,rel (𝜈 𝑟 (𝑧)).
(

5.24)

To have a heating rate ⟨ Ė⟩ 𝛿𝜈 rf < 𝑘 B × 1 nK • s -1 with our trapping frequencies, the relative frequency noise of the RF source has to be lower than -118 dB • Hz -1 . In addition, if the ring is not at the equator, it will cause fluctuations of the radial trapping frequency, with a resulting parametric heating rate:

Γ 𝛿𝜈 rf = 𝜈 2 𝑟 (𝑧) (︂ 𝑧 𝑟 𝑏 + 2𝑧 )︂ 2 𝑆 𝜈 rf ,rel (2𝜈 𝑟 ), (5.25) 
Γ 𝛿𝜈 rf = 𝜔 2 𝑟,0 𝑧 2 𝑟 2 𝑏 1 1 + 2𝑧 𝑟 b 𝑆 𝜈 rf ,rel (2𝜈 𝑟 (𝑧)) ≃ 𝑧≪𝑟 b 𝜔 2 𝑟,0 𝑧 2 𝑟 2 𝑏 𝑆 𝜈 rf ,rel (2𝜈 𝑟 (𝑧)).
(5.26)

If the initial temperature of the cloud is 100 nK and supposing a vertical offset of 1 ➭m, a heating rate lower than 1 nK • s -1 requires a relative frequency noise lower than -65 dB • Hz -1 (note that this requirement is equivalent to having a time constant larger than 100 second).

• The amplitude noise of the RF source will cause fluctuations of Ω 1 and therefore of the radial frequency, and generate parametric heating with a time constant:

Γ 𝛿𝑎 = 𝜔 2 𝑟 (𝑧) 4 𝑆 a,rel (2𝜈 𝑟 ) = 𝜔 2 𝑟,0 4 
(︂ 1 + 2𝑧 𝑟 𝑏 )︂ 𝑆 a,rel (2𝜈 𝑟 (𝑧)) (5.27)
where 𝑆 a,rel is the amplitude noise of the RF source. Supposing an initial temperature of 100 nK, the relative amplitude noise required to have a heating rate lower than

1 nK • s -1 is -85 dB • Hz -1 .
• The fluctuations of the magnetic gradient will cause both fluctuations of the ring radius and of the trapping frequency, leading to a linear heating:

⟨ Ė⟩ 𝛿𝛼 = 1 4 𝑀 𝜔 4 𝑟 (𝑧) 𝑟 4 𝑏 𝑟 2 0
𝑆 𝛼,rel (𝜈 𝑟 (𝑧)),

(5.28)

⟨ Ė⟩ 𝛿𝛼 = 1 4 𝑀 𝜔 4 𝑟,0 𝑟 2 𝑏 1 + 2𝑧 𝑟 b 1 -2𝑧 𝑟 b 𝑆 𝛿𝛼 (𝜈 𝑟 (𝑧)) ≃ 𝑧≪𝑟 b 1 4 𝑀 𝜔 4 𝑟,0 𝑟 2 𝑏 𝑆 𝛼,rel (𝜈 𝑟 (𝑧)).
(5.29) and a parametric heating with a time constant:

Γ 𝛿𝛼 = 𝜔 2 𝑟 (𝑧) (︃ 1 + 3𝑧 𝑟 b 1 + 2𝑧 𝑟 b )︃ 2 𝑆 𝛼,rel (2𝜈 𝑟 (𝑧)), (5.30) 
Γ 𝛿𝛼 = 𝜔 2 𝑟,0 (︁ 1 + 3𝑧 𝑟 b )︁ 2 1 + 2𝑧 𝑟 b 𝑆 𝛼,rel (2𝜈 𝑟 (𝑧)) ≃ 𝑧≪𝑟 b 𝜔 2 𝑟,0 𝑆 𝛼,rel (2𝜈 𝑟 (𝑧)) (5.31)
where 𝑆 𝛼,rel is the PSD of the relative noise on the gradient (which should correspond to the relative noise of the current supply). The formula giving the linear heating rate is the same than in the case of RF frequency fluctuations and the requirement on the relative fluctuations is therefore the same: it has to be lower than -118 dB • Hz -1 for the linear heating to be lower than 1 nK • s -1 . For the parametric heating, a time constant larger than 100 s requires a relative noise below -95 dB • Hz -1 .

Due to the low heating rate observed in the dressed trap, we however did not investigate these noise sources in detail for now.

Lifetime in the ring

After the heating sources, it is also useful to make the list of the possible origins for atom losses. There are six possible loss sources in our trap, among which two are susceptible to affect us:

• Tunnelling through the light sheet should not be a problem, as the barrier height is two orders of magnitude larger than any other energy in the system, and the barrier is also quite thick due to the slow intensity decay of the light sheet for large 𝑧.

• Collisions with the background gas set the ultimate lifetime of atoms in the trap; in ultra-high vacuum (10 -11 mbar in the science cell) they are normally negligible -the corresponding lifetime is several minutes and is not limiting in our experiments.

• Photon scattering from the light sheet can lead, in addition to heating, to atom losses by a change in the atomic internal state. The scattering rate, given by equation (5.12), is however very small due to the choice of a blue-detuned double sheet, and this effect is negligible.

• Landau-Zener losses come from non-adiabatic following of the dressed atomic levels (see 2.1.3); a detailed theoretical description of their behavior can be found in [START_REF] Burrows | Nonadiabatic losses from radio-frequency-dressed cold-atom traps: Beyond the Landau-Zener model[END_REF]. They depend extremely strongly on the local Rabi coupling, almost creating a threshold effect: if Ω 1 is too low, the lifetime will be extremely small, if it is high enough the corresponding lifetime will be very large and the atomic lifetime will be set by other effects (a modification of Ω 1 by a few 10% can be enough to go from one regime to the other one). For a magnetic gradient 𝑏 ′ = 178 G • cm -1 horizontally, we usually work with Ω 1 = 2𝜋 × 50 kHz (i.e. Ω 0 = 2𝜋 × 100 kHz at the bottom of the bubble). At maximal gradient (𝑏 ′ = 214 G • cm -1 ), while the lifetime is only 0.4 s for a 40 kHz coupling, it reaches several seconds for a coupling of 56 kHz; on the other hand, going from 56 kHz to 63 kHz had no aditional effect on the lifetime, which then appears to be limited by three-body losses. We might note that on our measurements the minimum value to have in the ring appears higher than the minimum value that would be required in an equivalent (i.e. same local gradient and local Rabi coupling) bubble trap. Additional work to understand this effect is planned in the near future

• Three-body recombination leads to the loss of the corresponding atoms from the trap. They depend only on the local atomic density, and set a definitive limit on the atom number we can expect with a given trapping frequency. The decay reads [START_REF] Burt | Coherence, Correlations, and Collisions: What One Learns about Bose-Einstein Condensates from Their Decay[END_REF]:

d𝑁 d𝑡 ⃒ ⃒ ⃒ ⃒ 3𝑏 = -𝐾 3 ∫︁ 𝑑𝑉 𝑛(𝑡) 3 , (5.32) 
where the coefficient 𝐾 3 has been measured by Burt et al. [START_REF] Burt | Coherence, Correlations, and Collisions: What One Learns about Bose-Einstein Condensates from Their Decay[END_REF] to be around 6 × 10 -30 cm 6 • s -1 for a condensed gas of 87 Rb in the 𝐹 = 1, 𝑚 = -1 sublevel (for a thermal gas, it is 6 times larger due to bunching effects). In the ring trap and supposing that the gas is in the 3D regime, expression (5.32) can be rewritten:

d𝑁 d𝑡 ⃒ ⃒ ⃒ ⃒ 3𝑏 = -𝐾 3 (︂ 𝑀 𝜔 𝑟 𝜔 𝑧 4𝜋 2 𝑟 0 𝑔 )︂ 𝑁 2 (𝑡), (5.33) 
and in the absence of other loss sources, 𝑁 (𝑡) therefore reads:

𝑁 (𝑡) = 1 𝐾 3 (︁ 𝑀 𝜔r𝜔z 4𝜋 2 𝑟 0 𝑔 )︁ 𝑡 + 1 𝑁 (0)
.

(5.34)

5.4

Future developments: towards lower dimensions I will conclude this chapter by a discussion about lower-dimensional regimes (2D and 1D ring).

The possibility to access these regimes is one of the main interests of our method for realizing ring traps, and they now seem reasonably accessible; I will discuss here the conditions and methods to reach them.

Towards quasi-2D rings

The 2D regime we can expect to reach is the "saturnian ring" configuration (the "wrapped sheet" configuration would require a radial trapping frequency significantly larger than the vertical trapping frequency and would be much more difficult to reach). Reaching this quasi-

2D regime requires a chemical potential and a temperature smaller than the vertical trapping frequency. The maximal vertical frequency we can achieve is 2.7 kHz. For the moment, we lack a proper measurement of the ring temperature: the ring profile measured after time-of-flight indicates that the temperature of the gas is below 280 nK as the gas stays condensed with 2 × 10 4 atoms (using formula (4.22) we estimate the critical temperature for this number of atoms to be around 280 nK), but this doesn't tell us whether the temperature is lower than the vertical trapping frequency (it corresponds to 𝑘 B 𝑇 /ℎ ≈ 5.8 kHz). The chemical potential in the ring ranges between 1.5 and 4.5 kHz depending on the number of condensed atoms in the trap and the vertical trapping frequency 12 , meaning that we should be very close to the two-dimensional regime. We can try to reduce it further by removing atoms from the trap or increasing the ring radius to lower the density. A difficulty can come from keeping a reasonable heating rate (a high power in the light sheet comes with more heating), and low enough three-body losses. We also have to ensure a good enough homogeneity of the potential:

the lower the chemical potential, the better we need the potential to be homogeneous.

Towards quasi-1D rings

Reaching the quasi-1D regime requires the chemical potential and the temperature to be also smaller than the radial trapping frequency. The most favorable configuration to reach this regime corresponds to 𝜔 𝑧 = 𝜔 𝑟 . In this case, using equation (4.24), comparing the chemical potential to the trapping frequencies leads to the condition for reaching the quasi-1D regime:

2𝑁 𝑎 𝜋𝑟 0 1, (5.35) 
which appears to be independent from the trapping frequencies. It can even be simply expressed as a condition on the atomic linear density: 5.36) equal to 47 atoms per micrometer. For a ring with radius 20 ➭m, it corresponds to approximately 6000 atoms, small but detectable. However, it might be useful to increase the chemical potential in order to reduce the relative effect of potential inhomogeneities, which would require to increase the trapping frequency (𝜇 1𝐷 = 2 𝜔𝑛 1 ), by increasing the magnetic gradient.

𝑛 1 = 𝑁 2𝜋𝑟 0 1 4𝑎 , ( 
A stronger trapping would also make it easier to have a temperature lower than 𝜔/𝑘 B ; it will however increase the three-body losses and there will probably be, again, a tradeoff to 12. µ3D ∝ √ N ωzωr, see (4.24). make. By increasing the magnetic gradient and keeping Ω 2 0 /𝑏 ′ constant to avoid a too strong increase of the Landau-Zener losses, we can expect to achieve up to 𝜔 = 2𝜋 × 1.7 kHz with only minor modifications of the experimental system (by tripling the magnetic gradient, see later).

Coil heating tests

To increase 𝑏 ′ , we need to increase the current in the quadrupole coils. This requires a more powerful current supply, and also to be sure that the coils will be able to sustain the target current. We therefore made heating tests to estimate how much current we can put in the coils without risking to damage them.

Realizing heating tests on the real coils would be very dangerous, but we have a spare coil built on the same model than the ones we have on the experiment, on which we could perform tests. To try getting as close as possible to the real system, we did the tests with a pair of additional coils in series with the coil we wanted to test to have similar total electric resistance; all coils were water-cooled similarly to the real experiment, with a water flow adjusted to be identical (0.9 L • min -1 ); the supply cables were also identical (same cable) to the ones we have on the experiment. We used the power supply of the magnetic transport coils 13 to realize the tests; it can deliver up to 400 A and 15 V. Temperature probes were installed on most elements: supply cables, coil, copper wire (downstream from the coil), junction between coil and supply wires.

In a first series of measurements, we measured the equilibrium temperature of the elements for a given current, once the system equilibrated. The first element to change will be the supply cable, which heats up a lot; to perform the experiments beyond 160 A we had to use two cables in parallel to avoid it heating too much. Finally, we were able to put 300 A in the system without suffering too much heating of the different elements: +40 ∘ C in the bare wire, +30 ∘ C in the wires and +25 ∘ C in the coils, see figure 5.26. The limiting factor was then the junction between the two parallel supply cables, meaning that we will have to take care of the junction between the cable and the coil and the real experiment. Using a thermal camera could be useful to track local overheating points in the solderings.

A second set of experiments aimed at measuring the rising and lowering times of the elements' temperature. Indeed, in the real experiments we want to perform, the current in the coils will have to be very high only during a few seconds, with a duty cycle around one minute, meaning that the temporal behavior can be important. These measurements show two categories of behavior:

• For the elements made of hollow wire and water-cooled, the time constants are around 5 to 10 seconds, meaning that the steady state can be achieved during one experimental sequence. However, these elements do not suffer too much heating.

• for the larger, uncooled elements (cables and junctions), the time constants are around a few minutes, meaning that the steady state will never be reached during one experimental sequence. We thus expect that when cycling experiment, they will reach a steady state with a heating proportional to the duty cycle. We could confirm this behavior by applying current pulses lasting 10 s every two minutes and observed that the heating indeed stabilized around 10/120 of the value measured for continuous current.

13. SM15-400 from Delta Elektronika.

Chapter 6

Preparation of a persistent flow

Once a satisfying annular gas has been achieved in the ring trap, the next step to study superfluid flow is developing the ability to both generate and detect it. This has been done

for our ring, and this chapter will describe it. Its first part will describe the three methods we implemented (or work at implementing) to generate rotation: the first one consists in putting into the ring a local defect that will then be displaced to stir it; the second one relies on imprinting directly onto the gas the phase we want the superfluid to acquire, and the third one consists in rotating the whole "dressed part" of the ring trap. The second part of this chapter will then describe the detection of the obtained flow.

6.1

Experimental tools for rotating the ring

The laser stirrer

A first method that allows to generate superfluid flow in a ring is to focus onto it a small blue-detuned laser beam whose position can be controlled, allowing in this way to displace an obstacle within the fluid [START_REF] Wright | Driving Phase Slips in a Superfluid Atom Circuit with a Rotating Weak Link[END_REF][START_REF] Wright | Threshold for creating excitations in a stirred superfluid ring[END_REF][START_REF] Dubessy | Critical rotation of an annular superfluid Bose-Einstein condensate[END_REF]. Since the excitation is local, it is also a useful tool to probe the superfluid critical velocity and has been widely used in that purpose [START_REF] Raman | Evidence for a Critical Velocity in a Bose-Einstein Condensed Gas[END_REF][START_REF] Desbuquois | Superfluid behaviour of a two-dimensional Bose gas[END_REF][START_REF] Wenzel | Anisotropic Superfluid Behavior of a Dipolar Bose-Einstein Condensate[END_REF].

We have implemented and tested such a system on our experiment, that I will describe in the following.

Experimental system

The principle of the system is quite simple: a blue-detuned laser beam goes through a pair of successive crossed acousto-optical modulators 1 (AOMs), each of them deflecting the beam (we use the first order of both AOMs) from a certain angle that depends on its applied frequency, and the beam is subsequently focused onto the atomic gas. Adjusting the frequency of the AOMs allows to modify the impact position onto the atoms, and thus to displace the stirring beam within the gas (figure 6.1).

We want the final spot to be highly focused (around 5 ➭m waist), and the required power is rather weak (less than 10 mW); a leakage of the ALS laser beam used to generate the plug (𝜆 = 532 nm) is then sufficient. For space reasons, there is 20 cm between the last lens of

Alignments

Our vertical imaging setup allows us to monitor the profile of the stirrer beam at the position of the atoms (see fig. 6.3a). An interference filter can be placed onto the imaging axis to allow the 780 nm imaging light to pass while preventing the 532 nm light to reach the camera, or removed to allow taking pictures of the green light. In the first case, we can image the atoms in the presence of the stirrer beam, hoping for example to see a hole in the atomic cloud (6.3a). In the second case this is not possible: the stirrer beam is much more focused than the probe beam and saturates the camera if its dynamical range is chosen to image properly the probe. However, it allows to directly image the stirrer beam (figure 6.3b) and compare its position with the position of the atoms measured on pictures taken in the absence of the stirrer.

Aligning the stirrer onto the atoms can then be achieved by using this camera: we align the beam on the position where the atoms would be detected (without the filter). The stirrer beam is then roughly aligned, but still needs careful tuning: after this step, we usually still do not hit the atoms with the stirrer beam.

The fine alignment is then done taking in situ pictures of an atomic cloud at the bottom of the bubble in presence of the beam (with the filter). The first step is to detect the effect of the beam onto the atoms. If the stirrer is left static and turned on with a very high power (around 10 mW, which corresponds to a light shift on the atoms caused by the stirrer of approximately 100 kHz), the cloud is then usually slightly displaced, indicating the relative position of the stirrer compared to the atomic cloud (when the power is large, the beam has an effect even away from its central position, possibly due to the presence of a diffuse light pedestal around the "real" beam). It is also possible to describe circular trajectories at high frequency and look for the heating induced onto the atoms. Once we detect the effect of the stirrer, we try to pierce the cloud with it and adjust the beam position until we hit the center of the cloud (see figure 6.3b). This displacement can be done by changing the frequencies determining the impact point or the angle of the dichroïc mirror sending the beam onto the atoms. The former allows to be easily reproducible and more precise displacements, but the latter can be required to ensure that the cloud is in the center of the region accessible to the stirrer (limited by the AOM's bandwidth).

Beam focus and beam waist measurement

We can also try to use this vertical camera to focus the beam onto the atoms: it is possible to scan the vertical position of the camera to measure the beam profile, and compare the focal point obtained in this way with the camera position for which the imaging focus is correct.

The longitudinal position of the last lens can then be adjusted to focus the stirrer properly 8 .

These measurements seem to display a weak astigmatismn for the stirrer beam, as well as optical aberrations away from the focal point; the measured waist is around 8 ➭m. They have, however, to be taken with caution because the vertical camera was built initially to image 780 nm light, and the lenses were chosen with a coating (B coating from Thorlabs) that has a very weak reflectance for 780 nm light (0.2% announced by the manufacturer) but significant reflectance at 532 nm (around 9%), which limits the trust we can put into these images; we also noticed afterwards that some of the pictures used to perform the measurements were saturated, therefore increasing the measured waist. We can also note that due to the finite 8. However, when the screw blocking the lens translation is loosened there is some backlash on the lens lateral position, and the beam lateral alignment then has to be done again.

Phase imprinting with a SLM

Another commonly used method to generate circulation in a ring trap relies on phase imprinting [START_REF] Ryu | Observation of Persistent Flow of a Bose-Einstein Condensate in a Toroidal Trap[END_REF][START_REF] Moulder | Quantized supercurrent decay in an annular Bose-Einstein condensate[END_REF]. It has the advantage of creating a deterministic flow into the ring with a good fidelity.

The current experimental implementations of such a scheme rely on Raman two-photon transition where one of the photons carries orbital angular momentum (coming from a Laguerre-Gauss beam) and the other one does not (coming from a gaussian beam). Such a method requires internal states between which the transition is driven, usually Zeeman substates: even though this method is very appealing, it is therefore very difficult to implement in a magnetic trap (and even more difficult in a RF-dressed trap, since the atoms are not in a single state but in a mixture of states).

We are currently trying to implement a setup that would allow us to similarly imprint a given phase onto the atoms, but relying on a beam with an intensity helix rather than a phase helix (i.e. a Laguerre-gaussian beam). The idea is to shine onto the atoms a laser beam with a position-dependent intensity 𝐼(r) and corresponding position-dependent potential 𝑈 (r). If the beam is turned on during a short time 𝜏 , the atoms will locally acquire a phase proportional to the pulsed potential:

𝜓(r, 𝜏 ) = 𝜓(r, 0)𝑒 -iU (r)τ .

(6.1)

If we imprint in this way a ℓ × 2𝜋 phase onto the atoms, we should be able to directly imprint the desired ℓ flow level.

In practice, the finite resolution of the optical system may however prevent from directly using such a scheme: the phase gradient is indeed applied on most of the ring, but instead of a local 2𝜋 phase jump, it will imprint a 2𝜋 phase ramp whose size will be the optical resolution.

This ramp will then create a strong flow propagating against the one we want to create and cancel the effect of the prepared phase gradient (see figure 6.5 c). For this reason, we intend to use the stirrer beam described in previous section to deplete the region where the phase jump should happen while the intensity helix is applied. We have studied the dynamics of the flow after the barrier is removed and shown that the ℓ = 1 -3 states can be prepared efficiently [START_REF] Kumar | Producing superfluid circulation states using phase imprinting[END_REF].

The intensity helix will be generated by a Spatial Light Modulator (SLM) used in "mask mode": the SLM is placed between a pair of crossed polarizer analyzer, and locally rotates the beam polarization to determine the intensity that will go through the analyzer: the SLM imprints an arbitrary spatial polarization profile, which then becomes an arbitrary intensity profile after the analyzer. In the end, such a setup can in principle be used to generate arbitrary phase profiles. Beyond the idea of imprinting a given circulation, the possibility of imprinting any phase profile onto the atoms would be useful for example to generate and study solitons [START_REF] Jezek | Dark-soliton collisions in a toroidal Bose-Einstein condensate[END_REF], or to study the recombination of phase domains and Kibble-Zurek mechanism (similarly to [START_REF] Aidelsburger | Relaxation Dynamics in the Merging of 𝑁 Independent Condensates[END_REF], but with controlled instead of random phases). The SLM has been tested in the lab and its use has been theoretically investigated during the last two years; it is now ready to be set up onto the experiment. Experimental details and numerical simulations can be found in [START_REF] De | Gaz de Bose en dimension deux : modes collectifs, superfluidité et piège annulaire[END_REF][START_REF] Kumar | Producing superfluid circulation states using phase imprinting[END_REF].

Rotating the bubble trap

A last method for setting the atoms into rotation consists in deforming and rotating the trap itself, similarly to a "rotating bucket" experiment. More precisely, we would like to rotate the radial part of the confinement, which happens to be the dressed trap.

Superfluidity implies the irrotationality of the velocity field of a fluid. However, rotation is still possible if quantized vortices are introduced in the superfluid, creating density zeros around which the fluid is able to rotate [START_REF] Feynman | Chapter II Application of Quantum Mechanics to Liquid Helium[END_REF][START_REF] Vinen | The detection of single quanta of circulation in liquid helium II[END_REF][START_REF] Yarmchuk | Observation of Stationary Vortex Arrays in Rotating Superfluid Helium[END_REF][START_REF] Onsager | Statistical hydrodynamics[END_REF][START_REF] Williams | Photographs of Quantized Vortex Lines in Rotating He II[END_REF]. When many of these vortices are present, they arrange into regular vortex arrays, allowing the superfluid to mimic a solid-body rotation velocity field, leading to the "coarse-grained" velocity regime [START_REF] Abo-Shaeer | Observation of Vortex Lattices in Bose-Einstein Condensates[END_REF].

Even though vortices are quantum objects, these effects can still be explained by a classical field description of the wavefunction of the fluid [START_REF] Fetter | Rotating trapped Bose-Einstein condensates[END_REF]. When the rotation gets even faster however, the quantum nature of the wavefunction cannot be neglected anymore, and the superfluid should enter exotic regimes like the Lowest Landau Level regime [START_REF] Schweikhard | Rapidly rotating Bose-Einstein condensates in and near the lowest Landau level[END_REF], analogue to the quantum Hall effect for a supraconductor. Strongly correlated states like Laughlin states can even be reached when the number of vortices becomes comparable to the number of particles in the fluid [START_REF] Cooper | Rapidly rotating atomic gases[END_REF]. On the experimental side, the ability to produce and study increasingly fast rotating dilute superfluids was developed very rapidly after the realization of the first gaseous BECs [START_REF] Matthews | Vortices in a Bose-Einstein Condensate[END_REF][START_REF] Madison | Vortex formation in a stirred Bose-Einstein condensate[END_REF][START_REF] Abo-Shaeer | Observation of Vortex Lattices in Bose-Einstein Condensates[END_REF][START_REF] Schweikhard | Rapidly rotating Bose-Einstein condensates in and near the lowest Landau level[END_REF][START_REF] Engels | Observation of Long-Lived Vortex Aggregates in Rapidly Rotating Bose-Einstein Condensates[END_REF], but after 2005 the experimental efforts concentrated on other aspects of the vortex physics [START_REF] Zwierlein | Vortices and superfluidity in a strongly interacting Fermi gas[END_REF][START_REF] Hadzibabic | Berezinskii-Kosterlitz-Thouless crossover in a trapped atomic gas[END_REF][START_REF] Neely | Characteristics of Two-Dimensional Quantum Turbulence in a Compressible Superfluid[END_REF][START_REF] Donadello | Observation of Solitonic Vortices in Bose-Einstein Condensates[END_REF][START_REF] Mark | Motion of a Solitonic Vortex in the BEC-BCS Crossover[END_REF][START_REF] Woo | Observation of von Kármán Vortex Street in an Atomic Superfluid Gas[END_REF].

A promising method for reaching some of the fast rotating regimes is to use anharmonic trapping [START_REF] Fetter | Rotating vortex lattice in a Bose-Einstein condensate trapped in combined quadratic and quartic radial potentials[END_REF]. Indeed, one of the major experimental difficulties when entering fast rotating regimes is that in the usual case of harmonic traps, the centrifugal force compensates or overcomes the trapping force, leading to a divergence in the size of the gas when the rotation frequency approaches the trapping frequency, or even to the expulsion of all atoms if the rotation frequency exceeds the trapping frequency [START_REF] Fetter | Rotating trapped Bose-Einstein condensates[END_REF]. A stronger than harmonic confinement ensures to maintaining the atoms in the trap even if the rotation frequency is higher than the trapping frequency. The effective potential in the rotating frame then takes the shape of a Mexican hat and the gas becomes annular. If the rotation is large enough, all vortices then migrate within a central density hole and the gas becomes effectively 1D, leading to a stable, "giant" vortex [START_REF] Kasamatsu | Giant hole and circular superflow in a fast rotating Bose-Einstein condensate[END_REF][START_REF] Kavoulakis | Rapidly rotating Bose-Einstein condensates in anharmonic potentials[END_REF][START_REF] Fetter | Rapid rotation of a Bose-Einstein condensate in a harmonic plus quartic trap[END_REF][START_REF] Correggi | Giant vortex phase transition in rapidly rotating trapped Bose-Einstein condensates[END_REF]. This regime has been approached in 2004 in the group of J.

Dalibard [START_REF] Bretin | Fast rotation of a Bose-Einstein condensate[END_REF], although without reaching a vanishing density in the center.

The experiments described in this part result from a proposition of Romain Dubessy, who suggested to stir a cloud at the bottom of the bubble in order to achieve a giant vortex: indeed, as the bubble trap is anharmonic, it could be a suitable system to explore these regimes. The initial attempts, described at the beginning of chapter 8, were unsuccessful, but the results were surprising enough to trig some studies in order to understand better our results, which finally led us to very interesting (and unexpected) results, among which the achievement of a " dynamical" ring-shaped gas.

This part consists of two chapters: chapter 7 details the different rotation regimes of a superfluid and introduces from a theoretical point of view some of the techniques we used to study fast-rotating gases in bubble traps. Chapter 8 presents the experimental results, from the first attempts to the realization of fast-rotating dynamical rings, as well as the results we obtained on the characterization of such a system.

(1.34), that I recall here:

∮︁ 𝒞 v(r, 𝑡) • dl = 𝑀 ∆ 𝒞 𝑆 = ℓ × 2𝜋 𝑀 , ℓ ∈ Z. (7.1) 
Computing this relation on a circle with radius 𝑟 centered on the vortex leads to the velocity field it creates:

v = ℓ 𝑀 𝑟 e 𝜑 . (7.2) 
In principle, the "charge" of the vortex ℓ can take any integer value, but a vortex with |ℓ| > 1 is unstable and spontaneously splits into several singly-charged vortices [START_REF] Shin | Dynamical Instability of a Doubly Quantized Vortex in a Bose-Einstein Condensate[END_REF], and we will only consider ℓ = ±1 in this chapter.

The Stokes' theorem then leads to a singular vorticity localized at the position of the vortex:

∇ × v = 2𝜋 𝑀 𝛿(r)e 𝑧 . (7.3) 
Since the velocity field diverges for 𝑟 → 0, the density has to vanish in this limit to keep a finite kinetic energy. Comparing the kinetic energy:

𝐸 𝑘 = 1 2 𝑀 v 2 = 2 2𝑀 𝑟 2 (7.4) 
with the chemical potential 𝜇 allows to estimate the typical size over which the density will vanish, 𝑟 𝑣 = √︀ 2 /2𝜇𝑀 , which happens to be the healing length 𝜉. We can note that 𝜉 corresponds to the distance to the vortex below which the flow becomes supersonic (the sound velocity being given by (1.25)). More accurately, Gross-Pitaevskii simulations lead to a root-mean-square core radius around 𝑟 𝑣 = 1.94𝜉 [START_REF] Schweikhard | Rapidly rotating Bose-Einstein condensates in and near the lowest Landau level[END_REF].

Many vortices: the coarse-grained vorticity approximation

Let us now consider the case of a rotating trapped gas in which a significant number of vortices are present. One can show [START_REF] Fetter | Rotating trapped Bose-Einstein condensates[END_REF] that for a given angular momentum 𝐿 𝑧 , the velocity configuration that minimizes the energy of a rotating fluid is the solid-body rotation v sb = Ω × r, where Ω is given by the classical solid-body moment of intertia: 𝐿 𝑧 = Ω × 𝑀 ⟨𝑟 2 ⟩. This configuration, however, implies ∇ × v = 2Ω and is unachievable for a superfluid whose flow is irrotational.

Nevertheless, when several vortices are present in the superfluid, the way they distribute within the fluid allows many configurations for the velocity field, and the lowest energy configuration is the one that mimics the solid body rotation. For a sufficiently large amount of vortices, one can make the assuption of a "coarse-grained" vorticity, where the vortices are uniformly distributed within the condensate with a surface density [START_REF] Feynman | Chapter II Application of Quantum Mechanics to Liquid Helium[END_REF]:

𝑛 𝑣 = 𝑀 Ω eff 𝜋 , (7.5) 
where Ω eff is defined from the mean angular momentum per atom 𝐿 𝑧 as:

Ω eff = 𝐿 𝑧 𝑀 ⟨𝑟 2 ⟩ . (7.6) 
As a useful formula, I recall here that for a harmonically trapped BEC, ⟨𝑟 2 ⟩ can be expressed from the Thomas-Fermi radii [START_REF] Recati | Overcritical Rotation of a Trapped Bose-Einstein Condensate[END_REF]:

⟨𝑟 2 ⟩ = 𝑅 2 𝑥 + 𝑅 2 𝑦 7 (7.7) 
Each vortex having a singular vorticity ℎ/𝑀 , the local vorticity is then 𝑛 𝑣 ℎ/𝑀 , i.e. ∇ × v = 2Ω eff e 𝑧 , and we find the expected solid-body rotation. Note that Ω eff can always be defined, even for a amount angular momentum per particle -however, for small numbers of vortices, the flow will of course significantly deviate from the solid-body rotation.

From the vortex density 𝑛 𝑣 one can then deduce the area per vortex 𝑛 -1 𝑣 = 𝜋 /𝑀 Ω eff ≡ 𝜋𝑙 2 and define the "magnetic length" (by analogy with the quantum Hall effect):

𝑙 = √︃ 𝑀 Ω eff , (7.8) 
which would correspond to the radius of a circular cell: the intervortex separation is then approximately 1 2𝑙.

The total number of vortices in the superfluid is then equal to:

𝑁 𝑣 = 𝑅 2 ⊥ (Ω eff ) 𝑙 2 , (7.9) 
where 𝑅 ⊥ increases with Ω eff due to the centrifugal force.

Computing the ground state of the system is then relevant in the frame rotating at Ω eff .

In this referential, the total energy of the system in a configuration given by the wavefunction 𝜓 writes [START_REF] Fetter | Rotating trapped Bose-Einstein condensates[END_REF]:

𝐸[𝜓] = ∫︁ 𝑑𝑉 [︂(︂ 1 2 𝑀 v 2 + 𝑉 ext )︂ |𝜓| 2 + 1 2 𝑔 int |𝜓| 4 ]︂ - ∫︁ 𝑑𝑉 𝑀 Ω eff e 𝑧 • r × v|𝜓| 2 , (7.10) 
where we neglected the kinetic energy associated to the spatial variation of the condensate density, i.e. in the Thomas-Fermi approximation (not that this includes the kinetic energy associated to the density variation in the vortex core). Considering the hypotheses we made on 2D superfluidity and using the definition (7.6), this energy can be reexpressed as:

𝐸[𝜓] = ∫︁ 𝑑𝑉 [︂(︂ 1 2 𝑀 v 2 -𝑀 Ω 2 eff r 2 + 𝑉 ext )︂ |𝜓| 2 + 1 2 𝑔 int |𝜓| 4 ]︂ , (7.11) 
and one can finally split the energy functional into two parts, as:

𝐸[𝜓] = ∫︁ 𝑑𝑉 [︂(︂ 𝑉 ext - 1 2 𝑀 Ω 2 eff r 2 )︂ |𝜓| 2 + 1 2 𝑔 int |𝜓| 4 ]︂ + ∫︁ 𝑑𝑉 1 2 𝑀 (v -v sb ) 2 |𝜓| 2 .
(7.12)

The first term corresponds to the energy of the system in the solid-body configuration, and the second one to the additional kinetic energy of the deviation to this solid-body rotation (note that it is always positive, as the solid body rotation configuration is the one that minimizes the energy). The coarse-grained vorticity approximation (also called "diffuse vorticity") then 1. The exact distance between vortices depends on the vortex repartition geometry, for example in the triangular lattice configuration it is equal to 2l √︀ π/3.

The fast-rotating regime

The coarse-grained vorticity description presented in section 7.1.2 works well for moderate rotation regimes (Ω eff 𝜔 ⊥ ), but fails in the fast rotating regime (for Ω eff → 𝜔 ⊥ ). We should even speak about fast-rotating regimes: as Ω eff gets closer and closer to 𝜔 ⊥ , the quantum gas is predicted to undergo a series of quantum phase transitions and reach highly correlated states. Most of these regimes are yet completely unaccessible experimentally as they typically require a number of vortices comparable or even larger than the number of particles (for now, the lowest achieved values for 𝜈 = 𝑁/𝑁 𝑣 are around 500 [START_REF] Schweikhard | Rapidly rotating Bose-Einstein condensates in and near the lowest Landau level[END_REF]), but even the regimes that are the easiest to achieve present a significant interest. They are the primary motivation for the work I will present in the next chapter, and I will here describe what is expected to happen in these rotation regimes and what has been experimentally achieved. Finally, I will describe what we can hope to achieve with our experiment on this topic.

Theoretical interest

The Lowest Landau Level

The coarse-grained vorticity is based on the mean-field Thomas-Fermi approximation: it neglects the kinetic energy associated to local density variations, that is, it considers the velocity field created by the vortices but not the modifications of the density in the vortex core. This is valid as long as the vortex core size is much smaller than the inter-vortex distance: 𝜉 ≪ 𝑙. However, as the effective rotation frequency Ω eff grows closer to 𝜔 ⊥ , the radial trapping becomes extremely weak due to the centrifugal force and the chemical potential strongly drops: the healing length 𝜉 then tends to diverge. On the other hand, the intervortex distance saturates to 𝑙 ≈ 𝑑 ⊥ as Ω eff approaches 𝜔 ⊥ : for large enough rotation rates, the previous approximations fall and another description of the system that fully takes into account its quantum nature becomes necessary.

To understand the physics in this system, it is useful to consider the quantum description of the trapped particles, using the creation and annihilation operators of the harmonic oscillator.

The most convenient basis, more precisely, is the basis of circularly polarized states â± = (â 𝑥 ∓ 𝑖â 𝑦 )/ √ 2. In this basis, the hamiltonian of the harmonic oscillator reads:

𝐻 0 = 𝜔 ⊥ (â † + â+ + â † -â-+ 1), (7.16) 
and the angular momentum:

𝐿 𝑧 = (â † + â+ -â † -â-). (7.17) 
Denoting 𝑛 ± the eigenvalues of the number operators â † ± â± , the energy of the eigenstates in the rotating frame can then be written under the two equivalent forms:

𝐸(𝑛 + , 𝑛 -) = 𝑛 + (𝜔 ⊥ -Ω eff ) + 𝑛 -(𝜔 ⊥ + Ω eff ), (7.18) 
= 𝑛 𝜔 ⊥ -𝑚 Ω eff ,

with 𝑛 = 𝑛 + + 𝑛 -and 𝑚 = 𝑛 + -𝑛 -. The corresponding energies are plotted on figure 7.2: we see that for Ω eff → 𝜔 ⊥ all states with 𝑛 = 𝑚 become quasidegenerate, forming the so-called "Lowest Landau Level" (LLL).

Let us come back to our initial questioning. The condition 𝜉 ∼ 𝑑 ⊥ can be reexpressed as 𝜇 ∼ 𝜔 ⊥ : in this case, supposing that the gas is quasi-2D (which is often the case since

𝑧 = - √︁ 𝑟 2
𝑏 -𝑟 2 /2. We consider the case of a circularly polarized RF field, as described in section 2.3.1. In the rotating frame, the total potential can then be written as:

𝑉 (𝑟, 𝑧) = 𝐹 Ω 1 (𝑟, 𝑧) + 𝑀 𝑔𝑧 - 1 2 𝑀 Ω 2 eff 𝑟 2 . (7.23) 
Using expression (2.60) for Ω 1 , we can rewrite it as:

𝑉 eff (𝑟) = 𝐹 Ω 0 2 -𝑀 𝜔 2 ⊥ 𝑟 2 𝑏 √︃ 1 - 𝑟 2 𝑟 2 𝑏 - 1 2 𝑀 Ω 2 eff 𝑟 2 , (7.24) 
where 𝜔 ⊥ is equal to:

𝜔 ⊥ = √︂ 𝑔 2𝑟 𝑏 [︂ 1 - 2𝐹 Ω 0 𝑀 𝑔𝑟 𝑏 ]︂ 1/2 , (7.25) 
which coincides with expression (2.64) for 𝛽 ≪ 1. From equation (7.24), the equilibrium position can then be found, defining 𝜅 ≡ 𝜔 2 ⊥ /Ω 2 eff , as:

𝑟 eq = {︃ 0 if Ω eff ≤ 𝜔 ⊥ , 𝑟 𝑏 √ 1 -𝜅 2 if Ω eff > 𝜔 ⊥ ; (7.26) 
𝑧 eq = ⎧ ⎨ ⎩ - 𝑟 𝑏 2 if Ω eff ≤ 𝜔 ⊥ , -𝜅 𝑟 𝑏 2 if Ω eff > 𝜔 ⊥ . (7.27) 
A hole will then appear at the center of the cloud if the chemical potential is lower than the centrifugal barrier height, which reads:

𝑈 𝑏 = 1 2 𝑀 Ω 2 eff 𝑟 2 𝑏 (1 -𝜅) 2 .
(7.28)

Evaluating the chemical potential can get slightly tricky as the trapping frequencies change while the cloud climbs on the bubble's sides. In this case, the orientation of the local basis is determined by the angle 𝜃 rot = arctan(-𝑟 eq /𝑧 eq ), and the trapping frequencies become [125]:

𝜔 2 𝑧 ′ = 𝜔 2 𝑧 (︂ 1 + 3𝜅 2 2(1 + 𝜅) + Ω 2 0 𝜔 2 rf 3𝜅(9𝜅 4 -7𝜅 2 -2) 8(1 + 3𝜅 2 ) )︂ - 1 -𝜅 2 1 + 3𝜅 2 Ω 2 eff , (7.29) 
𝜔 2 ⊥ ′ = 𝜔 2 ⊥ 4 𝜅 1 -𝜅 2 1 + 3𝜅 2 .
(7.30)

Note that these equations are only valid for 𝜅 < 1. These trapping frequencies can then be used to compute the chemical potential using the same formulas than for the ring trap, (4.24) and (4.25). It can also be useful to relate to the case of harmonic plus trapping; the corresponding predictions should be valid when the atoms stay close to the bottom of the bubble. The parameter 𝜆 describing the strength of the quartic confinement (see (7.22)) can be expressed easily from (7.24) as:

𝜆 = 𝑑 2 ⊥ 4𝑟 2 𝑏 . (7.31) 
In this case, the central hole is predicted to appear for an effective rotation frequency [START_REF] Fetter | Rapid rotation of a Bose-Einstein condensate in a harmonic plus quartic trap[END_REF]:

Ω ℎ = 𝜔 ⊥ ⎡ ⎣ 1 + 2 √ 𝜆 (︃ 3 √ 𝜆g𝑁 2𝜋 )︃ 1/3 ⎤ ⎦ 1/2 . ( 7.32) 
Note that this latter prediction relies on the quasi-2D character of the gas, g being the dimensionless coupling constant (see 1.3); this hypothesis is fulfilled in the experiments that will be described in the next chapter: the chemical potential already dropped below 𝜔 𝑧 due to the weakening of the radial confinement before the appearance of the hole. Finally, one can note that the finite magnetic force that can be exerted onto the atoms sets an upper bound on the allowed rotation frequency: if the centrifugal force goes beyond the maximal magnetic force, the atoms are expelled from the trap. This condition can be estimated at the equator of the bubble as:

𝑀 Ω 2 eff 𝑟 𝑏 < 𝐹 𝛼, (7.33) 
which gives an upper bound to the allowed rotation frequency:

Ω eff ∼ √︃ 𝐹 𝛼 𝑀 𝑟 𝑏 ∼ 𝜔 ⊥ √︀ 2𝛽. (7.34) 
The maximal value for our magnetic gradient is currently 𝑏 ′ = 216 G • cm -1 , the upper bound for the rotation frequencies we can achieve is therefore approximately Ω eff ∼ 3.5𝜔 ⊥ : we cannot hope to reach extremely fast rotations with this scheme, but it should still be sufficient to allow us performing interesting experiments.

Collective modes of a rotating condensate

The collective modes of a trapped atomic gas can give a significant insight about their behavior [START_REF] Maragò | Observation of the Scissors Mode and Evidence for Superfluidity of a Trapped Bose-Einstein Condensed Gas[END_REF][START_REF] Rossi | Probing superfluidity in a quasi two-dimensional Bose gas through its local dynamics[END_REF][START_REF] Merloti | Breakdown of scale invariance in a quasi-two-dimensional Bose gas due to the presence of the third dimension[END_REF][START_REF] Bismut | Collective Excitations of a Dipolar Bose-Einstein Condensate[END_REF]. Especially, in the case of rotating superfluids, the quadrupole mode can be used as a probe to measure the angular momentum of the gas, or equivalently its rotation frequency [START_REF] Zambelli | Quantized Vortices and Collective Oscillations of a Trapped Bose-Einstein Condensate[END_REF][START_REF] Chevy | Measurement of the Angular Momentum of a Rotating Bose-Einstein Condensate[END_REF]. Since we use this method to measure the rotation or our gases, I will here enter the details of the underlying theory.

Collective modes of a trapped condensate

Computing the low-energy collective modes of a trapped gas is achieved by following an approach similar to Bogoliubov's (see 1.2.1): the hydrodynamic equations are linearized by computing the effect of small variations 𝛿𝑛(r, 𝑡) of the atomic density around the groundstate solutions 𝑛(r). Since our system is highly oblate, we choose to look for transverse deformations, and exploiting the rotational invariance of our system, we look for 𝛿𝑛 solutions with the form:

𝛿𝑛(𝑡) = 𝑒 𝑖𝑚z𝜑 𝑟 |𝑚z| 𝑃 (𝑟 2 )𝑒 -𝑖𝜔𝑡 , (7.35) 
where 𝑃 is a polynomial of degree 𝑝. Injecting these solutions within the hydrodynamic equations (and neglecting the quantum pressure terms -which correspond to the so-called hydrodynamic approximation) leads to the dispersion relation [START_REF] Stringari | Dynamics of Bose-Einstein condensed gases in highly deformed traps[END_REF]:

𝜔 2 = 𝜔 2 ⊥ (︂ 4 3 𝑝 2 + 4 3 𝑝𝑚 𝑧 + 2𝑝 + 𝑚 𝑧 )︂ . (7.36) 
The nucleation of vortices in a superfluid through stirring of the initially vortex-free cloud requires two main ingredients:

• The state containing vortices has to be energetically favorable compared to the vortexfree state, meaning that the cloud has to rotate fast and/or to carry angular momentum.

In the harmonic case, the minimal rotation that the cloud has to achieve for the first vortex to be favored reads [START_REF] Fetter | Rotating trapped Bose-Einstein condensates[END_REF]:

Ω min = 5 2 𝑀 𝑅 2 ⊥ ln (︂ 𝑅 ⊥ 𝜉 )︂ . (7.41) 
This frequency is usually quite small, for example in the parameters of the experiments described in the next chapter it corresponds to approximately 5 Hz (while all the frequencies considered in the experiments are larger than 20 Hz).

• A surface instability: nucleating vortices requires to introduce a length scale 𝜉 into the system, that is much smaller than the length scales of the system at rest. This requires surface instabilities, i.e. the flow at the nucleating surface has to become turbulent [START_REF] David | Anomalous Modes Drive Vortex Dynamics in Confined Bose-Einstein Condensates[END_REF][START_REF] Lobo | Vortex Lattice Formation in Bose-Einstein Condensates[END_REF].

These two ingredients can be obtained by different method: for example, one can displace a stirrer beam (or several stirrer beams) within the fluid faster than the critical velocity [START_REF] Woo | Critical velocity for vortex shedding in a Bose-Einstein condensate[END_REF][START_REF] Raman | Vortex Nucleation in a Stirred Bose-Einstein Condensate[END_REF], or rotate the cloud within an anisotropic trap [START_REF] Madison | Vortex formation in a stirred Bose-Einstein condensate[END_REF][START_REF] Madison | Stationary states of a rotating Bose-Einstein condensate: Routes to vortex nucleation[END_REF].

7.4.2

Driving the cloud through quadrupole resonance I will detail more this latter case, as it is the one we use the most in our experiments. To generate rotation in the cloud, we make the trap anisotropic and rotate this anisotropy (see figure 7.10) at a frequency Ω rot . The problem can then be expressed as: how can we couple angular momentum into the cloud through the rotation of the trap? Let us express as 𝜔 𝑋 and 𝜔 𝑌 the oscillation frequencies of the rotating trap; the trap's anisotropy is defined as

𝜀 = (𝜔 2 𝑋 -𝜔 2 𝑌 )/(𝜔 2 𝑋 + 𝜔 2 𝑌 ).
As we want to drag a superfluid initially at rest, its vorticity is necessarly zero as it has no vortices in it. We can look for the velocity field under the form of the quadrupolar flow (see fig. 7.10): v = 𝛼 𝑞 ∇(𝑋𝑌 ), (7.42) where v is the velocity in the laboratory frame and 𝑋, 𝑌 the coordinates in the frame rotating at Ω rot . Injecting this formula into the hydrodynamic equations shows that in the rotating frame the cloud keeps the usual parabolic Thomas-Fermi shape, but with effective trapping frequencies [START_REF] Recati | Overcritical Rotation of a Trapped Bose-Einstein Condensate[END_REF]:

ω2 𝑋 = (1 + 𝜀)𝜔 2 ⊥ + 𝛼 2 𝑞 -2𝛼 𝑞 Ω rot , (7.43) 
ω2 𝑌 = (1 -𝜀)𝜔 2 ⊥ + 𝛼 2 𝑞 + 2𝛼 𝑞 Ω rot , (7.44) 
and one can show that 𝛼 𝑞 verifies the equation:

𝛼 3 𝑞 + 𝛼 𝑞 (𝜔 2 ⊥ -2Ω 2 rot ) + 𝜀Ω rot 𝜔 2 ⊥ = 0. (7.45) 
The free expansion of a harmonically trapped BEC initially the Thomas-Fermi regime has been described by Castin and Dum [START_REF] Castin | Bose-Einstein condensates in time dependent traps[END_REF]. The cloud keeps its parabolic shape, but the TF radii become rescaled by a factor 𝜆 𝑗 : 𝑅 𝑗 (𝑡) = 𝑅 𝑗 (0)𝜆 𝑗 (𝑡). Their results have been extended later to the case of a rotating cloud [START_REF] Bretin | Rotations d'un condensat de Bose-Einstein[END_REF], and in this latter case the scaling factors follow the equations:

λ⊥ = 𝜔 2 ⊥ -Ω 2 eff 𝜆 3 ⊥ 𝜆 𝑧 + Ω 2 eff 𝜆 3 ⊥ , (7.49) 
λ𝑧 = 𝜔 2 𝑧 𝜆 2 ⊥ 𝜆 2 𝑧 . (7.50) 
Depending on the shape of the trapped gas, we can then see two different limit behaviors for the expansion:

• In the case of a cigar-shaped gas, the expansion is essentially radial and 𝜆 𝑧 ∼ 1: the rotation then has only little effect on the expansion. The cloud's radial size becomes simply rescaled by a factor

√︁ 1 + 𝜔 2
⊥ 𝑡 2 , and the vortex size evolves in the same proportion. • In the case of a pancake-shaped gas, the vertical expansion of the cloud is much faster than the radial expansion. Therefore, the size of the vortices grows, in proportion, faster than the cloud's radius [START_REF] Dalfovo | Shape deformations and angular-momentum transfer in trapped Bose-Einstein condensates[END_REF][START_REF] Seo | Free expansion of quasi-2D Bose-Einstein condensates with quantized vortices[END_REF]. However, no simple analytical formulas are available in this limit.

Chapter 8

Fast rotating Boses gases in a

RF-dressed trap

This chapter describes the experimental results that have been achieved on the topic of fastrotating superfluids. All the experiments were realized at the bottom of the bubble trap, as described in the previous chapter (section 7.2.3). In particular, I will detail the achievement of a cloud rotating faster than the trapping frequency, which then takes a donut shape. To avoid confusion with the second part of this thesis, I will restrict the use of the terms "ring-shaped"

and "annular" gases to the gas trapped with the blue-detuned double sheet, and rather speak of "donut-shaped gas" or "dynamical ring".

The first two sections of this chapter describe the achievement of such a donut-shaped gas, first using the stirrer beam, and then exciting the cloud with a quadrupole deformation.

The two next sections then describe the study of this donut-shaped gas and the transition regimes from the connected gas. The third section presents how we probe the quadrupole modes in the gas, using both a percussive and a resonant method imported from the group of J. Dalibard [START_REF] Chevy | Measurement of the Angular Momentum of a Rotating Bose-Einstein Condensate[END_REF][START_REF] Bretin | Quadrupole Oscillation of a Single-Vortex Bose-Einstein Condensate: Evidence for Kelvin Modes[END_REF]. The fourth and last section discusses the vortex distribution in the dynamical ring -or rather, the absence of visible vortices in the dynamical ring and the progressive melting of the vortex lattice while we enter the fast-rotating regime.

8.1

First experiments with the laser stirrer: reaching the fast rotation regime

First attempt

The first attempts to achieve a fast rotating gas in the bubble trap were done with the stirrer beam (described in section 6.1.1). Starting from a gas at the bottom of the bubble, the stirrer was pointed onto it and described circular trajectories with various parameters (radius of typically 10 to 25 ➭m for a cloud size around 20 ➭m and frequencies around 35 to 50 Hz for a trapping frequency of 37.5 Hz). We initially tried to cool down the cloud during the stirring process: starting from a thermal cloud close to the BEC limit, the cloud was stirred during 500 ms while the RF knife was ramped down, and then allowed to relax in the presence of a low knife. In these conditions, we expect to prepare a cloud rotating at very large speed, and

The corresponding increase in the Gaussian width would be 0.89 × 10 -3 m • s -1 , comparable to our measured expansion even though quite smaller. If we compute the expected 3D chemical potential using formula (4.24) (which should be valid for a condensed dynamical ring) with the aformentioned values for the trapping frequencies and atom number, the result is approximately ℎ × 230 Hz, lower than the vertical trapping frequency, which confirms that the hypothesis of a quasi-2D condensate is relevant.

From this discussion, we believe that the observed cloud is quantum degenerate, and we will make this supposition during the rest of the chapter.

Effect of the RF knife

One element of the experiments has been neglected up to now in our analysis of the system: the RF knife, which is required to suppress the cloud heating during the experiments, in particular at long times. Indeed, as it causes atomic losses, it can have an impact on the rotation of the cloud, and as it is selective in position due to coupling inhomogeneities (see section 3.2.4) this effect might not be simple.

The effect of the knife can be seen by looking for the time evolution of a cloud rotating at the bottom of the bubble for different knife heights. In a series of experiments, we set a gas into rotation at the bottom of the bubble following the procedure described previously, with a quite smooth excitation: Ω rot = 2𝜋 × 24.3 Hz, 𝜂 = 0.995/𝜀 = 0.039 and 5.5 turns. During the formation of the cloud and the rotation process, the knife is left at a frequency 𝜔 knife = 2𝜋 × 0.37 MHz (i.e. 20.7 kHz above the bottom of the trap2 ); 250 ms after the end of the excitation the knife is then ramped down to another value in 100 ms. The 250 ms waiting time before ramping down the knife allow the cloud to go back to its round shape. We then let the cloud evolve during various waiting times and image it from the side after a 23 ms time-of-flight. Depending on the final knife value, the cloud shows strikingly different profiles, with an aspect ratio varying from a factor up to three (see figure 8.9).

The aspect ratio of the cloud after time-of-flight is an interesting observable to measure the rotation, as it depends only on the trap's parameters (which can be precisely measured) and the rotation frequency. Its evolution with the rotation frequency can be computed from equations (7.49) and (7.50) (assuming a harmonic trapping), and we can hope to access in this way the rotation frequency of the cloud. It is plotted on figure 8.9: sadly, we have no analytic formula that could allow us to convert the aspect ratio into the rotation frequency, but we also see that very conveniently the aspect ratio evolves almost linearly with Ω eff over a very wide range of frequencies. A linear fit of the central part of the data allows to recover the correct result within 1% for rotation frequencies between 7.2 and 32.1 Hz and gives an easy and convenient way to measure the rotation frequency of the gas. The fact that this linear relation does not work for very low or very high frequencies is not really a problem: for low frequencies, the coarse-grained vorticity approximation is not valid anymore and Ω eff does not describe the system accurately, while for high frequencies the trapping is not harmonic anymore and the computed expansion is wrong anyway.

Using this linear dependence of the effective rotation frequency, we can come back to the data by looking, now, to the evolution of Ω eff as a function of the knife (plotted on figure 8.10). We observe a slow increase of the rotation frequency with time after the initial excitation, which depends on the final knife height: for a high knife, this increase is negligible, while as we lower the knife value this increase gets more and more important. For long waiting times, the rotation frequency seems to saturate. We can also look for the variations of Ω eff with respect to the number of atoms left in the BEC; we see that the rotation frequency seems to increase linearly with atom losses, and the lower the knife, the stronger the dependency (the slope of the linear relationship increases).

We interprete this effect as a "spin-up evaporation" similar to the one used in the Cornell group [START_REF] Engels | Observation of Long-Lived Vortex Aggregates in Rapidly Rotating Bose-Einstein Condensates[END_REF]. Indeed, as the local Rabi coupling decreases while the atoms get further away from the trap center, the knife will remove more efficiently the atoms that are close to the axis of rotation and have a lower angular momentum, and spin up the cloud in this way. This effect is far from being negligible: depending on the knife, the achieved rotation frequencies can vary from more than a factor of two. Adjusting the knife therefore gives us an additional tool to control the rotation frequency of the cloud. This gives, for example, a possible explanation to the fact that we are able to generate a dynamical ring with excitation frequencies lower than 𝜔 ⊥ : while the initial amount of angular momentum would lead to a cloud rotating slower than 𝜔 ⊥ , during the relaxation the rotation is also slowly accelerated by the knife, up to Ω eff > 𝜔 ⊥ .

A confirmation of this possibility was obtained by starting from a cloud set into rotation with parameters that appeared to lead to a simply connected rotating gas: lowering the knife more than usual allowed to transform it into a donut-shaped cloud (even though the atom number in the final cloud was lower than what we are able obtain with a more violent initial stirring).

Note that all the experiments described in this chapter, unless specific precision, were performed with the same knife as the one used for the first experiments, at 0.365 kHz.

8.3

Quadrupole modes in the dynamical ring

We have demonstrated the production of these "dynamical ring" gases, the next step is then to characterize their behavior and properties: especially, we would like to have a direct proof of superfluidity and to measure their rotation frequency. A study of the quadrupole modes in such a gas would therefore be extremely interesting: indeed, as described in section 7.3, their frequencies can allow to access the effective rotation frequency of the cloud, as well as give a tool to discriminate a superfluid from a thermal cloud. We have no theory that could describe properly the case of these modes for a dynamical ring in the bubble trap, but we know what to expect when the cloud is still simply connected and it is interesting to see how the quadrupole modes behavior evolves when going from a regime to the other one.

Percussive excitation of the quadrupole modes

A first method to probe these modes consists in applying to the cloud a strong static anisotropy for a short time: 𝜂 is ramped from 1 to typically 0.65-0.85 (corresponding to 𝜀 ∼ 0.2) in 0.3 ms, stays constant during 4.4 ms and is then ramped back to 1 in 0.3 ms. The complete scheme lasts 5 ms while we have 2𝜋/𝜔 ⊥ = 29 ms: the atoms do not have the time to significantly move, but they feel the force exerted by the anisotropic potential. We then observe the subsequent evolution of the cloud in the rotationally invariant potential. We excite in this way the superposition of both +2 and -2 modes: we therefore look for the out-of-phase oscillation of both radii of the cloud (see figure 8.11). In the presence of rotation, due to the lifted degeneracy between +2 and -2 modes, the axes of this ocillation will then precess at (𝜔 + -𝜔 -)/4. Repeating the experiment and taking in situ pictures for different durations of the waiting time in the trap after excitation, we can then track the orientation of the axis of the oscillation and deduce the corresponding effective oscillation frequency. Note that the with the effective rotation of the cloud and compare it with the predictions (7.39) (7.40). In fact, to do so, we compare the absolute values of the frequencies of the modes to their splitting. The results are plotted on figure 8.15: we see a small but significant deviation compared to the harmonic prediction (7.39), which depends only on Ω eff . We can then try to compare the mode frequencies with the deviation predicted due to the presence of the quartic term, injecting the Thomas-Fermi radii measured on the in-trap cloud (using a harmonic plus quartic fit of the profiles) and the value for the quartic term 𝜆 predicted from (7.31): the predicted deviation agrees very well with the observed frequencies, suggesting that the observed frequency shift is indeed due to this confinement. It also confirms the very good precision that can be achieved through the method of resonant excitation, as the corresponding effect is very small.

Time-of-flight analysis of the rotating clouds

One of the most useful tools for studying rotating quantum gases is the time-of-flight detection of vortices, and it would be especially interesting to observe the vortex distribution in the dynamical ring. We can note, in particular, that the other experiment that tried to enter the faster-than-harmonic rotation regime in a harmonic plus quartic trap [START_REF] Bretin | Fast rotation of a Bose-Einstein condensate[END_REF] had observed a disappearance of the vortices while entering this regime, which is still not fully explained. We therefore tried to develop the ability to image the vortices in our gases.

Detection of vortices

The first attempts to observe the vortices in the cloud were done with simply connected gases rotating at the bottom of the bubble trap. They were set into rotation using the rotating bucket method, with an important excitation (typically 𝜀 = 0.14 and a rotation frequency around 25 Hz) to ensure there should be many vortices in the cloud, and a long relaxation time (typically 10 or 20 s) to ensure that the cloud reaches equilibrium before imaging. The expected signature for the presence of vortices is the triangular lattice distribution of the holes after expansion of the cloud (if we saw holes but not the array, we could for example interprete them as coming from imaging defects due to fringes or a bad camera focus).

To image the vortices, the simplest method appeared to be the best: we remove the trapping potential, perform a time-of-flight and take a vertical absorption picture of the atoms. For a time-of-flight longer than 20 ms, we begin to guess the presence of vortices in the cloud due to local density reduction, and after 30 ms, the observed holes significantly pierce the cloud (see figure 8.16). For time-of-flight durations longer than 30 ms, the cloud crashes on the lower window of the science cell. The vertical camera has to be translated every time we change the time-of-flight duration to adjust the focus on the atoms (the whole imaging setup -camera and lenses -is mounted on a micrometric translation stage).

We realized later that a Stern-Gerlach procedure (see section 3.4.3) considerably increases the visibility of the vortices: in the absence of the Stern-Gerlach procedure, when we perform a time-of-flight even at low magnetic gradient, the shutdown of the magnetic fields is not instantaneous and the three Zeeman substates get very slightly separated; this results in a blurring of the final pictures (and looking at the Fourier transform of the pictures shows a favored axis in the distribution identical on all pictures, indicating the direction of splitting of the clouds).

Once we were able to see the vortices, we then performed weak excitations around the quadrupole resonance to ensure that we were able to observe the expected behavior and to detect unique vortices -this was discussed in section 8.2.2. very large (after 23 ms TOF its radius is typically beyond 150 ➭m) and the density drops significantly, causing a high sensitivity to residual imaging noise and fringes. It also prevents us from using the parameters that are optimal for imaging "normal" vortex lattices: for these parameters (30 ms TOF and Stern-Gerlach procedure) the density is simply too low for taking pictures, with optical densities significantly smaller than one.

8.4.3

Loss of contrast of the vortex lattices in the fast-rotating regime

Observing a loss of contrast in the vortices was not necessarily surprising, as the earlier attempts to enter this regime also displayed this effect [START_REF] Bretin | Fast rotation of a Bose-Einstein condensate[END_REF]. In order to understand better the loss of contrast of vortices in the donut-shaped cloud, we tried to vary the excitation procedure used to generate it, trying for example to achieve it using two excitations. The goal was to first realize a nice and large vortex array, and subsequently enter the dynamical ring regime with only a weak excitation, in order to avoid the apparently strongly excited step we see on figure 8.18. However, all the realizations of clouds with many vortices showed a lot of disorder in the vortex lattice, even after very long relaxation times (more than 10 s).

At first, this was quite surprising, because the early works on vortex lattices [START_REF] Abo-Shaeer | Observation of Vortex Lattices in Bose-Einstein Condensates[END_REF] sytematically displayed higly ordered lattices, and even claimed that obtaining the lattice was easier than initially expected; they also used very strong excitations to nucleate the vortices and still saw quick relaxation (in less than 1 s) towards very regular arrays. However, we then realized that these experiments were realized in cigar-shaped traps, while ours are performed in pancake-shaped traps; other experiments realized in similar pancake-shaped traps seem to also display less-ordered lattices [START_REF] Kang | Rotating a Bose-Einstein condensate by shaking an anharmonic axisymmetric magnetic potential[END_REF].

We think that these effects could come from thermal fluctuations: when our cloud rotates fast we get close from the two-dimensional regime (and even finally enter it), in which the coherence length is expected to decrease with the rotation frequency [START_REF] Matveenko | Tkachenko modes and their damping in the vortex lattice regime of rapidly rotating bosons[END_REF]. The vortex lattice could then melt while the cloud stays superfluid, for example through thermal activation of dislocation pairs, as described in section 7.2.1. We can try to use the estimations of Gifford and Baym for the melting temperature [START_REF] Gifford | Dislocation-mediated melting in superfluid vortex lattices[END_REF], neglecting the quartic contribution to our trap: for our trap frequencies with typically 1.5 × 10 5 atoms, this temperature ranges typically between 0.1 and 0.2𝑇 𝑐 ; for a cloud rotating at 26 Hz the corresponding temperature should be around 20 nK while for a cloud rotating at 32 Hz it drops to approximately 10 nK; while we do not know our temperatures precisely the hypothesis of thermal melting therefore seems relevant.

Note that the approximation of harmonic trapping is relevant if 1-(Ω eff /𝜔 ⊥ ) 2 ≫ 𝜆(𝑅 ⊥ /𝑑 ⊥ ) 2 ; for a cloud rotating at Ω eff /2𝜋 = 32 Hz we still have a factor of 5 between these terms.

In order to investigate this effect, we took time-of-flight pictures of gases rotating at various frequencies. We simply excite the gas using the rotating bucket method at a given frequency (the number of turns, 5.5, is kept constant for all pictures), and let the cloud relax for 10 s; the conditions for stirring and waiting are identical to the conditions in which the data of figure 8.12 were taken, which allows us to know the effective rotation frequencies of the clouds. We then perform a These data suggest that we should be able to perform interesting measurements about what seems to be the thermal melting of the vortex lattice. However, we lack for now a proper theoretical model with which to compare: first, to adapt the theoretical work achieved on finite-temperature, fast-rotating gases [START_REF] Matveenko | Tkachenko modes and their damping in the vortex lattice regime of rapidly rotating bosons[END_REF] to the finite-size case we achieve experimentally.

Second, to translate the effect of phase fluctuations within the trapped gas into a measurable quantity, taking into account the time-of-flight expansion of the gas.

In this latter dataset, the contrast of the pictures decreases dramatically when Ω eff gets too close to 𝜔 ⊥ . It would also be interesting to observe the vortex distribution at the edge between both regimes, once we seem to be completely outside the regime of the vortex lattice but before the appearance of the hole in the system, i.e. right when the harmonic trapping cancels. We achieved that by exciting the cloud the same way we would do as to realize a dynamical ring (5.5 turns at 31.1 Hz and 𝜀 = 0.14), but performing the sequence with a higher knife frequency: 0.369 Hz instead of 0.365 Hz; the spin-up effect due to the knife is therefore weaker. After various waiting times we then perform a 23 ms time-of-flight and image the cloud from above. The corresponding pictures are shown on figure 8.21. The observed density profile is quite spectacular, and we see that the atoms seem to gather into small "blobs", without looking in any way like a vortex lattice. While one could think about turbulent behavior, the corresponding behavior shows no sign of relaxation; even after a 60 s waiting time the atomic cloud, while much smaller, still displays these small blobs. If we are, as we expect, in the presence of a melted vortex lattice, this possibly corresponds to phase

Conclusion

The annular geometry is ideally suited to study superfluidity thanks to its ability to withstand persistent flow [START_REF] Ryu | Observation of Persistent Flow of a Bose-Einstein Condensate in a Toroidal Trap[END_REF]. In such a system the continuity of the superfluid wavefunction, that has to be single-valued, also implies that the circulation of the velocity field along the waveguide has to be quantized [START_REF] Moulder | Quantized supercurrent decay in an annular Bose-Einstein condensate[END_REF]; the combination of the flow metastability with the circulation quantization leads to an hysteretic behavior [START_REF] Eckel | Hysteresis in a quantized superfluid 'atomtronic' circuit[END_REF]. Many experimental and theoretical efforts are currently being dedicated to exploit the remarkable properties of ring-shaped quantum gases to achieve "atomtronic" circuits [START_REF] Ryu | Experimental Realization of Josephson Junctions for an Atom SQUID[END_REF][START_REF] Amico | Focus on atomtronics-enabled quantum technologies[END_REF][START_REF] Eckel | Interferometric Measurement of the Current-Phase Relationship of a Superfluid Weak Link[END_REF] or to perform quantum simulation [START_REF] Aidelsburger | Relaxation Dynamics in the Merging of 𝑁 Independent Condensates[END_REF][START_REF] Eckel | A Rapidly Expanding Bose-Einstein Condensate: An Expanding Universe in the Lab[END_REF].

During my PhD, I demonstrated the possibility to achieve a connected, condensed gas in a ring trap realized by combining a radiofrequency-dressed trap and a blue-detuned double light sheet. RF dressing is a trapping technique that combines RF photons and a static magnetic field. It allows to trap atoms on the isomagnetic surface where the RF is resonant with the splitting between the different Zeeman substates of the static field: in our case, we trap in this way the atoms on a surface of an ellipsoid, leading to a bubble-shaped trap. The double light sheet then confines the atoms within a thin slice of this bubble, leading to a ring-shaped trap. This achievement requires a very good precision on the optical alignments in the system generating the light sheet, a very fine control over the polarization of the dressing RF wave, as well as a great care in the control of potential heating sources. We then demonstrated the ability of the ring-shaped condensate to sustain a superfluid flow.

The technique used to generate the ring presents the advantage of enabling, in principle, to reach the quasi-2D or even quasi-1D regimes, and the experimental results presented in this manuscript suggest that we could be close to these regimes. The quasi-1D regime, in particular, presents a high theoretical interest as it can be seen as a uniform 1D system with periodic boundary conditions: the experimental availability of such a system would therefore open up interesting possibilities to perform quantum simulation. There are three main difficulties that could make it hard to enter this regime. First, the trapping frequencies we can currently achieve set strong limits on the temperature we can accept to enter the quasi-1D regime, which should stay lower or comparable to 30 nK. Second, lowering the chemical potential will increase the sensitivity to residual optical defects and potential inhomogeneities.

One can note that even if this difficulty appears too hard to overcome, it could also be turned into an advantage for studying annular 1D gases in the presence of disorder, which also presents a real interest due to localization effects [START_REF] Billy | Direct observation of Anderson localization of matter waves in a controlled disorder[END_REF][START_REF] Roati | Anderson localization of a noninteracting Bose-Einstein condensate[END_REF]. Third, the very low atom number required for the gas to be quasi-1D could cause difficulties to obtain accurate images of the cloud and require improvements of the optical system. Now that our ring trap is operational (in the 3D case), we can start developing an experimental toolbox around it. We are, for example, planning to implement a phase imprinting system, for which a significant preparatory work has already been achieved [START_REF] Kumar | Producing superfluid circulation states using phase imprinting[END_REF]. While its first purpose is to generate a superfluid flow, it will also provide the ability to imprint arbitrary potential landscapes. This could open considerable opportunities in the perspective of quantum simulation, allowing for example to generate arbitrary phase domains and study their recombination (using the laser stirrer to generate barriers between the domains), or to imprint solitons [START_REF] Jezek | Dark-soliton collisions in a toroidal Bose-Einstein condensate[END_REF]. A digital micromirror device could also bring many possibilities that are complementary to the ones offered by the phase imprinting setup, built around a SLM: while an SLM allows to imprint continuous spatial patterns but cannot be dynamically configured, a DMD imprints only discrete spatial patterns (light or no light) with a very fast operation rate -however in this second case a quasi-continuous pattern can be recovered by binning pixels and taking advantage of the finite optical resolution.

The improved control over the dressing RF field developed in order to improve the homogeneity of the ring-shaped gas also allowed us to achieve "dynamical rings" at the bottom of the bubble trap, i.e. gases rotating faster than the trapping frequency and maintained trapped by the anharmonicity of the bubble [START_REF] Fetter | Rapid rotation of a Bose-Einstein condensate in a harmonic plus quartic trap[END_REF]. Deforming and rotating the trap allows to set the atoms into very fast rotation, and the high smoothness of the trapping potential allows us to keep the atoms in rotation during tens of seconds. Careful checks give evidence that the corresponding donut-shaped cloud is still quantum degenerate.

We then adapted to our experiment some of the tools that have been previously developed to study rotating superfluids.

One of these tools is the ability to probe the quadrupole modes of the gas, by a percussive or a resonant excitation. The collective modes of trapped gases provide a way to probe their behavior, and the frequency modification of these modes in the presence of rotation is especially interesting. We achieved a very good accuracy on the measurement of the quadrupole mode frequencies and demonstrated our ability to probe fine effects like the shift of these frequencies in the presence of anharmonicities. The experimental availability of the dynamical ring, combined with the many possibilities to excite the cloud offered by the versatility of the RF-dressed trap, now opens the possibility to observe the predicted behavior of collective modes in such a system, for instance for the monopole and quadrupole modes [START_REF] Cozzini | Oscillations of a Bose-Einstein Condensate Rotating in a Harmonic Plus Quartic Trap[END_REF][START_REF] Cozzini | Diffused vorticity approach to the oscillations of a rotating Bose-Einstein condensate confined in a harmonic plus quartic trap[END_REF] or in the more exotic case of Rossby waves [START_REF] Terças | Rossby waves in rapidly rotating Bose-Einstein condensates[END_REF].

The second tool is the ability to image quantized vortices inside the rotating gas through time-of-flight expansion. While we can observe regular vortex lattices for moderate frequencies, these lattices seem to melt for fast rotations, getting more and more disordered as the rotation frequency increases; and the dynamical ring displays no vortices but large-scale density fluctuations. We interprete this effect as a thermal melting of the lattice: indeed, a vortex lattice can be considered as a 2D crystal. It is therefore sensitive to phase fluctuations and can undergo a BKT-type melting towards a liquid phase at finite temperature, even while the gas is still condensed [START_REF] Huberman | Melting of Two-Dimensional Vortex Lattices[END_REF][START_REF] Gifford | Dislocation-mediated melting in superfluid vortex lattices[END_REF][START_REF] Halperin | Theory of Two-Dimensional Melting[END_REF]. This effect has only be sparsely explored with quantum gases and lets us hope for fascinating developments. For example, by combining the mechanical stirring of the gas and the spin-up evaporation by the RF knife, it should be possible to produce gases rotating at identical frequencies but various temperatures and observe the subsequent effect on the atoms. The possibility to adjust the vertical frequency of our trap could also allow us to observe the interplay between this effect and the (conventional) BKT physics when the gas itself becomes quasi-2D. The main requirement to perform these studies would be the ability to relate the density fluctuations observed after time-of-flight to the in-trap phase fluctuations [START_REF] Seo | Scaling behavior of density fluctuations in an expanding quasi-two-dimensional degenerate Bose gas[END_REF], that will probably soon be numerically investigated in our team.

To conclude, the high versatility and potential regularity of RF-dressed quadrupole traps allows to achieve novel kinds of ring-shaped superfluids. The first kind, using a ring-shaped potential, suggests the possibility to achieve unidimensional quantum gases with periodic boundary positions, which would provide new possibilities to study the fascinating 1D physics.

The second kind, exploiting the centrifugal force, allows to enter the fast-rotating regimes of superfluidity deeper than ever. While we are still far away from reaching the "giant vortex" configuration, this achievement could open the way to a better understanding of these regimes, in which our preliminary experiments suggest that there is still a lot to explore.

where 𝑍 bs (𝐼 quad ) is the current that has to be applied to align the bottom of the bubble with the light sheet. It is relevant to separate it into two parts, one corresponding to the distance between the center of the light sheet and the center of the quadrupole trap denoted 𝑧 0 shift , and the other to the radius of the bubble 𝑟 𝑏 :

𝑍 bs (𝐼 quad ) = [︂ 𝑧 0 shift + 𝑟 𝑏 (𝐼 quad ) 2 ]︂ × 𝐼 quad 𝛼 zs (A.12) = 𝑧 0 shift × 𝐼 quad 𝛼 zs + 𝜔 rf 2|𝑔 𝐹 |𝜇 B 𝑏 ′ 0 𝛼 zs . (A.13)
We can then write 𝑍 𝑏 = 𝜔 rf /|𝑔 𝐹 |𝜇 B 𝑏 ′ 0 𝛼 zs the bias current corresponding to a vertical displacement equal to the vertical size of the bubble, which doesn't depend on 𝐼 quad . 𝑧 0 shift can be deduced from the value 𝑍 shift = 𝑍 bs (𝐼 ini ), which is the current put in the coils to load the light sheet described in section 5.1.3, as:

𝑧 0 shift = (︂ 𝑍 shift - 𝑍 𝑏 2 )︂ × 𝛼 zs 𝐼 ini . (A.14)
Combining everything, the current to apply in the bias coils finally reads: .16) this case, the effective cross-section depends on the ratio between the probe intensity and the saturation intensity and can be written:

𝐼 biasZ = (︂ 𝑍 shift - 𝑍 𝑏 2 )︂ 𝐼 quad 𝐼 ini + 𝑍 𝑏 2 -∆𝑍(𝐼 quad ) (A.15) = 𝑍 shift + (︂ 𝑍 shift - 𝑍 𝑏 2 )︂ (︂ 𝐼 quad 𝐼 ini -1 )︂ - 𝑟 fin 2𝛼 zs (︁ 𝐼 fin - √︁ 𝐼 2 fin -𝐼 2 quad )︁ . ( A 
𝜎 = 𝜎 0 1 + 𝐼/𝐼 sat . (B.2)
In practice, the situation is more complex because we have more than two levels, and it depends on the polarization configurations and the real atomic structure. One therefore introduces heuristically the 𝛼 * parameter, trying to keep the two-level atom model but replacing the parameters that intervene in the process by their effective values [START_REF] Reinaudi | Strong saturation absorption imaging of dense clouds of ultracold atoms[END_REF]: 𝛼 * is defined so that the effective saturation intensity is equal to 𝛼 * 𝐼 sat . In this case, the absorption crosssection writes:

𝜎 = 𝜎 0 𝛼 * + 𝐼/𝐼 sat . (B.3)
From this expression, one can deduce the formula allowing to compute the optical density from the incident and transmitted intensities:

𝜎 0 𝑛(𝑥, 𝑦) = -𝛼 * ln [︂ 𝐼 𝑓 (𝑥, 𝑦) 𝐼 𝑖 (𝑥, 𝑦) ]︂ + 𝐼 𝑖 (𝑥, 𝑦) -𝐼 𝑓 (𝑥, 𝑦) 𝐼 sat ≡ 𝑑 𝑂 (𝑥, 𝑦), (B.4)
where 𝑛(𝑥, 𝑦) is the integrated density in the 3D case. 𝑑 𝑂 (𝑥, 𝑦) is called the generalized optical density. These results were introduced in [START_REF] Reinaudi | Strong saturation absorption imaging of dense clouds of ultracold atoms[END_REF] in the 3D case, then extended to the 2D case in [START_REF] Yefsah | Thermodynamics of the Bose gas in two dimensions[END_REF]. The 𝛼 * parameter, that thus allows to compute the optical density, cannot be obtained theoretically; it depends on the imaging system and has to be calibrated. To do so, we choose an atomic cloud (in our case, with an optical density of 3 or 4) from which we take a set of pictures while varying the probe intensity: as the cloud is identical on all pictures, if 𝛼 * is calibrated correctly all the optical densities computed from the different pictures should also be identical. The optical density on each picture is computed using different values for 𝛼 * ; the correct value should be the one for which the deviation between the optical densities of the different pictures is minimized. In practice, we try to minimize the standard deviation between the curves describing the evolution of the optical density with the radius, taken from a cloud whose density is rotationally invariant (see figure B.2).

Note that this method requires to constantly work with a very high intensity (typically 𝐼 ≥ 10𝐼 sat ) in order to eliminate multiple scattering phenomena: otherwise, we systematically underestimate the number of atoms present in regions where the atomic density is high, factor 𝛼 * or not [START_REF] Yefsah | Thermodynamics of the Bose gas in two dimensions[END_REF].

B.1.4

Alternative method for computing α *

The above method, initiated by G. Reinaudi in 2007 [START_REF] Reinaudi | Strong saturation absorption imaging of dense clouds of ultracold atoms[END_REF], has recently been improved and developed in more detail by L. Chomaz, who describes in his thesis an alternative method for measuring the factor 𝛼 * [START_REF] Chomaz | Coherence and superfluidity of Bose gases in reduced dimensions: from harmonic traps to uniform fluids[END_REF] based on the decomposition of the right-hand member of the equation (B.4) in two terms, which we will later call 𝑑 log and 𝑑 diff :

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 𝑑 log (𝑥, 𝑦) ≡ -ln [︂ 𝐼 𝑓 (𝑥, 𝑦) 𝐼 𝑖 (𝑥, 𝑦) ]︂ , 𝑑 diff (𝑥, 𝑦) ≡ 𝐼 𝑖 (𝑥, 𝑦) -𝐼 𝑓 (𝑥, 𝑦) 𝐼 sat . (B.5)
probe beam, the bias caused by these systematic effects varies from one point to another in significant proportions.

B.2.1 Effect of the probe beam intensity

The first factor that can be considered to understand better these effects is the intensity of the probe beam. Let us start by looking at the case where only the Doppler effect comes into play: when we tend towards high intensities in front of 𝐼 sat , we see that the fraction of atoms measured goes through a minimum around 2𝐼 sat , then increases with intensity (figure B.5). This effect can be explained by two limit cases:

• If the intensity is very low compared to 𝐼 sat , the number of scattered photons per atom remains very low, and the atoms are only slightly accelerated: the Doppler effect is negligible; the atom remains resonant for the entire duration of the pulse.

• If, on the other hand, the intensity is very high compared to 𝐼 sat , the detuning between the probe and the atom quickly becomes important, but the intensity is sufficient for the resonance to be very wide and the saturation parameter to remain high in front of 1: the atom remains saturated throughout the whole duration of the pulse.

The Doppler effect alone is not enough to explain all the missing atoms; it is also necessary to take into account the depumping to 𝐹 = 1 through the level 𝐹 ′ = 2. The saturation parameter associated with the transition 𝐹 = 2 → 𝐹 ′ = 2 is much lower than 1 because the probe detuning is very large (about 267 MHz, since we are tuned to resonance with the transition 𝐹 = 2 → 𝐹 ′ = 3). The absorption to 𝐹 ′ = 2 -and therefore the depumping rate -thus increases linearly with the intensity of the probe. When we add depumping to the calculation of artificial losses caused by the Doppler effect, the minimum is no longer a minimum: beyond this point, the fraction of detected atoms continues to decrease, even if it does so less sharply.

Nevertheless, calculating the depumping from the sole calculation of the saturation parameter is insufficient; it is also necessary to take into account the polarization of the probe beam: if the incident photons have a circular polarization, the conservation of the angular momentum forbids the transition |𝐹 = 2, 𝑚 𝐹 = +2⟩ → |𝐹 ′ = 2, 𝑚 𝐹 = +2⟩ (figure B.6). In the case of our vertical imaging system, we dispose of a fine tuning of the polarization, so the depumping should be very low; on the other hand this tuning is not present in the case of our horizontal imaging and the depumping should be much more present there.

To take into account the impact of polarization, we multiply the depumping rate calculated from the saturation parameter by a coefficient 𝛾 dep between 0 and 1. This coefficient is determined by measuring the curve of the number of atoms detected as a function of the probe duration, and by making an adjustment4 of these data by our decrease model (figure B.6). We find a coefficient 𝛾 dep = 0.97 ± 0.01 on the horizontal axis and 𝛾 dep = 0.18 ± 0.01 on the vertical axis; this corresponds well to what we expected and confirms the relevance of the model used.

B.2.2 Effect of the probe pulse duration

Although its impact is interesting to study in order to understand the phenomenon, the intensity of the probe beam is not a factor that can really be exploited to take images:

• Either the depumping is important, and the pulses must absolutely be chosen very short.

The Doppler effect will not be sufficiently present in this case for an initial frequency offset to be useful (optimal disagreement very close to 0).

• Or the depumping is very low: in this case we can consider using longer pulses. The Doppler effect is important in this case, and one can consider shifting the initial frequency to optimize the detected atom fraction.

However the value of 𝛾 dep , even for the vertical axis, is quite constraining, and the change in the frequency of the probe is quite painful (the frequency is not difficult to change, but it would require to measure the resonance curve every time to be certain of the optimal value).

The shift in the probe resonance implies that the calibrations performed so far were distorted: indeed, until then, the probe frequency was tuned by measuring such resonance curves but the corresponding measurements were probably distorted due to the Doppler effect. Resonance measurements repeated with shorter probe pulses displayed a probe resonance that is actually closer to the atomic resonance. One can also note that the Doppler effect causes a deformation of the resonance curve of the probe (which is no longer Lorentzian). This effect is quite delicate to observe, and its measurement should not bring much information; I did therefore not focus onto it in particular.

B.3

Signal to noise ratio and optimization of the imaging parameters This (necessary) reduction in the signal-to-noise ratio during the imaging process has led me to work on optimizing the imaging parameters: what are the parameters that allow images to be taken with the best sensitivity, while limiting the systematic effects? We also considered activating the EMCCD gain 5 (electron multiplication) of the CCD cameras used on the experiment. I therefore calculated the detailed evolution of the signal-to-noise ratio as a function of the imaging parameters (intensity and duration of the probe, EMCCD gain value, and number of imaged atoms) -which is not linear, because the number of photons received depends non-linearly on the number of atoms: see B.1.2.

B.3.1 Analysis of the different noise sources

The factors that influence the signal-to-noise ratio are the following:

• the shot noise: it corresponds to the fluctuations of the number of photons in the probe; it is poissonian, with a variance 𝑁 ph . It is a fundamental noise, independent of the properties of our cameras. Once converted into the number of counts on the camera, it is equal to 𝜎 phot = √︀ 𝐶/𝜖, where 𝐶 is the number of counts measured by the camera and 𝜖 the number of electrons created on the sensor needed to obtain a measured count on the camera (1.2 electrons for the horizontal camera, 1.8 for the vertical camera).

• the probability of detection of photons by the camera (depending on its quantum efficiency and on losses on the different windows/mirrors/etc...), which can be modelled by a coefficient 𝜂: a photon passed through the cloud has a probability 𝜂 of generating an electron on the camera. • the readout noise: error on the number of electrons detected when reading a pixel. It is equal to 𝜎 𝑟𝑜 = 17.2 electrons -either 9.6 counts or 60 photons -for the vertical camera (Andor Luca-R) and 𝜎 𝑟𝑜 = 5.5 electrons -either 4.6 counts or 60 photons -for the horizontal camera (Andor iXon DV885) 6 .

• the digitization noise: error related to the discretization of the output signal, it corresponds to 1 count (13.1 photons for the iXon, 6.26 for the Luca). It is negligible compared to the readout noise.

• the dark current, corresponding to the parasitic electrons created on the camera sensor by something other than incident photons -by thermal effects or during charge transfer.

In our case, it is systematically negligible: the images are taken too quickly for these phenomena to have an impact 7

• the use or not of electron multiplication (and if so, its value 𝐺). The use of EMCCD allows to reduce very significantly the impact of reading noise, which does not depend on the amplitude of the measured signal, but increases shot noise by a factor of √ 2𝐺 due to the principle of electron multiplication by avalanche effect.

• The noise added to the pictures when subtracting the background image (systematic effects are corrected, but at the cost of adding noise). The shot noise being very low on this image, we consider that the additional noise is equal to the reading noise 𝜎 𝑟𝑜 . In all the following, I will consider that the subtraction of the background noise is taken into account by adding this noise, and I will reason as if we were working with only two images.

The variance of the signal measured on one image is thus: This variance corresponds to the noise measured on one image; in practice, two pictures (with and without atoms) are measured and the density of atoms in the cloud is calculated from these two images (equation (B.8)): it is the uncertainty on this density that we are interested in.

{︃ Var(𝐶) = ⟨𝐶⟩ 𝜖 + 2𝜎
We can estimate via a numerical calculation the error we will have on the measurement of an optical density. This calculation is done in three steps:

• calculation of the number of photons 𝑁 𝑓 passing through the cloud (by numerically inverting the equation (B.8)).

• calculation of the noises associated with the measurements of 𝐶 𝑖 and 𝐶 𝑓 (number of counts measured for the images with and without atoms) by the CCD camera.

6. We measured 13.1 photon per count and 1.2 electrons per count -either one electron for 11 photonsfor the iXon, and 6.26 photons per count and 1.8 electron per count -or one electron for 3.5 photonsfor the Luca. 7. It can be noted that it increases in proportion to the square of the EMCCD gain, but the envisioned values for the gain are not large enough to make it important.

• estimation of the total error on the atomic density measurement 𝜎 𝑑 O from the errors on the measured parameters: 𝐶 𝑖 , 𝐶 𝑓 , 𝛼 0 , 𝛼 𝑠 . It should be remembered that the error on the measurement of a quantity 𝐴(𝑋 1 , ..., 𝑋 𝑛 ) is, if the measurements of 𝑋 𝑖 are independent:

𝜎 𝐴 = √︃ ∑︁ (︂ 𝜕𝐴 𝜕𝑋 𝑖 )︂ 2 × 𝜎 2 𝑋 i , (B.11)
where 𝜎 𝑋 i is the standard uncertainty on the measurement of 𝑋 𝑖 .

Details about this calculation can be found in B.5.

B.3.3 Combination of all the studied effects

Preliminary calculations quickly showed that the optimization of the relative accuracy on the optical density was far from obvious and depended a lot on the optical densities to be measured. These calculations also showed that the increasing the duration of the probe pulses systematically results in more accurate measurements: while the risk of systematic errors requires short pulses, the accuracy of our measurements requires long pulses. For a given probe intensity, there is an optimal value of 𝜏 pulse resulting from the compromise between these two effects -chosen as follows: I consider that a couple of parameters {𝜏 pulse , 𝐼} is acceptable if the systematic error caused by the Doppler effect and the depumping is hidden within the measurement error, i.e. less than twice the standard error on the measurement (the factor of two is chosen arbitrarily). Once this criterion has been defined, the accuracies obtained for different imaging parameters can be compared, as shown in figure B.8. These comparisons show that there is no optimal parameter pair, but that the optimal pair is to be chosen according to what we are trying to observe (i.e. the density of the cloud we are interested in). Even if there are generic parameters that can be used to make fairly accurate measurements over all possible clouds, it may still be interesting to look for parameters that optimize the accuracy over the desired area (for example, our cloud temperature measurements are based on a Hartree-Fock fit of the cloud wings, and in this case high density areas are not of interest to us).

It should also be noted that these calculations can also give us directly the error bars to be used during our measurements.

On the other hand, while at first glance attractive, the EMCCD gain finally proved to be uninteresting in our case: as soon as we work with intensities or exposure times that are a little high, the shot noise becomes very important (see B.3.1) and so does the error on the optical density; the only use we could find would be to improve very low intensity images for the 𝛼 0 and 𝛼 𝑠 calibration -that is, not interesting enough for us to take the time to make the necessary calibrations to use this functionality.

B.3.4 Conclusions about the imaging process

These studies allowed us to correct systematic effects that were present until then on our imaging system, and to improve its accuracy; we can say with certainty that we now have a more reliable system than before. The calculations of the accuracy that we performed should allow us to knowingly choose the best imaging parameters for each measurement.

The first measurements performed after this work, aiming to measure the temperature of atomic clouds in the dressed trap from a Hartree-Fock fit of the wings of the in-trap cloud, were much more satisfactory than those performed so far. In particular, the two If we assume the system to be constantly in its stationary state (i.e. if we look at the system at long durations compared to 1/Γ or if we look at the average state of the system 10 , the average population in the excited state reads:

𝜎 𝑒𝑒 = 1 2 × 𝑠 1 + 𝑠 . (B.13)
The number of photons scattered by one atom between 𝑡 and 𝑡 + 𝑑𝑡 is thus:

𝑁 diff (𝑡) = Γ diff (𝑡) 𝑑𝑡 = Γ𝜎 𝑒𝑒 𝑑𝑡 = Γ 2 × 𝑠(𝑡) 1 + 𝑠(𝑡) 𝑑𝑡, (B.14)
where 𝑠 varies with time through 𝛿.

Calculation of the Doppler effect

To take into account the Doppler effect, one has to replace 𝛿 by 𝛿(𝑡), computed from the recoil velocity of the atoms and Γ diff (𝑡). The recoil velocity of the atoms (velocity acquired through the absorption of a photon) reads:

𝑣 rec = 𝑘 𝑚 . (B.15)
An absorption-emission cycle 11 therefore leads to an evolution of detuning equal to: 

𝛿 phot = 𝑘 • 𝑣 rec = 𝑘 2 𝑚 = 2𝜋ℎ 𝑚𝜆 2 =

Calculation of depumping

Depumping has no effect on the atomic detuning (as the previous calculation does not depend on the number of atoms), but it leads to a diminution over time of the number of atoms remaining in the system. To take it into account, one has to calculate the transition rate from 𝐹 = 2 to 𝐹 ′ = 2. This rate can be calculated from the optical Bloch equations as above, this time taking into account the two-level system corresponding to the 𝐹 = 2 → 𝐹 ′ = 2 transition (there is no coupling between 𝐹 ′ = 2 and 𝐹 ′ = 3, and the two transitions are thus assumed to be independent) -this leads to the same calculation by replacing 𝛿 by 𝛿 ′ = 𝛿 + ∆ 22 , where ∆ 22 is the detuning between the 𝐹 = 2 → 𝐹 ′ = 2 and 𝐹 = 2 → 𝐹 ′ = 3 transitions (equal to 2𝜋 × 267 MHz). This gives the value of 𝜎 𝑒𝑒,22 , that is the proportion of excited atoms in the state 𝐹 ′ = 2.

Between 𝑡 and 𝑡 + 𝑑𝑡, the number of atoms decreases by 𝑁 (𝑡) × Γ𝜎 𝑒𝑒,22 × 𝑑𝑡 × 𝜂 dep,22 where 𝑁 (𝑡) is the number of atoms and 𝜂 dep,22 is the branching factor (probability of falling from one state to another) from 𝐹 = 1 to 𝐹 ′ = 2 (equal to 0.5).

In fact, this rate depends on the light polarization (cf. B.2.1), and we use a coefficient 𝛾 dep experimentally determined to take this into account; the decrease in the number of atoms thus becomes: 𝑁 at (𝑡 + 𝑑𝑡) = 𝑁 at (𝑡) -𝑁 at (𝑡) × Γ 𝜎 𝑒𝑒,22 𝜂 dep,22 𝛾 dep 𝑑𝑡.

(B.18) 10. Which is the case for imaging since we are interested in the atomic ensemble rather than individual atoms. 11. As we are interested in the ensemble behaviour, we consider that spontaneous emission has no effect because its averages to zero.

B.4.2 Principle of computations

Solving this system analytically promises to be quite unpleasant 12 . However a numerical calculation with discrete steps of 𝑑𝑡 seems appropriate and much easier. Let us replace the values 𝑋(𝑡) by their value at 𝑡 = 𝑖 × 𝑑𝑡, denoted 𝑋 𝑖 . To follow the evolution of the system with time, one simply has to follow the loop:

• We know Γ diff,𝑖 , 𝑠 𝑖 , 𝛿 𝑖 , 𝑣 𝑖 , 𝑁 at,𝑖 .

• Calculation of 𝑠:

𝑠 𝑖+1 = 𝐼 𝐼 sat Γ 2 /4 𝛿 2 𝑖 + Γ 2 /4
• Calculation of the number of photons scattered between 𝑡 and 𝑡 + 𝑑𝑡:

Γ diff,𝑖+1 = Γ 2 × 𝑠 𝑖+1 1 + 𝑠 𝑖+1
• Inclusion of the Doppler effect: By having the system evolve in this way and adding the values of 𝑁 at,𝑖 Γ diff,𝑖 at each step, the total measured signal (i.e. the number of photons absorbed by the cloud) can be calculated and compared to what we would expect without the two parasitic effects.

𝛿 𝑖+1 = 𝛿 𝑖 + Γ diff,

B.5

Calculation of the relative error on the optical density This section is intended to detail the calculations used in section B to calculate the relative accuracy on the measured optical density (B.3).

B.5.1 Influence of shot noise on the measured images

This calculation is strongly inspired from what is described in Appendix A of [START_REF] Plisson | Equilibrium and transport properties of two-dimensional Bose gase in the presence of disorder[END_REF], adapted to our system.

Detection of the light signal

We can model the detection of 𝑁 ph photons (poissonian signal 13 ) by the camera as a beamsplitter with a transmission coefficient 𝜂 (taking into account the camera's quantum efficiency, losses, etc.): an incident photon gives an electron with a probability 𝜂.

The number of created electrons is then:

𝑁 ei = 𝑁 ph ∑︁ 𝑖=1 𝑋 𝑖 ,
where 𝑁 ph is the number of incident photons and 𝑋 𝑖 the number of electrons obtained for one photon (𝑋 𝑖 = 0 ou 1, with probability 1 -𝜂 and 𝜂): One can note that the signal stays poissonian.

{︃ ⟨𝑁 ph ⟩ = 𝑁,

Amplification of the light signal

The amplification of the initial electronic signal is based on a probabilistic cascade process: it is therefore inseparable from shot noise. For more details on the EMCCD gain (principle and equation of noise), the reader is invited to go towards [START_REF] Plisson | Equilibrium and transport properties of two-dimensional Bose gase in the presence of disorder[END_REF].

The final electronic signal can be written as:

𝑆 = 𝑁 ei ∑︁ 𝑖=1 𝑋 𝑖 ,
where 𝑁 𝑒𝑖 is the number of electrons generated on the CCD sensor during image capture and 𝑋 𝑖 is the number of electrons obtained after cascade for one initial electron: 

Mesurement of the light signal

Finally, the camera counts the electrons collected on each pixel (𝜖 electrons give one measured count). The finally measured signal is therefore:

{︃ ⟨𝐶⟩ = 𝜂𝑁 𝐺 𝜖 ,
Var(𝐶) = Var(𝑆) × 1/𝜖 where 𝐶 sat is the number of counts corresponding to 𝐼 sat , that is:

𝐶 sat = 𝐼 sat × 𝜆 𝜏 pulse 𝑎 2 pix 𝜖 ℎ𝑐 𝐺 2 ,
with 𝑎 pix the pixel size (8 ➭m for both our cameras) and 𝐺 the magnification of the imaging system (8.3 for the vertical axis, 2.17 for the horizonal one).

There are 4 independent sources of error: errors related to measurements of 𝐶 𝑖 and 𝐶 𝑓 , and those related to calibrations 14 of 𝛼 𝑠 and 𝛼 0 .

I recall here that the error on the measurement of a quantity 𝐴(𝑋 1 , ..., 𝑋 𝑛 ) is, if the measurements of the 𝑋 𝑖 are independent:

𝜎 𝐴 = √︃ ∑︁ (︂ 𝜕𝐴 𝜕𝑋 𝑖 )︂ 2 × 𝜎 2 𝑋 i , (B.25)
where 𝜎 𝑋 i is the standard uncertainty on the measurement of 𝑋 𝑖 . One has: 
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  condensation in an harmonic trap

Figure 1 . 1 -

 11 Figure 1.1 -Density distribution of a sodium condensate in a harmonic trap: the noninteracting description (dashed line), corresponding to the gaussian distribution of the harmonic oscillator's ground state, differs very significantly from experimental results.

(1. 14 )

 14 This equation, called "Gross-Pitaevskii equation" (GP equation), describes well the behavior of most trapped atomic gases. It takes the form of a non-linear Schrödinger equation ; the first term corresponds to kinetic energy of the condensate, the second one to the trapping energy, and the third one to the interaction energy. Describing the ground state wavefunction classically corresponds, in fact, to a mean-field approximation: the GP equation describes the behavior of a single atom in the field created by the 𝑁 -1 ≈ 𝑁 other atoms. By separating the time and spatial dependence of the condensate wavefunction like one would do to write the time-independent Schrödinger equation, 𝜓(r, 𝑡) = 𝜓(r) exp(-𝑖𝜇𝑡/ ), we can write the stationnary Gross-Pitaevskii equation, describing the ground state of the system at rest 3 :

For a given configuration

  of the dressed trap, it is possible to measure the Rabi coupling at the position of the atoms by performing spectroscopy in the trap. By shining a weak RF field at a frequency 𝜔 probe , it is possible to couple the different local dressed states |𝑚⟩ 𝜃(r) (cf section 2.2), which are separated by |Ω 1 (r)|. This coupling leads to losses from the trap: the measurement of |Ω 1 (r)| at the position of the atoms (i.e. Ω 0 in relevant experimental cases) is done by finding the probe frequency that maximizes the losses. It is usually possible to measure Ω 0 within a 0.5 kHz precision. The optimal precision is achieved using very cold gases (to minimize Doppler broadening), very weak probe intensities (to minimize power3.4 Imaging the atomic cloud Let us finally discuss our main diagnostic tool: the production of pictures from the atomic clouds. There are three main techniques that are used to image ultracold atoms systems: the fluorescence imaging, the phase contrast imaging, or the absorption imaging. In our experiment, we use the third one. The overall idea is to shine onto the atoms a resonant probe beam, and compare the corresponding picture to a picture of the probe in the absence of the atoms: in this way, we can measure the atomic density from the shade that the cloud creates (see figure3.7). As the atoms exchange many photons during the process, the cloud however heats up a lot and gets destroyed; this technique is therefore destructive and a new cloud has to be prepared for each experimental picture we want to take.

Figure 3 . 7 -

 37 Figure 3.7 -Left: picture of the probe beam in the presence of the atoms. The light being resonant, the atoms scatter photons from the beam, creating a shade on the picture.

(3. 4 )

 4 The quantity 𝜎𝑛(𝑥, 𝑦) ≡ 𝑜𝑑(𝑥, 𝑦) is called the optical density, and it is what is measured in practice.When we try to image dense clouds -for example to image the in situ density profile, working with low probe intensities can lead to a complete absorption of the beam profile (leading to infinite densities when using equation (3.4)), to collective effects like multiple scattering, or to systematic errors in the measured densities because the atoms in front of the probe absorb most of the probe photons, and the atoms in the back of the cloud are therefore exposed to lower intensities (leading to a 𝑧 dependence of 𝐼 in equation (3.3)). To image such clouds, there are two strategies: either repump a small fraction of the atoms in the scattering state 𝐹 = 2, artificially reducing the optical density in this way, or use high probe intensities

4. 1

 1 .1 1D, single atom description I will start with a simple description of a single atom

(4. 2 )

 2 These states correspond to a phase winding of ℓ × 2𝜋 along the ring, and thus verify the quantization of flow circulation(1.34). From the eigenstates, we can deduce the angular velocity of the flow in the ring. The local velocity reads from (1.31):

2 with a 1

 1 ➭m resolution and a rotation mount. The final lens, L 4 , is mounted on top of a micrometric translation stage along the beam propagation axis (longitudinal position) and its mount has translation screws 3 along both other axes (lateral and vertical position; the screws are not graduated and have a 250 ➭m per turn precision).

  30 ms time-of-flight with a Stern-Gerlach procedure and image the cloud. Typical results are shown on figure 8.19. For moderate rotation frequencies, we observe well-ordered vortex lattices, but when Ω eff gets closer to the trapping frequencies the cloud gets more and more disordered and even seems to completely lose the lattice structure.Even though some theoretical work has been achieved about thermal fluctuations in 2D vortex lattices, there is yet no model that could be used to quantitatively analyze these pictures. We however tried to quantify the loss of the vortex lattice visibility, computing the 2D Fourier transform of the pictures:ñ(𝑘 𝑥 , 𝑘 𝑦 ) = ∫︁ 𝑑𝑥𝑑𝑦 exp(-𝑖𝑘 𝑥 𝑥) exp(-𝑖𝑘 𝑦 𝑦)n(𝑥, 𝑦),(8.4)where n is the vertically integrated density profile of the atoms, measured on the experimental pictures. The computed ñ(𝑘 𝑥 , 𝑘 𝑦 ) are displayed on figure 8.19. For low frequencies, we clearly see the six peaks corresponding to the triangular lattice; for higher frequencies the visibility of the peaks decreases and they get blurred along the azimuthal direction and the Fourier distribution now displays a ring, indicating the presence of a typical distance between vortices but a loss of the global lattice orientation. Finally, at high frequency this ring disappears, leaving only a disc at small momenta.To go further in the analysis, we then compute the radial average of the Fourier Transform:𝜌(𝑘) = ∫︁ 𝑘𝑑𝜃ñ(𝑘, 𝜃) (8.5) with 𝑘 = √︀ 𝑘 𝑥 𝑘 𝑦 and 𝜃 = arctan(𝑘 𝑦 /𝑘 𝑥 ); the corresponding results are shown on figure 8.20. The lattice now appears through a peak in the Fourier distribution. The height of this peak decreases with the rotation frequency, indicating that the distance between vortices gets more loose, and the peak completely disappears for excitation frequencies larger than 29 Hz (which corresponds to the cloud rotating around 33 Hz, see figure 8.14). We also see that the peak's position drifts towards lower momenta. This can be associated with the evolution of the magnetic length 𝑙 = √︀ /𝑀 Ω eff , which gives the intervortex spacing (see section 7.1.2): a lower momenta in the Fourier transform after time-of-flight corresponds to a smaller distance in situ. It is however difficult to quantitatively describe it, as the relation between the in situ distance and the distance after time-of-flight is not exactly a Fourier transform: our time-of-flight is not long enough to allow being in the far field regime.

B. 1 . 3

 13 Calibration of the α * parameter

5 .

 5 "Electron Multiplying Charged Coupled Device ".

0 Γ

 0 2𝜔 rec , (B.[START_REF] Wineland | Radiation-Pressure Cooling of Bound Resonant Absorbers[END_REF] where 2𝜋𝜔 rec is the recoil frequency. 𝛿(𝑡) then reads:𝛿(𝑡) = 𝛿 phot × ∫︁ 𝑡 diff (𝑡) 𝑑𝑡.(B.17)

  𝑖+1 × 𝛿 phot × 𝑑𝑡 • Calculation of the depumping and diminution of the atom number (après computing 𝜎 𝑒𝑒,22,𝑖 ): 𝑁 at,𝑖+1 = 𝑁 at,𝑖 -𝑁 at,𝑖 × Γ𝜎 𝑒𝑒,22,𝑖 𝜂 dep,22 𝛾 dep 𝑑𝑡 • ... And back to step 1.

  Var(𝑁 ph ) = 𝑁.{︃ ⟨𝑋 𝑖 ⟩ = 𝜂,Var(𝑋 𝑖 ) = 𝜂(1 -𝜂). The average value and variance of 𝑁 ei therefore read:{︃ ⟨𝑁 𝑒𝑖 ⟩ = 𝜂𝑁, Var(𝑁 ei ) = ⟨𝑁 ph ⟩ Var(𝑋 𝑖 ) + Var(𝑁 ph ) ⟨𝑋 𝑖 ⟩ 2 = 𝑁 𝜂(1 -𝜂) + 𝑁 𝜂 2 = ⟨𝑁 𝑒𝑖 ⟩ . (B.19)

{︃

  ⟨𝑁 𝑒𝑖 ⟩ = 𝜂𝑁, 𝑉 𝑎𝑟(𝑁 𝑒𝑖 ) = 𝜂𝑁. {︃ ⟨𝑋 𝑖 ⟩ = 𝐺,Var(𝑋 𝑖 ) = 𝐺 2 . The average value and variance of 𝑆 therefore read:{︃ ⟨𝑆⟩ = 𝜂𝑁 𝐺, Var(𝑆) = ⟨𝑁 ei ⟩ Var(𝑋 𝑖 ) + Var(𝑁 ei ) ⟨𝑋 𝑖 ⟩ 2 = 2𝜂𝑁 𝐺 2 = 2𝑆𝐺. (B.[START_REF] Migdall | First Observation of Magnetically Trapped Neutral Atoms[END_REF] 

1 ,L 2 ,L 3 ,L 4

 1234 Rabi coupling at the bottom of the bubbleΩ rf Maximal achievable Rabi coupling 𝛽 Ratio between the magnetic gradient and gravity 𝑅 Distance between the atoms and the center of the quadrupole 𝜔 knife Frequency of the RF knife Part II: Utracold atoms in a ring-Designation of the successive lenses of the light sheet setup 78 Part III: Fast-rotating Bose gases in RF adiabatic potentials Symbol Description Page 𝜔 𝑧 Vertical trapping frequency 41 𝜔 ⊥ Radial trapping frequency (in the isotropic case) 41 𝜀 Horizontal trap anisotropy 44 Ω rot Angular velocity of the trap (if it is rotating) 𝐿 𝑧 Average angular momentum of the gas (along the 𝑧 axis) 𝑁 𝑣 Number of vortices in the gas 𝑛 𝑣 Vortex surface density Ω eff Effective rotation frequency of the gas 𝜆 Relative strength of the quartic trapping term compared to the harmonic trapping Ω ℎ Rotation frequency of the gas required for the appearance of a central hole 𝑙 Magnetic length of the rotating gas 𝜔 ± Frequency of the 𝑚 𝑧 = ±2 quadrupole modes

  Larger displacements and excitations of the condensate are also described by the timedependent Gross-Pitaevskii equation (1.14), but it would be useful to have a description of the fluid that corresponds more to what we are used to ; in particular we would like to have an expression for the fluid velocity.Multiplying equation(1.14) by 𝜓

	1.2.2	Hydrodynamic formulation

* and substracting its complex conjugate, we find:

  = 𝐵 1 cos(𝜔 rf 𝑡)e 𝑥 + 𝐵 1 sin(𝜔 rf 𝑡)e 𝑦 ; we can define similarly to 𝜔 0 (r) the frequencyΩ 1 = |𝑔 𝐹 |𝜇 B |B 1 |/ ,and the interaction of the atom with this field writes, if 𝑔 𝐹 > 0: V1 = Ω 1

	2.1.3	Adiabaticity and Landau-Zener paradigm
	This description allows to explain how atoms can be trapped close to resonance, but doesn't
	tell anything on their behavior around the resonance itself: we need a mathematic treatment
	of what happens when atoms cross it to understand things properly.
	Let us add to the system of section 2.1.1 an oscillating magnetic field B 1 [︁ cos(𝜔 rf 𝑡) F𝑥 + sin(𝜔 rf 𝑡) F𝑦	]︁

  with 𝛿 the detuning between the local Larmor frequency and the oscillating field frequency and Ω 1 the local Rabi coupling, provided that the adiabaticity condition | δ| ≪ Ω 2 is respected (for an atom in motion and a time-independent 𝛿(r), it becomes |v • ∇𝛿| ≪ Ω 2 ).

	.17)
	Let us finally sum up what we have seen until now: for an atom evolving in an inhomo-
	geneous magnetic field in the presence of an oscillating field, the energy of the atom in the
	√︀ 𝛿 2 (𝑡) + Ω 2 1 (𝑡), which equivalently means that the effective energy landscape felt by the atom can be expressed as 𝐸(r) = 2 upper state at time 𝑡 is 𝐸(𝑡) = 2 √︀ 𝛿 2 (r) + Ω 2 1 (r),

  2 = 2 𝜂𝑁 𝐺 2 Var(𝐶) = Var(𝑆) × 1/𝜖 2 = 𝜂𝑁 𝜖 2 = 𝐶 𝜖 + 1 (B.22)if no amplification is used. The addition of a square count to the variance corresponds to the error related to discretization; in practice it is negligible.B.5.2 Error on the measured optical densityThe optical density reads (section B.1.4):𝜎 0 𝑛 ≡ 𝑑 𝑂 = 𝛼 0 𝑑 log + 𝑑 diff 1 -𝛼 𝑠 𝑑 log ,

									(B.23)
	with:	⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩	𝑑 log = -𝑙𝑛 𝑑 diff = 𝐼 𝑖 -𝐼 𝑓 [︂ 𝐼 𝑓 𝐼 𝑖 𝐼 sat	]︂ =	[︂ 𝐶 𝑓 𝐶 𝑖 𝐶 sat = -𝑙𝑛 𝐶 𝑖 -𝐶 𝑓	]︂	,	(B.24)
					𝜖 2	= 2𝐶𝐺 𝜖 + 1	(B.21)
	if the signal is amplified, and:						
	{︃	⟨𝐶⟩	= 𝜂𝑁 𝜖 ,					

  ⎩ 𝛼 𝑠 𝑑 log × 𝑑 𝑂 , 𝜕𝑑 𝑂 𝜕𝑑 log = 𝛼 0 + 𝛼 𝑠 𝑑 𝑂 1 -𝛼 𝑠 𝑑 log , 𝛼 𝑠 𝑑 log | [︃ (𝑑 log ) 2 𝜎 2 𝛼 0 + (𝑑 log 𝑑 𝑂 ) 2 𝜎 2 𝛼 0 + (︂ 𝛼 0 + 𝛼 𝑠 𝑑 𝑂 .These calibrations being performed together, we may have doubts about the independence of errors on αs and α0, but it is unlikely that this will significantly affect the final result.

		𝜕𝑑 𝑂 𝜕𝛼 0 𝜕𝑑 𝑂 𝜕𝛼 𝑠 𝜕𝑑 diff = = = 1 -𝛼 𝑠 𝑑 log 𝑑 log 𝑑 log 1 1 -𝛼 𝑠 𝑑 log , 1 -𝜕𝑑 𝑂	,	⎪ ⎪ ⎪ ⎪ ⎪ ⎩ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪	𝜕𝑑 diff 𝜕𝐶 𝑓 𝜕𝑑 log 𝜕𝐶 𝑖 𝜕𝑑 log 𝜕𝐶 𝑓 𝜕𝑑 diff 𝜕𝐶 𝑖	= -= 1 𝐶 𝑖 𝐶 sat 1 , = -1 , 𝐶 𝑓 = 𝐶 sat , 1	.	(B.26)
	The uncertainty on the measured optical density therefore reads:
	𝜎 𝑑opt =	1 |1 -𝐶 𝑖 + (︂ 𝛼 0 + 𝛼 𝑠 𝑑 𝑂 𝐶 𝑓	+ +	)︂ 2 )︂ 2 𝐶 sat 1 𝐶 sat 1	𝜎 2 𝐶 i 𝐶 f 𝜎 2	]︃ 1/2

. (B.27) 14
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It is also possible to derive it directly from a variational method[START_REF] Pitaevskii | Bose-Einstein condensation[END_REF].

Two PCI-6733 cards, one PCI-6713 and one DIO-32 card.

In fact, the amplitude is not really constant: the voltage applied to the antennas keeps a constant amplitude but the antennas' admittance depends on the RF frequency. This dependence is however smooth.

√ na 3 ≪ 1.11. Superconducting QUantum Interference Devices.

This also describes a pure, non-interacting BEC.

DTSXY-250-532 from AA opto-electronic

I recall here that the relative height of the knife compared to the bottom of the trap is F (ω knife -ω rf -Ω0), and the atoms are in F = 1.

By a least square method.

It is feasible "almost" simply if we assume a constant σee,22, i.e. that the detuning caused by the Doppler effect is negligible compared to ∆22.

This concerns both the partially absorbed signal and the signal without absorption, because the absorption by the atoms retains the poissonian character of the light signal.
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Part III

Fast rotating Bose gases in RF adiabatic potentials

Chapter 7

Theory of rotating superfluids

This chapter aims at describing from a theoretical point of view the behavior of vortices in the case of fast rotating Bose gases, i.e. the case where many vortices are present in the gas, and to introduce in this way the basics on which the third part of my thesis relies. In a first section, I will describe the behavior of vortices in the case of small to moderate rotations (Ω rot < 𝜔 ⊥ ); this regime has been studied a lot experimentally and theoretically and is now well understood. In a second section, I will describe the regime of fast rotations, when the rotation frequency gets very close to the trapping frequency. Despite the significant number of predicted phenomena that haven't been observed in this regime, no experimental work seems to have been carried on this topic during the last decade; it is this regime that we want to explore. Note that a more detailed review of these topics can be found in [START_REF] Fetter | Rotating trapped Bose-Einstein condensates[END_REF]. The third section will then describe the behavior of the quadrupole modes of rotating condensates, which gives useful tools to probe the properties of the superfluid. Finally, I will describe the theory that lies behind a few usual techniques for studying vortices: how we nucleate them and how we observe them.

All the experiments I will present in this part are performed at the bottom of our bubble trap: the trapping geometry there is highly oblate, with 𝜔 𝑧 /𝜔 ⊥ ∼ 10. For this reason, I will here consider only the case of 2D superfluidity, meaning that:

• All the rotations that will be considered are along the vertical axis.

• The quantized vortices are also aligned along this axis, and we neglect their possibility to tilt and/or bend.

In this case, the velocity field lies in the horizontal plane and does not depend on the 𝑧 position. Note that this doesn't require the condensate to be 2D or quasi-2D: the restriction here applies only to the allowed behavior of the vortex lines [START_REF] Rooney | Suppression of Kelvon-induced decay of quantized vortices in oblate Bose-Einstein condensates[END_REF].

7.1 Vortices in a rotating superfluid A good calibration of the vertical magnetic bias field is necessary to control properly the sheet loading and the ring formation. It is achieved by simply measuring the position of the cloud after a fixed time of flight for different values of the magnetic bias field. The bias coils create a constant magnetic field offset and the quadrupole field is linear; the subsequent displacement should then increase linearly with the magnetic bias or with the current in the bias coils.

A linear fit of the position of the cloud position then gives the slope of the position versus current function. This slope depends on the quadrupolar gradient, and thus on the current in the quadrupole coils. The most interesting value is, in fact, the product of the slope by the quadrupole current, that I will call 𝛼 zs , which is fixed for our coil geometry. If we denote 𝐵 𝑏 = 𝐵 𝑏,0 × 𝐼 bias the static field created by the vertical bias field, the total vertical magnetic field reads 𝐵 bias -2𝑏 ′ 𝑧 (I recall here that 𝑏 ′ is the horizontal magnetic gradient generated by the quadrupole coils). The equilibrium position therefore writes:

We also have

, and multiplying the slope by the current in the quadrupole coils 𝐼 quad for which it was measured gives the constant coefficient 𝛼 zs :

In general, applying a current 𝑍 shift in the bias coils leads to a displacement 𝑧 shift of the bubble that depends on the current in the quadrupole coils 𝐼 quad :

This equation allows one to convert any vertical distance in microns into the corresponding amount of current in the bias coils (given the quadrupole current 𝐼 quad ). I will, as a convention,

Appendix B Additional details about high intensity absorption imaging

The last tunings and calibrations of our high intensity imaging setup were performed as I was a master student in the team, between March and July 2015, and represented a significant amount of the work I performed at that time. I include here the translated chapters of the corresponding report that relate to how we implemented this technique.

When we installed the laser stirrer on the experiment, we had to place a dichroic mirror on the probe beam path: this implied a recalibration of the parameter 𝛼 * that we use to compute the optical density in the case of high-intensity absorption imaging. However, this work on the imaging system led us to observe a phenomenon that we did not take into account until then, leading to an artificial diminution of the measured atom number. Taking care about this effect led to a reduction of the signal-to-noise ratio (SNR) of our imaging, and I finally worked on the optimization of the imaging accuracy, in order to compensate this SNR reduction.

B.1 High-intensity imaging of dense clouds B.1.1 Two-level system modelization and corresponding notations

Let us begin by properly defining the studied system. At the end of the cooling process, we obtain a cloud of ultracold atoms that we want image as accurate as possible in order to deduce its characteristics (temperature, excitations, collective modes, etc.). All these informations are deduced from the atomic density profile measured on the pictures and the precision of this density measurement is therefore highly critical.

In practice, studying the imaging process corresponds to studying the interaction of an atomic ensemble with a laser beam -in this case tuned on the 𝐷 2 transition (see figure 3.2). The number of atomic levels that can have an impact on the system in this process is considerable: 4 principal levels (𝐹 = 1, 𝐹 = 2, 𝐹 ′ = 2, 𝐹 ′ = 3) can be populated in a Appendix C

Table of notations and symbols

The experiments described in this document extend to a quite wide range of topics, leading to a large number of notations between which it is easy to get lost (especially, studying rotating gases in RF-dressed traps leads to a very large number of "omega-something" notations).

I include here as a reminder a list of the main notations, with the pages where they are introduced or defined.

General notations

Constants:

Symbol

Description Value ℎ ( )

Atomic mass of the 87 Rb 1.443 × 10 -25 kg 𝑔

Résumé

Le caractère irrotationnel des superfluides est à l'origine de propriétés de rotation spectaculaires. Pour que le fluide puisse tourner, sa densité doit s'annuler localement en une singularité appelée tourbillon quantique ou vortex. La géométrie annulaire présente un grand intérêt pour étudier la superfluidité car le gaz peut tourner autour d'un trou central sans présenter de singularité, permettant l'existence de courants permanents à la circulation quantifiée le long de l'anneau.

Nous confinons des atomes froids habillés par un champ radiofréquence dans un potentiel adiabatique reposant sur un piège magnétique quadrupolaire. Le potentiel résultant, en forme de bulle, à la fois très lisse et facilement modifiable, nous permet de réaliser deux types de condensats de Bose-Einstein en forme d'anneau. Une première stratégie consiste à utiliser une nappe de lumière très désaccordée pour confiner les atomes à l'intersection entre la bulle et le plan imposé par la lumière -un anneau. Nous présentons la mise en oeuvre et l'optimisation de ce piège sur notre expérience et démontrons la possibilité de préparer et observer des courants superfluides dans l'anneau.

Une deuxième voie exploite la force centrifuge et l'anharmonicité du potentiel adiabatique pour créer un potentiel effectif en forme de chapeau mexicain en faisant tourner les atomes piégés au fond de la bulle plus vite que la fréquence du piège. Après avoir réalisé un tel système, nous en sondons les modes quadrupolaires pour caractériser sa rotation. L'étude de la distribution des vortex dans le gaz en rotation montre également un effet de fonte thermique des réseaux de vortex à température finie.

Mots-clefs : Condensation de Bose-Einstein, potentiel adiabatique, atomes habillés par la RF, superfluidité, courants permanents, vortex, anneaux, rotations rapides.

Abstract

The irrotational nature of superfluids leads to spectacular rotational properties. For the fluid to rotate, its density must locally vanish at a singular point called a quantum vortex. The annular geometry is of great interest for studying superfluidity as the gas can rotate in this geometry around a central hole without requiring any singularity, allowing the existence of persistent currents along the ring with a quantized circulation.

In out experiment, we confine cold atoms dressed by a radiofrequency field in an adiabatic potential based on a quadrupolar magnetic trap. The resulting bubble-shaped potential, both very smooth and easily tunable, allows us to produce two types of ring-shaped Bose-Einstein condensates. A first strategy consists in adding a far-detuned light sheet to confine the atoms at the intersection between the bubble and the horizontal plane imposed by the light fieldi.e. a ring. We present the implementation and optimization of this trap and demonstrate the possibility to prepare and observe superfluid currents in the ring.

A second path exploits the centrifugal force and the anharmonicity of the adiabatic potential to create an effective Mexican hat potential by rotating the trapped atoms at the bottom of the bubble faster than the trap frequency. After having realized such a system, we probe its quadrupolar modes to characterize the rotation. The study of vortex distribution in the rotating gas also shows a thermal melting effect of the finite temperature vortex lattice.