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1
Introduction

Systems biology is the study of biological functions and mechanisms consisting of DNA,

RNA, and proteins in a systematic way. It is also concerned with understanding the complex

and dynamic biological organization within the living organism in order to explain experimen-

tally observed behaviors and do future predictions [Alo06]. Cells are the fundamental units of

a living organism and share the same building blocks consisting of DNA, RNA and proteins

with different complexity and structure. The central dogma of molecular biology explains the

continuous reproduction of cells and flow of genetic information. It states that the blueprint

of the DNA is carried by the mRNA (messenger RNA) to make a “protein” as a functional

product, which performs the cellular work. Figure 1.1 explains the processes involved in the

central dogma of biology: (1) Replication, (2) Transcription, and (3) Translation. Replication

is the process of generating new DNA as functional product. Transcription produces new RNA

as a result. Translation results in a protein as final product. Even after translation, proteins have

to go through many modifications in order to become fully functional [Alo06].

These modifications involve the folding into three dimensional structure and moving to a

specific location in the cell. Each cell contains different types of proteins and each protein

can be expressed differently under different circumstances. Proteins play an integral role in all

cellular functions of living organisms, i.e., creating a signaling cascade and regulating various

biological mechanisms. Proteins are made up of the primary sequence of 20 amino acids. Usu-

ally proteins interact with other proteins to create complexes of varying sizes. These complexes

work with other proteins or complexes to create pathways or modules to carry out tasks in a

cell such as signal transduction, metabolism, duplication, DNA transcription, and DNA dam-

age repair, etc. Understanding the interactions among proteins and complexes is crucial to fully

13



14 CHAPTER 1. INTRODUCTION

Figure 1.1 – Central dogma of biology (Image source: Genome Research Limited).

identify and characterize the structure and functions of the cell machinery.

There have been a lot of advances in experimental, analytical and computational techniques

in the last couple of decades. These advances helped to generate large amounts of proteomics

data, such as the yeast two-hybrid system and mass spectrometry. Large scale protein to pro-

tein interaction databases contain a large number of experimentally verified protein to protein

interactions. These advances have made things less clear and at the same time they helped to

understand the protein functions, interactions, and structure at varying levels. For example,

linear dynamics were used to model signal transduction inside cells; now it seems that signals

follow the more complex nonlinear dynamics. Understanding the mechanisms and interactions

among proteins helps to unravel how information propagates within cells in different diseases

such as cancer [Alo06, DW15]. In this thesis, I am focused on inferring and understanding the

protein signaling networks in four breast cancer cell lines (BT20, BT549, MCF7, UACC812).

1.1 Motivation

Protein signaling networks are not static in nature since they respond to stimuli and per-

turbation. They constitute complex regulatory systems controlled by crosstalk and feedback

mechanisms. These networks are often regulated in diseases. Discovering the precise mecha-
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nisms of signal transduction may provide a better fundamental understanding of disease behav-

ior. For instance, a main difficulty in cancer treatment is that different signaling networks reveal

that cell populations specialize upon treatment and therefore patient responses may be hetero-

geneous. Computational models of signaling control for different patient groups could guide

cancer research towards a better drug targeting system. In this work, we propose a method-

ological framework to discriminate among the regulatory mechanisms of four breast cancer

cell lines by building predictive computational models.

Boolean network (BN) modeling is a simple yet powerful framework to study biological

models such as signaling pathways or regulatory networks. BNs are based on qualitative ap-

proaches, allowing to model large scale biological networks [OPS+15]. Part of the research

about this paradigm focuses on the topology of the network, searching for interesting charac-

teristics such as cycles and hubs. Some researchers focus on identifying the influences among

the components of the network, knowing which gene or protein activates or inhibits the oth-

ers. There is also research about studying the dynamics of the model, how the combinations

of inherent influences make the system evolve and how this evolution changes under different

conditions or situations.

While many BN approaches exist to model biological systems, they focus mainly on system

properties, and few exist to integrate experimental data in them. In this thesis, we use the caspo

time series (caspo-ts) method to learn cell line specific BNs by integrating protein signaling

networks with experimental data. The caspo-ts method uses Answer Set Programming (ASP)

and Model Checking techniques to solve the combinatorial optimization problem of enumer-

ating a family of Boolean networks (BNs) optimally explaining time-series data [OPS+16].

Figure 1.2 shows the overall process of caspo-ts, a publicly available software at [RPO18].

This thesis is focused on applying and ameliorating the caspo-ts method to large scale

experimental data of four breast cancer cell lines to identify cell line specific Boolean models.

More precisely, I apply the caspo-ts method to multi-perturbation time series data of four breast

cancer cell lines (BT20, BT549, MCF7, UACC812) along with the traditional breast signaling

network. I study how these cell lines derive different signaling behaviors under the same con-

ditions. This behavior is important to study to unravel the remarkable heterogeneity among

breast cancer types. It may help to design effective therapeutic strategies by having a better

understanding of the underlying behavior of the system.
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Figure 1.2 – Caspo-ts workflow. Prior Knowledge Networks (PKNs) are extracted from lit-
erature curated databases containing information about interactions between different proteins
or genes. PKNs are available in different databases such as Reactome, PID, etc. Phospho-
proteomic time-series data show the measurement of different proteins at different time points
under multiple perturbations. A BN consists of a set of nodes where a Boolean function is
assigned to each node. The state of each node is updated by evaluating the Boolean function.
Given phosphoproteomic time series data we construct a PKN by querying pathway databases.
After normalizing the time series data, we use it together with the PKN as input of caspo-ts
(ASP component) for learning BNs. Finally, caspo-ts, uses a model checking step to filter false
positive BNs. In this figure, the two main components of caspo-ts are shown in orange.

1.2 Contributions

1.2.1 The caspo-ts system applied to breast cancer

Protein signaling networks are static views of dynamic processes where proteins go through

many biochemical modifications such as ubiquitination and phosphorylation to propagate sig-

nals that regulate cells and can act as feedback systems. Understanding the precise mecha-

nisms underlying protein interactions can elucidate how signaling and cell cycle progression

occur within cells in different diseases, such as cancer. This knowledge may guide better drug

designs.

In this work, I focused on computational identification of BNs representing protein sig-

naling behavior using the caspo-ts [OPS+15] method. I used four breast cancer cell lines

of the HPN-DREAM challenge dataset [HHC+16, HNJC+17]. This dataset contains multi-

perturbation time series data of four breast cancer cell lines (BT20, BT549, MCF7, UACC812).

I thoroughly constructed and refined the prior knowledge network (PKN) from public databases,

such as Reactom [WDD+14a], to cover the maximum number of proteins existing in the HPN-

DREAM challenge dataset. I modeled a family of cell line specific BNs for the four breast

cancer cell lines given this PKN.

My key findings suggest that this method is capable of constructing cell line specific Boolean

models, which is extremely valuable given the heterogeneity of breast cancer due to many ge-

netic modifications. An algorithm is implemented to analyze these cell line specific BNs to
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study similarity among these breast cancer cell lines. I have highlighted the common and dis-

tinct behaviors.

Further, I validated the inferred BNs using the testing dataset provided by the HPN-DREAM

challenge. This dataset was not included while inferring BNs. My models have a Root Mean

Square Error (RMSE) of 0.31 with respect to the traces for the testing data, providing an opti-

mal fit to the testing data. Furthermore, I also validated the cell line specific Boolean models

by comparing them to the canonical mTOR pathway. The obtained results are comparable to

the top performing teams of the HPN-DREAM challenge. In addition, this approach can also

be used as a complementary method to identify erroneous experiments. Related to this work, I

have published an article in Plos Computational Biology journal [RPS+18].

1.2.2 Extension of the caspo-ts system

Diverse Boolean models

Since the ASP solver uses a backtracking algorithm to exhaustively generate BNs, it can

lead to a situation where successive BNs share very similar properties. This can be problematic

specially in the case of a large solution space where discovering or analyzing all BNs becomes

computationally hard. To resolve this issue, a diverse enumeration scheme has been introduced.

This feature has been implemented in caspo-ts and allows it to break up the clusters of similar

BNs, hence generating diverse BNs. I refer to the modified caspo-ts as caspo-tsD.

I have demonstrated the results of the proposed approach on two different benchmark sce-

narios in systems biology: (1) an artificial dataset to model TCR signaling and (2) the HPN-

DREAM challenge dataset to model breast cancer cell lines.

Results suggests substantial improvements of caspo-tsD in solution quality by discovering

more signaling behaviors than caspo-ts. Moreover, caspo-tsD is able to find BNs in cases

where caspo-ts is unable to find any. Related to this work, I have published an article in the

Computational Methods in Systems Biology conference [RKR+18].

Parallel model checking

The ASP part of the caspo-ts system over-approximates BNs. This over-approximation

removes a large set of BNs that have no reachable traces, reducing the number of invalid BNs.

However, over-approximated reachability does not guarantee to reproduce all time series traces.

Hence, at the final step the caspo-ts system uses a model checker to check exact reachability of

all (binarized) traces existing in the experimental data by the given BN. This is the most time

consuming part of the caspo-ts system. The verification of this reachability is a PSPACE-hard

problem and the computation time for checking reachability is highly variable depending on

the BN under verification. It can take from an hour to months. Moreover, caspo-ts specifies
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all properties in one big specification, which can be slow to verify, especially in the case of

large scale networks. I have improved this step, by splitting up the specification, to reduce the

computational time of true positive BN detection. Results suggest substantial improvements in

computation time.

1.3 Organization of the thesis

This thesis consists of six chapters.

Chapter 1 “Introduction” provides a broad overview and motivation behind this thesis. It

precisely specifies the aims and contributions of this work.

Chapter 2 “Background and Related Work” provides background introduction on breast

cancer, phosphoproteomic data, signaling networks, and computational modeling. We discuss

four different computational methods to model signaling networks: ordinary differential equa-

tions, genetic algorithms, dynamic bayesian networks, and integer linear programming. We

state the advantages and disadvantages of these methods as compared to the modeling approach

(answer set programming) used in this work.

Chapter 3 “Answer Set Programming” introduces the modeling approach used in this thesis.

We define basic notations and explain them with examples. Then we discuss related work in

the context of modeling signaling networks using answer set programming. We also discuss

related work in the context of learning diverse solutions using answer set programming.

Chapter 4 “Computational Discovery of Dynamic Cell Line Specific Boolean Networks

from Multiplex Time-Course Data” discusses the first contribution of this thesis. We describe

in detail the caspo-ts system and its application on a real case study (HPN-DREAM Challenge).

We build signaling networks given phosphoproteomic data and prior knowledge networks. We

used multiple criteria to evaluate the learned networks. We also highlight different characteris-

tics (such as enumeration order, false positive rate) of the caspo-ts method, which are resolved

in the following chapter.

Chapter 5 “Computing Diverse Boolean Networks from Phosphoproteomic Time Series

Data” introduces the improved version of the caspo-ts methods. This chapter is related to

the second contribution of the method. Here, we describe the new enumeration criteria to

sample the solution space of the caspo-ts method. We also give a new algorithm to improve the

computational time of verifying a solution using model checker.

Chapter 6 “Conclusions and Future Work” provides the summary and the future perspec-

tives of this work.



2
Background and Related Work

2.1 Breast cancer

Breast Cancer is a remarkably complex and heterogeneous disease. It develops as a result

of uncontrolled growth of abnormal cells due to genetic mutations. Mutation causes cells to

multiply and divide chaotically. Mostly, this leads to the situation where multiple copies of

abnormal cells give birth to a tumor. There exists a high diversity within the same type of

breast tumors in terms of genomic alterations [RvJH+13]. Moreover, there is also substantial

difference within tumor bearing patients. This high level of diversity poses a great challenge

for cancer therapy, and demands diverse clinical features [Pol11].

2.1.1 Breast cancer types

Breast cancer can develop in different sites of the breast: the lobules, the ducts or the tis-

sue in between them. The milk producing section of the breast is called lobules. Milk travels

through the pathway from lobules to the nipple using ducts (see Figure 2.1). Depending on the

area, breast cancer can be divided into two subtypes: (1) Non-invasive and (2) Invasive. With

the non-invasive type, the cancer is completely confined to the ducts or lobules and does not

spread to the surrounding connective tissues. The non-invasive breast cancer is further sub-

divided into two types: (1) ductal carcinoma in situ and (2) lobular carcinoma in situ. With

the invasive type, the cancer breaks through the lobular and duct wall, and spreads into the sur-

rounding connective tissues. There are further categories of the invasive breast cancer; the most

common ones are: (1) invasive ductal carcinoma and (2) invasive lobular carcinoma [SDS+10].

19
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Figure 2.1 – Breast structure (Image source: National Cancer Institute www.cancer.gov).

In recent years, researchers have been studying different genetic mutations in breast can-

cer through gene analysis techniques (expression microarrays). This led to the development

of another classification criteria for breast cancer, i.e., molecular and genetic classification

[SLB+10]. According to this criteria, breast cancer can be divided into four molecular sub-

types [HS11, DCBL17]:

1. Luminal A or B,

2. Triple negative (A or B) or Basal like,

3. HER2 type,

4. Claudin low.

Luminal breast cancer is hormone receptor positive (estrogen and progesterone). This cancer

is slow to grow because of tight cell-cell junctions. Luminal breast cancer is further subdivided

into luminal A or B, based on the existence of human epithelial receptor 2 (HER2). HER2

is absent in luminal A and present in luminal B breast cancer. Triple negative breast cancer

does not contain any of the most common three receptors (HER2, estrogen and progesterone).

Hence, hormone therapy cannot be applied to treat this type of breast cancer. Triple negative

breast cancer is further divided into subtype A and B. Subtype A has an abundance of basal

markers while subtype B is enriched with stem cell markers. HER2 positive breast cancer

contains an abundance of HER2 proteins. This type of cancer is more aggressive than other

types. As triple negative breast cancer, claudin low breast cancer also displays the absence of

three hormone receptors. Claudin genes (3, 4 and 7), and E-cadherin proteins are absent in
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claudin low breast cancer. Studies show that claudin low cancer is enriched with stem cells or

cancer initiating cells, which can help in studying earlier stages of tumor cells [Per11, SFG+14,

DCBL17].

2.1.2 Cell lines

Cell culture is the process in which cells are cultivated in an artificial environment. Cells

can be isolated through a variety of means. They can be derived from the living tissue and

disaggregated by mechanical or enzymatic means. They can also be taken from an already

established cell line. Cells are maintained and proliferated under controlled conditions, known

as the primary culture stage. At this stage, cells are usually subcultured to provide more room

for cultivation. After subculturing, cells capable of proliferation are selected and as with the

outgrowth from the primary culture stage, give rise to a cell line. Cell lines developed through

a primary culture usually have a genetically determined life span. However, some cell lines

are transformed into immortal cells and can grow indefinitely under optimal conditions. This

can happen because of variety of reasons, e.g., chemical induction or spontaneous occurrence

[Fre06].

Cell lines provide a simple and powerful model for studying and analyzing breast cancer

biology. They serve as an unlimited source of homogeneous self-replicating material, and

are easy to handle, and replace in case of contamination. However, they pose a number of

challenges too. Cell lines are susceptible to genetic and epigenetic drifts during their culture

[BSE05]. If a cell line is stored for a long time, a subpopulation can arise and cause phenotypic

drift resulting in various clones within it [DCBL17].

Despite of their challenging nature, cell lines have been widely used as an experimental

model for in vitro studies [NCF+06, BFA+10, PZS+10, FAC13]. They became a powerful tool

to investigate how apoptosis, migration and proliferation are deregulated during breast cancer

progression. Breast cancer cell lines help to generate quantifiable and reproducible results

[VGR07]. They have provided valuable insights into understanding different aspects of breast

cancer [LL04]. They have created a large amount of knowledge about breast cancer biology

[Eth96, SLB+10, YXW+10, TCJ+10]. They have suggested novel cancer therapies over the

past decades [WBB+99, WBM+98, Mas00]. They have been used in preclinical studies and

predicted accurate clinical outcomes [CGL10]. In this thesis, we are using four breast cancer

cell lines (BT20, BT549, MCF7, and UACC812) to study signaling behaviors.

Molecular classification of breast Cancer cell lines used in this thesis

As described above, breast cancer cell lines are categorized according to the three important

receptors: ER (estrogen receptor), PR (progesterone receptor), and HER2 (human epithelial
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receptor 2) [DCBL17]. In Table 2.1, we show the molecular classification of the four cell lines

used in this study.

Table 2.1 – Molecular classification of breast cancer cell lines.

Cell Lines ER PR HER2 Subtype
BT20 − − − Triple Negative A

BT549 − − − Triple Negative B
MCF7 + + − Luminal A

UACC812 + + / − + Luminal B

In the following, we discuss some history and research work related to these breast cancer

cell lines.

BT20

In 1958, the BT20 cancer cell line was isolated from a 74 year old woman. It is the first

human breast cancer cell line and was established by Lasfargues and Ozzello [LO58]. It depicts

the invasive breast cancer type. Even though it was the first breast cancer cell line, it has not

been widely used to study breast cancer. Here, we cite some of the work which has been done

using this cell line alongside other cell lines.

In the past, there was a lack of experimental models to study biological properties of human

breast cancer. For this, they transplanted the BT20 cell line into nude athymic mice. Results

showed the development of tumors at the injection site. Their observations showed that nude

athymic mice are suitable for studying human breast cancer [OSM+74].

This cell line together with other breast and ovarian cancer cell lines have been used to study

the HER2/neu assay sensitivity. According to the results, the BT20 cell line did not contain an

over-expression of HER2 [RJC+02].

A group of 41 breast cancer cell lines (including BT20) was studied to identify BRCA1

mutants. BRCA1 germ mutations put female mutation carriers to high risk of ovarian and

breast cancer. Four new cell lines were identified with BRCA1 mutations [EHN+06].

This cell line belongs to the triple negative breast cancer, which means hormone therapy

cannot be applied to this kind of cancer. Triple negative breast cancer patients have a poor

treatment outcome because of the lack of validated molecular targets. There is a clear need to

enhance knowledge about this type of cancer to develop better therapies. The BT20 cell line

has been used to study the triple negative breast cancer type [CGL10]. Results suggests that

the BT20 cell line has very high expression of the EGFR protein and a genetic amplification of

the EGFR gene [LG87].
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MCF7

In 1970, the MCF7 cancer cell line was developed using pleural effusion from a 69 year

old female metastatic breast cancer patient. It was established by Soule and colleagues at the

Michigan Cancer Foundation [SVL+73]. MCF7 is the most studied breast cancer cell line.

It mimics several invasive breast cancers which expresses the estrogen receptor (ER). It is

widely used to study estrogen response and resistance both in vivo and in vitro, as this cell line

maintains a substantial level of ER, considering ER maintenance is not a trivial task. There

have been around 25,000 publications related to this cell line till now.

MCF7 played a major role in the development of antibodies for ER positive tumors, since

Green et al. developed the first monoclonal antibody to ER [GNEJ80]. These antibodies led

to the identification of cDNA clones which express ER mRNA. This aided in the cloning and

sequencing of the ESR1 gene [WGG+85]. These antibodies also helped in measuring ER levels

in human breast cancer, thus serving as a guide on the use of hormone therapy for ER positive

tumors. This cell line also expresses progesterone, glucocorticoid, and androgen receptors

[HCM75]. Hence, it is used as a valuable model to study other hormone response pathways.

An area of research focuses on estrogen based stimulation of MCF7 cells. Earlier studies

were focused on how estrogen regulates the growth factor signaling [OS11]. Recent studies

have revealed that estrogen represses and induces a large number of genes simultaneously. This

generates a complex network of alterations, which coordinate to change growth [CPM+12].

MCF7 cells have also been used to study hormone resistance. Some researchers have de-

veloped hormone resistant variants of MCF7 cells by either chronic exposure to anti estrogens

or estrogen withdrawal. Initially, this slowed down the cell growth, but finally growth resumed.

It has been shown that estrogen deprived cells are highly sensitive to estrogen stimulation and

express substantial levels of ER [JSB+98]. These studies have identified transcriptomic and

epigenetic alterations, which eventually lead to changes in growth factor signaling. The single

cell cloning of cells without classification of ER positive or negative clones, highlighted the

heterogeneity existing in breast cancer [OZG+01].

MCF7 cell lines do not have an amplified level of HER2. However, Osborne et al. have de-

veloped MCF7 cells with amplified HER2 [BSS+92]. They showed how anti HER2 inhibitors

can block growth and can be used for treatment. The studies have been validated clinically.

Moreover, many laboratories have developed anti HER2 resistant cell lines. Despite the limi-

tation imposed by cell culture, this cell line has tremendously advanced the knowledge about

breast cancer and gave new directions to breast cancer research [LOD15].
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BT549

In 1978, the BT549 cell line was derived from a 72 year old women. This cell line was

established by Coutinho and Lasfargues. It is a breast ductal carcinoma cell line. This cell line

represents the triple negative breast cancer type [LC81].

Lehmann et al. analyzed gene expression profiles from 21 breast cancer datasets. They

identified 587 triple negative breast cancer cases from these breast cancer datasets. Cluster anal-

ysis was performed to identify 6 subtypes of triple negative breast cancer. They derived gene

expression signatures from these subtypes to select the representative cell line of these subtypes.

Then prominent signaling pathways were pharmacologically targeted in these cell lines to study

the response to targeted therapies. Results showed that different cell lines have different sensi-

tivities. This suggests that the heterogeneity of this disease can be studied through these triple

negative cell lines and can help with designing effective preclinical treatments [LBC+11].

In [GMN+12], a group of 25 triple negative breast cancer cell lines were analyzed to iden-

tify similarities between cell line and triple negative breast cancer. These cell lines were stud-

ied on three molecular levels: genomic, transcriptomic, and epigenomic. They categorized cell

lines in three groups. Two groups consisted of ER negative cell lines, while one encompassed

of three ER negative and all ER positive cell lines The first two groups agreed with the existing

knowledge, while one group was not consistent with existing studies. They further extended

the characterization of these breast cancer cell lines. This provided valuable knowledge about

suitability of a particular cell line for modeling different features of the breast cancer disease

[GMN+12].

Recently, a new classification criteria was proposed to categorize breast cancer cell lines

[SSK+17]. The relationship between RNA, TP53 mutation status and protein expression was

also quantified. Their analysis revealed heterogeneity within cultures of established cell lines.

They compared their finding with other studies, to help guide the selection of cell line models

for in vivo and in vitro studies [SSK+17].

UACC812

In 1988, the UACC812 cell line was isolated from a 42 year old women. This cell line

was established by Meltzer and colleagues [MLD+91]. It represents the HER2 positive breast

cancer type.

Wang et al. investigated mechanisms of resistance to HER2 targeted drugs using a panel

of HER2 positive cell lines. They used two drugs (trastuzumab and lapatinib) alone and in

combination to study drug resistance. Their results revealed that the resistance to trastuzumab

is due to the reactivation of the HER2 pathway. Furthermore, resistance to lapatinib or lapatinib

combined with trastuzumab is associated with an alternative signaling through the ER pathway.
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They suggested to completely block the HER network and inhibit ER to develop an optimal

therapy [WMG+11].

Giuliano et al. analyzed the effects of HER2 targeted therapies on ER and Bcl2 expres-

sion in clinical tumor samples and preclinical models. Results suggested that Bcl2 and ER

expression increased significantly in breast tumor xenografts treated with anti HER2 therapies.

They revealed that the co-regulation of Bcl2 or ER with an anti HER2 therapy can prevent the

increased Bcl2 and ER expression in HER2 positive breast cancer patients. They also reported

that tumor progression slowed down with endocrine therapy in the presence of restored ER

expression in xenograft tumors treated with anti-HER2 therapy [GHW+15].

Zhang et al. investigated the role of EPOR (erythropoietin receptor) in the inhibition and

the resistance to the trastuzumab drug, in HER2 positive breast cancer. They identified EPOR

mRNA and protein expression in HER2 positive breast cancer cell lines (UACC812, MDA-MB-

453, and SKBR3). They suggested that EPOR expression may influence tumor proliferation

and progression in HER2 positive breast cancer [ZDX+12].

Brennan et al. studied the connection between the JAM-A (junctional adhesion molecule

A) and aggressive tumor, using breast cancer cell lines and clinical datasets. They suggested

that over-expression of JAM-A may increase breast cancer progression in HER2 positive breast

cancer. They also suggested that JAM-A can serve as a potential drug target and biomarker of

HER2 positive breast cancer [BMH+13].

2.2 Phosphoproteomics experimental dataset

Cancer is both a genomic and a proteomic disease at a functional level. A genetic defect

may ultimately lead to alterations in a protein signaling network. A defective signaling path-

way can cause cancer growth, metastasis, invasion and survival. The future of cancer therapy is

personalized treatment. Genomic profiling has been extensively used to personalize chemother-

apy treatment. However, it became apparent that genomic profiling represent only one level of

detail of the overall process because most of the pharmaceutical targets are proteins. Proteomic

profiling provides direct information about protein signaling pathways. Proteomic profiling

can be used to examine the signaling network in a normal and a cancerous state. Phospho-

proteomics is a branch of proteomics, where researchers focus on studying proteins containing

post-translational modifications. Such proteins are called phosphoproteins or phosphorylated

proteins. Phosphorylation plays a ubiquitous role in regulating different processes, i.e., protein

functions, cellular growth, degradation of proteins and signaling [NLSBW08].

Protein arrays are used to measure protein expression in a high-throughput manner. Pro-

tein arrays are categorized into a forward phase protein array and a reverse phase protein array

(RPPA). Forward phase protein arrays (FPPA), also referred to as Enzyme Linked Immunosor-
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bent Assays, involve immobilization of multiple antibodies on a surface (see Figure 2.2). FPPA

provides a way to analyze the level of multiple proteins in a single sample simultaneously. In

reverse phase protein arrays (RPPA), also referred to as Lysate Arrays, different samples (cell,

tissue lysates) are immobilized on a surface and are analyzed for the presence of a single pro-

tein (see Figure 2.2). Hence, RPPA is ideally suited for measuring the level of a single protein

for multiple samples simultaneously [NBK12, MLE10]. For example, it can be used to study

the regulation of proteins in healthy and cancerous cells [HRS+09]. It is mainly used to: (1)

define new and efficient targeted drug therapies for individual patients, (2) identify and validate

biomarkers, and (3) verify drug effects (on or off targets, downstream signaling) [SGTP17].

Figure 2.2 – Forward and reverse phase protein array format.

RPPA has emerged as a standard protein profiling platform over the past few years. RPPA

provides an excellent way to capture the activated pathway or protein as a result of phosphoryla-

tion. MacBeath and Schreiber are the pioneer developers of protein microarrays [MS00]. They

used high-throughput detection to identify protein to protein interaction. Another variation of

protein microarrays named as “RPPA” was proposed by the Paweletz et al. in 2001 [PCB+01].

Since 2011, an annual meeting is held to provide a platform for scientists and researchers for

exchanging ideas related to RPPA technology.

RPPA is a high-throughput technology that performs quantitative measurements of hun-
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dreds of proteins in biological samples (clinical and preclinical). It consists of micro-blots of

protein lysates from multiple samples of cell lines or tissues on a single array where each sam-

ple is described by at least one spot. Each array is incubated by one antibody to identify the

corresponding protein expression across multiple samples simultaneously. Each array can con-

tain thousands of samples. For high-throughput measurement of many proteins, multiplexing

on multiple arrays of the same set of lysates is performed using different antibodies (see Figure

2.3) [CH15].
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Figure 2.3 – Overview of analysis of signaling networks using RPPA technology.

RPPAs offer excellent data for studying deregulated signaling networks in cancer. It allows

for investigating and comparing samples treated at different time points under different condi-

tions with different doses. It is a useful tool to quantify multiple phosphorylated proteins even

in a very small sample, which makes them suitable for individual patient therapy. Several stud-

ies have investigated heterogeneity among protein levels within a primary tumor, tumor and

metastases of the same patient using data generated by the RPPA technology. Results showed

significant heterogeneity in a subset of proteins within a tumor, and between metastases and the

primary tumor. This suggests to analyze the samples from multiple locations instead of a single

sample. Another study used RPPA to distinguish colon and ovarian cancer by finding molec-

ular markers. Other studies found key proteins which play important role in the regulation of

signaling pathways in different cancers such as breast cancer, leukemia, and glioma. A first

commercial RPPA assay (the TheraLink HER Family Assay) was developed by Theranostics
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Health in 2018 and has been given access to by some insurance companies. This assay can be

used to guide personalized treatment by linking drug targets with available therapies [The18].

In contrast to RPPA, there exist other proteomic technologies such as mass spectrometry,

western blot, and enzyme linked immunosorbent assay (ELISA) (See Table 2.2). Mass spec-

trometry based methods can analyze thousands of proteins at a time but they are unable to

resolve all proteins within a sample. In contrast, RPPAs are highly sensitive and can detect

even low abundance proteins. Mass spectrometry based approaches can be used to discover

new candidate biomarkers by comparing healthy tissues with cancerous tissues. RPPA can

be used to validate these markers in small samples (taken from patients), thereby deriving an

individual precise cancer therapy. There are 380 validated antibodies available for RPPA. As

compared to ELISA which requires two antibodies for a protein, RPPA requires only one anti-

body against the same protein. Western blot and ELISA require high amount of protein lysates

as compared to the RPPA technology [BB15, CH15].

Table 2.2 – Characteristics of different protein analysis platforms.

Pros Cons
Western Blot High specificity High sample, Low-medium throughput

ELISA Quantitative, High sensitive High sample, Costly setup for high-throughput
Mass Spectrometry High multiplex, Discovery of new biomarkers Low throughput, Complex sample preparation

RPPA High sensitive, High-throughput Costly setup, Specific antibodies

In this thesis, we are using the HPN-DREAM dataset, which was generated by RPPA quan-

titative proteomics technology [HNJC+17, HHC+16]. These data contain phosphorylated mea-

surements of multiple proteins under sets of perturbations. Perturbation refers to the combina-

tion of stimuli and inhibitors.

2.3 Prior knowledge networks

Prior Knowledge Networks (PKNs) are available in different databases such as Reactome,

PID, and kegg among others [DW15, WDD+14a, KG00, C+04, KvIH+12, Nis01, SBR+06,

SMC+17, XRS+00, PNK+04, HMPL+04, ZMPQ+02, RMD08]. PKNs are graphs where

molecules are represented by nodes and interactions are represented by edges. We can con-

struct a PKN through different tools or softwares such as ReactomeFIViz [WDD+14b] which

is available as a Cytoscape [SMO+03] plugin. A PKN alone cannot be used to build reliable

dynamical models or to explain underlying biological behaviors [RCAdS15], because signaling

behaviors are rewired in specific contexts. The signaling behavior may differ in cancerous and

normal cells due to many genetic modifications [HLM+12]. Therefore, it is extremely impor-

tant to manifest how these networks are regulated in different diseases. In order to overcome
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this issue, methods have been proposed which take into account both literature based knowl-

edge (such as PKNs) and experimental data (such as phosphoproteomic datasets) to build sig-

naling networks [OPS+15, MTH+12, GVE+13, SRAE+09, VGE+12]. In this thesis, we use a

PKN (built using ReactomeFIViz) combined with the phosphoproteomic time series dataset of

four breast cancer cell lines to generate cell line specific Boolean Networks.

2.4 Computational modeling of protein signaling networks

Network modeling has been widely used for studying phosphoproteomic data, yielding

important insights into protein interactions, functions, and evolution. Figure 2.4 shows the

work-flow of the computational modeling. Computational modeling bridges the gap between

traditional biology and high-throughput datasets. A model is constructed using different for-

malisms like mathematical modeling, stochastic search methods, bayesian networks, integer

linear programming, answer set programming, and then integrated with the experimental data.

Afterwards, models can be validated through testing data. These testing data can be generated

by traditional biology experiments. If a model’s predictions coincide with the testing data, then

it can be used to predict novel events. These novel events can be further validated through

experiments before suggesting novel biological insights.

Figure 2.4 – Work-flow of the Computational Modeling (This work-flow was inspired by
[KHJ+06]).

Network modeling is an important part of this thesis. In the following, we discuss the

general frameworks that can be used for network discovery.

2.4.1 Ordinary differential equation models

Ordinary differential equations (ODEs) based approaches have been widely used for mod-

eling complex and dynamic signaling networks. ODEs represent the interaction among various
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molecules (such as proteins or genes). In ODEs, the various biological species (such as pro-

teins) are represented as variables, where each variable has an equation reflecting its dynamic

evolution over time. Here, we describe two types of ODEs:

1. Law of Mass Action,

2. Hill Function.

Here, we show how to formulate biochemical reactions (such as phosphorylation) using

above mentioned equations.

Law of mass action

This law states that the rate of reaction is proportional to the chance of a collision of re-

actants, which in turn, is proportional to the concentrations of the participating molecules to

the power of the molecularity (such as the number in which they enter the specific reaction)

[JYL+17]. For example, we can define the molecular interaction between A, B and C by the

following equation:

A+B
k+−−⇀↽−−
k−

C, (2.1)

where A and B are reactants, C is the product, and k+ and k− are the forward and the reverse ki-

netic rate constants . The following ODEs can be used to derive the change in the concentration

of A, B, and C over time:

d[A]

dt
=
d[B]

dt
= k+[C]− k−[A][B], (2.2)

d[C]

dt
= k+[A][B]− k−[C]. (2.3)

Hill function

In the context of protein signaling networks, Hill functions can be used to represent the

state of proteins such as activation or inhibition. In the following, Hill functions can be used to

describe the change in protein expression over time. The Hill function is associated with each

protein involved in the signaling network.

dy

dt
=

M∑
i=1

f+(xi) +
N∑
j=1

f−(xj)− y ∗ dy, (2.4)

f+
−

(x) = kxy
x
+
−
nx

H
+
−
nx

x + x
+
−
nx
, (2.5)
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where y denotes the concentration of activated protein, xi represents ith protein (i =

1, 2, ...,M ), which activates protein y , and xj is the jth protein (j = 1, 2, ..., N ), which inhibits

protein y. f+
−

(x), represents the activating or inhibiting profile induced by protein x, respec-

tively; kxy denotes the activation or inhibition rate; Hx represents the microscopic dissociation

constant and nx is the Hill coefficient; dy denotes the degradation rate of protein y [JYL+17].

Iadevaia et al.

In [ILM+10], a computational approach is proposed to model the IGFR signaling network

in the MDA-MB231 breast cancer cell line, using a set of ODEs with the law of mass action.

The IGFR signaling network representing activation and inhibition interactions, was mapped

into a set of 77 chemical reactions. For example, the following equation was used to represent

the activation of protein PIK31 by IRS1,

PIK31 + IRS1∗
k+−−⇀↽−−
k−

PIK31∗, (2.6)

where k+ and k− are the forward and the reverse kinetic rate constants. These set of chem-

ical reactions were mapped into a system of 127 ODEs. There were total of 313 unknown

parameters, representing initial concentration of proteins and kinetic rate constants. The model

reduction was performed to decrease computational complexity of the model. The reduced

model consisted of 41 chemical reactions, 65 ODEs, and 161 unknown parameters. The qual-

ity of the reduced model was ensured by comparing protein profiles predicted by it, with the

ones predicted by the original model. To obtain values for the 161 unknown parameters, the

mass action model was trained against experimental data using the particle swarm optimization

method. Training data consisted of time course measurements of six readouts proteins (p-AKT,

p-TSC2, p-GSK3, p-p70S6K, p-mTOR, and p-MAPK). This dataset contained normalized pro-

tein profiles of MDA-MB231 cells after IGF1 stimulation. The RPPA technology was used to

generate this data. They obtained 10 sets of parameters which explained the experimental data

equally well. To determine the quality of the inferred model, testing data were used to gener-

ate responses of the IGFR network after MEK inhibition. Computational results were verified

experimentally, confirming the accuracy of the modeled network. The mass action model was

used to inhibit an individual molecule to predict the response of the IGFR network. Results

suggest that inhibition of an individual molecule can activate another molecule, for example

through a feedback loop. Three protein p-AKT, p-p70S6K, and p-MAPK levels are usually

up-regulated in cancer. To decrease these protein levels, the authors identified optimal inhi-

bition targets using random sampling of model parameters (initial protein concentration and

kinetic constants). ODEs were solved with these randomly sampled parameter values. The au-
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thors identified five main drug targets p-IGFR, p-MAPK, p-MEK, p-IRS-1, and p-AKT. They

also performed experimental validations of their findings. Experimental findings agreed that

the optimal combination (inhibition of the PI3K and MAPK pathways) of drugs decreased

cell proliferation and inhibited cell signaling. However, non-optimal combination (MEK and

mTOR inhibitors) did not sufficiently inhibit signaling.

Solomon et al.

Solomon et al. [IGT10] proposed a mathematical approach based on ODEs, to model the

HER2/3 AKT protein signaling pathway in breast cancer. They used experimental data from

two breast cancer cell lines (SKBr3 and BT747). This dataset contained short term (48 hours)

and long term (2 days) effects of inhibition of TKIs (Gefitinib). In this study, 46 proteins

(species) were modeled using ODEs. The connectivity information was derived from the liter-

ature. All kinetic reactions were represented as first or second order mass action equations. For

example, following equation was used to model phosphorylation of B with rate Kb,

d(pB)

dt
= Kb ∗B, (2.7)

where p represents the phosphorylation of the protein.

The authors also took into account the trafficking of proteins between the cell membrane

and cytoplasm, since HER3 can take hours or days to transfer to cell membrane. This slow

transfer can be caused by the feedback loops involved in the pathway or DNA reprogramming

(cells rewrite their DNA to survive). Two versions of the model were created to account for the

transfer of protein between cell membrane and cytoplasm. DNA reprogramming was modeled

by a long delay, and feedback was modeled as a reaction rate following the law of mass ac-

tion. They implemented the process of protein transfer between cell membrane and cytoplasm

by defining two compartments. One compartment contained HER2 and HER3, and other con-

tained internal HER3. Transfer between these two compartments was modeled using diffusion

differential equations. Parameter estimation was performed using simple search algorithm, al-

lowing the models to fit experimental data. In this work, they described the detailed analysis of

one model which has a feedback loop mechanism to show the slow transfer of HER3 between

two compartments. The authors applied Gefitinib on this model to study its effects. For this, the

model was augmented with a chemical reaction (which follows the kinetic law of mass action),

representing that Gefitinib binds to HER2 and its dimers. Results showed pHER3 and AKT

recovered their levels even after persistent inhibition of HER2, and HER3 transferred from cy-

toplasm to the cell membrane. After they inhibited the trafficking between compartments and

applied Gefitinib. Results showed pHER3 and AKT did not recover their levels, and HER3
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did not transfer to the cell membrane. Another simulation was performed where AKT was

activated externally. Results showed decrease in pHER3 level and HER3 is transferred from

the cell membrane to the cell. They kept the parameters where simulation results agreed with

the experimental data. Finally, they proposed and simulated a treatment scheme where AKT

was activated for two days, which caused drainage in HER3 from the cell membrane, and then

Gefitinib was applied which inhibited the HER2/3 and reduced transferring. Their simulation

results suggest that the proposed scheme works better than the traditional scheme where Gefi-

tinib was applied alone. Moreover, low level of AKT was maintained, eventually leading to the

apoptosis of cancer cells.

Shao et al.

Shao et al. [SPJ+13] proposed a systematic approach to study therapeutic effects on cancer

cells, and side effects on liver cells. Several canonical pathways were selected by investigating

literature curated databases such as KEGG and IPA [KG00, Ing]. These pathways were filtered

according to the list of underlying proteins, to build a generic pathway of 26 proteins. Two

pathways (cancer cell line specific and liver specific) were generated by training the generic

pathway on two different experimental datasets (imaging data and cue signal response data).

The cue signaling response dataset was a multiplex time series dataset, containing measurement

of 12 proteins under 7 perturbations (6 stimuli and 5 inhibitors) at 4 time points. The cell imag-

ing data consisted of measurements of 5 readouts for PC9 lung cancer cell line under kinase

inhibitor (GW843682) with 12 concentration levels. A mathematical model based on ODEs

with Hill functions was formulated for the generic pathway. For each protein in this pathway,

Hill functions were used to represent inhibiting or activating effects, and were formulated ac-

cording to Equation 2.4. The mathematical model consisted of 21 ODEs and 151 parameters.

Then this mathematical model was trained against experimental data (imaging data) to build a

cancer cell line specific pathway. To build the liver cell specific pathway, the generic pathway

was trained against the cues response signaling dataset. This model was represented with 52

ODEs (following the law of mass action) and 83 parameters. For parameter estimation, an

objective function was defined to minimize the distance between the simulation and experi-

mental results. The genetic search algorithm was adopted as a two stage approach for optimal

parameter estimation. During the first stage, the algorithm was repeated 50 times to select the

best parameters with minimal error between simulation and experimental results. Then the

model was simplified by removing links (containing non-best parameters). During the second

stage, best parameters were refined by repeating the search algorithm for a simplified model.

To perform validation, a leave-one out approach was used. Simulation predictions agreed with

experimental results. They analyzed the effects of 27 kinase inhibitors and identified 6 key

inhibitors. Out of these, the PF02341066 kinase inhibitor was identified as a proper inhibitor
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for suppressing cancer while avoiding damage to the liver cells. They also analyzed the effect

of combined inhibitions by selecting 4 out of 6 effective key kinase inhibitors. Their find-

ings revealed the threshold for each kinase inhibitor in a combination to predict the expected

combined effect.

Conclusion

Mathematical modeling offers useful and powerful tools to model small-scale networks.

Models elucidated using mathematical modeling are complex and require explicit specifications

of kinetic parameters of the system; parameter estimation becomes computationally intensive as

networks grow larger [WMG08, SK13, MTH+12, MW07, ABLS06]. One way to obtain kinetic

parameters is from the literature, then find remaining unknown parameters by fitting the model

to the experimental data. However, parameter values differ by the order of magnitude. This

can be due to incorrect experimental measures or inaccurate modeling. Therefore, parameter

estimation is a challenging question in mathematical modeling. Several heuristic methods such

as genetic algorithms, and particle swarm optimization are used to estimate parameters in ODE

modeling [JYL+17, Blo09].

2.4.2 Stochastic models

Stochastic modeling frameworks are used to model signaling networks accurately, by offer-

ing a strategy to cope with the uncertainty and noise inherent in biological processes. Different

stochastic methods can be used to model signaling networks such as genetic algorithms.

Genetic algorithms

A genetic algorithm is a bio-inspired search method, which follows the principal of natural

selection and evolution. It starts with the belief that the offspring inherit properties of their

parents. If parents have the best fitness then their offspring will be better than parents. This is

an iterative process, and finally the fittest individuals will be found. Figure 2.5 shows general

steps involved in solving problems using genetic algorithm. It starts with defining an initial

population. Each individual in this population represents a solution to the problem. A fitness

function is evaluated for each individual according to some objective function. Then a stopping

criteria is evaluated to create a new population or to terminate the search process. Genetic

algorithms have been widely used for solving optimization problems. They are also used for

parameter estimation of mathematical models based on ODEs.
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Figure 2.5 – Genetic algorithm.

Saez et al.

Saez et al. [SRAE+09] proposed a method (CellNOpt; Cell Net Optimizer), to train pro-

tein signaling networks against experimental data in order to build predictive BNs. A protein

signaling network of downstream of seven cytokine and growth factor receptors in liver cells

was built using ingenuity systems [Ing], and then augmented with literature based information.

The network consisted of 82 nodes and 116 edges. The network was compressed by removing

non identifiable elements using the CellNOpt software, resulting in a network structure with 31

nodes and 53 edges. The superstructure of logical models was identified from the compressed

network, consisting of 131 hyper-edges (logic gates). Hyper-edge refers to the generalization of

an edge with multiple inputs and outputs. The resulting superstructure of BNs is trained against

the experimental data (cue signal response dataset) using a genetic algorithm. This dataset con-

tained measurements of 16 proteins before, and 30 min after, stimulation. The genetic algorithm

was run multiple times to optimize the objective function. The objective function was based on

minimizing the distance between the data and the simulation while penalizing model size. The

resulting family of BNs was validated using those data absent from the training dataset. The

results showed a good fitness of BNs to the training dataset. The key findings suggest that the

trained networks have fewer interactions as compared to the protein signaling network, but has

higher false positive, false negative rate. New links or interactions were suggested which im-

proved the fitness of BNs to the experimental data. The resulting models were more predictive

than the protein signaling network due to the elimination of nonfunctional links.

Mishra et al.

A hybrid approach based on genetic algorithm and ODEs was proposed by Mishra et al.

[MBC+15] to model cell fate decisions and cancer signaling pathways. The authors started

with building an apoptosis network (N1) representing the signaling activities inside a normal
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cell. The network N1 consisted of 22 proteins, and was constructed by exploring literature

knowledge. Twenty two ODEs were formulated for each protein to simulate the N1 network.

These ODEs were solved using ode45 (Matlab library function), to infer time series for each

protein. Some parameter values were inferred directly from the literature, while others were

selected randomly. From the N1 network, the cancer network (N2) was inferred by fitting the

simulated data to the cancer dataset using the genetic algorithm. This dataset contained six

phenotypic responses of 35 proteins at five time points , for three triple negative breast cancer

cell lines BT20, MCF7 and MDA-MB-453. The genetic algorithm was iterated 150 times to

discover 50 cancer networks. The rewired events discovered by the genetic algorithm were

different in different cancer networks. The rewired events with high frequency were kept to

construct N2 network. The N2 network is a modified version of the N1 network, containing

two newly added edges while 3 edges were deleted. Various inferred rewired events were

verified and confirmed through existing literature. From the N2 network, the cancer network

(N3) is inferred by fitting the simulated data to the drug treatment dataset using the genetic

algorithm. Th drug treatment dataset consisted of measurements of the signaling and cell fate

data under six treatments. The genetic algorithm was repeated 150 times to discover the drug

sensitive network. The N3 network is a modified version of the N2 network, containing two

newly added edges while 2 edges were deleted. Most of the rewiring events inferred by this

method are consistent with the literature. In this work, authors modeled only 18 out of 35

proteins existing in the experimental dataset.

Conclusion

Here, I have described two studies based on non-deterministic stochastic search method

(genetic algorithms). Saez et al. [SRAE+09] used genetic search algorithm to train Boolean

networks against experimental data. However, it was not guaranteed that genetic search would

yield the lowest value of the objective function, so all interactions were exhaustively checked

to decrease the model size. Mishra et al. [MBC+15] also used the genetic algorithm to infer

models which fit experimental data. They discovered different rewiring events over different

iterations of the algorithm. Hence a decent number of iterations were required to converge

the solutions. Overall, stochastic search methods are useful for modeling signaling networks,

especially with their inherent ability to deal with noise. However, quality of the solution in

case of genetic algorithms is highly dependent on the initial population, well written objective

function, and the number of iterations. Similar to our method (caspo-ts), the genetic algorithm

based method generates a family of solutions. In comparison to caspo-ts, stochastic search

methods cannot generate a complete set of solutions, hence they cannot guarantee a global

optimal solution.
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2.4.3 Dynamic bayesian networks

A bayesian network is a directed acyclic graph G, representing a probabilistic relationship

between random variables Xi where i = 1 . . . n. These random variables represent nodes and

the probabilistic dependencies among them is represented by edges. The edges are described

by the joint probability distribution P (X1, . . . , Xn). The joint probability distribution of the

graph has the following general form:

P (X1, . . . , Xn) = ΠN
i=1P (Xi = xi||Xj = xj, . . . , Xj+p = xj+p)

where Xj is a parent of Xi in G [FLNP00].

Dynamic bayesian networks [DGH92, DGH+95, MR02] are an extension of bayesian net-

works in which a directed graph represents how random variables Xi evolve over time. Dy-

namic bayesian networks can incorporate feedback loops. In the context of modeling time

series data for protein signaling networks, proteins are represented by random variables Xi,

time is represented by Tj where j = 1 . . . n. The dynamic bayesian networks described here

follow the assumption that time can flow forward only, therefore the value of the variable Xi

at t + 1 is only dependent on value of the variable Xi at t [FMR98, Hus03]. The dynamic

bayesian networks can be referred to as static bayesian networks unrolled through time where

each variable is represented at multiple time points [HLM+12].

There are two steps to model bayesian networks: (1) structure learning and (2) parame-

ter learning. The structure learning step involves finding a set of candidate directed acyclic

graphs which best explain the data. Then these graphs are scored against some bayesian met-

ric (Bayesian Dirichlet equivalence or Bayesian Information Criteria). The graph with highest

scoring metric is selected. In the parameter learning step, the conditional probability distribu-

tion of each node is learned. The PKN is taken into account by assuming a particular distribu-

tion over a directed acyclic graph.

Hill et al. 2012

Hill et al. [HLM+12] proposed a framework to learn cell specific protein signaling net-

works from phosphoproteomic data given a PKN. They started by building a structure of the

network which best explains the data. The PKN is taken into account using an informative prior

distribution on network structure. Then the posterior distribution over the network is calculated

using the marginal likelihood and prior distribution. The marginal likelihood employed here

penalizes models with complex parameters, hence reducing the model complexity. The prior

distribution contained the expected number of edges (interactions existing in the PKN) and pe-

nalized the unusual edges (not part of expected edges). Finally, the posterior probabilities of

edges are calculated by model averaging. Model averaging is used to highlight edges which
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are common in many network structures. This network building approach was applied to learn

signaling network for the MDA-MB-468 breast cancer cell line. The learning data contained

measurements of 20 proteins at 8 time points under 4 growth conditions. The PKN consisted

of 20 protein and 74 edges. The robustness of the cell line specific network to the PKN was

investigated by adding and deleting an edge in the PKN. The 25 perturbed PKNs were gener-

ated with changes in one third (25) of the total edges (74). The results showed the robustness to

modification in the PKN. The robustness of the results to the data perturbation was also investi-

gated, by deleting part of the data and replacing it with the average of adjacent time points. The

analysis showed that results are robust to the perturbation of the data. They generated a set of

testable hypothesis, discovered various known and unknown signaling behaviors. The known

inferred edges were validated through existing literature knowledge. Some of the novel edges

were validated through experimental validation.

Hill et al. 2017

Hill et al. [HNJC+17] learned cell line specific networks given PKN and phosphoproteomic

data for four breast cancer cell lines (BT20, BT549, MCF7, UACC812) using a variant of dy-

namic bayesian networks. The learning data contained measurements of 35 proteins at 7 time

points in all cell lines under a combination of perturbations (8 stimuli and 5 inhibitors). The

PKN contains information about the connection of these 35 proteins with 65 edges curated

from literature. A dynamic bayesian network approach was used to learn 32 context specific

networks (4 cell line ∗ 8 stimuli) using learning dataset given PKN. Each network contained

49 edges on average, and 40% of these edges were not part of prior network. The learned net-

work consist of probabilities associated to each edge in all these 32 networks. For validation,

the changes in these context specific networks under inhibition were compared with the true

descendants existing in the canonical pathway. Based on this, a true and false positive rate

was calculated to draw the area under the operating curve (AUROC). It was observed that on

average 8 proteins showed changes in one context which were not observed in other context.

Experimental validation was performed for 78 % of these observations (104 out of 134 ob-

servations). To verify robustness of the approach, some part of the data (between 1 to 6 time

points) for all proteins was deleted and replaced with adjacent time points. Initial and final

time points were kept outside from random removal of the data. The robustness of the learning

approach to the prior network was verified by adding and deleting an edge in the PKN. They

generated a set of testable hypotheses by discovering some novel interactions. They discovered

235 novel interactions and some (six) of these interactions were validated using western blot

analysis. Their key findings suggest that the signaling networks varies according to biolog-

ical background. Heterogeneity of inferred networks strongly supports the fact that existing

computational methods should be improved to take into account the context specificity.
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Conclusion

The afore-mentioned approaches provide a useful way to model signaling networks in spe-

cific contexts. However, the dynamic bayesian network approach (like any other data driven

approach) suffers from missing variables (intermediate nodes) due to limitation of measure-

ments available in the experimental dataset. This hinders the mechanistic interpretation of

the learned networks. Mostly, approaches based on dynamic bayesian network modeling as-

sume the homogeneity of network structure and parameters through time. The softening of

this assumption can be computationally expensive due to rapid increase in graph space and

number of parameters [HLM+12]. Moreover, predictions discovered through these networks

are relatively less accurate. Also, these networks do not provide the activation and inhibition

information [SHM+15]. Generally, bayesian approaches are computationally expensive. They

also cannot perform well with small datasets produced by protein microarrays[NSS+08].

2.4.4 Integer linear programming

Integer linear programming (ILP) [NW88] is used to solve optimization problems. An ILP

solver takes a description of such a problem consisting of a set of constraints and an objective

function as input, calculating a solution that satisfies all constraints and minimizes the objective

function. The ILP approach uses a set of variables, and a set of equalities and inequalities to

represent the constraints. The variables are required to have integer values. A typical ILP

program is expressed as follows:

minimize cTx (2.8)

subject to Ax ≤ b (2.9)

where c and b are vectors, A is a matrix, x ≥ 0, and x ∈ Zn where Z is the set of integers.

Here, we give an example of the coloring problem for a graph G = {V,E} with nodes V =

{1, . . . , n} and edges E ⊆ V × V . This problem states that adjacent nodes of graph G cannot

have the same color. We assume that there are n colors in total. The binary variable yk where

k ∈ {1, . . . , n} is used to denote whether the color k is used for coloring. Another variable xik
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is used to denote the color k for node i. This problem can be expressed in ILP as follows:

minimize

n∑
k=1

yk (2.10)

subject to

n∑
k=1

xik = 1 i ∈ V (2.11)

xik − yk ≤ 0 i, k ∈ V (2.12)

xik + xjk ≤ 1 (i, j) ∈ E, k ∈ V (2.13)

0 ≤ xik, yk ≤ 1 i, k ∈ V (2.14)

xik, yk ∈ Z i, k ∈ V (2.15)

The first three constraints ensure that each node is colored and the last two constraints are used

to restrict xik and yk to binary values 1.

Mitsos et al.

The authors in [MMS+09], presented a framework based on integer linear programming

(ILP) to learn cell type specific pathways and to study the effects of different drugs on these

pathways. Two types of datasets were constructed; one to learn the cell specific signaling net-

work, and the other to learn signaling alterations when four drugs were induced. The first

experimental dataset (D1) consisted of 13 phosphoproteins measured under 55 perturbations

(stimuli and inhibitors). The second experimental dataset (D2) contained measurements of 13

phosphoproteins under 55 conditions (stimuli and drugs). The experimental data were normal-

ized to convert values to a range of [0,1]. The prior network consisted of 74 proteins and 105

reactions. They built a cell type specific network (Boolean model) given the prior network and

the experimental dataset (D1). They described their problem in the form of equations and stated

two objective functions. The first objective function is used to infer the network which best fits

the experimental data. The second objective function is used to minimize the size of the net-

work. Then the ILP solver is used to infer networks satisfying the constraints and optimizing

the objective functions. The inferred cell line specific networks consisted of 49 proteins and 44

reactions. This network contained 5 stimuli and 13 phosphorylated proteins. They evaluated

the effects of four drugs on this cell type specific network: Raf kinase inhibitor (Sorafenib),

two potent EGFR kinase inhibitors (Erlotinib), the dual EGFR/ErbB-2 inhibitor (Lapatinib),

and Gefitinib. They used similar learning process described above to learn 4 drug induced

networks; using the cell specific network as the prior network and experimental dataset (D2).

Their results revealed the main known alterations in the pathway and also several unknown drug

1. The same example is encoded in ASP in the next chapter to draw the comparison between ILP and ASP
formulations.
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effects. Their key finding suggests that lapatinib, erlotinib, and gefitinib have similar kind of

effects, very few alterations differentiating them, while sorafenib drug induce totally different

signaling alterations.

Melas et al.

Melas et al. [MMM+11] extended the above mentioned ILP approach to build an ex-

tended pathway to link signaling behavior to a cellular response such as cytokine release or

cell growth. They constructed two kinds of datasets for normal and cancer hepatocytes. One

dataset (D1) consisted of measurements of 16 phosphorylated proteins under approximately 50

perturbations (7 stimuli and 5 inhibitors). The other dataset (D2) contained measurements of

33 cytokines under same set of perturbations. The learning process started with the construc-

tion of the canonical pathway via literature search, which covered the key phosphoproteins and

stimuli. Then the ILP framework [MMS+09] was modified to add edges (to link proteins with

cytokines) not existing in the canonical pathways. This extended network consisting of canon-

ical and non-canonical edges was optimized to fit both experimental datasets (D1, D2). The

optimization of the objective function was done in three main steps: 1) by removing the canon-

ical edges which contradict signaling dataset (D1), 2) removing non-canonical edges which

contradict (D2), and 3) removing the edges which have no effect on the network to decrease the

overall network size. The ILP solver was used to optimize the objective functions to generate

100 different solutions for normal and cancer hepatocytes (Huh7). These solutions differed by

10% in the value of their objective function. The extended pathway for normal hepatocytes

consisted of a total of 47 edges (19 canonical and 28 non-canonical edges). The extended path-

way for cancer hepatocyte (Huh7) consisted of 43 edges (26 canonical and 17 non-canonical

edges). These pathways are significantly different from each other, supporting the fact that

Huh7 cells are not as responsive to stimuli (Toll Like Receptor) as normal hepatocytes are. The

predictions performed through these models were also experimentally validated. The validation

of the learning approach was performed by assessing the model’s sensitivity to the canonical

pathway, experimental design, and measured data. To verify sensitivity to the generic topology,

10 % of edges were replaced with random edges. The results showed that optimized pathways

are sensitive to the canonical pathway. For verifying sensitivity to the experimental design, 5 to

50 % of experiments were left out. Results suggest that fitness error increases with the removal

of number of experiments. The sensitivity to the measured data was checked by replacing part

of the data-points with random numbers between 0 and 1. The fitness error also increased with

the removal of number of data-points.
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Conclusion

Mitsos et al. [MMS+09] provided an ILP based framework to study the effects of drugs

on cell specific signaling networks. They successfully identified drug induced alterations in

a network. Similar to our method (caspo-ts), the ILP based approach [MMS+09] is topology

dependent and cannot determine the alterations outside the constructed networks. Melas et al.

[MMM+11] proposed an extended ILP framework to study the cellular responses (growth, phe-

notypic, cytokines) under different signaling events. Their framework is based on the assump-

tion that signaling and cellular dataset must be measured under same experimental conditions.

The proposed approach is quite sensitive to changes in topology and datasets as compared to

the caspo-ts. Similar to caspo-ts, ILP solvers enumerate a family of solutions and can find

global optimal solutions. However, open source ILP solvers are not as efficient as commer-

cial ILP solvers are [MMS+09]. All in all, ILP provides a useful paradigm to model signaling

networks. However, ILP lacks a simple programing or modeling language which makes ILP

coding a difficult task to write and maintain.

2.5 Conclusion

ODEs are suitable for detailed modeling of small systems where a complete description is

available to model the system. Stochastic methods (more precisely genetic algorithms) cannot

guarantee global optimal solutions as ILP and ASP offers (shown by [VGE+12]). However, the

lack of an accessible programming language makes ILP hard to model the problem (depicted

in graph coloring problem). Moreover, open source ILP solvers are not adequate to model

problem of inferring BNs from time series data [MMS+09].

This thesis is focused on inferring BNs using an ASP based modeling approach, by combin-

ing traditional signaling networks with complex phosphoproteomic time-series data generated

by RPPA in [HNJC+17, HHC+16]. This approach allows to build large scale networks with-

out having to deal with large scale parameters as in case of ODEs, stochastic and bayesian

approaches. Since ASP is an important part of this thesis. Therefore in the next chapter, we

are introducing the modeling approach (ASP) used in this thesis, to formulate the problem of

finding BNs from PKN and phosphoproteomic time series data.



3
Answer Set Programming

3.1 Introduction

Answer Set Programming (ASP) is an emerging simple, yet powerful, framework for rea-

soning and knowledge representation. The simple modeling language and flexible reasoning

modes of ASP have led to the use of ASP in numerous domains such as systems biology

[BCT+04, GSTV11, VGE+12, OPS+15], a decision support system for NASA shuttle con-

trollers [NBG+01, BGN06], and product configuration [SN99]. ASP is a declarative problem

solving approach, in which a problem is modeled rather than telling the computer how to solve

it [GKKS12]. Figure 3.1 shows the work-flow of the ASP paradigm. Modeling aims at describ-

ing the problem in the form of a logic program using first order variables. Afterwards, solving

generates stable models using searching algorithms to find a solution for the stated problem.

These resulting solutions are called stable models or answer sets.

Figure 3.1 – ASP workflow

43
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In this thesis, we use ASP to solve the combinatorial optimization problem of learning BNs

by confronting phosphoproteomic data with PKNs. Available ASP solvers use high perfor-

mance solving techniques, allowing us to enumerate all optimal solutions for a given problem.

Indeed, there exist other solving techniques like satisfiability testing (SAT) [BHvM09], Integer

Linear Programming (ILP) [Sch98] and Constraint Programming (CP) [DC03]. ASP solving

techniques build upon SAT solving techniques. However, SAT-based systems lack ASP’s rich

modeling language, which forces the user to write complex programs for generating encodings,

making it difficult to maintain and modify them. Another modeling difference is that the prob-

lem instances and the problem encodings are inseparable in SAT. Further, SAT encodings can

be easily translated into the ASP programs in a modular way, but not vice versa [Nie99]. In

general, the translation of an ASP program to a SAT encoding can lead to an exponential space

explosion unless the language is extended [LR06]. Another difference between SAT and ASP

solving is that the ASP semantics is non-monotonic while SAT is monotonic. This makes it

easy to model concepts such as reachability and inertia in ASP. Constraint Programming and

Integer Linear Programming also rely on monotonic foundations. Moreover, these formalisms

focus on solving problems with constraints over real-valued variables or integers. However,

there are extensions to ASP (for example clingcon), which allow for using similar constraints

in ASP encodings. This allows for modeling a large class of problems with a natural and ex-

pressive modeling language using state-of-the-art solving techniques [SW18].

3.2 Basic ASP syntax

ASP borrows basic terminologies from classical logic. Variables are denoted by strings

starting with capital letters, such as U , V , Color , etc. Symbols for predicates are represented

using strings starting with lowercase letters, like for example, p, q, node, etc. Function sym-

bols are denoted using strings starting with a lowercase letter, too, for example, f , g, h, etc. 1

Each predicate and function symbol is associated with an arity written as p/n and f/n where

n ≥ 0 gives the arity. A term is a variable, integer, or function f(t1, . . . , tn) such that f is a

function symbol of arity n and each ti is a term. An atom has form p(t1, . . . , tn) such that p is a

predicate of arity n and each ti is a term. Function symbols with arity zero are called constants.

Furthermore, the parenthesis after a function or predicate are omitted if the arity is zero. Atoms

or their negations are called literals. Terms and atoms without variables are called ground terms

[GKKS12]. Table 3.1, describes the basic connectives used to form logic programs.

1. In general the alphabets of predicate and function symbols can overlap because this information can be
derived from context within a logic program. Both alphabets are kept disjoint in the logic programs presented in
this thesis.
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Table 3.1 – Basic connectives to form logic programs

Logic Program
if ←

and ∧
default negation ¬

A logic program consists of rules of form

h← b1 ∧ · · · ∧ bm ∧ ¬bm+1 ∧ · · · ∧ ¬bn

where h is an atom, 0 ≤ m ≤ n, and each bi is an atom. If a rule contains variables, we

obtain a set of ground rules by substituting all possible ground terms for the variables. Given

a logic program, the corresponding ground logic program is the set of all possible ground

rules obtained from its rules. Such a (ground) logic program induces a set of stable models

determined by the stable model semantics [GL88]. Each stable model is a subset of the atoms

occurring in the logic program. Atoms appearing in this set are said to be true, and false

otherwise. A rule is satisfied if its body (the part after the←) is not satisfied, or its head atom h

is true. A rule body is satisfied if all the atoms b1 to bm are true and all the atoms bm+1 to bn
are false. A rule with an empty body is called a fact. A model satisfies all (ground) rules of a

logic program and a stable model also satisfies a minimality criterion. This criterion requires

that each atom in a stable model is proved by some rule. For this, a true atom has to appear in

at least one rule head with a satisfied body. Or more formally, a model X is a stable model if

there is no smaller model Y ⊂ X satisfying the reduct of the program; the reduct comprises all

rules whose bodies are satisfied by X . In the following, we simply refer to the stable models

of a logic program as its solutions. Next, we give a simple example of a logic program 2.

Example 3.2.1. Here, we model the light switch scenario.

switchOn ← ¬switchOff (3.1)

switchOff ← ¬switchOn (3.2)

light ← switchOn (3.3)

This program consist of three atoms switchOn, switchOFF and light . The first rule states that

if the switch is not off then the switch is on. The second rule states that if the switch is not

on then the switch is off. The last rule states that if the switch is on then there is a light. This

problem consists of two stable models as solutions. The first solution consists of one atom

2. This example was inspired by [BL13].
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{switchOff } and the second solution consists of two atoms {switchOn, light}. Let’s inspect

the first solution. Clearly, all rules are satisfied by this model but only the body of the second

rule is satisfied. Hence, the reduct consists of the second rule only. Since the empty set does not

satisfy the reduct, {switchOff } is a stable model. The second solution can be verified similarly

but this time the reduct consists of the first and the third rule, which means that both switchOn

and light have to be included in the model of the reduct.

3.2.1 ASP extensions

Next, further extensions [Sim99] to logic programs are described, which are frequently used

in practice and ease modeling problems with ASP.

Choice rules

A choice rule has form

{h1; . . . ;ho} ← b1 ∧ · · · ∧ bm ∧ ¬bm+1 ∧ · · · ∧ ¬bn

where 0 ≤ o and each hi is an atom. Unlike with the normal rule above, a choice rule can be

used to prove any subset of the atoms h1 to ho whenever its body is satisfied.

Example 3.2.2. One nice aspect of choice rules is that they allow for writing more compact

programs. Remember that in the previous example we needed two atoms to model that a

switch is on or off. Choice rules allow for a more compact and easier to read representation.

The program

{switchOn} ←

light ← switchOn

has the same solutions as the program in Example 3.2.1 without using the extra atom switchOff

to capture that the switch is off. Since the first choice rule can be used to prove any subset of

{switchOn} there are two solutions: ∅ and {switchOn, light}.

Integrity constraints

An integrity constraint has form

← b1 ∧ · · · ∧ bm ∧ ¬bm+1 ∧ · · · ∧ ¬bn

It cannot be used to prove atoms, but instead to remove candidate solutions satisfying its body.
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Example 3.2.3. Coming back to our light switch domain, we model our toy problem just using

choice rules and integrity constraints.

{switchOn; light} ←

← light ∧ ¬switchOn

← ¬light ∧ switchOn

The first rule can prove arbitrary subsets of {switchOn, light}. Then the second integrity con-

straint discards all solutions where the light is on but the switch is not. Similarly, the last

integrity constraint prunes all solutions where the switch is on but the light is not. Hence, we

obtain the same answer sets as in Example 3.2.2.

Cardinality aggregates

A cardinality aggregate can be used to express that a set of atoms has to have a certain

cardinality. A cardinality aggregate has form

l {e1; . . . ; en} u

where n ≥ 0, the lower bound l and upper bound u are integers, and each element ei has form

l0 : l1, . . . , lm for m ≥ 0 and each lj is a literal. An aggregate element ei is satisfied whenever

the literals l0 to lm are satisfied. The head literals of satisfied elements are collected in a set

whose cardinality has to be between l and u (inclusive) for the cardinality aggregate to be

satisfied. One of the bounds can be omitted; if the lower bound is omitted, then the cardinality

has to be smaller than u and greater than l, otherwise. Cardinality aggregates can occur in

both rule heads or rule bodies. In a rule head they can be used to prove the literals l0 of true

aggregate elements. This leads to another way to model the light domain example.

Example 3.2.4. The program

1 {switchOn; switchOff } 1←

light ← switchOn

has the same solutions as Example 3.2.1. Here, the first rules states that exactly one of the

atoms switchOn and switchOff has to be true.
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Sum aggregates

A sum aggregate has form

l sum{e1; . . . ; en} u

where n ≥ 0, the lower bound l and upper bound u are integers, and each element ei has form

t0, . . . , to : l1, . . . , lm for o ≥ 1, m ≥ 0, each tk is a term and each lj is a literal. Unlike

cardinality aggregates, sum aggregates allow for expressing that the sum of the integers given

by a set of tuples has to be between a lower and upper bound. An aggregate element is satisfied

if the literals l0 to lm are satisfied. In this case, the term tuple t0, . . . , to contributes the integer

t0 to sum up 3. Unlike cardinality aggregates, this form of aggregate can only be used in a rule

body. Like with cardinality aggregates, at least one bound has to be specified.

Example 3.2.5. The following program extends the light switch scenario:

{on(s1); on(s2); on(s3)} ←

light ← 2 sum{1, s1 : on(s1); 1, s2 : on(s2); 1, s3 : on(s3)}

Each switch has an associated weight and the sum of weights of active switches has to be

larger than 2 for the light to turn on. Let’s consider the solution {on(s1), on(s3), light}.
This solution satisfies the first and third aggregate element, hence, we obtain the set of tu-

ples {(1, s1), (1, s3)}. Both tuples in this set have weight 1 and thus their sum is 2, which

satisfies the lower bound. This allows us to derive atom light and we indeed have a solution.

So far we have not considered variables in aggregates. The above example can actually be

written more compactly by introducing a variable in the aggregate.

{on(s1); on(s2); on(s3)} ←

light ← 2 sum{1, S : on(S)}

Variable S in the aggregate is a local variable because it occurs only between the braces {. . .}.
In this case, this does not lead to multiple ground rules but in the three aggregate elements as

in the preceding program by substituting s1, s2, and s3 for S.

3.2.2 Optimization statements

An objective function to maximize or minimize a lexicographically ordered tuple of sums

can be described in the ASP program using optimization statements. For example, a minimize

3. If t0 is not an integer it is simply ignored.
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statement can be expressed as:

minimize{e1; . . . ; en}

where n ≥ 0 and ei has form t0@p0, t1, . . . , to : l0, . . . , lm for o ≥ 1, m ≥ 0, p0 is a term,

each tk is a term and each li is a literal. The accumulation of integers works almost exactly as

with sum aggregates. The only difference is the optional priority p0 (which defaults to 0) in the

elements ei. Sums are calculated for each priority individually and then ordered by priority and

compared lexicographically when determining optimal solutions.

{max (a, 20); max (b, 30)} 1←

1 {min(c, 30); min(d, 10)} ←

maximize{W@1, X : max (X,W )}

minimize{W@2, X : min(X,W )}

In the above program, priority levels indicate that minimization (with priority level 2) is more

important than maximization (with priority level 1). Solution {max (b),min(d)} induces the tu-

ple of sums (10@2, 30@1), which is indeed an optimal solution for the above program because

at most one atom over max/1 and at least one atom over min/1 can be true.

Graph coloring problem

Here, we give a logic program for the graph coloring problem (defined for ILP in Sec-

tion 2.4.4). We first describe the input graph in the form of facts. Predicate node/1 determines

the available nodes and predicate edge/2 the edges between the nodes. The example graph in

Figure 3.2 – Directed graph
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Figure 3.2 is defined by the following facts:

node(1..6)←

edge(1, 2)← edge(1, 3)← edge(1, 4)←

edge(2, 4)← edge(2, 5)← edge(2, 6)←

edge(3, 1)← edge(3, 4)← edge(3, 5)←

edge(4, 1)← edge(4, 2)←

edge(5, 3)← edge(5, 4)← edge(5, 6)←

edge(6, 2)← edge(6, 3)← edge(6, 5)←

We use rule 3.4 to define that each node can have a different color. So predicate color/1

corresponds to variable y in the ILP formulation of the graph coloring problem. Another rule

(3.5) is added to assign exactly one color to each node. Here, predicate assign/2 corresponds to

variable x in the ILP formulation and the rule captures Equations 2.11 and 2.12. Next, rule 3.6

is added to ensure that two adjacent nodes must not have the same color. This rule corresponds

to Equation 2.13 in the ILP formulation. Rule 3.7 is used to eliminate isomorphic solutions

w.r.t. the selection of colors 4. It ensures that colors are selected successively beginning with

the first color (color(1)). Having a rule like this helps when enumerating all optimal solutions

by drastically reducing the resulting set of solutions. Note that there are still more isomorphic

solutions that could be pruned with additional rules. Finally, the optimization statement 3.8 is

used to describe the objective function. This objective function minimizes the number of colors

used and corresponds to Equation 2.10 in the ILP formulation.

{color(C)} ← node(C) (3.4)

1 {assign(U,C) : color(C)} 1← node(U ) (3.5)

← edge(U, V ) ∧ assign(U,C) ∧ assign(V,C) (3.6)

← color(C) ∧ ¬color(C − 1) ∧ node(C − 1) (3.7)

minimize{1, C : color(C)} (3.8)

By specifying the above constraints, an ASP solver computes 6 optimal stable models. One

of the computed stable models is shown below and depicted in Figure 3.3:

{assign(1, 1), assign(2, 3), assign(3, 3), assign(4, 2), assign(5, 1), assign(6, 2)}

4. Here an important feature of ASP is used: terms can contain arithmetic operations. Such operations are
evaluated during the grounding phase, e.g., C − 1 evaluates to 2 if C is three.
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Figure 3.3 – Directed graph after coloring

3.3 Related work

Here, we discuss the related work of finding optimal Boolean Networks (BNs) from PKN

and phosphoproteomic data using ASP. We also discuss the related work of finding diverse

solutions of a logic program having a large solution space.

3.3.1 Learning Boolean networks

Videla et al.

Method description. Videla et al. [VGE+12] proposed an approach based on ASP to infer

BNs from PKNs and experimental data. It takes three inputs a PKN, perturbations, and ex-

perimental observations. A PKN specifies the canonical information about connections among

proteins existing in the experimental data. Their method can only handle PKNs without any

feed-back loops. A perturbation consists of a combination of stimuli and inhibitors. Experi-

mental observations consist of measurements of readouts proteins. They model the combina-

torial optimization problem of finding BNs using facts, rules, and the objective function. The

objective function takes two parameters into account: the fitness of the model to the data, and

the model size. They derive the structure of the model (BN) from the PKN. Then, the values

of readouts are calculated for each model by fixing the value of stimuli and inhibitors. The

optimization is applied on these models to minimize the fitness score and the size of the model.

Case study. Videla et al. illustrated their approach on mid and large scale datasets, com-

pared results with the genetic algorithm optimization framework [SRAE+09] (Section 2.4.2).

Furthermore, they started with building two PKNs (P1 and P2 for mid and large scale case

studies) representing growth and inflammatory signaling from literature. These PKNs were

compressed to remove non-observable and non-controllable nodes, creating four compressed
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networks. Then, hyper-graphs compatible to these four compressed networks were created. A

hyper-graph refers to the extension of the graph with AND and OR gates. For each compressed

network, five hyper-graphs (of three different sizes) were selected randomly to generate 240 in

silico datasets. The size of the hyper-graph is calculated by summing up the number of source

nodes for all child nodes.

Results. Videla et al. inferred 8 global optimal models for the mid-scale case study and 2

global optimal models for the large-scale case study. They also executed the same problem

with the CellNOpt system ([SRAE+09]) and the comparison is drawn in Table 3.2. The biggest

advantage of ASP over genetic algorithms is the calculation of an optimal score and the enu-

meration of all optimal solutions having this score. They also studied the impact of size on

the solution space (number of models). They concluded that if they relax the size limit of the

model then the size of the solution space increases exponentially. They also discovered that

both approaches are able to find all global optimal solutions in 240 datasets. However, results

suggest that the models of minimal sizes are best identified with an ASP solver. Computation

time was also compared with CellNOpt and results showed that ASP solvers are faster than

CellNOpt by 5 orders of magnitude.

Table 3.2 – Comparison of ASP solver and CellNOpt as presented by Videla et al.

Mid-scale case study Large-scale case study
ASP solver CellNOpt ASP solver CellNOpt

Execution Time 0.03 s 9.2 h 0.07 s 27.8 h
Best Solution 0.06 s (optimal) 7.2 h 0.04 s (optimal) 24.5 h

Number of models 8 (optimal) 66 2 (optimal) 206
Size of model 16 16 to 24 26 27 to 36

Ostrowski et al.

Method description. Ostrowski et al. [OPS+15] proposed a new method (caspo time series:

caspo-ts) 5 to learn Boolean models from phosphoproteomic time series data given a PKN. A

family of candidate BNs compatible with the PKN is exhaustively enumerated. Afterwards an

over-approximation constraint is used to filter out BNs which cannot reproduce the phospho-

proteomic dataset. An objective function is used to minimize the distance between the actual

time series and the time series produced by the BNs. Because of the over-approximation cri-

teria, some of the returned BNs may not reproduce the time-series traces. Such false positives

5. This approach is based on ASP and model checking as described in the Figure 1.2 (formal description is
given in Chapter 3).
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can be ruled out using model checking. The remaining BNs are true positive. True positive

BNs are guaranteed to reproduce all traces of the phosphoproteomic time-series data.

Case study. The authors illustrated the working of this approach on three case studies. For

each case study they used three different versions of PKNs. Hyper-graphs compatible with

these PKNs were used to generate in-silico datasets with 10 perturbations. The first case study

(C1) represents EGF-TNFα signaling ([MTH+12]). Case study C1 consists of 13 nodes and

16 edges. The second case study (C2) represents TCR signaling ([KSRL+06]). From this case

study, three different case studies (C2.1, C2.2, C2.3) were created by modifying the experimental

design. Case study C2.1 consists of 14 nodes and 22 edges, C2.2 consists of 16 nodes and 25

edges, and C2.3 consists of 40 nodes and 58 edges. Third case study C3 represents the ERBB

receptor regulated G1/S transition model ([SFL+09]. Case study C3 consists of 19 nodes and

50 edges. Finally, they utilized two optimization schemes (cardinality and subset) of the ASP

solver to derive minimal models for these case studies.

Results. Their findings suggest that caspo-ts is able to find the first optimal solution within

seconds while the full enumeration can take longer. They also observed that the full enumer-

ation of optimal solutions in the case of C3 and C2.3 can take hours because the search space

is huge. Next, they used model checking to determine the true and false positive rate of in-

ferred models. The true positive rate was high (≥ 78%) in all case studies except C2.3 and

C3. They also verified the sensitivity the caspo-ts to the modified and incomplete PKN for

case study C1. For this, they generated different versions of PKNs by adding, removing and

replacing edges randomly. Results depicted sufficient robustness to the changes in the PKN.

They also compared the results with the previously proposed approach ([VGE+12, GVE+13])

using case study C1. They used the approach of Videla et al. to learn BNs with one time point

and compared the fitness error with caspo-ts. Results show that caspo-ts outperforms Videla et

al. approach to find an optimal model with the data in most of the experiments.

Conclusion

Regarding inferring BNs, the methods [SRAE+09, VGE+12] (of Videla and Saez) restrict

themselves to learn BNs from two time points (start, end), assuming the system has reached

an early steady-state when measurements are performed. This assumption prevents one from

capturing interesting characteristics like loops as shown in [MTH+12]. To overcome this issue,

Ostrowski et al. proposed the caspo-ts method. The first part of this thesis is in the context of

applying and ameliorating the caspo-ts method on a real case study of four breast cancer cell

lines.
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3.3.2 Learning diverse solutions

Another important part of my work is focused on the improvement of the caspo-ts search

method in case of a large case study. The caspo-ts system uses a backtracking algorithm (de-

scribed in Chapter 5, Section 5.2.3) to exhaustively generate solutions. It can lead to a situation

where successive solutions share very similar properties. This can be problematic, especially

in the case of a large solution space where discovering or analyzing all solutions becomes

computationally hard. To resolve this issue, a diverse enumeration scheme has been intro-

duced. In the following, we focus on discussing the work on finding diverse or similar solu-

tions using ASP; similar work for constraint programming and SAT solving can be found here

[HHOW05a, Nad11a].

Eiter et al.

Method description. Eiter et al. [EEEF09] proposed an approach to study similar or di-

verse solutions using ASP. They have introduced online/offline methods to enumerate diverse

solutions.

The offline methods are based on computing all solutions in advance, while the online

methods follow an incremental solving approach. For finding diverse or similar solutions in the

case of the offline methods, they start with a complete set of solutions. These solutions form

the nodes in a graph and distance-labeled edges between nodes represent the distances between

solutions. The idea is to find a clique in this graph using edges with distances greater than k to

find diverse solutions and edges with distances less than k to find similar solutions. This clique

is computed using ASP.

They introduced three variations of online methods. The first variation encodes everything

in one program consisting of three parts: (1) compute n solutions in parallel, (2) compute

distances between solutions, and (3) remove answers where the distance between any two so-

lutions is not equal to k. The second online method does not calculate solutions in advance but

rather updates the solution set with a new solution in each run with a solution that has exactly

distance k from all solutions found so far. The third variation of the online methods is similar

to the second method but modifies the ASP solver clasp to incorporate a distance function in it.

Results. Eiter et al. illustrated this approach on phylogeny reconstruction explaining the

evolutionary development of biological species or other entities (taxonomic units). They built

diverse or similar phylogenies (solutions) for Indo-European languages. The methods are used

to find diverse or similar solutions among eight phylogenies.

The first offline and online methods guarantee to find an optimal solution since they con-

sider the whole solution space of a given problem, while online methods two and three cannot
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guarantee an optimal solution given the fact that the solving process is based on the first so-

lution found. In their experiments, the offline method three performed better than all other

methods.

Zhu et al.

Method description. Zhu et al. [ZT13] considered Eiter’s approach in a more general setting

where optimal solutions are calculated based on user preferences. Their approach first identifies

optimal solutions and then computes a set of diverse or similar solutions. They studied three

methods to solve this problem.

The first method is an iterative algorithm using an additional program to test optimality.

This program decides if a computed answer set is optimal according to the preference rules.

The current answer set is updated if the next solution is better than the current one. At the

end, an optimal answer set is returned. Next, to find an alternative optimal answer set, their

algorithm finds another answer set which is also optimal and different from the solutions found

so far. Similar or diverse solutions are found by adding distance constraints. This process

continues iteratively to find further solutions.

The second method is based on introducing a modification to ASP solver clasp so that it

checks the optimality of the answer sets using a tester program during the search. Otherwise,

it is equivalent to the previous method.

Both of the previous methods are based on multiple calls to the ASP solver while the third

method models all requirements in one disjunctive logic program. In general, such programs

are more complex to solve than normal logic programs.

Results. Zhu et al. illustrated the working of their approach on four computational problems:

finding one optimal solution, an alternative optimal solution, three similar optimal solutions,

and eight diverse optimal solutions. They compared their results on the basis of ranked (where

one preference is prioritized over the other) and unranked preferences.

The results show that the iterative method performs best with unranked preferences when

finding optimal solutions while the third method (based on modeling) performs well for finding

similar or diverse solutions. However, for ranked preferences the third method is slower than

the iterative method.

Romero et al.

Method description. Romero et al. [RSW16] introduced a framework (asprin 2) to compute

diverse or similar optimal solutions in case of computational problems with preferences. They

introduced three methods to find diverse optimal solutions: (1) enumeration, (2) replication,

and (3) approximation.
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The enumeration method first finds all solutions for a given problem and then computes

diverse solutions.

The replication method converts a logic program into an equivalent logic program with a

maxmin preference; diverse optimal solution are then computed for the rewritten program.

Finally, the approximation method iteratively identifies diverse optimal solutions w.r.t. pre-

viously found solutions. They implemented three different variations of this method. The first

variation is based on maximizing the minimum distance to previously found solutions. The

second variation calculates a partial interpretation by maximizing the minimum distance to

previously found solutions and then calculates a model close to this partial interpretation. And

the third variation uses a heuristic to derive diverse optimal solutions.

Results. They illustrate the working of their approach on datasets from six different domains:

biological network repair, metabolic network expansion, crossing minimization, circuit diag-

nosis, design space exploration, and timetabling.

The enumeration and replication methods are not as effective as the approximation methods

since enumeration and replication methods traverse through an exponential number of optimal

solutions to find an exact solution. The approximation techniques do not promise to provide an

exact result but performs well in case of the large scale problems. Results suggest that the third

variation of the approximation method performs better than the others in terms of computation

time. They also compare the quality of the diversification where the third method based on

heuristics performed worse than the other methods. A clear trade-off emerged between quality

and performance.

Conclusion

The best performing approach of Eiter et al., [EEEF09] modifying the clasp solver, cannot

guarantee to produce optimal solutions as the solving process is biased toward the first enumer-

ated solution. Moreover, they did not consider optimization problems. Hence, their methods

are not directly applicable to caspo-ts, since it enumerates optimal (subset minimal) solutions in

order to produce simpler and more relevant solutions. Zhu et al. [ZT13] can handle programs

with preferences and also proposes modifications to the clasp solver but their approach be-

comes impractical as the search space increases. Therefore, we decided to extend the approach

of [RSW16] for computing optimal diverse solutions in ASP. The novelty of this extension is

that our approach uses heuristics for both the computation of optimal (subset minimal) solu-

tions and the diversification. In the thesis, we refer to the modified caspo-ts as caspo-tsD.



4
Computational Discovery of Dynamic Cell
Line Specific Boolean Networks from
Multiplex Time-Course Data

4.1 Introduction

In this chapter, we improve and apply the caspo time series (caspo-ts) method conceived to

identify optimal BNs from time-series phosphoproteomic measurements and a prior knowledge

network. The article related to this work is published in the Plos Computational Biology journal

[RPS+18].

We use a large-scale real-case study from the HPN-DREAM challenge. This dataset con-

tains phosphoproteomic time series data of four Breast Cancer cell lines. Here, we show that

the discrete approach, based on Answer Set Programming and model-checking techniques, pro-

vides accurate results. We identify optimal networks explaining the dynamic behavior of the

experimental data for a network of 64 components and 178 interactions. Our models have a

Root Mean Square Error (RMSE) of 0.31 with respect to the testing data. It is well known that

the methods addressing dynamic properties on large networks do not scale well because of the

considerable size of the respective state transition graph. Using caspo-ts, we identify the BNs

given the inherent combinatorial explosion that appears when considering real case data. Our

key findings suggest that this method is capable of constructing cell line specific Boolean mod-

els, which is extremely valuable given the heterogeneity of breast cancer due to many genetic

57
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modifications. Furthermore, we also validate the cell line specific regulatory mechanisms using

the inferred Boolean models.

4.2 Caspo-ts framework

We chose the caspo-ts method [OPS+15, OPS+16] for the inference of BNs. This method

was tailored to handle phosphoproteomic time series data. The input of the method consists

of a prior knowledge network (PKN) and normalized phosphoproteomic time series data under

different perturbations. It generates a family of BNs whose structure is compatible with the

PKN and that can also reproduce the patterns observed in the experimental data. The caspo-ts

workflow is shown in Figure 4.1. It consists of two main steps, ASP solving and model check-

ing. Here, we formally describe the inputs, outputs, solving and model checking processes of

the caspo-ts framework.

4.2.1 Prior knowledge network

A prior knowledge network (PKN) is modeled as a labeled (or colored) directed graph

(V,E, σ) with V = {v1, v2, . . . , vn} the set of nodes, E ⊆ V × V the set of directed edges and

σ ⊆ E × {+1,−1} the signs of edges. The set of nodes is denoted by V = S ∪ I ∪ R ∪ U
where S are stimuli, I are inhibitors, R are readouts, and U are unobserved nodes. Stimuli, in-

hibitors, readouts, and unobserved nodes are encoded by different colors in the graphs. Stimuli

are shown in green, inhibitors in red, readouts in blue, and unobserved nodes in white (Fig-

ure 4.1). Moreover, the subsets S, I , R, U are all pairwise disjoint except for I and R. Stimuli

are used to bound the system and also serve as interaction points of the system, these nodes

can be experimentally stimulated, e.g. cellular receptors. Inhibitors are those nodes which re-

main inactive or blocked over all time points of the experiment by small molecule inhibitors.

Stimuli and inhibitor nodes take Boolean values {0, 1}, representing the fact that the node was

stimulated (1) or inhibited (0). Readouts are experimentally measured given a combination of

stimuli and inhibitors. They usually take continuous values in [0;1] after normalization. Un-

observed nodes are neither measured nor experimentally manipulated. In this study, we use

the term perturbation to refer to the combination of stimuli and inhibitors, similarly to other

studies such as [Hei16, HHC+16, HNJC+17]. Thus, the set of all possible perturbations is the

set of sets P = (S ∪ I). The PKN is one of the main inputs of the caspo-ts framework.

4.2.2 Phosphoproteomic time series data

Phosphoproteomic time series data are obtained by measuring the temporal changes in

phosphorylated proteins under a perturbation (Figure 4.1). Without loss of generality, we as-
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Figure 4.1 – Caspo-ts workflow. Caspo-ts receives as input data a prior knowledge network
(PKN) and a discretized phosphoproteomic dataset. In this example the phosphoproteomic
data consists of two perturbations involving akt (inhibitor) and hgf (stimulus): 1) akt = 0,
hgf = 1, and 2) akt = 1, hgf = 0. A black colored perturbation means the inhibitor or stimulus
was perturbed (1) while white represents the opposite (0). Readouts are specified in blue and
describe the time series under given perturbations. Using this input data, caspo-ts, performs two
steps: ASP solving and model checking. In the ASP solving step: (i) a set of BNs compatible
with the PKN is generated, (ii) afterwards an over-approximation constraint is imposed upon
each candidate BN to filter out invalid BNs that do not result in an over-approximation of the
reachability between the Boolean states given by the phosphoproteomic dataset, and finally
(iii) BNs are optimized using an objective function minimizing the distance to the experimental
measures. The ASP step also introduces repairs in some data points of the time series that
added penalties to the objective function. These corrected traces will be given to the model
checker. In the model checking step, the exact reachability of all the (binarized and corrected)
time series traces in the family of BNs is verified.
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sume that the time series data are related to the observation of m ≤ n nodes for the nodes

{v1, . . . , vm} (so the nodes {vm+1, . . . , vn} are not observed). The observations consist of

normalized continuous values: a time series of k data points is denoted by TP = (t1P , . . . , t
k
P ),

where P ⊆ S∪I is a perturbation and tj ∈ [0; 1]m for 1 ≤ j ≤ k. These data will be discretized

in order to link it with further BNs discovery (see the ASP solving and model checking steps).

Figure 4.2 depicts an example of phosphoproteomic time series data. The phosphoproteomic

dataset is the second input of the caspo-ts system.

Figure 4.2 – Phosphoproteomic time series data. Here the values between zero and one of three
proteins are shown in different colors. In this figure, we see the time series of one readout
protein (blue) under a perturbation of one stimulus (green) and one inhibitor (red). Stimuli
have value 1 and inhibitors have value 0 across all time points of an experimental perturba-
tion. Readouts take continuous values in [0;1] after normalization. In some phosphoproteomic
datasets an inhibitor can also act as a readout protein, which means that there are perturbations
where it will be measured.

4.2.3 Boolean network

A Boolean Network (BN) [Kau69, Ino11] is defined as a pair B = (N,F ), where

— N = {v1, . . . , vn} is a finite set of nodes (or variables/proteins/genes),

— F = {f1, . . . , fn} is a set of Boolean functions (regulatory functions) fi : Bk → B,

with B = {0, 1}, describing the evolution of variable vi.

A vector (or state) x = (x1, . . . , xn) captures the values of all nodes N at a time step, where xi
represents the value of the node vi, and is either 1 or 0. There are up to 2n possible distinct states

for each time step. Next, we define the transition x→ x′ between two states of a BN. If there is

no update for node vi then x′i = xi. If there is an update for node vi then the state of a node vi at

the next time step is determined by x′i = fi(x1, . . . , xn). Note that usually only a subset of the

nodes influence the evolution of node vi. These nodes are called the regulatory nodes of vi. The

state of each node can be updated in a synchronous (parallel) or asynchronous fashion. In the

synchronous update schedule, the states of all nodes are updated, while in asynchronous update

schedule, the state of one node can be updated at a time. The work presented in this article is

independent of the update schedule routine, hence any number of nodes can be updated at a
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time. We use x →∗ y to say that state y can be reached from state x with an arbitrary number

of steps. Notice that the BN is the main output of the caspo-ts method.

4.2.4 ASP solving

PKN expansion

Given a PKN and a phosphoproteomic dataset, a family of candidate BNs, compatible with

this PKN, is exhaustively enumerated. The BNs are represented by Boolean formulas in Dis-

junctive Normal From (DNF), i.e., as a disjunction of conjunctive clauses. A clause can be

seen as a reaction, where the proteins represented positively are available, and the proteins rep-

resented negatively are absent. A Boolean formula in DNF encompasses all possible reactions

to update the value of a protein. We refer to these BNs as subset minimal BNs.

Here, we use two properties to describe the BNs compatible with the PKN [VGE+12].

Intuitively, the first property states that if there is an edge in a BN then this edge must exist

in the PKN as well. The second property states that the BNs use the smallest DNF formulas

possible, in the sense that no conjunctive clause can be removed from a DNF formula without

changing the Boolean function it represents. It means a Boolean formula should have as few

nodes as possible.

1. Evidence property:

Given a PKN (V,E, σ) and v ∈ V , a logical formula φ in DNF has an evidence in

(V,E, σ) with respect to v if and only if for every propositional variable w that occurs

positively (resp. negatively) in φ, there exists an edge (w, v) ∈ E and ((w, v), 1) ∈ σ

(resp. ((w, v),−1) ∈ σ).

2. Redundancy property:

Given a logical formula φ in DNF, with φ =
∨

j≥1 cj where each cj is a conjunctive

clause, φ is a redundant formula if and only if for some k, l ≥ 1 with k 6= l and some

logical conjunction r it holds that ck = cl ∧ r.

Over-approximation

After generating a set of BNs (compatible with a PKN), a constraint is imposed to check

the reachability of the states from another within state graph of a BN. Since this reachability is

a computationally hard problem (PSPACE-complete) [CEP95], we use an over-approximation

criteria. This constraint is imposed upon each candidate BN to filter out invalid BNs, that do

not result in an over-approximation of the reachability between the Boolean states given by the

phosphoproteomic dataset.



62 CHAPTER 4. CELL LINE SPECIFIC BOOLEAN NETWORKS

A meta-state u = (u1, u2, . . . , un) is a vector of dimension n over non-empty subsets of

B, noted M = {{0}, {1}, {0, 1}}; the set of meta-states is Mn. Meta-states characterize a set

of Boolean states: a state x ∈ Bn belongs to a meta-state u, written x ∈ u, iff each Boolean

component xi belongs to the set ui. Given a state x, we use x̄ for the corresponding meta-state

({x1}, . . . , {xn}). We define the transition relation u ⇒ v between the meta-states u and v as

follows: u 6= v and v = (u1, . . . , ui ∪ {fi(x) | x ∈ u}, . . . , un) for some 1 ≤ i ≤ n.

In [OPS+16], it has been shown that if y is reachable from x (x →∗ y) then there exists

a meta-state u such that y ∈ u and x̄ ⇒∗ u. This definition is further refined to describe the

necessary condition for reachability called support consistency. A state x is support consistent

with state y denoted by x ∗ y, if and only if there exists a meta-state u with x̄⇒∗ u such that

y ∈ u and for all 1 ≤ i ≤ n either

— yi 6= xi, or

— yi = xi and ui 6= {0, 1}, or

— yi = xi, ui = {0, 1}, and there exists z ∈ u such that fi(z) = yi.

If state y is reachable from state x (x →∗ y) then x  ∗ y. Since we are using the over-

approximation criteria, it is possible that some of BNs may fail to reproduce some trajectories

of the time series data. These BNs are called false positive (FP). To filter out the false positive

BNs, exact model checking is applied.

Optimization

The goal is to generate a BN that can reproduce the experimental data as well as possible.

For this purpose, BNs are optimized by defining an objective function minimizing the distance

between the actual time series, TP , and the predicted time series, YP :

RMSE =

√√√√ 1

m ∗ k ∗ |P|

m∑
i=1

k∑
j=1

∑
P∈P

((tjP )i − (yjP )i)2, (4.1)

where m is the number of observed nodes, k is the number of time points, and P ∈ S ∪ I is the

set of perturbations. If a BN can verify the time series traces of experimental data then it will

have minimal RMSE . In addition, the optimization step highlights the data points in the time

series which added penalties to the RMSE. Such data points are automatically corrected before

the model checking step.

All the analyses described in this step are performed using ASP, using the clingo 4.5.4

solver [GKKS14]. This solver guarantees finding optimal solutions, and all BNs outputted by

the ASP solver step will be identically optimal.
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4.2.5 Model checking and true positive BNs

From the previous step, a set of optimal BNs that over-approximate the phosphoproteomic

time series data is produced. This set of BNs is verified with exact model checking to detect

true positive (TP) BNs. TP BNs are guaranteed to reproduce all the (binarized) trajectories

under all perturbations by verifying exact reachability in the BN state graph. For this, we have

used computational tree logic (CTL) implemented in the NuSMV 2.6.0 [CCG+02], which is

a symbolic model checker. Figure 4.3 describes the model checking process of the caspo-ts

system. It takes the Boolean Model and properties as input and generates two types of output:

(1) true, which means the property is satisfied, or (2) false, with a counter example which means

the property is not satisfied.

Figure 4.3 – Model checking process.

Properties are written using the existential (E) and finally (F ) operators. The existential

quantifier asserts that the property holds for at least one path. The finally operator asserts that

the property will hold eventually. They are specified in the following manner:

Expt0e → EF (Expt1e ∧ EF (Expt2e ∧ EF (. . . EF (Exptne ) . . . ))), (4.2)

whereExptie refers to the state under perturbation e ∈ P at time point ti. The above property

(4.2) states that there exists a way to reach time point tn from time point t0 in the perturbation

e. We specify properties for all perturbations (P). If a BN verifies all these properties then it

is a true positive (TP) BN. If any of the properties is dissatisfied then the BN is called a false

positive (FP).

4.2.6 Computation of root mean square error

The caspo-ts method can also generate the RMSE for the data absent (testing data) from

the training data. It generates over-approximated traces of the BN and compares them with
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the traces existing in the testing data (see Algorithm 1). For this computation it uses the same

equation as given in Equation 4.1. There are two types of RMSEs returned by caspo-ts - dis-

crete and model. The discrete RMSE is imposed by the discretization of the method. Since

we use a discrete learning approach, our recovered traces will be in {0,1} and this introduces

an error with respect to continuous measurements in [0;1]. The model RMSE refers to the

learned BN error with respect to the normalized time series data; that is, the model RMSE is

at least as large as the discrete RMSE. When the difference between these two is zero then the

inferred BNs are able to recover the discrete trajectories without any error. If the model RMSE

is greater than the discrete RMSE then the inferred BNs have some errors in the recoverability

of the discrete time series data. The delta denotes the difference between discrete and model

RMSE. The lower value of delta means that the BN can successfully reproduce the traces of

the experimental data with minimum error possible.

Data: BNs and Time Series Traces

Result: RMSE scores

1 for each model i in B do
2 Generate over-approximated traces for i ;

3 Calculate the distance between the over-approximated traces of i and the actual

traces using Equation 4.1;

4 Minimize the distance between the over-approximated and the actual traces;

5 end
Algorithm 1: Computing Root Mean Square Error.

Note that, this Algorithm 1 is given to illustrate a general idea about RMSE calculation.

The ASP program does more than generating the over-approximated values of proteins of BNs.

It also optimizes the minimum distance between over-approximated Boolean traces and actual

time series traces. It guarantees to capture the minimum distance that is possible of Boolean

traces of BN to the actual time series traces.

4.3 Caspo-ts logic program

Here, we provide the pseudo logic program to describe the input data given in the caspo-ts

modeling framework Section. The logic program in written in the ASP language. ASP is a

powerful declarative logic programming language for knowledge representation and reasoning

[Lif08]. The basic idea is to encode the problem using a non-monotonic logic program and

then feed it into the ASP solver, which computes the solution of the problem in the form of

models (also known as answer sets). Note that we only provide pseudo encodings here, please

refer to [OPS+16] for details.
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4.3.1 Modeling PKN and data

Facts, rules and constraints are the building blocks of ASP programs. Here we use facts to

describe the inputs. The PKN (V,E, σ) is described by the following facts:

node(v)← for v ∈ V

edge(u, v, s)← for (u, v) ∈ E and ((u, v), s) ∈ σ

Facts over the predicate node are used to model the nodes existing in the PKN. A fact edge(u, v, s)

is used to describe an edge between node u and v with sign s.

For each perturbation P ∈ P and phosphoproteomic time series T P , we have the following

facts:

clamped(P, v, 0)← for v ∈ P ∩ I

clamped(P, v, 1)← for v ∈ P ∩ S

obs(P, j, vi, s)← for s = (tPj )i, 1 ≤ j ≤ k and 1 ≤ i ≤ m

Facts over predicate clamped set the value of node v in perturbation P to either 0 or 1 depending

on whether the node belongs to inhibitor set (I) or stimuli set (S) respectively. Facts over

predicate obs set the value of the readout node vi in perturbation P at time point j to value s.

4.3.2 Over-approximation

To filter the compatible BNs with the over-approximation criteria, we start with generating

Boolean values for each node of the BN with the following rule:

1{state(P, T, U, (0; 1))}1← P ∈ P , node(U), T = 1..k.

Here, state predicate is implemented as a choice rule. It has four arguments. The first argument

represents the perturbation P , the second represents the time-point T , the third is the node U ,

and the fourth represents the guessed value for the the node U . States are subject to further

constraints which are omitted here for brevity.

Further, we calculate the meta-states from the given states of the BNs with the following

rules:

meta(P, T, U, V )← state(P, T, U, V )

update(P, T, U, V )← “node U takes value V if its formula can evaluate to V”

meta(P, T, U, V )← update(P, T, U, V )
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The first rule initializes the meta-states from the state predicate. The second rule selects pos-

sible updates by evaluating the Boolean functions associated with the nodes. The third rule

updates the current meta-state with the update predicate. We omit the exact encodings here and

refer to the literature [OPS+16] for details.

The following integrity constraints encode the support consistency condition described in

the over-approximation Section:

← state(P, T + 1, U, V ),¬meta(P, T, S, V )

← state(P, T + 1, U, V ),¬update(P, T, U, V ), update(P, T, U,W ), V 6= W

The first rule ensures that the state at time-point T + 1 is in the meta-state reachable from time-

point T . The second rule implements the condition in the third item in the definition of support

consistency described in the over-approximation (see Section 4.2.4). It states that if a state at

time-point T + 1 has value V and in the update predicate it has value W then there must exist

an update in-between to recover the final value V .

4.3.3 Objective function

Here, we describe the objective function to minimize the difference between the phospho-

proteomic time series data and the guessed time series for the BN. The following rules declare

the objective function by using minimize directive:

minimize{M − 49, P, T, U : obs(P, T, U,M), state(P, T, U, 0),M ≥ 50}

minimize{50−M,P, T, U : obs(P, T, U,M), state(P, T, U, 1),M < 50}

If the conditions after the “ : ” do not evaluate to true, then the guessed time series does

not match with the corresponding measurements (phosphoproteomic data) and a penalty is

accumulated by the minimize statement. Note that since ASP does not support continuous

values, we converted them to integers in the range from 0 to 100 by using the formula: bx∗100c.

4.4 Graph similarity measure

Here, we present a graph similarity measure in order to check the variability among the

family of BNs generated by caspo-ts. This measure serves to compare the reactions existing in

a gold standard network (A) with a family of BNs (B) and is based on the Jaccard similarity

coefficient which measures the similarity of these models (see Algorithm 2).
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Data: Gold Standard Network (A) and Family of Boolean Networks (B)

Result: Similarity index for each model in the family of Boolean networks

1 Initialize two structures A and B;

2 for each model M in B do
3 Calculate the intersection of A with M ;

4 Apply Jaccard similarity coefficient (J(A,M)) ;

5 end
Algorithm 2: Graph Similarity Algorithm

The Jaccard index between A and M is defined as length of the intersection divided by the

union:

J(A,M) =
| A ∩M |
| A ∪M |

=
| A ∩M |

| A | + |M | − | A ∩M |
(4.3)

4.5 HPN-DREAM challenge case study

4.5.1 Data acquisition

The DREAM portal provides unrestricted access to complex, pre-tested data to encourage

the development of computational methods. In this study, we are focused on the HPN-DREAM

challenge, which was motivated by the fact that the same perturbation may lead to different sig-

naling behaviors in different backgrounds, making it necessary to build a model which can per-

form unseen predictions (absent from the learning data). The main goal of the HPN-DREAM

challenge is to learn signaling networks efficiently and effectively to predict the dynamics of

breast cancer [HHC+16, HNJC+17].

Learning data

Reverse Phase Protein Array (RPPA) quantitative proteomics technology was used for gen-

erating the dataset of this challenge. The measurements focus on short term changes on up to 45

proteins and their phosphorylation over 0 to 4 hours. The HPN-DREAM dataset includes tem-

poral changes in phosphorylated proteins at seven different time points (t1 = 0min, t2 = 5min,

t3 = 15min, t4 = 30min, t5 = 60min, t6 = 120min, t7 = 240 min). The learning data consists

of four cancer cell lines (BT20, BT549, MCF7 and UACC812) under different perturbations

(8 stimuli and 2 or 3 inhibitors). The number of perturbations varies from 24 to 32 depending

on the cell line. In each cancer cell line up to 45 phosphorylated proteins are measured against

different sets of perturbations over multiple time scales.
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Testing data

Test data is available for assessing the performance of networks learned from the learning

data. The HPN-DREAM portal provides testing data for four cancer cell lines (BT20, BT549,

MCF7 and UACC812) under different perturbations (8 stimuli and 1 inhibitor). They contain

gold standard datasets of time series predictions of up to 45 proteins having the same time scale

as learning data [Hei16, HHC+16, HNJC+17]. The number of perturbations varies from 7 to

8 depending on the cell line. These data will be used to test the quality of the BNs inferred by

caspo-ts.

Normalization

The protein measurements of the HPN-DREAM challenge have variable ranges as depicted

in Figure 4.4. The values of 4EBP1 are oscillating between 2 and 5 while the values of BAD

are oscillating between 0.6 and 1.8.

(a) BAD (b) 4EBP1.

Figure 4.4 – Protein values over time. Here, the x-axis represents the time points and the y-axis
represents the protein measurements.

Maximum value based normalization was used to set the measurements between a common

scale, i.e., 0 and 1, in order to assign activation or inactivation values to variables or species of

the BN. Equation (4.4) describes the formula used for the normalization. Given time series T P ,

we obtain time series T ′P :

(t′
P
j )i =

(tPj )i

max{(tQl )i | Q ∈ P , 1 ≤ l ≤ k}
, (4.4)

where i ∈ {1, . . . ,m} are the measurements, j ∈ {1, . . . , k} are time-points, and P ∈ P are

the perturbations. Here (tPj )i represents the value of protein i under perturbation P at time-

point j and the denominator denotes the highest value of protein i under all perturbations and

time-points.
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4.5.2 Data preprocessing

The learning and testing datasets used in this study were extracted from the HPN-DREAM

challenge and correspond to time series protein measurements upon different perturbations of

four breast cancer cell lines (UACC812, BT20, BT549, and MCF7) [HNJC+17, HHC+16].

Since readout signals are measured on variable ranges depending on the protein, a normaliza-

tion step was necessary. The learning dataset had a few noisy, inconsistent and incomplete time

series data points. The caspo-ts system identified these inconsistencies existing in the time

series data. A recurrent experimental inconsistency observed was an oscillation in the protein

signal upon experimental inhibition of the same protein.

To resolve the above mentioned issues, we performed the following data preprocessing

steps on the learning dataset:

1. Set the protein values between a common scale, i.e., 0 and 1, using a maximum-value-

based normalization scheme (4.4).

2. For time point 0 the expression of some readout proteins under some perturbations was

not available. Thus, control experimental readings were used as the time point 0 for such

proteins.

3. In some cases readout measurements were duplicated for the same time point. To solve

this noise issue we chose one time point arbitrarily.

4. We removed inconsistent perturbations where the protein AKT was inhibited and was

having a dynamic behavior as a readout protein.

5. We considered only perturbations with complete time series data, since guessing the

missing time points automatically with caspo-ts for this case study will be computation-

ally expensive.

The experimental errors pointed in steps 2-5 were raised as warning or exceptions by caspo-

ts. Steps 1 to 5 were applied to the learning dataset. Only step 1 was applied to the testing

dataset. After removing perturbations with inconsistent behaviors or incomplete time series

from the learning dataset, we had 15, 13, 13 and 18 perturbations for MCF7, BT20, BT549 and

UACC812 cell lines respectively measuring 23 readouts. Figure 4.5 shows the preprocessed

dataset for cell line BT20.

4.5.3 Prior knowledge network

Our first result was to build the consensus protein signaling network associated with the

HPN-DREAM challenge dataset. The structure of the prior knowledge network (PKN) was

generated by mapping the experimentally measured phosphorylated proteins (HPN-DREAM

dataset) to their equivalents from literature-curated databases and connecting them together
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Figure 4.5 – BT20 cell line dataset. Cues are the perturbations representing combination of
stimuli and inhibitors. The x-axis shows the time point while the y-axis shows the normalized
protein measurements.

within one network. The PKN (Figure 4.6) was built using the ReactomeFIViz app (also called

the ReactomeFIPlugIn or Reactome FI Cytoscape app) [WDD+14b], which accesses the in-

teractions existing in the Reactome and other databases [WDD+14b, WDD+14a]. The PKN

shown in Figure 4.6 consists of 64 nodes (7 stimuli, 3 inhibitors, and 23 readouts) and 178

edges.

4.5.4 Cell line specific Boolean networks

In this section, we show the generated BNs for each cell line. For this, we used caspo-ts to

learn the BNs from the PKN (Figure 4.6) and the phosphoproteomic data of four breast cancer

cell lines - BT20, BT549, MCF7, and UACC812. We inferred a family of cell line specific BNs

for each cancer cell line. As explained in the caspo-ts modeling framework (section 4.2), the

caspo-ts method produces BNs fulfilling two criteria, (i) satisfaction of the over-approximation

criteria and (ii) optimality with respect to the RMSE objective function. ASP-optimal solutions

were fast to collect, their computation time ranged from 36 seconds to 3 minutes depending on

the cell line, as shown in the Table 4.1.

Afterwards, these ASP-optimal BNs were given to the model-checker for further verifica-

tion. This second step is more complex and we put a restriction on the computation time of

7 days for each cell line. The number of verified BNs varies from one cell line to another,

depending on a number of factors such as the number of perturbations, the order of answer sets

in the solutions space, and the perturbation order. The total number of verified ASP-optimal

BNs within the 7 day time-frame were 188, 231, 52, and 150 for the BT20, BT549, MCF7 and
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Figure 4.6 – Breast cancer signaling pathway. This figure shows the reconstructed signaling
network from a combination of databases. An arrow shows the positive regulatory relationship
between two proteins, while a T shaped arrow indicates inhibition. Green nodes are stimuli,
blue nodes are readouts, white nodes are unmeasured or unobserved, and blue nodes with a
red border represent inhibitors and readouts at the same time. Note that in the node labels,
we have added the phosphorylation sites to the protein names in order to connect them to the
experimental measurements.
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Table 4.1 – Computation summary. Here, we show the number of verified solutions, true pos-
itive and false positive BNs, and their computation (ASP solving and Model Checking steps)
time for each cell line. The ASP solving was performed on a standard laptop machine. The
model checking task was performed on a cluster with 560 cores and 1.9 Tb of RAM.

Cell Line Number of Solutions True Positives False Positives Time
ASP solving Model Checker

BT20 188 72 116 210 seconds < 7 days
BT549 231 191 40 93 seconds < 7 days
MCF7 52 21 21 36 seconds < 7 days

UACC812 150 0 150 197 seconds 7 days

UACC812 cell lines respectively. We obtained 72, 191, and 21 true positive BNs for BT20,

BT549, and MCF7 cell lines respectively with an optimal fit to the data. For the UACC812 cell

line, we were unable to obtain true positive BNs within the 7 day time limit for verification.

Hence, we kept the first 20 BNs from the 150 ASP-optimal BNs for the UACC812 cell line.

Union of these BNs are shown in Figures (4.7, 4.8, 4.9 and 4.10). It is worth noting that we

generated true positive BNs for UACC812 cell line by allowing the model checker to run with-

out bounding it to the 7 day time limit. This result pointed us to the fact that the similar BNs

are clustered together in the solution space generated by caspo-ts. We analyze this aspect and

present the detailed results of the UACC812 cell line in the chapter 5.

An aggregated network was built (Figure 4.11) by combining the BN families (with 191, 21,

72, and 20 BNs for BT549, MCF7, BT20, and UACC812 cell lines respectively) obtained for

the four cell lines by keeping the hyper-edges (Boolean functions) having a frequency higher

than 0.3 within each BN family. The frequency is calculated by counting the number of com-

mon Boolean functions and dividing it by the total number of Boolean functions within the

BN family of each cell line. This aggregated network contains 34 nodes and 74 Boolean func-

tions involving 36 AND gates. As compared to the PKN (Figure 4.6), the inferred networks

are highly specific to each cell line. In Figure 4.11, all cell lines share only 4% of Boolean

functions which are shown in thick black colored edges. This shows that the inferred BNs of

these four breast cancer cell lines are very diverse and different from each other.

To measure cell line similarity, we calculated the similarity score by applying the Graph

Similarity Measure on the family of BNs (with 191, 21, 72, and 20 BNs for BT549, MCF7,

BT20, and UACC812 cell lines, respectively). This algorithm receives two parameters as input:

(1) one gold standard BN and (2) a family of BNs. It outputs a score in [0; 1], measuring the

average of the similarity scores between each BN in the family and the gold standard BN. In

our case, the gold standard BN is the aggregation of one family of BNs. The similarity scores

between all pairs of breast cancer cell lines are shown in Table 4.2. Figure 4.11 agrees with the

results presented in Table 4.2 as we can see the clear discrepancies among the four cell lines. It
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Figure 4.7 – Union of BNs of BT20. Here, we show the union of BNs for the cell line BT20.
This network is generated by combining 72 true positive BNs. It contains 31 nodes and 41
boolean functions with 12 AND gates. There are 2 stimuli, 2 inhibitors and 21 readouts.
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Figure 4.8 – Union of BNs of BT549. Here, we show the union of BNs for the cell line BT549.
This networks is generated by combining 191 true positive BNs. It contains 28 nodes and 53
boolean functions with 35 AND gates. There are 5 stimuli, 2 inhibitors and 17 readouts.
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Figure 4.9 – Union of BNs of MCF7. Here, we show the union of BNs for the cell line MCF7.
This network is generated by combining 21 true positive BNs. It contains 24 nodes and 37
boolean functions with 19 AND gates. There are 4 stimuli, 2 inhibitors and 15 readouts.
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can be seen that 23% of the Boolean functions are shared among BT549 and MCF7, and also

between BT20 and UACC812. BT20 shares the least number of Boolean functions (15%) with

BT549. This table revealed pronounced differences among different cell lines of breast cancer.

We also analyzed the diversity of Boolean functions among the family of BNs within the same

cell line. The similarity among Boolean functions from BT20 (0.73) and MCF7 (0.63) is higher

than the ones from BT549 (0.43) and UACC812 (0.46) cell lines.

Table 4.2 – Similarity scores among breast cancer cell lines.

Cell Lines Size of BNs’ family Similarity Score
BT20 BT549 MCF7 UACC812

BT20 72 0.73 0.15 0.17 0.23
BT549 191 ∗∗ 0.43 0.23 0.20
MCF7 21 ∗∗ ∗∗ 0.63 0.21

UACC812 20 ∗∗ ∗∗ ∗∗ 0.46

4.5.5 Heterogeneity among cell lines

There are a total of 69 distinct Boolean functions shown in Figure 4.12 along with their

respective frequencies. It is interesting to note that the B549 and UACC812 cell lines have
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Figure 4.10 – Union of BNs of UACC812. Here, we show the union of BNs for the cell line
UACC812. This network is generated by combining 20 BNs. It contains 33 nodes and 54
boolean functions with 29 AND gates. There are 6 stimuli, 2 inhibitors and 18 readouts.

.

AKT_pT308

.

Src_pY416

.

. .

p90RSK_pT359_S363

.

GSK3-alpha-beta_pS9

.

.

ER-alpha_pS118

AR

.

.

SERUM

AKT_pS473

GSK3-alpha-beta_pS21_S9

.

.

CASP9

.

BAD_pS112

c-Raf_pS338

MAPK3

CASP3

p70S6K_pT389

SMAD3

HER3_pY1298

Rb_pS807_S811

HGF

PIK3R1

EGFR_pY992

.

.

.

.

HER2_pY1248

.

STAT3_pY705

.

EGF

NRG1

.

. .

..

.. .

.

MEK1_pS217_S221

MAPK_pT202_Y204

.

4EBP1_pS65

IGF1

IRS1

mTOR_pS2448

INSULIN

EIF4E



76 CHAPTER 4. CELL LINE SPECIFIC BOOLEAN NETWORKS

Figure 4.11 – Boolean network of breast cancer cell lines. The aggregated graph for all cell
lines. Blue, red, green and brown colors have been used for each cell line BT20, BT549,
MCF7 and UACC812, respectively. The nodes are connected by logic gates (AND or OR) to
their direct predecessors. Edges are used to show influences (→ for positive and a for negative).
An AND gate is depicted by a small black circle where the incoming edges correspond to the
inputs of the gate. An OR gate is depicted by multiple incoming edges to the node. A different
color scheme is used to represent different types of nodes. The green color is for stimuli, the
red for inhibitors, the blue for readouts, and the white for unobserved nodes. Black edges
denote common hyper-edges across cell lines; the thickness of the black hyper-edge denotes
the number of cell lines sharing this hyper-edge.
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more distinct models among their family of BNs with a variable frequency range. This shows

that these cell lines have different mechanisms agreeing with the results obtained through graph

similarity measure given in Table 4.11.

Figure 4.13 shows the common Boolean functions along with their frequency in all BNs.

Interestingly, only 4% of the Boolean functions are shared in all cell lines and 99% of these

shared functions have the same frequency. In this figure, there is only one Boolean function

which is frequent in 3 cell lines and has a lower frequency in BT20.

4.5.6 Biological literature related to the Boolean functions discovered by
caspo-ts

The caspo-ts method revealed that cell line specific reactions are clustered around the AKT,

MAPK3, and PIK3R1 proteins. PI3K is an important factor for cancer development in HER2

amplified cancers (UACC812) as compared to non-HER2 amplified (BT20, BT549 and MCF7)

cancer cell lines. The HER2 amplified tumor is more aggressive than other types of tumor (see

Chapter 2 Section 2.1.1). We can see from Figs 4.7, 4.8, 4.9 and 4.10 that PIK3R1 exists in

all cell lines but is rather more connected in the UACC812 cell line with 10 incoming edges,

while in others with only 1 incoming edge. The PIK3R1 node in UACC812 (Figure 4.10) has a

centrality measure of 0.37 while in the other three cell lines the centrality measure is less than

0.11. The centrality measure is used to quantify the most important node within a network i.e.,

the number of times a node has been used as a bridge (along the shortest path) to connect to

other nodes in the network [AGW14].

It has been established that P1K3R1 (the regulatory unit of PI3K) plays an important

role in suppressing tumors (breast, lung, ovarian, bladder, and prostate) [SWF+05, TWK+10,

SHGAL+08]. Recently, it has been found that PIK3R1 is mutated in 3% of breast cancer cell

lines [N+12]. Therefore, it is worth studying the impact of the PIK3R1 regulatory unit in breast

cancer.

4.5.7 Evaluation

The performance of the caspo-ts method is evaluated using three criteria: 1) RMSE calcula-

tion using a typical learning and testing data approach, 2) random data comparison, 3) AUROC

(Area Under the Operating Curve) score. The BNs are learned using the learning dataset only.

The prediction accuracy is evaluated by comparing the RMSE of trajectories in the testing

dataset with those recovered by the learned networks (see Equation 4.1 in Section 4.2.4). To

check how our method performs in case of random time series, we calculated the RMSE score

for random data and compared it with the one obtained using the learning and testing data.

Next, the validity of these networks was verified by comparing them with the canonical MTOR



78 CHAPTER 4. CELL LINE SPECIFIC BOOLEAN NETWORKS

Figure 4.12 – Heterogeneous Boolean functions. The Boolean functions are represented on the
y-axis and the frequency of each Boolean function is shown on the x-axis. A Boolean function,
or hyper-edge, is of the form node ← expr, where node is the receiver of the Boolean clause
expr in the BN. In the Boolean clause, the not operator is represented by a "!" symbol and the
AND operator by a "+" symbol. The disjunction of clauses is represented by multiple reactions
upon the same receiver node.
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Figure 4.13 – Common Boolean functions across all four cell lines. The Boolean functions are
represented on the x-axis and the frequency of each Boolean function is shown on the y-axis.
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signaling pathway using two parameters, i.e., true positive rate (TPR) and false positive rate

(FPR).

Validation using root mean square error criteria

The goal is to verify that the BNs learned using caspo-ts applied to the HPN-DREAM

dataset are able to recover trajectories that do not exist in the learning data. For this purpose,

we used experimental testing data to check the specificity of the trajectories of the proposed

networks. These testing data were provided by the HPN-DREAM challenge organizers. Table

4.3 shows the corresponding RMSE in case of learning and testing data. It can be seen that

the inferred BNs are able to produce the discrete trajectories without any error in the learning

dataset for all cell lines. These BNs can reproduce trajectories of the learning data with an

error of 0.3464, 0.3498, 0.3207, and 0.3464 in BT20, BT549, MCF7, and UACC812 cell line

respectively. It is encouraging to see that the inferred BNs are able to recover the discrete

testing trajectories without any error in MCF7, and with a minimal error of 0.0009, 0.0106, and

0.0094 in BT20, BT549, and UACC812, respectively. These BNs can reproduce trajectories of

the testing data with an error of 0.3302, 0.3113, 0.2772, and 0.3178 in BT20, BT549, MCF7,

and UACC812 cell line, respectively.

We also compared the RMSE score with the top two best performers of the HPN-DREAM

challenge. We got the top position with an RMSE score of 0.31 as compared to their RMSE

scores of 0.47 and 0.50. Notice that in comparison to other HPN-DREAM challenge methods

based on Bayesian inference, Regression, and Granger Causality among others, caspo-ts does

not make new predictions but it checks the recoverability of the testing trajectories with the

inferred BNs (see Section 4.2.6).
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Table 4.3 – Root mean square error. This table summarizes the RMSE results for each cell
line. We have calculated the discrete RMSE (error related to the discretization of the data) and
the model RMSE (caspo-ts error). The Delta column shows the difference between model and
discrete RMSE.

Cell Line Learning Testing
Discrete Model Delta Discrete Model Delta

BT20 0.3464 0.3464 0 0.3293 0.3302 0.0009
BT549 0.3498 0.3498 0 0.3007 0.3113 0.0106
MCF7 0.3207 0.3207 0 0.2772 0.2772 0

UACC812 0.3464 0.3464 0 0.3084 0.3178 0.0094

Analyzing family of BNs using root mean square error

We calculated the RMSE score for each Boolean model in a family of BNs of each cell

line. We show these results in Figure 4.14. We observe that the all models of MCF7 and BT20

cell lines have the same RMSE w.r.t testing data. The family of BT549 cell line has an average

RMSE score of 0.0116 and UACC812 cell line has an average RMSE score of 0.0119.

(a) BT20.
(b) BT549.

(c) MCF7. (d) UACC812.

Figure 4.14 – RMSE for a family of BNs w.r.t testing data, where x-axis shows the true positive
Boolean models and y-axis shows the delta. The delta captures the difference between discrete
and model RMSE (see Section 4.2.6). Recall that we obtained different number of true positive
BNs in each cell line (see Section 4.5.4).
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Validation using random data samples

The objective of the following analysis is to show that the BNs obtained with caspo-ts us-

ing the HPN-DREAM datasets for the four cell lines have a worse RMSE score with respect

to random trajectories, and therefore are very specific to the HPN-DREAM datasets. For this

purpose, we generated 100 random data samples per cell line. In each sample, we generated a

random value in [0; 1] for each readout protein in each time point without changing the pertur-

bations. Then, we calculated the RMSE of these samples with respect to the inferred BNs of

each cell line, and finally compared it with the learning and testing RMSE of these BNs. Figure

4.15 plots the RMSE ratio (see Equation (4.5)) of the inferred BNs with respect to the learning,

testing and random data.

RMSE ratio =
Discrete RMSE

Model RMSE
. (4.5)

In Figure 4.15, the RMSE ratio for random datasets is displayed by red boxplots for each

cell line, and the RMSE ratio for testing and learning datasets is shown as clear outliers in green

and blue colors respectively. It is worth noting that the caspo-ts method has failed to recover

random data time series, hence proving the specificity of the learned networks with respect to

the HPN-DREAM challenge dataset.

Validation by introducing noise in the learning data

Additionally, we computed the RMSE of the testing data by using a leave one out approach.

The analysis is performed for the cell line BT549. Recall that checking the exact reachability of

the BNs with respect to a binarized time series trace is a computationally expensive task. The

time to model check BNs differs from one network to another. For this case study, the model

checking time varied from minutes to days. Because of this reason, we have done this analysis

for only one cell line.

We generated 18 modified learning datasets by randomly introducing 5% of noisy data

in each dataset; that is, the 5% of the total time point values were generated randomly. We

used these datasets to learn 231 ASP-optimal BNs. Then we passed these BNs to the model

checker to detect true positive BNs. The model checker verified the exact reachability of 4158

BNs contained in 18 modified datasets. It detected 582 true positive BNs. To verify if these

TP BNs can reproduce the time series traces existing in the testing dataset of HPN-DREAM

challenge, we used the Equation 4.1 to calculate the RMSE score (see Section 4.2.4). Our

results (Table 4.4) show that we were able to obtain an RMSE of 0.3113 for BNs learned from

5% modified learning datasets. It also shows, that most of the ASP-optimal BNs were false

positive BNs. Interestingly, the Delta RMSE, which measures how well caspo-ts can recover

the discrete time-series data, points to regions where the randomization of the learning data
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Figure 4.15 – Performance assessment with learning, testing and random datasets. The x-axis
shows the cell line and the y-axis shows the RMSE ratio (see Equation (4.5)) of the inferred
BNs from the HPN-DREAM data for each cell line with respect to the three datasets. The
three datasets are encoded by different color codes. The RMSE ratio with respect to the HPN-
DREAM learning and testing datasets is shown in blue and green colors, respectively. The
random dataset RMSE ratio distribution is shown as red boxplots.
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was different and therefore the ASP-optimal BNs did not recover the full discretized time series

data. Overall these results demonstrate that our learning process is robust and is able to handle

noisy time series data.

Table 4.4 – Computation summary. This table summarizes the analysis performed on the
BT549 cell line. The # of solutions column shows the number of ASP optimal BNs. The true
and false positive columns show the number of true positive and false positive BNs returned
by the model checker. The Delta RMSE column shows the difference between the discrete and
model RMSE. The ASP solving column represents the time spent on learning ASP optimal
BNs for each sample. The model checking column shows the time spent on verifying the BNs
for each sample. The last column RMSE represents the corresponding RMSE of each sample
with respect to the testing data. The ASP solving was performed on a standard laptop machine.
The model checking task was performed on a server with 1.5 Tb of RAM.

BT549 # of Solutions Learning Data Time Testing Data
Sample # True Positives False Positives Delta RMSE ASP solving Model Checking RMSE

1 231 231 0 0 124 seconds 18 days 0.3113
2 231 231 0 0.0009 125 seconds 15 days 0.3113
3 231 0 231 0.0002 122 seconds 3 days 0.3113
4 231 0 231 0.0004 112 seconds 10 days 0.3113
5 231 0 231 0.0007 101 seconds 7 days 0.3113
6 231 0 231 0 110 seconds 9 days 0.3113
7 231 0 231 0 133 seconds 5 days 0.3113
8 231 0 231 0 133 seconds 6 days 0.3113
9 231 0 231 0.0003 134 seconds 6 days 0.3113

10 231 0 231 0 136 seconds 18 days 0.3113
11 231 0 231 0.0001 90 seconds 22 days 0.3113
12 231 0 231 0.0029 148 seconds 30 days 0.3113
13 231 0 231 0 104 seconds 30 days 0.3113
14 231 0 231 0.0003 91 seconds 23 days 0.3115
15 231 0 231 0.0001 329 seconds 22 days 0.3113
16 231 120 111 0.0018 100 seconds 25 days 0.3113
17 231 0 231 0 150 seconds 30 days 0.3113
18 231 0 231 0.0004 131 seconds 30 days 0.3115

Validation using MTOR canonical pathway

To perform the validation of the structure of the BNs, we calculated a set of standard nodes

from our PKN which are downstream nodes of MTOR and belong to the canonical MTOR

pathway. We then evaluated how many of these standard nodes are also downstream nodes

of MTOR in the learned BNs. In the following, the set of downstream nodes of MTOR in the

learned BNs is referred to as inferred set. The inferred set is specific to each cell line. True pos-

itive rate (TPR) and false positive rate (FPR) are defined by Equation (4.6) and Equation (4.7)

respectively:

TPR =
TP

TP + FN
, (4.6)

FPR =
FP

FP + TN
. (4.7)
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Here, TP is the number of nodes in the intersection between standard and inferred sets, FP

is the number of nodes in the inferred set but not in the standard set, FN is the number of nodes

in the standard set but not in the inferred set and TN is the number of nodes which are not in

the standard set nor the inferred set.

Figure 4.16 shows the Receiver Operating Characteristic (ROC) curve of each cell line. For

BNs of each cell line, TPR and FPR was calculated using Equation (4.6) and (4.7). BT549 cell

line models are the most accurate, followed by MCF7 and BT20. We can observe the clear

distinction between true positive and false positive BNs. The BNs inferred by caspo-ts have

an average AUROC score of 0.77 which is comparable to the AUROC score of 0.78 of the top

performing method of HPN-DREAM challenge. A number of assumptions made during the

modeling phase may have influenced our ranking. First, since our method can pinpoint the

noisy, incomplete and erroneous experiment, it allows us to use only the reliable experimental

settings. Second, our method constrains the solution space to the proteins existing in the PKN,

and so anything outside the prior knowledge cannot be found. From Figure 4.16, we can see

that the caspo-ts method shows promising results for the inferred true positive BNs.

Figure 4.16 – ROC curve across all cell lines. The x-axis shows the false positive rate and the
y-axis denotes the true positive rate. The average AUROC score is 0.77.
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4.6 Discussion

In this chapter, we built cell line specific signaling networks for the DREAM time series

dataset of 4 breast cancer cell lines (BT20, BT549, MCF7, and UACC812) using caspo-ts.
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This method combines Answer Set Programming and Model Checking techniques to infer true

positive BNs verifying the experimental data. Caspo-ts allowed us to handle a midscale PKN

(64 nodes and 178 edges) and a real dataset subject to experimental error. Caspo-ts enabled us

to learn key dynamic mechanisms within the BNs explaining the time series data. Our results

suggest that the behavior of cell line specific signaling networks is highly variable even under

the same perturbations, agreeing with the heterogeneity of breast cancer and specifically with

previous analysis on this data [HNJC+17]. The inferred Boolean models of each cell line were

analyzed to identify commonalities as well as discrepancies. Moreover, these inferred models

can be executed computationally to identify potential drug targets or to see the effect of unseen

perturbations. The predictive power of these models can be increased with improvements in

protein interaction databases and comprehensive experimental data.

We have discovered 38% of the cell line dependent behaviors as compared to the 33% of

the HPN-DREAM challenge winner [Car14]. We have implemented an algorithm to analyze

the variability among cell lines and observed pairwise similarities among these cell lines. The

similarity index varies from 15% (BT20 & BT549) to 23% (MCF7 & BT549, BT20 & MCF7).

We have analyzed the similarity among the family of BNs of the same cell line as well, which

varies from 43% to 73%. We have evaluated the accuracy of our method with RMSE and

AUROC scores. The average RMSE of the inferred BNs was 0.31 placing caspo-ts in first place

in comparison with the top scores reported in the HPN-DREAM challenge. Various choices

made during this study may have an impact on the final score. The caspo-ts method allowed us

to remove noisy and faulty experiments, leaving us with the reliable experimental settings only.

Here, we made the choice to use only the reliable experiments of the learning dataset instead

of using all experimental settings. Also, we did not observe all 45 proteins as we could not find

connections in our PKN for all the studied proteins, leaving us with approximately 23 proteins

for each cell line.

Nonetheless, the obtained results are quite promising, making caspo-ts a good candidate

computational method for learning models given time series datasets and a prior knowledge

network. In addition, caspo-ts can be used to pinpoint the errors in the experimental data. In

particular, we discovered four experiments where the protein AKT was inhibited and had a dy-

namic behavior as a readout protein. Our work therefore provides a novel approach to show

erroneous experiments, which is crucial and complementary to current approaches. Finally,

the HPN-DREAM dataset contained some noisy readings of experiments. Noisy experimental

data reduces the efficiency of computational methods by increasing the variability among con-

structed Boolean models. To overcome this, we suggest to build automated methods to filter out

the noisy experiments. This approach provides a step forward in building cell line dependent

networks in the case of phosphoproteomic data.
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4.7 Conclusion

We have applied the caspo time series (caspo-ts) approach, which is a combination of logic

programming and model checking, over the time series phosphoproteomic dataset of the HPN-

DREAM challenge to learn cell specific BNs. The learned BNs can be used to identify the

cell specific topology. Our analysis suggests that caspo-ts scales to real datasets, outputting

networks that are not random with a lower fitness error than the models used by the 178 methods

which participated in the HPN-DREAM challenge. On the biological side, we identified the

cell specific and common mechanisms (logical gates) of the cell lines.

Since caspo-ts uses an ASP solver to enumerate BNs, in the resulting sequence of solutions

similar BNs are typically clustered together. This can be problematic for large scale problems

where we cannot explore the whole solution space in reasonable time. In the next chapter,

we discuss how we resolved this issue by sampling to randomly select BNs from the solution

space, which allows for shuffling the order in which solutions are enumerated [RSW16]. We

implemented this by dynamically modifying the heuristic of the ASP solver at execution time.

We show an application of caspo-ts with diversification on the UACC812 breast cancer cell

line and TCR signaling network. We obtained TP BNs for UACC812 cell line using extended

caspo-ts.



5
Computing Diverse Boolean Networks
from Phosphoproteomic Time Series Data

5.1 Introduction

In this chapter, we introduce the new enumeration scheme for the caspo time series (caspo-

ts) method. The article related to this work is published in the International Conference on

Computational Methods in Systems Biology [RKR+18].

The caspo-ts system uses an over-approximation criteria to learn candidate BNs, which can

lead to some false positive (FP) BNs. These BNs are not guaranteed to reproduce all traces

of the time series data. To resolve this issue, it uses model checking to filter out FP BNs, by

checking the exact reachability of these BNs w.r.t. time series data. The caspo-ts method uses

the clingo ASP solver [GKKS14], which is able to exhaustively enumerate all solutions. The

clingo solver by default uses an enumeration scheme in which, once a solution is found, it

backtracks to the first point from where the next solution can be found. This typically leads

to the situation where successive solutions (BNs) only change in a small part. As a result,

caspo-ts may enter a solution space where FP BNs are clustered together. Given the size of

the PKN and the small number of perturbations in the experimental data, the solution space

can be very large containing billions of BNs making it difficult to enumerate true positive (TP)

BNs in reasonable time if it gets stuck in a cluster of FP BNs. We extend caspo-ts with a new

enumeration scheme for breaking up clusters of similar solutions. In the following, we refer to

the modified caspo-ts as caspo-tsD, where “D” is used to represent diversification. We apply

87
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both systems to two datasets: (1) an artificial dataset for modeling TCR signaling networks,

and (2) the HPN-DREAM challenge dataset. Our results show substantial improvements of

caspo-tsD in solution quality by discovering more signaling behaviors than caspo-ts. Moreover,

caspo-tsD is able to find solutions in cases where caspo-ts is unable to find any in a reasonable

time period. We also present an algorithm to improve the computational time of the model

checking process. The results suggest huge computational time improvements in the model

checking process.

5.2 Materials and methods

In this section, we describe the datasets, the caspo-ts system, the new algorithm to enu-

merate diverse BNs implemented in caspo-tsD, and the new algorithm to improve the model

checking process. Note that we are using the phosphoproteomics time series dataset which has

been described in details in Chapter 4, Section 4.2.2. We are using two types of datasets: an

artificial (TCR Signaling) and a real dataset (HPN-DREAM).

5.2.1 Artificial dataset

The PKN was derived from the TCR signaling model of [KSRL+06] and consists of 16

nodes and 25 edges. The artificial dataset for TCR signaling was generated in [OPS+16] by

simulating the PKN using logic based ODEs. This dataset consists of 4 readouts, 3 stimuli and

2 inhibitors. The readout proteins were measured at 16 time points under 10 perturbations.

5.2.2 HPN-DREAM

The HPN-DREAM dataset is described in the Chapter 4, Section 4.5. The PKN (associated

to HPN-DREAM) consists of 64 nodes (7 stimuli, 3 inhibitors, and 23 readouts) and 178 edges

(see Figure 4.6 described in detail in Chapter 4, Section 4.5.3).

5.2.3 The caspo-ts system

The caspo-ts system is based on a combination of ASP and model checking. The ASP part

of the caspo-ts system is used to solve the combinatorial optimization problem of finding BNs

compatible with a PKN and time series data. All learned BNs are optimized using an objective

function, minimizing the distance between the original and the time series data determined by

the BN learned with caspo-ts. The ASP solver guarantees finding all optimal solutions w.r.t.

an objective function. The model checking part of the system detects TP BNs by checking

the reachability of time series traces given compatible BNs generated by the ASP part of the
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system. TP BNs are guaranteed to reproduce all the (binarized) traces under all perturbations

by verifying exact reachability in the BN state graph. Since checking this reachability is a

PSPACE-hard problem, the second step can be very time consuming for large BNs. To resolve

this issue, the ASP part over-approximates solutions [OPS+16]. This over-approximation re-

moves a large set of BNs that have no reachable traces, reducing the number of calls to the

model checker.

Optimization

The caspo-ts method optimizes the distance of over-approximated traces of BNs w.r.t. the

time series traces of the phosphoproteomic dataset. For this purpose, it uses Equation 4.1

described in detail in the Chapter 4, Section 4.2.4. From this optimization step, caspo-ts finds

a bound, which is an optimal distance that can be achieved from traces of BNs to the traces

of experimental data. Then, a constraint is added that only admits solutions that satisfy this

bound. We can refer to this solution space as optimal solution space.

Then, different parameters of the ASP solver are configured to generate subset-optimal

solutions. This means that enumerating subset-optimal solutions is a projection operation over

the optimal solution space. We refer to this solution space as the subset-optimal solution space.

Notice that the optimal solutions space is generated by writing a logic program, while the

subset-optimal solution space is the projection of optimal solution space by setting different

parameters of the ASP solver.

Subset minimal BNs. The BNs learned by caspo-ts are represented by Boolean formulas

in Disjunctive Normal Form (DNF), i.e., as a disjunction of conjunctive clauses 1. The BNs

inferred by caspo-ts use the smallest DNF formulas possible, in the sense that no conjunctive

clause can be removed from a DNF formula without changing the Boolean function it repre-

sents. We refer to these BNs as subset minimal BNs.

Sampling of solution space of BNs. Sampling techniques are used to enumerate diverse

solutions from the solution space [EEEF09]. Existing sampling techniques [ZAUH16, RSW16]

can be applied to the optimal solution space. In our case, we have to sample the subset-optimal

solution space of the caspo-ts system. We discovered that existing sampling techniques can

only be used with standard ASP solving, which means for the optimal solution space but not

for the subset-optimal solution space. This is the main technical difficulty, which hindered

our ability to enumerate diverse subset minimal solution for the caspo-ts system, as sampling

1. A clause can be seen as a reaction, where the proteins represented positively are active, and the proteins
represented negatively are absent. A Boolean formula in DNF encompasses all possible reactions to update the
value of a protein.
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cannot be implemented on top of subset minimization in the current implementation of the ASP

solver.

To resolve this issue, we enumerate subset minimal solutions using heuristics instead of

configuring the ASP solver’s parameters. Finally, a heuristic based approach is used to enu-

merate diverse optimal subset minimal solutions. This process of enumeration is explained in

Algorithm 4.

In the following, we give a brief description of ASP solving algorithms used by caspo-ts.

But first let us have a look at an example Boolean formula.

Example 5.2.1. To use Boolean formulas we discretize the phosphoproteomic data: values

greater or equal to 0.5 are set to 1, and others are set to 0. Let protein A be associated to

Boolean variable A have the formula (B) ∨ (¬B ∧ C) containing the two conjunctive clauses

(B) and (¬B ∧C), where B and C are Boolean variables representing proteins B and C. This

formula can be used to update the value of A. If the update is applied, A is set to 1 if either the

value of B is 1, or the value of B is 0 and the value of C is 1. Otherwise, the value of A is set

to 0.

ASP solving

Backtracking algorithms are used to solve computational problems by finding (all or some)

candidate solutions to a problem. Davis Putnam Logemann Loveland (DPLL) [DP60, DLL62]

is a backtracking algorithm which is used to solve the Boolean satisfiability problem (SAT)

[BHvM09]. Given a Boolean formula, the goal is to find an interpretation assigning truth

values to literals satisfying the formula. DPLL starts with arbitrarily choosing a literal and then

assigning a truth value to it. If this assignment does not lead to a conflict then chose another

literal and assign a truth value to it. In case of conflict, it backtracks to the last choice. ASP

solvers use the conflict driven clause learning algorithm (CDCL), which is a variant of the

DPLL backtracking algorithm (Figure 5.1). The main difference difference between CDCL

and DPLL lies in the backtracking step. In the CDCL algorithm, when a conflict arises then

instead of going just one step back it tries to analyze it and go back to the origin of the conflict

(as shown in Figure 5.1).

Next, we explain in detail how the ASP solver clingo used by caspo-ts discovers solutions

(BNs) using the CDCL algorithm [GKKS14], shown in Algorithm 3.

Example 5.2.2. Before continuing any further, we build up our running example. Our running
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Figure 5.1 – Difference between CDCL and DPLL algorithms. The dashed arrows represent
back-jumps. The red and green arrows denote false and true assignment.

example is composed of four constraints:

{a, b, c} ← (5.1)

← b ∧ ¬a ∧ ¬c (5.2)

← ¬b ∧ c (5.3)

← ¬b ∧ ¬c (5.4)

The first constraint (choice rule) states that solutions consist of all the subsets of the set {a, b, c}.
The second constraint discards all solutions where b is true, a is false, and c is false. The third

discards those where b is false and c is true, and the fourth discards those where both b and c

are false.

Input: program P
1 Initialize assignment;
2 while assignment is partial do
3 Decide ;
4 Propagate ;
5 if propagation let to a conflict then
6 Analyze ;
7 if conflict can be resolved then
8 Backjump ;
9 else

10 return unsatisfiable;

11 return solution given by assignment;
Algorithm 3: Conflict-driven clause learning.

The algorithm works by extending a Boolean assignment over the atoms occurring in the
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given logic program P until a solution is found. The assignment is initialized in line 1. Then

it is extended by the decision heuristic and propagation in the loop in lines 2–10. The call to

Decide() in line 3 at the beginning of the loop uses a heuristic to select an atom, makes it

either true or false, and adds it to the assignment. The consequences of this decision are then

propagated in the following line extending the assignment accordingly. Then it is checked if

propagation leads to a conflict. If this is the case, the conflict is analyzed in line 6 and the

assignment adjusted in line 8 accordingly. Note that a call to Backjump() takes back one

or more decisions together with their consequences, and adds an additional consequence to the

assignment. This property ensures that the algorithm always terminates. It can also happen that

a conflict cannot be recovered from. In this case, the problem is found unsatisfiable and the

algorithm returns in line 10. Once the assignment is complete, the corresponding solution (set

of true atoms) is returned in line 11.

Example 5.2.3. We can now apply Algorithm (3) to our running example (c.f. Example 5.2.2).

Starting with an empty assignment, we set a to false as the first decision. There are no im-

mediate consequences and, hence, no conflict can arise. Then we decide to make b false. The

consequences of this decision are that c is false via rule (5.3), and c is true via rule (5.4). Hence,

we get a conflict, which is resolved and followed by a backjump. Since the conflict was caused

by deciding a truth value for b, but is independent of the decision for a, the algorithm takes

back all decisions and adds b as a consequence (we now know it must be true in all solutions).

We can then decide to make a false again, which sets c to true via rule (5.2). This decision does

not cause a conflict and the assignment is no longer partial. Hence, the algorithm terminates

with solution {b, c}.

Figure 5.2 – Conflict driven clause learning for example 5.2.3. The red arrows denote false
assignment. The dashed arrow represents the back-jump. The gray box shows the assignment
of truth values to literals including assignments from decisions and consequences. The green
box represents the solution obtained.



5.2. MATERIALS AND METHODS 93

5.2.4 Improvements in caspo-ts

Modifications in the ASP solver: caspo-tsD

Here, we describe the algorithm used for enumerating diverse subset minimal solutions.

In caspo-ts, the algorithm is implemented in the Python programming language using clingo’s

multi-shot solving API [KSW17]. The API allows us to customize the solving process, in

particular, it allows us to customize the decision heuristic of the solving component, which is

the key feature to find subset minimal answer sets. Note that we implemented the algorithm

using the multi-shot solving API of clingo version 5. For that, we have upgraded the solver

clingo of caspo-ts from 4.5.4 to 5.

Input: program P and atoms T to subset minimize
1 Prepare(P);
2 foreach x ∈ T do
3 SetSign(x, false, 1)

4 while satisfiable do
5 S ← Solve();
6 AddConstraint(← a0, . . . , an for {a0, . . . , an} = T ∩ S);
7 foreach x ∈ T ∩ S do
8 SetSign(x, false, 2);

9 foreach x ∈ T \ S do
10 SetSign(x, false, 1);

11 if S is a true positive then
12 Output(S);

Algorithm 4: Diverse subset minimal solution enumeration.

Algorithm 4 is used to enumerate diverse optimal subset minimal answer sets. The idea is

to configure the decision heuristic in lines 8 and 10, so that it first makes all atoms subject to

subset minimization false before deciding truth values for other atoms. This decision heuristic

is used in function Decide() in Algorithm 3 line 3. This modification ensures that the so-

lution obtained from Algorithm 3 by calling Solve() from Algorithm 4 is a subset minimal

solution (see [BDRS15] for more details). Such a solution is output in line 12 of the algorithm.

Furthermore, the algorithm calls Solve() in line 5 multiple times to find all subset minimal

solutions. To not enumerate solutions twice, a constraint preventing to find the same solution

again is added to the logic program P in the following line. This constraint is violated when-

ever a superset of the atoms in the previously found solution is true. This process is repeated in

the loop in lines 4–12 until the program is no longer satisfiable and, hence, all solutions have

been enumerated.

So far we only discussed how to enumerate subset minimal solutions. Now we explain how

to extend the method in order to compute diverse solutions. The key idea is to make the next
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solution different from the previous one. For this purpose, we assign atoms appearing in the

last solution to false before assigning any other atoms. To modify the heuristic, we use func-

tion SetSign(a, t, l), which instructs the decision heuristic to assign atom a to truth value t

on level l. The decision heuristic assigns free atoms with the highest level to the designated

truth values before assigning atoms on lower levels. By default all atoms have level 0 and the

decision heuristic is free to make them either true or false. The loop in lines 7–8 instructs

the decision heuristic to assign atoms that appeared in the last solution to false on level 2. Any

other atoms subject to subset minimization are assigned to false on level 1 in lines 9–10. We see

in the experiments in the next section that this strategy breaks up clusters of similar solutions

in the solution sequence.

Example 5.2.4. We continue with Example 5.2.2. Let us assume that a, b, and c are the atoms

subject to subset minimization. Note that in Example 5.2.3 all decisions assigned atoms to false,

so the first solution {b, c} obtained is in fact a subset minimal solution. Let us further assume

that Algorithm 4 produced this solution in the first iteration (line 5). First, the constraint← b∧c
preventing any superset of {b, c} as solution is added in line 6. Then, the decision heuristic is

configured to set atoms b and c to false on level 2 (line 8) and atom a to false on level 1

(line 10). In the next iteration, the only possible decision is to set c to false because b is already

irrevocably assigned. The consequence of this decision is to set a to true via rule (5.2). Hence,

we obtain solution {a, b}, which is a subset minimal solution. This is followed by adding the

constraint← a∧ b in line 6, which in turn makes the program unsatisfiable and causes the loop

in lines 4–12 to terminate. We correctly obtain the subset minimal solutions {b, c} and {a, b}.
Solution {a, b, c} is not subset minimal and not enumerated.

Proofs for Subset Minimal Solution Enumeration

Lemma 1. In line 4, Algorithm 4 computes a subset minimal w.r.t. a set of atoms S and the

currently active program.

Proof. We only change the order and truth value with which the decision heuristic of the solv-

ing algorithm from [GKS12] assigns atoms. With this modification, the algorithm is still guar-

anteed to find a solution if there is any. All that remains to show is that the solution found is

subset minimal.

When clingo finds a stable model of a program P , it has successively assigned truth values

from {true, false} to all atoms. This sequence of assignments has the following property: (P)
Each assignment is either a decision or a result of propagation. Let a be any atom that is the

result of propagation. Then the assignment of a is caused by the set of decisions D assigned

before a. Every stable model of P that satisfies the literals in D also assigns a to the same truth

value.
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Now consider that we want to subset minimize the set of atoms S and we use the heuristic

method as in Algorithm 4 to obtain a stable model M . As long as there are unassigned atoms

in S, the decision heuristic assigns them to false, so every atom a ∈ S that is true in M is a

result of propagation, and all decisions before a are atoms from S assigned to false. Hence,

using property (P), we have that every stable model that satisfies the atoms from S assigned to

false in M also satisfies the atoms from S assigned to true. Then, there can be no stable model

that is a subset of M w.r.t. S.

Lemma 2. Let P be a logic program and M be a subset minimal stable model of P w.r.t. a set

of atoms S. Let the intersection of M and S be the set {a0, ..., an}, and let C be the constraint

← a0 ∧ · · · ∧ an. Then, the subset minimal stable models of P are exactly M and the subset

minimal stable models of P ∪ {C}.

Proof. The constraint C eliminates all stable models M ′ with {a0, . . . , an} ⊆ M ′, so C elimi-

nates M ′ if (M ∩ S) ⊆ (M ′ ∩ S). This means, the constraint eliminates all stable models that

are a superset of M w.r.t. S, and the result follows.

Theorem 1. Algorithm 4 calculates all subset minimal stable models w.r.t. a set of atoms S.

Proof. By Lemma 1, the first stable model calculated by the algorithm is a subset minimal

model. By Lemma 2, also the follow up stable models are subset minimal. To see that all

subset minimal stable models are computed, note that by Lemma 2 in each iteration exactly

one subset solution is eliminated and that the solving algorithm guarantees to find a solution if

there is any.

Modifications in the model checking

Here, we describe the modifications to reduce the runtime of the model checking process.

Recall that a BN is given to a model checker to verify a set of traces under a set of perturba-

tions (P) existing in the experimental data. These traces are specified using a combination

of existential (E) and eventually (F ) operators (as explained in Chapter 4, Section 4.2.5).

The model checking component of the caspo-ts system takes a BN and verifies these traces.

Model checking itself is a PSPACE-hard problem. Giving traces as one big specification to the

model checker can result in large overhead in computational time. Because in practice, a model

checker performs better when solving independent problem separately. In order to resolve this

issue, we propose to split the big specification in smaller parts and verify the traces in a parallel

way where as soon as the traces under one perturbation are not reachable, we stop the model

checking process and reject the BN as a false positive. The following Algorithm 5 explains the

proposed model checking process.
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Input: A BN and a set of traces under n perturbations
1 Start n processes verifying reachability for each perturbation in the background;
2 while n > 0 do
3 wait for one process to finish;
4 if the process failed to verify reachability then
5 stop all remaining processes;
6 return FP;

7 n← n− 1;

8 return TP;
Algorithm 5: Parallelized model checking algorithm.

5.3 Results

We discuss the results of applying Algorithm 4 on two different datasets. We start with

the artificial benchmark, where the solution space is small enough (68338) to compute all

solutions. This allows us to study this benchmark in more detail. We can analyze how well

a limited number of solutions enumerated with caspo-ts and caspo-tsD represents the solution

space.

Then we move to the real dataset, where we cannot enumerate all solutions and can only

consider a limited number of solutions because the solution space is too large. Nevertheless,

we can show improved results with caspo-tsD over caspo-ts by being able to enumerate more

TP BNs and also more diverse BNs.

We also discuss the results of applying Algorithm 5 to the BT549 cell line. For this, we com-

pare the computation time of the caspo-ts system based on previous and new implementation

of the model checking process. We can show that we spend less time in verifying reachability,

especially in case of FP BNs, as we might be able to stop the verifying process as soon as one

of the perturbation fails to verify.

5.3.1 Artificial dataset

Here, we use the TCR signaling dataset [KSRL+06] to demonstrate Algorithm 4 by describ-

ing two factors: (1) frequency of the clauses, and (2) true positive rate of BNs. The purpose of

studying the first factor is to observe how many clauses we discover while learning a limited

number of BNs. In this case, we expect to discover more clauses with caspo-tsD than with

caspo-ts. The second factor (the true positive rate) is used to study how TP solutions are dis-

tributed in the solution space. With caspo-tsD, we expect TP solutions to be distributed much

more evenly.

Fig. 5.3 depicts the frequency of clauses in the solutions of the artificial benchmark. Clauses

that occurred in at least one solution are depicted on the x axis. Each tick stands for one clause

and the label has format n← c where c is a clause and n is a node name. Furthermore, clauses
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associated with the same node are grouped together by shading the background alternatingly

in light gray and white. The frequencies of the clauses are depicted on the y axis. The red line

depicts the frequency considering all 68338 solutions, while the green and blue lines depict the

frequencies of the first 100 solutions computed by caspo-ts and caspo-tsD, respectively. In total,

there are 49 clauses appearing in the family of BNs. While caspo-tsD (blue line) discovered 48

clauses, caspo-ts (green line) learned only 29 clauses by enumerating the same number of BNs

(100). We also observe that the blue line is often much closer to the red line (with an average

distance of 0.06) than the green line is (with an average distance of 0.20). This shows that

the diverse enumeration scheme is able to produce solutions that are less similar to each other

and better represent the solution space. The underlying ASP solver of caspo-ts by default uses

an enumeration scheme that backtracks to the first point from which the next solution can be

found. This approach typically leads to the situation where successively enumerated solutions

only change in a small part. We can observe this behavior in Figure 5.3, where some clauses

are overrepresented.

Figure 5.3 – Frequency of clauses per node in all 68338 BNs (red line), and in the first 100 BNs
enumerated by caspo-ts (green line) and caspo-tsD (blue line).

Figure 5.4 depicts the true positive rate of blocks of successive solutions. Each tick on the x

axis stands for a block of 1000 solutions. The y axis depicts the percentage of true positives in a

block of solutions. The red line depicts the overall true positive rate (78%), while the green and

blue lines depict the true positive rates of caspo-ts and caspo-tsD, respectively 2. We observe

that for the caspo-ts system there are a lot of blocks with either a lot of true positives or very

few. This suggests that true positives are clustered in the sequence of enumerated solutions. We

observe that the diverse enumeration scheme does not show this behavior. This is especially

2. For example, when x has value 3000, the y value in blue gives the true positive rate among the solutions
2001 to 3000 computed by caspo-tsD.
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important for enumerating true positive solutions of real world instances where only a limited

number of solutions can be checked because of time constraints. With the original caspo-

ts system, it can happen that the first cluster does not contain any true positives, making it

impossible to find any true positive solution within a given time budget. The graph also shows

that the diverse enumeration scheme does not sample over the full solution space. We see that

before around 23000 solutions, the true positive rate is below the ideal 78% and then jumps up

afterward. Thus, we conjecture that our enumeration scheme mainly breaks up local clusters of

solutions with the artificial benchmark. Still, it is able to discover almost all clauses compared

to the whole solution set (the frequency is 0 only once), while caspo-ts does not discover 20

clauses at all.

Figure 5.4 – True positive rate of BNs grouped in blocks of 1000 networks.

5.3.2 HPN-DREAM challenge dataset

Next, we show the results of applying diverse solution enumeration to the HPN-DREAM

challenge dataset [HHC+16]. We discuss the results according to three aspects: (1) time to

compute the first true positive BN, (2) similarity among the family of solutions, and (3) Boolean

functions computed by the original caspo-ts and the extended caspo-tsD system. We start the

analysis with four cell lines, and then we provide a detailed analysis of the Boolean functions

of one cell line discovered by caspo-ts and caspo-tsD.

Given that model checking is a computationally hard problem, we stop an experiment after

a system verifies (using the model checker) 46 BNs per cell line 3. The model checking task was

performed on a server with 1.5 Tb of RAM. Table 5.1 shows the number of TP BNs obtained

for each cell line. We see that the number of TP BNs differs comparing caspo-ts and caspo-tsD.

For MCF7 we obtain 0 TP BNs with caspo-ts and 4 TP BNs with caspo-tsD, while for BT549

3. Note that the model checker could only verify 32 out of 46 solutions within one month for cell line BT20
in case of caspo-tsD. There may exist more TPs for this cell line.
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we obtain 2 and 14 TP BNs, respectively. For the other two cell lines BT20 and UACC812,

we obtain a comparable number of BNs. We observe that we can get more TP solutions by

checking the same number of BNs with caspo-tsD. This is an important improvement given the

fact that model checking BNs is a computationally hard problem. Next, we consider the time

column showing the time to compute the first TP BN for each cell line. We see that we are

unable to get TP BN with caspo-ts in case of the MCF7 cell line, which shows that the caspo-ts

system is stuck in a part of the search space where there are only FPs. Otherwise, for the other

cell lines the time to get the first TP BN is comparable. We conclude that the difficulty to model

check a BN depends on the cell line and not on the order in which solutions are found. Finally,

the similarity column shows the similarity score among the set of TP BNs for each cell line.

This score is calculated by comparing the clauses of one cell line with each other. We observe

that the similarity among the solutions is much higher for caspo-ts than for caspo-tsD. From

this we conclude that, studying the same number of networks, caspo-tsD can discover more

clauses representing diverse signaling behaviors.

Table 5.1 – Number of TP BNs out of 46 BNs, time to get the first TP solution, and similarity
among TP solutions per cell line.

caspo-ts caspo-tsD
Cell Line TPs Time Similarity TPs Time Similarity

MCF7 0 — — 4 6.7h 0.51
BT549 2 8.4m 0.92 14 7.9m 0.44

UACC812 20 26s 0.81 15 27s 0.45
BT20 13 20h 0.86 7+ 20h 0.32

Now, we analyze in more detail the UACC812 cell line using caspo-ts. This cell line was

the most difficult one as explained in Chapter 4, Section 4.5.4. Figure 5.5 shows the union of 10

TP BNs obtained by caspo-ts. There are four different kinds of nodes in the graph: (1) stimuli

shown in green, (2) inhibitors shown in red, (3) readouts shown in blue, and (4) unobserved

nodes shown in white. Note that blue nodes with red borders are readouts, which are also

inhibitors. There are two different kinds of edges shown in red and green color. Green edges

are used to show a positive influence (←), and red edges are used to show a negative influence

(`). We discovered 25 clauses with caspo-ts, and observed that the learned BNs only contain

Boolean functions with clauses of size one. We also noticed that the learned BNs are very

similar to each other, as we see in Table 5.1 with the similarity score of 0.81. This relates to the

fact that the ASP solver used by caspo-ts uses a backtracking algorithm to enumerate solutions

and, hence, the solutions only change in small parts.

Next, we analyze the UACC812 cell line using caspo-tsD. Figure 5.6 shows the union of

10 TP BNs obtained by caspo-tsD. Nodes, edges and colors have the same meaning as in

Figure 5.5. Unlike with caspo-ts, here we identified clauses with more than one element. They
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Figure 5.5 – caspo-ts: 10 optimal TPs BNs concatenated for cell line UACC812. All BNs are
identically optimal.

are represented by black rectangles where the nodes of incoming edges are their elements.

Additionally, we use dashed edges to represent clauses that were also discovered by caspo-ts.

In total, caspo-tsD discovered 66 clauses, 41 more than caspo-ts. It identified 23 out of the 25

clauses discovered by the caspo-ts system, and 43 additional clauses, studying the same number

of BNs. It is important to note that even though for the UACC812 cell line caspo-tsD learned

5 TP BNs less than caspo-ts, the number of clauses learned by caspo-tsD is 3 times higher. It

is interesting to see that 4 new stimuli appear in the solution set using caspo-tsD while there

is only one stimulus in the previous solution set discovered by caspo-ts. We also discover

one additional readout “JNK_pT183_pT185” using caspo-tsD as compare to caspo-ts. Since

we find much more clauses with caspo-tsD, we can get an impression of the whole solution

space by just inspecting a limited number of solutions. This analysis shows the efficacy of the

extended caspo-tsD system in a real case scenario, where it is difficult to study the complete

solution space because of time constraints.

5.3.3 Computation of root mean square error

Recall that the UACC812 cell line was the most difficult one to obtain true positive BNs

(see Section 4.5.4). We discussed previously that it was because of the enumeration scheme

used by the ASP solver. In this chapter, we have resolved this issue and obtained true positive

BNs for this cell line. In Chapter 4 and Section 4.5.7, we presented the RMSE score of BNs

of UACC812 cell line. Here we compare that result with the true positive BNs of this cell

line in Figure 5.7. For this purpose, we used the 20 false positive and 20 true positive BNs
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Figure 5.6 – caspo-tsD: 10 optimal TP BNs concatenated for cell line UACC812. The dashed
edges are used to represent clauses that were also discovered by caspo-ts. AND gates are
represented by black boxes.

of UACC812 cell line. The average RMSE score for the false positive networks is 0.0119

while the score is 0.0073 for the true positive networks. The minimum and maximum RMSE

score for the false positive networks is 0.0094 and 0.0127 respectively. The minimum and

maximum RMSE score for the true positive networks is 0.0021 and 0.0114 respectively. These

results show that the true positive networks have lower RMSE score and provide the minimum

distance of time series of BNs to the phosphoproteomic time series.

5.3.4 Improvements in computation time of a BN’s model checking

Here we analyze the computational time spent on verifying the reachability of all time

series traces using the previous and new parallel model checking implementation. We created

16 samples of the BT549 cell line by slightly modifying the data in it. We learned 231 BNs

for each sample and verified the reachability properties in case of previous and parallel model

checking process. Table 5.2 illustrates the achieved results. The verified BNs column shows

the number of BNs verified by the model checker. The TPs column shows the number of TP

BNs. The FPs column represents the number of FP BNs. The time column shows the time

spend on checking reachability on the respective sample. The difference column represents the
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Figure 5.7 – RMSE score for true and false positive networks of UACC812 cell line.

improvement in time by using parallel model checking. As expected we see huge improvement

in the computation time of FP BNs, moreover we have also observed improvements in the

computational time of TP BNs (sample 12 and 14). In case of sample 7 where the previous

model checking process only verified 22 BNs in 90 days, parallel model checking verified

all 231 BNs within 6 hours. In case of sample 4 and 13, with the previous model checking

approach, it took days to verify all 231 BNs while parallel model checking took only hours.

The previous model checking process could not finish verifying all 231 BNs for 7 out of 16

samples while parallel model checking finished verifying all BNs for all 16 samples. The total

time spent on verifying 16 samples using the previous model checking approach is more than

1016 days while the total time spent on verifying reachability using parallel model checking is

148 days. This analysis shows the efficiency of the presented algorithm, where it is extremely

time consuming (in some cases more than 3 months) to verify the BNs using the previous

implementation.

5.4 Discussion

We have presented an algorithm to enumerate diverse optimal solutions with the caspo-ts

system. The new algorithm extends the approach of [RSW16] for computing diverse optimal

solutions. The novelty of this extension is that by modifying the heuristic of the solver we

manage to enumerate solutions that are both optimal and diverse. There are other approaches

for computing diverse solutions [EEEF09, HHOW05b, Nad11b] but they do not consider opti-

mization problems.

Our key findings suggest that we retrieved a more complete set of mechanisms explaining

the experimental data and better approximate biological reality, by sampling the large solution

space of BNs. We were able to discover almost all behaviors (48 out of 49) existing in the
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Table 5.2 – Comparison of previous and parallel model checking.

BT549 Previous Model Checking Parallel Model Checking Difference
Verified BNs TPs FPs Time Verified BNs TPs FPs Time

1 231 0 231 64d 231 0 231 7.2d 56.8d
2 221 0 221 >90d 231 0 231 15.7d >74d
3 173 0 173 >90d 231 0 231 11.9d >78d
4 231 0 231 7.2d 231 0 231 17h 6.5d
5 37 0 37 >90d 231 0 231 20.4d >70d
6 231 0 231 78.5d 231 0 231 14d 64.5d
7 22 0 22 >90d 231 0 231 6h >84d
8 172 0 172 >90d 231 0 231 8.5d >82d
9 231 0 231 76.7d 231 0 231 9.5d 67.2d

10 121 0 121 44d 231 0 231 2.5d 41.5d
11 135 0 135 >90d 231 0 231 7.5d >82d
12 231 231 0 16.2d 231 231 0 4.1d 12.1d
13 231 0 231 9.3d 231 0 231 10h 8.9d
14 231 231 0 50d 231 231 0 11.8d 38.2d
15 231 0 231 40d 231 0 231 3.8d 36.2d
16 105 0 105 >90d 231 0 231 29.7d >60d

complete solution space of 68338 BNs of TCR signaling dataset by exploring only 100 BNs

using caspo-tsD. We also identified TP BNs in a case (MCF7) where caspo-ts could not find

any TP BN among 46 solutions. Our method is applicable to gene or protein expression time

series datasets measured upon different perturbations. Moreover, the proposed Algorithm (4) is

not specific to our biological application. It computes diverse subset minimal solutions in ASP,

and therefore can be applied to any problem modeled in ASP.

We have also improved the issue of the huge amount of time required for categorizing the

BN as TP or FP using model checking. An algorithm is presented to check reachability in

a parallel fashion. The substantial improvements have been shown in computation time by

demonstrating the huge time difference (868 days) between the previous and the new imple-

mentation of the model checking process.

5.5 Conclusion

In this chapter, we have presented an extended version of the caspo-ts system to enumerate

diverse solutions. We applied caspo-tsD on an artificial dataset (TCR signaling) as well as a

real case study (HPN-DREAM) to learn diverse BNs. We compared the results with the caspo-

ts system, showing a substantial improvement in solution quality. For one, we discovered more

signaling behaviors (clauses) comparing solutions enumerated with both systems. For another,
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we were able to find solutions for cell line MCF7, where caspo-ts could not find solutions

before. Furthermore, we have presented an algorithm to parallelize the model checking process.

The results show substantial improvements in computation time of the model checking process.



6
Conclusions and Future Work

In this chapter, we summarize the work and outline future perspectives.

6.1 Summary

Protein signaling networks are static views of dynamic processes where proteins go through

many biochemical modifications such as ubiquitination and phosphorylation to propagate sig-

nals that regulate cells and can act as feedback systems. Understanding the precise mechanisms

underlying protein interactions can elucidate how signaling and cell cycle progression occur

within cells in different diseases such as cancer. In this thesis, we have advanced our under-

standing in breast cancer by using the caspo-ts method to learn BNs from multiple perturbation

phosphoproteomic time series data given a Prior Knowledge Network. We have improved and

adapted caspo-ts to deal with a midscale PKN with 64 nodes and 178 edges in order to learn the

BNs of four breast cancer cell lines (BT20, BT549, MCF7, UACC812) from their time series

phosphoproteomic datasets. Importantly, the PKN did not contain any information about the

temporal changes or dynamic properties of the proteins. This information was learned from a

dataset describing the dynamics of signaling processes for those breast cancer cell lines as part

of the HPN-DREAM challenge. The initial results highlighted several characteristics of this

method when applied on HPN-DREAM dataset (a real case study):

1. high false positive rate,

2. large solution space (billions of BNs),

3. high computation time of caspo-ts-model checking component.

105
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The high false positive rate of BNs highlighted issues existing in a real dataset, i.e., missing

time points and inconsistent or incompatible measurements of proteins (see Chapter 4 Section

4.5.2). It also pointed us to the fact that a limited number of perturbations is not enough to

derive a unique model representing one specific cell line, but rather leads billions of solutions

(BNs). We also discovered that the shuffling of perturbations leads to the generation of solu-

tions in a different order. By resolving these problems, we managed to generate true positive

BNs for the case study of the HPN-DREAM challenge. Our results point to measurements

in the time series phosphoproteomic dataset that contradict the experimental setting and to

perturbations that show contradictory dynamics. This analysis highlighted the erroneous ex-

periments, so this method can be used as complementary to the existing approaches to discover

errors (see Chapter 4).

A detailed analysis of the large solution space generated by the caspo-ts method led to the

discovery of clustered solutions. The caspo-ts method uses the clingo ASP solver, which is

able to exhaustively enumerate all solutions. The clingo solver by default uses an enumeration

scheme, in which, once a solution is found, it backtracks to the first point from where the

next solution can be found. This typically leads to the situation where successive solutions

only change in a small part. As a result, caspo-ts may enter a solution space where BNs are

clustered together. We have observed that given the size of the PKN and the small number

of perturbations in the experimental data, the solution space of the caspo-ts can be very large

containing billions of BNs making it difficult to enumerate true positive BNs in reasonable time

if it gets stuck in a cluster of false positive BNs. We have improved the ASP-based caspo-ts

system to resolve the above mentioned issue. We have extended the caspo-ts system using

heuristics to enumerate diverse solutions. Our results showed that this extension proved to be

very useful to breakup cluster of solutions and to get the better impression of the solution space

(see Chapter 5).

The high computation time in case of a real case study (HPN-DREAM challenge) directed

us to analyze the model checking component of the caspo-ts system. Since the caspo-ts system

uses an over-approximation criteria, it can lead to false positive BNs. These false positive BNs

are ruled out using a model checker by verifying a reachability property. We observed that the

properties are verified in a manner, which can cost the expensive computation time spent on

verification of properties. To resolve this issue, we proposed a new parallel verification of the

properties. Our results showed that the parallel verification of properties saves us months of

computation time (see Chapter 5).
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6.2 Future perspectives

6.2.1 Simulation of Boolean models

It has been shown that the HER2 amplified breast cancer demonstrates significant increase

in BCL2 and ER expression when treated with anti HER2 therapy. The co-regulation of ER

or BCL2 with anti HER2 drug is shown to be useful for decreasing the BCL2 and ER over-

expression in HER2 positive UACC812 cell line. These molecular entities (BCL2 and HER2/3)

exist in our Boolean model of UACC812 cell line. In the near future, we plan to execute the

Boolean model of UACC812 cell line derived using caspo-tsDpresented in Chapter 4 (Figure

5.6), to study the impact of inhibiting these molecules in our Boolean models and compare the

results with literature. We believe this study will be useful for final validation of our models.

We studied some software to simulate boolean models but we faced a lot of trouble configur-

ing different parameters for the toy example. Different software produces different simulation

results. We also had problem reproducing the results published with these software. There-

fore, we plan to develop our own tool to simulate the Boolean models and embed it in the

caspo-tsDsystem .

6.2.2 Extension of diversity algorithm

For the first time, with our study, we observe that solutions are not randomly distributed

along the search tree of caspo-ts, as shown in Chapter 5. In the near future, we plan to extend

the diversity algorithm in two directions. First, we are planning to experiment with solver

parameters in order to introduce some randomness into the search. Second, we intend to extend

the algorithm to call the model-checker only on answer sets which are diverse (according to

some measure to be defined). This is possible because the time to enumerate over-approximated

solutions using the ASP solver is much lower than the time needed to check solutions using the

model-checker. We expect both enhancements to further improve the diversity of the discovered

solutions.

6.2.3 Extension of model checking algorithm

In the current implementation, we parallelize the properties on the perturbation level. It can

be improved further by parallelizing the traces within a perturbation as well. This is possible

because we can prove in a parallel fashion that one time point is reachable from the preceding

time point, too. Typically, it can be quickly determined if a property does not hold but it might

take a long time to verify that property holds. A BN is a false positive if one of the reachability

property does not hold, and a lot of computation time might be spent before detecting a false

positive BN. However by parallelizing verification at time point level, we can stop the model
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checker from verifying reachability of other time points and other perturbations as soon as one

transition cannot be verified. We believe that this improvement will help in gaining computation

time particularly in case of many time points.

6.2.4 Experimental design

Currently, our research is in the context of identifying BNs representing a part of a signaling

pathway from real time series of phosphoproteomics data using caspo time series method which

is based on answer set programming and model checking. Phosphoproteomics data contain a

lot of noise, and also our approach is exhaustive, so it results in learning a family of Boolean

Networks. This highlights the need for designing efficient experimental strategy. To deal with

this issue, we proposed to: (1) identify a way to characterize different dynamical behaviors

among a family of Boolean networks and (2) develop an algorithm based on the maximum

entropy measure to select the efficient experimental perturbation to make this family of dynamic

behaviors less variable.
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Scientific Activities

7.1 Publications

Peer reviewed journal

Misbah Razzaq, Loïc Paulevé, Anne Siegel, Julio Saez-Rodriguez, Jérémie Bourdon, and

Carito Guziolowski: Computational Discovery of Dynamic Cell Line Specific Boolean Net-

works from Multiplex Time-Course Data, Plos Computational Biology, Published 2018.

Book chapter

Misbah Razzaq, Lokmane Chebouba, Pierre Le Jeune, Hanen Mhamdi, Carito Guziolowski,

and Jérémie Bourdon: Logic and Linear programs to understand cancer response, Automated

Reasoning for Systems Biology and Medicine (ARSBM), Accepted 2018.

Conference paper

Misbah Razzaq, Roland Kaminski, Javier Romero, Torsten Schaub, Jérémie Bourdon, and

Carito Guziolowski: Computing Diverse Boolean Networks from Phosphoproteomic Time

Series Data, 16th International Conference on Computational Methods in System Biology

(CMSB), Published 2018.
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7.2 Academic visits

1. Short Research Stay, University of Potsdam, Germany, Oct-Dec 2017.

2. Short Research Visit, University of Manchester, UK, 11-13 July 2017.

3. Summer School, Ile de Porquerolles, France, 6-10 June 2016.

7.3 Scientific Communications

7.3.1 Presentations

1. Presentation, Seminar, LRI: Laboratoire de Recherche en Informatique, l’Université Paris-

Sud, France, 8 Nov 2018.

2. Presentation, 16th International Conference on Computational Methods in System Biol-

ogy (CMSB), Brno, Czech Republic, 12-14 Sept 2018.

3. Presentation, ASSTABIO: Apprentissage de modèles Statistiques et Stochastiques A par-

tir de données BIOlogiques, Rennes, France, 22-23 March 2018.

4. Presentaion, 11èmes journées du Cancéropôle Grand Ouest, Vannes, France, 29-30 June

2017.

5. Flash Presentation, La Journée de doctorants (JDOC), l’Ecole doctorale STIM, Nantes,

France, May 4 2017 (Best Presentation Award).

7.3.2 Posters

1. Poster, ISMB/ECCB 2017, Prague, Czech Republic July 21 - July 25 2017.

2. Poster, La Journée de doctorants (JDOC), l’Ecole doctorale STIM, Nantes, France, 4

May 2017.

3. Poster, Formal Modeling of Biological Regulatory Networks, Summer School, Ile de

Porquerolles, France, June 2016.

7.4 Teaching

Teaching Assistant, Oct 2016 - Sept 2018, Computer Science, Ecole Centrale de Nantes,

France.

1. C++, 102 Hours, Oct 2016 - March 2018.

2. Databases, 8 Hours, Jan 2017.

3. Matlab, 12 Hours, Feb-Jun 2018.
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7.5 Supervision

7.5.1 Simulator for Boolean models

I have supervised three students to develop a tool in python which can simulate and visualize

boolean models. We have managed to develop a first version of the tool. This tool takes a

Boolean model as input, simulates it under given experimental settings and visualize the results.

We have used the Epidermal Growth Factor (EGF) and Tumor Necrosis Factor Alpha (TNFα)

as benchmark [MTH+12]. Our results suggest that the initial condition affect the evolution of

the dynamics of the Boolean model.

7.6 Collaborative Research

7.6.1 Interaction graph for dream 11 challenge

I also participated in the Dream 11 challenge focusing on discovering molecular signatures

to virus exposures [Sie16]. More precisely, I worked on generating PKNs for the Dream 11

challenge for merging knowledge driven methods with data driven methods. An influence

graph is extracted from different literature databases based on the selection of core variables. I

inferred six influence graphs from literature curated databases i.e BioCarta, Go Ontology, Kegg,

NCI, Reactome, and Wiki Pathways using the enrichnet web tool. In order to cover all core

variables existing in dataset, I merged influence graphs to generate a new enriched influence

graph. According to the results obtained, there is still a lot of room for improvement in the data

driven algorithm to improve overall performance.
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tification of potential drug targets in cancer signaling pathways using stochastic

logical models. Scientific reports, 6, 2016. 89

[ZDX+12] Chi Zhang, Xuening Duan, Ling Xu, Jingming Ye, Jianxin Zhao, and Yinhua

Liu. Erythropoietin receptor expression and its relationship with trastuzumab

response and resistance in her2-positive breast cancer cells. Breast cancer re-

search and treatment, 136(3):739–748, 2012. 25

[ZMPQ+02] Andreas Zanzoni, Luisa Montecchi-Palazzi, Michele Quondam, Gabriele

Ausiello, Manuela Helmer-Citterich, and Gianni Cesareni. Mint: a molecular

interaction database. FEBS letters, 513(1):135–140, 2002. 28

[ZT13] Ying Zhu and Miroslaw Truszczynski. On optimal solutions of answer set op-

timization problems. In International Conference on Logic Programming and

Nonmonotonic Reasoning, pages 556–568. Springer, 2013. 55, 56



 

 

Titre :  Intégration de données de séries temporelles phosphoprotéomiques dans des réseaux de 
connaissances antérieurs  

Mots clés :   réseaux de signalisation, programmation logique, vérification de modèles, lignées 
cellulaires 

Résumé: Les voies de signalisation canoniques 
traditionnelles aident à comprendre l'ensemble 
des processus de signalisation à l'intérieur de la 
cellule. Les données phosphoprotéomiques à 
grande échelle donnent un aperçu des 
altérations entre différentes protéines dans 
différents contextes expérimentaux. Notre 
objectif est de combiner les réseaux de 
signalisation traditionnels avec des données de 
séries temporelles phosphoprotéomiques 
complexes afin de démêler les réseaux de 
signalisation spécifiques aux cellules. Côté 
application, nous appliquons et améliorons une 
méthode de séries temporelles caspo conçue 
pour intégrer des données 
phosphoprotéomiques de séries temporelles 
dans des réseaux de signalisation de protéines. 
Nous utilisons une étude de cas réel à grande 
échelle tirée du défi HPN-DREAM Breast  
Cancer. 

Nous déduisons une famille de modèles 
booléens à partir de données de séries 
temporelles de perturbations multiples de 
quatre lignées cellulaires de cancer du sein, 
compte tenu d'un réseau de signalisation 
protéique antérieur.  Les résultats obtenus sont 
comparables aux équipes les plus 
performantes du challenge HPN-DREAM. Nous 
avons découvert que les modèles similaires 
sont regroupés dans l'espace de solutions. Du 
côté informatique, nous avons amélioré la 
méthode pour découvrir diverses solutions et 
améliorer le temps de calcul. 

 

Title :  Integrating Phosphoproteomic Time Series Data into Prior Knowledge Networks  

Keywords : signaling networks, logic programming, model checking, cell lines 

Abstract: Traditional canonical signaling 
pathways help to understand overall signaling 
processes inside the cell. Large scale 
phosphoproteomic data provide insight into 
alterations among different proteins under 
different experimental settings. Our goal is to 
combine the traditional signaling networks with 
complex phosphoproteomic time-series data in 
order to unravel cell specific signaling networks. 
On the application side, we apply and improve a 
caspo time series method conceived to integrate 
time series phosphoproteomic data into protein 
signaling networks. We use a large-scale real 
case study from the HPN-DREAM Breast 
Cancer challenge. 

We infer a family of Boolean models from 
multiple perturbation time series data of four 
breast cancer cell lines given a prior protein 
signaling network. The obtained results are 
comparable to the top performing teams of the 
HPN-DREAM challenge. We also discovered 
that the similar models are clustered together 
in the solutions space. On the computational 
side, we improved the method to discover 
diverse solutions and improve the 
computational time.  

 


