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Introduction
Low-energy nuclear physics is undergoing a major renewal. On Earth, successive generations

of radioactive beam facilities are moving their focus towards short-lived, exotic isotopes and
open up new regions of the nuclear chart to experimental enquiry. In outer space, supernovae
explosions and compact stars constitute unique laboratories for testing nuclear matter in
extreme conditions. Altogether, this quest towards the limits of existence of nuclear systems is
taking us deeper into the fundamental questions that are driving this area of physics, namely

• how basic interactions between protons and neutrons emerge from the gauge theory of
interacting quarks and gluons, i.e. quantum chromodynamics (QCD) ?

• how nucleons bind inside a nucleus and what are the limits of existence of the latter with
respect to the strong force in terms of its mass, neutron-proton imbalance and angular
momentum ?

• how the complex phenomenology of nuclei emerges from elementary inter-nucleon inter-
actions?

Addressing these questions poses major challenges both experimentally and theoretically. In
spite of several decades of efforts, low-energy nuclear physics remains an open and difficult
problem. In particular, an accurate and systematic description of low-energy nuclear systems
is still out of reach.
Over the last decades, many theoretical approaches have been developed to address the

nuclear A-body problem, with their originality and heterogeneity reflecting the complexity of
nuclear systems. Traditionally, they are separated into two categories: (i) ab initio methods
that rely on the idea that properties of the system as a whole can be described in terms
of structureless nucleons and interactions between them and (ii) effective approaches, which
formulate the problem in terms of interactions between more effective degrees of freedoms.
While the first category of methods constitutes the "holy grail" of low-energy nuclear theory,
the second category currently provides the way to access the large majority of nuclei.

In recent years, the incoming flow of data on short-lived nuclei as well as the external demand
for reliable nuclear physics inputs have challenged existing theoretical approaches. Considerable
focus has moved towards aspects like internal consistency, predictive power and a thorough
estimation of theoretical uncertainties. On the one hand effective approaches, often adjusted to
reproduce a particular zone of the nuclide chart or tuned in a biased way to stable nuclei, have
encountered problems in delivering consistent predictions away from known data. On the other
hand, ab initio approaches, which aim at solving the A-body Schrödinger equation in terms of
elementary inter-nucleon forces, have undergone major developments and are emerging as a
method of choice for light and medium-mass nuclei.
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Introduction

Advances in ab initio techniques occurred via two main steps over the past twenty years. A
first breakthrough took place in the 90s, when first supercomputers enabled the application of
Monte-Carlo and configuration-interaction techniques to the nuclear many-body problem [1

.

, 2

.

].
Such methods aim to solve the many-body problem “exactly”, i.e. by processing all possible
multi-particle configurations (directly or through a Monte-Carlo sampling) in a large enough
model space. The resulting calculations successfully reproduce structure as well as reaction
properties of light nuclei with high accuracy. Recent examples are the unified description of
the structure of 6Li and deuterium-4He dynamics [3

.

] or the electromagnetic and neutral-weak
response functions of 4He and 12C [4

.

]. The cost of such simulations however scales at least
exponentially, thus dramatically with the number of particles, which limits these techniques to
nuclei with a few (of the order of ten) nucleons, even with modern computing facilities.
A second breakthrough took place over the last ten years and combined the use of chiral

interactions and similarity renormalization group (SRG) methods1

.

[5

.

] with the introduction
of controlled approximations for the Schrödinger equation. Here, by "controlled" one means
that the uncertainty brought by such approximations is a posteriori bounded from above,
usually via convergence tests. Such approximations rely on a truncated expansion of the
solution to the A-body problem, typically expressible via a series of perturbation diagrams
that are appropriately resummed. Compared to the "exact" many-body techniques applied to
light nuclei, the use of such methods allowed bringing down the scaling from exponential to
polynomial, while maintaining many-body uncertainties at the few per cent level. As a result,
since a few years, ab initio calculations can access the region of medium-mass isotopes (i.e. up
to few tens of nucleons).
In practice, traditional many-body calculations rely on the given of a nuclear Hamiltonian

H and on the search for its exact eigenstates in all A-body sectors of interest, i.e. the goal is
to solve the Schrödinger equation

H
∣∣∣ΨA

m

〉
= EA

m

∣∣∣ΨA
m

〉
(1)

where m indexes the set of solution, to the best accuracy possible .
In this context, the Hamiltonian can be modeled in various ways. The current paradigm

consists of building H within the framework of chiral effective field theory (χEFT) [6

.

, 7

.

, 8

.

]
such that it takes the form of a series

Hχ ≡ HLO
χ +HSLO

χ = HLO
χ +

∞∑
p=1

HNpLO
χ (2)

where the leading-order (LO) and the sub-leading orders (SLOs) are organized according to a
set of power-counting (PC) rules. Historically first to have been proposed, Weinberg’s power
counting [7

.

, 8

.

] happens to fit with traditional many-body calculations, i.e. independently of the
order at which SLOs are truncated, Eq. (1

.

) is meant to be solved exactly to access observables
such as EA

m. However, Weinberg’s PC has been recently disqualified on the basis that the
EFT must be (order-by-order) renormalizable and alternative PCs have been proposed [9

.

]. In
addition to modifying the order at which certain contributions enter the Hamiltonian, new PCs

1SRG methods are based on a unitary transformation (hence leaving A-body observables untouched) aiming
at decoupling low- and high-momentum components in the interaction, thus making the solution of the A-body
problem "more perturbative".

ii



stipulate that, while LO is to be solved exactly according to traditional many-body calculations,
SLOs must be computed in perturbation relatively to the LO solution. It happens that the
same scheme underlines the PC at play in pionless effective field theory (/πEFT) that was
indeed shown to satisfy renormalizability at LO up to four-body systems [10

.

].
In view of the above, the goal of the present thesis is to investigate the renormalization

invariance of many-body observables computed within the framework of /πEFT in A-body
sectors with A � 10. Hopefully the lessons learnt can be extended to χEFT. The program
obviously departs from traditional many-body calculations given that SLOs must be solved in
perturbation relative to the LO solution, i.e. in the spirit of the distorded wave approximation
(DWA). As mentioned above, this scheme has already been shown to work successfully up
to four-body systems on the basis of a LO Hamiltonian containing contact 2- and 3-body
interactions. A first important issue, however, relates to the fact that, while HLO

/π can indeed
be solved exactly in few-body systems, it is intrinsically impossible, i.e. numerically intractable
for many decades to come, to do so when computing many-body observables for A � 10.
Consequently, one must design an additional expansion and truncation when proceeding to the
first step of the program that consists of solving

HLO
/π

∣∣∣ΨA
m

〉(LO)
= EA(LO)

m

∣∣∣ΨA
m

〉(LO)
. (3)

Typical truncations applicable to A-body systems with A� 10 are nowadays implemented
on the basis of non-perturbative self-consistent Green’s function (SCGF) [11

.

, 12

.

], coupled
cluster (CC) [13

.

, 14

.

] and in-medium similarity renormalization group [15

.

, 16

.

] methods or
on the basis of many-body perturbation theory (MBPT) [17

.

, 18

.

]. In this thesis, SCGF and
MBPT constitute the working tools of interest. The main goal is to investigate the implications
of having to solve Eq. (3

.

) only approximately on the renormalization invariance of A-body
observables at LO. This study only constitutes a first step given that SLO contributions must
eventually be investigated as well. This will, however, only be relevant once the LO has been
elucidated given that SLOs must be handled relatively to it.
The manuscript is organized as follows. Chap. 1

.

sets up notations, defines key quantities
and introduces the basics of MBPT that are used throughout the rest of the thesis. Chap. 2

.

introduces /πEFT and discusses the need to renormalize ultraviolet divergences. In Chap. 3

.

,
the equation of state (EoS) of infinite neutron matter is computed via SCGF theory on the
basis of the /πEFT LO potential, previously renormalized by solving the Schrödinger equation
exactly in the two-body sector in agreement with PC rules. Attempting to fulfill the PC rule
in infinite neutron matter as well, "as exact as possible" SCGF calculations are performed by
using the most advanced truncation scheme nowadays available denoted as the "self-consistent
ladder approximation" and that happens to be exact in the two-body sector. In doing so, the
(lack of) renormalizability of the results is scrutinized in details, including a thorough check of
the numerical approximations at play in the calculations. The question of renormalizability
is further investigated by degrading the many-body truncation to low-order in MBPT and
complemented by detailed analytical derivations. Based on these results, the renormalizable
character of (sets of) MBPT diagrams is studied formally in Chap. 4

.

, paying particular
attention to the requirement that such a renormalizability is independent of the A-body sector
under consideration. This opens the path to formulate the renormalization of a wide range of
many-body truncation schemes in the future.
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Chapter 1.

Quantum many-body observables

In this introductory chapter the notations are set and key many-body quantities used
throughout the manuscript are introduced. The general aspects of MBPT, whose associated
Feynman diagrammatics is used extensively throughout the document, are also detailed.
Contrarily, SCGF theory is left to be introduced later on in Chap. 3

.

where its connection to
MBPT is briefly discussed as well.

1.1. A-body problem

1.1.1. Generalities

We focus on quantum systems that can be described via a finite number of interacting
degrees of freedom characterized by a basis B1 ≡ {|µ〉} of the one-body Hilbert space denoted
as H1. The one-dimensional space spanned by the non-degenerate vacuum state |0〉 is denoted
as H0.
Elementary degrees of freedom being defined, the description of systems made out of A of

them is obtained via states of the A-body Hilbert space

HA =
A⊗
i=1

H1(i) (1.1)

constituting the so-called A-body sector. Eventually, general many-body states are elements of
the Fock space defined as

F ≡
+∞⊕
A=0

HA . (1.2)

The present focus is on many-body systems of identical fermions. Consequently, the Hilbert
space of physically allowed states is reduced to A-body states that are antisymmetric under
the exchange of any pair of particles1

.

.

1Many-body boson systems can be studied in a similar fashion with the difference that many-body states
are symmetric under the exchange of any pair of particles.
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Chapter 1. Quantum many-body observables

1.1.2. Hamiltonian operator
The second quantization formalism introduces creation and annihilation operators (a†µ, aµ)

associated with the one-body basis B1via

∀µ, a†µ |0〉 = |µ〉 , (1.3a)
aµ |0〉 = 0 , (1.3b)

along with the anticommutation rules

{a†µ, aν} = δµν , (1.4a)
{a†µ, a†ν} = 0 , (1.4b)
{aµ, aν} = 0 , (1.4c)

with { . , . } being the anticommutator bracket.
Single-particle creation and annihilation operators provide a basis to represent operators O

acting on F such that

O ≡
+∞∑
p,q=0

1
p!q!

∑
µ1...µp
ν1...νq

opqµ1...µpν1...νq a
†
µ1 . . . a

†
µpaνq . . . aν1 , (1.5)

where opqµ1...µpν1...νq are fully antisymmetric complex numbers i.e.

∀ P, opqµ1...µpν1...νq = (−1)σ(P )opqP (µ1...µp|ν1...νq) , (1.6)

where σ (P ) is the signature of the permutation P . The notation P (. . . | . . . ) denotes a
separation into the indices of p creation operators and of q annihilation operators such that
the permutations are only considered between members of the same group. Two subcases are
of particular interest. The operator O is referred to as

1. a particle-number conserving k-body operator whenever it writes as

O = 1
(k!)2

∑
µ1...µk
ν1...νk

okk
µ1...µkν1...νk

a†µ1 . . . a
†
µk
aνk . . . aν1 , (1.7)

2. a particle-number changing operator whenever it writes as

O = 1
p!q!

∑
µ1...µp
ν1...νq

opqµ1...µpν1...νq a
†
µ1 . . . a

†
µpaνq . . . aν1 , (1.8)

where k ≡ p− q denotes now the number of particles the operator adds2

.

to the A-body
state it acts on.

2The integer k can be negative, in which case the operator removes −k particles to the states it acts on.
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1.1. A-body problem

The nuclear Hamiltonian H is particle-number conserving and can, thus, be decomposed as
a sum of k-body Hermitian operators, i.e.

H = T + V , (1.9a)

T ≡ 1
(1!)2

∑
αβ

tαβ a
†
αaβ , (1.9b)

V ≡ 1
(2!)2

∑
αβγδ

vαβγδ a
†
αa
†
βaδaγ + . . . , (1.9c)

with T the kinetic energy, V the interaction potential and where antisymmetrized two-body
matrix elements are implied. In order to avoid un-necessary complications we restrict ourselves
to the case of two-body interactions3

.

, i.e. higher-body operators represented by dots in (1.9c

.

)
are omitted.

1.1.3. Schrödinger equation
Traditional many-body calculations rely on the given of a nuclear Hamiltonian H and on

the search for its exact eigenstates in all A-body sectors of interest, i.e. the goal is to solve the
Schrödinger equation

H
∣∣∣ΨA

m

〉
= EA

m

∣∣∣ΨA
m

〉
, (1.10a)

A
∣∣∣ΨA

m

〉
= A

∣∣∣ΨA
m

〉
, (1.10b)

where A denotes the particle-number operator. The ground-state of the A-body system relates
to the minimal energy EA

0 ≡ minm
{
EA
m

}
for the number of particles A. The ground-state

energy EA
0 is presently assumed to be non-degenerate.

1.1.4. Observables
One typically wishes to compute the expectation value of a particle-number-conserving

k-body operator O in a given eigenstate of H

OA
m ≡

〈ΨA
m|O|ΨA

m〉
〈ΨA

m|ΨA
m〉

. (1.11)

In particular, the ground-state expectation value is usefully expressed in terms of the ground-
state k-body density matrix

ρ
(A,k)
µ1...µk
ν1...νk

≡
〈ΨA

0 |a†ν1 . . . a
†
νk
aµk . . . aµ1|ΨA

0 〉
〈ΨA

0 |ΨA
0 〉

, (1.12)

according to
OA

0 = 1
(k!)2

∑
ν1...νk
µ1...µk

okk
µ1...µkν1...νk

ρ
(A,k)
ν1...νk
µ1...µk

. (1.13)

3For nuclear systems such as nuclei and nuclear matter, one should eventually consider at least three-nucleon
interactions [19

.

, 20

.

, 21

.

].
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Chapter 1. Quantum many-body observables

More generally, one wishes to compute matrix elements of a particle-number-changing operator
O between eigenstates of H

OAA′
mn ≡

〈ΨA
m|O|ΨA′

n 〉√
〈ΨA

m|ΨA
m〉
√
〈ΨA′

n |ΨA′
n 〉

. (1.14)

1.2. Green’s functions
The many-body problem is presently reformulated in terms of k-body Green’s functions that

are eventually related to (a subset of) the many-body observables introduced above.

1.2.1. Definitions
Heisenberg picture

The time-evolution operator associated to H is defined through∣∣∣ΨA(t)
〉
≡ U(t, t′)

∣∣∣ΨA(t′)
〉
, (1.15)

where
∣∣∣ΨA(t)

〉
is in the Schrödinger picture, i.e. it satisfies time-dependent Schrödinger’s

equation

i
∂

∂t

∣∣∣ΨA(t)
〉

= H
∣∣∣ΨA(t)

〉
. (1.16)

In the case of a time-independent Hamiltonian, U depends only on t− t′ as

U(t, t′) = e−iH(t−t′) ≡ U(t− t′) . (1.17)

Given an operator O in the Schrödinger picture, its representation in the Heisenberg picture
is defined by

Ō(t) ≡ eiHtO e−iHt . (1.18)

In particular, creation and annihilation operators in the Heisenberg picture are given by

āµ(t) ≡ eiHtaµ e
−iHt , (1.19a)

ā†µ(t) ≡ eiHta†µ e
−iHt . (1.19b)

k-body Green’s function

The k-body Green’s function associated with the A-body ground-state is defined as

ikG
(A,k)
µ1...µk
ν1...νk

(tµ1 , . . . , tµk , tν1 , . . . , tνk) ≡
〈ΨA

0 |T
[
āµk(tµk) . . . āµ1(tµ1)ā†ν1(tν1) . . . ā†νk(tνk)

]
|ΨA

0 〉
〈ΨA

0 |ΨA
0 〉

,

(1.20)
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1.2. Green’s functions

ν tν

µ tµ

G(A,1)
µν (tµ, tν)

Figure 1.1. Diagrammatic representation of G(A,1)
µν (tµ, tν).

where T denotes the time-ordering operator4

.

. A case of particular interest is given by the
one-body Green’s function

iG(A,1)
µν (tµ, tν) ≡

〈ΨA
0 |T

[
āµ(tµ)ā†ν(tν)

]
|ΨA

0 〉
〈ΨA

0 |ΨA
0 〉

, (1.21)

whose diagrammatic representation is given in Fig. 1.1

.

.
It is convenient to work with the energy representation of Green’s functions obtained by

Fourier transforming the time representation introduced above. As H is time-independent,
Green’s functions are time-translationally invariant. This translates into the conservation
of energy in the energy representation. Formally, the Fourier transformed k-body Green’s
function reads as

2πδ(ωµ1 + · · ·+ ωµk − ων1 − · · · − ωνk)G
(A,k)
µ1...µk
ν1...νk

(ωµ1 , . . . , ωµk , ων1 , . . . , ωνk)

≡
∫

dtµ1 . . . dtµkdtν1 . . . dtνkei(ωµ1 tµ1+···+ωµk tµk )e−i(ων1 tν1+···+ωνk tνk )G
(A,k)
µ1...µk
ν1...νk

(tµ1 , . . . , tµk , tν1 , . . . , tνk) ,
(1.22)

which simplifies for the one-body Green’s function as5

.

2πδ(ωµ − ων)G(A,1)
µν (ωµ, ων) ≡

∫
dtµdtνeiωµtµe−iωνtνG(A,1)

µν (tµ, tν) . (1.23)

Two-time k-body Green’s function

We further introduce a specific two-time reduction of the ground-state k-body Green’s
function by setting the k annihilation (creation) operators at the same time tµ (tν)

ikG
(A,k)
µ1...µk
ν1...νk

(tµ, tν) ≡ ikG
(A,k)
µ1...µk
ν1...νk

(tµ, . . . , tµ, tν , . . . , tν) (1.24)

=
〈ΨA

0 |T
[
āµk(tµ) . . . āµ1(tµ)ā†ν1(tν) . . . ā†νk(tν)

]
|ΨA

0 〉
〈ΨA

0 |ΨA
0 〉

4The time-ordering operator orders a product of operators in decreasing order according to their time labels
(i.e., larger times to the left) and multiplies the result with the signature of the permutation used to achieve
the corresponding reordering.

5For the one-body Green’s function, it is convenient to use the shorthand notation G(A,1)
µν (ω) ≡ G(A,1)

µν (ω, ω).
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Chapter 1. Quantum many-body observables

= θ(tµ − tν)
〈ΨA

0 |āµk(tµ) . . . āµ1(tµ)ā†ν1(tν) . . . ā†νk(tν)|Ψ
A
0 〉

〈ΨA
0 |ΨA

0 〉

+ (−1)kθ(tν − tµ)
〈ΨA

0 |ā†ν1(tν) . . . ā†νk(tν)āµk(tµ) . . . āµ1(tµ)|ΨA
0 〉

〈ΨA
0 |ΨA

0 〉
≡ ikG

(A,k)+
µ1...µk
ν1...νk

(tµ, tν) + ikG
(A,k)−
µ1...µk
ν1...νk

(tµ, tν) , (1.25)

where G(A,k)+ and G(A,k)− define retarded and advanced two-time k-body Green’s functions,
respectively.

k-body density matrix

The ground-state k-body density matrix introduced in Eq. (1.12

.

) is recovered from the
(two-time) k-body Green’s function in the equal-time limit6

.

ρ
(A,k)
µ1...µk
ν1...νk

= (−i)kG(A,k)
µ1...µk
ν1...νk

(t, . . . , t, t+, . . . , t+)

≡ (−i)kG(A,k)
µ1...µk
ν1...νk

(t, t+) , (1.26)

where the limit is taken according to t+ ≡ limε→0(t+ ε) with ε > 0.

1.2.2. Observables
A-body ground-state observables

According to Eqs. (1.13

.

) and (1.26

.

), the ground-state expectation value of any k-body
operator O can be accessed from the knowledge of equal-time k-body Green’s function via

OA
0 = (−i)k

(k!)2
∑
ν1...νk
µ1...µk

okk
µ1...µkν1...νk

G
(A,k)
µ1...µk
ν1...νk

(t, t+) . (1.27)

In particular the ground-state energy associated with the Hamiltonian introduced in Eq. (1.9

.

)
is obtained from the equal-time 1- and 2-body Green’s functions according to

EA
0 = − i

(1!)2
∑
µν

tµν G
(A,1)
νµ (t, t+)− 1

(2!)2
∑
αβγδ

vαβγδ G
(A,2)
γδ
αβ

(t, t+) . (1.28)

Eigenspectrum of (A± k)-body systems

Departing from the equal-time limit, the two-time A-body ground-state k-body Green’s
function introduced in Eq. (1.24

.

) provides further access to the complete spectroscopy of (A±k)-
body systems via its pole structure over the complex plane in the energy representation7

.

.
6Given the time-independence of H, k-body Green’s functions are independent of a global shift in time

such that G(A,k)
µ1...µk
ν1...νk

(t, . . . , t, t+, . . . , t+) = G
(A,k)
µ1...µk
ν1...νk

(0, . . . , 0, 0+, . . . , 0+).
7Other two-time reductions of the A-body ground-state k-body Green’s function can provide access to other

observables introduced in Sec. 1.1.4

.

, e.g. excitation energies in the A-body sector. Because these observables
are not explicitly discussed later on in the present document and because introducing them would lead to
unnecessary lengthy developments, we do not elaborate on them here.
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1.2. Green’s functions

This is a powerful feature of Green’s functions that can be recognized via the introduction of
their Lehmann representations. Making the time dependence of the two-time k-body Green’s
function fully explicit

ikG
(A,k)
µ1...µk
ν1...νk

(tµ, tν) = θ(tµ − tν)eiE
A
0 (tµ−tν) 〈ΨA

0 |aµk . . . aµ1e
−iH(tµ−tν)a†ν1 . . . a

†
νk
|ΨA

0 〉
〈ΨA

0 |ΨA
0 〉

+ (−1)kθ(tν − tµ)eiEA
0 (tν−tµ) 〈ΨA

0 |a†ν1 . . . a
†
νk
e−iH(tν−tµ)aµk . . . aµ1|ΨA

0 〉
〈ΨA

0 |ΨA
0 〉

,

(1.29)

and introducing a completeness relation in HA+k (HA−k) in the retarded (advanced) part, one
obtains

ikG
(A,k)
µ1...µk
ν1...νk

(tµ, tν) = θ(tµ − tν)
∑

m∈HA+k

ei(E
A
0 −E

A+k
m )(tµ−tν) U (A,k)m

µ1...µk
U (A,k)m∗
ν1...νk

+ (−1)kθ(tν − tµ)
∑

m∈HA−k

ei(E
A
0 −E

A−k
m )(tν−tµ) V (A,k)m∗

ν1...νk
V (A,k)m
µ1...µk

, (1.30)

where k-nucleon addition and removal spectral amplitudes are respectively defined as

U (A,k)m
µ1...µk

≡ 〈ΨA
0 |aµk . . . aµ1|ΨA+k

m 〉√
〈ΨA

0 |ΨA
0 〉〈ΨA+k

m |ΨA+k
m 〉

, (1.31a)

V (A,k)m
ν1...νk

≡
〈ΨA

0 |a†ν1 . . . a
†
νk
|ΨA−k

m 〉√
〈ΨA

0 |ΨA
0 〉〈ΨA−k

m |ΨA−k
m 〉

. (1.31b)

Eventually, Fourier transforming Eq. (1.30

.

) with respect to tµ − tν leads to the so-called
Lehmann representation of the two-time k-body Green’s function

ikG
(A,k)
µ1...µk
ν1...νk

(ω) = i

 ∑
m∈HA+k

U (A,k)m
µ1...µk

U (A,k)m∗
ν1...νk

ω − (EA+k
m − EA

0 ) + iη
− (−1)k

∑
m∈HA−k

V (A,k)m∗
ν1...νk

V (A,k)m
µ1...µk

ω − (EA
0 − EA−k

m )− iη

 .

(1.32)

As Eq. (1.32

.

) demonstrates, the exact A-body ground-state two-time reduced k-body Green’s
function G(A,k)(ω) possesses single poles associated to k-nucleon addition/removal energies
to/from the ground state of the A-body system

E+k
m ≡ EA+k

m − EA
0 , (1.33a)

E−km ≡ EA
0 − EA−k

m . (1.33b)

The poles associated to EA+k
m (EA−k

m ) are shifted infinitesimally below (above) the real axis.
In the case of a non-degenerate A-body ground state, the combined E±km spectrum displays a
gap E+k

0 − E−k0 between the lowest k-nucleon additional energy and the highest k-nucleons
removed energy.
In state-of-the-art many-body (i.e. A� 10) calculations, this feature is typically exploited

from the computation of the one-body Green’s function to access the spectroscopy of (A± 1)-
body systems [22

.

]. In few-body systems, and as discussed in Chap. 2

.

, this feature is typically
exploited by computing the vacuum (i.e. A = 0) two-time k-body (k = 2, 3, 4) Green’s function
to access eigenenergies of the k-body system relative to the particle vacuum.
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Chapter 1. Quantum many-body observables

1.2.3. Spectral functions
From the Lehmann representation of two-time k-body Green’s functions and the identity

1
ω ± iη

= P 1
ω
∓ iπδ(ω) , (1.34)

the k-particle spectral function is given by
S

(A,k)+
µ1...µk
ν1...νk

(ω) ≡ −2 Im ik−1G
(A,k)
µ1...µk
ν1...νk

(ω) (1.35a)

=
∑

m∈HA+k

U (A,k)m
µ1...µk

U (A,k)m∗
ν1...νk

(2π)δ(ω − E+k
m ) , (1.35b)

for ω ≥ E+k
0 and by zero otherwise. Similarly, the k-hole spectral function is given by

S
(A,k)−
µ1...µk
ν1...νk

(ω) ≡ +2 Im ik−1G
(A,k)
µ1...µk
ν1...νk

(ω) (1.35c)

=
∑

m∈HA−k

V (A,k)m∗
ν1...νk

V (A,k)m
µ1...µk

(2π)δ(ω − E−km ) , (1.35d)

for ω ≤ E−k0 and by zero otherwise. The diagonal part of the full k-body spectral function

S
(A,k)
µ1...µk
ν1...νk

(ω) ≡ S
(A,k)+
µ1...µk
ν1...νk

(ω)− (−1)kS(A,k)−
µ1...µk
ν1...νk

(ω) (1.36)

provides the probability density to remove or add k particles with quantum numbers µ1 . . . µk
from the A-body ground state while leaving the system at the energy ω. The k-body spectral
function verifies the sum rule ∫ +∞

−∞

dω
2π S

(A,k)
µ1...µk
ν1...νk

(ω) = 1 . (1.37)

Eventually, the two-time k-body Green’s function can be re-expressed back in terms of the
k-particle and k-hole spectral functions according to

ikG
(A,k)
µ1...µk
ν1...νk

(ω) = i

∫ dω ′
2π

S
(A,k)+
µ1...µk
ν1...νk

(ω ′)

ω − ω ′ + iη
− (−1)k

∫ dω ′
2π

S
(A,k)−
µ1...µk
ν1...νk

(ω ′)

ω − ω ′ − iη


= ikG

(A,k)+
µ1...µk
ν1...νk

(ω) + ikG
(A,k)−
µ1...µk
ν1...νk

(ω) , (1.38)

and the retarded and advanced two-time k-body Green’s functions in terms of the k-body
spectral function according to

ikG
(A,k)+
µ1...µk
ν1...νk

(ω) = +i
∫ dω ′

2π

S
(A,k)
µ1...µk
ν1...νk

(ω ′)

ω − ω ′ + iη
, (1.39a)

ikG
(A,k)−
µ1...µk
ν1...νk

(ω) = −(−1)ki
∫ dω ′

2π

S
(A,k)
µ1...µk
ν1...νk

(ω ′)

ω − ω ′ − iη
. (1.39b)

Interestingly, for a Hamiltonian containing 1- and 2-body operators, as defined in Eq. (1.9

.

),
the ground-state energy in the A-body sector can be expressed in terms of the sole one-body
Green’s function (via its associated one-hole spectral function) by virtue of the Galitskii-Migdal-
Koltun (GMK) sum rule [23

.

, 24

.

, 25

.

]

EA
0 = 1

2
∑
µν

∫ +∞

−∞

dω
2π [tµν + ω δµν ]S(A,1)−

µν (ω) . (1.40)
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1.3. Perturbation theory

1.3. Perturbation theory
This section introduces the computation of Green’s functions in perturbation theory.

1.3.1. Hamiltonian partitioning
The general strategy of (methods built on) MBPT relies on partitioning the Hamiltonian

according to
H ≡ H0 +H1 (1.41a)

such that Eq. (1.10

.

) can be solved exactly for H0. Corrections due to H1 are then added in
perturbation. The decomposition (1.41a

.

) offers a great flexibility. We presently limit ourself to
decompositions of the Hamiltonian where H0 is a particle-number conserving diagonal one-body
operator, i.e.

H0 ≡ h11 , (1.41b)
H1 ≡ h̆11 + h22 , (1.41c)

with

h11 ≡
∑
µ

h11
µµa
†
µaµ , (1.41d)

h̆11 ≡
∑
µν

h̆11
µνa
†
µaν , (1.41e)

h22 ≡ 1
(2!)2

∑
αβγδ

h22
αβγδa

†
αa
†
βaδaγ , (1.41f)

such that

h11
µµ ≡ eµ , (1.41g)
h̆11
µν ≡ tµν − eµδµν , (1.41h)

h22
αβγδ ≡ vαβγδ . (1.41i)

Diagrammatically, h̆11
µν (h22

αβγδ) is represented by a dot with one (two) incoming and one
(two) outgoing leg(s) as depicted in Fig. 1.2

.

. In the following, unperturbed quantities refer
to quantities computed for the system associated to H0. General considerations to prefer
a certain decomposition over another are usually based on conservation (or breaking) of
symmetries, proximity8

.

of H0 to the full H and ease to compute unperturbed observables and
their corrections. In the present case, a particular partitioning is characterized by the choice of
h11. In this respect, the set of single-particle energies {eµ} is arbitrary, except that they are
increasingly ordered by convention.

1.3.2. Unperturbed system
The unperturbed basis is made out of eigenstates of H0 and A.

8Proximity means here that perturbative corrections are small for observables of interest.
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Chapter 1. Quantum many-body observables

ν

µ

h̆11
µν

γ

α

δ

β
h22
αβγδ

Figure 1.2. Diagrammatic representation of h̆11
µν and h22

αβγδ.

A-body sector

In the targeted A-body sector, the ground-state of H0 plays the role of the reference state
and is the Slater determinant obtained by occupying the single-particle states associated with
the A lowest single-particle energies e1, . . . , eA, i.e.

∣∣∣ΦA
0

〉
≡

A∏
µ=1

a†µ |0〉 . (1.42)

Unperturbed excited states are generated via particle-hole excitations of the reference state,
i.e. ∣∣∣Φab...

ij...

〉
≡ a†aa

†
b . . . ajai

∣∣∣ΦA
0

〉
, (1.43)

where the convention is that single-particle indices i, j, . . . correspond to hole states (i.e.
occupied states in

∣∣∣ΦA
0

〉
) while single-particle indices a, b, . . . correspond to particle states (i.e.

unoccupied states in
∣∣∣ΦA

0

〉
). The corresponding unperturbed A-body eigenenergies are given

by

εA0 ≡ 〈ΦA
0 |H0|ΦA

0 〉 =
A∑
i=1

ei , (1.44a)

εab...ij... ≡ 〈Φab...
ij... |H0|Φab...

ij... 〉 = εA0 + (ea + eb + · · · − ei − ej − . . . ) . (1.44b)

(A±k)-body sector

Similarly, any HA±k possesses an orthonormal basis of unperturbed eigenstates of H0 built
from p-particle/q-hole excitations of

∣∣∣ΦA
0

〉
∣∣∣Φa1···ap

i1···iq

〉
≡ a†a1 . . . a

†
apaiq . . . ai1

∣∣∣ΦA
0

〉
, (1.45)

where p− q = ±k. The unperturbed eigenenergies are given by

ε
a1···ap
i1···iq ≡ εA0 + (ea1 + . . .+ eap)− (ei1 + . . .+ eiq) . (1.46)
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1.3. Perturbation theory

Interaction picture

The time evolution operator in the interaction picture is defined as

UI(t, t′) ≡ eiH0tU(t, t′)e−iH0t = eiH0te−iH(t−t′)e−iH0t , (1.47)

which again depends only on t− t′ for time-independent H0 and H.
More generally, an operator O is defined in the interaction picture through

O(t) ≡ eiH0tO e−iH0t . (1.48)

In particular the time-dependence of creation and annihilation operators in the interaction
picture is explicitly given by

aµ(t) = e−ieµtaµ , (1.49a)
a†µ(t) = eieµta†µ . (1.49b)

Unperturbed Green’s functions

The unperturbed k-body Green’s function associated with the unperturbed A-body ground-
state reads as

ikG
(A,k)0
µ1...µk
ν1...νk

(tµ1 , . . . , tµk , tν1 , . . . , tνk) ≡
〈ΦA

0 |T
[
aµk(tµk) . . . aµ1(tµ1)a†ν1(tν1) . . . a†νk(tνk)

]
|ΦA

0 〉
〈ΦA

0 |ΦA
0 〉

,

(1.50)
where aµ(tµ) and a†ν(tν) denote now annihilation and creation operators in the interaction
picture (see Eq. (1.49

.

)), respectively. Correspondingly, the unperturbed k-body density matrix
reads as

ρ
(A,k)0
µ1...µk
ν1...νk

≡
〈ΦA

0 |a†ν1 . . . a
†
νk
aµk . . . aµ1 |ΦA

0 〉
〈ΦA

0 |ΦA
0 〉

= (−1)kikG(A,k)0
µ1...µk
ν1...νk

(t, . . . , t, t+, . . . , t+) , (1.51)

and is non-zero only if the sets (µ1, . . . , µk) and (ν1, . . . , νk) are identical and correspond to k
hole states.
Focusing on the unperturbed one-body Green’s function, one has

iG(A,1)0
µν (tµ, tν) ≡

〈ΦA
0 |T

[
aµ(tµ)a†ν(tν)

]
|ΦA

0 〉
〈ΦA

0 |ΦA
0 〉

(1.52a)

= θ (tµ − tν)
∑
a

δµaδνae
−iea(tµ−tν) − θ (tν − tµ)

∑
i

δµiδνie
iei(tν−tµ) (1.52b)

≡ iG(A,1)0+
µν (tµ, tν) + iG(A,1)0−

µν (tµ, tν) (1.52c)

where G(A,1)0+
µν and G(A,1)0−

µν denote the unperturbed retarded and advanced propagators
respectively9

.

. The diagrammatic representation of G(A,1)0
µν (tµ, tν) is given in Fig. 1.3

.

. Fourier
9They are also referred to as particle and hole propagators, respectively.

11



Chapter 1. Quantum many-body observables

ν tν

µ tµ

G(A,1)0
µν (tµ, tν)

Figure 1.3. Diagrammatic representation of G(A,1)0
µν (tµ, tν).

transforming (1.52b

.

), one eventually obtains the Lehmann representation of the unperturbed
one-body propagator i.e.

iG(A,1)0
µν (ω) = i

(∑
a

δµa
ω − ea + iη

+
∑
i

δµi
ω − ei − iη

)
δµν . (1.53)

Similarly to Eq. (1.32

.

), G(A,1)0
µν (ω) possesses a pole structure associated to unperturbed one-

nucleon addition and removal energies, which actually reduce to one-particle and one-hole
energies, respectively. Again, in the case of a non-degenerate unperturbed reference state the
corresponding spectrum displays a gap between the highest hole-state energy and the lowest
particle-state energy.

1.3.3. Perturbative expansion
When H1 = 0, the unperturbed basis discussed in section 1.3.2

.

constitutes the eigenstates of
interest. This is no longer the case when H1 6= 0. In this case the correlated ground-state

∣∣∣ΨA
0

〉
is a linear combination of the

∣∣∣ΦA
m

〉
obtained via the time evolution of

∣∣∣ΦA
0

〉
. The adiabatic

transition between unperturbed basis states and eigenstates of H is obtained on the basis of
Gell-Mann and Low theorem [26

.

] which, assuming adiabacity, reads

∀m,
∣∣∣ΨA

m

〉
= UI(0,−∞)

∣∣∣ΦA
m

〉
. (1.54)

Exploiting this adiabatic connection, a few steps of calculations allow one to rewrite the exact
k-body Green’s function under the form

ikG(A,k)
µ1...µk
ν1...νk

(tµ1 . . . tµk , tν1 . . . tνk)

=
〈ΦA

0 |T
[
UI(+∞,−∞)aµk(tµk) . . . aµ1(tµ1)a†ν1(tν1) . . . a†νk(tνk)

]
|ΦA

0 〉
〈ΦA

0 |UI(+∞,−∞)|ΦA
0 〉

. (1.55)

Formally, (1.47

.

) can be written as [27

.

]

UI(t, t′) = Te−i
∫ t
t′ dt1H1(t1) , (1.56)

12



1.3. Perturbation theory

and the perturbative expansion obtained by writing the Taylor series associated to Eq. (1.56

.

)

UI(t, t′) =
+∞∑
n=0

(−i)n
n!

∫ t

t′
dt1 . . .

∫ t

t′
dtnT [H1(t1) . . . H1(tn)] . (1.57)

Inserting Eq. (1.57

.

) in both the numerator and the denominator of Eq. (1.55

.

) one obtains

ikG(A,k)
µ1...µk
ν1...νk

(tµ1 . . . tµk , tν1 . . . tνk)

=
+∞∑
n=0

(−i)n
n!

∫ +∞

−∞
dt1 . . .

∫ +∞

−∞
dtn

〈ΦA
0 |T

[
H1(t1) . . . H1(tn)aµk(tµk) . . . aµ1(tµ1)a†ν1(tν1) . . . a†νk(tνk)

]
|ΦA

0 〉

/
+∞∑
n=0

(−i)n
n!

∫ +∞

−∞
dt1 . . .

∫ +∞

−∞
dtn〈ΦA

0 |T [H1(t1) . . . H1(tn)] |ΦA
0 〉 . (1.58)

Using time-dependent Wick’s theorem [27

.

] with respect to
∣∣∣ΦA

0

〉
, appropriate groups of terms

can be associated to a Feynman diagram with k incoming and k outgoing external lines, where
the lines in the diagram denote unperturbed one-body Green’s functions, or propagators, G(A,1)0.
For detailed Feynman rules, see App. A

.

. Further achieving the cancellation of unlinked terms,
i.e. disconnected parts without external lines, between the numerator and the denominator,
one obtains the master formula

ikG(A,k)
µ1...µk
ν1...νk

(tµ1 . . . tµk , tν1 . . . tνk)

=
+∞∑
n=0

(−i)n
n!

∫ +∞

−∞
dt1 . . .

∫ +∞

−∞
dtn (1.59)

〈ΦA
0 |T

[
H1(t1) . . . H1(tn)aµk(tµk) . . . aµ1(tµ1)a†ν1(tν1) . . . a†νk(tνk)

]
|ΦA

0 〉L ,

where the subscript L is referring to the restriction to linked diagrams only. Examples of
low-order linked diagrams contributing to the 1-body (2-body) Green’s function are displayed
in Fig. 1.4

.

(Fig. 1.5

.

).
Expanding the k-body Green’s function in perturbation thus allows one to express it in

terms of G(A,1)0
µν (tµ, tν) under the form of a series

ikG
(A,k)
µ1...µk
ν1...νk

(tµ1 . . . tµk , tν1 . . . tνk) =
+∞∑
n=0

∑
G(A,k)
n

AG
(A,k)
n
µ1...µk
ν1...νk

(tµ1 . . . tµk , tν1 . . . tνk) (1.60)

where n denotes the number of interaction vertices contained in the linked diagram G(A,k)
n

and AG
(A,k)
n
µ1...µk
ν1...νk

(tµ1 . . . tµk , tν1 . . . tνk) its associated amplitude. The infinite series is meant to be
truncated at a given order p, i.e. all terms with n ≤ p are included. A typical nth-order

13



Chapter 1. Quantum many-body observables

ν tν

µ tµ

=

ν tν

µ tµ

+
λ1 λ2

λ3λ4

t1

ν tν

µ tµ

h22 +
λ1

λ2
t1

ν tν

µ tµ

h̆11 +

λ1

λ3
λ2 λ4

t1

λ5

λ6 λ8
λ7

t2

ν tν

µ tµ

h22

h22

+ . . .

Figure 1.4. Example of labeled Feynman diagrams contributing to G(A,1)
µν (tµ, tν) at zero, first

and second order.

G(A,2)

ν1 tν1 ν2 tν2

µ1 tµ1 µ2 tµ2

=

ν1 tν1 ν2 tν2

µ1 tµ1 µ2 tµ2

+

ν1 tν1 ν2 tν2

µ1 tµ1 µ2 tµ2

+
λ1

λ2

λ3

λ4

ν1 tν1 ν2 tν2

µ1 tµ1 µ2 tµ2

t1 h
22 +

λ1

λ2λ3

λ4

λ5

λ6 λ7
λ8

ν1 tν1 ν2 tν2

µ1 tµ1 µ2 tµ2

t1 h
22

t2 h
22

+ . . .

Figure 1.5. Example of labeled Feynman diagrams contributing to G(A,2)
µ1µ2
ν1ν2

(tµ1tµ2 , tν1tν2) at zero,
first and second order.

amplitude takes the form

AG
(A,k)
n
µ1...µk
ν1...νk

(tµ1 . . . tµk , tν1 . . . tνk) =

(−1)σ (−i)n
n!

∑
λ

hp1q1
λ...λ

p1!q1! . . .
hpnqnλ...λ

pn!qn!

∫
dt1 . . . dtn (1.61)
∏
e∈I

iG
(A,1)0
λλ (ti, tj)

∏
e∈Ein

iG
(A,1)0
λν (ti, tν)

∏
e∈Eout

iG
(A,1)0
µλ (tµ, tj)

where, for a diagram G(A,k)
n , σ is an integer, λ, µ and ν denote generic single-particle labels

for internal, external outgoing and external incoming lines, respectively. Labels pi and qi
characterize the number of creation and annihilation operators associated with the vertex i
whereas ti denotes the corresponding time label. Eventually, I is the set of internal lines, Ein
the set of k incoming lines and Eout the set of k outgoing lines. Single-particle indices λ, µ and
ν have been stripped of their label in the matrix elements and one-body Green’s functions for
the sake of concision.

In the energy representation the equivalent expression is obtained by Fourier transformation

14



1.3. Perturbation theory

of Eq. (1.61

.

) as in (1.22

.

)

AG
(A,k)
n
µ1...µk
ν1...νk

(ωµ1 . . . ωµk , ων1 . . . ωνk) =

(−1)σ (−i)n
n!

∑
λ

hp1q1
λ...λ

p1!q1! . . .
hpnqnλ...λ

pn!qn!

∫ dωλ
2π . . .

n∏
i=1

2πδ (±ωλ · · · − ωµ · · ·+ ων . . . ) (1.62)

×
∏
e∈I

iG
(A,1)0
λλ (ωλ)

∏
e∈Ein

iG
(A,1)0
λν (ων)

∏
e∈Eout

iG
(A,1)0
µλ (ωµ)

where the additional factor of Dirac functions ensures energy conservation at every vertex
of G(A,k)

n .10

.

This generic form of the nth-order amplitude contributing to the k-body Green’s
function expanded in perturbation with respect to the reference state

∣∣∣ΦA
0

〉
will play an

important role later on in the document.

10Dirac factors originate from time-integrals of the form∫
dtieiti(±ωλ···−ωµ···+ων ... ) = 2πδ(±ωλ · · · − ωµ · · ·+ ων . . . ) ,

where each exponential contribution comes from replacing time-dependent by energy-dependent Green’s
functions.
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Chapter 2.

Pionless Effective Field Theory
While nuclear many-body observables are usually computed for a generic Hamiltonian,

regardless of the renormalization procedure of the potential, this thesis aims at testing the
renormalization invariance of observables computed within the frame of /πEFT in A-body
sectors with A � 10. This must however be done while taking into account the fact that
the PC rule stipulating that HLO

/π must be solved to all orders is intractable beyond few-body
sectors. Our main goal is thus to investigate the impact of such an inherent feature on the
renormalization invariance of many-body observables.

To be in position to address the above question in Chap. 3

.

and Chap. 4

.

, the present chapter
is dedicated to introducing the pionless Hamiltonian H/π and its necessary renormalization.
Following the PC rule, the LO pionless potential at play in neutron matter (i.e. a contact
2-body operator only) is then renormalized to all orders in Sec. 2.2

.

on the basis of the S-wave
scattering length. Anticipating the discussion of Chap. 3

.

and Chap. 4

.

, this procedure is also
provided at tree and one-loop levels. These LO pionless potential(s) will be used as an input
to SCGF and MBPT calculations in the following chapters.

2.1. Ultraviolet divergences and renormalization
In this section, the Hamiltonian H/π stemming from /πEFT is defined. Emphasis is then

put on ultraviolet (UV) divergences emerging from perturbative calculations and on the
renormalization procedure employed to deal with them. Eventually, power-counting rules and
their implications for nuclear systems are discussed.

2.1.1. Pionless Hamiltonian
To define an EFT, degrees of freedom of interest need to be first specified. For (very) low-

energy nuclear systems the sole explicit degrees of freedom at play are structure-less nucleons of
momentum and energy Q� 1 GeV. Experimentally, nucleons are described with a spin s = 1

2
and isospin t = 1

2 . Consequently, only one set of fermionic creation and annihilation operators
(a†µ, aµ) verifying Eq. (1.4

.

) is needed. Here we recall that the µ index refers to one-body states
of a nucleon, e.g. , in a position basis

{µ} ←→
{
~r, s = 1

2 , sz, t = 1
2 , t3

}
, (2.1)

where ~r is the spatial position of the nucleon, sz the projection of its spin along the z axis
and t3 the projection of the isospin such that t3 = +1

2 for a neutron and t3 = −1
2 for a
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Chapter 2. Pionless Effective Field Theory

proton. As a short-hand notation, creation and annihilation operators are denoted as a†~rσ
and a~rσ, respectively, where the couple of discrete indices (szt3) is denoted as σ1

.

. These
creation/annihilation operators are related to their momentum counterparts via a Fourier
transformation

a~pσ ≡
∫ d3~p

(2π)3 e−i~p.~r a~rσ , (2.2a)

a†~pσ ≡
∫ d3~p

(2π)3 ei~p.~r a†~rσ , (2.2b)

with ~p the nucleon linear momentum.
The general principle of EFT is to write down the most general Hamiltonian consistent

with the symmetries of the problem [6

.

]. At energies Q� 1 GeV, nucleons can be considered
to be non-relativistic so that the Hamiltonian is required to possess Galilean symmetry. A
further simplification is to limit the study to spin and isospin-independent Hamiltonians, thus,
adding symmetry restrictions.2

.

This will simplify further calculations without changing the
conclusions about renormalization of many-body calculations.
With these degrees of freedom and symmetries, the most general Hamiltonian reads3

.

H/π =
∫

d3~r

N †~r
−−→∇2

2m

N~r + C0

2 (N †~rN~r)2

− 1
16C2

[
(N~rN~r)†

(
N~r

←→
∇ 2N~r

)
+ h.c.

]
−1

8C
′
2(N~r

←→
∇N~r)† · (N~r

←→
∇N~r) + 1

6D0(N †~rN~r)3 + . . .
}
, (2.3)

where m is the nucleon mass, C0 and C2 are S-wave contact coupling constants, C ′2 is a
P-wave contact coupling constant and D0 is a three-body contact coupling constant. The
four-component nucleon spinor N~r is defined as

N~r ≡


a~r + 1

2 + 1
2

a~r − 1
2 + 1

2
a~r + 1

2 −
1
2

a~r − 1
2 −

1
2

 , (2.4a)

N †~r ≡
(
a†
~r + 1

2 + 1
2

a†
~r − 1

2 + 1
2

a†
~r + 1

2 −
1
2

a†
~r − 1

2 −
1
2

)
. (2.4b)

Here h.c. denotes the Hermitian conjugate and the spatial derivative operator ←→∇ is defined by

A
←→
∇B ≡ A(∇B)− (∇A)B . (2.5)

1Kronecker delta on σ are thus defined as δσ ′σ ≡ δs ′
zsz
δt ′

3t3
.

2In particular, Coulomb interaction is ruled out as it breaks the isospin symmetry. Spin-isospin projectors
are also trivialized to identity operators.

3There is no mixing between particles and their associated anti-particles as a consequence of the non-
relativistic approximation. This decoupling and the general form of the Hamiltonian can be recovered by taking
the non-relativistic limit of a relativistic quantum field theory. This is done either by a Foldy-Wouthuysen
transformation [28

.

] or within the heavy-baryon formalism [29

.

, 30

.

] using reparameterization invariance [31

.

].
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2.1. Ultraviolet divergences and renormalization

The ellipsis indicates higher derivatives, partial waves and many-body operators contributing
to the Hamiltonian. As a short-hand, in the following, space/momentum integrals are denoted
with a sum symbol4

.

i.e. ∑
~r

←→
∫

d3~r , (2.6a)

∑
~p

←→
∫ d3~p

(2π)3 . (2.6b)

In the momentum basis, H/π reads as5

.

H/π =
∑
σ

∑
~p

h11
~p~p a

†
~pσa~pσ

+ 1
2!
∑
σ1σ2

∑
~p ′1~p
′
2

~p1~p2

h22
~p ′1~p
′
2~p1~p2 a

†
~p ′1σ1

a†~p ′2σ2
a~p2σ2a~p1σ1

+ 1
3!

∑
σ1σ2σ3

∑
~p ′1~p
′
2~p
′
3

~p1~p2~p3

h33
~p ′1~p
′
2~p
′
3~p1~p2~p3 a

†
~p ′1σ1

a†~p ′2σ2
a†~p ′3σ3

a~p3σ3a~p2σ2a~p1σ1

+ . . . . (2.7)

Introducing ~q and ~q ′ (~P and ~P ′) as the relative (total) momentum of two incoming and
outgoing nucleons, respectively,

~q ≡ ~p1 − ~p2

2 , (2.8a)

~q ′ ≡ ~p ′1 − ~p ′2
2 , (2.8b)

~P ≡ ~p1 + ~p2

2 , (2.8c)

~P ′ ≡ ~p ′1 + ~p ′2
2 , (2.8d)

the spatial part of the direct-product matrix elements of the 1-, 2- and 3-body components of
the Hamiltonian read as

h11
~p ′~p = (2π)3 δ (~p ′ − ~p) p2

2m , (2.9a)

h22
~p ′1~p
′
2~p1~p2 = (2π)3 δ (~p ′1 + ~p ′2 − ~p1 − ~p2)

(
C0 + C2

(
q ′2 + q2

2

)
+ C ′2~q

′ · ~q + . . .

)
, (2.9b)

h33
~p ′1~p
′
2~p
′
3~p1~p2~p3 = (2π)3 δ (~p ′1 + ~p ′2 + ~p ′3 − ~p1 − ~p2 − ~p3) (D0 + . . . ) , (2.9c)

where . . . denotes contributions associated with higher powers of momenta. Two-body vertices
with 0 and 2 powers of momenta, and the three-body vertex with zero power of momentum,
are represented diagrammatically in Fig. 2.1

.

.
4The sum symbol should not be understood as a discretization of the corresponding integral.
5Direct-product matrix elements (i.e. before antisymmetrization) are presently employed, hence the different

pre-factors from Eq. (1.5

.

).
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Chapter 2. Pionless Effective Field Theory

C0 C2 C ′2 D0

Figure 2.1. Diagrammatic representation of several vertices in /πEFT.

A Hamiltonian of the type (2.7

.

) is, however, insufficient to yield a well-defined theory. When
computing contributions in perturbation theory, integrals of the type (1.61

.

) turn out to be
generally divergent. One could modify the Hamiltonian matrix elements for large momenta
such that any order of MBPT yields a finite result [32

.

, 33

.

, 34

.

]. Such a modification of
the Hamiltonian is however arbitrary, leading to nuclear models that strongly rely on UV
physics, which departs from the EFT approach6

.

. On the contrary, Secs. 2.1.2

.

-2.1.3

.

discuss
renormalization schemes designed to deal with these divergences in a UV independent way.

2.1.2. Perturbation theory
While solving the A-body Schrödinger equation can be done formally in any particular

perturbation theory7

.

, the renormalization of the Hamiltonian is traditionally studied in few-
body systems. To this extent, a specific perturbation theory setting - introduced below - is
typically employed. The UV analysis is then performed on the Feynman amplitudes associated
to this perturbation theory.

Unperturbed system

Let us now specify the perturbation theory setting typically employed in few-body systems
in view of the general MBPT introduction provided in Chap. 1

.

. The pionless H/π is trivially
partitioned according to

H/π = H0 +H1 , (2.10a)
H0 = T/π ≡

∑
~pσ

h11
~p~p a

†
~pσa~pσ , (2.10b)

H1 = V/π ≡
1
2!
∑
σ1σ2

∑
~p ′1~p
′
2

~p1~p2

h22
~p ′1~p
′
2~p1~p2 a

†
~p ′1σ1

a†~p ′2σ2
a~p2σ2a~p1σ1 + . . . , (2.10c)

6In the spirit of [32

.

, 33

.

, 34

.

], one could try to consider a class of UV physics models and attempt to quantify
errors as the dependence on the assumed UV physics. However, the errors thus quantified depend on the
arbitrary class of UV physics models which should at least be justified by physical considerations such as
compatibility with higher-energy physics. Even then, only a lower-bound on the error would be reached by
such considerations.

7Let us recall that a perturbation theory is defined for a certain partitioning of the Hamiltonian. Different
partitionings lead to different perturbation expansions.
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2.1. Ultraviolet divergences and renormalization

such that the unperturbed one-body part is simply given by the kinetic energy that is conve-
niently diagonal in the momentum basis. Correspondingly, single-particle energies associated
to this partitioning are single-particle kinetic energies

e~pσ ≡ h11
~p~p = p2

2m , (2.11)

and are thus spin and isospin independent.
The study of a k-body system relies on computing the two-time reduction of the k-body

Green’s function associated to the particle vacuum |0〉 in order to look for its poles. Cor-
respondingly, this implies that the perturbation theory is further set by using the particle
vacuum as the reference state. In agreement with Sec. 1.3.2

.

, the unperturbed basis of Hk is
given by the set of k-particle/0-hole excitations of the particle vacuum |0〉 that presently acts
as the unperturbed ground-state of H0 in H0∣∣∣Φ~p1σ1...~pkσk

〉
= a†~p1σ1

. . . a†~pkσk |0〉 . (2.12a)

In this particular case where A = 0, unperturbed states in the Hilbert spaces of interest
thus consist only of k particle excitations. Given that the unperturbed energy of the particle
vacuum is ε00 = 0, the unperturbed eigenenergies of the Slater determinants introduced above
are nothing but

ε~p1σ1...~pkσk =
k∑
i=1

p2
i

2m . (2.12b)

From Eq. (2.11

.

) and Eq. (1.53

.

), the unperturbed one-body Green’s function in the energy
representation reads as

iG
(0,1)0
~pσ~p ′σ ′(ω) = i

ω − p2

2m + iη
(2π)3δ(~p− ~p ′)δσσ ′ , (2.13)

and thus only contains poles associated to one-particle additional energies. Indeed, there is no
one-particle removal energies given that no single-particle state is occupied in the reference
state |0〉.

Similarly, the two-time reduction of the k-body Green’s function in its Lehmann representa-
tion contains only poles associated to k-particles additional states namely

ikG
(0,k)
µ1...µk
ν1...νk

(ω) = i
∑
m∈Hk

U (0,k)m
µ1...µk

U (0,k)m∗
ν1...νk

ω − (Ek
m − E0

0) + iη
, (2.14)

where, as a shorthand, µi ≡ ~piσi and νi ≡ ~p ′iσ
′
i . In terms of spectral amplitudes defined in

(1.31

.

), this corresponds to the fact that

V (0,k)m
ν1...νk

= 0 . (2.15)

Given that E0
0 ≡ 〈0|H/π|0〉 = 0, the poles of G(0,k)

µ1...µk
ν1...νk

(ω) directly form the spectrum of H/π in the
k-body sector.
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Chapter 2. Pionless Effective Field Theory

Ultraviolet divergences

In the perturbation theory defined above, general integrals of the form (1.62

.

) associated to
diagrams G(0,k)

n are characterized by their superficial degree of divergence8

.

D(G(0,k)
n ) ≡ 5L− 2I +

∑
i

2i V2i (2.16)

where L is the number of loops in G(0,k)
n , I its number of internal lines and V2i the number

of vertices containing 2i spatial9

.

derivatives.10

.

In order to analyse the UV divergences, the
power-counting theorem, rigorously proven by Weinberg [35

.

], Hepp [36

.

] and Zimmerman [37

.

]
follows.
AG

(0,k)
n
µ1...µk
ν1...νk

is finite if and only if D(G(0,k)
n ) < 0 and D(γ) < 0 for any subgraph γ composed of

internal lines of G(0,k)
n .

In their papers the complete proof was actually done for relativistic free propagators but
can be easily adapted for the non-relativistic propagator G(0,1)0

~pσ~p ′σ ′ as defined in Eq. (2.13

.

). The
negativity of D(G(0,k)

n ) does not a priori hold for any graph G(0,k)
n . Examples of UV divergent

graphs are given in Tab. 2.1

.

. Dealing with UV divergent graphs is done via a renormalization
scheme.

2.1.3. Renormalization schemes
A renormalization scheme consists in introducing, as a first step, a regularization that

makes all integrals (1.62

.

) finite. For analytical calculations, the dimensional regularization
[38

.

] is most often used. It indeed makes calculations easier and avoids breaking symmetries
of the Hamiltonian. However, such a regularization is only well-defined for finite orders
in perturbative theory and can fail when used without care in a non-perturbative setting
11

.

. In this thesis, all computations use a cut-off regularization instead. The one reason is
the non-perturbativeness of nuclear systems, which, eventually, requires the use of (infinite)
resummations of perturbative contributions. Using a cut-off regularization is also convenient
to benchmark numerical calculations that intrinsically rely on cut-offs. Concretely, cut-off
regularization consists in modifying H1 at high-energy, e.g. 12

.

h22
Λ ~p ′1~p

′
2~p1~p2 = (2π)3δ (~p ′1 + ~p ′2 − ~p1 − ~p2)

× vΛ(2q ′)
(
C0 + C2

(
q ′2 + q2

2

)
+ C ′2~q

′ · ~q + . . .

)
vΛ(2q) , (2.17)

8Assuming the diagram does not contain lines connecting incoming and outgoing states i.e. external legs
directly connected without intermediate internal lines.

9Any potential time derivatives appearing in the Hamiltonian can be absorbed via a field redefinition.
10This formula is related to asymptotic coefficients as defined in [35

.

]. For example, the asymptotic coefficient
in the (ω, ~p) vector space of iG(0,1)0

~pσ~pσ (ω) ≡ i

ω− p2
2m+iη

is −2 hence the −2I contribution in the superficial degree
of divergence.

11See [39

.

] for an example and a thorough discussion around this matter.
12In general, the regularization function can take the form vΛ(~p ′1, ~p ′2, ~p1, ~p2).
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2.1. Ultraviolet divergences and renormalization

where vΛ can be any function making integrals (1.62

.

) finite and verifying

∀q , lim
Λ→+∞

vΛ(q) = 1 , (2.18)

which ensures that the original theory is recovered in the limit Λ → +∞. The cut-off Λ is
the characteristic scale at which integrals in (1.62

.

) are affected by vΛ such that they become
finite. In this thesis, a separable regulator function is used to simplify calculations compared
to a more general regularization. The general notation vΛ is used as long as possible for the
regulator function. For numerical evaluations, a Gaussian regulator will be employed i.e.

vΛ(q) = e−
q2

Λ2 . (2.19)

The second step of a renormalization scheme consists in subtracting terms that are not
dominated by a (strictly) negative power of Λ (e.g. divergent terms) for Λ → +∞. This is
typically done explicitly by introducing counter-terms in the Hamiltonian13

.

. In practice, the
counter-terms are computed by introducing a Λ dependence in the coupling constants, e.g. for
/πEFT, Eq. (2.17

.

) is replaced by

h22
Λ ~p ′1~p

′
2~p1~p2 = (2π)3δ (~p ′1 + ~p ′2 − ~p1 − ~p2)

× vΛ(2q ′)
(
C0(Λ) + C2(Λ)

(
q ′2 + q2

2

)
+ C ′2(Λ)~q ′ · ~q + . . .

)
vΛ(2q) . (2.20)

Note that the Λ dependence of coupling constants is computed to make the amplitude of a
particular set of Feynman diagrams finite. Considering any other set (even adding a single
Feynman diagram) might lead to a different Λ dependence. Once the counter-terms are
computed, the additional Feynman diagrams (incorporating those counter-terms) to cancel the
UV divergences are, for instance, explicitly given by the BPHZ procedure (see App. C

.

or [37

.

]
for more details).

Eventually, coupling constants are fixed by imposing matching conditions from the computa-
tion of a set of observables used to fit the theory.14

.

Following this program, the computation
of any other observable should be independent of the choice of the regularization function vΛ
as any change of Λ would be compensated by a change in the Λ dependence of the coupling
constants. Physically, this is interpreted as the fact that in an EFT the ultraviolet physics is
effectively embedded in its coupling constants.

Through the renormalization procedure, each considered contribution AG
(0,k)
n
µ1...µk
ν1...νk

becomes well-

defined. To compute the k-body Green’s function exactly, all AG
(0,k)
n
µ1...µk
ν1...νk

have to be summed,

which is not possible. Consequently, a truncation on the set of AG
(0,k)
n
µ1...µk
ν1...νk

has to be stipulated
to enable the evaluation of observables. In the EFT approach, contributions at leading order
(LO) and corrections at sub-leading orders are estimated a priori through power-counting rules
that are discussed in the following subsection.

13The proof that such subtraction can be done by introducing Λ dependent counter-terms is non-trivial.
Technically, this can be achieved following a Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) prescription, see
[40

.

, 41

.

, 37

.

, 42

.

] for a complete proof in the relativistic case.
14The matching can be done to experimental data or to the same set of observables computed in another

model supposed to be valid e.g. an underlying EFT.
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Chapter 2. Pionless Effective Field Theory

Diagrams contributing to G(0,2)

G(0,2) D(G(0,2)) p(G(0,2))

1 -1

2 -1

3 0

4 2

Diagrams contributing to G(0,3)

G(0,3) D(G(0,3)) p(G(0,3))

0 -4

0 -4

2 -4

4 -4

Table 2.1. Examples of UV divergent diagrams contributing to G(0,k) for k = 2, 3. Associated
superficial degree of divergence D(G(0,k)) and counting index p(G(0,k)) are given.
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2.1. Ultraviolet divergences and renormalization

2.1.4. Power-counting rules
Rationale

EFTs exploit the separation between the low-energy scaleMlo characteristic of the observables
of interest and a higher-energy scale Mb at which the EFT breaks down. For /πEFT the low
scale is the typical momentum Q ∼ Mlo of a non-relativistic nucleon so that Q � 1 GeV.
Experimentally, the binding energy per particle of nuclei is B ∼ 8 MeV so that Q .

√
2mB ∼

120 MeV.
The hope of /πEFT is that the high-energy (or breakdown) scale Mb, is sufficiently large15

.

to
justify an expansion of the k-body Green’s function in powers of Mlo

Mb
[6

.

]

G
(A,k)
µ1...µk
ν1...νk

=
∑
p

(
Mlo

Mb

)p
F
(
Mlo

Λ , C0(Λ), C2(Λ), . . .
)
, (2.21)

where F is a function of order one. The problem is then to estimate which subset of Feynman
diagrams G(A,k) contributes to the order p. Such an estimation is done graph by graph16

.

by
approximating the value of the non-analytic part of their associated amplitude. To this extent,
the counting index p(G(A,k)) is defined such that

AG(A,k)
µ1...µk
ν1...νk

∼
(
Mlo

Mb

)p(G(A,k))
. (2.22)

The index p depends in general on the nature of the unperturbed one-body Green’s function
G(A,1)0
µν , on the number of loops in G(A,k) and on the type of vertices. The rules to obtain p

for any G(A,k) are referred to as the power-counting rules. The contributions with the lowest
possible p define the so-called leading order (LO), the first corrections with the second lowest p
define the next-to-leading order (NLO) and so on. Consequently, the size of the contributions
ignored at a given order can be evaluated and employed to stipulate the theoretical error of
the EFT at that order. Note that for the EFT to be practical, p(G(A,k)) needs to be bounded
from below when considering diagrams with a fixed number of external legs.
While, in principle, power-counting rules could be studied for any perturbation theory,

they have been typically stipulated for the particular perturbation theory associated with the
partitioning (2.10

.

) and using the particle vacuum as a reference, i.e. for Feynman diagrams
G(A,k) with A = 0 and lines corresponding to the free propagator given in Eq. (2.13

.

).
To estimate the relative size of these Feynman integrals, the size of the coupling constants

needs first to be assumed. For example, the naturalness assumption consists in assuming all
coupling constants to scale with a given power of Mb, according to their dimensionality. For
/πEFT this reads [43

.

]

C0 ∼
1
Mb

, C2 ∼
1
M3

b

, C ′2 ∼
1
M3

b

, D0 ∼
1
M4

b

, . . . . (2.23)

15Usually it assumed to be below the pion mass so that Mb ∼ 150 MeV.
16Estimating the size of each graph individually yields an upper bound on the size of their sum. Such bound

neglects possible cancellations between them but is usually sufficient.

25



Chapter 2. Pionless Effective Field Theory

This leads to the naïve dimensional analysis (NDA) power counting. In this case the power
counting is simplified as all Mlo contributions come from Q factors.17

.

For /πEFT, using, as in
[44

.

], the counting
G(0,1)0 ∼ Q−2 , dω d3~p ∼ Q5 , ∇ ∼ Q , (2.24)

the order of magnitude of the amplitude associated to G(0,k) corresponds to

pNDA(G(0,k)) = 5L− 2I +
∑
i

2i V2i . (2.25)

More rigorously, pNDA(G(0,k)) can be derived in NDA by application of the asymptotic theorem
[35

.

] which also gives the asymptotic behavior of Feynman integrals in external momentum
Q.18

.

Using the topology identity L = I −∑i V2i + 1,

pNDA(G(0,k)) = 3L+ 2 +
∑
i

(2i− 2) V2i . (2.26)

A lower bound on pNDA can then be derived using the relation

2I + 2k ≥ 4
∑
i

V2i , (2.27)

leading to
pNDA(G(0,k)) ≥ 5− 3k +

∑
i

(2i+ 1) V2i ≥ 6− 3k . (2.28)

In NDA there is only a finite number of diagrams contributing at each order. In the case of
nuclear systems, the experimental evidence of non-perturbative physics associated with bound
and virtual two-body states imposes that any EFT relying on nucleonic degrees of freedom
must in fact depart from NDA. Consequently, at least one coupling constant in /πEFT must be
assumed to be un-naturally large. Since the scattering length (a0 = −18.9 fm) of two neutrons
in the S-wave is un-naturally large, compared to 1

Mb
. 1

140 MeV−1 ∼ 1.4 fm, at least one
two-body coupling constant in the S-wave needs to be un-natural. From such considerations
the typical size of two-body coupling constants connecting S-waves are modified to19

.

C0 ∼
1
Mlo

C2 ∼
1

M2
loMb

C ′2 ∼
1
M3

b

. . . . (2.29)

At this stage, the new power counting promotes all diagrams containing only C0 vertices at
LO.

17Associated Mb factor (coming from coupling constants) follows by dimensional analysis so that a factor
Mlo
Mb

is obtained.
18This procedure is similar to the one to obtain the superficial degree of divergence. Neglecting potential

divergent sub-diagrams leads to the NDA ansatz so that pNDA(G(0,k)) = D(G(0,k)).
19The following power counting is equivalent to considering 1

a0
∼ Mlo and other parameters such as the

effective range re to be small in the sense that 1
re
∼Mb [43

.

].
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2.1. Ultraviolet divergences and renormalization

Renormalization invariance of observables

Power-counting rules require to sum up a certain subset of diagrams to compute the
contribution to the k-body Green’s function at order p. However, there is no guarantee that all
UV divergences appearing at order p can be compensated by counter-terms estimated to appear
at the same order. If this is not the case, the power-counting is said to be inconsistent and
typically leads to cut-off-dependent observables. Conversely, the requirement of renormalization
invariance of any observable O computed at fixed order p can be used to modify power-counting
rules such that, at any order p, k-body Green’s functions converge in inverse power of Λ in the
limit Λ→ +∞ i.e.

Λ
ONpLO

0 (Λ, C0(Λ), C2(Λ), . . . )
∂

∂ΛO
NpLO
0 (Λ, C0(Λ), C2(Λ), . . . ) = O

(
Q

Λ

)
. (2.30)

In the case of /πEFT, the renormalization of diagrams contributing to the three-body Green’s
function G(0,3) at LO, such as those displayed in Tab. 2.1

.

, requires to promote diagrams
containing any number of vertices D0 to LO [45

.

] (while diagrams containing any vertex D2i
with i > 0 remains a SLO contribution). For example, the size of D0 can be assumed to be

D0 ∼
1
M4

lo
. (2.31)

Eventually, the counting for diagrams containing vertices C2i and D0 is modified to

p(G(0,k)) = 3L+ 2 +
∑
i

(i− 3) VC2i − 6VD0 ≥ 5− 3k . (2.32)

For diagrams Ḡ(0,k) containing only C0 and D0 vertices, one has

2I + 2k = 4VC0 + 6VD0 , (2.33a)
L = I − (VC0 + VD0) + 1 , (2.33b)

p(Ḡ(0,k)) = 3L+ 2− 3(VC0 + 2VD0) , (2.33c)

so that
p(Ḡ(0,k)) = 5− 3k = pLO . (2.34)

Computing observables at LO in /πEFT is, thus, equivalent to solving the A-body Schrödinger
equation exactly for a truncated potential containing only C0 and D0 interactions.

Simplified problem

The inclusion of a three-body contact interaction at LO, though relevant for reproducing
the phenomenology of nuclear systems with A ≥ 3, introduces complications to study the
renormalization invariance of many-body observables. To simplify the problem while keeping
the complexity of a non-perturbative system, it is convenient to restrict the study to pure
neutron systems at first. In this case, diagrams containing any number of C0 vertices contribute
at LO to all k-body Green’s function G(0,k) whereas, because of Pauli’s exclusion principle,
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Chapter 2. Pionless Effective Field Theory

contributions from the three-body contact interaction vanish. The power counting for neutron
systems in /πEFT thus simplifies to

p(G(0,k)) = 3L+ 2 +
∑
i

(i− 3) V2i

= 5− 3k +
∑
i

i V2i , (2.35)

for G(0,k) containing C2i vertices. For diagrams G̃(0,k) containing only C0 vertices,

p(G̃(0,k)) = 5− 3k = pLO . (2.36)

Eventually, computing LO contributions to the k-body Green’s function in pure neutron systems
is equivalent to solving the k-body Schrödinger equation exactly for a simplified potential that
reads, in terms of antisymmetric two-body matrix elements,

V LO
/π ≡ 1

(2!)2

∑
σ ′1σ

′
2

σ1σ2

∑
~p ′1~p
′
2

~p1~p2

h22 LO
~p ′1~p
′
2~p1~p2 s

22 LO
σ ′1σ

′
2σ1σ2 a

†
~p ′1σ1

a†~p ′2σ2
a~p2σ2a~p1σ1 , (2.37a)

h22 LO
~p ′1~p
′
2~p1~p2 ≡ (2π)3 δ (~p ′1 + ~p ′2 − ~p1 − ~p2) C0 , (2.37b)

s22 LO
σ ′1σ

′
2σ1σ2 ≡ δσ ′1σ1δσ ′2σ2 − δσ ′1σ2δσ ′2σ1 . (2.37c)

Contributions associated to the first term of s22 LO
σ ′1σ

′
2σ1σ2

is referred to as the direct contribution
while the second term is referred to as the exchange contribution.

Working now with the potential (2.37a

.

), ultraviolet divergences can be studied more easily.
Using the relation for a graph G(0,k)

n containing n vertices C0

2I + 2k = 4n , (2.38)

the superficial degree of divergence (2.16

.

) simplifies to20

.

D(G(0,k)
n ) = 5− 3k + n . (2.39)

Typical sets of diagrams contributing to 2- and 3-body Green’s functions G(0,k) at LO with
their superficial degree of divergence are given in Tab. 2.1

.

.

Discussion

In the present section, renormalization and power-counting rules have been discussed for
Feynman diagrams derived in a perturbation theory formulated with respect to the particle
vacuum and employing the kinetic Hamiltonian as the unperturbed Hamiltonian.

Because of the un-naturally large scattering length a0 of two interacting neutrons in the
S-wave, power-counting rules require at LO to exactly solve the A-body Schrödinger equation
for the potential V LO

/π and to compute SLOs in perturbation relatively to the LO solution.
Solving exactly the A-body Schrödinger equation for the potential V LO

/π is manageable for
20Similar simplification can be found for graphs containing also D0 vertices but are not considered here as

they do not contribute in the case of pure neutron systems.
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2.2. Renormalization in the two-body sector

A = 2, 3, 4 [45

.

, 10

.

] but is impractical for many-body systems where A � 10. For large A,
expanding and truncating the exact solution of the Schrödinger equation is mandatory. This
can be done either non-perturbatively, e.g. on the basis of SCGF [11

.

, 12

.

], CC [13

.

, 14

.

] or
IM-SRG [15

.

, 16

.

], or in perturbation, via MBPT [17

.

, 18

.

]. It happens that MBPT in particular
has recently been shown to yield accurate estimates of nuclear observables, such as ground-state
energies, when combined with SRG-evolved Hamiltonians [46

.

, 47

.

].
Traditionally, and in agreement with power-counting rules (2.35

.

), V LO
/π is thus renormalized

exactly in 2- and 3-body sectors. As mentioned above, this happens to be technically feasible.
However, given both the phenomenological success of approximate many-body schemes and the
impossibility to generate exact calculations in large A sectors, this thesis aims at investigating
the calculation of many-body observables at LO in /πEFT in connection with particular
many-body truncations.

To perform consistent /πEFT calculations in large A sectors, one must pay attention to the
renormalization invariance of observables. At LO, in particular, one may question how much
the approximate solving of the Schrödinger equation, on the basis of a previously renormalized
potential via an all-order calculation in the two-body sector, compromises the renormalization
invariance. Obviously, the extent by which the renormalization invariance is compromised
is likely to be function of the severity/nature of the approximation employed to compute
A-body observables. It is indeed difficult to design a priori arguments as to what many-body
truncation scheme might be best suited. One may for instance argue in favor of solving the
A-body Schrödinger equation "as accurately as possible" in order to be "as close as possible" to
fulfilling the power counting rule. Working with one specific many-body method, e.g. SCGF,
this argument will lead to resumming the largest (infinite) possible set of MBPT diagrams.
Another argument might be that a minimal set of diagrams needs to be resummed such that
the truncation scheme is exact in the two-body sector and thus corresponds to the calculation
done to renormalize the two-body contact interaction in the first place. Employing such a
consistency argument between few- and many-body sectors, one might advocate to degrade
the calculation employed to renormalize the potential in the two-body sector in order to match
whatever truncation is used in the many-body calculation. This would however be done at the
cost of compromising the capacity of the EFT to capture the physics associated with the large
scattering length (even more so in the unitary limit) that is (at least) known to be crucial in
the few-body sector and in low-density neutron matter.

In order to proceed to our investigation in the next chapters, we now describe the renormal-
ization of V LO

/π in the two-body sector at various orders, i.e. tree-level, one-loop and exactly.
These renormalized interactions are used in the remainder of the thesis to test the consistency
of a renormalization scheme set in few-body sectors and extrapolated to many-body sectors on
the basis of various truncations performed within the frame of SCGF or MBPT.

2.2. Renormalization in the two-body sector

This section is devoted to the computation of the two-body Green’s function G(0,2) associated
to two neutrons on top of the particle vacuum. This is done at tree-level, one-loop and exactly
for the LO /πEFT potential. Renormalization is discussed via the introduction of a cut-off
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Chapter 2. Pionless Effective Field Theory

G(0,2) = + + T

Figure 2.2. Diagrammatic representation of Eq. (2.41

.

).

regulator, i.e.

h22 LO
Λ ~p ′1~p

′
2~p1~p2 = (2π)3 δ (~p ′1 + ~p ′2 − ~p1 − ~p2) h22 LO

Λ ~q ′~q , (2.40a)
h22 LO

Λ ~q ′~q ≡ vΛ(2q ′)C0(Λ)vΛ(2q) . (2.40b)

Eventually, C0(Λ) is matched to reproduce the experimental S-wave neutron-neutron scattering
length (a0 = −18.9 fm).
It is convenient to introduce the T -matrix21

.

defined, in the time representation, by

G
(0,2)
µ1µ2
ν1ν2

(tµ1tµ2 , tν1tν2) ≡ G(0,1)0
µ1ν1 (tµ1 , tν1)G(0,1)0

µ2ν2 (tµ2 , tν2)−G(0,1)0
µ2ν1 (tµ2 , tν1)G(0,1)0

µ1ν2 (tµ1 , tν2)

+(−i)
∑
λ1λ2
λ3λ4

∫
dtλ1dtλ2dtλ3dtλ4 G

(0,1)0
λ3ν1 (tλ3 , tν1)G(0,1)0

λ4ν2 (tλ4 , tν2)

× Tλ1λ2
λ3λ4

(tλ1tλ2 , tλ3tλ4)G(0,1)0
µ1λ1 (tµ1 , tλ1)G(0,1)0

µ2λ2 (tµ2 , tλ2) . (2.41)

Eq. (2.41

.

) is represented diagrammatically in Fig. 2.2

.

. As H1 = V LO
/π depends only on the

relative momentum ~q so it is for Tλ1λ2
λ3λ4

(tλ1tλ2 , tλ3tλ4). As a shorthand, Fourier-transformed
T -matrix elements are denoted by T~q~q ′(ω1, ω2, ω3, ω4). Taking into account conservation of
energy, momentum, as well as rotational invariance in the S-wave, the on-shell T -matrix only
depends on the modulus of one relative momentum q and energy E and is denoted as Tq(E).
The on-shell T -matrix is eventually parametrized by the S-wave phase shift δ0(q) as22

.

Tq

(
E = P 2 + q2

m

)
= −4π

m

1
q cot δ0(q)− iq , (2.42)

where δ0(q) is related to a0 by

lim
q→0

q cot δ0(q) = − 1
a0

+O
(
q2
)
. (2.43)

21In the two-body sector this corresponds to the exact two-body vertex function. In a general A-body sector,
the (two-body) T -matrix is referred to as the ladder approximation of the two-body vertex function.

22Note that in Eq. (2.42

.

) T is in the energy representation.
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2.2. Renormalization in the two-body sector

T =

Figure 2.3. T-matrix at tree-level order.

In the low-momentum limit, the on-shell T -matrix can be expanded as

Tq

(
E = P 2 + q2

m

)
= −4π

m

1
− 1
a0
− iq +O (q2)

= −4π
m

1
− 1
a0
− iq

1
1 +O (q2)

= 4π
m
a0 (1− iqa0) +O(q2) . (2.44)

Matching C0(Λ) to the physical scattering length is done by computing directly diagrams
contributing to the T -matrix in the energy representation.

2.2.1. Tree-level renormalization
Tree-level approximation means that only Fig. 2.3

.

contributes to T , i.e.

Tq(E) = h22 LO
Λ ~q~q . (2.45)

Matching to experimental data in the limit q → 0 using (2.42

.

) and (2.43

.

) one has

C0(Λ) = 4π
mv2

Λ(0)a0 (2.46)

and in the case of the Gaussian regulator,

C0(Λ) = 4π
m
a0 , (2.47)

such that the Λ dependence of C0(Λ) is trivial. There is indeed no UV divergence to cancel at
tree-level.
If the aim of this calculation was to compute a nuclear observable in the two-body sector,

such an approximation would not be pertinent because of the un-naturally large scattering
length a0. In the unitary limit, where |a0| → +∞, it is clear that |Tq(E)| → +∞ and the
tree-level approximation breaks down. However, anticipating discussions in Chap. 3

.

, certain
many-body truncations, adapted to particular nuclear systems lying in large A-body sectors,
require renormalization of C0(Λ) at this order in the two-body sector (e.g. infinite neutron
matter at intermediate densities).
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T = +

Figure 2.4. T -matrix at one-loop order.

2.2.2. One-loop renormalization
In this section, T includes the one-loop contribution. Diagrams contributing are represented

in Fig. 2.4

.

. Any exchange contribution is equal to the direct one such that only the direct
contribution needs to be computed. The one-loop contribution reads

Tq (E) = h22 LO
Λ ~q~q − i

∫ +∞

−∞

dl0
2π

∫ d3~l

(2π)3 h
22 LO
Λ ~q ~l

G
(0,1)0
~P+~l

(
E

2 + l0

)
G

(0,1)0
~P−~l

(
E

2 − l0
)
h22 LO

Λ ~l ~q
. (2.48)

Replacing unperturbed one-body propagators with (2.13

.

), integrating the angle of ~l and l0
around the +iε pole, one obtains

Tq (E) = C0(Λ)vΛ(2q)2 − C0(Λ)2vΛ(2q)2 m

×
∫ +∞

0

dl
2π2

l2

l2 − (mE − (P 2 + q2) + q2)− iεvΛ(2l)2 . (2.49)

Eventually, the T -matrix reads as

Tq (E) = C0(Λ)vΛ(2q)2 − m

2π2 C0(Λ)2vΛ(2q)2 ×
[∫ +∞

0
dl v2

Λ(2l)

+
√
mE − (P 2 + q2) + q2 i

π

2 v
2
Λ

(
2
√
mE − (P 2 + q2) + q2

)]
. (2.50)

To match C0(Λ) at order a2
0 , its Λ dependence is assumed to take the form

C0(Λ) = a0 f(Λ) + a2
0 g(Λ) , (2.51)

which, inserted in Eq. (2.50

.

) with the on-shell condition E = P 2+q2

m
, is matched to Eq. (2.44

.

)
for

f(Λ) = 4π
mv2

Λ(0) , (2.52a)

g(Λ) = 8
mv4

Λ(0)

∫ +∞

0
dl v2

Λ(2l) . (2.52b)

For the Gaussian regulator,

vΛ(0) = 1 , (2.53a)∫ +∞

0
dl v2

Λ(2l) = Λ
√
π

2
√

2
, (2.53b)
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2.2. Renormalization in the two-body sector

so that
C0(Λ) = 4π

m
a0 + 4π

m

1√
2π

a2
0 Λ . (2.54)

Compared to (2.47

.

) C0(Λ) includes a Λ dependence that diverges for Λ→ +∞. By construction,
this divergence exactly cancels the divergence originating from the integral associated to the
one-loop diagram.
As in the tree-level approximation, the T -matrix diverges in the unitary limit, which rules

out the one-loop approximation to compute observables in the two-body sector. However, for
the same reason as for the renormalization at tree-level, one-loop renormalization of C0(Λ)
might be pertinent for nuclear systems where employed many-body truncations require such a
renormalization.

2.2.3. Exact renormalization
In this section, T is computed exactly. This corresponds to summing all diagrams displayed

in Fig. 2.5

.

, which are referred to as ladder diagrams. As for the tree and one-loop diagrams,
exchange and direct contributions are equal such that only direct diagrams are to be computed.
The summation if all ladder diagrams can be recast into an implicit equation for the T -matrix

Tq (E) = h22 LO
Λ ~q~q −i

∫ ∞
−∞

dl0
2π

∫ d3~l

(2π)3 h
22 LO
Λ ~q ~l

G
(0,1)0
~P+~l

(
E

2 + l0

)
G

(0,1)0
~P−~l

(
E

2 − l0
)
T~l ~q (E) . (2.55)

T-matrix computation

To simplify the computation of the T -matrix, it is convenient to introduce the integrated23

.

free two-body propagator

G (0,2)0
ll′ (E,P ) ≡ −m l2

l2 − (mE − (P 2 + q2) + q2)− iεδ(l − l
′) . (2.56)

Equation (2.55

.

) is rewritten in a matrix notation as

T = h22 LO
Λ + h22 LO

Λ G (0,2)0 T , (2.57)

where the matrix product is defined for two kernels All′ and Bll′ as

(AB)ll′ =
∫ +∞

0

dk
2π2 AlkBkl′ . (2.58)

As h22 LO
Λ is separable in l

∀M , rank
(
h22 LO

Λ M
)

= 1 , (2.59)

and in particular, rank
(
h22 LO

Λ G (0,2)0
)

= 1. This is a useful property as for any matrix M of
rank one holds an inversion relation, namely24

.

(1−M)−1 = 1 + 1
1− Tr(M)M . (2.60)

23The integration is performed both on the energy and the angle of the relative momentum.
24This approach can be extended in a straightforward way to cases where rank

(
h22 LO

Λ G (0,2)0) is a generic
integer by generalizing the inversion formula.
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Chapter 2. Pionless Effective Field Theory

T = + + + . . .

Figure 2.5. Exact T -matrix equation. The dots denote the summation on all Ladder diagrams.

T = + T

Figure 2.6. Exact T -matrix equation in its implicit form.

Using this relation, an explicit expression of the T matrix can be achieved as

T = h22 LO
Λ + h22 LO

Λ G (0,2)0 T

=
(
1− h22 LO

Λ G (0,2)0
)−1

h22 LO
Λ

= 1
1− Tr(h22 LO

Λ G (0,2)0) h
22 LO
Λ . (2.61)

In an integral form, Eq. (2.61

.

) reads

Tq(E) =
h22 LO

Λ ~q~q

1−
∫ +∞

0

dl
2π2 h

22 LO
Λ ll G (0,2)0

ll (E)
. (2.62)

Replacing the potential and integrated free two-body propagator, one obtains

Tq(E) = C0(Λ)v2
Λ(2q)

1 +mC0(Λ)
∫ +∞

0

dl
2π2

l2v2
Λ(2l)

l2 − (mE − (P 2 + q2) + q2)− iε

= C0(Λ)v2
Λ(2q)

1 + mC0(Λ)
2π2

[∫ +∞

0
dl v2

Λ(2l) + i
π

2
√
mE − (P 2 + q2) + q2 v2

Λ

(
2
√
mE − (P 2 + q2) + q2

)] .
(2.63)

Eventually, the on-shell T -matrix reads as

Tq

(
E = P 2 + q2

m

)
= C0(Λ)v2

Λ(2q)

1 + mC0(Λ)
2π2

[∫ +∞

0
dl v2

Λ(2l) + i
π

2 q v
2
Λ (2q)

] . (2.64)
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2.2. Renormalization in the two-body sector

Matching C0(Λ) to the scattering length

As for the one-loop calculation, T -matrix elements in Eq. (2.64

.

) are matched to Eq. (2.42

.

),
i.e. C0(Λ) is such that

− 4π
m

1
q cot δ0(q)− iq =

−4π
m

− 4π
mC0(Λ)v2

Λ(2q) −
2

πv2
Λ(2q)

∫ +∞

0
dl v2

Λ(2l)− iq
. (2.65)

Using (2.43

.

), C0(Λ) is obtained as

1
C0(Λ) = v2

Λ(0)m4π

[ 1
a0
− 2
π

∫ +∞

0
dl v2

Λ(2l)
]
. (2.66)

In the case of a Gaussian regulator, using (2.53

.

), Eq. (2.66

.

) reads

1
C0(Λ) = m

4π

[
1
a0
− Λ√

2π

]
. (2.67)

For this exact calculation, the on-shell T -matrix converges in the unitary limit so that among
the three different approximations considered in this section, only the exact calculation is
justified to compute observables in the two-body sector (in agreement with power-counting
rules derived in (2.35

.

) for large S-wave scattering length). That is why, traditionally, /πEFT
Hamiltonians at LO are renormalized exactly in 2- and 3-body sectors prior to being used in
many-body calculations [9

.

]. Again such a renormalization is pertinent for certain many-body
truncations. In general, further developments depending on the many-body approximation are
necessary to justify a particular renormalization (see Sec. 4.3.1

.

for an explicit example in the
case of the random phase approximation).
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Chapter 3.

Equation of state of neutron matter

In the previous chapter /πEFT has been introduced leading to the requirement to solve exactly
the A-body Schrödinger equation for the LO Hamiltonian defined in Eq. (2.37a

.

). As this thesis
deals with issues arising in A-body sectors characterised by A� 10, focus is put on computing
the equation of state (EoS) of infinite nuclear matter. Calculations for infinite matter also have
the advantage of being less numerically involved than for finite nuclei as further symmetries
such as translation invariance are preserved. For this many-body system, exact techniques to
compute the energy, such as Faddeev-Yakubovsky [48

.

, 49

.

], are not feasible. Because of their
numerical complexity, Monte-Carlo methods can provide important benchmarks but are not
suitable for systematic and explorative calculations (see [50

.

] for a review applied to nuclear
physics). In general, further truncations specific to many-body sectors are required to compute
the equation of state of infinite nuclear matter. To further simplify the problem, focus is put
here on infinite neutron matter as only a two-body contact interaction enters the potential at
LO. For convenience, the LO superscript is dropped in this chapter. As it will be argued later,
conclusions drawn from such a study will be generalizable to interactions containing N -body
parts.

Regarding infinite neutron matter, there are still many different many-body approximations
that can be employed. As power-counting rules of /πEFT require to solve exactly the LO part
of H/π, the focus is first put on non-perturbative methods. SCGF formalism is an appropriate
tool of choice as it enables to formulate non-perturbative many-body truncations while keeping
thermodynamic consistency [51

.

, 52

.

]. Furthermore, the re-expression of the approximations
considered in this chapter as the resummation of an infinite number of Feynman diagrams will
eventually facilitate the consistency analysis with the renormalizations of H/π considered in
Chap. 2

.

.

To analyse the UV divergences coming out of SCGF calculations, the general SCGF framework
is first introduced in Secs. 3.1

.

-3.2

.

where emphasis is put on its relation to MBPT framework.
Next, in Sec. 3.4

.

, the structure of a state-of-the-art numerical code is briefly recalled before
analysing numerical results that have been produced with it. Eventually, an analytical
calculation performed within the framework of MBPT with the resummation of an infinite set
of diagrams is detailed in Sec. 3.5

.

. This enables us to analyse the consequences of the conclusions
drawn from the numerical analysis, to test the numerical sensitivity of the SCGF code, and to
study the consistency of another many-body approximation with the renormalization of H/π.
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Chapter 3. Equation of state of neutron matter

3.1. Infinite neutron matter
In this section, the perturbation theory used for many-body calculations in infinite matter

is introduced. Infinite neutron matter in the canonical ensemble at temperature T = 0 is
considered. Eventually, the procedure to compute the energy per particle is detailed.

3.1.1. Perturbation theory
Infinite neutron matter is a statistical quantum system assumed to be in the thermodynamical

limit. At temperature T = 0, it reduces to a deterministic quantum system described by an
eigenstate of H/π and A.

Unperturbed system

The same partitioning of the Hamiltonian as in Chap. 2

.

is used to set up the perturbation
theory i.e.

H/π = H0 +H1 , (3.1a)

H0 ≡
∑
~pσ

p2

2ma†~pσa~pσ , (3.1b)

H1 ≡
∑
σ1σ2

∑
~p1~p2
~p ′1~p
′
2

h22
~p1~p2~p ′1~p

′
2
a†~p ′1σ1

a†~p ′2σ2
a~p1σ1a~p2σ2 , (3.1c)

such that the unperturbed Hamiltonian H0 is again the kinetic Hamiltonian and the associated
single-particle energies read as single-particle kinetic energies of a free particle of momentum ~p
i.e.

e~pσ = p2

2m . (3.1d)

However, the reference state is not the particle vacuum |0〉 but the Slater determinant defined
as

|Φρ
0〉 =

∏
σ,p<kF

a†~pσ |0〉 , (3.1e)

where the superscript ρ denotes the number of particle per unit volume and kF is the Fermi
momentum associated to ρ (see Eq. (3.11c

.

)).
The associated unperturbed many-body basis, as defined in Eqs. (1.42

.

) and (1.43

.

), reads as

|Φρ
0〉 =

∏
σ,p<kF

a†~pσ |0〉 , (3.2a)
∣∣∣Φab...

ij...

〉
= a†aa

†
b . . . aiaj . . . |Φ

ρ
0〉 , (3.2b)

where a ≡ (~paσa), b ≡ (~pbσb), . . . are particle states such that1

.

pa, pb, · · · > kF and i ≡ (~piσi),
j ≡ (~pjσj), . . . are hole states such that pi, pj, · · · < kF . Their associated unperturbed energies,

1Presently dealing with spin unpolarized neutron matter, both spin states associated to a given momentum
~p are either occupied or unoccupied. Presently dealing with a spherical Fermi sea, all momenta ~p with the
same magnitude p are either occupied or unoccupied.
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3.1. Infinite neutron matter

as defined in (1.44

.

), read as

ερ0 =
∑
σ

∑
p<kF

e~pσ , (3.2c)

εab...ij... = ερ0 +
∑

p∈{pa,pb,...}
e~pσ −

∑
p∈{pi,pj ,...}

e~pσ . (3.2d)

where the sums on momenta are to be understood as integrals on ~p, e.g.

∑
p<kF

←→
∫
|~p|<kF

d3~p

(2π)3 . (3.3)

Using Eq. (3.1d

.

) and similarly as for Eq. (1.52b

.

), the unperturbed one-body Green’s function
in time representation reads as

iG
(ρ,1)0
~pσ~p ′σ ′(t, t′) =

[
θ(t− t′) θ(p− kF )e−ie~pσ(t−t′)

− θ(t′ − t) θ(kF − p)e−ie~pσ(t′−t)
]

(2π)3δ (~p− ~p ′) δσσ ′ , (3.4)

such that its energy representation becomes

iG
(ρ,1)0
~pσ~p ′σ ′(ω) = i

 θ (p− kF )
ω − p2

2m + iη
+ θ (kF − p)
ω − p2

2m − iη

 (2π)3δ (~p− ~p ′) δσσ ′ . (3.5)

Contrary to the perturbation theory introduced in Sec. 2.1.2

.

, the one-body Green’s function
contains poles associated both to single-particle (p > kF ) and single-hole (p < kF ) states.
Incidentally, the topology of the Feynman diagrams contributing to G(ρ,k) is richer than in the
perturbation theory developed in Chap. 2

.

. This point will be elaborated on Chap. 4

.

.

3.1.2. Energy per particle
The one-body momentum density distribution is associated to the operator

n (~p) ≡
∑
σ

a†~pσa~pσ . (3.6)

Using Eq. (1.27

.

), its expectation value is related to the equal-time one-body Green’s function
as

n (~p)0 =
〈Ψρ

0|
∑
σ a
†
~pσa~pσ|Ψ

ρ
0〉

〈Ψρ
0|Ψρ

0〉
= −i

∑
σ

G
(ρ,1)
~pσ~pσ(t, t+) . (3.7)

The (number) density operator ρ and its expectation value in the ground state are respectively
defined as the integral of n(~p) and of n(~p)0

2

.

, i.e.

ρ ≡
∑
~p

n(~p) =
∑
~pσ

a†~pσa~pσ , (3.8a)

ρ0 ≡
∑
~p

n(~p)0 = −i
∑
~pσ

G
(ρ,1)
~pσ~pσ(t, t+) . (3.8b)

2ρ0 should not be confused with the saturation density.
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Chapter 3. Equation of state of neutron matter

Similarly the energy density is obtained using Eq. (1.28

.

) with

eµ ≡
p2
µ

2m , (3.9a)

h̆11
µν ≡ 0 , (3.9b)
h22 ≡ h22

/π , (3.9c)

so that

E0 = − 1
(1!)2

∑
~pσ

p2

2m iG
(ρ,1)
~pσ~pσ(t, t+) + 1

(2!)2
∑
σ1σ2

∑
~p1~p2
~p ′1~p
′
2

h22
~p1~p2~p ′1~p

′
2
i2G

(ρ,2)
~p1σ1~p2σ2
~p ′1σ1~p ′2σ2

(t, t, t+, t+) . (3.10)

Using the unperturbed one-body Green’s function (3.4

.

), the unperturbed energy density,
momentum distribution and (number) density are related to the Fermi momentum respectively
as

ερ0 = k5
F

5π22m , (3.11a)

n(~p)0
0 = 2θ(kF − p) , (3.11b)

ρ0
0 = k3

F

3π2 . (3.11c)

Consequently, the energy per particle reads in the unperturbed case
ερ0
ρ0

0
= 3

5
k2
F

2m . (3.12)

To compute the energy per particle of neutron matter beyond the unperturbed case, corrections
to the one- and two-body Green’s functions are required as input to Eqs. (3.10

.

) and (3.8b

.

). In
the next section, the framework of Self-Consistent Green’s Functions (SCGF) is introduced to
compute (non-perturbative) approximations of exact Green’s functions.

3.2. Self-consistent Green’s functions
In the context of nuclear many-body calculations applied to infinite matter, non-perturbative

schemes based on the SCGF formalism provide state-of-the-art results. Such a technique has
the advantage of dealing with the non-perturbative character of nuclear systems while keeping,
under certain conditions, the thermodynamic consistency of observables i.e. the validity of
thermodynamic identities [51

.

, 52

.

]. The many-body scheme can be related to perturbation
theory as its outcome can be reformulated in terms of an infinite sum of Feynman amplitudes.
Being able to correctly renormalize the /πEFT interaction with respect to a generic SCGF
calculation would be an important step forward in the development of an EFT for nuclear
matter. That is why, in this thesis, SCGF is the first many-body scheme to be employed to
test the renormalization of H/π at LO. To this aim, SCGF theory is introduced in this section
via the use of equations of motion with an emphasis on its link to MBPT diagrams. As SCGF
calculations must eventually be done numerically, the numerical implementation is discussed
in Sec. 3.4

.

with a focus on specific numerical approximations that can hamper the study of
renormalization invariance of observables.
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3.2. Self-consistent Green’s functions

3.2.1. Equations of motion
The equations of motion denote a set of coupled differential equations fulfilled by exact

k-body Green’s functions3

.

. They can be derived from the time-dependence of creation and
annihilation operators [24

.

]. For a Hamiltonian composed of up to N -body operators, the
equations of motion couple the k-body Green’s function to (k−N + 1)- , . . . , (k+N −1)-body
Green’s functions. In the present case where H/π is a two-body operator, the equation involving
the one-body Green’s function reads in position space as(

i
∂

∂t1
+ ∇

2
r

2m

)
G

(ρ,1)
~r1σ1~r3σ3

(t1, t3) =

δ(t1 − t3)δ(~r1 − ~r3) − i
∑
σ2

∫
d3~r2 h

22
~r1~r2~r1~r2 G

(ρ,2)
~r1σ1~r2σ2
~r3σ3~r2σ2

(t1, t1, t3, t+3 ) . (3.13)

Given that, the full hierarchy of equations of motion cannot be solved for H/π in practice,
truncations must be introduced.

Truncations presently considered consist in approximations performed at the level of G(ρ,2).
By introducing the self-energy Σ(ρ)

~r1σ1~r2σ2
(t1, t2), defined implicitly via

∑
σ2

∫
d3~r2dt2 Σ(ρ)

~r1σ1~r2σ2
(t1, t2) G(ρ,1)

~r2σ2~r3σ3
(t2, t3) ≡

− i
∑
σ2

∫
d3~r2 h

22
~r1~r2~r1~r2 G

(ρ,2)
~r1σ1~r2σ2
~r3σ3~r2σ2

(t1, t1, t3, t+3 ) , (3.14)

approximations on G(ρ,2) can be conveniently expressed as approximations on Σ(ρ), with the
advantage of working at the one-body level. Substituting (3.14

.

) in (3.13

.

) leads to Dyson’s
equation

G
(ρ,1)
~rσ~r ′σ ′(t, t′) = G

(ρ,1)0
~rσ~r ′σ ′(t, t′)

+
∑
σ1σ2

∫
dt1d3~r1 dt3d3~r2 G

(ρ,1)
~rσ~r1σ1

(t, t1) Σ(ρ)
~r1σ1~r2σ2

(t1, t2) G(ρ,1)0
~r2σ2~r ′σ ′

(t2, t′) , (3.15)

which is represented diagrammatically in Fig. 3.1

.

. Equation (3.15

.

) is conveniently rewritten in
a matrix notation as

G(ρ,1) = G(ρ,1)0 +G(ρ,1) Σ(ρ) G(ρ,1)0 , (3.16)
where the matrix product is both with respect to the one-body basis and to the time-dependence.

The self-energy can be expanded in terms of unperturbed one-body Green’s functions and
two-body vertices. In terms of Feynman diagrams, the self-energy is the sum of all one-
particle irreducible (1PI) diagrams. All one-particle reducible diagrams are then generated by
iteration within Dyson equation (see Fig. 3.2

.

for a diagrammatic representation). Therefore
approximations on the self-energy can be seen as truncations on the corresponding set of 1PI
diagrams.
In the case of self-consistent Green’s functions, the self-energy is expanded in terms of the

dressed one-body Green’s function itself (rather than unperturbed ones), which is the unknown
3Equations of motion are also referred to as Martin-Schwinger [24

.

] or BBGYK hierarchy [53

.

, 54

.

, 55

.

, 56

.

].
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= + Σ

Figure 3.1. Diagrammatic representation of the self-consistent Dyson equation (3.15

.

).

Σ = + ,

= + + + +

+ + + + . . .

Figure 3.2. Example of an approximation of Σ(ρ) in terms of 1PI diagrams (with undressed
propagators) and summed diagrams contributing to G(ρ,1) in this approximation.
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of the problem4

.

. In this case, the dressed one-body Green’s function is exact if and only if
the self-energy is the sum of all 2PI diagrams [11

.

]5

.

. Therefore, SCGF approximations consist
in truncations of the set of 2PI diagrams with dressed propagators. An example of such an
approximation on the self-energy and the diagrams resummed are displayed in Fig. 3.3

.

.
To compute the approximated one-body Green’s function, the Dyson equation (3.15

.

) together
with the approximative ansatz on the self-energy are solved iteratively. Examples of such
approximations are discussed in Sec. 3.3

.

. In practice, this is done by working on the spectral
functions of the one-body Green’s function6

.

and on the self-energy, as discussed in the Sec. 3.2.2

.

.
Before turning to that, the relation between MBPT and SCGF formalisms is made explicitly.

Relation to Many-Body Perturbation Theories

The link between MBPT and SCGF can be made explicit by decomposing the self-energy
Σ(ρ) as

Σ(ρ) = Σ(ρ)(0) + Σ(ρ)(1) + Σ(ρ)(2) + . . . , (3.17)

where Σ(ρ)(p) denotes the order p component of the self-energy i.e. the sum of all 1PI diagrams
(in terms of unperturbed propagator) with p vertices7

.

. Similarly, the dressed propagator is
decomposed as

G(ρ,1) = G(ρ,1)(0) +G(ρ,1)(1) +G(ρ,1)(2) + . . . , (3.18)

where G(ρ,1)(p) denotes the order p component of the dressed one-body propagator i.e. the sum
of all diagrams (in terms of unperturbed propagator) with p vertices and one incoming/outgoing
external line.8

.

. Using Dyson’s equation (3.15

.

), contribution at order p in MBPT to the one-body
Green’s function reads recursively as

G(ρ,1)(0) ≡ G(ρ,1)0 , (3.19a)
G(ρ,1)(1) ≡ G(ρ,1)(0) Σ(ρ)(1) G(ρ,1)(0) , (3.19b)
G(ρ,1)(2) ≡ G(ρ,1)(0) Σ(ρ)(2) G(ρ,1)(0) +G(ρ,1)(1) Σ(ρ)(1) G(ρ,1)0 , (3.19c)

. . .

G(ρ,1)(p) ≡
p∑
j=1

G(ρ,1)(p−j) Σ(ρ)(j) G(ρ,1)0 . (3.19d)

Consequently, contributions at order p in MBPT to the one-body Green’s function are included
in SCGF formalism for a self-energy approximated with all 1PI diagrams containing at least
p vertices. In the case of a self-energy approximated in terms of 2PI diagrams with dressed
propagators, formulas are more involved and are not displayed explicitly here.

4This is enough to compute the energy per particle thanks to the GMK sum rule (1.40

.

).
5The 2PI character avoids any double counting of Feynman diagrams when iterating the Dyson equation

via self-energy insertion. If dressed vertices are used as well (by means of a Bethe-Salpeter equation [57

.

]) in the
development of the self-energy, only skeleton diagrams are to be considered to avoid double counting [58

.

].
6Unless precise otherwise, spectral function refers in the following to the one-body spectral function as

defined in Eq. (1.36

.

)
7The self-energy at order p = 0 is defined as Σ(ρ)(0) ≡ 0.
8The dressed propagator at order p = 0 is defined as the unperturbed propagator ; see Eq (3.19a

.

).
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Σ = + ,

= + +

+ + + + . . .

+ + + + . . .

Figure 3.3. Example of an approximation of Σ(ρ) in terms of 2PI diagrams (with dressed
propagators) and summed diagrams (with unperturbed diagrams) contributing to G(ρ,1) in this
approximation.
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3.2. Self-consistent Green’s functions

3.2.2. Spectral function in the iterative procedure
The calculation starts with a particular ansatz on the spectral function. Typically, the initial

spectral function is the unperturbed one reading from (1.35

.

) and (1.36

.

) as

S
(ρ,1)+0
~pσ~p ′σ ′ (ω) = θ(p− kF ) (2π)δ

(
ω − p2

2m

)
δσσ ′ , (3.20a)

S
(ρ,1)−0
~pσ~p ′σ ′ (ω) = θ(kF − p) (2π)δ

(
ω − p2

2m

)
δσσ ′ , (3.20b)

S
(ρ,1)0
~pσ~p ′σ ′(ω) = (2π)δ

(
ω − p2

2m

)
δσσ ′ . (3.20c)

Note that compared to the general case (1.35

.

), the Fermi energies E±1
0 are presently degenerated

and correspond to the unperturbed chemical potential µ0 verifying

µ0 ≡ k2
F

2m . (3.21)

Using the spectral function, the imaginary part of retarded and advanced one-body Green’s
functions are obtained using (1.39

.

), which leads to

ImG
(ρ,1)+
~pσ~p ′σ ′(ω) = −1

2S
(ρ,1)
~pσ~p ′σ ′(ω) , (3.22a)

ImG
(ρ,1)−
~pσ~p ′σ ′(ω) = +1

2S
(ρ,1)
~pσ~p ′σ ′(ω) . (3.22b)

Next, the real parts are obtained thanks to the dispersion relations derived from (1.39

.

) namely

ReG(ρ,1)+
~pσ~p ′σ ′(ω) = −2 P

∫ +∞

−∞

dω ′
2π

ImG
(ρ,1)+
~pσ~p ′σ ′(ω ′)

ω − ω ′
, (3.23a)

ReG(ρ,1)−
~pσ~p ′σ ′(ω) = +2 P

∫ +∞

−∞

dω ′
2π

ImG
(ρ,1)−
~pσ~p ′σ ′(ω ′)

ω − ω ′
. (3.23b)

Given a truncation for the self-energy Σ(ρ), its real and imaginary parts are computed using
the one-body Green’s function derived in the previous step. Eventually, the new spectral
function is actualized using Dyson’s equation, which leads to

S
(ρ,1)
~pσ~p ′σ ′(ω) =

−2 Im Σ(ρ)+
~pσ~p ′σ ′(ω)[

ω − p2

2m − Re Σ(ρ)+
~pσ~p ′σ ′(ω)

]2
+
[
Im Σ(ρ)+

~pσ~p ′σ ′(ω)
]2 (2π)3δ (~p− ~p ′) , (3.24)

where Σ(ρ)+ corresponds to the retarded self-energy, defined in analogy with the retarded
one-body Green’s function.

At this level, and before iterating further with the new spectral function computed in (3.24

.

),
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the chemical potential9

.

µ is adjusted to obtain the targeted density ρ0 using

n(~p)0 =
∑
σ

∫ +∞

−∞

dω
2π S

(ρ,1)
~pσ~pσ(ω)θ (µ− ω) , (3.25a)

ρ0 =
∫ d3~p

(2π)3 n(~p)0 . (3.25b)

Note that (3.25

.

), by updating the chemical potential, enables to disentangle the hole and the
particle component of the spectral function as

S
(ρ,1)+
~pσ~pσ (ω) = S

(ρ,1)
~pσ~pσ(ω)θ (ω − µ) , (3.26a)

S
(ρ,1)−
~pσ~pσ (ω) = S

(ρ,1)
~pσ~pσ(ω)θ (µ− ω) . (3.26b)

The different steps in the iterative procedure are recapitulated in Tab. 3.1

.

. To fully define an
approximation in a SCGF framework, one needs to specify the approximation on the self-energy.
In the following section, Hartree-Fock, 2nd Born and ladder approximations, which are used in
the numerical calculations presented in Sec. 3.4

.

, are introduced.

3.3. Self-energy approximations
Approximations considered here are based on a truncation of the set of dressed Feynman

diagrams.

3.3.1. Hartree-Fock approximation
The Hartree-Fock (HF) approximation consists in the first order (in term of number of

vertices) contribution to the self-energy. The HF self-energy is non-zero only for t = t′

which is why it is characterized as instantaneous. Consequently, the energy representation is
actually energy independent. Evaluating the Feynman amplitude of diagrams in Fig. 3.4

.

, the
Hartree-Fock self-energy reads as

Σ(ρ)HF
~p1σ1~p ′1σ

′
1
(t, t′) =

∑
σσ ′

∑
~p~p ′

h22
~p1~p~p ′1~p

s22
σ1σσ ′1σ

′ (−i)G(ρ,1)
~p ′σ ′~pσ(t, t+) δ(t− t′) , (3.27)

which gives in the energy representation

Σ(ρ)HF
~p1σ1~p ′1σ

′
1

=
δσ1σ ′1

∑
~p

h22
~p1~p~p ′1~p

n(~p)0 −
∑
~p

h22
~p1~p~p~p ′1

iG
(ρ,1)
~pσ1~pσ ′1

(t, t+)
 (2π)3δ (~p1 − ~p ′1) , (3.28)

where the first (second) term in (3.28

.

) corresponds to the direct (exchange) contribution.
Comparing with the perturbation theory developed in Chap. 2

.

, at first order there are already
loop diagrams contributing to k-body Green’s functions. Furthermore, exchange and direct
contributions are no longer identical. This is due to the presence of a hole component in the
one-body Green’s function (dressed or unperturbed).

9If the spectral function is iterated, at fixed µ = µ0, the density is in general modified and does not match
the targeted one anymore.
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3.3. Self-energy approximations

Σ(ρ)HF =

Figure 3.4. Diagrams contributing to Σ(ρ)HF in terms of dressed propagators.

As the initial Green’s function considered in the iteration (the unperturbed one) is diagonal
in spin-isospin and in momentum space, and given that the two-body interaction is spin- and
isospin-independent and conserves the total momentum, the dressed propagator obtained after
any number of iterations verifies

G
(ρ,1)
~pσ~p ′σ ′(t, t′) ≡ G

(ρ,1)
~pσ (t, t′) (2π)3δ(~p− ~p ′) δσσ ′ . (3.29a)

Similarly, the self-energy and the spectral function can also be reduced to their diagonal part
i.e.

Σ(ρ)
~pσ~p ′σ ′(ω) ≡ Σ(ρ)

~pσ (ω) (2π)3δ(~p− ~p ′) δσσ ′ , (3.29b)
S

(ρ,1)
~pσ~p ′σ ′(ω) ≡ S

(ρ,1)
~pσ (ω) (2π)3δ(~p− ~p ′) δσσ ′ (3.29c)

Consequently, (3.28

.

) further simplifies to

Σ(ρ)HF
~p1σ1

=
∑

~p

h22
~p1~p~p1~p n(~p)0 −

∑
~p

h22
~p1~p~p~p1 iG

(ρ,1)
~pσ1

(t, t+)
 . (3.30)

In the HF approximation, the dressed one-body Green’s function G(ρ,1)HF can be computed
easily as the self-energy is energy independent. From Dyson’s equation (3.16

.

),
(
G(ρ,1)HF

)−1
=
(
G(ρ,1)0

)−1
− Σ(ρ)HF , (3.31)

so that
G

(ρ,1)HF
~pσ (ω) = θ (p− kF )

ω − eHF
~pσ + iη

+ θ (kF − p)
ω − eHF

~pσ − iη
, (3.32)

where
eHF
~pσ ≡

p2

2m + Σ(ρ)HF
~pσ . (3.33)

In the HF approximation, the one-body Green’s function is the same as the unperturbed one
with modified single-particle energies eHF

~pσ .

3.3.2. Second Born approximation
The 2nd Born approximation sums all diagrams at 1st and 2nd order contributing to the

self-energy. Diagrams contributing in 2nd Born approximation are represented in Fig. 3.5

.

. The

47



Chapter 3. Equation of state of neutron matter

Σ(ρ)2B = +

Figure 3.5. Diagrams contributing to Σ(ρ)2B in terms of dressed propagators.

self-energy reads, in the energy representation, as

Σ(ρ)2B
~pσ (ω) = Σ(ρ)HF

~pσ

+ (−i)
2!

1
2
∑

σ1σ2σ3

∑
~l1~l2

∫ +∞

−∞

dω1

2π
dω2

2π h22
( ~p2 +~l1)( ~p2−~l2)(~p)(~l2−~l1) s

22
σ1σ2σσ3

× iG(ρ,1)
~p
2 +~l1 σ1

(
ω

2 + ω1

)
iG

(ρ,1)
~p
2−~l2 σ2

(
ω

2 − ω1

)

× iG(ρ,1)
~l2−~l1 σ3

(ω2 − ω1)h22
(~p)(~l2−~l1)( ~p2 +~l1)( ~p2−~l2)s

22
σσ3σ1σ2 .

(3.34)

Contrary to the Hartree-Fock case, Σ(ρ)2B is not independent of the energy and is complex-
valued. Both are general features of the self-energy. In general, the energy-dependent part of
the self-energy Σ(ρ)

d (ω) is referred to as the dynamic self-energy while the energy independent
part Σ(ρ)

s ≡ Σ(ρ)HF is referred to as the static self energy, i.e.

Σ(ρ)(ω) = Σ(ρ)
s + Σ(ρ)

d (ω) . (3.35)

Following from the Dyson equation (3.15

.

) and the analytic properties of the one-body Green’s
function, the self-energy verifies, in the approximations considered in this thesis and in the
exact case, the dispersion relations [59

.

]

Re Σ(ρ)+
~pσ~p ′σ ′(ω) = Σ(ρ)HF

~pσ~p ′σ ′ − 2 P
∫ +∞

−∞

dω ′
2π

Im Σ(ρ)+
~pσ~p ′σ ′(ω ′)
ω − ω ′

, (3.36a)

Re Σ(ρ)−
~pσ~p ′σ ′(ω) = Σ(ρ)HF

~pσ~p ′σ ′ + 2 P
∫ +∞

−∞

dω ′
2π

Im Σ(ρ)−
~pσ~p ′σ ′(ω ′)
ω − ω ′

. (3.36b)

In practice, the HF self-energy and the imaginary part of the dynamic self-energy are first
computed. The real part of the self energy is then evaluated using (3.36

.

).

3.3.3. Ladder approximation
Eventually, the last approximation considers calculations based on SCGF is the ladder or

T -matrix approximation. The ladder approximation consists in summing all ladder diagrams as
shown in Fig. 3.6

.

. The ladder approximation is of great interest for calculating observables of
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3.3. Self-energy approximations

Σ(ρ)L = + + + + . . .

Figure 3.6. Diagrams contributing to Σ(ρ)L in terms of dressed propagators.

infinite nuclear matter. Analogously to HF and 2nd Born approximations, it has the advantage
of keeping thermodynamic consistency. Furthermore, in terms of Feynman diagrams, the ladder
approximation resums all-order two-body scattering vertices, traditionally important to handle
the strong repulsive core of the nuclear interaction [60

.

]. Regarding /πEFT power counting at
LO, it does not meet in general the requirement of exactly computing the self-energy. However,
observables computed in the two-body sector within the ladder approximation are indeed exact.
This motivates further investigations on both the renormalization of the ladder approximation
and on its accuracy to compute nuclear observables.
In practice, one first computes the (in-medium) T -matrix defined as the solution of the

implicit equation represented diagrammatically in Fig. 3.7

.

. Conservation of the total momentum
and the factorization of the spin components as in Sec. 2.2

.

allow one to use the shorthand
notation

T
(ρ)
~p1σ1~p2σ2
~p ′1σ

′
1~p
′
2σ
′
2

(ω) ≡ T
(ρ)
~P ~q~q ′

(ω) s22
σ1σ2σ ′1σ

′
2

(2π)3δ(~p1 + ~p2 − ~p ′1 − ~p ′2) , (3.37)

where ~P , ~q and ~q ′ are the total and relative momenta defined in (2.8

.

).
With these notations, the implicit equation satisfied by the T -matrix reads as

T
(ρ)
~P ~q~q ′

(ω) = h22
~q ′~q + (−i)

2

∫ ∞
−∞

dωl
2π

∫ d3~l

(2π)3 h
22
~q ~l
G

(ρ,1)
~P+~l

(
ω

2 + ωl

)
G

(ρ,1)
~P−~l

(
ω

2 − ωl
)
T

(ρ)
~P ~l~q ′

(ω) .

(3.38)
Eventually, the self-energy is computed from the closure (by one dressed propagator) of the
T -matrix i.e.

Σ(ρ)L
~pσ (ω) =

∑
σ ′

∑
~p ′

∫ dω
2π T

(ρ)
~p+~p ′

2
~p−~p ′

2
~p−~p ′

2
(ω + ω ′) s22

σσ ′σσ ′ iG
(ρ,1)
~p ′σ ′(ω ′) , (3.39)

which is represented diagrammatically in Fig. 3.8

.

. As for the 2nd Born approximation, in
practical calculations, only the imaginary part of the retarded/advanced self-energy are
computed before using the dispersion relations (3.36

.

) to access the real part.

3.3.4. Renormalization in self-consistent Green’s functions
Many-body calculations within SCGF theory rely on approximations of the equation of

motions for k-body Green’s functions. In the three different approximations considered above,
the fact that the self-energy is approximated via the sum of dressed Feynman amplitudes allows
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T = + T

Figure 3.7. Diagrammatic representation of the self-consistent equation satisfied by the
T -matrix.

Σ(ρ)L = T

Figure 3.8. Diagrammatic representation of the relation between the Self-energy Σ(ρ)L and
the T -matrix.

one to make a direct connection to Feynman diagrams introduced in Chap. 1

.

. While MBPT
calculations of the one-body Green’s function at order n consist of summing all Feynman
diagrams with at most n vertices, the three approximations above can be restated as a
resummation of an infinite number of Feynman diagrams expressed in terms of the unperturbed
propagator used in MBPT diagrams. For example, typical Feynman diagrams with unperturbed
propagators contributing to the 2nd Born approximation are represented in Fig. 3.3

.

.

The re-expression of such approximations in terms of unperturbed Feynman diagrams allows
one to study explicit UV divergences that can occur. This has been thoroughly studied in the
particular case of Φ-derivable approximations [11

.

, 51

.

, 61

.

, 62

.

, 63

.

] for a relativistic φ4 theory
[64

.

, 65

.

, 66

.

, 67

.

, 68

.

]. The main outcome of such studies is that additional counter-terms can be
necessary to renormalize the interaction compared to the naïve renormalization obtained by
using equivalent diagrams but with unperturbed propagators in the particle vacuum. However,
it is still unclear whether such a conclusion holds in the case of a non-relativistic theory such
as /πEFT. For example, a dressed (or unperturbed) hole propagator has no obvious counterpart
in the perturbation theory employing the particle vacuum as the reference state. Hence, it
would be of interest to extend such studies to the non-relativistic case, in view of developing
consistently renormalized calculations of observables in /πEFT within e.g. a SCGF framework.
To the best of our knowledge, such analytical investigations are yet to be done. As a first step
into that direction, numerical investigations can provide new insight into the renormalization
of the H/π for many-body observables computed in a SCGF framework.

In the next section, numerical calculations are detailed. After introducing the close set of
equations to be solved consistently, emphasis is put on the numerical approximations necessary
for practical calculations. Eventually, numerical results are discussed.
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3.4. Numerical computations

3.4. Numerical computations

3.4.1. Self-consistent Green’s function numerical scheme
The HF, 2nd Born and ladder approximations can all be recast as three different approxi-

mations of the T -matrix. The HF consists in taking into account only the first diagram (a
simple vertex) in Fig. 3.7

.

. The 2nd Born approximation truncates the T -matrix at second order
i.e. only the simple vertex and the one-loop diagrams contribute to the T -matrix. The ladder
approximation takes into account the T -matrix solving exactly Fig. 3.7

.

. In this section the
close set of equation solved numerically is made explicit for the exact T -matrix. HF and 2nd

Born approximations are then retrieved by only adapting the equation used to compute the
T -matrix.

Following Sec. 3.2.2

.

the imaginary and real parts of the dressed one-body Green’s function
are computed from Eq. (3.22

.

) and Eq. (3.23

.

). Then, the T -matrix must be computed using
Eq. (3.38

.

) with the consistently dressed propagator. In practice the T -matrix is derived from
the spectral function by computing the retarded two-time reduced two-body Green’s function
G(ρ,2)+ as an intermediate object. G(ρ,2)+ and the spectral function S(ρ,1) are related in the
energy representation via

ImG
(ρ,2)+
~p1σ1~p2σ2
~p1σ1~p2σ2

(Ω) = −1
2

∫ +∞

−∞

dω
2π S

(ρ,1)
~p1σ1

(ω)S(ρ,1)
~p2σ2

(Ω− ω) [1− θ(µ− ω)− θ (µ− (Ω− ω))] ,

(3.40)
whereas the real part reads from the dispersion relation as

ReG(ρ,2)+
~p1σ1~p2σ2
~p1σ1~p2σ2

(Ω) = −2 P
∫ +∞

−∞

dΩ ′
2π

ImG
(ρ,2)+
~p1σ1~p2σ2
~p1σ1~p2σ2

(Ω ′)

Ω− Ω ′ . (3.41)

Then Eq. (3.38

.

) is reformulated in terms of the two-time reduced two-body Green’s function
integrated on the angle of the relative momentum and the energy G (ρ,2)+, namely

G (ρ,2)+
~P qq ′

(Ω) δσ1σ ′1
δσ2σ ′2

(2π2)δ (q − q ′) ≡
∫ +1

−1
d (cos θ)G(ρ,2)+

~p1σ1~p2σ2
~p ′1σ

′
1~p2σ ′2

(Ω) , (3.42)

where θ denotes the angle between the total momentum ~P and the relative momentum ~q. As in
Sec. 2.2.3

.

the retarded T -matrix is solution of the matrix equation (at fixed total momentum
~P and total energy Ω)10

.

T
(ρ)+
~P

(Ω) = h22
Λ + h22

Λ G (ρ,2)+
~P

(Ω)T (ρ)+
~P

(Ω) , (3.43)

which is solved by matrix inversion. In Eq. (3.43

.

) matrix notations are used for the retarded
T -matrix T (ρ)+

~P
(Ω), the interaction potential h22 and the integrated two-time reduced two-body

10The spin trace is compensated by the symmetry 1
2 due to the two equivalent lines in the loop.
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Green’s function G (ρ,2)+
~P

(Ω), i.e. (
T

(ρ)+
~P

(Ω)
)
qq ′
≡ T

(ρ)+
~P qq ′

(Ω) , (3.44a)(
G (ρ,2)+
~P

(Ω)
)
qq ′
≡ G (ρ,2)+

~P qq ′
(Ω) , (3.44b)(

h22
Λ

)
qq ′
≡ h22

Λ qq ′ . (3.44c)

The retarded self-energy follows from Eq. (3.39

.

) which, expressed in terms of the retarded
T -matrix and of the spectral function S(ρ,1) reads for the imaginary part as

Im Σ(ρ)+
~pσ (ω) = 1

2
∑
σ ′

∑
~p ′

∫ +∞

−∞

dω ′
2π ImT

(ρ)+
(~p+~p ′

2 ) ( ~p−~p ′2 )( ~p−~p ′2 )
(ω + ω ′)

× s22
σσ ′σσ ′ S

(ρ,1)
~p ′σ ′ (ω ′) [θ(µ− ω ′)− θ(2µ− (ω + ω ′))] . (3.45)

The real part of the retarded self-energy follows from the dispersion relation (3.36

.

) and the HF
part computed directly from the spectral function by rewriting Eq. (3.30

.

)

Σ(ρ)HF
~pσ = 1

2
∑
~p ′

∑
σ ′

∫ +∞

−∞

dω ′
2π h22

Λ ~p~p ′~p~p ′ S
(ρ,1)
~p ′σ ′ (ω ′) θ(µ− ω ′) . (3.46)

Eventually, from the retarded self-energy, the spectral function is actualized using (3.24

.

) and
the chemical potential is actualized using (3.25

.

). The global set of equations to be solved is
displayed in Tab. 3.1

.

. All those equations are solved self-consistently i.e. iteratively until the
spectral function S(ρ,1), the retarded T -matrix T (ρ)+, the retarded self-energy Σ(ρ)+ and the
chemical potential µ reach convergence.

Equations in Tab. 3.1

.

can only be solved numerically and require numerical approximations.
Such approximations are detailed in the next section.

3.4.2. Numerical approximations
Equations in Tab. 3.1

.

are solved numerically by a Fortran code. Such a code relies on three
main numerical approximations which are briefly discussed here as they play an important
role when attempting to draw conclusions about the consistency of the renormalization of
H/π through the calculation of the energy per particle of infinite neutron matter. Further
discussions about the numerical aspects of codes can be found in [69

.

, 70

.

, 12

.

, 71

.

, 72

.

].
The first numerical approximation consists in the discretization of the continuous integrals

on the energy and on the momenta e.g. in Eq. (3.45

.

). This is done by introducing discretization
steps ∆p, ∆θ and ∆ω respectively on the momentum modulus, the angle between the relative
and the total momentum and on the energy. Additionally, numerical cut-offs Cp and Cω are
necessary to terminate the infinite integrals on momenta and energies. For example, the integral
on the energy of a generic function f(ω) is realized numerically as

∫ +∞

−∞

dω
2π f(ω)←→

+Cω
∆ω∑

i=−Cω∆ω

∆ω

2π f (i×∆ω) . (3.47)
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Fixed Step Eq. Instruction

1 (3.40

.

)
ImG

(ρ,2)+
~p1σ1~p2σ2
~p1σ1~p2σ2

(Ω) = −1
2

∫ +∞

−∞

dω
2π S

(ρ,1)
~p1σ1

(ω)S(ρ,1)
~p2σ2

(Ω− ω)

× [1− θ(µ− ω)− θ (µ− (Ω− ω))]

2 (3.41

.

) ReG(ρ,2)+
~p1σ1~p2σ2
~p1σ1~p2σ2

(Ω) = −2 P
∫ +∞

−∞

dΩ ′
2π

ImG
(ρ,2)+
~p1σ1~p2σ2
~p1σ1~p2σ2

(Ω ′)

Ω− Ω ′

µ 3 (3.42

.

) G (ρ,2)+
~P qq ′

(Ω) δσ1σ ′1
δσ2σ ′2

(2π2)δ (q − q ′) =
∫ +1

−1
d (cos θ)G(ρ,2)+

~p1σ1~p2σ2
~p ′1σ

′
1~p2σ ′2

(Ω)

and 4 (3.43

.

) T
(ρ)+
~P

(Ω) = h22
Λ + h22

Λ G (ρ,2)+
~P

(Ω) T (ρ)+
~P

(Ω)

S(ρ,1) 5 (3.45

.

)
Im Σ(ρ)+

~pσ (ω) = 1
2
∑
σ ′

∑
~p ′

∫ +∞

−∞

dω ′
2π ImT

(ρ)+
(~p+~p ′

2 ) ( ~p−~p ′2 )( ~p−~p ′2 )
(ω + ω ′)

× s22
σσ ′σσ ′ S

(ρ,1)
~p ′σ ′ (ω ′) [θ(µ− ω ′)− θ(2µ− (ω + ω ′))]

6 (3.46

.

) Σ(ρ)HF
~pσ = 1

2
∑
~p ′

∑
σ ′

∫ +∞

−∞

dω ′
2π h22

Λ ~p~p ′~p~p ′ S
(ρ,1)
~p ′σ ′ (ω ′) θ(µ− ω ′)

7 (3.36

.

) Re Σ(ρ)+
~pσ~p ′σ ′(ω) = Σ(ρ)HF

~pσ~p ′σ ′ − 2 P
∫ +∞

−∞

dω ′
2π

Im Σ(ρ)+
~pσ~p ′σ ′(ω ′)
ω − ω ′

Σ(ρ)+ 8 (3.24

.

) S
(ρ,1)
~pσ (ω) =

−2 Im Σ(ρ)+
~pσ (ω)[

ω − p2

2m − Re Σ(ρ)+
~pσ (ω)

]2
+
[
Im Σ(ρ)+

~pσ (ω)
]2

T (ρ)+ 9 (3.25

.

) ρ0 =
∑
σ

∫ d3~p

(2π)3

∫ +∞

−∞

dω
2π S

(ρ,1)
~pσ (ω)θ (µ− ω)

Table 3.1. Self-consistent equations solved numerically in the self-consistent ladder scheme.
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Furthermore, in the case of a general potential, an angle-averaging approximation is in-
troduced on the two-time reduced two-body Green’s function. This enables to decouple
partial-wave contributions in (3.43

.

) by replacing G(ρ,2)
~pσ~p ′σ ′(ω) in the T -matrix calculation by

Ḡ
(ρ,2)
~Pqσσ ′

(ω) ≡ 1
2

∫ +1

−1
d (cos θ) G

(ρ,2)
(~P+~q)σ(~P−~q)σ ′(ω) , (3.48)

which depends only on the total momentum ~P , the module of the relative momentum q
and spin indices σ, σ ′. A more detailed discussion on the angle-averaging procedure can be
found in [70

.

, 71

.

]. This is a common approximation in SCGF codes that has been checked to
lead to minor errors of the computed energy in [73

.

, 74

.

, 75

.

]. However, it is not clear if the
angle-averaging approximation affects or not the renormalization invariance of the energy per
particle.

Eventually, in numerical applications of SCGF code, a key problem is to deal with the stiffness
of the spectral function S(ρ,1) around the Fermi surface. Indeed, the spectral function diplays
in most cases a peak characterizing a quasi-particle behaviour [69

.

, 72

.

, 71

.

, 70

.

, 12

.

]. Numerically
different strategies have been implemented. In this thesis the code uses a decomposition of the
spectral function in a quasi-particle and a background component [69

.

, 70

.

] i.e. as

S
(ρ,1)
~pσ (ω) ≡ B

(ρ,1)
~pσ (ω) + Zp(2π)δ (ω − ωp) , (3.49)

where B(ρ,1) denotes the background spectral function, ωp the position of the quasiparticle peak
and Zp the strength of the peak. This decomposition is controlled by an external parameter s
as

B
(ρ,1)
~pσ (ω) =



−2 Im Σ(ρ)+
~pσ

(ω)(
ω− p2

2m−Re Σ(ρ)+
~pσ

(ω)
)2

+
(

Im Σ(ρ)+
~pσ

(ω)
)2 if

(
ω − p2

2m − Re Σ(ρ)+
~pσ (ω)

)2
+
(
Im Σ(ρ)+

~pσ (ω)
)2
≥ s

−2 Im Σ(ρ)+
~pσ

(ω)
s

if
(
ω − p2

2m − Re Σ(ρ)+
~pσ (ω)

)2
+
(
Im Σ(ρ)+

~pσ (ω)
)2
< s

.

(3.50)
At fixed ~p, a quasiparticle peak is introduced if the threshold s is reached for a certain ω. In
this case, the position of the peak ωp is defined as the solution of

ωp ≡
p2

2m + Re Σ(ρ)+
~pσ (ωp) , (3.51)

and the strength Zp is adapted such that the one-body spectral function verifies the sum rule
(1.37

.

).
With the numerical approximations introduced in this section the equations can be solved

numerically by iterating equations in Tab. 3.1

.

until convergence is reached. In the next section,
numerical results are discussed on the renormalization invariance of the energy per particle
computed in the approximations introduced in Sec. 3.3

.

.

3.4.3. Numerical results
Numerical convergence

In order to assess the numerical accuracy of the code, the convergence of the energy per
particle with increasing numerical precision must be checked. To ensure the validity of the
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conclusions drawn on the renormalization invariance of the energy per particle, numerical
convergence is checked for the whole range of Λ spanned by the numerical calculations.
For example, Fig. 3.9

.

displays the energy per particle in the ladder approximation for
Cp ∈ [1 GeV, 3 GeV], Λ ∈ [kF , 6kF ] and ∆p ∈ [10 MeV, 20 MeV]. Similarly, another typical
plot characterized by Cω ∈ {600 MeV, 2 GeV, 5 GeV} and Λ ∈ [kF , 8kF ] is depicted in Fig. 3.10

.

.
As a complementary check, the energy per particle is computed both with (1.28

.

) and with
the GMK sum rule (1.40

.

). Fig. 3.11

.

shows a good agreement between both when numerical
convergence is reached. The substantial difference in Fig. 3.11

.

for high-density (kF = 331 MeV)
and high Λ ( & 1 GeV ) is explained by a too low energy cut-off Cω = 2 GeV.

From these plots testing numerical convergence, it is clear that assessing the renormalization
invariance numerically requires significant computational ressources as increasing Λ at fixed
kF requires to take large numerical cut-off (Cp, Cω) while keeping sufficiently low (∆p,∆ω).
For instance, numerical convergence (with respect to parameters (Cp,∆p)) have been verified
empirically for

∆p .
Λ

200 , ∆p .
kF
2 , Cp & Λ , Cp & 2kF , (3.52)

where the "numerical convergence" relates to an estimated error of 0.5 MeV on the energy
per particle. In practice to reach this numerical precision the Fortran code has been fully
parallelized using MPI and is run on a supercomputer with up to 100 nodes per calculation (at
fixed Λ).

Renormalization invariance

Once the numerical accuracy of the Fortran code has been characterised, the renormalization
invariance of the energy per particle can be assessed. Self-consistent calculations in the HF,
the 2nd Born and the ladder approximations, with H/π renormalized exactly in the two-body
sector, are shown in Fig. 3.12

.

for kF = 263 MeV. The energy per particle shows a clear Λ
dependence, regardless of the many-body approximation, leading to shift of more than 5 MeV.
This variation is one order of magnitude larger than the numerical uncertainty.

At this point, either the renormalization of H/π is inconsistent with the three tested many-
body approximations, or the Fortran code to implement SCGF schemes is insufficiently
accurate. Because the numerical accuracy has already been tested, it only remains to test
the additional approximations used in the Fortran code namely the angle-averaging and the
quasiparticle-background decomposition.
To investigate these approximations, one focuses on simpler non-self-consistent approxima-

tions i.e. without iterating equations in Tab. 3.1

.

. In this case, the outcomes of the Fortran code
can be compared with exact calculations. The initial spectral function in non-self-consistent
calculations is the unperturbed one as in Eq. (3.20

.

), which is strongly peaked. Thus non-self-
consistent calculations enable to test the quasiparticle treatment in the Fortran code. In the
next section, the non-self-consistent HF results from the Fortran code is compared to a calcula-
tion with the sole angle-averaging approximation realized on Mathematica. Eventually, results
from the Fortran code are compared to exact analytical calculations for the non-self-consistent
HF, 2nd Born and ladder approximations in Sec. 3.5

.

. Thanks to this extensive comparison,
clear conclusions are eventually drawn in Sec. 3.5.3

.

.
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Chapter 3. Equation of state of neutron matter

Figure 3.9. Energy per particle in the ladder approximation for Λ ∈ [kF , 6kF ] at kF = 331 MeV.
Dashed lines represent calculations with Cp = 1, 1.5, 2, 2.5 GeV and the plain line with Cp =
3 GeV. The upper-panel corresponds to ∆p = 10 MeV and the lower-panel to ∆p = 20 MeV.
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3.4. Numerical computations

Figure 3.10. Energy per particle in the ladder approximation for Λ ∈ [kF , 8kF ]. The
curves represent calculations for Cω = 600, 2000, 5000 MeV. The upper-panel corresponds to
kF = 153 MeV, the middle-panel to kF = 263 MeV and the lower-panel to kF = 331 MeV.
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Chapter 3. Equation of state of neutron matter

Figure 3.11. Energy per particle in the ladder approximation. Dashed lines represent
computations using the GMK relation while the plain line represent computations using (1.28

.

).
The upper-panel corresponds to kF = 153 MeV, the middle-panel to kF = 263 MeV and the
lower-panel to kF = 331 MeV.
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3.4. Numerical computations

Figure 3.12. Energy per particle in the HF, the 2nd Born and the ladder approximations at
density ρ0 = 0.08 fm−3 (kF = 263 MeV).

3.4.4. Non-self consistent Hartree-Fock calculation

In this section, the energy per particle in the non-self-consistent HF approximation is com-
puted with only the angle-averaging approximation. This has been realized in a Mathematica
code following the exact same steps as the Fortran code in order to trace potential numerical
instabilities in the Fortran code. Each step is realized analytically apart from the calculation
of the energy per particle from the T -matrix which is done numerically11

.

.

Comparing non-self-consistent HF results from the Mathematica and the Fortran code
yields an agreement for Λ ∈ [kF , 8kF ] up to the numerical accuracy of 0.5 MeV as illustrated
in Fig. 3.13

.

. This comparison confirms the numerical accuracy of the Fortran code as well
as the quasiparticle treatment of the peaked spectral function in the HF approximation.
However, similar calculations could not be realized in the non-self-consistent 2nd Born and
ladder approximations.

In order to assess the validity of 2nd Born and ladder calculations in the Fortran code, and
bypass limitations of Mathematica, the exact result (in the non-self-consistent case) is derived
fully analytically in the next section. This allows one to test the validity of the angle-averaging
approximation as well as the validity of the background-quasiparticle decomposition in the 2nd

Born and in the ladder approximations as implemented in the Fortran code.

11The algorithm used in the Mathematica code checks the convergence of this last step done numerically so
that it can be considered as computed exactly.
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Chapter 3. Equation of state of neutron matter

Figure 3.13. Energy per particle in the HF approximation for ρ0 = 0.08 fm−3 (kF = 263 MeV).
Dashed lines represent computations using the Mathematica code while the plain line represent
computations using the Fortran.

3.5. Analytical calculations
As discussed previously, numerical results obtained from the state-of-the-art SCGF code used

in this thesis are difficult to interpret. The reproduction of the HF results in the Mathematica
code in Sec. 3.4.4

.

rules out any numerical accuracy due to discretization and numerical cut-off
and checks the validity of the background-quasiparticle decomposition in the HF approximation.
In the next section, the calculation of the energy per particle of pure neutron matter is

derived in the undressed HF, 2nd Born and ladder approximations fully analytically. Eventually,
the comparison with the outcomes from the Fortran and the Mathematica codes in Sec. 3.4.3

.

allows one to conclude regarding the numerical instability of SCGF calculations performed by
means of the Fortran code.

3.5.1. Analytical calculation in the ladder approximation
In this section, the computation of the energy per particle is realized fully analytically for

the HF, the 2nd Born and the ladder approximations, implemented on the basis of unperturbed
propagators. This is most conveniently achieved by introducing a vacuum/medium decom-
position of the one-body propagator. Such a strategy follows mainly from [76

.

, 77

.

], with the
difference that a cut-off regularization is presently used instead of a dimensional one. The use
of a cut-off regularization is crucial to assess the accuracy of the Fortran code at different Λ
and to obtain clear enough information to localize potential numerical artefacts. The ladder
calculation is detailed first so that HF and 2nd Born approximations can be easily retrieved as
its 1st and 2nd order (in the coupling constant) reductions. Contrarily to numerical calculations,
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ω

p′σ′

pσ

Figure 3.14. Diagrammatic representation of G(M,1)0
pσp′σ′ (ω).

no approximation such as angle-averaging or discretization is involved.

In-medium formalism

The vacuum/medium decomposition of the unperturbed propagator consists in rewriting the
one-body propagator (3.5

.

) in the energy-representation

iG
(ρ,1)0
~pσ~p ′σ ′(ω) = i

 θ (p− kF )
ω − p2

2m + iη
+ θ (kF − p)
ω − p2

2m − iη

 (2π)3δ (~p− ~p ′) δσσ ′ ,

using the identity (1.34

.

)
1

ω ± iη
= P 1

ω
∓ iπδ(ω) .

This leads to

iG
(ρ,1)0
~pσ~p ′σ ′(ω) =

 i

ω − p2

2m + iη
− 2πδ

(
ω − p2

2m

)
θ (kF − p)

 (2π)3δ (~p− ~p ′) δσσ ′ , (3.53a)

≡ iG
(0,1)0
~pσ~p ′σ ′(ω) + iG

(M,1)0
~pσ~p ′σ ′(ω) , (3.53b)

where G(0,1)0 and G(M,1)0 denote the vacuum propagator and the medium-insertion, respectively.
The diagrammatic representation of G(M,1)0 is displayed in Fig. 3.14

.

. The strategy to compute
ladder diagrams is to expand them in the sum of diagrams containing vacuum propagators
and medium insertions. First, the loops with 0, 1 and 2 medium insertion are explicitly
computed. Then the resummation of ladder diagrams is performed, taking care of the non-
trivial combinatorics of the diagrams. Eventually, the energy per particle is retrieved from the
two-body Green’s function by using (1.28

.

).
In the following, Bi refers to the ratio of one-loop diagrams with i medium insertions and

the tree diagram made of one vertex h22. This way the diagrams with n loops is nothing but
the product of n factors Bi and of one vertex h22.12

.

Similarly to the T -matrix in Sec. 2.2

.

,
Bi depends only on the external relative momentum q, the total momentum P and on the
total energy E. Moreover, to compute the energy per particle, only the on-shell part of Bi

is necessary which only depends on q and P . In the following Bi(P, q) denotes the on-shell
value of Bi for an external relative momentum q and a total momentum P . To further simplify

12Without such ratio, the product of Bi factors would double-count vertices.

61



Chapter 3. Equation of state of neutron matter

Figure 3.15. Diagrammatic representation of loops with 0, 1 and 2 medium-insertion.

the calculation, one can assume the incoming neutrons to occupy hole states i.e. p1 ≤ kF and
p2 ≤ kF which limits the values q and P can reach. Loops with 0, 1 and 2 medium-insertion
are represented in Fig. 3.15

.

.

Loop with no medium insertion

Without medium insertion, the one-loop diagram is the same as in (2.48

.

) which only depends
on q. Without forgetting to divide by the one-vertex contribution,

B0(q) = −1
(−i)C0(Λ)vΛ(2q)vΛ(2q)

×
∫ ∞
−∞

dl0
2π

∫ d3~l

(2π)3 (−i)C0(Λ)vΛ(2q)vΛ(2l) i

(p2
1 + p2

2)
4m + l0 −

(~P +~l)2

2m + iη

× (−i)C0(Λ)vΛ(2l)vΛ(2q) i

(p2
1 + p2

2)
4m − l0 −

(~P −~l)2

2m + iη

. (3.54)

After simplifications and integrating over l0 by closing the contour of integration around the
+iη pole, B0(q) reads as

B0(q) = −iC0(Λ)mi
∫ d3~l

(2π)3
v2

Λ(2l)
~q2 −~l2 + iη

= −mC0(Λ)
2π2

∫ ∞
0

dl v2
Λ(2l)l2

l2 − q2 − iη

= −mC0(Λ)
2π2

{∫ ∞
0

dl v2
Λ(2l) + q2

∫ ∞
0

dl v2
Λ(2l)

(l − q − iη)(l + q + iη)

}

= −mC0(Λ)
2π2

{∫ ∞
0

dl v2
Λ(2l) + i

π

2 qv
2
Λ(2q)

}
. (3.55)
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Loop with one medium insertion

The loop diagram with one medium insertion on the right (on the left) is denoted as BR
1 (P, q)

(BL
1 (P, q)). BR

1 (P, q), reads as

BR
1 (P, q) = 1

(−i)C0(Λ)vΛ(2q)vΛ(2q)

×
∫ ∞
−∞

dl0
2π

∫ d3~l

(2π)3 (−i)C0(Λ)vΛ(2q)vΛ(2l) i

(p2
1 + p2

2)
4m + l0 −

(~P +~l)2

2m + iη

× (−i)C0(Λ)vΛ(2l)vΛ(2q)

×

−2πδ
(p2

1 + p2
2)

4m − l0 −
(~P −~l)2

2m

 θ(kF − |~P −~l| )


= mC0(Λ)
∫ d3~l

(2π)3
v2

Λ(2l)
l2 − q2 − iη

θ(kF − |~P −~l| ) . (3.56)

Similarly, the medium insertion on the left reads as

BL
1 (P, q) = mC0(Λ)

∫ d3~l

(2π)3
v2

Λ(2l)
l2 − q2 − iη

θ(kF − |~P +~l| ) , (3.57)

such that, the sum is eventually given by

B1(P, q) = mC0(Λ)
∫ d3~l

(2π)3
v2

Λ(2l)
l2 − q2 − iη

[
θ(kF − |~P −~l| ) + θ(kF − |~P +~l| )

]
. (3.58)

Using spherical coordinates and integrating over the azimuthal angle provides,

B1(P, q) = mC0(Λ)
(2π)2

∫ 1

−1
dy


∫ Py+

√
(Py)2+k2

F−P 2

0
dl v2

Λ(2l)l2
l2 − q2 − iη

+
∫ −Py+

√
(Py)2+k2

F−P 2

0
dl v2

Λ(2l)l2
l2 − q2 − iη


where y is the cosine of the polar angle.

To compute B1(P, q) it is convenient to introduce the integral IΛ(y) through

kFIΛ(y) ≡
∫ Py+

√
(Py)2+k2

F−P 2

0
dl v2

Λ(2l)l2
l2 − q2 − iη

, (3.59)

and to introduce the reduced variables s, κ as

s ≡ P

kF
, (3.60a)

κ ≡ q

kF
. (3.60b)
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Assuming that p1,2 ≤ kF , s, κ verify the three inequalities

0 ≤ s ≤ 1 , (3.61a)
0 ≤ κ ≤ 1 , (3.61b)
0 ≤ s2 + κ2 ≤ 1 . (3.61c)

In terms of reduced variables, Eq. (3.59

.

) reads as

IΛ(y) =
∫ sy+

√
(sy)2+1−s2

0
dµ v2

Λ(2 kFµ) + κ
∫ sy+

√
(sy)2+1−s2
κ

0
dµ v2

Λ(2κ kFµ)
µ2 − 1− iη (3.62)

≡ I(1)
Λ (y; s) + I(2)

Λ (y; s, κ) . (3.63)

To avoid lengthy notations, the regulator is assumed to be Gaussian as defined in (2.19

.

). For
convenience M(y; s) is introduced as

M(y; s) ≡ sy +
√

(sy)2 + 1− s2 . (3.64)

The first integral in Eq. (3.62

.

) then reads as

I(1)
Λ (y; s) =

∫ M(y;s)

0
dµ e−8( kFΛ )2µ2

= Λ√
8kF

√
π

2 Erf
(

2
√

2kF
Λ M(y; s)

)
,

which can be expanded in the limit Λ� 2
√

2kFM(y; s) thanks to13

.

Erf (x) = 2√
π

{
x− x3

3 +O(x5)
}
. (3.65)

This eventually gives

I(1)
Λ (y; s) = M(y; s)−

(
2
√

2kF
Λ

)2

M(y; s)3 +O

(2
√

2kF
Λ

)4

M(y; s)5

 . (3.66)

The second integral in Eq. (3.62

.

) is less trivial to compute. To expand it in the limit
Λ� 2

√
2kF the regulator is expanded in 2

√
2kF
Λ as

v2
Λ(2κ kFµ) = 1−

(
2
√

2kF
Λ

)2

κ2µ2 +O

(2
√

2kF
Λ

)4

κ4

 (3.67)

13One can assume Λ being large in front of any fixed quantities as one are interested in the limit Λ→ +∞.
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such that

I(2)
Λ (y; s, κ) = κ


∫ M(y;s)

κ

0
dµ 1

µ2 − 1− iη −
(

2
√

2kF
Λ

)2

κ2
∫ M(y;s)

κ

0
dµ µ2

µ2 − 1− iη

+ O

(2
√

2kF
Λ

)4
= κ

−ArgthM(y; s)
κ

−
(

2
√

2kF
Λ

)2

κ2
[∫ M(y;s)

κ

0
dµ+

∫ M(y;s)
κ

0
dµ 1

µ2 − 1− iη

]

+ O

(2
√

2kF
Λ

)4
= −κArgthM(y; s)

κ
+
(

2
√

2kF
Λ

)2

κ2
[
κArgthM(y; s)

κ
−M(y; s)

]

+ O

(2
√

2kF
Λ

)4 . (3.68)

Gathering the expansion of I(1)
Λ (y; s, κ) and I(2)

Λ (y; s, κ), the real part of B1(P, q) reads as

ReB1(P, q) = mC0(Λ)
(2π)2 kF

∫ 1

−1
dyRe

{
I(1)

Λ (y; s) + I(1)
Λ (−y; s) + I(2)

Λ (y; s, κ) + I(2)
Λ (−y; s, κ)

}

≡ mC0(Λ)
(2π)2 kF

R0(s, κ) +
(

2
√

2kF
Λ

)2

R1(s, κ) +Rr

(
s, κ; kFΛ

)(
2
√

2kF
Λ

)4
≡ mC0(Λ)

(2π)2 kF R kF
Λ

(s, κ) .

As the calculation of the imaginary part of B1(P, q) turns out not to be necessary to compute
the energy per particle, it is not displayed here. All details of the calculation of the R functions
can be found in Appendix B

.

. In the end, the following equations are sufficient for any further
derivation

ReB1(P, q) = mC0(Λ)
(2π)2 kFR kF

Λ
(s, κ) , (3.69a)

R kF
Λ

(s, κ) = R0(s, κ)−
(

2
√

2kF
Λ

)2 [
4 + κ2R0(s, κ)

]
+Rr

(
s, κ; kFΛ

)(
2
√

2kF
Λ

)4

, (3.69b)

R0(s, κ) = 2 + 1
2s
[
1− (s+ κ)2

]
ln 1 + s+ κ

|1− s− κ| + 1
2s
[
1− (s− κ)2

]
ln 1 + s− κ

1− s+ κ
. (3.69c)

Loop with two medium insertions

Similarly to B0 and B1, B2(P, q) reads as

B2(q) = −iC0(Λ)
∫ ∞
−∞

dl0
2π

∫ d3~l

(2π)3 vΛ(2l)
−2πδ

(p2
1 + p2

2)
4m + l0 −

(~P +~l)2

2m

 θ(kF − |~P +~l| )
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× vΛ(2l)
−2πδ

(p2
1 + p2

2)
4m − l0 −

(~P −~l)2

2m

 θ(kF − |~P −~l| )
 .

Integrating on l0 and the angle between ~l and ~P , the two medium insertion loop reads as

B2(P, q) = −imC0(Λ)
π

∫ +∞

0
dl l

2

2qv
2
Λ(2l)δ (l − q) Q̄(s, κ) , (3.70)

where Q̄(s, κ) is the Pauli-Blocking factor and reads

Q̄(s, κ) ≡
∫ dΩ

4π θ(kF − |~P −~l| )θ(kF − |~P +~l| ) , (3.71)

=

1 if 0 ≤ κ ≤ 1− s
1−s2−κ2

2sκ if 1− s ≤ κ ≤
√

1− s2
. (3.72)

Eventually B2(P, q) can be written as

B2(P, q) = −imC0(Λ)
2π kF I kF

Λ
(s, κ) , (3.73)

where I kF
Λ

(s, κ) is defined through

I kF
Λ

(s, κ) ≡ κQ̄(s, κ)v2
Λ(2κ kF ) . (3.74)

Imaginary part of one loop contributions

As stated before, Im(B1) is not necessary for further computation. However, one needs to
compute Im(B0 +B1 +B2), which turns out to be simpler to accomplished. Indeed, using the
Sokhotski-Plemelj theorem on vacuum propagators, Im(B0 +B1 +B2)(P, q) reads as

Im(B0 +B1 +B2)(P, q) = −C0(Λ)
m

∫ d3~l

(2π)3 v
2
Λ(2l)πδ(l2 − q2)

×
{

1− θ(kF − |~P −~l| )− θ(kF − |~P +~l| )

+ 2 θ(kF − |~P −~l| )θ(kF − |~P +~l| )
}

= −C0(Λ)
m

∫ d3~l

(2π)3 v
2
Λ(2l)πδ(l2 − q2)

×
{[

1− θ(kF − |~P −~l| )
] [

1− θ(kF − |~P +~l| )
]

+ θ(kF − |~P −~l| )θ(kF − |~P +~l| )
}
.
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The first term in the bracket gives zero after integration because if |~P ±~l| ≥ kF and
remembering that |~p1,2| ≤ kF , then

q2

2m = p2
1 + p2

2
4m − (~P +~l)2 + (~P −~l)2

4m

≤ k2
F

2m −
k2
F

2m
≤ 0 .

Therefore its contribution is null whenever q 6= 0 14

.

so that,

Im(B0 +B1 +B2)(P, q) = 1
2 Im(B2)(P, q)

= −mC0(Λ)
4π kF I kF

Λ
(s, κ) .

Eventually, combining all results, the three main identities read as

B0(q) +B1(P, q) +B2(P, q) = mC0(Λ)
(2π)2 kF

[
R̃ kF

Λ
(s, κ)− iπI kF

Λ
(s, κ)

]
, (3.75a)

B0(q) +B1(P, q) = mC0(Λ)
(2π)2 kF

[
R̃ kF

Λ
(s, κ) + iπI kF

Λ
(s, κ)

]
, (3.75b)

B2(P, q) = −imC0(Λ)
2π kF I kF

Λ
(s, κ) , (3.75c)

where
R̃ kF

Λ
(s, κ) = R kF

Λ
(s, κ)− 2

kF

∫ ∞
0

dl v2
Λ(2l) . (3.76)

Ladder resummation

In the case of the vacuum/medium decomposition, at least one loop with two medium-
insertions is necessary to obtain a non zero contribution to G(ρ,2)(t, t+) in (1.28

.

)15

.

. In this
section the ladder kernel L(s, κ) to be closed by one loop with two medium-insertion is
computed.

Any diagrams contributing to L(s, κ) and containing j loops with double medium insertion
lead to double-counting when closed by an additional loop with two medium insertions. To
compensate such an over counting, an additional factor of (j + 1)−1 is necessary16

.

.
In general the computation of multi-loop diagrams is highly non-trivial. However, in this

case, the particular choice of a separable regulator decouples the loop calculations such that
the contribution to the ladder kernel L(s, κ) with j double medium-insertion loops inside a
total of n− 1 loops reads as

1
j + 1

(
n− 1
j

)
(B0 +B1)n−1−jBj

2 . (3.77)

14Actually its contribution will still be 0 for q = 0 because of the integrand being proportional to q.
15 Otherwise G(ρ,2)(t, t′) would be purely causal as it is the case for G(0,2)(t, t′).
16See [76

.

] for a more detailed explanation.

67



Chapter 3. Equation of state of neutron matter

Eventually, the ladder kernel at order n− 1 (with n− 1 vertices) reads as

Ln−1 ≡
n−1∑
j=0

1
j + 1

(
n− 1
j

)
(B0 +B1)n−1−jBj

2

= 1
B2n

n∑
j=1

(
n

j

)
(B0 +B1)n−jBj

2

= 1
B2n
{(B0 +B1 +B2)n − (B0 +B1)n} . (3.78)

Using Eqs. (3.75

.

)

Ln−1 = 1
−imC0(Λ)

2π kF I kF
Λ

(s, κ)n

{(
mC0(Λ)

(2π)2 kF

[
R̃ kF

Λ
(s, κ)− iπI kF

Λ
(s, κ)

])n

−
(
mC0(Λ)

(2π)2 kF

[
R̃ kF

Λ
(s, κ) + iπI kF

Λ
(s, κ)

])n}
(3.79a)

= 1
2iπ

(
mC0(Λ)

(2π)2 kF

)n−1 1
−I kF

Λ
(s, κ)n

{(
R̃ kF

Λ
(s, κ)− iπI kF

Λ
(s, κ)

)n

−
(
R̃ kF

Λ
(s, κ) + iπI kF

Λ
(s, κ)

)n}
(3.79b)

= 1
π

(
mC0(Λ)

(2π)2 kF

)n−1 1
−I kF

Λ
(s, κ)n Im

{(
R̃ kF

Λ
(s, κ) + iπI kF

Λ
(s, κ)

)n}
. (3.79c)

Eq. (3.79c

.

) shows without ambiguity that Ln−1 is real. However, to resum easily all Ln−1
contributions it is convenient to use Eq. (3.79b

.

), which leads to

L ≡
+∞∑
n=1

Ln−1

=
+∞∑
n=1

1
2iπ

(
mC0(Λ)

(2π)2 kF

)n−1 1
−I kF

Λ
(s, κ)n

{(
R̃ kF

Λ
(s, κ)− iπI kF

Λ
(s, κ)

)n

−
(
R̃ kF

Λ
(s, κ) + iπI kF

Λ
(s, κ)

)n}

= 1
−2iπmC0(Λ)

(2π)2 kF I kF
Λ

(s, κ)

{+∞∑
n=1

(−1)n+1

n

(
−mC0(Λ)

(2π)2 kF

[
R̃ kF

Λ
(s, κ) + iπI kF

Λ
(s, κ)

])n

−
+∞∑
n=1

(−1)n+1

n

(
−mC0(Λ)

(2π)2 kF

[
R̃ kF

Λ
(s, κ)− iπI kF

Λ
(s, κ)

])n}

= 1
−2iπmC0(Λ)

(2π)2 kF I kF
Λ

(s, κ)

{
ln
(

1− mC0(Λ)
(2π)2 kF

[
R̃ kF

Λ
(s, κ) + iπI kF

Λ
(s, κ)

])
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− ln
(

1− mC0(Λ)
(2π)2 kF

[
R̃ kF

Λ
(s, κ)− iπI kF

Λ
(s, κ)

])}

= 1
−2iπmC0(Λ)

(2π)2 kF I kF
Λ

(s, κ)
ln

1− mC0(Λ)
(2π)2 kF

[
R̃ kF

Λ
(s, κ) + iπI kF

Λ
(s, κ)

]
1− mC0(Λ)

(2π)2 kF

[
R̃ kF

Λ
(s, κ)− iπI kF

Λ
(s, κ)

]
 ,

where ln is the principal branch of the complex logarithm i.e.

ln(x+ iy) = ln |x+ iy|+ 2i arctan y

x+
√
x2 + y2 . (3.80)

Eventually, the full ladder kernel reads as

L(s, κ) = 4π
−mC0(Λ) kF I kF

Λ
(s, κ) arctan


−mC0(Λ)

(2π)2 kFπI kF
Λ

(s, κ)

1− mC0(Λ)
(2π)2 kF R̃ kF

Λ
(s, κ)

 . (3.81)

Energy per particle in the ladder approximation

To compute the energy density, it only remains to close the ladder kernel with an additional
loop containing 2 medium-insertions (without forgetting the additional vertex). It is also
convenient to use the following formula from [76

.

] valid for any function F (s, κ)
∫
|~p1,2|<kF

d3p1d3p2

(2π)6 F (s, κ) = 2k6
F

π4

∫ 1

0
ds s2

∫ √1−s2

0
dκ κ I0(s, κ)F (s, κ) . (3.82)

Consequently, the energy per particle in the ladder approximation reads as

ELd
Λ
A

(kF ) = ερ0
ρ0

0
+ 1
ρ0

0

∫
|~p1,2|<kF

d3p1d3p2

(2π)6 L(s, κ) C0(Λ)v2
Λ(2κ kF )

= 3
5
k2
F

2m + C0(Λ)2k6
F3π2

k3
Fπ

4

∫ 1

0
ds s2

∫ √1−s2

0
dκ κ I0(s, κ) v2

Λ(2κ kF ) L(s, κ)

= 3
5
k2
F

2m −
k2
F

2m
48
π

∫ 1

0
ds s2

∫ √1−s2

0
dκ κ arctan


−mC0(Λ)

(2π)2 kFπI kF
Λ

(s, κ)

1− mC0(Λ)
(2π)2 kF R̃ kF

Λ
(s, κ)

 ,

and eventually,

ELd
Λ
A

(kF ) = k2
F

2m

3
5 −

48
π

∫ 1

0
ds s2

∫ √1−s2

0
dκ κ arctan

 kF I kF
Λ

(s, κ)
−4π

mC0(Λ) + kF
π
R̃ kF

Λ
(s, κ)

 . (3.83)

3.5.2. Reduction to Hartree-Fock and second Born approximations
Hartree-Fock approximation

The full ladder having been computed, it can conveniently be degraded down to the Hartree-
Fock calculation of the energy per particle. To do so, the ladder kernel is computed with 0
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loop i.e.

LHF (s, κ) = L0(s, κ) (3.84)

= 1
2iπ

(
mC0(Λ)

(2π)2 kF

)1−1 1
−I kF

Λ
(s, κ)1

{(
R̃ kF

Λ
(s, κ)− iπI kF

Λ
(s, κ)

)1

−
(
R̃ kF

Λ
(s, κ) + iπI kF

Λ
(s, κ)

)1
}

(3.85)

= −1
2iπ

1
I kF

Λ
(s, κ)

{
−2iπI kF

Λ
(s, κ)

}
(3.86)

= 1 . (3.87)

Eventually, using Eq. (3.82

.

) again, the energy per particle in the HF approximation reads as

EHF
Λ
A

(kF ) = ερ0
ρ0

0
+ 1
ρ0

0

∫
|~p1,2|<kF

d3p1d3p2

(2π)6 LHF (s, κ) C0(Λ)v2
Λ(2κ kF )

= 3
5
k2
F

2m + 6C0(Λ)k3
F

π2

∫ 1

0
ds s2

∫ √1−s2

0
dκ κ I0(s, κ) v2

Λ(2κ kF )

= 3
5
k2
F

2m + 6C0(Λ)k3
F

π2

{∫ 1

0
ds s2

∫ 1−s

0
dκ κ2 v2

Λ(2κ kF )

+
∫ 1

0
ds s

∫ √1−s2

1−s
dκ κ 1− s2 − κ2

2 v2
Λ(2κ kF )

}
.

In particular, for a Gaussian regulator

EHF
Λ
A

(kF ) = k2
F

2m

3
5 + mC0(Λ)

(2π)2 8kF
(

Λ
2
√

2kF

)6

×

1− 3
2

(
2
√

2kF
Λ

)2

− e
−
(

2
√

2kF
Λ

)2 1− 1
2

(
2
√

2kF
Λ

)2
+1

2

(
2
√

2kF
Λ

)3√
π Erf

(
2
√

2kF
Λ

) . (3.88)

Second Born approximation

Similarly to the calculation in the HF approximation, the energy density in the 2nd Born
approximation can be computed by taking into account 0 and 1 loop order. Consequently, the
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ladder kernel in this approximation reads as

L2B(s, κ) = L0(s, κ) + L1(s, κ)

= 1 + 1
2iπ

(
mC0(Λ)

(2π)2 kF

)2−1 1
−I kF

Λ
(s, κ)2

{(
R̃ kF

Λ
(s, κ)− iπI kF

Λ
(s, κ)

)2

−
(
R̃ kF

Λ
(s, κ) + iπI kF

Λ
(s, κ)

)2
}

= 1− 1
4iπ

1
I kF

Λ
(s, κ)

mC0(Λ)
(2π)2 kF

{
−2iπI kF

Λ
(s, κ)× 2R̃ kF

Λ
(s, κ)

}

= 1 + mC0(Λ)
(2π)2 kF R̃ kF

Λ
(s, κ) . (3.89)

Eventually, the energy per particle in the 2nd Born approximation reads as

E2B
Λ
A

(kF ) = ερ0
ρ0

0
+ 1
ρ0

0

∫
|~p1,2|<kF

d3p1d3p2

(2π)6 L2B(s, κ) C0(Λ)v2
Λ(2κ kF )

= 3
5
k2
F

2m + 6C0(Λ)k3
F

π2

∫ 1

0
ds s2

∫ √1−s2

0
dκ κ I0(s, κ) v2

Λ(2κ kF )

×
[
1 + mC0(Λ)

(2π)2 kF R̃ kF
Λ

(s, κ)
]

= 3
5
k2
F

2m + 6C0(Λ)k3
F

π2

∫ 1

0
ds s2

∫ √1−s2

0
dκ κ2 Q̄(s, κ) v2

Λ(2κ kF )mC0(Λ)
4π

×
[

4π
mC0(Λ) + kF

π
R̃ kF

Λ
(s, κ)

]
. (3.90)

3.5.3. Comparative study
In the previous section, the energy per particle of infinite neutron matter described in /πEFT

at LO (regularized by a momentum cut-off vΛ(q)) has been derived in the Hartree-Fock, 2nd

Born and ladder approximations.
In this section, the convergence of EΛ

A
for Λ → +∞ is assessed for the three different

renormalizations of H/π in the two-body sector. Then the result are compared to numerical
results from the Fortran code in order to conclude on its numerical sensitivity.

Renormalization invariance in the ladder approximation

To study the convergence of ELdΛ
A

in Eq. (3.83

.

) only the argument of the arctan needs to be
investigated. Replacing I kF

Λ
(s, κ) and R̃ kF

Λ
(s, κ) by their full expressions as well as C0(Λ) by

the exact renormalization as displayed in Eq. (2.66

.

), one has

kF I kF
Λ

(s, κ)

− 4π
mC0(Λ) + kF

π
R̃ kF

Λ
(s, κ)

=
kF I0(s, κ)v2

Λ
kF

(2κ)

− 1
a0

+ kF
π
R kF

Λ
(s, κ)

,
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so that

lim
Λ→+∞

kF I kF
Λ

(s, κ)

− 4π
mC0(Λ) + kF

π
R̃ kF

Λ
(s, κ)

= kF I0(s, κ)
− 1
a0

+ kF
π
R0(s, κ)

.

Consequently, the energy per particle in the ladder approximation computed in connection
with the exact renormalization of C0(Λ) in the two-body sector converges to

lim
Λ→+∞

ELd
Λ
A

(kF ) = ELd
∞
A

(kF ) = k2
F

2m

3
5 −

48
π

∫ 1

0
ds s2

∫ √1−s2

0
dκ κ arctan

 kF I0(s, κ)
− 1
a0

+ kF
π
R0(s, κ)

 .

(3.91)
Conversely, for a renormalisation of C0(Λ) performed in the two-body sector at the tree-level

(Eq. (2.47

.

)) or in the one-loop approximation (Eq. (2.54

.

)), the energy per particle converges to
the trivial limit of the free Fermi gas i.e.

lim
Λ→+∞

ELd
Λ
A

(kF ) = ερ0
ρ0

0
. (3.92)

Therefore, it is concluded that a ladder calculation of the energy per particle requires to
renormalize the two-body Hamiltonian HLO

/π exactly in the two-body sector. If it is not the case,
the energy per particle converges to a trivial limit as depicted in Fig. 3.16

.

.
Once the renormalization of the Hamiltonian has been fixed in the advocated way, the

unitary limit can be studied in the ladder approximation as in [76

.

]. In particular the energy
per particle converges to

lim
a0→−∞

ELd
∞
A

(kF ) = ξLd
ερ0
ρ0

0
, (3.93)

where the Bertsch parameter reads as

ξLd ≡ 1− 80
π

∫ 1

0
ds s2

∫ √1−s2

0
dκ κ arctan

(
πI0(s, κ)
R0(s, κ)

)
, (3.94)

and numerically, ξLd ' 0.506654. Compared to recent experimental estimations ξExp = 0.376(4)
[78

.

] the estimation appears reasonable yet away from the exact value, as expected from a
many-body approximation not fulfilling PC rules.

Renormalization invariance in the Hartree-Fock approximation

In order to study the convergence of EHFΛ
A

one uses the expansion of Erf and exp in the limit
Λ� 2

√
2kF to derive

EHF
Λ
A

(kF ) = k2
F

2m

3
5 + mC0(Λ)

(2π)2 8kF

 1
12 +O

(2
√

2kF
Λ

)2 . (3.95)

Consequently, using C0(Λ) renormalized exactly in the two-body sector as in Eq. (2.66

.

), the
energy per particle converges to

lim
Λ→+∞

EHF
Λ
A

(kF ) = ερ0
ρ0

0
. (3.96)
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Figure 3.16. Energy per particle in the (non-self consistent) ladder approximation for kF =
100 MeV. The upper-panel uses a C0(Λ) computed at tree-level. The middle-panel takes into
account the counter-term computed at one-loop as in Eq. (3.102

.

). The lower-panel uses C0(Λ)
from an exact renormalization in the two-body sector.
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Rather using C0(Λ) renormalized at one-loop order in the two-body sector as in Eq. (2.54

.

),
one obtains

lim
Λ→+∞

EHF
Λ
A

(kF ) =∞ . (3.97)

However, for the renormalization of C0(Λ) at tree-level i.e. for Eq. (2.47

.

), the energy per
particle converges to a non-trivial value, i.e.

lim
Λ→+∞

EHF
Λ
A

(kF ) = EHF
∞
A

(kF ) = k2
F

2m

{
3
5 + 2kF

3π a0

}
. (3.98)

Again, the energy per particle converges either to a trivial limit or to an unphysical value when
the renormalization of H/π is not consistent with the employed many-body approximation. The
cut-off dependence of the energy per particle in the HF approximation is explicitly displayed
in Fig. 3.17

.

for the three different renormalization of C0(Λ). In this case, using the Hartree-
Fock approximation to compute many-body observables requires to renormalize the two-body
Hamiltonian HLO

/π at tree-level in the two-body sector to converge to a non-trivial limit.
Once the renormalization is performed according to the many-body approximation of interest,

one can discuss how relevant such an approximation is to describe a particular system. In the
case of the Hartree-Fock approximation, a system near the unitary limit is badly approximated
as

lim
a0→−∞

EHF
∞
A

(kF ) = −∞ , (3.99)

such that, while being properly renormalized, the employed scheme is not physically relevant,
at least in some particular situations.

Renormalization invariance in the 2nd Born approximation

A similar study follows for the energy per particle computed in the 2nd Born approximation.
For C0(Λ) renormalized exactly in the two-body sector,

lim
Λ→+∞

E2B
Λ
A

(kF ) = ερ0
ρ0

0
, (3.100)

while for C0(Λ) renormalized at tree-level,

lim
Λ→+∞

E2B
Λ
A

(kF ) = +∞ . (3.101)

Conversely, for C0(Λ) renormalized at one-loop order in the two-body sector, one obtains

E2B
Λ
A

(kF ) = k2
F

2m

3
5 +

 2
3π −

1
5π

(
2
√

2kF
Λ

)2

+O

(2
√

2kF
Λ

)4 (a0kF )

+
 4

35π2 (11− ln 2)− 2957− 96 ln 2
945π2

(
2
√

2kF
Λ

)2

+O

(2
√

2kF
Λ

)4 (a0kF )2

 , (3.102)
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Figure 3.17. Energy per particle in the (non-self consistent) Hartree-Fock approximation for
kF = 100 MeV. The upper-panel uses a C0(Λ) computed at tree-level. The middle-panel takes
into account the counter-term computed at one-loop as in Eq. (3.102

.

). The lower-panel uses
C0(Λ) from an exact renormalization in the two-body sector.
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so that,

lim
Λ→+∞

E2B
Λ
A

(kF ) = E2B
∞
A

(kF ) = k2
F

2m

{3
5 + 2

3π (a0kF ) + 4
35π2 (11− ln 2)(a0kF )2

}
, (3.103)

which corresponds to the first orders of the Lee-Yang expansion [79

.

, 80

.

, 81

.

]. As for the HF
and the ladder approximations, the conclusion drawn from Eqs. (3.100

.

), (3.101

.

) and (3.103

.

)
is that the computation of many-body observables in the 2nd Born approximation requires to
renormalize the two-body Hamiltonian HLO

/π at one-loop order in the two-body sector to converge
to a non-trivial limit. Typical cut-off dependences of the energy per particle computed in the
2nd Born approximation are displayed in Fig. 3.18

.

for the three renormalizations computed in
Chap. 2

.

.
Similarly, having the Hamiltonian consistently renormalized within the 2nd Born approxi-

mation, one can conclude that the 2nd Born approximation breaks down in the unitary limit
as

lim
a0→−∞

E2B
∞
A

(kF ) =∞ . (3.104)

Numerical analysis

The exact calculations of the energy per particle derived in Sec. 3.5.1

.

and Sec. 3.5.2

.

are
compared to the results obtained from the Fortran and the Mathematica code. In Fig. 3.19

.

calculations are plotted in the HF and the ladder approximations for Λ ∈ [4kF , 8kF ] and
ρ0 = 0.08, 0.16 fm−3 on the basis of an exact renormalization in the two-body sector17

.

.
Regarding the Hartree-Fock approximation, the perfect agreement confirms the numerical
accuracy and stability of the Fortran code in this case. The HF calculation in the Fortran
code is, thus, accurate up to the numerical precision tested to be of the order of 0.5 MeV
in Sec. 3.4.3

.

. However, the analytical results obtained in the ladder approximation disagree
by more than 5 MeV per particle from the numerical calculation in the Fortran code. This
disagreement is an order of magnitude larger than the numerical precision. Consequently, the
implementation of the ladder approximation in the Fortran code is not sufficiently accurate to
conclude about the Λ dependence of the energy per particle.
One can however use the cross-check with analytical calculations to detect the source of

numerical inaccuracy of the Fortran code. In the algorithms, the only differences between the
HF and the ladder approximations are localized in the T -matrix computation. Analysing HF
calculations, as presented in Tab. 3.1

.

, it turns out that the real part of G(ρ,2)+(Ω) is actually
not necessary to compute the energy per particle as the T -matrix is purely real [70

.

]. Conversely,
in the ladder approximation ReG(ρ,2)+(Ω) is crucial both to compute the T -matrix and the
energy per particle. As this is the only main difference between HF and ladder calculations,
Eq. (3.41

.

) used to compute ReG(ρ,2)+(Ω) is further analysed.
The dispersion relation (3.41

.

) is largely used in the different state-of-the-art implementations
of SCGF for nuclear matter [12

.

, 69

.

, 70

.

, 71

.

, 72

.

]. However the code used here relies heavily on
the background-quasiparticle decomposition of the spectral function. Analytical calculations

17The choice of Λ > 4kF is made to ensure that the expansion in 2
√

2kF
Λ , used in analytical derivations, is

well justified.
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3.5. Analytical calculations

Figure 3.18. Second Born (non-self consistent) computation of the energy per particle for
kF = 100 MeV. The upper-panel uses a C0(Λ) computed at tree-level. The middle-panel takes
into account the counter-term computed at one-loop as in Eq. (3.102

.

). The lower-panel uses
C0(Λ) from an exact renormalization in the two-body sector.
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Chapter 3. Equation of state of neutron matter

Figure 3.19. Energy per particle in the HF and the ladder approximations at ρ0 = 0.08 fm−3

(kF = 263 MeV) with C0(Λ) renormalized exactly in the two-body sector. Λ is varied in the
range [4kF , 8kF ].

are realized for the unperturbed spectral function i.e. with the Dirac spectral function in (3.20

.

).
In this case the analytical treatment of quasiparticle peaks in the Fortran code is critical. A
careful analysis of the Fortran code reveals that such treatment is indeed done analytically at
every step except for the evaluation of the dispersion relation (3.41

.

). In the case of a Dirac
spectral function (3.20

.

), Eq. (3.41

.

) reads as

ReG(ρ,2)+
~p1σ1~p2σ2
~p1σ1~p2σ2

(Ω) = P
∫ +∞

−∞

dΩ ′
2π

(2π)δ
(
Ω ′ − p2

m

)
Ω− Ω ′

×
[
1− θ

(
µ− p2

2m

)
− θ

(
µ+ p2

m
− Ω ′

)]
δσ1σ ′1

δσ2σ ′2
, (3.105)

which is mathematically ill-defined. Consequently, it is concluded that the Fortran code presents
a critical numerical instability in relation to Eq. (3.41

.

). In order to bypass this instability, the
calculation of G(ρ,2)+(Ω) for a quasiparticle propagator should be done analytically using the
relation (

1
x+ iη

)2

= P 1
x2 + iπδ ′ (x) , (3.106)

as mentioned in [82

.

]. Alternatively, the instability can be understood as the presence of a
pole in the two-body Green’s function which could be addressed using numerical tricks as in
Brueckner-Hartree-Fock calculations, see e.g. [74

.

]. Such an implementation is however out of
the scope of this thesis.

As discussed in this section, numerical accuracy is key to ensure the renormalization invariance
of observables computed numerically. The cancellations between counter-terms introduced
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3.5. Analytical calculations

Figure 3.20. Energy per particle in the ladder approximations for Λ ∈ [3kF , 14kF ] at ρ0 =
0.016 fm−3 (kF = 153 MeV) and C0(Λ) renormalized exactly in the two-body sector. Dashed
line represent the calculation for ε = 0.07 in Eq. (3.107

.

).

in C0(Λ) and the UV divergences must be treated with care in order to extrapolate the
calculation in the limit Λ → +∞. In this respect, testing the renormalization invariance of
observables provides a powerful tool to assess numerical instability which might have remained
un-noticed. In general, numerical computations of renormalization invariant observables put
strong constraints on the necessary numerical accuracy of the implementation.
To illustrate this numerical sensitivity Fig. 3.20

.

displays the Λ dependence of the energy
per particle calculated analytically in the ladder approximation with/without a small artificial
error introduced in the ladder calculation. To simulate an artificial error similar to the one in
the Fortran code, a factor (1− ε) is introduced in front of the one-loop calculations prior to
performing the resummation i.e. Bi is replaced by

Berr
i ≡ (1− ε)Bi . (3.107)

As soon as ε 6= 0 the energy per particle converges to the free Fermi gas limit as in Eq. (3.92

.

)
instead of converging to the non-trivial limit (3.91

.

). Furthermore, this error does not only
compromise the large Λ behaviour but also significantly modifies the result for small Λ values.

It is a difficult task to estimate numerically if the Hamiltonian H/π is renormalized consistently
with the many-body approximation without further a priori knowledge. In the next chapter, a
systematic procedure is derived to renormalize the HamiltonianH/π consistently with many-body
approximations expressed as a truncation on Feynman diagrams in terms of vacuum/medium
insertion or in terms of particle/hole propagators.
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Chapter 4.

Ultraviolet divergences of many-body
diagrams
In the previous chapter, numerical SCGF calculations demonstrated the criticality of the

numerical accuracy to assess the renormalization invariance of many-body observables. Deriving
a priori the set of counter-terms necessary to renormalize SCGF calculations would be an
important step forward to test the validity of sophisticated many-body approximations within
the frame of /πEFT. As a matter of fact, analytical calculations with different renormalizations of
H/π seems to indicate the possibility to derive a systematic procedure to lead to renormalization
invariant many-body observables.
The object of this chapter is to investigate such systematic procedures. In Sec. 4.1

.

, UV
divergences arising from diagrams in the in-medium formalism and their consequences on the
renormalization of the Hamiltonian are studied in a systematic way. In Sec. 4.2

.

, the study is
extended to diagrams in the more general particle-hole formalism. This opens the path to
renormalize consistently the Hamiltonian with various many-body approximations, namely
whenever they can be expressed as a sum of particle-hole diagrams. Eventually, practical
examples are studied in Sec. 4.3

.

before discussing some of the consequences of the present work
in Sec. 4.4

.

.

4.1. Ultraviolet divergences in many-body calculations
In this section, the general problem of the renormalization of the Hamiltonian when computing

many-body observables is introduced. Then, a general procedure is derived in the medium-
insertion formalism used in Sec. 3.5

.

. The focus is on UV divergences so that any potential
problem occurring in the infrared (IR) limit is neglected and considered out of the scope of
this thesis.

4.1.1. General problem
The perturbation theory used in Secs. 4.1

.

-4.2

.

is the one described in Sec. 3.1.1

.

so that the
Hamiltonian is partitioned as in Eqs. (3.1

.

), i.e.

HLO
/π = H0 +HLO

1 ,

H0 ≡
∑
~pσ

p2

2ma†~pσa~pσ ,
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Chapter 4. Ultraviolet divergences of many-body diagrams

HLO
1 ≡

∑
σ1σ2

∑
~p1~p2
~p ′1~p
′
2

h22
~p1~p2~p ′1~p

′
2
a†~p ′1σ1

a†~p ′2σ2
a~p1σ1a~p2σ2 .

The goal is to find a general procedure to compute counter-terms appearing in HLO
1 that are

necessary to take into account in the computation of many-body observables for a particular
many-body approximation. In order to comply with the ab initio philosophy, counter-terms
should be independent of the nuclear system studied, i.e. they should not depend on the A-body
sector studied1

.

. In the case of infinite neutron matter this constrains counter-terms to be
independent of the density ρ0 or equivalently of the Fermi momentum kF

2

.

.
On a more fundamental level, the EFT approach decouples UV effects by incorporating

them in the coupling constants. Introducing medium-dependent counter-terms would entangle
UV effects integrated in the coupling constant with collective low momentum effects. Such a
mixing would obscure the naturalness assumptions regarding the scaling of coupling constants
in power of the breakdown scale as in Eq. (2.23

.

). In this case NDA power-counting rules (and
its modification) are no longer trivial to justify. Eventually, regarding practical aspects, the
computation of counter-terms is in general simpler in few-body sectors and could even be
realized analytically for /πEFT. Conversely, many-body calculations often rely on numerically
involved approximations and computing counter-terms at this order would be both numerically
involved and error prone. For instance, the case of the ladder resummation in Sec. 3.5.1

.

is
illuminating. The energy per particle of infinite neutron matter in Eq. (3.83

.

) could be used to
compute directly counter-terms in C0(Λ) by matching Eq. (3.83

.

) to the experimental value
at a fixed density. However, beside introducing a kF dependence in C0(Λ) (thus in H/π), it is
much easier to compute the necessary counter-terms as in Sec. 2.2.3

.

.
In the next subsection, an example of such a systematic procedure is derived on the basis

of many-body approximations that can be recast as a set of Feynman diagrams made out of
vacuum propagators and medium-insertions as described in Sec. 3.5

.

.

4.1.2. Analysis of medium-insertion diagrams

In this subsection, we focus on the computation of the k-body Green’s function in the
perturbation theory defined in Eqs. (3.1

.

). The reference state is the Slater determinant |Φρ
0〉

and the unperturbed propagator is conveniently written as a vacuum and a medium-insertion
component as in Eq. (3.53a

.

), i.e.

iG
(ρ,1)0
~pσ~p ′σ ′(ω) =

 i

ω − p2

2m + iη
− 2πδ

(
ω − p2

2m

)
θ (kF − p)

 (2π)3δ (~p− ~p ′) δσσ ′

≡ iG
(0,1)0
~pσ~p ′σ ′(ω) + iG

(M,1)0
~pσ~p ′σ ′(ω) .

1Of course, this statement does not concern counter-terms that are strictly zero in certain A-body sectors
and non-zero in others. For example, the three-body counter-term appearing at LO in /πEFT cannot be
identified in the two-body systems as it is strictly zero by construction.

2More generally counter-terms must be independent of the medium. For instance, they must also be
independent of the temperature T of the system.
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4.1. Ultraviolet divergences in many-body calculations

General integrals

Formally, the exact k-body Green’s function reads as

ikG
(ρ,k)
µ1...µk
ν1...νk

(ωµ1 . . . ωµk , ων1 . . . ωνk) =
∑

G(ρ,k)∈S(ρ,k)
Exact

AG(ρ,k)
µ1...µk
ν1...νk

(ωµ1 . . . ωµk , ων1 . . . ωνk) , (4.1)

where S(ρ,k)
Exact is the set of all diagrams, made out of the complete unperturbed propagator

iG(ρ,1)0. Expanding the propagator in Eq. (1.62

.

) on the basis of Eq. (3.53a

.

), each Feynman
amplitude corresponds to the sum of amplitudes associated to diagrams made out of vacuum
propagators iG(0,1)0 and medium-insertions iG(M,1)0. Many-body approximations considered
here consist in choosing a subset S(ρ,k)

MB of all possible diagrams made out of vacuum propagators
and medium-insertions so that the approximate k-body Green’s function is computed as

ikG
(ρ,k)MB
µ1...µk
ν1...νk

(ωµ1 . . . ωµk , ων1 . . . ωνk) ≡
∑

G(ρ,k)∈S(ρ,k)
MB

AG(ρ,k)
µ1...µk
ν1...νk

(ωµ1 . . . ωµk , ων1 . . . ωνk) . (4.2)

Focusing on one diagram G(ρ,k)
n with n vertices belonging to S(ρ,k)

MB , the associated amplitude
reads from Eq. (1.62

.

) as

AG
(ρ,k)
n
µ1...µk
ν1...νk

(ωµ1 . . . ωµk , ων1 . . . ωνk) =

(−1)σ (−i)n
n!

∑
λ

h22
λ...λ

(2!)2 . . .
h22
λ...λ

(2!)2

∫ dωλ
2π . . .

n∏
i=1

2πδ (±ωλ · · · − ωµ · · ·+ ων . . . )

×
∏
e∈I(0)

iG
(0,1)0
λλ (ωλ)

∏
e∈E(0)

in

iG
(0,1)0
λν (ων)

∏
e∈E(0)

out

iG
(0,1)0
µλ (ωµ)

×
∏

e∈I(M)

iG
(M,1)0
λλ (ωλ)

∏
e∈E(M)

in

iG
(M,1)0
λν (ων)

∏
e∈E(M)

out

iG
(M,1)0
µλ (ωµ) ,

(4.3)

where the distinction between vacuum propagators iG(0,1)0 and medium-insertions iG(M,1)0 is
made explicitly via the set of internal vacuum (medium-insertion) lines I(0) (I(M)), the set
of external incoming vacuum (medium-insertion) lines E(0)

in (E(M)
in ) and the set of external

outgoing vacuum (medium-insertion) lines E(0)
out (E

(M)
out ).

Isolation of ultraviolet subdivergences with cut diagrams

The medium insertions involved in the amplitude Eq. (4.3

.

) are non-zero only in a finite
volume of the (ω, ~p) vector space and thus cannot generate UV divergences. Consequently,
to prove the UV convergence of Eq. (4.3

.

), it is sufficient to prove the convergence of the
sub-integral with respect to the sole vacuum propagators. Formally, the sub-integral is isolated
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Chapter 4. Ultraviolet divergences of many-body diagrams

by rewriting Eq. (4.3

.

) as

AG
(ρ,k)
n
µ1...µk
ν1...νk

(ωµ1 . . . ωµk , ων1 . . . ωνk) = (−1)σ (−i)n
n!

×
∑
λ(M)

h22
λ(M)...λ(M)

(2!)2 . . .
h22
λ(M)...λ(M)

(2!)2

×
∫ dωλ(M)

2π . . .
n(M)∏
i=1

2πδ
(
±ωλ(M) · · · − ωµ(M) · · ·+ ων(M) . . .

)
∏

e∈I(M)

iG
(M,1)0
λ(M)λ(M)(ωλ(M))

∏
e∈E(M)

in

iG
(M,1)0
λ(M)ν(M)(ων(M))

∏
e∈E(M)

out

iG
(M,1)0
µ(M)λ(M)(ωµ(M))

∑
λ(0)

h22
λ...λ

(2!)2 . . .
h22
λ...λ

(2!)2

∫ dωλ(0)

2π . . .
n−n(M)∏
i=1

2πδ (±ωλ · · · − ωµ · · ·+ ων . . . )

×
∏
e∈I(0)

iG
(0,1)0
λ(0)λ(0)(ωλ(0))

∏
e∈E(0)

in

iG
(0,1)0
λ(0)ν(0)(ων(0))

∏
e∈E(0)

out

iG
(0,1)0
µ(0)λ(0)(ωµ(0)) , (4.4)

where labels with superscript (0) ((M)) are related to vacuum propagators (medium-insertion)
and labels without superscript refer indifferently to labels attached to a vacuum propagator
or a medium-insertion. In particular n(M) denotes the number of vertices to which only
medium-insertions are attached. The sub-integrals containing the potential UV divergences
then read as

∑
λ

h22
λ...λ

(2!)2 . . .
h22
λ...λ

(2!)2

∫ dωλ
2π . . .

n−n(M)∏
i=1

2πδ (±ωλ · · · − ωµ · · ·+ ων . . . )

×
∏
e∈I(0)

iG
(0,1)0
λλ (ωλ)

∏
e∈E(0)

in

iG
(0,1)0
λν (ων)

∏
e∈E(0)

out

iG
(0,1)0
µλ (ωµ) , (4.5)

where all labels with a superscript (M) inside the sub-integral are now written as external
labels, i.e. they are rewritten as3

.

λ(M) −→ µ or ν (4.6a)
µ(M) −→ µ (4.6b)
ν(M) −→ ν , (4.6c)

and labels with a superscript (0) are rewritten as

λ(0) −→ λ (4.6d)
µ(0) −→ µ (4.6e)
ν(0) −→ ν . (4.6f)

The substitution (4.6

.

) is introduced to make manifest the relation of the potentially UV
divergent sub-integral (4.5

.

) to the amplitude of a Feynman diagram made out of vacuum
3λ(M) label becomes a µ (ν) label if it corresponds to an outgoing (incoming) line of its associated vertex.
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4.1. Ultraviolet divergences in many-body calculations

−→ , −→

Figure 4.1. Examples of the procedure described in Sec. 4.1.2

.

to translate diagrams G(ρ,k) into
diagrams G(0,k+p).

propagators iG(0,1)0. To do so let us define the Feynman diagram made out of the same n
vertices but with incoming lines Ein ∪ I(M), outgoing lines Eout ∪ I(M) and internal lines I(0).
As each line in the aforementioned diagram corresponds to a vacuum propagator iG(0,1)0, the
diagram is denoted in the following as G(0,k+p)

n where p ≡ #I(M). Diagrammatically, G(0,k+p)
n

is obtained from the original diagram by cutting all internal medium-insertions in G(ρ,k)
n and

replacing them by an incoming and an outgoing external vacuum propagator. Additionally,
external medium-insertions are replaced by external vacuum propagators to obtain a Feynman
diagram contributing to the (k + p)-body Green’s function4

.

. In the following, this procedure is
referred to as the cutting procedure. The amplitude of the cut diagram G(0,k+p)

n reads as

AG
(0,k+p)
n
µ1...µk
ν1...νk

(ωµ1 . . . ωµk , ων1 . . . ωνk) =

(−1)σ (−i)n
n!

∑
λ

h22
λ...λ

(2!)2 . . .
h22
λ...λ

(2!)2

∫ dωλ
2π . . .

n∏
i=1

2πδ (±ωλ · · · − ωµ · · ·+ ων . . . )

×
∏
e∈I(0)

iG
(0,1)0
λλ (ωλ)

∏
e∈Ein∪I(M)

iG
(0,1)0
λν (ων)

∏
e∈Eout∪I(M)

iG
(0,1)0
µλ (ωµ) .

(4.7)

The only difference between Eq. (4.5

.

) and Eq. (4.7

.

) consists of a product of the additional
external propagator iG(0,1)0 (obtained from the cutting procedure) and of n(M) vertex factors
(the one that were only attached to medium-insertions). Those additional factors do not affect
the UV behaviour as they are constant with respect to integrals on internal momenta/energies.
Examples of this procedure are depicted in Fig. 4.1

.

. The sets of diagrams G(0,k+p)
n obtained for

a range of p values (see below) from the set of diagrams G(ρ,k)
n ∈ S(ρ,k)

MB are denoted by S(0,k+p)
MB .

Any diagram G(0,k+p)
n ∈ S(0,k+p)

MB is ensured to remain linked as the cut of any internal line
generates a pair of additional external lines.

Renormalization in (k + p)-body sectors

Consequently, G(0,k+p)
n correspond to Feynman diagrams contributing to the (k + p)-body

Green’s function with respect to the particle vacuum |0〉 and the problem of renormalization
invariance of the k-body Green’s function with respect to the reference state |Φρ

0〉 is reduced
4One could avoid the replacement of external medium-insertion by considering directly amputated diagrams

but this would introduce additional non-necessary notations.
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to a renormalization problem for (k + p)-body Green’s functions with respect to |0〉. Such
a renormalization can typically be realized via a Bogoliubov-Parasiuk-Hepp-Zimmermann
(BPHZ) procedure [83

.

, 36

.

, 37

.

], which introduces counter-terms in the Hamiltonian to cancel
UV divergences (see App. C

.

for a brief overview of the procedure ; more details can be found
in [37

.

]).
Applying the BPHZ procedure for a diagram G(0,k+p)

n consists of replacing the Feynman
amplitude AG

(0,k+p)
n by its UV-finite counterpart RG

(0,k+p)
n at the price of introducing counter-

terms in the Hamiltonian. The BPHZ procedure corresponds to adding new diagrams to
G(0,k+p)
n (containing Λ dependent vertices, i.e. counter-terms) so that UV divergences cancel

out. These additional diagrams correspond to Feynman amplitudes with vacuum propagators.
The UV-finite Feynman amplitude reads as

RG
(0,k+p)
n = AG

(0,k+p)
n +

∑
F∈FR(G(0,k+p)

n )

ΩF , (4.8)

where the sum is realized on the set of non-empty restricted i-forest FR(G(0,k+p)
n ) of G(0,k+p)

n
5

.

as
defined in App. C

.

. Any term in the sum corresponds to a Feynman diagram with at least one
vertex corresponding to a counter-term. The amplitude associated to ΩF corresponds to the
amplitude associated to the diagram G(0,k+p)

n where each connected component of F is replaced
by a counter-term with the same number of incoming/outgoing lines6

.

. In particular, if F is
made of only one A′-body renormalization part γ, ΩF corresponds to the amplitude associated
to the diagram G(0,k+p)

n where γ has been replaced by a A′-body vertex (being polynomial in
external momenta of at most degree D(γ), see for example Sec. 5.8 of Ref [84

.

]). From now,
as a shorthand notation, a diagram where an i-forest F is pictured with boxes will represent
directly the amplitude ΩF . See Fig. 4.2

.

for an example on a one-loop diagram. The sets of
additional diagrams containing counter-terms generated by the BPHZ procedure are denoted
as S(0,k+p)

MB,ct . Considering the total function RG
(0,k+p)
n (instead of AG

(0,k+p)
n ) results in lowering the

superficial degree of divergence of any UV divergent sub-diagram γ made of internal lines from
D(γ) ≥ 0 to DBPHZ(γ) < 0 [35

.

]. Following this procedure for any diagram G(0,k+p)
n obtained by

the cutting procedure leads to renormalization-invariant and UV-finite (k + p)-body Green’s
functions with respect to |0〉 while using only counter-terms computed in the (k + p)-body
sector. To finish the renormalization procedure, one only needs to match the calculation
of (k + p)-body Green’s functions to experimental observables. For instance, as detailed in
Sec. 1.2.2

.

, poles of the two-time reduction of (k + p)-body Green’s functions correspond to the
eigenspectrum of the (k + p)-body nuclear system so that the matching equations read as

lim
Λ→+∞

 ∑
G(0,k+p)∈S(0,k+p)

MB ∪S(0,k+p)
MB,ct

AG
(0,k+p)
n
µ1...µk
ν1...νk


−1 (

ω = E+(k+p)
m

)
= 0 . (4.9)

In practice, however, it is often more convenient to use only the topology of the diagrams with
counter-terms generated by the BPHZ procedure and to computing both the Λ dependence and

5Here the original amplitude AG(0,k+p)
n is made explicit to clarify that RG(0,k+p)

n is a sum of original and
newly-generated Feynman diagrams.

6Diagrammatically, it means that each outermost box of the i-forest F is replaced by a counter-term.
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the constant part directly with the matching equations of the (k + p)-body Green’s functions
(as done in Chap. 2

.

for the two-body Green’s function) by requiring, for example, ∑
G(0,k+p)∈S(0,k+p)

MB ∪S(0,k+p)
MB,ct

AG
(0,k+p)
n
µ1...µk
ν1...νk


−1 (

ω = E+(k+p)
m

)
= 0 . (4.10)

Denoting as pmax the maximum7

.

number of internal medium insertions for the complete set
of diagrams G(ρ,k)

n ∈ S(ρ,k)
MB , the renormalization invariance must be ensured for (k + p)-body

Green’s function with respect to |0〉 with 0 ≤ p ≤ pmax. For instance, the ladder summation
considered in Sec. 3.5.1

.

considers diagrams with arbitrary large number of internal medium-
insertions so that the renormalization problem concerns A′-body Green’s function with A′
arbitrary large. Matching equations (4.9

.

) or (4.10

.

) seem, thus, not practical as they imply
calculations in inconveniently large A′-body sectors.
However, in practice, the BPHZ procedure stipulates that only 1PI sub-diagrams that are

superficially divergent, the so-called renormalization parts, must be considered. Considering
only the set of renormalization parts can greatly simplify the renormalization problem. In the
case where renormalization parts are A′-body sub-diagrams with A′min ≤ A′ ≤ A′max the hope
would be to find new matching equations such that calculations to compute counter-terms are
confined in few-body sectors, ideally in A′-body sectors with A′ . A′max. Then, all (k+ p)-body
Green’s functions could be made renormalization invariant, regardless of the initial A-body
system studied (provided A′max is independent of A). Due to a lack of time, this problem is
out of the scope of this thesis and proper and explicit investigations remain to be done for the
largest class of many-body approximations possible.
In the ladder approximation A′max = A′min = 2 and the problem is reduced back to the

computation of counter-terms in the two-body sector, in agreement with the analytical results
discussed in Sec. 3.5.3

.

. An example of a two-body renormalization part included in a diagram
G(0,2+1) is depicted in Fig. 4.3

.

. In fact in this particular case, the sum of diagrams with counter-
terms can be absorbed by a redefinition of the bare two-body vertex into an effective two-body
vertex incorporating all UV-divergences and all Λ dependent counter-terms as depicted in
Fig. 4.4

.

. Any cut diagram in the ladder approximation is then expressed as a tree diagram with
effective two-body vertices. Thus, for any p the (2+p)-body Green’s function is renormalization-
invariant as it is expressed in terms of a sum of tree diagrams with only well-renormalized
effective two-body vertices. Eventually, only two-body counter-terms were computed in the
two-body sector (for example as in Sec. 2.2.3

.

) to obtain renormalization-invariant (2 + p)-body
Green’s functions8

.

.

Renormalization-invariant many-body observables

The diagrams obtained by the cutting procedure are made finite by adding diagrams generated
via the BPHZ procedure. In order to transport the cancellation realized in G(0,k+p) back to G(ρ,k),

7Using two-body vertices only as is done here, pmax for a nth order diagram of the k-body Green’s function
is bounded as pmax ≤ 2n− k.

8Similar reduction could be found for more complicated sets of diagrams S(0,k+p)
MB by introducing, similarly,

the notion of effective vertices. Their detailed study is however out of the scope of this thesis.
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=

Figure 4.2. Representation, in the case of a one-loop diagram, of the amplitude ΩF both with
the i-forest pictured on the original diagram and with an explicit counter-term vertex. The
filled dot represents the bare vertex whereas the hatched vertex represents the counter-term
associated to the i-forest represented by a box on the left-hand side diagram.

−→ =

Figure 4.3. On the left, an example of a two-loop diagram contributing to G(ρ,2)
3 in the ladder

approximation. In the middle, the diagram obtained by applying the cutting procedure to the
diagram on the left. It corresponds to a third order three-body diagram G(0,2+1)

3 . The only
renormalization part of the diagram on the right is surrounded by a box and corresponds to a
two-body sub-diagram i.e. it has only two incoming and two outgoing external lines. On the
right, the corresponding second-order three-body diagram including the two-body counter-term
is depicted.

= + + . . . + + . . .

Figure 4.4. Representation of the effective two-body vertices discussed in the case of the
ladder approximation. The shaded (full) vertex represents the effective (bare) vertex. The first
. . . denotes the sum of all ladders while the second . . . denotes the sum of all diagrams with
counter-terms, necessary to cancel out the UV-divergences.
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4.1. Ultraviolet divergences in many-body calculations

one only needs to reverse the procedure by re-introducing medium-insertions. Algebraically, this
consists in replacing the UV divergent sub-integral (4.5

.

) by a UV finite renormalized amplitude
in the full Feynman amplitude (4.4

.

). Diagrammatically, this is done by closing previously
cut lines by medium-insertions and by replacing external vacuum propagators with external
medium-insertions as originally. Regarding additional diagrams generated through the BPHZ
procedure, medium-insertions can be introduced identically as diagrams with counter-terms
possess the same external legs as the original UV-divergent diagram9

.

. Following this general
prescription leads to renormalization-invariant k-body Green’s functions with respect to |Φρ

0〉.
Note that everything that has been done for G(ρ,k) remains true for G(A,k) with A ≥ 1.

Renormalization procedure for many-body Green’s functions

The complete procedure to derive a renormalization-invariant k-body Green’s function
in a many-body approximation characterised by the set of Feynman diagrams S(ρ,k)

MB is now
recapitulated. For any diagram G(ρ,k) ∈ S(ρ,k)

MB

1. Apply the cutting procedure to G(ρ,k) containing p (0 ≤ p ≤ pmax), internal medium-
insertions i.e. cut internal medium-insertions into external vacuum propagators and
replace external medium-insertions by vacuum propagators. From this first step the
associated diagram G(0,k+p) is obtained.

2. Apply the BPHZ procedure to G(0,k+p), which generates additional diagrams G(0,k+p)
MB,ct to

cancel out UV divergences of G(0,k+p). The set of diagrams G(0,k+p)
MB,ct is denoted as S(0,k+p)

MB,ct .

3. Compute the counter-terms by matching the (k+p)-body Green’s functions to observables
in their approximations defined by S(0,k+p)

MB ∪ S(0,k+p)
MB,ct .

4. For any diagram G(0,k+p)
MB,ct ∈ S

(0,k+p)
MB,ct , external lines obtained via the cut (replacement) of

internal medium-insertions are closed (replaced) by a medium-insertion leading to the
diagram G(ρ,k)

ct . The set of diagrams G(ρ,k)
ct is referred to as S(ρ,k)

MB,ct.

5. The approximated UV-finite k-body Green’s function eventually reads as

ikG
(ρ,k)MB
µ1...µk
ν1...νk

(ωµ1 . . . ωµk , ων1 . . . ωνk) ≡
∑

G(ρ,k)∈S(ρ,k)
MB ∪S

(ρ,k)
MB,ct

AG(ρ,k)
µ1...µk
ν1...νk

(ωµ1 . . . ωµk , ων1 . . . ωνk) .

(4.11)

To illustrate this procedure, it is now applied to the second Born approximation.

9As a matter of fact, the whole procedure can be realized directly on the diagrams G(ρ,k)
n by following the

BPHZ procedure. Important modifications are that only sub-diagrams made out of vacuum propagators must
be considered and that counter-terms to renormalization parts must be computed on diagrams resulting from
the cutting procedure.
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Chapter 4. Ultraviolet divergences of many-body diagrams

, , , ,

Figure 4.5. Diagrammatic representation of contributions to the two-body Green’s function
with respect to |Φρ

0〉 for the second Born approximation, before introducing counter-terms in
the Hamiltonian.

Application to the second Born approximation

In the second Born approximation, the energy per particle is computed from the equal-time
one- and two-body Green’s function using Eq. (1.28

.

). This is equivalent to computing one-
and two-body Green’s function at second order (in number of vertices) and closing external
lines with additional medium-insertions. The additional closure with medium-insertions does
not induce additional UV-divergences so that one can focus on the renormalization of one-
and two-body Green’s function at second order. No loop made of vacuum propagators can
contribute to the one-body Green’s function (by conservation of the number of particle). Let
us, thus, now focus on the UV divergences in the two-body Green’s function.
The set S(ρ,2)

2B of diagrams contributing to the two-body Green’s function with respect to
|Φρ

0〉 are depicted in Fig. 4.5

.

. Following step 1, the cutting procedure is applied. The sets of
cut diagrams S(0,2+p)

2B with p = 0, 1 and 2, are pictured in Fig. 4.6

.

. In this example, the cutting
procedure generates diagrams that are disconnected but always linked, hence ensuring that
they do contribute to the (2 + p)-body Green’s function with respect to |0〉. Next, in step 2,
the BPHZ procedure is applied to diagrams in S(0,2+p)

2B . Only the diagram with a loop contains
a renormalization part (itself) and, thus, generates a new diagram with its associated counter-
term. For step 3, the counter-term corresponds to the pure contact counter-term (without any
derivative) computed in Sec. 2.2.2

.

and used in Sec. 3.5.3

.

to lead to a renormalization invariant
energy per particle in the second Born approximation. The UV divergent diagram and the
additional diagram generated by the BPHZ procedure are depicted in Fig. 4.7

.

10

.

. Step 4 and
step 5 are trivial in this case as the only UV-divergent diagram contained 0 medium-insertions.

Eventually, as already derived in Sec. 3.5.3

.

, the energy per particle obtained from the renor-
malized one- and two-body Green’s functions corresponds to the second order approximation
of the Lee-Yang expansion [79

.

, 80

.

, 81

.

], i.e.

E2B

A
(kF ) = k2

F

2m

{3
5 + 2

3π (a0kF ) + 4
35π2 (11− ln 2)(a0kF )2

}
. (4.12)

10One could have worked directly on vacuum-to-vacuum diagrams associated to the energy rather than on
one- and two-body Green’s functions. In this case, the complete set of diagrams resulting from the procedure
derived above is pictured in Fig. 4.8

.

.
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, , , ,

Figure 4.6. Diagrams obtained by applying the cutting procedure to the diagrams contributing
to the two-body Green’s function with respect to |Φρ

0〉 for the second Born approximation.

4π
m
a0

4π
m
a0

+ 4π
m

1√
2π a

2
0 Λ

Figure 4.7. Diagrammatic representation of the sole UV divergent diagram in the second Born
approximation and the additional diagram generated by the BPHZ procedure. The expression
of the different vertices are displayed explicitly. The hatched vertex represents the counter-term
computed in Eq. (2.54

.

) while the filled vertex represents the bare two-body interaction (i.e.
without any Λ dependent counter-term included).

+ + +

+ +

Figure 4.8. Diagrammatic representation of contributions to the energy per particle in the
second Born approximation, after introducing the counter-term in the Hamiltonian following
the procedure derived in Sec. 4.1

.

. For clarity counter-terms and bare vertices are explicitly
separated. The filled (hatched) vertex represents the bare (counter-term) two-body interaction.
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Discussion

In this section a systematic procedure has been derived to renormalize the Hamiltonian
H/π consistently with many-approximations that can be recast as a set of Feynman diagrams
made out of vacuum propagators and medium-insertions. However, the decomposition of
the unperturbed one-body propagator as a vacuum part and a trivial medium-insertion part
(Eq. (3.53a

.

)) only holds in the particular framework considered here, i.e. the kinetic Hamiltonian
as the unperturbed Hamiltonian and a Slater determinant as a reference state. Furthermore,
many-body approximations cannot necessarily be recast as a truncation on diagrams made
of vacuum propagators and medium-insertions (e.g. Brückner-Goldstone theory, see [85

.

] for a
review). In order to extend the analysis, a procedure based directly on particle-hole diagrams is
now investigated. Such a decomposition is indeed more general as it holds for any partitioning
of the Hamiltonian thanks to the Lehmann representation in Eq. (1.32

.

). As a first step into
that direction, the next section highlight a procedure to renormalize particle-hole diagrams for
the same partitioning of the Hamiltonian and the same reference state as before.

4.2. Analysis of particle-hole diagrams
In this section, we focus again on the computation of the k-body Green’s function in

the perturbation theory defined in Eqs. (3.1

.

) with |Φρ
0〉 as the reference state. However the

unperturbed propagator is now kept in its particle-hole form (3.5

.

), i.e.

iG
(ρ,1)0
~pσ~p ′σ ′(ω) = i

 θ (p− kF )
ω − p2

2m + iη
+ θ (kF − p)
ω − p2

2m − iη

 (2π)3δ (~p− ~p ′) δσσ ′

≡ iG
(ρ,1)0+
~pσ~p ′σ ′ (ω) + iG

(ρ,1)0)−
~pσ~p ′σ ′ (ω) .

4.2.1. General integrals
Let us recall that the exact k-body Green’s function reads as

ikG
(ρ,k)
µ1...µk
ν1...νk

(ωµ1 . . . ωµk , ων1 . . . ωνk) =
∑

G(ρ,k)∈S(ρ,k)
Exact

AG(ρ,k)
µ1...µk
ν1...νk

(ωµ1 . . . ωµk , ων1 . . . ωνk) ,

where S(ρ,k)
Exact is the set of Feynman diagrams made out of the complete unperturbed propagator

iG(ρ,1)0. Any diagram G(ρ,k) ∈ S(ρ,k)
Exact is referred to as a time-unordered diagram. Similarly

as in Sec. 4.1.2

.

, expanding the complete unperturbed propagator iG(ρ,1)0 with Eq.(3.5

.

), the
amplitude associated to a time-unordered diagram corresponds to the sum of amplitudes
associated to particle-hole diagrams i.e. diagrams made out of particle iG(ρ,1)0+ and hole
iG(ρ,1)0− propagators. As opposed to time-unordered diagrams, particle-hole diagrams are
referred to as time-ordered diagrams. Time-ordered diagrams are pictured similarly as time-
unordered diagrams except that ascending (descending) lines now referred to as a particle
(hole) propagator iG(ρ,1)0+ (iG(ρ,1)0−), see Fig. 4.9

.

for example of time-ordered diagrams.
Formally, the exact k-body Green’s function reads as

ikG
(ρ,k)
µ1...µk
ν1...νk

(ωµ1 . . . ωµk , ων1 . . . ωνk) =
∑

G(ρ,k)∈S̃(ρ,k)
Exact

AG(ρ,k)
µ1...µk
ν1...νk

(ωµ1 . . . ωµk , ων1 . . . ωνk) , (4.13)
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−→ , −→

Figure 4.9. Examples of the cutting procedure applied to particle-hole diagrams G(ρ,k)
2 and

resulting diagrams G(ρ,k+p)
2 , with p = 2 (left) and p = 1 (right).

where S̃(ρ,k)
Exact is the set of all time-ordered diagrams contributing to the k-body Green’s function.

Many-body approximations considered here consist of a choice of a subset S̃(ρ,k)
MB ⊂ S̃

(ρ,k)
Exact so

that the approximated k-body Green’s function reads as

ikG
(ρ,k)MB
µ1...µk
ν1...νk

(ωµ1 . . . ωµk , ων1 . . . ωνk) ≡
∑

G(ρ,k)∈S̃(ρ,k)
MB

AG(ρ,k)
µ1...µk
ν1...νk

(ωµ1 . . . ωµk , ων1 . . . ωνk) . (4.14)

Focusing on one diagram G(ρ,k)
n with n vertices in S̃(ρ,k)

MB , the associated amplitude to G(ρ,k)
n

reads from Eq. (1.62

.

) as

AG
(ρ,k)
n
µ1...µk
ν1...νk

(ωµ1 . . . ωµk , ων1 . . . ωνk) =

(−1)σ (−i)n
n!

∑
λ

h22
λ...λ

(2!)2 . . .
h22
λ...λ

(2!)2

∫ dωλ
2π . . .

n∏
i=1

2πδ (±ωλ · · · − ωµ · · ·+ ων . . . )

×
∏
e∈I+

iG
(ρ,1)0+
λλ (ωλ)

∏
e∈E+

in

iG
(ρ,1)0+
λν (ων)

∏
e∈E+

out

iG
(ρ,1)0+
µλ (ωµ)

×
∏
e∈I−

iG
(ρ,1)0−
λλ (ωλ)

∏
e∈E−in

iG
(ρ,1)0−
λν (ων)

∏
e∈E−out

iG
(ρ,1)0−
µλ (ωµ) ,

(4.15)

where the distinction between hole propagators iG(ρ,1)0− and particle propagators iG(ρ,1)0+ is
made explicitly via the set of internal particle (hole) lines I+ (I−), the set of external incoming
particle (hole) lines E+

in (E−in) and the set of external outgoing particle (hole) lines E+
out (E−out).

As in Sec. 4.1.2

.

, a cutting procedure can be carried out to isolate UV divergent components
of the amplitude (4.15

.

). Here, the only difference is that the cutting procedure is applied to
hole lines instead of medium-insertions. To simplify the analysis, the cutting procedure is
modified so that external hole propagators are replaced by particle propagators instead of
vacuum propagators. This does not affect the analysis of UV divergences as it concerns only
external propagators. An example of the cutting procedure applied to particle-hole diagrams
is pictured in Fig. 4.9

.

.
However, unlike in Sec. 4.1.2

.

, the diagrams resulting from the cutting procedure are no
longer diagrams contributing to (k + p)-body Green’s functions with respect to |0〉 (where p
denotes the number of internal hole lines that have been cut) but diagrams contributing to
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(k+ p)-body Green’s functions with respect to |Φρ
0〉 hence denoted G(ρ,k+p). Indeed, the lines of

the resulting diagram denote now particle propagators iG(ρ,1)0+ instead of vacuum propagators
iG(0,1)0 as in Sec. 4.1.2

.

.
In order to relate the UV divergences of the resulting diagram G(ρ,k+p) to those of a diagram
G(0,k+p), it is necessary to introduce a strong version of the power-counting theorem stated
in Sec. 2.1.2

.

, i.e. as derived by Weinberg [35

.

]. In this case, the proof of convergence (after
renormalization) of Feynman amplitudes is only dependent on the asymptotic coefficients of the
propagators. In the next subsection, the definition of asymptotic coefficients of a multivariate
function is briefly recalled, Weinberg’s asymptotic theorem is stated in its general form and
applied to Feynman amplitudes.

4.2.2. Asymptotic theorem
The UV convergence of Feynman amplitudes is analysed as the convergence problem of

a multidimensional integral of a multivariate function. Here the main ingredients to the
understanding of Weinberg’s asymptotic theorem are introduced for a generic multivariate
function. Eventually, Weinberg’s asymptotic theorem is stated both in terms of general integrals
and in terms of diagrams. For the complete proof and further discussion on Weinberg’s
asymptotic theorem see [35

.

].

Asymptotic coefficients and multidimensional integrals

Let us first introduce the definition of asymptotic coefficients (provided they exist) of a
function f : Rn → C as given in [35

.

]. For any vector subspace S =
{
~L1, . . . , ~Lm

}
11

.

of Rn with
m ≤ n and ~L1, . . . , ~Lm being m independent Rn-vectors, and any compact region W ⊂ Rn, the
asymptotic coefficients are defined as the numbers α

({
~L1, . . . , ~Lr

})
and β

(
~L1, . . . , ~Lr

)
(with

1 ≤ r ≤ m) such that for every ~C ∈ W

f
(
η1 . . . ηm~L1 + η2 . . . ηm~L2 + · · ·+ ηm~Lm + ~C

)
=

O
(
η
α({~L1})
1 (ln η1)β({~L1}) ηα({

~L1,~L2})
2 (ln η2)β({~L1,~L2}) × . . .

· · · × ηα({
~L1,...,~Lm})

m (ln ηm)β({~L1,...,~Lm})
)
, (4.16)

if η1 . . . ηm go independently to infinity. The asymptotic coefficients α (S) and β (S) can be
interpreted as the asymptotic coefficients α

({
~L
})

and β
({
~L
})

for ~L a "typical" vector in S
i.e. fixing η1 . . . ηm−1 sufficiently large and ~C ∈ W ,

f
([
η1 . . . ηm−1~L1 + η2 . . . ηm−1~L2 + · · ·+ ηm−1~Lm−1 + ~Lm

]
ηm + ~C

)
= O

(
ηα(S)
m (ln ηm)β(S)

)
,

(4.17)
when ηm goes to infinity.

11For convenience, in this section, the bracket notation {. . .} denotes the vector space spanned by the set of
vectors considered.
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Considering now integrals of a function f , the integration along the directions ~L1, . . . , ~Lr is
defined as

f~L1,...,~Lr

(
~X
)
≡
∫ +∞

−∞
dy1 . . .

∫ +∞

−∞
dyr f

(
~X + y1~L1 + · · ·+ yr~Lr

)
, (4.18)

where ~X is a vector in Rn. Thanks to Fubini’s theorem, if f~L1,...,~Lr

(
~X
)
exists (in the sense

that the integral is absolutely convergent), the integration depends only on the vector space
I =

{
~L1, . . . , ~Lr

}
so that one defines

fI
(
~X
)
≡
∫
~Y ∈I

dr~Y f( ~X + ~Y ) ≡ f~L1,...,~Lr

(
~X
)
. (4.19)

Furthermore, fI
(
~X
)
depends only on the projection of ~X along I12

.

. Choosing a subspace E
such that Rn = I ⊕ E, the domain of definition of the function fI

(
~X
)
can be restricted to E.

In the case of a Feynman amplitude, the general integrand depends on (ω1, ~p1, . . . ) and is
integrated on the internal energies and momenta. Therefore in this case, I denotes the vector
space of internal (one-body) energies and momenta whereas the vector space E denotes the
space of external (one-body) energies and momenta13

.

. The general vector space Rn = I ⊕ E
denotes the vector space of all (one-body) energies and momenta (internal and external).
As an example, the asymptotic coefficients α (S) of the vacuum propagator

iG
(0,1)0
~pσ (ω) = i

ω − p2

2m + iη
,

are now extracted. The vacuum propagator iG(0,1)0
~pσ (ω) is interpreted as a multivariate function

on R4 = {~eω, ~epx , ~epy , ~epz}, so that14

.

f(ω~eω + px~epx + py~epy + pz~epz) ≡ iG
(0,1)0
~pσ (ω) . (4.20)

One can show that in this case, the asymptotic coefficients of the vacuum propagator α0, read
as

α0 (S) =


−1 if S = {~eω}
−2 if S = {~L} with ~L /∈ {~eω}
−2 if dimS ≥ 2

. (4.21)

Asymptotic theorem

With all the notations introduced before, the general asymptotic theorem follows.
If a function f

(
~X
)
possesses asymptotic coefficients α (S) , β (S) for any non-null subspace

S ⊂ Rn, if f( ~X) is integrable for any finite region of Rn and if DI < 0 where

DI ≡ max
S ′⊆I

[α (S ′) + dimS ′] , (4.22)

12Any component of ~X in I can be absorbed in ~Y by a change of variable in the integral on I.
13Finite sum on spin-isospin indices are omitted here as they introduce only a finite linear combination of

integrals on energies and momenta so that the conclusion on the UV behaviour is not impacted.
14The label σ is just considered as a fixed parameter so that it is dropped in the definition of f(ω~eω +

px~epx + py~epy + pz~epz ).
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then fI
(
~X
)
exists i.e. is absolutely convergent.15

.

In order to apply this theorem easily to the convergence of Feynman amplitudes, it is
rewritten in terms of Feynman sub-diagrams as detailed in [35

.

]. This is done by associating to
any sub-space of integration S ′ ⊆ I a sub-diagram γ ⊆ G. In particular S ′ = I corresponds to
the sub-diagram γ made of G itself without its external lines. The quantity α (S ′) + dimS ′

corresponds to the superficial degree of divergence of the associated sub-diagram γ of G so that
having DI < 0 is equivalent to having D(γ) < 0 for all γ ⊆ G. Consequently, from Weinberg’s
asymptotic theorem, the power-counting theorem of Sec. 2.1.2

.

follows. The Feynman amplitude
associated to G is finite if D(γ) < 0 for any sub-diagram γ ⊆ G made of internal lines of G.

This theorem was already stated in Chap. 2

.

. However, Zimmermann’s proof of convergence
of Feynman amplitudes relies on the particular expression of the propagator and can be
applied only to the perturbation theory defined in Chap. 2

.

. Conversely, Weinberg’s asymptotic
theorem is very powerful as it proves the convergence of Feynman amplitudes with the sole
knowledge of the asymptotic coefficients α (S) associated with the propagator. It is crucial
for applications to MBPT diagrams (such as G(ρ,k)

n ) as the actual content of the propagator
depends on the partitioning of the Hamiltonian and/or on the reference state. In the next
subsection, the asymptotic theorem is used to complete the derivation of a systematic procedure
to obtain renormalization invariant k-body Green’s functions when computed in many-body
approximations considered in Eq. (4.14

.

).

4.2.3. General procedure
Reduction to a diagram G(0,k+p)

As discussed above, the cutting procedure introduced for diagrams made of vacuum propa-
gators and medium-insertions can similarly be applied to particle-hole diagrams where hole
lines play the same role as medium-insertions. However the resulting diagram contributes now
to the (k + p)-body Green’s functions (where p is the number of cut hole-line) computed with
respect to |Φρ

0〉.
To go further one must notice that the unperturbed particle one-body Green’s function

iG(ρ,1)0+ possesses the same asymptotic coefficients α (S) as the vacuum one-body Green’s
function iG(0,1)0, i.e. for any sub-space S of {~eω, ~epx , ~epy , ~epz}

α+ (S) = α0 (S) , (4.23)

where α+ (S) correspond to the asymptotic coefficients of iG(ρ,1)0+
~pσ (ω). Consequently, any

diagram made solely of unperturbed particle propagators is UV convergent if and only if the
same diagram made of vacuum propagators is UV convergent. Thanks to Weinberg’s asymptotic
theorem one can now focus on the study of a diagram G(0,k+p) associated to G(ρ,k+p) where the
unperturbed particle propagators have been replaced by vacuum propagators. The resulting
diagram contributes to the (k + p)-body Green’s function with respect to |0〉.
As in Sec. 4.1.2

.

, the UV divergences are canceled out by additional diagrams, containing
counter-terms, generated by the BPHZ procedure. Similarly as in Eq. (4.8

.

), the UV-finite

15In the original paper [35

.

], further implications on the asymptotic behaviour of the integral fI
(
~X
)
are

deduced but they are not stated here as they are not necessary for the developments in this thesis.
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+ + + + +

Figure 4.10. An example of renormalization of a two-loop diagram made of unperturbed
particle propagators as in Eq. (4.25

.

). To avoid multiplying notations for counter-terms, only
i-forests are pictured with dashed boxes.

Feynman amplitude reads as

RG
(0,k+p) = AG(0,k+p) +

∑
F∈FR(G(0,k+p))

ΩF . (4.24)

In order to transport the cancellation of UV divergences to the diagram G(ρ,k+p) made of
unperturbed particle propagators, one introduces the amplitude

RG
(ρ,k+p) ≡ AG(ρ,k+p) +

∑
F∈FR(G(ρ,k+p))

Ω(ρ)F , (4.25)

where Ω(ρ)F denotes the amplitude associated to the same Feynman diagram as for ΩF except
that lines denoting vacuum propagators are replaced by unperturbed particle propagators.
Therefore, the additional Feynman amplitudes Ω(ρ)F contains the same counter-terms as in
ΩF i.e. counter-terms computed, for instance, through a set of matching equations in the
(k+ p)-body sector via Eq. (4.10

.

). An example of a two-loop UV divergent diagram along with
the diagrams needed to cancel UV-divergences (both made of unperturbed particle propagators)
are pictured in Fig. 4.10

.

.
Thanks to Eq. (4.23

.

), RG(ρ,k+p) is UV-finite if and only if RG(0,k+p) is UV-finite. Following
this procedure leads to renormalization-invariant and UV-finite (k + p)-body Green’s functions
with respect to |Φρ

0〉 while using only counter-terms computed in the (k + p)-body sector. As
mentioned in Sec. 4.1.2

.

, counter-terms can, in some particular cases, be computed in A′-body
sectors with A′ < k + p. Hopefully, for reasonable many-body approximations, A′max . 10
with A′max ≡ max A′. Eventually, as in Sec. 4.1.2

.

, previously cut internal hole lines are closed
whereas previously replaced external hole lines are re-introduced as originally in order to
obtained UV finite k-body Green’s function with respect to |Φρ

0〉.

General procedure

Let us recapitulate the full procedure to derive UV-finite k-body Green’s functions with
respect to |Φρ

0〉, in a many-body approximation defined by a truncated set of particle-hole
diagrams S̃(ρ,k)

MB , with counter-terms in the Hamiltonian computed in few-body sectors. For any
diagram G(ρ,k) ∈ S̃(ρ,k)

MB with p internal hole lines,
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Chapter 4. Ultraviolet divergences of many-body diagrams

1. Apply the cutting procedure to G(ρ,k), i.e. cut internal hole lines into external particle
propagators and replace external hole lines by particle propagators. From this first step
the associated diagram G(ρ,k+p) is obtained.

2. Replace all particle propagators by vacuum propagators in G(ρ,k+p) leading to the diagram
G(0,k+p) contributing to the (k + p)-body Green’s function with respect to |0〉.

The sets of diagrams G(0,k+p) obtained is denoted as S̃(0,k+p)
MB .

3. The renormalization of the Hamiltonian can be carried on as usually on (k + p)-body
Green’s functions with respect to |0〉 leading to the introduction of an additional set of
diagrams with counter-terms denoted S̃(0,k+p)

MB,ct . The counter-terms are typically computed
by matching the (k + p)-body Green’s functions to observables in their approximations
defined by S̃(0,k+p)

MB ∪ S̃(0,k+p)
MB,ct .

Then, for any diagram G(0,k+p)
ct ∈ S̃(0,k+p)

MB,ct ,

4. Replace each vacuum propagator with a particle propagator. This generates the diagram
G(ρ,k+p)

ct .

5. External lines obtained via the cut (replacement) of internal hole lines are closed (replaced)
by a hole line. This leads to the diagram G(ρ,k)

ct .

The set of all diagrams G(ρ,k)
ct obtained is denoted as S̃(ρ,k)

MB,ct.

6. The approximated UV-finite k-body Green’s function eventually reads as

ikG
(ρ,k)MB
µ1...µk
ν1...νk

(ωµ1 . . . ωµk , ων1 . . . ωνk) ≡
∑

G(ρ,k)∈S̃(ρ,k)
MB ∪S̃

(ρ,k)
MB,ct

AG(ρ,k)
µ1...µk
ν1...νk

(ωµ1 . . . ωµk , ων1 . . . ωνk) .

(4.26)

Again, the analysis realized for particle-hole diagrams G(ρ,k) remains valid for particle-hole
diagrams G(A,k).
In the next section, the general procedure described in this section is applied to typical

examples of practical interest for many-body calculations of nuclear observables.

4.3. Example of applications
In this section, as a first example of the procedure described in Sec. 4.2.3

.

, the counter-terms
for the one-body Green’s function iG(ρ,1)RPA computed in the Random Phase Approximation
(RPA) are worked out16

.

. As a second example, an extension of the procedure derived in
Sec. 4.2.3

.

for a different partitioning of the Hamiltonian is investigated.
16In the literature, it is sometimes referred to as particle-hole RPA in order to distinguish it from other

approximations such as particle-particle RPA.
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4.3. Example of applications

ΣRPA = + + + + . . .

Figure 4.11. Examples of 1PI time-unordered diagrams (with undressed propagators) con-
tributing to the one-body Green’s function in the RPA approximation.

4.3.1. Random phase approximation
Historically, the RPA was first introduced in Ref. [86

.

] as a way to deal with collective
phenomena such as charge screening effect in electronic gas. Later, it was reformulated in
Refs. [87

.

, 88

.

] as a particular resummation of Feynman diagrams, namely successive particle-hole
excitations. Regarding nuclear systems, RPA and its extensions play an important role to take
into account the coupling to collective excitations [89

.

].
Here the Hamiltonian is partitioned as in Eqs. (3.1

.

) and the reference state is chosen to be
|Φρ

0〉 as defined in (3.1e

.

). The RPA is formulated as an approximation to the self-energy in the
Dyson equation (3.15

.

). The 1PI time-unordered Feynman diagrams (in terms of unperturbed
propagators) contributing to the self-energy in this approximation consist of the so-called ring
diagrams. Examples of contributions at first, second, third and fourth orders (in terms of
number of vertices) to the self-energy are pictured in Fig. 4.11

.

. Once the counter-terms are
correctly taken into account for the 1PI part of the one-body Green’s function, no additional
UV-divergences appear in the full (1PR) one-body Green’s function. Thus, in the following,
we focus only on 1PI diagrams.

Each 1PI time-unordered diagram contributing to the one-body Green’s function is de-
composed in a sum of time-ordered diagrams. In a time-unordered diagram, each line refers
to the complete unperturbed propagator iG(ρ,1)0. In a time-ordered diagram, an ascending
(descending) line refers to the unperturbed particle (hole) propagator iG(ρ,1)0+ (iG(ρ,1)0−).
Example of this decomposition is represented in Fig. 4.12

.

. Consequently, the RPA can be
recast as a truncation on the sum of particle-hole diagrams.

Applying the procedure in Sec. 4.2.3

.

to 1PI time-ordered Feynman diagrams contributing to
the one-body Green’s function, the set of diagrams with p hole lines, belonging to S̃(ρ,1+p)

RPA , is
explicitly pictured for examples at second, third and fourth orders in Tab. 4.1

.

and Tab. 4.2

.

.
In the RPA approximation, the resulting diagrams at nth order in Tab. 4.2

.

contain no loop
and, thus, are free of any UV-divergences. However, the resulting diagrams at nth order in
Tab. 4.1

.

read as one-loop diagrams (made of n internal lines) contributing to the n-body
Green’s function with respect to |0〉. With the notations of Sec. 4.2.3

.

,

k = 1 , (4.27a)
p = n− 1 . (4.27b)

Following the BPHZ procedure for a diagram G(0,n)
n ∈ S̃(0,n)

RPA is straightforward. As G(0,n)
n

contains only one loop, any potential renormalization part γ must contain at least all n internal
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Chapter 4. Ultraviolet divergences of many-body diagrams

Order n G(ρ,1)
n ∈ S̃(ρ,1)

RPA p G(0,1+p)
n ∈ S̃(0,1+p)

RPA D(G(0,1+p)
n )

2 1 1

3 2 -1

3 2 -1

4 3 -3

4 3 -3

Table 4.1. Examples of diagrams G(ρ,1)
n , with p hole lines and one particle loop, contributing

to G(ρ,1) in the RPA approximation. Associated cut diagrams G(0,1+p)
n and their superficial

degree of divergence D(G(0,1+p))
n ) are given.
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4.3. Example of applications

= + + + + +

+ + + + + +

Figure 4.12. Example of decomposition of a time-unordered diagram into a sum of time-
ordered diagrams. In a time-unordered diagram, any line refers to the complete propagator
iG(ρ,1)0. In a time-ordered diagram, any ascending (descending) line refers to the unperturbed
particle (hole) propagator iG(ρ,1)0+ (iG(ρ,1)0−). Time-ordered diagrams in the first row contain
one loop made of unperturbed particle propagators whereas time-ordered diagrams in the
second row contain zero loop made of unperturbed particle propagators. Due to conservation
of momentum, diagrams with one particle and one hole external leg vanish so that they are not
represented. However, for a general partitioning of the Hamiltonian this is no longer the case.

Order n G(ρ,1)
n ∈ S̃(ρ,1)

RPA p G(0,1+p)
n ∈ S̃(0,1+p)

RPA

2 2

3 3

Table 4.2. Examples of diagrams G(ρ,1)
n , with p hole lines and no particle loop, contributing to

G(ρ,1) in the RPA approximation. Associated cut diagrams G(0,1+p)
n are given.
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Chapter 4. Ultraviolet divergences of many-body diagrams

C0

C0
+ δCRPA

0 (Λ)

Figure 4.13. The only UV divergent diagram appearing in the RPA. Its associated counter-
terms is added. The filled vertex represents the bare coupling constant C0 while the hatched
vertex represents the counter-term δCRPA

0 (Λ).

lines building the loop so that

Lγ = 1 , (4.28a)
Iγ ≥ n , (4.28b)
nγ ≤ n , (4.28c)

where Lγ is the number of loops, Iγ the number of internal lines and nγ the number of vertices
of γ. Using the topological identity Lγ = Iγ − nγ + 1 implies that

Lγ = 1 , (4.29a)
Iγ = n , (4.29b)
nγ = n . (4.29c)

Eventually, the only potential renormalization part of G(0,n)
n is G(0,n)

n itself. From Eq. (2.39

.

),
the superficial degree of divergence of G(0,n)

n for n ≥ 2 reads as

D(G(0,n)
n ) = 5− 2n . (4.30)

The only solution to D(G(0,n)
n ) ≥ 0 is to take n = 2. Consequently, there is only one UV

divergent diagram which is pictured in Fig. 4.13

.

with its additional counter-term. This is
actually the same diagram as in the case of the second Born approximation.
Eventually, from the application of the procedure derived in Sec. 4.2.3

.

, one concludes that
when applying the RPA to compute the one-body Green’s function in /πEFT at LO for neutron
matter, an additional diagram is required with the pure contact counter-term

δCRPA
0 (Λ) ≡ 4π

m

1√
2π

a2
0 Λ . (4.31)

RPA 1PI time-unordered diagrams contributing to the one-body Green’s function are pictured
in Fig. 4.14

.

where the additional diagram cancelling the UV divergence is added. The result
derived for G(ρ,1)RPA can be carried on similarly for G(A,1)RPA with A ≥ 2.

4.3.2. Hartree-Fock perturbation theory
Up to now all many-body approximations considered were formulated in a framework where

the kinetic Hamiltonian was used as the unperturbed Hamiltonian. In this section, a different
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4.3. Example of applications

+ + + + + . . .

Figure 4.14. Time-unordered 1PI diagrams contributing to the one-body Green’s function in
the RPA approximation with the additional counter-terms derived following the procedure in
Sec. 4.2.3

.

.

partitioning of the Hamiltonian is considered to illustrate the flexibility of the procedure derived
in Sec. 4.2.3

.

.
Another partitioning of the Hamiltonian that plays an important role in nuclear physics is

H/π = H0 +H1 , (4.32a)
H0 ≡

∑
~pσ

eHF
~pσ a

†
~pσa~pσ , (4.32b)

H1 ≡
∑
~pσ

(
p2

2m − e
HF
~pσ

)
a†~pσa~pσ +

∑
σ1σ2

∑
~p1~p2
~p ′1~p
′
2

h22
~p1~p2~p ′1~p

′
2
a†~p ′1σ1

a†~p ′2σ2
a~p1σ1a~p2σ2 , (4.32c)

where eHF
~pσ is defined in Eq. (3.30

.

), namely

eHF
~pσ ≡

p2

2m + Σ(ρ)HF
~pσ ,

and the self-energy Σ(ρ)HF
~pσ is chosen to be the HF self-energy, i.e. solution of

Σ(ρ)HF
~pσ = 1

2
∑
~p ′

∑
σ ′

∫ +∞

−∞

dω ′
2π h22

~p~p ′~p~p ′ S
(ρ,1)HF
~p ′σ ′ (ω ′) θ(µ− ω ′) , (4.33a)

S
(ρ,1)HF
~pσ (ω) = 2πδ

(
ω − (p2 + Σ(ρ)HF

~pσ )
)
. (4.33b)

MBPT with the partitioning (4.32

.

) consists in expanding the k-body Green’s function with
respect to |Φρ

0〉 as a sum of Feynman diagrams with the HF propagator iG(ρ,1)HF as the
unperturbed propagator, i.e. as a sum of amplitudes

AG
(ρ,k)
n
µ1...µk
ν1...νk

(ωµ1 . . . ωµk , ων1 . . . ωνk) =

(−1)σ (−i)n
n!

∑
λ

hp1q1
λ...λ

p1!q1! . . .
hpnqnλ...λ

pn!qn!

∫ dωλ
2π . . .

n∏
i=1

2πδ (±ωλ · · · − ωµ · · ·+ ων . . . )

×
∏
e∈I

iG
(ρ,1)HF
λλ (ωλ)

∏
e∈Ein

iG
(ρ,1)HF
λν (ων)

∏
e∈Eout

iG
(ρ,1)HF
µλ (ωµ) ,

(4.34)

where the propagator iG(ρ,1)HF is defined in Eq. (3.32

.

), namely

G
(ρ,1)HF
~pσ (ω) = θ (p− kF )

ω − eHF
~pσ + iη

+ θ (kF − p)
ω − eHF

~pσ − iη
.
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Chapter 4. Ultraviolet divergences of many-body diagrams

More precisely, HF-MBPT(n) is defined as the many-body approximation for which the
approximated k-body Green’s function reads as

ikG
(ρ,k)HF-MBPT(n)
µ1...µk
ν1...νk

(ωµ1 . . . ωµk , ων1 . . . ωνk) ≡
∑

G(ρ,k)∈S̃(ρ,k)
HF-MBPT(n)

AG(ρ,k)
µ1...µk
ν1...νk

(ωµ1 . . . ωµk , ων1 . . . ωνk) ,

(4.35)
where S̃(ρ,k)

HF-MBPT(n) is the set of particle-hole diagrams (with the propagator iG(ρ,1)HF) with at
most n vertices. More detail on HF-MBPT(n) can be found in classical textbooks such as [58

.

].
In this section we study the UV behaviour of a diagram G(ρ,k) ∈ S̃(ρ,k)

HF-MBPT(n) in order to derive
the counter-terms required for HF-MBPT(n). To do so, the asymptotic coefficients αHF(S) of
iG(ρ,1)HF are computed. In the case of /πEFT at LO for the neutron matter, h22

~p~p ′~p~p ′ = C0 so
that Eqs. (4.33

.

) can be solved exactly with the ansatz

Σ(ρ)HF
~pσ = Σ(ρ)HF , (4.36)

where Σ(ρ)HF is a constant17

.

. The fact that Σ(ρ)HF
~pσ is a constant leads to

αHF (S) =


−1 if S = {~eω}
−2 if S = {~L} with ~L /∈ {~eω}
−2 if dimS ≥ 2

. (4.37)

Eventually, as αHF (S) = α+ (S), the procedure described in Sec. 4.2.3

.

can be applied directly,
without any modification, on diagrams contributing in the approximation HF-MBPT(n).

4.4. Discussion
Starting from the derivation of a Hamiltonian H describing the interaction between nucleons

within an EFT approach (namely /πEFT), the power-counting rules proposed to compute
observables at LO require to exactly solve the A-body Schrödinger equation for a truncated
Hamiltonian HLO. However, as discussed previously, in large A-body sectors (A� 10) exact
calculations remain intractable. In order to overcome this tension, the idea pursued here is to
test the largest class of many-body approximations so that one could identify one (or several)
approximations that would lead to accurate estimation of nuclear many-body observables. If
that was the case, this might indicate the possibility to find new power-counting rules better
suited to the exploration of nuclear many-body sectors.

Before that, however, it is necessary to be able to renormalize the Hamiltonian consistently
with the many-body approximation. It has been argued in Sec. 4.1.1

.

that the computation
of counter-terms appearing in the Hamiltonian should be done only in few-body sectors. On
top of that, for a given many-body approximation, the A-body sectors considered must be
bounded (in A) as low as possible to keep the best predictive power.
In Chap. 4

.

, a systematic procedure to renormalize the Hamiltonian has been derived for
different classes of many-body approximations. This procedure has the nice property to

17Plugging the ansatz (4.36

.

) into Eqs. (4.33

.

) leads to a cubic equation solved by Σ(ρ)HF.
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introduce counter-terms computed in A′-body sectors independently of the number A of
nucleons composing the nuclear system under study. If no a piori upper bound has been
derived on A′, it appears, in practice, that the A′-body sectors necessary to consider for the
computation of counter-terms fulfill in general A′ � A. For example, considering either RPA,
ladder approximation or second Born approximation lead to A′ ≤ 2 (for LO calculations
applied to neutron matter). This drastic reduction follows from the necessity of considering
only renormalization parts in the cut diagrams. From D(γ(0,A′)

n ) = 5 − 3A′ + n one can see
that, at fixed number of vertices, increasing A′ will eventually result in a non UV-divergent
sub-diagram so that renormalization parts do not tend to proliferate in large A′-body sectors18

.

.
Last but not least, the different tools used along Chap. 4

.

i.e. Weinberg’s asymptotic theorem
combined with BPHZ, show a great flexibility in their use. This was illustrated in the quite
trivial example of Sec. 4.3.2

.

which considers a different partitioning of the Hamiltonian where
the unperturbed Hamiltonian H0 is no longer the kinetic Hamiltonian. Following this general
approach, it is hoped that similar developments will be achieved in less trivial cases. The case
of SCGF seems to be a first non-trivial application as from the work of [64

.

, 65

.

, 66

.

, 67

.

, 68

.

]
additional counter-terms might be necessary (compared to a naïve application of BPHZ i.e. in
absence of the dressing of the propagators). Further extensions, such as considering partitions
of the Hamiltonian where H0 breaks specific symmetries of H would be an other interesting
development. For example, breaking translation symmetry by choosing the unperturbed system
to be an harmonic oscillator is crucial to tackle finite nuclei in ab-initio approaches. As another
example, the use of a partitioning that breaks particle number symmetry has enabled recently
an accurate treatment of superfluid nuclei while keeping a low order perturbative approximation
in the computation of observables [47

.

, 90

.

].

18Yet this is only an heuristic argument and, without further knowledge, it might be possible that particular
many-body approximations lead to arbitrarily high A′.
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Conclusion

Following the EFT program for nuclear systems in arbitrarily large A-body sectors, the
present thesis has focused on the particular case of /πEFT. As for χEFT, the power-counting
rules require to exactly solve the Schrödinger equation in any A-body sector for the leading
order Hamiltonian HLO

/π . Despite the relative simplicity of HLO
/π , exact calculations remains,

to this day, out of reach for many-body sectors i.e. with A � 10. Consequently, many-
body approximations must be considered to make predictions for large A nuclear systems.
The main goal of the present thesis was, thus, to investigate the implications of many-body
approximations on the renormalization invariance of A-body observables computed at LO. This
study constitutes only a first step as SLOs will have to be investigated as well in the future.
Following this goal, the calculation of the equation of state of neutron matter (i.e. the

energy per particle as a function of the density) has been computed using SCGF theory
on the basis of a /πEFT potential at LO, previously renormalized exactly in the two-body
sector in adequacy with power-counting rules. Attempting to fulfill power-counting rules
as well, "as exact as possible" SCGF calculations were performed by using one of the most
advanced truncation scheme available numerically to this day i.e. the "self-consistent ladder
approximation". However, after testing extensively the available state-of-the-art numerical
implementation of the self-consistent ladder approximation, it has been demonstrated to be
insufficiently precise in its implementation to draw any conclusion about the renormalization
invariance of observables. A critical numerical instability has indeed been revealed through a
comparison with analytical calculations in the simpler non-self-consistent ladder approximation.
This instability relates to the calculation of the real part of the two-body Green’s function
on the basis of a dispersion relation. More precisely, the numerical instability occurs when
combined with the quasiparticle treatment of the peak of the spectral function. This numerical
instability must be addressed before performing calculations in the self-consistent ladder
approximation, especially for codes implementing a quasiparticle-background decomposition.
In the meantime, analytical calculations performed to benchmark the numerical implementation
of the self-consistent ladder approximation, have revealed to be consistent with a particular
renormalization of HLO

/π in the two-body sector. In particular, non-self consistent ladder
approximation is consistent with the exact renormalization of HLO

/π in the two-body sector.
Conversely, Hartree-Fock and second Born approximations require counter-terms computed
respectively at first (tree-level) or second order (one-loop) in the bare coupling constants.
In order to extend the analysis realised in Sec. 3.5.3

.

, a systematic procedure (for a large
class of many-body approximations) has been derived in Chap. 4

.

to compute necessary counter-
terms to cancel out any potential UV divergences, hence leading to renormalization-invariant
many-body observables. The first class of many-body approximations considered is based on
the truncation of the set of Feynman diagrams expressed in terms of vacuum propagators and
medium-insertions. The systematic procedure has been successfully carried out thanks to the
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powerful BPHZ procedure that enables to deal with overlapping divergences. More precisely,
the BPHZ procedure is applied on diagrams resulting from a cutting procedure. This allows
one to renormalize HLO

/π solely in A′-body sectors with A′ ≤ A′max where A′max is independent
of the A-body sector of interest. In practice, (for RPA, the ladder approximation and the
second Born approximation) it was found that A′max ≤ 2 (even though no a priori bound
has been derived). This comforts the idea that one can renormalize HLO

/π in few-body sectors
even for non-trivial many-body approximations. With the help of Weinberg’s asymptotic
theorem, a similar procedure has been derived for many-body approximations based on the
truncation of the set of particle-hole diagrams contributing to k-body Green’s functions.
As the particle-hole representation of the unperturbed propagator is general (thanks to the
Lehmann representation), it opens the path to further generalizations in nuclear physics for
different many-body approximations (such as CC or SCGF) and/or different partitioning of the
Hamiltonian. Finally, all the considerations in the procedures derived in Chap. 4

.

were fairly
agnostic regarding the Hamiltonian employed. It would be interesting to study extensions of
the present work to different Hamiltonians such as the one derived in χEFT.
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Appendix A.

Feynman rules for k-body Green’s
functions
In this appendix, Feynman rules associated with the diagrams arising in the perturbative

expansion of Eq. (1.59

.

). The rules are given both in time and energy representation for
antisymmetrized vertices.
For the k-body Green’s function, contributions at nth-order in perturbation theory are

represented by a diagram with 2k external lines and n vertices, all connected by means of
oriented fermion lines. These fermion lines represent contractions between annihilation and
creation operators when applying the time-dependent Wick theorem [27

.

] with respect to
∣∣∣ΦA

0

〉
.

As a result of the Wick theorem, the nth-order contribution is derived from the following
Feynman rules.

Rule 1 Draw all unlabelled, topologically distinct and linked diagrams with n vertices, k
incoming and k outgoing external lines, using directed arrows.

Rule 2 Each oriented fermion line represents a Wick contraction, leading to the unperturbed
propagator iG(A,1)0

µν (tµ, tν) (or iG(A,1)0
µν (ωλ)). In time formulation, the tµ and tν label the

times of the vertices at the end and at the beginning of the line. In energy formulation,
ωλ denotes the energy carried by the propagator.

Rule 3 Each fermion line starting from and ending at the same vertex is an equal-time
propagator, −iG(A,1)0

µν (t, t+) = ρ(A,1)0
µν .

Rule 4 For each one- or two-body vertex, write down a factor (−i)h̆11
µν or (−i)h22

αβγδ respectively.

Rule 5 Include a factor (−1)σ(P )+nL where nL is the number of closed fermion loops and σ (P )
is the signature of the permutation connecting incoming and outgoing external lines. The
sign (−1)nL comes from the odd permutation of operators needed to create a loop and
does not include loops of a single propagator, already accounted for by Rule 3.

Rule 6 For a diagram representing a k-body Green’s function, add a factor (−i)k, whereas for
a k-body vertex without external lines (such as Σ(ρ) or T ) add a factor i.

The next two rules require a distinction between the time and the energy representation. In
the time representation:
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Appendix A. Feynman rules for k-body Green’s functions

Rule 7 Label each vertex with a time tλ. All the fermion lines connected to the same vertex
share the same time, tλ.

Rule 8 Sum over all the internal quantum numbers and integrate over all internal times from
−∞ to +∞ i.e.

∫+∞
−∞ dtλ.

Alternatively, in energy representation:

Rule 7’ Label each fermion line with an energy ωλ, under the constraint that the total incoming
energy equals the total outgoing energy at each vertex, i.e. ∑λ ω

in
λ = ∑

λ ω
out
λ .

Rule 8’ Sum over all the internal quantum numbers and integrate over each independent
internal energy, from −∞ to +∞ i.e.

∫+∞
−∞

dωλ
2π .

Eventually, each diagram is multiplied by a combinatorial factor S that originates from the
number of equivalent Wick contractions that lead to it. In the present thesis, only symmetry
from equivalent lines or exchange of vertices appear hence the last Feynman rule

Rule 9 A factor 1
ne! must be considered for each group of ne equivalent lines namely lines that

begin and end at the same vertices. A factor 1
ns

must be considered where ns is the
number of ways of exchanging vertices of the labelled diagram leading to a topologically
equivalent labelled diagram.

For an extended discussion on how to calculate this combinatorial factor see [91

.

].
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Calculation of R functions
In this appendix the calculation of the R functions used in the one medium-insertion loop is

detailed.

B.1. R0

In this document R0(s, κ) is defined in an integral form as

R0(s, κ) ≡
∫ 1

−1
dy
{

[M(y; s) +M(−y; s)]− κ
[
ArgthM(y; s)

κ
+ ArgthM(−y; s)

κ

]}
. (B.1)

B.1.1. M(y; s) integrals
To derive an explicit form of R0 the two auxiliary integrals are first computed∫ 1

−1
dy [M(y; s) +M(−y; s)] , (B.2)∫ 1

−1
dy

[
ArgthM(y; s)

κ
+ ArgthM(−y; s)

κ

]
, (B.3)

where Eq. (3.64

.

) is recalled namely

M(y; s) ≡ sy +
√

(sy)2 + 1− s2 .

Integral (B.2

.

) is trivial and reads
∫ 1

−1
dy [M(y; s) +M(−y; s)] = 2− 1− s2

s
ln 1− s

1 + s
. (B.4)

Integral (B.3

.

) is a bit more involved and a software such as Mathematica is not sufficient to
compute it directly. The derivation of its real part is detailed here.

Re
∫ 1

−1
dy

[
ArgthM(y; s)

κ
+ ArgthM(−y; s)

κ

]
= −

∫ 1

−1
dy 1

2 ln

∣∣∣∣∣∣∣1 + 2
κ2−s2+1

2κ
√

(sy)2+1−s2
− 1

∣∣∣∣∣∣∣ , (B.5)
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then, making the change of variable u =
√

(sy)2 + 1− s2 one obtains

Re
∫ 1

−1
dy

[
ArgthM(y; s)

κ
+ ArgthM(−y; s)

κ

]

= −2
s

Re
∫ 1
√

1−s2
du u√

u2 + s2 − 1
Argthκ

2 − s2 + 1
2κu

= 2
s

{∫ 1
√

1−s2
du ∂u

(√
u2 + s2 − 1

)
×
(
−1

2

)(
ln
∣∣∣∣∣κ2 − s2 + 1

2κ + u

∣∣∣∣∣− ln
∣∣∣∣∣κ2 − s2 + 1

2κ − u
∣∣∣∣∣
)}

= 2
s

−s2 ln
∣∣∣∣∣(κ+ 1)2 − s2

(κ− 1)2 − s2

∣∣∣∣∣− κ2 − s2 + 1
2κ

∫ 1
√

1−s2
du
√
u2 + s2 − 1

u2 −
(
κ2−s2+1

2κ

)2

 .

Changing again of variable with v = u√
1−s2 , one obtains

Re
∫ 1

−1
dy

[
ArgthM(y; s)

κ
+ ArgthM(−y; s)

κ

]

= 2
sκ

{
−sκ2

[
ln 1 + s+ κ

|1− s− κ| + ln
∣∣∣∣1− s+ κ

1 + s− κ

∣∣∣∣
]

−κ
2 − s2 + 1

2

∫ 1√
1−s2

1
dv

√
v2 − 1

v2 −
(
κ2−s2+1
2κ
√

1−s2

)2


= 2
sκ

{
−sκ2

[
ln 1 + s+ κ

|1− s− κ| + ln
∣∣∣∣1− s+ κ

1 + s− κ

∣∣∣∣
]
− κ2 − s2 + 1

2
1
2 ln

(1 + s

1− s

)

+1
2

1− (κ2 + s2)
2 ln

(
1− s
1 + s

∣∣∣∣∣(1 + s)2 − κ2

(1− s)2 − κ2

∣∣∣∣∣
)}

= 2
sκ

{
1− s2

2 ln
(1 + s

1− s

)
+ 1− (κ+ s)2

2 ln 1 + s+ κ

|1− s− κ|

+1− (κ− s)2

2 ln
∣∣∣∣1− s+ κ

1 + s− κ

∣∣∣∣
}

(B.6)

where Eq. (B.8

.

) is used to replace the last integral on v.
Finally, putting Eq.(B.6

.

) and Eq.(B.4

.

) together into Def. (B.1

.

)

R0(s, κ) = 2 + 1
2s
[
1− (s+ κ)2

]
ln 1 + s+ κ

|1− s− κ| + 1
2s
[
1− (s− κ)2

]
ln 1 + s− κ

1− s+ κ
(B.7)

B.1.2. v integral
For the sake of completeness, the above integral on v is derived. Starting with the change of

variable v = ch(t),∫ 1√
1−s2

1
dv

√
v2 − 1

v2 −
(
κ2−s2+1
2κ
√

1−s2

)2
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=
∫ Argch 1√

1−s2

0
dt sh(t)2

ch(t)2 −
(
κ2−s2+1
2κ
√

1−s2

)2

=
∫ 1

2 ln( 1+s
1−s)

0
dt

ch(t)2 −
(
κ2−s2+1
2κ
√

1−s2

)2
+
(
κ2−s2+1
2κ
√

1−s2

)2
− 1

ch(t)2 −
(
κ2−s2+1
2κ
√

1−s2

)2

= 1
2 ln

(1 + s

1− s

)
+
(κ2 − s2 + 1

2κ
√

1− s2

)2

− 1
 ∫ 1

2 ln( 1+s
1−s)

0
dt 1

ch(t)2 −
(
κ2−s2+1
2κ
√

1−s2

)2

= 1
2 ln

(1 + s

1− s

)
+
(
κ2 + s2 − 1
2κ
√

1− s2

)2 1
2
(
κ2−s2+1
2κ
√

1−s2

)2

×
∫ 1

2 ln( 1+s
1−s)

0
dt
 1

ch(t)−
(
κ2−s2+1
2κ
√

1−s2

) − 1
ch(t) +

(
κ2−s2+1
2κ
√

1−s2

)
 .

Simplifying and changing again of variable with z = et, one get back to simpler rationale
fraction integrals∫ 1√

1−s2

1
dv

√
v2 − 1

v2 −
(
κ2−s2+1
2κ
√

1−s2

)2

= 1
2 ln

(1 + s

1− s

)
+ 1
κ2 − s2 + 1

(1− (κ2 + s2))2

2κ
√

1− s2

×
∫ √ 1+s

1−s

1
dz
 1
z2 − 2z

(
κ2−s2+1
2κ
√

1−s2

)
+ 1
− 1
z2 + 2z

(
κ2−s2+1
2κ
√

1−s2

)
+ 1

 .

Combining with inequalities (3.60

.

), an expression using Argth function is derived as∫ 1√
1−s2

1
dv

√
v2 − 1

v2 −
(
κ2−s2+1
2κ
√

1−s2

)2

= 1
2 ln

(1 + s

1− s

)
− 1− (κ2 + s2)

κ2 − s2 + 1

×

Argth
2κ(1 + s)− κ2 −

√
1− s22

1− (κ2 + s2)

− Argth
(
−(κ−

√
1− s2)2

1− (κ2 + s2)

)

−Argth
2κ(1 + s) + κ2 +

√
1− s22

1− (κ2 + s2)

+ Argth
(

(κ+
√

1− s2)2

1− (κ2 + s2)

) ,

and eventually,
∫ 1√

1−s2

1
dv

√
v2 − 1

v2 −
(
κ2−s2+1
2κ
√

1−s2

)2

= 1
2 ln

(1 + s

1− s

)
− 1

2
1− (κ2 + s2)
κ2 − s2 + 1 ln

(
1− s
1 + s

∣∣∣∣∣(1 + s)2 − κ2

(1− s)2 − κ2

∣∣∣∣∣
)
. (B.8)
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B.2. R1

R1 is defined as

R1(s, κ) ≡
∫ 1

−1
dy
{
−
[
M(y; s)3 +M(−y; s)3

]
−κ2

[
(M(y; s) +M(−y; s))− κ

(
ArgthM(y; s)

κ
+ ArgthM(−y; s)

κ

)]}
.

(B.9)

In this case the calculation uses integrals in R0 calculation plus the following one∫ 1

−1
dy

[
M(y; s)3 +M(−y; s)3

]
. (B.10)

It turns out ∫ 1

−1
dy

[
M(y; s)3 +M(−y; s)3

]
= 4 , (B.11)

so that,
R1(s, κ) = −

(
4 + κ2R0(s, κ)

)
. (B.12)

Note that it is only a particular case to having the full s dependence in R0(s, κ). Indeed if
one try to go to higher order one will need to compute more general integrals as∫ 1

−1
dy [M(y; s)n +M(−y; s)n] (B.13)

which are not independent of s for n ≥ 4 since

∀n 6= 1 ,
∫ 1

−1
dy [M(y; s)n +M(−y; s)n] = 2

(n2 − 1)s [(1 + s)n(n− s)− (1− s)n(n+ s)] .

(B.14)
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Appendix C.

BPHZ renormalization procedure
In this appendix, the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ) procedure to make

UV finite Feynman diagrams arising in the perturbative expansion of the k-body Green’s
function G(0,k) (where the Hamiltonian is partitioned as in Eqs. (3.1

.

) and the reference state is
|0〉) is briefly recalled. For an extensive discussion and the complete proof of the procedure,
the reader is referred to Refs. [40

.

, 41

.

, 37

.

, 42

.

]. Before describing the BPHZ procedure applied
to a generic diagram G, several useful definitions must be recalled.
A sub-diagram γ of G is defined as a subset of lines and vertices contained in G where end

points of the lines of γ belong to its vertices. A diagram G1 is said to be included in G2 and
denoted as G1 ⊆ G2 if their set of lines verify the same inclusion relation. In particular, a
sub-diagram γ of G verifies γ ⊆ G. The sub-diagram generated by the intersection of lines of
two sub-diagrams γ1 and γ2 defines a sub-diagram γ and is denoted as

γ ≡ γ1 ∩ γ2 . (C.1)

Two sub-diagrams γ1 and γ2 that have neither lines nor vertices in common are said to be
disjoint and the result is denoted as

γ1 ∩ γ2 = ∅ . (C.2)

If neither γ1 ⊆ γ2 nor γ2 ⊆ γ1 and γ1 ∩ γ2 6= ∅ they are said to be overlapping. Otherwise
they are said to be non-overlapping. As a shorthand, "γ1 and γ2 overlaps" is often written
as γ1 ◦ γ2. For a set of non-overlapping sub-diagrams γ1, γ2, . . . , γn of G, the reduced diagram
G \ {γ1, γ2, . . . , γn} is defined by the diagram resulting from G after contracting all lines of
γ1, γ2, . . . , γn to a point.
A sub-diagram γ of G is referred to as a renormalization part if it is a 1PI diagram with a

superficial degree of divergence greater than or equal to 0, i.e. if

D(γ) ≥ 0 . (C.3)

The Feynman amplitude associated to G is denoted as AG. For a set of mutually disjoint sub-
diagrams γ1, γ2, . . . , γn the Feynman amplitude is expressed in terms of the Feynman amplitudes
of the sub-diagrams Aγj and the remainder is denoted as AG\{γ1,...,γn} with G \ {γ1, . . . , γn}
corresponding to the reduced diagram as defined above. With these definitions,

AG = AG\{γ1,...,γn}
n∏
j=1
Aγj . (C.4)
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The BPHZ procedure defines recursively a renormalized amplitude RG associated to the
diagram G. If the amplitude associated to G is convergent

RG ≡ AG . (C.5)

If the diagram does not contain any renormalization part but is superficially divergent it is
called primitively divergent. In that case the renormalized amplitude is defined by

RG ≡ (1− tG)AG , (C.6)

where tG is the operator of the Taylor expansion with respect to the external momenta1

.

around
0 up to the order of the dimension D(γ) of the divergent diagram, i.e.

tγAγp1,...,pk
p ′1,...,p

′
k

≡
D(γ)∑
j=0

1
j!

∑
s1+···+s ′k≥0
s1+···+s ′k=j

∂jAγ

∂ps11 · · · ∂pskk ∂p
′s ′1
1 · · · ∂p

′s ′
k

k

∣∣∣∣∣∣
p1=···=p ′

k
=0

ps11 · · · p
′s ′k
k (C.7)

If G is superficially divergent and contains divergent sub-diagrams the renormalized amplitude
is defined as

RG ≡ (1− tG)R̄G , (C.8)
where R̄G corresponds to the Feynman amplitude where all sub-divergences have already been
subtracted. The subtraction by the Taylor operator tγ corresponds to adding the amplitude
associated to a diagram where the divergent sub-diagram γ has been replaced by a vertex
so-called a counter-term.
The recursion relation (C.8

.

) was solved explicitly by the forest formula [37

.

] which is based
on the concept of i-forest (for inclusion-forest). An i-forest is defined as any set of sub-diagrams
(including the empty set and the whole diagram itself) which are mutually non-overlapping.
This way, the Hasse diagram2

.

, for the order relation ⊆ and the mutually non-overlapping
sub-diagrams, represents a forest i.e. a set of disconnected tree (see the right panel of Fig. C.1

.

for an example where the Hasse diagram of the i-forest is made of only one tree). An i-forest is
said to be connected if its Hasse diagram is connected. A connected i-forest is also referred to
as an i-tree. As for regular forest, an i-forest can be decomposed as the set of its connected
components (i.e. as a set of i-trees). An i-forest is usually depicted by drawing boxes around
the sub-diagrams as represented in the left panel of Fig. C.1

.

. The boxes are, thus, not allowed
to overlap but can be nested. An i-forest is restricted if each of its boxes contains only
renormalization parts. To each restricted i-forest F one associates again an amplitude, i.e.

ΩF ≡
∏̃

γ∈F
(−tγ)AG , (C.9)

where the tilde over the product sign stands for the fact that in case of nested diagrams within
the i-forest one has to apply the Taylor operators from the innermost to the outermost diagrams

1The renormalization point is chosen here to be 0 but could be chosen arbitrarily. In the case of /πEFT the
calculations realized in Sec. 2.2

.

are equivalent to the choice of a renormalization point at 0 as the coupling
constants are matched in the limit q → 0.

2A Hasse diagram associated to an order relation is a diagrammatic representation of the ordering between
the objects considered.
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γ1

γ2

⊆
γ1

γ2

Figure C.1. On the left panel, an example of an i-forest (depicted by boxes) for a three-
loop ladder diagram contributing to G(0,2). The middle panel pictures the diagram with the
counter-term associated to this i-forest (the vertex with an empty circle denotes the two-body
counter-term appearing for this particular i-forest). The associated Hasse diagram is depicted
on the right panel.

while for disjoint sub-diagrams the expressions are naturally independent of the order of Taylor
operators since

AG = AG\{γ1,...,γn}
n∏
k=1
Aγk . (C.10)

Each i-forest corresponds to a particular diagram with counter-terms3

.

. Eventually, the forest
formula states that the renormalized amplitude of the diagram G is given by the sum over all
restricted i-forests, i.e.

RG =
∑

F∈FR(G)
ΩF , (C.11)

where FR(G) denotes the set of restricted i-forest and where it is understood that the empty
i-forest (i.e. without any box around a sub-diagram) stands for the diagram G itself. The term
with the empty i-forest corresponds to the UV divergent diagram while all other additional
terms correspond to diagrams with counter-terms to cancel the original UV divergences.

3The topology of the resulting diagram consists of the original diagram G where the sub-diagrams γ of the
i-forest have been contracted to a vertex corresponding to a counter-term. The nature of the counter-terms
depends on the i-forest.
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Synthèse en français
La physique nucléaire de basse énergie est en train de subir des changements majeurs ces

dernières années. Sur Terre, les générations successives des générateurs de faisceau radioactif
s’intéressent à des éléments à durée de vie de plus en plus faible, à des isotopes de plus en
plus exotiques et repoussent toujours plus loin la frontière de la carte des noyaux observés
expérimentalement. Dans l’espace, les explosions de supernovae, les étoiles à neutrons (extrême-
ment compacts) et leur coalescence constituent un laboratoire unique pour tester les modèles
de matière nucléaire dans des conditions extrêmes. D’une manière générale, cette volonté de
repousser toujours plus loin la frontière de notre compréhension des systèmes nucléaires nous
emmène vers un certain nombre de questions fondamentales qui guident la recherche dans ce
domaine de la physique, à savoir

• comment l’interaction entre les protons et neutrons émerge de la théorie quantique des
champs qui décrit l’interaction entre les quarks et gluons les composant, à savoir la
chromodynamique quantique (QCD) ?

• comment sont liés les nucléons au sein d’un noyau et quelles sont les limites d’existence de
ces derniers vis-à-vis de l’interaction forte, en terme de masse, d’asymétrie neutron-proton
ou encore de moment angulaire ?

• comment une phénoménologie aussi complexe et riche émerge de l’interaction entre
nucléons ?

Pour répondre à ces questions un certain nombre de défis, autant expérimentaux que théoriques,
doivent être relevés. Malgré les efforts fournis sur de nombreuses décennies, la physique nucléaire
de basse énergie reste encore un problème ouvert et difficile. En particulier, une description
précise et systématique des systèmes nucléaires à basse énergie reste, à l’heure actuelle, hors de
portée.

Au cours de ces dernières décennies, de nombreuses approches théoriques ont été développées
pour répondre au problème à N corps en physique nucléaire, avec leur originalité et hétérogénéité
qui reflètent la complexité des systèmes nucléaires. Traditionnellement, ces approches sont
séparées en deux catégories : (i) les méthodes ab initio, qui reposent sur l’idée que les propriétés
du système dans son ensemble peuvent être décrites en terme de nucléons ponctuels en
interaction, et (ii) les approches dites effectives, qui formulent le problème en terme de degrés
de liberté effectifs (par rapport aux nucléons) interagissant entre eux. Bien que la première
catégorie de méthodes représente le "graal" de la physique nucléaire de basse énergie, seule la
seconde catégorie permet d’accéder à la majorité des noyaux observés.
Au cours de ces dernières années, le flux ininterrompu de données expérimentales sur les

noyaux à courte vie ainsi que la demande toujours plus forte d’estimations fiables d’observables
nucléaires représentent un défi pour les approches théoriques. L’attention et les efforts pour les
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améliorer se tournent maintenant vers des considérations de cohérence interne des théories,
de pouvoir de prédictions et vers une estimation précise des erreurs/incertitudes théoriques.
D’une part, les approches effectives, souvent ajustées pour reproduire une zone particulière de
la carte des noyaux ou possédant un biais d’ajustement envers les noyaux stables, rencontrent
des problèmes pour produire des prédictions consistantes loin des données déjà expérimentale-
ment connues. D’autre part, les approches ab initio, qui cherchent à résoudre l’équation de
Schrödinger à N corps en fonction de l’interaction élémentaire entre les nucléons, ont connues
des développements majeurs et émergent maintenant comme une méthode de choix pour les
noyaux de masse faible à moyenne.
Au cours des vingts dernières années, les méthodes ab initio ont subies deux avancées

majeures. La première s’est déroulée dans les années 90 grâce à l’apparition des premiers
super calculateurs qui ont permis l’utilisation des méthodes Monte-Carlo et des techniques
d’interaction de configurations au problème N corps nucléaire [1

.

, 2

.

]. De telles méthodes
cherchent à résoudre exactement le problème à N corps en calculant toutes les configurations
possibles (directement ou à travers un échantillonnage Monte-Carlo) dans un espace des
phases suffisamment grand. Les résultats obtenus reproduisent avec précision les propriétés de
structure ainsi que de réaction pour des noyaux légers. Parmi les exemples récents d’un tel
succès il y a l’unification de la description de la structure du 6Li et de la dynamique du couple
deutérium-4He [3

.

] ainsi que les réponses électromagnétiques et faibles de 4He et du 12C [4

.

].
De telles simulations ont cependant une complexité de calcul exponentielle avec le nombre
de particules ce qui les limite aux noyaux les plus légers, contenant au plus une dizaine de
nucléons, malgré les infrastructures de calculs les plus modernes.
La deuxième avancée majeure s’est déroulée au cours des dix dernières années avec l’uti-

lisation combinée des interactions chirales évoluées par des méthodes SRG (pour similarity
renormalization group)1

.

[5

.

] et l’introduction d’approximations contrôlées dans la résolution
de l’équation de Schrödinger. Par "contrôlée" il faut entendre ici que l’incertitude engendrée
par de telles approximations est a posteriori majorée à l’aide de tests de convergences. De
telles approximations sont basées sur une troncation du développement en perturbation de la
solution du problème à N corps, typiquement exprimée en une série de diagrammes resommés
de manière appropriée. Par rapport aux méthodes résolvant exactement le problème à N corps,
ces méthodes permettent d’abaisser la complexité de calcul d’exponentielle à polynomiale tout
en conservant une incertitude autour de quelques pourcents sur la solution du problème à N
corps. Par conséquent, les méthodes ab initio peuvent accéder, depuis quelques années, aux
noyaux de masse moyenne (contenants plusieurs dizaines de nucléons).

En pratique, les méthodes de résolution du problème à N corps se basent sur la donnée d’un
Hamiltonien H et cherchent à calculer les états et valeurs propres dans tous les secteurs à N
corps. Le but est donc de résoudre l’équation de Schrödinger

H
∣∣∣ΨA

m

〉
= EA

m

∣∣∣ΨA
m

〉
, (1)

où m indexe l’ensemble des solutions, le plus précisément possible. Le Hamiltonien, décrivant
l’interaction entre nucléons, peut être modélisé de plusieurs manières. Le paradigme actuel

1Les méthodes SRG consistent en un changement de base unitaire (laissant donc les observables à N corps
inchangées) visant à découpler les composantes de faibles et fortes impulsions de l’interaction entre nucléons.
Le problème à N corps devient alors "plus pertubatif".
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tente de construire H dans le cadre de la théorie effective des champs chirale (χEFT) [6

.

, 7

.

, 8

.

]
de tel sorte qu’il prend la forme d’une série

Hχ ≡ HLO
χ +HSLO

χ = HLO
χ +

∞∑
p=1

HNpLO
χ (2)

où l’ordre principal (désigné par LO pour leading-order) et les ordres sous-dominants (désignés
par SLO pour subleading-orders) sont organisés suivant un ensemble de règles de comptage
de puissance (désignées par PC pour power-counting). Le comptage de puissance proposé par
Weinberg [7

.

, 8

.

] s’avère être en parfaite adéquation avec l’approche traditionnelle du problème
à N corps, cherchant à résoudre le plus exactement possible (1

.

), indépendamment de l’ordre
auquel les SLOs sont tronqués. Cependant les règles de comptage proposées par Weinberg
ont récemment été rejetées sur la base d’une inadéquation avec une renormalisation (ordre
par ordre) et des règles alternatives ont été proposées [9

.

] pour répondre à ce problème. En
plus de modifier l’ordre auquel apparaît certaines contributions à l’Hamiltonien, les nouvelles
règles de comptage stipulent que si le LO nécessite toujours une résolution exacte de (1

.

), les
ordres sous-dominants doivent être calculés en perturbation relativement à la solution obtenue
pour l’ordre principal. Il s’avère que dans le cadre de la théorie effective des champs sans pion
(/πEFT) les PCs ont fait l’objet du même genre de modifications. De plus, la compatibilité
avec la renormalisabilité ordre par ordre d’un tel PC alternatif a été vérifiée au LO pour des
systèmes nucléaires contenant jusqu’à quatre corps [10

.

].
Au regard de tout ce qui a été évoqué ci-dessus, le but de cette thèse est donc d’étudier

l’invariance par la renormalisation des observables dans les secteurs à N corps pour /πEFT et
notamment dans les cas où N� 10. L’espoir étant ensuite d’étendre les leçons tirées de cette
étude au cas de χEFT. Le programme se distingue clairement des approches plus traditionnelles
du problème à N corps au sens que les contributions SLOs doivent être calculées uniquement en
perturbation relativement à l’ordre principal soit dans une approximation type onde distordu
(DWA pour distorted wave approximation). Comme il a été mentionné ci-dessus, cette approche
a été appliquée avec succès aux systèmes contenant jusqu’à quatre nucléons sur la base d’un
Hamiltonien HLO

/π contenant des interactions à deux et trois corps. Cependant, pour étendre
cette approche aux systèmes à N corps où N� 10 un problème majeur doit être surmonté. En
effet, si HLO

/π peut être traité exactement pour N ∼ 4 cela devient intraitable, analytiquement
ou numériquement, pour N� 10, et cela probablement pour encore plusieurs décennies à venir.
Par conséquent, il est nécessaire de mettre au point un développement (et une troncation)
supplémentaire pour pouvoir espérer appliquer la première étape du programme EFT aux
systèmes nucléaires, consistant à résoudre

HLO
/π

∣∣∣ΨA
m

〉(LO)
= EA(LO)

m

∣∣∣ΨA
m

〉(LO)
. (3)

Les troncations les plus répandues dans le cas de système à N corps où N� 10 sont actuellement
basées sur des approches non-perturbatives telles que les fonctions de Green auto-cohérentes
(SCGF) [11

.

, 12

.

], les cluster couplés (CC) [13

.

, 14

.

] et le groupe de renormalisation dans le
milieu [15

.

, 16

.

], ou sur des approches perturbatives comme la théorie de perturbation à N corps
(MBPT) [17

.

, 18

.

]. Dans cette thèse, les approches SCGF et MBPT sont étudiées en détail.
Le but principal est d’étudier les conséquences de devoir résoudre (3

.

) de manière approchée
sur l’invariance par renormalisation des observables à N corps. Cela représente seulement une
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Synthèse en français

première étape car l’étude se concentre sur le Hamiltonien au LO. Une fois le problème du LO
surmonté, les corrections SLOs devront être étudiées à leur tour.
Pour cela, le présent manuscrit se décompose en quatre chapitres. Chap. 1

.

et Chap. 2

.

introduisent respectivement les notations/notions de développement en perturbation du pro-
blème à N corps et la théorie effective des champs sans pion. Dans Chap. 2

.

les divergences
ultraviolettes et l’opération de renormalisation sont mises en avant pour sensibiliser le lecteur à
l’importance de l’invariance par renormalisation des observables calculées dans le cadre d’une
EFT. Dans Chap. 3

.

l’équation d’état de la matière infinie de neutron est calculée dans le cadre
de la théorie SCGF en utilisant HLO

/π . La renormalisation du Hamiltonien au LO est explicitée
dans Chap. 2

.

où l’équation de Schrödinger est résolue exactement dans le secteur à deux
corps, en accord avec les règles de comptage de puissance. En essayant de résoudre "le plus
exactement possible" pour essayer de coller au plus proche du PC, la théorie SCGF est utilisée
avec la troncation la plus avancée actuellement accessible, consistant à ressommer l’ensemble
des diagrammes en échelle de manière auto-cohérente. Il s’avère que cette approximation
est exacte dans le secteur à deux corps ce qui laisse espérer une compatibilité avec la façon
dont HLO

/π a été renormalisée. Cependant, après avoir testé en profondeur une implémentation
numérique disponible, et au niveau de l’état de l’art, il a été démontré que son implémentation
est actuellement insuffisamment précise pour pouvoir tirer des conclusions quant à l’invariance
des observables calculées dans cette approche vis-a-vis de la renormalisation. Une instabilité
critique a été mise en évidence grâce à une comparaison avec des calculs analytiques dans le cas
plus simple des échelles non auto-cohérentes comme observé dans Fig. 3.19

.

. Cette instabilité
a été reliée au calcul de la partie réelle de la fonction de Green à deux corps qui repose sur
une relation de dispersion. Plus précisément, cette instabilité numérique apparaît lorsque la
relation de dispersion est utilisée en même temps que le traitement en quasiparticule des pics
de la fonction spectrale. Cette instabilité doit être corrigée avant de pouvoir réaliser des calculs
dans l’approximation des échelles auto-cohérentes de manière fiable, en particulier pour les
codes utilisant une décomposition quasiparticule-background de la fonction spectrale. Les
calculs analytiques dérivés initialement pour tester l’implémentation numérique de SCGF ont
été aussi utile pour tester, de manière analytique, la compatibilité des approximations non
auto-cohérentes avec la renormalisation de HLO

/π dans le secteur à deux corps. En particulier il a
été montré explicitement que l’approximation des échelles nécessite de renormaliser exactement
HLO
/π dans le secteur à deux corps. À l’inverse, pour les approximations Hartree-Fock et Second

Born2

.

requièrent des contre-termes calculés respectivement au premier et second ordre (en
l’interaction) lors de la renormalisation de HLO

/π dans le secteur à deux corps.
En se basant sur ces résultats, le caractère renormalisable d’un ensemble de diagrammes

MBPT est ensuite étudié de manière formelle dans Chap. 4

.

, en faisant particulièrement attention
à ce que la renormalisabilité soit indépendante du secteur à N corps considéré. Pour étendre
l’analyse (et les conclusions) réalisée dans la section 3.5.3

.

, une procédure systématique (pour une
classe importante d’approximation du problème à N corps) est dérivée, permettant de calculer
les contre-termes nécessaires à l’annulation des divergences ultraviolettes, de sorte que les
observables à N corps sont manifestement invariantes vis-à-vis de la renormalisation. La première
classe d’approximations considérée regroupe les sommes d’un ensemble de diagrammes de

2Les calculs analytiques Hartree-Fock et Second Born de l’énergie par particule sont obtenus en dégradant
la ressommation des échelles respectivement à l’ordre un et deux en l’interaction.
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Feynman exprimés en terme de propagateurs dans le vide et d’insertions du milieu. La procédure
a pu être dérivée systématiquement grâce au puissant théorème BPHZ [83

.

, 36

.

, 37

.

] (voir App. C

.

pour une brève revue). Ce théorème permet notamment de traiter de manière systématique des
divergences ultraviolettes qui s’entremêlent dans un diagramme. Plus précisément, le théorème
BPHZ est appliqué à des diagrammes résultant d’une procédure de coupage introduite dans
Chap. 4

.

(voir Tab. 4.1

.

pour un exemple). Cela permet de procéder à la renormalisation de HLO
/π

uniquement dans des secteurs à N′ corps où N′ ≤ N′max avec N′max indépendant du secteur à N
corps d’intérêt. Dans la pratique, et les exemples développés, il s’avère que N′max ≤ 2 même si
aucun majorant n’a été dérivé a priori. Cela soutient l’idée qu’il est possible de dériver des
approximations du problème à N corps non-trivial tout en limitant la renormalisation de HLO

/π

sur des secteurs à N corps avec N petit. La seconde classe d’approximations considérée regroupe
les sommes d’un ensemble de diagrammes de Feynman exprimés en terme de propagateurs de
particule et de trou. Cela a été possible grâce à un deuxième puissant théorème, le théorème
asymptotique de Weinberg [35

.

]. Ce théorème et les outils mathématiques qui l’accompagnent
sont brièvement passés en revue dans la section 4.2.2

.

. À l’aide de ce théorème, une procédure
systématique est dérivée de manière similaire pour les diagrammes de particule/trou. Comme la
décomposition du propagateur non-perturbé en un propagateur de particule et un propagateur
de trou est générale (via la représentation de Lehmann), cela ouvre la voie à de futures
généralisations pour diverses approximations du problème à N corps (tel que CC ou SCGF)
et/ou différentes partitions du Hamiltonien. Parmi les premiers exemples d’intérêt pour la
physique nucléaire, mentionnons l’application de la procédure dérivée dans Chap. 4

.

au cas de la
ressommation RPA (pour random phase approximation) et l’extension de la procédure au cas
où l’Hamiltonien non-perturbé est l’Hamiltonien Hartree-Fock. Enfin, toutes les considérations
faites dans Chap. 4

.

sont restées en large partie agnostique pour ce qui est de l’Hamiltonien.
Dans le futur, il serait donc intéressant de chercher à étendre la présente étude à d’autre
Hamiltoniens tels que ceux dérivés dans le cadre de χEFT.
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Résumé : Actuellement l’intéraction nucléaire est
décrite par une théorie effective des champs chi-
rale (χEFT). De cette façon, les contributions aux
observables sont organisées en suite d’importance
décroissante. Le calcul de la contribution principal
nécessite de résoudre exactement l’équation de Schrö-
dinger pour un certain Hamiltonien. Une description
alternative, considérant uniquement des nucléons
(/πEFT) comme degrés de liberté, mène à la même
nécessité d’une résolution exacte. En pratique, de
tels calculs sont irréalistes, même numériquement,
pour des observables à N corps avec N � 10. Par
conséquence, des approximations supplémentaires
doivent être développées. Dans cette thèse, des ap-
proximations non-perturbatives basées sur des fonc-
tions de Green auto-cohérentes (SCGF) ainsi que des
approximations basé sur des théories des perturba-

tions à N corps (MBPT) sont considérées au sein de
/πEFT. Le but de cette thèse est d’étudier l’invariance
par le groupe de renormalisation d’observables à N
corps dans de tels cas où N � 10 avec l’espoir que
les conclusions tirées puissent être étendu à χEFT.
Dans le cas de SCGF, l’analyse des résultats numé-
riques produits avec un code à l’état de l’art révèle
une instabilité critique amenant à des observables
dépendant de la renormalisation. Un correctif est
proposé et devra être implémenté avant tout futur
calcul SCGF dans /πEFT. Cette étude révèle l’impor-
tance critique des approximations numériques sur
l’invariance par le groupe de renormalisation des ob-
servables. Dans le cas de MBPT, une étude formelle
ouvre la voie pour formuler la renormalisation d’un
large ensemble d’approximation à N corps dans le
future.
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Abstract: The current paradigm to describe the
nuclear interaction is within the frame of Chiral
Effective Field Theory (χEFT) which organizes con-
tributions to observables in a serie of decreasing
importance. It happens that the leading contribu-
tion already requires to solve exactly the Schrödinger
equation with a particular Hamiltonian. The same
requirement is at play in /πEFT which considers
only nucleonic degrees of freedom. Such calculations
are numerically intractable for A-body observables
with A � 10. One must design an additional ex-
pansion and truncation for many-body observables.
In this thesis, non-perturbative approximations on
the basis self-consistent Green’s function (SCGF)
and on many-body perturbation theory (MBPT) are
considered together with a /πEFT. The goal of the

present thesis is to investigate, in such framework,
the renormalization invariance of many-body observ-
ables computed in A-body sectors with A � 10.
Hopefully the lessons learnt can be extended to
χEFT. Analysis of numerical calculations realized
with a state-of-the-art SCGF code reveals a critical
numerical approximation leading to renormalization
dependent observables. A necessary fix is proposed
and must be implemented before any calculations
based on SCGF and EFT in the future. This empha-
sises the criticality of numerical approximations for
any calculation within a /πEFT. At the same time,
renormalization invariance of observables computed
within MBPT is studied formally, opening the path
to formulate the renormalization of a wide range of
many-body truncation schemes in the future.
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